pmap.c revision 1.11 1 /* $NetBSD: pmap.c,v 1.11 2001/06/24 23:21:04 chris Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1994-1998 Mark Brinicombe.
41 * Copyright (c) 1994 Brini.
42 * All rights reserved.
43 *
44 * This code is derived from software written for Brini by Mark Brinicombe
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by Mark Brinicombe.
57 * 4. The name of the author may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
64 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
65 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
66 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
67 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
68 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
69 *
70 * RiscBSD kernel project
71 *
72 * pmap.c
73 *
74 * Machine dependant vm stuff
75 *
76 * Created : 20/09/94
77 */
78
79 /*
80 * Performance improvements, UVM changes, overhauls and part-rewrites
81 * were contributed by Neil A. Carson <neil (at) causality.com>.
82 */
83
84 /*
85 * The dram block info is currently referenced from the bootconfig.
86 * This should be placed in a separate structure.
87 */
88
89 /*
90 * Special compilation symbols
91 * PMAP_DEBUG - Build in pmap_debug_level code
92 */
93
94 /* Include header files */
95
96 #include "opt_pmap_debug.h"
97 #include "opt_ddb.h"
98
99 #include <sys/types.h>
100 #include <sys/param.h>
101 #include <sys/kernel.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/malloc.h>
105 #include <sys/user.h>
106 #include <sys/pool.h>
107
108 #include <uvm/uvm.h>
109
110 #include <machine/bootconfig.h>
111 #include <machine/bus.h>
112 #include <machine/pmap.h>
113 #include <machine/pcb.h>
114 #include <machine/param.h>
115 #include <machine/katelib.h>
116
117 #ifdef PMAP_DEBUG
118 #define PDEBUG(_lev_,_stat_) \
119 if (pmap_debug_level >= (_lev_)) \
120 ((_stat_))
121 int pmap_debug_level = -2;
122 #else /* PMAP_DEBUG */
123 #define PDEBUG(_lev_,_stat_) /* Nothing */
124 #endif /* PMAP_DEBUG */
125
126 struct pmap kernel_pmap_store;
127 pmap_t kernel_pmap;
128
129 /*
130 * pool that pmap structures are allocated from
131 */
132
133 struct pool pmap_pmap_pool;
134
135 pagehook_t page_hook0;
136 pagehook_t page_hook1;
137 char *memhook;
138 pt_entry_t msgbufpte;
139 extern caddr_t msgbufaddr;
140
141 #ifdef DIAGNOSTIC
142 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
143 #endif
144
145 TAILQ_HEAD(pv_page_list, pv_page) pv_page_freelist;
146
147 int pv_nfree = 0;
148
149 vsize_t npages;
150
151 extern paddr_t physical_start;
152 extern paddr_t physical_freestart;
153 extern paddr_t physical_end;
154 extern paddr_t physical_freeend;
155 extern unsigned int free_pages;
156 extern int max_processes;
157
158 vaddr_t virtual_start;
159 vaddr_t virtual_end;
160
161 vaddr_t avail_start;
162 vaddr_t avail_end;
163
164 extern pv_addr_t systempage;
165
166 #define ALLOC_PAGE_HOOK(x, s) \
167 x.va = virtual_start; \
168 x.pte = (pt_entry_t *)pmap_pte(kernel_pmap, virtual_start); \
169 virtual_start += s;
170
171 /* Variables used by the L1 page table queue code */
172 SIMPLEQ_HEAD(l1pt_queue, l1pt);
173 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
174 int l1pt_static_queue_count; /* items in the static l1 queue */
175 int l1pt_static_create_count; /* static l1 items created */
176 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
177 int l1pt_queue_count; /* items in the l1 queue */
178 int l1pt_create_count; /* stat - L1's create count */
179 int l1pt_reuse_count; /* stat - L1's reused count */
180
181 /* Local function prototypes (not used outside this file) */
182 pt_entry_t *pmap_pte __P((pmap_t pmap, vaddr_t va));
183 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
184 paddr_t pa, unsigned int flags));
185 void pmap_copy_on_write __P((paddr_t pa));
186 void pmap_pinit __P((pmap_t));
187 void pmap_freepagedir __P((pmap_t));
188 void pmap_release __P((pmap_t));
189
190 /* Other function prototypes */
191 extern void bzero_page __P((vaddr_t));
192 extern void bcopy_page __P((vaddr_t, vaddr_t));
193
194 struct l1pt *pmap_alloc_l1pt __P((void));
195 static __inline void pmap_map_in_l1 __P((pmap_t pmap, vaddr_t va,
196 vaddr_t l2pa));
197
198 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
199 /* eventually this will be a function */
200 #define pmap_unmap_ptes(a)
201
202 void pmap_vac_me_harder __P((struct pmap *, struct pv_entry *,
203 pt_entry_t *));
204
205 #ifdef MYCROFT_HACK
206 int mycroft_hack = 0;
207 #endif
208
209 /* Function to set the debug level of the pmap code */
210
211 #ifdef PMAP_DEBUG
212 void
213 pmap_debug(level)
214 int level;
215 {
216 pmap_debug_level = level;
217 printf("pmap_debug: level=%d\n", pmap_debug_level);
218 }
219 #endif /* PMAP_DEBUG */
220
221 #include "isadma.h"
222
223 #if NISADMA > 0
224 /*
225 * Used to protect memory for ISA DMA bounce buffers. If, when loading
226 * pages into the system, memory intersects with any of these ranges,
227 * the intersecting memory will be loaded into a lower-priority free list.
228 */
229 bus_dma_segment_t *pmap_isa_dma_ranges;
230 int pmap_isa_dma_nranges;
231
232 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
233 paddr_t *, psize_t *));
234
235 /*
236 * Check if a memory range intersects with an ISA DMA range, and
237 * return the page-rounded intersection if it does. The intersection
238 * will be placed on a lower-priority free list.
239 */
240 boolean_t
241 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
242 paddr_t pa;
243 psize_t size;
244 paddr_t *pap;
245 psize_t *sizep;
246 {
247 bus_dma_segment_t *ds;
248 int i;
249
250 if (pmap_isa_dma_ranges == NULL)
251 return (FALSE);
252
253 for (i = 0, ds = pmap_isa_dma_ranges;
254 i < pmap_isa_dma_nranges; i++, ds++) {
255 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
256 /*
257 * Beginning of region intersects with this range.
258 */
259 *pap = trunc_page(pa);
260 *sizep = round_page(min(pa + size,
261 ds->ds_addr + ds->ds_len) - pa);
262 return (TRUE);
263 }
264 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
265 /*
266 * End of region intersects with this range.
267 */
268 *pap = trunc_page(ds->ds_addr);
269 *sizep = round_page(min((pa + size) - ds->ds_addr,
270 ds->ds_len));
271 return (TRUE);
272 }
273 }
274
275 /*
276 * No intersection found.
277 */
278 return (FALSE);
279 }
280 #endif /* NISADMA > 0 */
281
282 /*
283 * Functions for manipluation pv_entry structures. These are used to keep a
284 * record of the mappings of virtual addresses and the associated physical
285 * pages.
286 */
287
288 /*
289 * Allocate a new pv_entry structure from the freelist. If the list is
290 * empty allocate a new page and fill the freelist.
291 */
292 struct pv_entry *
293 pmap_alloc_pv()
294 {
295 struct pv_page *pvp;
296 struct pv_entry *pv;
297 int i;
298
299 /*
300 * Do we have any free pv_entry structures left ?
301 * If not allocate a page of them
302 */
303
304 if (pv_nfree == 0) {
305 /* NOTE: can't lock kernel_map here */
306 MALLOC(pvp, struct pv_page *, NBPG, M_VMPVENT, M_WAITOK);
307 if (pvp == 0)
308 panic("pmap_alloc_pv: kmem_alloc() failed");
309 pvp->pvp_pgi.pgi_freelist = pv = &pvp->pvp_pv[1];
310 for (i = NPVPPG - 2; i; i--, pv++)
311 pv->pv_next = pv + 1;
312 pv->pv_next = 0;
313 pv_nfree += pvp->pvp_pgi.pgi_nfree = NPVPPG - 1;
314 TAILQ_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
315 pv = &pvp->pvp_pv[0];
316 } else {
317 --pv_nfree;
318 pvp = pv_page_freelist.tqh_first;
319 if (--pvp->pvp_pgi.pgi_nfree == 0) {
320 TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
321 }
322 pv = pvp->pvp_pgi.pgi_freelist;
323 #ifdef DIAGNOSTIC
324 if (pv == 0)
325 panic("pmap_alloc_pv: pgi_nfree inconsistent");
326 #endif /* DIAGNOSTIC */
327 pvp->pvp_pgi.pgi_freelist = pv->pv_next;
328 }
329 return pv;
330 }
331
332 /*
333 * Release a pv_entry structure putting it back on the freelist.
334 */
335
336 void
337 pmap_free_pv(pv)
338 struct pv_entry *pv;
339 {
340 struct pv_page *pvp;
341
342 pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
343 switch (++pvp->pvp_pgi.pgi_nfree) {
344 case 1:
345 TAILQ_INSERT_TAIL(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
346 default:
347 pv->pv_next = pvp->pvp_pgi.pgi_freelist;
348 pvp->pvp_pgi.pgi_freelist = pv;
349 ++pv_nfree;
350 break;
351 case NPVPPG:
352 pv_nfree -= NPVPPG - 1;
353 TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
354 FREE((vaddr_t)pvp, M_VMPVENT);
355 break;
356 }
357 }
358
359 #if 0
360 void
361 pmap_collect_pv()
362 {
363 struct pv_page_list pv_page_collectlist;
364 struct pv_page *pvp, *npvp;
365 struct pv_entry *ph, *ppv, *pv, *npv;
366 int s;
367
368 TAILQ_INIT(&pv_page_collectlist);
369
370 for (pvp = pv_page_freelist.tqh_first; pvp; pvp = npvp) {
371 if (pv_nfree < NPVPPG)
372 break;
373 npvp = pvp->pvp_pgi.pgi_list.tqe_next;
374 if (pvp->pvp_pgi.pgi_nfree > NPVPPG / 3) {
375 TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
376 TAILQ_INSERT_TAIL(&pv_page_collectlist, pvp,
377 pvp_pgi.pgi_list);
378 pv_nfree -= NPVPPG;
379 pvp->pvp_pgi.pgi_nfree = -1;
380 }
381 }
382
383 if (pv_page_collectlist.tqh_first == 0)
384 return;
385
386 for (ph = &pv_table[npages - 1]; ph >= &pv_table[0]; ph--) {
387 if (ph->pv_pmap == 0)
388 continue;
389 s = splvm();
390 for (ppv = ph; (pv = ppv->pv_next) != 0; ) {
391 pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
392 if (pvp->pvp_pgi.pgi_nfree == -1) {
393 pvp = pv_page_freelist.tqh_first;
394 if (--pvp->pvp_pgi.pgi_nfree == 0) {
395 TAILQ_REMOVE(&pv_page_freelist,
396 pvp, pvp_pgi.pgi_list);
397 }
398 npv = pvp->pvp_pgi.pgi_freelist;
399 #ifdef DIAGNOSTIC
400 if (npv == 0)
401 panic("pmap_collect_pv: pgi_nfree inconsistent");
402 #endif /* DIAGNOSTIC */
403 pvp->pvp_pgi.pgi_freelist = npv->pv_next;
404 *npv = *pv;
405 ppv->pv_next = npv;
406 ppv = npv;
407 } else
408 ppv = pv;
409 }
410 splx(s);
411 }
412
413 for (pvp = pv_page_collectlist.tqh_first; pvp; pvp = npvp) {
414 npvp = pvp->pvp_pgi.pgi_list.tqe_next;
415 FREE((vaddr_t)pvp, M_VMPVENT);
416 }
417 }
418 #endif
419
420 /*
421 * Enter a new physical-virtual mapping into the pv table
422 */
423
424 /*__inline*/ void
425 pmap_enter_pv(pmap, va, pv, flags)
426 pmap_t pmap;
427 vaddr_t va;
428 struct pv_entry *pv;
429 u_int flags;
430 {
431 struct pv_entry *npv;
432 u_int s;
433
434 #ifdef DIAGNOSTIC
435 if (!pmap_initialized)
436 panic("pmap_enter_pv: !pmap_initialized");
437 #endif
438
439 s = splvm();
440
441 PDEBUG(5, printf("pmap_enter_pv: pv %p: %08lx/%p/%p\n",
442 pv, pv->pv_va, pv->pv_pmap, pv->pv_next));
443
444 if (pv->pv_pmap == NULL) {
445 /*
446 * No entries yet, use header as the first entry
447 */
448 pv->pv_va = va;
449 pv->pv_pmap = pmap;
450 pv->pv_next = NULL;
451 pv->pv_flags = flags;
452 } else {
453 /*
454 * There is at least one other VA mapping this page.
455 * Place this entry after the header.
456 */
457 #ifdef PMAP_DEBUG
458 for (npv = pv; npv; npv = npv->pv_next)
459 if (pmap == npv->pv_pmap && va == npv->pv_va)
460 panic("pmap_enter_pv: already in pv_tab pv %p: %08lx/%p/%p",
461 pv, pv->pv_va, pv->pv_pmap, pv->pv_next);
462 #endif
463 npv = pmap_alloc_pv();
464 npv->pv_va = va;
465 npv->pv_pmap = pmap;
466 npv->pv_flags = flags;
467 npv->pv_next = pv->pv_next;
468 pv->pv_next = npv;
469 }
470
471 if (flags & PT_W)
472 ++pmap->pm_stats.wired_count;
473
474 splx(s);
475 }
476
477
478 /*
479 * Remove a physical-virtual mapping from the pv table
480 */
481
482 /*__inline*/ void
483 pmap_remove_pv(pmap, va, pv)
484 pmap_t pmap;
485 vaddr_t va;
486 struct pv_entry *pv;
487 {
488 struct pv_entry *npv;
489 u_int s;
490 u_int flags = 0;
491
492 #ifdef DIAGNOSTIC
493 if (!pmap_initialized)
494 panic("pmap_remove_pv: !pmap_initialized");
495 #endif
496
497 s = splvm();
498
499 /*
500 * If it is the first entry on the list, it is actually
501 * in the header and we must copy the following entry up
502 * to the header. Otherwise we must search the list for
503 * the entry. In either case we free the now unused entry.
504 */
505
506 if (pmap == pv->pv_pmap && va == pv->pv_va) {
507 npv = pv->pv_next;
508 if (npv) {
509 *pv = *npv;
510 flags = npv->pv_flags;
511 pmap_free_pv(npv);
512 } else {
513 flags = pv->pv_flags;
514 pv->pv_pmap = NULL;
515 }
516 } else {
517 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
518 if (pmap == npv->pv_pmap && va == npv->pv_va)
519 break;
520 }
521 if (npv) {
522 pv->pv_next = npv->pv_next;
523 flags = npv->pv_flags;
524 pmap_free_pv(npv);
525 } else
526 panic("pmap_remove_pv: lost entry");
527 }
528
529 if (flags & PT_W)
530 --pmap->pm_stats.wired_count;
531
532 splx(s);
533 }
534
535 /*
536 * Modify a physical-virtual mapping in the pv table
537 */
538
539 /*__inline */ u_int
540 pmap_modify_pv(pmap, va, pv, bic_mask, eor_mask)
541 pmap_t pmap;
542 vaddr_t va;
543 struct pv_entry *pv;
544 u_int bic_mask;
545 u_int eor_mask;
546 {
547 struct pv_entry *npv;
548 u_int s;
549 u_int flags, oflags;
550
551 PDEBUG(5, printf("pmap_modify_pv(pmap=%p, va=%08lx, pv=%p, bic_mask=%08x, eor_mask=%08x)\n",
552 pmap, va, pv, bic_mask, eor_mask));
553
554 #ifdef DIAGNOSTIC
555 if (!pmap_initialized)
556 panic("pmap_modify_pv: !pmap_initialized");
557 #endif
558
559 s = splvm();
560
561 PDEBUG(5, printf("pmap_modify_pv: pv %p: %08lx/%p/%p/%08x ",
562 pv, pv->pv_va, pv->pv_pmap, pv->pv_next, pv->pv_flags));
563
564 /*
565 * There is at least one VA mapping this page.
566 */
567
568 for (npv = pv; npv; npv = npv->pv_next) {
569 if (pmap == npv->pv_pmap && va == npv->pv_va) {
570 oflags = npv->pv_flags;
571 npv->pv_flags = flags =
572 ((oflags & ~bic_mask) ^ eor_mask);
573 if ((flags ^ oflags) & PT_W) {
574 if (flags & PT_W)
575 ++pmap->pm_stats.wired_count;
576 else
577 --pmap->pm_stats.wired_count;
578 }
579 PDEBUG(0, printf("done flags=%08x\n", flags));
580 splx(s);
581 return (oflags);
582 }
583 }
584
585 PDEBUG(0, printf("done.\n"));
586 splx(s);
587 return (0);
588 }
589
590
591 /*
592 * Map the specified level 2 pagetable into the level 1 page table for
593 * the given pmap to cover a chunk of virtual address space starting from the
594 * address specified.
595 */
596 static /*__inline*/ void
597 pmap_map_in_l1(pmap, va, l2pa)
598 pmap_t pmap;
599 vaddr_t va, l2pa;
600 {
601 vaddr_t ptva;
602
603 /* Calculate the index into the L1 page table. */
604 ptva = (va >> PDSHIFT) & ~3;
605
606 PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
607 pmap->pm_pdir, L1_PTE(l2pa), ptva));
608
609 /* Map page table into the L1. */
610 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
611 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
612 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
613 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
614
615 PDEBUG(0, printf("pt self reference %lx in %lx\n",
616 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
617
618 /* Map the page table into the page table area. */
619 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_PTE_NC_NB(l2pa, AP_KRW);
620
621 /* XXX should be a purge */
622 /* cpu_tlb_flushD();*/
623 }
624
625 #if 0
626 static /*__inline*/ void
627 pmap_unmap_in_l1(pmap, va)
628 pmap_t pmap;
629 vaddr_t va;
630 {
631 vaddr_t ptva;
632
633 /* Calculate the index into the L1 page table. */
634 ptva = (va >> PDSHIFT) & ~3;
635
636 /* Unmap page table from the L1. */
637 pmap->pm_pdir[ptva + 0] = 0;
638 pmap->pm_pdir[ptva + 1] = 0;
639 pmap->pm_pdir[ptva + 2] = 0;
640 pmap->pm_pdir[ptva + 3] = 0;
641
642 /* Unmap the page table from the page table area. */
643 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
644
645 /* XXX should be a purge */
646 /* cpu_tlb_flushD();*/
647 }
648 #endif
649
650
651 /*
652 * Used to map a range of physical addresses into kernel
653 * virtual address space.
654 *
655 * For now, VM is already on, we only need to map the
656 * specified memory.
657 */
658 vaddr_t
659 pmap_map(va, spa, epa, prot)
660 vaddr_t va, spa, epa;
661 int prot;
662 {
663 while (spa < epa) {
664 pmap_enter(pmap_kernel(), va, spa, prot, 0);
665 va += NBPG;
666 spa += NBPG;
667 }
668 pmap_update();
669 return(va);
670 }
671
672
673 /*
674 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
675 *
676 * bootstrap the pmap system. This is called from initarm and allows
677 * the pmap system to initailise any structures it requires.
678 *
679 * Currently this sets up the kernel_pmap that is statically allocated
680 * and also allocated virtual addresses for certain page hooks.
681 * Currently the only one page hook is allocated that is used
682 * to zero physical pages of memory.
683 * It also initialises the start and end address of the kernel data space.
684 */
685 extern paddr_t physical_freestart;
686 extern paddr_t physical_freeend;
687
688 struct pv_entry *boot_pvent;
689 char *boot_attrs;
690
691 void
692 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
693 pd_entry_t *kernel_l1pt;
694 pv_addr_t kernel_ptpt;
695 {
696 int loop;
697 paddr_t start, end;
698 #if NISADMA > 0
699 paddr_t istart;
700 psize_t isize;
701 #endif
702 vsize_t size;
703
704 kernel_pmap = &kernel_pmap_store;
705
706 kernel_pmap->pm_pdir = kernel_l1pt;
707 kernel_pmap->pm_pptpt = kernel_ptpt.pv_pa;
708 kernel_pmap->pm_vptpt = kernel_ptpt.pv_va;
709 simple_lock_init(&kernel_pmap->pm_lock);
710 kernel_pmap->pm_count = 1;
711
712 /*
713 * Initialize PAGE_SIZE-dependent variables.
714 */
715 uvm_setpagesize();
716
717 npages = 0;
718 loop = 0;
719 while (loop < bootconfig.dramblocks) {
720 start = (paddr_t)bootconfig.dram[loop].address;
721 end = start + (bootconfig.dram[loop].pages * NBPG);
722 if (start < physical_freestart)
723 start = physical_freestart;
724 if (end > physical_freeend)
725 end = physical_freeend;
726 #if 0
727 printf("%d: %lx -> %lx\n", loop, start, end - 1);
728 #endif
729 #if NISADMA > 0
730 if (pmap_isa_dma_range_intersect(start, end - start,
731 &istart, &isize)) {
732 /*
733 * Place the pages that intersect with the
734 * ISA DMA range onto the ISA DMA free list.
735 */
736 #if 0
737 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
738 istart + isize - 1);
739 #endif
740 uvm_page_physload(atop(istart),
741 atop(istart + isize), atop(istart),
742 atop(istart + isize), VM_FREELIST_ISADMA);
743 npages += atop(istart + isize) - atop(istart);
744
745 /*
746 * Load the pieces that come before
747 * the intersection into the default
748 * free list.
749 */
750 if (start < istart) {
751 #if 0
752 printf(" BEFORE 0x%lx -> 0x%lx\n",
753 start, istart - 1);
754 #endif
755 uvm_page_physload(atop(start),
756 atop(istart), atop(start),
757 atop(istart), VM_FREELIST_DEFAULT);
758 npages += atop(istart) - atop(start);
759 }
760
761 /*
762 * Load the pieces that come after
763 * the intersection into the default
764 * free list.
765 */
766 if ((istart + isize) < end) {
767 #if 0
768 printf(" AFTER 0x%lx -> 0x%lx\n",
769 (istart + isize), end - 1);
770 #endif
771 uvm_page_physload(atop(istart + isize),
772 atop(end), atop(istart + isize),
773 atop(end), VM_FREELIST_DEFAULT);
774 npages += atop(end) - atop(istart + isize);
775 }
776 } else {
777 uvm_page_physload(atop(start), atop(end),
778 atop(start), atop(end), VM_FREELIST_DEFAULT);
779 npages += atop(end) - atop(start);
780 }
781 #else /* NISADMA > 0 */
782 uvm_page_physload(atop(start), atop(end),
783 atop(start), atop(end), VM_FREELIST_DEFAULT);
784 npages += atop(end) - atop(start);
785 #endif /* NISADMA > 0 */
786 ++loop;
787 }
788
789 #ifdef MYCROFT_HACK
790 printf("npages = %ld\n", npages);
791 #endif
792
793 virtual_start = KERNEL_VM_BASE;
794 virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
795
796 ALLOC_PAGE_HOOK(page_hook0, NBPG);
797 ALLOC_PAGE_HOOK(page_hook1, NBPG);
798
799 /*
800 * The mem special device needs a virtual hook but we don't
801 * need a pte
802 */
803 memhook = (char *)virtual_start;
804 virtual_start += NBPG;
805
806 msgbufaddr = (caddr_t)virtual_start;
807 msgbufpte = (pt_entry_t)pmap_pte(kernel_pmap, virtual_start);
808 virtual_start += round_page(MSGBUFSIZE);
809
810 size = npages * sizeof(struct pv_entry);
811 boot_pvent = (struct pv_entry *)uvm_pageboot_alloc(size);
812 bzero(boot_pvent, size);
813 size = npages * sizeof(char);
814 boot_attrs = (char *)uvm_pageboot_alloc(size);
815 bzero(boot_attrs, size);
816
817 /*
818 * initialize the pmap pool.
819 */
820
821 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
822 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
823
824 cpu_cache_cleanD();
825 }
826
827 /*
828 * void pmap_init(void)
829 *
830 * Initialize the pmap module.
831 * Called by vm_init() in vm/vm_init.c in order to initialise
832 * any structures that the pmap system needs to map virtual memory.
833 */
834
835 extern int physmem;
836
837 void
838 pmap_init()
839 {
840 int lcv;
841
842 #ifdef MYCROFT_HACK
843 printf("physmem = %d\n", physmem);
844 #endif
845
846 /*
847 * Set the available memory vars - These do not map to real memory
848 * addresses and cannot as the physical memory is fragmented.
849 * They are used by ps for %mem calculations.
850 * One could argue whether this should be the entire memory or just
851 * the memory that is useable in a user process.
852 */
853 avail_start = 0;
854 avail_end = physmem * NBPG;
855
856 /* Set up pmap info for physsegs. */
857 for (lcv = 0; lcv < vm_nphysseg; lcv++) {
858 vm_physmem[lcv].pmseg.pvent = boot_pvent;
859 boot_pvent += vm_physmem[lcv].end - vm_physmem[lcv].start;
860 vm_physmem[lcv].pmseg.attrs = boot_attrs;
861 boot_attrs += vm_physmem[lcv].end - vm_physmem[lcv].start;
862 }
863 #ifdef MYCROFT_HACK
864 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
865 printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
866 lcv,
867 vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
868 vm_physmem[lcv].start, vm_physmem[lcv].end);
869 }
870 #endif
871 TAILQ_INIT(&pv_page_freelist);
872
873 #ifdef DIAGNOSTIC
874 /* Now it is safe to enable pv_entry recording. */
875 pmap_initialized = TRUE;
876 #endif
877
878 /* Initialise our L1 page table queues and counters */
879 SIMPLEQ_INIT(&l1pt_static_queue);
880 l1pt_static_queue_count = 0;
881 l1pt_static_create_count = 0;
882 SIMPLEQ_INIT(&l1pt_queue);
883 l1pt_queue_count = 0;
884 l1pt_create_count = 0;
885 l1pt_reuse_count = 0;
886 }
887
888 /*
889 * pmap_postinit()
890 *
891 * This routine is called after the vm and kmem subsystems have been
892 * initialised. This allows the pmap code to perform any initialisation
893 * that can only be done one the memory allocation is in place.
894 */
895
896 void
897 pmap_postinit()
898 {
899 int loop;
900 struct l1pt *pt;
901
902 #ifdef PMAP_STATIC_L1S
903 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
904 #else /* PMAP_STATIC_L1S */
905 for (loop = 0; loop < max_processes; ++loop) {
906 #endif /* PMAP_STATIC_L1S */
907 /* Allocate a L1 page table */
908 pt = pmap_alloc_l1pt();
909 if (!pt)
910 panic("Cannot allocate static L1 page tables\n");
911
912 /* Clean it */
913 bzero((void *)pt->pt_va, PD_SIZE);
914 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
915 /* Add the page table to the queue */
916 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
917 ++l1pt_static_queue_count;
918 ++l1pt_static_create_count;
919 }
920 }
921
922
923 /*
924 * Create and return a physical map.
925 *
926 * If the size specified for the map is zero, the map is an actual physical
927 * map, and may be referenced by the hardware.
928 *
929 * If the size specified is non-zero, the map will be used in software only,
930 * and is bounded by that size.
931 */
932
933 pmap_t
934 pmap_create()
935 {
936 pmap_t pmap;
937
938 /*
939 * Fetch pmap entry from the pool
940 */
941
942 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
943 bzero(pmap, sizeof(*pmap));
944
945 /* Now init the machine part of the pmap */
946 pmap_pinit(pmap);
947 return(pmap);
948 }
949
950 /*
951 * pmap_alloc_l1pt()
952 *
953 * This routine allocates physical and virtual memory for a L1 page table
954 * and wires it.
955 * A l1pt structure is returned to describe the allocated page table.
956 *
957 * This routine is allowed to fail if the required memory cannot be allocated.
958 * In this case NULL is returned.
959 */
960
961 struct l1pt *
962 pmap_alloc_l1pt(void)
963 {
964 paddr_t pa;
965 vaddr_t va;
966 struct l1pt *pt;
967 int error;
968 struct vm_page *m;
969 pt_entry_t *ptes;
970
971 /* Allocate virtual address space for the L1 page table */
972 va = uvm_km_valloc(kernel_map, PD_SIZE);
973 if (va == 0) {
974 #ifdef DIAGNOSTIC
975 printf("pmap: Cannot allocate pageable memory for L1\n");
976 #endif /* DIAGNOSTIC */
977 return(NULL);
978 }
979
980 /* Allocate memory for the l1pt structure */
981 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
982
983 /*
984 * Allocate pages from the VM system.
985 */
986 TAILQ_INIT(&pt->pt_plist);
987 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
988 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
989 if (error) {
990 #ifdef DIAGNOSTIC
991 printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
992 error);
993 #endif /* DIAGNOSTIC */
994 /* Release the resources we already have claimed */
995 free(pt, M_VMPMAP);
996 uvm_km_free(kernel_map, va, PD_SIZE);
997 return(NULL);
998 }
999
1000 /* Map our physical pages into our virtual space */
1001 pt->pt_va = va;
1002 m = pt->pt_plist.tqh_first;
1003 ptes = pmap_map_ptes(pmap_kernel());
1004 while (m && va < (pt->pt_va + PD_SIZE)) {
1005 pa = VM_PAGE_TO_PHYS(m);
1006
1007 pmap_enter(pmap_kernel(), va, pa,
1008 VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
1009
1010 /* Revoke cacheability and bufferability */
1011 /* XXX should be done better than this */
1012 ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1013
1014 va += NBPG;
1015 m = m->pageq.tqe_next;
1016 }
1017 pmap_unmap_ptes(pmap_kernel());
1018 pmap_update();
1019
1020 #ifdef DIAGNOSTIC
1021 if (m)
1022 panic("pmap_alloc_l1pt: pglist not empty\n");
1023 #endif /* DIAGNOSTIC */
1024
1025 pt->pt_flags = 0;
1026 return(pt);
1027 }
1028
1029 /*
1030 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1031 */
1032 void
1033 pmap_free_l1pt(pt)
1034 struct l1pt *pt;
1035 {
1036 /* Separate the physical memory for the virtual space */
1037 pmap_remove(kernel_pmap, pt->pt_va, pt->pt_va + PD_SIZE);
1038 pmap_update();
1039
1040 /* Return the physical memory */
1041 uvm_pglistfree(&pt->pt_plist);
1042
1043 /* Free the virtual space */
1044 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1045
1046 /* Free the l1pt structure */
1047 free(pt, M_VMPMAP);
1048 }
1049
1050 /*
1051 * Allocate a page directory.
1052 * This routine will either allocate a new page directory from the pool
1053 * of L1 page tables currently held by the kernel or it will allocate
1054 * a new one via pmap_alloc_l1pt().
1055 * It will then initialise the l1 page table for use.
1056 */
1057 int
1058 pmap_allocpagedir(pmap)
1059 struct pmap *pmap;
1060 {
1061 paddr_t pa;
1062 struct l1pt *pt;
1063 pt_entry_t *pte;
1064
1065 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1066
1067 /* Do we have any spare L1's lying around ? */
1068 if (l1pt_static_queue_count) {
1069 --l1pt_static_queue_count;
1070 pt = l1pt_static_queue.sqh_first;
1071 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1072 } else if (l1pt_queue_count) {
1073 --l1pt_queue_count;
1074 pt = l1pt_queue.sqh_first;
1075 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1076 ++l1pt_reuse_count;
1077 } else {
1078 pt = pmap_alloc_l1pt();
1079 if (!pt)
1080 return(ENOMEM);
1081 ++l1pt_create_count;
1082 }
1083
1084 /* Store the pointer to the l1 descriptor in the pmap. */
1085 pmap->pm_l1pt = pt;
1086
1087 /* Get the physical address of the start of the l1 */
1088 pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1089
1090 /* Store the virtual address of the l1 in the pmap. */
1091 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1092
1093 /* Clean the L1 if it is dirty */
1094 if (!(pt->pt_flags & PTFLAG_CLEAN))
1095 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1096
1097 /* Do we already have the kernel mappings ? */
1098 if (!(pt->pt_flags & PTFLAG_KPT)) {
1099 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1100
1101 bcopy((char *)kernel_pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1102 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1103 KERNEL_PD_SIZE);
1104 pt->pt_flags |= PTFLAG_KPT;
1105 }
1106
1107 /* Allocate a page table to map all the page tables for this pmap */
1108
1109 #ifdef DIAGNOSTIC
1110 if (pmap->pm_vptpt) {
1111 /* XXX What if we have one already ? */
1112 panic("pmap_allocpagedir: have pt already\n");
1113 }
1114 #endif /* DIAGNOSTIC */
1115 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1116 if (pmap->pm_vptpt == 0) {
1117 pmap_freepagedir(pmap);
1118 return(ENOMEM);
1119 }
1120
1121 (void) pmap_extract(kernel_pmap, pmap->pm_vptpt, &pmap->pm_pptpt);
1122 pmap->pm_pptpt &= PG_FRAME;
1123 /* Revoke cacheability and bufferability */
1124 /* XXX should be done better than this */
1125 pte = pmap_pte(kernel_pmap, pmap->pm_vptpt);
1126 *pte = *pte & ~(PT_C | PT_B);
1127
1128 /* Wire in this page table */
1129 pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt);
1130
1131 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1132
1133 /*
1134 * Map the kernel page tables for 0xf0000000 +
1135 * into the page table used to map the
1136 * pmap's page tables
1137 */
1138 bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1139 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1140 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1141 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1142 (KERNEL_PD_SIZE >> 2));
1143
1144 pmap->pm_count = 1;
1145 simple_lock_init(&pmap->pm_lock);
1146
1147 return(0);
1148 }
1149
1150
1151 /*
1152 * Initialize a preallocated and zeroed pmap structure,
1153 * such as one in a vmspace structure.
1154 */
1155
1156 static int pmap_pagedir_ident; /* tsleep() ident */
1157
1158 void
1159 pmap_pinit(pmap)
1160 struct pmap *pmap;
1161 {
1162 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1163
1164 /* Keep looping until we succeed in allocating a page directory */
1165 while (pmap_allocpagedir(pmap) != 0) {
1166 /*
1167 * Ok we failed to allocate a suitable block of memory for an
1168 * L1 page table. This means that either:
1169 * 1. 16KB of virtual address space could not be allocated
1170 * 2. 16KB of physically contiguous memory on a 16KB boundary
1171 * could not be allocated.
1172 *
1173 * Since we cannot fail we will sleep for a while and try
1174 * again. Although we will be wakened when another page table
1175 * is freed other memory releasing and swapping may occur
1176 * that will mean we can succeed so we will keep trying
1177 * regularly just in case.
1178 */
1179
1180 if (tsleep((caddr_t)&pmap_pagedir_ident, PZERO,
1181 "l1ptwait", 1000) == EWOULDBLOCK)
1182 printf("pmap: Cannot allocate L1 page table, sleeping ...\n");
1183 }
1184
1185 /* Map zero page for the pmap. This will also map the L2 for it */
1186 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1187 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1188 pmap_update();
1189 }
1190
1191
1192 void
1193 pmap_freepagedir(pmap)
1194 pmap_t pmap;
1195 {
1196 /* Free the memory used for the page table mapping */
1197 if (pmap->pm_vptpt != 0)
1198 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1199
1200 /* junk the L1 page table */
1201 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1202 /* Add the page table to the queue */
1203 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1204 ++l1pt_static_queue_count;
1205 /* Wake up any sleeping processes waiting for a l1 page table */
1206 wakeup((caddr_t)&pmap_pagedir_ident);
1207 } else if (l1pt_queue_count < 8) {
1208 /* Add the page table to the queue */
1209 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1210 ++l1pt_queue_count;
1211 /* Wake up any sleeping processes waiting for a l1 page table */
1212 wakeup((caddr_t)&pmap_pagedir_ident);
1213 } else
1214 pmap_free_l1pt(pmap->pm_l1pt);
1215 }
1216
1217
1218 /*
1219 * Retire the given physical map from service.
1220 * Should only be called if the map contains no valid mappings.
1221 */
1222
1223 void
1224 pmap_destroy(pmap)
1225 pmap_t pmap;
1226 {
1227 int count;
1228
1229 if (pmap == NULL)
1230 return;
1231
1232 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1233 simple_lock(&pmap->pm_lock);
1234 count = --pmap->pm_count;
1235 simple_unlock(&pmap->pm_lock);
1236 if (count == 0) {
1237 pmap_release(pmap);
1238 pool_put(&pmap_pmap_pool, pmap);
1239 }
1240 }
1241
1242
1243 /*
1244 * Release any resources held by the given physical map.
1245 * Called when a pmap initialized by pmap_pinit is being released.
1246 * Should only be called if the map contains no valid mappings.
1247 */
1248
1249 void
1250 pmap_release(pmap)
1251 pmap_t pmap;
1252 {
1253 struct vm_page *page;
1254 pt_entry_t *pte;
1255 int loop;
1256
1257 PDEBUG(0, printf("pmap_release(%p)\n", pmap));
1258
1259 #if 0
1260 if (pmap->pm_count != 1) /* XXX: needs sorting */
1261 panic("pmap_release count %d", pmap->pm_count);
1262 #endif
1263
1264 /* Remove the zero page mapping */
1265 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1266 pmap_update();
1267
1268 /*
1269 * Free any page tables still mapped
1270 * This is only temporay until pmap_enter can count the number
1271 * of mappings made in a page table. Then pmap_remove() can
1272 * reduce the count and free the pagetable when the count
1273 * reaches zero.
1274 */
1275 for (loop = 0; loop < (((PD_SIZE - KERNEL_PD_SIZE) >> 4) - 1); ++loop) {
1276 pte = (pt_entry_t *)(pmap->pm_vptpt + loop * 4);
1277 if (*pte != 0) {
1278 PDEBUG(0, printf("%x: pte=%p:%08x\n", loop, pte, *pte));
1279 page = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
1280 if (page == NULL)
1281 panic("pmap_release: bad address for phys page");
1282 uvm_pagefree(page);
1283 }
1284 }
1285 /* Free the page dir */
1286 pmap_freepagedir(pmap);
1287 }
1288
1289
1290 /*
1291 * void pmap_reference(pmap_t pmap)
1292 *
1293 * Add a reference to the specified pmap.
1294 */
1295
1296 void
1297 pmap_reference(pmap)
1298 pmap_t pmap;
1299 {
1300 if (pmap == NULL)
1301 return;
1302
1303 simple_lock(&pmap->pm_lock);
1304 pmap->pm_count++;
1305 simple_unlock(&pmap->pm_lock);
1306 }
1307
1308 /*
1309 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1310 *
1311 * Return the start and end addresses of the kernel's virtual space.
1312 * These values are setup in pmap_bootstrap and are updated as pages
1313 * are allocated.
1314 */
1315
1316 void
1317 pmap_virtual_space(start, end)
1318 vaddr_t *start;
1319 vaddr_t *end;
1320 {
1321 *start = virtual_start;
1322 *end = virtual_end;
1323 }
1324
1325
1326 /*
1327 * Activate the address space for the specified process. If the process
1328 * is the current process, load the new MMU context.
1329 */
1330 void
1331 pmap_activate(p)
1332 struct proc *p;
1333 {
1334 pmap_t pmap = p->p_vmspace->vm_map.pmap;
1335 struct pcb *pcb = &p->p_addr->u_pcb;
1336
1337 (void) pmap_extract(kernel_pmap, (vaddr_t)pmap->pm_pdir,
1338 (paddr_t *)&pcb->pcb_pagedir);
1339
1340 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1341 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1342
1343 if (p == curproc) {
1344 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1345 setttb((u_int)pcb->pcb_pagedir);
1346 }
1347 #if 0
1348 pmap->pm_pdchanged = FALSE;
1349 #endif
1350 }
1351
1352
1353 /*
1354 * Deactivate the address space of the specified process.
1355 */
1356 void
1357 pmap_deactivate(p)
1358 struct proc *p;
1359 {
1360 }
1361
1362
1363 /*
1364 * pmap_clean_page()
1365 *
1366 * This is a local function used to work out the best strategy to clean
1367 * a single page referenced by its entry in the PV table. It's used by
1368 * pmap_copy_page, pmap_zero page and maybe some others later on.
1369 *
1370 * Its policy is effectively:
1371 * o If there are no mappings, we don't bother doing anything with the cache.
1372 * o If there is one mapping, we clean just that page.
1373 * o If there are multiple mappings, we clean the entire cache.
1374 *
1375 * So that some functions can be further optimised, it returns 0 if it didn't
1376 * clean the entire cache, or 1 if it did.
1377 *
1378 * XXX One bug in this routine is that if the pv_entry has a single page
1379 * mapped at 0x00000000 a whole cache clean will be performed rather than
1380 * just the 1 page. Since this should not occur in everyday use and if it does
1381 * it will just result in not the most efficient clean for the page.
1382 */
1383 static int
1384 pmap_clean_page(pv)
1385 struct pv_entry *pv;
1386 {
1387 int s;
1388 int cache_needs_cleaning = 0;
1389 vaddr_t page_to_clean = 0;
1390
1391 /* Go to splvm() so we get exclusive lock for a mo */
1392 s = splvm();
1393 if (pv->pv_pmap) {
1394 cache_needs_cleaning = 1;
1395 if (!pv->pv_next)
1396 page_to_clean = pv->pv_va;
1397 }
1398 splx(s);
1399
1400 /* Do cache ops outside the splvm. */
1401 if (page_to_clean)
1402 cpu_cache_purgeID_rng(page_to_clean, NBPG);
1403 else if (cache_needs_cleaning) {
1404 cpu_cache_purgeID();
1405 return (1);
1406 }
1407 return (0);
1408 }
1409
1410 /*
1411 * pmap_find_pv()
1412 *
1413 * This is a local function that finds a PV entry for a given physical page.
1414 * This is a common op, and this function removes loads of ifdefs in the code.
1415 */
1416 static __inline struct pv_entry *
1417 pmap_find_pv(phys)
1418 paddr_t phys;
1419 {
1420 int bank, off;
1421 struct pv_entry *pv;
1422
1423 #ifdef DIAGNOSTIC
1424 if (!pmap_initialized)
1425 panic("pmap_find_pv: !pmap_initialized");
1426 #endif
1427
1428 if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1429 panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1430 pv = &vm_physmem[bank].pmseg.pvent[off];
1431 return (pv);
1432 }
1433
1434 /*
1435 * pmap_zero_page()
1436 *
1437 * Zero a given physical page by mapping it at a page hook point.
1438 * In doing the zero page op, the page we zero is mapped cachable, as with
1439 * StrongARM accesses to non-cached pages are non-burst making writing
1440 * _any_ bulk data very slow.
1441 */
1442 void
1443 pmap_zero_page(phys)
1444 paddr_t phys;
1445 {
1446 struct pv_entry *pv;
1447
1448 /* Get an entry for this page, and clean it it. */
1449 pv = pmap_find_pv(phys);
1450 pmap_clean_page(pv);
1451
1452 /*
1453 * Hook in the page, zero it, and purge the cache for that
1454 * zeroed page. Invalidate the TLB as needed.
1455 */
1456 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1457 cpu_tlb_flushD_SE(page_hook0.va);
1458 bzero_page(page_hook0.va);
1459 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1460 }
1461
1462 /*
1463 * pmap_copy_page()
1464 *
1465 * Copy one physical page into another, by mapping the pages into
1466 * hook points. The same comment regarding cachability as in
1467 * pmap_zero_page also applies here.
1468 */
1469 void
1470 pmap_copy_page(src, dest)
1471 paddr_t src;
1472 paddr_t dest;
1473 {
1474 struct pv_entry *src_pv, *dest_pv;
1475
1476 /* Get PV entries for the pages, and clean them if needed. */
1477 src_pv = pmap_find_pv(src);
1478 dest_pv = pmap_find_pv(dest);
1479 if (!pmap_clean_page(src_pv))
1480 pmap_clean_page(dest_pv);
1481
1482 /*
1483 * Map the pages into the page hook points, copy them, and purge
1484 * the cache for the appropriate page. Invalidate the TLB
1485 * as required.
1486 */
1487 *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1488 *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1489 cpu_tlb_flushD_SE(page_hook0.va);
1490 cpu_tlb_flushD_SE(page_hook1.va);
1491 bcopy_page(page_hook0.va, page_hook1.va);
1492 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1493 cpu_cache_purgeD_rng(page_hook1.va, NBPG);
1494 }
1495
1496 /*
1497 * int pmap_next_phys_page(paddr_t *addr)
1498 *
1499 * Allocate another physical page returning true or false depending
1500 * on whether a page could be allocated.
1501 */
1502
1503 paddr_t
1504 pmap_next_phys_page(addr)
1505 paddr_t addr;
1506
1507 {
1508 int loop;
1509
1510 if (addr < bootconfig.dram[0].address)
1511 return(bootconfig.dram[0].address);
1512
1513 loop = 0;
1514
1515 while (bootconfig.dram[loop].address != 0
1516 && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
1517 ++loop;
1518
1519 if (bootconfig.dram[loop].address == 0)
1520 return(0);
1521
1522 addr += NBPG;
1523
1524 if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
1525 if (bootconfig.dram[loop + 1].address == 0)
1526 return(0);
1527 addr = bootconfig.dram[loop + 1].address;
1528 }
1529
1530 return(addr);
1531 }
1532
1533 #if 0
1534 void
1535 pmap_pte_addref(pmap, va)
1536 pmap_t pmap;
1537 vaddr_t va;
1538 {
1539 pd_entry_t *pde;
1540 paddr_t pa;
1541 struct vm_page *m;
1542
1543 if (pmap == pmap_kernel())
1544 return;
1545
1546 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1547 pa = pmap_pte_pa(pde);
1548 m = PHYS_TO_VM_PAGE(pa);
1549 ++m->wire_count;
1550 #ifdef MYCROFT_HACK
1551 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1552 pmap, va, pde, pa, m, m->wire_count);
1553 #endif
1554 }
1555
1556 void
1557 pmap_pte_delref(pmap, va)
1558 pmap_t pmap;
1559 vaddr_t va;
1560 {
1561 pd_entry_t *pde;
1562 paddr_t pa;
1563 struct vm_page *m;
1564
1565 if (pmap == pmap_kernel())
1566 return;
1567
1568 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1569 pa = pmap_pte_pa(pde);
1570 m = PHYS_TO_VM_PAGE(pa);
1571 --m->wire_count;
1572 #ifdef MYCROFT_HACK
1573 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1574 pmap, va, pde, pa, m, m->wire_count);
1575 #endif
1576 if (m->wire_count == 0) {
1577 #ifdef MYCROFT_HACK
1578 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1579 pmap, va, pde, pa, m);
1580 #endif
1581 pmap_unmap_in_l1(pmap, va);
1582 uvm_pagefree(m);
1583 --pmap->pm_stats.resident_count;
1584 }
1585 }
1586 #else
1587 #define pmap_pte_addref(pmap, va)
1588 #define pmap_pte_delref(pmap, va)
1589 #endif
1590
1591 /*
1592 * Since we have a virtually indexed cache, we may need to inhibit caching if
1593 * there is more than one mapping and at least one of them is writable.
1594 * Since we purge the cache on every context switch, we only need to check for
1595 * other mappings within the same pmap, or kernel_pmap.
1596 * This function is also called when a page is unmapped, to possibly reenable
1597 * caching on any remaining mappings.
1598 *
1599 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
1600 */
1601 void
1602 pmap_vac_me_harder(pmap, pv, ptes)
1603 pmap_t pmap;
1604 struct pv_entry *pv;
1605 pt_entry_t *ptes;
1606 {
1607 struct pv_entry *npv;
1608 pt_entry_t *pte;
1609 int entries = 0;
1610 int writeable = 0;
1611
1612 if (pv->pv_pmap == NULL)
1613 return;
1614 KASSERT(ptes != NULL);
1615
1616 /*
1617 * Count mappings and writable mappings in this pmap.
1618 * Keep a pointer to the first one.
1619 */
1620 for (npv = pv; npv; npv = npv->pv_next) {
1621 /* Count mappings in the same pmap */
1622 if (pmap == npv->pv_pmap) {
1623 if (entries++ == 0)
1624 pv = npv;
1625 /* Writeable mappings */
1626 if (npv->pv_flags & PT_Wr)
1627 ++writeable;
1628 }
1629 }
1630
1631 /*
1632 * Enable or disable caching as necessary.
1633 * We do a quick check of the first PTE to avoid walking the list if
1634 * we're already in the right state.
1635 */
1636 if (entries > 1 && writeable) {
1637 pte = &ptes[arm_byte_to_page(pv->pv_va)];
1638 if (~*pte & (PT_C | PT_B))
1639 {
1640 return;
1641 }
1642 *pte &= ~(PT_C | PT_B);
1643 for (npv = pv->pv_next; npv; npv = npv->pv_next) {
1644 if (pmap == npv->pv_pmap) {
1645 ptes[arm_byte_to_page(npv->pv_va)] &=
1646 ~(PT_C | PT_B);
1647 }
1648 }
1649 } else if (entries > 0) {
1650 pte = &ptes[arm_byte_to_page(pv->pv_va)];
1651 if (*pte & (PT_C | PT_B)) {
1652 return;
1653 }
1654 *pte |= (PT_C | PT_B);
1655 for (npv = pv->pv_next; npv; npv = npv->pv_next) {
1656 if (pmap == npv->pv_pmap) {
1657 ptes[arm_byte_to_page(npv->pv_va)] |=
1658 (PT_C | PT_B);
1659 }
1660 }
1661 }
1662 }
1663
1664 /*
1665 * pmap_remove()
1666 *
1667 * pmap_remove is responsible for nuking a number of mappings for a range
1668 * of virtual address space in the current pmap. To do this efficiently
1669 * is interesting, because in a number of cases a wide virtual address
1670 * range may be supplied that contains few actual mappings. So, the
1671 * optimisations are:
1672 * 1. Try and skip over hunks of address space for which an L1 entry
1673 * does not exist.
1674 * 2. Build up a list of pages we've hit, up to a maximum, so we can
1675 * maybe do just a partial cache clean. This path of execution is
1676 * complicated by the fact that the cache must be flushed _before_
1677 * the PTE is nuked, being a VAC :-)
1678 * 3. Maybe later fast-case a single page, but I don't think this is
1679 * going to make _that_ much difference overall.
1680 */
1681
1682 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
1683
1684 void
1685 pmap_remove(pmap, sva, eva)
1686 pmap_t pmap;
1687 vaddr_t sva;
1688 vaddr_t eva;
1689 {
1690 int cleanlist_idx = 0;
1691 struct pagelist {
1692 vaddr_t va;
1693 pt_entry_t *pte;
1694 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
1695 pt_entry_t *pte = 0, *ptes;
1696 paddr_t pa;
1697 int pmap_active;
1698 struct pv_entry *pv;
1699
1700 /* Exit quick if there is no pmap */
1701 if (!pmap)
1702 return;
1703
1704 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
1705
1706 sva &= PG_FRAME;
1707 eva &= PG_FRAME;
1708
1709 ptes = pmap_map_ptes(pmap);
1710 /* Get a page table pointer */
1711 while (sva < eva) {
1712 if (pmap_pde_v(pmap_pde(pmap, sva)))
1713 break;
1714 sva = (sva & PD_MASK) + NBPD;
1715 }
1716
1717 pte = &ptes[arm_byte_to_page(sva)];
1718 /* Note if the pmap is active thus require cache and tlb cleans */
1719 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
1720 || (pmap == kernel_pmap))
1721 pmap_active = 1;
1722 else
1723 pmap_active = 0;
1724
1725 /* Now loop along */
1726 while (sva < eva) {
1727 /* Check if we can move to the next PDE (l1 chunk) */
1728 if (!(sva & PT_MASK))
1729 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
1730 sva += NBPD;
1731 pte += arm_byte_to_page(NBPD);
1732 continue;
1733 }
1734
1735 /* We've found a valid PTE, so this page of PTEs has to go. */
1736 if (pmap_pte_v(pte)) {
1737 int bank, off;
1738
1739 /* Update statistics */
1740 --pmap->pm_stats.resident_count;
1741
1742 /*
1743 * Add this page to our cache remove list, if we can.
1744 * If, however the cache remove list is totally full,
1745 * then do a complete cache invalidation taking note
1746 * to backtrack the PTE table beforehand, and ignore
1747 * the lists in future because there's no longer any
1748 * point in bothering with them (we've paid the
1749 * penalty, so will carry on unhindered). Otherwise,
1750 * when we fall out, we just clean the list.
1751 */
1752 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
1753 pa = pmap_pte_pa(pte);
1754
1755 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
1756 /* Add to the clean list. */
1757 cleanlist[cleanlist_idx].pte = pte;
1758 cleanlist[cleanlist_idx].va = sva;
1759 cleanlist_idx++;
1760 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
1761 int cnt;
1762
1763 /* Nuke everything if needed. */
1764 if (pmap_active) {
1765 cpu_cache_purgeID();
1766 cpu_tlb_flushID();
1767 }
1768
1769 /*
1770 * Roll back the previous PTE list,
1771 * and zero out the current PTE.
1772 */
1773 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
1774 *cleanlist[cnt].pte = 0;
1775 pmap_pte_delref(pmap, cleanlist[cnt].va);
1776 }
1777 *pte = 0;
1778 pmap_pte_delref(pmap, sva);
1779 cleanlist_idx++;
1780 } else {
1781 /*
1782 * We've already nuked the cache and
1783 * TLB, so just carry on regardless,
1784 * and we won't need to do it again
1785 */
1786 *pte = 0;
1787 pmap_pte_delref(pmap, sva);
1788 }
1789
1790 /*
1791 * Update flags. In a number of circumstances,
1792 * we could cluster a lot of these and do a
1793 * number of sequential pages in one go.
1794 */
1795 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
1796 pv = &vm_physmem[bank].pmseg.pvent[off];
1797 pmap_remove_pv(pmap, sva, pv);
1798 pmap_vac_me_harder(pmap, pv, ptes);
1799 }
1800 }
1801 sva += NBPG;
1802 pte++;
1803 }
1804
1805 pmap_unmap_ptes(pmap);
1806 /*
1807 * Now, if we've fallen through down to here, chances are that there
1808 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
1809 */
1810 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
1811 u_int cnt;
1812
1813 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
1814 if (pmap_active) {
1815 cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
1816 *cleanlist[cnt].pte = 0;
1817 cpu_tlb_flushID_SE(cleanlist[cnt].va);
1818 } else
1819 *cleanlist[cnt].pte = 0;
1820 pmap_pte_delref(pmap, cleanlist[cnt].va);
1821 }
1822 }
1823 }
1824
1825 /*
1826 * Routine: pmap_remove_all
1827 * Function:
1828 * Removes this physical page from
1829 * all physical maps in which it resides.
1830 * Reflects back modify bits to the pager.
1831 */
1832
1833 void
1834 pmap_remove_all(pa)
1835 paddr_t pa;
1836 {
1837 struct pv_entry *ph, *pv, *npv;
1838 pmap_t pmap;
1839 pt_entry_t *pte, *ptes;
1840 int s;
1841
1842 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
1843
1844 pv = ph = pmap_find_pv(pa);
1845 pmap_clean_page(pv);
1846
1847 s = splvm();
1848
1849 if (ph->pv_pmap == NULL) {
1850 PDEBUG(0, printf("free page\n"));
1851 splx(s);
1852 return;
1853 }
1854
1855
1856
1857 while (pv) {
1858 pmap = pv->pv_pmap;
1859 ptes = pmap_map_ptes(pmap);
1860 pte = &ptes[arm_byte_to_page(pv->pv_va)];
1861
1862 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
1863 pv->pv_va, pv->pv_flags));
1864 #ifdef DEBUG
1865 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
1866 || pmap_pte_pa(pte) != pa)
1867 panic("pmap_remove_all: bad mapping");
1868 #endif /* DEBUG */
1869
1870 /*
1871 * Update statistics
1872 */
1873 --pmap->pm_stats.resident_count;
1874
1875 /* Wired bit */
1876 if (pv->pv_flags & PT_W)
1877 --pmap->pm_stats.wired_count;
1878
1879 /*
1880 * Invalidate the PTEs.
1881 * XXX: should cluster them up and invalidate as many
1882 * as possible at once.
1883 */
1884
1885 #ifdef needednotdone
1886 reduce wiring count on page table pages as references drop
1887 #endif
1888
1889 *pte = 0;
1890 pmap_pte_delref(pmap, pv->pv_va);
1891
1892 npv = pv->pv_next;
1893 if (pv == ph)
1894 ph->pv_pmap = NULL;
1895 else
1896 pmap_free_pv(pv);
1897 pv = npv;
1898 pmap_unmap_ptes(pmap);
1899 }
1900
1901 splx(s);
1902
1903 PDEBUG(0, printf("done\n"));
1904 cpu_tlb_flushID();
1905 }
1906
1907
1908 /*
1909 * Set the physical protection on the specified range of this map as requested.
1910 */
1911
1912 void
1913 pmap_protect(pmap, sva, eva, prot)
1914 pmap_t pmap;
1915 vaddr_t sva;
1916 vaddr_t eva;
1917 vm_prot_t prot;
1918 {
1919 pt_entry_t *pte = NULL, *ptes;
1920 int armprot;
1921 int flush = 0;
1922 paddr_t pa;
1923 int bank, off;
1924 struct pv_entry *pv;
1925
1926 /*
1927 * Make sure pmap is valid. -dct
1928 */
1929 if (pmap == NULL)
1930 return;
1931 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
1932 pmap, sva, eva, prot));
1933
1934 if (~prot & VM_PROT_READ) {
1935 /* Just remove the mappings. */
1936 pmap_remove(pmap, sva, eva);
1937 return;
1938 }
1939 if (prot & VM_PROT_WRITE) {
1940 /*
1941 * If this is a read->write transition, just ignore it and let
1942 * uvm_fault() take care of it later.
1943 */
1944 return;
1945 }
1946
1947 sva &= PG_FRAME;
1948 eva &= PG_FRAME;
1949
1950 ptes = pmap_map_ptes(pmap);
1951 /*
1952 * We need to acquire a pointer to a page table page before entering
1953 * the following loop.
1954 */
1955 while (sva < eva) {
1956 if (pmap_pde_v(pmap_pde(pmap, sva)))
1957 break;
1958 sva = (sva & PD_MASK) + NBPD;
1959 }
1960
1961 pte = &ptes[arm_byte_to_page(sva)];
1962
1963 while (sva < eva) {
1964 /* only check once in a while */
1965 if ((sva & PT_MASK) == 0) {
1966 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
1967 /* We can race ahead here, to the next pde. */
1968 sva += NBPD;
1969 pte += arm_byte_to_page(NBPD);
1970 continue;
1971 }
1972 }
1973
1974 if (!pmap_pte_v(pte))
1975 goto next;
1976
1977 flush = 1;
1978
1979 armprot = 0;
1980 if (sva < VM_MAXUSER_ADDRESS)
1981 armprot |= PT_AP(AP_U);
1982 else if (sva < VM_MAX_ADDRESS)
1983 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
1984 *pte = (*pte & 0xfffff00f) | armprot;
1985
1986 pa = pmap_pte_pa(pte);
1987
1988 /* Get the physical page index */
1989
1990 /* Clear write flag */
1991 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
1992 pv = &vm_physmem[bank].pmseg.pvent[off];
1993 (void) pmap_modify_pv(pmap, sva, pv, PT_Wr, 0);
1994 pmap_vac_me_harder(pmap, pv, ptes);
1995 }
1996
1997 next:
1998 sva += NBPG;
1999 pte++;
2000 }
2001 pmap_unmap_ptes(pmap);
2002 if (flush)
2003 cpu_tlb_flushID();
2004 }
2005
2006 /*
2007 * void pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2008 * int flags)
2009 *
2010 * Insert the given physical page (p) at
2011 * the specified virtual address (v) in the
2012 * target physical map with the protection requested.
2013 *
2014 * If specified, the page will be wired down, meaning
2015 * that the related pte can not be reclaimed.
2016 *
2017 * NB: This is the only routine which MAY NOT lazy-evaluate
2018 * or lose information. That is, this routine must actually
2019 * insert this page into the given map NOW.
2020 */
2021
2022 int
2023 pmap_enter(pmap, va, pa, prot, flags)
2024 pmap_t pmap;
2025 vaddr_t va;
2026 paddr_t pa;
2027 vm_prot_t prot;
2028 int flags;
2029 {
2030 pt_entry_t *pte, *ptes;
2031 u_int npte;
2032 int bank, off;
2033 struct pv_entry *pv = NULL;
2034 paddr_t opa;
2035 int nflags;
2036 boolean_t wired = (flags & PMAP_WIRED) != 0;
2037
2038 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2039 va, pa, pmap, prot, wired));
2040
2041 #ifdef DIAGNOSTIC
2042 /* Valid address ? */
2043 if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2044 panic("pmap_enter: too big");
2045 if (pmap != pmap_kernel() && va != 0) {
2046 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2047 panic("pmap_enter: kernel page in user map");
2048 } else {
2049 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2050 panic("pmap_enter: user page in kernel map");
2051 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2052 panic("pmap_enter: entering PT page");
2053 }
2054 #endif
2055
2056 /*
2057 * Get a pointer to the pte for this virtual address. If the
2058 * pte pointer is NULL then we are missing the L2 page table
2059 * so we need to create one.
2060 */
2061 pte = pmap_pte(pmap, va);
2062 if (!pte) {
2063 paddr_t l2pa;
2064 struct vm_page *m;
2065
2066 /* Allocate a page table */
2067 for (;;) {
2068 m = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
2069 if (m != NULL)
2070 break;
2071
2072 /*
2073 * No page available. If we're the kernel
2074 * pmap, we die, since we might not have
2075 * a valid thread context. For user pmaps,
2076 * we assume that we _do_ have a valid thread
2077 * context, so we wait here for the pagedaemon
2078 * to free up some pages.
2079 *
2080 * XXX THE VM CODE IS PROBABLY HOLDING LOCKS
2081 * XXX RIGHT NOW, BUT ONLY ON OUR PARENT VM_MAP
2082 * XXX SO THIS IS PROBABLY SAFE. In any case,
2083 * XXX other pmap modules claim it is safe to
2084 * XXX sleep here if it's a user pmap.
2085 */
2086 if (pmap == pmap_kernel())
2087 panic("pmap_enter: no free pages");
2088 else
2089 uvm_wait("pmap_enter");
2090 }
2091
2092 /* Wire this page table into the L1. */
2093 l2pa = VM_PAGE_TO_PHYS(m);
2094 pmap_zero_page(l2pa);
2095 pmap_map_in_l1(pmap, va, l2pa);
2096 ++pmap->pm_stats.resident_count;
2097
2098 pte = pmap_pte(pmap, va);
2099 #ifdef DIAGNOSTIC
2100 if (!pte)
2101 panic("pmap_enter: no pte");
2102 #endif
2103 }
2104
2105 nflags = 0;
2106 if (prot & VM_PROT_WRITE)
2107 nflags |= PT_Wr;
2108 if (wired)
2109 nflags |= PT_W;
2110
2111 /* More debugging info */
2112 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2113 *pte));
2114
2115 /* Is the pte valid ? If so then this page is already mapped */
2116 if (pmap_pte_v(pte)) {
2117 /* Get the physical address of the current page mapped */
2118 opa = pmap_pte_pa(pte);
2119
2120 #ifdef MYCROFT_HACK
2121 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2122 #endif
2123
2124 /* Are we mapping the same page ? */
2125 if (opa == pa) {
2126 /* All we must be doing is changing the protection */
2127 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2128 va, pa));
2129
2130 /* Has the wiring changed ? */
2131 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2132 pv = &vm_physmem[bank].pmseg.pvent[off];
2133 (void) pmap_modify_pv(pmap, va, pv,
2134 PT_Wr | PT_W, nflags);
2135 }
2136 } else {
2137 /* We are replacing the page with a new one. */
2138 cpu_cache_purgeID_rng(va, NBPG);
2139
2140 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2141 va, pa, opa));
2142
2143 /*
2144 * If it is part of our managed memory then we
2145 * must remove it from the PV list
2146 */
2147 if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2148 pv = &vm_physmem[bank].pmseg.pvent[off];
2149 pmap_remove_pv(pmap, va, pv);
2150 }
2151
2152 goto enter;
2153 }
2154 } else {
2155 opa = 0;
2156 pmap_pte_addref(pmap, va);
2157
2158 /* pte is not valid so we must be hooking in a new page */
2159 ++pmap->pm_stats.resident_count;
2160
2161 enter:
2162 /*
2163 * Enter on the PV list if part of our managed memory
2164 */
2165 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2166 pv = &vm_physmem[bank].pmseg.pvent[off];
2167 pmap_enter_pv(pmap, va, pv, nflags);
2168 }
2169 }
2170
2171 #ifdef MYCROFT_HACK
2172 if (mycroft_hack)
2173 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2174 #endif
2175
2176 /* Construct the pte, giving the correct access. */
2177 npte = (pa & PG_FRAME);
2178
2179 /* VA 0 is magic. */
2180 if (pmap != pmap_kernel() && va != 0)
2181 npte |= PT_AP(AP_U);
2182
2183 if (bank != -1) {
2184 #ifdef DIAGNOSTIC
2185 if ((flags & VM_PROT_ALL) & ~prot)
2186 panic("pmap_enter: access_type exceeds prot");
2187 #endif
2188 npte |= PT_C | PT_B;
2189 if (flags & VM_PROT_WRITE) {
2190 npte |= L2_SPAGE | PT_AP(AP_W);
2191 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2192 } else if (flags & VM_PROT_ALL) {
2193 npte |= L2_SPAGE;
2194 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2195 } else
2196 npte |= L2_INVAL;
2197 } else {
2198 if (prot & VM_PROT_WRITE)
2199 npte |= L2_SPAGE | PT_AP(AP_W);
2200 else if (prot & VM_PROT_ALL)
2201 npte |= L2_SPAGE;
2202 else
2203 npte |= L2_INVAL;
2204 }
2205
2206 #ifdef MYCROFT_HACK
2207 if (mycroft_hack)
2208 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2209 #endif
2210
2211 *pte = npte;
2212
2213 if (bank != -1)
2214 {
2215 /* XXX this will change once the whole of pmap_enter uses
2216 * map_ptes
2217 */
2218 ptes = pmap_map_ptes(pmap);
2219 pmap_vac_me_harder(pmap, pv, ptes);
2220 pmap_unmap_ptes(pmap);
2221 }
2222
2223 /* Better flush the TLB ... */
2224 cpu_tlb_flushID_SE(va);
2225
2226 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2227
2228 return 0;
2229 }
2230
2231 void
2232 pmap_kenter_pa(va, pa, prot)
2233 vaddr_t va;
2234 paddr_t pa;
2235 vm_prot_t prot;
2236 {
2237 pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
2238 }
2239
2240 void
2241 pmap_kremove(va, len)
2242 vaddr_t va;
2243 vsize_t len;
2244 {
2245 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2246 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
2247 }
2248 }
2249
2250 /*
2251 * pmap_page_protect:
2252 *
2253 * Lower the permission for all mappings to a given page.
2254 */
2255
2256 void
2257 pmap_page_protect(pg, prot)
2258 struct vm_page *pg;
2259 vm_prot_t prot;
2260 {
2261 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2262
2263 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2264
2265 switch(prot) {
2266 case VM_PROT_READ:
2267 case VM_PROT_READ|VM_PROT_EXECUTE:
2268 pmap_copy_on_write(pa);
2269 break;
2270
2271 case VM_PROT_ALL:
2272 break;
2273
2274 default:
2275 pmap_remove_all(pa);
2276 break;
2277 }
2278 }
2279
2280
2281 /*
2282 * Routine: pmap_unwire
2283 * Function: Clear the wired attribute for a map/virtual-address
2284 * pair.
2285 * In/out conditions:
2286 * The mapping must already exist in the pmap.
2287 */
2288
2289 void
2290 pmap_unwire(pmap, va)
2291 pmap_t pmap;
2292 vaddr_t va;
2293 {
2294 pt_entry_t *pte;
2295 paddr_t pa;
2296 int bank, off;
2297 struct pv_entry *pv;
2298
2299 /*
2300 * Make sure pmap is valid. -dct
2301 */
2302 if (pmap == NULL)
2303 return;
2304
2305 /* Get the pte */
2306 pte = pmap_pte(pmap, va);
2307 if (!pte)
2308 return;
2309
2310 /* Extract the physical address of the page */
2311 pa = pmap_pte_pa(pte);
2312
2313 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2314 return;
2315 pv = &vm_physmem[bank].pmseg.pvent[off];
2316 /* Update the wired bit in the pv entry for this page. */
2317 (void) pmap_modify_pv(pmap, va, pv, PT_W, 0);
2318 }
2319
2320 /*
2321 * pt_entry_t *pmap_pte(pmap_t pmap, vaddr_t va)
2322 *
2323 * Return the pointer to a page table entry corresponding to the supplied
2324 * virtual address.
2325 *
2326 * The page directory is first checked to make sure that a page table
2327 * for the address in question exists and if it does a pointer to the
2328 * entry is returned.
2329 *
2330 * The way this works is that that the kernel page tables are mapped
2331 * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
2332 * This allows page tables to be located quickly.
2333 */
2334 pt_entry_t *
2335 pmap_pte(pmap, va)
2336 pmap_t pmap;
2337 vaddr_t va;
2338 {
2339 pt_entry_t *ptp;
2340 pt_entry_t *result;
2341
2342 /* The pmap must be valid */
2343 if (!pmap)
2344 return(NULL);
2345
2346 /* Return the address of the pte */
2347 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
2348 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
2349
2350 /* Do we have a valid pde ? If not we don't have a page table */
2351 if (!pmap_pde_v(pmap_pde(pmap, va))) {
2352 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
2353 pmap_pde(pmap, va)));
2354 return(NULL);
2355 }
2356
2357 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
2358 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2359 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2360 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
2361
2362 /*
2363 * If the pmap is the kernel pmap or the pmap is the active one
2364 * then we can just return a pointer to entry relative to
2365 * PROCESS_PAGE_TBLS_BASE.
2366 * Otherwise we need to map the page tables to an alternative
2367 * address and reference them there.
2368 */
2369 if (pmap == kernel_pmap || pmap->pm_pptpt
2370 == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2371 + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
2372 ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2373 ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
2374 } else {
2375 struct proc *p = curproc;
2376
2377 /* If we don't have a valid curproc use proc0 */
2378 /* Perhaps we should just use kernel_pmap instead */
2379 if (p == NULL)
2380 p = &proc0;
2381 #ifdef DIAGNOSTIC
2382 /*
2383 * The pmap should always be valid for the process so
2384 * panic if it is not.
2385 */
2386 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
2387 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
2388 va, p, p->p_vmspace);
2389 console_debugger();
2390 }
2391 /*
2392 * The pmap for the current process should be mapped. If it
2393 * is not then we have a problem.
2394 */
2395 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
2396 (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2397 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2398 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2399 printf("pmap pagetable = P%08lx current = P%08x ",
2400 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2401 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2402 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
2403 PG_FRAME));
2404 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
2405 panic("pmap_pte: current and pmap mismatch\n");
2406 }
2407 #endif
2408
2409 ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
2410 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
2411 pmap->pm_pptpt);
2412 cpu_tlb_flushD();
2413 }
2414 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
2415 ((va >> (PGSHIFT-2)) & ~3)));
2416 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
2417 return(result);
2418 }
2419
2420 /*
2421 * Routine: pmap_extract
2422 * Function:
2423 * Extract the physical page address associated
2424 * with the given map/virtual_address pair.
2425 */
2426 boolean_t
2427 pmap_extract(pmap, va, pap)
2428 pmap_t pmap;
2429 vaddr_t va;
2430 paddr_t *pap;
2431 {
2432 pt_entry_t *pte, *ptes;
2433 paddr_t pa;
2434
2435 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2436
2437 /*
2438 * Get the pte for this virtual address.
2439 */
2440 ptes = pmap_map_ptes(pmap);
2441 pte = &ptes[arm_byte_to_page(va)];
2442
2443 /*
2444 * If there is no pte then there is no page table etc.
2445 * Is the pte valid ? If not then no paged is actually mapped here
2446 */
2447 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
2448 pmap_unmap_ptes(pmap);
2449 return (FALSE);
2450 }
2451
2452 /* Return the physical address depending on the PTE type */
2453 /* XXX What about L1 section mappings ? */
2454 if ((*(pte) & L2_MASK) == L2_LPAGE) {
2455 /* Extract the physical address from the pte */
2456 pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
2457
2458 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
2459 (pa | (va & (L2_LPAGE_SIZE - 1)))));
2460
2461 if (pap != NULL)
2462 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
2463 } else {
2464 /* Extract the physical address from the pte */
2465 pa = pmap_pte_pa(pte);
2466
2467 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
2468 (pa | (va & ~PG_FRAME))));
2469
2470 if (pap != NULL)
2471 *pap = pa | (va & ~PG_FRAME);
2472 }
2473 pmap_unmap_ptes(pmap);
2474 return (TRUE);
2475 }
2476
2477
2478 /*
2479 * Copy the range specified by src_addr/len from the source map to the
2480 * range dst_addr/len in the destination map.
2481 *
2482 * This routine is only advisory and need not do anything.
2483 */
2484
2485 void
2486 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2487 pmap_t dst_pmap;
2488 pmap_t src_pmap;
2489 vaddr_t dst_addr;
2490 vsize_t len;
2491 vaddr_t src_addr;
2492 {
2493 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
2494 dst_pmap, src_pmap, dst_addr, len, src_addr));
2495 }
2496
2497 #if defined(PMAP_DEBUG)
2498 void
2499 pmap_dump_pvlist(phys, m)
2500 vaddr_t phys;
2501 char *m;
2502 {
2503 struct pv_entry *pv;
2504 int bank, off;
2505
2506 if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
2507 printf("INVALID PA\n");
2508 return;
2509 }
2510 pv = &vm_physmem[bank].pmseg.pvent[off];
2511 printf("%s %08lx:", m, phys);
2512 if (pv->pv_pmap == NULL) {
2513 printf(" no mappings\n");
2514 return;
2515 }
2516
2517 for (; pv; pv = pv->pv_next)
2518 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2519 pv->pv_va, pv->pv_flags);
2520
2521 printf("\n");
2522 }
2523
2524 #endif /* PMAP_DEBUG */
2525
2526 boolean_t
2527 pmap_testbit(pa, setbits)
2528 paddr_t pa;
2529 int setbits;
2530 {
2531 int bank, off;
2532
2533 PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
2534
2535 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2536 return(FALSE);
2537
2538 /*
2539 * Check saved info only
2540 */
2541 if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
2542 PDEBUG(0, printf("pmap_attributes = %02x\n",
2543 vm_physmem[bank].pmseg.attrs[off]));
2544 return(TRUE);
2545 }
2546
2547 return(FALSE);
2548 }
2549
2550 static pt_entry_t *
2551 pmap_map_ptes(struct pmap *pmap)
2552 {
2553 struct proc *p;
2554
2555 /* the kernel's pmap is always accessible */
2556 if (pmap == pmap_kernel()) {
2557 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
2558 }
2559
2560 if (curproc &&
2561 curproc->p_vmspace->vm_map.pmap == pmap)
2562 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
2563
2564 p = curproc;
2565
2566 if (p == NULL)
2567 p = &proc0;
2568
2569 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
2570 pmap->pm_pptpt);
2571 cpu_tlb_flushD();
2572 return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
2573 }
2574
2575 /*
2576 * Modify pte bits for all ptes corresponding to the given physical address.
2577 * We use `maskbits' rather than `clearbits' because we're always passing
2578 * constants and the latter would require an extra inversion at run-time.
2579 */
2580
2581 void
2582 pmap_clearbit(pa, maskbits)
2583 paddr_t pa;
2584 int maskbits;
2585 {
2586 struct pv_entry *pv;
2587 pt_entry_t *pte;
2588 vaddr_t va;
2589 int bank, off;
2590 int s;
2591
2592 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
2593 pa, maskbits));
2594 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2595 return;
2596 pv = &vm_physmem[bank].pmseg.pvent[off];
2597 s = splvm();
2598
2599 /*
2600 * Clear saved attributes (modify, reference)
2601 */
2602 vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
2603
2604 if (pv->pv_pmap == NULL) {
2605 splx(s);
2606 return;
2607 }
2608
2609 /*
2610 * Loop over all current mappings setting/clearing as appropos
2611 */
2612 for (; pv; pv = pv->pv_next) {
2613 va = pv->pv_va;
2614
2615 /*
2616 * XXX don't write protect pager mappings
2617 */
2618 if (va >= uvm.pager_sva && va < uvm.pager_eva) {
2619 printf("pmap_clearbit: found page VA on pv_list\n");
2620 continue;
2621 }
2622
2623 pv->pv_flags &= ~maskbits;
2624 pte = pmap_pte(pv->pv_pmap, va);
2625 if (maskbits & (PT_Wr|PT_M))
2626 *pte = *pte & ~PT_AP(AP_W);
2627 if (maskbits & PT_H)
2628 *pte = (*pte & ~L2_MASK) | L2_INVAL;
2629 }
2630 cpu_tlb_flushID();
2631
2632 splx(s);
2633 }
2634
2635
2636 boolean_t
2637 pmap_clear_modify(pg)
2638 struct vm_page *pg;
2639 {
2640 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2641 boolean_t rv;
2642
2643 PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
2644 rv = pmap_testbit(pa, PT_M);
2645 pmap_clearbit(pa, PT_M);
2646 return rv;
2647 }
2648
2649
2650 boolean_t
2651 pmap_clear_reference(pg)
2652 struct vm_page *pg;
2653 {
2654 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2655 boolean_t rv;
2656
2657 PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
2658 rv = pmap_testbit(pa, PT_H);
2659 pmap_clearbit(pa, PT_H);
2660 return rv;
2661 }
2662
2663
2664 void
2665 pmap_copy_on_write(pa)
2666 paddr_t pa;
2667 {
2668 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
2669 pmap_clearbit(pa, PT_Wr);
2670 }
2671
2672
2673 boolean_t
2674 pmap_is_modified(pg)
2675 struct vm_page *pg;
2676 {
2677 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2678 boolean_t result;
2679
2680 result = pmap_testbit(pa, PT_M);
2681 PDEBUG(0, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
2682 return (result);
2683 }
2684
2685
2686 boolean_t
2687 pmap_is_referenced(pg)
2688 struct vm_page *pg;
2689 {
2690 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2691 boolean_t result;
2692
2693 result = pmap_testbit(pa, PT_H);
2694 PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
2695 return (result);
2696 }
2697
2698
2699 int
2700 pmap_modified_emulation(pmap, va)
2701 pmap_t pmap;
2702 vaddr_t va;
2703 {
2704 pt_entry_t *pte;
2705 paddr_t pa;
2706 int bank, off;
2707 struct pv_entry *pv;
2708 u_int flags;
2709
2710 PDEBUG(2, printf("pmap_modified_emulation\n"));
2711
2712 /* Get the pte */
2713 pte = pmap_pte(pmap, va);
2714 if (!pte) {
2715 PDEBUG(2, printf("no pte\n"));
2716 return(0);
2717 }
2718
2719 PDEBUG(1, printf("*pte=%08x\n", *pte));
2720
2721 /* Check for a zero pte */
2722 if (*pte == 0)
2723 return(0);
2724
2725 /* This can happen if user code tries to access kernel memory. */
2726 if ((*pte & PT_AP(AP_W)) != 0)
2727 return (0);
2728
2729 /* Extract the physical address of the page */
2730 pa = pmap_pte_pa(pte);
2731 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2732 return(0);
2733
2734 /* Get the current flags for this page. */
2735 pv = &vm_physmem[bank].pmseg.pvent[off];
2736 flags = pmap_modify_pv(pmap, va, pv, 0, 0);
2737 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
2738
2739 /*
2740 * Do the flags say this page is writable ? If not then it is a
2741 * genuine write fault. If yes then the write fault is our fault
2742 * as we did not reflect the write access in the PTE. Now we know
2743 * a write has occurred we can correct this and also set the
2744 * modified bit
2745 */
2746 if (~flags & PT_Wr)
2747 return(0);
2748
2749 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
2750 va, pte, *pte));
2751 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2752 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
2753 PDEBUG(0, printf("->(%08x)\n", *pte));
2754
2755 /* Return, indicating the problem has been dealt with */
2756 cpu_tlb_flushID_SE(va);
2757 return(1);
2758 }
2759
2760
2761 int
2762 pmap_handled_emulation(pmap, va)
2763 pmap_t pmap;
2764 vaddr_t va;
2765 {
2766 pt_entry_t *pte;
2767 paddr_t pa;
2768 int bank, off;
2769
2770 PDEBUG(2, printf("pmap_handled_emulation\n"));
2771
2772 /* Get the pte */
2773 pte = pmap_pte(pmap, va);
2774 if (!pte) {
2775 PDEBUG(2, printf("no pte\n"));
2776 return(0);
2777 }
2778
2779 PDEBUG(1, printf("*pte=%08x\n", *pte));
2780
2781 /* Check for a zero pte */
2782 if (*pte == 0)
2783 return(0);
2784
2785 /* This can happen if user code tries to access kernel memory. */
2786 if ((*pte & L2_MASK) != L2_INVAL)
2787 return (0);
2788
2789 /* Extract the physical address of the page */
2790 pa = pmap_pte_pa(pte);
2791 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2792 return(0);
2793
2794 /*
2795 * Ok we just enable the pte and mark the attibs as handled
2796 */
2797 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
2798 va, pte, *pte));
2799 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2800 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
2801 PDEBUG(0, printf("->(%08x)\n", *pte));
2802
2803 /* Return, indicating the problem has been dealt with */
2804 cpu_tlb_flushID_SE(va);
2805 return(1);
2806 }
2807
2808 /*
2809 * pmap_collect: free resources held by a pmap
2810 *
2811 * => optional function.
2812 * => called when a process is swapped out to free memory.
2813 */
2814
2815 void
2816 pmap_collect(pmap)
2817 pmap_t pmap;
2818 {
2819 }
2820
2821 /*
2822 * Routine: pmap_procwr
2823 *
2824 * Function:
2825 * Synchronize caches corresponding to [addr, addr+len) in p.
2826 *
2827 */
2828 void
2829 pmap_procwr(p, va, len)
2830 struct proc *p;
2831 vaddr_t va;
2832 int len;
2833 {
2834 /* We only need to do anything if it is the current process. */
2835 if (p == curproc)
2836 cpu_cache_syncI_rng(va, len);
2837 }
2838
2839 /* End of pmap.c */
2840