pmap.c revision 1.116 1 /* $NetBSD: pmap.c,v 1.116 2002/09/05 18:34:00 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.116 2002/09/05 18:34:00 jdolecek Exp $");
147
148 #ifdef PMAP_DEBUG
149 #define PDEBUG(_lev_,_stat_) \
150 if (pmap_debug_level >= (_lev_)) \
151 ((_stat_))
152 int pmap_debug_level = -2;
153 void pmap_dump_pvlist(vaddr_t phys, char *m);
154
155 /*
156 * for switching to potentially finer grained debugging
157 */
158 #define PDB_FOLLOW 0x0001
159 #define PDB_INIT 0x0002
160 #define PDB_ENTER 0x0004
161 #define PDB_REMOVE 0x0008
162 #define PDB_CREATE 0x0010
163 #define PDB_PTPAGE 0x0020
164 #define PDB_GROWKERN 0x0040
165 #define PDB_BITS 0x0080
166 #define PDB_COLLECT 0x0100
167 #define PDB_PROTECT 0x0200
168 #define PDB_MAP_L1 0x0400
169 #define PDB_BOOTSTRAP 0x1000
170 #define PDB_PARANOIA 0x2000
171 #define PDB_WIRING 0x4000
172 #define PDB_PVDUMP 0x8000
173
174 int debugmap = 0;
175 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
176 #define NPDEBUG(_lev_,_stat_) \
177 if (pmapdebug & (_lev_)) \
178 ((_stat_))
179
180 #else /* PMAP_DEBUG */
181 #define PDEBUG(_lev_,_stat_) /* Nothing */
182 #define NPDEBUG(_lev_,_stat_) /* Nothing */
183 #endif /* PMAP_DEBUG */
184
185 struct pmap kernel_pmap_store;
186
187 /*
188 * linked list of all non-kernel pmaps
189 */
190
191 static LIST_HEAD(, pmap) pmaps;
192
193 /*
194 * pool that pmap structures are allocated from
195 */
196
197 struct pool pmap_pmap_pool;
198
199 /*
200 * pool/cache that PT-PT's are allocated from
201 */
202
203 struct pool pmap_ptpt_pool;
204 struct pool_cache pmap_ptpt_cache;
205 u_int pmap_ptpt_cache_generation;
206
207 static void *pmap_ptpt_page_alloc(struct pool *, int);
208 static void pmap_ptpt_page_free(struct pool *, void *);
209
210 struct pool_allocator pmap_ptpt_allocator = {
211 pmap_ptpt_page_alloc, pmap_ptpt_page_free,
212 };
213
214 static int pmap_ptpt_ctor(void *, void *, int);
215
216 static pt_entry_t *csrc_pte, *cdst_pte;
217 static vaddr_t csrcp, cdstp;
218
219 char *memhook;
220 extern caddr_t msgbufaddr;
221
222 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
223 /*
224 * locking data structures
225 */
226
227 static struct lock pmap_main_lock;
228 static struct simplelock pvalloc_lock;
229 static struct simplelock pmaps_lock;
230 #ifdef LOCKDEBUG
231 #define PMAP_MAP_TO_HEAD_LOCK() \
232 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
233 #define PMAP_MAP_TO_HEAD_UNLOCK() \
234 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
235
236 #define PMAP_HEAD_TO_MAP_LOCK() \
237 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
238 #define PMAP_HEAD_TO_MAP_UNLOCK() \
239 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
240 #else
241 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
242 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
243 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
244 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
245 #endif /* LOCKDEBUG */
246
247 /*
248 * pv_page management structures: locked by pvalloc_lock
249 */
250
251 TAILQ_HEAD(pv_pagelist, pv_page);
252 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
253 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
254 static int pv_nfpvents; /* # of free pv entries */
255 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
256 static vaddr_t pv_cachedva; /* cached VA for later use */
257
258 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
259 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
260 /* high water mark */
261
262 /*
263 * local prototypes
264 */
265
266 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
267 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
268 #define ALLOCPV_NEED 0 /* need PV now */
269 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
270 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
271 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
272 static void pmap_enter_pv __P((struct vm_page *,
273 struct pv_entry *, struct pmap *,
274 vaddr_t, struct vm_page *, int));
275 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
276 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
277 static void pmap_free_pv_doit __P((struct pv_entry *));
278 static void pmap_free_pvpage __P((void));
279 static boolean_t pmap_is_curpmap __P((struct pmap *));
280 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
281 vaddr_t));
282 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
283 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
284
285 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
286 u_int, u_int));
287
288 /*
289 * Structure that describes and L1 table.
290 */
291 struct l1pt {
292 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
293 struct pglist pt_plist; /* Allocated page list */
294 vaddr_t pt_va; /* Allocated virtual address */
295 int pt_flags; /* Flags */
296 };
297 #define PTFLAG_STATIC 0x01 /* Statically allocated */
298 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
299 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
300
301 static void pmap_free_l1pt __P((struct l1pt *));
302 static int pmap_allocpagedir __P((struct pmap *));
303 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
304 static void pmap_remove_all __P((struct vm_page *));
305
306 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
307 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
308 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
309
310 extern paddr_t physical_start;
311 extern paddr_t physical_end;
312 extern unsigned int free_pages;
313 extern int max_processes;
314
315 vaddr_t virtual_avail;
316 vaddr_t virtual_end;
317 vaddr_t pmap_curmaxkvaddr;
318
319 vaddr_t avail_start;
320 vaddr_t avail_end;
321
322 extern pv_addr_t systempage;
323
324 /* Variables used by the L1 page table queue code */
325 SIMPLEQ_HEAD(l1pt_queue, l1pt);
326 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
327 static int l1pt_static_queue_count; /* items in the static l1 queue */
328 static int l1pt_static_create_count; /* static l1 items created */
329 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
330 static int l1pt_queue_count; /* items in the l1 queue */
331 static int l1pt_create_count; /* stat - L1's create count */
332 static int l1pt_reuse_count; /* stat - L1's reused count */
333
334 /* Local function prototypes (not used outside this file) */
335 void pmap_pinit __P((struct pmap *));
336 void pmap_freepagedir __P((struct pmap *));
337
338 /* Other function prototypes */
339 extern void bzero_page __P((vaddr_t));
340 extern void bcopy_page __P((vaddr_t, vaddr_t));
341
342 struct l1pt *pmap_alloc_l1pt __P((void));
343 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
344 vaddr_t l2pa, int));
345
346 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
347 static void pmap_unmap_ptes __P((struct pmap *));
348
349 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
350 pt_entry_t *, boolean_t));
351 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
352 pt_entry_t *, boolean_t));
353 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
354 pt_entry_t *, boolean_t));
355
356 /*
357 * real definition of pv_entry.
358 */
359
360 struct pv_entry {
361 struct pv_entry *pv_next; /* next pv_entry */
362 struct pmap *pv_pmap; /* pmap where mapping lies */
363 vaddr_t pv_va; /* virtual address for mapping */
364 int pv_flags; /* flags */
365 struct vm_page *pv_ptp; /* vm_page for the ptp */
366 };
367
368 /*
369 * pv_entrys are dynamically allocated in chunks from a single page.
370 * we keep track of how many pv_entrys are in use for each page and
371 * we can free pv_entry pages if needed. there is one lock for the
372 * entire allocation system.
373 */
374
375 struct pv_page_info {
376 TAILQ_ENTRY(pv_page) pvpi_list;
377 struct pv_entry *pvpi_pvfree;
378 int pvpi_nfree;
379 };
380
381 /*
382 * number of pv_entry's in a pv_page
383 * (note: won't work on systems where NPBG isn't a constant)
384 */
385
386 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
387 sizeof(struct pv_entry))
388
389 /*
390 * a pv_page: where pv_entrys are allocated from
391 */
392
393 struct pv_page {
394 struct pv_page_info pvinfo;
395 struct pv_entry pvents[PVE_PER_PVPAGE];
396 };
397
398 #ifdef MYCROFT_HACK
399 int mycroft_hack = 0;
400 #endif
401
402 /* Function to set the debug level of the pmap code */
403
404 #ifdef PMAP_DEBUG
405 void
406 pmap_debug(int level)
407 {
408 pmap_debug_level = level;
409 printf("pmap_debug: level=%d\n", pmap_debug_level);
410 }
411 #endif /* PMAP_DEBUG */
412
413 __inline static boolean_t
414 pmap_is_curpmap(struct pmap *pmap)
415 {
416
417 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
418 pmap == pmap_kernel())
419 return (TRUE);
420
421 return (FALSE);
422 }
423
424 /*
425 * PTE_SYNC_CURRENT:
426 *
427 * Make sure the pte is flushed to RAM. If the pmap is
428 * not the current pmap, then also evict the pte from
429 * any cache lines.
430 */
431 #define PTE_SYNC_CURRENT(pmap, pte) \
432 do { \
433 if (pmap_is_curpmap(pmap)) \
434 PTE_SYNC(pte); \
435 else \
436 PTE_FLUSH(pte); \
437 } while (/*CONSTCOND*/0)
438
439 /*
440 * PTE_FLUSH_ALT:
441 *
442 * Make sure the pte is not in any cache lines. We expect
443 * this to be used only when a pte has not been modified.
444 */
445 #define PTE_FLUSH_ALT(pmap, pte) \
446 do { \
447 if (pmap_is_curpmap(pmap) == 0) \
448 PTE_FLUSH(pte); \
449 } while (/*CONSTCOND*/0)
450
451 /*
452 * p v _ e n t r y f u n c t i o n s
453 */
454
455 /*
456 * pv_entry allocation functions:
457 * the main pv_entry allocation functions are:
458 * pmap_alloc_pv: allocate a pv_entry structure
459 * pmap_free_pv: free one pv_entry
460 * pmap_free_pvs: free a list of pv_entrys
461 *
462 * the rest are helper functions
463 */
464
465 /*
466 * pmap_alloc_pv: inline function to allocate a pv_entry structure
467 * => we lock pvalloc_lock
468 * => if we fail, we call out to pmap_alloc_pvpage
469 * => 3 modes:
470 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
471 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
472 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
473 * one now
474 *
475 * "try" is for optional functions like pmap_copy().
476 */
477
478 __inline static struct pv_entry *
479 pmap_alloc_pv(struct pmap *pmap, int mode)
480 {
481 struct pv_page *pvpage;
482 struct pv_entry *pv;
483
484 simple_lock(&pvalloc_lock);
485
486 pvpage = TAILQ_FIRST(&pv_freepages);
487
488 if (pvpage != NULL) {
489 pvpage->pvinfo.pvpi_nfree--;
490 if (pvpage->pvinfo.pvpi_nfree == 0) {
491 /* nothing left in this one? */
492 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
493 }
494 pv = pvpage->pvinfo.pvpi_pvfree;
495 KASSERT(pv);
496 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
497 pv_nfpvents--; /* took one from pool */
498 } else {
499 pv = NULL; /* need more of them */
500 }
501
502 /*
503 * if below low water mark or we didn't get a pv_entry we try and
504 * create more pv_entrys ...
505 */
506
507 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
508 if (pv == NULL)
509 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
510 mode : ALLOCPV_NEED);
511 else
512 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
513 }
514
515 simple_unlock(&pvalloc_lock);
516 return(pv);
517 }
518
519 /*
520 * pmap_alloc_pvpage: maybe allocate a new pvpage
521 *
522 * if need_entry is false: try and allocate a new pv_page
523 * if need_entry is true: try and allocate a new pv_page and return a
524 * new pv_entry from it. if we are unable to allocate a pv_page
525 * we make a last ditch effort to steal a pv_page from some other
526 * mapping. if that fails, we panic...
527 *
528 * => we assume that the caller holds pvalloc_lock
529 */
530
531 static struct pv_entry *
532 pmap_alloc_pvpage(struct pmap *pmap, int mode)
533 {
534 struct vm_page *pg;
535 struct pv_page *pvpage;
536 struct pv_entry *pv;
537 int s;
538
539 /*
540 * if we need_entry and we've got unused pv_pages, allocate from there
541 */
542
543 pvpage = TAILQ_FIRST(&pv_unusedpgs);
544 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
545
546 /* move it to pv_freepages list */
547 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
548 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
549
550 /* allocate a pv_entry */
551 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
552 pv = pvpage->pvinfo.pvpi_pvfree;
553 KASSERT(pv);
554 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
555
556 pv_nfpvents--; /* took one from pool */
557 return(pv);
558 }
559
560 /*
561 * see if we've got a cached unmapped VA that we can map a page in.
562 * if not, try to allocate one.
563 */
564
565
566 if (pv_cachedva == 0) {
567 s = splvm();
568 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
569 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
570 splx(s);
571 if (pv_cachedva == 0) {
572 return (NULL);
573 }
574 }
575
576 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
577 UVM_PGA_USERESERVE);
578
579 if (pg == NULL)
580 return (NULL);
581 pg->flags &= ~PG_BUSY; /* never busy */
582
583 /*
584 * add a mapping for our new pv_page and free its entrys (save one!)
585 *
586 * NOTE: If we are allocating a PV page for the kernel pmap, the
587 * pmap is already locked! (...but entering the mapping is safe...)
588 */
589
590 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
591 VM_PROT_READ|VM_PROT_WRITE);
592 pmap_update(pmap_kernel());
593 pvpage = (struct pv_page *) pv_cachedva;
594 pv_cachedva = 0;
595 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
596 }
597
598 /*
599 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
600 *
601 * => caller must hold pvalloc_lock
602 * => if need_entry is true, we allocate and return one pv_entry
603 */
604
605 static struct pv_entry *
606 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
607 {
608 int tofree, lcv;
609
610 /* do we need to return one? */
611 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
612
613 pvp->pvinfo.pvpi_pvfree = NULL;
614 pvp->pvinfo.pvpi_nfree = tofree;
615 for (lcv = 0 ; lcv < tofree ; lcv++) {
616 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
617 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
618 }
619 if (need_entry)
620 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
621 else
622 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
623 pv_nfpvents += tofree;
624 return((need_entry) ? &pvp->pvents[lcv] : NULL);
625 }
626
627 /*
628 * pmap_free_pv_doit: actually free a pv_entry
629 *
630 * => do not call this directly! instead use either
631 * 1. pmap_free_pv ==> free a single pv_entry
632 * 2. pmap_free_pvs => free a list of pv_entrys
633 * => we must be holding pvalloc_lock
634 */
635
636 __inline static void
637 pmap_free_pv_doit(struct pv_entry *pv)
638 {
639 struct pv_page *pvp;
640
641 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
642 pv_nfpvents++;
643 pvp->pvinfo.pvpi_nfree++;
644
645 /* nfree == 1 => fully allocated page just became partly allocated */
646 if (pvp->pvinfo.pvpi_nfree == 1) {
647 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
648 }
649
650 /* free it */
651 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
652 pvp->pvinfo.pvpi_pvfree = pv;
653
654 /*
655 * are all pv_page's pv_entry's free? move it to unused queue.
656 */
657
658 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
659 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
660 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
661 }
662 }
663
664 /*
665 * pmap_free_pv: free a single pv_entry
666 *
667 * => we gain the pvalloc_lock
668 */
669
670 __inline static void
671 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
672 {
673 simple_lock(&pvalloc_lock);
674 pmap_free_pv_doit(pv);
675
676 /*
677 * Can't free the PV page if the PV entries were associated with
678 * the kernel pmap; the pmap is already locked.
679 */
680 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
681 pmap != pmap_kernel())
682 pmap_free_pvpage();
683
684 simple_unlock(&pvalloc_lock);
685 }
686
687 /*
688 * pmap_free_pvs: free a list of pv_entrys
689 *
690 * => we gain the pvalloc_lock
691 */
692
693 __inline static void
694 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
695 {
696 struct pv_entry *nextpv;
697
698 simple_lock(&pvalloc_lock);
699
700 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
701 nextpv = pvs->pv_next;
702 pmap_free_pv_doit(pvs);
703 }
704
705 /*
706 * Can't free the PV page if the PV entries were associated with
707 * the kernel pmap; the pmap is already locked.
708 */
709 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
710 pmap != pmap_kernel())
711 pmap_free_pvpage();
712
713 simple_unlock(&pvalloc_lock);
714 }
715
716
717 /*
718 * pmap_free_pvpage: try and free an unused pv_page structure
719 *
720 * => assume caller is holding the pvalloc_lock and that
721 * there is a page on the pv_unusedpgs list
722 * => if we can't get a lock on the kmem_map we try again later
723 */
724
725 static void
726 pmap_free_pvpage(void)
727 {
728 int s;
729 struct vm_map *map;
730 struct vm_map_entry *dead_entries;
731 struct pv_page *pvp;
732
733 s = splvm(); /* protect kmem_map */
734
735 pvp = TAILQ_FIRST(&pv_unusedpgs);
736
737 /*
738 * note: watch out for pv_initpage which is allocated out of
739 * kernel_map rather than kmem_map.
740 */
741 if (pvp == pv_initpage)
742 map = kernel_map;
743 else
744 map = kmem_map;
745 if (vm_map_lock_try(map)) {
746
747 /* remove pvp from pv_unusedpgs */
748 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
749
750 /* unmap the page */
751 dead_entries = NULL;
752 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
753 &dead_entries);
754 vm_map_unlock(map);
755
756 if (dead_entries != NULL)
757 uvm_unmap_detach(dead_entries, 0);
758
759 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
760 }
761 if (pvp == pv_initpage)
762 /* no more initpage, we've freed it */
763 pv_initpage = NULL;
764
765 splx(s);
766 }
767
768 /*
769 * main pv_entry manipulation functions:
770 * pmap_enter_pv: enter a mapping onto a vm_page list
771 * pmap_remove_pv: remove a mappiing from a vm_page list
772 *
773 * NOTE: pmap_enter_pv expects to lock the pvh itself
774 * pmap_remove_pv expects te caller to lock the pvh before calling
775 */
776
777 /*
778 * pmap_enter_pv: enter a mapping onto a vm_page lst
779 *
780 * => caller should hold the proper lock on pmap_main_lock
781 * => caller should have pmap locked
782 * => we will gain the lock on the vm_page and allocate the new pv_entry
783 * => caller should adjust ptp's wire_count before calling
784 * => caller should not adjust pmap's wire_count
785 */
786
787 __inline static void
788 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
789 vaddr_t va, struct vm_page *ptp, int flags)
790 {
791 pve->pv_pmap = pmap;
792 pve->pv_va = va;
793 pve->pv_ptp = ptp; /* NULL for kernel pmap */
794 pve->pv_flags = flags;
795 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
796 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
797 pg->mdpage.pvh_list = pve; /* ... locked list */
798 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
799 if (pve->pv_flags & PVF_WIRED)
800 ++pmap->pm_stats.wired_count;
801 #ifdef PMAP_ALIAS_DEBUG
802 {
803 int s = splhigh();
804 if (pve->pv_flags & PVF_WRITE)
805 pg->mdpage.rw_mappings++;
806 else
807 pg->mdpage.ro_mappings++;
808 if (pg->mdpage.rw_mappings != 0 &&
809 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
810 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
811 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
812 pg->mdpage.krw_mappings);
813 }
814 splx(s);
815 }
816 #endif /* PMAP_ALIAS_DEBUG */
817 }
818
819 /*
820 * pmap_remove_pv: try to remove a mapping from a pv_list
821 *
822 * => caller should hold proper lock on pmap_main_lock
823 * => pmap should be locked
824 * => caller should hold lock on vm_page [so that attrs can be adjusted]
825 * => caller should adjust ptp's wire_count and free PTP if needed
826 * => caller should NOT adjust pmap's wire_count
827 * => we return the removed pve
828 */
829
830 __inline static struct pv_entry *
831 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
832 {
833 struct pv_entry *pve, **prevptr;
834
835 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
836 pve = *prevptr;
837 while (pve) {
838 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
839 *prevptr = pve->pv_next; /* remove it! */
840 if (pve->pv_flags & PVF_WIRED)
841 --pmap->pm_stats.wired_count;
842 #ifdef PMAP_ALIAS_DEBUG
843 {
844 int s = splhigh();
845 if (pve->pv_flags & PVF_WRITE) {
846 KASSERT(pg->mdpage.rw_mappings != 0);
847 pg->mdpage.rw_mappings--;
848 } else {
849 KASSERT(pg->mdpage.ro_mappings != 0);
850 pg->mdpage.ro_mappings--;
851 }
852 splx(s);
853 }
854 #endif /* PMAP_ALIAS_DEBUG */
855 break;
856 }
857 prevptr = &pve->pv_next; /* previous pointer */
858 pve = pve->pv_next; /* advance */
859 }
860 return(pve); /* return removed pve */
861 }
862
863 /*
864 *
865 * pmap_modify_pv: Update pv flags
866 *
867 * => caller should hold lock on vm_page [so that attrs can be adjusted]
868 * => caller should NOT adjust pmap's wire_count
869 * => caller must call pmap_vac_me_harder() if writable status of a page
870 * may have changed.
871 * => we return the old flags
872 *
873 * Modify a physical-virtual mapping in the pv table
874 */
875
876 static /* __inline */ u_int
877 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
878 u_int bic_mask, u_int eor_mask)
879 {
880 struct pv_entry *npv;
881 u_int flags, oflags;
882
883 /*
884 * There is at least one VA mapping this page.
885 */
886
887 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
888 if (pmap == npv->pv_pmap && va == npv->pv_va) {
889 oflags = npv->pv_flags;
890 npv->pv_flags = flags =
891 ((oflags & ~bic_mask) ^ eor_mask);
892 if ((flags ^ oflags) & PVF_WIRED) {
893 if (flags & PVF_WIRED)
894 ++pmap->pm_stats.wired_count;
895 else
896 --pmap->pm_stats.wired_count;
897 }
898 #ifdef PMAP_ALIAS_DEBUG
899 {
900 int s = splhigh();
901 if ((flags ^ oflags) & PVF_WRITE) {
902 if (flags & PVF_WRITE) {
903 pg->mdpage.rw_mappings++;
904 pg->mdpage.ro_mappings--;
905 if (pg->mdpage.rw_mappings != 0 &&
906 (pg->mdpage.kro_mappings != 0 ||
907 pg->mdpage.krw_mappings != 0)) {
908 printf("pmap_modify_pv: rw %u, "
909 "kro %u, krw %u\n",
910 pg->mdpage.rw_mappings,
911 pg->mdpage.kro_mappings,
912 pg->mdpage.krw_mappings);
913 }
914 } else {
915 KASSERT(pg->mdpage.rw_mappings != 0);
916 pg->mdpage.rw_mappings--;
917 pg->mdpage.ro_mappings++;
918 }
919 }
920 splx(s);
921 }
922 #endif /* PMAP_ALIAS_DEBUG */
923 return (oflags);
924 }
925 }
926 return (0);
927 }
928
929 /*
930 * Map the specified level 2 pagetable into the level 1 page table for
931 * the given pmap to cover a chunk of virtual address space starting from the
932 * address specified.
933 */
934 #define PMAP_PTP_SELFREF 0x01
935 #define PMAP_PTP_CACHEABLE 0x02
936
937 static __inline void
938 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, int flags)
939 {
940 vaddr_t ptva;
941
942 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
943
944 /* Calculate the index into the L1 page table. */
945 ptva = va >> L1_S_SHIFT;
946
947 /* Map page table into the L1. */
948 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
949 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
950 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
951 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
952 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
953
954 /* Map the page table into the page table area. */
955 if (flags & PMAP_PTP_SELFREF) {
956 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
957 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
958 ((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
959 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
960 }
961 }
962
963 #if 0
964 static __inline void
965 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
966 {
967 vaddr_t ptva;
968
969 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
970
971 /* Calculate the index into the L1 page table. */
972 ptva = va >> L1_S_SHIFT;
973
974 /* Unmap page table from the L1. */
975 pmap->pm_pdir[ptva + 0] = 0;
976 pmap->pm_pdir[ptva + 1] = 0;
977 pmap->pm_pdir[ptva + 2] = 0;
978 pmap->pm_pdir[ptva + 3] = 0;
979 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
980
981 /* Unmap the page table from the page table area. */
982 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
983 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
984 }
985 #endif
986
987 /*
988 * Used to map a range of physical addresses into kernel
989 * virtual address space.
990 *
991 * For now, VM is already on, we only need to map the
992 * specified memory.
993 *
994 * XXX This routine should eventually go away; it's only used
995 * XXX by machine-dependent crash dump code.
996 */
997 vaddr_t
998 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
999 {
1000 pt_entry_t *pte;
1001
1002 while (spa < epa) {
1003 pte = vtopte(va);
1004
1005 *pte = L2_S_PROTO | spa |
1006 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
1007 PTE_SYNC(pte);
1008 cpu_tlb_flushID_SE(va);
1009 va += NBPG;
1010 spa += NBPG;
1011 }
1012 pmap_update(pmap_kernel());
1013 return(va);
1014 }
1015
1016
1017 /*
1018 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1019 *
1020 * bootstrap the pmap system. This is called from initarm and allows
1021 * the pmap system to initailise any structures it requires.
1022 *
1023 * Currently this sets up the kernel_pmap that is statically allocated
1024 * and also allocated virtual addresses for certain page hooks.
1025 * Currently the only one page hook is allocated that is used
1026 * to zero physical pages of memory.
1027 * It also initialises the start and end address of the kernel data space.
1028 */
1029
1030 char *boot_head;
1031
1032 void
1033 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1034 {
1035 pt_entry_t *pte;
1036
1037 pmap_kernel()->pm_pdir = kernel_l1pt;
1038 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1039 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1040 simple_lock_init(&pmap_kernel()->pm_lock);
1041 pmap_kernel()->pm_obj.pgops = NULL;
1042 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1043 pmap_kernel()->pm_obj.uo_npages = 0;
1044 pmap_kernel()->pm_obj.uo_refs = 1;
1045
1046 virtual_avail = KERNEL_VM_BASE;
1047 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1048
1049 /*
1050 * now we allocate the "special" VAs which are used for tmp mappings
1051 * by the pmap (and other modules). we allocate the VAs by advancing
1052 * virtual_avail (note that there are no pages mapped at these VAs).
1053 * we find the PTE that maps the allocated VA via the linear PTE
1054 * mapping.
1055 */
1056
1057 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1058
1059 csrcp = virtual_avail; csrc_pte = pte;
1060 virtual_avail += PAGE_SIZE; pte++;
1061
1062 cdstp = virtual_avail; cdst_pte = pte;
1063 virtual_avail += PAGE_SIZE; pte++;
1064
1065 memhook = (char *) virtual_avail; /* don't need pte */
1066 virtual_avail += PAGE_SIZE; pte++;
1067
1068 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1069 virtual_avail += round_page(MSGBUFSIZE);
1070 pte += atop(round_page(MSGBUFSIZE));
1071
1072 /*
1073 * init the static-global locks and global lists.
1074 */
1075 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1076 simple_lock_init(&pvalloc_lock);
1077 simple_lock_init(&pmaps_lock);
1078 LIST_INIT(&pmaps);
1079 TAILQ_INIT(&pv_freepages);
1080 TAILQ_INIT(&pv_unusedpgs);
1081
1082 /*
1083 * initialize the pmap pool.
1084 */
1085
1086 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1087 &pool_allocator_nointr);
1088
1089 /*
1090 * initialize the PT-PT pool and cache.
1091 */
1092
1093 pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1094 &pmap_ptpt_allocator);
1095 pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1096 pmap_ptpt_ctor, NULL, NULL);
1097
1098 cpu_dcache_wbinv_all();
1099 }
1100
1101 /*
1102 * void pmap_init(void)
1103 *
1104 * Initialize the pmap module.
1105 * Called by vm_init() in vm/vm_init.c in order to initialise
1106 * any structures that the pmap system needs to map virtual memory.
1107 */
1108
1109 extern int physmem;
1110
1111 void
1112 pmap_init(void)
1113 {
1114
1115 /*
1116 * Set the available memory vars - These do not map to real memory
1117 * addresses and cannot as the physical memory is fragmented.
1118 * They are used by ps for %mem calculations.
1119 * One could argue whether this should be the entire memory or just
1120 * the memory that is useable in a user process.
1121 */
1122 avail_start = 0;
1123 avail_end = physmem * NBPG;
1124
1125 /*
1126 * now we need to free enough pv_entry structures to allow us to get
1127 * the kmem_map/kmem_object allocated and inited (done after this
1128 * function is finished). to do this we allocate one bootstrap page out
1129 * of kernel_map and use it to provide an initial pool of pv_entry
1130 * structures. we never free this page.
1131 */
1132
1133 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1134 if (pv_initpage == NULL)
1135 panic("pmap_init: pv_initpage");
1136 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1137 pv_nfpvents = 0;
1138 (void) pmap_add_pvpage(pv_initpage, FALSE);
1139
1140 pmap_initialized = TRUE;
1141
1142 /* Initialise our L1 page table queues and counters */
1143 SIMPLEQ_INIT(&l1pt_static_queue);
1144 l1pt_static_queue_count = 0;
1145 l1pt_static_create_count = 0;
1146 SIMPLEQ_INIT(&l1pt_queue);
1147 l1pt_queue_count = 0;
1148 l1pt_create_count = 0;
1149 l1pt_reuse_count = 0;
1150 }
1151
1152 /*
1153 * pmap_postinit()
1154 *
1155 * This routine is called after the vm and kmem subsystems have been
1156 * initialised. This allows the pmap code to perform any initialisation
1157 * that can only be done one the memory allocation is in place.
1158 */
1159
1160 void
1161 pmap_postinit(void)
1162 {
1163 int loop;
1164 struct l1pt *pt;
1165
1166 #ifdef PMAP_STATIC_L1S
1167 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1168 #else /* PMAP_STATIC_L1S */
1169 for (loop = 0; loop < max_processes; ++loop) {
1170 #endif /* PMAP_STATIC_L1S */
1171 /* Allocate a L1 page table */
1172 pt = pmap_alloc_l1pt();
1173 if (!pt)
1174 panic("Cannot allocate static L1 page tables\n");
1175
1176 /* Clean it */
1177 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1178 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1179 /* Add the page table to the queue */
1180 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1181 ++l1pt_static_queue_count;
1182 ++l1pt_static_create_count;
1183 }
1184 }
1185
1186
1187 /*
1188 * Create and return a physical map.
1189 *
1190 * If the size specified for the map is zero, the map is an actual physical
1191 * map, and may be referenced by the hardware.
1192 *
1193 * If the size specified is non-zero, the map will be used in software only,
1194 * and is bounded by that size.
1195 */
1196
1197 pmap_t
1198 pmap_create(void)
1199 {
1200 struct pmap *pmap;
1201
1202 /*
1203 * Fetch pmap entry from the pool
1204 */
1205
1206 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1207 /* XXX is this really needed! */
1208 memset(pmap, 0, sizeof(*pmap));
1209
1210 simple_lock_init(&pmap->pm_obj.vmobjlock);
1211 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1212 TAILQ_INIT(&pmap->pm_obj.memq);
1213 pmap->pm_obj.uo_npages = 0;
1214 pmap->pm_obj.uo_refs = 1;
1215 pmap->pm_stats.wired_count = 0;
1216 pmap->pm_stats.resident_count = 1;
1217 pmap->pm_ptphint = NULL;
1218
1219 /* Now init the machine part of the pmap */
1220 pmap_pinit(pmap);
1221 return(pmap);
1222 }
1223
1224 /*
1225 * pmap_alloc_l1pt()
1226 *
1227 * This routine allocates physical and virtual memory for a L1 page table
1228 * and wires it.
1229 * A l1pt structure is returned to describe the allocated page table.
1230 *
1231 * This routine is allowed to fail if the required memory cannot be allocated.
1232 * In this case NULL is returned.
1233 */
1234
1235 struct l1pt *
1236 pmap_alloc_l1pt(void)
1237 {
1238 paddr_t pa;
1239 vaddr_t va;
1240 struct l1pt *pt;
1241 int error;
1242 struct vm_page *m;
1243
1244 /* Allocate virtual address space for the L1 page table */
1245 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1246 if (va == 0) {
1247 #ifdef DIAGNOSTIC
1248 PDEBUG(0,
1249 printf("pmap: Cannot allocate pageable memory for L1\n"));
1250 #endif /* DIAGNOSTIC */
1251 return(NULL);
1252 }
1253
1254 /* Allocate memory for the l1pt structure */
1255 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1256
1257 /*
1258 * Allocate pages from the VM system.
1259 */
1260 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1261 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1262 if (error) {
1263 #ifdef DIAGNOSTIC
1264 PDEBUG(0,
1265 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1266 error));
1267 #endif /* DIAGNOSTIC */
1268 /* Release the resources we already have claimed */
1269 free(pt, M_VMPMAP);
1270 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1271 return(NULL);
1272 }
1273
1274 /* Map our physical pages into our virtual space */
1275 pt->pt_va = va;
1276 m = TAILQ_FIRST(&pt->pt_plist);
1277 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1278 pa = VM_PAGE_TO_PHYS(m);
1279
1280 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1281
1282 va += NBPG;
1283 m = m->pageq.tqe_next;
1284 }
1285
1286 #ifdef DIAGNOSTIC
1287 if (m)
1288 panic("pmap_alloc_l1pt: pglist not empty\n");
1289 #endif /* DIAGNOSTIC */
1290
1291 pt->pt_flags = 0;
1292 return(pt);
1293 }
1294
1295 /*
1296 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1297 */
1298 static void
1299 pmap_free_l1pt(struct l1pt *pt)
1300 {
1301 /* Separate the physical memory for the virtual space */
1302 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1303 pmap_update(pmap_kernel());
1304
1305 /* Return the physical memory */
1306 uvm_pglistfree(&pt->pt_plist);
1307
1308 /* Free the virtual space */
1309 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1310
1311 /* Free the l1pt structure */
1312 free(pt, M_VMPMAP);
1313 }
1314
1315 /*
1316 * pmap_ptpt_page_alloc:
1317 *
1318 * Back-end page allocator for the PT-PT pool.
1319 */
1320 static void *
1321 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1322 {
1323 struct vm_page *pg;
1324 pt_entry_t *pte;
1325 vaddr_t va;
1326
1327 /* XXX PR_WAITOK? */
1328 va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1329 if (va == 0)
1330 return (NULL);
1331
1332 for (;;) {
1333 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1334 if (pg != NULL)
1335 break;
1336 if ((flags & PR_WAITOK) == 0) {
1337 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1338 return (NULL);
1339 }
1340 uvm_wait("pmap_ptpt");
1341 }
1342
1343 pte = vtopte(va);
1344 KDASSERT(pmap_pte_v(pte) == 0);
1345
1346 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1347 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1348 PTE_SYNC(pte);
1349 #ifdef PMAP_ALIAS_DEBUG
1350 {
1351 int s = splhigh();
1352 pg->mdpage.krw_mappings++;
1353 splx(s);
1354 }
1355 #endif /* PMAP_ALIAS_DEBUG */
1356
1357 return ((void *) va);
1358 }
1359
1360 /*
1361 * pmap_ptpt_page_free:
1362 *
1363 * Back-end page free'er for the PT-PT pool.
1364 */
1365 static void
1366 pmap_ptpt_page_free(struct pool *pp, void *v)
1367 {
1368 vaddr_t va = (vaddr_t) v;
1369 paddr_t pa;
1370
1371 pa = vtophys(va);
1372
1373 pmap_kremove(va, L2_TABLE_SIZE);
1374 pmap_update(pmap_kernel());
1375
1376 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1377
1378 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1379 }
1380
1381 /*
1382 * pmap_ptpt_ctor:
1383 *
1384 * Constructor for the PT-PT cache.
1385 */
1386 static int
1387 pmap_ptpt_ctor(void *arg, void *object, int flags)
1388 {
1389 caddr_t vptpt = object;
1390
1391 /* Page is already zero'd. */
1392
1393 /*
1394 * Map in kernel PTs.
1395 *
1396 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1397 */
1398 memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1399 (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1400 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1401 (KERNEL_PD_SIZE >> 2));
1402
1403 return (0);
1404 }
1405
1406 /*
1407 * Allocate a page directory.
1408 * This routine will either allocate a new page directory from the pool
1409 * of L1 page tables currently held by the kernel or it will allocate
1410 * a new one via pmap_alloc_l1pt().
1411 * It will then initialise the l1 page table for use.
1412 */
1413 static int
1414 pmap_allocpagedir(struct pmap *pmap)
1415 {
1416 vaddr_t vptpt;
1417 paddr_t pa;
1418 struct l1pt *pt;
1419 u_int gen;
1420
1421 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1422
1423 /* Do we have any spare L1's lying around ? */
1424 if (l1pt_static_queue_count) {
1425 --l1pt_static_queue_count;
1426 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1427 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1428 } else if (l1pt_queue_count) {
1429 --l1pt_queue_count;
1430 pt = SIMPLEQ_FIRST(&l1pt_queue);
1431 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1432 ++l1pt_reuse_count;
1433 } else {
1434 pt = pmap_alloc_l1pt();
1435 if (!pt)
1436 return(ENOMEM);
1437 ++l1pt_create_count;
1438 }
1439
1440 /* Store the pointer to the l1 descriptor in the pmap. */
1441 pmap->pm_l1pt = pt;
1442
1443 /* Get the physical address of the start of the l1 */
1444 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1445
1446 /* Store the virtual address of the l1 in the pmap. */
1447 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1448
1449 /* Clean the L1 if it is dirty */
1450 if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1451 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1452 cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1453 (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1454 }
1455
1456 /* Allocate a page table to map all the page tables for this pmap */
1457 KASSERT(pmap->pm_vptpt == 0);
1458
1459 try_again:
1460 gen = pmap_ptpt_cache_generation;
1461 vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1462 if (vptpt == NULL) {
1463 PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1464 pmap_freepagedir(pmap);
1465 return (ENOMEM);
1466 }
1467
1468 /* need to lock this all up for growkernel */
1469 simple_lock(&pmaps_lock);
1470
1471 if (gen != pmap_ptpt_cache_generation) {
1472 simple_unlock(&pmaps_lock);
1473 pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1474 goto try_again;
1475 }
1476
1477 pmap->pm_vptpt = vptpt;
1478 pmap->pm_pptpt = vtophys(vptpt);
1479
1480 /* Duplicate the kernel mappings. */
1481 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1482 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1483 KERNEL_PD_SIZE);
1484 cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1485 (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1486
1487 /* Wire in this page table */
1488 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
1489
1490 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1491
1492 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1493 simple_unlock(&pmaps_lock);
1494
1495 return(0);
1496 }
1497
1498
1499 /*
1500 * Initialize a preallocated and zeroed pmap structure,
1501 * such as one in a vmspace structure.
1502 */
1503
1504 void
1505 pmap_pinit(struct pmap *pmap)
1506 {
1507 int backoff = 6;
1508 int retry = 10;
1509
1510 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1511
1512 /* Keep looping until we succeed in allocating a page directory */
1513 while (pmap_allocpagedir(pmap) != 0) {
1514 /*
1515 * Ok we failed to allocate a suitable block of memory for an
1516 * L1 page table. This means that either:
1517 * 1. 16KB of virtual address space could not be allocated
1518 * 2. 16KB of physically contiguous memory on a 16KB boundary
1519 * could not be allocated.
1520 *
1521 * Since we cannot fail we will sleep for a while and try
1522 * again.
1523 *
1524 * Searching for a suitable L1 PT is expensive:
1525 * to avoid hogging the system when memory is really
1526 * scarce, use an exponential back-off so that
1527 * eventually we won't retry more than once every 8
1528 * seconds. This should allow other processes to run
1529 * to completion and free up resources.
1530 */
1531 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1532 NULL);
1533 if (--retry == 0) {
1534 retry = 10;
1535 if (backoff)
1536 --backoff;
1537 }
1538 }
1539
1540 if (vector_page < KERNEL_BASE) {
1541 /*
1542 * Map the vector page. This will also allocate and map
1543 * an L2 table for it.
1544 */
1545 pmap_enter(pmap, vector_page, systempage.pv_pa,
1546 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1547 pmap_update(pmap);
1548 }
1549 }
1550
1551 void
1552 pmap_freepagedir(struct pmap *pmap)
1553 {
1554 /* Free the memory used for the page table mapping */
1555 if (pmap->pm_vptpt != 0) {
1556 /*
1557 * XXX Objects freed to a pool cache must be in constructed
1558 * XXX form when freed, but we don't free page tables as we
1559 * XXX go, so we need to zap the mappings here.
1560 *
1561 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1562 */
1563 memset((caddr_t) pmap->pm_vptpt, 0,
1564 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1565 pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1566 }
1567
1568 /* junk the L1 page table */
1569 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1570 /* Add the page table to the queue */
1571 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1572 pmap->pm_l1pt, pt_queue);
1573 ++l1pt_static_queue_count;
1574 } else if (l1pt_queue_count < 8) {
1575 /* Add the page table to the queue */
1576 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1577 ++l1pt_queue_count;
1578 } else
1579 pmap_free_l1pt(pmap->pm_l1pt);
1580 }
1581
1582 /*
1583 * Retire the given physical map from service.
1584 * Should only be called if the map contains no valid mappings.
1585 */
1586
1587 void
1588 pmap_destroy(struct pmap *pmap)
1589 {
1590 struct vm_page *page;
1591 int count;
1592
1593 if (pmap == NULL)
1594 return;
1595
1596 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1597
1598 /*
1599 * Drop reference count
1600 */
1601 simple_lock(&pmap->pm_obj.vmobjlock);
1602 count = --pmap->pm_obj.uo_refs;
1603 simple_unlock(&pmap->pm_obj.vmobjlock);
1604 if (count > 0) {
1605 return;
1606 }
1607
1608 /*
1609 * reference count is zero, free pmap resources and then free pmap.
1610 */
1611
1612 /*
1613 * remove it from global list of pmaps
1614 */
1615
1616 simple_lock(&pmaps_lock);
1617 LIST_REMOVE(pmap, pm_list);
1618 simple_unlock(&pmaps_lock);
1619
1620 if (vector_page < KERNEL_BASE) {
1621 /* Remove the vector page mapping */
1622 pmap_remove(pmap, vector_page, vector_page + NBPG);
1623 pmap_update(pmap);
1624 }
1625
1626 /*
1627 * Free any page tables still mapped
1628 * This is only temporay until pmap_enter can count the number
1629 * of mappings made in a page table. Then pmap_remove() can
1630 * reduce the count and free the pagetable when the count
1631 * reaches zero. Note that entries in this list should match the
1632 * contents of the ptpt, however this is faster than walking a 1024
1633 * entries looking for pt's
1634 * taken from i386 pmap.c
1635 */
1636 /*
1637 * vmobjlock must be held while freeing pages
1638 */
1639 simple_lock(&pmap->pm_obj.vmobjlock);
1640 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1641 KASSERT((page->flags & PG_BUSY) == 0);
1642
1643 /* Freeing a PT page? The contents are a throw-away. */
1644 KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
1645 cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
1646
1647 page->wire_count = 0;
1648 uvm_pagefree(page);
1649 }
1650 simple_unlock(&pmap->pm_obj.vmobjlock);
1651
1652 /* Free the page dir */
1653 pmap_freepagedir(pmap);
1654
1655 /* return the pmap to the pool */
1656 pool_put(&pmap_pmap_pool, pmap);
1657 }
1658
1659
1660 /*
1661 * void pmap_reference(struct pmap *pmap)
1662 *
1663 * Add a reference to the specified pmap.
1664 */
1665
1666 void
1667 pmap_reference(struct pmap *pmap)
1668 {
1669 if (pmap == NULL)
1670 return;
1671
1672 simple_lock(&pmap->pm_lock);
1673 pmap->pm_obj.uo_refs++;
1674 simple_unlock(&pmap->pm_lock);
1675 }
1676
1677 /*
1678 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1679 *
1680 * Return the start and end addresses of the kernel's virtual space.
1681 * These values are setup in pmap_bootstrap and are updated as pages
1682 * are allocated.
1683 */
1684
1685 void
1686 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1687 {
1688 *start = virtual_avail;
1689 *end = virtual_end;
1690 }
1691
1692 /*
1693 * Activate the address space for the specified process. If the process
1694 * is the current process, load the new MMU context.
1695 */
1696 void
1697 pmap_activate(struct proc *p)
1698 {
1699 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1700 struct pcb *pcb = &p->p_addr->u_pcb;
1701
1702 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1703 (paddr_t *)&pcb->pcb_pagedir);
1704
1705 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1706 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1707
1708 if (p == curproc) {
1709 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1710 setttb((u_int)pcb->pcb_pagedir);
1711 }
1712 }
1713
1714 /*
1715 * Deactivate the address space of the specified process.
1716 */
1717 void
1718 pmap_deactivate(struct proc *p)
1719 {
1720 }
1721
1722 /*
1723 * Perform any deferred pmap operations.
1724 */
1725 void
1726 pmap_update(struct pmap *pmap)
1727 {
1728
1729 /*
1730 * We haven't deferred any pmap operations, but we do need to
1731 * make sure TLB/cache operations have completed.
1732 */
1733 cpu_cpwait();
1734 }
1735
1736 /*
1737 * pmap_clean_page()
1738 *
1739 * This is a local function used to work out the best strategy to clean
1740 * a single page referenced by its entry in the PV table. It's used by
1741 * pmap_copy_page, pmap_zero page and maybe some others later on.
1742 *
1743 * Its policy is effectively:
1744 * o If there are no mappings, we don't bother doing anything with the cache.
1745 * o If there is one mapping, we clean just that page.
1746 * o If there are multiple mappings, we clean the entire cache.
1747 *
1748 * So that some functions can be further optimised, it returns 0 if it didn't
1749 * clean the entire cache, or 1 if it did.
1750 *
1751 * XXX One bug in this routine is that if the pv_entry has a single page
1752 * mapped at 0x00000000 a whole cache clean will be performed rather than
1753 * just the 1 page. Since this should not occur in everyday use and if it does
1754 * it will just result in not the most efficient clean for the page.
1755 */
1756 static int
1757 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1758 {
1759 struct pmap *pmap;
1760 struct pv_entry *npv;
1761 int cache_needs_cleaning = 0;
1762 vaddr_t page_to_clean = 0;
1763
1764 if (pv == NULL) {
1765 /* nothing mapped in so nothing to flush */
1766 return (0);
1767 }
1768
1769 /*
1770 * Since we flush the cache each time we change curproc, we
1771 * only need to flush the page if it is in the current pmap.
1772 */
1773 if (curproc)
1774 pmap = curproc->p_vmspace->vm_map.pmap;
1775 else
1776 pmap = pmap_kernel();
1777
1778 for (npv = pv; npv; npv = npv->pv_next) {
1779 if (npv->pv_pmap == pmap) {
1780 /*
1781 * The page is mapped non-cacheable in
1782 * this map. No need to flush the cache.
1783 */
1784 if (npv->pv_flags & PVF_NC) {
1785 #ifdef DIAGNOSTIC
1786 if (cache_needs_cleaning)
1787 panic("pmap_clean_page: "
1788 "cache inconsistency");
1789 #endif
1790 break;
1791 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1792 continue;
1793 if (cache_needs_cleaning) {
1794 page_to_clean = 0;
1795 break;
1796 } else
1797 page_to_clean = npv->pv_va;
1798 cache_needs_cleaning = 1;
1799 }
1800 }
1801
1802 if (page_to_clean) {
1803 /*
1804 * XXX If is_src, we really only need to write-back,
1805 * XXX not invalidate, too. Investigate further.
1806 * XXX --thorpej (at) netbsd.org
1807 */
1808 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1809 } else if (cache_needs_cleaning) {
1810 cpu_idcache_wbinv_all();
1811 return (1);
1812 }
1813 return (0);
1814 }
1815
1816 /*
1817 * pmap_zero_page()
1818 *
1819 * Zero a given physical page by mapping it at a page hook point.
1820 * In doing the zero page op, the page we zero is mapped cachable, as with
1821 * StrongARM accesses to non-cached pages are non-burst making writing
1822 * _any_ bulk data very slow.
1823 */
1824 #if ARM_MMU_GENERIC == 1
1825 void
1826 pmap_zero_page_generic(paddr_t phys)
1827 {
1828 #ifdef DEBUG
1829 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1830
1831 if (pg->mdpage.pvh_list != NULL)
1832 panic("pmap_zero_page: page has mappings");
1833 #endif
1834
1835 KDASSERT((phys & PGOFSET) == 0);
1836
1837 /*
1838 * Hook in the page, zero it, and purge the cache for that
1839 * zeroed page. Invalidate the TLB as needed.
1840 */
1841 *cdst_pte = L2_S_PROTO | phys |
1842 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1843 PTE_SYNC(cdst_pte);
1844 cpu_tlb_flushD_SE(cdstp);
1845 cpu_cpwait();
1846 bzero_page(cdstp);
1847 cpu_dcache_wbinv_range(cdstp, NBPG);
1848 }
1849 #endif /* ARM_MMU_GENERIC == 1 */
1850
1851 #if ARM_MMU_XSCALE == 1
1852 void
1853 pmap_zero_page_xscale(paddr_t phys)
1854 {
1855 #ifdef DEBUG
1856 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1857
1858 if (pg->mdpage.pvh_list != NULL)
1859 panic("pmap_zero_page: page has mappings");
1860 #endif
1861
1862 KDASSERT((phys & PGOFSET) == 0);
1863
1864 /*
1865 * Hook in the page, zero it, and purge the cache for that
1866 * zeroed page. Invalidate the TLB as needed.
1867 */
1868 *cdst_pte = L2_S_PROTO | phys |
1869 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1870 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1871 PTE_SYNC(cdst_pte);
1872 cpu_tlb_flushD_SE(cdstp);
1873 cpu_cpwait();
1874 bzero_page(cdstp);
1875 xscale_cache_clean_minidata();
1876 }
1877 #endif /* ARM_MMU_XSCALE == 1 */
1878
1879 /* pmap_pageidlezero()
1880 *
1881 * The same as above, except that we assume that the page is not
1882 * mapped. This means we never have to flush the cache first. Called
1883 * from the idle loop.
1884 */
1885 boolean_t
1886 pmap_pageidlezero(paddr_t phys)
1887 {
1888 int i, *ptr;
1889 boolean_t rv = TRUE;
1890 #ifdef DEBUG
1891 struct vm_page *pg;
1892
1893 pg = PHYS_TO_VM_PAGE(phys);
1894 if (pg->mdpage.pvh_list != NULL)
1895 panic("pmap_pageidlezero: page has mappings");
1896 #endif
1897
1898 KDASSERT((phys & PGOFSET) == 0);
1899
1900 /*
1901 * Hook in the page, zero it, and purge the cache for that
1902 * zeroed page. Invalidate the TLB as needed.
1903 */
1904 *cdst_pte = L2_S_PROTO | phys |
1905 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1906 PTE_SYNC(cdst_pte);
1907 cpu_tlb_flushD_SE(cdstp);
1908 cpu_cpwait();
1909
1910 for (i = 0, ptr = (int *)cdstp;
1911 i < (NBPG / sizeof(int)); i++) {
1912 if (sched_whichqs != 0) {
1913 /*
1914 * A process has become ready. Abort now,
1915 * so we don't keep it waiting while we
1916 * do slow memory access to finish this
1917 * page.
1918 */
1919 rv = FALSE;
1920 break;
1921 }
1922 *ptr++ = 0;
1923 }
1924
1925 if (rv)
1926 /*
1927 * if we aborted we'll rezero this page again later so don't
1928 * purge it unless we finished it
1929 */
1930 cpu_dcache_wbinv_range(cdstp, NBPG);
1931 return (rv);
1932 }
1933
1934 /*
1935 * pmap_copy_page()
1936 *
1937 * Copy one physical page into another, by mapping the pages into
1938 * hook points. The same comment regarding cachability as in
1939 * pmap_zero_page also applies here.
1940 */
1941 #if ARM_MMU_GENERIC == 1
1942 void
1943 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1944 {
1945 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1946 #ifdef DEBUG
1947 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1948
1949 if (dst_pg->mdpage.pvh_list != NULL)
1950 panic("pmap_copy_page: dst page has mappings");
1951 #endif
1952
1953 KDASSERT((src & PGOFSET) == 0);
1954 KDASSERT((dst & PGOFSET) == 0);
1955
1956 /*
1957 * Clean the source page. Hold the source page's lock for
1958 * the duration of the copy so that no other mappings can
1959 * be created while we have a potentially aliased mapping.
1960 */
1961 simple_lock(&src_pg->mdpage.pvh_slock);
1962 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1963
1964 /*
1965 * Map the pages into the page hook points, copy them, and purge
1966 * the cache for the appropriate page. Invalidate the TLB
1967 * as required.
1968 */
1969 *csrc_pte = L2_S_PROTO | src |
1970 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1971 PTE_SYNC(csrc_pte);
1972 *cdst_pte = L2_S_PROTO | dst |
1973 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1974 PTE_SYNC(cdst_pte);
1975 cpu_tlb_flushD_SE(csrcp);
1976 cpu_tlb_flushD_SE(cdstp);
1977 cpu_cpwait();
1978 bcopy_page(csrcp, cdstp);
1979 cpu_dcache_inv_range(csrcp, NBPG);
1980 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1981 cpu_dcache_wbinv_range(cdstp, NBPG);
1982 }
1983 #endif /* ARM_MMU_GENERIC == 1 */
1984
1985 #if ARM_MMU_XSCALE == 1
1986 void
1987 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1988 {
1989 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1990 #ifdef DEBUG
1991 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1992
1993 if (dst_pg->mdpage.pvh_list != NULL)
1994 panic("pmap_copy_page: dst page has mappings");
1995 #endif
1996
1997 KDASSERT((src & PGOFSET) == 0);
1998 KDASSERT((dst & PGOFSET) == 0);
1999
2000 /*
2001 * Clean the source page. Hold the source page's lock for
2002 * the duration of the copy so that no other mappings can
2003 * be created while we have a potentially aliased mapping.
2004 */
2005 simple_lock(&src_pg->mdpage.pvh_slock);
2006 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2007
2008 /*
2009 * Map the pages into the page hook points, copy them, and purge
2010 * the cache for the appropriate page. Invalidate the TLB
2011 * as required.
2012 */
2013 *csrc_pte = L2_S_PROTO | src |
2014 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
2015 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2016 PTE_SYNC(csrc_pte);
2017 *cdst_pte = L2_S_PROTO | dst |
2018 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
2019 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2020 PTE_SYNC(cdst_pte);
2021 cpu_tlb_flushD_SE(csrcp);
2022 cpu_tlb_flushD_SE(cdstp);
2023 cpu_cpwait();
2024 bcopy_page(csrcp, cdstp);
2025 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2026 xscale_cache_clean_minidata();
2027 }
2028 #endif /* ARM_MMU_XSCALE == 1 */
2029
2030 #if 0
2031 void
2032 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
2033 {
2034 pd_entry_t *pde;
2035 paddr_t pa;
2036 struct vm_page *m;
2037
2038 if (pmap == pmap_kernel())
2039 return;
2040
2041 pde = pmap_pde(pmap, va & PD_FRAME);
2042 pa = pmap_pte_pa(pde);
2043 m = PHYS_TO_VM_PAGE(pa);
2044 m->wire_count++;
2045 #ifdef MYCROFT_HACK
2046 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2047 pmap, va, pde, pa, m, m->wire_count);
2048 #endif
2049 }
2050
2051 void
2052 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2053 {
2054 pd_entry_t *pde;
2055 paddr_t pa;
2056 struct vm_page *m;
2057
2058 if (pmap == pmap_kernel())
2059 return;
2060
2061 pde = pmap_pde(pmap, va & PD_FRAME);
2062 pa = pmap_pte_pa(pde);
2063 m = PHYS_TO_VM_PAGE(pa);
2064 m->wire_count--;
2065 #ifdef MYCROFT_HACK
2066 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2067 pmap, va, pde, pa, m, m->wire_count);
2068 #endif
2069 if (m->wire_count == 0) {
2070 #ifdef MYCROFT_HACK
2071 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2072 pmap, va, pde, pa, m);
2073 #endif
2074 pmap_unmap_in_l1(pmap, va & PD_FRAME);
2075 uvm_pagefree(m);
2076 --pmap->pm_stats.resident_count;
2077 }
2078 }
2079 #else
2080 #define pmap_pte_addref(pmap, va)
2081 #define pmap_pte_delref(pmap, va)
2082 #endif
2083
2084 /*
2085 * Since we have a virtually indexed cache, we may need to inhibit caching if
2086 * there is more than one mapping and at least one of them is writable.
2087 * Since we purge the cache on every context switch, we only need to check for
2088 * other mappings within the same pmap, or kernel_pmap.
2089 * This function is also called when a page is unmapped, to possibly reenable
2090 * caching on any remaining mappings.
2091 *
2092 * The code implements the following logic, where:
2093 *
2094 * KW = # of kernel read/write pages
2095 * KR = # of kernel read only pages
2096 * UW = # of user read/write pages
2097 * UR = # of user read only pages
2098 * OW = # of user read/write pages in another pmap, then
2099 *
2100 * KC = kernel mapping is cacheable
2101 * UC = user mapping is cacheable
2102 *
2103 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2104 * +---------------------------------------------
2105 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2106 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2107 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2108 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2109 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2110 *
2111 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2112 */
2113 __inline static void
2114 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2115 boolean_t clear_cache)
2116 {
2117 if (pmap == pmap_kernel())
2118 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2119 else
2120 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2121 }
2122
2123 static void
2124 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2125 boolean_t clear_cache)
2126 {
2127 int user_entries = 0;
2128 int user_writable = 0;
2129 int user_cacheable = 0;
2130 int kernel_entries = 0;
2131 int kernel_writable = 0;
2132 int kernel_cacheable = 0;
2133 struct pv_entry *pv;
2134 struct pmap *last_pmap = pmap;
2135
2136 #ifdef DIAGNOSTIC
2137 if (pmap != pmap_kernel())
2138 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2139 #endif
2140
2141 /*
2142 * Pass one, see if there are both kernel and user pmaps for
2143 * this page. Calculate whether there are user-writable or
2144 * kernel-writable pages.
2145 */
2146 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2147 if (pv->pv_pmap != pmap) {
2148 user_entries++;
2149 if (pv->pv_flags & PVF_WRITE)
2150 user_writable++;
2151 if ((pv->pv_flags & PVF_NC) == 0)
2152 user_cacheable++;
2153 } else {
2154 kernel_entries++;
2155 if (pv->pv_flags & PVF_WRITE)
2156 kernel_writable++;
2157 if ((pv->pv_flags & PVF_NC) == 0)
2158 kernel_cacheable++;
2159 }
2160 }
2161
2162 /*
2163 * We know we have just been updating a kernel entry, so if
2164 * all user pages are already cacheable, then there is nothing
2165 * further to do.
2166 */
2167 if (kernel_entries == 0 &&
2168 user_cacheable == user_entries)
2169 return;
2170
2171 if (user_entries) {
2172 /*
2173 * Scan over the list again, for each entry, if it
2174 * might not be set correctly, call pmap_vac_me_user
2175 * to recalculate the settings.
2176 */
2177 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2178 /*
2179 * We know kernel mappings will get set
2180 * correctly in other calls. We also know
2181 * that if the pmap is the same as last_pmap
2182 * then we've just handled this entry.
2183 */
2184 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2185 continue;
2186 /*
2187 * If there are kernel entries and this page
2188 * is writable but non-cacheable, then we can
2189 * skip this entry also.
2190 */
2191 if (kernel_entries > 0 &&
2192 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2193 (PVF_NC | PVF_WRITE))
2194 continue;
2195 /*
2196 * Similarly if there are no kernel-writable
2197 * entries and the page is already
2198 * read-only/cacheable.
2199 */
2200 if (kernel_writable == 0 &&
2201 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2202 continue;
2203 /*
2204 * For some of the remaining cases, we know
2205 * that we must recalculate, but for others we
2206 * can't tell if they are correct or not, so
2207 * we recalculate anyway.
2208 */
2209 pmap_unmap_ptes(last_pmap);
2210 last_pmap = pv->pv_pmap;
2211 ptes = pmap_map_ptes(last_pmap);
2212 pmap_vac_me_user(last_pmap, pg, ptes,
2213 pmap_is_curpmap(last_pmap));
2214 }
2215 /* Restore the pte mapping that was passed to us. */
2216 if (last_pmap != pmap) {
2217 pmap_unmap_ptes(last_pmap);
2218 ptes = pmap_map_ptes(pmap);
2219 }
2220 if (kernel_entries == 0)
2221 return;
2222 }
2223
2224 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2225 return;
2226 }
2227
2228 static void
2229 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2230 boolean_t clear_cache)
2231 {
2232 struct pmap *kpmap = pmap_kernel();
2233 struct pv_entry *pv, *npv;
2234 int entries = 0;
2235 int writable = 0;
2236 int cacheable_entries = 0;
2237 int kern_cacheable = 0;
2238 int other_writable = 0;
2239
2240 pv = pg->mdpage.pvh_list;
2241 KASSERT(ptes != NULL);
2242
2243 /*
2244 * Count mappings and writable mappings in this pmap.
2245 * Include kernel mappings as part of our own.
2246 * Keep a pointer to the first one.
2247 */
2248 for (npv = pv; npv; npv = npv->pv_next) {
2249 /* Count mappings in the same pmap */
2250 if (pmap == npv->pv_pmap ||
2251 kpmap == npv->pv_pmap) {
2252 if (entries++ == 0)
2253 pv = npv;
2254 /* Cacheable mappings */
2255 if ((npv->pv_flags & PVF_NC) == 0) {
2256 cacheable_entries++;
2257 if (kpmap == npv->pv_pmap)
2258 kern_cacheable++;
2259 }
2260 /* Writable mappings */
2261 if (npv->pv_flags & PVF_WRITE)
2262 ++writable;
2263 } else if (npv->pv_flags & PVF_WRITE)
2264 other_writable = 1;
2265 }
2266
2267 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2268 "writable %d cacheable %d %s\n", pmap, entries, writable,
2269 cacheable_entries, clear_cache ? "clean" : "no clean"));
2270
2271 /*
2272 * Enable or disable caching as necessary.
2273 * Note: the first entry might be part of the kernel pmap,
2274 * so we can't assume this is indicative of the state of the
2275 * other (maybe non-kpmap) entries.
2276 */
2277 if ((entries > 1 && writable) ||
2278 (entries > 0 && pmap == kpmap && other_writable)) {
2279 if (cacheable_entries == 0)
2280 return;
2281 for (npv = pv; npv; npv = npv->pv_next) {
2282 if ((pmap == npv->pv_pmap
2283 || kpmap == npv->pv_pmap) &&
2284 (npv->pv_flags & PVF_NC) == 0) {
2285 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2286 PTE_SYNC_CURRENT(pmap,
2287 &ptes[arm_btop(npv->pv_va)]);
2288 npv->pv_flags |= PVF_NC;
2289 /*
2290 * If this page needs flushing from the
2291 * cache, and we aren't going to do it
2292 * below, do it now.
2293 */
2294 if ((cacheable_entries < 4 &&
2295 (clear_cache || npv->pv_pmap == kpmap)) ||
2296 (npv->pv_pmap == kpmap &&
2297 !clear_cache && kern_cacheable < 4)) {
2298 cpu_idcache_wbinv_range(npv->pv_va,
2299 NBPG);
2300 cpu_tlb_flushID_SE(npv->pv_va);
2301 }
2302 }
2303 }
2304 if ((clear_cache && cacheable_entries >= 4) ||
2305 kern_cacheable >= 4) {
2306 cpu_idcache_wbinv_all();
2307 cpu_tlb_flushID();
2308 }
2309 cpu_cpwait();
2310 } else if (entries > 0) {
2311 /*
2312 * Turn cacheing back on for some pages. If it is a kernel
2313 * page, only do so if there are no other writable pages.
2314 */
2315 for (npv = pv; npv; npv = npv->pv_next) {
2316 if ((pmap == npv->pv_pmap ||
2317 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2318 (npv->pv_flags & PVF_NC)) {
2319 ptes[arm_btop(npv->pv_va)] |=
2320 pte_l2_s_cache_mode;
2321 PTE_SYNC_CURRENT(pmap,
2322 &ptes[arm_btop(npv->pv_va)]);
2323 npv->pv_flags &= ~PVF_NC;
2324 }
2325 }
2326 }
2327 }
2328
2329 /*
2330 * pmap_remove()
2331 *
2332 * pmap_remove is responsible for nuking a number of mappings for a range
2333 * of virtual address space in the current pmap. To do this efficiently
2334 * is interesting, because in a number of cases a wide virtual address
2335 * range may be supplied that contains few actual mappings. So, the
2336 * optimisations are:
2337 * 1. Try and skip over hunks of address space for which an L1 entry
2338 * does not exist.
2339 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2340 * maybe do just a partial cache clean. This path of execution is
2341 * complicated by the fact that the cache must be flushed _before_
2342 * the PTE is nuked, being a VAC :-)
2343 * 3. Maybe later fast-case a single page, but I don't think this is
2344 * going to make _that_ much difference overall.
2345 */
2346
2347 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2348
2349 void
2350 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2351 {
2352 int cleanlist_idx = 0;
2353 struct pagelist {
2354 vaddr_t va;
2355 pt_entry_t *pte;
2356 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2357 pt_entry_t *pte = 0, *ptes;
2358 paddr_t pa;
2359 int pmap_active;
2360 struct vm_page *pg;
2361
2362 /* Exit quick if there is no pmap */
2363 if (!pmap)
2364 return;
2365
2366 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2367 pmap, sva, eva));
2368
2369 /*
2370 * we lock in the pmap => vm_page direction
2371 */
2372 PMAP_MAP_TO_HEAD_LOCK();
2373
2374 ptes = pmap_map_ptes(pmap);
2375 /* Get a page table pointer */
2376 while (sva < eva) {
2377 if (pmap_pde_page(pmap_pde(pmap, sva)))
2378 break;
2379 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2380 }
2381
2382 pte = &ptes[arm_btop(sva)];
2383 /* Note if the pmap is active thus require cache and tlb cleans */
2384 pmap_active = pmap_is_curpmap(pmap);
2385
2386 /* Now loop along */
2387 while (sva < eva) {
2388 /* Check if we can move to the next PDE (l1 chunk) */
2389 if ((sva & L2_ADDR_BITS) == 0) {
2390 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2391 sva += L1_S_SIZE;
2392 pte += arm_btop(L1_S_SIZE);
2393 continue;
2394 }
2395 }
2396
2397 /* We've found a valid PTE, so this page of PTEs has to go. */
2398 if (pmap_pte_v(pte)) {
2399 /* Update statistics */
2400 --pmap->pm_stats.resident_count;
2401
2402 /*
2403 * Add this page to our cache remove list, if we can.
2404 * If, however the cache remove list is totally full,
2405 * then do a complete cache invalidation taking note
2406 * to backtrack the PTE table beforehand, and ignore
2407 * the lists in future because there's no longer any
2408 * point in bothering with them (we've paid the
2409 * penalty, so will carry on unhindered). Otherwise,
2410 * when we fall out, we just clean the list.
2411 */
2412 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2413 pa = pmap_pte_pa(pte);
2414
2415 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2416 /* Add to the clean list. */
2417 cleanlist[cleanlist_idx].pte = pte;
2418 cleanlist[cleanlist_idx].va = sva;
2419 cleanlist_idx++;
2420 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2421 int cnt;
2422
2423 /* Nuke everything if needed. */
2424 if (pmap_active) {
2425 cpu_idcache_wbinv_all();
2426 cpu_tlb_flushID();
2427 }
2428
2429 /*
2430 * Roll back the previous PTE list,
2431 * and zero out the current PTE.
2432 */
2433 for (cnt = 0;
2434 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
2435 cnt++) {
2436 *cleanlist[cnt].pte = 0;
2437 if (pmap_active)
2438 PTE_SYNC(cleanlist[cnt].pte);
2439 else
2440 PTE_FLUSH(cleanlist[cnt].pte);
2441 pmap_pte_delref(pmap,
2442 cleanlist[cnt].va);
2443 }
2444 *pte = 0;
2445 if (pmap_active)
2446 PTE_SYNC(pte);
2447 else
2448 PTE_FLUSH(pte);
2449 pmap_pte_delref(pmap, sva);
2450 cleanlist_idx++;
2451 } else {
2452 /*
2453 * We've already nuked the cache and
2454 * TLB, so just carry on regardless,
2455 * and we won't need to do it again
2456 */
2457 *pte = 0;
2458 if (pmap_active)
2459 PTE_SYNC(pte);
2460 else
2461 PTE_FLUSH(pte);
2462 pmap_pte_delref(pmap, sva);
2463 }
2464
2465 /*
2466 * Update flags. In a number of circumstances,
2467 * we could cluster a lot of these and do a
2468 * number of sequential pages in one go.
2469 */
2470 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2471 struct pv_entry *pve;
2472 simple_lock(&pg->mdpage.pvh_slock);
2473 pve = pmap_remove_pv(pg, pmap, sva);
2474 pmap_free_pv(pmap, pve);
2475 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2476 simple_unlock(&pg->mdpage.pvh_slock);
2477 }
2478 } else if (pmap_active == 0)
2479 PTE_FLUSH(pte);
2480 sva += NBPG;
2481 pte++;
2482 }
2483
2484 /*
2485 * Now, if we've fallen through down to here, chances are that there
2486 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2487 */
2488 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2489 u_int cnt;
2490
2491 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2492 if (pmap_active) {
2493 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2494 NBPG);
2495 *cleanlist[cnt].pte = 0;
2496 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2497 PTE_SYNC(cleanlist[cnt].pte);
2498 } else {
2499 *cleanlist[cnt].pte = 0;
2500 PTE_FLUSH(cleanlist[cnt].pte);
2501 }
2502 pmap_pte_delref(pmap, cleanlist[cnt].va);
2503 }
2504 }
2505
2506 pmap_unmap_ptes(pmap);
2507
2508 PMAP_MAP_TO_HEAD_UNLOCK();
2509 }
2510
2511 /*
2512 * Routine: pmap_remove_all
2513 * Function:
2514 * Removes this physical page from
2515 * all physical maps in which it resides.
2516 * Reflects back modify bits to the pager.
2517 */
2518
2519 static void
2520 pmap_remove_all(struct vm_page *pg)
2521 {
2522 struct pv_entry *pv, *npv;
2523 struct pmap *pmap;
2524 pt_entry_t *pte, *ptes;
2525
2526 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2527
2528 /* set vm_page => pmap locking */
2529 PMAP_HEAD_TO_MAP_LOCK();
2530
2531 simple_lock(&pg->mdpage.pvh_slock);
2532
2533 pv = pg->mdpage.pvh_list;
2534 if (pv == NULL) {
2535 PDEBUG(0, printf("free page\n"));
2536 simple_unlock(&pg->mdpage.pvh_slock);
2537 PMAP_HEAD_TO_MAP_UNLOCK();
2538 return;
2539 }
2540 pmap_clean_page(pv, FALSE);
2541
2542 while (pv) {
2543 pmap = pv->pv_pmap;
2544 ptes = pmap_map_ptes(pmap);
2545 pte = &ptes[arm_btop(pv->pv_va)];
2546
2547 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2548 pv->pv_va, pv->pv_flags));
2549 #ifdef DEBUG
2550 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2551 pmap_pte_v(pte) == 0 ||
2552 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2553 panic("pmap_remove_all: bad mapping");
2554 #endif /* DEBUG */
2555
2556 /*
2557 * Update statistics
2558 */
2559 --pmap->pm_stats.resident_count;
2560
2561 /* Wired bit */
2562 if (pv->pv_flags & PVF_WIRED)
2563 --pmap->pm_stats.wired_count;
2564
2565 /*
2566 * Invalidate the PTEs.
2567 * XXX: should cluster them up and invalidate as many
2568 * as possible at once.
2569 */
2570
2571 #ifdef needednotdone
2572 reduce wiring count on page table pages as references drop
2573 #endif
2574
2575 *pte = 0;
2576 PTE_SYNC_CURRENT(pmap, pte);
2577 pmap_pte_delref(pmap, pv->pv_va);
2578
2579 npv = pv->pv_next;
2580 pmap_free_pv(pmap, pv);
2581 pv = npv;
2582 pmap_unmap_ptes(pmap);
2583 }
2584 pg->mdpage.pvh_list = NULL;
2585 simple_unlock(&pg->mdpage.pvh_slock);
2586 PMAP_HEAD_TO_MAP_UNLOCK();
2587
2588 PDEBUG(0, printf("done\n"));
2589 cpu_tlb_flushID();
2590 cpu_cpwait();
2591 }
2592
2593
2594 /*
2595 * Set the physical protection on the specified range of this map as requested.
2596 */
2597
2598 void
2599 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2600 {
2601 pt_entry_t *pte = NULL, *ptes;
2602 struct vm_page *pg;
2603 int flush = 0;
2604
2605 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2606 pmap, sva, eva, prot));
2607
2608 if (~prot & VM_PROT_READ) {
2609 /*
2610 * Just remove the mappings. pmap_update() is not required
2611 * here since the caller should do it.
2612 */
2613 pmap_remove(pmap, sva, eva);
2614 return;
2615 }
2616 if (prot & VM_PROT_WRITE) {
2617 /*
2618 * If this is a read->write transition, just ignore it and let
2619 * uvm_fault() take care of it later.
2620 */
2621 return;
2622 }
2623
2624 /* Need to lock map->head */
2625 PMAP_MAP_TO_HEAD_LOCK();
2626
2627 ptes = pmap_map_ptes(pmap);
2628
2629 /*
2630 * OK, at this point, we know we're doing write-protect operation.
2631 * If the pmap is active, write-back the range.
2632 */
2633 if (pmap_is_curpmap(pmap))
2634 cpu_dcache_wb_range(sva, eva - sva);
2635
2636 /*
2637 * We need to acquire a pointer to a page table page before entering
2638 * the following loop.
2639 */
2640 while (sva < eva) {
2641 if (pmap_pde_page(pmap_pde(pmap, sva)))
2642 break;
2643 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2644 }
2645
2646 pte = &ptes[arm_btop(sva)];
2647
2648 while (sva < eva) {
2649 /* only check once in a while */
2650 if ((sva & L2_ADDR_BITS) == 0) {
2651 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2652 /* We can race ahead here, to the next pde. */
2653 sva += L1_S_SIZE;
2654 pte += arm_btop(L1_S_SIZE);
2655 continue;
2656 }
2657 }
2658
2659 if (!pmap_pte_v(pte)) {
2660 PTE_FLUSH_ALT(pmap, pte);
2661 goto next;
2662 }
2663
2664 flush = 1;
2665
2666 pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
2667
2668 *pte &= ~L2_S_PROT_W; /* clear write bit */
2669 PTE_SYNC_CURRENT(pmap, pte); /* XXXJRT optimize */
2670
2671 /* Clear write flag */
2672 if (pg != NULL) {
2673 simple_lock(&pg->mdpage.pvh_slock);
2674 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2675 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2676 simple_unlock(&pg->mdpage.pvh_slock);
2677 }
2678
2679 next:
2680 sva += NBPG;
2681 pte++;
2682 }
2683 pmap_unmap_ptes(pmap);
2684 PMAP_MAP_TO_HEAD_UNLOCK();
2685 if (flush)
2686 cpu_tlb_flushID();
2687 }
2688
2689 /*
2690 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2691 * int flags)
2692 *
2693 * Insert the given physical page (p) at
2694 * the specified virtual address (v) in the
2695 * target physical map with the protection requested.
2696 *
2697 * If specified, the page will be wired down, meaning
2698 * that the related pte can not be reclaimed.
2699 *
2700 * NB: This is the only routine which MAY NOT lazy-evaluate
2701 * or lose information. That is, this routine must actually
2702 * insert this page into the given map NOW.
2703 */
2704
2705 int
2706 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2707 int flags)
2708 {
2709 pt_entry_t *ptes, opte, npte;
2710 paddr_t opa;
2711 boolean_t wired = (flags & PMAP_WIRED) != 0;
2712 struct vm_page *pg;
2713 struct pv_entry *pve;
2714 int error, nflags;
2715
2716 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2717 va, pa, pmap, prot, wired));
2718
2719 #ifdef DIAGNOSTIC
2720 /* Valid address ? */
2721 if (va >= (pmap_curmaxkvaddr))
2722 panic("pmap_enter: too big");
2723 if (pmap != pmap_kernel() && va != 0) {
2724 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2725 panic("pmap_enter: kernel page in user map");
2726 } else {
2727 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2728 panic("pmap_enter: user page in kernel map");
2729 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2730 panic("pmap_enter: entering PT page");
2731 }
2732 #endif
2733
2734 KDASSERT(((va | pa) & PGOFSET) == 0);
2735
2736 /*
2737 * Get a pointer to the page. Later on in this function, we
2738 * test for a managed page by checking pg != NULL.
2739 */
2740 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2741
2742 /* get lock */
2743 PMAP_MAP_TO_HEAD_LOCK();
2744
2745 /*
2746 * map the ptes. If there's not already an L2 table for this
2747 * address, allocate one.
2748 */
2749 ptes = pmap_map_ptes(pmap); /* locks pmap */
2750 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2751 struct vm_page *ptp;
2752
2753 /* kernel should be pre-grown */
2754 KASSERT(pmap != pmap_kernel());
2755
2756 /* if failure is allowed then don't try too hard */
2757 ptp = pmap_get_ptp(pmap, va & PD_FRAME);
2758 if (ptp == NULL) {
2759 if (flags & PMAP_CANFAIL) {
2760 error = ENOMEM;
2761 goto out;
2762 }
2763 panic("pmap_enter: get ptp failed");
2764 }
2765 }
2766 opte = ptes[arm_btop(va)];
2767
2768 nflags = 0;
2769 if (prot & VM_PROT_WRITE)
2770 nflags |= PVF_WRITE;
2771 if (wired)
2772 nflags |= PVF_WIRED;
2773
2774 /* Is the pte valid ? If so then this page is already mapped */
2775 if (l2pte_valid(opte)) {
2776 /* Get the physical address of the current page mapped */
2777 opa = l2pte_pa(opte);
2778
2779 /* Are we mapping the same page ? */
2780 if (opa == pa) {
2781 /* Check to see if we're doing rw->ro. */
2782 if ((opte & L2_S_PROT_W) != 0 &&
2783 (prot & VM_PROT_WRITE) == 0) {
2784 /* Yup, flush the cache if current pmap. */
2785 if (pmap_is_curpmap(pmap))
2786 cpu_dcache_wb_range(va, NBPG);
2787 }
2788
2789 /* Has the wiring changed ? */
2790 if (pg != NULL) {
2791 simple_lock(&pg->mdpage.pvh_slock);
2792 (void) pmap_modify_pv(pmap, va, pg,
2793 PVF_WRITE | PVF_WIRED, nflags);
2794 simple_unlock(&pg->mdpage.pvh_slock);
2795 }
2796 } else {
2797 struct vm_page *opg;
2798
2799 /* We are replacing the page with a new one. */
2800 cpu_idcache_wbinv_range(va, NBPG);
2801
2802 /*
2803 * If it is part of our managed memory then we
2804 * must remove it from the PV list
2805 */
2806 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2807 simple_lock(&opg->mdpage.pvh_slock);
2808 pve = pmap_remove_pv(opg, pmap, va);
2809 simple_unlock(&opg->mdpage.pvh_slock);
2810 } else {
2811 pve = NULL;
2812 }
2813
2814 goto enter;
2815 }
2816 } else {
2817 opa = 0;
2818 pve = NULL;
2819 pmap_pte_addref(pmap, va);
2820
2821 /* pte is not valid so we must be hooking in a new page */
2822 ++pmap->pm_stats.resident_count;
2823
2824 enter:
2825 /*
2826 * Enter on the PV list if part of our managed memory
2827 */
2828 if (pg != NULL) {
2829 if (pve == NULL) {
2830 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2831 if (pve == NULL) {
2832 if (flags & PMAP_CANFAIL) {
2833 PTE_FLUSH_ALT(pmap,
2834 ptes[arm_btop(va)]);
2835 error = ENOMEM;
2836 goto out;
2837 }
2838 panic("pmap_enter: no pv entries "
2839 "available");
2840 }
2841 }
2842 /* enter_pv locks pvh when adding */
2843 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2844 } else {
2845 if (pve != NULL)
2846 pmap_free_pv(pmap, pve);
2847 }
2848 }
2849
2850 /* Construct the pte, giving the correct access. */
2851 npte = pa;
2852
2853 /* VA 0 is magic. */
2854 if (pmap != pmap_kernel() && va != vector_page)
2855 npte |= L2_S_PROT_U;
2856
2857 if (pg != NULL) {
2858 #ifdef DIAGNOSTIC
2859 if ((flags & VM_PROT_ALL) & ~prot)
2860 panic("pmap_enter: access_type exceeds prot");
2861 #endif
2862 npte |= pte_l2_s_cache_mode;
2863 if (flags & VM_PROT_WRITE) {
2864 npte |= L2_S_PROTO | L2_S_PROT_W;
2865 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2866 } else if (flags & VM_PROT_ALL) {
2867 npte |= L2_S_PROTO;
2868 pg->mdpage.pvh_attrs |= PVF_REF;
2869 } else
2870 npte |= L2_TYPE_INV;
2871 } else {
2872 if (prot & VM_PROT_WRITE)
2873 npte |= L2_S_PROTO | L2_S_PROT_W;
2874 else if (prot & VM_PROT_ALL)
2875 npte |= L2_S_PROTO;
2876 else
2877 npte |= L2_TYPE_INV;
2878 }
2879
2880 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
2881 #if ARM_NMMUS > 1
2882 # error "XXX Unable to use read/write-allocate and configure non-XScale"
2883 #endif
2884 /*
2885 * XXX BRUTAL HACK! This allows us to limp along with
2886 * XXX the read/write-allocate cache mode.
2887 */
2888 if (pmap == pmap_kernel())
2889 npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
2890 #endif
2891 ptes[arm_btop(va)] = npte;
2892 PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
2893
2894 if (pg != NULL) {
2895 simple_lock(&pg->mdpage.pvh_slock);
2896 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2897 simple_unlock(&pg->mdpage.pvh_slock);
2898 }
2899
2900 /* Better flush the TLB ... */
2901 cpu_tlb_flushID_SE(va);
2902 error = 0;
2903 out:
2904 pmap_unmap_ptes(pmap); /* unlocks pmap */
2905 PMAP_MAP_TO_HEAD_UNLOCK();
2906
2907 return error;
2908 }
2909
2910 /*
2911 * pmap_kenter_pa: enter a kernel mapping
2912 *
2913 * => no need to lock anything assume va is already allocated
2914 * => should be faster than normal pmap enter function
2915 */
2916 void
2917 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2918 {
2919 pt_entry_t *pte;
2920
2921 pte = vtopte(va);
2922 KASSERT(!pmap_pte_v(pte));
2923
2924 #ifdef PMAP_ALIAS_DEBUG
2925 {
2926 struct vm_page *pg;
2927 int s;
2928
2929 pg = PHYS_TO_VM_PAGE(pa);
2930 if (pg != NULL) {
2931 s = splhigh();
2932 if (pg->mdpage.ro_mappings == 0 &&
2933 pg->mdpage.rw_mappings == 0 &&
2934 pg->mdpage.kro_mappings == 0 &&
2935 pg->mdpage.krw_mappings == 0) {
2936 /* This case is okay. */
2937 } else if (pg->mdpage.rw_mappings == 0 &&
2938 pg->mdpage.krw_mappings == 0 &&
2939 (prot & VM_PROT_WRITE) == 0) {
2940 /* This case is okay. */
2941 } else {
2942 /* Something is awry. */
2943 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2944 "prot 0x%x\n", pg->mdpage.ro_mappings,
2945 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2946 pg->mdpage.krw_mappings, prot);
2947 Debugger();
2948 }
2949 if (prot & VM_PROT_WRITE)
2950 pg->mdpage.krw_mappings++;
2951 else
2952 pg->mdpage.kro_mappings++;
2953 splx(s);
2954 }
2955 }
2956 #endif /* PMAP_ALIAS_DEBUG */
2957
2958 *pte = L2_S_PROTO | pa |
2959 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2960 PTE_SYNC(pte);
2961 }
2962
2963 void
2964 pmap_kremove(vaddr_t va, vsize_t len)
2965 {
2966 pt_entry_t *pte;
2967 vaddr_t ova = va;
2968 vaddr_t olen = len;
2969
2970 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2971
2972 /*
2973 * We assume that we will only be called with small
2974 * regions of memory.
2975 */
2976
2977 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2978 pte = vtopte(va);
2979 #ifdef PMAP_ALIAS_DEBUG
2980 {
2981 struct vm_page *pg;
2982 int s;
2983
2984 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2985 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2986 s = splhigh();
2987 if (*pte & L2_S_PROT_W) {
2988 KASSERT(pg->mdpage.krw_mappings != 0);
2989 pg->mdpage.krw_mappings--;
2990 } else {
2991 KASSERT(pg->mdpage.kro_mappings != 0);
2992 pg->mdpage.kro_mappings--;
2993 }
2994 splx(s);
2995 }
2996 }
2997 #endif /* PMAP_ALIAS_DEBUG */
2998 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2999 *pte = 0;
3000 cpu_tlb_flushID_SE(va);
3001 }
3002 PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
3003 }
3004
3005 /*
3006 * pmap_page_protect:
3007 *
3008 * Lower the permission for all mappings to a given page.
3009 */
3010
3011 void
3012 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3013 {
3014
3015 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
3016 VM_PAGE_TO_PHYS(pg), prot));
3017
3018 switch(prot) {
3019 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3020 case VM_PROT_READ|VM_PROT_WRITE:
3021 return;
3022
3023 case VM_PROT_READ:
3024 case VM_PROT_READ|VM_PROT_EXECUTE:
3025 pmap_clearbit(pg, PVF_WRITE);
3026 break;
3027
3028 default:
3029 pmap_remove_all(pg);
3030 break;
3031 }
3032 }
3033
3034
3035 /*
3036 * Routine: pmap_unwire
3037 * Function: Clear the wired attribute for a map/virtual-address
3038 * pair.
3039 * In/out conditions:
3040 * The mapping must already exist in the pmap.
3041 */
3042
3043 void
3044 pmap_unwire(struct pmap *pmap, vaddr_t va)
3045 {
3046 pt_entry_t *ptes;
3047 struct vm_page *pg;
3048 paddr_t pa;
3049
3050 PMAP_MAP_TO_HEAD_LOCK();
3051 ptes = pmap_map_ptes(pmap); /* locks pmap */
3052
3053 if (pmap_pde_v(pmap_pde(pmap, va))) {
3054 #ifdef DIAGNOSTIC
3055 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3056 panic("pmap_unwire: invalid L2 PTE");
3057 #endif
3058 /* Extract the physical address of the page */
3059 pa = l2pte_pa(ptes[arm_btop(va)]);
3060 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3061
3062 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3063 goto out;
3064
3065 /* Update the wired bit in the pv entry for this page. */
3066 simple_lock(&pg->mdpage.pvh_slock);
3067 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
3068 simple_unlock(&pg->mdpage.pvh_slock);
3069 }
3070 #ifdef DIAGNOSTIC
3071 else {
3072 panic("pmap_unwire: invalid L1 PTE");
3073 }
3074 #endif
3075 out:
3076 pmap_unmap_ptes(pmap); /* unlocks pmap */
3077 PMAP_MAP_TO_HEAD_UNLOCK();
3078 }
3079
3080 /*
3081 * Routine: pmap_extract
3082 * Function:
3083 * Extract the physical page address associated
3084 * with the given map/virtual_address pair.
3085 */
3086 boolean_t
3087 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
3088 {
3089 pd_entry_t *pde;
3090 pt_entry_t *pte, *ptes;
3091 paddr_t pa;
3092
3093 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3094
3095 ptes = pmap_map_ptes(pmap); /* locks pmap */
3096
3097 pde = pmap_pde(pmap, va);
3098 pte = &ptes[arm_btop(va)];
3099
3100 if (pmap_pde_section(pde)) {
3101 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3102 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3103 goto out;
3104 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3105 PDEBUG(5, printf("no mapping\n"));
3106 goto failed;
3107 }
3108
3109 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3110 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3111 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3112 goto out;
3113 }
3114
3115 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3116 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3117
3118 out:
3119 if (pap != NULL)
3120 *pap = pa;
3121
3122 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3123 pmap_unmap_ptes(pmap); /* unlocks pmap */
3124 return (TRUE);
3125
3126 failed:
3127 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3128 pmap_unmap_ptes(pmap); /* unlocks pmap */
3129 return (FALSE);
3130 }
3131
3132
3133 /*
3134 * pmap_copy:
3135 *
3136 * Copy the range specified by src_addr/len from the source map to the
3137 * range dst_addr/len in the destination map.
3138 *
3139 * This routine is only advisory and need not do anything.
3140 */
3141 /* Call deleted in <arm/arm32/pmap.h> */
3142
3143 #if defined(PMAP_DEBUG)
3144 void
3145 pmap_dump_pvlist(phys, m)
3146 vaddr_t phys;
3147 char *m;
3148 {
3149 struct vm_page *pg;
3150 struct pv_entry *pv;
3151
3152 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3153 printf("INVALID PA\n");
3154 return;
3155 }
3156 simple_lock(&pg->mdpage.pvh_slock);
3157 printf("%s %08lx:", m, phys);
3158 if (pg->mdpage.pvh_list == NULL) {
3159 simple_unlock(&pg->mdpage.pvh_slock);
3160 printf(" no mappings\n");
3161 return;
3162 }
3163
3164 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3165 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3166 pv->pv_va, pv->pv_flags);
3167
3168 printf("\n");
3169 simple_unlock(&pg->mdpage.pvh_slock);
3170 }
3171
3172 #endif /* PMAP_DEBUG */
3173
3174 static pt_entry_t *
3175 pmap_map_ptes(struct pmap *pmap)
3176 {
3177 struct proc *p;
3178
3179 /* the kernel's pmap is always accessible */
3180 if (pmap == pmap_kernel()) {
3181 return (pt_entry_t *)PTE_BASE;
3182 }
3183
3184 if (pmap_is_curpmap(pmap)) {
3185 simple_lock(&pmap->pm_obj.vmobjlock);
3186 return (pt_entry_t *)PTE_BASE;
3187 }
3188
3189 p = curproc;
3190 KDASSERT(p != NULL);
3191
3192 /* need to lock both curpmap and pmap: use ordered locking */
3193 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3194 simple_lock(&pmap->pm_obj.vmobjlock);
3195 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3196 } else {
3197 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3198 simple_lock(&pmap->pm_obj.vmobjlock);
3199 }
3200
3201 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3202 pmap->pm_pptpt, 0);
3203 cpu_tlb_flushD();
3204 cpu_cpwait();
3205 return (pt_entry_t *)APTE_BASE;
3206 }
3207
3208 /*
3209 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3210 */
3211
3212 static void
3213 pmap_unmap_ptes(struct pmap *pmap)
3214 {
3215
3216 if (pmap == pmap_kernel()) {
3217 return;
3218 }
3219 if (pmap_is_curpmap(pmap)) {
3220 simple_unlock(&pmap->pm_obj.vmobjlock);
3221 } else {
3222 KDASSERT(curproc != NULL);
3223 simple_unlock(&pmap->pm_obj.vmobjlock);
3224 simple_unlock(
3225 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3226 }
3227 }
3228
3229 /*
3230 * Modify pte bits for all ptes corresponding to the given physical address.
3231 * We use `maskbits' rather than `clearbits' because we're always passing
3232 * constants and the latter would require an extra inversion at run-time.
3233 */
3234
3235 static void
3236 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3237 {
3238 struct pv_entry *pv;
3239 pt_entry_t *ptes, npte, opte;
3240 vaddr_t va;
3241
3242 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3243 VM_PAGE_TO_PHYS(pg), maskbits));
3244
3245 PMAP_HEAD_TO_MAP_LOCK();
3246 simple_lock(&pg->mdpage.pvh_slock);
3247
3248 /*
3249 * Clear saved attributes (modify, reference)
3250 */
3251 pg->mdpage.pvh_attrs &= ~maskbits;
3252
3253 if (pg->mdpage.pvh_list == NULL) {
3254 simple_unlock(&pg->mdpage.pvh_slock);
3255 PMAP_HEAD_TO_MAP_UNLOCK();
3256 return;
3257 }
3258
3259 /*
3260 * Loop over all current mappings setting/clearing as appropos
3261 */
3262 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3263 #ifdef PMAP_ALIAS_DEBUG
3264 {
3265 int s = splhigh();
3266 if ((maskbits & PVF_WRITE) != 0 &&
3267 (pv->pv_flags & PVF_WRITE) != 0) {
3268 KASSERT(pg->mdpage.rw_mappings != 0);
3269 pg->mdpage.rw_mappings--;
3270 pg->mdpage.ro_mappings++;
3271 }
3272 splx(s);
3273 }
3274 #endif /* PMAP_ALIAS_DEBUG */
3275 va = pv->pv_va;
3276 pv->pv_flags &= ~maskbits;
3277 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3278 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3279 npte = opte = ptes[arm_btop(va)];
3280 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3281 if ((pv->pv_flags & PVF_NC)) {
3282 /*
3283 * Entry is not cacheable: reenable
3284 * the cache, nothing to flush
3285 *
3286 * Don't turn caching on again if this
3287 * is a modified emulation. This
3288 * would be inconsitent with the
3289 * settings created by
3290 * pmap_vac_me_harder().
3291 *
3292 * There's no need to call
3293 * pmap_vac_me_harder() here: all
3294 * pages are loosing their write
3295 * permission.
3296 *
3297 */
3298 if (maskbits & PVF_WRITE) {
3299 npte |= pte_l2_s_cache_mode;
3300 pv->pv_flags &= ~PVF_NC;
3301 }
3302 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3303 /*
3304 * Entry is cacheable: check if pmap is
3305 * current if it is flush it,
3306 * otherwise it won't be in the cache
3307 */
3308 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3309 }
3310
3311 /* make the pte read only */
3312 npte &= ~L2_S_PROT_W;
3313 }
3314
3315 if (maskbits & PVF_REF) {
3316 if (pmap_is_curpmap(pv->pv_pmap) &&
3317 (pv->pv_flags & PVF_NC) == 0) {
3318 /*
3319 * Check npte here; we may have already
3320 * done the wbinv above, and the validity
3321 * of the PTE is the same for opte and
3322 * npte.
3323 */
3324 if (npte & L2_S_PROT_W) {
3325 cpu_idcache_wbinv_range(pv->pv_va,
3326 NBPG);
3327 } else if ((npte & L2_TYPE_MASK)
3328 != L2_TYPE_INV) {
3329 /* XXXJRT need idcache_inv_range */
3330 cpu_idcache_wbinv_range(pv->pv_va,
3331 NBPG);
3332 }
3333 }
3334
3335 /* make the pte invalid */
3336 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3337 }
3338
3339 if (npte != opte) {
3340 ptes[arm_btop(va)] = npte;
3341 PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
3342 /* Flush the TLB entry if a current pmap. */
3343 if (pmap_is_curpmap(pv->pv_pmap))
3344 cpu_tlb_flushID_SE(pv->pv_va);
3345 } else
3346 PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
3347
3348 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3349 }
3350 cpu_cpwait();
3351
3352 simple_unlock(&pg->mdpage.pvh_slock);
3353 PMAP_HEAD_TO_MAP_UNLOCK();
3354 }
3355
3356 /*
3357 * pmap_clear_modify:
3358 *
3359 * Clear the "modified" attribute for a page.
3360 */
3361 boolean_t
3362 pmap_clear_modify(struct vm_page *pg)
3363 {
3364 boolean_t rv;
3365
3366 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3367 rv = TRUE;
3368 pmap_clearbit(pg, PVF_MOD);
3369 } else
3370 rv = FALSE;
3371
3372 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3373 VM_PAGE_TO_PHYS(pg), rv));
3374
3375 return (rv);
3376 }
3377
3378 /*
3379 * pmap_clear_reference:
3380 *
3381 * Clear the "referenced" attribute for a page.
3382 */
3383 boolean_t
3384 pmap_clear_reference(struct vm_page *pg)
3385 {
3386 boolean_t rv;
3387
3388 if (pg->mdpage.pvh_attrs & PVF_REF) {
3389 rv = TRUE;
3390 pmap_clearbit(pg, PVF_REF);
3391 } else
3392 rv = FALSE;
3393
3394 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3395 VM_PAGE_TO_PHYS(pg), rv));
3396
3397 return (rv);
3398 }
3399
3400 /*
3401 * pmap_is_modified:
3402 *
3403 * Test if a page has the "modified" attribute.
3404 */
3405 /* See <arm/arm32/pmap.h> */
3406
3407 /*
3408 * pmap_is_referenced:
3409 *
3410 * Test if a page has the "referenced" attribute.
3411 */
3412 /* See <arm/arm32/pmap.h> */
3413
3414 int
3415 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3416 {
3417 pt_entry_t *ptes;
3418 struct vm_page *pg;
3419 paddr_t pa;
3420 u_int flags;
3421 int rv = 0;
3422
3423 PDEBUG(2, printf("pmap_modified_emulation\n"));
3424
3425 PMAP_MAP_TO_HEAD_LOCK();
3426 ptes = pmap_map_ptes(pmap); /* locks pmap */
3427
3428 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3429 PDEBUG(2, printf("L1 PTE invalid\n"));
3430 goto out;
3431 }
3432
3433 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3434
3435 /*
3436 * Don't need to PTE_FLUSH_ALT() here; this is always done
3437 * with the current pmap.
3438 */
3439
3440 /* Check for a invalid pte */
3441 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3442 goto out;
3443
3444 /* This can happen if user code tries to access kernel memory. */
3445 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3446 goto out;
3447
3448 /* Extract the physical address of the page */
3449 pa = l2pte_pa(ptes[arm_btop(va)]);
3450 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3451 goto out;
3452
3453 /* Get the current flags for this page. */
3454 simple_lock(&pg->mdpage.pvh_slock);
3455
3456 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3457 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3458
3459 /*
3460 * Do the flags say this page is writable ? If not then it is a
3461 * genuine write fault. If yes then the write fault is our fault
3462 * as we did not reflect the write access in the PTE. Now we know
3463 * a write has occurred we can correct this and also set the
3464 * modified bit
3465 */
3466 if (~flags & PVF_WRITE) {
3467 simple_unlock(&pg->mdpage.pvh_slock);
3468 goto out;
3469 }
3470
3471 PDEBUG(0,
3472 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3473 va, ptes[arm_btop(va)]));
3474 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3475
3476 /*
3477 * Re-enable write permissions for the page. No need to call
3478 * pmap_vac_me_harder(), since this is just a
3479 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3480 * We've already set the cacheable bits based on the assumption
3481 * that we can write to this page.
3482 */
3483 ptes[arm_btop(va)] =
3484 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3485 PTE_SYNC(&ptes[arm_btop(va)]);
3486 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3487
3488 simple_unlock(&pg->mdpage.pvh_slock);
3489
3490 cpu_tlb_flushID_SE(va);
3491 cpu_cpwait();
3492 rv = 1;
3493 out:
3494 pmap_unmap_ptes(pmap); /* unlocks pmap */
3495 PMAP_MAP_TO_HEAD_UNLOCK();
3496 return (rv);
3497 }
3498
3499 int
3500 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3501 {
3502 pt_entry_t *ptes;
3503 struct vm_page *pg;
3504 paddr_t pa;
3505 int rv = 0;
3506
3507 PDEBUG(2, printf("pmap_handled_emulation\n"));
3508
3509 PMAP_MAP_TO_HEAD_LOCK();
3510 ptes = pmap_map_ptes(pmap); /* locks pmap */
3511
3512 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3513 PDEBUG(2, printf("L1 PTE invalid\n"));
3514 goto out;
3515 }
3516
3517 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3518
3519 /*
3520 * Don't need to PTE_FLUSH_ALT() here; this is always done
3521 * with the current pmap.
3522 */
3523
3524 /* Check for invalid pte */
3525 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3526 goto out;
3527
3528 /* This can happen if user code tries to access kernel memory. */
3529 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3530 goto out;
3531
3532 /* Extract the physical address of the page */
3533 pa = l2pte_pa(ptes[arm_btop(va)]);
3534 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3535 goto out;
3536
3537 simple_lock(&pg->mdpage.pvh_slock);
3538
3539 /*
3540 * Ok we just enable the pte and mark the attibs as handled
3541 * XXX Should we traverse the PV list and enable all PTEs?
3542 */
3543 PDEBUG(0,
3544 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3545 va, ptes[arm_btop(va)]));
3546 pg->mdpage.pvh_attrs |= PVF_REF;
3547
3548 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3549 PTE_SYNC(&ptes[arm_btop(va)]);
3550 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3551
3552 simple_unlock(&pg->mdpage.pvh_slock);
3553
3554 cpu_tlb_flushID_SE(va);
3555 cpu_cpwait();
3556 rv = 1;
3557 out:
3558 pmap_unmap_ptes(pmap); /* unlocks pmap */
3559 PMAP_MAP_TO_HEAD_UNLOCK();
3560 return (rv);
3561 }
3562
3563 /*
3564 * pmap_collect: free resources held by a pmap
3565 *
3566 * => optional function.
3567 * => called when a process is swapped out to free memory.
3568 */
3569
3570 void
3571 pmap_collect(struct pmap *pmap)
3572 {
3573 }
3574
3575 /*
3576 * Routine: pmap_procwr
3577 *
3578 * Function:
3579 * Synchronize caches corresponding to [addr, addr+len) in p.
3580 *
3581 */
3582 void
3583 pmap_procwr(struct proc *p, vaddr_t va, int len)
3584 {
3585 /* We only need to do anything if it is the current process. */
3586 if (p == curproc)
3587 cpu_icache_sync_range(va, len);
3588 }
3589 /*
3590 * PTP functions
3591 */
3592
3593 /*
3594 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3595 *
3596 * => pmap should NOT be pmap_kernel()
3597 * => pmap should be locked
3598 */
3599
3600 static struct vm_page *
3601 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3602 {
3603 struct vm_page *ptp;
3604
3605 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3606
3607 if (pmap_pde_page(pmap_pde(pmap, va))) {
3608
3609 /* valid... check hint (saves us a PA->PG lookup) */
3610 if (pmap->pm_ptphint &&
3611 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3612 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3613 return (pmap->pm_ptphint);
3614 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3615 #ifdef DIAGNOSTIC
3616 if (ptp == NULL)
3617 panic("pmap_get_ptp: unmanaged user PTP");
3618 #endif
3619 pmap->pm_ptphint = ptp;
3620 return(ptp);
3621 }
3622
3623 /* allocate a new PTP (updates ptphint) */
3624 return (pmap_alloc_ptp(pmap, va));
3625 }
3626
3627 /*
3628 * pmap_alloc_ptp: allocate a PTP for a PMAP
3629 *
3630 * => pmap should already be locked by caller
3631 * => we use the ptp's wire_count to count the number of active mappings
3632 * in the PTP (we start it at one to prevent any chance this PTP
3633 * will ever leak onto the active/inactive queues)
3634 */
3635
3636 /*__inline */ static struct vm_page *
3637 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3638 {
3639 struct vm_page *ptp;
3640
3641 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3642
3643 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3644 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3645 if (ptp == NULL)
3646 return (NULL);
3647
3648 /* got one! */
3649 ptp->flags &= ~PG_BUSY; /* never busy */
3650 ptp->wire_count = 1; /* no mappings yet */
3651 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
3652 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3653 pmap->pm_stats.resident_count++; /* count PTP as resident */
3654 pmap->pm_ptphint = ptp;
3655 return (ptp);
3656 }
3657
3658 vaddr_t
3659 pmap_growkernel(vaddr_t maxkvaddr)
3660 {
3661 struct pmap *kpm = pmap_kernel(), *pm;
3662 int s;
3663 paddr_t ptaddr;
3664 struct vm_page *ptp;
3665
3666 if (maxkvaddr <= pmap_curmaxkvaddr)
3667 goto out; /* we are OK */
3668 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3669 pmap_curmaxkvaddr, maxkvaddr));
3670
3671 /*
3672 * whoops! we need to add kernel PTPs
3673 */
3674
3675 s = splhigh(); /* to be safe */
3676 simple_lock(&kpm->pm_obj.vmobjlock);
3677 /* due to the way the arm pmap works we map 4MB at a time */
3678 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3679 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3680
3681 if (uvm.page_init_done == FALSE) {
3682
3683 /*
3684 * we're growing the kernel pmap early (from
3685 * uvm_pageboot_alloc()). this case must be
3686 * handled a little differently.
3687 */
3688
3689 if (uvm_page_physget(&ptaddr) == FALSE)
3690 panic("pmap_growkernel: out of memory");
3691 pmap_zero_page(ptaddr);
3692
3693 /* map this page in */
3694 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
3695 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3696
3697 /* count PTP as resident */
3698 kpm->pm_stats.resident_count++;
3699 continue;
3700 }
3701
3702 /*
3703 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3704 * pmap_initialized == FALSE CASE! WE MAY BE
3705 * INVOKED WHILE pmap_init() IS RUNNING!
3706 */
3707
3708 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3709 panic("pmap_growkernel: alloc ptp failed");
3710
3711 /* distribute new kernel PTP to all active pmaps */
3712 simple_lock(&pmaps_lock);
3713 LIST_FOREACH(pm, &pmaps, pm_list) {
3714 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3715 VM_PAGE_TO_PHYS(ptp),
3716 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3717 }
3718
3719 /* Invalidate the PTPT cache. */
3720 pool_cache_invalidate(&pmap_ptpt_cache);
3721 pmap_ptpt_cache_generation++;
3722
3723 simple_unlock(&pmaps_lock);
3724 }
3725
3726 /*
3727 * flush out the cache, expensive but growkernel will happen so
3728 * rarely
3729 */
3730 cpu_tlb_flushD();
3731 cpu_cpwait();
3732
3733 simple_unlock(&kpm->pm_obj.vmobjlock);
3734 splx(s);
3735
3736 out:
3737 return (pmap_curmaxkvaddr);
3738 }
3739
3740 /************************ Utility routines ****************************/
3741
3742 /*
3743 * vector_page_setprot:
3744 *
3745 * Manipulate the protection of the vector page.
3746 */
3747 void
3748 vector_page_setprot(int prot)
3749 {
3750 pt_entry_t *pte;
3751
3752 pte = vtopte(vector_page);
3753
3754 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3755 PTE_SYNC(pte);
3756 cpu_tlb_flushD_SE(vector_page);
3757 cpu_cpwait();
3758 }
3759
3760 /************************ Bootstrapping routines ****************************/
3761
3762 /*
3763 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3764 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3765 * find them as necessary.
3766 *
3767 * Note that the data on this list is not valid after initarm() returns.
3768 */
3769 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3770
3771 static vaddr_t
3772 kernel_pt_lookup(paddr_t pa)
3773 {
3774 pv_addr_t *pv;
3775
3776 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3777 if (pv->pv_pa == pa)
3778 return (pv->pv_va);
3779 }
3780 return (0);
3781 }
3782
3783 /*
3784 * pmap_map_section:
3785 *
3786 * Create a single section mapping.
3787 */
3788 void
3789 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3790 {
3791 pd_entry_t *pde = (pd_entry_t *) l1pt;
3792 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3793
3794 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3795
3796 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3797 L1_S_PROT(PTE_KERNEL, prot) | fl;
3798 }
3799
3800 /*
3801 * pmap_map_entry:
3802 *
3803 * Create a single page mapping.
3804 */
3805 void
3806 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3807 {
3808 pd_entry_t *pde = (pd_entry_t *) l1pt;
3809 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3810 pt_entry_t *pte;
3811
3812 KASSERT(((va | pa) & PGOFSET) == 0);
3813
3814 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3815 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3816
3817 pte = (pt_entry_t *)
3818 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3819 if (pte == NULL)
3820 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3821
3822 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3823 L2_S_PROT(PTE_KERNEL, prot) | fl;
3824 }
3825
3826 /*
3827 * pmap_link_l2pt:
3828 *
3829 * Link the L2 page table specified by "pa" into the L1
3830 * page table at the slot for "va".
3831 */
3832 void
3833 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3834 {
3835 pd_entry_t *pde = (pd_entry_t *) l1pt;
3836 u_int slot = va >> L1_S_SHIFT;
3837
3838 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3839
3840 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3841 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3842 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3843 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3844
3845 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3846 }
3847
3848 /*
3849 * pmap_map_chunk:
3850 *
3851 * Map a chunk of memory using the most efficient mappings
3852 * possible (section, large page, small page) into the
3853 * provided L1 and L2 tables at the specified virtual address.
3854 */
3855 vsize_t
3856 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3857 int prot, int cache)
3858 {
3859 pd_entry_t *pde = (pd_entry_t *) l1pt;
3860 pt_entry_t *pte, fl;
3861 vsize_t resid;
3862 int i;
3863
3864 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3865
3866 if (l1pt == 0)
3867 panic("pmap_map_chunk: no L1 table provided");
3868
3869 #ifdef VERBOSE_INIT_ARM
3870 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3871 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3872 #endif
3873
3874 size = resid;
3875
3876 while (resid > 0) {
3877 /* See if we can use a section mapping. */
3878 if (((pa | va) & L1_S_OFFSET) == 0 &&
3879 resid >= L1_S_SIZE) {
3880 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3881 #ifdef VERBOSE_INIT_ARM
3882 printf("S");
3883 #endif
3884 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3885 L1_S_PROT(PTE_KERNEL, prot) | fl;
3886 va += L1_S_SIZE;
3887 pa += L1_S_SIZE;
3888 resid -= L1_S_SIZE;
3889 continue;
3890 }
3891
3892 /*
3893 * Ok, we're going to use an L2 table. Make sure
3894 * one is actually in the corresponding L1 slot
3895 * for the current VA.
3896 */
3897 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3898 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3899
3900 pte = (pt_entry_t *)
3901 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3902 if (pte == NULL)
3903 panic("pmap_map_chunk: can't find L2 table for VA"
3904 "0x%08lx", va);
3905
3906 /* See if we can use a L2 large page mapping. */
3907 if (((pa | va) & L2_L_OFFSET) == 0 &&
3908 resid >= L2_L_SIZE) {
3909 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3910 #ifdef VERBOSE_INIT_ARM
3911 printf("L");
3912 #endif
3913 for (i = 0; i < 16; i++) {
3914 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3915 L2_L_PROTO | pa |
3916 L2_L_PROT(PTE_KERNEL, prot) | fl;
3917 }
3918 va += L2_L_SIZE;
3919 pa += L2_L_SIZE;
3920 resid -= L2_L_SIZE;
3921 continue;
3922 }
3923
3924 /* Use a small page mapping. */
3925 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3926 #ifdef VERBOSE_INIT_ARM
3927 printf("P");
3928 #endif
3929 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3930 L2_S_PROT(PTE_KERNEL, prot) | fl;
3931 va += NBPG;
3932 pa += NBPG;
3933 resid -= NBPG;
3934 }
3935 #ifdef VERBOSE_INIT_ARM
3936 printf("\n");
3937 #endif
3938 return (size);
3939 }
3940
3941 /********************** PTE initialization routines **************************/
3942
3943 /*
3944 * These routines are called when the CPU type is identified to set up
3945 * the PTE prototypes, cache modes, etc.
3946 *
3947 * The variables are always here, just in case LKMs need to reference
3948 * them (though, they shouldn't).
3949 */
3950
3951 pt_entry_t pte_l1_s_cache_mode;
3952 pt_entry_t pte_l1_s_cache_mask;
3953
3954 pt_entry_t pte_l2_l_cache_mode;
3955 pt_entry_t pte_l2_l_cache_mask;
3956
3957 pt_entry_t pte_l2_s_cache_mode;
3958 pt_entry_t pte_l2_s_cache_mask;
3959
3960 pt_entry_t pte_l2_s_prot_u;
3961 pt_entry_t pte_l2_s_prot_w;
3962 pt_entry_t pte_l2_s_prot_mask;
3963
3964 pt_entry_t pte_l1_s_proto;
3965 pt_entry_t pte_l1_c_proto;
3966 pt_entry_t pte_l2_s_proto;
3967
3968 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3969 void (*pmap_zero_page_func)(paddr_t);
3970
3971 #if ARM_MMU_GENERIC == 1
3972 void
3973 pmap_pte_init_generic(void)
3974 {
3975
3976 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3977 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3978
3979 pte_l2_l_cache_mode = L2_B|L2_C;
3980 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3981
3982 pte_l2_s_cache_mode = L2_B|L2_C;
3983 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3984
3985 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3986 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3987 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3988
3989 pte_l1_s_proto = L1_S_PROTO_generic;
3990 pte_l1_c_proto = L1_C_PROTO_generic;
3991 pte_l2_s_proto = L2_S_PROTO_generic;
3992
3993 pmap_copy_page_func = pmap_copy_page_generic;
3994 pmap_zero_page_func = pmap_zero_page_generic;
3995 }
3996
3997 #if defined(CPU_ARM9)
3998 void
3999 pmap_pte_init_arm9(void)
4000 {
4001
4002 /*
4003 * ARM9 is compatible with generic, but we want to use
4004 * write-through caching for now.
4005 */
4006 pmap_pte_init_generic();
4007
4008 pte_l1_s_cache_mode = L1_S_C;
4009 pte_l2_l_cache_mode = L2_C;
4010 pte_l2_s_cache_mode = L2_C;
4011 }
4012 #endif /* CPU_ARM9 */
4013 #endif /* ARM_MMU_GENERIC == 1 */
4014
4015 #if ARM_MMU_XSCALE == 1
4016 void
4017 pmap_pte_init_xscale(void)
4018 {
4019 uint32_t auxctl;
4020
4021 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4022 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4023
4024 pte_l2_l_cache_mode = L2_B|L2_C;
4025 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4026
4027 pte_l2_s_cache_mode = L2_B|L2_C;
4028 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4029
4030 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4031 /*
4032 * The XScale core has an enhanced mode where writes that
4033 * miss the cache cause a cache line to be allocated. This
4034 * is significantly faster than the traditional, write-through
4035 * behavior of this case.
4036 *
4037 * However, there is a bug lurking in this pmap module, or in
4038 * other parts of the VM system, or both, which causes corruption
4039 * of NFS-backed files when this cache mode is used. We have
4040 * an ugly work-around for this problem (disable r/w-allocate
4041 * for managed kernel mappings), but the bug is still evil enough
4042 * to consider this cache mode "experimental".
4043 */
4044 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4045 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4046 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4047 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4048
4049 #ifdef XSCALE_CACHE_WRITE_THROUGH
4050 /*
4051 * Some versions of the XScale core have various bugs in
4052 * their cache units, the work-around for which is to run
4053 * the cache in write-through mode. Unfortunately, this
4054 * has a major (negative) impact on performance. So, we
4055 * go ahead and run fast-and-loose, in the hopes that we
4056 * don't line up the planets in a way that will trip the
4057 * bugs.
4058 *
4059 * However, we give you the option to be slow-but-correct.
4060 */
4061 pte_l1_s_cache_mode = L1_S_C;
4062 pte_l2_l_cache_mode = L2_C;
4063 pte_l2_s_cache_mode = L2_C;
4064 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4065
4066 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4067 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4068 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4069
4070 pte_l1_s_proto = L1_S_PROTO_xscale;
4071 pte_l1_c_proto = L1_C_PROTO_xscale;
4072 pte_l2_s_proto = L2_S_PROTO_xscale;
4073
4074 pmap_copy_page_func = pmap_copy_page_xscale;
4075 pmap_zero_page_func = pmap_zero_page_xscale;
4076
4077 /*
4078 * Disable ECC protection of page table access, for now.
4079 */
4080 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4081 : "=r" (auxctl));
4082 auxctl &= ~XSCALE_AUXCTL_P;
4083 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4084 :
4085 : "r" (auxctl));
4086 }
4087
4088 /*
4089 * xscale_setup_minidata:
4090 *
4091 * Set up the mini-data cache clean area. We require the
4092 * caller to allocate the right amount of physically and
4093 * virtually contiguous space.
4094 */
4095 void
4096 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4097 {
4098 extern vaddr_t xscale_minidata_clean_addr;
4099 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4100 pd_entry_t *pde = (pd_entry_t *) l1pt;
4101 pt_entry_t *pte;
4102 vsize_t size;
4103 uint32_t auxctl;
4104
4105 xscale_minidata_clean_addr = va;
4106
4107 /* Round it to page size. */
4108 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4109
4110 for (; size != 0;
4111 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4112 pte = (pt_entry_t *)
4113 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4114 if (pte == NULL)
4115 panic("xscale_setup_minidata: can't find L2 table for "
4116 "VA 0x%08lx", va);
4117 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4118 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4119 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4120 }
4121
4122 /*
4123 * Configure the mini-data cache for write-back with
4124 * read/write-allocate.
4125 *
4126 * NOTE: In order to reconfigure the mini-data cache, we must
4127 * make sure it contains no valid data! In order to do that,
4128 * we must issue a global data cache invalidate command!
4129 *
4130 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4131 * THIS IS VERY IMPORTANT!
4132 */
4133
4134 /* Invalidate data and mini-data. */
4135 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4136 :
4137 : "r" (auxctl));
4138
4139
4140 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4141 : "=r" (auxctl));
4142 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4143 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4144 :
4145 : "r" (auxctl));
4146 }
4147 #endif /* ARM_MMU_XSCALE == 1 */
4148