pmap.c revision 1.120 1 /* $NetBSD: pmap.c,v 1.120 2002/11/11 09:34:44 chris Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001-2002 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.120 2002/11/11 09:34:44 chris Exp $");
147
148 #ifdef PMAP_DEBUG
149 #define PDEBUG(_lev_,_stat_) \
150 if (pmap_debug_level >= (_lev_)) \
151 ((_stat_))
152 int pmap_debug_level = -2;
153 void pmap_dump_pvlist(vaddr_t phys, char *m);
154
155 /*
156 * for switching to potentially finer grained debugging
157 */
158 #define PDB_FOLLOW 0x0001
159 #define PDB_INIT 0x0002
160 #define PDB_ENTER 0x0004
161 #define PDB_REMOVE 0x0008
162 #define PDB_CREATE 0x0010
163 #define PDB_PTPAGE 0x0020
164 #define PDB_GROWKERN 0x0040
165 #define PDB_BITS 0x0080
166 #define PDB_COLLECT 0x0100
167 #define PDB_PROTECT 0x0200
168 #define PDB_MAP_L1 0x0400
169 #define PDB_BOOTSTRAP 0x1000
170 #define PDB_PARANOIA 0x2000
171 #define PDB_WIRING 0x4000
172 #define PDB_PVDUMP 0x8000
173
174 int debugmap = 0;
175 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
176 #define NPDEBUG(_lev_,_stat_) \
177 if (pmapdebug & (_lev_)) \
178 ((_stat_))
179
180 #else /* PMAP_DEBUG */
181 #define PDEBUG(_lev_,_stat_) /* Nothing */
182 #define NPDEBUG(_lev_,_stat_) /* Nothing */
183 #endif /* PMAP_DEBUG */
184
185 struct pmap kernel_pmap_store;
186
187 /*
188 * linked list of all non-kernel pmaps
189 */
190
191 static LIST_HEAD(, pmap) pmaps;
192
193 /*
194 * pool that pmap structures are allocated from
195 */
196
197 struct pool pmap_pmap_pool;
198
199 /*
200 * pool/cache that PT-PT's are allocated from
201 */
202
203 struct pool pmap_ptpt_pool;
204 struct pool_cache pmap_ptpt_cache;
205 u_int pmap_ptpt_cache_generation;
206
207 static void *pmap_ptpt_page_alloc(struct pool *, int);
208 static void pmap_ptpt_page_free(struct pool *, void *);
209
210 struct pool_allocator pmap_ptpt_allocator = {
211 pmap_ptpt_page_alloc, pmap_ptpt_page_free,
212 };
213
214 static int pmap_ptpt_ctor(void *, void *, int);
215
216 static pt_entry_t *csrc_pte, *cdst_pte;
217 static vaddr_t csrcp, cdstp;
218
219 char *memhook;
220 extern caddr_t msgbufaddr;
221
222 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
223 /*
224 * locking data structures
225 */
226
227 static struct lock pmap_main_lock;
228 static struct simplelock pvalloc_lock;
229 static struct simplelock pmaps_lock;
230 #ifdef LOCKDEBUG
231 #define PMAP_MAP_TO_HEAD_LOCK() \
232 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
233 #define PMAP_MAP_TO_HEAD_UNLOCK() \
234 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
235
236 #define PMAP_HEAD_TO_MAP_LOCK() \
237 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
238 #define PMAP_HEAD_TO_MAP_UNLOCK() \
239 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
240 #else
241 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
242 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
243 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
244 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
245 #endif /* LOCKDEBUG */
246
247 /*
248 * pv_page management structures: locked by pvalloc_lock
249 */
250
251 TAILQ_HEAD(pv_pagelist, pv_page);
252 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
253 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
254 static int pv_nfpvents; /* # of free pv entries */
255 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
256 static vaddr_t pv_cachedva; /* cached VA for later use */
257
258 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
259 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
260 /* high water mark */
261
262 /*
263 * local prototypes
264 */
265
266 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
267 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
268 #define ALLOCPV_NEED 0 /* need PV now */
269 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
270 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
271 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
272 static void pmap_enter_pv __P((struct vm_page *,
273 struct pv_entry *, struct pmap *,
274 vaddr_t, struct vm_page *, int));
275 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
276 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
277 static void pmap_free_pv_doit __P((struct pv_entry *));
278 static void pmap_free_pvpage __P((void));
279 static boolean_t pmap_is_curpmap __P((struct pmap *));
280 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
281 vaddr_t));
282 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
283 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
284
285 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
286 u_int, u_int));
287
288 /*
289 * Structure that describes and L1 table.
290 */
291 struct l1pt {
292 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
293 struct pglist pt_plist; /* Allocated page list */
294 vaddr_t pt_va; /* Allocated virtual address */
295 int pt_flags; /* Flags */
296 };
297 #define PTFLAG_STATIC 0x01 /* Statically allocated */
298 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
299 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
300
301 static void pmap_free_l1pt __P((struct l1pt *));
302 static int pmap_allocpagedir __P((struct pmap *));
303 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
304 static void pmap_page_remove __P((struct vm_page *));
305
306 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
307 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
308 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
309
310 extern paddr_t physical_start;
311 extern paddr_t physical_end;
312 extern unsigned int free_pages;
313 extern int max_processes;
314
315 vaddr_t virtual_avail;
316 vaddr_t virtual_end;
317 vaddr_t pmap_curmaxkvaddr;
318
319 vaddr_t avail_start;
320 vaddr_t avail_end;
321
322 extern pv_addr_t systempage;
323
324 /* Variables used by the L1 page table queue code */
325 SIMPLEQ_HEAD(l1pt_queue, l1pt);
326 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
327 static int l1pt_static_queue_count; /* items in the static l1 queue */
328 static int l1pt_static_create_count; /* static l1 items created */
329 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
330 static int l1pt_queue_count; /* items in the l1 queue */
331 static int l1pt_create_count; /* stat - L1's create count */
332 static int l1pt_reuse_count; /* stat - L1's reused count */
333
334 /* Local function prototypes (not used outside this file) */
335 void pmap_pinit __P((struct pmap *));
336 void pmap_freepagedir __P((struct pmap *));
337
338 /* Other function prototypes */
339 extern void bzero_page __P((vaddr_t));
340 extern void bcopy_page __P((vaddr_t, vaddr_t));
341
342 struct l1pt *pmap_alloc_l1pt __P((void));
343 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
344 vaddr_t l2pa, int));
345
346 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
347 static void pmap_unmap_ptes __P((struct pmap *));
348
349 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
350 pt_entry_t *, boolean_t));
351 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
352 pt_entry_t *, boolean_t));
353 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
354 pt_entry_t *, boolean_t));
355
356 /*
357 * real definition of pv_entry.
358 */
359
360 struct pv_entry {
361 struct pv_entry *pv_next; /* next pv_entry */
362 struct pmap *pv_pmap; /* pmap where mapping lies */
363 vaddr_t pv_va; /* virtual address for mapping */
364 int pv_flags; /* flags */
365 struct vm_page *pv_ptp; /* vm_page for the ptp */
366 };
367
368 /*
369 * pv_entrys are dynamically allocated in chunks from a single page.
370 * we keep track of how many pv_entrys are in use for each page and
371 * we can free pv_entry pages if needed. there is one lock for the
372 * entire allocation system.
373 */
374
375 struct pv_page_info {
376 TAILQ_ENTRY(pv_page) pvpi_list;
377 struct pv_entry *pvpi_pvfree;
378 int pvpi_nfree;
379 };
380
381 /*
382 * number of pv_entry's in a pv_page
383 * (note: won't work on systems where NPBG isn't a constant)
384 */
385
386 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
387 sizeof(struct pv_entry))
388
389 /*
390 * a pv_page: where pv_entrys are allocated from
391 */
392
393 struct pv_page {
394 struct pv_page_info pvinfo;
395 struct pv_entry pvents[PVE_PER_PVPAGE];
396 };
397
398 #ifdef MYCROFT_HACK
399 int mycroft_hack = 0;
400 #endif
401
402 /* Function to set the debug level of the pmap code */
403
404 #ifdef PMAP_DEBUG
405 void
406 pmap_debug(int level)
407 {
408 pmap_debug_level = level;
409 printf("pmap_debug: level=%d\n", pmap_debug_level);
410 }
411 #endif /* PMAP_DEBUG */
412
413 __inline static boolean_t
414 pmap_is_curpmap(struct pmap *pmap)
415 {
416
417 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
418 pmap == pmap_kernel())
419 return (TRUE);
420
421 return (FALSE);
422 }
423
424 /*
425 * PTE_SYNC_CURRENT:
426 *
427 * Make sure the pte is flushed to RAM. If the pmap is
428 * not the current pmap, then also evict the pte from
429 * any cache lines.
430 */
431 #define PTE_SYNC_CURRENT(pmap, pte) \
432 do { \
433 if (pmap_is_curpmap(pmap)) \
434 PTE_SYNC(pte); \
435 else \
436 PTE_FLUSH(pte); \
437 } while (/*CONSTCOND*/0)
438
439 /*
440 * PTE_FLUSH_ALT:
441 *
442 * Make sure the pte is not in any cache lines. We expect
443 * this to be used only when a pte has not been modified.
444 */
445 #define PTE_FLUSH_ALT(pmap, pte) \
446 do { \
447 if (pmap_is_curpmap(pmap) == 0) \
448 PTE_FLUSH(pte); \
449 } while (/*CONSTCOND*/0)
450
451 /*
452 * p v _ e n t r y f u n c t i o n s
453 */
454
455 /*
456 * pv_entry allocation functions:
457 * the main pv_entry allocation functions are:
458 * pmap_alloc_pv: allocate a pv_entry structure
459 * pmap_free_pv: free one pv_entry
460 * pmap_free_pvs: free a list of pv_entrys
461 *
462 * the rest are helper functions
463 */
464
465 /*
466 * pmap_alloc_pv: inline function to allocate a pv_entry structure
467 * => we lock pvalloc_lock
468 * => if we fail, we call out to pmap_alloc_pvpage
469 * => 3 modes:
470 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
471 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
472 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
473 * one now
474 *
475 * "try" is for optional functions like pmap_copy().
476 */
477
478 __inline static struct pv_entry *
479 pmap_alloc_pv(struct pmap *pmap, int mode)
480 {
481 struct pv_page *pvpage;
482 struct pv_entry *pv;
483
484 simple_lock(&pvalloc_lock);
485
486 pvpage = TAILQ_FIRST(&pv_freepages);
487
488 if (pvpage != NULL) {
489 pvpage->pvinfo.pvpi_nfree--;
490 if (pvpage->pvinfo.pvpi_nfree == 0) {
491 /* nothing left in this one? */
492 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
493 }
494 pv = pvpage->pvinfo.pvpi_pvfree;
495 KASSERT(pv);
496 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
497 pv_nfpvents--; /* took one from pool */
498 } else {
499 pv = NULL; /* need more of them */
500 }
501
502 /*
503 * if below low water mark or we didn't get a pv_entry we try and
504 * create more pv_entrys ...
505 */
506
507 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
508 if (pv == NULL)
509 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
510 mode : ALLOCPV_NEED);
511 else
512 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
513 }
514
515 simple_unlock(&pvalloc_lock);
516 return(pv);
517 }
518
519 /*
520 * pmap_alloc_pvpage: maybe allocate a new pvpage
521 *
522 * if need_entry is false: try and allocate a new pv_page
523 * if need_entry is true: try and allocate a new pv_page and return a
524 * new pv_entry from it. if we are unable to allocate a pv_page
525 * we make a last ditch effort to steal a pv_page from some other
526 * mapping. if that fails, we panic...
527 *
528 * => we assume that the caller holds pvalloc_lock
529 */
530
531 static struct pv_entry *
532 pmap_alloc_pvpage(struct pmap *pmap, int mode)
533 {
534 struct vm_page *pg;
535 struct pv_page *pvpage;
536 struct pv_entry *pv;
537 int s;
538
539 /*
540 * if we need_entry and we've got unused pv_pages, allocate from there
541 */
542
543 pvpage = TAILQ_FIRST(&pv_unusedpgs);
544 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
545
546 /* move it to pv_freepages list */
547 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
548 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
549
550 /* allocate a pv_entry */
551 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
552 pv = pvpage->pvinfo.pvpi_pvfree;
553 KASSERT(pv);
554 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
555
556 pv_nfpvents--; /* took one from pool */
557 return(pv);
558 }
559
560 /*
561 * see if we've got a cached unmapped VA that we can map a page in.
562 * if not, try to allocate one.
563 */
564
565
566 if (pv_cachedva == 0) {
567 s = splvm();
568 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
569 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
570 splx(s);
571 if (pv_cachedva == 0) {
572 return (NULL);
573 }
574 }
575
576 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
577 UVM_PGA_USERESERVE);
578
579 if (pg == NULL)
580 return (NULL);
581 pg->flags &= ~PG_BUSY; /* never busy */
582
583 /*
584 * add a mapping for our new pv_page and free its entrys (save one!)
585 *
586 * NOTE: If we are allocating a PV page for the kernel pmap, the
587 * pmap is already locked! (...but entering the mapping is safe...)
588 */
589
590 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
591 VM_PROT_READ|VM_PROT_WRITE);
592 pmap_update(pmap_kernel());
593 pvpage = (struct pv_page *) pv_cachedva;
594 pv_cachedva = 0;
595 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
596 }
597
598 /*
599 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
600 *
601 * => caller must hold pvalloc_lock
602 * => if need_entry is true, we allocate and return one pv_entry
603 */
604
605 static struct pv_entry *
606 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
607 {
608 int tofree, lcv;
609
610 /* do we need to return one? */
611 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
612
613 pvp->pvinfo.pvpi_pvfree = NULL;
614 pvp->pvinfo.pvpi_nfree = tofree;
615 for (lcv = 0 ; lcv < tofree ; lcv++) {
616 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
617 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
618 }
619 if (need_entry)
620 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
621 else
622 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
623 pv_nfpvents += tofree;
624 return((need_entry) ? &pvp->pvents[lcv] : NULL);
625 }
626
627 /*
628 * pmap_free_pv_doit: actually free a pv_entry
629 *
630 * => do not call this directly! instead use either
631 * 1. pmap_free_pv ==> free a single pv_entry
632 * 2. pmap_free_pvs => free a list of pv_entrys
633 * => we must be holding pvalloc_lock
634 */
635
636 __inline static void
637 pmap_free_pv_doit(struct pv_entry *pv)
638 {
639 struct pv_page *pvp;
640
641 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
642 pv_nfpvents++;
643 pvp->pvinfo.pvpi_nfree++;
644
645 /* nfree == 1 => fully allocated page just became partly allocated */
646 if (pvp->pvinfo.pvpi_nfree == 1) {
647 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
648 }
649
650 /* free it */
651 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
652 pvp->pvinfo.pvpi_pvfree = pv;
653
654 /*
655 * are all pv_page's pv_entry's free? move it to unused queue.
656 */
657
658 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
659 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
660 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
661 }
662 }
663
664 /*
665 * pmap_free_pv: free a single pv_entry
666 *
667 * => we gain the pvalloc_lock
668 */
669
670 __inline static void
671 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
672 {
673 simple_lock(&pvalloc_lock);
674 pmap_free_pv_doit(pv);
675
676 /*
677 * Can't free the PV page if the PV entries were associated with
678 * the kernel pmap; the pmap is already locked.
679 */
680 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
681 pmap != pmap_kernel())
682 pmap_free_pvpage();
683
684 simple_unlock(&pvalloc_lock);
685 }
686
687 /*
688 * pmap_free_pvs: free a list of pv_entrys
689 *
690 * => we gain the pvalloc_lock
691 */
692
693 __inline static void
694 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
695 {
696 struct pv_entry *nextpv;
697
698 simple_lock(&pvalloc_lock);
699
700 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
701 nextpv = pvs->pv_next;
702 pmap_free_pv_doit(pvs);
703 }
704
705 /*
706 * Can't free the PV page if the PV entries were associated with
707 * the kernel pmap; the pmap is already locked.
708 */
709 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
710 pmap != pmap_kernel())
711 pmap_free_pvpage();
712
713 simple_unlock(&pvalloc_lock);
714 }
715
716
717 /*
718 * pmap_free_pvpage: try and free an unused pv_page structure
719 *
720 * => assume caller is holding the pvalloc_lock and that
721 * there is a page on the pv_unusedpgs list
722 * => if we can't get a lock on the kmem_map we try again later
723 */
724
725 static void
726 pmap_free_pvpage(void)
727 {
728 int s;
729 struct vm_map *map;
730 struct vm_map_entry *dead_entries;
731 struct pv_page *pvp;
732
733 s = splvm(); /* protect kmem_map */
734
735 pvp = TAILQ_FIRST(&pv_unusedpgs);
736
737 /*
738 * note: watch out for pv_initpage which is allocated out of
739 * kernel_map rather than kmem_map.
740 */
741 if (pvp == pv_initpage)
742 map = kernel_map;
743 else
744 map = kmem_map;
745 if (vm_map_lock_try(map)) {
746
747 /* remove pvp from pv_unusedpgs */
748 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
749
750 /* unmap the page */
751 dead_entries = NULL;
752 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
753 &dead_entries);
754 vm_map_unlock(map);
755
756 if (dead_entries != NULL)
757 uvm_unmap_detach(dead_entries, 0);
758
759 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
760 }
761 if (pvp == pv_initpage)
762 /* no more initpage, we've freed it */
763 pv_initpage = NULL;
764
765 splx(s);
766 }
767
768 /*
769 * main pv_entry manipulation functions:
770 * pmap_enter_pv: enter a mapping onto a vm_page list
771 * pmap_remove_pv: remove a mappiing from a vm_page list
772 *
773 * NOTE: pmap_enter_pv expects to lock the pvh itself
774 * pmap_remove_pv expects te caller to lock the pvh before calling
775 */
776
777 /*
778 * pmap_enter_pv: enter a mapping onto a vm_page lst
779 *
780 * => caller should hold the proper lock on pmap_main_lock
781 * => caller should have pmap locked
782 * => we will gain the lock on the vm_page and allocate the new pv_entry
783 * => caller should adjust ptp's wire_count before calling
784 * => caller should not adjust pmap's wire_count
785 */
786
787 __inline static void
788 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
789 vaddr_t va, struct vm_page *ptp, int flags)
790 {
791 pve->pv_pmap = pmap;
792 pve->pv_va = va;
793 pve->pv_ptp = ptp; /* NULL for kernel pmap */
794 pve->pv_flags = flags;
795 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
796 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
797 pg->mdpage.pvh_list = pve; /* ... locked list */
798 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
799 if (pve->pv_flags & PVF_WIRED)
800 ++pmap->pm_stats.wired_count;
801 #ifdef PMAP_ALIAS_DEBUG
802 {
803 int s = splhigh();
804 if (pve->pv_flags & PVF_WRITE)
805 pg->mdpage.rw_mappings++;
806 else
807 pg->mdpage.ro_mappings++;
808 if (pg->mdpage.rw_mappings != 0 &&
809 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
810 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
811 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
812 pg->mdpage.krw_mappings);
813 }
814 splx(s);
815 }
816 #endif /* PMAP_ALIAS_DEBUG */
817 }
818
819 /*
820 * pmap_remove_pv: try to remove a mapping from a pv_list
821 *
822 * => caller should hold proper lock on pmap_main_lock
823 * => pmap should be locked
824 * => caller should hold lock on vm_page [so that attrs can be adjusted]
825 * => caller should adjust ptp's wire_count and free PTP if needed
826 * => caller should NOT adjust pmap's wire_count
827 * => we return the removed pve
828 */
829
830 __inline static struct pv_entry *
831 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
832 {
833 struct pv_entry *pve, **prevptr;
834
835 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
836 pve = *prevptr;
837 while (pve) {
838 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
839 *prevptr = pve->pv_next; /* remove it! */
840 if (pve->pv_flags & PVF_WIRED)
841 --pmap->pm_stats.wired_count;
842 #ifdef PMAP_ALIAS_DEBUG
843 {
844 int s = splhigh();
845 if (pve->pv_flags & PVF_WRITE) {
846 KASSERT(pg->mdpage.rw_mappings != 0);
847 pg->mdpage.rw_mappings--;
848 } else {
849 KASSERT(pg->mdpage.ro_mappings != 0);
850 pg->mdpage.ro_mappings--;
851 }
852 splx(s);
853 }
854 #endif /* PMAP_ALIAS_DEBUG */
855 break;
856 }
857 prevptr = &pve->pv_next; /* previous pointer */
858 pve = pve->pv_next; /* advance */
859 }
860 return(pve); /* return removed pve */
861 }
862
863 /*
864 *
865 * pmap_modify_pv: Update pv flags
866 *
867 * => caller should hold lock on vm_page [so that attrs can be adjusted]
868 * => caller should NOT adjust pmap's wire_count
869 * => caller must call pmap_vac_me_harder() if writable status of a page
870 * may have changed.
871 * => we return the old flags
872 *
873 * Modify a physical-virtual mapping in the pv table
874 */
875
876 static /* __inline */ u_int
877 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
878 u_int bic_mask, u_int eor_mask)
879 {
880 struct pv_entry *npv;
881 u_int flags, oflags;
882
883 /*
884 * There is at least one VA mapping this page.
885 */
886
887 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
888 if (pmap == npv->pv_pmap && va == npv->pv_va) {
889 oflags = npv->pv_flags;
890 npv->pv_flags = flags =
891 ((oflags & ~bic_mask) ^ eor_mask);
892 if ((flags ^ oflags) & PVF_WIRED) {
893 if (flags & PVF_WIRED)
894 ++pmap->pm_stats.wired_count;
895 else
896 --pmap->pm_stats.wired_count;
897 }
898 #ifdef PMAP_ALIAS_DEBUG
899 {
900 int s = splhigh();
901 if ((flags ^ oflags) & PVF_WRITE) {
902 if (flags & PVF_WRITE) {
903 pg->mdpage.rw_mappings++;
904 pg->mdpage.ro_mappings--;
905 if (pg->mdpage.rw_mappings != 0 &&
906 (pg->mdpage.kro_mappings != 0 ||
907 pg->mdpage.krw_mappings != 0)) {
908 printf("pmap_modify_pv: rw %u, "
909 "kro %u, krw %u\n",
910 pg->mdpage.rw_mappings,
911 pg->mdpage.kro_mappings,
912 pg->mdpage.krw_mappings);
913 }
914 } else {
915 KASSERT(pg->mdpage.rw_mappings != 0);
916 pg->mdpage.rw_mappings--;
917 pg->mdpage.ro_mappings++;
918 }
919 }
920 splx(s);
921 }
922 #endif /* PMAP_ALIAS_DEBUG */
923 return (oflags);
924 }
925 }
926 return (0);
927 }
928
929 /*
930 * Map the specified level 2 pagetable into the level 1 page table for
931 * the given pmap to cover a chunk of virtual address space starting from the
932 * address specified.
933 */
934 #define PMAP_PTP_SELFREF 0x01
935 #define PMAP_PTP_CACHEABLE 0x02
936
937 static __inline void
938 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, int flags)
939 {
940 vaddr_t ptva;
941
942 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
943
944 /* Calculate the index into the L1 page table. */
945 ptva = va >> L1_S_SHIFT;
946
947 /* Map page table into the L1. */
948 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
949 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
950 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
951 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
952 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
953
954 /* Map the page table into the page table area. */
955 if (flags & PMAP_PTP_SELFREF) {
956 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
957 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
958 ((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
959 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
960 }
961 }
962
963 #if 0
964 static __inline void
965 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
966 {
967 vaddr_t ptva;
968
969 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
970
971 /* Calculate the index into the L1 page table. */
972 ptva = va >> L1_S_SHIFT;
973
974 /* Unmap page table from the L1. */
975 pmap->pm_pdir[ptva + 0] = 0;
976 pmap->pm_pdir[ptva + 1] = 0;
977 pmap->pm_pdir[ptva + 2] = 0;
978 pmap->pm_pdir[ptva + 3] = 0;
979 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
980
981 /* Unmap the page table from the page table area. */
982 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
983 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
984 }
985 #endif
986
987 /*
988 * Used to map a range of physical addresses into kernel
989 * virtual address space.
990 *
991 * For now, VM is already on, we only need to map the
992 * specified memory.
993 *
994 * XXX This routine should eventually go away; it's only used
995 * XXX by machine-dependent crash dump code.
996 */
997 vaddr_t
998 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
999 {
1000 pt_entry_t *pte;
1001
1002 while (spa < epa) {
1003 pte = vtopte(va);
1004
1005 *pte = L2_S_PROTO | spa |
1006 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
1007 PTE_SYNC(pte);
1008 cpu_tlb_flushID_SE(va);
1009 va += NBPG;
1010 spa += NBPG;
1011 }
1012 pmap_update(pmap_kernel());
1013 return(va);
1014 }
1015
1016
1017 /*
1018 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1019 *
1020 * bootstrap the pmap system. This is called from initarm and allows
1021 * the pmap system to initailise any structures it requires.
1022 *
1023 * Currently this sets up the kernel_pmap that is statically allocated
1024 * and also allocated virtual addresses for certain page hooks.
1025 * Currently the only one page hook is allocated that is used
1026 * to zero physical pages of memory.
1027 * It also initialises the start and end address of the kernel data space.
1028 */
1029
1030 char *boot_head;
1031
1032 void
1033 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1034 {
1035 pt_entry_t *pte;
1036
1037 pmap_kernel()->pm_pdir = kernel_l1pt;
1038 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1039 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1040 simple_lock_init(&pmap_kernel()->pm_lock);
1041 pmap_kernel()->pm_obj.pgops = NULL;
1042 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1043 pmap_kernel()->pm_obj.uo_npages = 0;
1044 pmap_kernel()->pm_obj.uo_refs = 1;
1045
1046 virtual_avail = KERNEL_VM_BASE;
1047 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1048
1049 /*
1050 * now we allocate the "special" VAs which are used for tmp mappings
1051 * by the pmap (and other modules). we allocate the VAs by advancing
1052 * virtual_avail (note that there are no pages mapped at these VAs).
1053 * we find the PTE that maps the allocated VA via the linear PTE
1054 * mapping.
1055 */
1056
1057 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1058
1059 csrcp = virtual_avail; csrc_pte = pte;
1060 virtual_avail += PAGE_SIZE; pte++;
1061
1062 cdstp = virtual_avail; cdst_pte = pte;
1063 virtual_avail += PAGE_SIZE; pte++;
1064
1065 memhook = (char *) virtual_avail; /* don't need pte */
1066 virtual_avail += PAGE_SIZE; pte++;
1067
1068 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1069 virtual_avail += round_page(MSGBUFSIZE);
1070 pte += atop(round_page(MSGBUFSIZE));
1071
1072 /*
1073 * init the static-global locks and global lists.
1074 */
1075 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1076 simple_lock_init(&pvalloc_lock);
1077 simple_lock_init(&pmaps_lock);
1078 LIST_INIT(&pmaps);
1079 TAILQ_INIT(&pv_freepages);
1080 TAILQ_INIT(&pv_unusedpgs);
1081
1082 /*
1083 * initialize the pmap pool.
1084 */
1085
1086 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1087 &pool_allocator_nointr);
1088
1089 /*
1090 * initialize the PT-PT pool and cache.
1091 */
1092
1093 pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1094 &pmap_ptpt_allocator);
1095 pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1096 pmap_ptpt_ctor, NULL, NULL);
1097
1098 cpu_dcache_wbinv_all();
1099 }
1100
1101 /*
1102 * void pmap_init(void)
1103 *
1104 * Initialize the pmap module.
1105 * Called by vm_init() in vm/vm_init.c in order to initialise
1106 * any structures that the pmap system needs to map virtual memory.
1107 */
1108
1109 extern int physmem;
1110
1111 void
1112 pmap_init(void)
1113 {
1114
1115 /*
1116 * Set the available memory vars - These do not map to real memory
1117 * addresses and cannot as the physical memory is fragmented.
1118 * They are used by ps for %mem calculations.
1119 * One could argue whether this should be the entire memory or just
1120 * the memory that is useable in a user process.
1121 */
1122 avail_start = 0;
1123 avail_end = physmem * NBPG;
1124
1125 /*
1126 * now we need to free enough pv_entry structures to allow us to get
1127 * the kmem_map/kmem_object allocated and inited (done after this
1128 * function is finished). to do this we allocate one bootstrap page out
1129 * of kernel_map and use it to provide an initial pool of pv_entry
1130 * structures. we never free this page.
1131 */
1132
1133 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1134 if (pv_initpage == NULL)
1135 panic("pmap_init: pv_initpage");
1136 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1137 pv_nfpvents = 0;
1138 (void) pmap_add_pvpage(pv_initpage, FALSE);
1139
1140 pmap_initialized = TRUE;
1141
1142 /* Initialise our L1 page table queues and counters */
1143 SIMPLEQ_INIT(&l1pt_static_queue);
1144 l1pt_static_queue_count = 0;
1145 l1pt_static_create_count = 0;
1146 SIMPLEQ_INIT(&l1pt_queue);
1147 l1pt_queue_count = 0;
1148 l1pt_create_count = 0;
1149 l1pt_reuse_count = 0;
1150 }
1151
1152 /*
1153 * pmap_postinit()
1154 *
1155 * This routine is called after the vm and kmem subsystems have been
1156 * initialised. This allows the pmap code to perform any initialisation
1157 * that can only be done one the memory allocation is in place.
1158 */
1159
1160 void
1161 pmap_postinit(void)
1162 {
1163 int loop;
1164 struct l1pt *pt;
1165
1166 #ifdef PMAP_STATIC_L1S
1167 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1168 #else /* PMAP_STATIC_L1S */
1169 for (loop = 0; loop < max_processes; ++loop) {
1170 #endif /* PMAP_STATIC_L1S */
1171 /* Allocate a L1 page table */
1172 pt = pmap_alloc_l1pt();
1173 if (!pt)
1174 panic("Cannot allocate static L1 page tables");
1175
1176 /* Clean it */
1177 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1178 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1179 /* Add the page table to the queue */
1180 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1181 ++l1pt_static_queue_count;
1182 ++l1pt_static_create_count;
1183 }
1184 }
1185
1186
1187 /*
1188 * Create and return a physical map.
1189 *
1190 * If the size specified for the map is zero, the map is an actual physical
1191 * map, and may be referenced by the hardware.
1192 *
1193 * If the size specified is non-zero, the map will be used in software only,
1194 * and is bounded by that size.
1195 */
1196
1197 pmap_t
1198 pmap_create(void)
1199 {
1200 struct pmap *pmap;
1201
1202 /*
1203 * Fetch pmap entry from the pool
1204 */
1205
1206 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1207 /* XXX is this really needed! */
1208 memset(pmap, 0, sizeof(*pmap));
1209
1210 simple_lock_init(&pmap->pm_obj.vmobjlock);
1211 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1212 TAILQ_INIT(&pmap->pm_obj.memq);
1213 pmap->pm_obj.uo_npages = 0;
1214 pmap->pm_obj.uo_refs = 1;
1215 pmap->pm_stats.wired_count = 0;
1216 pmap->pm_stats.resident_count = 1;
1217 pmap->pm_ptphint = NULL;
1218
1219 /* Now init the machine part of the pmap */
1220 pmap_pinit(pmap);
1221 return(pmap);
1222 }
1223
1224 /*
1225 * pmap_alloc_l1pt()
1226 *
1227 * This routine allocates physical and virtual memory for a L1 page table
1228 * and wires it.
1229 * A l1pt structure is returned to describe the allocated page table.
1230 *
1231 * This routine is allowed to fail if the required memory cannot be allocated.
1232 * In this case NULL is returned.
1233 */
1234
1235 struct l1pt *
1236 pmap_alloc_l1pt(void)
1237 {
1238 paddr_t pa;
1239 vaddr_t va;
1240 struct l1pt *pt;
1241 int error;
1242 struct vm_page *m;
1243
1244 /* Allocate virtual address space for the L1 page table */
1245 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1246 if (va == 0) {
1247 #ifdef DIAGNOSTIC
1248 PDEBUG(0,
1249 printf("pmap: Cannot allocate pageable memory for L1\n"));
1250 #endif /* DIAGNOSTIC */
1251 return(NULL);
1252 }
1253
1254 /* Allocate memory for the l1pt structure */
1255 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1256
1257 /*
1258 * Allocate pages from the VM system.
1259 */
1260 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1261 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1262 if (error) {
1263 #ifdef DIAGNOSTIC
1264 PDEBUG(0,
1265 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1266 error));
1267 #endif /* DIAGNOSTIC */
1268 /* Release the resources we already have claimed */
1269 free(pt, M_VMPMAP);
1270 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1271 return(NULL);
1272 }
1273
1274 /* Map our physical pages into our virtual space */
1275 pt->pt_va = va;
1276 m = TAILQ_FIRST(&pt->pt_plist);
1277 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1278 pa = VM_PAGE_TO_PHYS(m);
1279
1280 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1281
1282 va += NBPG;
1283 m = m->pageq.tqe_next;
1284 }
1285
1286 #ifdef DIAGNOSTIC
1287 if (m)
1288 panic("pmap_alloc_l1pt: pglist not empty");
1289 #endif /* DIAGNOSTIC */
1290
1291 pt->pt_flags = 0;
1292 return(pt);
1293 }
1294
1295 /*
1296 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1297 */
1298 static void
1299 pmap_free_l1pt(struct l1pt *pt)
1300 {
1301 /* Separate the physical memory for the virtual space */
1302 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1303 pmap_update(pmap_kernel());
1304
1305 /* Return the physical memory */
1306 uvm_pglistfree(&pt->pt_plist);
1307
1308 /* Free the virtual space */
1309 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1310
1311 /* Free the l1pt structure */
1312 free(pt, M_VMPMAP);
1313 }
1314
1315 /*
1316 * pmap_ptpt_page_alloc:
1317 *
1318 * Back-end page allocator for the PT-PT pool.
1319 */
1320 static void *
1321 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1322 {
1323 struct vm_page *pg;
1324 pt_entry_t *pte;
1325 vaddr_t va;
1326
1327 /* XXX PR_WAITOK? */
1328 va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1329 if (va == 0)
1330 return (NULL);
1331
1332 for (;;) {
1333 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1334 if (pg != NULL)
1335 break;
1336 if ((flags & PR_WAITOK) == 0) {
1337 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1338 return (NULL);
1339 }
1340 uvm_wait("pmap_ptpt");
1341 }
1342
1343 pte = vtopte(va);
1344 KDASSERT(pmap_pte_v(pte) == 0);
1345
1346 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1347 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1348 PTE_SYNC(pte);
1349 #ifdef PMAP_ALIAS_DEBUG
1350 {
1351 int s = splhigh();
1352 pg->mdpage.krw_mappings++;
1353 splx(s);
1354 }
1355 #endif /* PMAP_ALIAS_DEBUG */
1356
1357 return ((void *) va);
1358 }
1359
1360 /*
1361 * pmap_ptpt_page_free:
1362 *
1363 * Back-end page free'er for the PT-PT pool.
1364 */
1365 static void
1366 pmap_ptpt_page_free(struct pool *pp, void *v)
1367 {
1368 vaddr_t va = (vaddr_t) v;
1369 paddr_t pa;
1370
1371 pa = vtophys(va);
1372
1373 pmap_kremove(va, L2_TABLE_SIZE);
1374 pmap_update(pmap_kernel());
1375
1376 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1377
1378 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1379 }
1380
1381 /*
1382 * pmap_ptpt_ctor:
1383 *
1384 * Constructor for the PT-PT cache.
1385 */
1386 static int
1387 pmap_ptpt_ctor(void *arg, void *object, int flags)
1388 {
1389 caddr_t vptpt = object;
1390
1391 /* Page is already zero'd. */
1392
1393 /*
1394 * Map in kernel PTs.
1395 *
1396 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1397 */
1398 memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1399 (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1400 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1401 (KERNEL_PD_SIZE >> 2));
1402
1403 return (0);
1404 }
1405
1406 /*
1407 * Allocate a page directory.
1408 * This routine will either allocate a new page directory from the pool
1409 * of L1 page tables currently held by the kernel or it will allocate
1410 * a new one via pmap_alloc_l1pt().
1411 * It will then initialise the l1 page table for use.
1412 */
1413 static int
1414 pmap_allocpagedir(struct pmap *pmap)
1415 {
1416 vaddr_t vptpt;
1417 struct l1pt *pt;
1418 u_int gen;
1419
1420 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1421
1422 /* Do we have any spare L1's lying around ? */
1423 if (l1pt_static_queue_count) {
1424 --l1pt_static_queue_count;
1425 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1426 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1427 } else if (l1pt_queue_count) {
1428 --l1pt_queue_count;
1429 pt = SIMPLEQ_FIRST(&l1pt_queue);
1430 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1431 ++l1pt_reuse_count;
1432 } else {
1433 pt = pmap_alloc_l1pt();
1434 if (!pt)
1435 return(ENOMEM);
1436 ++l1pt_create_count;
1437 }
1438
1439 /* Store the pointer to the l1 descriptor in the pmap. */
1440 pmap->pm_l1pt = pt;
1441
1442 /* Store the virtual address of the l1 in the pmap. */
1443 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1444
1445 /* Clean the L1 if it is dirty */
1446 if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1447 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1448 cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1449 (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1450 }
1451
1452 /* Allocate a page table to map all the page tables for this pmap */
1453 KASSERT(pmap->pm_vptpt == 0);
1454
1455 try_again:
1456 gen = pmap_ptpt_cache_generation;
1457 vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1458 if (vptpt == NULL) {
1459 PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1460 pmap_freepagedir(pmap);
1461 return (ENOMEM);
1462 }
1463
1464 /* need to lock this all up for growkernel */
1465 simple_lock(&pmaps_lock);
1466
1467 if (gen != pmap_ptpt_cache_generation) {
1468 simple_unlock(&pmaps_lock);
1469 pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1470 goto try_again;
1471 }
1472
1473 pmap->pm_vptpt = vptpt;
1474 pmap->pm_pptpt = vtophys(vptpt);
1475
1476 /* Duplicate the kernel mappings. */
1477 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1478 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1479 KERNEL_PD_SIZE);
1480 cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1481 (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1482
1483 /* Wire in this page table */
1484 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
1485
1486 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1487
1488 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1489 simple_unlock(&pmaps_lock);
1490
1491 return(0);
1492 }
1493
1494
1495 /*
1496 * Initialize a preallocated and zeroed pmap structure,
1497 * such as one in a vmspace structure.
1498 */
1499
1500 void
1501 pmap_pinit(struct pmap *pmap)
1502 {
1503 int backoff = 6;
1504 int retry = 10;
1505
1506 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1507
1508 /* Keep looping until we succeed in allocating a page directory */
1509 while (pmap_allocpagedir(pmap) != 0) {
1510 /*
1511 * Ok we failed to allocate a suitable block of memory for an
1512 * L1 page table. This means that either:
1513 * 1. 16KB of virtual address space could not be allocated
1514 * 2. 16KB of physically contiguous memory on a 16KB boundary
1515 * could not be allocated.
1516 *
1517 * Since we cannot fail we will sleep for a while and try
1518 * again.
1519 *
1520 * Searching for a suitable L1 PT is expensive:
1521 * to avoid hogging the system when memory is really
1522 * scarce, use an exponential back-off so that
1523 * eventually we won't retry more than once every 8
1524 * seconds. This should allow other processes to run
1525 * to completion and free up resources.
1526 */
1527 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1528 NULL);
1529 if (--retry == 0) {
1530 retry = 10;
1531 if (backoff)
1532 --backoff;
1533 }
1534 }
1535
1536 if (vector_page < KERNEL_BASE) {
1537 /*
1538 * Map the vector page. This will also allocate and map
1539 * an L2 table for it.
1540 */
1541 pmap_enter(pmap, vector_page, systempage.pv_pa,
1542 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1543 pmap_update(pmap);
1544 }
1545 }
1546
1547 void
1548 pmap_freepagedir(struct pmap *pmap)
1549 {
1550 /* Free the memory used for the page table mapping */
1551 if (pmap->pm_vptpt != 0) {
1552 /*
1553 * XXX Objects freed to a pool cache must be in constructed
1554 * XXX form when freed, but we don't free page tables as we
1555 * XXX go, so we need to zap the mappings here.
1556 *
1557 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1558 */
1559 memset((caddr_t) pmap->pm_vptpt, 0,
1560 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1561 pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1562 }
1563
1564 /* junk the L1 page table */
1565 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1566 /* Add the page table to the queue */
1567 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1568 pmap->pm_l1pt, pt_queue);
1569 ++l1pt_static_queue_count;
1570 } else if (l1pt_queue_count < 8) {
1571 /* Add the page table to the queue */
1572 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1573 ++l1pt_queue_count;
1574 } else
1575 pmap_free_l1pt(pmap->pm_l1pt);
1576 }
1577
1578 /*
1579 * Retire the given physical map from service.
1580 * Should only be called if the map contains no valid mappings.
1581 */
1582
1583 void
1584 pmap_destroy(struct pmap *pmap)
1585 {
1586 struct vm_page *page;
1587 int count;
1588
1589 if (pmap == NULL)
1590 return;
1591
1592 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1593
1594 /*
1595 * Drop reference count
1596 */
1597 simple_lock(&pmap->pm_obj.vmobjlock);
1598 count = --pmap->pm_obj.uo_refs;
1599 simple_unlock(&pmap->pm_obj.vmobjlock);
1600 if (count > 0) {
1601 return;
1602 }
1603
1604 /*
1605 * reference count is zero, free pmap resources and then free pmap.
1606 */
1607
1608 /*
1609 * remove it from global list of pmaps
1610 */
1611
1612 simple_lock(&pmaps_lock);
1613 LIST_REMOVE(pmap, pm_list);
1614 simple_unlock(&pmaps_lock);
1615
1616 if (vector_page < KERNEL_BASE) {
1617 /* Remove the vector page mapping */
1618 pmap_remove(pmap, vector_page, vector_page + NBPG);
1619 pmap_update(pmap);
1620 }
1621
1622 /*
1623 * Free any page tables still mapped
1624 * This is only temporay until pmap_enter can count the number
1625 * of mappings made in a page table. Then pmap_remove() can
1626 * reduce the count and free the pagetable when the count
1627 * reaches zero. Note that entries in this list should match the
1628 * contents of the ptpt, however this is faster than walking a 1024
1629 * entries looking for pt's
1630 * taken from i386 pmap.c
1631 */
1632 /*
1633 * vmobjlock must be held while freeing pages
1634 */
1635 simple_lock(&pmap->pm_obj.vmobjlock);
1636 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1637 KASSERT((page->flags & PG_BUSY) == 0);
1638
1639 /* Freeing a PT page? The contents are a throw-away. */
1640 KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
1641 cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
1642
1643 page->wire_count = 0;
1644 uvm_pagefree(page);
1645 }
1646 simple_unlock(&pmap->pm_obj.vmobjlock);
1647
1648 /* Free the page dir */
1649 pmap_freepagedir(pmap);
1650
1651 /* return the pmap to the pool */
1652 pool_put(&pmap_pmap_pool, pmap);
1653 }
1654
1655
1656 /*
1657 * void pmap_reference(struct pmap *pmap)
1658 *
1659 * Add a reference to the specified pmap.
1660 */
1661
1662 void
1663 pmap_reference(struct pmap *pmap)
1664 {
1665 if (pmap == NULL)
1666 return;
1667
1668 simple_lock(&pmap->pm_lock);
1669 pmap->pm_obj.uo_refs++;
1670 simple_unlock(&pmap->pm_lock);
1671 }
1672
1673 /*
1674 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1675 *
1676 * Return the start and end addresses of the kernel's virtual space.
1677 * These values are setup in pmap_bootstrap and are updated as pages
1678 * are allocated.
1679 */
1680
1681 void
1682 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1683 {
1684 *start = virtual_avail;
1685 *end = virtual_end;
1686 }
1687
1688 /*
1689 * Activate the address space for the specified process. If the process
1690 * is the current process, load the new MMU context.
1691 */
1692 void
1693 pmap_activate(struct proc *p)
1694 {
1695 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1696 struct pcb *pcb = &p->p_addr->u_pcb;
1697
1698 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1699 (paddr_t *)&pcb->pcb_pagedir);
1700
1701 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1702 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1703
1704 if (p == curproc) {
1705 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1706 setttb((u_int)pcb->pcb_pagedir);
1707 }
1708 }
1709
1710 /*
1711 * Deactivate the address space of the specified process.
1712 */
1713 void
1714 pmap_deactivate(struct proc *p)
1715 {
1716 }
1717
1718 /*
1719 * Perform any deferred pmap operations.
1720 */
1721 void
1722 pmap_update(struct pmap *pmap)
1723 {
1724
1725 /*
1726 * We haven't deferred any pmap operations, but we do need to
1727 * make sure TLB/cache operations have completed.
1728 */
1729 cpu_cpwait();
1730 }
1731
1732 /*
1733 * pmap_clean_page()
1734 *
1735 * This is a local function used to work out the best strategy to clean
1736 * a single page referenced by its entry in the PV table. It's used by
1737 * pmap_copy_page, pmap_zero page and maybe some others later on.
1738 *
1739 * Its policy is effectively:
1740 * o If there are no mappings, we don't bother doing anything with the cache.
1741 * o If there is one mapping, we clean just that page.
1742 * o If there are multiple mappings, we clean the entire cache.
1743 *
1744 * So that some functions can be further optimised, it returns 0 if it didn't
1745 * clean the entire cache, or 1 if it did.
1746 *
1747 * XXX One bug in this routine is that if the pv_entry has a single page
1748 * mapped at 0x00000000 a whole cache clean will be performed rather than
1749 * just the 1 page. Since this should not occur in everyday use and if it does
1750 * it will just result in not the most efficient clean for the page.
1751 */
1752 static int
1753 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1754 {
1755 struct pmap *pmap;
1756 struct pv_entry *npv;
1757 int cache_needs_cleaning = 0;
1758 vaddr_t page_to_clean = 0;
1759
1760 if (pv == NULL) {
1761 /* nothing mapped in so nothing to flush */
1762 return (0);
1763 }
1764
1765 /*
1766 * Since we flush the cache each time we change curproc, we
1767 * only need to flush the page if it is in the current pmap.
1768 */
1769 if (curproc)
1770 pmap = curproc->p_vmspace->vm_map.pmap;
1771 else
1772 pmap = pmap_kernel();
1773
1774 for (npv = pv; npv; npv = npv->pv_next) {
1775 if (npv->pv_pmap == pmap) {
1776 /*
1777 * The page is mapped non-cacheable in
1778 * this map. No need to flush the cache.
1779 */
1780 if (npv->pv_flags & PVF_NC) {
1781 #ifdef DIAGNOSTIC
1782 if (cache_needs_cleaning)
1783 panic("pmap_clean_page: "
1784 "cache inconsistency");
1785 #endif
1786 break;
1787 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1788 continue;
1789 if (cache_needs_cleaning) {
1790 page_to_clean = 0;
1791 break;
1792 } else
1793 page_to_clean = npv->pv_va;
1794 cache_needs_cleaning = 1;
1795 }
1796 }
1797
1798 if (page_to_clean) {
1799 /*
1800 * XXX If is_src, we really only need to write-back,
1801 * XXX not invalidate, too. Investigate further.
1802 * XXX --thorpej (at) netbsd.org
1803 */
1804 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1805 } else if (cache_needs_cleaning) {
1806 cpu_idcache_wbinv_all();
1807 return (1);
1808 }
1809 return (0);
1810 }
1811
1812 /*
1813 * pmap_zero_page()
1814 *
1815 * Zero a given physical page by mapping it at a page hook point.
1816 * In doing the zero page op, the page we zero is mapped cachable, as with
1817 * StrongARM accesses to non-cached pages are non-burst making writing
1818 * _any_ bulk data very slow.
1819 */
1820 #if ARM_MMU_GENERIC == 1
1821 void
1822 pmap_zero_page_generic(paddr_t phys)
1823 {
1824 #ifdef DEBUG
1825 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1826
1827 if (pg->mdpage.pvh_list != NULL)
1828 panic("pmap_zero_page: page has mappings");
1829 #endif
1830
1831 KDASSERT((phys & PGOFSET) == 0);
1832
1833 /*
1834 * Hook in the page, zero it, and purge the cache for that
1835 * zeroed page. Invalidate the TLB as needed.
1836 */
1837 *cdst_pte = L2_S_PROTO | phys |
1838 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1839 PTE_SYNC(cdst_pte);
1840 cpu_tlb_flushD_SE(cdstp);
1841 cpu_cpwait();
1842 bzero_page(cdstp);
1843 cpu_dcache_wbinv_range(cdstp, NBPG);
1844 }
1845 #endif /* ARM_MMU_GENERIC == 1 */
1846
1847 #if ARM_MMU_XSCALE == 1
1848 void
1849 pmap_zero_page_xscale(paddr_t phys)
1850 {
1851 #ifdef DEBUG
1852 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1853
1854 if (pg->mdpage.pvh_list != NULL)
1855 panic("pmap_zero_page: page has mappings");
1856 #endif
1857
1858 KDASSERT((phys & PGOFSET) == 0);
1859
1860 /*
1861 * Hook in the page, zero it, and purge the cache for that
1862 * zeroed page. Invalidate the TLB as needed.
1863 */
1864 *cdst_pte = L2_S_PROTO | phys |
1865 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1866 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1867 PTE_SYNC(cdst_pte);
1868 cpu_tlb_flushD_SE(cdstp);
1869 cpu_cpwait();
1870 bzero_page(cdstp);
1871 xscale_cache_clean_minidata();
1872 }
1873 #endif /* ARM_MMU_XSCALE == 1 */
1874
1875 /* pmap_pageidlezero()
1876 *
1877 * The same as above, except that we assume that the page is not
1878 * mapped. This means we never have to flush the cache first. Called
1879 * from the idle loop.
1880 */
1881 boolean_t
1882 pmap_pageidlezero(paddr_t phys)
1883 {
1884 int i, *ptr;
1885 boolean_t rv = TRUE;
1886 #ifdef DEBUG
1887 struct vm_page *pg;
1888
1889 pg = PHYS_TO_VM_PAGE(phys);
1890 if (pg->mdpage.pvh_list != NULL)
1891 panic("pmap_pageidlezero: page has mappings");
1892 #endif
1893
1894 KDASSERT((phys & PGOFSET) == 0);
1895
1896 /*
1897 * Hook in the page, zero it, and purge the cache for that
1898 * zeroed page. Invalidate the TLB as needed.
1899 */
1900 *cdst_pte = L2_S_PROTO | phys |
1901 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1902 PTE_SYNC(cdst_pte);
1903 cpu_tlb_flushD_SE(cdstp);
1904 cpu_cpwait();
1905
1906 for (i = 0, ptr = (int *)cdstp;
1907 i < (NBPG / sizeof(int)); i++) {
1908 if (sched_whichqs != 0) {
1909 /*
1910 * A process has become ready. Abort now,
1911 * so we don't keep it waiting while we
1912 * do slow memory access to finish this
1913 * page.
1914 */
1915 rv = FALSE;
1916 break;
1917 }
1918 *ptr++ = 0;
1919 }
1920
1921 if (rv)
1922 /*
1923 * if we aborted we'll rezero this page again later so don't
1924 * purge it unless we finished it
1925 */
1926 cpu_dcache_wbinv_range(cdstp, NBPG);
1927 return (rv);
1928 }
1929
1930 /*
1931 * pmap_copy_page()
1932 *
1933 * Copy one physical page into another, by mapping the pages into
1934 * hook points. The same comment regarding cachability as in
1935 * pmap_zero_page also applies here.
1936 */
1937 #if ARM_MMU_GENERIC == 1
1938 void
1939 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1940 {
1941 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1942 #ifdef DEBUG
1943 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1944
1945 if (dst_pg->mdpage.pvh_list != NULL)
1946 panic("pmap_copy_page: dst page has mappings");
1947 #endif
1948
1949 KDASSERT((src & PGOFSET) == 0);
1950 KDASSERT((dst & PGOFSET) == 0);
1951
1952 /*
1953 * Clean the source page. Hold the source page's lock for
1954 * the duration of the copy so that no other mappings can
1955 * be created while we have a potentially aliased mapping.
1956 */
1957 simple_lock(&src_pg->mdpage.pvh_slock);
1958 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1959
1960 /*
1961 * Map the pages into the page hook points, copy them, and purge
1962 * the cache for the appropriate page. Invalidate the TLB
1963 * as required.
1964 */
1965 *csrc_pte = L2_S_PROTO | src |
1966 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1967 PTE_SYNC(csrc_pte);
1968 *cdst_pte = L2_S_PROTO | dst |
1969 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1970 PTE_SYNC(cdst_pte);
1971 cpu_tlb_flushD_SE(csrcp);
1972 cpu_tlb_flushD_SE(cdstp);
1973 cpu_cpwait();
1974 bcopy_page(csrcp, cdstp);
1975 cpu_dcache_inv_range(csrcp, NBPG);
1976 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1977 cpu_dcache_wbinv_range(cdstp, NBPG);
1978 }
1979 #endif /* ARM_MMU_GENERIC == 1 */
1980
1981 #if ARM_MMU_XSCALE == 1
1982 void
1983 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1984 {
1985 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1986 #ifdef DEBUG
1987 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1988
1989 if (dst_pg->mdpage.pvh_list != NULL)
1990 panic("pmap_copy_page: dst page has mappings");
1991 #endif
1992
1993 KDASSERT((src & PGOFSET) == 0);
1994 KDASSERT((dst & PGOFSET) == 0);
1995
1996 /*
1997 * Clean the source page. Hold the source page's lock for
1998 * the duration of the copy so that no other mappings can
1999 * be created while we have a potentially aliased mapping.
2000 */
2001 simple_lock(&src_pg->mdpage.pvh_slock);
2002 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2003
2004 /*
2005 * Map the pages into the page hook points, copy them, and purge
2006 * the cache for the appropriate page. Invalidate the TLB
2007 * as required.
2008 */
2009 *csrc_pte = L2_S_PROTO | src |
2010 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
2011 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2012 PTE_SYNC(csrc_pte);
2013 *cdst_pte = L2_S_PROTO | dst |
2014 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
2015 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2016 PTE_SYNC(cdst_pte);
2017 cpu_tlb_flushD_SE(csrcp);
2018 cpu_tlb_flushD_SE(cdstp);
2019 cpu_cpwait();
2020 bcopy_page(csrcp, cdstp);
2021 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2022 xscale_cache_clean_minidata();
2023 }
2024 #endif /* ARM_MMU_XSCALE == 1 */
2025
2026 #if 0
2027 void
2028 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
2029 {
2030 pd_entry_t *pde;
2031 paddr_t pa;
2032 struct vm_page *m;
2033
2034 if (pmap == pmap_kernel())
2035 return;
2036
2037 pde = pmap_pde(pmap, va & PD_FRAME);
2038 pa = pmap_pte_pa(pde);
2039 m = PHYS_TO_VM_PAGE(pa);
2040 m->wire_count++;
2041 #ifdef MYCROFT_HACK
2042 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2043 pmap, va, pde, pa, m, m->wire_count);
2044 #endif
2045 }
2046
2047 void
2048 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2049 {
2050 pd_entry_t *pde;
2051 paddr_t pa;
2052 struct vm_page *m;
2053
2054 if (pmap == pmap_kernel())
2055 return;
2056
2057 pde = pmap_pde(pmap, va & PD_FRAME);
2058 pa = pmap_pte_pa(pde);
2059 m = PHYS_TO_VM_PAGE(pa);
2060 m->wire_count--;
2061 #ifdef MYCROFT_HACK
2062 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2063 pmap, va, pde, pa, m, m->wire_count);
2064 #endif
2065 if (m->wire_count == 0) {
2066 #ifdef MYCROFT_HACK
2067 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2068 pmap, va, pde, pa, m);
2069 #endif
2070 pmap_unmap_in_l1(pmap, va & PD_FRAME);
2071 uvm_pagefree(m);
2072 --pmap->pm_stats.resident_count;
2073 }
2074 }
2075 #else
2076 #define pmap_pte_addref(pmap, va)
2077 #define pmap_pte_delref(pmap, va)
2078 #endif
2079
2080 /*
2081 * Since we have a virtually indexed cache, we may need to inhibit caching if
2082 * there is more than one mapping and at least one of them is writable.
2083 * Since we purge the cache on every context switch, we only need to check for
2084 * other mappings within the same pmap, or kernel_pmap.
2085 * This function is also called when a page is unmapped, to possibly reenable
2086 * caching on any remaining mappings.
2087 *
2088 * The code implements the following logic, where:
2089 *
2090 * KW = # of kernel read/write pages
2091 * KR = # of kernel read only pages
2092 * UW = # of user read/write pages
2093 * UR = # of user read only pages
2094 * OW = # of user read/write pages in another pmap, then
2095 *
2096 * KC = kernel mapping is cacheable
2097 * UC = user mapping is cacheable
2098 *
2099 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2100 * +---------------------------------------------
2101 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2102 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2103 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2104 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2105 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2106 *
2107 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2108 */
2109 __inline static void
2110 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2111 boolean_t clear_cache)
2112 {
2113 if (pmap == pmap_kernel())
2114 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2115 else
2116 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2117 }
2118
2119 static void
2120 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2121 boolean_t clear_cache)
2122 {
2123 int user_entries = 0;
2124 int user_writable = 0;
2125 int user_cacheable = 0;
2126 int kernel_entries = 0;
2127 int kernel_writable = 0;
2128 int kernel_cacheable = 0;
2129 struct pv_entry *pv;
2130 struct pmap *last_pmap = pmap;
2131
2132 #ifdef DIAGNOSTIC
2133 if (pmap != pmap_kernel())
2134 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2135 #endif
2136
2137 /*
2138 * Pass one, see if there are both kernel and user pmaps for
2139 * this page. Calculate whether there are user-writable or
2140 * kernel-writable pages.
2141 */
2142 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2143 if (pv->pv_pmap != pmap) {
2144 user_entries++;
2145 if (pv->pv_flags & PVF_WRITE)
2146 user_writable++;
2147 if ((pv->pv_flags & PVF_NC) == 0)
2148 user_cacheable++;
2149 } else {
2150 kernel_entries++;
2151 if (pv->pv_flags & PVF_WRITE)
2152 kernel_writable++;
2153 if ((pv->pv_flags & PVF_NC) == 0)
2154 kernel_cacheable++;
2155 }
2156 }
2157
2158 /*
2159 * We know we have just been updating a kernel entry, so if
2160 * all user pages are already cacheable, then there is nothing
2161 * further to do.
2162 */
2163 if (kernel_entries == 0 &&
2164 user_cacheable == user_entries)
2165 return;
2166
2167 if (user_entries) {
2168 /*
2169 * Scan over the list again, for each entry, if it
2170 * might not be set correctly, call pmap_vac_me_user
2171 * to recalculate the settings.
2172 */
2173 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2174 /*
2175 * We know kernel mappings will get set
2176 * correctly in other calls. We also know
2177 * that if the pmap is the same as last_pmap
2178 * then we've just handled this entry.
2179 */
2180 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2181 continue;
2182 /*
2183 * If there are kernel entries and this page
2184 * is writable but non-cacheable, then we can
2185 * skip this entry also.
2186 */
2187 if (kernel_entries > 0 &&
2188 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2189 (PVF_NC | PVF_WRITE))
2190 continue;
2191 /*
2192 * Similarly if there are no kernel-writable
2193 * entries and the page is already
2194 * read-only/cacheable.
2195 */
2196 if (kernel_writable == 0 &&
2197 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2198 continue;
2199 /*
2200 * For some of the remaining cases, we know
2201 * that we must recalculate, but for others we
2202 * can't tell if they are correct or not, so
2203 * we recalculate anyway.
2204 */
2205 pmap_unmap_ptes(last_pmap);
2206 last_pmap = pv->pv_pmap;
2207 ptes = pmap_map_ptes(last_pmap);
2208 pmap_vac_me_user(last_pmap, pg, ptes,
2209 pmap_is_curpmap(last_pmap));
2210 }
2211 /* Restore the pte mapping that was passed to us. */
2212 if (last_pmap != pmap) {
2213 pmap_unmap_ptes(last_pmap);
2214 ptes = pmap_map_ptes(pmap);
2215 }
2216 if (kernel_entries == 0)
2217 return;
2218 }
2219
2220 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2221 return;
2222 }
2223
2224 static void
2225 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2226 boolean_t clear_cache)
2227 {
2228 struct pmap *kpmap = pmap_kernel();
2229 struct pv_entry *pv, *npv;
2230 int entries = 0;
2231 int writable = 0;
2232 int cacheable_entries = 0;
2233 int kern_cacheable = 0;
2234 int other_writable = 0;
2235
2236 pv = pg->mdpage.pvh_list;
2237 KASSERT(ptes != NULL);
2238
2239 /*
2240 * Count mappings and writable mappings in this pmap.
2241 * Include kernel mappings as part of our own.
2242 * Keep a pointer to the first one.
2243 */
2244 for (npv = pv; npv; npv = npv->pv_next) {
2245 /* Count mappings in the same pmap */
2246 if (pmap == npv->pv_pmap ||
2247 kpmap == npv->pv_pmap) {
2248 if (entries++ == 0)
2249 pv = npv;
2250 /* Cacheable mappings */
2251 if ((npv->pv_flags & PVF_NC) == 0) {
2252 cacheable_entries++;
2253 if (kpmap == npv->pv_pmap)
2254 kern_cacheable++;
2255 }
2256 /* Writable mappings */
2257 if (npv->pv_flags & PVF_WRITE)
2258 ++writable;
2259 } else if (npv->pv_flags & PVF_WRITE)
2260 other_writable = 1;
2261 }
2262
2263 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2264 "writable %d cacheable %d %s\n", pmap, entries, writable,
2265 cacheable_entries, clear_cache ? "clean" : "no clean"));
2266
2267 /*
2268 * Enable or disable caching as necessary.
2269 * Note: the first entry might be part of the kernel pmap,
2270 * so we can't assume this is indicative of the state of the
2271 * other (maybe non-kpmap) entries.
2272 */
2273 if ((entries > 1 && writable) ||
2274 (entries > 0 && pmap == kpmap && other_writable)) {
2275 if (cacheable_entries == 0)
2276 return;
2277 for (npv = pv; npv; npv = npv->pv_next) {
2278 if ((pmap == npv->pv_pmap
2279 || kpmap == npv->pv_pmap) &&
2280 (npv->pv_flags & PVF_NC) == 0) {
2281 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2282 PTE_SYNC_CURRENT(pmap,
2283 &ptes[arm_btop(npv->pv_va)]);
2284 npv->pv_flags |= PVF_NC;
2285 /*
2286 * If this page needs flushing from the
2287 * cache, and we aren't going to do it
2288 * below, do it now.
2289 */
2290 if ((cacheable_entries < 4 &&
2291 (clear_cache || npv->pv_pmap == kpmap)) ||
2292 (npv->pv_pmap == kpmap &&
2293 !clear_cache && kern_cacheable < 4)) {
2294 cpu_idcache_wbinv_range(npv->pv_va,
2295 NBPG);
2296 cpu_tlb_flushID_SE(npv->pv_va);
2297 }
2298 }
2299 }
2300 if ((clear_cache && cacheable_entries >= 4) ||
2301 kern_cacheable >= 4) {
2302 cpu_idcache_wbinv_all();
2303 cpu_tlb_flushID();
2304 }
2305 cpu_cpwait();
2306 } else if (entries > 0) {
2307 /*
2308 * Turn cacheing back on for some pages. If it is a kernel
2309 * page, only do so if there are no other writable pages.
2310 */
2311 for (npv = pv; npv; npv = npv->pv_next) {
2312 if ((pmap == npv->pv_pmap ||
2313 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2314 (npv->pv_flags & PVF_NC)) {
2315 ptes[arm_btop(npv->pv_va)] |=
2316 pte_l2_s_cache_mode;
2317 PTE_SYNC_CURRENT(pmap,
2318 &ptes[arm_btop(npv->pv_va)]);
2319 npv->pv_flags &= ~PVF_NC;
2320 }
2321 }
2322 }
2323 }
2324
2325 /*
2326 * pmap_remove()
2327 *
2328 * pmap_remove is responsible for nuking a number of mappings for a range
2329 * of virtual address space in the current pmap. To do this efficiently
2330 * is interesting, because in a number of cases a wide virtual address
2331 * range may be supplied that contains few actual mappings. So, the
2332 * optimisations are:
2333 * 1. Try and skip over hunks of address space for which an L1 entry
2334 * does not exist.
2335 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2336 * maybe do just a partial cache clean. This path of execution is
2337 * complicated by the fact that the cache must be flushed _before_
2338 * the PTE is nuked, being a VAC :-)
2339 * 3. Maybe later fast-case a single page, but I don't think this is
2340 * going to make _that_ much difference overall.
2341 */
2342
2343 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2344
2345 void
2346 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2347 {
2348 int cleanlist_idx = 0;
2349 struct pagelist {
2350 vaddr_t va;
2351 pt_entry_t *pte;
2352 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2353 pt_entry_t *pte = 0, *ptes;
2354 paddr_t pa;
2355 int pmap_active;
2356 struct vm_page *pg;
2357 struct pv_entry *pv_tofree = NULL;
2358
2359 /* Exit quick if there is no pmap */
2360 if (!pmap)
2361 return;
2362
2363 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2364 pmap, sva, eva));
2365
2366 /*
2367 * we lock in the pmap => vm_page direction
2368 */
2369 PMAP_MAP_TO_HEAD_LOCK();
2370
2371 ptes = pmap_map_ptes(pmap);
2372 /* Get a page table pointer */
2373 while (sva < eva) {
2374 if (pmap_pde_page(pmap_pde(pmap, sva)))
2375 break;
2376 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2377 }
2378
2379 pte = &ptes[arm_btop(sva)];
2380 /* Note if the pmap is active thus require cache and tlb cleans */
2381 pmap_active = pmap_is_curpmap(pmap);
2382
2383 /* Now loop along */
2384 while (sva < eva) {
2385 /* Check if we can move to the next PDE (l1 chunk) */
2386 if ((sva & L2_ADDR_BITS) == 0) {
2387 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2388 sva += L1_S_SIZE;
2389 pte += arm_btop(L1_S_SIZE);
2390 continue;
2391 }
2392 }
2393
2394 /* We've found a valid PTE, so this page of PTEs has to go. */
2395 if (pmap_pte_v(pte)) {
2396 /* Update statistics */
2397 --pmap->pm_stats.resident_count;
2398
2399 /*
2400 * Add this page to our cache remove list, if we can.
2401 * If, however the cache remove list is totally full,
2402 * then do a complete cache invalidation taking note
2403 * to backtrack the PTE table beforehand, and ignore
2404 * the lists in future because there's no longer any
2405 * point in bothering with them (we've paid the
2406 * penalty, so will carry on unhindered). Otherwise,
2407 * when we fall out, we just clean the list.
2408 */
2409 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2410 pa = pmap_pte_pa(pte);
2411
2412 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2413 /* Add to the clean list. */
2414 cleanlist[cleanlist_idx].pte = pte;
2415 cleanlist[cleanlist_idx].va = sva;
2416 cleanlist_idx++;
2417 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2418 int cnt;
2419
2420 /* Nuke everything if needed. */
2421 if (pmap_active) {
2422 cpu_idcache_wbinv_all();
2423 cpu_tlb_flushID();
2424 }
2425
2426 /*
2427 * Roll back the previous PTE list,
2428 * and zero out the current PTE.
2429 */
2430 for (cnt = 0;
2431 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
2432 cnt++) {
2433 *cleanlist[cnt].pte = 0;
2434 if (pmap_active)
2435 PTE_SYNC(cleanlist[cnt].pte);
2436 else
2437 PTE_FLUSH(cleanlist[cnt].pte);
2438 pmap_pte_delref(pmap,
2439 cleanlist[cnt].va);
2440 }
2441 *pte = 0;
2442 if (pmap_active)
2443 PTE_SYNC(pte);
2444 else
2445 PTE_FLUSH(pte);
2446 pmap_pte_delref(pmap, sva);
2447 cleanlist_idx++;
2448 } else {
2449 /*
2450 * We've already nuked the cache and
2451 * TLB, so just carry on regardless,
2452 * and we won't need to do it again
2453 */
2454 *pte = 0;
2455 if (pmap_active)
2456 PTE_SYNC(pte);
2457 else
2458 PTE_FLUSH(pte);
2459 pmap_pte_delref(pmap, sva);
2460 }
2461
2462 /*
2463 * Update flags. In a number of circumstances,
2464 * we could cluster a lot of these and do a
2465 * number of sequential pages in one go.
2466 */
2467 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2468 struct pv_entry *pve;
2469 simple_lock(&pg->mdpage.pvh_slock);
2470 pve = pmap_remove_pv(pg, pmap, sva);
2471 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2472 simple_unlock(&pg->mdpage.pvh_slock);
2473 if (pve != NULL) {
2474 pve->pv_next = pv_tofree;
2475 pv_tofree = pve;
2476 }
2477 }
2478 } else if (pmap_active == 0)
2479 PTE_FLUSH(pte);
2480 sva += NBPG;
2481 pte++;
2482 }
2483
2484 /*
2485 * Now, if we've fallen through down to here, chances are that there
2486 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2487 */
2488 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2489 u_int cnt;
2490
2491 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2492 if (pmap_active) {
2493 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2494 NBPG);
2495 *cleanlist[cnt].pte = 0;
2496 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2497 PTE_SYNC(cleanlist[cnt].pte);
2498 } else {
2499 *cleanlist[cnt].pte = 0;
2500 PTE_FLUSH(cleanlist[cnt].pte);
2501 }
2502 pmap_pte_delref(pmap, cleanlist[cnt].va);
2503 }
2504 }
2505
2506 /* Delete pv entries */
2507 if (pv_tofree != NULL)
2508 pmap_free_pvs(pmap, pv_tofree);
2509
2510 pmap_unmap_ptes(pmap);
2511
2512 PMAP_MAP_TO_HEAD_UNLOCK();
2513 }
2514
2515 /*
2516 * Routine: pmap_page_remove
2517 * Function:
2518 * Removes this physical page from
2519 * all physical maps in which it resides.
2520 * Reflects back modify bits to the pager.
2521 */
2522
2523 static void
2524 pmap_page_remove(struct vm_page *pg)
2525 {
2526 struct pv_entry *pv, *npv;
2527 struct pmap *pmap;
2528 pt_entry_t *pte, *ptes;
2529
2530 PDEBUG(0, printf("pmap_page_remove: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2531
2532 /* set vm_page => pmap locking */
2533 PMAP_HEAD_TO_MAP_LOCK();
2534
2535 simple_lock(&pg->mdpage.pvh_slock);
2536
2537 pv = pg->mdpage.pvh_list;
2538 if (pv == NULL) {
2539 PDEBUG(0, printf("free page\n"));
2540 simple_unlock(&pg->mdpage.pvh_slock);
2541 PMAP_HEAD_TO_MAP_UNLOCK();
2542 return;
2543 }
2544 pmap_clean_page(pv, FALSE);
2545
2546 while (pv) {
2547 pmap = pv->pv_pmap;
2548 ptes = pmap_map_ptes(pmap);
2549 pte = &ptes[arm_btop(pv->pv_va)];
2550
2551 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2552 pv->pv_va, pv->pv_flags));
2553 #ifdef DEBUG
2554 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2555 pmap_pte_v(pte) == 0 ||
2556 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2557 panic("pmap_page_remove: bad mapping");
2558 #endif /* DEBUG */
2559
2560 /*
2561 * Update statistics
2562 */
2563 --pmap->pm_stats.resident_count;
2564
2565 /* Wired bit */
2566 if (pv->pv_flags & PVF_WIRED)
2567 --pmap->pm_stats.wired_count;
2568
2569 /*
2570 * Invalidate the PTEs.
2571 * XXX: should cluster them up and invalidate as many
2572 * as possible at once.
2573 */
2574
2575 #ifdef needednotdone
2576 reduce wiring count on page table pages as references drop
2577 #endif
2578
2579 *pte = 0;
2580 PTE_SYNC_CURRENT(pmap, pte);
2581 pmap_pte_delref(pmap, pv->pv_va);
2582
2583 npv = pv->pv_next;
2584 pmap_free_pv(pmap, pv);
2585 pv = npv;
2586 pmap_unmap_ptes(pmap);
2587 }
2588 pg->mdpage.pvh_list = NULL;
2589 simple_unlock(&pg->mdpage.pvh_slock);
2590 PMAP_HEAD_TO_MAP_UNLOCK();
2591
2592 PDEBUG(0, printf("done\n"));
2593 cpu_tlb_flushID();
2594 cpu_cpwait();
2595 }
2596
2597
2598 /*
2599 * Set the physical protection on the specified range of this map as requested.
2600 */
2601
2602 void
2603 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2604 {
2605 pt_entry_t *pte = NULL, *ptes;
2606 struct vm_page *pg;
2607 int flush = 0;
2608
2609 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2610 pmap, sva, eva, prot));
2611
2612 if (~prot & VM_PROT_READ) {
2613 /*
2614 * Just remove the mappings. pmap_update() is not required
2615 * here since the caller should do it.
2616 */
2617 pmap_remove(pmap, sva, eva);
2618 return;
2619 }
2620 if (prot & VM_PROT_WRITE) {
2621 /*
2622 * If this is a read->write transition, just ignore it and let
2623 * uvm_fault() take care of it later.
2624 */
2625 return;
2626 }
2627
2628 /* Need to lock map->head */
2629 PMAP_MAP_TO_HEAD_LOCK();
2630
2631 ptes = pmap_map_ptes(pmap);
2632
2633 /*
2634 * OK, at this point, we know we're doing write-protect operation.
2635 * If the pmap is active, write-back the range.
2636 */
2637 if (pmap_is_curpmap(pmap))
2638 cpu_dcache_wb_range(sva, eva - sva);
2639
2640 /*
2641 * We need to acquire a pointer to a page table page before entering
2642 * the following loop.
2643 */
2644 while (sva < eva) {
2645 if (pmap_pde_page(pmap_pde(pmap, sva)))
2646 break;
2647 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2648 }
2649
2650 pte = &ptes[arm_btop(sva)];
2651
2652 while (sva < eva) {
2653 /* only check once in a while */
2654 if ((sva & L2_ADDR_BITS) == 0) {
2655 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2656 /* We can race ahead here, to the next pde. */
2657 sva += L1_S_SIZE;
2658 pte += arm_btop(L1_S_SIZE);
2659 continue;
2660 }
2661 }
2662
2663 if (!pmap_pte_v(pte)) {
2664 PTE_FLUSH_ALT(pmap, pte);
2665 goto next;
2666 }
2667
2668 flush = 1;
2669
2670 pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
2671
2672 *pte &= ~L2_S_PROT_W; /* clear write bit */
2673 PTE_SYNC_CURRENT(pmap, pte); /* XXXJRT optimize */
2674
2675 /* Clear write flag */
2676 if (pg != NULL) {
2677 simple_lock(&pg->mdpage.pvh_slock);
2678 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2679 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2680 simple_unlock(&pg->mdpage.pvh_slock);
2681 }
2682
2683 next:
2684 sva += NBPG;
2685 pte++;
2686 }
2687 pmap_unmap_ptes(pmap);
2688 PMAP_MAP_TO_HEAD_UNLOCK();
2689 if (flush)
2690 cpu_tlb_flushID();
2691 }
2692
2693 /*
2694 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2695 * int flags)
2696 *
2697 * Insert the given physical page (p) at
2698 * the specified virtual address (v) in the
2699 * target physical map with the protection requested.
2700 *
2701 * If specified, the page will be wired down, meaning
2702 * that the related pte can not be reclaimed.
2703 *
2704 * NB: This is the only routine which MAY NOT lazy-evaluate
2705 * or lose information. That is, this routine must actually
2706 * insert this page into the given map NOW.
2707 */
2708
2709 int
2710 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2711 int flags)
2712 {
2713 pt_entry_t *ptes, opte, npte;
2714 paddr_t opa;
2715 boolean_t wired = (flags & PMAP_WIRED) != 0;
2716 struct vm_page *pg;
2717 struct pv_entry *pve;
2718 int error, nflags;
2719 struct vm_page *ptp = NULL;
2720
2721 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2722 va, pa, pmap, prot, wired));
2723
2724 #ifdef DIAGNOSTIC
2725 /* Valid address ? */
2726 if (va >= (pmap_curmaxkvaddr))
2727 panic("pmap_enter: too big");
2728 if (pmap != pmap_kernel() && va != 0) {
2729 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2730 panic("pmap_enter: kernel page in user map");
2731 } else {
2732 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2733 panic("pmap_enter: user page in kernel map");
2734 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2735 panic("pmap_enter: entering PT page");
2736 }
2737 #endif
2738
2739 KDASSERT(((va | pa) & PGOFSET) == 0);
2740
2741 /*
2742 * Get a pointer to the page. Later on in this function, we
2743 * test for a managed page by checking pg != NULL.
2744 */
2745 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2746
2747 /* get lock */
2748 PMAP_MAP_TO_HEAD_LOCK();
2749
2750 /*
2751 * map the ptes. If there's not already an L2 table for this
2752 * address, allocate one.
2753 */
2754 ptes = pmap_map_ptes(pmap); /* locks pmap */
2755 /* kernel should be pre-grown */
2756 if (pmap != pmap_kernel())
2757 {
2758 /* if failure is allowed then don't try too hard */
2759 ptp = pmap_get_ptp(pmap, va & PD_FRAME);
2760 if (ptp == NULL) {
2761 if (flags & PMAP_CANFAIL) {
2762 error = ENOMEM;
2763 goto out;
2764 }
2765 panic("pmap_enter: get ptp failed");
2766 }
2767 }
2768 opte = ptes[arm_btop(va)];
2769
2770 nflags = 0;
2771 if (prot & VM_PROT_WRITE)
2772 nflags |= PVF_WRITE;
2773 if (wired)
2774 nflags |= PVF_WIRED;
2775
2776 /* Is the pte valid ? If so then this page is already mapped */
2777 if (l2pte_valid(opte)) {
2778 /* Get the physical address of the current page mapped */
2779 opa = l2pte_pa(opte);
2780
2781 /* Are we mapping the same page ? */
2782 if (opa == pa) {
2783 /* Check to see if we're doing rw->ro. */
2784 if ((opte & L2_S_PROT_W) != 0 &&
2785 (prot & VM_PROT_WRITE) == 0) {
2786 /* Yup, flush the cache if current pmap. */
2787 if (pmap_is_curpmap(pmap))
2788 cpu_dcache_wb_range(va, NBPG);
2789 }
2790
2791 /* Has the wiring changed ? */
2792 if (pg != NULL) {
2793 simple_lock(&pg->mdpage.pvh_slock);
2794 (void) pmap_modify_pv(pmap, va, pg,
2795 PVF_WRITE | PVF_WIRED, nflags);
2796 simple_unlock(&pg->mdpage.pvh_slock);
2797 }
2798 } else {
2799 struct vm_page *opg;
2800
2801 /* We are replacing the page with a new one. */
2802 cpu_idcache_wbinv_range(va, NBPG);
2803
2804 /*
2805 * If it is part of our managed memory then we
2806 * must remove it from the PV list
2807 */
2808 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2809 simple_lock(&opg->mdpage.pvh_slock);
2810 pve = pmap_remove_pv(opg, pmap, va);
2811 simple_unlock(&opg->mdpage.pvh_slock);
2812 } else {
2813 pve = NULL;
2814 }
2815
2816 goto enter;
2817 }
2818 } else {
2819 opa = 0;
2820 pve = NULL;
2821
2822 /* bump ptp ref */
2823 if (ptp != NULL)
2824 ptp->wire_count++;
2825
2826 /* pte is not valid so we must be hooking in a new page */
2827 ++pmap->pm_stats.resident_count;
2828
2829 enter:
2830 /*
2831 * Enter on the PV list if part of our managed memory
2832 */
2833 if (pg != NULL) {
2834 if (pve == NULL) {
2835 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2836 if (pve == NULL) {
2837 if (flags & PMAP_CANFAIL) {
2838 PTE_FLUSH_ALT(pmap,
2839 ptes[arm_btop(va)]);
2840 error = ENOMEM;
2841 goto out;
2842 }
2843 panic("pmap_enter: no pv entries "
2844 "available");
2845 }
2846 }
2847 /* enter_pv locks pvh when adding */
2848 pmap_enter_pv(pg, pve, pmap, va, ptp, nflags);
2849 } else {
2850 if (pve != NULL)
2851 pmap_free_pv(pmap, pve);
2852 }
2853 }
2854
2855 /* Construct the pte, giving the correct access. */
2856 npte = pa;
2857
2858 /* VA 0 is magic. */
2859 if (pmap != pmap_kernel() && va != vector_page)
2860 npte |= L2_S_PROT_U;
2861
2862 if (pg != NULL) {
2863 #ifdef DIAGNOSTIC
2864 if ((flags & VM_PROT_ALL) & ~prot)
2865 panic("pmap_enter: access_type exceeds prot");
2866 #endif
2867 npte |= pte_l2_s_cache_mode;
2868 if (flags & VM_PROT_WRITE) {
2869 npte |= L2_S_PROTO | L2_S_PROT_W;
2870 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2871 } else if (flags & VM_PROT_ALL) {
2872 npte |= L2_S_PROTO;
2873 pg->mdpage.pvh_attrs |= PVF_REF;
2874 } else
2875 npte |= L2_TYPE_INV;
2876 } else {
2877 if (prot & VM_PROT_WRITE)
2878 npte |= L2_S_PROTO | L2_S_PROT_W;
2879 else if (prot & VM_PROT_ALL)
2880 npte |= L2_S_PROTO;
2881 else
2882 npte |= L2_TYPE_INV;
2883 }
2884
2885 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
2886 #if ARM_NMMUS > 1
2887 # error "XXX Unable to use read/write-allocate and configure non-XScale"
2888 #endif
2889 /*
2890 * XXX BRUTAL HACK! This allows us to limp along with
2891 * XXX the read/write-allocate cache mode.
2892 */
2893 if (pmap == pmap_kernel())
2894 npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
2895 #endif
2896 ptes[arm_btop(va)] = npte;
2897 PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
2898
2899 if (pg != NULL) {
2900 simple_lock(&pg->mdpage.pvh_slock);
2901 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2902 simple_unlock(&pg->mdpage.pvh_slock);
2903 }
2904
2905 /* Better flush the TLB ... */
2906 cpu_tlb_flushID_SE(va);
2907 error = 0;
2908 out:
2909 pmap_unmap_ptes(pmap); /* unlocks pmap */
2910 PMAP_MAP_TO_HEAD_UNLOCK();
2911
2912 return error;
2913 }
2914
2915 /*
2916 * pmap_kenter_pa: enter a kernel mapping
2917 *
2918 * => no need to lock anything assume va is already allocated
2919 * => should be faster than normal pmap enter function
2920 */
2921 void
2922 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2923 {
2924 pt_entry_t *pte;
2925
2926 pte = vtopte(va);
2927 KASSERT(!pmap_pte_v(pte));
2928
2929 #ifdef PMAP_ALIAS_DEBUG
2930 {
2931 struct vm_page *pg;
2932 int s;
2933
2934 pg = PHYS_TO_VM_PAGE(pa);
2935 if (pg != NULL) {
2936 s = splhigh();
2937 if (pg->mdpage.ro_mappings == 0 &&
2938 pg->mdpage.rw_mappings == 0 &&
2939 pg->mdpage.kro_mappings == 0 &&
2940 pg->mdpage.krw_mappings == 0) {
2941 /* This case is okay. */
2942 } else if (pg->mdpage.rw_mappings == 0 &&
2943 pg->mdpage.krw_mappings == 0 &&
2944 (prot & VM_PROT_WRITE) == 0) {
2945 /* This case is okay. */
2946 } else {
2947 /* Something is awry. */
2948 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2949 "prot 0x%x\n", pg->mdpage.ro_mappings,
2950 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2951 pg->mdpage.krw_mappings, prot);
2952 Debugger();
2953 }
2954 if (prot & VM_PROT_WRITE)
2955 pg->mdpage.krw_mappings++;
2956 else
2957 pg->mdpage.kro_mappings++;
2958 splx(s);
2959 }
2960 }
2961 #endif /* PMAP_ALIAS_DEBUG */
2962
2963 *pte = L2_S_PROTO | pa |
2964 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2965 PTE_SYNC(pte);
2966 }
2967
2968 void
2969 pmap_kremove(vaddr_t va, vsize_t len)
2970 {
2971 pt_entry_t *pte;
2972 vaddr_t ova = va;
2973 vaddr_t olen = len;
2974
2975 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2976
2977 /*
2978 * We assume that we will only be called with small
2979 * regions of memory.
2980 */
2981
2982 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2983 pte = vtopte(va);
2984 #ifdef PMAP_ALIAS_DEBUG
2985 {
2986 struct vm_page *pg;
2987 int s;
2988
2989 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2990 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2991 s = splhigh();
2992 if (*pte & L2_S_PROT_W) {
2993 KASSERT(pg->mdpage.krw_mappings != 0);
2994 pg->mdpage.krw_mappings--;
2995 } else {
2996 KASSERT(pg->mdpage.kro_mappings != 0);
2997 pg->mdpage.kro_mappings--;
2998 }
2999 splx(s);
3000 }
3001 }
3002 #endif /* PMAP_ALIAS_DEBUG */
3003 cpu_idcache_wbinv_range(va, PAGE_SIZE);
3004 *pte = 0;
3005 cpu_tlb_flushID_SE(va);
3006 }
3007 PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
3008 }
3009
3010 /*
3011 * pmap_page_protect:
3012 *
3013 * Lower the permission for all mappings to a given page.
3014 */
3015
3016 void
3017 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3018 {
3019
3020 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
3021 VM_PAGE_TO_PHYS(pg), prot));
3022
3023 switch(prot) {
3024 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3025 case VM_PROT_READ|VM_PROT_WRITE:
3026 return;
3027
3028 case VM_PROT_READ:
3029 case VM_PROT_READ|VM_PROT_EXECUTE:
3030 pmap_clearbit(pg, PVF_WRITE);
3031 break;
3032
3033 default:
3034 pmap_page_remove(pg);
3035 break;
3036 }
3037 }
3038
3039
3040 /*
3041 * Routine: pmap_unwire
3042 * Function: Clear the wired attribute for a map/virtual-address
3043 * pair.
3044 * In/out conditions:
3045 * The mapping must already exist in the pmap.
3046 */
3047
3048 void
3049 pmap_unwire(struct pmap *pmap, vaddr_t va)
3050 {
3051 pt_entry_t *ptes;
3052 struct vm_page *pg;
3053 paddr_t pa;
3054
3055 PMAP_MAP_TO_HEAD_LOCK();
3056 ptes = pmap_map_ptes(pmap); /* locks pmap */
3057
3058 if (pmap_pde_v(pmap_pde(pmap, va))) {
3059 #ifdef DIAGNOSTIC
3060 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3061 panic("pmap_unwire: invalid L2 PTE");
3062 #endif
3063 /* Extract the physical address of the page */
3064 pa = l2pte_pa(ptes[arm_btop(va)]);
3065 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3066
3067 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3068 goto out;
3069
3070 /* Update the wired bit in the pv entry for this page. */
3071 simple_lock(&pg->mdpage.pvh_slock);
3072 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
3073 simple_unlock(&pg->mdpage.pvh_slock);
3074 }
3075 #ifdef DIAGNOSTIC
3076 else {
3077 panic("pmap_unwire: invalid L1 PTE");
3078 }
3079 #endif
3080 out:
3081 pmap_unmap_ptes(pmap); /* unlocks pmap */
3082 PMAP_MAP_TO_HEAD_UNLOCK();
3083 }
3084
3085 /*
3086 * Routine: pmap_extract
3087 * Function:
3088 * Extract the physical page address associated
3089 * with the given map/virtual_address pair.
3090 */
3091 boolean_t
3092 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
3093 {
3094 pd_entry_t *pde;
3095 pt_entry_t *pte, *ptes;
3096 paddr_t pa;
3097
3098 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3099
3100 ptes = pmap_map_ptes(pmap); /* locks pmap */
3101
3102 pde = pmap_pde(pmap, va);
3103 pte = &ptes[arm_btop(va)];
3104
3105 if (pmap_pde_section(pde)) {
3106 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3107 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3108 goto out;
3109 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3110 PDEBUG(5, printf("no mapping\n"));
3111 goto failed;
3112 }
3113
3114 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3115 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3116 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3117 goto out;
3118 }
3119
3120 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3121 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3122
3123 out:
3124 if (pap != NULL)
3125 *pap = pa;
3126
3127 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3128 pmap_unmap_ptes(pmap); /* unlocks pmap */
3129 return (TRUE);
3130
3131 failed:
3132 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3133 pmap_unmap_ptes(pmap); /* unlocks pmap */
3134 return (FALSE);
3135 }
3136
3137
3138 /*
3139 * pmap_copy:
3140 *
3141 * Copy the range specified by src_addr/len from the source map to the
3142 * range dst_addr/len in the destination map.
3143 *
3144 * This routine is only advisory and need not do anything.
3145 */
3146 /* Call deleted in <arm/arm32/pmap.h> */
3147
3148 #if defined(PMAP_DEBUG)
3149 void
3150 pmap_dump_pvlist(phys, m)
3151 vaddr_t phys;
3152 char *m;
3153 {
3154 struct vm_page *pg;
3155 struct pv_entry *pv;
3156
3157 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3158 printf("INVALID PA\n");
3159 return;
3160 }
3161 simple_lock(&pg->mdpage.pvh_slock);
3162 printf("%s %08lx:", m, phys);
3163 if (pg->mdpage.pvh_list == NULL) {
3164 simple_unlock(&pg->mdpage.pvh_slock);
3165 printf(" no mappings\n");
3166 return;
3167 }
3168
3169 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3170 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3171 pv->pv_va, pv->pv_flags);
3172
3173 printf("\n");
3174 simple_unlock(&pg->mdpage.pvh_slock);
3175 }
3176
3177 #endif /* PMAP_DEBUG */
3178
3179 static pt_entry_t *
3180 pmap_map_ptes(struct pmap *pmap)
3181 {
3182 struct proc *p;
3183
3184 /* the kernel's pmap is always accessible */
3185 if (pmap == pmap_kernel()) {
3186 return (pt_entry_t *)PTE_BASE;
3187 }
3188
3189 if (pmap_is_curpmap(pmap)) {
3190 simple_lock(&pmap->pm_obj.vmobjlock);
3191 return (pt_entry_t *)PTE_BASE;
3192 }
3193
3194 p = curproc;
3195 KDASSERT(p != NULL);
3196
3197 /* need to lock both curpmap and pmap: use ordered locking */
3198 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3199 simple_lock(&pmap->pm_obj.vmobjlock);
3200 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3201 } else {
3202 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3203 simple_lock(&pmap->pm_obj.vmobjlock);
3204 }
3205
3206 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3207 pmap->pm_pptpt, 0);
3208 cpu_tlb_flushD();
3209 cpu_cpwait();
3210 return (pt_entry_t *)APTE_BASE;
3211 }
3212
3213 /*
3214 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3215 */
3216
3217 static void
3218 pmap_unmap_ptes(struct pmap *pmap)
3219 {
3220
3221 if (pmap == pmap_kernel()) {
3222 return;
3223 }
3224 if (pmap_is_curpmap(pmap)) {
3225 simple_unlock(&pmap->pm_obj.vmobjlock);
3226 } else {
3227 KDASSERT(curproc != NULL);
3228 simple_unlock(&pmap->pm_obj.vmobjlock);
3229 simple_unlock(
3230 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3231 }
3232 }
3233
3234 /*
3235 * Modify pte bits for all ptes corresponding to the given physical address.
3236 * We use `maskbits' rather than `clearbits' because we're always passing
3237 * constants and the latter would require an extra inversion at run-time.
3238 */
3239
3240 static void
3241 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3242 {
3243 struct pv_entry *pv;
3244 pt_entry_t *ptes, npte, opte;
3245 vaddr_t va;
3246
3247 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3248 VM_PAGE_TO_PHYS(pg), maskbits));
3249
3250 PMAP_HEAD_TO_MAP_LOCK();
3251 simple_lock(&pg->mdpage.pvh_slock);
3252
3253 /*
3254 * Clear saved attributes (modify, reference)
3255 */
3256 pg->mdpage.pvh_attrs &= ~maskbits;
3257
3258 if (pg->mdpage.pvh_list == NULL) {
3259 simple_unlock(&pg->mdpage.pvh_slock);
3260 PMAP_HEAD_TO_MAP_UNLOCK();
3261 return;
3262 }
3263
3264 /*
3265 * Loop over all current mappings setting/clearing as appropos
3266 */
3267 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3268 #ifdef PMAP_ALIAS_DEBUG
3269 {
3270 int s = splhigh();
3271 if ((maskbits & PVF_WRITE) != 0 &&
3272 (pv->pv_flags & PVF_WRITE) != 0) {
3273 KASSERT(pg->mdpage.rw_mappings != 0);
3274 pg->mdpage.rw_mappings--;
3275 pg->mdpage.ro_mappings++;
3276 }
3277 splx(s);
3278 }
3279 #endif /* PMAP_ALIAS_DEBUG */
3280 va = pv->pv_va;
3281 pv->pv_flags &= ~maskbits;
3282 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3283 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3284 npte = opte = ptes[arm_btop(va)];
3285 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3286 if ((pv->pv_flags & PVF_NC)) {
3287 /*
3288 * Entry is not cacheable: reenable
3289 * the cache, nothing to flush
3290 *
3291 * Don't turn caching on again if this
3292 * is a modified emulation. This
3293 * would be inconsitent with the
3294 * settings created by
3295 * pmap_vac_me_harder().
3296 *
3297 * There's no need to call
3298 * pmap_vac_me_harder() here: all
3299 * pages are loosing their write
3300 * permission.
3301 *
3302 */
3303 if (maskbits & PVF_WRITE) {
3304 npte |= pte_l2_s_cache_mode;
3305 pv->pv_flags &= ~PVF_NC;
3306 }
3307 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3308 /*
3309 * Entry is cacheable: check if pmap is
3310 * current if it is flush it,
3311 * otherwise it won't be in the cache
3312 */
3313 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3314 }
3315
3316 /* make the pte read only */
3317 npte &= ~L2_S_PROT_W;
3318 }
3319
3320 if (maskbits & PVF_REF) {
3321 if (pmap_is_curpmap(pv->pv_pmap) &&
3322 (pv->pv_flags & PVF_NC) == 0) {
3323 /*
3324 * Check npte here; we may have already
3325 * done the wbinv above, and the validity
3326 * of the PTE is the same for opte and
3327 * npte.
3328 */
3329 if (npte & L2_S_PROT_W) {
3330 cpu_idcache_wbinv_range(pv->pv_va,
3331 NBPG);
3332 } else if ((npte & L2_TYPE_MASK)
3333 != L2_TYPE_INV) {
3334 /* XXXJRT need idcache_inv_range */
3335 cpu_idcache_wbinv_range(pv->pv_va,
3336 NBPG);
3337 }
3338 }
3339
3340 /* make the pte invalid */
3341 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3342 }
3343
3344 if (npte != opte) {
3345 ptes[arm_btop(va)] = npte;
3346 PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
3347 /* Flush the TLB entry if a current pmap. */
3348 if (pmap_is_curpmap(pv->pv_pmap))
3349 cpu_tlb_flushID_SE(pv->pv_va);
3350 } else
3351 PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
3352
3353 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3354 }
3355 cpu_cpwait();
3356
3357 simple_unlock(&pg->mdpage.pvh_slock);
3358 PMAP_HEAD_TO_MAP_UNLOCK();
3359 }
3360
3361 /*
3362 * pmap_clear_modify:
3363 *
3364 * Clear the "modified" attribute for a page.
3365 */
3366 boolean_t
3367 pmap_clear_modify(struct vm_page *pg)
3368 {
3369 boolean_t rv;
3370
3371 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3372 rv = TRUE;
3373 pmap_clearbit(pg, PVF_MOD);
3374 } else
3375 rv = FALSE;
3376
3377 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3378 VM_PAGE_TO_PHYS(pg), rv));
3379
3380 return (rv);
3381 }
3382
3383 /*
3384 * pmap_clear_reference:
3385 *
3386 * Clear the "referenced" attribute for a page.
3387 */
3388 boolean_t
3389 pmap_clear_reference(struct vm_page *pg)
3390 {
3391 boolean_t rv;
3392
3393 if (pg->mdpage.pvh_attrs & PVF_REF) {
3394 rv = TRUE;
3395 pmap_clearbit(pg, PVF_REF);
3396 } else
3397 rv = FALSE;
3398
3399 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3400 VM_PAGE_TO_PHYS(pg), rv));
3401
3402 return (rv);
3403 }
3404
3405 /*
3406 * pmap_is_modified:
3407 *
3408 * Test if a page has the "modified" attribute.
3409 */
3410 /* See <arm/arm32/pmap.h> */
3411
3412 /*
3413 * pmap_is_referenced:
3414 *
3415 * Test if a page has the "referenced" attribute.
3416 */
3417 /* See <arm/arm32/pmap.h> */
3418
3419 int
3420 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3421 {
3422 pt_entry_t *ptes;
3423 struct vm_page *pg;
3424 paddr_t pa;
3425 u_int flags;
3426 int rv = 0;
3427
3428 PDEBUG(2, printf("pmap_modified_emulation\n"));
3429
3430 PMAP_MAP_TO_HEAD_LOCK();
3431 ptes = pmap_map_ptes(pmap); /* locks pmap */
3432
3433 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3434 PDEBUG(2, printf("L1 PTE invalid\n"));
3435 goto out;
3436 }
3437
3438 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3439
3440 /*
3441 * Don't need to PTE_FLUSH_ALT() here; this is always done
3442 * with the current pmap.
3443 */
3444
3445 /* Check for a invalid pte */
3446 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3447 goto out;
3448
3449 /* This can happen if user code tries to access kernel memory. */
3450 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3451 goto out;
3452
3453 /* Extract the physical address of the page */
3454 pa = l2pte_pa(ptes[arm_btop(va)]);
3455 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3456 goto out;
3457
3458 /* Get the current flags for this page. */
3459 simple_lock(&pg->mdpage.pvh_slock);
3460
3461 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3462 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3463
3464 /*
3465 * Do the flags say this page is writable ? If not then it is a
3466 * genuine write fault. If yes then the write fault is our fault
3467 * as we did not reflect the write access in the PTE. Now we know
3468 * a write has occurred we can correct this and also set the
3469 * modified bit
3470 */
3471 if (~flags & PVF_WRITE) {
3472 simple_unlock(&pg->mdpage.pvh_slock);
3473 goto out;
3474 }
3475
3476 PDEBUG(0,
3477 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3478 va, ptes[arm_btop(va)]));
3479 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3480
3481 /*
3482 * Re-enable write permissions for the page. No need to call
3483 * pmap_vac_me_harder(), since this is just a
3484 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3485 * We've already set the cacheable bits based on the assumption
3486 * that we can write to this page.
3487 */
3488 ptes[arm_btop(va)] =
3489 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3490 PTE_SYNC(&ptes[arm_btop(va)]);
3491 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3492
3493 simple_unlock(&pg->mdpage.pvh_slock);
3494
3495 cpu_tlb_flushID_SE(va);
3496 cpu_cpwait();
3497 rv = 1;
3498 out:
3499 pmap_unmap_ptes(pmap); /* unlocks pmap */
3500 PMAP_MAP_TO_HEAD_UNLOCK();
3501 return (rv);
3502 }
3503
3504 int
3505 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3506 {
3507 pt_entry_t *ptes;
3508 struct vm_page *pg;
3509 paddr_t pa;
3510 int rv = 0;
3511
3512 PDEBUG(2, printf("pmap_handled_emulation\n"));
3513
3514 PMAP_MAP_TO_HEAD_LOCK();
3515 ptes = pmap_map_ptes(pmap); /* locks pmap */
3516
3517 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3518 PDEBUG(2, printf("L1 PTE invalid\n"));
3519 goto out;
3520 }
3521
3522 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3523
3524 /*
3525 * Don't need to PTE_FLUSH_ALT() here; this is always done
3526 * with the current pmap.
3527 */
3528
3529 /* Check for invalid pte */
3530 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3531 goto out;
3532
3533 /* This can happen if user code tries to access kernel memory. */
3534 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3535 goto out;
3536
3537 /* Extract the physical address of the page */
3538 pa = l2pte_pa(ptes[arm_btop(va)]);
3539 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3540 goto out;
3541
3542 simple_lock(&pg->mdpage.pvh_slock);
3543
3544 /*
3545 * Ok we just enable the pte and mark the attibs as handled
3546 * XXX Should we traverse the PV list and enable all PTEs?
3547 */
3548 PDEBUG(0,
3549 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3550 va, ptes[arm_btop(va)]));
3551 pg->mdpage.pvh_attrs |= PVF_REF;
3552
3553 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3554 PTE_SYNC(&ptes[arm_btop(va)]);
3555 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3556
3557 simple_unlock(&pg->mdpage.pvh_slock);
3558
3559 cpu_tlb_flushID_SE(va);
3560 cpu_cpwait();
3561 rv = 1;
3562 out:
3563 pmap_unmap_ptes(pmap); /* unlocks pmap */
3564 PMAP_MAP_TO_HEAD_UNLOCK();
3565 return (rv);
3566 }
3567
3568 /*
3569 * pmap_collect: free resources held by a pmap
3570 *
3571 * => optional function.
3572 * => called when a process is swapped out to free memory.
3573 */
3574
3575 void
3576 pmap_collect(struct pmap *pmap)
3577 {
3578 }
3579
3580 /*
3581 * Routine: pmap_procwr
3582 *
3583 * Function:
3584 * Synchronize caches corresponding to [addr, addr+len) in p.
3585 *
3586 */
3587 void
3588 pmap_procwr(struct proc *p, vaddr_t va, int len)
3589 {
3590 /* We only need to do anything if it is the current process. */
3591 if (p == curproc)
3592 cpu_icache_sync_range(va, len);
3593 }
3594 /*
3595 * PTP functions
3596 */
3597
3598 /*
3599 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3600 *
3601 * => pmap should NOT be pmap_kernel()
3602 * => pmap should be locked
3603 */
3604
3605 static struct vm_page *
3606 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3607 {
3608 struct vm_page *ptp;
3609 pd_entry_t *pde;
3610
3611 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3612
3613 pde = pmap_pde(pmap, va);
3614 if (pmap_pde_v(pde)) {
3615 /* valid... check hint (saves us a PA->PG lookup) */
3616 if (pmap->pm_ptphint &&
3617 ((*pde) & L2_S_FRAME) ==
3618 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3619 return (pmap->pm_ptphint);
3620 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3621 #ifdef DIAGNOSTIC
3622 if (ptp == NULL)
3623 panic("pmap_get_ptp: unmanaged user PTP");
3624 #endif
3625 pmap->pm_ptphint = ptp;
3626 return(ptp);
3627 }
3628
3629 /* allocate a new PTP (updates ptphint) */
3630 return (pmap_alloc_ptp(pmap, va));
3631 }
3632
3633 /*
3634 * pmap_alloc_ptp: allocate a PTP for a PMAP
3635 *
3636 * => pmap should already be locked by caller
3637 * => we use the ptp's wire_count to count the number of active mappings
3638 * in the PTP (we start it at one to prevent any chance this PTP
3639 * will ever leak onto the active/inactive queues)
3640 */
3641
3642 /*__inline */ static struct vm_page *
3643 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3644 {
3645 struct vm_page *ptp;
3646
3647 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3648
3649 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3650 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3651 if (ptp == NULL)
3652 return (NULL);
3653
3654 /* got one! */
3655 ptp->flags &= ~PG_BUSY; /* never busy */
3656 ptp->wire_count = 1; /* no mappings yet */
3657 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
3658 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3659 pmap->pm_stats.resident_count++; /* count PTP as resident */
3660 pmap->pm_ptphint = ptp;
3661 return (ptp);
3662 }
3663
3664 vaddr_t
3665 pmap_growkernel(vaddr_t maxkvaddr)
3666 {
3667 struct pmap *kpm = pmap_kernel(), *pm;
3668 int s;
3669 paddr_t ptaddr;
3670 struct vm_page *ptp;
3671
3672 if (maxkvaddr <= pmap_curmaxkvaddr)
3673 goto out; /* we are OK */
3674 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3675 pmap_curmaxkvaddr, maxkvaddr));
3676
3677 /*
3678 * whoops! we need to add kernel PTPs
3679 */
3680
3681 s = splhigh(); /* to be safe */
3682 simple_lock(&kpm->pm_obj.vmobjlock);
3683 /* due to the way the arm pmap works we map 4MB at a time */
3684 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3685 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3686
3687 if (uvm.page_init_done == FALSE) {
3688
3689 /*
3690 * we're growing the kernel pmap early (from
3691 * uvm_pageboot_alloc()). this case must be
3692 * handled a little differently.
3693 */
3694
3695 if (uvm_page_physget(&ptaddr) == FALSE)
3696 panic("pmap_growkernel: out of memory");
3697 pmap_zero_page(ptaddr);
3698
3699 /* map this page in */
3700 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
3701 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3702
3703 /* count PTP as resident */
3704 kpm->pm_stats.resident_count++;
3705 continue;
3706 }
3707
3708 /*
3709 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3710 * pmap_initialized == FALSE CASE! WE MAY BE
3711 * INVOKED WHILE pmap_init() IS RUNNING!
3712 */
3713
3714 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3715 panic("pmap_growkernel: alloc ptp failed");
3716
3717 /* distribute new kernel PTP to all active pmaps */
3718 simple_lock(&pmaps_lock);
3719 LIST_FOREACH(pm, &pmaps, pm_list) {
3720 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3721 VM_PAGE_TO_PHYS(ptp),
3722 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3723 }
3724
3725 /* Invalidate the PTPT cache. */
3726 pool_cache_invalidate(&pmap_ptpt_cache);
3727 pmap_ptpt_cache_generation++;
3728
3729 simple_unlock(&pmaps_lock);
3730 }
3731
3732 /*
3733 * flush out the cache, expensive but growkernel will happen so
3734 * rarely
3735 */
3736 cpu_tlb_flushD();
3737 cpu_cpwait();
3738
3739 simple_unlock(&kpm->pm_obj.vmobjlock);
3740 splx(s);
3741
3742 out:
3743 return (pmap_curmaxkvaddr);
3744 }
3745
3746 /************************ Utility routines ****************************/
3747
3748 /*
3749 * vector_page_setprot:
3750 *
3751 * Manipulate the protection of the vector page.
3752 */
3753 void
3754 vector_page_setprot(int prot)
3755 {
3756 pt_entry_t *pte;
3757
3758 pte = vtopte(vector_page);
3759
3760 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3761 PTE_SYNC(pte);
3762 cpu_tlb_flushD_SE(vector_page);
3763 cpu_cpwait();
3764 }
3765
3766 /************************ Bootstrapping routines ****************************/
3767
3768 /*
3769 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3770 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3771 * find them as necessary.
3772 *
3773 * Note that the data on this list is not valid after initarm() returns.
3774 */
3775 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3776
3777 static vaddr_t
3778 kernel_pt_lookup(paddr_t pa)
3779 {
3780 pv_addr_t *pv;
3781
3782 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3783 if (pv->pv_pa == pa)
3784 return (pv->pv_va);
3785 }
3786 return (0);
3787 }
3788
3789 /*
3790 * pmap_map_section:
3791 *
3792 * Create a single section mapping.
3793 */
3794 void
3795 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3796 {
3797 pd_entry_t *pde = (pd_entry_t *) l1pt;
3798 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3799
3800 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3801
3802 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3803 L1_S_PROT(PTE_KERNEL, prot) | fl;
3804 }
3805
3806 /*
3807 * pmap_map_entry:
3808 *
3809 * Create a single page mapping.
3810 */
3811 void
3812 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3813 {
3814 pd_entry_t *pde = (pd_entry_t *) l1pt;
3815 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3816 pt_entry_t *pte;
3817
3818 KASSERT(((va | pa) & PGOFSET) == 0);
3819
3820 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3821 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3822
3823 pte = (pt_entry_t *)
3824 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3825 if (pte == NULL)
3826 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3827
3828 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3829 L2_S_PROT(PTE_KERNEL, prot) | fl;
3830 }
3831
3832 /*
3833 * pmap_link_l2pt:
3834 *
3835 * Link the L2 page table specified by "pa" into the L1
3836 * page table at the slot for "va".
3837 */
3838 void
3839 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3840 {
3841 pd_entry_t *pde = (pd_entry_t *) l1pt;
3842 u_int slot = va >> L1_S_SHIFT;
3843
3844 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3845
3846 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3847 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3848 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3849 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3850
3851 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3852 }
3853
3854 /*
3855 * pmap_map_chunk:
3856 *
3857 * Map a chunk of memory using the most efficient mappings
3858 * possible (section, large page, small page) into the
3859 * provided L1 and L2 tables at the specified virtual address.
3860 */
3861 vsize_t
3862 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3863 int prot, int cache)
3864 {
3865 pd_entry_t *pde = (pd_entry_t *) l1pt;
3866 pt_entry_t *pte, fl;
3867 vsize_t resid;
3868 int i;
3869
3870 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3871
3872 if (l1pt == 0)
3873 panic("pmap_map_chunk: no L1 table provided");
3874
3875 #ifdef VERBOSE_INIT_ARM
3876 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3877 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3878 #endif
3879
3880 size = resid;
3881
3882 while (resid > 0) {
3883 /* See if we can use a section mapping. */
3884 if (((pa | va) & L1_S_OFFSET) == 0 &&
3885 resid >= L1_S_SIZE) {
3886 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3887 #ifdef VERBOSE_INIT_ARM
3888 printf("S");
3889 #endif
3890 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3891 L1_S_PROT(PTE_KERNEL, prot) | fl;
3892 va += L1_S_SIZE;
3893 pa += L1_S_SIZE;
3894 resid -= L1_S_SIZE;
3895 continue;
3896 }
3897
3898 /*
3899 * Ok, we're going to use an L2 table. Make sure
3900 * one is actually in the corresponding L1 slot
3901 * for the current VA.
3902 */
3903 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3904 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3905
3906 pte = (pt_entry_t *)
3907 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3908 if (pte == NULL)
3909 panic("pmap_map_chunk: can't find L2 table for VA"
3910 "0x%08lx", va);
3911
3912 /* See if we can use a L2 large page mapping. */
3913 if (((pa | va) & L2_L_OFFSET) == 0 &&
3914 resid >= L2_L_SIZE) {
3915 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3916 #ifdef VERBOSE_INIT_ARM
3917 printf("L");
3918 #endif
3919 for (i = 0; i < 16; i++) {
3920 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3921 L2_L_PROTO | pa |
3922 L2_L_PROT(PTE_KERNEL, prot) | fl;
3923 }
3924 va += L2_L_SIZE;
3925 pa += L2_L_SIZE;
3926 resid -= L2_L_SIZE;
3927 continue;
3928 }
3929
3930 /* Use a small page mapping. */
3931 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3932 #ifdef VERBOSE_INIT_ARM
3933 printf("P");
3934 #endif
3935 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3936 L2_S_PROT(PTE_KERNEL, prot) | fl;
3937 va += NBPG;
3938 pa += NBPG;
3939 resid -= NBPG;
3940 }
3941 #ifdef VERBOSE_INIT_ARM
3942 printf("\n");
3943 #endif
3944 return (size);
3945 }
3946
3947 /********************** PTE initialization routines **************************/
3948
3949 /*
3950 * These routines are called when the CPU type is identified to set up
3951 * the PTE prototypes, cache modes, etc.
3952 *
3953 * The variables are always here, just in case LKMs need to reference
3954 * them (though, they shouldn't).
3955 */
3956
3957 pt_entry_t pte_l1_s_cache_mode;
3958 pt_entry_t pte_l1_s_cache_mask;
3959
3960 pt_entry_t pte_l2_l_cache_mode;
3961 pt_entry_t pte_l2_l_cache_mask;
3962
3963 pt_entry_t pte_l2_s_cache_mode;
3964 pt_entry_t pte_l2_s_cache_mask;
3965
3966 pt_entry_t pte_l2_s_prot_u;
3967 pt_entry_t pte_l2_s_prot_w;
3968 pt_entry_t pte_l2_s_prot_mask;
3969
3970 pt_entry_t pte_l1_s_proto;
3971 pt_entry_t pte_l1_c_proto;
3972 pt_entry_t pte_l2_s_proto;
3973
3974 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3975 void (*pmap_zero_page_func)(paddr_t);
3976
3977 #if ARM_MMU_GENERIC == 1
3978 void
3979 pmap_pte_init_generic(void)
3980 {
3981
3982 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3983 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3984
3985 pte_l2_l_cache_mode = L2_B|L2_C;
3986 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3987
3988 pte_l2_s_cache_mode = L2_B|L2_C;
3989 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3990
3991 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3992 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3993 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3994
3995 pte_l1_s_proto = L1_S_PROTO_generic;
3996 pte_l1_c_proto = L1_C_PROTO_generic;
3997 pte_l2_s_proto = L2_S_PROTO_generic;
3998
3999 pmap_copy_page_func = pmap_copy_page_generic;
4000 pmap_zero_page_func = pmap_zero_page_generic;
4001 }
4002
4003 #if defined(CPU_ARM9)
4004 void
4005 pmap_pte_init_arm9(void)
4006 {
4007
4008 /*
4009 * ARM9 is compatible with generic, but we want to use
4010 * write-through caching for now.
4011 */
4012 pmap_pte_init_generic();
4013
4014 pte_l1_s_cache_mode = L1_S_C;
4015 pte_l2_l_cache_mode = L2_C;
4016 pte_l2_s_cache_mode = L2_C;
4017 }
4018 #endif /* CPU_ARM9 */
4019 #endif /* ARM_MMU_GENERIC == 1 */
4020
4021 #if ARM_MMU_XSCALE == 1
4022 void
4023 pmap_pte_init_xscale(void)
4024 {
4025 uint32_t auxctl;
4026
4027 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4028 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4029
4030 pte_l2_l_cache_mode = L2_B|L2_C;
4031 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4032
4033 pte_l2_s_cache_mode = L2_B|L2_C;
4034 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4035
4036 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4037 /*
4038 * The XScale core has an enhanced mode where writes that
4039 * miss the cache cause a cache line to be allocated. This
4040 * is significantly faster than the traditional, write-through
4041 * behavior of this case.
4042 *
4043 * However, there is a bug lurking in this pmap module, or in
4044 * other parts of the VM system, or both, which causes corruption
4045 * of NFS-backed files when this cache mode is used. We have
4046 * an ugly work-around for this problem (disable r/w-allocate
4047 * for managed kernel mappings), but the bug is still evil enough
4048 * to consider this cache mode "experimental".
4049 */
4050 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4051 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4052 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4053 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4054
4055 #ifdef XSCALE_CACHE_WRITE_THROUGH
4056 /*
4057 * Some versions of the XScale core have various bugs in
4058 * their cache units, the work-around for which is to run
4059 * the cache in write-through mode. Unfortunately, this
4060 * has a major (negative) impact on performance. So, we
4061 * go ahead and run fast-and-loose, in the hopes that we
4062 * don't line up the planets in a way that will trip the
4063 * bugs.
4064 *
4065 * However, we give you the option to be slow-but-correct.
4066 */
4067 pte_l1_s_cache_mode = L1_S_C;
4068 pte_l2_l_cache_mode = L2_C;
4069 pte_l2_s_cache_mode = L2_C;
4070 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4071
4072 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4073 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4074 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4075
4076 pte_l1_s_proto = L1_S_PROTO_xscale;
4077 pte_l1_c_proto = L1_C_PROTO_xscale;
4078 pte_l2_s_proto = L2_S_PROTO_xscale;
4079
4080 pmap_copy_page_func = pmap_copy_page_xscale;
4081 pmap_zero_page_func = pmap_zero_page_xscale;
4082
4083 /*
4084 * Disable ECC protection of page table access, for now.
4085 */
4086 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4087 : "=r" (auxctl));
4088 auxctl &= ~XSCALE_AUXCTL_P;
4089 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4090 :
4091 : "r" (auxctl));
4092 }
4093
4094 /*
4095 * xscale_setup_minidata:
4096 *
4097 * Set up the mini-data cache clean area. We require the
4098 * caller to allocate the right amount of physically and
4099 * virtually contiguous space.
4100 */
4101 void
4102 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4103 {
4104 extern vaddr_t xscale_minidata_clean_addr;
4105 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4106 pd_entry_t *pde = (pd_entry_t *) l1pt;
4107 pt_entry_t *pte;
4108 vsize_t size;
4109 uint32_t auxctl;
4110
4111 xscale_minidata_clean_addr = va;
4112
4113 /* Round it to page size. */
4114 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4115
4116 for (; size != 0;
4117 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4118 pte = (pt_entry_t *)
4119 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4120 if (pte == NULL)
4121 panic("xscale_setup_minidata: can't find L2 table for "
4122 "VA 0x%08lx", va);
4123 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4124 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4125 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4126 }
4127
4128 /*
4129 * Configure the mini-data cache for write-back with
4130 * read/write-allocate.
4131 *
4132 * NOTE: In order to reconfigure the mini-data cache, we must
4133 * make sure it contains no valid data! In order to do that,
4134 * we must issue a global data cache invalidate command!
4135 *
4136 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4137 * THIS IS VERY IMPORTANT!
4138 */
4139
4140 /* Invalidate data and mini-data. */
4141 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4142 :
4143 : "r" (auxctl));
4144
4145
4146 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4147 : "=r" (auxctl));
4148 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4149 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4150 :
4151 : "r" (auxctl));
4152 }
4153 #endif /* ARM_MMU_XSCALE == 1 */
4154