pmap.c revision 1.115 1 /* $NetBSD: pmap.c,v 1.115 2002/08/24 03:10:40 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.115 2002/08/24 03:10:40 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 /*
199 * pool/cache that PT-PT's are allocated from
200 */
201
202 struct pool pmap_ptpt_pool;
203 struct pool_cache pmap_ptpt_cache;
204 u_int pmap_ptpt_cache_generation;
205
206 static void *pmap_ptpt_page_alloc(struct pool *, int);
207 static void pmap_ptpt_page_free(struct pool *, void *);
208
209 struct pool_allocator pmap_ptpt_allocator = {
210 pmap_ptpt_page_alloc, pmap_ptpt_page_free,
211 };
212
213 static int pmap_ptpt_ctor(void *, void *, int);
214
215 static pt_entry_t *csrc_pte, *cdst_pte;
216 static vaddr_t csrcp, cdstp;
217
218 char *memhook;
219 extern caddr_t msgbufaddr;
220
221 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
222 /*
223 * locking data structures
224 */
225
226 static struct lock pmap_main_lock;
227 static struct simplelock pvalloc_lock;
228 static struct simplelock pmaps_lock;
229 #ifdef LOCKDEBUG
230 #define PMAP_MAP_TO_HEAD_LOCK() \
231 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
232 #define PMAP_MAP_TO_HEAD_UNLOCK() \
233 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
234
235 #define PMAP_HEAD_TO_MAP_LOCK() \
236 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
237 #define PMAP_HEAD_TO_MAP_UNLOCK() \
238 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
239 #else
240 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
241 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
242 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
243 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
244 #endif /* LOCKDEBUG */
245
246 /*
247 * pv_page management structures: locked by pvalloc_lock
248 */
249
250 TAILQ_HEAD(pv_pagelist, pv_page);
251 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
252 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
253 static int pv_nfpvents; /* # of free pv entries */
254 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
255 static vaddr_t pv_cachedva; /* cached VA for later use */
256
257 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
258 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
259 /* high water mark */
260
261 /*
262 * local prototypes
263 */
264
265 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
266 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
267 #define ALLOCPV_NEED 0 /* need PV now */
268 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
269 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
270 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
271 static void pmap_enter_pv __P((struct vm_page *,
272 struct pv_entry *, struct pmap *,
273 vaddr_t, struct vm_page *, int));
274 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
275 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
276 static void pmap_free_pv_doit __P((struct pv_entry *));
277 static void pmap_free_pvpage __P((void));
278 static boolean_t pmap_is_curpmap __P((struct pmap *));
279 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
280 vaddr_t));
281 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
282 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
283
284 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
285 u_int, u_int));
286
287 /*
288 * Structure that describes and L1 table.
289 */
290 struct l1pt {
291 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
292 struct pglist pt_plist; /* Allocated page list */
293 vaddr_t pt_va; /* Allocated virtual address */
294 int pt_flags; /* Flags */
295 };
296 #define PTFLAG_STATIC 0x01 /* Statically allocated */
297 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
298 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
299
300 static void pmap_free_l1pt __P((struct l1pt *));
301 static int pmap_allocpagedir __P((struct pmap *));
302 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
303 static void pmap_remove_all __P((struct vm_page *));
304
305 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
306 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
307 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
308
309 extern paddr_t physical_start;
310 extern paddr_t physical_end;
311 extern unsigned int free_pages;
312 extern int max_processes;
313
314 vaddr_t virtual_avail;
315 vaddr_t virtual_end;
316 vaddr_t pmap_curmaxkvaddr;
317
318 vaddr_t avail_start;
319 vaddr_t avail_end;
320
321 extern pv_addr_t systempage;
322
323 /* Variables used by the L1 page table queue code */
324 SIMPLEQ_HEAD(l1pt_queue, l1pt);
325 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
326 static int l1pt_static_queue_count; /* items in the static l1 queue */
327 static int l1pt_static_create_count; /* static l1 items created */
328 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
329 static int l1pt_queue_count; /* items in the l1 queue */
330 static int l1pt_create_count; /* stat - L1's create count */
331 static int l1pt_reuse_count; /* stat - L1's reused count */
332
333 /* Local function prototypes (not used outside this file) */
334 void pmap_pinit __P((struct pmap *));
335 void pmap_freepagedir __P((struct pmap *));
336
337 /* Other function prototypes */
338 extern void bzero_page __P((vaddr_t));
339 extern void bcopy_page __P((vaddr_t, vaddr_t));
340
341 struct l1pt *pmap_alloc_l1pt __P((void));
342 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
343 vaddr_t l2pa, int));
344
345 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
346 static void pmap_unmap_ptes __P((struct pmap *));
347
348 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
349 pt_entry_t *, boolean_t));
350 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
351 pt_entry_t *, boolean_t));
352 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
353 pt_entry_t *, boolean_t));
354
355 /*
356 * real definition of pv_entry.
357 */
358
359 struct pv_entry {
360 struct pv_entry *pv_next; /* next pv_entry */
361 struct pmap *pv_pmap; /* pmap where mapping lies */
362 vaddr_t pv_va; /* virtual address for mapping */
363 int pv_flags; /* flags */
364 struct vm_page *pv_ptp; /* vm_page for the ptp */
365 };
366
367 /*
368 * pv_entrys are dynamically allocated in chunks from a single page.
369 * we keep track of how many pv_entrys are in use for each page and
370 * we can free pv_entry pages if needed. there is one lock for the
371 * entire allocation system.
372 */
373
374 struct pv_page_info {
375 TAILQ_ENTRY(pv_page) pvpi_list;
376 struct pv_entry *pvpi_pvfree;
377 int pvpi_nfree;
378 };
379
380 /*
381 * number of pv_entry's in a pv_page
382 * (note: won't work on systems where NPBG isn't a constant)
383 */
384
385 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
386 sizeof(struct pv_entry))
387
388 /*
389 * a pv_page: where pv_entrys are allocated from
390 */
391
392 struct pv_page {
393 struct pv_page_info pvinfo;
394 struct pv_entry pvents[PVE_PER_PVPAGE];
395 };
396
397 #ifdef MYCROFT_HACK
398 int mycroft_hack = 0;
399 #endif
400
401 /* Function to set the debug level of the pmap code */
402
403 #ifdef PMAP_DEBUG
404 void
405 pmap_debug(int level)
406 {
407 pmap_debug_level = level;
408 printf("pmap_debug: level=%d\n", pmap_debug_level);
409 }
410 #endif /* PMAP_DEBUG */
411
412 __inline static boolean_t
413 pmap_is_curpmap(struct pmap *pmap)
414 {
415
416 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
417 pmap == pmap_kernel())
418 return (TRUE);
419
420 return (FALSE);
421 }
422
423 /*
424 * PTE_SYNC_CURRENT:
425 *
426 * Make sure the pte is flushed to RAM. If the pmap is
427 * not the current pmap, then also evict the pte from
428 * any cache lines.
429 */
430 #define PTE_SYNC_CURRENT(pmap, pte) \
431 do { \
432 if (pmap_is_curpmap(pmap)) \
433 PTE_SYNC(pte); \
434 else \
435 PTE_FLUSH(pte); \
436 } while (/*CONSTCOND*/0)
437
438 /*
439 * PTE_FLUSH_ALT:
440 *
441 * Make sure the pte is not in any cache lines. We expect
442 * this to be used only when a pte has not been modified.
443 */
444 #define PTE_FLUSH_ALT(pmap, pte) \
445 do { \
446 if (pmap_is_curpmap(pmap) == 0) \
447 PTE_FLUSH(pte); \
448 } while (/*CONSTCOND*/0)
449
450 /*
451 * p v _ e n t r y f u n c t i o n s
452 */
453
454 /*
455 * pv_entry allocation functions:
456 * the main pv_entry allocation functions are:
457 * pmap_alloc_pv: allocate a pv_entry structure
458 * pmap_free_pv: free one pv_entry
459 * pmap_free_pvs: free a list of pv_entrys
460 *
461 * the rest are helper functions
462 */
463
464 /*
465 * pmap_alloc_pv: inline function to allocate a pv_entry structure
466 * => we lock pvalloc_lock
467 * => if we fail, we call out to pmap_alloc_pvpage
468 * => 3 modes:
469 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
470 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
471 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
472 * one now
473 *
474 * "try" is for optional functions like pmap_copy().
475 */
476
477 __inline static struct pv_entry *
478 pmap_alloc_pv(struct pmap *pmap, int mode)
479 {
480 struct pv_page *pvpage;
481 struct pv_entry *pv;
482
483 simple_lock(&pvalloc_lock);
484
485 pvpage = TAILQ_FIRST(&pv_freepages);
486
487 if (pvpage != NULL) {
488 pvpage->pvinfo.pvpi_nfree--;
489 if (pvpage->pvinfo.pvpi_nfree == 0) {
490 /* nothing left in this one? */
491 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
492 }
493 pv = pvpage->pvinfo.pvpi_pvfree;
494 KASSERT(pv);
495 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
496 pv_nfpvents--; /* took one from pool */
497 } else {
498 pv = NULL; /* need more of them */
499 }
500
501 /*
502 * if below low water mark or we didn't get a pv_entry we try and
503 * create more pv_entrys ...
504 */
505
506 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
507 if (pv == NULL)
508 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
509 mode : ALLOCPV_NEED);
510 else
511 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
512 }
513
514 simple_unlock(&pvalloc_lock);
515 return(pv);
516 }
517
518 /*
519 * pmap_alloc_pvpage: maybe allocate a new pvpage
520 *
521 * if need_entry is false: try and allocate a new pv_page
522 * if need_entry is true: try and allocate a new pv_page and return a
523 * new pv_entry from it. if we are unable to allocate a pv_page
524 * we make a last ditch effort to steal a pv_page from some other
525 * mapping. if that fails, we panic...
526 *
527 * => we assume that the caller holds pvalloc_lock
528 */
529
530 static struct pv_entry *
531 pmap_alloc_pvpage(struct pmap *pmap, int mode)
532 {
533 struct vm_page *pg;
534 struct pv_page *pvpage;
535 struct pv_entry *pv;
536 int s;
537
538 /*
539 * if we need_entry and we've got unused pv_pages, allocate from there
540 */
541
542 pvpage = TAILQ_FIRST(&pv_unusedpgs);
543 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
544
545 /* move it to pv_freepages list */
546 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
547 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
548
549 /* allocate a pv_entry */
550 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
551 pv = pvpage->pvinfo.pvpi_pvfree;
552 KASSERT(pv);
553 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
554
555 pv_nfpvents--; /* took one from pool */
556 return(pv);
557 }
558
559 /*
560 * see if we've got a cached unmapped VA that we can map a page in.
561 * if not, try to allocate one.
562 */
563
564
565 if (pv_cachedva == 0) {
566 s = splvm();
567 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
568 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
569 splx(s);
570 if (pv_cachedva == 0) {
571 return (NULL);
572 }
573 }
574
575 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
576 UVM_PGA_USERESERVE);
577
578 if (pg == NULL)
579 return (NULL);
580 pg->flags &= ~PG_BUSY; /* never busy */
581
582 /*
583 * add a mapping for our new pv_page and free its entrys (save one!)
584 *
585 * NOTE: If we are allocating a PV page for the kernel pmap, the
586 * pmap is already locked! (...but entering the mapping is safe...)
587 */
588
589 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
590 VM_PROT_READ|VM_PROT_WRITE);
591 pmap_update(pmap_kernel());
592 pvpage = (struct pv_page *) pv_cachedva;
593 pv_cachedva = 0;
594 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
595 }
596
597 /*
598 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
599 *
600 * => caller must hold pvalloc_lock
601 * => if need_entry is true, we allocate and return one pv_entry
602 */
603
604 static struct pv_entry *
605 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
606 {
607 int tofree, lcv;
608
609 /* do we need to return one? */
610 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
611
612 pvp->pvinfo.pvpi_pvfree = NULL;
613 pvp->pvinfo.pvpi_nfree = tofree;
614 for (lcv = 0 ; lcv < tofree ; lcv++) {
615 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
616 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
617 }
618 if (need_entry)
619 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
620 else
621 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
622 pv_nfpvents += tofree;
623 return((need_entry) ? &pvp->pvents[lcv] : NULL);
624 }
625
626 /*
627 * pmap_free_pv_doit: actually free a pv_entry
628 *
629 * => do not call this directly! instead use either
630 * 1. pmap_free_pv ==> free a single pv_entry
631 * 2. pmap_free_pvs => free a list of pv_entrys
632 * => we must be holding pvalloc_lock
633 */
634
635 __inline static void
636 pmap_free_pv_doit(struct pv_entry *pv)
637 {
638 struct pv_page *pvp;
639
640 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
641 pv_nfpvents++;
642 pvp->pvinfo.pvpi_nfree++;
643
644 /* nfree == 1 => fully allocated page just became partly allocated */
645 if (pvp->pvinfo.pvpi_nfree == 1) {
646 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
647 }
648
649 /* free it */
650 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
651 pvp->pvinfo.pvpi_pvfree = pv;
652
653 /*
654 * are all pv_page's pv_entry's free? move it to unused queue.
655 */
656
657 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
658 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
659 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
660 }
661 }
662
663 /*
664 * pmap_free_pv: free a single pv_entry
665 *
666 * => we gain the pvalloc_lock
667 */
668
669 __inline static void
670 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
671 {
672 simple_lock(&pvalloc_lock);
673 pmap_free_pv_doit(pv);
674
675 /*
676 * Can't free the PV page if the PV entries were associated with
677 * the kernel pmap; the pmap is already locked.
678 */
679 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
680 pmap != pmap_kernel())
681 pmap_free_pvpage();
682
683 simple_unlock(&pvalloc_lock);
684 }
685
686 /*
687 * pmap_free_pvs: free a list of pv_entrys
688 *
689 * => we gain the pvalloc_lock
690 */
691
692 __inline static void
693 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
694 {
695 struct pv_entry *nextpv;
696
697 simple_lock(&pvalloc_lock);
698
699 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
700 nextpv = pvs->pv_next;
701 pmap_free_pv_doit(pvs);
702 }
703
704 /*
705 * Can't free the PV page if the PV entries were associated with
706 * the kernel pmap; the pmap is already locked.
707 */
708 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
709 pmap != pmap_kernel())
710 pmap_free_pvpage();
711
712 simple_unlock(&pvalloc_lock);
713 }
714
715
716 /*
717 * pmap_free_pvpage: try and free an unused pv_page structure
718 *
719 * => assume caller is holding the pvalloc_lock and that
720 * there is a page on the pv_unusedpgs list
721 * => if we can't get a lock on the kmem_map we try again later
722 */
723
724 static void
725 pmap_free_pvpage(void)
726 {
727 int s;
728 struct vm_map *map;
729 struct vm_map_entry *dead_entries;
730 struct pv_page *pvp;
731
732 s = splvm(); /* protect kmem_map */
733
734 pvp = TAILQ_FIRST(&pv_unusedpgs);
735
736 /*
737 * note: watch out for pv_initpage which is allocated out of
738 * kernel_map rather than kmem_map.
739 */
740 if (pvp == pv_initpage)
741 map = kernel_map;
742 else
743 map = kmem_map;
744 if (vm_map_lock_try(map)) {
745
746 /* remove pvp from pv_unusedpgs */
747 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
748
749 /* unmap the page */
750 dead_entries = NULL;
751 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
752 &dead_entries);
753 vm_map_unlock(map);
754
755 if (dead_entries != NULL)
756 uvm_unmap_detach(dead_entries, 0);
757
758 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
759 }
760 if (pvp == pv_initpage)
761 /* no more initpage, we've freed it */
762 pv_initpage = NULL;
763
764 splx(s);
765 }
766
767 /*
768 * main pv_entry manipulation functions:
769 * pmap_enter_pv: enter a mapping onto a vm_page list
770 * pmap_remove_pv: remove a mappiing from a vm_page list
771 *
772 * NOTE: pmap_enter_pv expects to lock the pvh itself
773 * pmap_remove_pv expects te caller to lock the pvh before calling
774 */
775
776 /*
777 * pmap_enter_pv: enter a mapping onto a vm_page lst
778 *
779 * => caller should hold the proper lock on pmap_main_lock
780 * => caller should have pmap locked
781 * => we will gain the lock on the vm_page and allocate the new pv_entry
782 * => caller should adjust ptp's wire_count before calling
783 * => caller should not adjust pmap's wire_count
784 */
785
786 __inline static void
787 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
788 vaddr_t va, struct vm_page *ptp, int flags)
789 {
790 pve->pv_pmap = pmap;
791 pve->pv_va = va;
792 pve->pv_ptp = ptp; /* NULL for kernel pmap */
793 pve->pv_flags = flags;
794 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
795 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
796 pg->mdpage.pvh_list = pve; /* ... locked list */
797 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
798 if (pve->pv_flags & PVF_WIRED)
799 ++pmap->pm_stats.wired_count;
800 #ifdef PMAP_ALIAS_DEBUG
801 {
802 int s = splhigh();
803 if (pve->pv_flags & PVF_WRITE)
804 pg->mdpage.rw_mappings++;
805 else
806 pg->mdpage.ro_mappings++;
807 if (pg->mdpage.rw_mappings != 0 &&
808 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
809 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
810 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
811 pg->mdpage.krw_mappings);
812 }
813 splx(s);
814 }
815 #endif /* PMAP_ALIAS_DEBUG */
816 }
817
818 /*
819 * pmap_remove_pv: try to remove a mapping from a pv_list
820 *
821 * => caller should hold proper lock on pmap_main_lock
822 * => pmap should be locked
823 * => caller should hold lock on vm_page [so that attrs can be adjusted]
824 * => caller should adjust ptp's wire_count and free PTP if needed
825 * => caller should NOT adjust pmap's wire_count
826 * => we return the removed pve
827 */
828
829 __inline static struct pv_entry *
830 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
831 {
832 struct pv_entry *pve, **prevptr;
833
834 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
835 pve = *prevptr;
836 while (pve) {
837 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
838 *prevptr = pve->pv_next; /* remove it! */
839 if (pve->pv_flags & PVF_WIRED)
840 --pmap->pm_stats.wired_count;
841 #ifdef PMAP_ALIAS_DEBUG
842 {
843 int s = splhigh();
844 if (pve->pv_flags & PVF_WRITE) {
845 KASSERT(pg->mdpage.rw_mappings != 0);
846 pg->mdpage.rw_mappings--;
847 } else {
848 KASSERT(pg->mdpage.ro_mappings != 0);
849 pg->mdpage.ro_mappings--;
850 }
851 splx(s);
852 }
853 #endif /* PMAP_ALIAS_DEBUG */
854 break;
855 }
856 prevptr = &pve->pv_next; /* previous pointer */
857 pve = pve->pv_next; /* advance */
858 }
859 return(pve); /* return removed pve */
860 }
861
862 /*
863 *
864 * pmap_modify_pv: Update pv flags
865 *
866 * => caller should hold lock on vm_page [so that attrs can be adjusted]
867 * => caller should NOT adjust pmap's wire_count
868 * => caller must call pmap_vac_me_harder() if writable status of a page
869 * may have changed.
870 * => we return the old flags
871 *
872 * Modify a physical-virtual mapping in the pv table
873 */
874
875 static /* __inline */ u_int
876 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
877 u_int bic_mask, u_int eor_mask)
878 {
879 struct pv_entry *npv;
880 u_int flags, oflags;
881
882 /*
883 * There is at least one VA mapping this page.
884 */
885
886 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
887 if (pmap == npv->pv_pmap && va == npv->pv_va) {
888 oflags = npv->pv_flags;
889 npv->pv_flags = flags =
890 ((oflags & ~bic_mask) ^ eor_mask);
891 if ((flags ^ oflags) & PVF_WIRED) {
892 if (flags & PVF_WIRED)
893 ++pmap->pm_stats.wired_count;
894 else
895 --pmap->pm_stats.wired_count;
896 }
897 #ifdef PMAP_ALIAS_DEBUG
898 {
899 int s = splhigh();
900 if ((flags ^ oflags) & PVF_WRITE) {
901 if (flags & PVF_WRITE) {
902 pg->mdpage.rw_mappings++;
903 pg->mdpage.ro_mappings--;
904 if (pg->mdpage.rw_mappings != 0 &&
905 (pg->mdpage.kro_mappings != 0 ||
906 pg->mdpage.krw_mappings != 0)) {
907 printf("pmap_modify_pv: rw %u, "
908 "kro %u, krw %u\n",
909 pg->mdpage.rw_mappings,
910 pg->mdpage.kro_mappings,
911 pg->mdpage.krw_mappings);
912 }
913 } else {
914 KASSERT(pg->mdpage.rw_mappings != 0);
915 pg->mdpage.rw_mappings--;
916 pg->mdpage.ro_mappings++;
917 }
918 }
919 splx(s);
920 }
921 #endif /* PMAP_ALIAS_DEBUG */
922 return (oflags);
923 }
924 }
925 return (0);
926 }
927
928 /*
929 * Map the specified level 2 pagetable into the level 1 page table for
930 * the given pmap to cover a chunk of virtual address space starting from the
931 * address specified.
932 */
933 #define PMAP_PTP_SELFREF 0x01
934 #define PMAP_PTP_CACHEABLE 0x02
935
936 static __inline void
937 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, int flags)
938 {
939 vaddr_t ptva;
940
941 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
942
943 /* Calculate the index into the L1 page table. */
944 ptva = va >> L1_S_SHIFT;
945
946 /* Map page table into the L1. */
947 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
948 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
949 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
950 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
951 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
952
953 /* Map the page table into the page table area. */
954 if (flags & PMAP_PTP_SELFREF) {
955 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
956 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
957 ((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
958 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
959 }
960 }
961
962 #if 0
963 static __inline void
964 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
965 {
966 vaddr_t ptva;
967
968 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
969
970 /* Calculate the index into the L1 page table. */
971 ptva = va >> L1_S_SHIFT;
972
973 /* Unmap page table from the L1. */
974 pmap->pm_pdir[ptva + 0] = 0;
975 pmap->pm_pdir[ptva + 1] = 0;
976 pmap->pm_pdir[ptva + 2] = 0;
977 pmap->pm_pdir[ptva + 3] = 0;
978 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
979
980 /* Unmap the page table from the page table area. */
981 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
982 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
983 }
984 #endif
985
986 /*
987 * Used to map a range of physical addresses into kernel
988 * virtual address space.
989 *
990 * For now, VM is already on, we only need to map the
991 * specified memory.
992 *
993 * XXX This routine should eventually go away; it's only used
994 * XXX by machine-dependent crash dump code.
995 */
996 vaddr_t
997 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
998 {
999 pt_entry_t *pte;
1000
1001 while (spa < epa) {
1002 pte = vtopte(va);
1003
1004 *pte = L2_S_PROTO | spa |
1005 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
1006 PTE_SYNC(pte);
1007 cpu_tlb_flushID_SE(va);
1008 va += NBPG;
1009 spa += NBPG;
1010 }
1011 pmap_update(pmap_kernel());
1012 return(va);
1013 }
1014
1015
1016 /*
1017 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1018 *
1019 * bootstrap the pmap system. This is called from initarm and allows
1020 * the pmap system to initailise any structures it requires.
1021 *
1022 * Currently this sets up the kernel_pmap that is statically allocated
1023 * and also allocated virtual addresses for certain page hooks.
1024 * Currently the only one page hook is allocated that is used
1025 * to zero physical pages of memory.
1026 * It also initialises the start and end address of the kernel data space.
1027 */
1028
1029 char *boot_head;
1030
1031 void
1032 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1033 {
1034 pt_entry_t *pte;
1035
1036 pmap_kernel()->pm_pdir = kernel_l1pt;
1037 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1038 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1039 simple_lock_init(&pmap_kernel()->pm_lock);
1040 pmap_kernel()->pm_obj.pgops = NULL;
1041 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1042 pmap_kernel()->pm_obj.uo_npages = 0;
1043 pmap_kernel()->pm_obj.uo_refs = 1;
1044
1045 virtual_avail = KERNEL_VM_BASE;
1046 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1047
1048 /*
1049 * now we allocate the "special" VAs which are used for tmp mappings
1050 * by the pmap (and other modules). we allocate the VAs by advancing
1051 * virtual_avail (note that there are no pages mapped at these VAs).
1052 * we find the PTE that maps the allocated VA via the linear PTE
1053 * mapping.
1054 */
1055
1056 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1057
1058 csrcp = virtual_avail; csrc_pte = pte;
1059 virtual_avail += PAGE_SIZE; pte++;
1060
1061 cdstp = virtual_avail; cdst_pte = pte;
1062 virtual_avail += PAGE_SIZE; pte++;
1063
1064 memhook = (char *) virtual_avail; /* don't need pte */
1065 virtual_avail += PAGE_SIZE; pte++;
1066
1067 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1068 virtual_avail += round_page(MSGBUFSIZE);
1069 pte += atop(round_page(MSGBUFSIZE));
1070
1071 /*
1072 * init the static-global locks and global lists.
1073 */
1074 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1075 simple_lock_init(&pvalloc_lock);
1076 simple_lock_init(&pmaps_lock);
1077 LIST_INIT(&pmaps);
1078 TAILQ_INIT(&pv_freepages);
1079 TAILQ_INIT(&pv_unusedpgs);
1080
1081 /*
1082 * initialize the pmap pool.
1083 */
1084
1085 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1086 &pool_allocator_nointr);
1087
1088 /*
1089 * initialize the PT-PT pool and cache.
1090 */
1091
1092 pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1093 &pmap_ptpt_allocator);
1094 pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1095 pmap_ptpt_ctor, NULL, NULL);
1096
1097 cpu_dcache_wbinv_all();
1098 }
1099
1100 /*
1101 * void pmap_init(void)
1102 *
1103 * Initialize the pmap module.
1104 * Called by vm_init() in vm/vm_init.c in order to initialise
1105 * any structures that the pmap system needs to map virtual memory.
1106 */
1107
1108 extern int physmem;
1109
1110 void
1111 pmap_init(void)
1112 {
1113
1114 /*
1115 * Set the available memory vars - These do not map to real memory
1116 * addresses and cannot as the physical memory is fragmented.
1117 * They are used by ps for %mem calculations.
1118 * One could argue whether this should be the entire memory or just
1119 * the memory that is useable in a user process.
1120 */
1121 avail_start = 0;
1122 avail_end = physmem * NBPG;
1123
1124 /*
1125 * now we need to free enough pv_entry structures to allow us to get
1126 * the kmem_map/kmem_object allocated and inited (done after this
1127 * function is finished). to do this we allocate one bootstrap page out
1128 * of kernel_map and use it to provide an initial pool of pv_entry
1129 * structures. we never free this page.
1130 */
1131
1132 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1133 if (pv_initpage == NULL)
1134 panic("pmap_init: pv_initpage");
1135 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1136 pv_nfpvents = 0;
1137 (void) pmap_add_pvpage(pv_initpage, FALSE);
1138
1139 pmap_initialized = TRUE;
1140
1141 /* Initialise our L1 page table queues and counters */
1142 SIMPLEQ_INIT(&l1pt_static_queue);
1143 l1pt_static_queue_count = 0;
1144 l1pt_static_create_count = 0;
1145 SIMPLEQ_INIT(&l1pt_queue);
1146 l1pt_queue_count = 0;
1147 l1pt_create_count = 0;
1148 l1pt_reuse_count = 0;
1149 }
1150
1151 /*
1152 * pmap_postinit()
1153 *
1154 * This routine is called after the vm and kmem subsystems have been
1155 * initialised. This allows the pmap code to perform any initialisation
1156 * that can only be done one the memory allocation is in place.
1157 */
1158
1159 void
1160 pmap_postinit(void)
1161 {
1162 int loop;
1163 struct l1pt *pt;
1164
1165 #ifdef PMAP_STATIC_L1S
1166 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1167 #else /* PMAP_STATIC_L1S */
1168 for (loop = 0; loop < max_processes; ++loop) {
1169 #endif /* PMAP_STATIC_L1S */
1170 /* Allocate a L1 page table */
1171 pt = pmap_alloc_l1pt();
1172 if (!pt)
1173 panic("Cannot allocate static L1 page tables\n");
1174
1175 /* Clean it */
1176 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1177 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1178 /* Add the page table to the queue */
1179 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1180 ++l1pt_static_queue_count;
1181 ++l1pt_static_create_count;
1182 }
1183 }
1184
1185
1186 /*
1187 * Create and return a physical map.
1188 *
1189 * If the size specified for the map is zero, the map is an actual physical
1190 * map, and may be referenced by the hardware.
1191 *
1192 * If the size specified is non-zero, the map will be used in software only,
1193 * and is bounded by that size.
1194 */
1195
1196 pmap_t
1197 pmap_create(void)
1198 {
1199 struct pmap *pmap;
1200
1201 /*
1202 * Fetch pmap entry from the pool
1203 */
1204
1205 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1206 /* XXX is this really needed! */
1207 memset(pmap, 0, sizeof(*pmap));
1208
1209 simple_lock_init(&pmap->pm_obj.vmobjlock);
1210 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1211 TAILQ_INIT(&pmap->pm_obj.memq);
1212 pmap->pm_obj.uo_npages = 0;
1213 pmap->pm_obj.uo_refs = 1;
1214 pmap->pm_stats.wired_count = 0;
1215 pmap->pm_stats.resident_count = 1;
1216 pmap->pm_ptphint = NULL;
1217
1218 /* Now init the machine part of the pmap */
1219 pmap_pinit(pmap);
1220 return(pmap);
1221 }
1222
1223 /*
1224 * pmap_alloc_l1pt()
1225 *
1226 * This routine allocates physical and virtual memory for a L1 page table
1227 * and wires it.
1228 * A l1pt structure is returned to describe the allocated page table.
1229 *
1230 * This routine is allowed to fail if the required memory cannot be allocated.
1231 * In this case NULL is returned.
1232 */
1233
1234 struct l1pt *
1235 pmap_alloc_l1pt(void)
1236 {
1237 paddr_t pa;
1238 vaddr_t va;
1239 struct l1pt *pt;
1240 int error;
1241 struct vm_page *m;
1242
1243 /* Allocate virtual address space for the L1 page table */
1244 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1245 if (va == 0) {
1246 #ifdef DIAGNOSTIC
1247 PDEBUG(0,
1248 printf("pmap: Cannot allocate pageable memory for L1\n"));
1249 #endif /* DIAGNOSTIC */
1250 return(NULL);
1251 }
1252
1253 /* Allocate memory for the l1pt structure */
1254 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1255
1256 /*
1257 * Allocate pages from the VM system.
1258 */
1259 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1260 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1261 if (error) {
1262 #ifdef DIAGNOSTIC
1263 PDEBUG(0,
1264 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1265 error));
1266 #endif /* DIAGNOSTIC */
1267 /* Release the resources we already have claimed */
1268 free(pt, M_VMPMAP);
1269 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1270 return(NULL);
1271 }
1272
1273 /* Map our physical pages into our virtual space */
1274 pt->pt_va = va;
1275 m = TAILQ_FIRST(&pt->pt_plist);
1276 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1277 pa = VM_PAGE_TO_PHYS(m);
1278
1279 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1280
1281 va += NBPG;
1282 m = m->pageq.tqe_next;
1283 }
1284
1285 #ifdef DIAGNOSTIC
1286 if (m)
1287 panic("pmap_alloc_l1pt: pglist not empty\n");
1288 #endif /* DIAGNOSTIC */
1289
1290 pt->pt_flags = 0;
1291 return(pt);
1292 }
1293
1294 /*
1295 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1296 */
1297 static void
1298 pmap_free_l1pt(struct l1pt *pt)
1299 {
1300 /* Separate the physical memory for the virtual space */
1301 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1302 pmap_update(pmap_kernel());
1303
1304 /* Return the physical memory */
1305 uvm_pglistfree(&pt->pt_plist);
1306
1307 /* Free the virtual space */
1308 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1309
1310 /* Free the l1pt structure */
1311 free(pt, M_VMPMAP);
1312 }
1313
1314 /*
1315 * pmap_ptpt_page_alloc:
1316 *
1317 * Back-end page allocator for the PT-PT pool.
1318 */
1319 static void *
1320 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1321 {
1322 struct vm_page *pg;
1323 pt_entry_t *pte;
1324 vaddr_t va;
1325
1326 /* XXX PR_WAITOK? */
1327 va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1328 if (va == 0)
1329 return (NULL);
1330
1331 for (;;) {
1332 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1333 if (pg != NULL)
1334 break;
1335 if ((flags & PR_WAITOK) == 0) {
1336 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1337 return (NULL);
1338 }
1339 uvm_wait("pmap_ptpt");
1340 }
1341
1342 pte = vtopte(va);
1343 KDASSERT(pmap_pte_v(pte) == 0);
1344
1345 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1346 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1347 PTE_SYNC(pte);
1348 #ifdef PMAP_ALIAS_DEBUG
1349 {
1350 int s = splhigh();
1351 pg->mdpage.krw_mappings++;
1352 splx(s);
1353 }
1354 #endif /* PMAP_ALIAS_DEBUG */
1355
1356 return ((void *) va);
1357 }
1358
1359 /*
1360 * pmap_ptpt_page_free:
1361 *
1362 * Back-end page free'er for the PT-PT pool.
1363 */
1364 static void
1365 pmap_ptpt_page_free(struct pool *pp, void *v)
1366 {
1367 vaddr_t va = (vaddr_t) v;
1368 paddr_t pa;
1369
1370 pa = vtophys(va);
1371
1372 pmap_kremove(va, L2_TABLE_SIZE);
1373 pmap_update(pmap_kernel());
1374
1375 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1376
1377 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1378 }
1379
1380 /*
1381 * pmap_ptpt_ctor:
1382 *
1383 * Constructor for the PT-PT cache.
1384 */
1385 static int
1386 pmap_ptpt_ctor(void *arg, void *object, int flags)
1387 {
1388 caddr_t vptpt = object;
1389
1390 /* Page is already zero'd. */
1391
1392 /*
1393 * Map in kernel PTs.
1394 *
1395 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1396 */
1397 memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1398 (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1399 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1400 (KERNEL_PD_SIZE >> 2));
1401
1402 return (0);
1403 }
1404
1405 /*
1406 * Allocate a page directory.
1407 * This routine will either allocate a new page directory from the pool
1408 * of L1 page tables currently held by the kernel or it will allocate
1409 * a new one via pmap_alloc_l1pt().
1410 * It will then initialise the l1 page table for use.
1411 */
1412 static int
1413 pmap_allocpagedir(struct pmap *pmap)
1414 {
1415 vaddr_t vptpt;
1416 paddr_t pa;
1417 struct l1pt *pt;
1418 u_int gen;
1419
1420 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1421
1422 /* Do we have any spare L1's lying around ? */
1423 if (l1pt_static_queue_count) {
1424 --l1pt_static_queue_count;
1425 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1426 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1427 } else if (l1pt_queue_count) {
1428 --l1pt_queue_count;
1429 pt = SIMPLEQ_FIRST(&l1pt_queue);
1430 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1431 ++l1pt_reuse_count;
1432 } else {
1433 pt = pmap_alloc_l1pt();
1434 if (!pt)
1435 return(ENOMEM);
1436 ++l1pt_create_count;
1437 }
1438
1439 /* Store the pointer to the l1 descriptor in the pmap. */
1440 pmap->pm_l1pt = pt;
1441
1442 /* Get the physical address of the start of the l1 */
1443 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1444
1445 /* Store the virtual address of the l1 in the pmap. */
1446 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1447
1448 /* Clean the L1 if it is dirty */
1449 if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1450 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1451 cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1452 (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1453 }
1454
1455 /* Allocate a page table to map all the page tables for this pmap */
1456 KASSERT(pmap->pm_vptpt == 0);
1457
1458 try_again:
1459 gen = pmap_ptpt_cache_generation;
1460 vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1461 if (vptpt == NULL) {
1462 PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1463 pmap_freepagedir(pmap);
1464 return (ENOMEM);
1465 }
1466
1467 /* need to lock this all up for growkernel */
1468 simple_lock(&pmaps_lock);
1469
1470 if (gen != pmap_ptpt_cache_generation) {
1471 simple_unlock(&pmaps_lock);
1472 pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1473 goto try_again;
1474 }
1475
1476 pmap->pm_vptpt = vptpt;
1477 pmap->pm_pptpt = vtophys(vptpt);
1478
1479 /* Duplicate the kernel mappings. */
1480 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1481 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1482 KERNEL_PD_SIZE);
1483 cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1484 (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1485
1486 /* Wire in this page table */
1487 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
1488
1489 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1490
1491 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1492 simple_unlock(&pmaps_lock);
1493
1494 return(0);
1495 }
1496
1497
1498 /*
1499 * Initialize a preallocated and zeroed pmap structure,
1500 * such as one in a vmspace structure.
1501 */
1502
1503 void
1504 pmap_pinit(struct pmap *pmap)
1505 {
1506 int backoff = 6;
1507 int retry = 10;
1508
1509 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1510
1511 /* Keep looping until we succeed in allocating a page directory */
1512 while (pmap_allocpagedir(pmap) != 0) {
1513 /*
1514 * Ok we failed to allocate a suitable block of memory for an
1515 * L1 page table. This means that either:
1516 * 1. 16KB of virtual address space could not be allocated
1517 * 2. 16KB of physically contiguous memory on a 16KB boundary
1518 * could not be allocated.
1519 *
1520 * Since we cannot fail we will sleep for a while and try
1521 * again.
1522 *
1523 * Searching for a suitable L1 PT is expensive:
1524 * to avoid hogging the system when memory is really
1525 * scarce, use an exponential back-off so that
1526 * eventually we won't retry more than once every 8
1527 * seconds. This should allow other processes to run
1528 * to completion and free up resources.
1529 */
1530 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1531 NULL);
1532 if (--retry == 0) {
1533 retry = 10;
1534 if (backoff)
1535 --backoff;
1536 }
1537 }
1538
1539 if (vector_page < KERNEL_BASE) {
1540 /*
1541 * Map the vector page. This will also allocate and map
1542 * an L2 table for it.
1543 */
1544 pmap_enter(pmap, vector_page, systempage.pv_pa,
1545 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1546 pmap_update(pmap);
1547 }
1548 }
1549
1550 void
1551 pmap_freepagedir(struct pmap *pmap)
1552 {
1553 /* Free the memory used for the page table mapping */
1554 if (pmap->pm_vptpt != 0) {
1555 /*
1556 * XXX Objects freed to a pool cache must be in constructed
1557 * XXX form when freed, but we don't free page tables as we
1558 * XXX go, so we need to zap the mappings here.
1559 *
1560 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1561 */
1562 memset((caddr_t) pmap->pm_vptpt, 0,
1563 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1564 pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1565 }
1566
1567 /* junk the L1 page table */
1568 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1569 /* Add the page table to the queue */
1570 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1571 pmap->pm_l1pt, pt_queue);
1572 ++l1pt_static_queue_count;
1573 } else if (l1pt_queue_count < 8) {
1574 /* Add the page table to the queue */
1575 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1576 ++l1pt_queue_count;
1577 } else
1578 pmap_free_l1pt(pmap->pm_l1pt);
1579 }
1580
1581 /*
1582 * Retire the given physical map from service.
1583 * Should only be called if the map contains no valid mappings.
1584 */
1585
1586 void
1587 pmap_destroy(struct pmap *pmap)
1588 {
1589 struct vm_page *page;
1590 int count;
1591
1592 if (pmap == NULL)
1593 return;
1594
1595 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1596
1597 /*
1598 * Drop reference count
1599 */
1600 simple_lock(&pmap->pm_obj.vmobjlock);
1601 count = --pmap->pm_obj.uo_refs;
1602 simple_unlock(&pmap->pm_obj.vmobjlock);
1603 if (count > 0) {
1604 return;
1605 }
1606
1607 /*
1608 * reference count is zero, free pmap resources and then free pmap.
1609 */
1610
1611 /*
1612 * remove it from global list of pmaps
1613 */
1614
1615 simple_lock(&pmaps_lock);
1616 LIST_REMOVE(pmap, pm_list);
1617 simple_unlock(&pmaps_lock);
1618
1619 if (vector_page < KERNEL_BASE) {
1620 /* Remove the vector page mapping */
1621 pmap_remove(pmap, vector_page, vector_page + NBPG);
1622 pmap_update(pmap);
1623 }
1624
1625 /*
1626 * Free any page tables still mapped
1627 * This is only temporay until pmap_enter can count the number
1628 * of mappings made in a page table. Then pmap_remove() can
1629 * reduce the count and free the pagetable when the count
1630 * reaches zero. Note that entries in this list should match the
1631 * contents of the ptpt, however this is faster than walking a 1024
1632 * entries looking for pt's
1633 * taken from i386 pmap.c
1634 */
1635 /*
1636 * vmobjlock must be held while freeing pages
1637 */
1638 simple_lock(&pmap->pm_obj.vmobjlock);
1639 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1640 KASSERT((page->flags & PG_BUSY) == 0);
1641
1642 /* Freeing a PT page? The contents are a throw-away. */
1643 KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
1644 cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
1645
1646 page->wire_count = 0;
1647 uvm_pagefree(page);
1648 }
1649 simple_unlock(&pmap->pm_obj.vmobjlock);
1650
1651 /* Free the page dir */
1652 pmap_freepagedir(pmap);
1653
1654 /* return the pmap to the pool */
1655 pool_put(&pmap_pmap_pool, pmap);
1656 }
1657
1658
1659 /*
1660 * void pmap_reference(struct pmap *pmap)
1661 *
1662 * Add a reference to the specified pmap.
1663 */
1664
1665 void
1666 pmap_reference(struct pmap *pmap)
1667 {
1668 if (pmap == NULL)
1669 return;
1670
1671 simple_lock(&pmap->pm_lock);
1672 pmap->pm_obj.uo_refs++;
1673 simple_unlock(&pmap->pm_lock);
1674 }
1675
1676 /*
1677 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1678 *
1679 * Return the start and end addresses of the kernel's virtual space.
1680 * These values are setup in pmap_bootstrap and are updated as pages
1681 * are allocated.
1682 */
1683
1684 void
1685 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1686 {
1687 *start = virtual_avail;
1688 *end = virtual_end;
1689 }
1690
1691 /*
1692 * Activate the address space for the specified process. If the process
1693 * is the current process, load the new MMU context.
1694 */
1695 void
1696 pmap_activate(struct proc *p)
1697 {
1698 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1699 struct pcb *pcb = &p->p_addr->u_pcb;
1700
1701 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1702 (paddr_t *)&pcb->pcb_pagedir);
1703
1704 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1705 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1706
1707 if (p == curproc) {
1708 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1709 setttb((u_int)pcb->pcb_pagedir);
1710 }
1711 }
1712
1713 /*
1714 * Deactivate the address space of the specified process.
1715 */
1716 void
1717 pmap_deactivate(struct proc *p)
1718 {
1719 }
1720
1721 /*
1722 * Perform any deferred pmap operations.
1723 */
1724 void
1725 pmap_update(struct pmap *pmap)
1726 {
1727
1728 /*
1729 * We haven't deferred any pmap operations, but we do need to
1730 * make sure TLB/cache operations have completed.
1731 */
1732 cpu_cpwait();
1733 }
1734
1735 /*
1736 * pmap_clean_page()
1737 *
1738 * This is a local function used to work out the best strategy to clean
1739 * a single page referenced by its entry in the PV table. It's used by
1740 * pmap_copy_page, pmap_zero page and maybe some others later on.
1741 *
1742 * Its policy is effectively:
1743 * o If there are no mappings, we don't bother doing anything with the cache.
1744 * o If there is one mapping, we clean just that page.
1745 * o If there are multiple mappings, we clean the entire cache.
1746 *
1747 * So that some functions can be further optimised, it returns 0 if it didn't
1748 * clean the entire cache, or 1 if it did.
1749 *
1750 * XXX One bug in this routine is that if the pv_entry has a single page
1751 * mapped at 0x00000000 a whole cache clean will be performed rather than
1752 * just the 1 page. Since this should not occur in everyday use and if it does
1753 * it will just result in not the most efficient clean for the page.
1754 */
1755 static int
1756 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1757 {
1758 struct pmap *pmap;
1759 struct pv_entry *npv;
1760 int cache_needs_cleaning = 0;
1761 vaddr_t page_to_clean = 0;
1762
1763 if (pv == NULL) {
1764 /* nothing mapped in so nothing to flush */
1765 return (0);
1766 }
1767
1768 /*
1769 * Since we flush the cache each time we change curproc, we
1770 * only need to flush the page if it is in the current pmap.
1771 */
1772 if (curproc)
1773 pmap = curproc->p_vmspace->vm_map.pmap;
1774 else
1775 pmap = pmap_kernel();
1776
1777 for (npv = pv; npv; npv = npv->pv_next) {
1778 if (npv->pv_pmap == pmap) {
1779 /*
1780 * The page is mapped non-cacheable in
1781 * this map. No need to flush the cache.
1782 */
1783 if (npv->pv_flags & PVF_NC) {
1784 #ifdef DIAGNOSTIC
1785 if (cache_needs_cleaning)
1786 panic("pmap_clean_page: "
1787 "cache inconsistency");
1788 #endif
1789 break;
1790 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1791 continue;
1792 if (cache_needs_cleaning) {
1793 page_to_clean = 0;
1794 break;
1795 } else
1796 page_to_clean = npv->pv_va;
1797 cache_needs_cleaning = 1;
1798 }
1799 }
1800
1801 if (page_to_clean) {
1802 /*
1803 * XXX If is_src, we really only need to write-back,
1804 * XXX not invalidate, too. Investigate further.
1805 * XXX --thorpej (at) netbsd.org
1806 */
1807 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1808 } else if (cache_needs_cleaning) {
1809 cpu_idcache_wbinv_all();
1810 return (1);
1811 }
1812 return (0);
1813 }
1814
1815 /*
1816 * pmap_zero_page()
1817 *
1818 * Zero a given physical page by mapping it at a page hook point.
1819 * In doing the zero page op, the page we zero is mapped cachable, as with
1820 * StrongARM accesses to non-cached pages are non-burst making writing
1821 * _any_ bulk data very slow.
1822 */
1823 #if ARM_MMU_GENERIC == 1
1824 void
1825 pmap_zero_page_generic(paddr_t phys)
1826 {
1827 #ifdef DEBUG
1828 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1829
1830 if (pg->mdpage.pvh_list != NULL)
1831 panic("pmap_zero_page: page has mappings");
1832 #endif
1833
1834 KDASSERT((phys & PGOFSET) == 0);
1835
1836 /*
1837 * Hook in the page, zero it, and purge the cache for that
1838 * zeroed page. Invalidate the TLB as needed.
1839 */
1840 *cdst_pte = L2_S_PROTO | phys |
1841 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1842 PTE_SYNC(cdst_pte);
1843 cpu_tlb_flushD_SE(cdstp);
1844 cpu_cpwait();
1845 bzero_page(cdstp);
1846 cpu_dcache_wbinv_range(cdstp, NBPG);
1847 }
1848 #endif /* ARM_MMU_GENERIC == 1 */
1849
1850 #if ARM_MMU_XSCALE == 1
1851 void
1852 pmap_zero_page_xscale(paddr_t phys)
1853 {
1854 #ifdef DEBUG
1855 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1856
1857 if (pg->mdpage.pvh_list != NULL)
1858 panic("pmap_zero_page: page has mappings");
1859 #endif
1860
1861 KDASSERT((phys & PGOFSET) == 0);
1862
1863 /*
1864 * Hook in the page, zero it, and purge the cache for that
1865 * zeroed page. Invalidate the TLB as needed.
1866 */
1867 *cdst_pte = L2_S_PROTO | phys |
1868 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1869 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1870 PTE_SYNC(cdst_pte);
1871 cpu_tlb_flushD_SE(cdstp);
1872 cpu_cpwait();
1873 bzero_page(cdstp);
1874 xscale_cache_clean_minidata();
1875 }
1876 #endif /* ARM_MMU_XSCALE == 1 */
1877
1878 /* pmap_pageidlezero()
1879 *
1880 * The same as above, except that we assume that the page is not
1881 * mapped. This means we never have to flush the cache first. Called
1882 * from the idle loop.
1883 */
1884 boolean_t
1885 pmap_pageidlezero(paddr_t phys)
1886 {
1887 int i, *ptr;
1888 boolean_t rv = TRUE;
1889 #ifdef DEBUG
1890 struct vm_page *pg;
1891
1892 pg = PHYS_TO_VM_PAGE(phys);
1893 if (pg->mdpage.pvh_list != NULL)
1894 panic("pmap_pageidlezero: page has mappings");
1895 #endif
1896
1897 KDASSERT((phys & PGOFSET) == 0);
1898
1899 /*
1900 * Hook in the page, zero it, and purge the cache for that
1901 * zeroed page. Invalidate the TLB as needed.
1902 */
1903 *cdst_pte = L2_S_PROTO | phys |
1904 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1905 PTE_SYNC(cdst_pte);
1906 cpu_tlb_flushD_SE(cdstp);
1907 cpu_cpwait();
1908
1909 for (i = 0, ptr = (int *)cdstp;
1910 i < (NBPG / sizeof(int)); i++) {
1911 if (sched_whichqs != 0) {
1912 /*
1913 * A process has become ready. Abort now,
1914 * so we don't keep it waiting while we
1915 * do slow memory access to finish this
1916 * page.
1917 */
1918 rv = FALSE;
1919 break;
1920 }
1921 *ptr++ = 0;
1922 }
1923
1924 if (rv)
1925 /*
1926 * if we aborted we'll rezero this page again later so don't
1927 * purge it unless we finished it
1928 */
1929 cpu_dcache_wbinv_range(cdstp, NBPG);
1930 return (rv);
1931 }
1932
1933 /*
1934 * pmap_copy_page()
1935 *
1936 * Copy one physical page into another, by mapping the pages into
1937 * hook points. The same comment regarding cachability as in
1938 * pmap_zero_page also applies here.
1939 */
1940 #if ARM_MMU_GENERIC == 1
1941 void
1942 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1943 {
1944 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1945 #ifdef DEBUG
1946 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1947
1948 if (dst_pg->mdpage.pvh_list != NULL)
1949 panic("pmap_copy_page: dst page has mappings");
1950 #endif
1951
1952 KDASSERT((src & PGOFSET) == 0);
1953 KDASSERT((dst & PGOFSET) == 0);
1954
1955 /*
1956 * Clean the source page. Hold the source page's lock for
1957 * the duration of the copy so that no other mappings can
1958 * be created while we have a potentially aliased mapping.
1959 */
1960 simple_lock(&src_pg->mdpage.pvh_slock);
1961 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1962
1963 /*
1964 * Map the pages into the page hook points, copy them, and purge
1965 * the cache for the appropriate page. Invalidate the TLB
1966 * as required.
1967 */
1968 *csrc_pte = L2_S_PROTO | src |
1969 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1970 PTE_SYNC(csrc_pte);
1971 *cdst_pte = L2_S_PROTO | dst |
1972 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1973 PTE_SYNC(cdst_pte);
1974 cpu_tlb_flushD_SE(csrcp);
1975 cpu_tlb_flushD_SE(cdstp);
1976 cpu_cpwait();
1977 bcopy_page(csrcp, cdstp);
1978 cpu_dcache_inv_range(csrcp, NBPG);
1979 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1980 cpu_dcache_wbinv_range(cdstp, NBPG);
1981 }
1982 #endif /* ARM_MMU_GENERIC == 1 */
1983
1984 #if ARM_MMU_XSCALE == 1
1985 void
1986 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1987 {
1988 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1989 #ifdef DEBUG
1990 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1991
1992 if (dst_pg->mdpage.pvh_list != NULL)
1993 panic("pmap_copy_page: dst page has mappings");
1994 #endif
1995
1996 KDASSERT((src & PGOFSET) == 0);
1997 KDASSERT((dst & PGOFSET) == 0);
1998
1999 /*
2000 * Clean the source page. Hold the source page's lock for
2001 * the duration of the copy so that no other mappings can
2002 * be created while we have a potentially aliased mapping.
2003 */
2004 simple_lock(&src_pg->mdpage.pvh_slock);
2005 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2006
2007 /*
2008 * Map the pages into the page hook points, copy them, and purge
2009 * the cache for the appropriate page. Invalidate the TLB
2010 * as required.
2011 */
2012 *csrc_pte = L2_S_PROTO | src |
2013 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
2014 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2015 PTE_SYNC(csrc_pte);
2016 *cdst_pte = L2_S_PROTO | dst |
2017 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
2018 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2019 PTE_SYNC(cdst_pte);
2020 cpu_tlb_flushD_SE(csrcp);
2021 cpu_tlb_flushD_SE(cdstp);
2022 cpu_cpwait();
2023 bcopy_page(csrcp, cdstp);
2024 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2025 xscale_cache_clean_minidata();
2026 }
2027 #endif /* ARM_MMU_XSCALE == 1 */
2028
2029 #if 0
2030 void
2031 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
2032 {
2033 pd_entry_t *pde;
2034 paddr_t pa;
2035 struct vm_page *m;
2036
2037 if (pmap == pmap_kernel())
2038 return;
2039
2040 pde = pmap_pde(pmap, va & PD_FRAME);
2041 pa = pmap_pte_pa(pde);
2042 m = PHYS_TO_VM_PAGE(pa);
2043 m->wire_count++;
2044 #ifdef MYCROFT_HACK
2045 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2046 pmap, va, pde, pa, m, m->wire_count);
2047 #endif
2048 }
2049
2050 void
2051 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2052 {
2053 pd_entry_t *pde;
2054 paddr_t pa;
2055 struct vm_page *m;
2056
2057 if (pmap == pmap_kernel())
2058 return;
2059
2060 pde = pmap_pde(pmap, va & PD_FRAME);
2061 pa = pmap_pte_pa(pde);
2062 m = PHYS_TO_VM_PAGE(pa);
2063 m->wire_count--;
2064 #ifdef MYCROFT_HACK
2065 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2066 pmap, va, pde, pa, m, m->wire_count);
2067 #endif
2068 if (m->wire_count == 0) {
2069 #ifdef MYCROFT_HACK
2070 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2071 pmap, va, pde, pa, m);
2072 #endif
2073 pmap_unmap_in_l1(pmap, va & PD_FRAME);
2074 uvm_pagefree(m);
2075 --pmap->pm_stats.resident_count;
2076 }
2077 }
2078 #else
2079 #define pmap_pte_addref(pmap, va)
2080 #define pmap_pte_delref(pmap, va)
2081 #endif
2082
2083 /*
2084 * Since we have a virtually indexed cache, we may need to inhibit caching if
2085 * there is more than one mapping and at least one of them is writable.
2086 * Since we purge the cache on every context switch, we only need to check for
2087 * other mappings within the same pmap, or kernel_pmap.
2088 * This function is also called when a page is unmapped, to possibly reenable
2089 * caching on any remaining mappings.
2090 *
2091 * The code implements the following logic, where:
2092 *
2093 * KW = # of kernel read/write pages
2094 * KR = # of kernel read only pages
2095 * UW = # of user read/write pages
2096 * UR = # of user read only pages
2097 * OW = # of user read/write pages in another pmap, then
2098 *
2099 * KC = kernel mapping is cacheable
2100 * UC = user mapping is cacheable
2101 *
2102 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2103 * +---------------------------------------------
2104 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2105 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2106 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2107 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2108 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2109 *
2110 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2111 */
2112 __inline static void
2113 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2114 boolean_t clear_cache)
2115 {
2116 if (pmap == pmap_kernel())
2117 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2118 else
2119 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2120 }
2121
2122 static void
2123 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2124 boolean_t clear_cache)
2125 {
2126 int user_entries = 0;
2127 int user_writable = 0;
2128 int user_cacheable = 0;
2129 int kernel_entries = 0;
2130 int kernel_writable = 0;
2131 int kernel_cacheable = 0;
2132 struct pv_entry *pv;
2133 struct pmap *last_pmap = pmap;
2134
2135 #ifdef DIAGNOSTIC
2136 if (pmap != pmap_kernel())
2137 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2138 #endif
2139
2140 /*
2141 * Pass one, see if there are both kernel and user pmaps for
2142 * this page. Calculate whether there are user-writable or
2143 * kernel-writable pages.
2144 */
2145 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2146 if (pv->pv_pmap != pmap) {
2147 user_entries++;
2148 if (pv->pv_flags & PVF_WRITE)
2149 user_writable++;
2150 if ((pv->pv_flags & PVF_NC) == 0)
2151 user_cacheable++;
2152 } else {
2153 kernel_entries++;
2154 if (pv->pv_flags & PVF_WRITE)
2155 kernel_writable++;
2156 if ((pv->pv_flags & PVF_NC) == 0)
2157 kernel_cacheable++;
2158 }
2159 }
2160
2161 /*
2162 * We know we have just been updating a kernel entry, so if
2163 * all user pages are already cacheable, then there is nothing
2164 * further to do.
2165 */
2166 if (kernel_entries == 0 &&
2167 user_cacheable == user_entries)
2168 return;
2169
2170 if (user_entries) {
2171 /*
2172 * Scan over the list again, for each entry, if it
2173 * might not be set correctly, call pmap_vac_me_user
2174 * to recalculate the settings.
2175 */
2176 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2177 /*
2178 * We know kernel mappings will get set
2179 * correctly in other calls. We also know
2180 * that if the pmap is the same as last_pmap
2181 * then we've just handled this entry.
2182 */
2183 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2184 continue;
2185 /*
2186 * If there are kernel entries and this page
2187 * is writable but non-cacheable, then we can
2188 * skip this entry also.
2189 */
2190 if (kernel_entries > 0 &&
2191 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2192 (PVF_NC | PVF_WRITE))
2193 continue;
2194 /*
2195 * Similarly if there are no kernel-writable
2196 * entries and the page is already
2197 * read-only/cacheable.
2198 */
2199 if (kernel_writable == 0 &&
2200 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2201 continue;
2202 /*
2203 * For some of the remaining cases, we know
2204 * that we must recalculate, but for others we
2205 * can't tell if they are correct or not, so
2206 * we recalculate anyway.
2207 */
2208 pmap_unmap_ptes(last_pmap);
2209 last_pmap = pv->pv_pmap;
2210 ptes = pmap_map_ptes(last_pmap);
2211 pmap_vac_me_user(last_pmap, pg, ptes,
2212 pmap_is_curpmap(last_pmap));
2213 }
2214 /* Restore the pte mapping that was passed to us. */
2215 if (last_pmap != pmap) {
2216 pmap_unmap_ptes(last_pmap);
2217 ptes = pmap_map_ptes(pmap);
2218 }
2219 if (kernel_entries == 0)
2220 return;
2221 }
2222
2223 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2224 return;
2225 }
2226
2227 static void
2228 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2229 boolean_t clear_cache)
2230 {
2231 struct pmap *kpmap = pmap_kernel();
2232 struct pv_entry *pv, *npv;
2233 int entries = 0;
2234 int writable = 0;
2235 int cacheable_entries = 0;
2236 int kern_cacheable = 0;
2237 int other_writable = 0;
2238
2239 pv = pg->mdpage.pvh_list;
2240 KASSERT(ptes != NULL);
2241
2242 /*
2243 * Count mappings and writable mappings in this pmap.
2244 * Include kernel mappings as part of our own.
2245 * Keep a pointer to the first one.
2246 */
2247 for (npv = pv; npv; npv = npv->pv_next) {
2248 /* Count mappings in the same pmap */
2249 if (pmap == npv->pv_pmap ||
2250 kpmap == npv->pv_pmap) {
2251 if (entries++ == 0)
2252 pv = npv;
2253 /* Cacheable mappings */
2254 if ((npv->pv_flags & PVF_NC) == 0) {
2255 cacheable_entries++;
2256 if (kpmap == npv->pv_pmap)
2257 kern_cacheable++;
2258 }
2259 /* Writable mappings */
2260 if (npv->pv_flags & PVF_WRITE)
2261 ++writable;
2262 } else if (npv->pv_flags & PVF_WRITE)
2263 other_writable = 1;
2264 }
2265
2266 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2267 "writable %d cacheable %d %s\n", pmap, entries, writable,
2268 cacheable_entries, clear_cache ? "clean" : "no clean"));
2269
2270 /*
2271 * Enable or disable caching as necessary.
2272 * Note: the first entry might be part of the kernel pmap,
2273 * so we can't assume this is indicative of the state of the
2274 * other (maybe non-kpmap) entries.
2275 */
2276 if ((entries > 1 && writable) ||
2277 (entries > 0 && pmap == kpmap && other_writable)) {
2278 if (cacheable_entries == 0)
2279 return;
2280 for (npv = pv; npv; npv = npv->pv_next) {
2281 if ((pmap == npv->pv_pmap
2282 || kpmap == npv->pv_pmap) &&
2283 (npv->pv_flags & PVF_NC) == 0) {
2284 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2285 PTE_SYNC_CURRENT(pmap,
2286 &ptes[arm_btop(npv->pv_va)]);
2287 npv->pv_flags |= PVF_NC;
2288 /*
2289 * If this page needs flushing from the
2290 * cache, and we aren't going to do it
2291 * below, do it now.
2292 */
2293 if ((cacheable_entries < 4 &&
2294 (clear_cache || npv->pv_pmap == kpmap)) ||
2295 (npv->pv_pmap == kpmap &&
2296 !clear_cache && kern_cacheable < 4)) {
2297 cpu_idcache_wbinv_range(npv->pv_va,
2298 NBPG);
2299 cpu_tlb_flushID_SE(npv->pv_va);
2300 }
2301 }
2302 }
2303 if ((clear_cache && cacheable_entries >= 4) ||
2304 kern_cacheable >= 4) {
2305 cpu_idcache_wbinv_all();
2306 cpu_tlb_flushID();
2307 }
2308 cpu_cpwait();
2309 } else if (entries > 0) {
2310 /*
2311 * Turn cacheing back on for some pages. If it is a kernel
2312 * page, only do so if there are no other writable pages.
2313 */
2314 for (npv = pv; npv; npv = npv->pv_next) {
2315 if ((pmap == npv->pv_pmap ||
2316 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2317 (npv->pv_flags & PVF_NC)) {
2318 ptes[arm_btop(npv->pv_va)] |=
2319 pte_l2_s_cache_mode;
2320 PTE_SYNC_CURRENT(pmap,
2321 &ptes[arm_btop(npv->pv_va)]);
2322 npv->pv_flags &= ~PVF_NC;
2323 }
2324 }
2325 }
2326 }
2327
2328 /*
2329 * pmap_remove()
2330 *
2331 * pmap_remove is responsible for nuking a number of mappings for a range
2332 * of virtual address space in the current pmap. To do this efficiently
2333 * is interesting, because in a number of cases a wide virtual address
2334 * range may be supplied that contains few actual mappings. So, the
2335 * optimisations are:
2336 * 1. Try and skip over hunks of address space for which an L1 entry
2337 * does not exist.
2338 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2339 * maybe do just a partial cache clean. This path of execution is
2340 * complicated by the fact that the cache must be flushed _before_
2341 * the PTE is nuked, being a VAC :-)
2342 * 3. Maybe later fast-case a single page, but I don't think this is
2343 * going to make _that_ much difference overall.
2344 */
2345
2346 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2347
2348 void
2349 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2350 {
2351 int cleanlist_idx = 0;
2352 struct pagelist {
2353 vaddr_t va;
2354 pt_entry_t *pte;
2355 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2356 pt_entry_t *pte = 0, *ptes;
2357 paddr_t pa;
2358 int pmap_active;
2359 struct vm_page *pg;
2360
2361 /* Exit quick if there is no pmap */
2362 if (!pmap)
2363 return;
2364
2365 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2366 pmap, sva, eva));
2367
2368 /*
2369 * we lock in the pmap => vm_page direction
2370 */
2371 PMAP_MAP_TO_HEAD_LOCK();
2372
2373 ptes = pmap_map_ptes(pmap);
2374 /* Get a page table pointer */
2375 while (sva < eva) {
2376 if (pmap_pde_page(pmap_pde(pmap, sva)))
2377 break;
2378 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2379 }
2380
2381 pte = &ptes[arm_btop(sva)];
2382 /* Note if the pmap is active thus require cache and tlb cleans */
2383 pmap_active = pmap_is_curpmap(pmap);
2384
2385 /* Now loop along */
2386 while (sva < eva) {
2387 /* Check if we can move to the next PDE (l1 chunk) */
2388 if ((sva & L2_ADDR_BITS) == 0) {
2389 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2390 sva += L1_S_SIZE;
2391 pte += arm_btop(L1_S_SIZE);
2392 continue;
2393 }
2394 }
2395
2396 /* We've found a valid PTE, so this page of PTEs has to go. */
2397 if (pmap_pte_v(pte)) {
2398 /* Update statistics */
2399 --pmap->pm_stats.resident_count;
2400
2401 /*
2402 * Add this page to our cache remove list, if we can.
2403 * If, however the cache remove list is totally full,
2404 * then do a complete cache invalidation taking note
2405 * to backtrack the PTE table beforehand, and ignore
2406 * the lists in future because there's no longer any
2407 * point in bothering with them (we've paid the
2408 * penalty, so will carry on unhindered). Otherwise,
2409 * when we fall out, we just clean the list.
2410 */
2411 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2412 pa = pmap_pte_pa(pte);
2413
2414 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2415 /* Add to the clean list. */
2416 cleanlist[cleanlist_idx].pte = pte;
2417 cleanlist[cleanlist_idx].va = sva;
2418 cleanlist_idx++;
2419 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2420 int cnt;
2421
2422 /* Nuke everything if needed. */
2423 if (pmap_active) {
2424 cpu_idcache_wbinv_all();
2425 cpu_tlb_flushID();
2426 }
2427
2428 /*
2429 * Roll back the previous PTE list,
2430 * and zero out the current PTE.
2431 */
2432 for (cnt = 0;
2433 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
2434 cnt++) {
2435 *cleanlist[cnt].pte = 0;
2436 if (pmap_active)
2437 PTE_SYNC(cleanlist[cnt].pte);
2438 else
2439 PTE_FLUSH(cleanlist[cnt].pte);
2440 pmap_pte_delref(pmap,
2441 cleanlist[cnt].va);
2442 }
2443 *pte = 0;
2444 if (pmap_active)
2445 PTE_SYNC(pte);
2446 else
2447 PTE_FLUSH(pte);
2448 pmap_pte_delref(pmap, sva);
2449 cleanlist_idx++;
2450 } else {
2451 /*
2452 * We've already nuked the cache and
2453 * TLB, so just carry on regardless,
2454 * and we won't need to do it again
2455 */
2456 *pte = 0;
2457 if (pmap_active)
2458 PTE_SYNC(pte);
2459 else
2460 PTE_FLUSH(pte);
2461 pmap_pte_delref(pmap, sva);
2462 }
2463
2464 /*
2465 * Update flags. In a number of circumstances,
2466 * we could cluster a lot of these and do a
2467 * number of sequential pages in one go.
2468 */
2469 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2470 struct pv_entry *pve;
2471 simple_lock(&pg->mdpage.pvh_slock);
2472 pve = pmap_remove_pv(pg, pmap, sva);
2473 pmap_free_pv(pmap, pve);
2474 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2475 simple_unlock(&pg->mdpage.pvh_slock);
2476 }
2477 } else if (pmap_active == 0)
2478 PTE_FLUSH(pte);
2479 sva += NBPG;
2480 pte++;
2481 }
2482
2483 /*
2484 * Now, if we've fallen through down to here, chances are that there
2485 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2486 */
2487 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2488 u_int cnt;
2489
2490 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2491 if (pmap_active) {
2492 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2493 NBPG);
2494 *cleanlist[cnt].pte = 0;
2495 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2496 PTE_SYNC(cleanlist[cnt].pte);
2497 } else {
2498 *cleanlist[cnt].pte = 0;
2499 PTE_FLUSH(cleanlist[cnt].pte);
2500 }
2501 pmap_pte_delref(pmap, cleanlist[cnt].va);
2502 }
2503 }
2504
2505 pmap_unmap_ptes(pmap);
2506
2507 PMAP_MAP_TO_HEAD_UNLOCK();
2508 }
2509
2510 /*
2511 * Routine: pmap_remove_all
2512 * Function:
2513 * Removes this physical page from
2514 * all physical maps in which it resides.
2515 * Reflects back modify bits to the pager.
2516 */
2517
2518 static void
2519 pmap_remove_all(struct vm_page *pg)
2520 {
2521 struct pv_entry *pv, *npv;
2522 struct pmap *pmap;
2523 pt_entry_t *pte, *ptes;
2524
2525 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2526
2527 /* set vm_page => pmap locking */
2528 PMAP_HEAD_TO_MAP_LOCK();
2529
2530 simple_lock(&pg->mdpage.pvh_slock);
2531
2532 pv = pg->mdpage.pvh_list;
2533 if (pv == NULL) {
2534 PDEBUG(0, printf("free page\n"));
2535 simple_unlock(&pg->mdpage.pvh_slock);
2536 PMAP_HEAD_TO_MAP_UNLOCK();
2537 return;
2538 }
2539 pmap_clean_page(pv, FALSE);
2540
2541 while (pv) {
2542 pmap = pv->pv_pmap;
2543 ptes = pmap_map_ptes(pmap);
2544 pte = &ptes[arm_btop(pv->pv_va)];
2545
2546 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2547 pv->pv_va, pv->pv_flags));
2548 #ifdef DEBUG
2549 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2550 pmap_pte_v(pte) == 0 ||
2551 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2552 panic("pmap_remove_all: bad mapping");
2553 #endif /* DEBUG */
2554
2555 /*
2556 * Update statistics
2557 */
2558 --pmap->pm_stats.resident_count;
2559
2560 /* Wired bit */
2561 if (pv->pv_flags & PVF_WIRED)
2562 --pmap->pm_stats.wired_count;
2563
2564 /*
2565 * Invalidate the PTEs.
2566 * XXX: should cluster them up and invalidate as many
2567 * as possible at once.
2568 */
2569
2570 #ifdef needednotdone
2571 reduce wiring count on page table pages as references drop
2572 #endif
2573
2574 *pte = 0;
2575 PTE_SYNC_CURRENT(pmap, pte);
2576 pmap_pte_delref(pmap, pv->pv_va);
2577
2578 npv = pv->pv_next;
2579 pmap_free_pv(pmap, pv);
2580 pv = npv;
2581 pmap_unmap_ptes(pmap);
2582 }
2583 pg->mdpage.pvh_list = NULL;
2584 simple_unlock(&pg->mdpage.pvh_slock);
2585 PMAP_HEAD_TO_MAP_UNLOCK();
2586
2587 PDEBUG(0, printf("done\n"));
2588 cpu_tlb_flushID();
2589 cpu_cpwait();
2590 }
2591
2592
2593 /*
2594 * Set the physical protection on the specified range of this map as requested.
2595 */
2596
2597 void
2598 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2599 {
2600 pt_entry_t *pte = NULL, *ptes;
2601 struct vm_page *pg;
2602 int flush = 0;
2603
2604 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2605 pmap, sva, eva, prot));
2606
2607 if (~prot & VM_PROT_READ) {
2608 /*
2609 * Just remove the mappings. pmap_update() is not required
2610 * here since the caller should do it.
2611 */
2612 pmap_remove(pmap, sva, eva);
2613 return;
2614 }
2615 if (prot & VM_PROT_WRITE) {
2616 /*
2617 * If this is a read->write transition, just ignore it and let
2618 * uvm_fault() take care of it later.
2619 */
2620 return;
2621 }
2622
2623 /* Need to lock map->head */
2624 PMAP_MAP_TO_HEAD_LOCK();
2625
2626 ptes = pmap_map_ptes(pmap);
2627
2628 /*
2629 * OK, at this point, we know we're doing write-protect operation.
2630 * If the pmap is active, write-back the range.
2631 */
2632 if (pmap_is_curpmap(pmap))
2633 cpu_dcache_wb_range(sva, eva - sva);
2634
2635 /*
2636 * We need to acquire a pointer to a page table page before entering
2637 * the following loop.
2638 */
2639 while (sva < eva) {
2640 if (pmap_pde_page(pmap_pde(pmap, sva)))
2641 break;
2642 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2643 }
2644
2645 pte = &ptes[arm_btop(sva)];
2646
2647 while (sva < eva) {
2648 /* only check once in a while */
2649 if ((sva & L2_ADDR_BITS) == 0) {
2650 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2651 /* We can race ahead here, to the next pde. */
2652 sva += L1_S_SIZE;
2653 pte += arm_btop(L1_S_SIZE);
2654 continue;
2655 }
2656 }
2657
2658 if (!pmap_pte_v(pte)) {
2659 PTE_FLUSH_ALT(pmap, pte);
2660 goto next;
2661 }
2662
2663 flush = 1;
2664
2665 pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
2666
2667 *pte &= ~L2_S_PROT_W; /* clear write bit */
2668 PTE_SYNC_CURRENT(pmap, pte); /* XXXJRT optimize */
2669
2670 /* Clear write flag */
2671 if (pg != NULL) {
2672 simple_lock(&pg->mdpage.pvh_slock);
2673 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2674 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2675 simple_unlock(&pg->mdpage.pvh_slock);
2676 }
2677
2678 next:
2679 sva += NBPG;
2680 pte++;
2681 }
2682 pmap_unmap_ptes(pmap);
2683 PMAP_MAP_TO_HEAD_UNLOCK();
2684 if (flush)
2685 cpu_tlb_flushID();
2686 }
2687
2688 /*
2689 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2690 * int flags)
2691 *
2692 * Insert the given physical page (p) at
2693 * the specified virtual address (v) in the
2694 * target physical map with the protection requested.
2695 *
2696 * If specified, the page will be wired down, meaning
2697 * that the related pte can not be reclaimed.
2698 *
2699 * NB: This is the only routine which MAY NOT lazy-evaluate
2700 * or lose information. That is, this routine must actually
2701 * insert this page into the given map NOW.
2702 */
2703
2704 int
2705 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2706 int flags)
2707 {
2708 pt_entry_t *ptes, opte, npte;
2709 paddr_t opa;
2710 boolean_t wired = (flags & PMAP_WIRED) != 0;
2711 struct vm_page *pg;
2712 struct pv_entry *pve;
2713 int error, nflags;
2714
2715 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2716 va, pa, pmap, prot, wired));
2717
2718 #ifdef DIAGNOSTIC
2719 /* Valid address ? */
2720 if (va >= (pmap_curmaxkvaddr))
2721 panic("pmap_enter: too big");
2722 if (pmap != pmap_kernel() && va != 0) {
2723 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2724 panic("pmap_enter: kernel page in user map");
2725 } else {
2726 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2727 panic("pmap_enter: user page in kernel map");
2728 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2729 panic("pmap_enter: entering PT page");
2730 }
2731 #endif
2732
2733 KDASSERT(((va | pa) & PGOFSET) == 0);
2734
2735 /*
2736 * Get a pointer to the page. Later on in this function, we
2737 * test for a managed page by checking pg != NULL.
2738 */
2739 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2740
2741 /* get lock */
2742 PMAP_MAP_TO_HEAD_LOCK();
2743
2744 /*
2745 * map the ptes. If there's not already an L2 table for this
2746 * address, allocate one.
2747 */
2748 ptes = pmap_map_ptes(pmap); /* locks pmap */
2749 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2750 struct vm_page *ptp;
2751
2752 /* kernel should be pre-grown */
2753 KASSERT(pmap != pmap_kernel());
2754
2755 /* if failure is allowed then don't try too hard */
2756 ptp = pmap_get_ptp(pmap, va & PD_FRAME);
2757 if (ptp == NULL) {
2758 if (flags & PMAP_CANFAIL) {
2759 error = ENOMEM;
2760 goto out;
2761 }
2762 panic("pmap_enter: get ptp failed");
2763 }
2764 }
2765 opte = ptes[arm_btop(va)];
2766
2767 nflags = 0;
2768 if (prot & VM_PROT_WRITE)
2769 nflags |= PVF_WRITE;
2770 if (wired)
2771 nflags |= PVF_WIRED;
2772
2773 /* Is the pte valid ? If so then this page is already mapped */
2774 if (l2pte_valid(opte)) {
2775 /* Get the physical address of the current page mapped */
2776 opa = l2pte_pa(opte);
2777
2778 /* Are we mapping the same page ? */
2779 if (opa == pa) {
2780 /* Check to see if we're doing rw->ro. */
2781 if ((opte & L2_S_PROT_W) != 0 &&
2782 (prot & VM_PROT_WRITE) == 0) {
2783 /* Yup, flush the cache if current pmap. */
2784 if (pmap_is_curpmap(pmap))
2785 cpu_dcache_wb_range(va, NBPG);
2786 }
2787
2788 /* Has the wiring changed ? */
2789 if (pg != NULL) {
2790 simple_lock(&pg->mdpage.pvh_slock);
2791 (void) pmap_modify_pv(pmap, va, pg,
2792 PVF_WRITE | PVF_WIRED, nflags);
2793 simple_unlock(&pg->mdpage.pvh_slock);
2794 }
2795 } else {
2796 struct vm_page *opg;
2797
2798 /* We are replacing the page with a new one. */
2799 cpu_idcache_wbinv_range(va, NBPG);
2800
2801 /*
2802 * If it is part of our managed memory then we
2803 * must remove it from the PV list
2804 */
2805 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2806 simple_lock(&opg->mdpage.pvh_slock);
2807 pve = pmap_remove_pv(opg, pmap, va);
2808 simple_unlock(&opg->mdpage.pvh_slock);
2809 } else {
2810 pve = NULL;
2811 }
2812
2813 goto enter;
2814 }
2815 } else {
2816 opa = 0;
2817 pve = NULL;
2818 pmap_pte_addref(pmap, va);
2819
2820 /* pte is not valid so we must be hooking in a new page */
2821 ++pmap->pm_stats.resident_count;
2822
2823 enter:
2824 /*
2825 * Enter on the PV list if part of our managed memory
2826 */
2827 if (pg != NULL) {
2828 if (pve == NULL) {
2829 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2830 if (pve == NULL) {
2831 if (flags & PMAP_CANFAIL) {
2832 PTE_FLUSH_ALT(pmap,
2833 ptes[arm_btop(va)]);
2834 error = ENOMEM;
2835 goto out;
2836 }
2837 panic("pmap_enter: no pv entries "
2838 "available");
2839 }
2840 }
2841 /* enter_pv locks pvh when adding */
2842 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2843 } else {
2844 if (pve != NULL)
2845 pmap_free_pv(pmap, pve);
2846 }
2847 }
2848
2849 /* Construct the pte, giving the correct access. */
2850 npte = pa;
2851
2852 /* VA 0 is magic. */
2853 if (pmap != pmap_kernel() && va != vector_page)
2854 npte |= L2_S_PROT_U;
2855
2856 if (pg != NULL) {
2857 #ifdef DIAGNOSTIC
2858 if ((flags & VM_PROT_ALL) & ~prot)
2859 panic("pmap_enter: access_type exceeds prot");
2860 #endif
2861 npte |= pte_l2_s_cache_mode;
2862 if (flags & VM_PROT_WRITE) {
2863 npte |= L2_S_PROTO | L2_S_PROT_W;
2864 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2865 } else if (flags & VM_PROT_ALL) {
2866 npte |= L2_S_PROTO;
2867 pg->mdpage.pvh_attrs |= PVF_REF;
2868 } else
2869 npte |= L2_TYPE_INV;
2870 } else {
2871 if (prot & VM_PROT_WRITE)
2872 npte |= L2_S_PROTO | L2_S_PROT_W;
2873 else if (prot & VM_PROT_ALL)
2874 npte |= L2_S_PROTO;
2875 else
2876 npte |= L2_TYPE_INV;
2877 }
2878
2879 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
2880 #if ARM_NMMUS > 1
2881 # error "XXX Unable to use read/write-allocate and configure non-XScale"
2882 #endif
2883 /*
2884 * XXX BRUTAL HACK! This allows us to limp along with
2885 * XXX the read/write-allocate cache mode.
2886 */
2887 if (pmap == pmap_kernel())
2888 npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
2889 #endif
2890 ptes[arm_btop(va)] = npte;
2891 PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
2892
2893 if (pg != NULL) {
2894 simple_lock(&pg->mdpage.pvh_slock);
2895 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2896 simple_unlock(&pg->mdpage.pvh_slock);
2897 }
2898
2899 /* Better flush the TLB ... */
2900 cpu_tlb_flushID_SE(va);
2901 error = 0;
2902 out:
2903 pmap_unmap_ptes(pmap); /* unlocks pmap */
2904 PMAP_MAP_TO_HEAD_UNLOCK();
2905
2906 return error;
2907 }
2908
2909 /*
2910 * pmap_kenter_pa: enter a kernel mapping
2911 *
2912 * => no need to lock anything assume va is already allocated
2913 * => should be faster than normal pmap enter function
2914 */
2915 void
2916 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2917 {
2918 pt_entry_t *pte;
2919
2920 pte = vtopte(va);
2921 KASSERT(!pmap_pte_v(pte));
2922
2923 #ifdef PMAP_ALIAS_DEBUG
2924 {
2925 struct vm_page *pg;
2926 int s;
2927
2928 pg = PHYS_TO_VM_PAGE(pa);
2929 if (pg != NULL) {
2930 s = splhigh();
2931 if (pg->mdpage.ro_mappings == 0 &&
2932 pg->mdpage.rw_mappings == 0 &&
2933 pg->mdpage.kro_mappings == 0 &&
2934 pg->mdpage.krw_mappings == 0) {
2935 /* This case is okay. */
2936 } else if (pg->mdpage.rw_mappings == 0 &&
2937 pg->mdpage.krw_mappings == 0 &&
2938 (prot & VM_PROT_WRITE) == 0) {
2939 /* This case is okay. */
2940 } else {
2941 /* Something is awry. */
2942 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2943 "prot 0x%x\n", pg->mdpage.ro_mappings,
2944 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2945 pg->mdpage.krw_mappings, prot);
2946 Debugger();
2947 }
2948 if (prot & VM_PROT_WRITE)
2949 pg->mdpage.krw_mappings++;
2950 else
2951 pg->mdpage.kro_mappings++;
2952 splx(s);
2953 }
2954 }
2955 #endif /* PMAP_ALIAS_DEBUG */
2956
2957 *pte = L2_S_PROTO | pa |
2958 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2959 PTE_SYNC(pte);
2960 }
2961
2962 void
2963 pmap_kremove(vaddr_t va, vsize_t len)
2964 {
2965 pt_entry_t *pte;
2966 vaddr_t ova = va;
2967 vaddr_t olen = len;
2968
2969 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2970
2971 /*
2972 * We assume that we will only be called with small
2973 * regions of memory.
2974 */
2975
2976 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2977 pte = vtopte(va);
2978 #ifdef PMAP_ALIAS_DEBUG
2979 {
2980 struct vm_page *pg;
2981 int s;
2982
2983 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2984 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2985 s = splhigh();
2986 if (*pte & L2_S_PROT_W) {
2987 KASSERT(pg->mdpage.krw_mappings != 0);
2988 pg->mdpage.krw_mappings--;
2989 } else {
2990 KASSERT(pg->mdpage.kro_mappings != 0);
2991 pg->mdpage.kro_mappings--;
2992 }
2993 splx(s);
2994 }
2995 }
2996 #endif /* PMAP_ALIAS_DEBUG */
2997 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2998 *pte = 0;
2999 cpu_tlb_flushID_SE(va);
3000 }
3001 PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
3002 }
3003
3004 /*
3005 * pmap_page_protect:
3006 *
3007 * Lower the permission for all mappings to a given page.
3008 */
3009
3010 void
3011 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3012 {
3013
3014 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
3015 VM_PAGE_TO_PHYS(pg), prot));
3016
3017 switch(prot) {
3018 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3019 case VM_PROT_READ|VM_PROT_WRITE:
3020 return;
3021
3022 case VM_PROT_READ:
3023 case VM_PROT_READ|VM_PROT_EXECUTE:
3024 pmap_clearbit(pg, PVF_WRITE);
3025 break;
3026
3027 default:
3028 pmap_remove_all(pg);
3029 break;
3030 }
3031 }
3032
3033
3034 /*
3035 * Routine: pmap_unwire
3036 * Function: Clear the wired attribute for a map/virtual-address
3037 * pair.
3038 * In/out conditions:
3039 * The mapping must already exist in the pmap.
3040 */
3041
3042 void
3043 pmap_unwire(struct pmap *pmap, vaddr_t va)
3044 {
3045 pt_entry_t *ptes;
3046 struct vm_page *pg;
3047 paddr_t pa;
3048
3049 PMAP_MAP_TO_HEAD_LOCK();
3050 ptes = pmap_map_ptes(pmap); /* locks pmap */
3051
3052 if (pmap_pde_v(pmap_pde(pmap, va))) {
3053 #ifdef DIAGNOSTIC
3054 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3055 panic("pmap_unwire: invalid L2 PTE");
3056 #endif
3057 /* Extract the physical address of the page */
3058 pa = l2pte_pa(ptes[arm_btop(va)]);
3059 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3060
3061 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3062 goto out;
3063
3064 /* Update the wired bit in the pv entry for this page. */
3065 simple_lock(&pg->mdpage.pvh_slock);
3066 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
3067 simple_unlock(&pg->mdpage.pvh_slock);
3068 }
3069 #ifdef DIAGNOSTIC
3070 else {
3071 panic("pmap_unwire: invalid L1 PTE");
3072 }
3073 #endif
3074 out:
3075 pmap_unmap_ptes(pmap); /* unlocks pmap */
3076 PMAP_MAP_TO_HEAD_UNLOCK();
3077 }
3078
3079 /*
3080 * Routine: pmap_extract
3081 * Function:
3082 * Extract the physical page address associated
3083 * with the given map/virtual_address pair.
3084 */
3085 boolean_t
3086 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
3087 {
3088 pd_entry_t *pde;
3089 pt_entry_t *pte, *ptes;
3090 paddr_t pa;
3091
3092 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3093
3094 ptes = pmap_map_ptes(pmap); /* locks pmap */
3095
3096 pde = pmap_pde(pmap, va);
3097 pte = &ptes[arm_btop(va)];
3098
3099 if (pmap_pde_section(pde)) {
3100 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3101 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3102 goto out;
3103 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3104 PDEBUG(5, printf("no mapping\n"));
3105 goto failed;
3106 }
3107
3108 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3109 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3110 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3111 goto out;
3112 }
3113
3114 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3115 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3116
3117 out:
3118 if (pap != NULL)
3119 *pap = pa;
3120
3121 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3122 pmap_unmap_ptes(pmap); /* unlocks pmap */
3123 return (TRUE);
3124
3125 failed:
3126 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3127 pmap_unmap_ptes(pmap); /* unlocks pmap */
3128 return (FALSE);
3129 }
3130
3131
3132 /*
3133 * pmap_copy:
3134 *
3135 * Copy the range specified by src_addr/len from the source map to the
3136 * range dst_addr/len in the destination map.
3137 *
3138 * This routine is only advisory and need not do anything.
3139 */
3140 /* Call deleted in <arm/arm32/pmap.h> */
3141
3142 #if defined(PMAP_DEBUG)
3143 void
3144 pmap_dump_pvlist(phys, m)
3145 vaddr_t phys;
3146 char *m;
3147 {
3148 struct vm_page *pg;
3149 struct pv_entry *pv;
3150
3151 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3152 printf("INVALID PA\n");
3153 return;
3154 }
3155 simple_lock(&pg->mdpage.pvh_slock);
3156 printf("%s %08lx:", m, phys);
3157 if (pg->mdpage.pvh_list == NULL) {
3158 simple_unlock(&pg->mdpage.pvh_slock);
3159 printf(" no mappings\n");
3160 return;
3161 }
3162
3163 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3164 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3165 pv->pv_va, pv->pv_flags);
3166
3167 printf("\n");
3168 simple_unlock(&pg->mdpage.pvh_slock);
3169 }
3170
3171 #endif /* PMAP_DEBUG */
3172
3173 static pt_entry_t *
3174 pmap_map_ptes(struct pmap *pmap)
3175 {
3176 struct proc *p;
3177
3178 /* the kernel's pmap is always accessible */
3179 if (pmap == pmap_kernel()) {
3180 return (pt_entry_t *)PTE_BASE;
3181 }
3182
3183 if (pmap_is_curpmap(pmap)) {
3184 simple_lock(&pmap->pm_obj.vmobjlock);
3185 return (pt_entry_t *)PTE_BASE;
3186 }
3187
3188 p = curproc;
3189 KDASSERT(p != NULL);
3190
3191 /* need to lock both curpmap and pmap: use ordered locking */
3192 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3193 simple_lock(&pmap->pm_obj.vmobjlock);
3194 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3195 } else {
3196 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3197 simple_lock(&pmap->pm_obj.vmobjlock);
3198 }
3199
3200 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3201 pmap->pm_pptpt, 0);
3202 cpu_tlb_flushD();
3203 cpu_cpwait();
3204 return (pt_entry_t *)APTE_BASE;
3205 }
3206
3207 /*
3208 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3209 */
3210
3211 static void
3212 pmap_unmap_ptes(struct pmap *pmap)
3213 {
3214
3215 if (pmap == pmap_kernel()) {
3216 return;
3217 }
3218 if (pmap_is_curpmap(pmap)) {
3219 simple_unlock(&pmap->pm_obj.vmobjlock);
3220 } else {
3221 KDASSERT(curproc != NULL);
3222 simple_unlock(&pmap->pm_obj.vmobjlock);
3223 simple_unlock(
3224 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3225 }
3226 }
3227
3228 /*
3229 * Modify pte bits for all ptes corresponding to the given physical address.
3230 * We use `maskbits' rather than `clearbits' because we're always passing
3231 * constants and the latter would require an extra inversion at run-time.
3232 */
3233
3234 static void
3235 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3236 {
3237 struct pv_entry *pv;
3238 pt_entry_t *ptes, npte, opte;
3239 vaddr_t va;
3240
3241 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3242 VM_PAGE_TO_PHYS(pg), maskbits));
3243
3244 PMAP_HEAD_TO_MAP_LOCK();
3245 simple_lock(&pg->mdpage.pvh_slock);
3246
3247 /*
3248 * Clear saved attributes (modify, reference)
3249 */
3250 pg->mdpage.pvh_attrs &= ~maskbits;
3251
3252 if (pg->mdpage.pvh_list == NULL) {
3253 simple_unlock(&pg->mdpage.pvh_slock);
3254 PMAP_HEAD_TO_MAP_UNLOCK();
3255 return;
3256 }
3257
3258 /*
3259 * Loop over all current mappings setting/clearing as appropos
3260 */
3261 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3262 #ifdef PMAP_ALIAS_DEBUG
3263 {
3264 int s = splhigh();
3265 if ((maskbits & PVF_WRITE) != 0 &&
3266 (pv->pv_flags & PVF_WRITE) != 0) {
3267 KASSERT(pg->mdpage.rw_mappings != 0);
3268 pg->mdpage.rw_mappings--;
3269 pg->mdpage.ro_mappings++;
3270 }
3271 splx(s);
3272 }
3273 #endif /* PMAP_ALIAS_DEBUG */
3274 va = pv->pv_va;
3275 pv->pv_flags &= ~maskbits;
3276 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3277 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3278 npte = opte = ptes[arm_btop(va)];
3279 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3280 if ((pv->pv_flags & PVF_NC)) {
3281 /*
3282 * Entry is not cacheable: reenable
3283 * the cache, nothing to flush
3284 *
3285 * Don't turn caching on again if this
3286 * is a modified emulation. This
3287 * would be inconsitent with the
3288 * settings created by
3289 * pmap_vac_me_harder().
3290 *
3291 * There's no need to call
3292 * pmap_vac_me_harder() here: all
3293 * pages are loosing their write
3294 * permission.
3295 *
3296 */
3297 if (maskbits & PVF_WRITE) {
3298 npte |= pte_l2_s_cache_mode;
3299 pv->pv_flags &= ~PVF_NC;
3300 }
3301 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3302 /*
3303 * Entry is cacheable: check if pmap is
3304 * current if it is flush it,
3305 * otherwise it won't be in the cache
3306 */
3307 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3308 }
3309
3310 /* make the pte read only */
3311 npte &= ~L2_S_PROT_W;
3312 }
3313
3314 if (maskbits & PVF_REF) {
3315 if (pmap_is_curpmap(pv->pv_pmap) &&
3316 (pv->pv_flags & PVF_NC) == 0) {
3317 /*
3318 * Check npte here; we may have already
3319 * done the wbinv above, and the validity
3320 * of the PTE is the same for opte and
3321 * npte.
3322 */
3323 if (npte & L2_S_PROT_W) {
3324 cpu_idcache_wbinv_range(pv->pv_va,
3325 NBPG);
3326 } else if ((npte & L2_TYPE_MASK)
3327 != L2_TYPE_INV) {
3328 /* XXXJRT need idcache_inv_range */
3329 cpu_idcache_wbinv_range(pv->pv_va,
3330 NBPG);
3331 }
3332 }
3333
3334 /* make the pte invalid */
3335 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3336 }
3337
3338 if (npte != opte) {
3339 ptes[arm_btop(va)] = npte;
3340 PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
3341 /* Flush the TLB entry if a current pmap. */
3342 if (pmap_is_curpmap(pv->pv_pmap))
3343 cpu_tlb_flushID_SE(pv->pv_va);
3344 } else
3345 PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
3346
3347 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3348 }
3349 cpu_cpwait();
3350
3351 simple_unlock(&pg->mdpage.pvh_slock);
3352 PMAP_HEAD_TO_MAP_UNLOCK();
3353 }
3354
3355 /*
3356 * pmap_clear_modify:
3357 *
3358 * Clear the "modified" attribute for a page.
3359 */
3360 boolean_t
3361 pmap_clear_modify(struct vm_page *pg)
3362 {
3363 boolean_t rv;
3364
3365 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3366 rv = TRUE;
3367 pmap_clearbit(pg, PVF_MOD);
3368 } else
3369 rv = FALSE;
3370
3371 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3372 VM_PAGE_TO_PHYS(pg), rv));
3373
3374 return (rv);
3375 }
3376
3377 /*
3378 * pmap_clear_reference:
3379 *
3380 * Clear the "referenced" attribute for a page.
3381 */
3382 boolean_t
3383 pmap_clear_reference(struct vm_page *pg)
3384 {
3385 boolean_t rv;
3386
3387 if (pg->mdpage.pvh_attrs & PVF_REF) {
3388 rv = TRUE;
3389 pmap_clearbit(pg, PVF_REF);
3390 } else
3391 rv = FALSE;
3392
3393 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3394 VM_PAGE_TO_PHYS(pg), rv));
3395
3396 return (rv);
3397 }
3398
3399 /*
3400 * pmap_is_modified:
3401 *
3402 * Test if a page has the "modified" attribute.
3403 */
3404 /* See <arm/arm32/pmap.h> */
3405
3406 /*
3407 * pmap_is_referenced:
3408 *
3409 * Test if a page has the "referenced" attribute.
3410 */
3411 /* See <arm/arm32/pmap.h> */
3412
3413 int
3414 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3415 {
3416 pt_entry_t *ptes;
3417 struct vm_page *pg;
3418 paddr_t pa;
3419 u_int flags;
3420 int rv = 0;
3421
3422 PDEBUG(2, printf("pmap_modified_emulation\n"));
3423
3424 PMAP_MAP_TO_HEAD_LOCK();
3425 ptes = pmap_map_ptes(pmap); /* locks pmap */
3426
3427 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3428 PDEBUG(2, printf("L1 PTE invalid\n"));
3429 goto out;
3430 }
3431
3432 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3433
3434 /*
3435 * Don't need to PTE_FLUSH_ALT() here; this is always done
3436 * with the current pmap.
3437 */
3438
3439 /* Check for a invalid pte */
3440 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3441 goto out;
3442
3443 /* This can happen if user code tries to access kernel memory. */
3444 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3445 goto out;
3446
3447 /* Extract the physical address of the page */
3448 pa = l2pte_pa(ptes[arm_btop(va)]);
3449 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3450 goto out;
3451
3452 /* Get the current flags for this page. */
3453 simple_lock(&pg->mdpage.pvh_slock);
3454
3455 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3456 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3457
3458 /*
3459 * Do the flags say this page is writable ? If not then it is a
3460 * genuine write fault. If yes then the write fault is our fault
3461 * as we did not reflect the write access in the PTE. Now we know
3462 * a write has occurred we can correct this and also set the
3463 * modified bit
3464 */
3465 if (~flags & PVF_WRITE) {
3466 simple_unlock(&pg->mdpage.pvh_slock);
3467 goto out;
3468 }
3469
3470 PDEBUG(0,
3471 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3472 va, ptes[arm_btop(va)]));
3473 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3474
3475 /*
3476 * Re-enable write permissions for the page. No need to call
3477 * pmap_vac_me_harder(), since this is just a
3478 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3479 * We've already set the cacheable bits based on the assumption
3480 * that we can write to this page.
3481 */
3482 ptes[arm_btop(va)] =
3483 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3484 PTE_SYNC(&ptes[arm_btop(va)]);
3485 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3486
3487 simple_unlock(&pg->mdpage.pvh_slock);
3488
3489 cpu_tlb_flushID_SE(va);
3490 cpu_cpwait();
3491 rv = 1;
3492 out:
3493 pmap_unmap_ptes(pmap); /* unlocks pmap */
3494 PMAP_MAP_TO_HEAD_UNLOCK();
3495 return (rv);
3496 }
3497
3498 int
3499 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3500 {
3501 pt_entry_t *ptes;
3502 struct vm_page *pg;
3503 paddr_t pa;
3504 int rv = 0;
3505
3506 PDEBUG(2, printf("pmap_handled_emulation\n"));
3507
3508 PMAP_MAP_TO_HEAD_LOCK();
3509 ptes = pmap_map_ptes(pmap); /* locks pmap */
3510
3511 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3512 PDEBUG(2, printf("L1 PTE invalid\n"));
3513 goto out;
3514 }
3515
3516 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3517
3518 /*
3519 * Don't need to PTE_FLUSH_ALT() here; this is always done
3520 * with the current pmap.
3521 */
3522
3523 /* Check for invalid pte */
3524 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3525 goto out;
3526
3527 /* This can happen if user code tries to access kernel memory. */
3528 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3529 goto out;
3530
3531 /* Extract the physical address of the page */
3532 pa = l2pte_pa(ptes[arm_btop(va)]);
3533 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3534 goto out;
3535
3536 simple_lock(&pg->mdpage.pvh_slock);
3537
3538 /*
3539 * Ok we just enable the pte and mark the attibs as handled
3540 * XXX Should we traverse the PV list and enable all PTEs?
3541 */
3542 PDEBUG(0,
3543 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3544 va, ptes[arm_btop(va)]));
3545 pg->mdpage.pvh_attrs |= PVF_REF;
3546
3547 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3548 PTE_SYNC(&ptes[arm_btop(va)]);
3549 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3550
3551 simple_unlock(&pg->mdpage.pvh_slock);
3552
3553 cpu_tlb_flushID_SE(va);
3554 cpu_cpwait();
3555 rv = 1;
3556 out:
3557 pmap_unmap_ptes(pmap); /* unlocks pmap */
3558 PMAP_MAP_TO_HEAD_UNLOCK();
3559 return (rv);
3560 }
3561
3562 /*
3563 * pmap_collect: free resources held by a pmap
3564 *
3565 * => optional function.
3566 * => called when a process is swapped out to free memory.
3567 */
3568
3569 void
3570 pmap_collect(struct pmap *pmap)
3571 {
3572 }
3573
3574 /*
3575 * Routine: pmap_procwr
3576 *
3577 * Function:
3578 * Synchronize caches corresponding to [addr, addr+len) in p.
3579 *
3580 */
3581 void
3582 pmap_procwr(struct proc *p, vaddr_t va, int len)
3583 {
3584 /* We only need to do anything if it is the current process. */
3585 if (p == curproc)
3586 cpu_icache_sync_range(va, len);
3587 }
3588 /*
3589 * PTP functions
3590 */
3591
3592 /*
3593 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3594 *
3595 * => pmap should NOT be pmap_kernel()
3596 * => pmap should be locked
3597 */
3598
3599 static struct vm_page *
3600 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3601 {
3602 struct vm_page *ptp;
3603
3604 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3605
3606 if (pmap_pde_page(pmap_pde(pmap, va))) {
3607
3608 /* valid... check hint (saves us a PA->PG lookup) */
3609 if (pmap->pm_ptphint &&
3610 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3611 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3612 return (pmap->pm_ptphint);
3613 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3614 #ifdef DIAGNOSTIC
3615 if (ptp == NULL)
3616 panic("pmap_get_ptp: unmanaged user PTP");
3617 #endif
3618 pmap->pm_ptphint = ptp;
3619 return(ptp);
3620 }
3621
3622 /* allocate a new PTP (updates ptphint) */
3623 return (pmap_alloc_ptp(pmap, va));
3624 }
3625
3626 /*
3627 * pmap_alloc_ptp: allocate a PTP for a PMAP
3628 *
3629 * => pmap should already be locked by caller
3630 * => we use the ptp's wire_count to count the number of active mappings
3631 * in the PTP (we start it at one to prevent any chance this PTP
3632 * will ever leak onto the active/inactive queues)
3633 */
3634
3635 /*__inline */ static struct vm_page *
3636 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3637 {
3638 struct vm_page *ptp;
3639
3640 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3641
3642 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3643 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3644 if (ptp == NULL)
3645 return (NULL);
3646
3647 /* got one! */
3648 ptp->flags &= ~PG_BUSY; /* never busy */
3649 ptp->wire_count = 1; /* no mappings yet */
3650 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
3651 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3652 pmap->pm_stats.resident_count++; /* count PTP as resident */
3653 pmap->pm_ptphint = ptp;
3654 return (ptp);
3655 }
3656
3657 vaddr_t
3658 pmap_growkernel(vaddr_t maxkvaddr)
3659 {
3660 struct pmap *kpm = pmap_kernel(), *pm;
3661 int s;
3662 paddr_t ptaddr;
3663 struct vm_page *ptp;
3664
3665 if (maxkvaddr <= pmap_curmaxkvaddr)
3666 goto out; /* we are OK */
3667 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3668 pmap_curmaxkvaddr, maxkvaddr));
3669
3670 /*
3671 * whoops! we need to add kernel PTPs
3672 */
3673
3674 s = splhigh(); /* to be safe */
3675 simple_lock(&kpm->pm_obj.vmobjlock);
3676 /* due to the way the arm pmap works we map 4MB at a time */
3677 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3678 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3679
3680 if (uvm.page_init_done == FALSE) {
3681
3682 /*
3683 * we're growing the kernel pmap early (from
3684 * uvm_pageboot_alloc()). this case must be
3685 * handled a little differently.
3686 */
3687
3688 if (uvm_page_physget(&ptaddr) == FALSE)
3689 panic("pmap_growkernel: out of memory");
3690 pmap_zero_page(ptaddr);
3691
3692 /* map this page in */
3693 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
3694 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3695
3696 /* count PTP as resident */
3697 kpm->pm_stats.resident_count++;
3698 continue;
3699 }
3700
3701 /*
3702 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3703 * pmap_initialized == FALSE CASE! WE MAY BE
3704 * INVOKED WHILE pmap_init() IS RUNNING!
3705 */
3706
3707 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3708 panic("pmap_growkernel: alloc ptp failed");
3709
3710 /* distribute new kernel PTP to all active pmaps */
3711 simple_lock(&pmaps_lock);
3712 LIST_FOREACH(pm, &pmaps, pm_list) {
3713 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3714 VM_PAGE_TO_PHYS(ptp),
3715 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3716 }
3717
3718 /* Invalidate the PTPT cache. */
3719 pool_cache_invalidate(&pmap_ptpt_cache);
3720 pmap_ptpt_cache_generation++;
3721
3722 simple_unlock(&pmaps_lock);
3723 }
3724
3725 /*
3726 * flush out the cache, expensive but growkernel will happen so
3727 * rarely
3728 */
3729 cpu_tlb_flushD();
3730 cpu_cpwait();
3731
3732 simple_unlock(&kpm->pm_obj.vmobjlock);
3733 splx(s);
3734
3735 out:
3736 return (pmap_curmaxkvaddr);
3737 }
3738
3739 /************************ Utility routines ****************************/
3740
3741 /*
3742 * vector_page_setprot:
3743 *
3744 * Manipulate the protection of the vector page.
3745 */
3746 void
3747 vector_page_setprot(int prot)
3748 {
3749 pt_entry_t *pte;
3750
3751 pte = vtopte(vector_page);
3752
3753 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3754 PTE_SYNC(pte);
3755 cpu_tlb_flushD_SE(vector_page);
3756 cpu_cpwait();
3757 }
3758
3759 /************************ Bootstrapping routines ****************************/
3760
3761 /*
3762 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3763 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3764 * find them as necessary.
3765 *
3766 * Note that the data on this list is not valid after initarm() returns.
3767 */
3768 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3769
3770 static vaddr_t
3771 kernel_pt_lookup(paddr_t pa)
3772 {
3773 pv_addr_t *pv;
3774
3775 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3776 if (pv->pv_pa == pa)
3777 return (pv->pv_va);
3778 }
3779 return (0);
3780 }
3781
3782 /*
3783 * pmap_map_section:
3784 *
3785 * Create a single section mapping.
3786 */
3787 void
3788 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3789 {
3790 pd_entry_t *pde = (pd_entry_t *) l1pt;
3791 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3792
3793 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3794
3795 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3796 L1_S_PROT(PTE_KERNEL, prot) | fl;
3797 }
3798
3799 /*
3800 * pmap_map_entry:
3801 *
3802 * Create a single page mapping.
3803 */
3804 void
3805 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3806 {
3807 pd_entry_t *pde = (pd_entry_t *) l1pt;
3808 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3809 pt_entry_t *pte;
3810
3811 KASSERT(((va | pa) & PGOFSET) == 0);
3812
3813 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3814 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3815
3816 pte = (pt_entry_t *)
3817 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3818 if (pte == NULL)
3819 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3820
3821 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3822 L2_S_PROT(PTE_KERNEL, prot) | fl;
3823 }
3824
3825 /*
3826 * pmap_link_l2pt:
3827 *
3828 * Link the L2 page table specified by "pa" into the L1
3829 * page table at the slot for "va".
3830 */
3831 void
3832 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3833 {
3834 pd_entry_t *pde = (pd_entry_t *) l1pt;
3835 u_int slot = va >> L1_S_SHIFT;
3836
3837 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3838
3839 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3840 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3841 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3842 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3843
3844 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3845 }
3846
3847 /*
3848 * pmap_map_chunk:
3849 *
3850 * Map a chunk of memory using the most efficient mappings
3851 * possible (section, large page, small page) into the
3852 * provided L1 and L2 tables at the specified virtual address.
3853 */
3854 vsize_t
3855 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3856 int prot, int cache)
3857 {
3858 pd_entry_t *pde = (pd_entry_t *) l1pt;
3859 pt_entry_t *pte, fl;
3860 vsize_t resid;
3861 int i;
3862
3863 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3864
3865 if (l1pt == 0)
3866 panic("pmap_map_chunk: no L1 table provided");
3867
3868 #ifdef VERBOSE_INIT_ARM
3869 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3870 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3871 #endif
3872
3873 size = resid;
3874
3875 while (resid > 0) {
3876 /* See if we can use a section mapping. */
3877 if (((pa | va) & L1_S_OFFSET) == 0 &&
3878 resid >= L1_S_SIZE) {
3879 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3880 #ifdef VERBOSE_INIT_ARM
3881 printf("S");
3882 #endif
3883 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3884 L1_S_PROT(PTE_KERNEL, prot) | fl;
3885 va += L1_S_SIZE;
3886 pa += L1_S_SIZE;
3887 resid -= L1_S_SIZE;
3888 continue;
3889 }
3890
3891 /*
3892 * Ok, we're going to use an L2 table. Make sure
3893 * one is actually in the corresponding L1 slot
3894 * for the current VA.
3895 */
3896 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3897 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3898
3899 pte = (pt_entry_t *)
3900 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3901 if (pte == NULL)
3902 panic("pmap_map_chunk: can't find L2 table for VA"
3903 "0x%08lx", va);
3904
3905 /* See if we can use a L2 large page mapping. */
3906 if (((pa | va) & L2_L_OFFSET) == 0 &&
3907 resid >= L2_L_SIZE) {
3908 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3909 #ifdef VERBOSE_INIT_ARM
3910 printf("L");
3911 #endif
3912 for (i = 0; i < 16; i++) {
3913 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3914 L2_L_PROTO | pa |
3915 L2_L_PROT(PTE_KERNEL, prot) | fl;
3916 }
3917 va += L2_L_SIZE;
3918 pa += L2_L_SIZE;
3919 resid -= L2_L_SIZE;
3920 continue;
3921 }
3922
3923 /* Use a small page mapping. */
3924 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3925 #ifdef VERBOSE_INIT_ARM
3926 printf("P");
3927 #endif
3928 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3929 L2_S_PROT(PTE_KERNEL, prot) | fl;
3930 va += NBPG;
3931 pa += NBPG;
3932 resid -= NBPG;
3933 }
3934 #ifdef VERBOSE_INIT_ARM
3935 printf("\n");
3936 #endif
3937 return (size);
3938 }
3939
3940 /********************** PTE initialization routines **************************/
3941
3942 /*
3943 * These routines are called when the CPU type is identified to set up
3944 * the PTE prototypes, cache modes, etc.
3945 *
3946 * The variables are always here, just in case LKMs need to reference
3947 * them (though, they shouldn't).
3948 */
3949
3950 pt_entry_t pte_l1_s_cache_mode;
3951 pt_entry_t pte_l1_s_cache_mask;
3952
3953 pt_entry_t pte_l2_l_cache_mode;
3954 pt_entry_t pte_l2_l_cache_mask;
3955
3956 pt_entry_t pte_l2_s_cache_mode;
3957 pt_entry_t pte_l2_s_cache_mask;
3958
3959 pt_entry_t pte_l2_s_prot_u;
3960 pt_entry_t pte_l2_s_prot_w;
3961 pt_entry_t pte_l2_s_prot_mask;
3962
3963 pt_entry_t pte_l1_s_proto;
3964 pt_entry_t pte_l1_c_proto;
3965 pt_entry_t pte_l2_s_proto;
3966
3967 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3968 void (*pmap_zero_page_func)(paddr_t);
3969
3970 #if ARM_MMU_GENERIC == 1
3971 void
3972 pmap_pte_init_generic(void)
3973 {
3974
3975 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3976 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3977
3978 pte_l2_l_cache_mode = L2_B|L2_C;
3979 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3980
3981 pte_l2_s_cache_mode = L2_B|L2_C;
3982 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3983
3984 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3985 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3986 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3987
3988 pte_l1_s_proto = L1_S_PROTO_generic;
3989 pte_l1_c_proto = L1_C_PROTO_generic;
3990 pte_l2_s_proto = L2_S_PROTO_generic;
3991
3992 pmap_copy_page_func = pmap_copy_page_generic;
3993 pmap_zero_page_func = pmap_zero_page_generic;
3994 }
3995
3996 #if defined(CPU_ARM9)
3997 void
3998 pmap_pte_init_arm9(void)
3999 {
4000
4001 /*
4002 * ARM9 is compatible with generic, but we want to use
4003 * write-through caching for now.
4004 */
4005 pmap_pte_init_generic();
4006
4007 pte_l1_s_cache_mode = L1_S_C;
4008 pte_l2_l_cache_mode = L2_C;
4009 pte_l2_s_cache_mode = L2_C;
4010 }
4011 #endif /* CPU_ARM9 */
4012 #endif /* ARM_MMU_GENERIC == 1 */
4013
4014 #if ARM_MMU_XSCALE == 1
4015 void
4016 pmap_pte_init_xscale(void)
4017 {
4018 uint32_t auxctl;
4019
4020 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4021 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4022
4023 pte_l2_l_cache_mode = L2_B|L2_C;
4024 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4025
4026 pte_l2_s_cache_mode = L2_B|L2_C;
4027 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4028
4029 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4030 /*
4031 * The XScale core has an enhanced mode where writes that
4032 * miss the cache cause a cache line to be allocated. This
4033 * is significantly faster than the traditional, write-through
4034 * behavior of this case.
4035 *
4036 * However, there is a bug lurking in this pmap module, or in
4037 * other parts of the VM system, or both, which causes corruption
4038 * of NFS-backed files when this cache mode is used. We have
4039 * an ugly work-around for this problem (disable r/w-allocate
4040 * for managed kernel mappings), but the bug is still evil enough
4041 * to consider this cache mode "experimental".
4042 */
4043 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4044 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4045 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4046 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4047
4048 #ifdef XSCALE_CACHE_WRITE_THROUGH
4049 /*
4050 * Some versions of the XScale core have various bugs in
4051 * their cache units, the work-around for which is to run
4052 * the cache in write-through mode. Unfortunately, this
4053 * has a major (negative) impact on performance. So, we
4054 * go ahead and run fast-and-loose, in the hopes that we
4055 * don't line up the planets in a way that will trip the
4056 * bugs.
4057 *
4058 * However, we give you the option to be slow-but-correct.
4059 */
4060 pte_l1_s_cache_mode = L1_S_C;
4061 pte_l2_l_cache_mode = L2_C;
4062 pte_l2_s_cache_mode = L2_C;
4063 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4064
4065 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4066 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4067 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4068
4069 pte_l1_s_proto = L1_S_PROTO_xscale;
4070 pte_l1_c_proto = L1_C_PROTO_xscale;
4071 pte_l2_s_proto = L2_S_PROTO_xscale;
4072
4073 pmap_copy_page_func = pmap_copy_page_xscale;
4074 pmap_zero_page_func = pmap_zero_page_xscale;
4075
4076 /*
4077 * Disable ECC protection of page table access, for now.
4078 */
4079 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4080 : "=r" (auxctl));
4081 auxctl &= ~XSCALE_AUXCTL_P;
4082 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4083 :
4084 : "r" (auxctl));
4085 }
4086
4087 /*
4088 * xscale_setup_minidata:
4089 *
4090 * Set up the mini-data cache clean area. We require the
4091 * caller to allocate the right amount of physically and
4092 * virtually contiguous space.
4093 */
4094 void
4095 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4096 {
4097 extern vaddr_t xscale_minidata_clean_addr;
4098 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4099 pd_entry_t *pde = (pd_entry_t *) l1pt;
4100 pt_entry_t *pte;
4101 vsize_t size;
4102 uint32_t auxctl;
4103
4104 xscale_minidata_clean_addr = va;
4105
4106 /* Round it to page size. */
4107 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4108
4109 for (; size != 0;
4110 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4111 pte = (pt_entry_t *)
4112 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4113 if (pte == NULL)
4114 panic("xscale_setup_minidata: can't find L2 table for "
4115 "VA 0x%08lx", va);
4116 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4117 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4118 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4119 }
4120
4121 /*
4122 * Configure the mini-data cache for write-back with
4123 * read/write-allocate.
4124 *
4125 * NOTE: In order to reconfigure the mini-data cache, we must
4126 * make sure it contains no valid data! In order to do that,
4127 * we must issue a global data cache invalidate command!
4128 *
4129 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4130 * THIS IS VERY IMPORTANT!
4131 */
4132
4133 /* Invalidate data and mini-data. */
4134 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4135 :
4136 : "r" (auxctl));
4137
4138
4139 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4140 : "=r" (auxctl));
4141 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4142 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4143 :
4144 : "r" (auxctl));
4145 }
4146 #endif /* ARM_MMU_XSCALE == 1 */
4147