pmap.c revision 1.111 1 /* $NetBSD: pmap.c,v 1.111 2002/08/21 21:22:52 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.111 2002/08/21 21:22:52 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 /*
199 * pool/cache that PT-PT's are allocated from
200 */
201
202 struct pool pmap_ptpt_pool;
203 struct pool_cache pmap_ptpt_cache;
204 u_int pmap_ptpt_cache_generation;
205
206 static void *pmap_ptpt_page_alloc(struct pool *, int);
207 static void pmap_ptpt_page_free(struct pool *, void *);
208
209 struct pool_allocator pmap_ptpt_allocator = {
210 pmap_ptpt_page_alloc, pmap_ptpt_page_free,
211 };
212
213 static int pmap_ptpt_ctor(void *, void *, int);
214
215 static pt_entry_t *csrc_pte, *cdst_pte;
216 static vaddr_t csrcp, cdstp;
217
218 char *memhook;
219 extern caddr_t msgbufaddr;
220
221 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
222 /*
223 * locking data structures
224 */
225
226 static struct lock pmap_main_lock;
227 static struct simplelock pvalloc_lock;
228 static struct simplelock pmaps_lock;
229 #ifdef LOCKDEBUG
230 #define PMAP_MAP_TO_HEAD_LOCK() \
231 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
232 #define PMAP_MAP_TO_HEAD_UNLOCK() \
233 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
234
235 #define PMAP_HEAD_TO_MAP_LOCK() \
236 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
237 #define PMAP_HEAD_TO_MAP_UNLOCK() \
238 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
239 #else
240 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
241 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
242 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
243 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
244 #endif /* LOCKDEBUG */
245
246 /*
247 * pv_page management structures: locked by pvalloc_lock
248 */
249
250 TAILQ_HEAD(pv_pagelist, pv_page);
251 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
252 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
253 static int pv_nfpvents; /* # of free pv entries */
254 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
255 static vaddr_t pv_cachedva; /* cached VA for later use */
256
257 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
258 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
259 /* high water mark */
260
261 /*
262 * local prototypes
263 */
264
265 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
266 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
267 #define ALLOCPV_NEED 0 /* need PV now */
268 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
269 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
270 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
271 static void pmap_enter_pv __P((struct vm_page *,
272 struct pv_entry *, struct pmap *,
273 vaddr_t, struct vm_page *, int));
274 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
275 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
276 static void pmap_free_pv_doit __P((struct pv_entry *));
277 static void pmap_free_pvpage __P((void));
278 static boolean_t pmap_is_curpmap __P((struct pmap *));
279 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
280 vaddr_t));
281 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
282 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
283
284 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
285 u_int, u_int));
286
287 /*
288 * Structure that describes and L1 table.
289 */
290 struct l1pt {
291 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
292 struct pglist pt_plist; /* Allocated page list */
293 vaddr_t pt_va; /* Allocated virtual address */
294 int pt_flags; /* Flags */
295 };
296 #define PTFLAG_STATIC 0x01 /* Statically allocated */
297 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
298 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
299
300 static void pmap_free_l1pt __P((struct l1pt *));
301 static int pmap_allocpagedir __P((struct pmap *));
302 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
303 static void pmap_remove_all __P((struct vm_page *));
304
305 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
306 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
307 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
308
309 extern paddr_t physical_start;
310 extern paddr_t physical_end;
311 extern unsigned int free_pages;
312 extern int max_processes;
313
314 vaddr_t virtual_avail;
315 vaddr_t virtual_end;
316 vaddr_t pmap_curmaxkvaddr;
317
318 vaddr_t avail_start;
319 vaddr_t avail_end;
320
321 extern pv_addr_t systempage;
322
323 /* Variables used by the L1 page table queue code */
324 SIMPLEQ_HEAD(l1pt_queue, l1pt);
325 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
326 static int l1pt_static_queue_count; /* items in the static l1 queue */
327 static int l1pt_static_create_count; /* static l1 items created */
328 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
329 static int l1pt_queue_count; /* items in the l1 queue */
330 static int l1pt_create_count; /* stat - L1's create count */
331 static int l1pt_reuse_count; /* stat - L1's reused count */
332
333 /* Local function prototypes (not used outside this file) */
334 void pmap_pinit __P((struct pmap *));
335 void pmap_freepagedir __P((struct pmap *));
336
337 /* Other function prototypes */
338 extern void bzero_page __P((vaddr_t));
339 extern void bcopy_page __P((vaddr_t, vaddr_t));
340
341 struct l1pt *pmap_alloc_l1pt __P((void));
342 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
343 vaddr_t l2pa, boolean_t));
344
345 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
346 static void pmap_unmap_ptes __P((struct pmap *));
347
348 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
349 pt_entry_t *, boolean_t));
350 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
351 pt_entry_t *, boolean_t));
352 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
353 pt_entry_t *, boolean_t));
354
355 /*
356 * real definition of pv_entry.
357 */
358
359 struct pv_entry {
360 struct pv_entry *pv_next; /* next pv_entry */
361 struct pmap *pv_pmap; /* pmap where mapping lies */
362 vaddr_t pv_va; /* virtual address for mapping */
363 int pv_flags; /* flags */
364 struct vm_page *pv_ptp; /* vm_page for the ptp */
365 };
366
367 /*
368 * pv_entrys are dynamically allocated in chunks from a single page.
369 * we keep track of how many pv_entrys are in use for each page and
370 * we can free pv_entry pages if needed. there is one lock for the
371 * entire allocation system.
372 */
373
374 struct pv_page_info {
375 TAILQ_ENTRY(pv_page) pvpi_list;
376 struct pv_entry *pvpi_pvfree;
377 int pvpi_nfree;
378 };
379
380 /*
381 * number of pv_entry's in a pv_page
382 * (note: won't work on systems where NPBG isn't a constant)
383 */
384
385 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
386 sizeof(struct pv_entry))
387
388 /*
389 * a pv_page: where pv_entrys are allocated from
390 */
391
392 struct pv_page {
393 struct pv_page_info pvinfo;
394 struct pv_entry pvents[PVE_PER_PVPAGE];
395 };
396
397 #ifdef MYCROFT_HACK
398 int mycroft_hack = 0;
399 #endif
400
401 /* Function to set the debug level of the pmap code */
402
403 #ifdef PMAP_DEBUG
404 void
405 pmap_debug(int level)
406 {
407 pmap_debug_level = level;
408 printf("pmap_debug: level=%d\n", pmap_debug_level);
409 }
410 #endif /* PMAP_DEBUG */
411
412 __inline static boolean_t
413 pmap_is_curpmap(struct pmap *pmap)
414 {
415
416 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
417 pmap == pmap_kernel())
418 return (TRUE);
419
420 return (FALSE);
421 }
422
423 /*
424 * p v _ e n t r y f u n c t i o n s
425 */
426
427 /*
428 * pv_entry allocation functions:
429 * the main pv_entry allocation functions are:
430 * pmap_alloc_pv: allocate a pv_entry structure
431 * pmap_free_pv: free one pv_entry
432 * pmap_free_pvs: free a list of pv_entrys
433 *
434 * the rest are helper functions
435 */
436
437 /*
438 * pmap_alloc_pv: inline function to allocate a pv_entry structure
439 * => we lock pvalloc_lock
440 * => if we fail, we call out to pmap_alloc_pvpage
441 * => 3 modes:
442 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
443 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
444 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
445 * one now
446 *
447 * "try" is for optional functions like pmap_copy().
448 */
449
450 __inline static struct pv_entry *
451 pmap_alloc_pv(struct pmap *pmap, int mode)
452 {
453 struct pv_page *pvpage;
454 struct pv_entry *pv;
455
456 simple_lock(&pvalloc_lock);
457
458 pvpage = TAILQ_FIRST(&pv_freepages);
459
460 if (pvpage != NULL) {
461 pvpage->pvinfo.pvpi_nfree--;
462 if (pvpage->pvinfo.pvpi_nfree == 0) {
463 /* nothing left in this one? */
464 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
465 }
466 pv = pvpage->pvinfo.pvpi_pvfree;
467 KASSERT(pv);
468 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
469 pv_nfpvents--; /* took one from pool */
470 } else {
471 pv = NULL; /* need more of them */
472 }
473
474 /*
475 * if below low water mark or we didn't get a pv_entry we try and
476 * create more pv_entrys ...
477 */
478
479 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
480 if (pv == NULL)
481 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
482 mode : ALLOCPV_NEED);
483 else
484 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
485 }
486
487 simple_unlock(&pvalloc_lock);
488 return(pv);
489 }
490
491 /*
492 * pmap_alloc_pvpage: maybe allocate a new pvpage
493 *
494 * if need_entry is false: try and allocate a new pv_page
495 * if need_entry is true: try and allocate a new pv_page and return a
496 * new pv_entry from it. if we are unable to allocate a pv_page
497 * we make a last ditch effort to steal a pv_page from some other
498 * mapping. if that fails, we panic...
499 *
500 * => we assume that the caller holds pvalloc_lock
501 */
502
503 static struct pv_entry *
504 pmap_alloc_pvpage(struct pmap *pmap, int mode)
505 {
506 struct vm_page *pg;
507 struct pv_page *pvpage;
508 struct pv_entry *pv;
509 int s;
510
511 /*
512 * if we need_entry and we've got unused pv_pages, allocate from there
513 */
514
515 pvpage = TAILQ_FIRST(&pv_unusedpgs);
516 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
517
518 /* move it to pv_freepages list */
519 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
520 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
521
522 /* allocate a pv_entry */
523 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
524 pv = pvpage->pvinfo.pvpi_pvfree;
525 KASSERT(pv);
526 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
527
528 pv_nfpvents--; /* took one from pool */
529 return(pv);
530 }
531
532 /*
533 * see if we've got a cached unmapped VA that we can map a page in.
534 * if not, try to allocate one.
535 */
536
537
538 if (pv_cachedva == 0) {
539 s = splvm();
540 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
541 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
542 splx(s);
543 if (pv_cachedva == 0) {
544 return (NULL);
545 }
546 }
547
548 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
549 UVM_PGA_USERESERVE);
550
551 if (pg == NULL)
552 return (NULL);
553 pg->flags &= ~PG_BUSY; /* never busy */
554
555 /*
556 * add a mapping for our new pv_page and free its entrys (save one!)
557 *
558 * NOTE: If we are allocating a PV page for the kernel pmap, the
559 * pmap is already locked! (...but entering the mapping is safe...)
560 */
561
562 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
563 VM_PROT_READ|VM_PROT_WRITE);
564 pmap_update(pmap_kernel());
565 pvpage = (struct pv_page *) pv_cachedva;
566 pv_cachedva = 0;
567 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
568 }
569
570 /*
571 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
572 *
573 * => caller must hold pvalloc_lock
574 * => if need_entry is true, we allocate and return one pv_entry
575 */
576
577 static struct pv_entry *
578 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
579 {
580 int tofree, lcv;
581
582 /* do we need to return one? */
583 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
584
585 pvp->pvinfo.pvpi_pvfree = NULL;
586 pvp->pvinfo.pvpi_nfree = tofree;
587 for (lcv = 0 ; lcv < tofree ; lcv++) {
588 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
589 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
590 }
591 if (need_entry)
592 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
593 else
594 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
595 pv_nfpvents += tofree;
596 return((need_entry) ? &pvp->pvents[lcv] : NULL);
597 }
598
599 /*
600 * pmap_free_pv_doit: actually free a pv_entry
601 *
602 * => do not call this directly! instead use either
603 * 1. pmap_free_pv ==> free a single pv_entry
604 * 2. pmap_free_pvs => free a list of pv_entrys
605 * => we must be holding pvalloc_lock
606 */
607
608 __inline static void
609 pmap_free_pv_doit(struct pv_entry *pv)
610 {
611 struct pv_page *pvp;
612
613 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
614 pv_nfpvents++;
615 pvp->pvinfo.pvpi_nfree++;
616
617 /* nfree == 1 => fully allocated page just became partly allocated */
618 if (pvp->pvinfo.pvpi_nfree == 1) {
619 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
620 }
621
622 /* free it */
623 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
624 pvp->pvinfo.pvpi_pvfree = pv;
625
626 /*
627 * are all pv_page's pv_entry's free? move it to unused queue.
628 */
629
630 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
631 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
632 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
633 }
634 }
635
636 /*
637 * pmap_free_pv: free a single pv_entry
638 *
639 * => we gain the pvalloc_lock
640 */
641
642 __inline static void
643 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
644 {
645 simple_lock(&pvalloc_lock);
646 pmap_free_pv_doit(pv);
647
648 /*
649 * Can't free the PV page if the PV entries were associated with
650 * the kernel pmap; the pmap is already locked.
651 */
652 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
653 pmap != pmap_kernel())
654 pmap_free_pvpage();
655
656 simple_unlock(&pvalloc_lock);
657 }
658
659 /*
660 * pmap_free_pvs: free a list of pv_entrys
661 *
662 * => we gain the pvalloc_lock
663 */
664
665 __inline static void
666 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
667 {
668 struct pv_entry *nextpv;
669
670 simple_lock(&pvalloc_lock);
671
672 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
673 nextpv = pvs->pv_next;
674 pmap_free_pv_doit(pvs);
675 }
676
677 /*
678 * Can't free the PV page if the PV entries were associated with
679 * the kernel pmap; the pmap is already locked.
680 */
681 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
682 pmap != pmap_kernel())
683 pmap_free_pvpage();
684
685 simple_unlock(&pvalloc_lock);
686 }
687
688
689 /*
690 * pmap_free_pvpage: try and free an unused pv_page structure
691 *
692 * => assume caller is holding the pvalloc_lock and that
693 * there is a page on the pv_unusedpgs list
694 * => if we can't get a lock on the kmem_map we try again later
695 */
696
697 static void
698 pmap_free_pvpage(void)
699 {
700 int s;
701 struct vm_map *map;
702 struct vm_map_entry *dead_entries;
703 struct pv_page *pvp;
704
705 s = splvm(); /* protect kmem_map */
706
707 pvp = TAILQ_FIRST(&pv_unusedpgs);
708
709 /*
710 * note: watch out for pv_initpage which is allocated out of
711 * kernel_map rather than kmem_map.
712 */
713 if (pvp == pv_initpage)
714 map = kernel_map;
715 else
716 map = kmem_map;
717 if (vm_map_lock_try(map)) {
718
719 /* remove pvp from pv_unusedpgs */
720 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
721
722 /* unmap the page */
723 dead_entries = NULL;
724 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
725 &dead_entries);
726 vm_map_unlock(map);
727
728 if (dead_entries != NULL)
729 uvm_unmap_detach(dead_entries, 0);
730
731 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
732 }
733 if (pvp == pv_initpage)
734 /* no more initpage, we've freed it */
735 pv_initpage = NULL;
736
737 splx(s);
738 }
739
740 /*
741 * main pv_entry manipulation functions:
742 * pmap_enter_pv: enter a mapping onto a vm_page list
743 * pmap_remove_pv: remove a mappiing from a vm_page list
744 *
745 * NOTE: pmap_enter_pv expects to lock the pvh itself
746 * pmap_remove_pv expects te caller to lock the pvh before calling
747 */
748
749 /*
750 * pmap_enter_pv: enter a mapping onto a vm_page lst
751 *
752 * => caller should hold the proper lock on pmap_main_lock
753 * => caller should have pmap locked
754 * => we will gain the lock on the vm_page and allocate the new pv_entry
755 * => caller should adjust ptp's wire_count before calling
756 * => caller should not adjust pmap's wire_count
757 */
758
759 __inline static void
760 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
761 vaddr_t va, struct vm_page *ptp, int flags)
762 {
763 pve->pv_pmap = pmap;
764 pve->pv_va = va;
765 pve->pv_ptp = ptp; /* NULL for kernel pmap */
766 pve->pv_flags = flags;
767 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
768 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
769 pg->mdpage.pvh_list = pve; /* ... locked list */
770 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
771 if (pve->pv_flags & PVF_WIRED)
772 ++pmap->pm_stats.wired_count;
773 #ifdef PMAP_ALIAS_DEBUG
774 {
775 int s = splhigh();
776 if (pve->pv_flags & PVF_WRITE)
777 pg->mdpage.rw_mappings++;
778 else
779 pg->mdpage.ro_mappings++;
780 if (pg->mdpage.rw_mappings != 0 &&
781 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
782 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
783 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
784 pg->mdpage.krw_mappings);
785 }
786 splx(s);
787 }
788 #endif /* PMAP_ALIAS_DEBUG */
789 }
790
791 /*
792 * pmap_remove_pv: try to remove a mapping from a pv_list
793 *
794 * => caller should hold proper lock on pmap_main_lock
795 * => pmap should be locked
796 * => caller should hold lock on vm_page [so that attrs can be adjusted]
797 * => caller should adjust ptp's wire_count and free PTP if needed
798 * => caller should NOT adjust pmap's wire_count
799 * => we return the removed pve
800 */
801
802 __inline static struct pv_entry *
803 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
804 {
805 struct pv_entry *pve, **prevptr;
806
807 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
808 pve = *prevptr;
809 while (pve) {
810 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
811 *prevptr = pve->pv_next; /* remove it! */
812 if (pve->pv_flags & PVF_WIRED)
813 --pmap->pm_stats.wired_count;
814 #ifdef PMAP_ALIAS_DEBUG
815 {
816 int s = splhigh();
817 if (pve->pv_flags & PVF_WRITE) {
818 KASSERT(pg->mdpage.rw_mappings != 0);
819 pg->mdpage.rw_mappings--;
820 } else {
821 KASSERT(pg->mdpage.ro_mappings != 0);
822 pg->mdpage.ro_mappings--;
823 }
824 splx(s);
825 }
826 #endif /* PMAP_ALIAS_DEBUG */
827 break;
828 }
829 prevptr = &pve->pv_next; /* previous pointer */
830 pve = pve->pv_next; /* advance */
831 }
832 return(pve); /* return removed pve */
833 }
834
835 /*
836 *
837 * pmap_modify_pv: Update pv flags
838 *
839 * => caller should hold lock on vm_page [so that attrs can be adjusted]
840 * => caller should NOT adjust pmap's wire_count
841 * => caller must call pmap_vac_me_harder() if writable status of a page
842 * may have changed.
843 * => we return the old flags
844 *
845 * Modify a physical-virtual mapping in the pv table
846 */
847
848 static /* __inline */ u_int
849 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
850 u_int bic_mask, u_int eor_mask)
851 {
852 struct pv_entry *npv;
853 u_int flags, oflags;
854
855 /*
856 * There is at least one VA mapping this page.
857 */
858
859 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
860 if (pmap == npv->pv_pmap && va == npv->pv_va) {
861 oflags = npv->pv_flags;
862 npv->pv_flags = flags =
863 ((oflags & ~bic_mask) ^ eor_mask);
864 if ((flags ^ oflags) & PVF_WIRED) {
865 if (flags & PVF_WIRED)
866 ++pmap->pm_stats.wired_count;
867 else
868 --pmap->pm_stats.wired_count;
869 }
870 #ifdef PMAP_ALIAS_DEBUG
871 {
872 int s = splhigh();
873 if ((flags ^ oflags) & PVF_WRITE) {
874 if (flags & PVF_WRITE) {
875 pg->mdpage.rw_mappings++;
876 pg->mdpage.ro_mappings--;
877 if (pg->mdpage.rw_mappings != 0 &&
878 (pg->mdpage.kro_mappings != 0 ||
879 pg->mdpage.krw_mappings != 0)) {
880 printf("pmap_modify_pv: rw %u, "
881 "kro %u, krw %u\n",
882 pg->mdpage.rw_mappings,
883 pg->mdpage.kro_mappings,
884 pg->mdpage.krw_mappings);
885 }
886 } else {
887 KASSERT(pg->mdpage.rw_mappings != 0);
888 pg->mdpage.rw_mappings--;
889 pg->mdpage.ro_mappings++;
890 }
891 }
892 splx(s);
893 }
894 #endif /* PMAP_ALIAS_DEBUG */
895 return (oflags);
896 }
897 }
898 return (0);
899 }
900
901 /*
902 * Map the specified level 2 pagetable into the level 1 page table for
903 * the given pmap to cover a chunk of virtual address space starting from the
904 * address specified.
905 */
906 static __inline void
907 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
908 {
909 vaddr_t ptva;
910
911 /* Calculate the index into the L1 page table. */
912 ptva = (va >> L1_S_SHIFT) & ~3;
913
914 /* Map page table into the L1. */
915 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
916 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
917 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
918 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
919 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
920
921 /* Map the page table into the page table area. */
922 if (selfref)
923 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
924 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
925 }
926
927 #if 0
928 static __inline void
929 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
930 {
931 vaddr_t ptva;
932
933 /* Calculate the index into the L1 page table. */
934 ptva = (va >> L1_S_SHIFT) & ~3;
935
936 /* Unmap page table from the L1. */
937 pmap->pm_pdir[ptva + 0] = 0;
938 pmap->pm_pdir[ptva + 1] = 0;
939 pmap->pm_pdir[ptva + 2] = 0;
940 pmap->pm_pdir[ptva + 3] = 0;
941 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
942
943 /* Unmap the page table from the page table area. */
944 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
945 }
946 #endif
947
948 /*
949 * Used to map a range of physical addresses into kernel
950 * virtual address space.
951 *
952 * For now, VM is already on, we only need to map the
953 * specified memory.
954 *
955 * XXX This routine should eventually go away; it's only used
956 * XXX by machine-dependent crash dump code.
957 */
958 vaddr_t
959 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
960 {
961 pt_entry_t *pte;
962
963 while (spa < epa) {
964 pte = vtopte(va);
965
966 *pte = L2_S_PROTO | spa |
967 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
968 cpu_tlb_flushID_SE(va);
969 va += NBPG;
970 spa += NBPG;
971 }
972 pmap_update(pmap_kernel());
973 return(va);
974 }
975
976
977 /*
978 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
979 *
980 * bootstrap the pmap system. This is called from initarm and allows
981 * the pmap system to initailise any structures it requires.
982 *
983 * Currently this sets up the kernel_pmap that is statically allocated
984 * and also allocated virtual addresses for certain page hooks.
985 * Currently the only one page hook is allocated that is used
986 * to zero physical pages of memory.
987 * It also initialises the start and end address of the kernel data space.
988 */
989
990 char *boot_head;
991
992 void
993 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
994 {
995 pt_entry_t *pte;
996
997 pmap_kernel()->pm_pdir = kernel_l1pt;
998 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
999 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1000 simple_lock_init(&pmap_kernel()->pm_lock);
1001 pmap_kernel()->pm_obj.pgops = NULL;
1002 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1003 pmap_kernel()->pm_obj.uo_npages = 0;
1004 pmap_kernel()->pm_obj.uo_refs = 1;
1005
1006 virtual_avail = KERNEL_VM_BASE;
1007 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1008
1009 /*
1010 * now we allocate the "special" VAs which are used for tmp mappings
1011 * by the pmap (and other modules). we allocate the VAs by advancing
1012 * virtual_avail (note that there are no pages mapped at these VAs).
1013 * we find the PTE that maps the allocated VA via the linear PTE
1014 * mapping.
1015 */
1016
1017 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1018
1019 csrcp = virtual_avail; csrc_pte = pte;
1020 virtual_avail += PAGE_SIZE; pte++;
1021
1022 cdstp = virtual_avail; cdst_pte = pte;
1023 virtual_avail += PAGE_SIZE; pte++;
1024
1025 memhook = (char *) virtual_avail; /* don't need pte */
1026 virtual_avail += PAGE_SIZE; pte++;
1027
1028 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1029 virtual_avail += round_page(MSGBUFSIZE);
1030 pte += atop(round_page(MSGBUFSIZE));
1031
1032 /*
1033 * init the static-global locks and global lists.
1034 */
1035 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1036 simple_lock_init(&pvalloc_lock);
1037 simple_lock_init(&pmaps_lock);
1038 LIST_INIT(&pmaps);
1039 TAILQ_INIT(&pv_freepages);
1040 TAILQ_INIT(&pv_unusedpgs);
1041
1042 /*
1043 * initialize the pmap pool.
1044 */
1045
1046 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1047 &pool_allocator_nointr);
1048
1049 /*
1050 * initialize the PT-PT pool and cache.
1051 */
1052
1053 pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1054 &pmap_ptpt_allocator);
1055 pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1056 pmap_ptpt_ctor, NULL, NULL);
1057
1058 cpu_dcache_wbinv_all();
1059 }
1060
1061 /*
1062 * void pmap_init(void)
1063 *
1064 * Initialize the pmap module.
1065 * Called by vm_init() in vm/vm_init.c in order to initialise
1066 * any structures that the pmap system needs to map virtual memory.
1067 */
1068
1069 extern int physmem;
1070
1071 void
1072 pmap_init(void)
1073 {
1074
1075 /*
1076 * Set the available memory vars - These do not map to real memory
1077 * addresses and cannot as the physical memory is fragmented.
1078 * They are used by ps for %mem calculations.
1079 * One could argue whether this should be the entire memory or just
1080 * the memory that is useable in a user process.
1081 */
1082 avail_start = 0;
1083 avail_end = physmem * NBPG;
1084
1085 /*
1086 * now we need to free enough pv_entry structures to allow us to get
1087 * the kmem_map/kmem_object allocated and inited (done after this
1088 * function is finished). to do this we allocate one bootstrap page out
1089 * of kernel_map and use it to provide an initial pool of pv_entry
1090 * structures. we never free this page.
1091 */
1092
1093 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1094 if (pv_initpage == NULL)
1095 panic("pmap_init: pv_initpage");
1096 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1097 pv_nfpvents = 0;
1098 (void) pmap_add_pvpage(pv_initpage, FALSE);
1099
1100 pmap_initialized = TRUE;
1101
1102 /* Initialise our L1 page table queues and counters */
1103 SIMPLEQ_INIT(&l1pt_static_queue);
1104 l1pt_static_queue_count = 0;
1105 l1pt_static_create_count = 0;
1106 SIMPLEQ_INIT(&l1pt_queue);
1107 l1pt_queue_count = 0;
1108 l1pt_create_count = 0;
1109 l1pt_reuse_count = 0;
1110 }
1111
1112 /*
1113 * pmap_postinit()
1114 *
1115 * This routine is called after the vm and kmem subsystems have been
1116 * initialised. This allows the pmap code to perform any initialisation
1117 * that can only be done one the memory allocation is in place.
1118 */
1119
1120 void
1121 pmap_postinit(void)
1122 {
1123 int loop;
1124 struct l1pt *pt;
1125
1126 #ifdef PMAP_STATIC_L1S
1127 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1128 #else /* PMAP_STATIC_L1S */
1129 for (loop = 0; loop < max_processes; ++loop) {
1130 #endif /* PMAP_STATIC_L1S */
1131 /* Allocate a L1 page table */
1132 pt = pmap_alloc_l1pt();
1133 if (!pt)
1134 panic("Cannot allocate static L1 page tables\n");
1135
1136 /* Clean it */
1137 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1138 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1139 /* Add the page table to the queue */
1140 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1141 ++l1pt_static_queue_count;
1142 ++l1pt_static_create_count;
1143 }
1144 }
1145
1146
1147 /*
1148 * Create and return a physical map.
1149 *
1150 * If the size specified for the map is zero, the map is an actual physical
1151 * map, and may be referenced by the hardware.
1152 *
1153 * If the size specified is non-zero, the map will be used in software only,
1154 * and is bounded by that size.
1155 */
1156
1157 pmap_t
1158 pmap_create(void)
1159 {
1160 struct pmap *pmap;
1161
1162 /*
1163 * Fetch pmap entry from the pool
1164 */
1165
1166 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1167 /* XXX is this really needed! */
1168 memset(pmap, 0, sizeof(*pmap));
1169
1170 simple_lock_init(&pmap->pm_obj.vmobjlock);
1171 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1172 TAILQ_INIT(&pmap->pm_obj.memq);
1173 pmap->pm_obj.uo_npages = 0;
1174 pmap->pm_obj.uo_refs = 1;
1175 pmap->pm_stats.wired_count = 0;
1176 pmap->pm_stats.resident_count = 1;
1177 pmap->pm_ptphint = NULL;
1178
1179 /* Now init the machine part of the pmap */
1180 pmap_pinit(pmap);
1181 return(pmap);
1182 }
1183
1184 /*
1185 * pmap_alloc_l1pt()
1186 *
1187 * This routine allocates physical and virtual memory for a L1 page table
1188 * and wires it.
1189 * A l1pt structure is returned to describe the allocated page table.
1190 *
1191 * This routine is allowed to fail if the required memory cannot be allocated.
1192 * In this case NULL is returned.
1193 */
1194
1195 struct l1pt *
1196 pmap_alloc_l1pt(void)
1197 {
1198 paddr_t pa;
1199 vaddr_t va;
1200 struct l1pt *pt;
1201 int error;
1202 struct vm_page *m;
1203
1204 /* Allocate virtual address space for the L1 page table */
1205 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1206 if (va == 0) {
1207 #ifdef DIAGNOSTIC
1208 PDEBUG(0,
1209 printf("pmap: Cannot allocate pageable memory for L1\n"));
1210 #endif /* DIAGNOSTIC */
1211 return(NULL);
1212 }
1213
1214 /* Allocate memory for the l1pt structure */
1215 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1216
1217 /*
1218 * Allocate pages from the VM system.
1219 */
1220 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1221 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1222 if (error) {
1223 #ifdef DIAGNOSTIC
1224 PDEBUG(0,
1225 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1226 error));
1227 #endif /* DIAGNOSTIC */
1228 /* Release the resources we already have claimed */
1229 free(pt, M_VMPMAP);
1230 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1231 return(NULL);
1232 }
1233
1234 /* Map our physical pages into our virtual space */
1235 pt->pt_va = va;
1236 m = TAILQ_FIRST(&pt->pt_plist);
1237 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1238 pa = VM_PAGE_TO_PHYS(m);
1239
1240 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1241
1242 va += NBPG;
1243 m = m->pageq.tqe_next;
1244 }
1245
1246 #ifdef DIAGNOSTIC
1247 if (m)
1248 panic("pmap_alloc_l1pt: pglist not empty\n");
1249 #endif /* DIAGNOSTIC */
1250
1251 pt->pt_flags = 0;
1252 return(pt);
1253 }
1254
1255 /*
1256 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1257 */
1258 static void
1259 pmap_free_l1pt(struct l1pt *pt)
1260 {
1261 /* Separate the physical memory for the virtual space */
1262 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1263 pmap_update(pmap_kernel());
1264
1265 /* Return the physical memory */
1266 uvm_pglistfree(&pt->pt_plist);
1267
1268 /* Free the virtual space */
1269 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1270
1271 /* Free the l1pt structure */
1272 free(pt, M_VMPMAP);
1273 }
1274
1275 /*
1276 * pmap_ptpt_page_alloc:
1277 *
1278 * Back-end page allocator for the PT-PT pool.
1279 */
1280 static void *
1281 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1282 {
1283 struct vm_page *pg;
1284 pt_entry_t *pte;
1285 vaddr_t va;
1286
1287 /* XXX PR_WAITOK? */
1288 va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1289 if (va == 0)
1290 return (NULL);
1291
1292 for (;;) {
1293 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1294 if (pg != NULL)
1295 break;
1296 if ((flags & PR_WAITOK) == 0) {
1297 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1298 return (NULL);
1299 }
1300 uvm_wait("pmap_ptpt");
1301 }
1302
1303 pte = vtopte(va);
1304 KDASSERT(pmap_pte_v(pte) == 0);
1305
1306 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1307 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1308 #ifdef PMAP_ALIAS_DEBUG
1309 {
1310 int s = splhigh();
1311 pg->mdpage.krw_mappings++;
1312 splx(s);
1313 }
1314 #endif /* PMAP_ALIAS_DEBUG */
1315
1316 return ((void *) va);
1317 }
1318
1319 /*
1320 * pmap_ptpt_page_free:
1321 *
1322 * Back-end page free'er for the PT-PT pool.
1323 */
1324 static void
1325 pmap_ptpt_page_free(struct pool *pp, void *v)
1326 {
1327 vaddr_t va = (vaddr_t) v;
1328 paddr_t pa;
1329
1330 pa = vtophys(va);
1331
1332 pmap_kremove(va, L2_TABLE_SIZE);
1333 pmap_update(pmap_kernel());
1334
1335 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1336
1337 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1338 }
1339
1340 /*
1341 * pmap_ptpt_ctor:
1342 *
1343 * Constructor for the PT-PT cache.
1344 */
1345 static int
1346 pmap_ptpt_ctor(void *arg, void *object, int flags)
1347 {
1348 caddr_t vptpt = object;
1349
1350 /* Page is already zero'd. */
1351
1352 /*
1353 * Map in kernel PTs.
1354 *
1355 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1356 */
1357 memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1358 (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1359 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1360 (KERNEL_PD_SIZE >> 2));
1361
1362 return (0);
1363 }
1364
1365 /*
1366 * Allocate a page directory.
1367 * This routine will either allocate a new page directory from the pool
1368 * of L1 page tables currently held by the kernel or it will allocate
1369 * a new one via pmap_alloc_l1pt().
1370 * It will then initialise the l1 page table for use.
1371 */
1372 static int
1373 pmap_allocpagedir(struct pmap *pmap)
1374 {
1375 vaddr_t vptpt;
1376 paddr_t pa;
1377 struct l1pt *pt;
1378 u_int gen;
1379
1380 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1381
1382 /* Do we have any spare L1's lying around ? */
1383 if (l1pt_static_queue_count) {
1384 --l1pt_static_queue_count;
1385 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1386 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1387 } else if (l1pt_queue_count) {
1388 --l1pt_queue_count;
1389 pt = SIMPLEQ_FIRST(&l1pt_queue);
1390 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1391 ++l1pt_reuse_count;
1392 } else {
1393 pt = pmap_alloc_l1pt();
1394 if (!pt)
1395 return(ENOMEM);
1396 ++l1pt_create_count;
1397 }
1398
1399 /* Store the pointer to the l1 descriptor in the pmap. */
1400 pmap->pm_l1pt = pt;
1401
1402 /* Get the physical address of the start of the l1 */
1403 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1404
1405 /* Store the virtual address of the l1 in the pmap. */
1406 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1407
1408 /* Clean the L1 if it is dirty */
1409 if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1410 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1411 cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1412 (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1413 }
1414
1415 /* Allocate a page table to map all the page tables for this pmap */
1416 KASSERT(pmap->pm_vptpt == 0);
1417
1418 try_again:
1419 gen = pmap_ptpt_cache_generation;
1420 vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1421 if (vptpt == NULL) {
1422 PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1423 pmap_freepagedir(pmap);
1424 return (ENOMEM);
1425 }
1426
1427 /* need to lock this all up for growkernel */
1428 simple_lock(&pmaps_lock);
1429
1430 if (gen != pmap_ptpt_cache_generation) {
1431 simple_unlock(&pmaps_lock);
1432 pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1433 goto try_again;
1434 }
1435
1436 pmap->pm_vptpt = vptpt;
1437 pmap->pm_pptpt = vtophys(vptpt);
1438
1439 /* Duplicate the kernel mappings. */
1440 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1441 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1442 KERNEL_PD_SIZE);
1443 cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1444 (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1445
1446 /* Wire in this page table */
1447 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1448
1449 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1450
1451 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1452 simple_unlock(&pmaps_lock);
1453
1454 return(0);
1455 }
1456
1457
1458 /*
1459 * Initialize a preallocated and zeroed pmap structure,
1460 * such as one in a vmspace structure.
1461 */
1462
1463 void
1464 pmap_pinit(struct pmap *pmap)
1465 {
1466 int backoff = 6;
1467 int retry = 10;
1468
1469 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1470
1471 /* Keep looping until we succeed in allocating a page directory */
1472 while (pmap_allocpagedir(pmap) != 0) {
1473 /*
1474 * Ok we failed to allocate a suitable block of memory for an
1475 * L1 page table. This means that either:
1476 * 1. 16KB of virtual address space could not be allocated
1477 * 2. 16KB of physically contiguous memory on a 16KB boundary
1478 * could not be allocated.
1479 *
1480 * Since we cannot fail we will sleep for a while and try
1481 * again.
1482 *
1483 * Searching for a suitable L1 PT is expensive:
1484 * to avoid hogging the system when memory is really
1485 * scarce, use an exponential back-off so that
1486 * eventually we won't retry more than once every 8
1487 * seconds. This should allow other processes to run
1488 * to completion and free up resources.
1489 */
1490 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1491 NULL);
1492 if (--retry == 0) {
1493 retry = 10;
1494 if (backoff)
1495 --backoff;
1496 }
1497 }
1498
1499 if (vector_page < KERNEL_BASE) {
1500 /*
1501 * Map the vector page. This will also allocate and map
1502 * an L2 table for it.
1503 */
1504 pmap_enter(pmap, vector_page, systempage.pv_pa,
1505 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1506 pmap_update(pmap);
1507 }
1508 }
1509
1510 void
1511 pmap_freepagedir(struct pmap *pmap)
1512 {
1513 /* Free the memory used for the page table mapping */
1514 if (pmap->pm_vptpt != 0) {
1515 /*
1516 * XXX Objects freed to a pool cache must be in constructed
1517 * XXX form when freed, but we don't free page tables as we
1518 * XXX go, so we need to zap the mappings here.
1519 *
1520 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1521 */
1522 memset((caddr_t) pmap->pm_vptpt, 0,
1523 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1524 pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1525 }
1526
1527 /* junk the L1 page table */
1528 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1529 /* Add the page table to the queue */
1530 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1531 pmap->pm_l1pt, pt_queue);
1532 ++l1pt_static_queue_count;
1533 } else if (l1pt_queue_count < 8) {
1534 /* Add the page table to the queue */
1535 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1536 ++l1pt_queue_count;
1537 } else
1538 pmap_free_l1pt(pmap->pm_l1pt);
1539 }
1540
1541 /*
1542 * Retire the given physical map from service.
1543 * Should only be called if the map contains no valid mappings.
1544 */
1545
1546 void
1547 pmap_destroy(struct pmap *pmap)
1548 {
1549 struct vm_page *page;
1550 int count;
1551
1552 if (pmap == NULL)
1553 return;
1554
1555 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1556
1557 /*
1558 * Drop reference count
1559 */
1560 simple_lock(&pmap->pm_obj.vmobjlock);
1561 count = --pmap->pm_obj.uo_refs;
1562 simple_unlock(&pmap->pm_obj.vmobjlock);
1563 if (count > 0) {
1564 return;
1565 }
1566
1567 /*
1568 * reference count is zero, free pmap resources and then free pmap.
1569 */
1570
1571 /*
1572 * remove it from global list of pmaps
1573 */
1574
1575 simple_lock(&pmaps_lock);
1576 LIST_REMOVE(pmap, pm_list);
1577 simple_unlock(&pmaps_lock);
1578
1579 if (vector_page < KERNEL_BASE) {
1580 /* Remove the vector page mapping */
1581 pmap_remove(pmap, vector_page, vector_page + NBPG);
1582 pmap_update(pmap);
1583 }
1584
1585 /*
1586 * Free any page tables still mapped
1587 * This is only temporay until pmap_enter can count the number
1588 * of mappings made in a page table. Then pmap_remove() can
1589 * reduce the count and free the pagetable when the count
1590 * reaches zero. Note that entries in this list should match the
1591 * contents of the ptpt, however this is faster than walking a 1024
1592 * entries looking for pt's
1593 * taken from i386 pmap.c
1594 */
1595 /*
1596 * vmobjlock must be held while freeing pages
1597 */
1598 simple_lock(&pmap->pm_obj.vmobjlock);
1599 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1600 KASSERT((page->flags & PG_BUSY) == 0);
1601 page->wire_count = 0;
1602 uvm_pagefree(page);
1603 }
1604 simple_unlock(&pmap->pm_obj.vmobjlock);
1605
1606 /* Free the page dir */
1607 pmap_freepagedir(pmap);
1608
1609 /* return the pmap to the pool */
1610 pool_put(&pmap_pmap_pool, pmap);
1611 }
1612
1613
1614 /*
1615 * void pmap_reference(struct pmap *pmap)
1616 *
1617 * Add a reference to the specified pmap.
1618 */
1619
1620 void
1621 pmap_reference(struct pmap *pmap)
1622 {
1623 if (pmap == NULL)
1624 return;
1625
1626 simple_lock(&pmap->pm_lock);
1627 pmap->pm_obj.uo_refs++;
1628 simple_unlock(&pmap->pm_lock);
1629 }
1630
1631 /*
1632 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1633 *
1634 * Return the start and end addresses of the kernel's virtual space.
1635 * These values are setup in pmap_bootstrap and are updated as pages
1636 * are allocated.
1637 */
1638
1639 void
1640 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1641 {
1642 *start = virtual_avail;
1643 *end = virtual_end;
1644 }
1645
1646 /*
1647 * Activate the address space for the specified process. If the process
1648 * is the current process, load the new MMU context.
1649 */
1650 void
1651 pmap_activate(struct proc *p)
1652 {
1653 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1654 struct pcb *pcb = &p->p_addr->u_pcb;
1655
1656 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1657 (paddr_t *)&pcb->pcb_pagedir);
1658
1659 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1660 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1661
1662 if (p == curproc) {
1663 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1664 setttb((u_int)pcb->pcb_pagedir);
1665 }
1666 }
1667
1668 /*
1669 * Deactivate the address space of the specified process.
1670 */
1671 void
1672 pmap_deactivate(struct proc *p)
1673 {
1674 }
1675
1676 /*
1677 * Perform any deferred pmap operations.
1678 */
1679 void
1680 pmap_update(struct pmap *pmap)
1681 {
1682
1683 /*
1684 * We haven't deferred any pmap operations, but we do need to
1685 * make sure TLB/cache operations have completed.
1686 */
1687 cpu_cpwait();
1688 }
1689
1690 /*
1691 * pmap_clean_page()
1692 *
1693 * This is a local function used to work out the best strategy to clean
1694 * a single page referenced by its entry in the PV table. It's used by
1695 * pmap_copy_page, pmap_zero page and maybe some others later on.
1696 *
1697 * Its policy is effectively:
1698 * o If there are no mappings, we don't bother doing anything with the cache.
1699 * o If there is one mapping, we clean just that page.
1700 * o If there are multiple mappings, we clean the entire cache.
1701 *
1702 * So that some functions can be further optimised, it returns 0 if it didn't
1703 * clean the entire cache, or 1 if it did.
1704 *
1705 * XXX One bug in this routine is that if the pv_entry has a single page
1706 * mapped at 0x00000000 a whole cache clean will be performed rather than
1707 * just the 1 page. Since this should not occur in everyday use and if it does
1708 * it will just result in not the most efficient clean for the page.
1709 */
1710 static int
1711 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1712 {
1713 struct pmap *pmap;
1714 struct pv_entry *npv;
1715 int cache_needs_cleaning = 0;
1716 vaddr_t page_to_clean = 0;
1717
1718 if (pv == NULL) {
1719 /* nothing mapped in so nothing to flush */
1720 return (0);
1721 }
1722
1723 /*
1724 * Since we flush the cache each time we change curproc, we
1725 * only need to flush the page if it is in the current pmap.
1726 */
1727 if (curproc)
1728 pmap = curproc->p_vmspace->vm_map.pmap;
1729 else
1730 pmap = pmap_kernel();
1731
1732 for (npv = pv; npv; npv = npv->pv_next) {
1733 if (npv->pv_pmap == pmap) {
1734 /*
1735 * The page is mapped non-cacheable in
1736 * this map. No need to flush the cache.
1737 */
1738 if (npv->pv_flags & PVF_NC) {
1739 #ifdef DIAGNOSTIC
1740 if (cache_needs_cleaning)
1741 panic("pmap_clean_page: "
1742 "cache inconsistency");
1743 #endif
1744 break;
1745 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1746 continue;
1747 if (cache_needs_cleaning) {
1748 page_to_clean = 0;
1749 break;
1750 } else
1751 page_to_clean = npv->pv_va;
1752 cache_needs_cleaning = 1;
1753 }
1754 }
1755
1756 if (page_to_clean) {
1757 /*
1758 * XXX If is_src, we really only need to write-back,
1759 * XXX not invalidate, too. Investigate further.
1760 * XXX --thorpej (at) netbsd.org
1761 */
1762 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1763 } else if (cache_needs_cleaning) {
1764 cpu_idcache_wbinv_all();
1765 return (1);
1766 }
1767 return (0);
1768 }
1769
1770 /*
1771 * pmap_zero_page()
1772 *
1773 * Zero a given physical page by mapping it at a page hook point.
1774 * In doing the zero page op, the page we zero is mapped cachable, as with
1775 * StrongARM accesses to non-cached pages are non-burst making writing
1776 * _any_ bulk data very slow.
1777 */
1778 #if ARM_MMU_GENERIC == 1
1779 void
1780 pmap_zero_page_generic(paddr_t phys)
1781 {
1782 #ifdef DEBUG
1783 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1784
1785 if (pg->mdpage.pvh_list != NULL)
1786 panic("pmap_zero_page: page has mappings");
1787 #endif
1788
1789 KDASSERT((phys & PGOFSET) == 0);
1790
1791 /*
1792 * Hook in the page, zero it, and purge the cache for that
1793 * zeroed page. Invalidate the TLB as needed.
1794 */
1795 *cdst_pte = L2_S_PROTO | phys |
1796 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1797 cpu_tlb_flushD_SE(cdstp);
1798 cpu_cpwait();
1799 bzero_page(cdstp);
1800 cpu_dcache_wbinv_range(cdstp, NBPG);
1801 }
1802 #endif /* ARM_MMU_GENERIC == 1 */
1803
1804 #if ARM_MMU_XSCALE == 1
1805 void
1806 pmap_zero_page_xscale(paddr_t phys)
1807 {
1808 #ifdef DEBUG
1809 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1810
1811 if (pg->mdpage.pvh_list != NULL)
1812 panic("pmap_zero_page: page has mappings");
1813 #endif
1814
1815 KDASSERT((phys & PGOFSET) == 0);
1816
1817 /*
1818 * Hook in the page, zero it, and purge the cache for that
1819 * zeroed page. Invalidate the TLB as needed.
1820 */
1821 *cdst_pte = L2_S_PROTO | phys |
1822 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1823 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1824 cpu_tlb_flushD_SE(cdstp);
1825 cpu_cpwait();
1826 bzero_page(cdstp);
1827 xscale_cache_clean_minidata();
1828 }
1829 #endif /* ARM_MMU_XSCALE == 1 */
1830
1831 /* pmap_pageidlezero()
1832 *
1833 * The same as above, except that we assume that the page is not
1834 * mapped. This means we never have to flush the cache first. Called
1835 * from the idle loop.
1836 */
1837 boolean_t
1838 pmap_pageidlezero(paddr_t phys)
1839 {
1840 int i, *ptr;
1841 boolean_t rv = TRUE;
1842 #ifdef DEBUG
1843 struct vm_page *pg;
1844
1845 pg = PHYS_TO_VM_PAGE(phys);
1846 if (pg->mdpage.pvh_list != NULL)
1847 panic("pmap_pageidlezero: page has mappings");
1848 #endif
1849
1850 KDASSERT((phys & PGOFSET) == 0);
1851
1852 /*
1853 * Hook in the page, zero it, and purge the cache for that
1854 * zeroed page. Invalidate the TLB as needed.
1855 */
1856 *cdst_pte = L2_S_PROTO | phys |
1857 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1858 cpu_tlb_flushD_SE(cdstp);
1859 cpu_cpwait();
1860
1861 for (i = 0, ptr = (int *)cdstp;
1862 i < (NBPG / sizeof(int)); i++) {
1863 if (sched_whichqs != 0) {
1864 /*
1865 * A process has become ready. Abort now,
1866 * so we don't keep it waiting while we
1867 * do slow memory access to finish this
1868 * page.
1869 */
1870 rv = FALSE;
1871 break;
1872 }
1873 *ptr++ = 0;
1874 }
1875
1876 if (rv)
1877 /*
1878 * if we aborted we'll rezero this page again later so don't
1879 * purge it unless we finished it
1880 */
1881 cpu_dcache_wbinv_range(cdstp, NBPG);
1882 return (rv);
1883 }
1884
1885 /*
1886 * pmap_copy_page()
1887 *
1888 * Copy one physical page into another, by mapping the pages into
1889 * hook points. The same comment regarding cachability as in
1890 * pmap_zero_page also applies here.
1891 */
1892 #if ARM_MMU_GENERIC == 1
1893 void
1894 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1895 {
1896 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1897 #ifdef DEBUG
1898 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1899
1900 if (dst_pg->mdpage.pvh_list != NULL)
1901 panic("pmap_copy_page: dst page has mappings");
1902 #endif
1903
1904 KDASSERT((src & PGOFSET) == 0);
1905 KDASSERT((dst & PGOFSET) == 0);
1906
1907 /*
1908 * Clean the source page. Hold the source page's lock for
1909 * the duration of the copy so that no other mappings can
1910 * be created while we have a potentially aliased mapping.
1911 */
1912 simple_lock(&src_pg->mdpage.pvh_slock);
1913 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1914
1915 /*
1916 * Map the pages into the page hook points, copy them, and purge
1917 * the cache for the appropriate page. Invalidate the TLB
1918 * as required.
1919 */
1920 *csrc_pte = L2_S_PROTO | src |
1921 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1922 *cdst_pte = L2_S_PROTO | dst |
1923 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1924 cpu_tlb_flushD_SE(csrcp);
1925 cpu_tlb_flushD_SE(cdstp);
1926 cpu_cpwait();
1927 bcopy_page(csrcp, cdstp);
1928 cpu_dcache_inv_range(csrcp, NBPG);
1929 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1930 cpu_dcache_wbinv_range(cdstp, NBPG);
1931 }
1932 #endif /* ARM_MMU_GENERIC == 1 */
1933
1934 #if ARM_MMU_XSCALE == 1
1935 void
1936 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1937 {
1938 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1939 #ifdef DEBUG
1940 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1941
1942 if (dst_pg->mdpage.pvh_list != NULL)
1943 panic("pmap_copy_page: dst page has mappings");
1944 #endif
1945
1946 KDASSERT((src & PGOFSET) == 0);
1947 KDASSERT((dst & PGOFSET) == 0);
1948
1949 /*
1950 * Clean the source page. Hold the source page's lock for
1951 * the duration of the copy so that no other mappings can
1952 * be created while we have a potentially aliased mapping.
1953 */
1954 simple_lock(&src_pg->mdpage.pvh_slock);
1955 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1956
1957 /*
1958 * Map the pages into the page hook points, copy them, and purge
1959 * the cache for the appropriate page. Invalidate the TLB
1960 * as required.
1961 */
1962 *csrc_pte = L2_S_PROTO | src |
1963 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
1964 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1965 *cdst_pte = L2_S_PROTO | dst |
1966 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1967 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1968 cpu_tlb_flushD_SE(csrcp);
1969 cpu_tlb_flushD_SE(cdstp);
1970 cpu_cpwait();
1971 bcopy_page(csrcp, cdstp);
1972 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1973 xscale_cache_clean_minidata();
1974 }
1975 #endif /* ARM_MMU_XSCALE == 1 */
1976
1977 #if 0
1978 void
1979 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1980 {
1981 pd_entry_t *pde;
1982 paddr_t pa;
1983 struct vm_page *m;
1984
1985 if (pmap == pmap_kernel())
1986 return;
1987
1988 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1989 pa = pmap_pte_pa(pde);
1990 m = PHYS_TO_VM_PAGE(pa);
1991 ++m->wire_count;
1992 #ifdef MYCROFT_HACK
1993 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1994 pmap, va, pde, pa, m, m->wire_count);
1995 #endif
1996 }
1997
1998 void
1999 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2000 {
2001 pd_entry_t *pde;
2002 paddr_t pa;
2003 struct vm_page *m;
2004
2005 if (pmap == pmap_kernel())
2006 return;
2007
2008 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2009 pa = pmap_pte_pa(pde);
2010 m = PHYS_TO_VM_PAGE(pa);
2011 --m->wire_count;
2012 #ifdef MYCROFT_HACK
2013 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2014 pmap, va, pde, pa, m, m->wire_count);
2015 #endif
2016 if (m->wire_count == 0) {
2017 #ifdef MYCROFT_HACK
2018 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2019 pmap, va, pde, pa, m);
2020 #endif
2021 pmap_unmap_in_l1(pmap, va);
2022 uvm_pagefree(m);
2023 --pmap->pm_stats.resident_count;
2024 }
2025 }
2026 #else
2027 #define pmap_pte_addref(pmap, va)
2028 #define pmap_pte_delref(pmap, va)
2029 #endif
2030
2031 /*
2032 * Since we have a virtually indexed cache, we may need to inhibit caching if
2033 * there is more than one mapping and at least one of them is writable.
2034 * Since we purge the cache on every context switch, we only need to check for
2035 * other mappings within the same pmap, or kernel_pmap.
2036 * This function is also called when a page is unmapped, to possibly reenable
2037 * caching on any remaining mappings.
2038 *
2039 * The code implements the following logic, where:
2040 *
2041 * KW = # of kernel read/write pages
2042 * KR = # of kernel read only pages
2043 * UW = # of user read/write pages
2044 * UR = # of user read only pages
2045 * OW = # of user read/write pages in another pmap, then
2046 *
2047 * KC = kernel mapping is cacheable
2048 * UC = user mapping is cacheable
2049 *
2050 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2051 * +---------------------------------------------
2052 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2053 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2054 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2055 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2056 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2057 *
2058 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2059 */
2060 __inline static void
2061 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2062 boolean_t clear_cache)
2063 {
2064 if (pmap == pmap_kernel())
2065 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2066 else
2067 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2068 }
2069
2070 static void
2071 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2072 boolean_t clear_cache)
2073 {
2074 int user_entries = 0;
2075 int user_writable = 0;
2076 int user_cacheable = 0;
2077 int kernel_entries = 0;
2078 int kernel_writable = 0;
2079 int kernel_cacheable = 0;
2080 struct pv_entry *pv;
2081 struct pmap *last_pmap = pmap;
2082
2083 #ifdef DIAGNOSTIC
2084 if (pmap != pmap_kernel())
2085 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2086 #endif
2087
2088 /*
2089 * Pass one, see if there are both kernel and user pmaps for
2090 * this page. Calculate whether there are user-writable or
2091 * kernel-writable pages.
2092 */
2093 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2094 if (pv->pv_pmap != pmap) {
2095 user_entries++;
2096 if (pv->pv_flags & PVF_WRITE)
2097 user_writable++;
2098 if ((pv->pv_flags & PVF_NC) == 0)
2099 user_cacheable++;
2100 } else {
2101 kernel_entries++;
2102 if (pv->pv_flags & PVF_WRITE)
2103 kernel_writable++;
2104 if ((pv->pv_flags & PVF_NC) == 0)
2105 kernel_cacheable++;
2106 }
2107 }
2108
2109 /*
2110 * We know we have just been updating a kernel entry, so if
2111 * all user pages are already cacheable, then there is nothing
2112 * further to do.
2113 */
2114 if (kernel_entries == 0 &&
2115 user_cacheable == user_entries)
2116 return;
2117
2118 if (user_entries) {
2119 /*
2120 * Scan over the list again, for each entry, if it
2121 * might not be set correctly, call pmap_vac_me_user
2122 * to recalculate the settings.
2123 */
2124 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2125 /*
2126 * We know kernel mappings will get set
2127 * correctly in other calls. We also know
2128 * that if the pmap is the same as last_pmap
2129 * then we've just handled this entry.
2130 */
2131 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2132 continue;
2133 /*
2134 * If there are kernel entries and this page
2135 * is writable but non-cacheable, then we can
2136 * skip this entry also.
2137 */
2138 if (kernel_entries > 0 &&
2139 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2140 (PVF_NC | PVF_WRITE))
2141 continue;
2142 /*
2143 * Similarly if there are no kernel-writable
2144 * entries and the page is already
2145 * read-only/cacheable.
2146 */
2147 if (kernel_writable == 0 &&
2148 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2149 continue;
2150 /*
2151 * For some of the remaining cases, we know
2152 * that we must recalculate, but for others we
2153 * can't tell if they are correct or not, so
2154 * we recalculate anyway.
2155 */
2156 pmap_unmap_ptes(last_pmap);
2157 last_pmap = pv->pv_pmap;
2158 ptes = pmap_map_ptes(last_pmap);
2159 pmap_vac_me_user(last_pmap, pg, ptes,
2160 pmap_is_curpmap(last_pmap));
2161 }
2162 /* Restore the pte mapping that was passed to us. */
2163 if (last_pmap != pmap) {
2164 pmap_unmap_ptes(last_pmap);
2165 ptes = pmap_map_ptes(pmap);
2166 }
2167 if (kernel_entries == 0)
2168 return;
2169 }
2170
2171 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2172 return;
2173 }
2174
2175 static void
2176 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2177 boolean_t clear_cache)
2178 {
2179 struct pmap *kpmap = pmap_kernel();
2180 struct pv_entry *pv, *npv;
2181 int entries = 0;
2182 int writable = 0;
2183 int cacheable_entries = 0;
2184 int kern_cacheable = 0;
2185 int other_writable = 0;
2186
2187 pv = pg->mdpage.pvh_list;
2188 KASSERT(ptes != NULL);
2189
2190 /*
2191 * Count mappings and writable mappings in this pmap.
2192 * Include kernel mappings as part of our own.
2193 * Keep a pointer to the first one.
2194 */
2195 for (npv = pv; npv; npv = npv->pv_next) {
2196 /* Count mappings in the same pmap */
2197 if (pmap == npv->pv_pmap ||
2198 kpmap == npv->pv_pmap) {
2199 if (entries++ == 0)
2200 pv = npv;
2201 /* Cacheable mappings */
2202 if ((npv->pv_flags & PVF_NC) == 0) {
2203 cacheable_entries++;
2204 if (kpmap == npv->pv_pmap)
2205 kern_cacheable++;
2206 }
2207 /* Writable mappings */
2208 if (npv->pv_flags & PVF_WRITE)
2209 ++writable;
2210 } else if (npv->pv_flags & PVF_WRITE)
2211 other_writable = 1;
2212 }
2213
2214 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2215 "writable %d cacheable %d %s\n", pmap, entries, writable,
2216 cacheable_entries, clear_cache ? "clean" : "no clean"));
2217
2218 /*
2219 * Enable or disable caching as necessary.
2220 * Note: the first entry might be part of the kernel pmap,
2221 * so we can't assume this is indicative of the state of the
2222 * other (maybe non-kpmap) entries.
2223 */
2224 if ((entries > 1 && writable) ||
2225 (entries > 0 && pmap == kpmap && other_writable)) {
2226 if (cacheable_entries == 0)
2227 return;
2228 for (npv = pv; npv; npv = npv->pv_next) {
2229 if ((pmap == npv->pv_pmap
2230 || kpmap == npv->pv_pmap) &&
2231 (npv->pv_flags & PVF_NC) == 0) {
2232 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2233 npv->pv_flags |= PVF_NC;
2234 /*
2235 * If this page needs flushing from the
2236 * cache, and we aren't going to do it
2237 * below, do it now.
2238 */
2239 if ((cacheable_entries < 4 &&
2240 (clear_cache || npv->pv_pmap == kpmap)) ||
2241 (npv->pv_pmap == kpmap &&
2242 !clear_cache && kern_cacheable < 4)) {
2243 cpu_idcache_wbinv_range(npv->pv_va,
2244 NBPG);
2245 cpu_tlb_flushID_SE(npv->pv_va);
2246 }
2247 }
2248 }
2249 if ((clear_cache && cacheable_entries >= 4) ||
2250 kern_cacheable >= 4) {
2251 cpu_idcache_wbinv_all();
2252 cpu_tlb_flushID();
2253 }
2254 cpu_cpwait();
2255 } else if (entries > 0) {
2256 /*
2257 * Turn cacheing back on for some pages. If it is a kernel
2258 * page, only do so if there are no other writable pages.
2259 */
2260 for (npv = pv; npv; npv = npv->pv_next) {
2261 if ((pmap == npv->pv_pmap ||
2262 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2263 (npv->pv_flags & PVF_NC)) {
2264 ptes[arm_btop(npv->pv_va)] |=
2265 pte_l2_s_cache_mode;
2266 npv->pv_flags &= ~PVF_NC;
2267 }
2268 }
2269 }
2270 }
2271
2272 /*
2273 * pmap_remove()
2274 *
2275 * pmap_remove is responsible for nuking a number of mappings for a range
2276 * of virtual address space in the current pmap. To do this efficiently
2277 * is interesting, because in a number of cases a wide virtual address
2278 * range may be supplied that contains few actual mappings. So, the
2279 * optimisations are:
2280 * 1. Try and skip over hunks of address space for which an L1 entry
2281 * does not exist.
2282 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2283 * maybe do just a partial cache clean. This path of execution is
2284 * complicated by the fact that the cache must be flushed _before_
2285 * the PTE is nuked, being a VAC :-)
2286 * 3. Maybe later fast-case a single page, but I don't think this is
2287 * going to make _that_ much difference overall.
2288 */
2289
2290 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2291
2292 void
2293 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2294 {
2295 int cleanlist_idx = 0;
2296 struct pagelist {
2297 vaddr_t va;
2298 pt_entry_t *pte;
2299 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2300 pt_entry_t *pte = 0, *ptes;
2301 paddr_t pa;
2302 int pmap_active;
2303 struct vm_page *pg;
2304
2305 /* Exit quick if there is no pmap */
2306 if (!pmap)
2307 return;
2308
2309 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2310 pmap, sva, eva));
2311
2312 /*
2313 * we lock in the pmap => vm_page direction
2314 */
2315 PMAP_MAP_TO_HEAD_LOCK();
2316
2317 ptes = pmap_map_ptes(pmap);
2318 /* Get a page table pointer */
2319 while (sva < eva) {
2320 if (pmap_pde_page(pmap_pde(pmap, sva)))
2321 break;
2322 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2323 }
2324
2325 pte = &ptes[arm_btop(sva)];
2326 /* Note if the pmap is active thus require cache and tlb cleans */
2327 pmap_active = pmap_is_curpmap(pmap);
2328
2329 /* Now loop along */
2330 while (sva < eva) {
2331 /* Check if we can move to the next PDE (l1 chunk) */
2332 if (!(sva & L2_ADDR_BITS))
2333 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2334 sva += L1_S_SIZE;
2335 pte += arm_btop(L1_S_SIZE);
2336 continue;
2337 }
2338
2339 /* We've found a valid PTE, so this page of PTEs has to go. */
2340 if (pmap_pte_v(pte)) {
2341 /* Update statistics */
2342 --pmap->pm_stats.resident_count;
2343
2344 /*
2345 * Add this page to our cache remove list, if we can.
2346 * If, however the cache remove list is totally full,
2347 * then do a complete cache invalidation taking note
2348 * to backtrack the PTE table beforehand, and ignore
2349 * the lists in future because there's no longer any
2350 * point in bothering with them (we've paid the
2351 * penalty, so will carry on unhindered). Otherwise,
2352 * when we fall out, we just clean the list.
2353 */
2354 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2355 pa = pmap_pte_pa(pte);
2356
2357 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2358 /* Add to the clean list. */
2359 cleanlist[cleanlist_idx].pte = pte;
2360 cleanlist[cleanlist_idx].va = sva;
2361 cleanlist_idx++;
2362 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2363 int cnt;
2364
2365 /* Nuke everything if needed. */
2366 if (pmap_active) {
2367 cpu_idcache_wbinv_all();
2368 cpu_tlb_flushID();
2369 }
2370
2371 /*
2372 * Roll back the previous PTE list,
2373 * and zero out the current PTE.
2374 */
2375 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2376 *cleanlist[cnt].pte = 0;
2377 pmap_pte_delref(pmap, cleanlist[cnt].va);
2378 }
2379 *pte = 0;
2380 pmap_pte_delref(pmap, sva);
2381 cleanlist_idx++;
2382 } else {
2383 /*
2384 * We've already nuked the cache and
2385 * TLB, so just carry on regardless,
2386 * and we won't need to do it again
2387 */
2388 *pte = 0;
2389 pmap_pte_delref(pmap, sva);
2390 }
2391
2392 /*
2393 * Update flags. In a number of circumstances,
2394 * we could cluster a lot of these and do a
2395 * number of sequential pages in one go.
2396 */
2397 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2398 struct pv_entry *pve;
2399 simple_lock(&pg->mdpage.pvh_slock);
2400 pve = pmap_remove_pv(pg, pmap, sva);
2401 pmap_free_pv(pmap, pve);
2402 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2403 simple_unlock(&pg->mdpage.pvh_slock);
2404 }
2405 }
2406 sva += NBPG;
2407 pte++;
2408 }
2409
2410 /*
2411 * Now, if we've fallen through down to here, chances are that there
2412 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2413 */
2414 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2415 u_int cnt;
2416
2417 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2418 if (pmap_active) {
2419 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2420 NBPG);
2421 *cleanlist[cnt].pte = 0;
2422 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2423 } else
2424 *cleanlist[cnt].pte = 0;
2425 pmap_pte_delref(pmap, cleanlist[cnt].va);
2426 }
2427 }
2428
2429 pmap_unmap_ptes(pmap);
2430
2431 PMAP_MAP_TO_HEAD_UNLOCK();
2432 }
2433
2434 /*
2435 * Routine: pmap_remove_all
2436 * Function:
2437 * Removes this physical page from
2438 * all physical maps in which it resides.
2439 * Reflects back modify bits to the pager.
2440 */
2441
2442 static void
2443 pmap_remove_all(struct vm_page *pg)
2444 {
2445 struct pv_entry *pv, *npv;
2446 struct pmap *pmap;
2447 pt_entry_t *pte, *ptes;
2448
2449 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2450
2451 /* set vm_page => pmap locking */
2452 PMAP_HEAD_TO_MAP_LOCK();
2453
2454 simple_lock(&pg->mdpage.pvh_slock);
2455
2456 pv = pg->mdpage.pvh_list;
2457 if (pv == NULL) {
2458 PDEBUG(0, printf("free page\n"));
2459 simple_unlock(&pg->mdpage.pvh_slock);
2460 PMAP_HEAD_TO_MAP_UNLOCK();
2461 return;
2462 }
2463 pmap_clean_page(pv, FALSE);
2464
2465 while (pv) {
2466 pmap = pv->pv_pmap;
2467 ptes = pmap_map_ptes(pmap);
2468 pte = &ptes[arm_btop(pv->pv_va)];
2469
2470 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2471 pv->pv_va, pv->pv_flags));
2472 #ifdef DEBUG
2473 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2474 pmap_pte_v(pte) == 0 ||
2475 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2476 panic("pmap_remove_all: bad mapping");
2477 #endif /* DEBUG */
2478
2479 /*
2480 * Update statistics
2481 */
2482 --pmap->pm_stats.resident_count;
2483
2484 /* Wired bit */
2485 if (pv->pv_flags & PVF_WIRED)
2486 --pmap->pm_stats.wired_count;
2487
2488 /*
2489 * Invalidate the PTEs.
2490 * XXX: should cluster them up and invalidate as many
2491 * as possible at once.
2492 */
2493
2494 #ifdef needednotdone
2495 reduce wiring count on page table pages as references drop
2496 #endif
2497
2498 *pte = 0;
2499 pmap_pte_delref(pmap, pv->pv_va);
2500
2501 npv = pv->pv_next;
2502 pmap_free_pv(pmap, pv);
2503 pv = npv;
2504 pmap_unmap_ptes(pmap);
2505 }
2506 pg->mdpage.pvh_list = NULL;
2507 simple_unlock(&pg->mdpage.pvh_slock);
2508 PMAP_HEAD_TO_MAP_UNLOCK();
2509
2510 PDEBUG(0, printf("done\n"));
2511 cpu_tlb_flushID();
2512 cpu_cpwait();
2513 }
2514
2515
2516 /*
2517 * Set the physical protection on the specified range of this map as requested.
2518 */
2519
2520 void
2521 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2522 {
2523 pt_entry_t *pte = NULL, *ptes;
2524 struct vm_page *pg;
2525 int flush = 0;
2526
2527 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2528 pmap, sva, eva, prot));
2529
2530 if (~prot & VM_PROT_READ) {
2531 /*
2532 * Just remove the mappings. pmap_update() is not required
2533 * here since the caller should do it.
2534 */
2535 pmap_remove(pmap, sva, eva);
2536 return;
2537 }
2538 if (prot & VM_PROT_WRITE) {
2539 /*
2540 * If this is a read->write transition, just ignore it and let
2541 * uvm_fault() take care of it later.
2542 */
2543 return;
2544 }
2545
2546 /* Need to lock map->head */
2547 PMAP_MAP_TO_HEAD_LOCK();
2548
2549 ptes = pmap_map_ptes(pmap);
2550
2551 /*
2552 * OK, at this point, we know we're doing write-protect operation.
2553 * If the pmap is active, write-back the range.
2554 */
2555 if (pmap_is_curpmap(pmap))
2556 cpu_dcache_wb_range(sva, eva - sva);
2557
2558 /*
2559 * We need to acquire a pointer to a page table page before entering
2560 * the following loop.
2561 */
2562 while (sva < eva) {
2563 if (pmap_pde_page(pmap_pde(pmap, sva)))
2564 break;
2565 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2566 }
2567
2568 pte = &ptes[arm_btop(sva)];
2569
2570 while (sva < eva) {
2571 /* only check once in a while */
2572 if ((sva & L2_ADDR_BITS) == 0) {
2573 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2574 /* We can race ahead here, to the next pde. */
2575 sva += L1_S_SIZE;
2576 pte += arm_btop(L1_S_SIZE);
2577 continue;
2578 }
2579 }
2580
2581 if (!pmap_pte_v(pte))
2582 goto next;
2583
2584 flush = 1;
2585
2586 *pte &= ~L2_S_PROT_W; /* clear write bit */
2587
2588 /* Clear write flag */
2589 if ((pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte))) != NULL) {
2590 simple_lock(&pg->mdpage.pvh_slock);
2591 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2592 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2593 simple_unlock(&pg->mdpage.pvh_slock);
2594 }
2595
2596 next:
2597 sva += NBPG;
2598 pte++;
2599 }
2600 pmap_unmap_ptes(pmap);
2601 PMAP_MAP_TO_HEAD_UNLOCK();
2602 if (flush)
2603 cpu_tlb_flushID();
2604 }
2605
2606 /*
2607 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2608 * int flags)
2609 *
2610 * Insert the given physical page (p) at
2611 * the specified virtual address (v) in the
2612 * target physical map with the protection requested.
2613 *
2614 * If specified, the page will be wired down, meaning
2615 * that the related pte can not be reclaimed.
2616 *
2617 * NB: This is the only routine which MAY NOT lazy-evaluate
2618 * or lose information. That is, this routine must actually
2619 * insert this page into the given map NOW.
2620 */
2621
2622 int
2623 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2624 int flags)
2625 {
2626 pt_entry_t *ptes, opte, npte;
2627 paddr_t opa;
2628 boolean_t wired = (flags & PMAP_WIRED) != 0;
2629 struct vm_page *pg;
2630 struct pv_entry *pve;
2631 int error, nflags;
2632
2633 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2634 va, pa, pmap, prot, wired));
2635
2636 #ifdef DIAGNOSTIC
2637 /* Valid address ? */
2638 if (va >= (pmap_curmaxkvaddr))
2639 panic("pmap_enter: too big");
2640 if (pmap != pmap_kernel() && va != 0) {
2641 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2642 panic("pmap_enter: kernel page in user map");
2643 } else {
2644 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2645 panic("pmap_enter: user page in kernel map");
2646 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2647 panic("pmap_enter: entering PT page");
2648 }
2649 #endif
2650
2651 KDASSERT(((va | pa) & PGOFSET) == 0);
2652
2653 /*
2654 * Get a pointer to the page. Later on in this function, we
2655 * test for a managed page by checking pg != NULL.
2656 */
2657 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2658
2659 /* get lock */
2660 PMAP_MAP_TO_HEAD_LOCK();
2661
2662 /*
2663 * map the ptes. If there's not already an L2 table for this
2664 * address, allocate one.
2665 */
2666 ptes = pmap_map_ptes(pmap); /* locks pmap */
2667 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2668 struct vm_page *ptp;
2669
2670 /* kernel should be pre-grown */
2671 KASSERT(pmap != pmap_kernel());
2672
2673 /* if failure is allowed then don't try too hard */
2674 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2675 if (ptp == NULL) {
2676 if (flags & PMAP_CANFAIL) {
2677 error = ENOMEM;
2678 goto out;
2679 }
2680 panic("pmap_enter: get ptp failed");
2681 }
2682 }
2683 opte = ptes[arm_btop(va)];
2684
2685 nflags = 0;
2686 if (prot & VM_PROT_WRITE)
2687 nflags |= PVF_WRITE;
2688 if (wired)
2689 nflags |= PVF_WIRED;
2690
2691 /* Is the pte valid ? If so then this page is already mapped */
2692 if (l2pte_valid(opte)) {
2693 /* Get the physical address of the current page mapped */
2694 opa = l2pte_pa(opte);
2695
2696 /* Are we mapping the same page ? */
2697 if (opa == pa) {
2698 /* Check to see if we're doing rw->ro. */
2699 if ((opte & L2_S_PROT_W) != 0 &&
2700 (prot & VM_PROT_WRITE) == 0) {
2701 /* Yup, flush the cache if current pmap. */
2702 if (pmap_is_curpmap(pmap))
2703 cpu_dcache_wb_range(va, NBPG);
2704 }
2705
2706 /* Has the wiring changed ? */
2707 if (pg != NULL) {
2708 simple_lock(&pg->mdpage.pvh_slock);
2709 (void) pmap_modify_pv(pmap, va, pg,
2710 PVF_WRITE | PVF_WIRED, nflags);
2711 simple_unlock(&pg->mdpage.pvh_slock);
2712 }
2713 } else {
2714 struct vm_page *opg;
2715
2716 /* We are replacing the page with a new one. */
2717 cpu_idcache_wbinv_range(va, NBPG);
2718
2719 /*
2720 * If it is part of our managed memory then we
2721 * must remove it from the PV list
2722 */
2723 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2724 simple_lock(&opg->mdpage.pvh_slock);
2725 pve = pmap_remove_pv(opg, pmap, va);
2726 simple_unlock(&opg->mdpage.pvh_slock);
2727 } else {
2728 pve = NULL;
2729 }
2730
2731 goto enter;
2732 }
2733 } else {
2734 opa = 0;
2735 pve = NULL;
2736 pmap_pte_addref(pmap, va);
2737
2738 /* pte is not valid so we must be hooking in a new page */
2739 ++pmap->pm_stats.resident_count;
2740
2741 enter:
2742 /*
2743 * Enter on the PV list if part of our managed memory
2744 */
2745 if (pg != NULL) {
2746 if (pve == NULL) {
2747 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2748 if (pve == NULL) {
2749 if (flags & PMAP_CANFAIL) {
2750 error = ENOMEM;
2751 goto out;
2752 }
2753 panic("pmap_enter: no pv entries "
2754 "available");
2755 }
2756 }
2757 /* enter_pv locks pvh when adding */
2758 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2759 } else {
2760 if (pve != NULL)
2761 pmap_free_pv(pmap, pve);
2762 }
2763 }
2764
2765 /* Construct the pte, giving the correct access. */
2766 npte = pa;
2767
2768 /* VA 0 is magic. */
2769 if (pmap != pmap_kernel() && va != vector_page)
2770 npte |= L2_S_PROT_U;
2771
2772 if (pg != NULL) {
2773 #ifdef DIAGNOSTIC
2774 if ((flags & VM_PROT_ALL) & ~prot)
2775 panic("pmap_enter: access_type exceeds prot");
2776 #endif
2777 npte |= pte_l2_s_cache_mode;
2778 if (flags & VM_PROT_WRITE) {
2779 npte |= L2_S_PROTO | L2_S_PROT_W;
2780 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2781 } else if (flags & VM_PROT_ALL) {
2782 npte |= L2_S_PROTO;
2783 pg->mdpage.pvh_attrs |= PVF_REF;
2784 } else
2785 npte |= L2_TYPE_INV;
2786 } else {
2787 if (prot & VM_PROT_WRITE)
2788 npte |= L2_S_PROTO | L2_S_PROT_W;
2789 else if (prot & VM_PROT_ALL)
2790 npte |= L2_S_PROTO;
2791 else
2792 npte |= L2_TYPE_INV;
2793 }
2794
2795 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
2796 #if ARM_NMMUS > 1
2797 # error "XXX Unable to use read/write-allocate and configure non-XScale"
2798 #endif
2799 /*
2800 * XXX BRUTAL HACK! This allows us to limp along with
2801 * XXX the read/write-allocate cache mode.
2802 */
2803 if (pmap == pmap_kernel())
2804 npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
2805 #endif
2806 ptes[arm_btop(va)] = npte;
2807
2808 if (pg != NULL) {
2809 simple_lock(&pg->mdpage.pvh_slock);
2810 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2811 simple_unlock(&pg->mdpage.pvh_slock);
2812 }
2813
2814 /* Better flush the TLB ... */
2815 cpu_tlb_flushID_SE(va);
2816 error = 0;
2817 out:
2818 pmap_unmap_ptes(pmap); /* unlocks pmap */
2819 PMAP_MAP_TO_HEAD_UNLOCK();
2820
2821 return error;
2822 }
2823
2824 /*
2825 * pmap_kenter_pa: enter a kernel mapping
2826 *
2827 * => no need to lock anything assume va is already allocated
2828 * => should be faster than normal pmap enter function
2829 */
2830 void
2831 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2832 {
2833 pt_entry_t *pte;
2834
2835 pte = vtopte(va);
2836 KASSERT(!pmap_pte_v(pte));
2837
2838 #ifdef PMAP_ALIAS_DEBUG
2839 {
2840 struct vm_page *pg;
2841 int s;
2842
2843 pg = PHYS_TO_VM_PAGE(pa);
2844 if (pg != NULL) {
2845 s = splhigh();
2846 if (pg->mdpage.ro_mappings == 0 &&
2847 pg->mdpage.rw_mappings == 0 &&
2848 pg->mdpage.kro_mappings == 0 &&
2849 pg->mdpage.krw_mappings == 0) {
2850 /* This case is okay. */
2851 } else if (pg->mdpage.rw_mappings == 0 &&
2852 pg->mdpage.krw_mappings == 0 &&
2853 (prot & VM_PROT_WRITE) == 0) {
2854 /* This case is okay. */
2855 } else {
2856 /* Something is awry. */
2857 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2858 "prot 0x%x\n", pg->mdpage.ro_mappings,
2859 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2860 pg->mdpage.krw_mappings, prot);
2861 Debugger();
2862 }
2863 if (prot & VM_PROT_WRITE)
2864 pg->mdpage.krw_mappings++;
2865 else
2866 pg->mdpage.kro_mappings++;
2867 splx(s);
2868 }
2869 }
2870 #endif /* PMAP_ALIAS_DEBUG */
2871
2872 *pte = L2_S_PROTO | pa |
2873 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2874 }
2875
2876 void
2877 pmap_kremove(vaddr_t va, vsize_t len)
2878 {
2879 pt_entry_t *pte;
2880
2881 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2882
2883 /*
2884 * We assume that we will only be called with small
2885 * regions of memory.
2886 */
2887
2888 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2889 pte = vtopte(va);
2890 #ifdef PMAP_ALIAS_DEBUG
2891 {
2892 struct vm_page *pg;
2893 int s;
2894
2895 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2896 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2897 s = splhigh();
2898 if (*pte & L2_S_PROT_W) {
2899 KASSERT(pg->mdpage.krw_mappings != 0);
2900 pg->mdpage.krw_mappings--;
2901 } else {
2902 KASSERT(pg->mdpage.kro_mappings != 0);
2903 pg->mdpage.kro_mappings--;
2904 }
2905 splx(s);
2906 }
2907 }
2908 #endif /* PMAP_ALIAS_DEBUG */
2909 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2910 *pte = 0;
2911 cpu_tlb_flushID_SE(va);
2912 }
2913 }
2914
2915 /*
2916 * pmap_page_protect:
2917 *
2918 * Lower the permission for all mappings to a given page.
2919 */
2920
2921 void
2922 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2923 {
2924
2925 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2926 VM_PAGE_TO_PHYS(pg), prot));
2927
2928 switch(prot) {
2929 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2930 case VM_PROT_READ|VM_PROT_WRITE:
2931 return;
2932
2933 case VM_PROT_READ:
2934 case VM_PROT_READ|VM_PROT_EXECUTE:
2935 pmap_clearbit(pg, PVF_WRITE);
2936 break;
2937
2938 default:
2939 pmap_remove_all(pg);
2940 break;
2941 }
2942 }
2943
2944
2945 /*
2946 * Routine: pmap_unwire
2947 * Function: Clear the wired attribute for a map/virtual-address
2948 * pair.
2949 * In/out conditions:
2950 * The mapping must already exist in the pmap.
2951 */
2952
2953 void
2954 pmap_unwire(struct pmap *pmap, vaddr_t va)
2955 {
2956 pt_entry_t *ptes;
2957 struct vm_page *pg;
2958 paddr_t pa;
2959
2960 PMAP_MAP_TO_HEAD_LOCK();
2961 ptes = pmap_map_ptes(pmap); /* locks pmap */
2962
2963 if (pmap_pde_v(pmap_pde(pmap, va))) {
2964 #ifdef DIAGNOSTIC
2965 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2966 panic("pmap_unwire: invalid L2 PTE");
2967 #endif
2968 /* Extract the physical address of the page */
2969 pa = l2pte_pa(ptes[arm_btop(va)]);
2970
2971 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2972 goto out;
2973
2974 /* Update the wired bit in the pv entry for this page. */
2975 simple_lock(&pg->mdpage.pvh_slock);
2976 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2977 simple_unlock(&pg->mdpage.pvh_slock);
2978 }
2979 #ifdef DIAGNOSTIC
2980 else {
2981 panic("pmap_unwire: invalid L1 PTE");
2982 }
2983 #endif
2984 out:
2985 pmap_unmap_ptes(pmap); /* unlocks pmap */
2986 PMAP_MAP_TO_HEAD_UNLOCK();
2987 }
2988
2989 /*
2990 * Routine: pmap_extract
2991 * Function:
2992 * Extract the physical page address associated
2993 * with the given map/virtual_address pair.
2994 */
2995 boolean_t
2996 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2997 {
2998 pd_entry_t *pde;
2999 pt_entry_t *pte, *ptes;
3000 paddr_t pa;
3001
3002 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3003
3004 ptes = pmap_map_ptes(pmap); /* locks pmap */
3005
3006 pde = pmap_pde(pmap, va);
3007 pte = &ptes[arm_btop(va)];
3008
3009 if (pmap_pde_section(pde)) {
3010 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3011 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3012 goto out;
3013 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3014 PDEBUG(5, printf("no mapping\n"));
3015 goto failed;
3016 }
3017
3018 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3019 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3020 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3021 goto out;
3022 }
3023
3024 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3025 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3026
3027 out:
3028 if (pap != NULL)
3029 *pap = pa;
3030
3031 pmap_unmap_ptes(pmap); /* unlocks pmap */
3032 return (TRUE);
3033
3034 failed:
3035 pmap_unmap_ptes(pmap); /* unlocks pmap */
3036 return (FALSE);
3037 }
3038
3039
3040 /*
3041 * pmap_copy:
3042 *
3043 * Copy the range specified by src_addr/len from the source map to the
3044 * range dst_addr/len in the destination map.
3045 *
3046 * This routine is only advisory and need not do anything.
3047 */
3048 /* Call deleted in <arm/arm32/pmap.h> */
3049
3050 #if defined(PMAP_DEBUG)
3051 void
3052 pmap_dump_pvlist(phys, m)
3053 vaddr_t phys;
3054 char *m;
3055 {
3056 struct vm_page *pg;
3057 struct pv_entry *pv;
3058
3059 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3060 printf("INVALID PA\n");
3061 return;
3062 }
3063 simple_lock(&pg->mdpage.pvh_slock);
3064 printf("%s %08lx:", m, phys);
3065 if (pg->mdpage.pvh_list == NULL) {
3066 simple_unlock(&pg->mdpage.pvh_slock);
3067 printf(" no mappings\n");
3068 return;
3069 }
3070
3071 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3072 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3073 pv->pv_va, pv->pv_flags);
3074
3075 printf("\n");
3076 simple_unlock(&pg->mdpage.pvh_slock);
3077 }
3078
3079 #endif /* PMAP_DEBUG */
3080
3081 static pt_entry_t *
3082 pmap_map_ptes(struct pmap *pmap)
3083 {
3084 struct proc *p;
3085
3086 /* the kernel's pmap is always accessible */
3087 if (pmap == pmap_kernel()) {
3088 return (pt_entry_t *)PTE_BASE;
3089 }
3090
3091 if (pmap_is_curpmap(pmap)) {
3092 simple_lock(&pmap->pm_obj.vmobjlock);
3093 return (pt_entry_t *)PTE_BASE;
3094 }
3095
3096 p = curproc;
3097 KDASSERT(p != NULL);
3098
3099 /* need to lock both curpmap and pmap: use ordered locking */
3100 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3101 simple_lock(&pmap->pm_obj.vmobjlock);
3102 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3103 } else {
3104 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3105 simple_lock(&pmap->pm_obj.vmobjlock);
3106 }
3107
3108 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
3109 FALSE);
3110 cpu_tlb_flushD();
3111 cpu_cpwait();
3112 return (pt_entry_t *)APTE_BASE;
3113 }
3114
3115 /*
3116 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3117 */
3118
3119 static void
3120 pmap_unmap_ptes(struct pmap *pmap)
3121 {
3122
3123 if (pmap == pmap_kernel()) {
3124 return;
3125 }
3126 if (pmap_is_curpmap(pmap)) {
3127 simple_unlock(&pmap->pm_obj.vmobjlock);
3128 } else {
3129 KDASSERT(curproc != NULL);
3130 simple_unlock(&pmap->pm_obj.vmobjlock);
3131 simple_unlock(
3132 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3133 }
3134 }
3135
3136 /*
3137 * Modify pte bits for all ptes corresponding to the given physical address.
3138 * We use `maskbits' rather than `clearbits' because we're always passing
3139 * constants and the latter would require an extra inversion at run-time.
3140 */
3141
3142 static void
3143 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3144 {
3145 struct pv_entry *pv;
3146 pt_entry_t *ptes, npte, opte;
3147 vaddr_t va;
3148 int tlbentry;
3149
3150 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3151 VM_PAGE_TO_PHYS(pg), maskbits));
3152
3153 tlbentry = 0;
3154
3155 PMAP_HEAD_TO_MAP_LOCK();
3156 simple_lock(&pg->mdpage.pvh_slock);
3157
3158 /*
3159 * Clear saved attributes (modify, reference)
3160 */
3161 pg->mdpage.pvh_attrs &= ~maskbits;
3162
3163 if (pg->mdpage.pvh_list == NULL) {
3164 simple_unlock(&pg->mdpage.pvh_slock);
3165 PMAP_HEAD_TO_MAP_UNLOCK();
3166 return;
3167 }
3168
3169 /*
3170 * Loop over all current mappings setting/clearing as appropos
3171 */
3172 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3173 #ifdef PMAP_ALIAS_DEBUG
3174 {
3175 int s = splhigh();
3176 if ((maskbits & PVF_WRITE) != 0 &&
3177 (pv->pv_flags & PVF_WRITE) != 0) {
3178 KASSERT(pg->mdpage.rw_mappings != 0);
3179 pg->mdpage.rw_mappings--;
3180 pg->mdpage.ro_mappings++;
3181 }
3182 splx(s);
3183 }
3184 #endif /* PMAP_ALIAS_DEBUG */
3185 va = pv->pv_va;
3186 pv->pv_flags &= ~maskbits;
3187 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3188 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3189 npte = opte = ptes[arm_btop(va)];
3190 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3191 if ((pv->pv_flags & PVF_NC)) {
3192 /*
3193 * Entry is not cacheable: reenable
3194 * the cache, nothing to flush
3195 *
3196 * Don't turn caching on again if this
3197 * is a modified emulation. This
3198 * would be inconsitent with the
3199 * settings created by
3200 * pmap_vac_me_harder().
3201 *
3202 * There's no need to call
3203 * pmap_vac_me_harder() here: all
3204 * pages are loosing their write
3205 * permission.
3206 *
3207 */
3208 if (maskbits & PVF_WRITE) {
3209 npte |= pte_l2_s_cache_mode;
3210 pv->pv_flags &= ~PVF_NC;
3211 }
3212 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3213 /*
3214 * Entry is cacheable: check if pmap is
3215 * current if it is flush it,
3216 * otherwise it won't be in the cache
3217 */
3218 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3219 }
3220
3221 /* make the pte read only */
3222 npte &= ~L2_S_PROT_W;
3223 }
3224
3225 if (maskbits & PVF_REF) {
3226 if (pmap_is_curpmap(pv->pv_pmap) &&
3227 (pv->pv_flags & PVF_NC) == 0) {
3228 /*
3229 * Check npte here; we may have already
3230 * done the wbinv above, and the validity
3231 * of the PTE is the same for opte and
3232 * npte.
3233 */
3234 if (npte & L2_S_PROT_W) {
3235 cpu_idcache_wbinv_range(pv->pv_va,
3236 NBPG);
3237 } else if ((npte & L2_TYPE_MASK)
3238 != L2_TYPE_INV) {
3239 /* XXXJRT need idcache_inv_range */
3240 cpu_idcache_wbinv_range(pv->pv_va,
3241 NBPG);
3242 }
3243 }
3244
3245 /* make the pte invalid */
3246 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3247 }
3248
3249 if (npte != opte) {
3250 ptes[arm_btop(va)] = npte;
3251 /* Flush the TLB entry if a current pmap. */
3252 if (pmap_is_curpmap(pv->pv_pmap))
3253 cpu_tlb_flushID_SE(pv->pv_va);
3254 }
3255
3256 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3257 }
3258 cpu_cpwait();
3259
3260 simple_unlock(&pg->mdpage.pvh_slock);
3261 PMAP_HEAD_TO_MAP_UNLOCK();
3262 }
3263
3264 /*
3265 * pmap_clear_modify:
3266 *
3267 * Clear the "modified" attribute for a page.
3268 */
3269 boolean_t
3270 pmap_clear_modify(struct vm_page *pg)
3271 {
3272 boolean_t rv;
3273
3274 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3275 rv = TRUE;
3276 pmap_clearbit(pg, PVF_MOD);
3277 } else
3278 rv = FALSE;
3279
3280 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3281 VM_PAGE_TO_PHYS(pg), rv));
3282
3283 return (rv);
3284 }
3285
3286 /*
3287 * pmap_clear_reference:
3288 *
3289 * Clear the "referenced" attribute for a page.
3290 */
3291 boolean_t
3292 pmap_clear_reference(struct vm_page *pg)
3293 {
3294 boolean_t rv;
3295
3296 if (pg->mdpage.pvh_attrs & PVF_REF) {
3297 rv = TRUE;
3298 pmap_clearbit(pg, PVF_REF);
3299 } else
3300 rv = FALSE;
3301
3302 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3303 VM_PAGE_TO_PHYS(pg), rv));
3304
3305 return (rv);
3306 }
3307
3308 /*
3309 * pmap_is_modified:
3310 *
3311 * Test if a page has the "modified" attribute.
3312 */
3313 /* See <arm/arm32/pmap.h> */
3314
3315 /*
3316 * pmap_is_referenced:
3317 *
3318 * Test if a page has the "referenced" attribute.
3319 */
3320 /* See <arm/arm32/pmap.h> */
3321
3322 int
3323 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3324 {
3325 pt_entry_t *ptes;
3326 struct vm_page *pg;
3327 paddr_t pa;
3328 u_int flags;
3329 int rv = 0;
3330
3331 PDEBUG(2, printf("pmap_modified_emulation\n"));
3332
3333 PMAP_MAP_TO_HEAD_LOCK();
3334 ptes = pmap_map_ptes(pmap); /* locks pmap */
3335
3336 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3337 PDEBUG(2, printf("L1 PTE invalid\n"));
3338 goto out;
3339 }
3340
3341 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3342
3343 /* Check for a invalid pte */
3344 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3345 goto out;
3346
3347 /* This can happen if user code tries to access kernel memory. */
3348 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3349 goto out;
3350
3351 /* Extract the physical address of the page */
3352 pa = l2pte_pa(ptes[arm_btop(va)]);
3353 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3354 goto out;
3355
3356 /* Get the current flags for this page. */
3357 simple_lock(&pg->mdpage.pvh_slock);
3358
3359 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3360 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3361
3362 /*
3363 * Do the flags say this page is writable ? If not then it is a
3364 * genuine write fault. If yes then the write fault is our fault
3365 * as we did not reflect the write access in the PTE. Now we know
3366 * a write has occurred we can correct this and also set the
3367 * modified bit
3368 */
3369 if (~flags & PVF_WRITE) {
3370 simple_unlock(&pg->mdpage.pvh_slock);
3371 goto out;
3372 }
3373
3374 PDEBUG(0,
3375 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3376 va, ptes[arm_btop(va)]));
3377 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3378
3379 /*
3380 * Re-enable write permissions for the page. No need to call
3381 * pmap_vac_me_harder(), since this is just a
3382 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3383 * We've already set the cacheable bits based on the assumption
3384 * that we can write to this page.
3385 */
3386 ptes[arm_btop(va)] =
3387 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3388 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3389
3390 simple_unlock(&pg->mdpage.pvh_slock);
3391
3392 cpu_tlb_flushID_SE(va);
3393 cpu_cpwait();
3394 rv = 1;
3395 out:
3396 pmap_unmap_ptes(pmap); /* unlocks pmap */
3397 PMAP_MAP_TO_HEAD_UNLOCK();
3398 return (rv);
3399 }
3400
3401 int
3402 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3403 {
3404 pt_entry_t *ptes;
3405 struct vm_page *pg;
3406 paddr_t pa;
3407 int rv = 0;
3408
3409 PDEBUG(2, printf("pmap_handled_emulation\n"));
3410
3411 PMAP_MAP_TO_HEAD_LOCK();
3412 ptes = pmap_map_ptes(pmap); /* locks pmap */
3413
3414 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3415 PDEBUG(2, printf("L1 PTE invalid\n"));
3416 goto out;
3417 }
3418
3419 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3420
3421 /* Check for invalid pte */
3422 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3423 goto out;
3424
3425 /* This can happen if user code tries to access kernel memory. */
3426 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3427 goto out;
3428
3429 /* Extract the physical address of the page */
3430 pa = l2pte_pa(ptes[arm_btop(va)]);
3431 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3432 goto out;
3433
3434 simple_lock(&pg->mdpage.pvh_slock);
3435
3436 /*
3437 * Ok we just enable the pte and mark the attibs as handled
3438 * XXX Should we traverse the PV list and enable all PTEs?
3439 */
3440 PDEBUG(0,
3441 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3442 va, ptes[arm_btop(va)]));
3443 pg->mdpage.pvh_attrs |= PVF_REF;
3444
3445 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3446 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3447
3448 simple_unlock(&pg->mdpage.pvh_slock);
3449
3450 cpu_tlb_flushID_SE(va);
3451 cpu_cpwait();
3452 rv = 1;
3453 out:
3454 pmap_unmap_ptes(pmap); /* unlocks pmap */
3455 PMAP_MAP_TO_HEAD_UNLOCK();
3456 return (rv);
3457 }
3458
3459 /*
3460 * pmap_collect: free resources held by a pmap
3461 *
3462 * => optional function.
3463 * => called when a process is swapped out to free memory.
3464 */
3465
3466 void
3467 pmap_collect(struct pmap *pmap)
3468 {
3469 }
3470
3471 /*
3472 * Routine: pmap_procwr
3473 *
3474 * Function:
3475 * Synchronize caches corresponding to [addr, addr+len) in p.
3476 *
3477 */
3478 void
3479 pmap_procwr(struct proc *p, vaddr_t va, int len)
3480 {
3481 /* We only need to do anything if it is the current process. */
3482 if (p == curproc)
3483 cpu_icache_sync_range(va, len);
3484 }
3485 /*
3486 * PTP functions
3487 */
3488
3489 /*
3490 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3491 *
3492 * => pmap should NOT be pmap_kernel()
3493 * => pmap should be locked
3494 */
3495
3496 static struct vm_page *
3497 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3498 {
3499 struct vm_page *ptp;
3500
3501 if (pmap_pde_page(pmap_pde(pmap, va))) {
3502
3503 /* valid... check hint (saves us a PA->PG lookup) */
3504 if (pmap->pm_ptphint &&
3505 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3506 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3507 return (pmap->pm_ptphint);
3508 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3509 #ifdef DIAGNOSTIC
3510 if (ptp == NULL)
3511 panic("pmap_get_ptp: unmanaged user PTP");
3512 #endif
3513 pmap->pm_ptphint = ptp;
3514 return(ptp);
3515 }
3516
3517 /* allocate a new PTP (updates ptphint) */
3518 return(pmap_alloc_ptp(pmap, va));
3519 }
3520
3521 /*
3522 * pmap_alloc_ptp: allocate a PTP for a PMAP
3523 *
3524 * => pmap should already be locked by caller
3525 * => we use the ptp's wire_count to count the number of active mappings
3526 * in the PTP (we start it at one to prevent any chance this PTP
3527 * will ever leak onto the active/inactive queues)
3528 */
3529
3530 /*__inline */ static struct vm_page *
3531 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3532 {
3533 struct vm_page *ptp;
3534
3535 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3536 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3537 if (ptp == NULL)
3538 return (NULL);
3539
3540 /* got one! */
3541 ptp->flags &= ~PG_BUSY; /* never busy */
3542 ptp->wire_count = 1; /* no mappings yet */
3543 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3544 pmap->pm_stats.resident_count++; /* count PTP as resident */
3545 pmap->pm_ptphint = ptp;
3546 return (ptp);
3547 }
3548
3549 vaddr_t
3550 pmap_growkernel(vaddr_t maxkvaddr)
3551 {
3552 struct pmap *kpm = pmap_kernel(), *pm;
3553 int s;
3554 paddr_t ptaddr;
3555 struct vm_page *ptp;
3556
3557 if (maxkvaddr <= pmap_curmaxkvaddr)
3558 goto out; /* we are OK */
3559 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3560 pmap_curmaxkvaddr, maxkvaddr));
3561
3562 /*
3563 * whoops! we need to add kernel PTPs
3564 */
3565
3566 s = splhigh(); /* to be safe */
3567 simple_lock(&kpm->pm_obj.vmobjlock);
3568 /* due to the way the arm pmap works we map 4MB at a time */
3569 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3570 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3571
3572 if (uvm.page_init_done == FALSE) {
3573
3574 /*
3575 * we're growing the kernel pmap early (from
3576 * uvm_pageboot_alloc()). this case must be
3577 * handled a little differently.
3578 */
3579
3580 if (uvm_page_physget(&ptaddr) == FALSE)
3581 panic("pmap_growkernel: out of memory");
3582 pmap_zero_page(ptaddr);
3583
3584 /* map this page in */
3585 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3586
3587 /* count PTP as resident */
3588 kpm->pm_stats.resident_count++;
3589 continue;
3590 }
3591
3592 /*
3593 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3594 * pmap_initialized == FALSE CASE! WE MAY BE
3595 * INVOKED WHILE pmap_init() IS RUNNING!
3596 */
3597
3598 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3599 panic("pmap_growkernel: alloc ptp failed");
3600
3601 /* distribute new kernel PTP to all active pmaps */
3602 simple_lock(&pmaps_lock);
3603 LIST_FOREACH(pm, &pmaps, pm_list) {
3604 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3605 VM_PAGE_TO_PHYS(ptp), TRUE);
3606 }
3607
3608 /* Invalidate the PTPT cache. */
3609 pool_cache_invalidate(&pmap_ptpt_cache);
3610 pmap_ptpt_cache_generation++;
3611
3612 simple_unlock(&pmaps_lock);
3613 }
3614
3615 /*
3616 * flush out the cache, expensive but growkernel will happen so
3617 * rarely
3618 */
3619 cpu_tlb_flushD();
3620 cpu_cpwait();
3621
3622 simple_unlock(&kpm->pm_obj.vmobjlock);
3623 splx(s);
3624
3625 out:
3626 return (pmap_curmaxkvaddr);
3627 }
3628
3629 /************************ Utility routines ****************************/
3630
3631 /*
3632 * vector_page_setprot:
3633 *
3634 * Manipulate the protection of the vector page.
3635 */
3636 void
3637 vector_page_setprot(int prot)
3638 {
3639 pt_entry_t *pte;
3640
3641 pte = vtopte(vector_page);
3642
3643 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3644 cpu_tlb_flushD_SE(vector_page);
3645 cpu_cpwait();
3646 }
3647
3648 /************************ Bootstrapping routines ****************************/
3649
3650 /*
3651 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3652 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3653 * find them as necessary.
3654 *
3655 * Note that the data on this list is not valid after initarm() returns.
3656 */
3657 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3658
3659 static vaddr_t
3660 kernel_pt_lookup(paddr_t pa)
3661 {
3662 pv_addr_t *pv;
3663
3664 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3665 if (pv->pv_pa == pa)
3666 return (pv->pv_va);
3667 }
3668 return (0);
3669 }
3670
3671 /*
3672 * pmap_map_section:
3673 *
3674 * Create a single section mapping.
3675 */
3676 void
3677 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3678 {
3679 pd_entry_t *pde = (pd_entry_t *) l1pt;
3680 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3681
3682 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3683
3684 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3685 L1_S_PROT(PTE_KERNEL, prot) | fl;
3686 }
3687
3688 /*
3689 * pmap_map_entry:
3690 *
3691 * Create a single page mapping.
3692 */
3693 void
3694 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3695 {
3696 pd_entry_t *pde = (pd_entry_t *) l1pt;
3697 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3698 pt_entry_t *pte;
3699
3700 KASSERT(((va | pa) & PGOFSET) == 0);
3701
3702 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3703 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3704
3705 pte = (pt_entry_t *)
3706 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3707 if (pte == NULL)
3708 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3709
3710 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3711 L2_S_PROT(PTE_KERNEL, prot) | fl;
3712 }
3713
3714 /*
3715 * pmap_link_l2pt:
3716 *
3717 * Link the L2 page table specified by "pa" into the L1
3718 * page table at the slot for "va".
3719 */
3720 void
3721 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3722 {
3723 pd_entry_t *pde = (pd_entry_t *) l1pt;
3724 u_int slot = va >> L1_S_SHIFT;
3725
3726 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3727
3728 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3729 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3730 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3731 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3732
3733 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3734 }
3735
3736 /*
3737 * pmap_map_chunk:
3738 *
3739 * Map a chunk of memory using the most efficient mappings
3740 * possible (section, large page, small page) into the
3741 * provided L1 and L2 tables at the specified virtual address.
3742 */
3743 vsize_t
3744 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3745 int prot, int cache)
3746 {
3747 pd_entry_t *pde = (pd_entry_t *) l1pt;
3748 pt_entry_t *pte, fl;
3749 vsize_t resid;
3750 int i;
3751
3752 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3753
3754 if (l1pt == 0)
3755 panic("pmap_map_chunk: no L1 table provided");
3756
3757 #ifdef VERBOSE_INIT_ARM
3758 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3759 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3760 #endif
3761
3762 size = resid;
3763
3764 while (resid > 0) {
3765 /* See if we can use a section mapping. */
3766 if (((pa | va) & L1_S_OFFSET) == 0 &&
3767 resid >= L1_S_SIZE) {
3768 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3769 #ifdef VERBOSE_INIT_ARM
3770 printf("S");
3771 #endif
3772 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3773 L1_S_PROT(PTE_KERNEL, prot) | fl;
3774 va += L1_S_SIZE;
3775 pa += L1_S_SIZE;
3776 resid -= L1_S_SIZE;
3777 continue;
3778 }
3779
3780 /*
3781 * Ok, we're going to use an L2 table. Make sure
3782 * one is actually in the corresponding L1 slot
3783 * for the current VA.
3784 */
3785 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3786 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3787
3788 pte = (pt_entry_t *)
3789 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3790 if (pte == NULL)
3791 panic("pmap_map_chunk: can't find L2 table for VA"
3792 "0x%08lx", va);
3793
3794 /* See if we can use a L2 large page mapping. */
3795 if (((pa | va) & L2_L_OFFSET) == 0 &&
3796 resid >= L2_L_SIZE) {
3797 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3798 #ifdef VERBOSE_INIT_ARM
3799 printf("L");
3800 #endif
3801 for (i = 0; i < 16; i++) {
3802 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3803 L2_L_PROTO | pa |
3804 L2_L_PROT(PTE_KERNEL, prot) | fl;
3805 }
3806 va += L2_L_SIZE;
3807 pa += L2_L_SIZE;
3808 resid -= L2_L_SIZE;
3809 continue;
3810 }
3811
3812 /* Use a small page mapping. */
3813 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3814 #ifdef VERBOSE_INIT_ARM
3815 printf("P");
3816 #endif
3817 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3818 L2_S_PROT(PTE_KERNEL, prot) | fl;
3819 va += NBPG;
3820 pa += NBPG;
3821 resid -= NBPG;
3822 }
3823 #ifdef VERBOSE_INIT_ARM
3824 printf("\n");
3825 #endif
3826 return (size);
3827 }
3828
3829 /********************** PTE initialization routines **************************/
3830
3831 /*
3832 * These routines are called when the CPU type is identified to set up
3833 * the PTE prototypes, cache modes, etc.
3834 *
3835 * The variables are always here, just in case LKMs need to reference
3836 * them (though, they shouldn't).
3837 */
3838
3839 pt_entry_t pte_l1_s_cache_mode;
3840 pt_entry_t pte_l1_s_cache_mask;
3841
3842 pt_entry_t pte_l2_l_cache_mode;
3843 pt_entry_t pte_l2_l_cache_mask;
3844
3845 pt_entry_t pte_l2_s_cache_mode;
3846 pt_entry_t pte_l2_s_cache_mask;
3847
3848 pt_entry_t pte_l2_s_prot_u;
3849 pt_entry_t pte_l2_s_prot_w;
3850 pt_entry_t pte_l2_s_prot_mask;
3851
3852 pt_entry_t pte_l1_s_proto;
3853 pt_entry_t pte_l1_c_proto;
3854 pt_entry_t pte_l2_s_proto;
3855
3856 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3857 void (*pmap_zero_page_func)(paddr_t);
3858
3859 #if ARM_MMU_GENERIC == 1
3860 void
3861 pmap_pte_init_generic(void)
3862 {
3863
3864 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3865 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3866
3867 pte_l2_l_cache_mode = L2_B|L2_C;
3868 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3869
3870 pte_l2_s_cache_mode = L2_B|L2_C;
3871 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3872
3873 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3874 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3875 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3876
3877 pte_l1_s_proto = L1_S_PROTO_generic;
3878 pte_l1_c_proto = L1_C_PROTO_generic;
3879 pte_l2_s_proto = L2_S_PROTO_generic;
3880
3881 pmap_copy_page_func = pmap_copy_page_generic;
3882 pmap_zero_page_func = pmap_zero_page_generic;
3883 }
3884
3885 #if defined(CPU_ARM9)
3886 void
3887 pmap_pte_init_arm9(void)
3888 {
3889
3890 /*
3891 * ARM9 is compatible with generic, but we want to use
3892 * write-through caching for now.
3893 */
3894 pmap_pte_init_generic();
3895
3896 pte_l1_s_cache_mode = L1_S_C;
3897 pte_l2_l_cache_mode = L2_C;
3898 pte_l2_s_cache_mode = L2_C;
3899 }
3900 #endif /* CPU_ARM9 */
3901 #endif /* ARM_MMU_GENERIC == 1 */
3902
3903 #if ARM_MMU_XSCALE == 1
3904 void
3905 pmap_pte_init_xscale(void)
3906 {
3907 uint32_t auxctl;
3908
3909 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3910 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
3911
3912 pte_l2_l_cache_mode = L2_B|L2_C;
3913 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
3914
3915 pte_l2_s_cache_mode = L2_B|L2_C;
3916 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
3917
3918 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
3919 /*
3920 * The XScale core has an enhanced mode where writes that
3921 * miss the cache cause a cache line to be allocated. This
3922 * is significantly faster than the traditional, write-through
3923 * behavior of this case.
3924 *
3925 * However, there is a bug lurking in this pmap module, or in
3926 * other parts of the VM system, or both, which causes corruption
3927 * of NFS-backed files when this cache mode is used. We have
3928 * an ugly work-around for this problem (disable r/w-allocate
3929 * for managed kernel mappings), but the bug is still evil enough
3930 * to consider this cache mode "experimental".
3931 */
3932 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
3933 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
3934 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
3935 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
3936
3937 #ifdef XSCALE_CACHE_WRITE_THROUGH
3938 /*
3939 * Some versions of the XScale core have various bugs in
3940 * their cache units, the work-around for which is to run
3941 * the cache in write-through mode. Unfortunately, this
3942 * has a major (negative) impact on performance. So, we
3943 * go ahead and run fast-and-loose, in the hopes that we
3944 * don't line up the planets in a way that will trip the
3945 * bugs.
3946 *
3947 * However, we give you the option to be slow-but-correct.
3948 */
3949 pte_l1_s_cache_mode = L1_S_C;
3950 pte_l2_l_cache_mode = L2_C;
3951 pte_l2_s_cache_mode = L2_C;
3952 #endif /* XSCALE_CACHE_WRITE_THROUGH */
3953
3954 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
3955 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
3956 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
3957
3958 pte_l1_s_proto = L1_S_PROTO_xscale;
3959 pte_l1_c_proto = L1_C_PROTO_xscale;
3960 pte_l2_s_proto = L2_S_PROTO_xscale;
3961
3962 pmap_copy_page_func = pmap_copy_page_xscale;
3963 pmap_zero_page_func = pmap_zero_page_xscale;
3964
3965 /*
3966 * Disable ECC protection of page table access, for now.
3967 */
3968 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3969 : "=r" (auxctl));
3970 auxctl &= ~XSCALE_AUXCTL_P;
3971 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3972 :
3973 : "r" (auxctl));
3974 }
3975
3976 /*
3977 * xscale_setup_minidata:
3978 *
3979 * Set up the mini-data cache clean area. We require the
3980 * caller to allocate the right amount of physically and
3981 * virtually contiguous space.
3982 */
3983 void
3984 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
3985 {
3986 extern vaddr_t xscale_minidata_clean_addr;
3987 extern vsize_t xscale_minidata_clean_size; /* already initialized */
3988 pd_entry_t *pde = (pd_entry_t *) l1pt;
3989 pt_entry_t *pte;
3990 vsize_t size;
3991 uint32_t auxctl;
3992
3993 xscale_minidata_clean_addr = va;
3994
3995 /* Round it to page size. */
3996 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
3997
3998 for (; size != 0;
3999 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4000 pte = (pt_entry_t *)
4001 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4002 if (pte == NULL)
4003 panic("xscale_setup_minidata: can't find L2 table for "
4004 "VA 0x%08lx", va);
4005 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4006 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4007 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4008 }
4009
4010 /*
4011 * Configure the mini-data cache for write-back with
4012 * read/write-allocate.
4013 *
4014 * NOTE: In order to reconfigure the mini-data cache, we must
4015 * make sure it contains no valid data! In order to do that,
4016 * we must issue a global data cache invalidate command!
4017 *
4018 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4019 * THIS IS VERY IMPORTANT!
4020 */
4021
4022 /* Invalidate data and mini-data. */
4023 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4024 :
4025 : "r" (auxctl));
4026
4027
4028 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4029 : "=r" (auxctl));
4030 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4031 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4032 :
4033 : "r" (auxctl));
4034 }
4035 #endif /* ARM_MMU_XSCALE == 1 */
4036