pmap.c revision 1.107 1 /* $NetBSD: pmap.c,v 1.107 2002/08/10 00:11:51 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.107 2002/08/10 00:11:51 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static int pmap_alloc_ptpt(struct pmap *);
289 static void pmap_free_ptpt(struct pmap *);
290
291 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
292 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
294
295 extern paddr_t physical_start;
296 extern paddr_t physical_end;
297 extern unsigned int free_pages;
298 extern int max_processes;
299
300 vaddr_t virtual_avail;
301 vaddr_t virtual_end;
302 vaddr_t pmap_curmaxkvaddr;
303
304 vaddr_t avail_start;
305 vaddr_t avail_end;
306
307 extern pv_addr_t systempage;
308
309 /* Variables used by the L1 page table queue code */
310 SIMPLEQ_HEAD(l1pt_queue, l1pt);
311 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
312 static int l1pt_static_queue_count; /* items in the static l1 queue */
313 static int l1pt_static_create_count; /* static l1 items created */
314 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
315 static int l1pt_queue_count; /* items in the l1 queue */
316 static int l1pt_create_count; /* stat - L1's create count */
317 static int l1pt_reuse_count; /* stat - L1's reused count */
318
319 /* Local function prototypes (not used outside this file) */
320 void pmap_pinit __P((struct pmap *));
321 void pmap_freepagedir __P((struct pmap *));
322
323 /* Other function prototypes */
324 extern void bzero_page __P((vaddr_t));
325 extern void bcopy_page __P((vaddr_t, vaddr_t));
326
327 struct l1pt *pmap_alloc_l1pt __P((void));
328 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
329 vaddr_t l2pa, boolean_t));
330
331 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
332 static void pmap_unmap_ptes __P((struct pmap *));
333
334 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
335 pt_entry_t *, boolean_t));
336 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
337 pt_entry_t *, boolean_t));
338 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
339 pt_entry_t *, boolean_t));
340
341 /*
342 * real definition of pv_entry.
343 */
344
345 struct pv_entry {
346 struct pv_entry *pv_next; /* next pv_entry */
347 struct pmap *pv_pmap; /* pmap where mapping lies */
348 vaddr_t pv_va; /* virtual address for mapping */
349 int pv_flags; /* flags */
350 struct vm_page *pv_ptp; /* vm_page for the ptp */
351 };
352
353 /*
354 * pv_entrys are dynamically allocated in chunks from a single page.
355 * we keep track of how many pv_entrys are in use for each page and
356 * we can free pv_entry pages if needed. there is one lock for the
357 * entire allocation system.
358 */
359
360 struct pv_page_info {
361 TAILQ_ENTRY(pv_page) pvpi_list;
362 struct pv_entry *pvpi_pvfree;
363 int pvpi_nfree;
364 };
365
366 /*
367 * number of pv_entry's in a pv_page
368 * (note: won't work on systems where NPBG isn't a constant)
369 */
370
371 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
372 sizeof(struct pv_entry))
373
374 /*
375 * a pv_page: where pv_entrys are allocated from
376 */
377
378 struct pv_page {
379 struct pv_page_info pvinfo;
380 struct pv_entry pvents[PVE_PER_PVPAGE];
381 };
382
383 #ifdef MYCROFT_HACK
384 int mycroft_hack = 0;
385 #endif
386
387 /* Function to set the debug level of the pmap code */
388
389 #ifdef PMAP_DEBUG
390 void
391 pmap_debug(int level)
392 {
393 pmap_debug_level = level;
394 printf("pmap_debug: level=%d\n", pmap_debug_level);
395 }
396 #endif /* PMAP_DEBUG */
397
398 __inline static boolean_t
399 pmap_is_curpmap(struct pmap *pmap)
400 {
401
402 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
403 pmap == pmap_kernel())
404 return (TRUE);
405
406 return (FALSE);
407 }
408
409 /*
410 * p v _ e n t r y f u n c t i o n s
411 */
412
413 /*
414 * pv_entry allocation functions:
415 * the main pv_entry allocation functions are:
416 * pmap_alloc_pv: allocate a pv_entry structure
417 * pmap_free_pv: free one pv_entry
418 * pmap_free_pvs: free a list of pv_entrys
419 *
420 * the rest are helper functions
421 */
422
423 /*
424 * pmap_alloc_pv: inline function to allocate a pv_entry structure
425 * => we lock pvalloc_lock
426 * => if we fail, we call out to pmap_alloc_pvpage
427 * => 3 modes:
428 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
429 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
430 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
431 * one now
432 *
433 * "try" is for optional functions like pmap_copy().
434 */
435
436 __inline static struct pv_entry *
437 pmap_alloc_pv(struct pmap *pmap, int mode)
438 {
439 struct pv_page *pvpage;
440 struct pv_entry *pv;
441
442 simple_lock(&pvalloc_lock);
443
444 pvpage = TAILQ_FIRST(&pv_freepages);
445
446 if (pvpage != NULL) {
447 pvpage->pvinfo.pvpi_nfree--;
448 if (pvpage->pvinfo.pvpi_nfree == 0) {
449 /* nothing left in this one? */
450 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
451 }
452 pv = pvpage->pvinfo.pvpi_pvfree;
453 KASSERT(pv);
454 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
455 pv_nfpvents--; /* took one from pool */
456 } else {
457 pv = NULL; /* need more of them */
458 }
459
460 /*
461 * if below low water mark or we didn't get a pv_entry we try and
462 * create more pv_entrys ...
463 */
464
465 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
466 if (pv == NULL)
467 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
468 mode : ALLOCPV_NEED);
469 else
470 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
471 }
472
473 simple_unlock(&pvalloc_lock);
474 return(pv);
475 }
476
477 /*
478 * pmap_alloc_pvpage: maybe allocate a new pvpage
479 *
480 * if need_entry is false: try and allocate a new pv_page
481 * if need_entry is true: try and allocate a new pv_page and return a
482 * new pv_entry from it. if we are unable to allocate a pv_page
483 * we make a last ditch effort to steal a pv_page from some other
484 * mapping. if that fails, we panic...
485 *
486 * => we assume that the caller holds pvalloc_lock
487 */
488
489 static struct pv_entry *
490 pmap_alloc_pvpage(struct pmap *pmap, int mode)
491 {
492 struct vm_page *pg;
493 struct pv_page *pvpage;
494 struct pv_entry *pv;
495 int s;
496
497 /*
498 * if we need_entry and we've got unused pv_pages, allocate from there
499 */
500
501 pvpage = TAILQ_FIRST(&pv_unusedpgs);
502 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
503
504 /* move it to pv_freepages list */
505 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
506 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
507
508 /* allocate a pv_entry */
509 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
510 pv = pvpage->pvinfo.pvpi_pvfree;
511 KASSERT(pv);
512 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
513
514 pv_nfpvents--; /* took one from pool */
515 return(pv);
516 }
517
518 /*
519 * see if we've got a cached unmapped VA that we can map a page in.
520 * if not, try to allocate one.
521 */
522
523
524 if (pv_cachedva == 0) {
525 s = splvm();
526 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
527 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
528 splx(s);
529 if (pv_cachedva == 0) {
530 return (NULL);
531 }
532 }
533
534 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
535 UVM_PGA_USERESERVE);
536
537 if (pg == NULL)
538 return (NULL);
539 pg->flags &= ~PG_BUSY; /* never busy */
540
541 /*
542 * add a mapping for our new pv_page and free its entrys (save one!)
543 *
544 * NOTE: If we are allocating a PV page for the kernel pmap, the
545 * pmap is already locked! (...but entering the mapping is safe...)
546 */
547
548 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
549 VM_PROT_READ|VM_PROT_WRITE);
550 pmap_update(pmap_kernel());
551 pvpage = (struct pv_page *) pv_cachedva;
552 pv_cachedva = 0;
553 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
554 }
555
556 /*
557 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
558 *
559 * => caller must hold pvalloc_lock
560 * => if need_entry is true, we allocate and return one pv_entry
561 */
562
563 static struct pv_entry *
564 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
565 {
566 int tofree, lcv;
567
568 /* do we need to return one? */
569 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
570
571 pvp->pvinfo.pvpi_pvfree = NULL;
572 pvp->pvinfo.pvpi_nfree = tofree;
573 for (lcv = 0 ; lcv < tofree ; lcv++) {
574 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
575 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
576 }
577 if (need_entry)
578 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
579 else
580 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
581 pv_nfpvents += tofree;
582 return((need_entry) ? &pvp->pvents[lcv] : NULL);
583 }
584
585 /*
586 * pmap_free_pv_doit: actually free a pv_entry
587 *
588 * => do not call this directly! instead use either
589 * 1. pmap_free_pv ==> free a single pv_entry
590 * 2. pmap_free_pvs => free a list of pv_entrys
591 * => we must be holding pvalloc_lock
592 */
593
594 __inline static void
595 pmap_free_pv_doit(struct pv_entry *pv)
596 {
597 struct pv_page *pvp;
598
599 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
600 pv_nfpvents++;
601 pvp->pvinfo.pvpi_nfree++;
602
603 /* nfree == 1 => fully allocated page just became partly allocated */
604 if (pvp->pvinfo.pvpi_nfree == 1) {
605 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
606 }
607
608 /* free it */
609 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
610 pvp->pvinfo.pvpi_pvfree = pv;
611
612 /*
613 * are all pv_page's pv_entry's free? move it to unused queue.
614 */
615
616 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
617 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
618 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
619 }
620 }
621
622 /*
623 * pmap_free_pv: free a single pv_entry
624 *
625 * => we gain the pvalloc_lock
626 */
627
628 __inline static void
629 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
630 {
631 simple_lock(&pvalloc_lock);
632 pmap_free_pv_doit(pv);
633
634 /*
635 * Can't free the PV page if the PV entries were associated with
636 * the kernel pmap; the pmap is already locked.
637 */
638 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
639 pmap != pmap_kernel())
640 pmap_free_pvpage();
641
642 simple_unlock(&pvalloc_lock);
643 }
644
645 /*
646 * pmap_free_pvs: free a list of pv_entrys
647 *
648 * => we gain the pvalloc_lock
649 */
650
651 __inline static void
652 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
653 {
654 struct pv_entry *nextpv;
655
656 simple_lock(&pvalloc_lock);
657
658 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
659 nextpv = pvs->pv_next;
660 pmap_free_pv_doit(pvs);
661 }
662
663 /*
664 * Can't free the PV page if the PV entries were associated with
665 * the kernel pmap; the pmap is already locked.
666 */
667 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
668 pmap != pmap_kernel())
669 pmap_free_pvpage();
670
671 simple_unlock(&pvalloc_lock);
672 }
673
674
675 /*
676 * pmap_free_pvpage: try and free an unused pv_page structure
677 *
678 * => assume caller is holding the pvalloc_lock and that
679 * there is a page on the pv_unusedpgs list
680 * => if we can't get a lock on the kmem_map we try again later
681 */
682
683 static void
684 pmap_free_pvpage(void)
685 {
686 int s;
687 struct vm_map *map;
688 struct vm_map_entry *dead_entries;
689 struct pv_page *pvp;
690
691 s = splvm(); /* protect kmem_map */
692
693 pvp = TAILQ_FIRST(&pv_unusedpgs);
694
695 /*
696 * note: watch out for pv_initpage which is allocated out of
697 * kernel_map rather than kmem_map.
698 */
699 if (pvp == pv_initpage)
700 map = kernel_map;
701 else
702 map = kmem_map;
703 if (vm_map_lock_try(map)) {
704
705 /* remove pvp from pv_unusedpgs */
706 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
707
708 /* unmap the page */
709 dead_entries = NULL;
710 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
711 &dead_entries);
712 vm_map_unlock(map);
713
714 if (dead_entries != NULL)
715 uvm_unmap_detach(dead_entries, 0);
716
717 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
718 }
719 if (pvp == pv_initpage)
720 /* no more initpage, we've freed it */
721 pv_initpage = NULL;
722
723 splx(s);
724 }
725
726 /*
727 * main pv_entry manipulation functions:
728 * pmap_enter_pv: enter a mapping onto a vm_page list
729 * pmap_remove_pv: remove a mappiing from a vm_page list
730 *
731 * NOTE: pmap_enter_pv expects to lock the pvh itself
732 * pmap_remove_pv expects te caller to lock the pvh before calling
733 */
734
735 /*
736 * pmap_enter_pv: enter a mapping onto a vm_page lst
737 *
738 * => caller should hold the proper lock on pmap_main_lock
739 * => caller should have pmap locked
740 * => we will gain the lock on the vm_page and allocate the new pv_entry
741 * => caller should adjust ptp's wire_count before calling
742 * => caller should not adjust pmap's wire_count
743 */
744
745 __inline static void
746 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
747 vaddr_t va, struct vm_page *ptp, int flags)
748 {
749 pve->pv_pmap = pmap;
750 pve->pv_va = va;
751 pve->pv_ptp = ptp; /* NULL for kernel pmap */
752 pve->pv_flags = flags;
753 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
754 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
755 pg->mdpage.pvh_list = pve; /* ... locked list */
756 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
757 if (pve->pv_flags & PVF_WIRED)
758 ++pmap->pm_stats.wired_count;
759 #ifdef PMAP_ALIAS_DEBUG
760 {
761 int s = splhigh();
762 if (pve->pv_flags & PVF_WRITE)
763 pg->mdpage.rw_mappings++;
764 else
765 pg->mdpage.ro_mappings++;
766 if (pg->mdpage.rw_mappings != 0 &&
767 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
768 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
769 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
770 pg->mdpage.krw_mappings);
771 }
772 splx(s);
773 }
774 #endif /* PMAP_ALIAS_DEBUG */
775 }
776
777 /*
778 * pmap_remove_pv: try to remove a mapping from a pv_list
779 *
780 * => caller should hold proper lock on pmap_main_lock
781 * => pmap should be locked
782 * => caller should hold lock on vm_page [so that attrs can be adjusted]
783 * => caller should adjust ptp's wire_count and free PTP if needed
784 * => caller should NOT adjust pmap's wire_count
785 * => we return the removed pve
786 */
787
788 __inline static struct pv_entry *
789 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
790 {
791 struct pv_entry *pve, **prevptr;
792
793 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
794 pve = *prevptr;
795 while (pve) {
796 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
797 *prevptr = pve->pv_next; /* remove it! */
798 if (pve->pv_flags & PVF_WIRED)
799 --pmap->pm_stats.wired_count;
800 #ifdef PMAP_ALIAS_DEBUG
801 {
802 int s = splhigh();
803 if (pve->pv_flags & PVF_WRITE) {
804 KASSERT(pg->mdpage.rw_mappings != 0);
805 pg->mdpage.rw_mappings--;
806 } else {
807 KASSERT(pg->mdpage.ro_mappings != 0);
808 pg->mdpage.ro_mappings--;
809 }
810 splx(s);
811 }
812 #endif /* PMAP_ALIAS_DEBUG */
813 break;
814 }
815 prevptr = &pve->pv_next; /* previous pointer */
816 pve = pve->pv_next; /* advance */
817 }
818 return(pve); /* return removed pve */
819 }
820
821 /*
822 *
823 * pmap_modify_pv: Update pv flags
824 *
825 * => caller should hold lock on vm_page [so that attrs can be adjusted]
826 * => caller should NOT adjust pmap's wire_count
827 * => caller must call pmap_vac_me_harder() if writable status of a page
828 * may have changed.
829 * => we return the old flags
830 *
831 * Modify a physical-virtual mapping in the pv table
832 */
833
834 static /* __inline */ u_int
835 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
836 u_int bic_mask, u_int eor_mask)
837 {
838 struct pv_entry *npv;
839 u_int flags, oflags;
840
841 /*
842 * There is at least one VA mapping this page.
843 */
844
845 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
846 if (pmap == npv->pv_pmap && va == npv->pv_va) {
847 oflags = npv->pv_flags;
848 npv->pv_flags = flags =
849 ((oflags & ~bic_mask) ^ eor_mask);
850 if ((flags ^ oflags) & PVF_WIRED) {
851 if (flags & PVF_WIRED)
852 ++pmap->pm_stats.wired_count;
853 else
854 --pmap->pm_stats.wired_count;
855 }
856 #ifdef PMAP_ALIAS_DEBUG
857 {
858 int s = splhigh();
859 if ((flags ^ oflags) & PVF_WRITE) {
860 if (flags & PVF_WRITE) {
861 pg->mdpage.rw_mappings++;
862 pg->mdpage.ro_mappings--;
863 if (pg->mdpage.rw_mappings != 0 &&
864 (pg->mdpage.kro_mappings != 0 ||
865 pg->mdpage.krw_mappings != 0)) {
866 printf("pmap_modify_pv: rw %u, "
867 "kro %u, krw %u\n",
868 pg->mdpage.rw_mappings,
869 pg->mdpage.kro_mappings,
870 pg->mdpage.krw_mappings);
871 }
872 } else {
873 KASSERT(pg->mdpage.rw_mappings != 0);
874 pg->mdpage.rw_mappings--;
875 pg->mdpage.ro_mappings++;
876 }
877 }
878 splx(s);
879 }
880 #endif /* PMAP_ALIAS_DEBUG */
881 return (oflags);
882 }
883 }
884 return (0);
885 }
886
887 /*
888 * Map the specified level 2 pagetable into the level 1 page table for
889 * the given pmap to cover a chunk of virtual address space starting from the
890 * address specified.
891 */
892 static __inline void
893 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
894 {
895 vaddr_t ptva;
896
897 /* Calculate the index into the L1 page table. */
898 ptva = (va >> L1_S_SHIFT) & ~3;
899
900 /* Map page table into the L1. */
901 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
902 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
903 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
904 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
905
906 /* Map the page table into the page table area. */
907 if (selfref)
908 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
909 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
910 }
911
912 #if 0
913 static __inline void
914 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
915 {
916 vaddr_t ptva;
917
918 /* Calculate the index into the L1 page table. */
919 ptva = (va >> L1_S_SHIFT) & ~3;
920
921 /* Unmap page table from the L1. */
922 pmap->pm_pdir[ptva + 0] = 0;
923 pmap->pm_pdir[ptva + 1] = 0;
924 pmap->pm_pdir[ptva + 2] = 0;
925 pmap->pm_pdir[ptva + 3] = 0;
926
927 /* Unmap the page table from the page table area. */
928 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
929 }
930 #endif
931
932 /*
933 * Used to map a range of physical addresses into kernel
934 * virtual address space.
935 *
936 * For now, VM is already on, we only need to map the
937 * specified memory.
938 *
939 * XXX This routine should eventually go away; it's only used
940 * XXX by machine-dependent crash dump code.
941 */
942 vaddr_t
943 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
944 {
945 pt_entry_t *pte;
946
947 while (spa < epa) {
948 pte = vtopte(va);
949
950 *pte = L2_S_PROTO | spa |
951 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
952 cpu_tlb_flushID_SE(va);
953 va += NBPG;
954 spa += NBPG;
955 }
956 pmap_update(pmap_kernel());
957 return(va);
958 }
959
960
961 /*
962 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
963 *
964 * bootstrap the pmap system. This is called from initarm and allows
965 * the pmap system to initailise any structures it requires.
966 *
967 * Currently this sets up the kernel_pmap that is statically allocated
968 * and also allocated virtual addresses for certain page hooks.
969 * Currently the only one page hook is allocated that is used
970 * to zero physical pages of memory.
971 * It also initialises the start and end address of the kernel data space.
972 */
973
974 char *boot_head;
975
976 void
977 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
978 {
979 pt_entry_t *pte;
980
981 pmap_kernel()->pm_pdir = kernel_l1pt;
982 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
983 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
984 simple_lock_init(&pmap_kernel()->pm_lock);
985 pmap_kernel()->pm_obj.pgops = NULL;
986 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
987 pmap_kernel()->pm_obj.uo_npages = 0;
988 pmap_kernel()->pm_obj.uo_refs = 1;
989
990 virtual_avail = KERNEL_VM_BASE;
991 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
992
993 /*
994 * now we allocate the "special" VAs which are used for tmp mappings
995 * by the pmap (and other modules). we allocate the VAs by advancing
996 * virtual_avail (note that there are no pages mapped at these VAs).
997 * we find the PTE that maps the allocated VA via the linear PTE
998 * mapping.
999 */
1000
1001 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1002
1003 csrcp = virtual_avail; csrc_pte = pte;
1004 virtual_avail += PAGE_SIZE; pte++;
1005
1006 cdstp = virtual_avail; cdst_pte = pte;
1007 virtual_avail += PAGE_SIZE; pte++;
1008
1009 memhook = (char *) virtual_avail; /* don't need pte */
1010 virtual_avail += PAGE_SIZE; pte++;
1011
1012 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1013 virtual_avail += round_page(MSGBUFSIZE);
1014 pte += atop(round_page(MSGBUFSIZE));
1015
1016 /*
1017 * init the static-global locks and global lists.
1018 */
1019 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1020 simple_lock_init(&pvalloc_lock);
1021 simple_lock_init(&pmaps_lock);
1022 LIST_INIT(&pmaps);
1023 TAILQ_INIT(&pv_freepages);
1024 TAILQ_INIT(&pv_unusedpgs);
1025
1026 /*
1027 * initialize the pmap pool.
1028 */
1029
1030 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1031 &pool_allocator_nointr);
1032
1033 cpu_dcache_wbinv_all();
1034 }
1035
1036 /*
1037 * void pmap_init(void)
1038 *
1039 * Initialize the pmap module.
1040 * Called by vm_init() in vm/vm_init.c in order to initialise
1041 * any structures that the pmap system needs to map virtual memory.
1042 */
1043
1044 extern int physmem;
1045
1046 void
1047 pmap_init(void)
1048 {
1049
1050 /*
1051 * Set the available memory vars - These do not map to real memory
1052 * addresses and cannot as the physical memory is fragmented.
1053 * They are used by ps for %mem calculations.
1054 * One could argue whether this should be the entire memory or just
1055 * the memory that is useable in a user process.
1056 */
1057 avail_start = 0;
1058 avail_end = physmem * NBPG;
1059
1060 /*
1061 * now we need to free enough pv_entry structures to allow us to get
1062 * the kmem_map/kmem_object allocated and inited (done after this
1063 * function is finished). to do this we allocate one bootstrap page out
1064 * of kernel_map and use it to provide an initial pool of pv_entry
1065 * structures. we never free this page.
1066 */
1067
1068 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1069 if (pv_initpage == NULL)
1070 panic("pmap_init: pv_initpage");
1071 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1072 pv_nfpvents = 0;
1073 (void) pmap_add_pvpage(pv_initpage, FALSE);
1074
1075 pmap_initialized = TRUE;
1076
1077 /* Initialise our L1 page table queues and counters */
1078 SIMPLEQ_INIT(&l1pt_static_queue);
1079 l1pt_static_queue_count = 0;
1080 l1pt_static_create_count = 0;
1081 SIMPLEQ_INIT(&l1pt_queue);
1082 l1pt_queue_count = 0;
1083 l1pt_create_count = 0;
1084 l1pt_reuse_count = 0;
1085 }
1086
1087 /*
1088 * pmap_postinit()
1089 *
1090 * This routine is called after the vm and kmem subsystems have been
1091 * initialised. This allows the pmap code to perform any initialisation
1092 * that can only be done one the memory allocation is in place.
1093 */
1094
1095 void
1096 pmap_postinit(void)
1097 {
1098 int loop;
1099 struct l1pt *pt;
1100
1101 #ifdef PMAP_STATIC_L1S
1102 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1103 #else /* PMAP_STATIC_L1S */
1104 for (loop = 0; loop < max_processes; ++loop) {
1105 #endif /* PMAP_STATIC_L1S */
1106 /* Allocate a L1 page table */
1107 pt = pmap_alloc_l1pt();
1108 if (!pt)
1109 panic("Cannot allocate static L1 page tables\n");
1110
1111 /* Clean it */
1112 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1113 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1114 /* Add the page table to the queue */
1115 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1116 ++l1pt_static_queue_count;
1117 ++l1pt_static_create_count;
1118 }
1119 }
1120
1121
1122 /*
1123 * Create and return a physical map.
1124 *
1125 * If the size specified for the map is zero, the map is an actual physical
1126 * map, and may be referenced by the hardware.
1127 *
1128 * If the size specified is non-zero, the map will be used in software only,
1129 * and is bounded by that size.
1130 */
1131
1132 pmap_t
1133 pmap_create(void)
1134 {
1135 struct pmap *pmap;
1136
1137 /*
1138 * Fetch pmap entry from the pool
1139 */
1140
1141 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1142 /* XXX is this really needed! */
1143 memset(pmap, 0, sizeof(*pmap));
1144
1145 simple_lock_init(&pmap->pm_obj.vmobjlock);
1146 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1147 TAILQ_INIT(&pmap->pm_obj.memq);
1148 pmap->pm_obj.uo_npages = 0;
1149 pmap->pm_obj.uo_refs = 1;
1150 pmap->pm_stats.wired_count = 0;
1151 pmap->pm_stats.resident_count = 1;
1152 pmap->pm_ptphint = NULL;
1153
1154 /* Now init the machine part of the pmap */
1155 pmap_pinit(pmap);
1156 return(pmap);
1157 }
1158
1159 /*
1160 * pmap_alloc_l1pt()
1161 *
1162 * This routine allocates physical and virtual memory for a L1 page table
1163 * and wires it.
1164 * A l1pt structure is returned to describe the allocated page table.
1165 *
1166 * This routine is allowed to fail if the required memory cannot be allocated.
1167 * In this case NULL is returned.
1168 */
1169
1170 struct l1pt *
1171 pmap_alloc_l1pt(void)
1172 {
1173 paddr_t pa;
1174 vaddr_t va;
1175 struct l1pt *pt;
1176 int error;
1177 struct vm_page *m;
1178 pt_entry_t *pte;
1179
1180 /* Allocate virtual address space for the L1 page table */
1181 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1182 if (va == 0) {
1183 #ifdef DIAGNOSTIC
1184 PDEBUG(0,
1185 printf("pmap: Cannot allocate pageable memory for L1\n"));
1186 #endif /* DIAGNOSTIC */
1187 return(NULL);
1188 }
1189
1190 /* Allocate memory for the l1pt structure */
1191 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1192
1193 /*
1194 * Allocate pages from the VM system.
1195 */
1196 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1197 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1198 if (error) {
1199 #ifdef DIAGNOSTIC
1200 PDEBUG(0,
1201 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1202 error));
1203 #endif /* DIAGNOSTIC */
1204 /* Release the resources we already have claimed */
1205 free(pt, M_VMPMAP);
1206 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1207 return(NULL);
1208 }
1209
1210 /* Map our physical pages into our virtual space */
1211 pt->pt_va = va;
1212 m = TAILQ_FIRST(&pt->pt_plist);
1213 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1214 pa = VM_PAGE_TO_PHYS(m);
1215
1216 pte = vtopte(va);
1217
1218 /*
1219 * Assert that the PTE is invalid. If it's invalid,
1220 * then we are guaranteed that there won't be an entry
1221 * for this VA in the TLB.
1222 */
1223 KDASSERT(pmap_pte_v(pte) == 0);
1224
1225 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(m) |
1226 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1227
1228 va += NBPG;
1229 m = m->pageq.tqe_next;
1230 }
1231
1232 #ifdef DIAGNOSTIC
1233 if (m)
1234 panic("pmap_alloc_l1pt: pglist not empty\n");
1235 #endif /* DIAGNOSTIC */
1236
1237 pt->pt_flags = 0;
1238 return(pt);
1239 }
1240
1241 /*
1242 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1243 */
1244 static void
1245 pmap_free_l1pt(struct l1pt *pt)
1246 {
1247 /* Separate the physical memory for the virtual space */
1248 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1249 pmap_update(pmap_kernel());
1250
1251 /* Return the physical memory */
1252 uvm_pglistfree(&pt->pt_plist);
1253
1254 /* Free the virtual space */
1255 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1256
1257 /* Free the l1pt structure */
1258 free(pt, M_VMPMAP);
1259 }
1260
1261 /*
1262 * pmap_alloc_ptpt:
1263 *
1264 * Allocate the page table that maps the PTE array.
1265 */
1266 static int
1267 pmap_alloc_ptpt(struct pmap *pmap)
1268 {
1269 struct vm_page *pg;
1270 pt_entry_t *pte;
1271
1272 KASSERT(pmap->pm_vptpt == 0);
1273
1274 pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1275 if (pmap->pm_vptpt == 0) {
1276 PDEBUG(0,
1277 printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
1278 return (ENOMEM);
1279 }
1280
1281 for (;;) {
1282 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1283 if (pg != NULL)
1284 break;
1285 uvm_wait("pmap_ptpt");
1286 }
1287
1288 pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
1289
1290 pte = vtopte(pmap->pm_vptpt);
1291
1292 KDASSERT(pmap_pte_v(pte) == 0);
1293
1294 *pte = L2_S_PROTO | pmap->pm_pptpt |
1295 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1296 #ifdef PMAP_ALIAS_DEBUG
1297 {
1298 int s = splhigh();
1299 pg->mdpage.krw_mappings++;
1300 splx(s);
1301 }
1302 #endif /* PMAP_ALIAS_DEBUG */
1303
1304 return (0);
1305 }
1306
1307 /*
1308 * pmap_free_ptpt:
1309 *
1310 * Free the page table that maps the PTE array.
1311 */
1312 static void
1313 pmap_free_ptpt(struct pmap *pmap)
1314 {
1315
1316 pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
1317 pmap_update(pmap_kernel());
1318
1319 uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
1320
1321 uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
1322 }
1323
1324 /*
1325 * Allocate a page directory.
1326 * This routine will either allocate a new page directory from the pool
1327 * of L1 page tables currently held by the kernel or it will allocate
1328 * a new one via pmap_alloc_l1pt().
1329 * It will then initialise the l1 page table for use.
1330 */
1331 static int
1332 pmap_allocpagedir(struct pmap *pmap)
1333 {
1334 paddr_t pa;
1335 struct l1pt *pt;
1336 int error;
1337
1338 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1339
1340 /* Do we have any spare L1's lying around ? */
1341 if (l1pt_static_queue_count) {
1342 --l1pt_static_queue_count;
1343 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1344 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1345 } else if (l1pt_queue_count) {
1346 --l1pt_queue_count;
1347 pt = SIMPLEQ_FIRST(&l1pt_queue);
1348 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1349 ++l1pt_reuse_count;
1350 } else {
1351 pt = pmap_alloc_l1pt();
1352 if (!pt)
1353 return(ENOMEM);
1354 ++l1pt_create_count;
1355 }
1356
1357 /* Store the pointer to the l1 descriptor in the pmap. */
1358 pmap->pm_l1pt = pt;
1359
1360 /* Get the physical address of the start of the l1 */
1361 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1362
1363 /* Store the virtual address of the l1 in the pmap. */
1364 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1365
1366 /* Clean the L1 if it is dirty */
1367 if (!(pt->pt_flags & PTFLAG_CLEAN))
1368 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1369
1370 /* Allocate a page table to map all the page tables for this pmap */
1371 if ((error = pmap_alloc_ptpt(pmap)) != 0) {
1372 pmap_freepagedir(pmap);
1373 return (error);
1374 }
1375
1376 /* need to lock this all up for growkernel */
1377 simple_lock(&pmaps_lock);
1378
1379 /* Duplicate the kernel mappings. */
1380 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1381 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1382 KERNEL_PD_SIZE);
1383
1384 /* Wire in this page table */
1385 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1386
1387 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1388
1389 /*
1390 * Map the kernel page tables into the new PT map.
1391 */
1392 bcopy((char *)(PTE_BASE
1393 + (PTE_BASE >> (PGSHIFT - 2))
1394 + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1395 (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1396 (KERNEL_PD_SIZE >> 2));
1397
1398 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1399 simple_unlock(&pmaps_lock);
1400
1401 return(0);
1402 }
1403
1404
1405 /*
1406 * Initialize a preallocated and zeroed pmap structure,
1407 * such as one in a vmspace structure.
1408 */
1409
1410 void
1411 pmap_pinit(struct pmap *pmap)
1412 {
1413 int backoff = 6;
1414 int retry = 10;
1415
1416 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1417
1418 /* Keep looping until we succeed in allocating a page directory */
1419 while (pmap_allocpagedir(pmap) != 0) {
1420 /*
1421 * Ok we failed to allocate a suitable block of memory for an
1422 * L1 page table. This means that either:
1423 * 1. 16KB of virtual address space could not be allocated
1424 * 2. 16KB of physically contiguous memory on a 16KB boundary
1425 * could not be allocated.
1426 *
1427 * Since we cannot fail we will sleep for a while and try
1428 * again.
1429 *
1430 * Searching for a suitable L1 PT is expensive:
1431 * to avoid hogging the system when memory is really
1432 * scarce, use an exponential back-off so that
1433 * eventually we won't retry more than once every 8
1434 * seconds. This should allow other processes to run
1435 * to completion and free up resources.
1436 */
1437 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1438 NULL);
1439 if (--retry == 0) {
1440 retry = 10;
1441 if (backoff)
1442 --backoff;
1443 }
1444 }
1445
1446 if (vector_page < KERNEL_BASE) {
1447 /*
1448 * Map the vector page. This will also allocate and map
1449 * an L2 table for it.
1450 */
1451 pmap_enter(pmap, vector_page, systempage.pv_pa,
1452 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1453 pmap_update(pmap);
1454 }
1455 }
1456
1457
1458 void
1459 pmap_freepagedir(struct pmap *pmap)
1460 {
1461 /* Free the memory used for the page table mapping */
1462 if (pmap->pm_vptpt != 0)
1463 pmap_free_ptpt(pmap);
1464
1465 /* junk the L1 page table */
1466 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1467 /* Add the page table to the queue */
1468 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1469 ++l1pt_static_queue_count;
1470 } else if (l1pt_queue_count < 8) {
1471 /* Add the page table to the queue */
1472 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1473 ++l1pt_queue_count;
1474 } else
1475 pmap_free_l1pt(pmap->pm_l1pt);
1476 }
1477
1478
1479 /*
1480 * Retire the given physical map from service.
1481 * Should only be called if the map contains no valid mappings.
1482 */
1483
1484 void
1485 pmap_destroy(struct pmap *pmap)
1486 {
1487 struct vm_page *page;
1488 int count;
1489
1490 if (pmap == NULL)
1491 return;
1492
1493 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1494
1495 /*
1496 * Drop reference count
1497 */
1498 simple_lock(&pmap->pm_obj.vmobjlock);
1499 count = --pmap->pm_obj.uo_refs;
1500 simple_unlock(&pmap->pm_obj.vmobjlock);
1501 if (count > 0) {
1502 return;
1503 }
1504
1505 /*
1506 * reference count is zero, free pmap resources and then free pmap.
1507 */
1508
1509 /*
1510 * remove it from global list of pmaps
1511 */
1512
1513 simple_lock(&pmaps_lock);
1514 LIST_REMOVE(pmap, pm_list);
1515 simple_unlock(&pmaps_lock);
1516
1517 if (vector_page < KERNEL_BASE) {
1518 /* Remove the vector page mapping */
1519 pmap_remove(pmap, vector_page, vector_page + NBPG);
1520 pmap_update(pmap);
1521 }
1522
1523 /*
1524 * Free any page tables still mapped
1525 * This is only temporay until pmap_enter can count the number
1526 * of mappings made in a page table. Then pmap_remove() can
1527 * reduce the count and free the pagetable when the count
1528 * reaches zero. Note that entries in this list should match the
1529 * contents of the ptpt, however this is faster than walking a 1024
1530 * entries looking for pt's
1531 * taken from i386 pmap.c
1532 */
1533 /*
1534 * vmobjlock must be held while freeing pages
1535 */
1536 simple_lock(&pmap->pm_obj.vmobjlock);
1537 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1538 KASSERT((page->flags & PG_BUSY) == 0);
1539 page->wire_count = 0;
1540 uvm_pagefree(page);
1541 }
1542 simple_unlock(&pmap->pm_obj.vmobjlock);
1543
1544 /* Free the page dir */
1545 pmap_freepagedir(pmap);
1546
1547 /* return the pmap to the pool */
1548 pool_put(&pmap_pmap_pool, pmap);
1549 }
1550
1551
1552 /*
1553 * void pmap_reference(struct pmap *pmap)
1554 *
1555 * Add a reference to the specified pmap.
1556 */
1557
1558 void
1559 pmap_reference(struct pmap *pmap)
1560 {
1561 if (pmap == NULL)
1562 return;
1563
1564 simple_lock(&pmap->pm_lock);
1565 pmap->pm_obj.uo_refs++;
1566 simple_unlock(&pmap->pm_lock);
1567 }
1568
1569 /*
1570 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1571 *
1572 * Return the start and end addresses of the kernel's virtual space.
1573 * These values are setup in pmap_bootstrap and are updated as pages
1574 * are allocated.
1575 */
1576
1577 void
1578 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1579 {
1580 *start = virtual_avail;
1581 *end = virtual_end;
1582 }
1583
1584 /*
1585 * Activate the address space for the specified process. If the process
1586 * is the current process, load the new MMU context.
1587 */
1588 void
1589 pmap_activate(struct proc *p)
1590 {
1591 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1592 struct pcb *pcb = &p->p_addr->u_pcb;
1593
1594 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1595 (paddr_t *)&pcb->pcb_pagedir);
1596
1597 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1598 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1599
1600 if (p == curproc) {
1601 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1602 setttb((u_int)pcb->pcb_pagedir);
1603 }
1604 }
1605
1606 /*
1607 * Deactivate the address space of the specified process.
1608 */
1609 void
1610 pmap_deactivate(struct proc *p)
1611 {
1612 }
1613
1614 /*
1615 * Perform any deferred pmap operations.
1616 */
1617 void
1618 pmap_update(struct pmap *pmap)
1619 {
1620
1621 /*
1622 * We haven't deferred any pmap operations, but we do need to
1623 * make sure TLB/cache operations have completed.
1624 */
1625 cpu_cpwait();
1626 }
1627
1628 /*
1629 * pmap_clean_page()
1630 *
1631 * This is a local function used to work out the best strategy to clean
1632 * a single page referenced by its entry in the PV table. It's used by
1633 * pmap_copy_page, pmap_zero page and maybe some others later on.
1634 *
1635 * Its policy is effectively:
1636 * o If there are no mappings, we don't bother doing anything with the cache.
1637 * o If there is one mapping, we clean just that page.
1638 * o If there are multiple mappings, we clean the entire cache.
1639 *
1640 * So that some functions can be further optimised, it returns 0 if it didn't
1641 * clean the entire cache, or 1 if it did.
1642 *
1643 * XXX One bug in this routine is that if the pv_entry has a single page
1644 * mapped at 0x00000000 a whole cache clean will be performed rather than
1645 * just the 1 page. Since this should not occur in everyday use and if it does
1646 * it will just result in not the most efficient clean for the page.
1647 */
1648 static int
1649 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1650 {
1651 struct pmap *pmap;
1652 struct pv_entry *npv;
1653 int cache_needs_cleaning = 0;
1654 vaddr_t page_to_clean = 0;
1655
1656 if (pv == NULL)
1657 /* nothing mapped in so nothing to flush */
1658 return (0);
1659
1660 /* Since we flush the cache each time we change curproc, we
1661 * only need to flush the page if it is in the current pmap.
1662 */
1663 if (curproc)
1664 pmap = curproc->p_vmspace->vm_map.pmap;
1665 else
1666 pmap = pmap_kernel();
1667
1668 for (npv = pv; npv; npv = npv->pv_next) {
1669 if (npv->pv_pmap == pmap) {
1670 /* The page is mapped non-cacheable in
1671 * this map. No need to flush the cache.
1672 */
1673 if (npv->pv_flags & PVF_NC) {
1674 #ifdef DIAGNOSTIC
1675 if (cache_needs_cleaning)
1676 panic("pmap_clean_page: "
1677 "cache inconsistency");
1678 #endif
1679 break;
1680 }
1681 #if 0
1682 /*
1683 * XXX Can't do this because pmap_protect doesn't
1684 * XXX clean the page when it does a write-protect.
1685 */
1686 else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1687 continue;
1688 #endif
1689 if (cache_needs_cleaning){
1690 page_to_clean = 0;
1691 break;
1692 }
1693 else
1694 page_to_clean = npv->pv_va;
1695 cache_needs_cleaning = 1;
1696 }
1697 }
1698
1699 if (page_to_clean)
1700 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1701 else if (cache_needs_cleaning) {
1702 cpu_idcache_wbinv_all();
1703 return (1);
1704 }
1705 return (0);
1706 }
1707
1708 /*
1709 * pmap_zero_page()
1710 *
1711 * Zero a given physical page by mapping it at a page hook point.
1712 * In doing the zero page op, the page we zero is mapped cachable, as with
1713 * StrongARM accesses to non-cached pages are non-burst making writing
1714 * _any_ bulk data very slow.
1715 */
1716 #if ARM_MMU_GENERIC == 1
1717 void
1718 pmap_zero_page_generic(paddr_t phys)
1719 {
1720 #ifdef DEBUG
1721 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1722
1723 if (pg->mdpage.pvh_list != NULL)
1724 panic("pmap_zero_page: page has mappings");
1725 #endif
1726
1727 KDASSERT((phys & PGOFSET) == 0);
1728
1729 /*
1730 * Hook in the page, zero it, and purge the cache for that
1731 * zeroed page. Invalidate the TLB as needed.
1732 */
1733 *cdst_pte = L2_S_PROTO | phys |
1734 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1735 cpu_tlb_flushD_SE(cdstp);
1736 cpu_cpwait();
1737 bzero_page(cdstp);
1738 cpu_dcache_wbinv_range(cdstp, NBPG);
1739 }
1740 #endif /* ARM_MMU_GENERIC == 1 */
1741
1742 #if ARM_MMU_XSCALE == 1
1743 void
1744 pmap_zero_page_xscale(paddr_t phys)
1745 {
1746 #ifdef DEBUG
1747 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1748
1749 if (pg->mdpage.pvh_list != NULL)
1750 panic("pmap_zero_page: page has mappings");
1751 #endif
1752
1753 KDASSERT((phys & PGOFSET) == 0);
1754
1755 /*
1756 * Hook in the page, zero it, and purge the cache for that
1757 * zeroed page. Invalidate the TLB as needed.
1758 */
1759 *cdst_pte = L2_S_PROTO | phys |
1760 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1761 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1762 cpu_tlb_flushD_SE(cdstp);
1763 cpu_cpwait();
1764 bzero_page(cdstp);
1765 xscale_cache_clean_minidata();
1766 }
1767 #endif /* ARM_MMU_XSCALE == 1 */
1768
1769 /* pmap_pageidlezero()
1770 *
1771 * The same as above, except that we assume that the page is not
1772 * mapped. This means we never have to flush the cache first. Called
1773 * from the idle loop.
1774 */
1775 boolean_t
1776 pmap_pageidlezero(paddr_t phys)
1777 {
1778 int i, *ptr;
1779 boolean_t rv = TRUE;
1780 #ifdef DEBUG
1781 struct vm_page *pg;
1782
1783 pg = PHYS_TO_VM_PAGE(phys);
1784 if (pg->mdpage.pvh_list != NULL)
1785 panic("pmap_pageidlezero: page has mappings");
1786 #endif
1787
1788 KDASSERT((phys & PGOFSET) == 0);
1789
1790 /*
1791 * Hook in the page, zero it, and purge the cache for that
1792 * zeroed page. Invalidate the TLB as needed.
1793 */
1794 *cdst_pte = L2_S_PROTO | phys |
1795 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1796 cpu_tlb_flushD_SE(cdstp);
1797 cpu_cpwait();
1798
1799 for (i = 0, ptr = (int *)cdstp;
1800 i < (NBPG / sizeof(int)); i++) {
1801 if (sched_whichqs != 0) {
1802 /*
1803 * A process has become ready. Abort now,
1804 * so we don't keep it waiting while we
1805 * do slow memory access to finish this
1806 * page.
1807 */
1808 rv = FALSE;
1809 break;
1810 }
1811 *ptr++ = 0;
1812 }
1813
1814 if (rv)
1815 /*
1816 * if we aborted we'll rezero this page again later so don't
1817 * purge it unless we finished it
1818 */
1819 cpu_dcache_wbinv_range(cdstp, NBPG);
1820 return (rv);
1821 }
1822
1823 /*
1824 * pmap_copy_page()
1825 *
1826 * Copy one physical page into another, by mapping the pages into
1827 * hook points. The same comment regarding cachability as in
1828 * pmap_zero_page also applies here.
1829 */
1830 #if ARM_MMU_GENERIC == 1
1831 void
1832 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1833 {
1834 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1835 #ifdef DEBUG
1836 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1837
1838 if (dst_pg->mdpage.pvh_list != NULL)
1839 panic("pmap_copy_page: dst page has mappings");
1840 #endif
1841
1842 KDASSERT((src & PGOFSET) == 0);
1843 KDASSERT((dst & PGOFSET) == 0);
1844
1845 /*
1846 * Clean the source page. Hold the source page's lock for
1847 * the duration of the copy so that no other mappings can
1848 * be created while we have a potentially aliased mapping.
1849 */
1850 simple_lock(&src_pg->mdpage.pvh_slock);
1851 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1852
1853 /*
1854 * Map the pages into the page hook points, copy them, and purge
1855 * the cache for the appropriate page. Invalidate the TLB
1856 * as required.
1857 */
1858 *csrc_pte = L2_S_PROTO | src |
1859 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1860 *cdst_pte = L2_S_PROTO | dst |
1861 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1862 cpu_tlb_flushD_SE(csrcp);
1863 cpu_tlb_flushD_SE(cdstp);
1864 cpu_cpwait();
1865 bcopy_page(csrcp, cdstp);
1866 cpu_dcache_inv_range(csrcp, NBPG);
1867 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1868 cpu_dcache_wbinv_range(cdstp, NBPG);
1869 }
1870 #endif /* ARM_MMU_GENERIC == 1 */
1871
1872 #if ARM_MMU_XSCALE == 1
1873 void
1874 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1875 {
1876 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1877 #ifdef DEBUG
1878 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1879
1880 if (dst_pg->mdpage.pvh_list != NULL)
1881 panic("pmap_copy_page: dst page has mappings");
1882 #endif
1883
1884 KDASSERT((src & PGOFSET) == 0);
1885 KDASSERT((dst & PGOFSET) == 0);
1886
1887 /*
1888 * Clean the source page. Hold the source page's lock for
1889 * the duration of the copy so that no other mappings can
1890 * be created while we have a potentially aliased mapping.
1891 */
1892 simple_lock(&src_pg->mdpage.pvh_slock);
1893 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1894
1895 /*
1896 * Map the pages into the page hook points, copy them, and purge
1897 * the cache for the appropriate page. Invalidate the TLB
1898 * as required.
1899 */
1900 *csrc_pte = L2_S_PROTO | src |
1901 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
1902 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1903 *cdst_pte = L2_S_PROTO | dst |
1904 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1905 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1906 cpu_tlb_flushD_SE(csrcp);
1907 cpu_tlb_flushD_SE(cdstp);
1908 cpu_cpwait();
1909 bcopy_page(csrcp, cdstp);
1910 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1911 xscale_cache_clean_minidata();
1912 }
1913 #endif /* ARM_MMU_XSCALE == 1 */
1914
1915 #if 0
1916 void
1917 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1918 {
1919 pd_entry_t *pde;
1920 paddr_t pa;
1921 struct vm_page *m;
1922
1923 if (pmap == pmap_kernel())
1924 return;
1925
1926 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1927 pa = pmap_pte_pa(pde);
1928 m = PHYS_TO_VM_PAGE(pa);
1929 ++m->wire_count;
1930 #ifdef MYCROFT_HACK
1931 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1932 pmap, va, pde, pa, m, m->wire_count);
1933 #endif
1934 }
1935
1936 void
1937 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
1938 {
1939 pd_entry_t *pde;
1940 paddr_t pa;
1941 struct vm_page *m;
1942
1943 if (pmap == pmap_kernel())
1944 return;
1945
1946 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1947 pa = pmap_pte_pa(pde);
1948 m = PHYS_TO_VM_PAGE(pa);
1949 --m->wire_count;
1950 #ifdef MYCROFT_HACK
1951 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1952 pmap, va, pde, pa, m, m->wire_count);
1953 #endif
1954 if (m->wire_count == 0) {
1955 #ifdef MYCROFT_HACK
1956 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1957 pmap, va, pde, pa, m);
1958 #endif
1959 pmap_unmap_in_l1(pmap, va);
1960 uvm_pagefree(m);
1961 --pmap->pm_stats.resident_count;
1962 }
1963 }
1964 #else
1965 #define pmap_pte_addref(pmap, va)
1966 #define pmap_pte_delref(pmap, va)
1967 #endif
1968
1969 /*
1970 * Since we have a virtually indexed cache, we may need to inhibit caching if
1971 * there is more than one mapping and at least one of them is writable.
1972 * Since we purge the cache on every context switch, we only need to check for
1973 * other mappings within the same pmap, or kernel_pmap.
1974 * This function is also called when a page is unmapped, to possibly reenable
1975 * caching on any remaining mappings.
1976 *
1977 * The code implements the following logic, where:
1978 *
1979 * KW = # of kernel read/write pages
1980 * KR = # of kernel read only pages
1981 * UW = # of user read/write pages
1982 * UR = # of user read only pages
1983 * OW = # of user read/write pages in another pmap, then
1984 *
1985 * KC = kernel mapping is cacheable
1986 * UC = user mapping is cacheable
1987 *
1988 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1989 * +---------------------------------------------
1990 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
1991 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1992 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
1993 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1994 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1995 *
1996 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
1997 */
1998 __inline static void
1999 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2000 boolean_t clear_cache)
2001 {
2002 if (pmap == pmap_kernel())
2003 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2004 else
2005 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2006 }
2007
2008 static void
2009 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2010 boolean_t clear_cache)
2011 {
2012 int user_entries = 0;
2013 int user_writable = 0;
2014 int user_cacheable = 0;
2015 int kernel_entries = 0;
2016 int kernel_writable = 0;
2017 int kernel_cacheable = 0;
2018 struct pv_entry *pv;
2019 struct pmap *last_pmap = pmap;
2020
2021 #ifdef DIAGNOSTIC
2022 if (pmap != pmap_kernel())
2023 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2024 #endif
2025
2026 /*
2027 * Pass one, see if there are both kernel and user pmaps for
2028 * this page. Calculate whether there are user-writable or
2029 * kernel-writable pages.
2030 */
2031 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2032 if (pv->pv_pmap != pmap) {
2033 user_entries++;
2034 if (pv->pv_flags & PVF_WRITE)
2035 user_writable++;
2036 if ((pv->pv_flags & PVF_NC) == 0)
2037 user_cacheable++;
2038 } else {
2039 kernel_entries++;
2040 if (pv->pv_flags & PVF_WRITE)
2041 kernel_writable++;
2042 if ((pv->pv_flags & PVF_NC) == 0)
2043 kernel_cacheable++;
2044 }
2045 }
2046
2047 /*
2048 * We know we have just been updating a kernel entry, so if
2049 * all user pages are already cacheable, then there is nothing
2050 * further to do.
2051 */
2052 if (kernel_entries == 0 &&
2053 user_cacheable == user_entries)
2054 return;
2055
2056 if (user_entries) {
2057 /*
2058 * Scan over the list again, for each entry, if it
2059 * might not be set correctly, call pmap_vac_me_user
2060 * to recalculate the settings.
2061 */
2062 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2063 /*
2064 * We know kernel mappings will get set
2065 * correctly in other calls. We also know
2066 * that if the pmap is the same as last_pmap
2067 * then we've just handled this entry.
2068 */
2069 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2070 continue;
2071 /*
2072 * If there are kernel entries and this page
2073 * is writable but non-cacheable, then we can
2074 * skip this entry also.
2075 */
2076 if (kernel_entries > 0 &&
2077 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2078 (PVF_NC | PVF_WRITE))
2079 continue;
2080 /*
2081 * Similarly if there are no kernel-writable
2082 * entries and the page is already
2083 * read-only/cacheable.
2084 */
2085 if (kernel_writable == 0 &&
2086 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2087 continue;
2088 /*
2089 * For some of the remaining cases, we know
2090 * that we must recalculate, but for others we
2091 * can't tell if they are correct or not, so
2092 * we recalculate anyway.
2093 */
2094 pmap_unmap_ptes(last_pmap);
2095 last_pmap = pv->pv_pmap;
2096 ptes = pmap_map_ptes(last_pmap);
2097 pmap_vac_me_user(last_pmap, pg, ptes,
2098 pmap_is_curpmap(last_pmap));
2099 }
2100 /* Restore the pte mapping that was passed to us. */
2101 if (last_pmap != pmap) {
2102 pmap_unmap_ptes(last_pmap);
2103 ptes = pmap_map_ptes(pmap);
2104 }
2105 if (kernel_entries == 0)
2106 return;
2107 }
2108
2109 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2110 return;
2111 }
2112
2113 static void
2114 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2115 boolean_t clear_cache)
2116 {
2117 struct pmap *kpmap = pmap_kernel();
2118 struct pv_entry *pv, *npv;
2119 int entries = 0;
2120 int writable = 0;
2121 int cacheable_entries = 0;
2122 int kern_cacheable = 0;
2123 int other_writable = 0;
2124
2125 pv = pg->mdpage.pvh_list;
2126 KASSERT(ptes != NULL);
2127
2128 /*
2129 * Count mappings and writable mappings in this pmap.
2130 * Include kernel mappings as part of our own.
2131 * Keep a pointer to the first one.
2132 */
2133 for (npv = pv; npv; npv = npv->pv_next) {
2134 /* Count mappings in the same pmap */
2135 if (pmap == npv->pv_pmap ||
2136 kpmap == npv->pv_pmap) {
2137 if (entries++ == 0)
2138 pv = npv;
2139 /* Cacheable mappings */
2140 if ((npv->pv_flags & PVF_NC) == 0) {
2141 cacheable_entries++;
2142 if (kpmap == npv->pv_pmap)
2143 kern_cacheable++;
2144 }
2145 /* Writable mappings */
2146 if (npv->pv_flags & PVF_WRITE)
2147 ++writable;
2148 } else if (npv->pv_flags & PVF_WRITE)
2149 other_writable = 1;
2150 }
2151
2152 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2153 "writable %d cacheable %d %s\n", pmap, entries, writable,
2154 cacheable_entries, clear_cache ? "clean" : "no clean"));
2155
2156 /*
2157 * Enable or disable caching as necessary.
2158 * Note: the first entry might be part of the kernel pmap,
2159 * so we can't assume this is indicative of the state of the
2160 * other (maybe non-kpmap) entries.
2161 */
2162 if ((entries > 1 && writable) ||
2163 (entries > 0 && pmap == kpmap && other_writable)) {
2164 if (cacheable_entries == 0)
2165 return;
2166 for (npv = pv; npv; npv = npv->pv_next) {
2167 if ((pmap == npv->pv_pmap
2168 || kpmap == npv->pv_pmap) &&
2169 (npv->pv_flags & PVF_NC) == 0) {
2170 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2171 npv->pv_flags |= PVF_NC;
2172 /*
2173 * If this page needs flushing from the
2174 * cache, and we aren't going to do it
2175 * below, do it now.
2176 */
2177 if ((cacheable_entries < 4 &&
2178 (clear_cache || npv->pv_pmap == kpmap)) ||
2179 (npv->pv_pmap == kpmap &&
2180 !clear_cache && kern_cacheable < 4)) {
2181 cpu_idcache_wbinv_range(npv->pv_va,
2182 NBPG);
2183 cpu_tlb_flushID_SE(npv->pv_va);
2184 }
2185 }
2186 }
2187 if ((clear_cache && cacheable_entries >= 4) ||
2188 kern_cacheable >= 4) {
2189 cpu_idcache_wbinv_all();
2190 cpu_tlb_flushID();
2191 }
2192 cpu_cpwait();
2193 } else if (entries > 0) {
2194 /*
2195 * Turn cacheing back on for some pages. If it is a kernel
2196 * page, only do so if there are no other writable pages.
2197 */
2198 for (npv = pv; npv; npv = npv->pv_next) {
2199 if ((pmap == npv->pv_pmap ||
2200 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2201 (npv->pv_flags & PVF_NC)) {
2202 ptes[arm_btop(npv->pv_va)] |=
2203 pte_l2_s_cache_mode;
2204 npv->pv_flags &= ~PVF_NC;
2205 }
2206 }
2207 }
2208 }
2209
2210 /*
2211 * pmap_remove()
2212 *
2213 * pmap_remove is responsible for nuking a number of mappings for a range
2214 * of virtual address space in the current pmap. To do this efficiently
2215 * is interesting, because in a number of cases a wide virtual address
2216 * range may be supplied that contains few actual mappings. So, the
2217 * optimisations are:
2218 * 1. Try and skip over hunks of address space for which an L1 entry
2219 * does not exist.
2220 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2221 * maybe do just a partial cache clean. This path of execution is
2222 * complicated by the fact that the cache must be flushed _before_
2223 * the PTE is nuked, being a VAC :-)
2224 * 3. Maybe later fast-case a single page, but I don't think this is
2225 * going to make _that_ much difference overall.
2226 */
2227
2228 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2229
2230 void
2231 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2232 {
2233 int cleanlist_idx = 0;
2234 struct pagelist {
2235 vaddr_t va;
2236 pt_entry_t *pte;
2237 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2238 pt_entry_t *pte = 0, *ptes;
2239 paddr_t pa;
2240 int pmap_active;
2241 struct vm_page *pg;
2242
2243 /* Exit quick if there is no pmap */
2244 if (!pmap)
2245 return;
2246
2247 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2248 pmap, sva, eva));
2249
2250 /*
2251 * we lock in the pmap => vm_page direction
2252 */
2253 PMAP_MAP_TO_HEAD_LOCK();
2254
2255 ptes = pmap_map_ptes(pmap);
2256 /* Get a page table pointer */
2257 while (sva < eva) {
2258 if (pmap_pde_page(pmap_pde(pmap, sva)))
2259 break;
2260 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2261 }
2262
2263 pte = &ptes[arm_btop(sva)];
2264 /* Note if the pmap is active thus require cache and tlb cleans */
2265 pmap_active = pmap_is_curpmap(pmap);
2266
2267 /* Now loop along */
2268 while (sva < eva) {
2269 /* Check if we can move to the next PDE (l1 chunk) */
2270 if (!(sva & L2_ADDR_BITS))
2271 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2272 sva += L1_S_SIZE;
2273 pte += arm_btop(L1_S_SIZE);
2274 continue;
2275 }
2276
2277 /* We've found a valid PTE, so this page of PTEs has to go. */
2278 if (pmap_pte_v(pte)) {
2279 /* Update statistics */
2280 --pmap->pm_stats.resident_count;
2281
2282 /*
2283 * Add this page to our cache remove list, if we can.
2284 * If, however the cache remove list is totally full,
2285 * then do a complete cache invalidation taking note
2286 * to backtrack the PTE table beforehand, and ignore
2287 * the lists in future because there's no longer any
2288 * point in bothering with them (we've paid the
2289 * penalty, so will carry on unhindered). Otherwise,
2290 * when we fall out, we just clean the list.
2291 */
2292 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2293 pa = pmap_pte_pa(pte);
2294
2295 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2296 /* Add to the clean list. */
2297 cleanlist[cleanlist_idx].pte = pte;
2298 cleanlist[cleanlist_idx].va = sva;
2299 cleanlist_idx++;
2300 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2301 int cnt;
2302
2303 /* Nuke everything if needed. */
2304 if (pmap_active) {
2305 cpu_idcache_wbinv_all();
2306 cpu_tlb_flushID();
2307 }
2308
2309 /*
2310 * Roll back the previous PTE list,
2311 * and zero out the current PTE.
2312 */
2313 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2314 *cleanlist[cnt].pte = 0;
2315 pmap_pte_delref(pmap, cleanlist[cnt].va);
2316 }
2317 *pte = 0;
2318 pmap_pte_delref(pmap, sva);
2319 cleanlist_idx++;
2320 } else {
2321 /*
2322 * We've already nuked the cache and
2323 * TLB, so just carry on regardless,
2324 * and we won't need to do it again
2325 */
2326 *pte = 0;
2327 pmap_pte_delref(pmap, sva);
2328 }
2329
2330 /*
2331 * Update flags. In a number of circumstances,
2332 * we could cluster a lot of these and do a
2333 * number of sequential pages in one go.
2334 */
2335 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2336 struct pv_entry *pve;
2337 simple_lock(&pg->mdpage.pvh_slock);
2338 pve = pmap_remove_pv(pg, pmap, sva);
2339 pmap_free_pv(pmap, pve);
2340 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2341 simple_unlock(&pg->mdpage.pvh_slock);
2342 }
2343 }
2344 sva += NBPG;
2345 pte++;
2346 }
2347
2348 /*
2349 * Now, if we've fallen through down to here, chances are that there
2350 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2351 */
2352 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2353 u_int cnt;
2354
2355 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2356 if (pmap_active) {
2357 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2358 NBPG);
2359 *cleanlist[cnt].pte = 0;
2360 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2361 } else
2362 *cleanlist[cnt].pte = 0;
2363 pmap_pte_delref(pmap, cleanlist[cnt].va);
2364 }
2365 }
2366
2367 pmap_unmap_ptes(pmap);
2368
2369 PMAP_MAP_TO_HEAD_UNLOCK();
2370 }
2371
2372 /*
2373 * Routine: pmap_remove_all
2374 * Function:
2375 * Removes this physical page from
2376 * all physical maps in which it resides.
2377 * Reflects back modify bits to the pager.
2378 */
2379
2380 static void
2381 pmap_remove_all(struct vm_page *pg)
2382 {
2383 struct pv_entry *pv, *npv;
2384 struct pmap *pmap;
2385 pt_entry_t *pte, *ptes;
2386
2387 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2388
2389 /* set vm_page => pmap locking */
2390 PMAP_HEAD_TO_MAP_LOCK();
2391
2392 simple_lock(&pg->mdpage.pvh_slock);
2393
2394 pv = pg->mdpage.pvh_list;
2395 if (pv == NULL) {
2396 PDEBUG(0, printf("free page\n"));
2397 simple_unlock(&pg->mdpage.pvh_slock);
2398 PMAP_HEAD_TO_MAP_UNLOCK();
2399 return;
2400 }
2401 pmap_clean_page(pv, FALSE);
2402
2403 while (pv) {
2404 pmap = pv->pv_pmap;
2405 ptes = pmap_map_ptes(pmap);
2406 pte = &ptes[arm_btop(pv->pv_va)];
2407
2408 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2409 pv->pv_va, pv->pv_flags));
2410 #ifdef DEBUG
2411 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2412 pmap_pte_v(pte) == 0 ||
2413 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2414 panic("pmap_remove_all: bad mapping");
2415 #endif /* DEBUG */
2416
2417 /*
2418 * Update statistics
2419 */
2420 --pmap->pm_stats.resident_count;
2421
2422 /* Wired bit */
2423 if (pv->pv_flags & PVF_WIRED)
2424 --pmap->pm_stats.wired_count;
2425
2426 /*
2427 * Invalidate the PTEs.
2428 * XXX: should cluster them up and invalidate as many
2429 * as possible at once.
2430 */
2431
2432 #ifdef needednotdone
2433 reduce wiring count on page table pages as references drop
2434 #endif
2435
2436 *pte = 0;
2437 pmap_pte_delref(pmap, pv->pv_va);
2438
2439 npv = pv->pv_next;
2440 pmap_free_pv(pmap, pv);
2441 pv = npv;
2442 pmap_unmap_ptes(pmap);
2443 }
2444 pg->mdpage.pvh_list = NULL;
2445 simple_unlock(&pg->mdpage.pvh_slock);
2446 PMAP_HEAD_TO_MAP_UNLOCK();
2447
2448 PDEBUG(0, printf("done\n"));
2449 cpu_tlb_flushID();
2450 cpu_cpwait();
2451 }
2452
2453
2454 /*
2455 * Set the physical protection on the specified range of this map as requested.
2456 */
2457
2458 void
2459 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2460 {
2461 pt_entry_t *pte = NULL, *ptes;
2462 struct vm_page *pg;
2463 int flush = 0;
2464
2465 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2466 pmap, sva, eva, prot));
2467
2468 if (~prot & VM_PROT_READ) {
2469 /*
2470 * Just remove the mappings. pmap_update() is not required
2471 * here since the caller should do it.
2472 */
2473 pmap_remove(pmap, sva, eva);
2474 return;
2475 }
2476 if (prot & VM_PROT_WRITE) {
2477 /*
2478 * If this is a read->write transition, just ignore it and let
2479 * uvm_fault() take care of it later.
2480 */
2481 return;
2482 }
2483
2484 /* Need to lock map->head */
2485 PMAP_MAP_TO_HEAD_LOCK();
2486
2487 ptes = pmap_map_ptes(pmap);
2488
2489 /*
2490 * OK, at this point, we know we're doing write-protect operation.
2491 * If the pmap is active, write-back the range.
2492 */
2493 if (pmap_is_curpmap(pmap))
2494 cpu_dcache_wb_range(sva, eva - sva);
2495
2496 /*
2497 * We need to acquire a pointer to a page table page before entering
2498 * the following loop.
2499 */
2500 while (sva < eva) {
2501 if (pmap_pde_page(pmap_pde(pmap, sva)))
2502 break;
2503 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2504 }
2505
2506 pte = &ptes[arm_btop(sva)];
2507
2508 while (sva < eva) {
2509 /* only check once in a while */
2510 if ((sva & L2_ADDR_BITS) == 0) {
2511 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2512 /* We can race ahead here, to the next pde. */
2513 sva += L1_S_SIZE;
2514 pte += arm_btop(L1_S_SIZE);
2515 continue;
2516 }
2517 }
2518
2519 if (!pmap_pte_v(pte))
2520 goto next;
2521
2522 flush = 1;
2523
2524 *pte &= ~L2_S_PROT_W; /* clear write bit */
2525
2526 /* Clear write flag */
2527 if ((pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte))) != NULL) {
2528 simple_lock(&pg->mdpage.pvh_slock);
2529 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2530 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2531 simple_unlock(&pg->mdpage.pvh_slock);
2532 }
2533
2534 next:
2535 sva += NBPG;
2536 pte++;
2537 }
2538 pmap_unmap_ptes(pmap);
2539 PMAP_MAP_TO_HEAD_UNLOCK();
2540 if (flush)
2541 cpu_tlb_flushID();
2542 }
2543
2544 /*
2545 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2546 * int flags)
2547 *
2548 * Insert the given physical page (p) at
2549 * the specified virtual address (v) in the
2550 * target physical map with the protection requested.
2551 *
2552 * If specified, the page will be wired down, meaning
2553 * that the related pte can not be reclaimed.
2554 *
2555 * NB: This is the only routine which MAY NOT lazy-evaluate
2556 * or lose information. That is, this routine must actually
2557 * insert this page into the given map NOW.
2558 */
2559
2560 int
2561 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2562 int flags)
2563 {
2564 pt_entry_t *ptes, opte, npte;
2565 paddr_t opa;
2566 boolean_t wired = (flags & PMAP_WIRED) != 0;
2567 struct vm_page *pg;
2568 struct pv_entry *pve;
2569 int error, nflags;
2570
2571 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2572 va, pa, pmap, prot, wired));
2573
2574 #ifdef DIAGNOSTIC
2575 /* Valid address ? */
2576 if (va >= (pmap_curmaxkvaddr))
2577 panic("pmap_enter: too big");
2578 if (pmap != pmap_kernel() && va != 0) {
2579 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2580 panic("pmap_enter: kernel page in user map");
2581 } else {
2582 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2583 panic("pmap_enter: user page in kernel map");
2584 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2585 panic("pmap_enter: entering PT page");
2586 }
2587 #endif
2588
2589 KDASSERT(((va | pa) & PGOFSET) == 0);
2590
2591 /*
2592 * Get a pointer to the page. Later on in this function, we
2593 * test for a managed page by checking pg != NULL.
2594 */
2595 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2596
2597 /* get lock */
2598 PMAP_MAP_TO_HEAD_LOCK();
2599
2600 /*
2601 * map the ptes. If there's not already an L2 table for this
2602 * address, allocate one.
2603 */
2604 ptes = pmap_map_ptes(pmap); /* locks pmap */
2605 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2606 struct vm_page *ptp;
2607
2608 /* kernel should be pre-grown */
2609 KASSERT(pmap != pmap_kernel());
2610
2611 /* if failure is allowed then don't try too hard */
2612 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2613 if (ptp == NULL) {
2614 if (flags & PMAP_CANFAIL) {
2615 error = ENOMEM;
2616 goto out;
2617 }
2618 panic("pmap_enter: get ptp failed");
2619 }
2620 }
2621 opte = ptes[arm_btop(va)];
2622
2623 nflags = 0;
2624 if (prot & VM_PROT_WRITE)
2625 nflags |= PVF_WRITE;
2626 if (wired)
2627 nflags |= PVF_WIRED;
2628
2629 /* Is the pte valid ? If so then this page is already mapped */
2630 if (l2pte_valid(opte)) {
2631 /* Get the physical address of the current page mapped */
2632 opa = l2pte_pa(opte);
2633
2634 /* Are we mapping the same page ? */
2635 if (opa == pa) {
2636 /* Check to see if we're doing rw->ro. */
2637 if ((opte & L2_S_PROT_W) != 0 &&
2638 (prot & VM_PROT_WRITE) == 0) {
2639 /* Yup, flush the cache if current pmap. */
2640 if (pmap_is_curpmap(pmap))
2641 cpu_dcache_wb_range(va, NBPG);
2642 }
2643
2644 /* Has the wiring changed ? */
2645 if (pg != NULL) {
2646 simple_lock(&pg->mdpage.pvh_slock);
2647 (void) pmap_modify_pv(pmap, va, pg,
2648 PVF_WRITE | PVF_WIRED, nflags);
2649 simple_unlock(&pg->mdpage.pvh_slock);
2650 }
2651 } else {
2652 struct vm_page *opg;
2653
2654 /* We are replacing the page with a new one. */
2655 cpu_idcache_wbinv_range(va, NBPG);
2656
2657 /*
2658 * If it is part of our managed memory then we
2659 * must remove it from the PV list
2660 */
2661 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2662 simple_lock(&opg->mdpage.pvh_slock);
2663 pve = pmap_remove_pv(opg, pmap, va);
2664 simple_unlock(&opg->mdpage.pvh_slock);
2665 } else {
2666 pve = NULL;
2667 }
2668
2669 goto enter;
2670 }
2671 } else {
2672 opa = 0;
2673 pve = NULL;
2674 pmap_pte_addref(pmap, va);
2675
2676 /* pte is not valid so we must be hooking in a new page */
2677 ++pmap->pm_stats.resident_count;
2678
2679 enter:
2680 /*
2681 * Enter on the PV list if part of our managed memory
2682 */
2683 if (pg != NULL) {
2684 if (pve == NULL) {
2685 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2686 if (pve == NULL) {
2687 if (flags & PMAP_CANFAIL) {
2688 error = ENOMEM;
2689 goto out;
2690 }
2691 panic("pmap_enter: no pv entries "
2692 "available");
2693 }
2694 }
2695 /* enter_pv locks pvh when adding */
2696 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2697 } else {
2698 if (pve != NULL)
2699 pmap_free_pv(pmap, pve);
2700 }
2701 }
2702
2703 /* Construct the pte, giving the correct access. */
2704 npte = pa;
2705
2706 /* VA 0 is magic. */
2707 if (pmap != pmap_kernel() && va != vector_page)
2708 npte |= L2_S_PROT_U;
2709
2710 if (pg != NULL) {
2711 #ifdef DIAGNOSTIC
2712 if ((flags & VM_PROT_ALL) & ~prot)
2713 panic("pmap_enter: access_type exceeds prot");
2714 #endif
2715 npte |= pte_l2_s_cache_mode;
2716 if (flags & VM_PROT_WRITE) {
2717 npte |= L2_S_PROTO | L2_S_PROT_W;
2718 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2719 } else if (flags & VM_PROT_ALL) {
2720 npte |= L2_S_PROTO;
2721 pg->mdpage.pvh_attrs |= PVF_REF;
2722 } else
2723 npte |= L2_TYPE_INV;
2724 } else {
2725 if (prot & VM_PROT_WRITE)
2726 npte |= L2_S_PROTO | L2_S_PROT_W;
2727 else if (prot & VM_PROT_ALL)
2728 npte |= L2_S_PROTO;
2729 else
2730 npte |= L2_TYPE_INV;
2731 }
2732
2733 ptes[arm_btop(va)] = npte;
2734
2735 if (pg != NULL) {
2736 simple_lock(&pg->mdpage.pvh_slock);
2737 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2738 simple_unlock(&pg->mdpage.pvh_slock);
2739 }
2740
2741 /* Better flush the TLB ... */
2742 cpu_tlb_flushID_SE(va);
2743 error = 0;
2744 out:
2745 pmap_unmap_ptes(pmap); /* unlocks pmap */
2746 PMAP_MAP_TO_HEAD_UNLOCK();
2747
2748 return error;
2749 }
2750
2751 /*
2752 * pmap_kenter_pa: enter a kernel mapping
2753 *
2754 * => no need to lock anything assume va is already allocated
2755 * => should be faster than normal pmap enter function
2756 */
2757 void
2758 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2759 {
2760 pt_entry_t *pte;
2761
2762 pte = vtopte(va);
2763 KASSERT(!pmap_pte_v(pte));
2764
2765 #ifdef PMAP_ALIAS_DEBUG
2766 {
2767 struct vm_page *pg;
2768 int s;
2769
2770 pg = PHYS_TO_VM_PAGE(pa);
2771 if (pg != NULL) {
2772 s = splhigh();
2773 if (pg->mdpage.ro_mappings == 0 &&
2774 pg->mdpage.rw_mappings == 0 &&
2775 pg->mdpage.kro_mappings == 0 &&
2776 pg->mdpage.krw_mappings == 0) {
2777 /* This case is okay. */
2778 } else if (pg->mdpage.rw_mappings == 0 &&
2779 pg->mdpage.krw_mappings == 0 &&
2780 (prot & VM_PROT_WRITE) == 0) {
2781 /* This case is okay. */
2782 } else {
2783 /* Something is awry. */
2784 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2785 "prot 0x%x\n", pg->mdpage.ro_mappings,
2786 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2787 pg->mdpage.krw_mappings, prot);
2788 Debugger();
2789 }
2790 if (prot & VM_PROT_WRITE)
2791 pg->mdpage.krw_mappings++;
2792 else
2793 pg->mdpage.kro_mappings++;
2794 splx(s);
2795 }
2796 }
2797 #endif /* PMAP_ALIAS_DEBUG */
2798
2799 *pte = L2_S_PROTO | pa |
2800 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2801 }
2802
2803 void
2804 pmap_kremove(vaddr_t va, vsize_t len)
2805 {
2806 pt_entry_t *pte;
2807
2808 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2809
2810 /*
2811 * We assume that we will only be called with small
2812 * regions of memory.
2813 */
2814
2815 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2816 pte = vtopte(va);
2817 #ifdef PMAP_ALIAS_DEBUG
2818 {
2819 struct vm_page *pg;
2820 int s;
2821
2822 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2823 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2824 s = splhigh();
2825 if (*pte & L2_S_PROT_W) {
2826 KASSERT(pg->mdpage.krw_mappings != 0);
2827 pg->mdpage.krw_mappings--;
2828 } else {
2829 KASSERT(pg->mdpage.kro_mappings != 0);
2830 pg->mdpage.kro_mappings--;
2831 }
2832 splx(s);
2833 }
2834 }
2835 #endif /* PMAP_ALIAS_DEBUG */
2836 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2837 *pte = 0;
2838 cpu_tlb_flushID_SE(va);
2839 }
2840 }
2841
2842 /*
2843 * pmap_page_protect:
2844 *
2845 * Lower the permission for all mappings to a given page.
2846 */
2847
2848 void
2849 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2850 {
2851
2852 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2853 VM_PAGE_TO_PHYS(pg), prot));
2854
2855 switch(prot) {
2856 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2857 case VM_PROT_READ|VM_PROT_WRITE:
2858 return;
2859
2860 case VM_PROT_READ:
2861 case VM_PROT_READ|VM_PROT_EXECUTE:
2862 pmap_clearbit(pg, PVF_WRITE);
2863 break;
2864
2865 default:
2866 pmap_remove_all(pg);
2867 break;
2868 }
2869 }
2870
2871
2872 /*
2873 * Routine: pmap_unwire
2874 * Function: Clear the wired attribute for a map/virtual-address
2875 * pair.
2876 * In/out conditions:
2877 * The mapping must already exist in the pmap.
2878 */
2879
2880 void
2881 pmap_unwire(struct pmap *pmap, vaddr_t va)
2882 {
2883 pt_entry_t *ptes;
2884 struct vm_page *pg;
2885 paddr_t pa;
2886
2887 PMAP_MAP_TO_HEAD_LOCK();
2888 ptes = pmap_map_ptes(pmap); /* locks pmap */
2889
2890 if (pmap_pde_v(pmap_pde(pmap, va))) {
2891 #ifdef DIAGNOSTIC
2892 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2893 panic("pmap_unwire: invalid L2 PTE");
2894 #endif
2895 /* Extract the physical address of the page */
2896 pa = l2pte_pa(ptes[arm_btop(va)]);
2897
2898 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2899 goto out;
2900
2901 /* Update the wired bit in the pv entry for this page. */
2902 simple_lock(&pg->mdpage.pvh_slock);
2903 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2904 simple_unlock(&pg->mdpage.pvh_slock);
2905 }
2906 #ifdef DIAGNOSTIC
2907 else {
2908 panic("pmap_unwire: invalid L1 PTE");
2909 }
2910 #endif
2911 out:
2912 pmap_unmap_ptes(pmap); /* unlocks pmap */
2913 PMAP_MAP_TO_HEAD_UNLOCK();
2914 }
2915
2916 /*
2917 * Routine: pmap_extract
2918 * Function:
2919 * Extract the physical page address associated
2920 * with the given map/virtual_address pair.
2921 */
2922 boolean_t
2923 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2924 {
2925 pd_entry_t *pde;
2926 pt_entry_t *pte, *ptes;
2927 paddr_t pa;
2928
2929 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
2930
2931 ptes = pmap_map_ptes(pmap); /* locks pmap */
2932
2933 pde = pmap_pde(pmap, va);
2934 pte = &ptes[arm_btop(va)];
2935
2936 if (pmap_pde_section(pde)) {
2937 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
2938 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
2939 goto out;
2940 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2941 PDEBUG(5, printf("no mapping\n"));
2942 goto failed;
2943 }
2944
2945 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
2946 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2947 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
2948 goto out;
2949 }
2950
2951 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2952 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
2953
2954 out:
2955 if (pap != NULL)
2956 *pap = pa;
2957
2958 pmap_unmap_ptes(pmap); /* unlocks pmap */
2959 return (TRUE);
2960
2961 failed:
2962 pmap_unmap_ptes(pmap); /* unlocks pmap */
2963 return (FALSE);
2964 }
2965
2966
2967 /*
2968 * pmap_copy:
2969 *
2970 * Copy the range specified by src_addr/len from the source map to the
2971 * range dst_addr/len in the destination map.
2972 *
2973 * This routine is only advisory and need not do anything.
2974 */
2975 /* Call deleted in <arm/arm32/pmap.h> */
2976
2977 #if defined(PMAP_DEBUG)
2978 void
2979 pmap_dump_pvlist(phys, m)
2980 vaddr_t phys;
2981 char *m;
2982 {
2983 struct vm_page *pg;
2984 struct pv_entry *pv;
2985
2986 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2987 printf("INVALID PA\n");
2988 return;
2989 }
2990 simple_lock(&pg->mdpage.pvh_slock);
2991 printf("%s %08lx:", m, phys);
2992 if (pg->mdpage.pvh_list == NULL) {
2993 simple_unlock(&pg->mdpage.pvh_slock);
2994 printf(" no mappings\n");
2995 return;
2996 }
2997
2998 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
2999 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3000 pv->pv_va, pv->pv_flags);
3001
3002 printf("\n");
3003 simple_unlock(&pg->mdpage.pvh_slock);
3004 }
3005
3006 #endif /* PMAP_DEBUG */
3007
3008 static pt_entry_t *
3009 pmap_map_ptes(struct pmap *pmap)
3010 {
3011 struct proc *p;
3012
3013 /* the kernel's pmap is always accessible */
3014 if (pmap == pmap_kernel()) {
3015 return (pt_entry_t *)PTE_BASE;
3016 }
3017
3018 if (pmap_is_curpmap(pmap)) {
3019 simple_lock(&pmap->pm_obj.vmobjlock);
3020 return (pt_entry_t *)PTE_BASE;
3021 }
3022
3023 p = curproc;
3024 KDASSERT(p != NULL);
3025
3026 /* need to lock both curpmap and pmap: use ordered locking */
3027 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3028 simple_lock(&pmap->pm_obj.vmobjlock);
3029 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3030 } else {
3031 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3032 simple_lock(&pmap->pm_obj.vmobjlock);
3033 }
3034
3035 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
3036 FALSE);
3037 cpu_tlb_flushD();
3038 cpu_cpwait();
3039 return (pt_entry_t *)APTE_BASE;
3040 }
3041
3042 /*
3043 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3044 */
3045
3046 static void
3047 pmap_unmap_ptes(struct pmap *pmap)
3048 {
3049
3050 if (pmap == pmap_kernel()) {
3051 return;
3052 }
3053 if (pmap_is_curpmap(pmap)) {
3054 simple_unlock(&pmap->pm_obj.vmobjlock);
3055 } else {
3056 KDASSERT(curproc != NULL);
3057 simple_unlock(&pmap->pm_obj.vmobjlock);
3058 simple_unlock(
3059 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3060 }
3061 }
3062
3063 /*
3064 * Modify pte bits for all ptes corresponding to the given physical address.
3065 * We use `maskbits' rather than `clearbits' because we're always passing
3066 * constants and the latter would require an extra inversion at run-time.
3067 */
3068
3069 static void
3070 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3071 {
3072 struct pv_entry *pv;
3073 pt_entry_t *ptes, npte, opte;
3074 vaddr_t va;
3075 int tlbentry;
3076
3077 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3078 VM_PAGE_TO_PHYS(pg), maskbits));
3079
3080 tlbentry = 0;
3081
3082 PMAP_HEAD_TO_MAP_LOCK();
3083 simple_lock(&pg->mdpage.pvh_slock);
3084
3085 /*
3086 * Clear saved attributes (modify, reference)
3087 */
3088 pg->mdpage.pvh_attrs &= ~maskbits;
3089
3090 if (pg->mdpage.pvh_list == NULL) {
3091 simple_unlock(&pg->mdpage.pvh_slock);
3092 PMAP_HEAD_TO_MAP_UNLOCK();
3093 return;
3094 }
3095
3096 /*
3097 * Loop over all current mappings setting/clearing as appropos
3098 */
3099 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3100 #ifdef PMAP_ALIAS_DEBUG
3101 {
3102 int s = splhigh();
3103 if ((maskbits & PVF_WRITE) != 0 &&
3104 (pv->pv_flags & PVF_WRITE) != 0) {
3105 KASSERT(pg->mdpage.rw_mappings != 0);
3106 pg->mdpage.rw_mappings--;
3107 pg->mdpage.ro_mappings++;
3108 }
3109 splx(s);
3110 }
3111 #endif /* PMAP_ALIAS_DEBUG */
3112 va = pv->pv_va;
3113 pv->pv_flags &= ~maskbits;
3114 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3115 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3116 npte = opte = ptes[arm_btop(va)];
3117 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3118 if ((pv->pv_flags & PVF_NC)) {
3119 /*
3120 * Entry is not cacheable: reenable
3121 * the cache, nothing to flush
3122 *
3123 * Don't turn caching on again if this
3124 * is a modified emulation. This
3125 * would be inconsitent with the
3126 * settings created by
3127 * pmap_vac_me_harder().
3128 *
3129 * There's no need to call
3130 * pmap_vac_me_harder() here: all
3131 * pages are loosing their write
3132 * permission.
3133 *
3134 */
3135 if (maskbits & PVF_WRITE) {
3136 npte |= pte_l2_s_cache_mode;
3137 pv->pv_flags &= ~PVF_NC;
3138 }
3139 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3140 /*
3141 * Entry is cacheable: check if pmap is
3142 * current if it is flush it,
3143 * otherwise it won't be in the cache
3144 */
3145 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3146 }
3147
3148 /* make the pte read only */
3149 npte &= ~L2_S_PROT_W;
3150 }
3151
3152 if (maskbits & PVF_REF) {
3153 if (pmap_is_curpmap(pv->pv_pmap) &&
3154 (pv->pv_flags & PVF_NC) == 0) {
3155 /*
3156 * Check npte here; we may have already
3157 * done the wbinv above, and the validity
3158 * of the PTE is the same for opte and
3159 * npte.
3160 */
3161 if (npte & L2_S_PROT_W) {
3162 cpu_idcache_wbinv_range(pv->pv_va,
3163 NBPG);
3164 } else if ((npte & L2_TYPE_MASK)
3165 != L2_TYPE_INV) {
3166 /* XXXJRT need idcache_inv_range */
3167 cpu_idcache_wbinv_range(pv->pv_va,
3168 NBPG);
3169 }
3170 }
3171
3172 /* make the pte invalid */
3173 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3174 }
3175
3176 if (npte != opte) {
3177 ptes[arm_btop(va)] = npte;
3178 /* Flush the TLB entry if a current pmap. */
3179 if (pmap_is_curpmap(pv->pv_pmap))
3180 cpu_tlb_flushID_SE(pv->pv_va);
3181 }
3182
3183 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3184 }
3185 cpu_cpwait();
3186
3187 simple_unlock(&pg->mdpage.pvh_slock);
3188 PMAP_HEAD_TO_MAP_UNLOCK();
3189 }
3190
3191 /*
3192 * pmap_clear_modify:
3193 *
3194 * Clear the "modified" attribute for a page.
3195 */
3196 boolean_t
3197 pmap_clear_modify(struct vm_page *pg)
3198 {
3199 boolean_t rv;
3200
3201 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3202 rv = TRUE;
3203 pmap_clearbit(pg, PVF_MOD);
3204 } else
3205 rv = FALSE;
3206
3207 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3208 VM_PAGE_TO_PHYS(pg), rv));
3209
3210 return (rv);
3211 }
3212
3213 /*
3214 * pmap_clear_reference:
3215 *
3216 * Clear the "referenced" attribute for a page.
3217 */
3218 boolean_t
3219 pmap_clear_reference(struct vm_page *pg)
3220 {
3221 boolean_t rv;
3222
3223 if (pg->mdpage.pvh_attrs & PVF_REF) {
3224 rv = TRUE;
3225 pmap_clearbit(pg, PVF_REF);
3226 } else
3227 rv = FALSE;
3228
3229 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3230 VM_PAGE_TO_PHYS(pg), rv));
3231
3232 return (rv);
3233 }
3234
3235 /*
3236 * pmap_is_modified:
3237 *
3238 * Test if a page has the "modified" attribute.
3239 */
3240 /* See <arm/arm32/pmap.h> */
3241
3242 /*
3243 * pmap_is_referenced:
3244 *
3245 * Test if a page has the "referenced" attribute.
3246 */
3247 /* See <arm/arm32/pmap.h> */
3248
3249 int
3250 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3251 {
3252 pt_entry_t *ptes;
3253 struct vm_page *pg;
3254 paddr_t pa;
3255 u_int flags;
3256 int rv = 0;
3257
3258 PDEBUG(2, printf("pmap_modified_emulation\n"));
3259
3260 PMAP_MAP_TO_HEAD_LOCK();
3261 ptes = pmap_map_ptes(pmap); /* locks pmap */
3262
3263 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3264 PDEBUG(2, printf("L1 PTE invalid\n"));
3265 goto out;
3266 }
3267
3268 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3269
3270 /* Check for a invalid pte */
3271 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3272 goto out;
3273
3274 /* This can happen if user code tries to access kernel memory. */
3275 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3276 goto out;
3277
3278 /* Extract the physical address of the page */
3279 pa = l2pte_pa(ptes[arm_btop(va)]);
3280 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3281 goto out;
3282
3283 /* Get the current flags for this page. */
3284 simple_lock(&pg->mdpage.pvh_slock);
3285
3286 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3287 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3288
3289 /*
3290 * Do the flags say this page is writable ? If not then it is a
3291 * genuine write fault. If yes then the write fault is our fault
3292 * as we did not reflect the write access in the PTE. Now we know
3293 * a write has occurred we can correct this and also set the
3294 * modified bit
3295 */
3296 if (~flags & PVF_WRITE) {
3297 simple_unlock(&pg->mdpage.pvh_slock);
3298 goto out;
3299 }
3300
3301 PDEBUG(0,
3302 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3303 va, ptes[arm_btop(va)]));
3304 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3305
3306 /*
3307 * Re-enable write permissions for the page. No need to call
3308 * pmap_vac_me_harder(), since this is just a
3309 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3310 * We've already set the cacheable bits based on the assumption
3311 * that we can write to this page.
3312 */
3313 ptes[arm_btop(va)] =
3314 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3315 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3316
3317 simple_unlock(&pg->mdpage.pvh_slock);
3318
3319 cpu_tlb_flushID_SE(va);
3320 cpu_cpwait();
3321 rv = 1;
3322 out:
3323 pmap_unmap_ptes(pmap); /* unlocks pmap */
3324 PMAP_MAP_TO_HEAD_UNLOCK();
3325 return (rv);
3326 }
3327
3328 int
3329 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3330 {
3331 pt_entry_t *ptes;
3332 struct vm_page *pg;
3333 paddr_t pa;
3334 int rv = 0;
3335
3336 PDEBUG(2, printf("pmap_handled_emulation\n"));
3337
3338 PMAP_MAP_TO_HEAD_LOCK();
3339 ptes = pmap_map_ptes(pmap); /* locks pmap */
3340
3341 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3342 PDEBUG(2, printf("L1 PTE invalid\n"));
3343 goto out;
3344 }
3345
3346 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3347
3348 /* Check for invalid pte */
3349 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3350 goto out;
3351
3352 /* This can happen if user code tries to access kernel memory. */
3353 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3354 goto out;
3355
3356 /* Extract the physical address of the page */
3357 pa = l2pte_pa(ptes[arm_btop(va)]);
3358 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3359 goto out;
3360
3361 simple_lock(&pg->mdpage.pvh_slock);
3362
3363 /*
3364 * Ok we just enable the pte and mark the attibs as handled
3365 * XXX Should we traverse the PV list and enable all PTEs?
3366 */
3367 PDEBUG(0,
3368 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3369 va, ptes[arm_btop(va)]));
3370 pg->mdpage.pvh_attrs |= PVF_REF;
3371
3372 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3373 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3374
3375 simple_unlock(&pg->mdpage.pvh_slock);
3376
3377 cpu_tlb_flushID_SE(va);
3378 cpu_cpwait();
3379 rv = 1;
3380 out:
3381 pmap_unmap_ptes(pmap); /* unlocks pmap */
3382 PMAP_MAP_TO_HEAD_UNLOCK();
3383 return (rv);
3384 }
3385
3386 /*
3387 * pmap_collect: free resources held by a pmap
3388 *
3389 * => optional function.
3390 * => called when a process is swapped out to free memory.
3391 */
3392
3393 void
3394 pmap_collect(struct pmap *pmap)
3395 {
3396 }
3397
3398 /*
3399 * Routine: pmap_procwr
3400 *
3401 * Function:
3402 * Synchronize caches corresponding to [addr, addr+len) in p.
3403 *
3404 */
3405 void
3406 pmap_procwr(struct proc *p, vaddr_t va, int len)
3407 {
3408 /* We only need to do anything if it is the current process. */
3409 if (p == curproc)
3410 cpu_icache_sync_range(va, len);
3411 }
3412 /*
3413 * PTP functions
3414 */
3415
3416 /*
3417 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3418 *
3419 * => pmap should NOT be pmap_kernel()
3420 * => pmap should be locked
3421 */
3422
3423 static struct vm_page *
3424 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3425 {
3426 struct vm_page *ptp;
3427
3428 if (pmap_pde_page(pmap_pde(pmap, va))) {
3429
3430 /* valid... check hint (saves us a PA->PG lookup) */
3431 if (pmap->pm_ptphint &&
3432 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3433 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3434 return (pmap->pm_ptphint);
3435 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3436 #ifdef DIAGNOSTIC
3437 if (ptp == NULL)
3438 panic("pmap_get_ptp: unmanaged user PTP");
3439 #endif
3440 pmap->pm_ptphint = ptp;
3441 return(ptp);
3442 }
3443
3444 /* allocate a new PTP (updates ptphint) */
3445 return(pmap_alloc_ptp(pmap, va));
3446 }
3447
3448 /*
3449 * pmap_alloc_ptp: allocate a PTP for a PMAP
3450 *
3451 * => pmap should already be locked by caller
3452 * => we use the ptp's wire_count to count the number of active mappings
3453 * in the PTP (we start it at one to prevent any chance this PTP
3454 * will ever leak onto the active/inactive queues)
3455 */
3456
3457 /*__inline */ static struct vm_page *
3458 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3459 {
3460 struct vm_page *ptp;
3461
3462 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3463 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3464 if (ptp == NULL)
3465 return (NULL);
3466
3467 /* got one! */
3468 ptp->flags &= ~PG_BUSY; /* never busy */
3469 ptp->wire_count = 1; /* no mappings yet */
3470 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3471 pmap->pm_stats.resident_count++; /* count PTP as resident */
3472 pmap->pm_ptphint = ptp;
3473 return (ptp);
3474 }
3475
3476 vaddr_t
3477 pmap_growkernel(vaddr_t maxkvaddr)
3478 {
3479 struct pmap *kpm = pmap_kernel(), *pm;
3480 int s;
3481 paddr_t ptaddr;
3482 struct vm_page *ptp;
3483
3484 if (maxkvaddr <= pmap_curmaxkvaddr)
3485 goto out; /* we are OK */
3486 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3487 pmap_curmaxkvaddr, maxkvaddr));
3488
3489 /*
3490 * whoops! we need to add kernel PTPs
3491 */
3492
3493 s = splhigh(); /* to be safe */
3494 simple_lock(&kpm->pm_obj.vmobjlock);
3495 /* due to the way the arm pmap works we map 4MB at a time */
3496 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3497 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3498
3499 if (uvm.page_init_done == FALSE) {
3500
3501 /*
3502 * we're growing the kernel pmap early (from
3503 * uvm_pageboot_alloc()). this case must be
3504 * handled a little differently.
3505 */
3506
3507 if (uvm_page_physget(&ptaddr) == FALSE)
3508 panic("pmap_growkernel: out of memory");
3509 pmap_zero_page(ptaddr);
3510
3511 /* map this page in */
3512 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3513
3514 /* count PTP as resident */
3515 kpm->pm_stats.resident_count++;
3516 continue;
3517 }
3518
3519 /*
3520 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3521 * pmap_initialized == FALSE CASE! WE MAY BE
3522 * INVOKED WHILE pmap_init() IS RUNNING!
3523 */
3524
3525 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3526 panic("pmap_growkernel: alloc ptp failed");
3527
3528 /* distribute new kernel PTP to all active pmaps */
3529 simple_lock(&pmaps_lock);
3530 LIST_FOREACH(pm, &pmaps, pm_list) {
3531 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3532 VM_PAGE_TO_PHYS(ptp), TRUE);
3533 }
3534
3535 simple_unlock(&pmaps_lock);
3536 }
3537
3538 /*
3539 * flush out the cache, expensive but growkernel will happen so
3540 * rarely
3541 */
3542 cpu_tlb_flushD();
3543 cpu_cpwait();
3544
3545 simple_unlock(&kpm->pm_obj.vmobjlock);
3546 splx(s);
3547
3548 out:
3549 return (pmap_curmaxkvaddr);
3550 }
3551
3552 /************************ Utility routines ****************************/
3553
3554 /*
3555 * vector_page_setprot:
3556 *
3557 * Manipulate the protection of the vector page.
3558 */
3559 void
3560 vector_page_setprot(int prot)
3561 {
3562 pt_entry_t *pte;
3563
3564 pte = vtopte(vector_page);
3565
3566 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3567 cpu_tlb_flushD_SE(vector_page);
3568 cpu_cpwait();
3569 }
3570
3571 /************************ Bootstrapping routines ****************************/
3572
3573 /*
3574 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3575 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3576 * find them as necessary.
3577 *
3578 * Note that the data on this list is not valid after initarm() returns.
3579 */
3580 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3581
3582 static vaddr_t
3583 kernel_pt_lookup(paddr_t pa)
3584 {
3585 pv_addr_t *pv;
3586
3587 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3588 if (pv->pv_pa == pa)
3589 return (pv->pv_va);
3590 }
3591 return (0);
3592 }
3593
3594 /*
3595 * pmap_map_section:
3596 *
3597 * Create a single section mapping.
3598 */
3599 void
3600 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3601 {
3602 pd_entry_t *pde = (pd_entry_t *) l1pt;
3603 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3604
3605 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3606
3607 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3608 L1_S_PROT(PTE_KERNEL, prot) | fl;
3609 }
3610
3611 /*
3612 * pmap_map_entry:
3613 *
3614 * Create a single page mapping.
3615 */
3616 void
3617 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3618 {
3619 pd_entry_t *pde = (pd_entry_t *) l1pt;
3620 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3621 pt_entry_t *pte;
3622
3623 KASSERT(((va | pa) & PGOFSET) == 0);
3624
3625 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3626 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3627
3628 pte = (pt_entry_t *)
3629 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3630 if (pte == NULL)
3631 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3632
3633 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3634 L2_S_PROT(PTE_KERNEL, prot) | fl;
3635 }
3636
3637 /*
3638 * pmap_link_l2pt:
3639 *
3640 * Link the L2 page table specified by "pa" into the L1
3641 * page table at the slot for "va".
3642 */
3643 void
3644 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3645 {
3646 pd_entry_t *pde = (pd_entry_t *) l1pt;
3647 u_int slot = va >> L1_S_SHIFT;
3648
3649 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3650
3651 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3652 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3653 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3654 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3655
3656 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3657 }
3658
3659 /*
3660 * pmap_map_chunk:
3661 *
3662 * Map a chunk of memory using the most efficient mappings
3663 * possible (section, large page, small page) into the
3664 * provided L1 and L2 tables at the specified virtual address.
3665 */
3666 vsize_t
3667 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3668 int prot, int cache)
3669 {
3670 pd_entry_t *pde = (pd_entry_t *) l1pt;
3671 pt_entry_t *pte, fl;
3672 vsize_t resid;
3673 int i;
3674
3675 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3676
3677 if (l1pt == 0)
3678 panic("pmap_map_chunk: no L1 table provided");
3679
3680 #ifdef VERBOSE_INIT_ARM
3681 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3682 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3683 #endif
3684
3685 size = resid;
3686
3687 while (resid > 0) {
3688 /* See if we can use a section mapping. */
3689 if (((pa | va) & L1_S_OFFSET) == 0 &&
3690 resid >= L1_S_SIZE) {
3691 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3692 #ifdef VERBOSE_INIT_ARM
3693 printf("S");
3694 #endif
3695 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3696 L1_S_PROT(PTE_KERNEL, prot) | fl;
3697 va += L1_S_SIZE;
3698 pa += L1_S_SIZE;
3699 resid -= L1_S_SIZE;
3700 continue;
3701 }
3702
3703 /*
3704 * Ok, we're going to use an L2 table. Make sure
3705 * one is actually in the corresponding L1 slot
3706 * for the current VA.
3707 */
3708 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3709 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3710
3711 pte = (pt_entry_t *)
3712 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3713 if (pte == NULL)
3714 panic("pmap_map_chunk: can't find L2 table for VA"
3715 "0x%08lx", va);
3716
3717 /* See if we can use a L2 large page mapping. */
3718 if (((pa | va) & L2_L_OFFSET) == 0 &&
3719 resid >= L2_L_SIZE) {
3720 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3721 #ifdef VERBOSE_INIT_ARM
3722 printf("L");
3723 #endif
3724 for (i = 0; i < 16; i++) {
3725 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3726 L2_L_PROTO | pa |
3727 L2_L_PROT(PTE_KERNEL, prot) | fl;
3728 }
3729 va += L2_L_SIZE;
3730 pa += L2_L_SIZE;
3731 resid -= L2_L_SIZE;
3732 continue;
3733 }
3734
3735 /* Use a small page mapping. */
3736 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3737 #ifdef VERBOSE_INIT_ARM
3738 printf("P");
3739 #endif
3740 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3741 L2_S_PROT(PTE_KERNEL, prot) | fl;
3742 va += NBPG;
3743 pa += NBPG;
3744 resid -= NBPG;
3745 }
3746 #ifdef VERBOSE_INIT_ARM
3747 printf("\n");
3748 #endif
3749 return (size);
3750 }
3751
3752 /********************** PTE initialization routines **************************/
3753
3754 /*
3755 * These routines are called when the CPU type is identified to set up
3756 * the PTE prototypes, cache modes, etc.
3757 *
3758 * The variables are always here, just in case LKMs need to reference
3759 * them (though, they shouldn't).
3760 */
3761
3762 pt_entry_t pte_l1_s_cache_mode;
3763 pt_entry_t pte_l1_s_cache_mask;
3764
3765 pt_entry_t pte_l2_l_cache_mode;
3766 pt_entry_t pte_l2_l_cache_mask;
3767
3768 pt_entry_t pte_l2_s_cache_mode;
3769 pt_entry_t pte_l2_s_cache_mask;
3770
3771 pt_entry_t pte_l2_s_prot_u;
3772 pt_entry_t pte_l2_s_prot_w;
3773 pt_entry_t pte_l2_s_prot_mask;
3774
3775 pt_entry_t pte_l1_s_proto;
3776 pt_entry_t pte_l1_c_proto;
3777 pt_entry_t pte_l2_s_proto;
3778
3779 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3780 void (*pmap_zero_page_func)(paddr_t);
3781
3782 #if ARM_MMU_GENERIC == 1
3783 void
3784 pmap_pte_init_generic(void)
3785 {
3786
3787 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3788 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3789
3790 pte_l2_l_cache_mode = L2_B|L2_C;
3791 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3792
3793 pte_l2_s_cache_mode = L2_B|L2_C;
3794 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3795
3796 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3797 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3798 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3799
3800 pte_l1_s_proto = L1_S_PROTO_generic;
3801 pte_l1_c_proto = L1_C_PROTO_generic;
3802 pte_l2_s_proto = L2_S_PROTO_generic;
3803
3804 pmap_copy_page_func = pmap_copy_page_generic;
3805 pmap_zero_page_func = pmap_zero_page_generic;
3806 }
3807
3808 #if defined(CPU_ARM9)
3809 void
3810 pmap_pte_init_arm9(void)
3811 {
3812
3813 /*
3814 * ARM9 is compatible with generic, but we want to use
3815 * write-through caching for now.
3816 */
3817 pmap_pte_init_generic();
3818
3819 pte_l1_s_cache_mode = L1_S_C;
3820 pte_l2_l_cache_mode = L2_C;
3821 pte_l2_s_cache_mode = L2_C;
3822 }
3823 #endif /* CPU_ARM9 */
3824 #endif /* ARM_MMU_GENERIC == 1 */
3825
3826 #if ARM_MMU_XSCALE == 1
3827 void
3828 pmap_pte_init_xscale(void)
3829 {
3830 uint32_t auxctl;
3831
3832 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3833 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
3834
3835 pte_l2_l_cache_mode = L2_B|L2_C;
3836 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
3837
3838 pte_l2_s_cache_mode = L2_B|L2_C;
3839 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
3840
3841 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
3842 /*
3843 * The XScale core has an enhanced mode where writes that
3844 * miss the cache cause a cache line to be allocated. This
3845 * is significantly faster than the traditional, write-through
3846 * behavior of this case.
3847 *
3848 * However, there is a bug lurking in this pmap module, or in
3849 * other parts of the VM system, or both, which causes corruption
3850 * of NFS-backed files when this cache mode is used. We have
3851 * an ugly work-around for this problem (disable r/w-allocate
3852 * for managed kernel mappings), but the bug is still evil enough
3853 * to consider this cache mode "experimental".
3854 */
3855 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
3856 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
3857 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
3858 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
3859
3860 #ifdef XSCALE_CACHE_WRITE_THROUGH
3861 /*
3862 * Some versions of the XScale core have various bugs in
3863 * their cache units, the work-around for which is to run
3864 * the cache in write-through mode. Unfortunately, this
3865 * has a major (negative) impact on performance. So, we
3866 * go ahead and run fast-and-loose, in the hopes that we
3867 * don't line up the planets in a way that will trip the
3868 * bugs.
3869 *
3870 * However, we give you the option to be slow-but-correct.
3871 */
3872 pte_l1_s_cache_mode = L1_S_C;
3873 pte_l2_l_cache_mode = L2_C;
3874 pte_l2_s_cache_mode = L2_C;
3875 #endif /* XSCALE_CACHE_WRITE_THROUGH */
3876
3877 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
3878 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
3879 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
3880
3881 pte_l1_s_proto = L1_S_PROTO_xscale;
3882 pte_l1_c_proto = L1_C_PROTO_xscale;
3883 pte_l2_s_proto = L2_S_PROTO_xscale;
3884
3885 pmap_copy_page_func = pmap_copy_page_xscale;
3886 pmap_zero_page_func = pmap_zero_page_xscale;
3887
3888 /*
3889 * Disable ECC protection of page table access, for now.
3890 */
3891 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3892 : "=r" (auxctl));
3893 auxctl &= ~XSCALE_AUXCTL_P;
3894 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3895 :
3896 : "r" (auxctl));
3897 }
3898
3899 /*
3900 * xscale_setup_minidata:
3901 *
3902 * Set up the mini-data cache clean area. We require the
3903 * caller to allocate the right amount of physically and
3904 * virtually contiguous space.
3905 */
3906 void
3907 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
3908 {
3909 extern vaddr_t xscale_minidata_clean_addr;
3910 extern vsize_t xscale_minidata_clean_size; /* already initialized */
3911 pd_entry_t *pde = (pd_entry_t *) l1pt;
3912 pt_entry_t *pte;
3913 vsize_t size;
3914 uint32_t auxctl;
3915
3916 xscale_minidata_clean_addr = va;
3917
3918 /* Round it to page size. */
3919 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
3920
3921 for (; size != 0;
3922 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
3923 pte = (pt_entry_t *)
3924 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3925 if (pte == NULL)
3926 panic("xscale_setup_minidata: can't find L2 table for "
3927 "VA 0x%08lx", va);
3928 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3929 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3930 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
3931 }
3932
3933 /*
3934 * Configure the mini-data cache for write-back with
3935 * read/write-allocate.
3936 *
3937 * NOTE: In order to reconfigure the mini-data cache, we must
3938 * make sure it contains no valid data! In order to do that,
3939 * we must issue a global data cache invalidate command!
3940 *
3941 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
3942 * THIS IS VERY IMPORTANT!
3943 */
3944
3945 /* Invalidate data and mini-data. */
3946 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
3947 :
3948 : "r" (auxctl));
3949
3950
3951 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3952 : "=r" (auxctl));
3953 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
3954 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3955 :
3956 : "r" (auxctl));
3957 }
3958 #endif /* ARM_MMU_XSCALE == 1 */
3959