Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.111
      1 /*	$NetBSD: pmap.c,v 1.111 2002/08/21 21:22:52 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.111 2002/08/21 21:22:52 thorpej Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static LIST_HEAD(, pmap) pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 /*
    199  * pool/cache that PT-PT's are allocated from
    200  */
    201 
    202 struct pool pmap_ptpt_pool;
    203 struct pool_cache pmap_ptpt_cache;
    204 u_int pmap_ptpt_cache_generation;
    205 
    206 static void *pmap_ptpt_page_alloc(struct pool *, int);
    207 static void pmap_ptpt_page_free(struct pool *, void *);
    208 
    209 struct pool_allocator pmap_ptpt_allocator = {
    210 	pmap_ptpt_page_alloc, pmap_ptpt_page_free,
    211 };
    212 
    213 static int pmap_ptpt_ctor(void *, void *, int);
    214 
    215 static pt_entry_t *csrc_pte, *cdst_pte;
    216 static vaddr_t csrcp, cdstp;
    217 
    218 char *memhook;
    219 extern caddr_t msgbufaddr;
    220 
    221 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    222 /*
    223  * locking data structures
    224  */
    225 
    226 static struct lock pmap_main_lock;
    227 static struct simplelock pvalloc_lock;
    228 static struct simplelock pmaps_lock;
    229 #ifdef LOCKDEBUG
    230 #define PMAP_MAP_TO_HEAD_LOCK() \
    231      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    232 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    233      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    234 
    235 #define PMAP_HEAD_TO_MAP_LOCK() \
    236      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    237 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    238      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    239 #else
    240 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    241 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    242 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    243 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    244 #endif /* LOCKDEBUG */
    245 
    246 /*
    247  * pv_page management structures: locked by pvalloc_lock
    248  */
    249 
    250 TAILQ_HEAD(pv_pagelist, pv_page);
    251 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    252 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    253 static int pv_nfpvents;			/* # of free pv entries */
    254 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    255 static vaddr_t pv_cachedva;		/* cached VA for later use */
    256 
    257 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    258 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    259 					/* high water mark */
    260 
    261 /*
    262  * local prototypes
    263  */
    264 
    265 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    266 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    267 #define ALLOCPV_NEED	0	/* need PV now */
    268 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    269 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    270 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    271 static void		 pmap_enter_pv __P((struct vm_page *,
    272 					    struct pv_entry *, struct pmap *,
    273 					    vaddr_t, struct vm_page *, int));
    274 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    275 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    276 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    277 static void		 pmap_free_pvpage __P((void));
    278 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    279 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    280 			vaddr_t));
    281 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    282 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    283 
    284 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    285 	u_int, u_int));
    286 
    287 /*
    288  * Structure that describes and L1 table.
    289  */
    290 struct l1pt {
    291 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    292 	struct pglist		pt_plist;	/* Allocated page list */
    293 	vaddr_t			pt_va;		/* Allocated virtual address */
    294 	int			pt_flags;	/* Flags */
    295 };
    296 #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    297 #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    298 #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    299 
    300 static void pmap_free_l1pt __P((struct l1pt *));
    301 static int pmap_allocpagedir __P((struct pmap *));
    302 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    303 static void pmap_remove_all __P((struct vm_page *));
    304 
    305 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    306 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    307 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    308 
    309 extern paddr_t physical_start;
    310 extern paddr_t physical_end;
    311 extern unsigned int free_pages;
    312 extern int max_processes;
    313 
    314 vaddr_t virtual_avail;
    315 vaddr_t virtual_end;
    316 vaddr_t pmap_curmaxkvaddr;
    317 
    318 vaddr_t avail_start;
    319 vaddr_t avail_end;
    320 
    321 extern pv_addr_t systempage;
    322 
    323 /* Variables used by the L1 page table queue code */
    324 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    325 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    326 static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    327 static int l1pt_static_create_count;	    /* static l1 items created */
    328 static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    329 static int l1pt_queue_count;		    /* items in the l1 queue */
    330 static int l1pt_create_count;		    /* stat - L1's create count */
    331 static int l1pt_reuse_count;		    /* stat - L1's reused count */
    332 
    333 /* Local function prototypes (not used outside this file) */
    334 void pmap_pinit __P((struct pmap *));
    335 void pmap_freepagedir __P((struct pmap *));
    336 
    337 /* Other function prototypes */
    338 extern void bzero_page __P((vaddr_t));
    339 extern void bcopy_page __P((vaddr_t, vaddr_t));
    340 
    341 struct l1pt *pmap_alloc_l1pt __P((void));
    342 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    343      vaddr_t l2pa, boolean_t));
    344 
    345 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    346 static void pmap_unmap_ptes __P((struct pmap *));
    347 
    348 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    349     pt_entry_t *, boolean_t));
    350 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    351     pt_entry_t *, boolean_t));
    352 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    353     pt_entry_t *, boolean_t));
    354 
    355 /*
    356  * real definition of pv_entry.
    357  */
    358 
    359 struct pv_entry {
    360 	struct pv_entry *pv_next;       /* next pv_entry */
    361 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    362 	vaddr_t         pv_va;          /* virtual address for mapping */
    363 	int             pv_flags;       /* flags */
    364 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    365 };
    366 
    367 /*
    368  * pv_entrys are dynamically allocated in chunks from a single page.
    369  * we keep track of how many pv_entrys are in use for each page and
    370  * we can free pv_entry pages if needed.  there is one lock for the
    371  * entire allocation system.
    372  */
    373 
    374 struct pv_page_info {
    375 	TAILQ_ENTRY(pv_page) pvpi_list;
    376 	struct pv_entry *pvpi_pvfree;
    377 	int pvpi_nfree;
    378 };
    379 
    380 /*
    381  * number of pv_entry's in a pv_page
    382  * (note: won't work on systems where NPBG isn't a constant)
    383  */
    384 
    385 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    386 			sizeof(struct pv_entry))
    387 
    388 /*
    389  * a pv_page: where pv_entrys are allocated from
    390  */
    391 
    392 struct pv_page {
    393 	struct pv_page_info pvinfo;
    394 	struct pv_entry pvents[PVE_PER_PVPAGE];
    395 };
    396 
    397 #ifdef MYCROFT_HACK
    398 int mycroft_hack = 0;
    399 #endif
    400 
    401 /* Function to set the debug level of the pmap code */
    402 
    403 #ifdef PMAP_DEBUG
    404 void
    405 pmap_debug(int level)
    406 {
    407 	pmap_debug_level = level;
    408 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    409 }
    410 #endif	/* PMAP_DEBUG */
    411 
    412 __inline static boolean_t
    413 pmap_is_curpmap(struct pmap *pmap)
    414 {
    415 
    416 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    417 	    pmap == pmap_kernel())
    418 		return (TRUE);
    419 
    420 	return (FALSE);
    421 }
    422 
    423 /*
    424  * p v _ e n t r y   f u n c t i o n s
    425  */
    426 
    427 /*
    428  * pv_entry allocation functions:
    429  *   the main pv_entry allocation functions are:
    430  *     pmap_alloc_pv: allocate a pv_entry structure
    431  *     pmap_free_pv: free one pv_entry
    432  *     pmap_free_pvs: free a list of pv_entrys
    433  *
    434  * the rest are helper functions
    435  */
    436 
    437 /*
    438  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    439  * => we lock pvalloc_lock
    440  * => if we fail, we call out to pmap_alloc_pvpage
    441  * => 3 modes:
    442  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    443  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    444  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    445  *			one now
    446  *
    447  * "try" is for optional functions like pmap_copy().
    448  */
    449 
    450 __inline static struct pv_entry *
    451 pmap_alloc_pv(struct pmap *pmap, int mode)
    452 {
    453 	struct pv_page *pvpage;
    454 	struct pv_entry *pv;
    455 
    456 	simple_lock(&pvalloc_lock);
    457 
    458 	pvpage = TAILQ_FIRST(&pv_freepages);
    459 
    460 	if (pvpage != NULL) {
    461 		pvpage->pvinfo.pvpi_nfree--;
    462 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    463 			/* nothing left in this one? */
    464 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    465 		}
    466 		pv = pvpage->pvinfo.pvpi_pvfree;
    467 		KASSERT(pv);
    468 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    469 		pv_nfpvents--;  /* took one from pool */
    470 	} else {
    471 		pv = NULL;		/* need more of them */
    472 	}
    473 
    474 	/*
    475 	 * if below low water mark or we didn't get a pv_entry we try and
    476 	 * create more pv_entrys ...
    477 	 */
    478 
    479 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    480 		if (pv == NULL)
    481 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    482 					       mode : ALLOCPV_NEED);
    483 		else
    484 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    485 	}
    486 
    487 	simple_unlock(&pvalloc_lock);
    488 	return(pv);
    489 }
    490 
    491 /*
    492  * pmap_alloc_pvpage: maybe allocate a new pvpage
    493  *
    494  * if need_entry is false: try and allocate a new pv_page
    495  * if need_entry is true: try and allocate a new pv_page and return a
    496  *	new pv_entry from it.   if we are unable to allocate a pv_page
    497  *	we make a last ditch effort to steal a pv_page from some other
    498  *	mapping.    if that fails, we panic...
    499  *
    500  * => we assume that the caller holds pvalloc_lock
    501  */
    502 
    503 static struct pv_entry *
    504 pmap_alloc_pvpage(struct pmap *pmap, int mode)
    505 {
    506 	struct vm_page *pg;
    507 	struct pv_page *pvpage;
    508 	struct pv_entry *pv;
    509 	int s;
    510 
    511 	/*
    512 	 * if we need_entry and we've got unused pv_pages, allocate from there
    513 	 */
    514 
    515 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    516 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    517 
    518 		/* move it to pv_freepages list */
    519 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    520 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    521 
    522 		/* allocate a pv_entry */
    523 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    524 		pv = pvpage->pvinfo.pvpi_pvfree;
    525 		KASSERT(pv);
    526 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    527 
    528 		pv_nfpvents--;  /* took one from pool */
    529 		return(pv);
    530 	}
    531 
    532 	/*
    533 	 *  see if we've got a cached unmapped VA that we can map a page in.
    534 	 * if not, try to allocate one.
    535 	 */
    536 
    537 
    538 	if (pv_cachedva == 0) {
    539 		s = splvm();
    540 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    541 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    542 		splx(s);
    543 		if (pv_cachedva == 0) {
    544 			return (NULL);
    545 		}
    546 	}
    547 
    548 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    549 	    UVM_PGA_USERESERVE);
    550 
    551 	if (pg == NULL)
    552 		return (NULL);
    553 	pg->flags &= ~PG_BUSY;	/* never busy */
    554 
    555 	/*
    556 	 * add a mapping for our new pv_page and free its entrys (save one!)
    557 	 *
    558 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    559 	 * pmap is already locked!  (...but entering the mapping is safe...)
    560 	 */
    561 
    562 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    563 		VM_PROT_READ|VM_PROT_WRITE);
    564 	pmap_update(pmap_kernel());
    565 	pvpage = (struct pv_page *) pv_cachedva;
    566 	pv_cachedva = 0;
    567 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    568 }
    569 
    570 /*
    571  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    572  *
    573  * => caller must hold pvalloc_lock
    574  * => if need_entry is true, we allocate and return one pv_entry
    575  */
    576 
    577 static struct pv_entry *
    578 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    579 {
    580 	int tofree, lcv;
    581 
    582 	/* do we need to return one? */
    583 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    584 
    585 	pvp->pvinfo.pvpi_pvfree = NULL;
    586 	pvp->pvinfo.pvpi_nfree = tofree;
    587 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    588 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    589 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    590 	}
    591 	if (need_entry)
    592 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    593 	else
    594 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    595 	pv_nfpvents += tofree;
    596 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    597 }
    598 
    599 /*
    600  * pmap_free_pv_doit: actually free a pv_entry
    601  *
    602  * => do not call this directly!  instead use either
    603  *    1. pmap_free_pv ==> free a single pv_entry
    604  *    2. pmap_free_pvs => free a list of pv_entrys
    605  * => we must be holding pvalloc_lock
    606  */
    607 
    608 __inline static void
    609 pmap_free_pv_doit(struct pv_entry *pv)
    610 {
    611 	struct pv_page *pvp;
    612 
    613 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    614 	pv_nfpvents++;
    615 	pvp->pvinfo.pvpi_nfree++;
    616 
    617 	/* nfree == 1 => fully allocated page just became partly allocated */
    618 	if (pvp->pvinfo.pvpi_nfree == 1) {
    619 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    620 	}
    621 
    622 	/* free it */
    623 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    624 	pvp->pvinfo.pvpi_pvfree = pv;
    625 
    626 	/*
    627 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    628 	 */
    629 
    630 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    631 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    632 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    633 	}
    634 }
    635 
    636 /*
    637  * pmap_free_pv: free a single pv_entry
    638  *
    639  * => we gain the pvalloc_lock
    640  */
    641 
    642 __inline static void
    643 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    644 {
    645 	simple_lock(&pvalloc_lock);
    646 	pmap_free_pv_doit(pv);
    647 
    648 	/*
    649 	 * Can't free the PV page if the PV entries were associated with
    650 	 * the kernel pmap; the pmap is already locked.
    651 	 */
    652 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    653 	    pmap != pmap_kernel())
    654 		pmap_free_pvpage();
    655 
    656 	simple_unlock(&pvalloc_lock);
    657 }
    658 
    659 /*
    660  * pmap_free_pvs: free a list of pv_entrys
    661  *
    662  * => we gain the pvalloc_lock
    663  */
    664 
    665 __inline static void
    666 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    667 {
    668 	struct pv_entry *nextpv;
    669 
    670 	simple_lock(&pvalloc_lock);
    671 
    672 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    673 		nextpv = pvs->pv_next;
    674 		pmap_free_pv_doit(pvs);
    675 	}
    676 
    677 	/*
    678 	 * Can't free the PV page if the PV entries were associated with
    679 	 * the kernel pmap; the pmap is already locked.
    680 	 */
    681 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    682 	    pmap != pmap_kernel())
    683 		pmap_free_pvpage();
    684 
    685 	simple_unlock(&pvalloc_lock);
    686 }
    687 
    688 
    689 /*
    690  * pmap_free_pvpage: try and free an unused pv_page structure
    691  *
    692  * => assume caller is holding the pvalloc_lock and that
    693  *	there is a page on the pv_unusedpgs list
    694  * => if we can't get a lock on the kmem_map we try again later
    695  */
    696 
    697 static void
    698 pmap_free_pvpage(void)
    699 {
    700 	int s;
    701 	struct vm_map *map;
    702 	struct vm_map_entry *dead_entries;
    703 	struct pv_page *pvp;
    704 
    705 	s = splvm(); /* protect kmem_map */
    706 
    707 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    708 
    709 	/*
    710 	 * note: watch out for pv_initpage which is allocated out of
    711 	 * kernel_map rather than kmem_map.
    712 	 */
    713 	if (pvp == pv_initpage)
    714 		map = kernel_map;
    715 	else
    716 		map = kmem_map;
    717 	if (vm_map_lock_try(map)) {
    718 
    719 		/* remove pvp from pv_unusedpgs */
    720 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    721 
    722 		/* unmap the page */
    723 		dead_entries = NULL;
    724 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    725 		    &dead_entries);
    726 		vm_map_unlock(map);
    727 
    728 		if (dead_entries != NULL)
    729 			uvm_unmap_detach(dead_entries, 0);
    730 
    731 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    732 	}
    733 	if (pvp == pv_initpage)
    734 		/* no more initpage, we've freed it */
    735 		pv_initpage = NULL;
    736 
    737 	splx(s);
    738 }
    739 
    740 /*
    741  * main pv_entry manipulation functions:
    742  *   pmap_enter_pv: enter a mapping onto a vm_page list
    743  *   pmap_remove_pv: remove a mappiing from a vm_page list
    744  *
    745  * NOTE: pmap_enter_pv expects to lock the pvh itself
    746  *       pmap_remove_pv expects te caller to lock the pvh before calling
    747  */
    748 
    749 /*
    750  * pmap_enter_pv: enter a mapping onto a vm_page lst
    751  *
    752  * => caller should hold the proper lock on pmap_main_lock
    753  * => caller should have pmap locked
    754  * => we will gain the lock on the vm_page and allocate the new pv_entry
    755  * => caller should adjust ptp's wire_count before calling
    756  * => caller should not adjust pmap's wire_count
    757  */
    758 
    759 __inline static void
    760 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    761     vaddr_t va, struct vm_page *ptp, int flags)
    762 {
    763 	pve->pv_pmap = pmap;
    764 	pve->pv_va = va;
    765 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    766 	pve->pv_flags = flags;
    767 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    768 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    769 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    770 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    771 	if (pve->pv_flags & PVF_WIRED)
    772 		++pmap->pm_stats.wired_count;
    773 #ifdef PMAP_ALIAS_DEBUG
    774     {
    775 	int s = splhigh();
    776 	if (pve->pv_flags & PVF_WRITE)
    777 		pg->mdpage.rw_mappings++;
    778 	else
    779 		pg->mdpage.ro_mappings++;
    780 	if (pg->mdpage.rw_mappings != 0 &&
    781 	    (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
    782 		printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
    783 		    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
    784 		    pg->mdpage.krw_mappings);
    785 	}
    786 	splx(s);
    787     }
    788 #endif /* PMAP_ALIAS_DEBUG */
    789 }
    790 
    791 /*
    792  * pmap_remove_pv: try to remove a mapping from a pv_list
    793  *
    794  * => caller should hold proper lock on pmap_main_lock
    795  * => pmap should be locked
    796  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    797  * => caller should adjust ptp's wire_count and free PTP if needed
    798  * => caller should NOT adjust pmap's wire_count
    799  * => we return the removed pve
    800  */
    801 
    802 __inline static struct pv_entry *
    803 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    804 {
    805 	struct pv_entry *pve, **prevptr;
    806 
    807 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    808 	pve = *prevptr;
    809 	while (pve) {
    810 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    811 			*prevptr = pve->pv_next;		/* remove it! */
    812 			if (pve->pv_flags & PVF_WIRED)
    813 			    --pmap->pm_stats.wired_count;
    814 #ifdef PMAP_ALIAS_DEBUG
    815     {
    816 			int s = splhigh();
    817 			if (pve->pv_flags & PVF_WRITE) {
    818 				KASSERT(pg->mdpage.rw_mappings != 0);
    819 				pg->mdpage.rw_mappings--;
    820 			} else {
    821 				KASSERT(pg->mdpage.ro_mappings != 0);
    822 				pg->mdpage.ro_mappings--;
    823 			}
    824 			splx(s);
    825     }
    826 #endif /* PMAP_ALIAS_DEBUG */
    827 			break;
    828 		}
    829 		prevptr = &pve->pv_next;		/* previous pointer */
    830 		pve = pve->pv_next;			/* advance */
    831 	}
    832 	return(pve);				/* return removed pve */
    833 }
    834 
    835 /*
    836  *
    837  * pmap_modify_pv: Update pv flags
    838  *
    839  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    840  * => caller should NOT adjust pmap's wire_count
    841  * => caller must call pmap_vac_me_harder() if writable status of a page
    842  *    may have changed.
    843  * => we return the old flags
    844  *
    845  * Modify a physical-virtual mapping in the pv table
    846  */
    847 
    848 static /* __inline */ u_int
    849 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    850     u_int bic_mask, u_int eor_mask)
    851 {
    852 	struct pv_entry *npv;
    853 	u_int flags, oflags;
    854 
    855 	/*
    856 	 * There is at least one VA mapping this page.
    857 	 */
    858 
    859 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    860 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    861 			oflags = npv->pv_flags;
    862 			npv->pv_flags = flags =
    863 			    ((oflags & ~bic_mask) ^ eor_mask);
    864 			if ((flags ^ oflags) & PVF_WIRED) {
    865 				if (flags & PVF_WIRED)
    866 					++pmap->pm_stats.wired_count;
    867 				else
    868 					--pmap->pm_stats.wired_count;
    869 			}
    870 #ifdef PMAP_ALIAS_DEBUG
    871     {
    872 			int s = splhigh();
    873 			if ((flags ^ oflags) & PVF_WRITE) {
    874 				if (flags & PVF_WRITE) {
    875 					pg->mdpage.rw_mappings++;
    876 					pg->mdpage.ro_mappings--;
    877 					if (pg->mdpage.rw_mappings != 0 &&
    878 					    (pg->mdpage.kro_mappings != 0 ||
    879 					     pg->mdpage.krw_mappings != 0)) {
    880 						printf("pmap_modify_pv: rw %u, "
    881 						    "kro %u, krw %u\n",
    882 						    pg->mdpage.rw_mappings,
    883 						    pg->mdpage.kro_mappings,
    884 						    pg->mdpage.krw_mappings);
    885 					}
    886 				} else {
    887 					KASSERT(pg->mdpage.rw_mappings != 0);
    888 					pg->mdpage.rw_mappings--;
    889 					pg->mdpage.ro_mappings++;
    890 				}
    891 			}
    892 			splx(s);
    893     }
    894 #endif /* PMAP_ALIAS_DEBUG */
    895 			return (oflags);
    896 		}
    897 	}
    898 	return (0);
    899 }
    900 
    901 /*
    902  * Map the specified level 2 pagetable into the level 1 page table for
    903  * the given pmap to cover a chunk of virtual address space starting from the
    904  * address specified.
    905  */
    906 static __inline void
    907 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
    908 {
    909 	vaddr_t ptva;
    910 
    911 	/* Calculate the index into the L1 page table. */
    912 	ptva = (va >> L1_S_SHIFT) & ~3;
    913 
    914 	/* Map page table into the L1. */
    915 	pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
    916 	pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
    917 	pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
    918 	pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
    919 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    920 
    921 	/* Map the page table into the page table area. */
    922 	if (selfref)
    923 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
    924 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
    925 }
    926 
    927 #if 0
    928 static __inline void
    929 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    930 {
    931 	vaddr_t ptva;
    932 
    933 	/* Calculate the index into the L1 page table. */
    934 	ptva = (va >> L1_S_SHIFT) & ~3;
    935 
    936 	/* Unmap page table from the L1. */
    937 	pmap->pm_pdir[ptva + 0] = 0;
    938 	pmap->pm_pdir[ptva + 1] = 0;
    939 	pmap->pm_pdir[ptva + 2] = 0;
    940 	pmap->pm_pdir[ptva + 3] = 0;
    941 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    942 
    943 	/* Unmap the page table from the page table area. */
    944 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    945 }
    946 #endif
    947 
    948 /*
    949  *	Used to map a range of physical addresses into kernel
    950  *	virtual address space.
    951  *
    952  *	For now, VM is already on, we only need to map the
    953  *	specified memory.
    954  *
    955  *	XXX This routine should eventually go away; it's only used
    956  *	XXX by machine-dependent crash dump code.
    957  */
    958 vaddr_t
    959 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
    960 {
    961 	pt_entry_t *pte;
    962 
    963 	while (spa < epa) {
    964 		pte = vtopte(va);
    965 
    966 		*pte = L2_S_PROTO | spa |
    967 		    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
    968 		cpu_tlb_flushID_SE(va);
    969 		va += NBPG;
    970 		spa += NBPG;
    971 	}
    972 	pmap_update(pmap_kernel());
    973 	return(va);
    974 }
    975 
    976 
    977 /*
    978  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    979  *
    980  * bootstrap the pmap system. This is called from initarm and allows
    981  * the pmap system to initailise any structures it requires.
    982  *
    983  * Currently this sets up the kernel_pmap that is statically allocated
    984  * and also allocated virtual addresses for certain page hooks.
    985  * Currently the only one page hook is allocated that is used
    986  * to zero physical pages of memory.
    987  * It also initialises the start and end address of the kernel data space.
    988  */
    989 
    990 char *boot_head;
    991 
    992 void
    993 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    994 {
    995 	pt_entry_t *pte;
    996 
    997 	pmap_kernel()->pm_pdir = kernel_l1pt;
    998 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
    999 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1000 	simple_lock_init(&pmap_kernel()->pm_lock);
   1001 	pmap_kernel()->pm_obj.pgops = NULL;
   1002 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1003 	pmap_kernel()->pm_obj.uo_npages = 0;
   1004 	pmap_kernel()->pm_obj.uo_refs = 1;
   1005 
   1006 	virtual_avail = KERNEL_VM_BASE;
   1007 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
   1008 
   1009 	/*
   1010 	 * now we allocate the "special" VAs which are used for tmp mappings
   1011 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1012 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1013 	 * we find the PTE that maps the allocated VA via the linear PTE
   1014 	 * mapping.
   1015 	 */
   1016 
   1017 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1018 
   1019 	csrcp = virtual_avail; csrc_pte = pte;
   1020 	virtual_avail += PAGE_SIZE; pte++;
   1021 
   1022 	cdstp = virtual_avail; cdst_pte = pte;
   1023 	virtual_avail += PAGE_SIZE; pte++;
   1024 
   1025 	memhook = (char *) virtual_avail;	/* don't need pte */
   1026 	virtual_avail += PAGE_SIZE; pte++;
   1027 
   1028 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1029 	virtual_avail += round_page(MSGBUFSIZE);
   1030 	pte += atop(round_page(MSGBUFSIZE));
   1031 
   1032 	/*
   1033 	 * init the static-global locks and global lists.
   1034 	 */
   1035 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1036 	simple_lock_init(&pvalloc_lock);
   1037 	simple_lock_init(&pmaps_lock);
   1038 	LIST_INIT(&pmaps);
   1039 	TAILQ_INIT(&pv_freepages);
   1040 	TAILQ_INIT(&pv_unusedpgs);
   1041 
   1042 	/*
   1043 	 * initialize the pmap pool.
   1044 	 */
   1045 
   1046 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1047 		  &pool_allocator_nointr);
   1048 
   1049 	/*
   1050 	 * initialize the PT-PT pool and cache.
   1051 	 */
   1052 
   1053 	pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
   1054 		  &pmap_ptpt_allocator);
   1055 	pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
   1056 			pmap_ptpt_ctor, NULL, NULL);
   1057 
   1058 	cpu_dcache_wbinv_all();
   1059 }
   1060 
   1061 /*
   1062  * void pmap_init(void)
   1063  *
   1064  * Initialize the pmap module.
   1065  * Called by vm_init() in vm/vm_init.c in order to initialise
   1066  * any structures that the pmap system needs to map virtual memory.
   1067  */
   1068 
   1069 extern int physmem;
   1070 
   1071 void
   1072 pmap_init(void)
   1073 {
   1074 
   1075 	/*
   1076 	 * Set the available memory vars - These do not map to real memory
   1077 	 * addresses and cannot as the physical memory is fragmented.
   1078 	 * They are used by ps for %mem calculations.
   1079 	 * One could argue whether this should be the entire memory or just
   1080 	 * the memory that is useable in a user process.
   1081 	 */
   1082 	avail_start = 0;
   1083 	avail_end = physmem * NBPG;
   1084 
   1085 	/*
   1086 	 * now we need to free enough pv_entry structures to allow us to get
   1087 	 * the kmem_map/kmem_object allocated and inited (done after this
   1088 	 * function is finished).  to do this we allocate one bootstrap page out
   1089 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1090 	 * structures.   we never free this page.
   1091 	 */
   1092 
   1093 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1094 	if (pv_initpage == NULL)
   1095 		panic("pmap_init: pv_initpage");
   1096 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1097 	pv_nfpvents = 0;
   1098 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1099 
   1100 	pmap_initialized = TRUE;
   1101 
   1102 	/* Initialise our L1 page table queues and counters */
   1103 	SIMPLEQ_INIT(&l1pt_static_queue);
   1104 	l1pt_static_queue_count = 0;
   1105 	l1pt_static_create_count = 0;
   1106 	SIMPLEQ_INIT(&l1pt_queue);
   1107 	l1pt_queue_count = 0;
   1108 	l1pt_create_count = 0;
   1109 	l1pt_reuse_count = 0;
   1110 }
   1111 
   1112 /*
   1113  * pmap_postinit()
   1114  *
   1115  * This routine is called after the vm and kmem subsystems have been
   1116  * initialised. This allows the pmap code to perform any initialisation
   1117  * that can only be done one the memory allocation is in place.
   1118  */
   1119 
   1120 void
   1121 pmap_postinit(void)
   1122 {
   1123 	int loop;
   1124 	struct l1pt *pt;
   1125 
   1126 #ifdef PMAP_STATIC_L1S
   1127 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1128 #else	/* PMAP_STATIC_L1S */
   1129 	for (loop = 0; loop < max_processes; ++loop) {
   1130 #endif	/* PMAP_STATIC_L1S */
   1131 		/* Allocate a L1 page table */
   1132 		pt = pmap_alloc_l1pt();
   1133 		if (!pt)
   1134 			panic("Cannot allocate static L1 page tables\n");
   1135 
   1136 		/* Clean it */
   1137 		bzero((void *)pt->pt_va, L1_TABLE_SIZE);
   1138 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1139 		/* Add the page table to the queue */
   1140 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1141 		++l1pt_static_queue_count;
   1142 		++l1pt_static_create_count;
   1143 	}
   1144 }
   1145 
   1146 
   1147 /*
   1148  * Create and return a physical map.
   1149  *
   1150  * If the size specified for the map is zero, the map is an actual physical
   1151  * map, and may be referenced by the hardware.
   1152  *
   1153  * If the size specified is non-zero, the map will be used in software only,
   1154  * and is bounded by that size.
   1155  */
   1156 
   1157 pmap_t
   1158 pmap_create(void)
   1159 {
   1160 	struct pmap *pmap;
   1161 
   1162 	/*
   1163 	 * Fetch pmap entry from the pool
   1164 	 */
   1165 
   1166 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1167 	/* XXX is this really needed! */
   1168 	memset(pmap, 0, sizeof(*pmap));
   1169 
   1170 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1171 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1172 	TAILQ_INIT(&pmap->pm_obj.memq);
   1173 	pmap->pm_obj.uo_npages = 0;
   1174 	pmap->pm_obj.uo_refs = 1;
   1175 	pmap->pm_stats.wired_count = 0;
   1176 	pmap->pm_stats.resident_count = 1;
   1177 	pmap->pm_ptphint = NULL;
   1178 
   1179 	/* Now init the machine part of the pmap */
   1180 	pmap_pinit(pmap);
   1181 	return(pmap);
   1182 }
   1183 
   1184 /*
   1185  * pmap_alloc_l1pt()
   1186  *
   1187  * This routine allocates physical and virtual memory for a L1 page table
   1188  * and wires it.
   1189  * A l1pt structure is returned to describe the allocated page table.
   1190  *
   1191  * This routine is allowed to fail if the required memory cannot be allocated.
   1192  * In this case NULL is returned.
   1193  */
   1194 
   1195 struct l1pt *
   1196 pmap_alloc_l1pt(void)
   1197 {
   1198 	paddr_t pa;
   1199 	vaddr_t va;
   1200 	struct l1pt *pt;
   1201 	int error;
   1202 	struct vm_page *m;
   1203 
   1204 	/* Allocate virtual address space for the L1 page table */
   1205 	va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
   1206 	if (va == 0) {
   1207 #ifdef DIAGNOSTIC
   1208 		PDEBUG(0,
   1209 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1210 #endif	/* DIAGNOSTIC */
   1211 		return(NULL);
   1212 	}
   1213 
   1214 	/* Allocate memory for the l1pt structure */
   1215 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1216 
   1217 	/*
   1218 	 * Allocate pages from the VM system.
   1219 	 */
   1220 	error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
   1221 	    L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1222 	if (error) {
   1223 #ifdef DIAGNOSTIC
   1224 		PDEBUG(0,
   1225 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1226 		    error));
   1227 #endif	/* DIAGNOSTIC */
   1228 		/* Release the resources we already have claimed */
   1229 		free(pt, M_VMPMAP);
   1230 		uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
   1231 		return(NULL);
   1232 	}
   1233 
   1234 	/* Map our physical pages into our virtual space */
   1235 	pt->pt_va = va;
   1236 	m = TAILQ_FIRST(&pt->pt_plist);
   1237 	while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
   1238 		pa = VM_PAGE_TO_PHYS(m);
   1239 
   1240 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
   1241 
   1242 		va += NBPG;
   1243 		m = m->pageq.tqe_next;
   1244 	}
   1245 
   1246 #ifdef DIAGNOSTIC
   1247 	if (m)
   1248 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1249 #endif	/* DIAGNOSTIC */
   1250 
   1251 	pt->pt_flags = 0;
   1252 	return(pt);
   1253 }
   1254 
   1255 /*
   1256  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1257  */
   1258 static void
   1259 pmap_free_l1pt(struct l1pt *pt)
   1260 {
   1261 	/* Separate the physical memory for the virtual space */
   1262 	pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
   1263 	pmap_update(pmap_kernel());
   1264 
   1265 	/* Return the physical memory */
   1266 	uvm_pglistfree(&pt->pt_plist);
   1267 
   1268 	/* Free the virtual space */
   1269 	uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
   1270 
   1271 	/* Free the l1pt structure */
   1272 	free(pt, M_VMPMAP);
   1273 }
   1274 
   1275 /*
   1276  * pmap_ptpt_page_alloc:
   1277  *
   1278  *	Back-end page allocator for the PT-PT pool.
   1279  */
   1280 static void *
   1281 pmap_ptpt_page_alloc(struct pool *pp, int flags)
   1282 {
   1283 	struct vm_page *pg;
   1284 	pt_entry_t *pte;
   1285 	vaddr_t va;
   1286 
   1287 	/* XXX PR_WAITOK? */
   1288 	va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
   1289 	if (va == 0)
   1290 		return (NULL);
   1291 
   1292 	for (;;) {
   1293 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1294 		if (pg != NULL)
   1295 			break;
   1296 		if ((flags & PR_WAITOK) == 0) {
   1297 			uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
   1298 			return (NULL);
   1299 		}
   1300 		uvm_wait("pmap_ptpt");
   1301 	}
   1302 
   1303 	pte = vtopte(va);
   1304 	KDASSERT(pmap_pte_v(pte) == 0);
   1305 
   1306 	*pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
   1307 	     L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   1308 #ifdef PMAP_ALIAS_DEBUG
   1309     {
   1310 	int s = splhigh();
   1311 	pg->mdpage.krw_mappings++;
   1312 	splx(s);
   1313     }
   1314 #endif /* PMAP_ALIAS_DEBUG */
   1315 
   1316 	return ((void *) va);
   1317 }
   1318 
   1319 /*
   1320  * pmap_ptpt_page_free:
   1321  *
   1322  *	Back-end page free'er for the PT-PT pool.
   1323  */
   1324 static void
   1325 pmap_ptpt_page_free(struct pool *pp, void *v)
   1326 {
   1327 	vaddr_t va = (vaddr_t) v;
   1328 	paddr_t pa;
   1329 
   1330 	pa = vtophys(va);
   1331 
   1332 	pmap_kremove(va, L2_TABLE_SIZE);
   1333 	pmap_update(pmap_kernel());
   1334 
   1335 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1336 
   1337 	uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
   1338 }
   1339 
   1340 /*
   1341  * pmap_ptpt_ctor:
   1342  *
   1343  *	Constructor for the PT-PT cache.
   1344  */
   1345 static int
   1346 pmap_ptpt_ctor(void *arg, void *object, int flags)
   1347 {
   1348 	caddr_t vptpt = object;
   1349 
   1350 	/* Page is already zero'd. */
   1351 
   1352 	/*
   1353 	 * Map in kernel PTs.
   1354 	 *
   1355 	 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
   1356 	 */
   1357 	memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
   1358 	       (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
   1359 			((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
   1360 	       (KERNEL_PD_SIZE >> 2));
   1361 
   1362 	return (0);
   1363 }
   1364 
   1365 /*
   1366  * Allocate a page directory.
   1367  * This routine will either allocate a new page directory from the pool
   1368  * of L1 page tables currently held by the kernel or it will allocate
   1369  * a new one via pmap_alloc_l1pt().
   1370  * It will then initialise the l1 page table for use.
   1371  */
   1372 static int
   1373 pmap_allocpagedir(struct pmap *pmap)
   1374 {
   1375 	vaddr_t vptpt;
   1376 	paddr_t pa;
   1377 	struct l1pt *pt;
   1378 	u_int gen;
   1379 
   1380 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1381 
   1382 	/* Do we have any spare L1's lying around ? */
   1383 	if (l1pt_static_queue_count) {
   1384 		--l1pt_static_queue_count;
   1385 		pt = SIMPLEQ_FIRST(&l1pt_static_queue);
   1386 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
   1387 	} else if (l1pt_queue_count) {
   1388 		--l1pt_queue_count;
   1389 		pt = SIMPLEQ_FIRST(&l1pt_queue);
   1390 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
   1391 		++l1pt_reuse_count;
   1392 	} else {
   1393 		pt = pmap_alloc_l1pt();
   1394 		if (!pt)
   1395 			return(ENOMEM);
   1396 		++l1pt_create_count;
   1397 	}
   1398 
   1399 	/* Store the pointer to the l1 descriptor in the pmap. */
   1400 	pmap->pm_l1pt = pt;
   1401 
   1402 	/* Get the physical address of the start of the l1 */
   1403 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1404 
   1405 	/* Store the virtual address of the l1 in the pmap. */
   1406 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1407 
   1408 	/* Clean the L1 if it is dirty */
   1409 	if (!(pt->pt_flags & PTFLAG_CLEAN)) {
   1410 		bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1411 		cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
   1412 		    (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1413 	}
   1414 
   1415 	/* Allocate a page table to map all the page tables for this pmap */
   1416 	KASSERT(pmap->pm_vptpt == 0);
   1417 
   1418  try_again:
   1419 	gen = pmap_ptpt_cache_generation;
   1420 	vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
   1421 	if (vptpt == NULL) {
   1422 		PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
   1423 		pmap_freepagedir(pmap);
   1424 		return (ENOMEM);
   1425 	}
   1426 
   1427 	/* need to lock this all up for growkernel */
   1428 	simple_lock(&pmaps_lock);
   1429 
   1430 	if (gen != pmap_ptpt_cache_generation) {
   1431 		simple_unlock(&pmaps_lock);
   1432 		pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
   1433 		goto try_again;
   1434 	}
   1435 
   1436 	pmap->pm_vptpt = vptpt;
   1437 	pmap->pm_pptpt = vtophys(vptpt);
   1438 
   1439 	/* Duplicate the kernel mappings. */
   1440 	bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1441 		(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1442 		KERNEL_PD_SIZE);
   1443 	cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
   1444 	    (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
   1445 
   1446 	/* Wire in this page table */
   1447 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1448 
   1449 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1450 
   1451 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1452 	simple_unlock(&pmaps_lock);
   1453 
   1454 	return(0);
   1455 }
   1456 
   1457 
   1458 /*
   1459  * Initialize a preallocated and zeroed pmap structure,
   1460  * such as one in a vmspace structure.
   1461  */
   1462 
   1463 void
   1464 pmap_pinit(struct pmap *pmap)
   1465 {
   1466 	int backoff = 6;
   1467 	int retry = 10;
   1468 
   1469 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1470 
   1471 	/* Keep looping until we succeed in allocating a page directory */
   1472 	while (pmap_allocpagedir(pmap) != 0) {
   1473 		/*
   1474 		 * Ok we failed to allocate a suitable block of memory for an
   1475 		 * L1 page table. This means that either:
   1476 		 * 1. 16KB of virtual address space could not be allocated
   1477 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1478 		 *    could not be allocated.
   1479 		 *
   1480 		 * Since we cannot fail we will sleep for a while and try
   1481 		 * again.
   1482 		 *
   1483 		 * Searching for a suitable L1 PT is expensive:
   1484 		 * to avoid hogging the system when memory is really
   1485 		 * scarce, use an exponential back-off so that
   1486 		 * eventually we won't retry more than once every 8
   1487 		 * seconds.  This should allow other processes to run
   1488 		 * to completion and free up resources.
   1489 		 */
   1490 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1491 		    NULL);
   1492 		if (--retry == 0) {
   1493 			retry = 10;
   1494 			if (backoff)
   1495 				--backoff;
   1496 		}
   1497 	}
   1498 
   1499 	if (vector_page < KERNEL_BASE) {
   1500 		/*
   1501 		 * Map the vector page.  This will also allocate and map
   1502 		 * an L2 table for it.
   1503 		 */
   1504 		pmap_enter(pmap, vector_page, systempage.pv_pa,
   1505 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1506 		pmap_update(pmap);
   1507 	}
   1508 }
   1509 
   1510 void
   1511 pmap_freepagedir(struct pmap *pmap)
   1512 {
   1513 	/* Free the memory used for the page table mapping */
   1514 	if (pmap->pm_vptpt != 0) {
   1515 		/*
   1516 		 * XXX Objects freed to a pool cache must be in constructed
   1517 		 * XXX form when freed, but we don't free page tables as we
   1518 		 * XXX go, so we need to zap the mappings here.
   1519 		 *
   1520 		 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
   1521 		 */
   1522 		memset((caddr_t) pmap->pm_vptpt, 0,
   1523 		       ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
   1524 		pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
   1525 	}
   1526 
   1527 	/* junk the L1 page table */
   1528 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1529 		/* Add the page table to the queue */
   1530 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
   1531 				    pmap->pm_l1pt, pt_queue);
   1532 		++l1pt_static_queue_count;
   1533 	} else if (l1pt_queue_count < 8) {
   1534 		/* Add the page table to the queue */
   1535 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1536 		++l1pt_queue_count;
   1537 	} else
   1538 		pmap_free_l1pt(pmap->pm_l1pt);
   1539 }
   1540 
   1541 /*
   1542  * Retire the given physical map from service.
   1543  * Should only be called if the map contains no valid mappings.
   1544  */
   1545 
   1546 void
   1547 pmap_destroy(struct pmap *pmap)
   1548 {
   1549 	struct vm_page *page;
   1550 	int count;
   1551 
   1552 	if (pmap == NULL)
   1553 		return;
   1554 
   1555 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1556 
   1557 	/*
   1558 	 * Drop reference count
   1559 	 */
   1560 	simple_lock(&pmap->pm_obj.vmobjlock);
   1561 	count = --pmap->pm_obj.uo_refs;
   1562 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1563 	if (count > 0) {
   1564 		return;
   1565 	}
   1566 
   1567 	/*
   1568 	 * reference count is zero, free pmap resources and then free pmap.
   1569 	 */
   1570 
   1571 	/*
   1572 	 * remove it from global list of pmaps
   1573 	 */
   1574 
   1575 	simple_lock(&pmaps_lock);
   1576 	LIST_REMOVE(pmap, pm_list);
   1577 	simple_unlock(&pmaps_lock);
   1578 
   1579 	if (vector_page < KERNEL_BASE) {
   1580 		/* Remove the vector page mapping */
   1581 		pmap_remove(pmap, vector_page, vector_page + NBPG);
   1582 		pmap_update(pmap);
   1583 	}
   1584 
   1585 	/*
   1586 	 * Free any page tables still mapped
   1587 	 * This is only temporay until pmap_enter can count the number
   1588 	 * of mappings made in a page table. Then pmap_remove() can
   1589 	 * reduce the count and free the pagetable when the count
   1590 	 * reaches zero.  Note that entries in this list should match the
   1591 	 * contents of the ptpt, however this is faster than walking a 1024
   1592 	 * entries looking for pt's
   1593 	 * taken from i386 pmap.c
   1594 	 */
   1595 	/*
   1596 	 * vmobjlock must be held while freeing pages
   1597 	 */
   1598 	simple_lock(&pmap->pm_obj.vmobjlock);
   1599 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1600 		KASSERT((page->flags & PG_BUSY) == 0);
   1601 		page->wire_count = 0;
   1602 		uvm_pagefree(page);
   1603 	}
   1604 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1605 
   1606 	/* Free the page dir */
   1607 	pmap_freepagedir(pmap);
   1608 
   1609 	/* return the pmap to the pool */
   1610 	pool_put(&pmap_pmap_pool, pmap);
   1611 }
   1612 
   1613 
   1614 /*
   1615  * void pmap_reference(struct pmap *pmap)
   1616  *
   1617  * Add a reference to the specified pmap.
   1618  */
   1619 
   1620 void
   1621 pmap_reference(struct pmap *pmap)
   1622 {
   1623 	if (pmap == NULL)
   1624 		return;
   1625 
   1626 	simple_lock(&pmap->pm_lock);
   1627 	pmap->pm_obj.uo_refs++;
   1628 	simple_unlock(&pmap->pm_lock);
   1629 }
   1630 
   1631 /*
   1632  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1633  *
   1634  * Return the start and end addresses of the kernel's virtual space.
   1635  * These values are setup in pmap_bootstrap and are updated as pages
   1636  * are allocated.
   1637  */
   1638 
   1639 void
   1640 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1641 {
   1642 	*start = virtual_avail;
   1643 	*end = virtual_end;
   1644 }
   1645 
   1646 /*
   1647  * Activate the address space for the specified process.  If the process
   1648  * is the current process, load the new MMU context.
   1649  */
   1650 void
   1651 pmap_activate(struct proc *p)
   1652 {
   1653 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1654 	struct pcb *pcb = &p->p_addr->u_pcb;
   1655 
   1656 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1657 	    (paddr_t *)&pcb->pcb_pagedir);
   1658 
   1659 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1660 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1661 
   1662 	if (p == curproc) {
   1663 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1664 		setttb((u_int)pcb->pcb_pagedir);
   1665 	}
   1666 }
   1667 
   1668 /*
   1669  * Deactivate the address space of the specified process.
   1670  */
   1671 void
   1672 pmap_deactivate(struct proc *p)
   1673 {
   1674 }
   1675 
   1676 /*
   1677  * Perform any deferred pmap operations.
   1678  */
   1679 void
   1680 pmap_update(struct pmap *pmap)
   1681 {
   1682 
   1683 	/*
   1684 	 * We haven't deferred any pmap operations, but we do need to
   1685 	 * make sure TLB/cache operations have completed.
   1686 	 */
   1687 	cpu_cpwait();
   1688 }
   1689 
   1690 /*
   1691  * pmap_clean_page()
   1692  *
   1693  * This is a local function used to work out the best strategy to clean
   1694  * a single page referenced by its entry in the PV table. It's used by
   1695  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1696  *
   1697  * Its policy is effectively:
   1698  *  o If there are no mappings, we don't bother doing anything with the cache.
   1699  *  o If there is one mapping, we clean just that page.
   1700  *  o If there are multiple mappings, we clean the entire cache.
   1701  *
   1702  * So that some functions can be further optimised, it returns 0 if it didn't
   1703  * clean the entire cache, or 1 if it did.
   1704  *
   1705  * XXX One bug in this routine is that if the pv_entry has a single page
   1706  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1707  * just the 1 page. Since this should not occur in everyday use and if it does
   1708  * it will just result in not the most efficient clean for the page.
   1709  */
   1710 static int
   1711 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1712 {
   1713 	struct pmap *pmap;
   1714 	struct pv_entry *npv;
   1715 	int cache_needs_cleaning = 0;
   1716 	vaddr_t page_to_clean = 0;
   1717 
   1718 	if (pv == NULL) {
   1719 		/* nothing mapped in so nothing to flush */
   1720 		return (0);
   1721 	}
   1722 
   1723 	/*
   1724 	 * Since we flush the cache each time we change curproc, we
   1725 	 * only need to flush the page if it is in the current pmap.
   1726 	 */
   1727 	if (curproc)
   1728 		pmap = curproc->p_vmspace->vm_map.pmap;
   1729 	else
   1730 		pmap = pmap_kernel();
   1731 
   1732 	for (npv = pv; npv; npv = npv->pv_next) {
   1733 		if (npv->pv_pmap == pmap) {
   1734 			/*
   1735 			 * The page is mapped non-cacheable in
   1736 			 * this map.  No need to flush the cache.
   1737 			 */
   1738 			if (npv->pv_flags & PVF_NC) {
   1739 #ifdef DIAGNOSTIC
   1740 				if (cache_needs_cleaning)
   1741 					panic("pmap_clean_page: "
   1742 					    "cache inconsistency");
   1743 #endif
   1744 				break;
   1745 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   1746 				continue;
   1747 			if (cache_needs_cleaning) {
   1748 				page_to_clean = 0;
   1749 				break;
   1750 			} else
   1751 				page_to_clean = npv->pv_va;
   1752 			cache_needs_cleaning = 1;
   1753 		}
   1754 	}
   1755 
   1756 	if (page_to_clean) {
   1757 		/*
   1758 		 * XXX If is_src, we really only need to write-back,
   1759 		 * XXX not invalidate, too.  Investigate further.
   1760 		 * XXX --thorpej (at) netbsd.org
   1761 		 */
   1762 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1763 	} else if (cache_needs_cleaning) {
   1764 		cpu_idcache_wbinv_all();
   1765 		return (1);
   1766 	}
   1767 	return (0);
   1768 }
   1769 
   1770 /*
   1771  * pmap_zero_page()
   1772  *
   1773  * Zero a given physical page by mapping it at a page hook point.
   1774  * In doing the zero page op, the page we zero is mapped cachable, as with
   1775  * StrongARM accesses to non-cached pages are non-burst making writing
   1776  * _any_ bulk data very slow.
   1777  */
   1778 #if ARM_MMU_GENERIC == 1
   1779 void
   1780 pmap_zero_page_generic(paddr_t phys)
   1781 {
   1782 #ifdef DEBUG
   1783 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1784 
   1785 	if (pg->mdpage.pvh_list != NULL)
   1786 		panic("pmap_zero_page: page has mappings");
   1787 #endif
   1788 
   1789 	KDASSERT((phys & PGOFSET) == 0);
   1790 
   1791 	/*
   1792 	 * Hook in the page, zero it, and purge the cache for that
   1793 	 * zeroed page. Invalidate the TLB as needed.
   1794 	 */
   1795 	*cdst_pte = L2_S_PROTO | phys |
   1796 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1797 	cpu_tlb_flushD_SE(cdstp);
   1798 	cpu_cpwait();
   1799 	bzero_page(cdstp);
   1800 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1801 }
   1802 #endif /* ARM_MMU_GENERIC == 1 */
   1803 
   1804 #if ARM_MMU_XSCALE == 1
   1805 void
   1806 pmap_zero_page_xscale(paddr_t phys)
   1807 {
   1808 #ifdef DEBUG
   1809 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1810 
   1811 	if (pg->mdpage.pvh_list != NULL)
   1812 		panic("pmap_zero_page: page has mappings");
   1813 #endif
   1814 
   1815 	KDASSERT((phys & PGOFSET) == 0);
   1816 
   1817 	/*
   1818 	 * Hook in the page, zero it, and purge the cache for that
   1819 	 * zeroed page. Invalidate the TLB as needed.
   1820 	 */
   1821 	*cdst_pte = L2_S_PROTO | phys |
   1822 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1823 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1824 	cpu_tlb_flushD_SE(cdstp);
   1825 	cpu_cpwait();
   1826 	bzero_page(cdstp);
   1827 	xscale_cache_clean_minidata();
   1828 }
   1829 #endif /* ARM_MMU_XSCALE == 1 */
   1830 
   1831 /* pmap_pageidlezero()
   1832  *
   1833  * The same as above, except that we assume that the page is not
   1834  * mapped.  This means we never have to flush the cache first.  Called
   1835  * from the idle loop.
   1836  */
   1837 boolean_t
   1838 pmap_pageidlezero(paddr_t phys)
   1839 {
   1840 	int i, *ptr;
   1841 	boolean_t rv = TRUE;
   1842 #ifdef DEBUG
   1843 	struct vm_page *pg;
   1844 
   1845 	pg = PHYS_TO_VM_PAGE(phys);
   1846 	if (pg->mdpage.pvh_list != NULL)
   1847 		panic("pmap_pageidlezero: page has mappings");
   1848 #endif
   1849 
   1850 	KDASSERT((phys & PGOFSET) == 0);
   1851 
   1852 	/*
   1853 	 * Hook in the page, zero it, and purge the cache for that
   1854 	 * zeroed page. Invalidate the TLB as needed.
   1855 	 */
   1856 	*cdst_pte = L2_S_PROTO | phys |
   1857 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1858 	cpu_tlb_flushD_SE(cdstp);
   1859 	cpu_cpwait();
   1860 
   1861 	for (i = 0, ptr = (int *)cdstp;
   1862 			i < (NBPG / sizeof(int)); i++) {
   1863 		if (sched_whichqs != 0) {
   1864 			/*
   1865 			 * A process has become ready.  Abort now,
   1866 			 * so we don't keep it waiting while we
   1867 			 * do slow memory access to finish this
   1868 			 * page.
   1869 			 */
   1870 			rv = FALSE;
   1871 			break;
   1872 		}
   1873 		*ptr++ = 0;
   1874 	}
   1875 
   1876 	if (rv)
   1877 		/*
   1878 		 * if we aborted we'll rezero this page again later so don't
   1879 		 * purge it unless we finished it
   1880 		 */
   1881 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1882 	return (rv);
   1883 }
   1884 
   1885 /*
   1886  * pmap_copy_page()
   1887  *
   1888  * Copy one physical page into another, by mapping the pages into
   1889  * hook points. The same comment regarding cachability as in
   1890  * pmap_zero_page also applies here.
   1891  */
   1892 #if ARM_MMU_GENERIC == 1
   1893 void
   1894 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   1895 {
   1896 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1897 #ifdef DEBUG
   1898 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1899 
   1900 	if (dst_pg->mdpage.pvh_list != NULL)
   1901 		panic("pmap_copy_page: dst page has mappings");
   1902 #endif
   1903 
   1904 	KDASSERT((src & PGOFSET) == 0);
   1905 	KDASSERT((dst & PGOFSET) == 0);
   1906 
   1907 	/*
   1908 	 * Clean the source page.  Hold the source page's lock for
   1909 	 * the duration of the copy so that no other mappings can
   1910 	 * be created while we have a potentially aliased mapping.
   1911 	 */
   1912 	simple_lock(&src_pg->mdpage.pvh_slock);
   1913 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1914 
   1915 	/*
   1916 	 * Map the pages into the page hook points, copy them, and purge
   1917 	 * the cache for the appropriate page. Invalidate the TLB
   1918 	 * as required.
   1919 	 */
   1920 	*csrc_pte = L2_S_PROTO | src |
   1921 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
   1922 	*cdst_pte = L2_S_PROTO | dst |
   1923 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1924 	cpu_tlb_flushD_SE(csrcp);
   1925 	cpu_tlb_flushD_SE(cdstp);
   1926 	cpu_cpwait();
   1927 	bcopy_page(csrcp, cdstp);
   1928 	cpu_dcache_inv_range(csrcp, NBPG);
   1929 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1930 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1931 }
   1932 #endif /* ARM_MMU_GENERIC == 1 */
   1933 
   1934 #if ARM_MMU_XSCALE == 1
   1935 void
   1936 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   1937 {
   1938 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1939 #ifdef DEBUG
   1940 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1941 
   1942 	if (dst_pg->mdpage.pvh_list != NULL)
   1943 		panic("pmap_copy_page: dst page has mappings");
   1944 #endif
   1945 
   1946 	KDASSERT((src & PGOFSET) == 0);
   1947 	KDASSERT((dst & PGOFSET) == 0);
   1948 
   1949 	/*
   1950 	 * Clean the source page.  Hold the source page's lock for
   1951 	 * the duration of the copy so that no other mappings can
   1952 	 * be created while we have a potentially aliased mapping.
   1953 	 */
   1954 	simple_lock(&src_pg->mdpage.pvh_slock);
   1955 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1956 
   1957 	/*
   1958 	 * Map the pages into the page hook points, copy them, and purge
   1959 	 * the cache for the appropriate page. Invalidate the TLB
   1960 	 * as required.
   1961 	 */
   1962 	*csrc_pte = L2_S_PROTO | src |
   1963 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   1964 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1965 	*cdst_pte = L2_S_PROTO | dst |
   1966 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1967 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1968 	cpu_tlb_flushD_SE(csrcp);
   1969 	cpu_tlb_flushD_SE(cdstp);
   1970 	cpu_cpwait();
   1971 	bcopy_page(csrcp, cdstp);
   1972 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1973 	xscale_cache_clean_minidata();
   1974 }
   1975 #endif /* ARM_MMU_XSCALE == 1 */
   1976 
   1977 #if 0
   1978 void
   1979 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   1980 {
   1981 	pd_entry_t *pde;
   1982 	paddr_t pa;
   1983 	struct vm_page *m;
   1984 
   1985 	if (pmap == pmap_kernel())
   1986 		return;
   1987 
   1988 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   1989 	pa = pmap_pte_pa(pde);
   1990 	m = PHYS_TO_VM_PAGE(pa);
   1991 	++m->wire_count;
   1992 #ifdef MYCROFT_HACK
   1993 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1994 	    pmap, va, pde, pa, m, m->wire_count);
   1995 #endif
   1996 }
   1997 
   1998 void
   1999 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   2000 {
   2001 	pd_entry_t *pde;
   2002 	paddr_t pa;
   2003 	struct vm_page *m;
   2004 
   2005 	if (pmap == pmap_kernel())
   2006 		return;
   2007 
   2008 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   2009 	pa = pmap_pte_pa(pde);
   2010 	m = PHYS_TO_VM_PAGE(pa);
   2011 	--m->wire_count;
   2012 #ifdef MYCROFT_HACK
   2013 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2014 	    pmap, va, pde, pa, m, m->wire_count);
   2015 #endif
   2016 	if (m->wire_count == 0) {
   2017 #ifdef MYCROFT_HACK
   2018 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2019 		    pmap, va, pde, pa, m);
   2020 #endif
   2021 		pmap_unmap_in_l1(pmap, va);
   2022 		uvm_pagefree(m);
   2023 		--pmap->pm_stats.resident_count;
   2024 	}
   2025 }
   2026 #else
   2027 #define	pmap_pte_addref(pmap, va)
   2028 #define	pmap_pte_delref(pmap, va)
   2029 #endif
   2030 
   2031 /*
   2032  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2033  * there is more than one mapping and at least one of them is writable.
   2034  * Since we purge the cache on every context switch, we only need to check for
   2035  * other mappings within the same pmap, or kernel_pmap.
   2036  * This function is also called when a page is unmapped, to possibly reenable
   2037  * caching on any remaining mappings.
   2038  *
   2039  * The code implements the following logic, where:
   2040  *
   2041  * KW = # of kernel read/write pages
   2042  * KR = # of kernel read only pages
   2043  * UW = # of user read/write pages
   2044  * UR = # of user read only pages
   2045  * OW = # of user read/write pages in another pmap, then
   2046  *
   2047  * KC = kernel mapping is cacheable
   2048  * UC = user mapping is cacheable
   2049  *
   2050  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2051  *                   +---------------------------------------------
   2052  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2053  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2054  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2055  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2056  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2057  *
   2058  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2059  */
   2060 __inline static void
   2061 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2062 	boolean_t clear_cache)
   2063 {
   2064 	if (pmap == pmap_kernel())
   2065 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2066 	else
   2067 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2068 }
   2069 
   2070 static void
   2071 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2072 	boolean_t clear_cache)
   2073 {
   2074 	int user_entries = 0;
   2075 	int user_writable = 0;
   2076 	int user_cacheable = 0;
   2077 	int kernel_entries = 0;
   2078 	int kernel_writable = 0;
   2079 	int kernel_cacheable = 0;
   2080 	struct pv_entry *pv;
   2081 	struct pmap *last_pmap = pmap;
   2082 
   2083 #ifdef DIAGNOSTIC
   2084 	if (pmap != pmap_kernel())
   2085 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2086 #endif
   2087 
   2088 	/*
   2089 	 * Pass one, see if there are both kernel and user pmaps for
   2090 	 * this page.  Calculate whether there are user-writable or
   2091 	 * kernel-writable pages.
   2092 	 */
   2093 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2094 		if (pv->pv_pmap != pmap) {
   2095 			user_entries++;
   2096 			if (pv->pv_flags & PVF_WRITE)
   2097 				user_writable++;
   2098 			if ((pv->pv_flags & PVF_NC) == 0)
   2099 				user_cacheable++;
   2100 		} else {
   2101 			kernel_entries++;
   2102 			if (pv->pv_flags & PVF_WRITE)
   2103 				kernel_writable++;
   2104 			if ((pv->pv_flags & PVF_NC) == 0)
   2105 				kernel_cacheable++;
   2106 		}
   2107 	}
   2108 
   2109 	/*
   2110 	 * We know we have just been updating a kernel entry, so if
   2111 	 * all user pages are already cacheable, then there is nothing
   2112 	 * further to do.
   2113 	 */
   2114 	if (kernel_entries == 0 &&
   2115 	    user_cacheable == user_entries)
   2116 		return;
   2117 
   2118 	if (user_entries) {
   2119 		/*
   2120 		 * Scan over the list again, for each entry, if it
   2121 		 * might not be set correctly, call pmap_vac_me_user
   2122 		 * to recalculate the settings.
   2123 		 */
   2124 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2125 			/*
   2126 			 * We know kernel mappings will get set
   2127 			 * correctly in other calls.  We also know
   2128 			 * that if the pmap is the same as last_pmap
   2129 			 * then we've just handled this entry.
   2130 			 */
   2131 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2132 				continue;
   2133 			/*
   2134 			 * If there are kernel entries and this page
   2135 			 * is writable but non-cacheable, then we can
   2136 			 * skip this entry also.
   2137 			 */
   2138 			if (kernel_entries > 0 &&
   2139 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   2140 			    (PVF_NC | PVF_WRITE))
   2141 				continue;
   2142 			/*
   2143 			 * Similarly if there are no kernel-writable
   2144 			 * entries and the page is already
   2145 			 * read-only/cacheable.
   2146 			 */
   2147 			if (kernel_writable == 0 &&
   2148 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   2149 				continue;
   2150 			/*
   2151 			 * For some of the remaining cases, we know
   2152 			 * that we must recalculate, but for others we
   2153 			 * can't tell if they are correct or not, so
   2154 			 * we recalculate anyway.
   2155 			 */
   2156 			pmap_unmap_ptes(last_pmap);
   2157 			last_pmap = pv->pv_pmap;
   2158 			ptes = pmap_map_ptes(last_pmap);
   2159 			pmap_vac_me_user(last_pmap, pg, ptes,
   2160 			    pmap_is_curpmap(last_pmap));
   2161 		}
   2162 		/* Restore the pte mapping that was passed to us.  */
   2163 		if (last_pmap != pmap) {
   2164 			pmap_unmap_ptes(last_pmap);
   2165 			ptes = pmap_map_ptes(pmap);
   2166 		}
   2167 		if (kernel_entries == 0)
   2168 			return;
   2169 	}
   2170 
   2171 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2172 	return;
   2173 }
   2174 
   2175 static void
   2176 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2177 	boolean_t clear_cache)
   2178 {
   2179 	struct pmap *kpmap = pmap_kernel();
   2180 	struct pv_entry *pv, *npv;
   2181 	int entries = 0;
   2182 	int writable = 0;
   2183 	int cacheable_entries = 0;
   2184 	int kern_cacheable = 0;
   2185 	int other_writable = 0;
   2186 
   2187 	pv = pg->mdpage.pvh_list;
   2188 	KASSERT(ptes != NULL);
   2189 
   2190 	/*
   2191 	 * Count mappings and writable mappings in this pmap.
   2192 	 * Include kernel mappings as part of our own.
   2193 	 * Keep a pointer to the first one.
   2194 	 */
   2195 	for (npv = pv; npv; npv = npv->pv_next) {
   2196 		/* Count mappings in the same pmap */
   2197 		if (pmap == npv->pv_pmap ||
   2198 		    kpmap == npv->pv_pmap) {
   2199 			if (entries++ == 0)
   2200 				pv = npv;
   2201 			/* Cacheable mappings */
   2202 			if ((npv->pv_flags & PVF_NC) == 0) {
   2203 				cacheable_entries++;
   2204 				if (kpmap == npv->pv_pmap)
   2205 					kern_cacheable++;
   2206 			}
   2207 			/* Writable mappings */
   2208 			if (npv->pv_flags & PVF_WRITE)
   2209 				++writable;
   2210 		} else if (npv->pv_flags & PVF_WRITE)
   2211 			other_writable = 1;
   2212 	}
   2213 
   2214 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2215 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2216 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2217 
   2218 	/*
   2219 	 * Enable or disable caching as necessary.
   2220 	 * Note: the first entry might be part of the kernel pmap,
   2221 	 * so we can't assume this is indicative of the state of the
   2222 	 * other (maybe non-kpmap) entries.
   2223 	 */
   2224 	if ((entries > 1 && writable) ||
   2225 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2226 		if (cacheable_entries == 0)
   2227 		    return;
   2228 		for (npv = pv; npv; npv = npv->pv_next) {
   2229 			if ((pmap == npv->pv_pmap
   2230 			    || kpmap == npv->pv_pmap) &&
   2231 			    (npv->pv_flags & PVF_NC) == 0) {
   2232 				ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
   2233  				npv->pv_flags |= PVF_NC;
   2234 				/*
   2235 				 * If this page needs flushing from the
   2236 				 * cache, and we aren't going to do it
   2237 				 * below, do it now.
   2238 				 */
   2239 				if ((cacheable_entries < 4 &&
   2240 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2241 				    (npv->pv_pmap == kpmap &&
   2242 				    !clear_cache && kern_cacheable < 4)) {
   2243 					cpu_idcache_wbinv_range(npv->pv_va,
   2244 					    NBPG);
   2245 					cpu_tlb_flushID_SE(npv->pv_va);
   2246 				}
   2247 			}
   2248 		}
   2249 		if ((clear_cache && cacheable_entries >= 4) ||
   2250 		    kern_cacheable >= 4) {
   2251 			cpu_idcache_wbinv_all();
   2252 			cpu_tlb_flushID();
   2253 		}
   2254 		cpu_cpwait();
   2255 	} else if (entries > 0) {
   2256 		/*
   2257 		 * Turn cacheing back on for some pages.  If it is a kernel
   2258 		 * page, only do so if there are no other writable pages.
   2259 		 */
   2260 		for (npv = pv; npv; npv = npv->pv_next) {
   2261 			if ((pmap == npv->pv_pmap ||
   2262 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2263 			    (npv->pv_flags & PVF_NC)) {
   2264 				ptes[arm_btop(npv->pv_va)] |=
   2265 				    pte_l2_s_cache_mode;
   2266 				npv->pv_flags &= ~PVF_NC;
   2267 			}
   2268 		}
   2269 	}
   2270 }
   2271 
   2272 /*
   2273  * pmap_remove()
   2274  *
   2275  * pmap_remove is responsible for nuking a number of mappings for a range
   2276  * of virtual address space in the current pmap. To do this efficiently
   2277  * is interesting, because in a number of cases a wide virtual address
   2278  * range may be supplied that contains few actual mappings. So, the
   2279  * optimisations are:
   2280  *  1. Try and skip over hunks of address space for which an L1 entry
   2281  *     does not exist.
   2282  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2283  *     maybe do just a partial cache clean. This path of execution is
   2284  *     complicated by the fact that the cache must be flushed _before_
   2285  *     the PTE is nuked, being a VAC :-)
   2286  *  3. Maybe later fast-case a single page, but I don't think this is
   2287  *     going to make _that_ much difference overall.
   2288  */
   2289 
   2290 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2291 
   2292 void
   2293 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2294 {
   2295 	int cleanlist_idx = 0;
   2296 	struct pagelist {
   2297 		vaddr_t va;
   2298 		pt_entry_t *pte;
   2299 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2300 	pt_entry_t *pte = 0, *ptes;
   2301 	paddr_t pa;
   2302 	int pmap_active;
   2303 	struct vm_page *pg;
   2304 
   2305 	/* Exit quick if there is no pmap */
   2306 	if (!pmap)
   2307 		return;
   2308 
   2309 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
   2310 	    pmap, sva, eva));
   2311 
   2312 	/*
   2313 	 * we lock in the pmap => vm_page direction
   2314 	 */
   2315 	PMAP_MAP_TO_HEAD_LOCK();
   2316 
   2317 	ptes = pmap_map_ptes(pmap);
   2318 	/* Get a page table pointer */
   2319 	while (sva < eva) {
   2320 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2321 			break;
   2322 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2323 	}
   2324 
   2325 	pte = &ptes[arm_btop(sva)];
   2326 	/* Note if the pmap is active thus require cache and tlb cleans */
   2327 	pmap_active = pmap_is_curpmap(pmap);
   2328 
   2329 	/* Now loop along */
   2330 	while (sva < eva) {
   2331 		/* Check if we can move to the next PDE (l1 chunk) */
   2332 		if (!(sva & L2_ADDR_BITS))
   2333 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2334 				sva += L1_S_SIZE;
   2335 				pte += arm_btop(L1_S_SIZE);
   2336 				continue;
   2337 			}
   2338 
   2339 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2340 		if (pmap_pte_v(pte)) {
   2341 			/* Update statistics */
   2342 			--pmap->pm_stats.resident_count;
   2343 
   2344 			/*
   2345 			 * Add this page to our cache remove list, if we can.
   2346 			 * If, however the cache remove list is totally full,
   2347 			 * then do a complete cache invalidation taking note
   2348 			 * to backtrack the PTE table beforehand, and ignore
   2349 			 * the lists in future because there's no longer any
   2350 			 * point in bothering with them (we've paid the
   2351 			 * penalty, so will carry on unhindered). Otherwise,
   2352 			 * when we fall out, we just clean the list.
   2353 			 */
   2354 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2355 			pa = pmap_pte_pa(pte);
   2356 
   2357 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2358 				/* Add to the clean list. */
   2359 				cleanlist[cleanlist_idx].pte = pte;
   2360 				cleanlist[cleanlist_idx].va = sva;
   2361 				cleanlist_idx++;
   2362 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2363 				int cnt;
   2364 
   2365 				/* Nuke everything if needed. */
   2366 				if (pmap_active) {
   2367 					cpu_idcache_wbinv_all();
   2368 					cpu_tlb_flushID();
   2369 				}
   2370 
   2371 				/*
   2372 				 * Roll back the previous PTE list,
   2373 				 * and zero out the current PTE.
   2374 				 */
   2375 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2376 					*cleanlist[cnt].pte = 0;
   2377 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2378 				}
   2379 				*pte = 0;
   2380 				pmap_pte_delref(pmap, sva);
   2381 				cleanlist_idx++;
   2382 			} else {
   2383 				/*
   2384 				 * We've already nuked the cache and
   2385 				 * TLB, so just carry on regardless,
   2386 				 * and we won't need to do it again
   2387 				 */
   2388 				*pte = 0;
   2389 				pmap_pte_delref(pmap, sva);
   2390 			}
   2391 
   2392 			/*
   2393 			 * Update flags. In a number of circumstances,
   2394 			 * we could cluster a lot of these and do a
   2395 			 * number of sequential pages in one go.
   2396 			 */
   2397 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2398 				struct pv_entry *pve;
   2399 				simple_lock(&pg->mdpage.pvh_slock);
   2400 				pve = pmap_remove_pv(pg, pmap, sva);
   2401 				pmap_free_pv(pmap, pve);
   2402 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2403 				simple_unlock(&pg->mdpage.pvh_slock);
   2404 			}
   2405 		}
   2406 		sva += NBPG;
   2407 		pte++;
   2408 	}
   2409 
   2410 	/*
   2411 	 * Now, if we've fallen through down to here, chances are that there
   2412 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2413 	 */
   2414 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2415 		u_int cnt;
   2416 
   2417 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2418 			if (pmap_active) {
   2419 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2420 				    NBPG);
   2421 				*cleanlist[cnt].pte = 0;
   2422 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2423 			} else
   2424 				*cleanlist[cnt].pte = 0;
   2425 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2426 		}
   2427 	}
   2428 
   2429 	pmap_unmap_ptes(pmap);
   2430 
   2431 	PMAP_MAP_TO_HEAD_UNLOCK();
   2432 }
   2433 
   2434 /*
   2435  * Routine:	pmap_remove_all
   2436  * Function:
   2437  *		Removes this physical page from
   2438  *		all physical maps in which it resides.
   2439  *		Reflects back modify bits to the pager.
   2440  */
   2441 
   2442 static void
   2443 pmap_remove_all(struct vm_page *pg)
   2444 {
   2445 	struct pv_entry *pv, *npv;
   2446 	struct pmap *pmap;
   2447 	pt_entry_t *pte, *ptes;
   2448 
   2449 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2450 
   2451 	/* set vm_page => pmap locking */
   2452 	PMAP_HEAD_TO_MAP_LOCK();
   2453 
   2454 	simple_lock(&pg->mdpage.pvh_slock);
   2455 
   2456 	pv = pg->mdpage.pvh_list;
   2457 	if (pv == NULL) {
   2458 		PDEBUG(0, printf("free page\n"));
   2459 		simple_unlock(&pg->mdpage.pvh_slock);
   2460 		PMAP_HEAD_TO_MAP_UNLOCK();
   2461 		return;
   2462 	}
   2463 	pmap_clean_page(pv, FALSE);
   2464 
   2465 	while (pv) {
   2466 		pmap = pv->pv_pmap;
   2467 		ptes = pmap_map_ptes(pmap);
   2468 		pte = &ptes[arm_btop(pv->pv_va)];
   2469 
   2470 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2471 		    pv->pv_va, pv->pv_flags));
   2472 #ifdef DEBUG
   2473 		if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
   2474 		    pmap_pte_v(pte) == 0 ||
   2475 		    pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
   2476 			panic("pmap_remove_all: bad mapping");
   2477 #endif	/* DEBUG */
   2478 
   2479 		/*
   2480 		 * Update statistics
   2481 		 */
   2482 		--pmap->pm_stats.resident_count;
   2483 
   2484 		/* Wired bit */
   2485 		if (pv->pv_flags & PVF_WIRED)
   2486 			--pmap->pm_stats.wired_count;
   2487 
   2488 		/*
   2489 		 * Invalidate the PTEs.
   2490 		 * XXX: should cluster them up and invalidate as many
   2491 		 * as possible at once.
   2492 		 */
   2493 
   2494 #ifdef needednotdone
   2495 reduce wiring count on page table pages as references drop
   2496 #endif
   2497 
   2498 		*pte = 0;
   2499 		pmap_pte_delref(pmap, pv->pv_va);
   2500 
   2501 		npv = pv->pv_next;
   2502 		pmap_free_pv(pmap, pv);
   2503 		pv = npv;
   2504 		pmap_unmap_ptes(pmap);
   2505 	}
   2506 	pg->mdpage.pvh_list = NULL;
   2507 	simple_unlock(&pg->mdpage.pvh_slock);
   2508 	PMAP_HEAD_TO_MAP_UNLOCK();
   2509 
   2510 	PDEBUG(0, printf("done\n"));
   2511 	cpu_tlb_flushID();
   2512 	cpu_cpwait();
   2513 }
   2514 
   2515 
   2516 /*
   2517  * Set the physical protection on the specified range of this map as requested.
   2518  */
   2519 
   2520 void
   2521 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2522 {
   2523 	pt_entry_t *pte = NULL, *ptes;
   2524 	struct vm_page *pg;
   2525 	int flush = 0;
   2526 
   2527 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2528 	    pmap, sva, eva, prot));
   2529 
   2530 	if (~prot & VM_PROT_READ) {
   2531 		/*
   2532 		 * Just remove the mappings.  pmap_update() is not required
   2533 		 * here since the caller should do it.
   2534 		 */
   2535 		pmap_remove(pmap, sva, eva);
   2536 		return;
   2537 	}
   2538 	if (prot & VM_PROT_WRITE) {
   2539 		/*
   2540 		 * If this is a read->write transition, just ignore it and let
   2541 		 * uvm_fault() take care of it later.
   2542 		 */
   2543 		return;
   2544 	}
   2545 
   2546 	/* Need to lock map->head */
   2547 	PMAP_MAP_TO_HEAD_LOCK();
   2548 
   2549 	ptes = pmap_map_ptes(pmap);
   2550 
   2551 	/*
   2552 	 * OK, at this point, we know we're doing write-protect operation.
   2553 	 * If the pmap is active, write-back the range.
   2554 	 */
   2555 	if (pmap_is_curpmap(pmap))
   2556 		cpu_dcache_wb_range(sva, eva - sva);
   2557 
   2558 	/*
   2559 	 * We need to acquire a pointer to a page table page before entering
   2560 	 * the following loop.
   2561 	 */
   2562 	while (sva < eva) {
   2563 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2564 			break;
   2565 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2566 	}
   2567 
   2568 	pte = &ptes[arm_btop(sva)];
   2569 
   2570 	while (sva < eva) {
   2571 		/* only check once in a while */
   2572 		if ((sva & L2_ADDR_BITS) == 0) {
   2573 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2574 				/* We can race ahead here, to the next pde. */
   2575 				sva += L1_S_SIZE;
   2576 				pte += arm_btop(L1_S_SIZE);
   2577 				continue;
   2578 			}
   2579 		}
   2580 
   2581 		if (!pmap_pte_v(pte))
   2582 			goto next;
   2583 
   2584 		flush = 1;
   2585 
   2586 		*pte &= ~L2_S_PROT_W;		/* clear write bit */
   2587 
   2588 		/* Clear write flag */
   2589 		if ((pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte))) != NULL) {
   2590 			simple_lock(&pg->mdpage.pvh_slock);
   2591 			(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
   2592 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2593 			simple_unlock(&pg->mdpage.pvh_slock);
   2594 		}
   2595 
   2596  next:
   2597 		sva += NBPG;
   2598 		pte++;
   2599 	}
   2600 	pmap_unmap_ptes(pmap);
   2601 	PMAP_MAP_TO_HEAD_UNLOCK();
   2602 	if (flush)
   2603 		cpu_tlb_flushID();
   2604 }
   2605 
   2606 /*
   2607  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2608  * int flags)
   2609  *
   2610  *      Insert the given physical page (p) at
   2611  *      the specified virtual address (v) in the
   2612  *      target physical map with the protection requested.
   2613  *
   2614  *      If specified, the page will be wired down, meaning
   2615  *      that the related pte can not be reclaimed.
   2616  *
   2617  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2618  *      or lose information.  That is, this routine must actually
   2619  *      insert this page into the given map NOW.
   2620  */
   2621 
   2622 int
   2623 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2624     int flags)
   2625 {
   2626 	pt_entry_t *ptes, opte, npte;
   2627 	paddr_t opa;
   2628 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2629 	struct vm_page *pg;
   2630 	struct pv_entry *pve;
   2631 	int error, nflags;
   2632 
   2633 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2634 	    va, pa, pmap, prot, wired));
   2635 
   2636 #ifdef DIAGNOSTIC
   2637 	/* Valid address ? */
   2638 	if (va >= (pmap_curmaxkvaddr))
   2639 		panic("pmap_enter: too big");
   2640 	if (pmap != pmap_kernel() && va != 0) {
   2641 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2642 			panic("pmap_enter: kernel page in user map");
   2643 	} else {
   2644 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2645 			panic("pmap_enter: user page in kernel map");
   2646 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2647 			panic("pmap_enter: entering PT page");
   2648 	}
   2649 #endif
   2650 
   2651 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2652 
   2653 	/*
   2654 	 * Get a pointer to the page.  Later on in this function, we
   2655 	 * test for a managed page by checking pg != NULL.
   2656 	 */
   2657 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2658 
   2659 	/* get lock */
   2660 	PMAP_MAP_TO_HEAD_LOCK();
   2661 
   2662 	/*
   2663 	 * map the ptes.  If there's not already an L2 table for this
   2664 	 * address, allocate one.
   2665 	 */
   2666 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2667 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   2668 		struct vm_page *ptp;
   2669 
   2670 		/* kernel should be pre-grown */
   2671 		KASSERT(pmap != pmap_kernel());
   2672 
   2673 		/* if failure is allowed then don't try too hard */
   2674 		ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
   2675 		if (ptp == NULL) {
   2676 			if (flags & PMAP_CANFAIL) {
   2677 				error = ENOMEM;
   2678 				goto out;
   2679 			}
   2680 			panic("pmap_enter: get ptp failed");
   2681 		}
   2682 	}
   2683 	opte = ptes[arm_btop(va)];
   2684 
   2685 	nflags = 0;
   2686 	if (prot & VM_PROT_WRITE)
   2687 		nflags |= PVF_WRITE;
   2688 	if (wired)
   2689 		nflags |= PVF_WIRED;
   2690 
   2691 	/* Is the pte valid ? If so then this page is already mapped */
   2692 	if (l2pte_valid(opte)) {
   2693 		/* Get the physical address of the current page mapped */
   2694 		opa = l2pte_pa(opte);
   2695 
   2696 		/* Are we mapping the same page ? */
   2697 		if (opa == pa) {
   2698 			/* Check to see if we're doing rw->ro. */
   2699 			if ((opte & L2_S_PROT_W) != 0 &&
   2700 			    (prot & VM_PROT_WRITE) == 0) {
   2701 				/* Yup, flush the cache if current pmap. */
   2702 				if (pmap_is_curpmap(pmap))
   2703 					cpu_dcache_wb_range(va, NBPG);
   2704 			}
   2705 
   2706 			/* Has the wiring changed ? */
   2707 			if (pg != NULL) {
   2708 				simple_lock(&pg->mdpage.pvh_slock);
   2709 				(void) pmap_modify_pv(pmap, va, pg,
   2710 				    PVF_WRITE | PVF_WIRED, nflags);
   2711 				simple_unlock(&pg->mdpage.pvh_slock);
   2712  			}
   2713 		} else {
   2714 			struct vm_page *opg;
   2715 
   2716 			/* We are replacing the page with a new one. */
   2717 			cpu_idcache_wbinv_range(va, NBPG);
   2718 
   2719 			/*
   2720 			 * If it is part of our managed memory then we
   2721 			 * must remove it from the PV list
   2722 			 */
   2723 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2724 				simple_lock(&opg->mdpage.pvh_slock);
   2725 				pve = pmap_remove_pv(opg, pmap, va);
   2726 				simple_unlock(&opg->mdpage.pvh_slock);
   2727 			} else {
   2728 				pve = NULL;
   2729 			}
   2730 
   2731 			goto enter;
   2732 		}
   2733 	} else {
   2734 		opa = 0;
   2735 		pve = NULL;
   2736 		pmap_pte_addref(pmap, va);
   2737 
   2738 		/* pte is not valid so we must be hooking in a new page */
   2739 		++pmap->pm_stats.resident_count;
   2740 
   2741 	enter:
   2742 		/*
   2743 		 * Enter on the PV list if part of our managed memory
   2744 		 */
   2745 		if (pg != NULL) {
   2746 			if (pve == NULL) {
   2747 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2748 				if (pve == NULL) {
   2749 					if (flags & PMAP_CANFAIL) {
   2750 						error = ENOMEM;
   2751 						goto out;
   2752 					}
   2753 					panic("pmap_enter: no pv entries "
   2754 					    "available");
   2755 				}
   2756 			}
   2757 			/* enter_pv locks pvh when adding */
   2758 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2759 		} else {
   2760 			if (pve != NULL)
   2761 				pmap_free_pv(pmap, pve);
   2762 		}
   2763 	}
   2764 
   2765 	/* Construct the pte, giving the correct access. */
   2766 	npte = pa;
   2767 
   2768 	/* VA 0 is magic. */
   2769 	if (pmap != pmap_kernel() && va != vector_page)
   2770 		npte |= L2_S_PROT_U;
   2771 
   2772 	if (pg != NULL) {
   2773 #ifdef DIAGNOSTIC
   2774 		if ((flags & VM_PROT_ALL) & ~prot)
   2775 			panic("pmap_enter: access_type exceeds prot");
   2776 #endif
   2777 		npte |= pte_l2_s_cache_mode;
   2778 		if (flags & VM_PROT_WRITE) {
   2779 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2780 			pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   2781 		} else if (flags & VM_PROT_ALL) {
   2782 			npte |= L2_S_PROTO;
   2783 			pg->mdpage.pvh_attrs |= PVF_REF;
   2784 		} else
   2785 			npte |= L2_TYPE_INV;
   2786 	} else {
   2787 		if (prot & VM_PROT_WRITE)
   2788 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2789 		else if (prot & VM_PROT_ALL)
   2790 			npte |= L2_S_PROTO;
   2791 		else
   2792 			npte |= L2_TYPE_INV;
   2793 	}
   2794 
   2795 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
   2796 #if ARM_NMMUS > 1
   2797 # error "XXX Unable to use read/write-allocate and configure non-XScale"
   2798 #endif
   2799 	/*
   2800 	 * XXX BRUTAL HACK!  This allows us to limp along with
   2801 	 * XXX the read/write-allocate cache mode.
   2802 	 */
   2803 	if (pmap == pmap_kernel())
   2804 		npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
   2805 #endif
   2806 	ptes[arm_btop(va)] = npte;
   2807 
   2808 	if (pg != NULL) {
   2809 		simple_lock(&pg->mdpage.pvh_slock);
   2810  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2811 		simple_unlock(&pg->mdpage.pvh_slock);
   2812 	}
   2813 
   2814 	/* Better flush the TLB ... */
   2815 	cpu_tlb_flushID_SE(va);
   2816 	error = 0;
   2817 out:
   2818 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2819 	PMAP_MAP_TO_HEAD_UNLOCK();
   2820 
   2821 	return error;
   2822 }
   2823 
   2824 /*
   2825  * pmap_kenter_pa: enter a kernel mapping
   2826  *
   2827  * => no need to lock anything assume va is already allocated
   2828  * => should be faster than normal pmap enter function
   2829  */
   2830 void
   2831 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2832 {
   2833 	pt_entry_t *pte;
   2834 
   2835 	pte = vtopte(va);
   2836 	KASSERT(!pmap_pte_v(pte));
   2837 
   2838 #ifdef PMAP_ALIAS_DEBUG
   2839     {
   2840 	struct vm_page *pg;
   2841 	int s;
   2842 
   2843 	pg = PHYS_TO_VM_PAGE(pa);
   2844 	if (pg != NULL) {
   2845 		s = splhigh();
   2846 		if (pg->mdpage.ro_mappings == 0 &&
   2847 		    pg->mdpage.rw_mappings == 0 &&
   2848 		    pg->mdpage.kro_mappings == 0 &&
   2849 		    pg->mdpage.krw_mappings == 0) {
   2850 			/* This case is okay. */
   2851 		} else if (pg->mdpage.rw_mappings == 0 &&
   2852 			   pg->mdpage.krw_mappings == 0 &&
   2853 			   (prot & VM_PROT_WRITE) == 0) {
   2854 			/* This case is okay. */
   2855 		} else {
   2856 			/* Something is awry. */
   2857 			printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
   2858 			    "prot 0x%x\n", pg->mdpage.ro_mappings,
   2859 			    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
   2860 			    pg->mdpage.krw_mappings, prot);
   2861 			Debugger();
   2862 		}
   2863 		if (prot & VM_PROT_WRITE)
   2864 			pg->mdpage.krw_mappings++;
   2865 		else
   2866 			pg->mdpage.kro_mappings++;
   2867 		splx(s);
   2868 	}
   2869     }
   2870 #endif /* PMAP_ALIAS_DEBUG */
   2871 
   2872 	*pte = L2_S_PROTO | pa |
   2873 	    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   2874 }
   2875 
   2876 void
   2877 pmap_kremove(vaddr_t va, vsize_t len)
   2878 {
   2879 	pt_entry_t *pte;
   2880 
   2881 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2882 
   2883 		/*
   2884 		 * We assume that we will only be called with small
   2885 		 * regions of memory.
   2886 		 */
   2887 
   2888 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2889 		pte = vtopte(va);
   2890 #ifdef PMAP_ALIAS_DEBUG
   2891     {
   2892 		struct vm_page *pg;
   2893 		int s;
   2894 
   2895 		if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
   2896 		    (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
   2897 			s = splhigh();
   2898 			if (*pte & L2_S_PROT_W) {
   2899 				KASSERT(pg->mdpage.krw_mappings != 0);
   2900 				pg->mdpage.krw_mappings--;
   2901 			} else {
   2902 				KASSERT(pg->mdpage.kro_mappings != 0);
   2903 				pg->mdpage.kro_mappings--;
   2904 			}
   2905 			splx(s);
   2906 		}
   2907     }
   2908 #endif /* PMAP_ALIAS_DEBUG */
   2909 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2910 		*pte = 0;
   2911 		cpu_tlb_flushID_SE(va);
   2912 	}
   2913 }
   2914 
   2915 /*
   2916  * pmap_page_protect:
   2917  *
   2918  * Lower the permission for all mappings to a given page.
   2919  */
   2920 
   2921 void
   2922 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2923 {
   2924 
   2925 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2926 	    VM_PAGE_TO_PHYS(pg), prot));
   2927 
   2928 	switch(prot) {
   2929 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2930 	case VM_PROT_READ|VM_PROT_WRITE:
   2931 		return;
   2932 
   2933 	case VM_PROT_READ:
   2934 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2935 		pmap_clearbit(pg, PVF_WRITE);
   2936 		break;
   2937 
   2938 	default:
   2939 		pmap_remove_all(pg);
   2940 		break;
   2941 	}
   2942 }
   2943 
   2944 
   2945 /*
   2946  * Routine:	pmap_unwire
   2947  * Function:	Clear the wired attribute for a map/virtual-address
   2948  *		pair.
   2949  * In/out conditions:
   2950  *		The mapping must already exist in the pmap.
   2951  */
   2952 
   2953 void
   2954 pmap_unwire(struct pmap *pmap, vaddr_t va)
   2955 {
   2956 	pt_entry_t *ptes;
   2957 	struct vm_page *pg;
   2958 	paddr_t pa;
   2959 
   2960 	PMAP_MAP_TO_HEAD_LOCK();
   2961 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2962 
   2963 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2964 #ifdef DIAGNOSTIC
   2965 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2966 			panic("pmap_unwire: invalid L2 PTE");
   2967 #endif
   2968 		/* Extract the physical address of the page */
   2969 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2970 
   2971 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2972 			goto out;
   2973 
   2974 		/* Update the wired bit in the pv entry for this page. */
   2975 		simple_lock(&pg->mdpage.pvh_slock);
   2976 		(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
   2977 		simple_unlock(&pg->mdpage.pvh_slock);
   2978 	}
   2979 #ifdef DIAGNOSTIC
   2980 	else {
   2981 		panic("pmap_unwire: invalid L1 PTE");
   2982 	}
   2983 #endif
   2984  out:
   2985 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2986 	PMAP_MAP_TO_HEAD_UNLOCK();
   2987 }
   2988 
   2989 /*
   2990  * Routine:  pmap_extract
   2991  * Function:
   2992  *           Extract the physical page address associated
   2993  *           with the given map/virtual_address pair.
   2994  */
   2995 boolean_t
   2996 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   2997 {
   2998 	pd_entry_t *pde;
   2999 	pt_entry_t *pte, *ptes;
   3000 	paddr_t pa;
   3001 
   3002 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
   3003 
   3004 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3005 
   3006 	pde = pmap_pde(pmap, va);
   3007 	pte = &ptes[arm_btop(va)];
   3008 
   3009 	if (pmap_pde_section(pde)) {
   3010 		pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3011 		PDEBUG(5, printf("section pa=0x%08lx\n", pa));
   3012 		goto out;
   3013 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3014 		PDEBUG(5, printf("no mapping\n"));
   3015 		goto failed;
   3016 	}
   3017 
   3018 	if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
   3019 		pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3020 		PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
   3021 		goto out;
   3022 	}
   3023 
   3024 	pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3025 	PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
   3026 
   3027  out:
   3028 	if (pap != NULL)
   3029 		*pap = pa;
   3030 
   3031 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3032 	return (TRUE);
   3033 
   3034  failed:
   3035 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3036 	return (FALSE);
   3037 }
   3038 
   3039 
   3040 /*
   3041  * pmap_copy:
   3042  *
   3043  *	Copy the range specified by src_addr/len from the source map to the
   3044  *	range dst_addr/len in the destination map.
   3045  *
   3046  *	This routine is only advisory and need not do anything.
   3047  */
   3048 /* Call deleted in <arm/arm32/pmap.h> */
   3049 
   3050 #if defined(PMAP_DEBUG)
   3051 void
   3052 pmap_dump_pvlist(phys, m)
   3053 	vaddr_t phys;
   3054 	char *m;
   3055 {
   3056 	struct vm_page *pg;
   3057 	struct pv_entry *pv;
   3058 
   3059 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3060 		printf("INVALID PA\n");
   3061 		return;
   3062 	}
   3063 	simple_lock(&pg->mdpage.pvh_slock);
   3064 	printf("%s %08lx:", m, phys);
   3065 	if (pg->mdpage.pvh_list == NULL) {
   3066 		simple_unlock(&pg->mdpage.pvh_slock);
   3067 		printf(" no mappings\n");
   3068 		return;
   3069 	}
   3070 
   3071 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3072 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3073 		    pv->pv_va, pv->pv_flags);
   3074 
   3075 	printf("\n");
   3076 	simple_unlock(&pg->mdpage.pvh_slock);
   3077 }
   3078 
   3079 #endif	/* PMAP_DEBUG */
   3080 
   3081 static pt_entry_t *
   3082 pmap_map_ptes(struct pmap *pmap)
   3083 {
   3084 	struct proc *p;
   3085 
   3086     	/* the kernel's pmap is always accessible */
   3087 	if (pmap == pmap_kernel()) {
   3088 		return (pt_entry_t *)PTE_BASE;
   3089 	}
   3090 
   3091 	if (pmap_is_curpmap(pmap)) {
   3092 		simple_lock(&pmap->pm_obj.vmobjlock);
   3093 		return (pt_entry_t *)PTE_BASE;
   3094 	}
   3095 
   3096 	p = curproc;
   3097 	KDASSERT(p != NULL);
   3098 
   3099 	/* need to lock both curpmap and pmap: use ordered locking */
   3100 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   3101 		simple_lock(&pmap->pm_obj.vmobjlock);
   3102 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3103 	} else {
   3104 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3105 		simple_lock(&pmap->pm_obj.vmobjlock);
   3106 	}
   3107 
   3108 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
   3109 	    FALSE);
   3110 	cpu_tlb_flushD();
   3111 	cpu_cpwait();
   3112 	return (pt_entry_t *)APTE_BASE;
   3113 }
   3114 
   3115 /*
   3116  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3117  */
   3118 
   3119 static void
   3120 pmap_unmap_ptes(struct pmap *pmap)
   3121 {
   3122 
   3123 	if (pmap == pmap_kernel()) {
   3124 		return;
   3125 	}
   3126 	if (pmap_is_curpmap(pmap)) {
   3127 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3128 	} else {
   3129 		KDASSERT(curproc != NULL);
   3130 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3131 		simple_unlock(
   3132 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3133 	}
   3134 }
   3135 
   3136 /*
   3137  * Modify pte bits for all ptes corresponding to the given physical address.
   3138  * We use `maskbits' rather than `clearbits' because we're always passing
   3139  * constants and the latter would require an extra inversion at run-time.
   3140  */
   3141 
   3142 static void
   3143 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   3144 {
   3145 	struct pv_entry *pv;
   3146 	pt_entry_t *ptes, npte, opte;
   3147 	vaddr_t va;
   3148 	int tlbentry;
   3149 
   3150 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3151 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3152 
   3153 	tlbentry = 0;
   3154 
   3155 	PMAP_HEAD_TO_MAP_LOCK();
   3156 	simple_lock(&pg->mdpage.pvh_slock);
   3157 
   3158 	/*
   3159 	 * Clear saved attributes (modify, reference)
   3160 	 */
   3161 	pg->mdpage.pvh_attrs &= ~maskbits;
   3162 
   3163 	if (pg->mdpage.pvh_list == NULL) {
   3164 		simple_unlock(&pg->mdpage.pvh_slock);
   3165 		PMAP_HEAD_TO_MAP_UNLOCK();
   3166 		return;
   3167 	}
   3168 
   3169 	/*
   3170 	 * Loop over all current mappings setting/clearing as appropos
   3171 	 */
   3172 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3173 #ifdef PMAP_ALIAS_DEBUG
   3174     {
   3175 		int s = splhigh();
   3176 		if ((maskbits & PVF_WRITE) != 0 &&
   3177 		    (pv->pv_flags & PVF_WRITE) != 0) {
   3178 			KASSERT(pg->mdpage.rw_mappings != 0);
   3179 			pg->mdpage.rw_mappings--;
   3180 			pg->mdpage.ro_mappings++;
   3181 		}
   3182 		splx(s);
   3183     }
   3184 #endif /* PMAP_ALIAS_DEBUG */
   3185 		va = pv->pv_va;
   3186 		pv->pv_flags &= ~maskbits;
   3187 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3188 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3189 		npte = opte = ptes[arm_btop(va)];
   3190 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   3191 			if ((pv->pv_flags & PVF_NC)) {
   3192 				/*
   3193 				 * Entry is not cacheable: reenable
   3194 				 * the cache, nothing to flush
   3195 				 *
   3196 				 * Don't turn caching on again if this
   3197 				 * is a modified emulation.  This
   3198 				 * would be inconsitent with the
   3199 				 * settings created by
   3200 				 * pmap_vac_me_harder().
   3201 				 *
   3202 				 * There's no need to call
   3203 				 * pmap_vac_me_harder() here: all
   3204 				 * pages are loosing their write
   3205 				 * permission.
   3206 				 *
   3207 				 */
   3208 				if (maskbits & PVF_WRITE) {
   3209 					npte |= pte_l2_s_cache_mode;
   3210 					pv->pv_flags &= ~PVF_NC;
   3211 				}
   3212 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3213 				/*
   3214 				 * Entry is cacheable: check if pmap is
   3215 				 * current if it is flush it,
   3216 				 * otherwise it won't be in the cache
   3217 				 */
   3218 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3219 			}
   3220 
   3221 			/* make the pte read only */
   3222 			npte &= ~L2_S_PROT_W;
   3223 		}
   3224 
   3225 		if (maskbits & PVF_REF) {
   3226 			if (pmap_is_curpmap(pv->pv_pmap) &&
   3227 			    (pv->pv_flags & PVF_NC) == 0) {
   3228 				/*
   3229 				 * Check npte here; we may have already
   3230 				 * done the wbinv above, and the validity
   3231 				 * of the PTE is the same for opte and
   3232 				 * npte.
   3233 				 */
   3234 				if (npte & L2_S_PROT_W) {
   3235 					cpu_idcache_wbinv_range(pv->pv_va,
   3236 					    NBPG);
   3237 				} else if ((npte & L2_TYPE_MASK)
   3238 					   != L2_TYPE_INV) {
   3239 					/* XXXJRT need idcache_inv_range */
   3240 					cpu_idcache_wbinv_range(pv->pv_va,
   3241 					    NBPG);
   3242 				}
   3243 			}
   3244 
   3245 			/* make the pte invalid */
   3246 			npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
   3247 		}
   3248 
   3249 		if (npte != opte) {
   3250 			ptes[arm_btop(va)] = npte;
   3251 			/* Flush the TLB entry if a current pmap. */
   3252 			if (pmap_is_curpmap(pv->pv_pmap))
   3253 				cpu_tlb_flushID_SE(pv->pv_va);
   3254 		}
   3255 
   3256 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3257 	}
   3258 	cpu_cpwait();
   3259 
   3260 	simple_unlock(&pg->mdpage.pvh_slock);
   3261 	PMAP_HEAD_TO_MAP_UNLOCK();
   3262 }
   3263 
   3264 /*
   3265  * pmap_clear_modify:
   3266  *
   3267  *	Clear the "modified" attribute for a page.
   3268  */
   3269 boolean_t
   3270 pmap_clear_modify(struct vm_page *pg)
   3271 {
   3272 	boolean_t rv;
   3273 
   3274 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3275 		rv = TRUE;
   3276 		pmap_clearbit(pg, PVF_MOD);
   3277 	} else
   3278 		rv = FALSE;
   3279 
   3280 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3281 	    VM_PAGE_TO_PHYS(pg), rv));
   3282 
   3283 	return (rv);
   3284 }
   3285 
   3286 /*
   3287  * pmap_clear_reference:
   3288  *
   3289  *	Clear the "referenced" attribute for a page.
   3290  */
   3291 boolean_t
   3292 pmap_clear_reference(struct vm_page *pg)
   3293 {
   3294 	boolean_t rv;
   3295 
   3296 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3297 		rv = TRUE;
   3298 		pmap_clearbit(pg, PVF_REF);
   3299 	} else
   3300 		rv = FALSE;
   3301 
   3302 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3303 	    VM_PAGE_TO_PHYS(pg), rv));
   3304 
   3305 	return (rv);
   3306 }
   3307 
   3308 /*
   3309  * pmap_is_modified:
   3310  *
   3311  *	Test if a page has the "modified" attribute.
   3312  */
   3313 /* See <arm/arm32/pmap.h> */
   3314 
   3315 /*
   3316  * pmap_is_referenced:
   3317  *
   3318  *	Test if a page has the "referenced" attribute.
   3319  */
   3320 /* See <arm/arm32/pmap.h> */
   3321 
   3322 int
   3323 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3324 {
   3325 	pt_entry_t *ptes;
   3326 	struct vm_page *pg;
   3327 	paddr_t pa;
   3328 	u_int flags;
   3329 	int rv = 0;
   3330 
   3331 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3332 
   3333 	PMAP_MAP_TO_HEAD_LOCK();
   3334 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3335 
   3336 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3337 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3338 		goto out;
   3339 	}
   3340 
   3341 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3342 
   3343 	/* Check for a invalid pte */
   3344 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3345 		goto out;
   3346 
   3347 	/* This can happen if user code tries to access kernel memory. */
   3348 	if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
   3349 		goto out;
   3350 
   3351 	/* Extract the physical address of the page */
   3352 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3353 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3354 		goto out;
   3355 
   3356 	/* Get the current flags for this page. */
   3357 	simple_lock(&pg->mdpage.pvh_slock);
   3358 
   3359 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3360 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3361 
   3362 	/*
   3363 	 * Do the flags say this page is writable ? If not then it is a
   3364 	 * genuine write fault. If yes then the write fault is our fault
   3365 	 * as we did not reflect the write access in the PTE. Now we know
   3366 	 * a write has occurred we can correct this and also set the
   3367 	 * modified bit
   3368 	 */
   3369 	if (~flags & PVF_WRITE) {
   3370 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3371 		goto out;
   3372 	}
   3373 
   3374 	PDEBUG(0,
   3375 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3376 	    va, ptes[arm_btop(va)]));
   3377 	pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3378 
   3379 	/*
   3380 	 * Re-enable write permissions for the page.  No need to call
   3381 	 * pmap_vac_me_harder(), since this is just a
   3382 	 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
   3383 	 * We've already set the cacheable bits based on the assumption
   3384 	 * that we can write to this page.
   3385 	 */
   3386 	ptes[arm_btop(va)] =
   3387 	    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3388 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3389 
   3390 	simple_unlock(&pg->mdpage.pvh_slock);
   3391 
   3392 	cpu_tlb_flushID_SE(va);
   3393 	cpu_cpwait();
   3394 	rv = 1;
   3395  out:
   3396 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3397 	PMAP_MAP_TO_HEAD_UNLOCK();
   3398 	return (rv);
   3399 }
   3400 
   3401 int
   3402 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3403 {
   3404 	pt_entry_t *ptes;
   3405 	struct vm_page *pg;
   3406 	paddr_t pa;
   3407 	int rv = 0;
   3408 
   3409 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3410 
   3411 	PMAP_MAP_TO_HEAD_LOCK();
   3412 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3413 
   3414 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3415 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3416 		goto out;
   3417 	}
   3418 
   3419 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3420 
   3421 	/* Check for invalid pte */
   3422 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3423 		goto out;
   3424 
   3425 	/* This can happen if user code tries to access kernel memory. */
   3426 	if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
   3427 		goto out;
   3428 
   3429 	/* Extract the physical address of the page */
   3430 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3431 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3432 		goto out;
   3433 
   3434 	simple_lock(&pg->mdpage.pvh_slock);
   3435 
   3436 	/*
   3437 	 * Ok we just enable the pte and mark the attibs as handled
   3438 	 * XXX Should we traverse the PV list and enable all PTEs?
   3439 	 */
   3440 	PDEBUG(0,
   3441 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3442 	    va, ptes[arm_btop(va)]));
   3443 	pg->mdpage.pvh_attrs |= PVF_REF;
   3444 
   3445 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
   3446 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3447 
   3448 	simple_unlock(&pg->mdpage.pvh_slock);
   3449 
   3450 	cpu_tlb_flushID_SE(va);
   3451 	cpu_cpwait();
   3452 	rv = 1;
   3453  out:
   3454 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3455 	PMAP_MAP_TO_HEAD_UNLOCK();
   3456 	return (rv);
   3457 }
   3458 
   3459 /*
   3460  * pmap_collect: free resources held by a pmap
   3461  *
   3462  * => optional function.
   3463  * => called when a process is swapped out to free memory.
   3464  */
   3465 
   3466 void
   3467 pmap_collect(struct pmap *pmap)
   3468 {
   3469 }
   3470 
   3471 /*
   3472  * Routine:	pmap_procwr
   3473  *
   3474  * Function:
   3475  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3476  *
   3477  */
   3478 void
   3479 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3480 {
   3481 	/* We only need to do anything if it is the current process. */
   3482 	if (p == curproc)
   3483 		cpu_icache_sync_range(va, len);
   3484 }
   3485 /*
   3486  * PTP functions
   3487  */
   3488 
   3489 /*
   3490  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3491  *
   3492  * => pmap should NOT be pmap_kernel()
   3493  * => pmap should be locked
   3494  */
   3495 
   3496 static struct vm_page *
   3497 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3498 {
   3499 	struct vm_page *ptp;
   3500 
   3501 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3502 
   3503 		/* valid... check hint (saves us a PA->PG lookup) */
   3504 		if (pmap->pm_ptphint &&
   3505 		    (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
   3506 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3507 			return (pmap->pm_ptphint);
   3508 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3509 #ifdef DIAGNOSTIC
   3510 		if (ptp == NULL)
   3511 			panic("pmap_get_ptp: unmanaged user PTP");
   3512 #endif
   3513 		pmap->pm_ptphint = ptp;
   3514 		return(ptp);
   3515 	}
   3516 
   3517 	/* allocate a new PTP (updates ptphint) */
   3518 	return(pmap_alloc_ptp(pmap, va));
   3519 }
   3520 
   3521 /*
   3522  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3523  *
   3524  * => pmap should already be locked by caller
   3525  * => we use the ptp's wire_count to count the number of active mappings
   3526  *	in the PTP (we start it at one to prevent any chance this PTP
   3527  *	will ever leak onto the active/inactive queues)
   3528  */
   3529 
   3530 /*__inline */ static struct vm_page *
   3531 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3532 {
   3533 	struct vm_page *ptp;
   3534 
   3535 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3536 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3537 	if (ptp == NULL)
   3538 		return (NULL);
   3539 
   3540 	/* got one! */
   3541 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3542 	ptp->wire_count = 1;	/* no mappings yet */
   3543 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3544 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3545 	pmap->pm_ptphint = ptp;
   3546 	return (ptp);
   3547 }
   3548 
   3549 vaddr_t
   3550 pmap_growkernel(vaddr_t maxkvaddr)
   3551 {
   3552 	struct pmap *kpm = pmap_kernel(), *pm;
   3553 	int s;
   3554 	paddr_t ptaddr;
   3555 	struct vm_page *ptp;
   3556 
   3557 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3558 		goto out;		/* we are OK */
   3559 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3560 		    pmap_curmaxkvaddr, maxkvaddr));
   3561 
   3562 	/*
   3563 	 * whoops!   we need to add kernel PTPs
   3564 	 */
   3565 
   3566 	s = splhigh();	/* to be safe */
   3567 	simple_lock(&kpm->pm_obj.vmobjlock);
   3568 	/* due to the way the arm pmap works we map 4MB at a time */
   3569 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3570 	     pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
   3571 
   3572 		if (uvm.page_init_done == FALSE) {
   3573 
   3574 			/*
   3575 			 * we're growing the kernel pmap early (from
   3576 			 * uvm_pageboot_alloc()).  this case must be
   3577 			 * handled a little differently.
   3578 			 */
   3579 
   3580 			if (uvm_page_physget(&ptaddr) == FALSE)
   3581 				panic("pmap_growkernel: out of memory");
   3582 			pmap_zero_page(ptaddr);
   3583 
   3584 			/* map this page in */
   3585 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
   3586 
   3587 			/* count PTP as resident */
   3588 			kpm->pm_stats.resident_count++;
   3589 			continue;
   3590 		}
   3591 
   3592 		/*
   3593 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3594 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3595 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3596 		 */
   3597 
   3598 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3599 			panic("pmap_growkernel: alloc ptp failed");
   3600 
   3601 		/* distribute new kernel PTP to all active pmaps */
   3602 		simple_lock(&pmaps_lock);
   3603 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3604 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3605 			    VM_PAGE_TO_PHYS(ptp), TRUE);
   3606 		}
   3607 
   3608 		/* Invalidate the PTPT cache. */
   3609 		pool_cache_invalidate(&pmap_ptpt_cache);
   3610 		pmap_ptpt_cache_generation++;
   3611 
   3612 		simple_unlock(&pmaps_lock);
   3613 	}
   3614 
   3615 	/*
   3616 	 * flush out the cache, expensive but growkernel will happen so
   3617 	 * rarely
   3618 	 */
   3619 	cpu_tlb_flushD();
   3620 	cpu_cpwait();
   3621 
   3622 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3623 	splx(s);
   3624 
   3625 out:
   3626 	return (pmap_curmaxkvaddr);
   3627 }
   3628 
   3629 /************************ Utility routines ****************************/
   3630 
   3631 /*
   3632  * vector_page_setprot:
   3633  *
   3634  *	Manipulate the protection of the vector page.
   3635  */
   3636 void
   3637 vector_page_setprot(int prot)
   3638 {
   3639 	pt_entry_t *pte;
   3640 
   3641 	pte = vtopte(vector_page);
   3642 
   3643 	*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   3644 	cpu_tlb_flushD_SE(vector_page);
   3645 	cpu_cpwait();
   3646 }
   3647 
   3648 /************************ Bootstrapping routines ****************************/
   3649 
   3650 /*
   3651  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3652  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3653  * find them as necessary.
   3654  *
   3655  * Note that the data on this list is not valid after initarm() returns.
   3656  */
   3657 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3658 
   3659 static vaddr_t
   3660 kernel_pt_lookup(paddr_t pa)
   3661 {
   3662 	pv_addr_t *pv;
   3663 
   3664 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3665 		if (pv->pv_pa == pa)
   3666 			return (pv->pv_va);
   3667 	}
   3668 	return (0);
   3669 }
   3670 
   3671 /*
   3672  * pmap_map_section:
   3673  *
   3674  *	Create a single section mapping.
   3675  */
   3676 void
   3677 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3678 {
   3679 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3680 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3681 
   3682 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   3683 
   3684 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3685 	    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3686 }
   3687 
   3688 /*
   3689  * pmap_map_entry:
   3690  *
   3691  *	Create a single page mapping.
   3692  */
   3693 void
   3694 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3695 {
   3696 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3697 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3698 	pt_entry_t *pte;
   3699 
   3700 	KASSERT(((va | pa) & PGOFSET) == 0);
   3701 
   3702 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3703 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3704 
   3705 	pte = (pt_entry_t *)
   3706 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3707 	if (pte == NULL)
   3708 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3709 
   3710 	pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3711 	    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3712 }
   3713 
   3714 /*
   3715  * pmap_link_l2pt:
   3716  *
   3717  *	Link the L2 page table specified by "pa" into the L1
   3718  *	page table at the slot for "va".
   3719  */
   3720 void
   3721 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3722 {
   3723 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3724 	u_int slot = va >> L1_S_SHIFT;
   3725 
   3726 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3727 
   3728 	pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
   3729 	pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
   3730 	pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
   3731 	pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
   3732 
   3733 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3734 }
   3735 
   3736 /*
   3737  * pmap_map_chunk:
   3738  *
   3739  *	Map a chunk of memory using the most efficient mappings
   3740  *	possible (section, large page, small page) into the
   3741  *	provided L1 and L2 tables at the specified virtual address.
   3742  */
   3743 vsize_t
   3744 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3745     int prot, int cache)
   3746 {
   3747 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3748 	pt_entry_t *pte, fl;
   3749 	vsize_t resid;
   3750 	int i;
   3751 
   3752 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3753 
   3754 	if (l1pt == 0)
   3755 		panic("pmap_map_chunk: no L1 table provided");
   3756 
   3757 #ifdef VERBOSE_INIT_ARM
   3758 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3759 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3760 #endif
   3761 
   3762 	size = resid;
   3763 
   3764 	while (resid > 0) {
   3765 		/* See if we can use a section mapping. */
   3766 		if (((pa | va) & L1_S_OFFSET) == 0 &&
   3767 		    resid >= L1_S_SIZE) {
   3768 			fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3769 #ifdef VERBOSE_INIT_ARM
   3770 			printf("S");
   3771 #endif
   3772 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3773 			    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3774 			va += L1_S_SIZE;
   3775 			pa += L1_S_SIZE;
   3776 			resid -= L1_S_SIZE;
   3777 			continue;
   3778 		}
   3779 
   3780 		/*
   3781 		 * Ok, we're going to use an L2 table.  Make sure
   3782 		 * one is actually in the corresponding L1 slot
   3783 		 * for the current VA.
   3784 		 */
   3785 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3786 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3787 
   3788 		pte = (pt_entry_t *)
   3789 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3790 		if (pte == NULL)
   3791 			panic("pmap_map_chunk: can't find L2 table for VA"
   3792 			    "0x%08lx", va);
   3793 
   3794 		/* See if we can use a L2 large page mapping. */
   3795 		if (((pa | va) & L2_L_OFFSET) == 0 &&
   3796 		    resid >= L2_L_SIZE) {
   3797 			fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
   3798 #ifdef VERBOSE_INIT_ARM
   3799 			printf("L");
   3800 #endif
   3801 			for (i = 0; i < 16; i++) {
   3802 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3803 				    L2_L_PROTO | pa |
   3804 				    L2_L_PROT(PTE_KERNEL, prot) | fl;
   3805 			}
   3806 			va += L2_L_SIZE;
   3807 			pa += L2_L_SIZE;
   3808 			resid -= L2_L_SIZE;
   3809 			continue;
   3810 		}
   3811 
   3812 		/* Use a small page mapping. */
   3813 		fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3814 #ifdef VERBOSE_INIT_ARM
   3815 		printf("P");
   3816 #endif
   3817 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3818 		    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3819 		va += NBPG;
   3820 		pa += NBPG;
   3821 		resid -= NBPG;
   3822 	}
   3823 #ifdef VERBOSE_INIT_ARM
   3824 	printf("\n");
   3825 #endif
   3826 	return (size);
   3827 }
   3828 
   3829 /********************** PTE initialization routines **************************/
   3830 
   3831 /*
   3832  * These routines are called when the CPU type is identified to set up
   3833  * the PTE prototypes, cache modes, etc.
   3834  *
   3835  * The variables are always here, just in case LKMs need to reference
   3836  * them (though, they shouldn't).
   3837  */
   3838 
   3839 pt_entry_t	pte_l1_s_cache_mode;
   3840 pt_entry_t	pte_l1_s_cache_mask;
   3841 
   3842 pt_entry_t	pte_l2_l_cache_mode;
   3843 pt_entry_t	pte_l2_l_cache_mask;
   3844 
   3845 pt_entry_t	pte_l2_s_cache_mode;
   3846 pt_entry_t	pte_l2_s_cache_mask;
   3847 
   3848 pt_entry_t	pte_l2_s_prot_u;
   3849 pt_entry_t	pte_l2_s_prot_w;
   3850 pt_entry_t	pte_l2_s_prot_mask;
   3851 
   3852 pt_entry_t	pte_l1_s_proto;
   3853 pt_entry_t	pte_l1_c_proto;
   3854 pt_entry_t	pte_l2_s_proto;
   3855 
   3856 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   3857 void		(*pmap_zero_page_func)(paddr_t);
   3858 
   3859 #if ARM_MMU_GENERIC == 1
   3860 void
   3861 pmap_pte_init_generic(void)
   3862 {
   3863 
   3864 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3865 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   3866 
   3867 	pte_l2_l_cache_mode = L2_B|L2_C;
   3868 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   3869 
   3870 	pte_l2_s_cache_mode = L2_B|L2_C;
   3871 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   3872 
   3873 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   3874 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   3875 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   3876 
   3877 	pte_l1_s_proto = L1_S_PROTO_generic;
   3878 	pte_l1_c_proto = L1_C_PROTO_generic;
   3879 	pte_l2_s_proto = L2_S_PROTO_generic;
   3880 
   3881 	pmap_copy_page_func = pmap_copy_page_generic;
   3882 	pmap_zero_page_func = pmap_zero_page_generic;
   3883 }
   3884 
   3885 #if defined(CPU_ARM9)
   3886 void
   3887 pmap_pte_init_arm9(void)
   3888 {
   3889 
   3890 	/*
   3891 	 * ARM9 is compatible with generic, but we want to use
   3892 	 * write-through caching for now.
   3893 	 */
   3894 	pmap_pte_init_generic();
   3895 
   3896 	pte_l1_s_cache_mode = L1_S_C;
   3897 	pte_l2_l_cache_mode = L2_C;
   3898 	pte_l2_s_cache_mode = L2_C;
   3899 }
   3900 #endif /* CPU_ARM9 */
   3901 #endif /* ARM_MMU_GENERIC == 1 */
   3902 
   3903 #if ARM_MMU_XSCALE == 1
   3904 void
   3905 pmap_pte_init_xscale(void)
   3906 {
   3907 	uint32_t auxctl;
   3908 
   3909 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3910 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   3911 
   3912 	pte_l2_l_cache_mode = L2_B|L2_C;
   3913 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   3914 
   3915 	pte_l2_s_cache_mode = L2_B|L2_C;
   3916 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   3917 
   3918 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   3919 	/*
   3920 	 * The XScale core has an enhanced mode where writes that
   3921 	 * miss the cache cause a cache line to be allocated.  This
   3922 	 * is significantly faster than the traditional, write-through
   3923 	 * behavior of this case.
   3924 	 *
   3925 	 * However, there is a bug lurking in this pmap module, or in
   3926 	 * other parts of the VM system, or both, which causes corruption
   3927 	 * of NFS-backed files when this cache mode is used.  We have
   3928 	 * an ugly work-around for this problem (disable r/w-allocate
   3929 	 * for managed kernel mappings), but the bug is still evil enough
   3930 	 * to consider this cache mode "experimental".
   3931 	 */
   3932 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
   3933 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
   3934 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
   3935 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   3936 
   3937 #ifdef XSCALE_CACHE_WRITE_THROUGH
   3938 	/*
   3939 	 * Some versions of the XScale core have various bugs in
   3940 	 * their cache units, the work-around for which is to run
   3941 	 * the cache in write-through mode.  Unfortunately, this
   3942 	 * has a major (negative) impact on performance.  So, we
   3943 	 * go ahead and run fast-and-loose, in the hopes that we
   3944 	 * don't line up the planets in a way that will trip the
   3945 	 * bugs.
   3946 	 *
   3947 	 * However, we give you the option to be slow-but-correct.
   3948 	 */
   3949 	pte_l1_s_cache_mode = L1_S_C;
   3950 	pte_l2_l_cache_mode = L2_C;
   3951 	pte_l2_s_cache_mode = L2_C;
   3952 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   3953 
   3954 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   3955 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   3956 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   3957 
   3958 	pte_l1_s_proto = L1_S_PROTO_xscale;
   3959 	pte_l1_c_proto = L1_C_PROTO_xscale;
   3960 	pte_l2_s_proto = L2_S_PROTO_xscale;
   3961 
   3962 	pmap_copy_page_func = pmap_copy_page_xscale;
   3963 	pmap_zero_page_func = pmap_zero_page_xscale;
   3964 
   3965 	/*
   3966 	 * Disable ECC protection of page table access, for now.
   3967 	 */
   3968 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   3969 		: "=r" (auxctl));
   3970 	auxctl &= ~XSCALE_AUXCTL_P;
   3971 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   3972 		:
   3973 		: "r" (auxctl));
   3974 }
   3975 
   3976 /*
   3977  * xscale_setup_minidata:
   3978  *
   3979  *	Set up the mini-data cache clean area.  We require the
   3980  *	caller to allocate the right amount of physically and
   3981  *	virtually contiguous space.
   3982  */
   3983 void
   3984 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   3985 {
   3986 	extern vaddr_t xscale_minidata_clean_addr;
   3987 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   3988 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3989 	pt_entry_t *pte;
   3990 	vsize_t size;
   3991 	uint32_t auxctl;
   3992 
   3993 	xscale_minidata_clean_addr = va;
   3994 
   3995 	/* Round it to page size. */
   3996 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   3997 
   3998 	for (; size != 0;
   3999 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   4000 		pte = (pt_entry_t *)
   4001 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   4002 		if (pte == NULL)
   4003 			panic("xscale_setup_minidata: can't find L2 table for "
   4004 			    "VA 0x%08lx", va);
   4005 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   4006 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4007 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   4008 	}
   4009 
   4010 	/*
   4011 	 * Configure the mini-data cache for write-back with
   4012 	 * read/write-allocate.
   4013 	 *
   4014 	 * NOTE: In order to reconfigure the mini-data cache, we must
   4015 	 * make sure it contains no valid data!  In order to do that,
   4016 	 * we must issue a global data cache invalidate command!
   4017 	 *
   4018 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   4019 	 * THIS IS VERY IMPORTANT!
   4020 	 */
   4021 
   4022 	/* Invalidate data and mini-data. */
   4023 	__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
   4024 		:
   4025 		: "r" (auxctl));
   4026 
   4027 
   4028 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   4029 		: "=r" (auxctl));
   4030 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   4031 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   4032 		:
   4033 		: "r" (auxctl));
   4034 }
   4035 #endif /* ARM_MMU_XSCALE == 1 */
   4036