Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.112
      1 /*	$NetBSD: pmap.c,v 1.112 2002/08/22 01:13:55 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.112 2002/08/22 01:13:55 thorpej Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static LIST_HEAD(, pmap) pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 /*
    199  * pool/cache that PT-PT's are allocated from
    200  */
    201 
    202 struct pool pmap_ptpt_pool;
    203 struct pool_cache pmap_ptpt_cache;
    204 u_int pmap_ptpt_cache_generation;
    205 
    206 static void *pmap_ptpt_page_alloc(struct pool *, int);
    207 static void pmap_ptpt_page_free(struct pool *, void *);
    208 
    209 struct pool_allocator pmap_ptpt_allocator = {
    210 	pmap_ptpt_page_alloc, pmap_ptpt_page_free,
    211 };
    212 
    213 static int pmap_ptpt_ctor(void *, void *, int);
    214 
    215 static pt_entry_t *csrc_pte, *cdst_pte;
    216 static vaddr_t csrcp, cdstp;
    217 
    218 char *memhook;
    219 extern caddr_t msgbufaddr;
    220 
    221 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    222 /*
    223  * locking data structures
    224  */
    225 
    226 static struct lock pmap_main_lock;
    227 static struct simplelock pvalloc_lock;
    228 static struct simplelock pmaps_lock;
    229 #ifdef LOCKDEBUG
    230 #define PMAP_MAP_TO_HEAD_LOCK() \
    231      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    232 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    233      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    234 
    235 #define PMAP_HEAD_TO_MAP_LOCK() \
    236      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    237 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    238      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    239 #else
    240 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    241 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    242 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    243 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    244 #endif /* LOCKDEBUG */
    245 
    246 /*
    247  * pv_page management structures: locked by pvalloc_lock
    248  */
    249 
    250 TAILQ_HEAD(pv_pagelist, pv_page);
    251 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    252 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    253 static int pv_nfpvents;			/* # of free pv entries */
    254 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    255 static vaddr_t pv_cachedva;		/* cached VA for later use */
    256 
    257 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    258 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    259 					/* high water mark */
    260 
    261 /*
    262  * local prototypes
    263  */
    264 
    265 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    266 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    267 #define ALLOCPV_NEED	0	/* need PV now */
    268 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    269 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    270 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    271 static void		 pmap_enter_pv __P((struct vm_page *,
    272 					    struct pv_entry *, struct pmap *,
    273 					    vaddr_t, struct vm_page *, int));
    274 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    275 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    276 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    277 static void		 pmap_free_pvpage __P((void));
    278 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    279 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    280 			vaddr_t));
    281 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    282 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    283 
    284 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    285 	u_int, u_int));
    286 
    287 /*
    288  * Structure that describes and L1 table.
    289  */
    290 struct l1pt {
    291 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    292 	struct pglist		pt_plist;	/* Allocated page list */
    293 	vaddr_t			pt_va;		/* Allocated virtual address */
    294 	int			pt_flags;	/* Flags */
    295 };
    296 #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    297 #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    298 #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    299 
    300 static void pmap_free_l1pt __P((struct l1pt *));
    301 static int pmap_allocpagedir __P((struct pmap *));
    302 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    303 static void pmap_remove_all __P((struct vm_page *));
    304 
    305 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    306 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    307 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    308 
    309 extern paddr_t physical_start;
    310 extern paddr_t physical_end;
    311 extern unsigned int free_pages;
    312 extern int max_processes;
    313 
    314 vaddr_t virtual_avail;
    315 vaddr_t virtual_end;
    316 vaddr_t pmap_curmaxkvaddr;
    317 
    318 vaddr_t avail_start;
    319 vaddr_t avail_end;
    320 
    321 extern pv_addr_t systempage;
    322 
    323 /* Variables used by the L1 page table queue code */
    324 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    325 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    326 static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    327 static int l1pt_static_create_count;	    /* static l1 items created */
    328 static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    329 static int l1pt_queue_count;		    /* items in the l1 queue */
    330 static int l1pt_create_count;		    /* stat - L1's create count */
    331 static int l1pt_reuse_count;		    /* stat - L1's reused count */
    332 
    333 /* Local function prototypes (not used outside this file) */
    334 void pmap_pinit __P((struct pmap *));
    335 void pmap_freepagedir __P((struct pmap *));
    336 
    337 /* Other function prototypes */
    338 extern void bzero_page __P((vaddr_t));
    339 extern void bcopy_page __P((vaddr_t, vaddr_t));
    340 
    341 struct l1pt *pmap_alloc_l1pt __P((void));
    342 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    343      vaddr_t l2pa, boolean_t));
    344 
    345 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    346 static void pmap_unmap_ptes __P((struct pmap *));
    347 
    348 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    349     pt_entry_t *, boolean_t));
    350 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    351     pt_entry_t *, boolean_t));
    352 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    353     pt_entry_t *, boolean_t));
    354 
    355 /*
    356  * real definition of pv_entry.
    357  */
    358 
    359 struct pv_entry {
    360 	struct pv_entry *pv_next;       /* next pv_entry */
    361 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    362 	vaddr_t         pv_va;          /* virtual address for mapping */
    363 	int             pv_flags;       /* flags */
    364 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    365 };
    366 
    367 /*
    368  * pv_entrys are dynamically allocated in chunks from a single page.
    369  * we keep track of how many pv_entrys are in use for each page and
    370  * we can free pv_entry pages if needed.  there is one lock for the
    371  * entire allocation system.
    372  */
    373 
    374 struct pv_page_info {
    375 	TAILQ_ENTRY(pv_page) pvpi_list;
    376 	struct pv_entry *pvpi_pvfree;
    377 	int pvpi_nfree;
    378 };
    379 
    380 /*
    381  * number of pv_entry's in a pv_page
    382  * (note: won't work on systems where NPBG isn't a constant)
    383  */
    384 
    385 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    386 			sizeof(struct pv_entry))
    387 
    388 /*
    389  * a pv_page: where pv_entrys are allocated from
    390  */
    391 
    392 struct pv_page {
    393 	struct pv_page_info pvinfo;
    394 	struct pv_entry pvents[PVE_PER_PVPAGE];
    395 };
    396 
    397 #ifdef MYCROFT_HACK
    398 int mycroft_hack = 0;
    399 #endif
    400 
    401 /* Function to set the debug level of the pmap code */
    402 
    403 #ifdef PMAP_DEBUG
    404 void
    405 pmap_debug(int level)
    406 {
    407 	pmap_debug_level = level;
    408 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    409 }
    410 #endif	/* PMAP_DEBUG */
    411 
    412 __inline static boolean_t
    413 pmap_is_curpmap(struct pmap *pmap)
    414 {
    415 
    416 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    417 	    pmap == pmap_kernel())
    418 		return (TRUE);
    419 
    420 	return (FALSE);
    421 }
    422 
    423 /*
    424  * p v _ e n t r y   f u n c t i o n s
    425  */
    426 
    427 /*
    428  * pv_entry allocation functions:
    429  *   the main pv_entry allocation functions are:
    430  *     pmap_alloc_pv: allocate a pv_entry structure
    431  *     pmap_free_pv: free one pv_entry
    432  *     pmap_free_pvs: free a list of pv_entrys
    433  *
    434  * the rest are helper functions
    435  */
    436 
    437 /*
    438  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    439  * => we lock pvalloc_lock
    440  * => if we fail, we call out to pmap_alloc_pvpage
    441  * => 3 modes:
    442  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    443  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    444  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    445  *			one now
    446  *
    447  * "try" is for optional functions like pmap_copy().
    448  */
    449 
    450 __inline static struct pv_entry *
    451 pmap_alloc_pv(struct pmap *pmap, int mode)
    452 {
    453 	struct pv_page *pvpage;
    454 	struct pv_entry *pv;
    455 
    456 	simple_lock(&pvalloc_lock);
    457 
    458 	pvpage = TAILQ_FIRST(&pv_freepages);
    459 
    460 	if (pvpage != NULL) {
    461 		pvpage->pvinfo.pvpi_nfree--;
    462 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    463 			/* nothing left in this one? */
    464 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    465 		}
    466 		pv = pvpage->pvinfo.pvpi_pvfree;
    467 		KASSERT(pv);
    468 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    469 		pv_nfpvents--;  /* took one from pool */
    470 	} else {
    471 		pv = NULL;		/* need more of them */
    472 	}
    473 
    474 	/*
    475 	 * if below low water mark or we didn't get a pv_entry we try and
    476 	 * create more pv_entrys ...
    477 	 */
    478 
    479 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    480 		if (pv == NULL)
    481 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    482 					       mode : ALLOCPV_NEED);
    483 		else
    484 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    485 	}
    486 
    487 	simple_unlock(&pvalloc_lock);
    488 	return(pv);
    489 }
    490 
    491 /*
    492  * pmap_alloc_pvpage: maybe allocate a new pvpage
    493  *
    494  * if need_entry is false: try and allocate a new pv_page
    495  * if need_entry is true: try and allocate a new pv_page and return a
    496  *	new pv_entry from it.   if we are unable to allocate a pv_page
    497  *	we make a last ditch effort to steal a pv_page from some other
    498  *	mapping.    if that fails, we panic...
    499  *
    500  * => we assume that the caller holds pvalloc_lock
    501  */
    502 
    503 static struct pv_entry *
    504 pmap_alloc_pvpage(struct pmap *pmap, int mode)
    505 {
    506 	struct vm_page *pg;
    507 	struct pv_page *pvpage;
    508 	struct pv_entry *pv;
    509 	int s;
    510 
    511 	/*
    512 	 * if we need_entry and we've got unused pv_pages, allocate from there
    513 	 */
    514 
    515 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    516 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    517 
    518 		/* move it to pv_freepages list */
    519 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    520 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    521 
    522 		/* allocate a pv_entry */
    523 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    524 		pv = pvpage->pvinfo.pvpi_pvfree;
    525 		KASSERT(pv);
    526 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    527 
    528 		pv_nfpvents--;  /* took one from pool */
    529 		return(pv);
    530 	}
    531 
    532 	/*
    533 	 *  see if we've got a cached unmapped VA that we can map a page in.
    534 	 * if not, try to allocate one.
    535 	 */
    536 
    537 
    538 	if (pv_cachedva == 0) {
    539 		s = splvm();
    540 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    541 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    542 		splx(s);
    543 		if (pv_cachedva == 0) {
    544 			return (NULL);
    545 		}
    546 	}
    547 
    548 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    549 	    UVM_PGA_USERESERVE);
    550 
    551 	if (pg == NULL)
    552 		return (NULL);
    553 	pg->flags &= ~PG_BUSY;	/* never busy */
    554 
    555 	/*
    556 	 * add a mapping for our new pv_page and free its entrys (save one!)
    557 	 *
    558 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    559 	 * pmap is already locked!  (...but entering the mapping is safe...)
    560 	 */
    561 
    562 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    563 		VM_PROT_READ|VM_PROT_WRITE);
    564 	pmap_update(pmap_kernel());
    565 	pvpage = (struct pv_page *) pv_cachedva;
    566 	pv_cachedva = 0;
    567 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    568 }
    569 
    570 /*
    571  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    572  *
    573  * => caller must hold pvalloc_lock
    574  * => if need_entry is true, we allocate and return one pv_entry
    575  */
    576 
    577 static struct pv_entry *
    578 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    579 {
    580 	int tofree, lcv;
    581 
    582 	/* do we need to return one? */
    583 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    584 
    585 	pvp->pvinfo.pvpi_pvfree = NULL;
    586 	pvp->pvinfo.pvpi_nfree = tofree;
    587 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    588 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    589 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    590 	}
    591 	if (need_entry)
    592 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    593 	else
    594 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    595 	pv_nfpvents += tofree;
    596 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    597 }
    598 
    599 /*
    600  * pmap_free_pv_doit: actually free a pv_entry
    601  *
    602  * => do not call this directly!  instead use either
    603  *    1. pmap_free_pv ==> free a single pv_entry
    604  *    2. pmap_free_pvs => free a list of pv_entrys
    605  * => we must be holding pvalloc_lock
    606  */
    607 
    608 __inline static void
    609 pmap_free_pv_doit(struct pv_entry *pv)
    610 {
    611 	struct pv_page *pvp;
    612 
    613 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    614 	pv_nfpvents++;
    615 	pvp->pvinfo.pvpi_nfree++;
    616 
    617 	/* nfree == 1 => fully allocated page just became partly allocated */
    618 	if (pvp->pvinfo.pvpi_nfree == 1) {
    619 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    620 	}
    621 
    622 	/* free it */
    623 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    624 	pvp->pvinfo.pvpi_pvfree = pv;
    625 
    626 	/*
    627 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    628 	 */
    629 
    630 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    631 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    632 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    633 	}
    634 }
    635 
    636 /*
    637  * pmap_free_pv: free a single pv_entry
    638  *
    639  * => we gain the pvalloc_lock
    640  */
    641 
    642 __inline static void
    643 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    644 {
    645 	simple_lock(&pvalloc_lock);
    646 	pmap_free_pv_doit(pv);
    647 
    648 	/*
    649 	 * Can't free the PV page if the PV entries were associated with
    650 	 * the kernel pmap; the pmap is already locked.
    651 	 */
    652 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    653 	    pmap != pmap_kernel())
    654 		pmap_free_pvpage();
    655 
    656 	simple_unlock(&pvalloc_lock);
    657 }
    658 
    659 /*
    660  * pmap_free_pvs: free a list of pv_entrys
    661  *
    662  * => we gain the pvalloc_lock
    663  */
    664 
    665 __inline static void
    666 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    667 {
    668 	struct pv_entry *nextpv;
    669 
    670 	simple_lock(&pvalloc_lock);
    671 
    672 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    673 		nextpv = pvs->pv_next;
    674 		pmap_free_pv_doit(pvs);
    675 	}
    676 
    677 	/*
    678 	 * Can't free the PV page if the PV entries were associated with
    679 	 * the kernel pmap; the pmap is already locked.
    680 	 */
    681 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    682 	    pmap != pmap_kernel())
    683 		pmap_free_pvpage();
    684 
    685 	simple_unlock(&pvalloc_lock);
    686 }
    687 
    688 
    689 /*
    690  * pmap_free_pvpage: try and free an unused pv_page structure
    691  *
    692  * => assume caller is holding the pvalloc_lock and that
    693  *	there is a page on the pv_unusedpgs list
    694  * => if we can't get a lock on the kmem_map we try again later
    695  */
    696 
    697 static void
    698 pmap_free_pvpage(void)
    699 {
    700 	int s;
    701 	struct vm_map *map;
    702 	struct vm_map_entry *dead_entries;
    703 	struct pv_page *pvp;
    704 
    705 	s = splvm(); /* protect kmem_map */
    706 
    707 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    708 
    709 	/*
    710 	 * note: watch out for pv_initpage which is allocated out of
    711 	 * kernel_map rather than kmem_map.
    712 	 */
    713 	if (pvp == pv_initpage)
    714 		map = kernel_map;
    715 	else
    716 		map = kmem_map;
    717 	if (vm_map_lock_try(map)) {
    718 
    719 		/* remove pvp from pv_unusedpgs */
    720 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    721 
    722 		/* unmap the page */
    723 		dead_entries = NULL;
    724 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    725 		    &dead_entries);
    726 		vm_map_unlock(map);
    727 
    728 		if (dead_entries != NULL)
    729 			uvm_unmap_detach(dead_entries, 0);
    730 
    731 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    732 	}
    733 	if (pvp == pv_initpage)
    734 		/* no more initpage, we've freed it */
    735 		pv_initpage = NULL;
    736 
    737 	splx(s);
    738 }
    739 
    740 /*
    741  * main pv_entry manipulation functions:
    742  *   pmap_enter_pv: enter a mapping onto a vm_page list
    743  *   pmap_remove_pv: remove a mappiing from a vm_page list
    744  *
    745  * NOTE: pmap_enter_pv expects to lock the pvh itself
    746  *       pmap_remove_pv expects te caller to lock the pvh before calling
    747  */
    748 
    749 /*
    750  * pmap_enter_pv: enter a mapping onto a vm_page lst
    751  *
    752  * => caller should hold the proper lock on pmap_main_lock
    753  * => caller should have pmap locked
    754  * => we will gain the lock on the vm_page and allocate the new pv_entry
    755  * => caller should adjust ptp's wire_count before calling
    756  * => caller should not adjust pmap's wire_count
    757  */
    758 
    759 __inline static void
    760 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    761     vaddr_t va, struct vm_page *ptp, int flags)
    762 {
    763 	pve->pv_pmap = pmap;
    764 	pve->pv_va = va;
    765 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    766 	pve->pv_flags = flags;
    767 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    768 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    769 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    770 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    771 	if (pve->pv_flags & PVF_WIRED)
    772 		++pmap->pm_stats.wired_count;
    773 #ifdef PMAP_ALIAS_DEBUG
    774     {
    775 	int s = splhigh();
    776 	if (pve->pv_flags & PVF_WRITE)
    777 		pg->mdpage.rw_mappings++;
    778 	else
    779 		pg->mdpage.ro_mappings++;
    780 	if (pg->mdpage.rw_mappings != 0 &&
    781 	    (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
    782 		printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
    783 		    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
    784 		    pg->mdpage.krw_mappings);
    785 	}
    786 	splx(s);
    787     }
    788 #endif /* PMAP_ALIAS_DEBUG */
    789 }
    790 
    791 /*
    792  * pmap_remove_pv: try to remove a mapping from a pv_list
    793  *
    794  * => caller should hold proper lock on pmap_main_lock
    795  * => pmap should be locked
    796  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    797  * => caller should adjust ptp's wire_count and free PTP if needed
    798  * => caller should NOT adjust pmap's wire_count
    799  * => we return the removed pve
    800  */
    801 
    802 __inline static struct pv_entry *
    803 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    804 {
    805 	struct pv_entry *pve, **prevptr;
    806 
    807 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    808 	pve = *prevptr;
    809 	while (pve) {
    810 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    811 			*prevptr = pve->pv_next;		/* remove it! */
    812 			if (pve->pv_flags & PVF_WIRED)
    813 			    --pmap->pm_stats.wired_count;
    814 #ifdef PMAP_ALIAS_DEBUG
    815     {
    816 			int s = splhigh();
    817 			if (pve->pv_flags & PVF_WRITE) {
    818 				KASSERT(pg->mdpage.rw_mappings != 0);
    819 				pg->mdpage.rw_mappings--;
    820 			} else {
    821 				KASSERT(pg->mdpage.ro_mappings != 0);
    822 				pg->mdpage.ro_mappings--;
    823 			}
    824 			splx(s);
    825     }
    826 #endif /* PMAP_ALIAS_DEBUG */
    827 			break;
    828 		}
    829 		prevptr = &pve->pv_next;		/* previous pointer */
    830 		pve = pve->pv_next;			/* advance */
    831 	}
    832 	return(pve);				/* return removed pve */
    833 }
    834 
    835 /*
    836  *
    837  * pmap_modify_pv: Update pv flags
    838  *
    839  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    840  * => caller should NOT adjust pmap's wire_count
    841  * => caller must call pmap_vac_me_harder() if writable status of a page
    842  *    may have changed.
    843  * => we return the old flags
    844  *
    845  * Modify a physical-virtual mapping in the pv table
    846  */
    847 
    848 static /* __inline */ u_int
    849 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    850     u_int bic_mask, u_int eor_mask)
    851 {
    852 	struct pv_entry *npv;
    853 	u_int flags, oflags;
    854 
    855 	/*
    856 	 * There is at least one VA mapping this page.
    857 	 */
    858 
    859 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    860 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    861 			oflags = npv->pv_flags;
    862 			npv->pv_flags = flags =
    863 			    ((oflags & ~bic_mask) ^ eor_mask);
    864 			if ((flags ^ oflags) & PVF_WIRED) {
    865 				if (flags & PVF_WIRED)
    866 					++pmap->pm_stats.wired_count;
    867 				else
    868 					--pmap->pm_stats.wired_count;
    869 			}
    870 #ifdef PMAP_ALIAS_DEBUG
    871     {
    872 			int s = splhigh();
    873 			if ((flags ^ oflags) & PVF_WRITE) {
    874 				if (flags & PVF_WRITE) {
    875 					pg->mdpage.rw_mappings++;
    876 					pg->mdpage.ro_mappings--;
    877 					if (pg->mdpage.rw_mappings != 0 &&
    878 					    (pg->mdpage.kro_mappings != 0 ||
    879 					     pg->mdpage.krw_mappings != 0)) {
    880 						printf("pmap_modify_pv: rw %u, "
    881 						    "kro %u, krw %u\n",
    882 						    pg->mdpage.rw_mappings,
    883 						    pg->mdpage.kro_mappings,
    884 						    pg->mdpage.krw_mappings);
    885 					}
    886 				} else {
    887 					KASSERT(pg->mdpage.rw_mappings != 0);
    888 					pg->mdpage.rw_mappings--;
    889 					pg->mdpage.ro_mappings++;
    890 				}
    891 			}
    892 			splx(s);
    893     }
    894 #endif /* PMAP_ALIAS_DEBUG */
    895 			return (oflags);
    896 		}
    897 	}
    898 	return (0);
    899 }
    900 
    901 /*
    902  * Map the specified level 2 pagetable into the level 1 page table for
    903  * the given pmap to cover a chunk of virtual address space starting from the
    904  * address specified.
    905  */
    906 static __inline void
    907 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
    908 {
    909 	vaddr_t ptva;
    910 
    911 	/* Calculate the index into the L1 page table. */
    912 	ptva = (va >> L1_S_SHIFT) & ~3;
    913 
    914 	/* Map page table into the L1. */
    915 	pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
    916 	pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
    917 	pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
    918 	pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
    919 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    920 
    921 	/* Map the page table into the page table area. */
    922 	if (selfref)
    923 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
    924 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
    925 }
    926 
    927 #if 0
    928 static __inline void
    929 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    930 {
    931 	vaddr_t ptva;
    932 
    933 	/* Calculate the index into the L1 page table. */
    934 	ptva = (va >> L1_S_SHIFT) & ~3;
    935 
    936 	/* Unmap page table from the L1. */
    937 	pmap->pm_pdir[ptva + 0] = 0;
    938 	pmap->pm_pdir[ptva + 1] = 0;
    939 	pmap->pm_pdir[ptva + 2] = 0;
    940 	pmap->pm_pdir[ptva + 3] = 0;
    941 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    942 
    943 	/* Unmap the page table from the page table area. */
    944 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    945 }
    946 #endif
    947 
    948 /*
    949  *	Used to map a range of physical addresses into kernel
    950  *	virtual address space.
    951  *
    952  *	For now, VM is already on, we only need to map the
    953  *	specified memory.
    954  *
    955  *	XXX This routine should eventually go away; it's only used
    956  *	XXX by machine-dependent crash dump code.
    957  */
    958 vaddr_t
    959 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
    960 {
    961 	pt_entry_t *pte;
    962 
    963 	while (spa < epa) {
    964 		pte = vtopte(va);
    965 
    966 		*pte = L2_S_PROTO | spa |
    967 		    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
    968 		PTE_SYNC(pte);
    969 		cpu_tlb_flushID_SE(va);
    970 		va += NBPG;
    971 		spa += NBPG;
    972 	}
    973 	pmap_update(pmap_kernel());
    974 	return(va);
    975 }
    976 
    977 
    978 /*
    979  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    980  *
    981  * bootstrap the pmap system. This is called from initarm and allows
    982  * the pmap system to initailise any structures it requires.
    983  *
    984  * Currently this sets up the kernel_pmap that is statically allocated
    985  * and also allocated virtual addresses for certain page hooks.
    986  * Currently the only one page hook is allocated that is used
    987  * to zero physical pages of memory.
    988  * It also initialises the start and end address of the kernel data space.
    989  */
    990 
    991 char *boot_head;
    992 
    993 void
    994 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    995 {
    996 	pt_entry_t *pte;
    997 
    998 	pmap_kernel()->pm_pdir = kernel_l1pt;
    999 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1000 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1001 	simple_lock_init(&pmap_kernel()->pm_lock);
   1002 	pmap_kernel()->pm_obj.pgops = NULL;
   1003 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1004 	pmap_kernel()->pm_obj.uo_npages = 0;
   1005 	pmap_kernel()->pm_obj.uo_refs = 1;
   1006 
   1007 	virtual_avail = KERNEL_VM_BASE;
   1008 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
   1009 
   1010 	/*
   1011 	 * now we allocate the "special" VAs which are used for tmp mappings
   1012 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1013 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1014 	 * we find the PTE that maps the allocated VA via the linear PTE
   1015 	 * mapping.
   1016 	 */
   1017 
   1018 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1019 
   1020 	csrcp = virtual_avail; csrc_pte = pte;
   1021 	virtual_avail += PAGE_SIZE; pte++;
   1022 
   1023 	cdstp = virtual_avail; cdst_pte = pte;
   1024 	virtual_avail += PAGE_SIZE; pte++;
   1025 
   1026 	memhook = (char *) virtual_avail;	/* don't need pte */
   1027 	virtual_avail += PAGE_SIZE; pte++;
   1028 
   1029 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1030 	virtual_avail += round_page(MSGBUFSIZE);
   1031 	pte += atop(round_page(MSGBUFSIZE));
   1032 
   1033 	/*
   1034 	 * init the static-global locks and global lists.
   1035 	 */
   1036 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1037 	simple_lock_init(&pvalloc_lock);
   1038 	simple_lock_init(&pmaps_lock);
   1039 	LIST_INIT(&pmaps);
   1040 	TAILQ_INIT(&pv_freepages);
   1041 	TAILQ_INIT(&pv_unusedpgs);
   1042 
   1043 	/*
   1044 	 * initialize the pmap pool.
   1045 	 */
   1046 
   1047 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1048 		  &pool_allocator_nointr);
   1049 
   1050 	/*
   1051 	 * initialize the PT-PT pool and cache.
   1052 	 */
   1053 
   1054 	pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
   1055 		  &pmap_ptpt_allocator);
   1056 	pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
   1057 			pmap_ptpt_ctor, NULL, NULL);
   1058 
   1059 	cpu_dcache_wbinv_all();
   1060 }
   1061 
   1062 /*
   1063  * void pmap_init(void)
   1064  *
   1065  * Initialize the pmap module.
   1066  * Called by vm_init() in vm/vm_init.c in order to initialise
   1067  * any structures that the pmap system needs to map virtual memory.
   1068  */
   1069 
   1070 extern int physmem;
   1071 
   1072 void
   1073 pmap_init(void)
   1074 {
   1075 
   1076 	/*
   1077 	 * Set the available memory vars - These do not map to real memory
   1078 	 * addresses and cannot as the physical memory is fragmented.
   1079 	 * They are used by ps for %mem calculations.
   1080 	 * One could argue whether this should be the entire memory or just
   1081 	 * the memory that is useable in a user process.
   1082 	 */
   1083 	avail_start = 0;
   1084 	avail_end = physmem * NBPG;
   1085 
   1086 	/*
   1087 	 * now we need to free enough pv_entry structures to allow us to get
   1088 	 * the kmem_map/kmem_object allocated and inited (done after this
   1089 	 * function is finished).  to do this we allocate one bootstrap page out
   1090 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1091 	 * structures.   we never free this page.
   1092 	 */
   1093 
   1094 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1095 	if (pv_initpage == NULL)
   1096 		panic("pmap_init: pv_initpage");
   1097 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1098 	pv_nfpvents = 0;
   1099 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1100 
   1101 	pmap_initialized = TRUE;
   1102 
   1103 	/* Initialise our L1 page table queues and counters */
   1104 	SIMPLEQ_INIT(&l1pt_static_queue);
   1105 	l1pt_static_queue_count = 0;
   1106 	l1pt_static_create_count = 0;
   1107 	SIMPLEQ_INIT(&l1pt_queue);
   1108 	l1pt_queue_count = 0;
   1109 	l1pt_create_count = 0;
   1110 	l1pt_reuse_count = 0;
   1111 }
   1112 
   1113 /*
   1114  * pmap_postinit()
   1115  *
   1116  * This routine is called after the vm and kmem subsystems have been
   1117  * initialised. This allows the pmap code to perform any initialisation
   1118  * that can only be done one the memory allocation is in place.
   1119  */
   1120 
   1121 void
   1122 pmap_postinit(void)
   1123 {
   1124 	int loop;
   1125 	struct l1pt *pt;
   1126 
   1127 #ifdef PMAP_STATIC_L1S
   1128 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1129 #else	/* PMAP_STATIC_L1S */
   1130 	for (loop = 0; loop < max_processes; ++loop) {
   1131 #endif	/* PMAP_STATIC_L1S */
   1132 		/* Allocate a L1 page table */
   1133 		pt = pmap_alloc_l1pt();
   1134 		if (!pt)
   1135 			panic("Cannot allocate static L1 page tables\n");
   1136 
   1137 		/* Clean it */
   1138 		bzero((void *)pt->pt_va, L1_TABLE_SIZE);
   1139 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1140 		/* Add the page table to the queue */
   1141 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1142 		++l1pt_static_queue_count;
   1143 		++l1pt_static_create_count;
   1144 	}
   1145 }
   1146 
   1147 
   1148 /*
   1149  * Create and return a physical map.
   1150  *
   1151  * If the size specified for the map is zero, the map is an actual physical
   1152  * map, and may be referenced by the hardware.
   1153  *
   1154  * If the size specified is non-zero, the map will be used in software only,
   1155  * and is bounded by that size.
   1156  */
   1157 
   1158 pmap_t
   1159 pmap_create(void)
   1160 {
   1161 	struct pmap *pmap;
   1162 
   1163 	/*
   1164 	 * Fetch pmap entry from the pool
   1165 	 */
   1166 
   1167 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1168 	/* XXX is this really needed! */
   1169 	memset(pmap, 0, sizeof(*pmap));
   1170 
   1171 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1172 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1173 	TAILQ_INIT(&pmap->pm_obj.memq);
   1174 	pmap->pm_obj.uo_npages = 0;
   1175 	pmap->pm_obj.uo_refs = 1;
   1176 	pmap->pm_stats.wired_count = 0;
   1177 	pmap->pm_stats.resident_count = 1;
   1178 	pmap->pm_ptphint = NULL;
   1179 
   1180 	/* Now init the machine part of the pmap */
   1181 	pmap_pinit(pmap);
   1182 	return(pmap);
   1183 }
   1184 
   1185 /*
   1186  * pmap_alloc_l1pt()
   1187  *
   1188  * This routine allocates physical and virtual memory for a L1 page table
   1189  * and wires it.
   1190  * A l1pt structure is returned to describe the allocated page table.
   1191  *
   1192  * This routine is allowed to fail if the required memory cannot be allocated.
   1193  * In this case NULL is returned.
   1194  */
   1195 
   1196 struct l1pt *
   1197 pmap_alloc_l1pt(void)
   1198 {
   1199 	paddr_t pa;
   1200 	vaddr_t va;
   1201 	struct l1pt *pt;
   1202 	int error;
   1203 	struct vm_page *m;
   1204 
   1205 	/* Allocate virtual address space for the L1 page table */
   1206 	va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
   1207 	if (va == 0) {
   1208 #ifdef DIAGNOSTIC
   1209 		PDEBUG(0,
   1210 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1211 #endif	/* DIAGNOSTIC */
   1212 		return(NULL);
   1213 	}
   1214 
   1215 	/* Allocate memory for the l1pt structure */
   1216 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1217 
   1218 	/*
   1219 	 * Allocate pages from the VM system.
   1220 	 */
   1221 	error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
   1222 	    L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1223 	if (error) {
   1224 #ifdef DIAGNOSTIC
   1225 		PDEBUG(0,
   1226 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1227 		    error));
   1228 #endif	/* DIAGNOSTIC */
   1229 		/* Release the resources we already have claimed */
   1230 		free(pt, M_VMPMAP);
   1231 		uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
   1232 		return(NULL);
   1233 	}
   1234 
   1235 	/* Map our physical pages into our virtual space */
   1236 	pt->pt_va = va;
   1237 	m = TAILQ_FIRST(&pt->pt_plist);
   1238 	while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
   1239 		pa = VM_PAGE_TO_PHYS(m);
   1240 
   1241 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
   1242 
   1243 		va += NBPG;
   1244 		m = m->pageq.tqe_next;
   1245 	}
   1246 
   1247 #ifdef DIAGNOSTIC
   1248 	if (m)
   1249 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1250 #endif	/* DIAGNOSTIC */
   1251 
   1252 	pt->pt_flags = 0;
   1253 	return(pt);
   1254 }
   1255 
   1256 /*
   1257  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1258  */
   1259 static void
   1260 pmap_free_l1pt(struct l1pt *pt)
   1261 {
   1262 	/* Separate the physical memory for the virtual space */
   1263 	pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
   1264 	pmap_update(pmap_kernel());
   1265 
   1266 	/* Return the physical memory */
   1267 	uvm_pglistfree(&pt->pt_plist);
   1268 
   1269 	/* Free the virtual space */
   1270 	uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
   1271 
   1272 	/* Free the l1pt structure */
   1273 	free(pt, M_VMPMAP);
   1274 }
   1275 
   1276 /*
   1277  * pmap_ptpt_page_alloc:
   1278  *
   1279  *	Back-end page allocator for the PT-PT pool.
   1280  */
   1281 static void *
   1282 pmap_ptpt_page_alloc(struct pool *pp, int flags)
   1283 {
   1284 	struct vm_page *pg;
   1285 	pt_entry_t *pte;
   1286 	vaddr_t va;
   1287 
   1288 	/* XXX PR_WAITOK? */
   1289 	va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
   1290 	if (va == 0)
   1291 		return (NULL);
   1292 
   1293 	for (;;) {
   1294 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1295 		if (pg != NULL)
   1296 			break;
   1297 		if ((flags & PR_WAITOK) == 0) {
   1298 			uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
   1299 			return (NULL);
   1300 		}
   1301 		uvm_wait("pmap_ptpt");
   1302 	}
   1303 
   1304 	pte = vtopte(va);
   1305 	KDASSERT(pmap_pte_v(pte) == 0);
   1306 
   1307 	*pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
   1308 	     L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   1309 	PTE_SYNC(pte);
   1310 #ifdef PMAP_ALIAS_DEBUG
   1311     {
   1312 	int s = splhigh();
   1313 	pg->mdpage.krw_mappings++;
   1314 	splx(s);
   1315     }
   1316 #endif /* PMAP_ALIAS_DEBUG */
   1317 
   1318 	return ((void *) va);
   1319 }
   1320 
   1321 /*
   1322  * pmap_ptpt_page_free:
   1323  *
   1324  *	Back-end page free'er for the PT-PT pool.
   1325  */
   1326 static void
   1327 pmap_ptpt_page_free(struct pool *pp, void *v)
   1328 {
   1329 	vaddr_t va = (vaddr_t) v;
   1330 	paddr_t pa;
   1331 
   1332 	pa = vtophys(va);
   1333 
   1334 	pmap_kremove(va, L2_TABLE_SIZE);
   1335 	pmap_update(pmap_kernel());
   1336 
   1337 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1338 
   1339 	uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
   1340 }
   1341 
   1342 /*
   1343  * pmap_ptpt_ctor:
   1344  *
   1345  *	Constructor for the PT-PT cache.
   1346  */
   1347 static int
   1348 pmap_ptpt_ctor(void *arg, void *object, int flags)
   1349 {
   1350 	caddr_t vptpt = object;
   1351 
   1352 	/* Page is already zero'd. */
   1353 
   1354 	/*
   1355 	 * Map in kernel PTs.
   1356 	 *
   1357 	 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
   1358 	 */
   1359 	memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
   1360 	       (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
   1361 			((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
   1362 	       (KERNEL_PD_SIZE >> 2));
   1363 
   1364 	return (0);
   1365 }
   1366 
   1367 /*
   1368  * Allocate a page directory.
   1369  * This routine will either allocate a new page directory from the pool
   1370  * of L1 page tables currently held by the kernel or it will allocate
   1371  * a new one via pmap_alloc_l1pt().
   1372  * It will then initialise the l1 page table for use.
   1373  */
   1374 static int
   1375 pmap_allocpagedir(struct pmap *pmap)
   1376 {
   1377 	vaddr_t vptpt;
   1378 	paddr_t pa;
   1379 	struct l1pt *pt;
   1380 	u_int gen;
   1381 
   1382 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1383 
   1384 	/* Do we have any spare L1's lying around ? */
   1385 	if (l1pt_static_queue_count) {
   1386 		--l1pt_static_queue_count;
   1387 		pt = SIMPLEQ_FIRST(&l1pt_static_queue);
   1388 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
   1389 	} else if (l1pt_queue_count) {
   1390 		--l1pt_queue_count;
   1391 		pt = SIMPLEQ_FIRST(&l1pt_queue);
   1392 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
   1393 		++l1pt_reuse_count;
   1394 	} else {
   1395 		pt = pmap_alloc_l1pt();
   1396 		if (!pt)
   1397 			return(ENOMEM);
   1398 		++l1pt_create_count;
   1399 	}
   1400 
   1401 	/* Store the pointer to the l1 descriptor in the pmap. */
   1402 	pmap->pm_l1pt = pt;
   1403 
   1404 	/* Get the physical address of the start of the l1 */
   1405 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1406 
   1407 	/* Store the virtual address of the l1 in the pmap. */
   1408 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1409 
   1410 	/* Clean the L1 if it is dirty */
   1411 	if (!(pt->pt_flags & PTFLAG_CLEAN)) {
   1412 		bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1413 		cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
   1414 		    (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1415 	}
   1416 
   1417 	/* Allocate a page table to map all the page tables for this pmap */
   1418 	KASSERT(pmap->pm_vptpt == 0);
   1419 
   1420  try_again:
   1421 	gen = pmap_ptpt_cache_generation;
   1422 	vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
   1423 	if (vptpt == NULL) {
   1424 		PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
   1425 		pmap_freepagedir(pmap);
   1426 		return (ENOMEM);
   1427 	}
   1428 
   1429 	/* need to lock this all up for growkernel */
   1430 	simple_lock(&pmaps_lock);
   1431 
   1432 	if (gen != pmap_ptpt_cache_generation) {
   1433 		simple_unlock(&pmaps_lock);
   1434 		pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
   1435 		goto try_again;
   1436 	}
   1437 
   1438 	pmap->pm_vptpt = vptpt;
   1439 	pmap->pm_pptpt = vtophys(vptpt);
   1440 
   1441 	/* Duplicate the kernel mappings. */
   1442 	bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1443 		(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1444 		KERNEL_PD_SIZE);
   1445 	cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
   1446 	    (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
   1447 
   1448 	/* Wire in this page table */
   1449 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1450 
   1451 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1452 
   1453 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1454 	simple_unlock(&pmaps_lock);
   1455 
   1456 	return(0);
   1457 }
   1458 
   1459 
   1460 /*
   1461  * Initialize a preallocated and zeroed pmap structure,
   1462  * such as one in a vmspace structure.
   1463  */
   1464 
   1465 void
   1466 pmap_pinit(struct pmap *pmap)
   1467 {
   1468 	int backoff = 6;
   1469 	int retry = 10;
   1470 
   1471 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1472 
   1473 	/* Keep looping until we succeed in allocating a page directory */
   1474 	while (pmap_allocpagedir(pmap) != 0) {
   1475 		/*
   1476 		 * Ok we failed to allocate a suitable block of memory for an
   1477 		 * L1 page table. This means that either:
   1478 		 * 1. 16KB of virtual address space could not be allocated
   1479 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1480 		 *    could not be allocated.
   1481 		 *
   1482 		 * Since we cannot fail we will sleep for a while and try
   1483 		 * again.
   1484 		 *
   1485 		 * Searching for a suitable L1 PT is expensive:
   1486 		 * to avoid hogging the system when memory is really
   1487 		 * scarce, use an exponential back-off so that
   1488 		 * eventually we won't retry more than once every 8
   1489 		 * seconds.  This should allow other processes to run
   1490 		 * to completion and free up resources.
   1491 		 */
   1492 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1493 		    NULL);
   1494 		if (--retry == 0) {
   1495 			retry = 10;
   1496 			if (backoff)
   1497 				--backoff;
   1498 		}
   1499 	}
   1500 
   1501 	if (vector_page < KERNEL_BASE) {
   1502 		/*
   1503 		 * Map the vector page.  This will also allocate and map
   1504 		 * an L2 table for it.
   1505 		 */
   1506 		pmap_enter(pmap, vector_page, systempage.pv_pa,
   1507 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1508 		pmap_update(pmap);
   1509 	}
   1510 }
   1511 
   1512 void
   1513 pmap_freepagedir(struct pmap *pmap)
   1514 {
   1515 	/* Free the memory used for the page table mapping */
   1516 	if (pmap->pm_vptpt != 0) {
   1517 		/*
   1518 		 * XXX Objects freed to a pool cache must be in constructed
   1519 		 * XXX form when freed, but we don't free page tables as we
   1520 		 * XXX go, so we need to zap the mappings here.
   1521 		 *
   1522 		 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
   1523 		 */
   1524 		memset((caddr_t) pmap->pm_vptpt, 0,
   1525 		       ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
   1526 		pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
   1527 	}
   1528 
   1529 	/* junk the L1 page table */
   1530 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1531 		/* Add the page table to the queue */
   1532 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
   1533 				    pmap->pm_l1pt, pt_queue);
   1534 		++l1pt_static_queue_count;
   1535 	} else if (l1pt_queue_count < 8) {
   1536 		/* Add the page table to the queue */
   1537 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1538 		++l1pt_queue_count;
   1539 	} else
   1540 		pmap_free_l1pt(pmap->pm_l1pt);
   1541 }
   1542 
   1543 /*
   1544  * Retire the given physical map from service.
   1545  * Should only be called if the map contains no valid mappings.
   1546  */
   1547 
   1548 void
   1549 pmap_destroy(struct pmap *pmap)
   1550 {
   1551 	struct vm_page *page;
   1552 	int count;
   1553 
   1554 	if (pmap == NULL)
   1555 		return;
   1556 
   1557 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1558 
   1559 	/*
   1560 	 * Drop reference count
   1561 	 */
   1562 	simple_lock(&pmap->pm_obj.vmobjlock);
   1563 	count = --pmap->pm_obj.uo_refs;
   1564 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1565 	if (count > 0) {
   1566 		return;
   1567 	}
   1568 
   1569 	/*
   1570 	 * reference count is zero, free pmap resources and then free pmap.
   1571 	 */
   1572 
   1573 	/*
   1574 	 * remove it from global list of pmaps
   1575 	 */
   1576 
   1577 	simple_lock(&pmaps_lock);
   1578 	LIST_REMOVE(pmap, pm_list);
   1579 	simple_unlock(&pmaps_lock);
   1580 
   1581 	if (vector_page < KERNEL_BASE) {
   1582 		/* Remove the vector page mapping */
   1583 		pmap_remove(pmap, vector_page, vector_page + NBPG);
   1584 		pmap_update(pmap);
   1585 	}
   1586 
   1587 	/*
   1588 	 * Free any page tables still mapped
   1589 	 * This is only temporay until pmap_enter can count the number
   1590 	 * of mappings made in a page table. Then pmap_remove() can
   1591 	 * reduce the count and free the pagetable when the count
   1592 	 * reaches zero.  Note that entries in this list should match the
   1593 	 * contents of the ptpt, however this is faster than walking a 1024
   1594 	 * entries looking for pt's
   1595 	 * taken from i386 pmap.c
   1596 	 */
   1597 	/*
   1598 	 * vmobjlock must be held while freeing pages
   1599 	 */
   1600 	simple_lock(&pmap->pm_obj.vmobjlock);
   1601 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1602 		KASSERT((page->flags & PG_BUSY) == 0);
   1603 		page->wire_count = 0;
   1604 		uvm_pagefree(page);
   1605 	}
   1606 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1607 
   1608 	/* Free the page dir */
   1609 	pmap_freepagedir(pmap);
   1610 
   1611 	/* return the pmap to the pool */
   1612 	pool_put(&pmap_pmap_pool, pmap);
   1613 }
   1614 
   1615 
   1616 /*
   1617  * void pmap_reference(struct pmap *pmap)
   1618  *
   1619  * Add a reference to the specified pmap.
   1620  */
   1621 
   1622 void
   1623 pmap_reference(struct pmap *pmap)
   1624 {
   1625 	if (pmap == NULL)
   1626 		return;
   1627 
   1628 	simple_lock(&pmap->pm_lock);
   1629 	pmap->pm_obj.uo_refs++;
   1630 	simple_unlock(&pmap->pm_lock);
   1631 }
   1632 
   1633 /*
   1634  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1635  *
   1636  * Return the start and end addresses of the kernel's virtual space.
   1637  * These values are setup in pmap_bootstrap and are updated as pages
   1638  * are allocated.
   1639  */
   1640 
   1641 void
   1642 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1643 {
   1644 	*start = virtual_avail;
   1645 	*end = virtual_end;
   1646 }
   1647 
   1648 /*
   1649  * Activate the address space for the specified process.  If the process
   1650  * is the current process, load the new MMU context.
   1651  */
   1652 void
   1653 pmap_activate(struct proc *p)
   1654 {
   1655 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1656 	struct pcb *pcb = &p->p_addr->u_pcb;
   1657 
   1658 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1659 	    (paddr_t *)&pcb->pcb_pagedir);
   1660 
   1661 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1662 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1663 
   1664 	if (p == curproc) {
   1665 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1666 		setttb((u_int)pcb->pcb_pagedir);
   1667 	}
   1668 }
   1669 
   1670 /*
   1671  * Deactivate the address space of the specified process.
   1672  */
   1673 void
   1674 pmap_deactivate(struct proc *p)
   1675 {
   1676 }
   1677 
   1678 /*
   1679  * Perform any deferred pmap operations.
   1680  */
   1681 void
   1682 pmap_update(struct pmap *pmap)
   1683 {
   1684 
   1685 	/*
   1686 	 * We haven't deferred any pmap operations, but we do need to
   1687 	 * make sure TLB/cache operations have completed.
   1688 	 */
   1689 	cpu_cpwait();
   1690 }
   1691 
   1692 /*
   1693  * pmap_clean_page()
   1694  *
   1695  * This is a local function used to work out the best strategy to clean
   1696  * a single page referenced by its entry in the PV table. It's used by
   1697  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1698  *
   1699  * Its policy is effectively:
   1700  *  o If there are no mappings, we don't bother doing anything with the cache.
   1701  *  o If there is one mapping, we clean just that page.
   1702  *  o If there are multiple mappings, we clean the entire cache.
   1703  *
   1704  * So that some functions can be further optimised, it returns 0 if it didn't
   1705  * clean the entire cache, or 1 if it did.
   1706  *
   1707  * XXX One bug in this routine is that if the pv_entry has a single page
   1708  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1709  * just the 1 page. Since this should not occur in everyday use and if it does
   1710  * it will just result in not the most efficient clean for the page.
   1711  */
   1712 static int
   1713 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1714 {
   1715 	struct pmap *pmap;
   1716 	struct pv_entry *npv;
   1717 	int cache_needs_cleaning = 0;
   1718 	vaddr_t page_to_clean = 0;
   1719 
   1720 	if (pv == NULL) {
   1721 		/* nothing mapped in so nothing to flush */
   1722 		return (0);
   1723 	}
   1724 
   1725 	/*
   1726 	 * Since we flush the cache each time we change curproc, we
   1727 	 * only need to flush the page if it is in the current pmap.
   1728 	 */
   1729 	if (curproc)
   1730 		pmap = curproc->p_vmspace->vm_map.pmap;
   1731 	else
   1732 		pmap = pmap_kernel();
   1733 
   1734 	for (npv = pv; npv; npv = npv->pv_next) {
   1735 		if (npv->pv_pmap == pmap) {
   1736 			/*
   1737 			 * The page is mapped non-cacheable in
   1738 			 * this map.  No need to flush the cache.
   1739 			 */
   1740 			if (npv->pv_flags & PVF_NC) {
   1741 #ifdef DIAGNOSTIC
   1742 				if (cache_needs_cleaning)
   1743 					panic("pmap_clean_page: "
   1744 					    "cache inconsistency");
   1745 #endif
   1746 				break;
   1747 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   1748 				continue;
   1749 			if (cache_needs_cleaning) {
   1750 				page_to_clean = 0;
   1751 				break;
   1752 			} else
   1753 				page_to_clean = npv->pv_va;
   1754 			cache_needs_cleaning = 1;
   1755 		}
   1756 	}
   1757 
   1758 	if (page_to_clean) {
   1759 		/*
   1760 		 * XXX If is_src, we really only need to write-back,
   1761 		 * XXX not invalidate, too.  Investigate further.
   1762 		 * XXX --thorpej (at) netbsd.org
   1763 		 */
   1764 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1765 	} else if (cache_needs_cleaning) {
   1766 		cpu_idcache_wbinv_all();
   1767 		return (1);
   1768 	}
   1769 	return (0);
   1770 }
   1771 
   1772 /*
   1773  * pmap_zero_page()
   1774  *
   1775  * Zero a given physical page by mapping it at a page hook point.
   1776  * In doing the zero page op, the page we zero is mapped cachable, as with
   1777  * StrongARM accesses to non-cached pages are non-burst making writing
   1778  * _any_ bulk data very slow.
   1779  */
   1780 #if ARM_MMU_GENERIC == 1
   1781 void
   1782 pmap_zero_page_generic(paddr_t phys)
   1783 {
   1784 #ifdef DEBUG
   1785 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1786 
   1787 	if (pg->mdpage.pvh_list != NULL)
   1788 		panic("pmap_zero_page: page has mappings");
   1789 #endif
   1790 
   1791 	KDASSERT((phys & PGOFSET) == 0);
   1792 
   1793 	/*
   1794 	 * Hook in the page, zero it, and purge the cache for that
   1795 	 * zeroed page. Invalidate the TLB as needed.
   1796 	 */
   1797 	*cdst_pte = L2_S_PROTO | phys |
   1798 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1799 	cpu_tlb_flushD_SE(cdstp);
   1800 	cpu_cpwait();
   1801 	bzero_page(cdstp);
   1802 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1803 }
   1804 #endif /* ARM_MMU_GENERIC == 1 */
   1805 
   1806 #if ARM_MMU_XSCALE == 1
   1807 void
   1808 pmap_zero_page_xscale(paddr_t phys)
   1809 {
   1810 #ifdef DEBUG
   1811 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1812 
   1813 	if (pg->mdpage.pvh_list != NULL)
   1814 		panic("pmap_zero_page: page has mappings");
   1815 #endif
   1816 
   1817 	KDASSERT((phys & PGOFSET) == 0);
   1818 
   1819 	/*
   1820 	 * Hook in the page, zero it, and purge the cache for that
   1821 	 * zeroed page. Invalidate the TLB as needed.
   1822 	 */
   1823 	*cdst_pte = L2_S_PROTO | phys |
   1824 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1825 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1826 	cpu_tlb_flushD_SE(cdstp);
   1827 	cpu_cpwait();
   1828 	bzero_page(cdstp);
   1829 	xscale_cache_clean_minidata();
   1830 }
   1831 #endif /* ARM_MMU_XSCALE == 1 */
   1832 
   1833 /* pmap_pageidlezero()
   1834  *
   1835  * The same as above, except that we assume that the page is not
   1836  * mapped.  This means we never have to flush the cache first.  Called
   1837  * from the idle loop.
   1838  */
   1839 boolean_t
   1840 pmap_pageidlezero(paddr_t phys)
   1841 {
   1842 	int i, *ptr;
   1843 	boolean_t rv = TRUE;
   1844 #ifdef DEBUG
   1845 	struct vm_page *pg;
   1846 
   1847 	pg = PHYS_TO_VM_PAGE(phys);
   1848 	if (pg->mdpage.pvh_list != NULL)
   1849 		panic("pmap_pageidlezero: page has mappings");
   1850 #endif
   1851 
   1852 	KDASSERT((phys & PGOFSET) == 0);
   1853 
   1854 	/*
   1855 	 * Hook in the page, zero it, and purge the cache for that
   1856 	 * zeroed page. Invalidate the TLB as needed.
   1857 	 */
   1858 	*cdst_pte = L2_S_PROTO | phys |
   1859 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1860 	cpu_tlb_flushD_SE(cdstp);
   1861 	cpu_cpwait();
   1862 
   1863 	for (i = 0, ptr = (int *)cdstp;
   1864 			i < (NBPG / sizeof(int)); i++) {
   1865 		if (sched_whichqs != 0) {
   1866 			/*
   1867 			 * A process has become ready.  Abort now,
   1868 			 * so we don't keep it waiting while we
   1869 			 * do slow memory access to finish this
   1870 			 * page.
   1871 			 */
   1872 			rv = FALSE;
   1873 			break;
   1874 		}
   1875 		*ptr++ = 0;
   1876 	}
   1877 
   1878 	if (rv)
   1879 		/*
   1880 		 * if we aborted we'll rezero this page again later so don't
   1881 		 * purge it unless we finished it
   1882 		 */
   1883 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1884 	return (rv);
   1885 }
   1886 
   1887 /*
   1888  * pmap_copy_page()
   1889  *
   1890  * Copy one physical page into another, by mapping the pages into
   1891  * hook points. The same comment regarding cachability as in
   1892  * pmap_zero_page also applies here.
   1893  */
   1894 #if ARM_MMU_GENERIC == 1
   1895 void
   1896 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   1897 {
   1898 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1899 #ifdef DEBUG
   1900 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1901 
   1902 	if (dst_pg->mdpage.pvh_list != NULL)
   1903 		panic("pmap_copy_page: dst page has mappings");
   1904 #endif
   1905 
   1906 	KDASSERT((src & PGOFSET) == 0);
   1907 	KDASSERT((dst & PGOFSET) == 0);
   1908 
   1909 	/*
   1910 	 * Clean the source page.  Hold the source page's lock for
   1911 	 * the duration of the copy so that no other mappings can
   1912 	 * be created while we have a potentially aliased mapping.
   1913 	 */
   1914 	simple_lock(&src_pg->mdpage.pvh_slock);
   1915 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1916 
   1917 	/*
   1918 	 * Map the pages into the page hook points, copy them, and purge
   1919 	 * the cache for the appropriate page. Invalidate the TLB
   1920 	 * as required.
   1921 	 */
   1922 	*csrc_pte = L2_S_PROTO | src |
   1923 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
   1924 	*cdst_pte = L2_S_PROTO | dst |
   1925 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1926 	cpu_tlb_flushD_SE(csrcp);
   1927 	cpu_tlb_flushD_SE(cdstp);
   1928 	cpu_cpwait();
   1929 	bcopy_page(csrcp, cdstp);
   1930 	cpu_dcache_inv_range(csrcp, NBPG);
   1931 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1932 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1933 }
   1934 #endif /* ARM_MMU_GENERIC == 1 */
   1935 
   1936 #if ARM_MMU_XSCALE == 1
   1937 void
   1938 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   1939 {
   1940 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1941 #ifdef DEBUG
   1942 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1943 
   1944 	if (dst_pg->mdpage.pvh_list != NULL)
   1945 		panic("pmap_copy_page: dst page has mappings");
   1946 #endif
   1947 
   1948 	KDASSERT((src & PGOFSET) == 0);
   1949 	KDASSERT((dst & PGOFSET) == 0);
   1950 
   1951 	/*
   1952 	 * Clean the source page.  Hold the source page's lock for
   1953 	 * the duration of the copy so that no other mappings can
   1954 	 * be created while we have a potentially aliased mapping.
   1955 	 */
   1956 	simple_lock(&src_pg->mdpage.pvh_slock);
   1957 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1958 
   1959 	/*
   1960 	 * Map the pages into the page hook points, copy them, and purge
   1961 	 * the cache for the appropriate page. Invalidate the TLB
   1962 	 * as required.
   1963 	 */
   1964 	*csrc_pte = L2_S_PROTO | src |
   1965 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   1966 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1967 	*cdst_pte = L2_S_PROTO | dst |
   1968 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1969 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1970 	cpu_tlb_flushD_SE(csrcp);
   1971 	cpu_tlb_flushD_SE(cdstp);
   1972 	cpu_cpwait();
   1973 	bcopy_page(csrcp, cdstp);
   1974 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1975 	xscale_cache_clean_minidata();
   1976 }
   1977 #endif /* ARM_MMU_XSCALE == 1 */
   1978 
   1979 #if 0
   1980 void
   1981 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   1982 {
   1983 	pd_entry_t *pde;
   1984 	paddr_t pa;
   1985 	struct vm_page *m;
   1986 
   1987 	if (pmap == pmap_kernel())
   1988 		return;
   1989 
   1990 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   1991 	pa = pmap_pte_pa(pde);
   1992 	m = PHYS_TO_VM_PAGE(pa);
   1993 	++m->wire_count;
   1994 #ifdef MYCROFT_HACK
   1995 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1996 	    pmap, va, pde, pa, m, m->wire_count);
   1997 #endif
   1998 }
   1999 
   2000 void
   2001 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   2002 {
   2003 	pd_entry_t *pde;
   2004 	paddr_t pa;
   2005 	struct vm_page *m;
   2006 
   2007 	if (pmap == pmap_kernel())
   2008 		return;
   2009 
   2010 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   2011 	pa = pmap_pte_pa(pde);
   2012 	m = PHYS_TO_VM_PAGE(pa);
   2013 	--m->wire_count;
   2014 #ifdef MYCROFT_HACK
   2015 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2016 	    pmap, va, pde, pa, m, m->wire_count);
   2017 #endif
   2018 	if (m->wire_count == 0) {
   2019 #ifdef MYCROFT_HACK
   2020 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2021 		    pmap, va, pde, pa, m);
   2022 #endif
   2023 		pmap_unmap_in_l1(pmap, va);
   2024 		uvm_pagefree(m);
   2025 		--pmap->pm_stats.resident_count;
   2026 	}
   2027 }
   2028 #else
   2029 #define	pmap_pte_addref(pmap, va)
   2030 #define	pmap_pte_delref(pmap, va)
   2031 #endif
   2032 
   2033 /*
   2034  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2035  * there is more than one mapping and at least one of them is writable.
   2036  * Since we purge the cache on every context switch, we only need to check for
   2037  * other mappings within the same pmap, or kernel_pmap.
   2038  * This function is also called when a page is unmapped, to possibly reenable
   2039  * caching on any remaining mappings.
   2040  *
   2041  * The code implements the following logic, where:
   2042  *
   2043  * KW = # of kernel read/write pages
   2044  * KR = # of kernel read only pages
   2045  * UW = # of user read/write pages
   2046  * UR = # of user read only pages
   2047  * OW = # of user read/write pages in another pmap, then
   2048  *
   2049  * KC = kernel mapping is cacheable
   2050  * UC = user mapping is cacheable
   2051  *
   2052  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2053  *                   +---------------------------------------------
   2054  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2055  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2056  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2057  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2058  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2059  *
   2060  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2061  */
   2062 __inline static void
   2063 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2064 	boolean_t clear_cache)
   2065 {
   2066 	if (pmap == pmap_kernel())
   2067 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2068 	else
   2069 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2070 }
   2071 
   2072 static void
   2073 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2074 	boolean_t clear_cache)
   2075 {
   2076 	int user_entries = 0;
   2077 	int user_writable = 0;
   2078 	int user_cacheable = 0;
   2079 	int kernel_entries = 0;
   2080 	int kernel_writable = 0;
   2081 	int kernel_cacheable = 0;
   2082 	struct pv_entry *pv;
   2083 	struct pmap *last_pmap = pmap;
   2084 
   2085 #ifdef DIAGNOSTIC
   2086 	if (pmap != pmap_kernel())
   2087 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2088 #endif
   2089 
   2090 	/*
   2091 	 * Pass one, see if there are both kernel and user pmaps for
   2092 	 * this page.  Calculate whether there are user-writable or
   2093 	 * kernel-writable pages.
   2094 	 */
   2095 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2096 		if (pv->pv_pmap != pmap) {
   2097 			user_entries++;
   2098 			if (pv->pv_flags & PVF_WRITE)
   2099 				user_writable++;
   2100 			if ((pv->pv_flags & PVF_NC) == 0)
   2101 				user_cacheable++;
   2102 		} else {
   2103 			kernel_entries++;
   2104 			if (pv->pv_flags & PVF_WRITE)
   2105 				kernel_writable++;
   2106 			if ((pv->pv_flags & PVF_NC) == 0)
   2107 				kernel_cacheable++;
   2108 		}
   2109 	}
   2110 
   2111 	/*
   2112 	 * We know we have just been updating a kernel entry, so if
   2113 	 * all user pages are already cacheable, then there is nothing
   2114 	 * further to do.
   2115 	 */
   2116 	if (kernel_entries == 0 &&
   2117 	    user_cacheable == user_entries)
   2118 		return;
   2119 
   2120 	if (user_entries) {
   2121 		/*
   2122 		 * Scan over the list again, for each entry, if it
   2123 		 * might not be set correctly, call pmap_vac_me_user
   2124 		 * to recalculate the settings.
   2125 		 */
   2126 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2127 			/*
   2128 			 * We know kernel mappings will get set
   2129 			 * correctly in other calls.  We also know
   2130 			 * that if the pmap is the same as last_pmap
   2131 			 * then we've just handled this entry.
   2132 			 */
   2133 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2134 				continue;
   2135 			/*
   2136 			 * If there are kernel entries and this page
   2137 			 * is writable but non-cacheable, then we can
   2138 			 * skip this entry also.
   2139 			 */
   2140 			if (kernel_entries > 0 &&
   2141 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   2142 			    (PVF_NC | PVF_WRITE))
   2143 				continue;
   2144 			/*
   2145 			 * Similarly if there are no kernel-writable
   2146 			 * entries and the page is already
   2147 			 * read-only/cacheable.
   2148 			 */
   2149 			if (kernel_writable == 0 &&
   2150 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   2151 				continue;
   2152 			/*
   2153 			 * For some of the remaining cases, we know
   2154 			 * that we must recalculate, but for others we
   2155 			 * can't tell if they are correct or not, so
   2156 			 * we recalculate anyway.
   2157 			 */
   2158 			pmap_unmap_ptes(last_pmap);
   2159 			last_pmap = pv->pv_pmap;
   2160 			ptes = pmap_map_ptes(last_pmap);
   2161 			pmap_vac_me_user(last_pmap, pg, ptes,
   2162 			    pmap_is_curpmap(last_pmap));
   2163 		}
   2164 		/* Restore the pte mapping that was passed to us.  */
   2165 		if (last_pmap != pmap) {
   2166 			pmap_unmap_ptes(last_pmap);
   2167 			ptes = pmap_map_ptes(pmap);
   2168 		}
   2169 		if (kernel_entries == 0)
   2170 			return;
   2171 	}
   2172 
   2173 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2174 	return;
   2175 }
   2176 
   2177 static void
   2178 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2179 	boolean_t clear_cache)
   2180 {
   2181 	struct pmap *kpmap = pmap_kernel();
   2182 	struct pv_entry *pv, *npv;
   2183 	int entries = 0;
   2184 	int writable = 0;
   2185 	int cacheable_entries = 0;
   2186 	int kern_cacheable = 0;
   2187 	int other_writable = 0;
   2188 
   2189 	pv = pg->mdpage.pvh_list;
   2190 	KASSERT(ptes != NULL);
   2191 
   2192 	/*
   2193 	 * Count mappings and writable mappings in this pmap.
   2194 	 * Include kernel mappings as part of our own.
   2195 	 * Keep a pointer to the first one.
   2196 	 */
   2197 	for (npv = pv; npv; npv = npv->pv_next) {
   2198 		/* Count mappings in the same pmap */
   2199 		if (pmap == npv->pv_pmap ||
   2200 		    kpmap == npv->pv_pmap) {
   2201 			if (entries++ == 0)
   2202 				pv = npv;
   2203 			/* Cacheable mappings */
   2204 			if ((npv->pv_flags & PVF_NC) == 0) {
   2205 				cacheable_entries++;
   2206 				if (kpmap == npv->pv_pmap)
   2207 					kern_cacheable++;
   2208 			}
   2209 			/* Writable mappings */
   2210 			if (npv->pv_flags & PVF_WRITE)
   2211 				++writable;
   2212 		} else if (npv->pv_flags & PVF_WRITE)
   2213 			other_writable = 1;
   2214 	}
   2215 
   2216 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2217 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2218 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2219 
   2220 	/*
   2221 	 * Enable or disable caching as necessary.
   2222 	 * Note: the first entry might be part of the kernel pmap,
   2223 	 * so we can't assume this is indicative of the state of the
   2224 	 * other (maybe non-kpmap) entries.
   2225 	 */
   2226 	if ((entries > 1 && writable) ||
   2227 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2228 		if (cacheable_entries == 0)
   2229 		    return;
   2230 		for (npv = pv; npv; npv = npv->pv_next) {
   2231 			if ((pmap == npv->pv_pmap
   2232 			    || kpmap == npv->pv_pmap) &&
   2233 			    (npv->pv_flags & PVF_NC) == 0) {
   2234 				ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
   2235  				npv->pv_flags |= PVF_NC;
   2236 				/*
   2237 				 * If this page needs flushing from the
   2238 				 * cache, and we aren't going to do it
   2239 				 * below, do it now.
   2240 				 */
   2241 				if ((cacheable_entries < 4 &&
   2242 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2243 				    (npv->pv_pmap == kpmap &&
   2244 				    !clear_cache && kern_cacheable < 4)) {
   2245 					cpu_idcache_wbinv_range(npv->pv_va,
   2246 					    NBPG);
   2247 					cpu_tlb_flushID_SE(npv->pv_va);
   2248 				}
   2249 			}
   2250 		}
   2251 		if ((clear_cache && cacheable_entries >= 4) ||
   2252 		    kern_cacheable >= 4) {
   2253 			cpu_idcache_wbinv_all();
   2254 			cpu_tlb_flushID();
   2255 		}
   2256 		cpu_cpwait();
   2257 	} else if (entries > 0) {
   2258 		/*
   2259 		 * Turn cacheing back on for some pages.  If it is a kernel
   2260 		 * page, only do so if there are no other writable pages.
   2261 		 */
   2262 		for (npv = pv; npv; npv = npv->pv_next) {
   2263 			if ((pmap == npv->pv_pmap ||
   2264 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2265 			    (npv->pv_flags & PVF_NC)) {
   2266 				ptes[arm_btop(npv->pv_va)] |=
   2267 				    pte_l2_s_cache_mode;
   2268 				npv->pv_flags &= ~PVF_NC;
   2269 			}
   2270 		}
   2271 	}
   2272 }
   2273 
   2274 /*
   2275  * pmap_remove()
   2276  *
   2277  * pmap_remove is responsible for nuking a number of mappings for a range
   2278  * of virtual address space in the current pmap. To do this efficiently
   2279  * is interesting, because in a number of cases a wide virtual address
   2280  * range may be supplied that contains few actual mappings. So, the
   2281  * optimisations are:
   2282  *  1. Try and skip over hunks of address space for which an L1 entry
   2283  *     does not exist.
   2284  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2285  *     maybe do just a partial cache clean. This path of execution is
   2286  *     complicated by the fact that the cache must be flushed _before_
   2287  *     the PTE is nuked, being a VAC :-)
   2288  *  3. Maybe later fast-case a single page, but I don't think this is
   2289  *     going to make _that_ much difference overall.
   2290  */
   2291 
   2292 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2293 
   2294 void
   2295 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2296 {
   2297 	int cleanlist_idx = 0;
   2298 	struct pagelist {
   2299 		vaddr_t va;
   2300 		pt_entry_t *pte;
   2301 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2302 	pt_entry_t *pte = 0, *ptes;
   2303 	paddr_t pa;
   2304 	int pmap_active;
   2305 	struct vm_page *pg;
   2306 
   2307 	/* Exit quick if there is no pmap */
   2308 	if (!pmap)
   2309 		return;
   2310 
   2311 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
   2312 	    pmap, sva, eva));
   2313 
   2314 	/*
   2315 	 * we lock in the pmap => vm_page direction
   2316 	 */
   2317 	PMAP_MAP_TO_HEAD_LOCK();
   2318 
   2319 	ptes = pmap_map_ptes(pmap);
   2320 	/* Get a page table pointer */
   2321 	while (sva < eva) {
   2322 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2323 			break;
   2324 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2325 	}
   2326 
   2327 	pte = &ptes[arm_btop(sva)];
   2328 	/* Note if the pmap is active thus require cache and tlb cleans */
   2329 	pmap_active = pmap_is_curpmap(pmap);
   2330 
   2331 	/* Now loop along */
   2332 	while (sva < eva) {
   2333 		/* Check if we can move to the next PDE (l1 chunk) */
   2334 		if (!(sva & L2_ADDR_BITS))
   2335 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2336 				sva += L1_S_SIZE;
   2337 				pte += arm_btop(L1_S_SIZE);
   2338 				continue;
   2339 			}
   2340 
   2341 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2342 		if (pmap_pte_v(pte)) {
   2343 			/* Update statistics */
   2344 			--pmap->pm_stats.resident_count;
   2345 
   2346 			/*
   2347 			 * Add this page to our cache remove list, if we can.
   2348 			 * If, however the cache remove list is totally full,
   2349 			 * then do a complete cache invalidation taking note
   2350 			 * to backtrack the PTE table beforehand, and ignore
   2351 			 * the lists in future because there's no longer any
   2352 			 * point in bothering with them (we've paid the
   2353 			 * penalty, so will carry on unhindered). Otherwise,
   2354 			 * when we fall out, we just clean the list.
   2355 			 */
   2356 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2357 			pa = pmap_pte_pa(pte);
   2358 
   2359 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2360 				/* Add to the clean list. */
   2361 				cleanlist[cleanlist_idx].pte = pte;
   2362 				cleanlist[cleanlist_idx].va = sva;
   2363 				cleanlist_idx++;
   2364 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2365 				int cnt;
   2366 
   2367 				/* Nuke everything if needed. */
   2368 				if (pmap_active) {
   2369 					cpu_idcache_wbinv_all();
   2370 					cpu_tlb_flushID();
   2371 				}
   2372 
   2373 				/*
   2374 				 * Roll back the previous PTE list,
   2375 				 * and zero out the current PTE.
   2376 				 */
   2377 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2378 					*cleanlist[cnt].pte = 0;
   2379 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2380 				}
   2381 				*pte = 0;
   2382 				pmap_pte_delref(pmap, sva);
   2383 				cleanlist_idx++;
   2384 			} else {
   2385 				/*
   2386 				 * We've already nuked the cache and
   2387 				 * TLB, so just carry on regardless,
   2388 				 * and we won't need to do it again
   2389 				 */
   2390 				*pte = 0;
   2391 				pmap_pte_delref(pmap, sva);
   2392 			}
   2393 
   2394 			/*
   2395 			 * Update flags. In a number of circumstances,
   2396 			 * we could cluster a lot of these and do a
   2397 			 * number of sequential pages in one go.
   2398 			 */
   2399 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2400 				struct pv_entry *pve;
   2401 				simple_lock(&pg->mdpage.pvh_slock);
   2402 				pve = pmap_remove_pv(pg, pmap, sva);
   2403 				pmap_free_pv(pmap, pve);
   2404 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2405 				simple_unlock(&pg->mdpage.pvh_slock);
   2406 			}
   2407 		}
   2408 		sva += NBPG;
   2409 		pte++;
   2410 	}
   2411 
   2412 	/*
   2413 	 * Now, if we've fallen through down to here, chances are that there
   2414 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2415 	 */
   2416 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2417 		u_int cnt;
   2418 
   2419 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2420 			if (pmap_active) {
   2421 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2422 				    NBPG);
   2423 				*cleanlist[cnt].pte = 0;
   2424 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2425 			} else
   2426 				*cleanlist[cnt].pte = 0;
   2427 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2428 		}
   2429 	}
   2430 
   2431 	pmap_unmap_ptes(pmap);
   2432 
   2433 	PMAP_MAP_TO_HEAD_UNLOCK();
   2434 }
   2435 
   2436 /*
   2437  * Routine:	pmap_remove_all
   2438  * Function:
   2439  *		Removes this physical page from
   2440  *		all physical maps in which it resides.
   2441  *		Reflects back modify bits to the pager.
   2442  */
   2443 
   2444 static void
   2445 pmap_remove_all(struct vm_page *pg)
   2446 {
   2447 	struct pv_entry *pv, *npv;
   2448 	struct pmap *pmap;
   2449 	pt_entry_t *pte, *ptes;
   2450 
   2451 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2452 
   2453 	/* set vm_page => pmap locking */
   2454 	PMAP_HEAD_TO_MAP_LOCK();
   2455 
   2456 	simple_lock(&pg->mdpage.pvh_slock);
   2457 
   2458 	pv = pg->mdpage.pvh_list;
   2459 	if (pv == NULL) {
   2460 		PDEBUG(0, printf("free page\n"));
   2461 		simple_unlock(&pg->mdpage.pvh_slock);
   2462 		PMAP_HEAD_TO_MAP_UNLOCK();
   2463 		return;
   2464 	}
   2465 	pmap_clean_page(pv, FALSE);
   2466 
   2467 	while (pv) {
   2468 		pmap = pv->pv_pmap;
   2469 		ptes = pmap_map_ptes(pmap);
   2470 		pte = &ptes[arm_btop(pv->pv_va)];
   2471 
   2472 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2473 		    pv->pv_va, pv->pv_flags));
   2474 #ifdef DEBUG
   2475 		if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
   2476 		    pmap_pte_v(pte) == 0 ||
   2477 		    pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
   2478 			panic("pmap_remove_all: bad mapping");
   2479 #endif	/* DEBUG */
   2480 
   2481 		/*
   2482 		 * Update statistics
   2483 		 */
   2484 		--pmap->pm_stats.resident_count;
   2485 
   2486 		/* Wired bit */
   2487 		if (pv->pv_flags & PVF_WIRED)
   2488 			--pmap->pm_stats.wired_count;
   2489 
   2490 		/*
   2491 		 * Invalidate the PTEs.
   2492 		 * XXX: should cluster them up and invalidate as many
   2493 		 * as possible at once.
   2494 		 */
   2495 
   2496 #ifdef needednotdone
   2497 reduce wiring count on page table pages as references drop
   2498 #endif
   2499 
   2500 		*pte = 0;
   2501 		pmap_pte_delref(pmap, pv->pv_va);
   2502 
   2503 		npv = pv->pv_next;
   2504 		pmap_free_pv(pmap, pv);
   2505 		pv = npv;
   2506 		pmap_unmap_ptes(pmap);
   2507 	}
   2508 	pg->mdpage.pvh_list = NULL;
   2509 	simple_unlock(&pg->mdpage.pvh_slock);
   2510 	PMAP_HEAD_TO_MAP_UNLOCK();
   2511 
   2512 	PDEBUG(0, printf("done\n"));
   2513 	cpu_tlb_flushID();
   2514 	cpu_cpwait();
   2515 }
   2516 
   2517 
   2518 /*
   2519  * Set the physical protection on the specified range of this map as requested.
   2520  */
   2521 
   2522 void
   2523 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2524 {
   2525 	pt_entry_t *pte = NULL, *ptes;
   2526 	struct vm_page *pg;
   2527 	int flush = 0;
   2528 
   2529 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2530 	    pmap, sva, eva, prot));
   2531 
   2532 	if (~prot & VM_PROT_READ) {
   2533 		/*
   2534 		 * Just remove the mappings.  pmap_update() is not required
   2535 		 * here since the caller should do it.
   2536 		 */
   2537 		pmap_remove(pmap, sva, eva);
   2538 		return;
   2539 	}
   2540 	if (prot & VM_PROT_WRITE) {
   2541 		/*
   2542 		 * If this is a read->write transition, just ignore it and let
   2543 		 * uvm_fault() take care of it later.
   2544 		 */
   2545 		return;
   2546 	}
   2547 
   2548 	/* Need to lock map->head */
   2549 	PMAP_MAP_TO_HEAD_LOCK();
   2550 
   2551 	ptes = pmap_map_ptes(pmap);
   2552 
   2553 	/*
   2554 	 * OK, at this point, we know we're doing write-protect operation.
   2555 	 * If the pmap is active, write-back the range.
   2556 	 */
   2557 	if (pmap_is_curpmap(pmap))
   2558 		cpu_dcache_wb_range(sva, eva - sva);
   2559 
   2560 	/*
   2561 	 * We need to acquire a pointer to a page table page before entering
   2562 	 * the following loop.
   2563 	 */
   2564 	while (sva < eva) {
   2565 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2566 			break;
   2567 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2568 	}
   2569 
   2570 	pte = &ptes[arm_btop(sva)];
   2571 
   2572 	while (sva < eva) {
   2573 		/* only check once in a while */
   2574 		if ((sva & L2_ADDR_BITS) == 0) {
   2575 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2576 				/* We can race ahead here, to the next pde. */
   2577 				sva += L1_S_SIZE;
   2578 				pte += arm_btop(L1_S_SIZE);
   2579 				continue;
   2580 			}
   2581 		}
   2582 
   2583 		if (!pmap_pte_v(pte))
   2584 			goto next;
   2585 
   2586 		flush = 1;
   2587 
   2588 		*pte &= ~L2_S_PROT_W;		/* clear write bit */
   2589 
   2590 		/* Clear write flag */
   2591 		if ((pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte))) != NULL) {
   2592 			simple_lock(&pg->mdpage.pvh_slock);
   2593 			(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
   2594 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2595 			simple_unlock(&pg->mdpage.pvh_slock);
   2596 		}
   2597 
   2598  next:
   2599 		sva += NBPG;
   2600 		pte++;
   2601 	}
   2602 	pmap_unmap_ptes(pmap);
   2603 	PMAP_MAP_TO_HEAD_UNLOCK();
   2604 	if (flush)
   2605 		cpu_tlb_flushID();
   2606 }
   2607 
   2608 /*
   2609  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2610  * int flags)
   2611  *
   2612  *      Insert the given physical page (p) at
   2613  *      the specified virtual address (v) in the
   2614  *      target physical map with the protection requested.
   2615  *
   2616  *      If specified, the page will be wired down, meaning
   2617  *      that the related pte can not be reclaimed.
   2618  *
   2619  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2620  *      or lose information.  That is, this routine must actually
   2621  *      insert this page into the given map NOW.
   2622  */
   2623 
   2624 int
   2625 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2626     int flags)
   2627 {
   2628 	pt_entry_t *ptes, opte, npte;
   2629 	paddr_t opa;
   2630 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2631 	struct vm_page *pg;
   2632 	struct pv_entry *pve;
   2633 	int error, nflags;
   2634 
   2635 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2636 	    va, pa, pmap, prot, wired));
   2637 
   2638 #ifdef DIAGNOSTIC
   2639 	/* Valid address ? */
   2640 	if (va >= (pmap_curmaxkvaddr))
   2641 		panic("pmap_enter: too big");
   2642 	if (pmap != pmap_kernel() && va != 0) {
   2643 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2644 			panic("pmap_enter: kernel page in user map");
   2645 	} else {
   2646 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2647 			panic("pmap_enter: user page in kernel map");
   2648 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2649 			panic("pmap_enter: entering PT page");
   2650 	}
   2651 #endif
   2652 
   2653 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2654 
   2655 	/*
   2656 	 * Get a pointer to the page.  Later on in this function, we
   2657 	 * test for a managed page by checking pg != NULL.
   2658 	 */
   2659 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2660 
   2661 	/* get lock */
   2662 	PMAP_MAP_TO_HEAD_LOCK();
   2663 
   2664 	/*
   2665 	 * map the ptes.  If there's not already an L2 table for this
   2666 	 * address, allocate one.
   2667 	 */
   2668 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2669 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   2670 		struct vm_page *ptp;
   2671 
   2672 		/* kernel should be pre-grown */
   2673 		KASSERT(pmap != pmap_kernel());
   2674 
   2675 		/* if failure is allowed then don't try too hard */
   2676 		ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
   2677 		if (ptp == NULL) {
   2678 			if (flags & PMAP_CANFAIL) {
   2679 				error = ENOMEM;
   2680 				goto out;
   2681 			}
   2682 			panic("pmap_enter: get ptp failed");
   2683 		}
   2684 	}
   2685 	opte = ptes[arm_btop(va)];
   2686 
   2687 	nflags = 0;
   2688 	if (prot & VM_PROT_WRITE)
   2689 		nflags |= PVF_WRITE;
   2690 	if (wired)
   2691 		nflags |= PVF_WIRED;
   2692 
   2693 	/* Is the pte valid ? If so then this page is already mapped */
   2694 	if (l2pte_valid(opte)) {
   2695 		/* Get the physical address of the current page mapped */
   2696 		opa = l2pte_pa(opte);
   2697 
   2698 		/* Are we mapping the same page ? */
   2699 		if (opa == pa) {
   2700 			/* Check to see if we're doing rw->ro. */
   2701 			if ((opte & L2_S_PROT_W) != 0 &&
   2702 			    (prot & VM_PROT_WRITE) == 0) {
   2703 				/* Yup, flush the cache if current pmap. */
   2704 				if (pmap_is_curpmap(pmap))
   2705 					cpu_dcache_wb_range(va, NBPG);
   2706 			}
   2707 
   2708 			/* Has the wiring changed ? */
   2709 			if (pg != NULL) {
   2710 				simple_lock(&pg->mdpage.pvh_slock);
   2711 				(void) pmap_modify_pv(pmap, va, pg,
   2712 				    PVF_WRITE | PVF_WIRED, nflags);
   2713 				simple_unlock(&pg->mdpage.pvh_slock);
   2714  			}
   2715 		} else {
   2716 			struct vm_page *opg;
   2717 
   2718 			/* We are replacing the page with a new one. */
   2719 			cpu_idcache_wbinv_range(va, NBPG);
   2720 
   2721 			/*
   2722 			 * If it is part of our managed memory then we
   2723 			 * must remove it from the PV list
   2724 			 */
   2725 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2726 				simple_lock(&opg->mdpage.pvh_slock);
   2727 				pve = pmap_remove_pv(opg, pmap, va);
   2728 				simple_unlock(&opg->mdpage.pvh_slock);
   2729 			} else {
   2730 				pve = NULL;
   2731 			}
   2732 
   2733 			goto enter;
   2734 		}
   2735 	} else {
   2736 		opa = 0;
   2737 		pve = NULL;
   2738 		pmap_pte_addref(pmap, va);
   2739 
   2740 		/* pte is not valid so we must be hooking in a new page */
   2741 		++pmap->pm_stats.resident_count;
   2742 
   2743 	enter:
   2744 		/*
   2745 		 * Enter on the PV list if part of our managed memory
   2746 		 */
   2747 		if (pg != NULL) {
   2748 			if (pve == NULL) {
   2749 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2750 				if (pve == NULL) {
   2751 					if (flags & PMAP_CANFAIL) {
   2752 						error = ENOMEM;
   2753 						goto out;
   2754 					}
   2755 					panic("pmap_enter: no pv entries "
   2756 					    "available");
   2757 				}
   2758 			}
   2759 			/* enter_pv locks pvh when adding */
   2760 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2761 		} else {
   2762 			if (pve != NULL)
   2763 				pmap_free_pv(pmap, pve);
   2764 		}
   2765 	}
   2766 
   2767 	/* Construct the pte, giving the correct access. */
   2768 	npte = pa;
   2769 
   2770 	/* VA 0 is magic. */
   2771 	if (pmap != pmap_kernel() && va != vector_page)
   2772 		npte |= L2_S_PROT_U;
   2773 
   2774 	if (pg != NULL) {
   2775 #ifdef DIAGNOSTIC
   2776 		if ((flags & VM_PROT_ALL) & ~prot)
   2777 			panic("pmap_enter: access_type exceeds prot");
   2778 #endif
   2779 		npte |= pte_l2_s_cache_mode;
   2780 		if (flags & VM_PROT_WRITE) {
   2781 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2782 			pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   2783 		} else if (flags & VM_PROT_ALL) {
   2784 			npte |= L2_S_PROTO;
   2785 			pg->mdpage.pvh_attrs |= PVF_REF;
   2786 		} else
   2787 			npte |= L2_TYPE_INV;
   2788 	} else {
   2789 		if (prot & VM_PROT_WRITE)
   2790 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2791 		else if (prot & VM_PROT_ALL)
   2792 			npte |= L2_S_PROTO;
   2793 		else
   2794 			npte |= L2_TYPE_INV;
   2795 	}
   2796 
   2797 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
   2798 #if ARM_NMMUS > 1
   2799 # error "XXX Unable to use read/write-allocate and configure non-XScale"
   2800 #endif
   2801 	/*
   2802 	 * XXX BRUTAL HACK!  This allows us to limp along with
   2803 	 * XXX the read/write-allocate cache mode.
   2804 	 */
   2805 	if (pmap == pmap_kernel())
   2806 		npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
   2807 #endif
   2808 	ptes[arm_btop(va)] = npte;
   2809 
   2810 	if (pg != NULL) {
   2811 		simple_lock(&pg->mdpage.pvh_slock);
   2812  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2813 		simple_unlock(&pg->mdpage.pvh_slock);
   2814 	}
   2815 
   2816 	/* Better flush the TLB ... */
   2817 	cpu_tlb_flushID_SE(va);
   2818 	error = 0;
   2819 out:
   2820 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2821 	PMAP_MAP_TO_HEAD_UNLOCK();
   2822 
   2823 	return error;
   2824 }
   2825 
   2826 /*
   2827  * pmap_kenter_pa: enter a kernel mapping
   2828  *
   2829  * => no need to lock anything assume va is already allocated
   2830  * => should be faster than normal pmap enter function
   2831  */
   2832 void
   2833 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2834 {
   2835 	pt_entry_t *pte;
   2836 
   2837 	pte = vtopte(va);
   2838 	KASSERT(!pmap_pte_v(pte));
   2839 
   2840 #ifdef PMAP_ALIAS_DEBUG
   2841     {
   2842 	struct vm_page *pg;
   2843 	int s;
   2844 
   2845 	pg = PHYS_TO_VM_PAGE(pa);
   2846 	if (pg != NULL) {
   2847 		s = splhigh();
   2848 		if (pg->mdpage.ro_mappings == 0 &&
   2849 		    pg->mdpage.rw_mappings == 0 &&
   2850 		    pg->mdpage.kro_mappings == 0 &&
   2851 		    pg->mdpage.krw_mappings == 0) {
   2852 			/* This case is okay. */
   2853 		} else if (pg->mdpage.rw_mappings == 0 &&
   2854 			   pg->mdpage.krw_mappings == 0 &&
   2855 			   (prot & VM_PROT_WRITE) == 0) {
   2856 			/* This case is okay. */
   2857 		} else {
   2858 			/* Something is awry. */
   2859 			printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
   2860 			    "prot 0x%x\n", pg->mdpage.ro_mappings,
   2861 			    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
   2862 			    pg->mdpage.krw_mappings, prot);
   2863 			Debugger();
   2864 		}
   2865 		if (prot & VM_PROT_WRITE)
   2866 			pg->mdpage.krw_mappings++;
   2867 		else
   2868 			pg->mdpage.kro_mappings++;
   2869 		splx(s);
   2870 	}
   2871     }
   2872 #endif /* PMAP_ALIAS_DEBUG */
   2873 
   2874 	*pte = L2_S_PROTO | pa |
   2875 	    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   2876 	PTE_SYNC(pte);
   2877 }
   2878 
   2879 void
   2880 pmap_kremove(vaddr_t va, vsize_t len)
   2881 {
   2882 	pt_entry_t *pte;
   2883 	vaddr_t ova = va;
   2884 	vaddr_t olen = len;
   2885 
   2886 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2887 
   2888 		/*
   2889 		 * We assume that we will only be called with small
   2890 		 * regions of memory.
   2891 		 */
   2892 
   2893 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2894 		pte = vtopte(va);
   2895 #ifdef PMAP_ALIAS_DEBUG
   2896     {
   2897 		struct vm_page *pg;
   2898 		int s;
   2899 
   2900 		if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
   2901 		    (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
   2902 			s = splhigh();
   2903 			if (*pte & L2_S_PROT_W) {
   2904 				KASSERT(pg->mdpage.krw_mappings != 0);
   2905 				pg->mdpage.krw_mappings--;
   2906 			} else {
   2907 				KASSERT(pg->mdpage.kro_mappings != 0);
   2908 				pg->mdpage.kro_mappings--;
   2909 			}
   2910 			splx(s);
   2911 		}
   2912     }
   2913 #endif /* PMAP_ALIAS_DEBUG */
   2914 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2915 		*pte = 0;
   2916 		cpu_tlb_flushID_SE(va);
   2917 	}
   2918 	PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
   2919 }
   2920 
   2921 /*
   2922  * pmap_page_protect:
   2923  *
   2924  * Lower the permission for all mappings to a given page.
   2925  */
   2926 
   2927 void
   2928 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2929 {
   2930 
   2931 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2932 	    VM_PAGE_TO_PHYS(pg), prot));
   2933 
   2934 	switch(prot) {
   2935 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2936 	case VM_PROT_READ|VM_PROT_WRITE:
   2937 		return;
   2938 
   2939 	case VM_PROT_READ:
   2940 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2941 		pmap_clearbit(pg, PVF_WRITE);
   2942 		break;
   2943 
   2944 	default:
   2945 		pmap_remove_all(pg);
   2946 		break;
   2947 	}
   2948 }
   2949 
   2950 
   2951 /*
   2952  * Routine:	pmap_unwire
   2953  * Function:	Clear the wired attribute for a map/virtual-address
   2954  *		pair.
   2955  * In/out conditions:
   2956  *		The mapping must already exist in the pmap.
   2957  */
   2958 
   2959 void
   2960 pmap_unwire(struct pmap *pmap, vaddr_t va)
   2961 {
   2962 	pt_entry_t *ptes;
   2963 	struct vm_page *pg;
   2964 	paddr_t pa;
   2965 
   2966 	PMAP_MAP_TO_HEAD_LOCK();
   2967 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2968 
   2969 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2970 #ifdef DIAGNOSTIC
   2971 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2972 			panic("pmap_unwire: invalid L2 PTE");
   2973 #endif
   2974 		/* Extract the physical address of the page */
   2975 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2976 
   2977 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2978 			goto out;
   2979 
   2980 		/* Update the wired bit in the pv entry for this page. */
   2981 		simple_lock(&pg->mdpage.pvh_slock);
   2982 		(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
   2983 		simple_unlock(&pg->mdpage.pvh_slock);
   2984 	}
   2985 #ifdef DIAGNOSTIC
   2986 	else {
   2987 		panic("pmap_unwire: invalid L1 PTE");
   2988 	}
   2989 #endif
   2990  out:
   2991 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2992 	PMAP_MAP_TO_HEAD_UNLOCK();
   2993 }
   2994 
   2995 /*
   2996  * Routine:  pmap_extract
   2997  * Function:
   2998  *           Extract the physical page address associated
   2999  *           with the given map/virtual_address pair.
   3000  */
   3001 boolean_t
   3002 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   3003 {
   3004 	pd_entry_t *pde;
   3005 	pt_entry_t *pte, *ptes;
   3006 	paddr_t pa;
   3007 
   3008 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
   3009 
   3010 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3011 
   3012 	pde = pmap_pde(pmap, va);
   3013 	pte = &ptes[arm_btop(va)];
   3014 
   3015 	if (pmap_pde_section(pde)) {
   3016 		pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3017 		PDEBUG(5, printf("section pa=0x%08lx\n", pa));
   3018 		goto out;
   3019 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3020 		PDEBUG(5, printf("no mapping\n"));
   3021 		goto failed;
   3022 	}
   3023 
   3024 	if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
   3025 		pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3026 		PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
   3027 		goto out;
   3028 	}
   3029 
   3030 	pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3031 	PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
   3032 
   3033  out:
   3034 	if (pap != NULL)
   3035 		*pap = pa;
   3036 
   3037 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3038 	return (TRUE);
   3039 
   3040  failed:
   3041 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3042 	return (FALSE);
   3043 }
   3044 
   3045 
   3046 /*
   3047  * pmap_copy:
   3048  *
   3049  *	Copy the range specified by src_addr/len from the source map to the
   3050  *	range dst_addr/len in the destination map.
   3051  *
   3052  *	This routine is only advisory and need not do anything.
   3053  */
   3054 /* Call deleted in <arm/arm32/pmap.h> */
   3055 
   3056 #if defined(PMAP_DEBUG)
   3057 void
   3058 pmap_dump_pvlist(phys, m)
   3059 	vaddr_t phys;
   3060 	char *m;
   3061 {
   3062 	struct vm_page *pg;
   3063 	struct pv_entry *pv;
   3064 
   3065 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3066 		printf("INVALID PA\n");
   3067 		return;
   3068 	}
   3069 	simple_lock(&pg->mdpage.pvh_slock);
   3070 	printf("%s %08lx:", m, phys);
   3071 	if (pg->mdpage.pvh_list == NULL) {
   3072 		simple_unlock(&pg->mdpage.pvh_slock);
   3073 		printf(" no mappings\n");
   3074 		return;
   3075 	}
   3076 
   3077 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3078 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3079 		    pv->pv_va, pv->pv_flags);
   3080 
   3081 	printf("\n");
   3082 	simple_unlock(&pg->mdpage.pvh_slock);
   3083 }
   3084 
   3085 #endif	/* PMAP_DEBUG */
   3086 
   3087 static pt_entry_t *
   3088 pmap_map_ptes(struct pmap *pmap)
   3089 {
   3090 	struct proc *p;
   3091 
   3092     	/* the kernel's pmap is always accessible */
   3093 	if (pmap == pmap_kernel()) {
   3094 		return (pt_entry_t *)PTE_BASE;
   3095 	}
   3096 
   3097 	if (pmap_is_curpmap(pmap)) {
   3098 		simple_lock(&pmap->pm_obj.vmobjlock);
   3099 		return (pt_entry_t *)PTE_BASE;
   3100 	}
   3101 
   3102 	p = curproc;
   3103 	KDASSERT(p != NULL);
   3104 
   3105 	/* need to lock both curpmap and pmap: use ordered locking */
   3106 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   3107 		simple_lock(&pmap->pm_obj.vmobjlock);
   3108 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3109 	} else {
   3110 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3111 		simple_lock(&pmap->pm_obj.vmobjlock);
   3112 	}
   3113 
   3114 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
   3115 	    FALSE);
   3116 	cpu_tlb_flushD();
   3117 	cpu_cpwait();
   3118 	return (pt_entry_t *)APTE_BASE;
   3119 }
   3120 
   3121 /*
   3122  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3123  */
   3124 
   3125 static void
   3126 pmap_unmap_ptes(struct pmap *pmap)
   3127 {
   3128 
   3129 	if (pmap == pmap_kernel()) {
   3130 		return;
   3131 	}
   3132 	if (pmap_is_curpmap(pmap)) {
   3133 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3134 	} else {
   3135 		KDASSERT(curproc != NULL);
   3136 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3137 		simple_unlock(
   3138 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3139 	}
   3140 }
   3141 
   3142 /*
   3143  * Modify pte bits for all ptes corresponding to the given physical address.
   3144  * We use `maskbits' rather than `clearbits' because we're always passing
   3145  * constants and the latter would require an extra inversion at run-time.
   3146  */
   3147 
   3148 static void
   3149 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   3150 {
   3151 	struct pv_entry *pv;
   3152 	pt_entry_t *ptes, npte, opte;
   3153 	vaddr_t va;
   3154 	int tlbentry;
   3155 
   3156 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3157 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3158 
   3159 	tlbentry = 0;
   3160 
   3161 	PMAP_HEAD_TO_MAP_LOCK();
   3162 	simple_lock(&pg->mdpage.pvh_slock);
   3163 
   3164 	/*
   3165 	 * Clear saved attributes (modify, reference)
   3166 	 */
   3167 	pg->mdpage.pvh_attrs &= ~maskbits;
   3168 
   3169 	if (pg->mdpage.pvh_list == NULL) {
   3170 		simple_unlock(&pg->mdpage.pvh_slock);
   3171 		PMAP_HEAD_TO_MAP_UNLOCK();
   3172 		return;
   3173 	}
   3174 
   3175 	/*
   3176 	 * Loop over all current mappings setting/clearing as appropos
   3177 	 */
   3178 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3179 #ifdef PMAP_ALIAS_DEBUG
   3180     {
   3181 		int s = splhigh();
   3182 		if ((maskbits & PVF_WRITE) != 0 &&
   3183 		    (pv->pv_flags & PVF_WRITE) != 0) {
   3184 			KASSERT(pg->mdpage.rw_mappings != 0);
   3185 			pg->mdpage.rw_mappings--;
   3186 			pg->mdpage.ro_mappings++;
   3187 		}
   3188 		splx(s);
   3189     }
   3190 #endif /* PMAP_ALIAS_DEBUG */
   3191 		va = pv->pv_va;
   3192 		pv->pv_flags &= ~maskbits;
   3193 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3194 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3195 		npte = opte = ptes[arm_btop(va)];
   3196 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   3197 			if ((pv->pv_flags & PVF_NC)) {
   3198 				/*
   3199 				 * Entry is not cacheable: reenable
   3200 				 * the cache, nothing to flush
   3201 				 *
   3202 				 * Don't turn caching on again if this
   3203 				 * is a modified emulation.  This
   3204 				 * would be inconsitent with the
   3205 				 * settings created by
   3206 				 * pmap_vac_me_harder().
   3207 				 *
   3208 				 * There's no need to call
   3209 				 * pmap_vac_me_harder() here: all
   3210 				 * pages are loosing their write
   3211 				 * permission.
   3212 				 *
   3213 				 */
   3214 				if (maskbits & PVF_WRITE) {
   3215 					npte |= pte_l2_s_cache_mode;
   3216 					pv->pv_flags &= ~PVF_NC;
   3217 				}
   3218 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3219 				/*
   3220 				 * Entry is cacheable: check if pmap is
   3221 				 * current if it is flush it,
   3222 				 * otherwise it won't be in the cache
   3223 				 */
   3224 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3225 			}
   3226 
   3227 			/* make the pte read only */
   3228 			npte &= ~L2_S_PROT_W;
   3229 		}
   3230 
   3231 		if (maskbits & PVF_REF) {
   3232 			if (pmap_is_curpmap(pv->pv_pmap) &&
   3233 			    (pv->pv_flags & PVF_NC) == 0) {
   3234 				/*
   3235 				 * Check npte here; we may have already
   3236 				 * done the wbinv above, and the validity
   3237 				 * of the PTE is the same for opte and
   3238 				 * npte.
   3239 				 */
   3240 				if (npte & L2_S_PROT_W) {
   3241 					cpu_idcache_wbinv_range(pv->pv_va,
   3242 					    NBPG);
   3243 				} else if ((npte & L2_TYPE_MASK)
   3244 					   != L2_TYPE_INV) {
   3245 					/* XXXJRT need idcache_inv_range */
   3246 					cpu_idcache_wbinv_range(pv->pv_va,
   3247 					    NBPG);
   3248 				}
   3249 			}
   3250 
   3251 			/* make the pte invalid */
   3252 			npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
   3253 		}
   3254 
   3255 		if (npte != opte) {
   3256 			ptes[arm_btop(va)] = npte;
   3257 			/* Flush the TLB entry if a current pmap. */
   3258 			if (pmap_is_curpmap(pv->pv_pmap))
   3259 				cpu_tlb_flushID_SE(pv->pv_va);
   3260 		}
   3261 
   3262 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3263 	}
   3264 	cpu_cpwait();
   3265 
   3266 	simple_unlock(&pg->mdpage.pvh_slock);
   3267 	PMAP_HEAD_TO_MAP_UNLOCK();
   3268 }
   3269 
   3270 /*
   3271  * pmap_clear_modify:
   3272  *
   3273  *	Clear the "modified" attribute for a page.
   3274  */
   3275 boolean_t
   3276 pmap_clear_modify(struct vm_page *pg)
   3277 {
   3278 	boolean_t rv;
   3279 
   3280 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3281 		rv = TRUE;
   3282 		pmap_clearbit(pg, PVF_MOD);
   3283 	} else
   3284 		rv = FALSE;
   3285 
   3286 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3287 	    VM_PAGE_TO_PHYS(pg), rv));
   3288 
   3289 	return (rv);
   3290 }
   3291 
   3292 /*
   3293  * pmap_clear_reference:
   3294  *
   3295  *	Clear the "referenced" attribute for a page.
   3296  */
   3297 boolean_t
   3298 pmap_clear_reference(struct vm_page *pg)
   3299 {
   3300 	boolean_t rv;
   3301 
   3302 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3303 		rv = TRUE;
   3304 		pmap_clearbit(pg, PVF_REF);
   3305 	} else
   3306 		rv = FALSE;
   3307 
   3308 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3309 	    VM_PAGE_TO_PHYS(pg), rv));
   3310 
   3311 	return (rv);
   3312 }
   3313 
   3314 /*
   3315  * pmap_is_modified:
   3316  *
   3317  *	Test if a page has the "modified" attribute.
   3318  */
   3319 /* See <arm/arm32/pmap.h> */
   3320 
   3321 /*
   3322  * pmap_is_referenced:
   3323  *
   3324  *	Test if a page has the "referenced" attribute.
   3325  */
   3326 /* See <arm/arm32/pmap.h> */
   3327 
   3328 int
   3329 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3330 {
   3331 	pt_entry_t *ptes;
   3332 	struct vm_page *pg;
   3333 	paddr_t pa;
   3334 	u_int flags;
   3335 	int rv = 0;
   3336 
   3337 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3338 
   3339 	PMAP_MAP_TO_HEAD_LOCK();
   3340 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3341 
   3342 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3343 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3344 		goto out;
   3345 	}
   3346 
   3347 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3348 
   3349 	/* Check for a invalid pte */
   3350 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3351 		goto out;
   3352 
   3353 	/* This can happen if user code tries to access kernel memory. */
   3354 	if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
   3355 		goto out;
   3356 
   3357 	/* Extract the physical address of the page */
   3358 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3359 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3360 		goto out;
   3361 
   3362 	/* Get the current flags for this page. */
   3363 	simple_lock(&pg->mdpage.pvh_slock);
   3364 
   3365 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3366 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3367 
   3368 	/*
   3369 	 * Do the flags say this page is writable ? If not then it is a
   3370 	 * genuine write fault. If yes then the write fault is our fault
   3371 	 * as we did not reflect the write access in the PTE. Now we know
   3372 	 * a write has occurred we can correct this and also set the
   3373 	 * modified bit
   3374 	 */
   3375 	if (~flags & PVF_WRITE) {
   3376 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3377 		goto out;
   3378 	}
   3379 
   3380 	PDEBUG(0,
   3381 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3382 	    va, ptes[arm_btop(va)]));
   3383 	pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3384 
   3385 	/*
   3386 	 * Re-enable write permissions for the page.  No need to call
   3387 	 * pmap_vac_me_harder(), since this is just a
   3388 	 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
   3389 	 * We've already set the cacheable bits based on the assumption
   3390 	 * that we can write to this page.
   3391 	 */
   3392 	ptes[arm_btop(va)] =
   3393 	    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3394 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3395 
   3396 	simple_unlock(&pg->mdpage.pvh_slock);
   3397 
   3398 	cpu_tlb_flushID_SE(va);
   3399 	cpu_cpwait();
   3400 	rv = 1;
   3401  out:
   3402 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3403 	PMAP_MAP_TO_HEAD_UNLOCK();
   3404 	return (rv);
   3405 }
   3406 
   3407 int
   3408 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3409 {
   3410 	pt_entry_t *ptes;
   3411 	struct vm_page *pg;
   3412 	paddr_t pa;
   3413 	int rv = 0;
   3414 
   3415 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3416 
   3417 	PMAP_MAP_TO_HEAD_LOCK();
   3418 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3419 
   3420 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3421 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3422 		goto out;
   3423 	}
   3424 
   3425 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3426 
   3427 	/* Check for invalid pte */
   3428 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3429 		goto out;
   3430 
   3431 	/* This can happen if user code tries to access kernel memory. */
   3432 	if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
   3433 		goto out;
   3434 
   3435 	/* Extract the physical address of the page */
   3436 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3437 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3438 		goto out;
   3439 
   3440 	simple_lock(&pg->mdpage.pvh_slock);
   3441 
   3442 	/*
   3443 	 * Ok we just enable the pte and mark the attibs as handled
   3444 	 * XXX Should we traverse the PV list and enable all PTEs?
   3445 	 */
   3446 	PDEBUG(0,
   3447 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3448 	    va, ptes[arm_btop(va)]));
   3449 	pg->mdpage.pvh_attrs |= PVF_REF;
   3450 
   3451 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
   3452 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3453 
   3454 	simple_unlock(&pg->mdpage.pvh_slock);
   3455 
   3456 	cpu_tlb_flushID_SE(va);
   3457 	cpu_cpwait();
   3458 	rv = 1;
   3459  out:
   3460 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3461 	PMAP_MAP_TO_HEAD_UNLOCK();
   3462 	return (rv);
   3463 }
   3464 
   3465 /*
   3466  * pmap_collect: free resources held by a pmap
   3467  *
   3468  * => optional function.
   3469  * => called when a process is swapped out to free memory.
   3470  */
   3471 
   3472 void
   3473 pmap_collect(struct pmap *pmap)
   3474 {
   3475 }
   3476 
   3477 /*
   3478  * Routine:	pmap_procwr
   3479  *
   3480  * Function:
   3481  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3482  *
   3483  */
   3484 void
   3485 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3486 {
   3487 	/* We only need to do anything if it is the current process. */
   3488 	if (p == curproc)
   3489 		cpu_icache_sync_range(va, len);
   3490 }
   3491 /*
   3492  * PTP functions
   3493  */
   3494 
   3495 /*
   3496  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3497  *
   3498  * => pmap should NOT be pmap_kernel()
   3499  * => pmap should be locked
   3500  */
   3501 
   3502 static struct vm_page *
   3503 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3504 {
   3505 	struct vm_page *ptp;
   3506 
   3507 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3508 
   3509 		/* valid... check hint (saves us a PA->PG lookup) */
   3510 		if (pmap->pm_ptphint &&
   3511 		    (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
   3512 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3513 			return (pmap->pm_ptphint);
   3514 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3515 #ifdef DIAGNOSTIC
   3516 		if (ptp == NULL)
   3517 			panic("pmap_get_ptp: unmanaged user PTP");
   3518 #endif
   3519 		pmap->pm_ptphint = ptp;
   3520 		return(ptp);
   3521 	}
   3522 
   3523 	/* allocate a new PTP (updates ptphint) */
   3524 	return(pmap_alloc_ptp(pmap, va));
   3525 }
   3526 
   3527 /*
   3528  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3529  *
   3530  * => pmap should already be locked by caller
   3531  * => we use the ptp's wire_count to count the number of active mappings
   3532  *	in the PTP (we start it at one to prevent any chance this PTP
   3533  *	will ever leak onto the active/inactive queues)
   3534  */
   3535 
   3536 /*__inline */ static struct vm_page *
   3537 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3538 {
   3539 	struct vm_page *ptp;
   3540 
   3541 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3542 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3543 	if (ptp == NULL)
   3544 		return (NULL);
   3545 
   3546 	/* got one! */
   3547 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3548 	ptp->wire_count = 1;	/* no mappings yet */
   3549 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3550 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3551 	pmap->pm_ptphint = ptp;
   3552 	return (ptp);
   3553 }
   3554 
   3555 vaddr_t
   3556 pmap_growkernel(vaddr_t maxkvaddr)
   3557 {
   3558 	struct pmap *kpm = pmap_kernel(), *pm;
   3559 	int s;
   3560 	paddr_t ptaddr;
   3561 	struct vm_page *ptp;
   3562 
   3563 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3564 		goto out;		/* we are OK */
   3565 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3566 		    pmap_curmaxkvaddr, maxkvaddr));
   3567 
   3568 	/*
   3569 	 * whoops!   we need to add kernel PTPs
   3570 	 */
   3571 
   3572 	s = splhigh();	/* to be safe */
   3573 	simple_lock(&kpm->pm_obj.vmobjlock);
   3574 	/* due to the way the arm pmap works we map 4MB at a time */
   3575 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3576 	     pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
   3577 
   3578 		if (uvm.page_init_done == FALSE) {
   3579 
   3580 			/*
   3581 			 * we're growing the kernel pmap early (from
   3582 			 * uvm_pageboot_alloc()).  this case must be
   3583 			 * handled a little differently.
   3584 			 */
   3585 
   3586 			if (uvm_page_physget(&ptaddr) == FALSE)
   3587 				panic("pmap_growkernel: out of memory");
   3588 			pmap_zero_page(ptaddr);
   3589 
   3590 			/* map this page in */
   3591 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
   3592 
   3593 			/* count PTP as resident */
   3594 			kpm->pm_stats.resident_count++;
   3595 			continue;
   3596 		}
   3597 
   3598 		/*
   3599 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3600 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3601 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3602 		 */
   3603 
   3604 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3605 			panic("pmap_growkernel: alloc ptp failed");
   3606 
   3607 		/* distribute new kernel PTP to all active pmaps */
   3608 		simple_lock(&pmaps_lock);
   3609 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3610 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3611 			    VM_PAGE_TO_PHYS(ptp), TRUE);
   3612 		}
   3613 
   3614 		/* Invalidate the PTPT cache. */
   3615 		pool_cache_invalidate(&pmap_ptpt_cache);
   3616 		pmap_ptpt_cache_generation++;
   3617 
   3618 		simple_unlock(&pmaps_lock);
   3619 	}
   3620 
   3621 	/*
   3622 	 * flush out the cache, expensive but growkernel will happen so
   3623 	 * rarely
   3624 	 */
   3625 	cpu_tlb_flushD();
   3626 	cpu_cpwait();
   3627 
   3628 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3629 	splx(s);
   3630 
   3631 out:
   3632 	return (pmap_curmaxkvaddr);
   3633 }
   3634 
   3635 /************************ Utility routines ****************************/
   3636 
   3637 /*
   3638  * vector_page_setprot:
   3639  *
   3640  *	Manipulate the protection of the vector page.
   3641  */
   3642 void
   3643 vector_page_setprot(int prot)
   3644 {
   3645 	pt_entry_t *pte;
   3646 
   3647 	pte = vtopte(vector_page);
   3648 
   3649 	*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   3650 	PTE_SYNC(pte);
   3651 	cpu_tlb_flushD_SE(vector_page);
   3652 	cpu_cpwait();
   3653 }
   3654 
   3655 /************************ Bootstrapping routines ****************************/
   3656 
   3657 /*
   3658  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3659  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3660  * find them as necessary.
   3661  *
   3662  * Note that the data on this list is not valid after initarm() returns.
   3663  */
   3664 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3665 
   3666 static vaddr_t
   3667 kernel_pt_lookup(paddr_t pa)
   3668 {
   3669 	pv_addr_t *pv;
   3670 
   3671 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3672 		if (pv->pv_pa == pa)
   3673 			return (pv->pv_va);
   3674 	}
   3675 	return (0);
   3676 }
   3677 
   3678 /*
   3679  * pmap_map_section:
   3680  *
   3681  *	Create a single section mapping.
   3682  */
   3683 void
   3684 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3685 {
   3686 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3687 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3688 
   3689 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   3690 
   3691 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3692 	    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3693 }
   3694 
   3695 /*
   3696  * pmap_map_entry:
   3697  *
   3698  *	Create a single page mapping.
   3699  */
   3700 void
   3701 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3702 {
   3703 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3704 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3705 	pt_entry_t *pte;
   3706 
   3707 	KASSERT(((va | pa) & PGOFSET) == 0);
   3708 
   3709 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3710 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3711 
   3712 	pte = (pt_entry_t *)
   3713 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3714 	if (pte == NULL)
   3715 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3716 
   3717 	pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3718 	    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3719 }
   3720 
   3721 /*
   3722  * pmap_link_l2pt:
   3723  *
   3724  *	Link the L2 page table specified by "pa" into the L1
   3725  *	page table at the slot for "va".
   3726  */
   3727 void
   3728 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3729 {
   3730 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3731 	u_int slot = va >> L1_S_SHIFT;
   3732 
   3733 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3734 
   3735 	pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
   3736 	pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
   3737 	pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
   3738 	pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
   3739 
   3740 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3741 }
   3742 
   3743 /*
   3744  * pmap_map_chunk:
   3745  *
   3746  *	Map a chunk of memory using the most efficient mappings
   3747  *	possible (section, large page, small page) into the
   3748  *	provided L1 and L2 tables at the specified virtual address.
   3749  */
   3750 vsize_t
   3751 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3752     int prot, int cache)
   3753 {
   3754 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3755 	pt_entry_t *pte, fl;
   3756 	vsize_t resid;
   3757 	int i;
   3758 
   3759 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3760 
   3761 	if (l1pt == 0)
   3762 		panic("pmap_map_chunk: no L1 table provided");
   3763 
   3764 #ifdef VERBOSE_INIT_ARM
   3765 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3766 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3767 #endif
   3768 
   3769 	size = resid;
   3770 
   3771 	while (resid > 0) {
   3772 		/* See if we can use a section mapping. */
   3773 		if (((pa | va) & L1_S_OFFSET) == 0 &&
   3774 		    resid >= L1_S_SIZE) {
   3775 			fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3776 #ifdef VERBOSE_INIT_ARM
   3777 			printf("S");
   3778 #endif
   3779 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3780 			    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3781 			va += L1_S_SIZE;
   3782 			pa += L1_S_SIZE;
   3783 			resid -= L1_S_SIZE;
   3784 			continue;
   3785 		}
   3786 
   3787 		/*
   3788 		 * Ok, we're going to use an L2 table.  Make sure
   3789 		 * one is actually in the corresponding L1 slot
   3790 		 * for the current VA.
   3791 		 */
   3792 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3793 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3794 
   3795 		pte = (pt_entry_t *)
   3796 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3797 		if (pte == NULL)
   3798 			panic("pmap_map_chunk: can't find L2 table for VA"
   3799 			    "0x%08lx", va);
   3800 
   3801 		/* See if we can use a L2 large page mapping. */
   3802 		if (((pa | va) & L2_L_OFFSET) == 0 &&
   3803 		    resid >= L2_L_SIZE) {
   3804 			fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
   3805 #ifdef VERBOSE_INIT_ARM
   3806 			printf("L");
   3807 #endif
   3808 			for (i = 0; i < 16; i++) {
   3809 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3810 				    L2_L_PROTO | pa |
   3811 				    L2_L_PROT(PTE_KERNEL, prot) | fl;
   3812 			}
   3813 			va += L2_L_SIZE;
   3814 			pa += L2_L_SIZE;
   3815 			resid -= L2_L_SIZE;
   3816 			continue;
   3817 		}
   3818 
   3819 		/* Use a small page mapping. */
   3820 		fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3821 #ifdef VERBOSE_INIT_ARM
   3822 		printf("P");
   3823 #endif
   3824 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3825 		    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3826 		va += NBPG;
   3827 		pa += NBPG;
   3828 		resid -= NBPG;
   3829 	}
   3830 #ifdef VERBOSE_INIT_ARM
   3831 	printf("\n");
   3832 #endif
   3833 	return (size);
   3834 }
   3835 
   3836 /********************** PTE initialization routines **************************/
   3837 
   3838 /*
   3839  * These routines are called when the CPU type is identified to set up
   3840  * the PTE prototypes, cache modes, etc.
   3841  *
   3842  * The variables are always here, just in case LKMs need to reference
   3843  * them (though, they shouldn't).
   3844  */
   3845 
   3846 pt_entry_t	pte_l1_s_cache_mode;
   3847 pt_entry_t	pte_l1_s_cache_mask;
   3848 
   3849 pt_entry_t	pte_l2_l_cache_mode;
   3850 pt_entry_t	pte_l2_l_cache_mask;
   3851 
   3852 pt_entry_t	pte_l2_s_cache_mode;
   3853 pt_entry_t	pte_l2_s_cache_mask;
   3854 
   3855 pt_entry_t	pte_l2_s_prot_u;
   3856 pt_entry_t	pte_l2_s_prot_w;
   3857 pt_entry_t	pte_l2_s_prot_mask;
   3858 
   3859 pt_entry_t	pte_l1_s_proto;
   3860 pt_entry_t	pte_l1_c_proto;
   3861 pt_entry_t	pte_l2_s_proto;
   3862 
   3863 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   3864 void		(*pmap_zero_page_func)(paddr_t);
   3865 
   3866 #if ARM_MMU_GENERIC == 1
   3867 void
   3868 pmap_pte_init_generic(void)
   3869 {
   3870 
   3871 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3872 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   3873 
   3874 	pte_l2_l_cache_mode = L2_B|L2_C;
   3875 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   3876 
   3877 	pte_l2_s_cache_mode = L2_B|L2_C;
   3878 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   3879 
   3880 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   3881 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   3882 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   3883 
   3884 	pte_l1_s_proto = L1_S_PROTO_generic;
   3885 	pte_l1_c_proto = L1_C_PROTO_generic;
   3886 	pte_l2_s_proto = L2_S_PROTO_generic;
   3887 
   3888 	pmap_copy_page_func = pmap_copy_page_generic;
   3889 	pmap_zero_page_func = pmap_zero_page_generic;
   3890 }
   3891 
   3892 #if defined(CPU_ARM9)
   3893 void
   3894 pmap_pte_init_arm9(void)
   3895 {
   3896 
   3897 	/*
   3898 	 * ARM9 is compatible with generic, but we want to use
   3899 	 * write-through caching for now.
   3900 	 */
   3901 	pmap_pte_init_generic();
   3902 
   3903 	pte_l1_s_cache_mode = L1_S_C;
   3904 	pte_l2_l_cache_mode = L2_C;
   3905 	pte_l2_s_cache_mode = L2_C;
   3906 }
   3907 #endif /* CPU_ARM9 */
   3908 #endif /* ARM_MMU_GENERIC == 1 */
   3909 
   3910 #if ARM_MMU_XSCALE == 1
   3911 void
   3912 pmap_pte_init_xscale(void)
   3913 {
   3914 	uint32_t auxctl;
   3915 
   3916 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3917 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   3918 
   3919 	pte_l2_l_cache_mode = L2_B|L2_C;
   3920 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   3921 
   3922 	pte_l2_s_cache_mode = L2_B|L2_C;
   3923 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   3924 
   3925 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   3926 	/*
   3927 	 * The XScale core has an enhanced mode where writes that
   3928 	 * miss the cache cause a cache line to be allocated.  This
   3929 	 * is significantly faster than the traditional, write-through
   3930 	 * behavior of this case.
   3931 	 *
   3932 	 * However, there is a bug lurking in this pmap module, or in
   3933 	 * other parts of the VM system, or both, which causes corruption
   3934 	 * of NFS-backed files when this cache mode is used.  We have
   3935 	 * an ugly work-around for this problem (disable r/w-allocate
   3936 	 * for managed kernel mappings), but the bug is still evil enough
   3937 	 * to consider this cache mode "experimental".
   3938 	 */
   3939 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
   3940 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
   3941 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
   3942 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   3943 
   3944 #ifdef XSCALE_CACHE_WRITE_THROUGH
   3945 	/*
   3946 	 * Some versions of the XScale core have various bugs in
   3947 	 * their cache units, the work-around for which is to run
   3948 	 * the cache in write-through mode.  Unfortunately, this
   3949 	 * has a major (negative) impact on performance.  So, we
   3950 	 * go ahead and run fast-and-loose, in the hopes that we
   3951 	 * don't line up the planets in a way that will trip the
   3952 	 * bugs.
   3953 	 *
   3954 	 * However, we give you the option to be slow-but-correct.
   3955 	 */
   3956 	pte_l1_s_cache_mode = L1_S_C;
   3957 	pte_l2_l_cache_mode = L2_C;
   3958 	pte_l2_s_cache_mode = L2_C;
   3959 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   3960 
   3961 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   3962 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   3963 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   3964 
   3965 	pte_l1_s_proto = L1_S_PROTO_xscale;
   3966 	pte_l1_c_proto = L1_C_PROTO_xscale;
   3967 	pte_l2_s_proto = L2_S_PROTO_xscale;
   3968 
   3969 	pmap_copy_page_func = pmap_copy_page_xscale;
   3970 	pmap_zero_page_func = pmap_zero_page_xscale;
   3971 
   3972 	/*
   3973 	 * Disable ECC protection of page table access, for now.
   3974 	 */
   3975 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   3976 		: "=r" (auxctl));
   3977 	auxctl &= ~XSCALE_AUXCTL_P;
   3978 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   3979 		:
   3980 		: "r" (auxctl));
   3981 }
   3982 
   3983 /*
   3984  * xscale_setup_minidata:
   3985  *
   3986  *	Set up the mini-data cache clean area.  We require the
   3987  *	caller to allocate the right amount of physically and
   3988  *	virtually contiguous space.
   3989  */
   3990 void
   3991 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   3992 {
   3993 	extern vaddr_t xscale_minidata_clean_addr;
   3994 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   3995 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3996 	pt_entry_t *pte;
   3997 	vsize_t size;
   3998 	uint32_t auxctl;
   3999 
   4000 	xscale_minidata_clean_addr = va;
   4001 
   4002 	/* Round it to page size. */
   4003 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   4004 
   4005 	for (; size != 0;
   4006 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   4007 		pte = (pt_entry_t *)
   4008 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   4009 		if (pte == NULL)
   4010 			panic("xscale_setup_minidata: can't find L2 table for "
   4011 			    "VA 0x%08lx", va);
   4012 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   4013 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4014 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   4015 	}
   4016 
   4017 	/*
   4018 	 * Configure the mini-data cache for write-back with
   4019 	 * read/write-allocate.
   4020 	 *
   4021 	 * NOTE: In order to reconfigure the mini-data cache, we must
   4022 	 * make sure it contains no valid data!  In order to do that,
   4023 	 * we must issue a global data cache invalidate command!
   4024 	 *
   4025 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   4026 	 * THIS IS VERY IMPORTANT!
   4027 	 */
   4028 
   4029 	/* Invalidate data and mini-data. */
   4030 	__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
   4031 		:
   4032 		: "r" (auxctl));
   4033 
   4034 
   4035 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   4036 		: "=r" (auxctl));
   4037 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   4038 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   4039 		:
   4040 		: "r" (auxctl));
   4041 }
   4042 #endif /* ARM_MMU_XSCALE == 1 */
   4043