Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.110
      1 /*	$NetBSD: pmap.c,v 1.110 2002/08/21 18:34:31 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.110 2002/08/21 18:34:31 thorpej Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static LIST_HEAD(, pmap) pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 static pt_entry_t *csrc_pte, *cdst_pte;
    199 static vaddr_t csrcp, cdstp;
    200 
    201 char *memhook;
    202 extern caddr_t msgbufaddr;
    203 
    204 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205 /*
    206  * locking data structures
    207  */
    208 
    209 static struct lock pmap_main_lock;
    210 static struct simplelock pvalloc_lock;
    211 static struct simplelock pmaps_lock;
    212 #ifdef LOCKDEBUG
    213 #define PMAP_MAP_TO_HEAD_LOCK() \
    214      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217 
    218 #define PMAP_HEAD_TO_MAP_LOCK() \
    219      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222 #else
    223 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227 #endif /* LOCKDEBUG */
    228 
    229 /*
    230  * pv_page management structures: locked by pvalloc_lock
    231  */
    232 
    233 TAILQ_HEAD(pv_pagelist, pv_page);
    234 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236 static int pv_nfpvents;			/* # of free pv entries */
    237 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238 static vaddr_t pv_cachedva;		/* cached VA for later use */
    239 
    240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242 					/* high water mark */
    243 
    244 /*
    245  * local prototypes
    246  */
    247 
    248 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250 #define ALLOCPV_NEED	0	/* need PV now */
    251 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254 static void		 pmap_enter_pv __P((struct vm_page *,
    255 					    struct pv_entry *, struct pmap *,
    256 					    vaddr_t, struct vm_page *, int));
    257 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260 static void		 pmap_free_pvpage __P((void));
    261 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263 			vaddr_t));
    264 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266 
    267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268 	u_int, u_int));
    269 
    270 /*
    271  * Structure that describes and L1 table.
    272  */
    273 struct l1pt {
    274 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    275 	struct pglist		pt_plist;	/* Allocated page list */
    276 	vaddr_t			pt_va;		/* Allocated virtual address */
    277 	int			pt_flags;	/* Flags */
    278 };
    279 #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    280 #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    281 #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    282 
    283 static void pmap_free_l1pt __P((struct l1pt *));
    284 static int pmap_allocpagedir __P((struct pmap *));
    285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    286 static void pmap_remove_all __P((struct vm_page *));
    287 
    288 static int pmap_alloc_ptpt(struct pmap *);
    289 static void pmap_free_ptpt(struct pmap *);
    290 
    291 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    292 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    294 
    295 extern paddr_t physical_start;
    296 extern paddr_t physical_end;
    297 extern unsigned int free_pages;
    298 extern int max_processes;
    299 
    300 vaddr_t virtual_avail;
    301 vaddr_t virtual_end;
    302 vaddr_t pmap_curmaxkvaddr;
    303 
    304 vaddr_t avail_start;
    305 vaddr_t avail_end;
    306 
    307 extern pv_addr_t systempage;
    308 
    309 /* Variables used by the L1 page table queue code */
    310 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    311 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    312 static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    313 static int l1pt_static_create_count;	    /* static l1 items created */
    314 static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    315 static int l1pt_queue_count;		    /* items in the l1 queue */
    316 static int l1pt_create_count;		    /* stat - L1's create count */
    317 static int l1pt_reuse_count;		    /* stat - L1's reused count */
    318 
    319 /* Local function prototypes (not used outside this file) */
    320 void pmap_pinit __P((struct pmap *));
    321 void pmap_freepagedir __P((struct pmap *));
    322 
    323 /* Other function prototypes */
    324 extern void bzero_page __P((vaddr_t));
    325 extern void bcopy_page __P((vaddr_t, vaddr_t));
    326 
    327 struct l1pt *pmap_alloc_l1pt __P((void));
    328 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    329      vaddr_t l2pa, boolean_t));
    330 
    331 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    332 static void pmap_unmap_ptes __P((struct pmap *));
    333 
    334 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    335     pt_entry_t *, boolean_t));
    336 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    337     pt_entry_t *, boolean_t));
    338 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    339     pt_entry_t *, boolean_t));
    340 
    341 /*
    342  * real definition of pv_entry.
    343  */
    344 
    345 struct pv_entry {
    346 	struct pv_entry *pv_next;       /* next pv_entry */
    347 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    348 	vaddr_t         pv_va;          /* virtual address for mapping */
    349 	int             pv_flags;       /* flags */
    350 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    351 };
    352 
    353 /*
    354  * pv_entrys are dynamically allocated in chunks from a single page.
    355  * we keep track of how many pv_entrys are in use for each page and
    356  * we can free pv_entry pages if needed.  there is one lock for the
    357  * entire allocation system.
    358  */
    359 
    360 struct pv_page_info {
    361 	TAILQ_ENTRY(pv_page) pvpi_list;
    362 	struct pv_entry *pvpi_pvfree;
    363 	int pvpi_nfree;
    364 };
    365 
    366 /*
    367  * number of pv_entry's in a pv_page
    368  * (note: won't work on systems where NPBG isn't a constant)
    369  */
    370 
    371 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    372 			sizeof(struct pv_entry))
    373 
    374 /*
    375  * a pv_page: where pv_entrys are allocated from
    376  */
    377 
    378 struct pv_page {
    379 	struct pv_page_info pvinfo;
    380 	struct pv_entry pvents[PVE_PER_PVPAGE];
    381 };
    382 
    383 #ifdef MYCROFT_HACK
    384 int mycroft_hack = 0;
    385 #endif
    386 
    387 /* Function to set the debug level of the pmap code */
    388 
    389 #ifdef PMAP_DEBUG
    390 void
    391 pmap_debug(int level)
    392 {
    393 	pmap_debug_level = level;
    394 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    395 }
    396 #endif	/* PMAP_DEBUG */
    397 
    398 __inline static boolean_t
    399 pmap_is_curpmap(struct pmap *pmap)
    400 {
    401 
    402 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    403 	    pmap == pmap_kernel())
    404 		return (TRUE);
    405 
    406 	return (FALSE);
    407 }
    408 
    409 /*
    410  * p v _ e n t r y   f u n c t i o n s
    411  */
    412 
    413 /*
    414  * pv_entry allocation functions:
    415  *   the main pv_entry allocation functions are:
    416  *     pmap_alloc_pv: allocate a pv_entry structure
    417  *     pmap_free_pv: free one pv_entry
    418  *     pmap_free_pvs: free a list of pv_entrys
    419  *
    420  * the rest are helper functions
    421  */
    422 
    423 /*
    424  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    425  * => we lock pvalloc_lock
    426  * => if we fail, we call out to pmap_alloc_pvpage
    427  * => 3 modes:
    428  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    429  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    430  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    431  *			one now
    432  *
    433  * "try" is for optional functions like pmap_copy().
    434  */
    435 
    436 __inline static struct pv_entry *
    437 pmap_alloc_pv(struct pmap *pmap, int mode)
    438 {
    439 	struct pv_page *pvpage;
    440 	struct pv_entry *pv;
    441 
    442 	simple_lock(&pvalloc_lock);
    443 
    444 	pvpage = TAILQ_FIRST(&pv_freepages);
    445 
    446 	if (pvpage != NULL) {
    447 		pvpage->pvinfo.pvpi_nfree--;
    448 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    449 			/* nothing left in this one? */
    450 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    451 		}
    452 		pv = pvpage->pvinfo.pvpi_pvfree;
    453 		KASSERT(pv);
    454 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    455 		pv_nfpvents--;  /* took one from pool */
    456 	} else {
    457 		pv = NULL;		/* need more of them */
    458 	}
    459 
    460 	/*
    461 	 * if below low water mark or we didn't get a pv_entry we try and
    462 	 * create more pv_entrys ...
    463 	 */
    464 
    465 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    466 		if (pv == NULL)
    467 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    468 					       mode : ALLOCPV_NEED);
    469 		else
    470 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    471 	}
    472 
    473 	simple_unlock(&pvalloc_lock);
    474 	return(pv);
    475 }
    476 
    477 /*
    478  * pmap_alloc_pvpage: maybe allocate a new pvpage
    479  *
    480  * if need_entry is false: try and allocate a new pv_page
    481  * if need_entry is true: try and allocate a new pv_page and return a
    482  *	new pv_entry from it.   if we are unable to allocate a pv_page
    483  *	we make a last ditch effort to steal a pv_page from some other
    484  *	mapping.    if that fails, we panic...
    485  *
    486  * => we assume that the caller holds pvalloc_lock
    487  */
    488 
    489 static struct pv_entry *
    490 pmap_alloc_pvpage(struct pmap *pmap, int mode)
    491 {
    492 	struct vm_page *pg;
    493 	struct pv_page *pvpage;
    494 	struct pv_entry *pv;
    495 	int s;
    496 
    497 	/*
    498 	 * if we need_entry and we've got unused pv_pages, allocate from there
    499 	 */
    500 
    501 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    502 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    503 
    504 		/* move it to pv_freepages list */
    505 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    506 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    507 
    508 		/* allocate a pv_entry */
    509 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    510 		pv = pvpage->pvinfo.pvpi_pvfree;
    511 		KASSERT(pv);
    512 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    513 
    514 		pv_nfpvents--;  /* took one from pool */
    515 		return(pv);
    516 	}
    517 
    518 	/*
    519 	 *  see if we've got a cached unmapped VA that we can map a page in.
    520 	 * if not, try to allocate one.
    521 	 */
    522 
    523 
    524 	if (pv_cachedva == 0) {
    525 		s = splvm();
    526 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    527 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    528 		splx(s);
    529 		if (pv_cachedva == 0) {
    530 			return (NULL);
    531 		}
    532 	}
    533 
    534 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    535 	    UVM_PGA_USERESERVE);
    536 
    537 	if (pg == NULL)
    538 		return (NULL);
    539 	pg->flags &= ~PG_BUSY;	/* never busy */
    540 
    541 	/*
    542 	 * add a mapping for our new pv_page and free its entrys (save one!)
    543 	 *
    544 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    545 	 * pmap is already locked!  (...but entering the mapping is safe...)
    546 	 */
    547 
    548 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    549 		VM_PROT_READ|VM_PROT_WRITE);
    550 	pmap_update(pmap_kernel());
    551 	pvpage = (struct pv_page *) pv_cachedva;
    552 	pv_cachedva = 0;
    553 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    554 }
    555 
    556 /*
    557  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    558  *
    559  * => caller must hold pvalloc_lock
    560  * => if need_entry is true, we allocate and return one pv_entry
    561  */
    562 
    563 static struct pv_entry *
    564 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    565 {
    566 	int tofree, lcv;
    567 
    568 	/* do we need to return one? */
    569 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    570 
    571 	pvp->pvinfo.pvpi_pvfree = NULL;
    572 	pvp->pvinfo.pvpi_nfree = tofree;
    573 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    574 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    575 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    576 	}
    577 	if (need_entry)
    578 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    579 	else
    580 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    581 	pv_nfpvents += tofree;
    582 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    583 }
    584 
    585 /*
    586  * pmap_free_pv_doit: actually free a pv_entry
    587  *
    588  * => do not call this directly!  instead use either
    589  *    1. pmap_free_pv ==> free a single pv_entry
    590  *    2. pmap_free_pvs => free a list of pv_entrys
    591  * => we must be holding pvalloc_lock
    592  */
    593 
    594 __inline static void
    595 pmap_free_pv_doit(struct pv_entry *pv)
    596 {
    597 	struct pv_page *pvp;
    598 
    599 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    600 	pv_nfpvents++;
    601 	pvp->pvinfo.pvpi_nfree++;
    602 
    603 	/* nfree == 1 => fully allocated page just became partly allocated */
    604 	if (pvp->pvinfo.pvpi_nfree == 1) {
    605 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    606 	}
    607 
    608 	/* free it */
    609 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    610 	pvp->pvinfo.pvpi_pvfree = pv;
    611 
    612 	/*
    613 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    614 	 */
    615 
    616 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    617 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    618 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    619 	}
    620 }
    621 
    622 /*
    623  * pmap_free_pv: free a single pv_entry
    624  *
    625  * => we gain the pvalloc_lock
    626  */
    627 
    628 __inline static void
    629 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    630 {
    631 	simple_lock(&pvalloc_lock);
    632 	pmap_free_pv_doit(pv);
    633 
    634 	/*
    635 	 * Can't free the PV page if the PV entries were associated with
    636 	 * the kernel pmap; the pmap is already locked.
    637 	 */
    638 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    639 	    pmap != pmap_kernel())
    640 		pmap_free_pvpage();
    641 
    642 	simple_unlock(&pvalloc_lock);
    643 }
    644 
    645 /*
    646  * pmap_free_pvs: free a list of pv_entrys
    647  *
    648  * => we gain the pvalloc_lock
    649  */
    650 
    651 __inline static void
    652 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    653 {
    654 	struct pv_entry *nextpv;
    655 
    656 	simple_lock(&pvalloc_lock);
    657 
    658 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    659 		nextpv = pvs->pv_next;
    660 		pmap_free_pv_doit(pvs);
    661 	}
    662 
    663 	/*
    664 	 * Can't free the PV page if the PV entries were associated with
    665 	 * the kernel pmap; the pmap is already locked.
    666 	 */
    667 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    668 	    pmap != pmap_kernel())
    669 		pmap_free_pvpage();
    670 
    671 	simple_unlock(&pvalloc_lock);
    672 }
    673 
    674 
    675 /*
    676  * pmap_free_pvpage: try and free an unused pv_page structure
    677  *
    678  * => assume caller is holding the pvalloc_lock and that
    679  *	there is a page on the pv_unusedpgs list
    680  * => if we can't get a lock on the kmem_map we try again later
    681  */
    682 
    683 static void
    684 pmap_free_pvpage(void)
    685 {
    686 	int s;
    687 	struct vm_map *map;
    688 	struct vm_map_entry *dead_entries;
    689 	struct pv_page *pvp;
    690 
    691 	s = splvm(); /* protect kmem_map */
    692 
    693 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    694 
    695 	/*
    696 	 * note: watch out for pv_initpage which is allocated out of
    697 	 * kernel_map rather than kmem_map.
    698 	 */
    699 	if (pvp == pv_initpage)
    700 		map = kernel_map;
    701 	else
    702 		map = kmem_map;
    703 	if (vm_map_lock_try(map)) {
    704 
    705 		/* remove pvp from pv_unusedpgs */
    706 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    707 
    708 		/* unmap the page */
    709 		dead_entries = NULL;
    710 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    711 		    &dead_entries);
    712 		vm_map_unlock(map);
    713 
    714 		if (dead_entries != NULL)
    715 			uvm_unmap_detach(dead_entries, 0);
    716 
    717 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    718 	}
    719 	if (pvp == pv_initpage)
    720 		/* no more initpage, we've freed it */
    721 		pv_initpage = NULL;
    722 
    723 	splx(s);
    724 }
    725 
    726 /*
    727  * main pv_entry manipulation functions:
    728  *   pmap_enter_pv: enter a mapping onto a vm_page list
    729  *   pmap_remove_pv: remove a mappiing from a vm_page list
    730  *
    731  * NOTE: pmap_enter_pv expects to lock the pvh itself
    732  *       pmap_remove_pv expects te caller to lock the pvh before calling
    733  */
    734 
    735 /*
    736  * pmap_enter_pv: enter a mapping onto a vm_page lst
    737  *
    738  * => caller should hold the proper lock on pmap_main_lock
    739  * => caller should have pmap locked
    740  * => we will gain the lock on the vm_page and allocate the new pv_entry
    741  * => caller should adjust ptp's wire_count before calling
    742  * => caller should not adjust pmap's wire_count
    743  */
    744 
    745 __inline static void
    746 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    747     vaddr_t va, struct vm_page *ptp, int flags)
    748 {
    749 	pve->pv_pmap = pmap;
    750 	pve->pv_va = va;
    751 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    752 	pve->pv_flags = flags;
    753 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    754 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    755 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    756 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    757 	if (pve->pv_flags & PVF_WIRED)
    758 		++pmap->pm_stats.wired_count;
    759 #ifdef PMAP_ALIAS_DEBUG
    760     {
    761 	int s = splhigh();
    762 	if (pve->pv_flags & PVF_WRITE)
    763 		pg->mdpage.rw_mappings++;
    764 	else
    765 		pg->mdpage.ro_mappings++;
    766 	if (pg->mdpage.rw_mappings != 0 &&
    767 	    (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
    768 		printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
    769 		    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
    770 		    pg->mdpage.krw_mappings);
    771 	}
    772 	splx(s);
    773     }
    774 #endif /* PMAP_ALIAS_DEBUG */
    775 }
    776 
    777 /*
    778  * pmap_remove_pv: try to remove a mapping from a pv_list
    779  *
    780  * => caller should hold proper lock on pmap_main_lock
    781  * => pmap should be locked
    782  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    783  * => caller should adjust ptp's wire_count and free PTP if needed
    784  * => caller should NOT adjust pmap's wire_count
    785  * => we return the removed pve
    786  */
    787 
    788 __inline static struct pv_entry *
    789 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    790 {
    791 	struct pv_entry *pve, **prevptr;
    792 
    793 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    794 	pve = *prevptr;
    795 	while (pve) {
    796 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    797 			*prevptr = pve->pv_next;		/* remove it! */
    798 			if (pve->pv_flags & PVF_WIRED)
    799 			    --pmap->pm_stats.wired_count;
    800 #ifdef PMAP_ALIAS_DEBUG
    801     {
    802 			int s = splhigh();
    803 			if (pve->pv_flags & PVF_WRITE) {
    804 				KASSERT(pg->mdpage.rw_mappings != 0);
    805 				pg->mdpage.rw_mappings--;
    806 			} else {
    807 				KASSERT(pg->mdpage.ro_mappings != 0);
    808 				pg->mdpage.ro_mappings--;
    809 			}
    810 			splx(s);
    811     }
    812 #endif /* PMAP_ALIAS_DEBUG */
    813 			break;
    814 		}
    815 		prevptr = &pve->pv_next;		/* previous pointer */
    816 		pve = pve->pv_next;			/* advance */
    817 	}
    818 	return(pve);				/* return removed pve */
    819 }
    820 
    821 /*
    822  *
    823  * pmap_modify_pv: Update pv flags
    824  *
    825  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    826  * => caller should NOT adjust pmap's wire_count
    827  * => caller must call pmap_vac_me_harder() if writable status of a page
    828  *    may have changed.
    829  * => we return the old flags
    830  *
    831  * Modify a physical-virtual mapping in the pv table
    832  */
    833 
    834 static /* __inline */ u_int
    835 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    836     u_int bic_mask, u_int eor_mask)
    837 {
    838 	struct pv_entry *npv;
    839 	u_int flags, oflags;
    840 
    841 	/*
    842 	 * There is at least one VA mapping this page.
    843 	 */
    844 
    845 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    846 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    847 			oflags = npv->pv_flags;
    848 			npv->pv_flags = flags =
    849 			    ((oflags & ~bic_mask) ^ eor_mask);
    850 			if ((flags ^ oflags) & PVF_WIRED) {
    851 				if (flags & PVF_WIRED)
    852 					++pmap->pm_stats.wired_count;
    853 				else
    854 					--pmap->pm_stats.wired_count;
    855 			}
    856 #ifdef PMAP_ALIAS_DEBUG
    857     {
    858 			int s = splhigh();
    859 			if ((flags ^ oflags) & PVF_WRITE) {
    860 				if (flags & PVF_WRITE) {
    861 					pg->mdpage.rw_mappings++;
    862 					pg->mdpage.ro_mappings--;
    863 					if (pg->mdpage.rw_mappings != 0 &&
    864 					    (pg->mdpage.kro_mappings != 0 ||
    865 					     pg->mdpage.krw_mappings != 0)) {
    866 						printf("pmap_modify_pv: rw %u, "
    867 						    "kro %u, krw %u\n",
    868 						    pg->mdpage.rw_mappings,
    869 						    pg->mdpage.kro_mappings,
    870 						    pg->mdpage.krw_mappings);
    871 					}
    872 				} else {
    873 					KASSERT(pg->mdpage.rw_mappings != 0);
    874 					pg->mdpage.rw_mappings--;
    875 					pg->mdpage.ro_mappings++;
    876 				}
    877 			}
    878 			splx(s);
    879     }
    880 #endif /* PMAP_ALIAS_DEBUG */
    881 			return (oflags);
    882 		}
    883 	}
    884 	return (0);
    885 }
    886 
    887 /*
    888  * Map the specified level 2 pagetable into the level 1 page table for
    889  * the given pmap to cover a chunk of virtual address space starting from the
    890  * address specified.
    891  */
    892 static __inline void
    893 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
    894 {
    895 	vaddr_t ptva;
    896 
    897 	/* Calculate the index into the L1 page table. */
    898 	ptva = (va >> L1_S_SHIFT) & ~3;
    899 
    900 	/* Map page table into the L1. */
    901 	pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
    902 	pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
    903 	pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
    904 	pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
    905 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    906 
    907 	/* Map the page table into the page table area. */
    908 	if (selfref)
    909 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
    910 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
    911 }
    912 
    913 #if 0
    914 static __inline void
    915 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    916 {
    917 	vaddr_t ptva;
    918 
    919 	/* Calculate the index into the L1 page table. */
    920 	ptva = (va >> L1_S_SHIFT) & ~3;
    921 
    922 	/* Unmap page table from the L1. */
    923 	pmap->pm_pdir[ptva + 0] = 0;
    924 	pmap->pm_pdir[ptva + 1] = 0;
    925 	pmap->pm_pdir[ptva + 2] = 0;
    926 	pmap->pm_pdir[ptva + 3] = 0;
    927 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    928 
    929 	/* Unmap the page table from the page table area. */
    930 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    931 }
    932 #endif
    933 
    934 /*
    935  *	Used to map a range of physical addresses into kernel
    936  *	virtual address space.
    937  *
    938  *	For now, VM is already on, we only need to map the
    939  *	specified memory.
    940  *
    941  *	XXX This routine should eventually go away; it's only used
    942  *	XXX by machine-dependent crash dump code.
    943  */
    944 vaddr_t
    945 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
    946 {
    947 	pt_entry_t *pte;
    948 
    949 	while (spa < epa) {
    950 		pte = vtopte(va);
    951 
    952 		*pte = L2_S_PROTO | spa |
    953 		    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
    954 		cpu_tlb_flushID_SE(va);
    955 		va += NBPG;
    956 		spa += NBPG;
    957 	}
    958 	pmap_update(pmap_kernel());
    959 	return(va);
    960 }
    961 
    962 
    963 /*
    964  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    965  *
    966  * bootstrap the pmap system. This is called from initarm and allows
    967  * the pmap system to initailise any structures it requires.
    968  *
    969  * Currently this sets up the kernel_pmap that is statically allocated
    970  * and also allocated virtual addresses for certain page hooks.
    971  * Currently the only one page hook is allocated that is used
    972  * to zero physical pages of memory.
    973  * It also initialises the start and end address of the kernel data space.
    974  */
    975 
    976 char *boot_head;
    977 
    978 void
    979 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    980 {
    981 	pt_entry_t *pte;
    982 
    983 	pmap_kernel()->pm_pdir = kernel_l1pt;
    984 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
    985 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
    986 	simple_lock_init(&pmap_kernel()->pm_lock);
    987 	pmap_kernel()->pm_obj.pgops = NULL;
    988 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
    989 	pmap_kernel()->pm_obj.uo_npages = 0;
    990 	pmap_kernel()->pm_obj.uo_refs = 1;
    991 
    992 	virtual_avail = KERNEL_VM_BASE;
    993 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
    994 
    995 	/*
    996 	 * now we allocate the "special" VAs which are used for tmp mappings
    997 	 * by the pmap (and other modules).  we allocate the VAs by advancing
    998 	 * virtual_avail (note that there are no pages mapped at these VAs).
    999 	 * we find the PTE that maps the allocated VA via the linear PTE
   1000 	 * mapping.
   1001 	 */
   1002 
   1003 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1004 
   1005 	csrcp = virtual_avail; csrc_pte = pte;
   1006 	virtual_avail += PAGE_SIZE; pte++;
   1007 
   1008 	cdstp = virtual_avail; cdst_pte = pte;
   1009 	virtual_avail += PAGE_SIZE; pte++;
   1010 
   1011 	memhook = (char *) virtual_avail;	/* don't need pte */
   1012 	virtual_avail += PAGE_SIZE; pte++;
   1013 
   1014 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1015 	virtual_avail += round_page(MSGBUFSIZE);
   1016 	pte += atop(round_page(MSGBUFSIZE));
   1017 
   1018 	/*
   1019 	 * init the static-global locks and global lists.
   1020 	 */
   1021 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1022 	simple_lock_init(&pvalloc_lock);
   1023 	simple_lock_init(&pmaps_lock);
   1024 	LIST_INIT(&pmaps);
   1025 	TAILQ_INIT(&pv_freepages);
   1026 	TAILQ_INIT(&pv_unusedpgs);
   1027 
   1028 	/*
   1029 	 * initialize the pmap pool.
   1030 	 */
   1031 
   1032 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1033 		  &pool_allocator_nointr);
   1034 
   1035 	cpu_dcache_wbinv_all();
   1036 }
   1037 
   1038 /*
   1039  * void pmap_init(void)
   1040  *
   1041  * Initialize the pmap module.
   1042  * Called by vm_init() in vm/vm_init.c in order to initialise
   1043  * any structures that the pmap system needs to map virtual memory.
   1044  */
   1045 
   1046 extern int physmem;
   1047 
   1048 void
   1049 pmap_init(void)
   1050 {
   1051 
   1052 	/*
   1053 	 * Set the available memory vars - These do not map to real memory
   1054 	 * addresses and cannot as the physical memory is fragmented.
   1055 	 * They are used by ps for %mem calculations.
   1056 	 * One could argue whether this should be the entire memory or just
   1057 	 * the memory that is useable in a user process.
   1058 	 */
   1059 	avail_start = 0;
   1060 	avail_end = physmem * NBPG;
   1061 
   1062 	/*
   1063 	 * now we need to free enough pv_entry structures to allow us to get
   1064 	 * the kmem_map/kmem_object allocated and inited (done after this
   1065 	 * function is finished).  to do this we allocate one bootstrap page out
   1066 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1067 	 * structures.   we never free this page.
   1068 	 */
   1069 
   1070 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1071 	if (pv_initpage == NULL)
   1072 		panic("pmap_init: pv_initpage");
   1073 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1074 	pv_nfpvents = 0;
   1075 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1076 
   1077 	pmap_initialized = TRUE;
   1078 
   1079 	/* Initialise our L1 page table queues and counters */
   1080 	SIMPLEQ_INIT(&l1pt_static_queue);
   1081 	l1pt_static_queue_count = 0;
   1082 	l1pt_static_create_count = 0;
   1083 	SIMPLEQ_INIT(&l1pt_queue);
   1084 	l1pt_queue_count = 0;
   1085 	l1pt_create_count = 0;
   1086 	l1pt_reuse_count = 0;
   1087 }
   1088 
   1089 /*
   1090  * pmap_postinit()
   1091  *
   1092  * This routine is called after the vm and kmem subsystems have been
   1093  * initialised. This allows the pmap code to perform any initialisation
   1094  * that can only be done one the memory allocation is in place.
   1095  */
   1096 
   1097 void
   1098 pmap_postinit(void)
   1099 {
   1100 	int loop;
   1101 	struct l1pt *pt;
   1102 
   1103 #ifdef PMAP_STATIC_L1S
   1104 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1105 #else	/* PMAP_STATIC_L1S */
   1106 	for (loop = 0; loop < max_processes; ++loop) {
   1107 #endif	/* PMAP_STATIC_L1S */
   1108 		/* Allocate a L1 page table */
   1109 		pt = pmap_alloc_l1pt();
   1110 		if (!pt)
   1111 			panic("Cannot allocate static L1 page tables\n");
   1112 
   1113 		/* Clean it */
   1114 		bzero((void *)pt->pt_va, L1_TABLE_SIZE);
   1115 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1116 		/* Add the page table to the queue */
   1117 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1118 		++l1pt_static_queue_count;
   1119 		++l1pt_static_create_count;
   1120 	}
   1121 }
   1122 
   1123 
   1124 /*
   1125  * Create and return a physical map.
   1126  *
   1127  * If the size specified for the map is zero, the map is an actual physical
   1128  * map, and may be referenced by the hardware.
   1129  *
   1130  * If the size specified is non-zero, the map will be used in software only,
   1131  * and is bounded by that size.
   1132  */
   1133 
   1134 pmap_t
   1135 pmap_create(void)
   1136 {
   1137 	struct pmap *pmap;
   1138 
   1139 	/*
   1140 	 * Fetch pmap entry from the pool
   1141 	 */
   1142 
   1143 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1144 	/* XXX is this really needed! */
   1145 	memset(pmap, 0, sizeof(*pmap));
   1146 
   1147 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1148 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1149 	TAILQ_INIT(&pmap->pm_obj.memq);
   1150 	pmap->pm_obj.uo_npages = 0;
   1151 	pmap->pm_obj.uo_refs = 1;
   1152 	pmap->pm_stats.wired_count = 0;
   1153 	pmap->pm_stats.resident_count = 1;
   1154 	pmap->pm_ptphint = NULL;
   1155 
   1156 	/* Now init the machine part of the pmap */
   1157 	pmap_pinit(pmap);
   1158 	return(pmap);
   1159 }
   1160 
   1161 /*
   1162  * pmap_alloc_l1pt()
   1163  *
   1164  * This routine allocates physical and virtual memory for a L1 page table
   1165  * and wires it.
   1166  * A l1pt structure is returned to describe the allocated page table.
   1167  *
   1168  * This routine is allowed to fail if the required memory cannot be allocated.
   1169  * In this case NULL is returned.
   1170  */
   1171 
   1172 struct l1pt *
   1173 pmap_alloc_l1pt(void)
   1174 {
   1175 	paddr_t pa;
   1176 	vaddr_t va;
   1177 	struct l1pt *pt;
   1178 	int error;
   1179 	struct vm_page *m;
   1180 
   1181 	/* Allocate virtual address space for the L1 page table */
   1182 	va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
   1183 	if (va == 0) {
   1184 #ifdef DIAGNOSTIC
   1185 		PDEBUG(0,
   1186 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1187 #endif	/* DIAGNOSTIC */
   1188 		return(NULL);
   1189 	}
   1190 
   1191 	/* Allocate memory for the l1pt structure */
   1192 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1193 
   1194 	/*
   1195 	 * Allocate pages from the VM system.
   1196 	 */
   1197 	error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
   1198 	    L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1199 	if (error) {
   1200 #ifdef DIAGNOSTIC
   1201 		PDEBUG(0,
   1202 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1203 		    error));
   1204 #endif	/* DIAGNOSTIC */
   1205 		/* Release the resources we already have claimed */
   1206 		free(pt, M_VMPMAP);
   1207 		uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
   1208 		return(NULL);
   1209 	}
   1210 
   1211 	/* Map our physical pages into our virtual space */
   1212 	pt->pt_va = va;
   1213 	m = TAILQ_FIRST(&pt->pt_plist);
   1214 	while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
   1215 		pa = VM_PAGE_TO_PHYS(m);
   1216 
   1217 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
   1218 
   1219 		va += NBPG;
   1220 		m = m->pageq.tqe_next;
   1221 	}
   1222 
   1223 #ifdef DIAGNOSTIC
   1224 	if (m)
   1225 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1226 #endif	/* DIAGNOSTIC */
   1227 
   1228 	pt->pt_flags = 0;
   1229 	return(pt);
   1230 }
   1231 
   1232 /*
   1233  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1234  */
   1235 static void
   1236 pmap_free_l1pt(struct l1pt *pt)
   1237 {
   1238 	/* Separate the physical memory for the virtual space */
   1239 	pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
   1240 	pmap_update(pmap_kernel());
   1241 
   1242 	/* Return the physical memory */
   1243 	uvm_pglistfree(&pt->pt_plist);
   1244 
   1245 	/* Free the virtual space */
   1246 	uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
   1247 
   1248 	/* Free the l1pt structure */
   1249 	free(pt, M_VMPMAP);
   1250 }
   1251 
   1252 /*
   1253  * pmap_alloc_ptpt:
   1254  *
   1255  *	Allocate the page table that maps the PTE array.
   1256  */
   1257 static int
   1258 pmap_alloc_ptpt(struct pmap *pmap)
   1259 {
   1260 	struct vm_page *pg;
   1261 	pt_entry_t *pte;
   1262 
   1263 	KASSERT(pmap->pm_vptpt == 0);
   1264 
   1265 	pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
   1266 	if (pmap->pm_vptpt == 0) {
   1267 		PDEBUG(0,
   1268 		    printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
   1269 		return (ENOMEM);
   1270 	}
   1271 
   1272 	for (;;) {
   1273 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1274 		if (pg != NULL)
   1275 			break;
   1276 		uvm_wait("pmap_ptpt");
   1277 	}
   1278 
   1279 	pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
   1280 
   1281 	pte = vtopte(pmap->pm_vptpt);
   1282 
   1283 	KDASSERT(pmap_pte_v(pte) == 0);
   1284 
   1285 	*pte = L2_S_PROTO | pmap->pm_pptpt |
   1286 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   1287 #ifdef PMAP_ALIAS_DEBUG
   1288     {
   1289 	int s = splhigh();
   1290 	pg->mdpage.krw_mappings++;
   1291 	splx(s);
   1292     }
   1293 #endif /* PMAP_ALIAS_DEBUG */
   1294 
   1295 	return (0);
   1296 }
   1297 
   1298 /*
   1299  * pmap_free_ptpt:
   1300  *
   1301  *	Free the page table that maps the PTE array.
   1302  */
   1303 static void
   1304 pmap_free_ptpt(struct pmap *pmap)
   1305 {
   1306 
   1307 	pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
   1308 	pmap_update(pmap_kernel());
   1309 
   1310 	uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
   1311 
   1312 	uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
   1313 }
   1314 
   1315 /*
   1316  * Allocate a page directory.
   1317  * This routine will either allocate a new page directory from the pool
   1318  * of L1 page tables currently held by the kernel or it will allocate
   1319  * a new one via pmap_alloc_l1pt().
   1320  * It will then initialise the l1 page table for use.
   1321  */
   1322 static int
   1323 pmap_allocpagedir(struct pmap *pmap)
   1324 {
   1325 	paddr_t pa;
   1326 	struct l1pt *pt;
   1327 	int error;
   1328 
   1329 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1330 
   1331 	/* Do we have any spare L1's lying around ? */
   1332 	if (l1pt_static_queue_count) {
   1333 		--l1pt_static_queue_count;
   1334 		pt = SIMPLEQ_FIRST(&l1pt_static_queue);
   1335 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
   1336 	} else if (l1pt_queue_count) {
   1337 		--l1pt_queue_count;
   1338 		pt = SIMPLEQ_FIRST(&l1pt_queue);
   1339 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
   1340 		++l1pt_reuse_count;
   1341 	} else {
   1342 		pt = pmap_alloc_l1pt();
   1343 		if (!pt)
   1344 			return(ENOMEM);
   1345 		++l1pt_create_count;
   1346 	}
   1347 
   1348 	/* Store the pointer to the l1 descriptor in the pmap. */
   1349 	pmap->pm_l1pt = pt;
   1350 
   1351 	/* Get the physical address of the start of the l1 */
   1352 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1353 
   1354 	/* Store the virtual address of the l1 in the pmap. */
   1355 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1356 
   1357 	/* Clean the L1 if it is dirty */
   1358 	if (!(pt->pt_flags & PTFLAG_CLEAN)) {
   1359 		bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1360 		cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
   1361 		    (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1362 	}
   1363 
   1364 	/* Allocate a page table to map all the page tables for this pmap */
   1365 	if ((error = pmap_alloc_ptpt(pmap)) != 0) {
   1366 		pmap_freepagedir(pmap);
   1367 		return (error);
   1368 	}
   1369 
   1370 	/* need to lock this all up for growkernel */
   1371 	simple_lock(&pmaps_lock);
   1372 
   1373 	/* Duplicate the kernel mappings. */
   1374 	bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1375 		(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1376 		KERNEL_PD_SIZE);
   1377 	cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
   1378 	    (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
   1379 
   1380 	/* Wire in this page table */
   1381 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1382 
   1383 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1384 
   1385 	/*
   1386 	 * Map the kernel page tables into the new PT map.
   1387 	 */
   1388 	bcopy((char *)(PTE_BASE
   1389 	    + (PTE_BASE >> (PGSHIFT - 2))
   1390 	    + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
   1391 	    (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
   1392 	    (KERNEL_PD_SIZE >> 2));
   1393 
   1394 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1395 	simple_unlock(&pmaps_lock);
   1396 
   1397 	return(0);
   1398 }
   1399 
   1400 
   1401 /*
   1402  * Initialize a preallocated and zeroed pmap structure,
   1403  * such as one in a vmspace structure.
   1404  */
   1405 
   1406 void
   1407 pmap_pinit(struct pmap *pmap)
   1408 {
   1409 	int backoff = 6;
   1410 	int retry = 10;
   1411 
   1412 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1413 
   1414 	/* Keep looping until we succeed in allocating a page directory */
   1415 	while (pmap_allocpagedir(pmap) != 0) {
   1416 		/*
   1417 		 * Ok we failed to allocate a suitable block of memory for an
   1418 		 * L1 page table. This means that either:
   1419 		 * 1. 16KB of virtual address space could not be allocated
   1420 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1421 		 *    could not be allocated.
   1422 		 *
   1423 		 * Since we cannot fail we will sleep for a while and try
   1424 		 * again.
   1425 		 *
   1426 		 * Searching for a suitable L1 PT is expensive:
   1427 		 * to avoid hogging the system when memory is really
   1428 		 * scarce, use an exponential back-off so that
   1429 		 * eventually we won't retry more than once every 8
   1430 		 * seconds.  This should allow other processes to run
   1431 		 * to completion and free up resources.
   1432 		 */
   1433 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1434 		    NULL);
   1435 		if (--retry == 0) {
   1436 			retry = 10;
   1437 			if (backoff)
   1438 				--backoff;
   1439 		}
   1440 	}
   1441 
   1442 	if (vector_page < KERNEL_BASE) {
   1443 		/*
   1444 		 * Map the vector page.  This will also allocate and map
   1445 		 * an L2 table for it.
   1446 		 */
   1447 		pmap_enter(pmap, vector_page, systempage.pv_pa,
   1448 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1449 		pmap_update(pmap);
   1450 	}
   1451 }
   1452 
   1453 
   1454 void
   1455 pmap_freepagedir(struct pmap *pmap)
   1456 {
   1457 	/* Free the memory used for the page table mapping */
   1458 	if (pmap->pm_vptpt != 0)
   1459 		pmap_free_ptpt(pmap);
   1460 
   1461 	/* junk the L1 page table */
   1462 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1463 		/* Add the page table to the queue */
   1464 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1465 		++l1pt_static_queue_count;
   1466 	} else if (l1pt_queue_count < 8) {
   1467 		/* Add the page table to the queue */
   1468 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1469 		++l1pt_queue_count;
   1470 	} else
   1471 		pmap_free_l1pt(pmap->pm_l1pt);
   1472 }
   1473 
   1474 
   1475 /*
   1476  * Retire the given physical map from service.
   1477  * Should only be called if the map contains no valid mappings.
   1478  */
   1479 
   1480 void
   1481 pmap_destroy(struct pmap *pmap)
   1482 {
   1483 	struct vm_page *page;
   1484 	int count;
   1485 
   1486 	if (pmap == NULL)
   1487 		return;
   1488 
   1489 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1490 
   1491 	/*
   1492 	 * Drop reference count
   1493 	 */
   1494 	simple_lock(&pmap->pm_obj.vmobjlock);
   1495 	count = --pmap->pm_obj.uo_refs;
   1496 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1497 	if (count > 0) {
   1498 		return;
   1499 	}
   1500 
   1501 	/*
   1502 	 * reference count is zero, free pmap resources and then free pmap.
   1503 	 */
   1504 
   1505 	/*
   1506 	 * remove it from global list of pmaps
   1507 	 */
   1508 
   1509 	simple_lock(&pmaps_lock);
   1510 	LIST_REMOVE(pmap, pm_list);
   1511 	simple_unlock(&pmaps_lock);
   1512 
   1513 	if (vector_page < KERNEL_BASE) {
   1514 		/* Remove the vector page mapping */
   1515 		pmap_remove(pmap, vector_page, vector_page + NBPG);
   1516 		pmap_update(pmap);
   1517 	}
   1518 
   1519 	/*
   1520 	 * Free any page tables still mapped
   1521 	 * This is only temporay until pmap_enter can count the number
   1522 	 * of mappings made in a page table. Then pmap_remove() can
   1523 	 * reduce the count and free the pagetable when the count
   1524 	 * reaches zero.  Note that entries in this list should match the
   1525 	 * contents of the ptpt, however this is faster than walking a 1024
   1526 	 * entries looking for pt's
   1527 	 * taken from i386 pmap.c
   1528 	 */
   1529 	/*
   1530 	 * vmobjlock must be held while freeing pages
   1531 	 */
   1532 	simple_lock(&pmap->pm_obj.vmobjlock);
   1533 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1534 		KASSERT((page->flags & PG_BUSY) == 0);
   1535 		page->wire_count = 0;
   1536 		uvm_pagefree(page);
   1537 	}
   1538 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1539 
   1540 	/* Free the page dir */
   1541 	pmap_freepagedir(pmap);
   1542 
   1543 	/* return the pmap to the pool */
   1544 	pool_put(&pmap_pmap_pool, pmap);
   1545 }
   1546 
   1547 
   1548 /*
   1549  * void pmap_reference(struct pmap *pmap)
   1550  *
   1551  * Add a reference to the specified pmap.
   1552  */
   1553 
   1554 void
   1555 pmap_reference(struct pmap *pmap)
   1556 {
   1557 	if (pmap == NULL)
   1558 		return;
   1559 
   1560 	simple_lock(&pmap->pm_lock);
   1561 	pmap->pm_obj.uo_refs++;
   1562 	simple_unlock(&pmap->pm_lock);
   1563 }
   1564 
   1565 /*
   1566  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1567  *
   1568  * Return the start and end addresses of the kernel's virtual space.
   1569  * These values are setup in pmap_bootstrap and are updated as pages
   1570  * are allocated.
   1571  */
   1572 
   1573 void
   1574 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1575 {
   1576 	*start = virtual_avail;
   1577 	*end = virtual_end;
   1578 }
   1579 
   1580 /*
   1581  * Activate the address space for the specified process.  If the process
   1582  * is the current process, load the new MMU context.
   1583  */
   1584 void
   1585 pmap_activate(struct proc *p)
   1586 {
   1587 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1588 	struct pcb *pcb = &p->p_addr->u_pcb;
   1589 
   1590 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1591 	    (paddr_t *)&pcb->pcb_pagedir);
   1592 
   1593 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1594 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1595 
   1596 	if (p == curproc) {
   1597 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1598 		setttb((u_int)pcb->pcb_pagedir);
   1599 	}
   1600 }
   1601 
   1602 /*
   1603  * Deactivate the address space of the specified process.
   1604  */
   1605 void
   1606 pmap_deactivate(struct proc *p)
   1607 {
   1608 }
   1609 
   1610 /*
   1611  * Perform any deferred pmap operations.
   1612  */
   1613 void
   1614 pmap_update(struct pmap *pmap)
   1615 {
   1616 
   1617 	/*
   1618 	 * We haven't deferred any pmap operations, but we do need to
   1619 	 * make sure TLB/cache operations have completed.
   1620 	 */
   1621 	cpu_cpwait();
   1622 }
   1623 
   1624 /*
   1625  * pmap_clean_page()
   1626  *
   1627  * This is a local function used to work out the best strategy to clean
   1628  * a single page referenced by its entry in the PV table. It's used by
   1629  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1630  *
   1631  * Its policy is effectively:
   1632  *  o If there are no mappings, we don't bother doing anything with the cache.
   1633  *  o If there is one mapping, we clean just that page.
   1634  *  o If there are multiple mappings, we clean the entire cache.
   1635  *
   1636  * So that some functions can be further optimised, it returns 0 if it didn't
   1637  * clean the entire cache, or 1 if it did.
   1638  *
   1639  * XXX One bug in this routine is that if the pv_entry has a single page
   1640  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1641  * just the 1 page. Since this should not occur in everyday use and if it does
   1642  * it will just result in not the most efficient clean for the page.
   1643  */
   1644 static int
   1645 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1646 {
   1647 	struct pmap *pmap;
   1648 	struct pv_entry *npv;
   1649 	int cache_needs_cleaning = 0;
   1650 	vaddr_t page_to_clean = 0;
   1651 
   1652 	if (pv == NULL) {
   1653 		/* nothing mapped in so nothing to flush */
   1654 		return (0);
   1655 	}
   1656 
   1657 	/*
   1658 	 * Since we flush the cache each time we change curproc, we
   1659 	 * only need to flush the page if it is in the current pmap.
   1660 	 */
   1661 	if (curproc)
   1662 		pmap = curproc->p_vmspace->vm_map.pmap;
   1663 	else
   1664 		pmap = pmap_kernel();
   1665 
   1666 	for (npv = pv; npv; npv = npv->pv_next) {
   1667 		if (npv->pv_pmap == pmap) {
   1668 			/*
   1669 			 * The page is mapped non-cacheable in
   1670 			 * this map.  No need to flush the cache.
   1671 			 */
   1672 			if (npv->pv_flags & PVF_NC) {
   1673 #ifdef DIAGNOSTIC
   1674 				if (cache_needs_cleaning)
   1675 					panic("pmap_clean_page: "
   1676 					    "cache inconsistency");
   1677 #endif
   1678 				break;
   1679 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   1680 				continue;
   1681 			if (cache_needs_cleaning) {
   1682 				page_to_clean = 0;
   1683 				break;
   1684 			} else
   1685 				page_to_clean = npv->pv_va;
   1686 			cache_needs_cleaning = 1;
   1687 		}
   1688 	}
   1689 
   1690 	if (page_to_clean) {
   1691 		/*
   1692 		 * XXX If is_src, we really only need to write-back,
   1693 		 * XXX not invalidate, too.  Investigate further.
   1694 		 * XXX --thorpej (at) netbsd.org
   1695 		 */
   1696 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1697 	} else if (cache_needs_cleaning) {
   1698 		cpu_idcache_wbinv_all();
   1699 		return (1);
   1700 	}
   1701 	return (0);
   1702 }
   1703 
   1704 /*
   1705  * pmap_zero_page()
   1706  *
   1707  * Zero a given physical page by mapping it at a page hook point.
   1708  * In doing the zero page op, the page we zero is mapped cachable, as with
   1709  * StrongARM accesses to non-cached pages are non-burst making writing
   1710  * _any_ bulk data very slow.
   1711  */
   1712 #if ARM_MMU_GENERIC == 1
   1713 void
   1714 pmap_zero_page_generic(paddr_t phys)
   1715 {
   1716 #ifdef DEBUG
   1717 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1718 
   1719 	if (pg->mdpage.pvh_list != NULL)
   1720 		panic("pmap_zero_page: page has mappings");
   1721 #endif
   1722 
   1723 	KDASSERT((phys & PGOFSET) == 0);
   1724 
   1725 	/*
   1726 	 * Hook in the page, zero it, and purge the cache for that
   1727 	 * zeroed page. Invalidate the TLB as needed.
   1728 	 */
   1729 	*cdst_pte = L2_S_PROTO | phys |
   1730 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1731 	cpu_tlb_flushD_SE(cdstp);
   1732 	cpu_cpwait();
   1733 	bzero_page(cdstp);
   1734 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1735 }
   1736 #endif /* ARM_MMU_GENERIC == 1 */
   1737 
   1738 #if ARM_MMU_XSCALE == 1
   1739 void
   1740 pmap_zero_page_xscale(paddr_t phys)
   1741 {
   1742 #ifdef DEBUG
   1743 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1744 
   1745 	if (pg->mdpage.pvh_list != NULL)
   1746 		panic("pmap_zero_page: page has mappings");
   1747 #endif
   1748 
   1749 	KDASSERT((phys & PGOFSET) == 0);
   1750 
   1751 	/*
   1752 	 * Hook in the page, zero it, and purge the cache for that
   1753 	 * zeroed page. Invalidate the TLB as needed.
   1754 	 */
   1755 	*cdst_pte = L2_S_PROTO | phys |
   1756 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1757 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1758 	cpu_tlb_flushD_SE(cdstp);
   1759 	cpu_cpwait();
   1760 	bzero_page(cdstp);
   1761 	xscale_cache_clean_minidata();
   1762 }
   1763 #endif /* ARM_MMU_XSCALE == 1 */
   1764 
   1765 /* pmap_pageidlezero()
   1766  *
   1767  * The same as above, except that we assume that the page is not
   1768  * mapped.  This means we never have to flush the cache first.  Called
   1769  * from the idle loop.
   1770  */
   1771 boolean_t
   1772 pmap_pageidlezero(paddr_t phys)
   1773 {
   1774 	int i, *ptr;
   1775 	boolean_t rv = TRUE;
   1776 #ifdef DEBUG
   1777 	struct vm_page *pg;
   1778 
   1779 	pg = PHYS_TO_VM_PAGE(phys);
   1780 	if (pg->mdpage.pvh_list != NULL)
   1781 		panic("pmap_pageidlezero: page has mappings");
   1782 #endif
   1783 
   1784 	KDASSERT((phys & PGOFSET) == 0);
   1785 
   1786 	/*
   1787 	 * Hook in the page, zero it, and purge the cache for that
   1788 	 * zeroed page. Invalidate the TLB as needed.
   1789 	 */
   1790 	*cdst_pte = L2_S_PROTO | phys |
   1791 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1792 	cpu_tlb_flushD_SE(cdstp);
   1793 	cpu_cpwait();
   1794 
   1795 	for (i = 0, ptr = (int *)cdstp;
   1796 			i < (NBPG / sizeof(int)); i++) {
   1797 		if (sched_whichqs != 0) {
   1798 			/*
   1799 			 * A process has become ready.  Abort now,
   1800 			 * so we don't keep it waiting while we
   1801 			 * do slow memory access to finish this
   1802 			 * page.
   1803 			 */
   1804 			rv = FALSE;
   1805 			break;
   1806 		}
   1807 		*ptr++ = 0;
   1808 	}
   1809 
   1810 	if (rv)
   1811 		/*
   1812 		 * if we aborted we'll rezero this page again later so don't
   1813 		 * purge it unless we finished it
   1814 		 */
   1815 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1816 	return (rv);
   1817 }
   1818 
   1819 /*
   1820  * pmap_copy_page()
   1821  *
   1822  * Copy one physical page into another, by mapping the pages into
   1823  * hook points. The same comment regarding cachability as in
   1824  * pmap_zero_page also applies here.
   1825  */
   1826 #if ARM_MMU_GENERIC == 1
   1827 void
   1828 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   1829 {
   1830 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1831 #ifdef DEBUG
   1832 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1833 
   1834 	if (dst_pg->mdpage.pvh_list != NULL)
   1835 		panic("pmap_copy_page: dst page has mappings");
   1836 #endif
   1837 
   1838 	KDASSERT((src & PGOFSET) == 0);
   1839 	KDASSERT((dst & PGOFSET) == 0);
   1840 
   1841 	/*
   1842 	 * Clean the source page.  Hold the source page's lock for
   1843 	 * the duration of the copy so that no other mappings can
   1844 	 * be created while we have a potentially aliased mapping.
   1845 	 */
   1846 	simple_lock(&src_pg->mdpage.pvh_slock);
   1847 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1848 
   1849 	/*
   1850 	 * Map the pages into the page hook points, copy them, and purge
   1851 	 * the cache for the appropriate page. Invalidate the TLB
   1852 	 * as required.
   1853 	 */
   1854 	*csrc_pte = L2_S_PROTO | src |
   1855 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
   1856 	*cdst_pte = L2_S_PROTO | dst |
   1857 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1858 	cpu_tlb_flushD_SE(csrcp);
   1859 	cpu_tlb_flushD_SE(cdstp);
   1860 	cpu_cpwait();
   1861 	bcopy_page(csrcp, cdstp);
   1862 	cpu_dcache_inv_range(csrcp, NBPG);
   1863 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1864 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1865 }
   1866 #endif /* ARM_MMU_GENERIC == 1 */
   1867 
   1868 #if ARM_MMU_XSCALE == 1
   1869 void
   1870 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   1871 {
   1872 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1873 #ifdef DEBUG
   1874 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1875 
   1876 	if (dst_pg->mdpage.pvh_list != NULL)
   1877 		panic("pmap_copy_page: dst page has mappings");
   1878 #endif
   1879 
   1880 	KDASSERT((src & PGOFSET) == 0);
   1881 	KDASSERT((dst & PGOFSET) == 0);
   1882 
   1883 	/*
   1884 	 * Clean the source page.  Hold the source page's lock for
   1885 	 * the duration of the copy so that no other mappings can
   1886 	 * be created while we have a potentially aliased mapping.
   1887 	 */
   1888 	simple_lock(&src_pg->mdpage.pvh_slock);
   1889 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1890 
   1891 	/*
   1892 	 * Map the pages into the page hook points, copy them, and purge
   1893 	 * the cache for the appropriate page. Invalidate the TLB
   1894 	 * as required.
   1895 	 */
   1896 	*csrc_pte = L2_S_PROTO | src |
   1897 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   1898 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1899 	*cdst_pte = L2_S_PROTO | dst |
   1900 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1901 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1902 	cpu_tlb_flushD_SE(csrcp);
   1903 	cpu_tlb_flushD_SE(cdstp);
   1904 	cpu_cpwait();
   1905 	bcopy_page(csrcp, cdstp);
   1906 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1907 	xscale_cache_clean_minidata();
   1908 }
   1909 #endif /* ARM_MMU_XSCALE == 1 */
   1910 
   1911 #if 0
   1912 void
   1913 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   1914 {
   1915 	pd_entry_t *pde;
   1916 	paddr_t pa;
   1917 	struct vm_page *m;
   1918 
   1919 	if (pmap == pmap_kernel())
   1920 		return;
   1921 
   1922 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   1923 	pa = pmap_pte_pa(pde);
   1924 	m = PHYS_TO_VM_PAGE(pa);
   1925 	++m->wire_count;
   1926 #ifdef MYCROFT_HACK
   1927 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1928 	    pmap, va, pde, pa, m, m->wire_count);
   1929 #endif
   1930 }
   1931 
   1932 void
   1933 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   1934 {
   1935 	pd_entry_t *pde;
   1936 	paddr_t pa;
   1937 	struct vm_page *m;
   1938 
   1939 	if (pmap == pmap_kernel())
   1940 		return;
   1941 
   1942 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   1943 	pa = pmap_pte_pa(pde);
   1944 	m = PHYS_TO_VM_PAGE(pa);
   1945 	--m->wire_count;
   1946 #ifdef MYCROFT_HACK
   1947 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1948 	    pmap, va, pde, pa, m, m->wire_count);
   1949 #endif
   1950 	if (m->wire_count == 0) {
   1951 #ifdef MYCROFT_HACK
   1952 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1953 		    pmap, va, pde, pa, m);
   1954 #endif
   1955 		pmap_unmap_in_l1(pmap, va);
   1956 		uvm_pagefree(m);
   1957 		--pmap->pm_stats.resident_count;
   1958 	}
   1959 }
   1960 #else
   1961 #define	pmap_pte_addref(pmap, va)
   1962 #define	pmap_pte_delref(pmap, va)
   1963 #endif
   1964 
   1965 /*
   1966  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1967  * there is more than one mapping and at least one of them is writable.
   1968  * Since we purge the cache on every context switch, we only need to check for
   1969  * other mappings within the same pmap, or kernel_pmap.
   1970  * This function is also called when a page is unmapped, to possibly reenable
   1971  * caching on any remaining mappings.
   1972  *
   1973  * The code implements the following logic, where:
   1974  *
   1975  * KW = # of kernel read/write pages
   1976  * KR = # of kernel read only pages
   1977  * UW = # of user read/write pages
   1978  * UR = # of user read only pages
   1979  * OW = # of user read/write pages in another pmap, then
   1980  *
   1981  * KC = kernel mapping is cacheable
   1982  * UC = user mapping is cacheable
   1983  *
   1984  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1985  *                   +---------------------------------------------
   1986  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   1987  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1988  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   1989  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1990  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1991  *
   1992  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   1993  */
   1994 __inline static void
   1995 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   1996 	boolean_t clear_cache)
   1997 {
   1998 	if (pmap == pmap_kernel())
   1999 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2000 	else
   2001 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2002 }
   2003 
   2004 static void
   2005 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2006 	boolean_t clear_cache)
   2007 {
   2008 	int user_entries = 0;
   2009 	int user_writable = 0;
   2010 	int user_cacheable = 0;
   2011 	int kernel_entries = 0;
   2012 	int kernel_writable = 0;
   2013 	int kernel_cacheable = 0;
   2014 	struct pv_entry *pv;
   2015 	struct pmap *last_pmap = pmap;
   2016 
   2017 #ifdef DIAGNOSTIC
   2018 	if (pmap != pmap_kernel())
   2019 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2020 #endif
   2021 
   2022 	/*
   2023 	 * Pass one, see if there are both kernel and user pmaps for
   2024 	 * this page.  Calculate whether there are user-writable or
   2025 	 * kernel-writable pages.
   2026 	 */
   2027 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2028 		if (pv->pv_pmap != pmap) {
   2029 			user_entries++;
   2030 			if (pv->pv_flags & PVF_WRITE)
   2031 				user_writable++;
   2032 			if ((pv->pv_flags & PVF_NC) == 0)
   2033 				user_cacheable++;
   2034 		} else {
   2035 			kernel_entries++;
   2036 			if (pv->pv_flags & PVF_WRITE)
   2037 				kernel_writable++;
   2038 			if ((pv->pv_flags & PVF_NC) == 0)
   2039 				kernel_cacheable++;
   2040 		}
   2041 	}
   2042 
   2043 	/*
   2044 	 * We know we have just been updating a kernel entry, so if
   2045 	 * all user pages are already cacheable, then there is nothing
   2046 	 * further to do.
   2047 	 */
   2048 	if (kernel_entries == 0 &&
   2049 	    user_cacheable == user_entries)
   2050 		return;
   2051 
   2052 	if (user_entries) {
   2053 		/*
   2054 		 * Scan over the list again, for each entry, if it
   2055 		 * might not be set correctly, call pmap_vac_me_user
   2056 		 * to recalculate the settings.
   2057 		 */
   2058 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2059 			/*
   2060 			 * We know kernel mappings will get set
   2061 			 * correctly in other calls.  We also know
   2062 			 * that if the pmap is the same as last_pmap
   2063 			 * then we've just handled this entry.
   2064 			 */
   2065 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2066 				continue;
   2067 			/*
   2068 			 * If there are kernel entries and this page
   2069 			 * is writable but non-cacheable, then we can
   2070 			 * skip this entry also.
   2071 			 */
   2072 			if (kernel_entries > 0 &&
   2073 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   2074 			    (PVF_NC | PVF_WRITE))
   2075 				continue;
   2076 			/*
   2077 			 * Similarly if there are no kernel-writable
   2078 			 * entries and the page is already
   2079 			 * read-only/cacheable.
   2080 			 */
   2081 			if (kernel_writable == 0 &&
   2082 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   2083 				continue;
   2084 			/*
   2085 			 * For some of the remaining cases, we know
   2086 			 * that we must recalculate, but for others we
   2087 			 * can't tell if they are correct or not, so
   2088 			 * we recalculate anyway.
   2089 			 */
   2090 			pmap_unmap_ptes(last_pmap);
   2091 			last_pmap = pv->pv_pmap;
   2092 			ptes = pmap_map_ptes(last_pmap);
   2093 			pmap_vac_me_user(last_pmap, pg, ptes,
   2094 			    pmap_is_curpmap(last_pmap));
   2095 		}
   2096 		/* Restore the pte mapping that was passed to us.  */
   2097 		if (last_pmap != pmap) {
   2098 			pmap_unmap_ptes(last_pmap);
   2099 			ptes = pmap_map_ptes(pmap);
   2100 		}
   2101 		if (kernel_entries == 0)
   2102 			return;
   2103 	}
   2104 
   2105 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2106 	return;
   2107 }
   2108 
   2109 static void
   2110 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2111 	boolean_t clear_cache)
   2112 {
   2113 	struct pmap *kpmap = pmap_kernel();
   2114 	struct pv_entry *pv, *npv;
   2115 	int entries = 0;
   2116 	int writable = 0;
   2117 	int cacheable_entries = 0;
   2118 	int kern_cacheable = 0;
   2119 	int other_writable = 0;
   2120 
   2121 	pv = pg->mdpage.pvh_list;
   2122 	KASSERT(ptes != NULL);
   2123 
   2124 	/*
   2125 	 * Count mappings and writable mappings in this pmap.
   2126 	 * Include kernel mappings as part of our own.
   2127 	 * Keep a pointer to the first one.
   2128 	 */
   2129 	for (npv = pv; npv; npv = npv->pv_next) {
   2130 		/* Count mappings in the same pmap */
   2131 		if (pmap == npv->pv_pmap ||
   2132 		    kpmap == npv->pv_pmap) {
   2133 			if (entries++ == 0)
   2134 				pv = npv;
   2135 			/* Cacheable mappings */
   2136 			if ((npv->pv_flags & PVF_NC) == 0) {
   2137 				cacheable_entries++;
   2138 				if (kpmap == npv->pv_pmap)
   2139 					kern_cacheable++;
   2140 			}
   2141 			/* Writable mappings */
   2142 			if (npv->pv_flags & PVF_WRITE)
   2143 				++writable;
   2144 		} else if (npv->pv_flags & PVF_WRITE)
   2145 			other_writable = 1;
   2146 	}
   2147 
   2148 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2149 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2150 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2151 
   2152 	/*
   2153 	 * Enable or disable caching as necessary.
   2154 	 * Note: the first entry might be part of the kernel pmap,
   2155 	 * so we can't assume this is indicative of the state of the
   2156 	 * other (maybe non-kpmap) entries.
   2157 	 */
   2158 	if ((entries > 1 && writable) ||
   2159 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2160 		if (cacheable_entries == 0)
   2161 		    return;
   2162 		for (npv = pv; npv; npv = npv->pv_next) {
   2163 			if ((pmap == npv->pv_pmap
   2164 			    || kpmap == npv->pv_pmap) &&
   2165 			    (npv->pv_flags & PVF_NC) == 0) {
   2166 				ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
   2167  				npv->pv_flags |= PVF_NC;
   2168 				/*
   2169 				 * If this page needs flushing from the
   2170 				 * cache, and we aren't going to do it
   2171 				 * below, do it now.
   2172 				 */
   2173 				if ((cacheable_entries < 4 &&
   2174 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2175 				    (npv->pv_pmap == kpmap &&
   2176 				    !clear_cache && kern_cacheable < 4)) {
   2177 					cpu_idcache_wbinv_range(npv->pv_va,
   2178 					    NBPG);
   2179 					cpu_tlb_flushID_SE(npv->pv_va);
   2180 				}
   2181 			}
   2182 		}
   2183 		if ((clear_cache && cacheable_entries >= 4) ||
   2184 		    kern_cacheable >= 4) {
   2185 			cpu_idcache_wbinv_all();
   2186 			cpu_tlb_flushID();
   2187 		}
   2188 		cpu_cpwait();
   2189 	} else if (entries > 0) {
   2190 		/*
   2191 		 * Turn cacheing back on for some pages.  If it is a kernel
   2192 		 * page, only do so if there are no other writable pages.
   2193 		 */
   2194 		for (npv = pv; npv; npv = npv->pv_next) {
   2195 			if ((pmap == npv->pv_pmap ||
   2196 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2197 			    (npv->pv_flags & PVF_NC)) {
   2198 				ptes[arm_btop(npv->pv_va)] |=
   2199 				    pte_l2_s_cache_mode;
   2200 				npv->pv_flags &= ~PVF_NC;
   2201 			}
   2202 		}
   2203 	}
   2204 }
   2205 
   2206 /*
   2207  * pmap_remove()
   2208  *
   2209  * pmap_remove is responsible for nuking a number of mappings for a range
   2210  * of virtual address space in the current pmap. To do this efficiently
   2211  * is interesting, because in a number of cases a wide virtual address
   2212  * range may be supplied that contains few actual mappings. So, the
   2213  * optimisations are:
   2214  *  1. Try and skip over hunks of address space for which an L1 entry
   2215  *     does not exist.
   2216  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2217  *     maybe do just a partial cache clean. This path of execution is
   2218  *     complicated by the fact that the cache must be flushed _before_
   2219  *     the PTE is nuked, being a VAC :-)
   2220  *  3. Maybe later fast-case a single page, but I don't think this is
   2221  *     going to make _that_ much difference overall.
   2222  */
   2223 
   2224 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2225 
   2226 void
   2227 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2228 {
   2229 	int cleanlist_idx = 0;
   2230 	struct pagelist {
   2231 		vaddr_t va;
   2232 		pt_entry_t *pte;
   2233 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2234 	pt_entry_t *pte = 0, *ptes;
   2235 	paddr_t pa;
   2236 	int pmap_active;
   2237 	struct vm_page *pg;
   2238 
   2239 	/* Exit quick if there is no pmap */
   2240 	if (!pmap)
   2241 		return;
   2242 
   2243 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
   2244 	    pmap, sva, eva));
   2245 
   2246 	/*
   2247 	 * we lock in the pmap => vm_page direction
   2248 	 */
   2249 	PMAP_MAP_TO_HEAD_LOCK();
   2250 
   2251 	ptes = pmap_map_ptes(pmap);
   2252 	/* Get a page table pointer */
   2253 	while (sva < eva) {
   2254 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2255 			break;
   2256 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2257 	}
   2258 
   2259 	pte = &ptes[arm_btop(sva)];
   2260 	/* Note if the pmap is active thus require cache and tlb cleans */
   2261 	pmap_active = pmap_is_curpmap(pmap);
   2262 
   2263 	/* Now loop along */
   2264 	while (sva < eva) {
   2265 		/* Check if we can move to the next PDE (l1 chunk) */
   2266 		if (!(sva & L2_ADDR_BITS))
   2267 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2268 				sva += L1_S_SIZE;
   2269 				pte += arm_btop(L1_S_SIZE);
   2270 				continue;
   2271 			}
   2272 
   2273 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2274 		if (pmap_pte_v(pte)) {
   2275 			/* Update statistics */
   2276 			--pmap->pm_stats.resident_count;
   2277 
   2278 			/*
   2279 			 * Add this page to our cache remove list, if we can.
   2280 			 * If, however the cache remove list is totally full,
   2281 			 * then do a complete cache invalidation taking note
   2282 			 * to backtrack the PTE table beforehand, and ignore
   2283 			 * the lists in future because there's no longer any
   2284 			 * point in bothering with them (we've paid the
   2285 			 * penalty, so will carry on unhindered). Otherwise,
   2286 			 * when we fall out, we just clean the list.
   2287 			 */
   2288 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2289 			pa = pmap_pte_pa(pte);
   2290 
   2291 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2292 				/* Add to the clean list. */
   2293 				cleanlist[cleanlist_idx].pte = pte;
   2294 				cleanlist[cleanlist_idx].va = sva;
   2295 				cleanlist_idx++;
   2296 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2297 				int cnt;
   2298 
   2299 				/* Nuke everything if needed. */
   2300 				if (pmap_active) {
   2301 					cpu_idcache_wbinv_all();
   2302 					cpu_tlb_flushID();
   2303 				}
   2304 
   2305 				/*
   2306 				 * Roll back the previous PTE list,
   2307 				 * and zero out the current PTE.
   2308 				 */
   2309 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2310 					*cleanlist[cnt].pte = 0;
   2311 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2312 				}
   2313 				*pte = 0;
   2314 				pmap_pte_delref(pmap, sva);
   2315 				cleanlist_idx++;
   2316 			} else {
   2317 				/*
   2318 				 * We've already nuked the cache and
   2319 				 * TLB, so just carry on regardless,
   2320 				 * and we won't need to do it again
   2321 				 */
   2322 				*pte = 0;
   2323 				pmap_pte_delref(pmap, sva);
   2324 			}
   2325 
   2326 			/*
   2327 			 * Update flags. In a number of circumstances,
   2328 			 * we could cluster a lot of these and do a
   2329 			 * number of sequential pages in one go.
   2330 			 */
   2331 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2332 				struct pv_entry *pve;
   2333 				simple_lock(&pg->mdpage.pvh_slock);
   2334 				pve = pmap_remove_pv(pg, pmap, sva);
   2335 				pmap_free_pv(pmap, pve);
   2336 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2337 				simple_unlock(&pg->mdpage.pvh_slock);
   2338 			}
   2339 		}
   2340 		sva += NBPG;
   2341 		pte++;
   2342 	}
   2343 
   2344 	/*
   2345 	 * Now, if we've fallen through down to here, chances are that there
   2346 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2347 	 */
   2348 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2349 		u_int cnt;
   2350 
   2351 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2352 			if (pmap_active) {
   2353 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2354 				    NBPG);
   2355 				*cleanlist[cnt].pte = 0;
   2356 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2357 			} else
   2358 				*cleanlist[cnt].pte = 0;
   2359 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2360 		}
   2361 	}
   2362 
   2363 	pmap_unmap_ptes(pmap);
   2364 
   2365 	PMAP_MAP_TO_HEAD_UNLOCK();
   2366 }
   2367 
   2368 /*
   2369  * Routine:	pmap_remove_all
   2370  * Function:
   2371  *		Removes this physical page from
   2372  *		all physical maps in which it resides.
   2373  *		Reflects back modify bits to the pager.
   2374  */
   2375 
   2376 static void
   2377 pmap_remove_all(struct vm_page *pg)
   2378 {
   2379 	struct pv_entry *pv, *npv;
   2380 	struct pmap *pmap;
   2381 	pt_entry_t *pte, *ptes;
   2382 
   2383 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2384 
   2385 	/* set vm_page => pmap locking */
   2386 	PMAP_HEAD_TO_MAP_LOCK();
   2387 
   2388 	simple_lock(&pg->mdpage.pvh_slock);
   2389 
   2390 	pv = pg->mdpage.pvh_list;
   2391 	if (pv == NULL) {
   2392 		PDEBUG(0, printf("free page\n"));
   2393 		simple_unlock(&pg->mdpage.pvh_slock);
   2394 		PMAP_HEAD_TO_MAP_UNLOCK();
   2395 		return;
   2396 	}
   2397 	pmap_clean_page(pv, FALSE);
   2398 
   2399 	while (pv) {
   2400 		pmap = pv->pv_pmap;
   2401 		ptes = pmap_map_ptes(pmap);
   2402 		pte = &ptes[arm_btop(pv->pv_va)];
   2403 
   2404 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2405 		    pv->pv_va, pv->pv_flags));
   2406 #ifdef DEBUG
   2407 		if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
   2408 		    pmap_pte_v(pte) == 0 ||
   2409 		    pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
   2410 			panic("pmap_remove_all: bad mapping");
   2411 #endif	/* DEBUG */
   2412 
   2413 		/*
   2414 		 * Update statistics
   2415 		 */
   2416 		--pmap->pm_stats.resident_count;
   2417 
   2418 		/* Wired bit */
   2419 		if (pv->pv_flags & PVF_WIRED)
   2420 			--pmap->pm_stats.wired_count;
   2421 
   2422 		/*
   2423 		 * Invalidate the PTEs.
   2424 		 * XXX: should cluster them up and invalidate as many
   2425 		 * as possible at once.
   2426 		 */
   2427 
   2428 #ifdef needednotdone
   2429 reduce wiring count on page table pages as references drop
   2430 #endif
   2431 
   2432 		*pte = 0;
   2433 		pmap_pte_delref(pmap, pv->pv_va);
   2434 
   2435 		npv = pv->pv_next;
   2436 		pmap_free_pv(pmap, pv);
   2437 		pv = npv;
   2438 		pmap_unmap_ptes(pmap);
   2439 	}
   2440 	pg->mdpage.pvh_list = NULL;
   2441 	simple_unlock(&pg->mdpage.pvh_slock);
   2442 	PMAP_HEAD_TO_MAP_UNLOCK();
   2443 
   2444 	PDEBUG(0, printf("done\n"));
   2445 	cpu_tlb_flushID();
   2446 	cpu_cpwait();
   2447 }
   2448 
   2449 
   2450 /*
   2451  * Set the physical protection on the specified range of this map as requested.
   2452  */
   2453 
   2454 void
   2455 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2456 {
   2457 	pt_entry_t *pte = NULL, *ptes;
   2458 	struct vm_page *pg;
   2459 	int flush = 0;
   2460 
   2461 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2462 	    pmap, sva, eva, prot));
   2463 
   2464 	if (~prot & VM_PROT_READ) {
   2465 		/*
   2466 		 * Just remove the mappings.  pmap_update() is not required
   2467 		 * here since the caller should do it.
   2468 		 */
   2469 		pmap_remove(pmap, sva, eva);
   2470 		return;
   2471 	}
   2472 	if (prot & VM_PROT_WRITE) {
   2473 		/*
   2474 		 * If this is a read->write transition, just ignore it and let
   2475 		 * uvm_fault() take care of it later.
   2476 		 */
   2477 		return;
   2478 	}
   2479 
   2480 	/* Need to lock map->head */
   2481 	PMAP_MAP_TO_HEAD_LOCK();
   2482 
   2483 	ptes = pmap_map_ptes(pmap);
   2484 
   2485 	/*
   2486 	 * OK, at this point, we know we're doing write-protect operation.
   2487 	 * If the pmap is active, write-back the range.
   2488 	 */
   2489 	if (pmap_is_curpmap(pmap))
   2490 		cpu_dcache_wb_range(sva, eva - sva);
   2491 
   2492 	/*
   2493 	 * We need to acquire a pointer to a page table page before entering
   2494 	 * the following loop.
   2495 	 */
   2496 	while (sva < eva) {
   2497 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2498 			break;
   2499 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2500 	}
   2501 
   2502 	pte = &ptes[arm_btop(sva)];
   2503 
   2504 	while (sva < eva) {
   2505 		/* only check once in a while */
   2506 		if ((sva & L2_ADDR_BITS) == 0) {
   2507 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2508 				/* We can race ahead here, to the next pde. */
   2509 				sva += L1_S_SIZE;
   2510 				pte += arm_btop(L1_S_SIZE);
   2511 				continue;
   2512 			}
   2513 		}
   2514 
   2515 		if (!pmap_pte_v(pte))
   2516 			goto next;
   2517 
   2518 		flush = 1;
   2519 
   2520 		*pte &= ~L2_S_PROT_W;		/* clear write bit */
   2521 
   2522 		/* Clear write flag */
   2523 		if ((pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte))) != NULL) {
   2524 			simple_lock(&pg->mdpage.pvh_slock);
   2525 			(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
   2526 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2527 			simple_unlock(&pg->mdpage.pvh_slock);
   2528 		}
   2529 
   2530  next:
   2531 		sva += NBPG;
   2532 		pte++;
   2533 	}
   2534 	pmap_unmap_ptes(pmap);
   2535 	PMAP_MAP_TO_HEAD_UNLOCK();
   2536 	if (flush)
   2537 		cpu_tlb_flushID();
   2538 }
   2539 
   2540 /*
   2541  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2542  * int flags)
   2543  *
   2544  *      Insert the given physical page (p) at
   2545  *      the specified virtual address (v) in the
   2546  *      target physical map with the protection requested.
   2547  *
   2548  *      If specified, the page will be wired down, meaning
   2549  *      that the related pte can not be reclaimed.
   2550  *
   2551  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2552  *      or lose information.  That is, this routine must actually
   2553  *      insert this page into the given map NOW.
   2554  */
   2555 
   2556 int
   2557 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2558     int flags)
   2559 {
   2560 	pt_entry_t *ptes, opte, npte;
   2561 	paddr_t opa;
   2562 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2563 	struct vm_page *pg;
   2564 	struct pv_entry *pve;
   2565 	int error, nflags;
   2566 
   2567 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2568 	    va, pa, pmap, prot, wired));
   2569 
   2570 #ifdef DIAGNOSTIC
   2571 	/* Valid address ? */
   2572 	if (va >= (pmap_curmaxkvaddr))
   2573 		panic("pmap_enter: too big");
   2574 	if (pmap != pmap_kernel() && va != 0) {
   2575 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2576 			panic("pmap_enter: kernel page in user map");
   2577 	} else {
   2578 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2579 			panic("pmap_enter: user page in kernel map");
   2580 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2581 			panic("pmap_enter: entering PT page");
   2582 	}
   2583 #endif
   2584 
   2585 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2586 
   2587 	/*
   2588 	 * Get a pointer to the page.  Later on in this function, we
   2589 	 * test for a managed page by checking pg != NULL.
   2590 	 */
   2591 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2592 
   2593 	/* get lock */
   2594 	PMAP_MAP_TO_HEAD_LOCK();
   2595 
   2596 	/*
   2597 	 * map the ptes.  If there's not already an L2 table for this
   2598 	 * address, allocate one.
   2599 	 */
   2600 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2601 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   2602 		struct vm_page *ptp;
   2603 
   2604 		/* kernel should be pre-grown */
   2605 		KASSERT(pmap != pmap_kernel());
   2606 
   2607 		/* if failure is allowed then don't try too hard */
   2608 		ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
   2609 		if (ptp == NULL) {
   2610 			if (flags & PMAP_CANFAIL) {
   2611 				error = ENOMEM;
   2612 				goto out;
   2613 			}
   2614 			panic("pmap_enter: get ptp failed");
   2615 		}
   2616 	}
   2617 	opte = ptes[arm_btop(va)];
   2618 
   2619 	nflags = 0;
   2620 	if (prot & VM_PROT_WRITE)
   2621 		nflags |= PVF_WRITE;
   2622 	if (wired)
   2623 		nflags |= PVF_WIRED;
   2624 
   2625 	/* Is the pte valid ? If so then this page is already mapped */
   2626 	if (l2pte_valid(opte)) {
   2627 		/* Get the physical address of the current page mapped */
   2628 		opa = l2pte_pa(opte);
   2629 
   2630 		/* Are we mapping the same page ? */
   2631 		if (opa == pa) {
   2632 			/* Check to see if we're doing rw->ro. */
   2633 			if ((opte & L2_S_PROT_W) != 0 &&
   2634 			    (prot & VM_PROT_WRITE) == 0) {
   2635 				/* Yup, flush the cache if current pmap. */
   2636 				if (pmap_is_curpmap(pmap))
   2637 					cpu_dcache_wb_range(va, NBPG);
   2638 			}
   2639 
   2640 			/* Has the wiring changed ? */
   2641 			if (pg != NULL) {
   2642 				simple_lock(&pg->mdpage.pvh_slock);
   2643 				(void) pmap_modify_pv(pmap, va, pg,
   2644 				    PVF_WRITE | PVF_WIRED, nflags);
   2645 				simple_unlock(&pg->mdpage.pvh_slock);
   2646  			}
   2647 		} else {
   2648 			struct vm_page *opg;
   2649 
   2650 			/* We are replacing the page with a new one. */
   2651 			cpu_idcache_wbinv_range(va, NBPG);
   2652 
   2653 			/*
   2654 			 * If it is part of our managed memory then we
   2655 			 * must remove it from the PV list
   2656 			 */
   2657 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2658 				simple_lock(&opg->mdpage.pvh_slock);
   2659 				pve = pmap_remove_pv(opg, pmap, va);
   2660 				simple_unlock(&opg->mdpage.pvh_slock);
   2661 			} else {
   2662 				pve = NULL;
   2663 			}
   2664 
   2665 			goto enter;
   2666 		}
   2667 	} else {
   2668 		opa = 0;
   2669 		pve = NULL;
   2670 		pmap_pte_addref(pmap, va);
   2671 
   2672 		/* pte is not valid so we must be hooking in a new page */
   2673 		++pmap->pm_stats.resident_count;
   2674 
   2675 	enter:
   2676 		/*
   2677 		 * Enter on the PV list if part of our managed memory
   2678 		 */
   2679 		if (pg != NULL) {
   2680 			if (pve == NULL) {
   2681 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2682 				if (pve == NULL) {
   2683 					if (flags & PMAP_CANFAIL) {
   2684 						error = ENOMEM;
   2685 						goto out;
   2686 					}
   2687 					panic("pmap_enter: no pv entries "
   2688 					    "available");
   2689 				}
   2690 			}
   2691 			/* enter_pv locks pvh when adding */
   2692 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2693 		} else {
   2694 			if (pve != NULL)
   2695 				pmap_free_pv(pmap, pve);
   2696 		}
   2697 	}
   2698 
   2699 	/* Construct the pte, giving the correct access. */
   2700 	npte = pa;
   2701 
   2702 	/* VA 0 is magic. */
   2703 	if (pmap != pmap_kernel() && va != vector_page)
   2704 		npte |= L2_S_PROT_U;
   2705 
   2706 	if (pg != NULL) {
   2707 #ifdef DIAGNOSTIC
   2708 		if ((flags & VM_PROT_ALL) & ~prot)
   2709 			panic("pmap_enter: access_type exceeds prot");
   2710 #endif
   2711 		npte |= pte_l2_s_cache_mode;
   2712 		if (flags & VM_PROT_WRITE) {
   2713 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2714 			pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   2715 		} else if (flags & VM_PROT_ALL) {
   2716 			npte |= L2_S_PROTO;
   2717 			pg->mdpage.pvh_attrs |= PVF_REF;
   2718 		} else
   2719 			npte |= L2_TYPE_INV;
   2720 	} else {
   2721 		if (prot & VM_PROT_WRITE)
   2722 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2723 		else if (prot & VM_PROT_ALL)
   2724 			npte |= L2_S_PROTO;
   2725 		else
   2726 			npte |= L2_TYPE_INV;
   2727 	}
   2728 
   2729 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
   2730 #if ARM_NMMUS > 1
   2731 # error "XXX Unable to use read/write-allocate and configure non-XScale"
   2732 #endif
   2733 	/*
   2734 	 * XXX BRUTAL HACK!  This allows us to limp along with
   2735 	 * XXX the read/write-allocate cache mode.
   2736 	 */
   2737 	if (pmap == pmap_kernel())
   2738 		npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
   2739 #endif
   2740 	ptes[arm_btop(va)] = npte;
   2741 
   2742 	if (pg != NULL) {
   2743 		simple_lock(&pg->mdpage.pvh_slock);
   2744  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2745 		simple_unlock(&pg->mdpage.pvh_slock);
   2746 	}
   2747 
   2748 	/* Better flush the TLB ... */
   2749 	cpu_tlb_flushID_SE(va);
   2750 	error = 0;
   2751 out:
   2752 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2753 	PMAP_MAP_TO_HEAD_UNLOCK();
   2754 
   2755 	return error;
   2756 }
   2757 
   2758 /*
   2759  * pmap_kenter_pa: enter a kernel mapping
   2760  *
   2761  * => no need to lock anything assume va is already allocated
   2762  * => should be faster than normal pmap enter function
   2763  */
   2764 void
   2765 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2766 {
   2767 	pt_entry_t *pte;
   2768 
   2769 	pte = vtopte(va);
   2770 	KASSERT(!pmap_pte_v(pte));
   2771 
   2772 #ifdef PMAP_ALIAS_DEBUG
   2773     {
   2774 	struct vm_page *pg;
   2775 	int s;
   2776 
   2777 	pg = PHYS_TO_VM_PAGE(pa);
   2778 	if (pg != NULL) {
   2779 		s = splhigh();
   2780 		if (pg->mdpage.ro_mappings == 0 &&
   2781 		    pg->mdpage.rw_mappings == 0 &&
   2782 		    pg->mdpage.kro_mappings == 0 &&
   2783 		    pg->mdpage.krw_mappings == 0) {
   2784 			/* This case is okay. */
   2785 		} else if (pg->mdpage.rw_mappings == 0 &&
   2786 			   pg->mdpage.krw_mappings == 0 &&
   2787 			   (prot & VM_PROT_WRITE) == 0) {
   2788 			/* This case is okay. */
   2789 		} else {
   2790 			/* Something is awry. */
   2791 			printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
   2792 			    "prot 0x%x\n", pg->mdpage.ro_mappings,
   2793 			    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
   2794 			    pg->mdpage.krw_mappings, prot);
   2795 			Debugger();
   2796 		}
   2797 		if (prot & VM_PROT_WRITE)
   2798 			pg->mdpage.krw_mappings++;
   2799 		else
   2800 			pg->mdpage.kro_mappings++;
   2801 		splx(s);
   2802 	}
   2803     }
   2804 #endif /* PMAP_ALIAS_DEBUG */
   2805 
   2806 	*pte = L2_S_PROTO | pa |
   2807 	    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   2808 }
   2809 
   2810 void
   2811 pmap_kremove(vaddr_t va, vsize_t len)
   2812 {
   2813 	pt_entry_t *pte;
   2814 
   2815 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2816 
   2817 		/*
   2818 		 * We assume that we will only be called with small
   2819 		 * regions of memory.
   2820 		 */
   2821 
   2822 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2823 		pte = vtopte(va);
   2824 #ifdef PMAP_ALIAS_DEBUG
   2825     {
   2826 		struct vm_page *pg;
   2827 		int s;
   2828 
   2829 		if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
   2830 		    (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
   2831 			s = splhigh();
   2832 			if (*pte & L2_S_PROT_W) {
   2833 				KASSERT(pg->mdpage.krw_mappings != 0);
   2834 				pg->mdpage.krw_mappings--;
   2835 			} else {
   2836 				KASSERT(pg->mdpage.kro_mappings != 0);
   2837 				pg->mdpage.kro_mappings--;
   2838 			}
   2839 			splx(s);
   2840 		}
   2841     }
   2842 #endif /* PMAP_ALIAS_DEBUG */
   2843 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2844 		*pte = 0;
   2845 		cpu_tlb_flushID_SE(va);
   2846 	}
   2847 }
   2848 
   2849 /*
   2850  * pmap_page_protect:
   2851  *
   2852  * Lower the permission for all mappings to a given page.
   2853  */
   2854 
   2855 void
   2856 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2857 {
   2858 
   2859 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2860 	    VM_PAGE_TO_PHYS(pg), prot));
   2861 
   2862 	switch(prot) {
   2863 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2864 	case VM_PROT_READ|VM_PROT_WRITE:
   2865 		return;
   2866 
   2867 	case VM_PROT_READ:
   2868 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2869 		pmap_clearbit(pg, PVF_WRITE);
   2870 		break;
   2871 
   2872 	default:
   2873 		pmap_remove_all(pg);
   2874 		break;
   2875 	}
   2876 }
   2877 
   2878 
   2879 /*
   2880  * Routine:	pmap_unwire
   2881  * Function:	Clear the wired attribute for a map/virtual-address
   2882  *		pair.
   2883  * In/out conditions:
   2884  *		The mapping must already exist in the pmap.
   2885  */
   2886 
   2887 void
   2888 pmap_unwire(struct pmap *pmap, vaddr_t va)
   2889 {
   2890 	pt_entry_t *ptes;
   2891 	struct vm_page *pg;
   2892 	paddr_t pa;
   2893 
   2894 	PMAP_MAP_TO_HEAD_LOCK();
   2895 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2896 
   2897 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2898 #ifdef DIAGNOSTIC
   2899 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2900 			panic("pmap_unwire: invalid L2 PTE");
   2901 #endif
   2902 		/* Extract the physical address of the page */
   2903 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2904 
   2905 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2906 			goto out;
   2907 
   2908 		/* Update the wired bit in the pv entry for this page. */
   2909 		simple_lock(&pg->mdpage.pvh_slock);
   2910 		(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
   2911 		simple_unlock(&pg->mdpage.pvh_slock);
   2912 	}
   2913 #ifdef DIAGNOSTIC
   2914 	else {
   2915 		panic("pmap_unwire: invalid L1 PTE");
   2916 	}
   2917 #endif
   2918  out:
   2919 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2920 	PMAP_MAP_TO_HEAD_UNLOCK();
   2921 }
   2922 
   2923 /*
   2924  * Routine:  pmap_extract
   2925  * Function:
   2926  *           Extract the physical page address associated
   2927  *           with the given map/virtual_address pair.
   2928  */
   2929 boolean_t
   2930 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   2931 {
   2932 	pd_entry_t *pde;
   2933 	pt_entry_t *pte, *ptes;
   2934 	paddr_t pa;
   2935 
   2936 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
   2937 
   2938 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2939 
   2940 	pde = pmap_pde(pmap, va);
   2941 	pte = &ptes[arm_btop(va)];
   2942 
   2943 	if (pmap_pde_section(pde)) {
   2944 		pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   2945 		PDEBUG(5, printf("section pa=0x%08lx\n", pa));
   2946 		goto out;
   2947 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   2948 		PDEBUG(5, printf("no mapping\n"));
   2949 		goto failed;
   2950 	}
   2951 
   2952 	if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
   2953 		pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   2954 		PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
   2955 		goto out;
   2956 	}
   2957 
   2958 	pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   2959 	PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
   2960 
   2961  out:
   2962 	if (pap != NULL)
   2963 		*pap = pa;
   2964 
   2965 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2966 	return (TRUE);
   2967 
   2968  failed:
   2969 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2970 	return (FALSE);
   2971 }
   2972 
   2973 
   2974 /*
   2975  * pmap_copy:
   2976  *
   2977  *	Copy the range specified by src_addr/len from the source map to the
   2978  *	range dst_addr/len in the destination map.
   2979  *
   2980  *	This routine is only advisory and need not do anything.
   2981  */
   2982 /* Call deleted in <arm/arm32/pmap.h> */
   2983 
   2984 #if defined(PMAP_DEBUG)
   2985 void
   2986 pmap_dump_pvlist(phys, m)
   2987 	vaddr_t phys;
   2988 	char *m;
   2989 {
   2990 	struct vm_page *pg;
   2991 	struct pv_entry *pv;
   2992 
   2993 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   2994 		printf("INVALID PA\n");
   2995 		return;
   2996 	}
   2997 	simple_lock(&pg->mdpage.pvh_slock);
   2998 	printf("%s %08lx:", m, phys);
   2999 	if (pg->mdpage.pvh_list == NULL) {
   3000 		simple_unlock(&pg->mdpage.pvh_slock);
   3001 		printf(" no mappings\n");
   3002 		return;
   3003 	}
   3004 
   3005 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3006 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3007 		    pv->pv_va, pv->pv_flags);
   3008 
   3009 	printf("\n");
   3010 	simple_unlock(&pg->mdpage.pvh_slock);
   3011 }
   3012 
   3013 #endif	/* PMAP_DEBUG */
   3014 
   3015 static pt_entry_t *
   3016 pmap_map_ptes(struct pmap *pmap)
   3017 {
   3018 	struct proc *p;
   3019 
   3020     	/* the kernel's pmap is always accessible */
   3021 	if (pmap == pmap_kernel()) {
   3022 		return (pt_entry_t *)PTE_BASE;
   3023 	}
   3024 
   3025 	if (pmap_is_curpmap(pmap)) {
   3026 		simple_lock(&pmap->pm_obj.vmobjlock);
   3027 		return (pt_entry_t *)PTE_BASE;
   3028 	}
   3029 
   3030 	p = curproc;
   3031 	KDASSERT(p != NULL);
   3032 
   3033 	/* need to lock both curpmap and pmap: use ordered locking */
   3034 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   3035 		simple_lock(&pmap->pm_obj.vmobjlock);
   3036 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3037 	} else {
   3038 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3039 		simple_lock(&pmap->pm_obj.vmobjlock);
   3040 	}
   3041 
   3042 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
   3043 	    FALSE);
   3044 	cpu_tlb_flushD();
   3045 	cpu_cpwait();
   3046 	return (pt_entry_t *)APTE_BASE;
   3047 }
   3048 
   3049 /*
   3050  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3051  */
   3052 
   3053 static void
   3054 pmap_unmap_ptes(struct pmap *pmap)
   3055 {
   3056 
   3057 	if (pmap == pmap_kernel()) {
   3058 		return;
   3059 	}
   3060 	if (pmap_is_curpmap(pmap)) {
   3061 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3062 	} else {
   3063 		KDASSERT(curproc != NULL);
   3064 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3065 		simple_unlock(
   3066 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3067 	}
   3068 }
   3069 
   3070 /*
   3071  * Modify pte bits for all ptes corresponding to the given physical address.
   3072  * We use `maskbits' rather than `clearbits' because we're always passing
   3073  * constants and the latter would require an extra inversion at run-time.
   3074  */
   3075 
   3076 static void
   3077 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   3078 {
   3079 	struct pv_entry *pv;
   3080 	pt_entry_t *ptes, npte, opte;
   3081 	vaddr_t va;
   3082 	int tlbentry;
   3083 
   3084 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3085 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3086 
   3087 	tlbentry = 0;
   3088 
   3089 	PMAP_HEAD_TO_MAP_LOCK();
   3090 	simple_lock(&pg->mdpage.pvh_slock);
   3091 
   3092 	/*
   3093 	 * Clear saved attributes (modify, reference)
   3094 	 */
   3095 	pg->mdpage.pvh_attrs &= ~maskbits;
   3096 
   3097 	if (pg->mdpage.pvh_list == NULL) {
   3098 		simple_unlock(&pg->mdpage.pvh_slock);
   3099 		PMAP_HEAD_TO_MAP_UNLOCK();
   3100 		return;
   3101 	}
   3102 
   3103 	/*
   3104 	 * Loop over all current mappings setting/clearing as appropos
   3105 	 */
   3106 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3107 #ifdef PMAP_ALIAS_DEBUG
   3108     {
   3109 		int s = splhigh();
   3110 		if ((maskbits & PVF_WRITE) != 0 &&
   3111 		    (pv->pv_flags & PVF_WRITE) != 0) {
   3112 			KASSERT(pg->mdpage.rw_mappings != 0);
   3113 			pg->mdpage.rw_mappings--;
   3114 			pg->mdpage.ro_mappings++;
   3115 		}
   3116 		splx(s);
   3117     }
   3118 #endif /* PMAP_ALIAS_DEBUG */
   3119 		va = pv->pv_va;
   3120 		pv->pv_flags &= ~maskbits;
   3121 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3122 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3123 		npte = opte = ptes[arm_btop(va)];
   3124 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   3125 			if ((pv->pv_flags & PVF_NC)) {
   3126 				/*
   3127 				 * Entry is not cacheable: reenable
   3128 				 * the cache, nothing to flush
   3129 				 *
   3130 				 * Don't turn caching on again if this
   3131 				 * is a modified emulation.  This
   3132 				 * would be inconsitent with the
   3133 				 * settings created by
   3134 				 * pmap_vac_me_harder().
   3135 				 *
   3136 				 * There's no need to call
   3137 				 * pmap_vac_me_harder() here: all
   3138 				 * pages are loosing their write
   3139 				 * permission.
   3140 				 *
   3141 				 */
   3142 				if (maskbits & PVF_WRITE) {
   3143 					npte |= pte_l2_s_cache_mode;
   3144 					pv->pv_flags &= ~PVF_NC;
   3145 				}
   3146 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3147 				/*
   3148 				 * Entry is cacheable: check if pmap is
   3149 				 * current if it is flush it,
   3150 				 * otherwise it won't be in the cache
   3151 				 */
   3152 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3153 			}
   3154 
   3155 			/* make the pte read only */
   3156 			npte &= ~L2_S_PROT_W;
   3157 		}
   3158 
   3159 		if (maskbits & PVF_REF) {
   3160 			if (pmap_is_curpmap(pv->pv_pmap) &&
   3161 			    (pv->pv_flags & PVF_NC) == 0) {
   3162 				/*
   3163 				 * Check npte here; we may have already
   3164 				 * done the wbinv above, and the validity
   3165 				 * of the PTE is the same for opte and
   3166 				 * npte.
   3167 				 */
   3168 				if (npte & L2_S_PROT_W) {
   3169 					cpu_idcache_wbinv_range(pv->pv_va,
   3170 					    NBPG);
   3171 				} else if ((npte & L2_TYPE_MASK)
   3172 					   != L2_TYPE_INV) {
   3173 					/* XXXJRT need idcache_inv_range */
   3174 					cpu_idcache_wbinv_range(pv->pv_va,
   3175 					    NBPG);
   3176 				}
   3177 			}
   3178 
   3179 			/* make the pte invalid */
   3180 			npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
   3181 		}
   3182 
   3183 		if (npte != opte) {
   3184 			ptes[arm_btop(va)] = npte;
   3185 			/* Flush the TLB entry if a current pmap. */
   3186 			if (pmap_is_curpmap(pv->pv_pmap))
   3187 				cpu_tlb_flushID_SE(pv->pv_va);
   3188 		}
   3189 
   3190 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3191 	}
   3192 	cpu_cpwait();
   3193 
   3194 	simple_unlock(&pg->mdpage.pvh_slock);
   3195 	PMAP_HEAD_TO_MAP_UNLOCK();
   3196 }
   3197 
   3198 /*
   3199  * pmap_clear_modify:
   3200  *
   3201  *	Clear the "modified" attribute for a page.
   3202  */
   3203 boolean_t
   3204 pmap_clear_modify(struct vm_page *pg)
   3205 {
   3206 	boolean_t rv;
   3207 
   3208 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3209 		rv = TRUE;
   3210 		pmap_clearbit(pg, PVF_MOD);
   3211 	} else
   3212 		rv = FALSE;
   3213 
   3214 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3215 	    VM_PAGE_TO_PHYS(pg), rv));
   3216 
   3217 	return (rv);
   3218 }
   3219 
   3220 /*
   3221  * pmap_clear_reference:
   3222  *
   3223  *	Clear the "referenced" attribute for a page.
   3224  */
   3225 boolean_t
   3226 pmap_clear_reference(struct vm_page *pg)
   3227 {
   3228 	boolean_t rv;
   3229 
   3230 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3231 		rv = TRUE;
   3232 		pmap_clearbit(pg, PVF_REF);
   3233 	} else
   3234 		rv = FALSE;
   3235 
   3236 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3237 	    VM_PAGE_TO_PHYS(pg), rv));
   3238 
   3239 	return (rv);
   3240 }
   3241 
   3242 /*
   3243  * pmap_is_modified:
   3244  *
   3245  *	Test if a page has the "modified" attribute.
   3246  */
   3247 /* See <arm/arm32/pmap.h> */
   3248 
   3249 /*
   3250  * pmap_is_referenced:
   3251  *
   3252  *	Test if a page has the "referenced" attribute.
   3253  */
   3254 /* See <arm/arm32/pmap.h> */
   3255 
   3256 int
   3257 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3258 {
   3259 	pt_entry_t *ptes;
   3260 	struct vm_page *pg;
   3261 	paddr_t pa;
   3262 	u_int flags;
   3263 	int rv = 0;
   3264 
   3265 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3266 
   3267 	PMAP_MAP_TO_HEAD_LOCK();
   3268 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3269 
   3270 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3271 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3272 		goto out;
   3273 	}
   3274 
   3275 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3276 
   3277 	/* Check for a invalid pte */
   3278 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3279 		goto out;
   3280 
   3281 	/* This can happen if user code tries to access kernel memory. */
   3282 	if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
   3283 		goto out;
   3284 
   3285 	/* Extract the physical address of the page */
   3286 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3287 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3288 		goto out;
   3289 
   3290 	/* Get the current flags for this page. */
   3291 	simple_lock(&pg->mdpage.pvh_slock);
   3292 
   3293 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3294 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3295 
   3296 	/*
   3297 	 * Do the flags say this page is writable ? If not then it is a
   3298 	 * genuine write fault. If yes then the write fault is our fault
   3299 	 * as we did not reflect the write access in the PTE. Now we know
   3300 	 * a write has occurred we can correct this and also set the
   3301 	 * modified bit
   3302 	 */
   3303 	if (~flags & PVF_WRITE) {
   3304 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3305 		goto out;
   3306 	}
   3307 
   3308 	PDEBUG(0,
   3309 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3310 	    va, ptes[arm_btop(va)]));
   3311 	pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3312 
   3313 	/*
   3314 	 * Re-enable write permissions for the page.  No need to call
   3315 	 * pmap_vac_me_harder(), since this is just a
   3316 	 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
   3317 	 * We've already set the cacheable bits based on the assumption
   3318 	 * that we can write to this page.
   3319 	 */
   3320 	ptes[arm_btop(va)] =
   3321 	    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3322 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3323 
   3324 	simple_unlock(&pg->mdpage.pvh_slock);
   3325 
   3326 	cpu_tlb_flushID_SE(va);
   3327 	cpu_cpwait();
   3328 	rv = 1;
   3329  out:
   3330 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3331 	PMAP_MAP_TO_HEAD_UNLOCK();
   3332 	return (rv);
   3333 }
   3334 
   3335 int
   3336 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3337 {
   3338 	pt_entry_t *ptes;
   3339 	struct vm_page *pg;
   3340 	paddr_t pa;
   3341 	int rv = 0;
   3342 
   3343 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3344 
   3345 	PMAP_MAP_TO_HEAD_LOCK();
   3346 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3347 
   3348 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3349 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3350 		goto out;
   3351 	}
   3352 
   3353 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3354 
   3355 	/* Check for invalid pte */
   3356 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3357 		goto out;
   3358 
   3359 	/* This can happen if user code tries to access kernel memory. */
   3360 	if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
   3361 		goto out;
   3362 
   3363 	/* Extract the physical address of the page */
   3364 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3365 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3366 		goto out;
   3367 
   3368 	simple_lock(&pg->mdpage.pvh_slock);
   3369 
   3370 	/*
   3371 	 * Ok we just enable the pte and mark the attibs as handled
   3372 	 * XXX Should we traverse the PV list and enable all PTEs?
   3373 	 */
   3374 	PDEBUG(0,
   3375 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3376 	    va, ptes[arm_btop(va)]));
   3377 	pg->mdpage.pvh_attrs |= PVF_REF;
   3378 
   3379 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
   3380 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3381 
   3382 	simple_unlock(&pg->mdpage.pvh_slock);
   3383 
   3384 	cpu_tlb_flushID_SE(va);
   3385 	cpu_cpwait();
   3386 	rv = 1;
   3387  out:
   3388 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3389 	PMAP_MAP_TO_HEAD_UNLOCK();
   3390 	return (rv);
   3391 }
   3392 
   3393 /*
   3394  * pmap_collect: free resources held by a pmap
   3395  *
   3396  * => optional function.
   3397  * => called when a process is swapped out to free memory.
   3398  */
   3399 
   3400 void
   3401 pmap_collect(struct pmap *pmap)
   3402 {
   3403 }
   3404 
   3405 /*
   3406  * Routine:	pmap_procwr
   3407  *
   3408  * Function:
   3409  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3410  *
   3411  */
   3412 void
   3413 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3414 {
   3415 	/* We only need to do anything if it is the current process. */
   3416 	if (p == curproc)
   3417 		cpu_icache_sync_range(va, len);
   3418 }
   3419 /*
   3420  * PTP functions
   3421  */
   3422 
   3423 /*
   3424  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3425  *
   3426  * => pmap should NOT be pmap_kernel()
   3427  * => pmap should be locked
   3428  */
   3429 
   3430 static struct vm_page *
   3431 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3432 {
   3433 	struct vm_page *ptp;
   3434 
   3435 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3436 
   3437 		/* valid... check hint (saves us a PA->PG lookup) */
   3438 		if (pmap->pm_ptphint &&
   3439 		    (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
   3440 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3441 			return (pmap->pm_ptphint);
   3442 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3443 #ifdef DIAGNOSTIC
   3444 		if (ptp == NULL)
   3445 			panic("pmap_get_ptp: unmanaged user PTP");
   3446 #endif
   3447 		pmap->pm_ptphint = ptp;
   3448 		return(ptp);
   3449 	}
   3450 
   3451 	/* allocate a new PTP (updates ptphint) */
   3452 	return(pmap_alloc_ptp(pmap, va));
   3453 }
   3454 
   3455 /*
   3456  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3457  *
   3458  * => pmap should already be locked by caller
   3459  * => we use the ptp's wire_count to count the number of active mappings
   3460  *	in the PTP (we start it at one to prevent any chance this PTP
   3461  *	will ever leak onto the active/inactive queues)
   3462  */
   3463 
   3464 /*__inline */ static struct vm_page *
   3465 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3466 {
   3467 	struct vm_page *ptp;
   3468 
   3469 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3470 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3471 	if (ptp == NULL)
   3472 		return (NULL);
   3473 
   3474 	/* got one! */
   3475 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3476 	ptp->wire_count = 1;	/* no mappings yet */
   3477 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3478 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3479 	pmap->pm_ptphint = ptp;
   3480 	return (ptp);
   3481 }
   3482 
   3483 vaddr_t
   3484 pmap_growkernel(vaddr_t maxkvaddr)
   3485 {
   3486 	struct pmap *kpm = pmap_kernel(), *pm;
   3487 	int s;
   3488 	paddr_t ptaddr;
   3489 	struct vm_page *ptp;
   3490 
   3491 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3492 		goto out;		/* we are OK */
   3493 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3494 		    pmap_curmaxkvaddr, maxkvaddr));
   3495 
   3496 	/*
   3497 	 * whoops!   we need to add kernel PTPs
   3498 	 */
   3499 
   3500 	s = splhigh();	/* to be safe */
   3501 	simple_lock(&kpm->pm_obj.vmobjlock);
   3502 	/* due to the way the arm pmap works we map 4MB at a time */
   3503 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3504 	     pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
   3505 
   3506 		if (uvm.page_init_done == FALSE) {
   3507 
   3508 			/*
   3509 			 * we're growing the kernel pmap early (from
   3510 			 * uvm_pageboot_alloc()).  this case must be
   3511 			 * handled a little differently.
   3512 			 */
   3513 
   3514 			if (uvm_page_physget(&ptaddr) == FALSE)
   3515 				panic("pmap_growkernel: out of memory");
   3516 			pmap_zero_page(ptaddr);
   3517 
   3518 			/* map this page in */
   3519 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
   3520 
   3521 			/* count PTP as resident */
   3522 			kpm->pm_stats.resident_count++;
   3523 			continue;
   3524 		}
   3525 
   3526 		/*
   3527 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3528 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3529 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3530 		 */
   3531 
   3532 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3533 			panic("pmap_growkernel: alloc ptp failed");
   3534 
   3535 		/* distribute new kernel PTP to all active pmaps */
   3536 		simple_lock(&pmaps_lock);
   3537 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3538 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3539 			    VM_PAGE_TO_PHYS(ptp), TRUE);
   3540 		}
   3541 
   3542 		simple_unlock(&pmaps_lock);
   3543 	}
   3544 
   3545 	/*
   3546 	 * flush out the cache, expensive but growkernel will happen so
   3547 	 * rarely
   3548 	 */
   3549 	cpu_tlb_flushD();
   3550 	cpu_cpwait();
   3551 
   3552 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3553 	splx(s);
   3554 
   3555 out:
   3556 	return (pmap_curmaxkvaddr);
   3557 }
   3558 
   3559 /************************ Utility routines ****************************/
   3560 
   3561 /*
   3562  * vector_page_setprot:
   3563  *
   3564  *	Manipulate the protection of the vector page.
   3565  */
   3566 void
   3567 vector_page_setprot(int prot)
   3568 {
   3569 	pt_entry_t *pte;
   3570 
   3571 	pte = vtopte(vector_page);
   3572 
   3573 	*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   3574 	cpu_tlb_flushD_SE(vector_page);
   3575 	cpu_cpwait();
   3576 }
   3577 
   3578 /************************ Bootstrapping routines ****************************/
   3579 
   3580 /*
   3581  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3582  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3583  * find them as necessary.
   3584  *
   3585  * Note that the data on this list is not valid after initarm() returns.
   3586  */
   3587 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3588 
   3589 static vaddr_t
   3590 kernel_pt_lookup(paddr_t pa)
   3591 {
   3592 	pv_addr_t *pv;
   3593 
   3594 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3595 		if (pv->pv_pa == pa)
   3596 			return (pv->pv_va);
   3597 	}
   3598 	return (0);
   3599 }
   3600 
   3601 /*
   3602  * pmap_map_section:
   3603  *
   3604  *	Create a single section mapping.
   3605  */
   3606 void
   3607 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3608 {
   3609 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3610 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3611 
   3612 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   3613 
   3614 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3615 	    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3616 }
   3617 
   3618 /*
   3619  * pmap_map_entry:
   3620  *
   3621  *	Create a single page mapping.
   3622  */
   3623 void
   3624 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3625 {
   3626 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3627 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3628 	pt_entry_t *pte;
   3629 
   3630 	KASSERT(((va | pa) & PGOFSET) == 0);
   3631 
   3632 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3633 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3634 
   3635 	pte = (pt_entry_t *)
   3636 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3637 	if (pte == NULL)
   3638 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3639 
   3640 	pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3641 	    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3642 }
   3643 
   3644 /*
   3645  * pmap_link_l2pt:
   3646  *
   3647  *	Link the L2 page table specified by "pa" into the L1
   3648  *	page table at the slot for "va".
   3649  */
   3650 void
   3651 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3652 {
   3653 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3654 	u_int slot = va >> L1_S_SHIFT;
   3655 
   3656 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3657 
   3658 	pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
   3659 	pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
   3660 	pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
   3661 	pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
   3662 
   3663 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3664 }
   3665 
   3666 /*
   3667  * pmap_map_chunk:
   3668  *
   3669  *	Map a chunk of memory using the most efficient mappings
   3670  *	possible (section, large page, small page) into the
   3671  *	provided L1 and L2 tables at the specified virtual address.
   3672  */
   3673 vsize_t
   3674 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3675     int prot, int cache)
   3676 {
   3677 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3678 	pt_entry_t *pte, fl;
   3679 	vsize_t resid;
   3680 	int i;
   3681 
   3682 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3683 
   3684 	if (l1pt == 0)
   3685 		panic("pmap_map_chunk: no L1 table provided");
   3686 
   3687 #ifdef VERBOSE_INIT_ARM
   3688 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3689 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3690 #endif
   3691 
   3692 	size = resid;
   3693 
   3694 	while (resid > 0) {
   3695 		/* See if we can use a section mapping. */
   3696 		if (((pa | va) & L1_S_OFFSET) == 0 &&
   3697 		    resid >= L1_S_SIZE) {
   3698 			fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3699 #ifdef VERBOSE_INIT_ARM
   3700 			printf("S");
   3701 #endif
   3702 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3703 			    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3704 			va += L1_S_SIZE;
   3705 			pa += L1_S_SIZE;
   3706 			resid -= L1_S_SIZE;
   3707 			continue;
   3708 		}
   3709 
   3710 		/*
   3711 		 * Ok, we're going to use an L2 table.  Make sure
   3712 		 * one is actually in the corresponding L1 slot
   3713 		 * for the current VA.
   3714 		 */
   3715 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3716 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3717 
   3718 		pte = (pt_entry_t *)
   3719 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3720 		if (pte == NULL)
   3721 			panic("pmap_map_chunk: can't find L2 table for VA"
   3722 			    "0x%08lx", va);
   3723 
   3724 		/* See if we can use a L2 large page mapping. */
   3725 		if (((pa | va) & L2_L_OFFSET) == 0 &&
   3726 		    resid >= L2_L_SIZE) {
   3727 			fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
   3728 #ifdef VERBOSE_INIT_ARM
   3729 			printf("L");
   3730 #endif
   3731 			for (i = 0; i < 16; i++) {
   3732 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3733 				    L2_L_PROTO | pa |
   3734 				    L2_L_PROT(PTE_KERNEL, prot) | fl;
   3735 			}
   3736 			va += L2_L_SIZE;
   3737 			pa += L2_L_SIZE;
   3738 			resid -= L2_L_SIZE;
   3739 			continue;
   3740 		}
   3741 
   3742 		/* Use a small page mapping. */
   3743 		fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3744 #ifdef VERBOSE_INIT_ARM
   3745 		printf("P");
   3746 #endif
   3747 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3748 		    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3749 		va += NBPG;
   3750 		pa += NBPG;
   3751 		resid -= NBPG;
   3752 	}
   3753 #ifdef VERBOSE_INIT_ARM
   3754 	printf("\n");
   3755 #endif
   3756 	return (size);
   3757 }
   3758 
   3759 /********************** PTE initialization routines **************************/
   3760 
   3761 /*
   3762  * These routines are called when the CPU type is identified to set up
   3763  * the PTE prototypes, cache modes, etc.
   3764  *
   3765  * The variables are always here, just in case LKMs need to reference
   3766  * them (though, they shouldn't).
   3767  */
   3768 
   3769 pt_entry_t	pte_l1_s_cache_mode;
   3770 pt_entry_t	pte_l1_s_cache_mask;
   3771 
   3772 pt_entry_t	pte_l2_l_cache_mode;
   3773 pt_entry_t	pte_l2_l_cache_mask;
   3774 
   3775 pt_entry_t	pte_l2_s_cache_mode;
   3776 pt_entry_t	pte_l2_s_cache_mask;
   3777 
   3778 pt_entry_t	pte_l2_s_prot_u;
   3779 pt_entry_t	pte_l2_s_prot_w;
   3780 pt_entry_t	pte_l2_s_prot_mask;
   3781 
   3782 pt_entry_t	pte_l1_s_proto;
   3783 pt_entry_t	pte_l1_c_proto;
   3784 pt_entry_t	pte_l2_s_proto;
   3785 
   3786 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   3787 void		(*pmap_zero_page_func)(paddr_t);
   3788 
   3789 #if ARM_MMU_GENERIC == 1
   3790 void
   3791 pmap_pte_init_generic(void)
   3792 {
   3793 
   3794 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3795 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   3796 
   3797 	pte_l2_l_cache_mode = L2_B|L2_C;
   3798 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   3799 
   3800 	pte_l2_s_cache_mode = L2_B|L2_C;
   3801 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   3802 
   3803 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   3804 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   3805 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   3806 
   3807 	pte_l1_s_proto = L1_S_PROTO_generic;
   3808 	pte_l1_c_proto = L1_C_PROTO_generic;
   3809 	pte_l2_s_proto = L2_S_PROTO_generic;
   3810 
   3811 	pmap_copy_page_func = pmap_copy_page_generic;
   3812 	pmap_zero_page_func = pmap_zero_page_generic;
   3813 }
   3814 
   3815 #if defined(CPU_ARM9)
   3816 void
   3817 pmap_pte_init_arm9(void)
   3818 {
   3819 
   3820 	/*
   3821 	 * ARM9 is compatible with generic, but we want to use
   3822 	 * write-through caching for now.
   3823 	 */
   3824 	pmap_pte_init_generic();
   3825 
   3826 	pte_l1_s_cache_mode = L1_S_C;
   3827 	pte_l2_l_cache_mode = L2_C;
   3828 	pte_l2_s_cache_mode = L2_C;
   3829 }
   3830 #endif /* CPU_ARM9 */
   3831 #endif /* ARM_MMU_GENERIC == 1 */
   3832 
   3833 #if ARM_MMU_XSCALE == 1
   3834 void
   3835 pmap_pte_init_xscale(void)
   3836 {
   3837 	uint32_t auxctl;
   3838 
   3839 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3840 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   3841 
   3842 	pte_l2_l_cache_mode = L2_B|L2_C;
   3843 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   3844 
   3845 	pte_l2_s_cache_mode = L2_B|L2_C;
   3846 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   3847 
   3848 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   3849 	/*
   3850 	 * The XScale core has an enhanced mode where writes that
   3851 	 * miss the cache cause a cache line to be allocated.  This
   3852 	 * is significantly faster than the traditional, write-through
   3853 	 * behavior of this case.
   3854 	 *
   3855 	 * However, there is a bug lurking in this pmap module, or in
   3856 	 * other parts of the VM system, or both, which causes corruption
   3857 	 * of NFS-backed files when this cache mode is used.  We have
   3858 	 * an ugly work-around for this problem (disable r/w-allocate
   3859 	 * for managed kernel mappings), but the bug is still evil enough
   3860 	 * to consider this cache mode "experimental".
   3861 	 */
   3862 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
   3863 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
   3864 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
   3865 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   3866 
   3867 #ifdef XSCALE_CACHE_WRITE_THROUGH
   3868 	/*
   3869 	 * Some versions of the XScale core have various bugs in
   3870 	 * their cache units, the work-around for which is to run
   3871 	 * the cache in write-through mode.  Unfortunately, this
   3872 	 * has a major (negative) impact on performance.  So, we
   3873 	 * go ahead and run fast-and-loose, in the hopes that we
   3874 	 * don't line up the planets in a way that will trip the
   3875 	 * bugs.
   3876 	 *
   3877 	 * However, we give you the option to be slow-but-correct.
   3878 	 */
   3879 	pte_l1_s_cache_mode = L1_S_C;
   3880 	pte_l2_l_cache_mode = L2_C;
   3881 	pte_l2_s_cache_mode = L2_C;
   3882 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   3883 
   3884 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   3885 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   3886 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   3887 
   3888 	pte_l1_s_proto = L1_S_PROTO_xscale;
   3889 	pte_l1_c_proto = L1_C_PROTO_xscale;
   3890 	pte_l2_s_proto = L2_S_PROTO_xscale;
   3891 
   3892 	pmap_copy_page_func = pmap_copy_page_xscale;
   3893 	pmap_zero_page_func = pmap_zero_page_xscale;
   3894 
   3895 	/*
   3896 	 * Disable ECC protection of page table access, for now.
   3897 	 */
   3898 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   3899 		: "=r" (auxctl));
   3900 	auxctl &= ~XSCALE_AUXCTL_P;
   3901 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   3902 		:
   3903 		: "r" (auxctl));
   3904 }
   3905 
   3906 /*
   3907  * xscale_setup_minidata:
   3908  *
   3909  *	Set up the mini-data cache clean area.  We require the
   3910  *	caller to allocate the right amount of physically and
   3911  *	virtually contiguous space.
   3912  */
   3913 void
   3914 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   3915 {
   3916 	extern vaddr_t xscale_minidata_clean_addr;
   3917 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   3918 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3919 	pt_entry_t *pte;
   3920 	vsize_t size;
   3921 	uint32_t auxctl;
   3922 
   3923 	xscale_minidata_clean_addr = va;
   3924 
   3925 	/* Round it to page size. */
   3926 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   3927 
   3928 	for (; size != 0;
   3929 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   3930 		pte = (pt_entry_t *)
   3931 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3932 		if (pte == NULL)
   3933 			panic("xscale_setup_minidata: can't find L2 table for "
   3934 			    "VA 0x%08lx", va);
   3935 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3936 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   3937 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   3938 	}
   3939 
   3940 	/*
   3941 	 * Configure the mini-data cache for write-back with
   3942 	 * read/write-allocate.
   3943 	 *
   3944 	 * NOTE: In order to reconfigure the mini-data cache, we must
   3945 	 * make sure it contains no valid data!  In order to do that,
   3946 	 * we must issue a global data cache invalidate command!
   3947 	 *
   3948 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   3949 	 * THIS IS VERY IMPORTANT!
   3950 	 */
   3951 
   3952 	/* Invalidate data and mini-data. */
   3953 	__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
   3954 		:
   3955 		: "r" (auxctl));
   3956 
   3957 
   3958 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   3959 		: "=r" (auxctl));
   3960 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   3961 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   3962 		:
   3963 		: "r" (auxctl));
   3964 }
   3965 #endif /* ARM_MMU_XSCALE == 1 */
   3966