Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.120
      1 /*	$NetBSD: pmap.c,v 1.120 2002/11/11 09:34:44 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001-2002 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.120 2002/11/11 09:34:44 chris Exp $");
    147 
    148 #ifdef PMAP_DEBUG
    149 #define	PDEBUG(_lev_,_stat_) \
    150 	if (pmap_debug_level >= (_lev_)) \
    151         	((_stat_))
    152 int pmap_debug_level = -2;
    153 void pmap_dump_pvlist(vaddr_t phys, char *m);
    154 
    155 /*
    156  * for switching to potentially finer grained debugging
    157  */
    158 #define	PDB_FOLLOW	0x0001
    159 #define	PDB_INIT	0x0002
    160 #define	PDB_ENTER	0x0004
    161 #define	PDB_REMOVE	0x0008
    162 #define	PDB_CREATE	0x0010
    163 #define	PDB_PTPAGE	0x0020
    164 #define	PDB_GROWKERN	0x0040
    165 #define	PDB_BITS	0x0080
    166 #define	PDB_COLLECT	0x0100
    167 #define	PDB_PROTECT	0x0200
    168 #define	PDB_MAP_L1	0x0400
    169 #define	PDB_BOOTSTRAP	0x1000
    170 #define	PDB_PARANOIA	0x2000
    171 #define	PDB_WIRING	0x4000
    172 #define	PDB_PVDUMP	0x8000
    173 
    174 int debugmap = 0;
    175 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    176 #define	NPDEBUG(_lev_,_stat_) \
    177 	if (pmapdebug & (_lev_)) \
    178         	((_stat_))
    179 
    180 #else	/* PMAP_DEBUG */
    181 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    182 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    183 #endif	/* PMAP_DEBUG */
    184 
    185 struct pmap     kernel_pmap_store;
    186 
    187 /*
    188  * linked list of all non-kernel pmaps
    189  */
    190 
    191 static LIST_HEAD(, pmap) pmaps;
    192 
    193 /*
    194  * pool that pmap structures are allocated from
    195  */
    196 
    197 struct pool pmap_pmap_pool;
    198 
    199 /*
    200  * pool/cache that PT-PT's are allocated from
    201  */
    202 
    203 struct pool pmap_ptpt_pool;
    204 struct pool_cache pmap_ptpt_cache;
    205 u_int pmap_ptpt_cache_generation;
    206 
    207 static void *pmap_ptpt_page_alloc(struct pool *, int);
    208 static void pmap_ptpt_page_free(struct pool *, void *);
    209 
    210 struct pool_allocator pmap_ptpt_allocator = {
    211 	pmap_ptpt_page_alloc, pmap_ptpt_page_free,
    212 };
    213 
    214 static int pmap_ptpt_ctor(void *, void *, int);
    215 
    216 static pt_entry_t *csrc_pte, *cdst_pte;
    217 static vaddr_t csrcp, cdstp;
    218 
    219 char *memhook;
    220 extern caddr_t msgbufaddr;
    221 
    222 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    223 /*
    224  * locking data structures
    225  */
    226 
    227 static struct lock pmap_main_lock;
    228 static struct simplelock pvalloc_lock;
    229 static struct simplelock pmaps_lock;
    230 #ifdef LOCKDEBUG
    231 #define PMAP_MAP_TO_HEAD_LOCK() \
    232      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    233 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    234      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    235 
    236 #define PMAP_HEAD_TO_MAP_LOCK() \
    237      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    238 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    239      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    240 #else
    241 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    242 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    243 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    244 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    245 #endif /* LOCKDEBUG */
    246 
    247 /*
    248  * pv_page management structures: locked by pvalloc_lock
    249  */
    250 
    251 TAILQ_HEAD(pv_pagelist, pv_page);
    252 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    253 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    254 static int pv_nfpvents;			/* # of free pv entries */
    255 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    256 static vaddr_t pv_cachedva;		/* cached VA for later use */
    257 
    258 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    259 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    260 					/* high water mark */
    261 
    262 /*
    263  * local prototypes
    264  */
    265 
    266 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    267 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    268 #define ALLOCPV_NEED	0	/* need PV now */
    269 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    270 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    271 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    272 static void		 pmap_enter_pv __P((struct vm_page *,
    273 					    struct pv_entry *, struct pmap *,
    274 					    vaddr_t, struct vm_page *, int));
    275 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    276 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    277 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    278 static void		 pmap_free_pvpage __P((void));
    279 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    280 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    281 			vaddr_t));
    282 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    283 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    284 
    285 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    286 	u_int, u_int));
    287 
    288 /*
    289  * Structure that describes and L1 table.
    290  */
    291 struct l1pt {
    292 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    293 	struct pglist		pt_plist;	/* Allocated page list */
    294 	vaddr_t			pt_va;		/* Allocated virtual address */
    295 	int			pt_flags;	/* Flags */
    296 };
    297 #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    298 #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    299 #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    300 
    301 static void pmap_free_l1pt __P((struct l1pt *));
    302 static int pmap_allocpagedir __P((struct pmap *));
    303 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    304 static void pmap_page_remove __P((struct vm_page *));
    305 
    306 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    307 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    308 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    309 
    310 extern paddr_t physical_start;
    311 extern paddr_t physical_end;
    312 extern unsigned int free_pages;
    313 extern int max_processes;
    314 
    315 vaddr_t virtual_avail;
    316 vaddr_t virtual_end;
    317 vaddr_t pmap_curmaxkvaddr;
    318 
    319 vaddr_t avail_start;
    320 vaddr_t avail_end;
    321 
    322 extern pv_addr_t systempage;
    323 
    324 /* Variables used by the L1 page table queue code */
    325 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    326 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    327 static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    328 static int l1pt_static_create_count;	    /* static l1 items created */
    329 static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    330 static int l1pt_queue_count;		    /* items in the l1 queue */
    331 static int l1pt_create_count;		    /* stat - L1's create count */
    332 static int l1pt_reuse_count;		    /* stat - L1's reused count */
    333 
    334 /* Local function prototypes (not used outside this file) */
    335 void pmap_pinit __P((struct pmap *));
    336 void pmap_freepagedir __P((struct pmap *));
    337 
    338 /* Other function prototypes */
    339 extern void bzero_page __P((vaddr_t));
    340 extern void bcopy_page __P((vaddr_t, vaddr_t));
    341 
    342 struct l1pt *pmap_alloc_l1pt __P((void));
    343 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    344      vaddr_t l2pa, int));
    345 
    346 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    347 static void pmap_unmap_ptes __P((struct pmap *));
    348 
    349 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    350     pt_entry_t *, boolean_t));
    351 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    352     pt_entry_t *, boolean_t));
    353 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    354     pt_entry_t *, boolean_t));
    355 
    356 /*
    357  * real definition of pv_entry.
    358  */
    359 
    360 struct pv_entry {
    361 	struct pv_entry *pv_next;       /* next pv_entry */
    362 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    363 	vaddr_t         pv_va;          /* virtual address for mapping */
    364 	int             pv_flags;       /* flags */
    365 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    366 };
    367 
    368 /*
    369  * pv_entrys are dynamically allocated in chunks from a single page.
    370  * we keep track of how many pv_entrys are in use for each page and
    371  * we can free pv_entry pages if needed.  there is one lock for the
    372  * entire allocation system.
    373  */
    374 
    375 struct pv_page_info {
    376 	TAILQ_ENTRY(pv_page) pvpi_list;
    377 	struct pv_entry *pvpi_pvfree;
    378 	int pvpi_nfree;
    379 };
    380 
    381 /*
    382  * number of pv_entry's in a pv_page
    383  * (note: won't work on systems where NPBG isn't a constant)
    384  */
    385 
    386 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    387 			sizeof(struct pv_entry))
    388 
    389 /*
    390  * a pv_page: where pv_entrys are allocated from
    391  */
    392 
    393 struct pv_page {
    394 	struct pv_page_info pvinfo;
    395 	struct pv_entry pvents[PVE_PER_PVPAGE];
    396 };
    397 
    398 #ifdef MYCROFT_HACK
    399 int mycroft_hack = 0;
    400 #endif
    401 
    402 /* Function to set the debug level of the pmap code */
    403 
    404 #ifdef PMAP_DEBUG
    405 void
    406 pmap_debug(int level)
    407 {
    408 	pmap_debug_level = level;
    409 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    410 }
    411 #endif	/* PMAP_DEBUG */
    412 
    413 __inline static boolean_t
    414 pmap_is_curpmap(struct pmap *pmap)
    415 {
    416 
    417 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    418 	    pmap == pmap_kernel())
    419 		return (TRUE);
    420 
    421 	return (FALSE);
    422 }
    423 
    424 /*
    425  * PTE_SYNC_CURRENT:
    426  *
    427  *	Make sure the pte is flushed to RAM.  If the pmap is
    428  *	not the current pmap, then also evict the pte from
    429  *	any cache lines.
    430  */
    431 #define	PTE_SYNC_CURRENT(pmap, pte)					\
    432 do {									\
    433 	if (pmap_is_curpmap(pmap))					\
    434 		PTE_SYNC(pte);						\
    435 	else								\
    436 		PTE_FLUSH(pte);						\
    437 } while (/*CONSTCOND*/0)
    438 
    439 /*
    440  * PTE_FLUSH_ALT:
    441  *
    442  *	Make sure the pte is not in any cache lines.  We expect
    443  *	this to be used only when a pte has not been modified.
    444  */
    445 #define	PTE_FLUSH_ALT(pmap, pte)					\
    446 do {									\
    447 	if (pmap_is_curpmap(pmap) == 0)					\
    448 		PTE_FLUSH(pte);						\
    449 } while (/*CONSTCOND*/0)
    450 
    451 /*
    452  * p v _ e n t r y   f u n c t i o n s
    453  */
    454 
    455 /*
    456  * pv_entry allocation functions:
    457  *   the main pv_entry allocation functions are:
    458  *     pmap_alloc_pv: allocate a pv_entry structure
    459  *     pmap_free_pv: free one pv_entry
    460  *     pmap_free_pvs: free a list of pv_entrys
    461  *
    462  * the rest are helper functions
    463  */
    464 
    465 /*
    466  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    467  * => we lock pvalloc_lock
    468  * => if we fail, we call out to pmap_alloc_pvpage
    469  * => 3 modes:
    470  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    471  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    472  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    473  *			one now
    474  *
    475  * "try" is for optional functions like pmap_copy().
    476  */
    477 
    478 __inline static struct pv_entry *
    479 pmap_alloc_pv(struct pmap *pmap, int mode)
    480 {
    481 	struct pv_page *pvpage;
    482 	struct pv_entry *pv;
    483 
    484 	simple_lock(&pvalloc_lock);
    485 
    486 	pvpage = TAILQ_FIRST(&pv_freepages);
    487 
    488 	if (pvpage != NULL) {
    489 		pvpage->pvinfo.pvpi_nfree--;
    490 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    491 			/* nothing left in this one? */
    492 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    493 		}
    494 		pv = pvpage->pvinfo.pvpi_pvfree;
    495 		KASSERT(pv);
    496 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    497 		pv_nfpvents--;  /* took one from pool */
    498 	} else {
    499 		pv = NULL;		/* need more of them */
    500 	}
    501 
    502 	/*
    503 	 * if below low water mark or we didn't get a pv_entry we try and
    504 	 * create more pv_entrys ...
    505 	 */
    506 
    507 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    508 		if (pv == NULL)
    509 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    510 					       mode : ALLOCPV_NEED);
    511 		else
    512 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    513 	}
    514 
    515 	simple_unlock(&pvalloc_lock);
    516 	return(pv);
    517 }
    518 
    519 /*
    520  * pmap_alloc_pvpage: maybe allocate a new pvpage
    521  *
    522  * if need_entry is false: try and allocate a new pv_page
    523  * if need_entry is true: try and allocate a new pv_page and return a
    524  *	new pv_entry from it.   if we are unable to allocate a pv_page
    525  *	we make a last ditch effort to steal a pv_page from some other
    526  *	mapping.    if that fails, we panic...
    527  *
    528  * => we assume that the caller holds pvalloc_lock
    529  */
    530 
    531 static struct pv_entry *
    532 pmap_alloc_pvpage(struct pmap *pmap, int mode)
    533 {
    534 	struct vm_page *pg;
    535 	struct pv_page *pvpage;
    536 	struct pv_entry *pv;
    537 	int s;
    538 
    539 	/*
    540 	 * if we need_entry and we've got unused pv_pages, allocate from there
    541 	 */
    542 
    543 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    544 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    545 
    546 		/* move it to pv_freepages list */
    547 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    548 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    549 
    550 		/* allocate a pv_entry */
    551 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    552 		pv = pvpage->pvinfo.pvpi_pvfree;
    553 		KASSERT(pv);
    554 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    555 
    556 		pv_nfpvents--;  /* took one from pool */
    557 		return(pv);
    558 	}
    559 
    560 	/*
    561 	 *  see if we've got a cached unmapped VA that we can map a page in.
    562 	 * if not, try to allocate one.
    563 	 */
    564 
    565 
    566 	if (pv_cachedva == 0) {
    567 		s = splvm();
    568 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    569 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    570 		splx(s);
    571 		if (pv_cachedva == 0) {
    572 			return (NULL);
    573 		}
    574 	}
    575 
    576 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    577 	    UVM_PGA_USERESERVE);
    578 
    579 	if (pg == NULL)
    580 		return (NULL);
    581 	pg->flags &= ~PG_BUSY;	/* never busy */
    582 
    583 	/*
    584 	 * add a mapping for our new pv_page and free its entrys (save one!)
    585 	 *
    586 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    587 	 * pmap is already locked!  (...but entering the mapping is safe...)
    588 	 */
    589 
    590 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    591 		VM_PROT_READ|VM_PROT_WRITE);
    592 	pmap_update(pmap_kernel());
    593 	pvpage = (struct pv_page *) pv_cachedva;
    594 	pv_cachedva = 0;
    595 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    596 }
    597 
    598 /*
    599  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    600  *
    601  * => caller must hold pvalloc_lock
    602  * => if need_entry is true, we allocate and return one pv_entry
    603  */
    604 
    605 static struct pv_entry *
    606 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    607 {
    608 	int tofree, lcv;
    609 
    610 	/* do we need to return one? */
    611 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    612 
    613 	pvp->pvinfo.pvpi_pvfree = NULL;
    614 	pvp->pvinfo.pvpi_nfree = tofree;
    615 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    616 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    617 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    618 	}
    619 	if (need_entry)
    620 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    621 	else
    622 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    623 	pv_nfpvents += tofree;
    624 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    625 }
    626 
    627 /*
    628  * pmap_free_pv_doit: actually free a pv_entry
    629  *
    630  * => do not call this directly!  instead use either
    631  *    1. pmap_free_pv ==> free a single pv_entry
    632  *    2. pmap_free_pvs => free a list of pv_entrys
    633  * => we must be holding pvalloc_lock
    634  */
    635 
    636 __inline static void
    637 pmap_free_pv_doit(struct pv_entry *pv)
    638 {
    639 	struct pv_page *pvp;
    640 
    641 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    642 	pv_nfpvents++;
    643 	pvp->pvinfo.pvpi_nfree++;
    644 
    645 	/* nfree == 1 => fully allocated page just became partly allocated */
    646 	if (pvp->pvinfo.pvpi_nfree == 1) {
    647 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    648 	}
    649 
    650 	/* free it */
    651 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    652 	pvp->pvinfo.pvpi_pvfree = pv;
    653 
    654 	/*
    655 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    656 	 */
    657 
    658 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    659 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    660 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    661 	}
    662 }
    663 
    664 /*
    665  * pmap_free_pv: free a single pv_entry
    666  *
    667  * => we gain the pvalloc_lock
    668  */
    669 
    670 __inline static void
    671 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    672 {
    673 	simple_lock(&pvalloc_lock);
    674 	pmap_free_pv_doit(pv);
    675 
    676 	/*
    677 	 * Can't free the PV page if the PV entries were associated with
    678 	 * the kernel pmap; the pmap is already locked.
    679 	 */
    680 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    681 	    pmap != pmap_kernel())
    682 		pmap_free_pvpage();
    683 
    684 	simple_unlock(&pvalloc_lock);
    685 }
    686 
    687 /*
    688  * pmap_free_pvs: free a list of pv_entrys
    689  *
    690  * => we gain the pvalloc_lock
    691  */
    692 
    693 __inline static void
    694 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    695 {
    696 	struct pv_entry *nextpv;
    697 
    698 	simple_lock(&pvalloc_lock);
    699 
    700 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    701 		nextpv = pvs->pv_next;
    702 		pmap_free_pv_doit(pvs);
    703 	}
    704 
    705 	/*
    706 	 * Can't free the PV page if the PV entries were associated with
    707 	 * the kernel pmap; the pmap is already locked.
    708 	 */
    709 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    710 	    pmap != pmap_kernel())
    711 		pmap_free_pvpage();
    712 
    713 	simple_unlock(&pvalloc_lock);
    714 }
    715 
    716 
    717 /*
    718  * pmap_free_pvpage: try and free an unused pv_page structure
    719  *
    720  * => assume caller is holding the pvalloc_lock and that
    721  *	there is a page on the pv_unusedpgs list
    722  * => if we can't get a lock on the kmem_map we try again later
    723  */
    724 
    725 static void
    726 pmap_free_pvpage(void)
    727 {
    728 	int s;
    729 	struct vm_map *map;
    730 	struct vm_map_entry *dead_entries;
    731 	struct pv_page *pvp;
    732 
    733 	s = splvm(); /* protect kmem_map */
    734 
    735 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    736 
    737 	/*
    738 	 * note: watch out for pv_initpage which is allocated out of
    739 	 * kernel_map rather than kmem_map.
    740 	 */
    741 	if (pvp == pv_initpage)
    742 		map = kernel_map;
    743 	else
    744 		map = kmem_map;
    745 	if (vm_map_lock_try(map)) {
    746 
    747 		/* remove pvp from pv_unusedpgs */
    748 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    749 
    750 		/* unmap the page */
    751 		dead_entries = NULL;
    752 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    753 		    &dead_entries);
    754 		vm_map_unlock(map);
    755 
    756 		if (dead_entries != NULL)
    757 			uvm_unmap_detach(dead_entries, 0);
    758 
    759 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    760 	}
    761 	if (pvp == pv_initpage)
    762 		/* no more initpage, we've freed it */
    763 		pv_initpage = NULL;
    764 
    765 	splx(s);
    766 }
    767 
    768 /*
    769  * main pv_entry manipulation functions:
    770  *   pmap_enter_pv: enter a mapping onto a vm_page list
    771  *   pmap_remove_pv: remove a mappiing from a vm_page list
    772  *
    773  * NOTE: pmap_enter_pv expects to lock the pvh itself
    774  *       pmap_remove_pv expects te caller to lock the pvh before calling
    775  */
    776 
    777 /*
    778  * pmap_enter_pv: enter a mapping onto a vm_page lst
    779  *
    780  * => caller should hold the proper lock on pmap_main_lock
    781  * => caller should have pmap locked
    782  * => we will gain the lock on the vm_page and allocate the new pv_entry
    783  * => caller should adjust ptp's wire_count before calling
    784  * => caller should not adjust pmap's wire_count
    785  */
    786 
    787 __inline static void
    788 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    789     vaddr_t va, struct vm_page *ptp, int flags)
    790 {
    791 	pve->pv_pmap = pmap;
    792 	pve->pv_va = va;
    793 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    794 	pve->pv_flags = flags;
    795 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    796 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    797 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    798 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    799 	if (pve->pv_flags & PVF_WIRED)
    800 		++pmap->pm_stats.wired_count;
    801 #ifdef PMAP_ALIAS_DEBUG
    802     {
    803 	int s = splhigh();
    804 	if (pve->pv_flags & PVF_WRITE)
    805 		pg->mdpage.rw_mappings++;
    806 	else
    807 		pg->mdpage.ro_mappings++;
    808 	if (pg->mdpage.rw_mappings != 0 &&
    809 	    (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
    810 		printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
    811 		    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
    812 		    pg->mdpage.krw_mappings);
    813 	}
    814 	splx(s);
    815     }
    816 #endif /* PMAP_ALIAS_DEBUG */
    817 }
    818 
    819 /*
    820  * pmap_remove_pv: try to remove a mapping from a pv_list
    821  *
    822  * => caller should hold proper lock on pmap_main_lock
    823  * => pmap should be locked
    824  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    825  * => caller should adjust ptp's wire_count and free PTP if needed
    826  * => caller should NOT adjust pmap's wire_count
    827  * => we return the removed pve
    828  */
    829 
    830 __inline static struct pv_entry *
    831 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    832 {
    833 	struct pv_entry *pve, **prevptr;
    834 
    835 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    836 	pve = *prevptr;
    837 	while (pve) {
    838 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    839 			*prevptr = pve->pv_next;		/* remove it! */
    840 			if (pve->pv_flags & PVF_WIRED)
    841 			    --pmap->pm_stats.wired_count;
    842 #ifdef PMAP_ALIAS_DEBUG
    843     {
    844 			int s = splhigh();
    845 			if (pve->pv_flags & PVF_WRITE) {
    846 				KASSERT(pg->mdpage.rw_mappings != 0);
    847 				pg->mdpage.rw_mappings--;
    848 			} else {
    849 				KASSERT(pg->mdpage.ro_mappings != 0);
    850 				pg->mdpage.ro_mappings--;
    851 			}
    852 			splx(s);
    853     }
    854 #endif /* PMAP_ALIAS_DEBUG */
    855 			break;
    856 		}
    857 		prevptr = &pve->pv_next;		/* previous pointer */
    858 		pve = pve->pv_next;			/* advance */
    859 	}
    860 	return(pve);				/* return removed pve */
    861 }
    862 
    863 /*
    864  *
    865  * pmap_modify_pv: Update pv flags
    866  *
    867  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    868  * => caller should NOT adjust pmap's wire_count
    869  * => caller must call pmap_vac_me_harder() if writable status of a page
    870  *    may have changed.
    871  * => we return the old flags
    872  *
    873  * Modify a physical-virtual mapping in the pv table
    874  */
    875 
    876 static /* __inline */ u_int
    877 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    878     u_int bic_mask, u_int eor_mask)
    879 {
    880 	struct pv_entry *npv;
    881 	u_int flags, oflags;
    882 
    883 	/*
    884 	 * There is at least one VA mapping this page.
    885 	 */
    886 
    887 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    888 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    889 			oflags = npv->pv_flags;
    890 			npv->pv_flags = flags =
    891 			    ((oflags & ~bic_mask) ^ eor_mask);
    892 			if ((flags ^ oflags) & PVF_WIRED) {
    893 				if (flags & PVF_WIRED)
    894 					++pmap->pm_stats.wired_count;
    895 				else
    896 					--pmap->pm_stats.wired_count;
    897 			}
    898 #ifdef PMAP_ALIAS_DEBUG
    899     {
    900 			int s = splhigh();
    901 			if ((flags ^ oflags) & PVF_WRITE) {
    902 				if (flags & PVF_WRITE) {
    903 					pg->mdpage.rw_mappings++;
    904 					pg->mdpage.ro_mappings--;
    905 					if (pg->mdpage.rw_mappings != 0 &&
    906 					    (pg->mdpage.kro_mappings != 0 ||
    907 					     pg->mdpage.krw_mappings != 0)) {
    908 						printf("pmap_modify_pv: rw %u, "
    909 						    "kro %u, krw %u\n",
    910 						    pg->mdpage.rw_mappings,
    911 						    pg->mdpage.kro_mappings,
    912 						    pg->mdpage.krw_mappings);
    913 					}
    914 				} else {
    915 					KASSERT(pg->mdpage.rw_mappings != 0);
    916 					pg->mdpage.rw_mappings--;
    917 					pg->mdpage.ro_mappings++;
    918 				}
    919 			}
    920 			splx(s);
    921     }
    922 #endif /* PMAP_ALIAS_DEBUG */
    923 			return (oflags);
    924 		}
    925 	}
    926 	return (0);
    927 }
    928 
    929 /*
    930  * Map the specified level 2 pagetable into the level 1 page table for
    931  * the given pmap to cover a chunk of virtual address space starting from the
    932  * address specified.
    933  */
    934 #define	PMAP_PTP_SELFREF	0x01
    935 #define	PMAP_PTP_CACHEABLE	0x02
    936 
    937 static __inline void
    938 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, int flags)
    939 {
    940 	vaddr_t ptva;
    941 
    942 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
    943 
    944 	/* Calculate the index into the L1 page table. */
    945 	ptva = va >> L1_S_SHIFT;
    946 
    947 	/* Map page table into the L1. */
    948 	pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
    949 	pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
    950 	pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
    951 	pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
    952 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    953 
    954 	/* Map the page table into the page table area. */
    955 	if (flags & PMAP_PTP_SELFREF) {
    956 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
    957 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
    958 		    ((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
    959 		PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
    960 	}
    961 }
    962 
    963 #if 0
    964 static __inline void
    965 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    966 {
    967 	vaddr_t ptva;
    968 
    969 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
    970 
    971 	/* Calculate the index into the L1 page table. */
    972 	ptva = va >> L1_S_SHIFT;
    973 
    974 	/* Unmap page table from the L1. */
    975 	pmap->pm_pdir[ptva + 0] = 0;
    976 	pmap->pm_pdir[ptva + 1] = 0;
    977 	pmap->pm_pdir[ptva + 2] = 0;
    978 	pmap->pm_pdir[ptva + 3] = 0;
    979 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    980 
    981 	/* Unmap the page table from the page table area. */
    982 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    983 	PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
    984 }
    985 #endif
    986 
    987 /*
    988  *	Used to map a range of physical addresses into kernel
    989  *	virtual address space.
    990  *
    991  *	For now, VM is already on, we only need to map the
    992  *	specified memory.
    993  *
    994  *	XXX This routine should eventually go away; it's only used
    995  *	XXX by machine-dependent crash dump code.
    996  */
    997 vaddr_t
    998 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
    999 {
   1000 	pt_entry_t *pte;
   1001 
   1002 	while (spa < epa) {
   1003 		pte = vtopte(va);
   1004 
   1005 		*pte = L2_S_PROTO | spa |
   1006 		    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   1007 		PTE_SYNC(pte);
   1008 		cpu_tlb_flushID_SE(va);
   1009 		va += NBPG;
   1010 		spa += NBPG;
   1011 	}
   1012 	pmap_update(pmap_kernel());
   1013 	return(va);
   1014 }
   1015 
   1016 
   1017 /*
   1018  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1019  *
   1020  * bootstrap the pmap system. This is called from initarm and allows
   1021  * the pmap system to initailise any structures it requires.
   1022  *
   1023  * Currently this sets up the kernel_pmap that is statically allocated
   1024  * and also allocated virtual addresses for certain page hooks.
   1025  * Currently the only one page hook is allocated that is used
   1026  * to zero physical pages of memory.
   1027  * It also initialises the start and end address of the kernel data space.
   1028  */
   1029 
   1030 char *boot_head;
   1031 
   1032 void
   1033 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1034 {
   1035 	pt_entry_t *pte;
   1036 
   1037 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1038 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1039 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1040 	simple_lock_init(&pmap_kernel()->pm_lock);
   1041 	pmap_kernel()->pm_obj.pgops = NULL;
   1042 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1043 	pmap_kernel()->pm_obj.uo_npages = 0;
   1044 	pmap_kernel()->pm_obj.uo_refs = 1;
   1045 
   1046 	virtual_avail = KERNEL_VM_BASE;
   1047 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
   1048 
   1049 	/*
   1050 	 * now we allocate the "special" VAs which are used for tmp mappings
   1051 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1052 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1053 	 * we find the PTE that maps the allocated VA via the linear PTE
   1054 	 * mapping.
   1055 	 */
   1056 
   1057 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1058 
   1059 	csrcp = virtual_avail; csrc_pte = pte;
   1060 	virtual_avail += PAGE_SIZE; pte++;
   1061 
   1062 	cdstp = virtual_avail; cdst_pte = pte;
   1063 	virtual_avail += PAGE_SIZE; pte++;
   1064 
   1065 	memhook = (char *) virtual_avail;	/* don't need pte */
   1066 	virtual_avail += PAGE_SIZE; pte++;
   1067 
   1068 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1069 	virtual_avail += round_page(MSGBUFSIZE);
   1070 	pte += atop(round_page(MSGBUFSIZE));
   1071 
   1072 	/*
   1073 	 * init the static-global locks and global lists.
   1074 	 */
   1075 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1076 	simple_lock_init(&pvalloc_lock);
   1077 	simple_lock_init(&pmaps_lock);
   1078 	LIST_INIT(&pmaps);
   1079 	TAILQ_INIT(&pv_freepages);
   1080 	TAILQ_INIT(&pv_unusedpgs);
   1081 
   1082 	/*
   1083 	 * initialize the pmap pool.
   1084 	 */
   1085 
   1086 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1087 		  &pool_allocator_nointr);
   1088 
   1089 	/*
   1090 	 * initialize the PT-PT pool and cache.
   1091 	 */
   1092 
   1093 	pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
   1094 		  &pmap_ptpt_allocator);
   1095 	pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
   1096 			pmap_ptpt_ctor, NULL, NULL);
   1097 
   1098 	cpu_dcache_wbinv_all();
   1099 }
   1100 
   1101 /*
   1102  * void pmap_init(void)
   1103  *
   1104  * Initialize the pmap module.
   1105  * Called by vm_init() in vm/vm_init.c in order to initialise
   1106  * any structures that the pmap system needs to map virtual memory.
   1107  */
   1108 
   1109 extern int physmem;
   1110 
   1111 void
   1112 pmap_init(void)
   1113 {
   1114 
   1115 	/*
   1116 	 * Set the available memory vars - These do not map to real memory
   1117 	 * addresses and cannot as the physical memory is fragmented.
   1118 	 * They are used by ps for %mem calculations.
   1119 	 * One could argue whether this should be the entire memory or just
   1120 	 * the memory that is useable in a user process.
   1121 	 */
   1122 	avail_start = 0;
   1123 	avail_end = physmem * NBPG;
   1124 
   1125 	/*
   1126 	 * now we need to free enough pv_entry structures to allow us to get
   1127 	 * the kmem_map/kmem_object allocated and inited (done after this
   1128 	 * function is finished).  to do this we allocate one bootstrap page out
   1129 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1130 	 * structures.   we never free this page.
   1131 	 */
   1132 
   1133 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1134 	if (pv_initpage == NULL)
   1135 		panic("pmap_init: pv_initpage");
   1136 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1137 	pv_nfpvents = 0;
   1138 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1139 
   1140 	pmap_initialized = TRUE;
   1141 
   1142 	/* Initialise our L1 page table queues and counters */
   1143 	SIMPLEQ_INIT(&l1pt_static_queue);
   1144 	l1pt_static_queue_count = 0;
   1145 	l1pt_static_create_count = 0;
   1146 	SIMPLEQ_INIT(&l1pt_queue);
   1147 	l1pt_queue_count = 0;
   1148 	l1pt_create_count = 0;
   1149 	l1pt_reuse_count = 0;
   1150 }
   1151 
   1152 /*
   1153  * pmap_postinit()
   1154  *
   1155  * This routine is called after the vm and kmem subsystems have been
   1156  * initialised. This allows the pmap code to perform any initialisation
   1157  * that can only be done one the memory allocation is in place.
   1158  */
   1159 
   1160 void
   1161 pmap_postinit(void)
   1162 {
   1163 	int loop;
   1164 	struct l1pt *pt;
   1165 
   1166 #ifdef PMAP_STATIC_L1S
   1167 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1168 #else	/* PMAP_STATIC_L1S */
   1169 	for (loop = 0; loop < max_processes; ++loop) {
   1170 #endif	/* PMAP_STATIC_L1S */
   1171 		/* Allocate a L1 page table */
   1172 		pt = pmap_alloc_l1pt();
   1173 		if (!pt)
   1174 			panic("Cannot allocate static L1 page tables");
   1175 
   1176 		/* Clean it */
   1177 		bzero((void *)pt->pt_va, L1_TABLE_SIZE);
   1178 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1179 		/* Add the page table to the queue */
   1180 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1181 		++l1pt_static_queue_count;
   1182 		++l1pt_static_create_count;
   1183 	}
   1184 }
   1185 
   1186 
   1187 /*
   1188  * Create and return a physical map.
   1189  *
   1190  * If the size specified for the map is zero, the map is an actual physical
   1191  * map, and may be referenced by the hardware.
   1192  *
   1193  * If the size specified is non-zero, the map will be used in software only,
   1194  * and is bounded by that size.
   1195  */
   1196 
   1197 pmap_t
   1198 pmap_create(void)
   1199 {
   1200 	struct pmap *pmap;
   1201 
   1202 	/*
   1203 	 * Fetch pmap entry from the pool
   1204 	 */
   1205 
   1206 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1207 	/* XXX is this really needed! */
   1208 	memset(pmap, 0, sizeof(*pmap));
   1209 
   1210 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1211 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1212 	TAILQ_INIT(&pmap->pm_obj.memq);
   1213 	pmap->pm_obj.uo_npages = 0;
   1214 	pmap->pm_obj.uo_refs = 1;
   1215 	pmap->pm_stats.wired_count = 0;
   1216 	pmap->pm_stats.resident_count = 1;
   1217 	pmap->pm_ptphint = NULL;
   1218 
   1219 	/* Now init the machine part of the pmap */
   1220 	pmap_pinit(pmap);
   1221 	return(pmap);
   1222 }
   1223 
   1224 /*
   1225  * pmap_alloc_l1pt()
   1226  *
   1227  * This routine allocates physical and virtual memory for a L1 page table
   1228  * and wires it.
   1229  * A l1pt structure is returned to describe the allocated page table.
   1230  *
   1231  * This routine is allowed to fail if the required memory cannot be allocated.
   1232  * In this case NULL is returned.
   1233  */
   1234 
   1235 struct l1pt *
   1236 pmap_alloc_l1pt(void)
   1237 {
   1238 	paddr_t pa;
   1239 	vaddr_t va;
   1240 	struct l1pt *pt;
   1241 	int error;
   1242 	struct vm_page *m;
   1243 
   1244 	/* Allocate virtual address space for the L1 page table */
   1245 	va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
   1246 	if (va == 0) {
   1247 #ifdef DIAGNOSTIC
   1248 		PDEBUG(0,
   1249 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1250 #endif	/* DIAGNOSTIC */
   1251 		return(NULL);
   1252 	}
   1253 
   1254 	/* Allocate memory for the l1pt structure */
   1255 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1256 
   1257 	/*
   1258 	 * Allocate pages from the VM system.
   1259 	 */
   1260 	error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
   1261 	    L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1262 	if (error) {
   1263 #ifdef DIAGNOSTIC
   1264 		PDEBUG(0,
   1265 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1266 		    error));
   1267 #endif	/* DIAGNOSTIC */
   1268 		/* Release the resources we already have claimed */
   1269 		free(pt, M_VMPMAP);
   1270 		uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
   1271 		return(NULL);
   1272 	}
   1273 
   1274 	/* Map our physical pages into our virtual space */
   1275 	pt->pt_va = va;
   1276 	m = TAILQ_FIRST(&pt->pt_plist);
   1277 	while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
   1278 		pa = VM_PAGE_TO_PHYS(m);
   1279 
   1280 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
   1281 
   1282 		va += NBPG;
   1283 		m = m->pageq.tqe_next;
   1284 	}
   1285 
   1286 #ifdef DIAGNOSTIC
   1287 	if (m)
   1288 		panic("pmap_alloc_l1pt: pglist not empty");
   1289 #endif	/* DIAGNOSTIC */
   1290 
   1291 	pt->pt_flags = 0;
   1292 	return(pt);
   1293 }
   1294 
   1295 /*
   1296  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1297  */
   1298 static void
   1299 pmap_free_l1pt(struct l1pt *pt)
   1300 {
   1301 	/* Separate the physical memory for the virtual space */
   1302 	pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
   1303 	pmap_update(pmap_kernel());
   1304 
   1305 	/* Return the physical memory */
   1306 	uvm_pglistfree(&pt->pt_plist);
   1307 
   1308 	/* Free the virtual space */
   1309 	uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
   1310 
   1311 	/* Free the l1pt structure */
   1312 	free(pt, M_VMPMAP);
   1313 }
   1314 
   1315 /*
   1316  * pmap_ptpt_page_alloc:
   1317  *
   1318  *	Back-end page allocator for the PT-PT pool.
   1319  */
   1320 static void *
   1321 pmap_ptpt_page_alloc(struct pool *pp, int flags)
   1322 {
   1323 	struct vm_page *pg;
   1324 	pt_entry_t *pte;
   1325 	vaddr_t va;
   1326 
   1327 	/* XXX PR_WAITOK? */
   1328 	va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
   1329 	if (va == 0)
   1330 		return (NULL);
   1331 
   1332 	for (;;) {
   1333 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1334 		if (pg != NULL)
   1335 			break;
   1336 		if ((flags & PR_WAITOK) == 0) {
   1337 			uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
   1338 			return (NULL);
   1339 		}
   1340 		uvm_wait("pmap_ptpt");
   1341 	}
   1342 
   1343 	pte = vtopte(va);
   1344 	KDASSERT(pmap_pte_v(pte) == 0);
   1345 
   1346 	*pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
   1347 	     L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   1348 	PTE_SYNC(pte);
   1349 #ifdef PMAP_ALIAS_DEBUG
   1350     {
   1351 	int s = splhigh();
   1352 	pg->mdpage.krw_mappings++;
   1353 	splx(s);
   1354     }
   1355 #endif /* PMAP_ALIAS_DEBUG */
   1356 
   1357 	return ((void *) va);
   1358 }
   1359 
   1360 /*
   1361  * pmap_ptpt_page_free:
   1362  *
   1363  *	Back-end page free'er for the PT-PT pool.
   1364  */
   1365 static void
   1366 pmap_ptpt_page_free(struct pool *pp, void *v)
   1367 {
   1368 	vaddr_t va = (vaddr_t) v;
   1369 	paddr_t pa;
   1370 
   1371 	pa = vtophys(va);
   1372 
   1373 	pmap_kremove(va, L2_TABLE_SIZE);
   1374 	pmap_update(pmap_kernel());
   1375 
   1376 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1377 
   1378 	uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
   1379 }
   1380 
   1381 /*
   1382  * pmap_ptpt_ctor:
   1383  *
   1384  *	Constructor for the PT-PT cache.
   1385  */
   1386 static int
   1387 pmap_ptpt_ctor(void *arg, void *object, int flags)
   1388 {
   1389 	caddr_t vptpt = object;
   1390 
   1391 	/* Page is already zero'd. */
   1392 
   1393 	/*
   1394 	 * Map in kernel PTs.
   1395 	 *
   1396 	 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
   1397 	 */
   1398 	memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
   1399 	       (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
   1400 			((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
   1401 	       (KERNEL_PD_SIZE >> 2));
   1402 
   1403 	return (0);
   1404 }
   1405 
   1406 /*
   1407  * Allocate a page directory.
   1408  * This routine will either allocate a new page directory from the pool
   1409  * of L1 page tables currently held by the kernel or it will allocate
   1410  * a new one via pmap_alloc_l1pt().
   1411  * It will then initialise the l1 page table for use.
   1412  */
   1413 static int
   1414 pmap_allocpagedir(struct pmap *pmap)
   1415 {
   1416 	vaddr_t vptpt;
   1417 	struct l1pt *pt;
   1418 	u_int gen;
   1419 
   1420 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1421 
   1422 	/* Do we have any spare L1's lying around ? */
   1423 	if (l1pt_static_queue_count) {
   1424 		--l1pt_static_queue_count;
   1425 		pt = SIMPLEQ_FIRST(&l1pt_static_queue);
   1426 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
   1427 	} else if (l1pt_queue_count) {
   1428 		--l1pt_queue_count;
   1429 		pt = SIMPLEQ_FIRST(&l1pt_queue);
   1430 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
   1431 		++l1pt_reuse_count;
   1432 	} else {
   1433 		pt = pmap_alloc_l1pt();
   1434 		if (!pt)
   1435 			return(ENOMEM);
   1436 		++l1pt_create_count;
   1437 	}
   1438 
   1439 	/* Store the pointer to the l1 descriptor in the pmap. */
   1440 	pmap->pm_l1pt = pt;
   1441 
   1442 	/* Store the virtual address of the l1 in the pmap. */
   1443 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1444 
   1445 	/* Clean the L1 if it is dirty */
   1446 	if (!(pt->pt_flags & PTFLAG_CLEAN)) {
   1447 		bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1448 		cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
   1449 		    (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1450 	}
   1451 
   1452 	/* Allocate a page table to map all the page tables for this pmap */
   1453 	KASSERT(pmap->pm_vptpt == 0);
   1454 
   1455  try_again:
   1456 	gen = pmap_ptpt_cache_generation;
   1457 	vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
   1458 	if (vptpt == NULL) {
   1459 		PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
   1460 		pmap_freepagedir(pmap);
   1461 		return (ENOMEM);
   1462 	}
   1463 
   1464 	/* need to lock this all up for growkernel */
   1465 	simple_lock(&pmaps_lock);
   1466 
   1467 	if (gen != pmap_ptpt_cache_generation) {
   1468 		simple_unlock(&pmaps_lock);
   1469 		pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
   1470 		goto try_again;
   1471 	}
   1472 
   1473 	pmap->pm_vptpt = vptpt;
   1474 	pmap->pm_pptpt = vtophys(vptpt);
   1475 
   1476 	/* Duplicate the kernel mappings. */
   1477 	bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1478 		(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1479 		KERNEL_PD_SIZE);
   1480 	cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
   1481 	    (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
   1482 
   1483 	/* Wire in this page table */
   1484 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
   1485 
   1486 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1487 
   1488 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1489 	simple_unlock(&pmaps_lock);
   1490 
   1491 	return(0);
   1492 }
   1493 
   1494 
   1495 /*
   1496  * Initialize a preallocated and zeroed pmap structure,
   1497  * such as one in a vmspace structure.
   1498  */
   1499 
   1500 void
   1501 pmap_pinit(struct pmap *pmap)
   1502 {
   1503 	int backoff = 6;
   1504 	int retry = 10;
   1505 
   1506 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1507 
   1508 	/* Keep looping until we succeed in allocating a page directory */
   1509 	while (pmap_allocpagedir(pmap) != 0) {
   1510 		/*
   1511 		 * Ok we failed to allocate a suitable block of memory for an
   1512 		 * L1 page table. This means that either:
   1513 		 * 1. 16KB of virtual address space could not be allocated
   1514 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1515 		 *    could not be allocated.
   1516 		 *
   1517 		 * Since we cannot fail we will sleep for a while and try
   1518 		 * again.
   1519 		 *
   1520 		 * Searching for a suitable L1 PT is expensive:
   1521 		 * to avoid hogging the system when memory is really
   1522 		 * scarce, use an exponential back-off so that
   1523 		 * eventually we won't retry more than once every 8
   1524 		 * seconds.  This should allow other processes to run
   1525 		 * to completion and free up resources.
   1526 		 */
   1527 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1528 		    NULL);
   1529 		if (--retry == 0) {
   1530 			retry = 10;
   1531 			if (backoff)
   1532 				--backoff;
   1533 		}
   1534 	}
   1535 
   1536 	if (vector_page < KERNEL_BASE) {
   1537 		/*
   1538 		 * Map the vector page.  This will also allocate and map
   1539 		 * an L2 table for it.
   1540 		 */
   1541 		pmap_enter(pmap, vector_page, systempage.pv_pa,
   1542 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1543 		pmap_update(pmap);
   1544 	}
   1545 }
   1546 
   1547 void
   1548 pmap_freepagedir(struct pmap *pmap)
   1549 {
   1550 	/* Free the memory used for the page table mapping */
   1551 	if (pmap->pm_vptpt != 0) {
   1552 		/*
   1553 		 * XXX Objects freed to a pool cache must be in constructed
   1554 		 * XXX form when freed, but we don't free page tables as we
   1555 		 * XXX go, so we need to zap the mappings here.
   1556 		 *
   1557 		 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
   1558 		 */
   1559 		memset((caddr_t) pmap->pm_vptpt, 0,
   1560 		       ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
   1561 		pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
   1562 	}
   1563 
   1564 	/* junk the L1 page table */
   1565 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1566 		/* Add the page table to the queue */
   1567 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
   1568 				    pmap->pm_l1pt, pt_queue);
   1569 		++l1pt_static_queue_count;
   1570 	} else if (l1pt_queue_count < 8) {
   1571 		/* Add the page table to the queue */
   1572 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1573 		++l1pt_queue_count;
   1574 	} else
   1575 		pmap_free_l1pt(pmap->pm_l1pt);
   1576 }
   1577 
   1578 /*
   1579  * Retire the given physical map from service.
   1580  * Should only be called if the map contains no valid mappings.
   1581  */
   1582 
   1583 void
   1584 pmap_destroy(struct pmap *pmap)
   1585 {
   1586 	struct vm_page *page;
   1587 	int count;
   1588 
   1589 	if (pmap == NULL)
   1590 		return;
   1591 
   1592 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1593 
   1594 	/*
   1595 	 * Drop reference count
   1596 	 */
   1597 	simple_lock(&pmap->pm_obj.vmobjlock);
   1598 	count = --pmap->pm_obj.uo_refs;
   1599 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1600 	if (count > 0) {
   1601 		return;
   1602 	}
   1603 
   1604 	/*
   1605 	 * reference count is zero, free pmap resources and then free pmap.
   1606 	 */
   1607 
   1608 	/*
   1609 	 * remove it from global list of pmaps
   1610 	 */
   1611 
   1612 	simple_lock(&pmaps_lock);
   1613 	LIST_REMOVE(pmap, pm_list);
   1614 	simple_unlock(&pmaps_lock);
   1615 
   1616 	if (vector_page < KERNEL_BASE) {
   1617 		/* Remove the vector page mapping */
   1618 		pmap_remove(pmap, vector_page, vector_page + NBPG);
   1619 		pmap_update(pmap);
   1620 	}
   1621 
   1622 	/*
   1623 	 * Free any page tables still mapped
   1624 	 * This is only temporay until pmap_enter can count the number
   1625 	 * of mappings made in a page table. Then pmap_remove() can
   1626 	 * reduce the count and free the pagetable when the count
   1627 	 * reaches zero.  Note that entries in this list should match the
   1628 	 * contents of the ptpt, however this is faster than walking a 1024
   1629 	 * entries looking for pt's
   1630 	 * taken from i386 pmap.c
   1631 	 */
   1632 	/*
   1633 	 * vmobjlock must be held while freeing pages
   1634 	 */
   1635 	simple_lock(&pmap->pm_obj.vmobjlock);
   1636 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1637 		KASSERT((page->flags & PG_BUSY) == 0);
   1638 
   1639 		/* Freeing a PT page?  The contents are a throw-away. */
   1640 		KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
   1641 		cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
   1642 
   1643 		page->wire_count = 0;
   1644 		uvm_pagefree(page);
   1645 	}
   1646 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1647 
   1648 	/* Free the page dir */
   1649 	pmap_freepagedir(pmap);
   1650 
   1651 	/* return the pmap to the pool */
   1652 	pool_put(&pmap_pmap_pool, pmap);
   1653 }
   1654 
   1655 
   1656 /*
   1657  * void pmap_reference(struct pmap *pmap)
   1658  *
   1659  * Add a reference to the specified pmap.
   1660  */
   1661 
   1662 void
   1663 pmap_reference(struct pmap *pmap)
   1664 {
   1665 	if (pmap == NULL)
   1666 		return;
   1667 
   1668 	simple_lock(&pmap->pm_lock);
   1669 	pmap->pm_obj.uo_refs++;
   1670 	simple_unlock(&pmap->pm_lock);
   1671 }
   1672 
   1673 /*
   1674  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1675  *
   1676  * Return the start and end addresses of the kernel's virtual space.
   1677  * These values are setup in pmap_bootstrap and are updated as pages
   1678  * are allocated.
   1679  */
   1680 
   1681 void
   1682 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1683 {
   1684 	*start = virtual_avail;
   1685 	*end = virtual_end;
   1686 }
   1687 
   1688 /*
   1689  * Activate the address space for the specified process.  If the process
   1690  * is the current process, load the new MMU context.
   1691  */
   1692 void
   1693 pmap_activate(struct proc *p)
   1694 {
   1695 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1696 	struct pcb *pcb = &p->p_addr->u_pcb;
   1697 
   1698 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1699 	    (paddr_t *)&pcb->pcb_pagedir);
   1700 
   1701 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1702 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1703 
   1704 	if (p == curproc) {
   1705 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1706 		setttb((u_int)pcb->pcb_pagedir);
   1707 	}
   1708 }
   1709 
   1710 /*
   1711  * Deactivate the address space of the specified process.
   1712  */
   1713 void
   1714 pmap_deactivate(struct proc *p)
   1715 {
   1716 }
   1717 
   1718 /*
   1719  * Perform any deferred pmap operations.
   1720  */
   1721 void
   1722 pmap_update(struct pmap *pmap)
   1723 {
   1724 
   1725 	/*
   1726 	 * We haven't deferred any pmap operations, but we do need to
   1727 	 * make sure TLB/cache operations have completed.
   1728 	 */
   1729 	cpu_cpwait();
   1730 }
   1731 
   1732 /*
   1733  * pmap_clean_page()
   1734  *
   1735  * This is a local function used to work out the best strategy to clean
   1736  * a single page referenced by its entry in the PV table. It's used by
   1737  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1738  *
   1739  * Its policy is effectively:
   1740  *  o If there are no mappings, we don't bother doing anything with the cache.
   1741  *  o If there is one mapping, we clean just that page.
   1742  *  o If there are multiple mappings, we clean the entire cache.
   1743  *
   1744  * So that some functions can be further optimised, it returns 0 if it didn't
   1745  * clean the entire cache, or 1 if it did.
   1746  *
   1747  * XXX One bug in this routine is that if the pv_entry has a single page
   1748  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1749  * just the 1 page. Since this should not occur in everyday use and if it does
   1750  * it will just result in not the most efficient clean for the page.
   1751  */
   1752 static int
   1753 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1754 {
   1755 	struct pmap *pmap;
   1756 	struct pv_entry *npv;
   1757 	int cache_needs_cleaning = 0;
   1758 	vaddr_t page_to_clean = 0;
   1759 
   1760 	if (pv == NULL) {
   1761 		/* nothing mapped in so nothing to flush */
   1762 		return (0);
   1763 	}
   1764 
   1765 	/*
   1766 	 * Since we flush the cache each time we change curproc, we
   1767 	 * only need to flush the page if it is in the current pmap.
   1768 	 */
   1769 	if (curproc)
   1770 		pmap = curproc->p_vmspace->vm_map.pmap;
   1771 	else
   1772 		pmap = pmap_kernel();
   1773 
   1774 	for (npv = pv; npv; npv = npv->pv_next) {
   1775 		if (npv->pv_pmap == pmap) {
   1776 			/*
   1777 			 * The page is mapped non-cacheable in
   1778 			 * this map.  No need to flush the cache.
   1779 			 */
   1780 			if (npv->pv_flags & PVF_NC) {
   1781 #ifdef DIAGNOSTIC
   1782 				if (cache_needs_cleaning)
   1783 					panic("pmap_clean_page: "
   1784 					    "cache inconsistency");
   1785 #endif
   1786 				break;
   1787 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   1788 				continue;
   1789 			if (cache_needs_cleaning) {
   1790 				page_to_clean = 0;
   1791 				break;
   1792 			} else
   1793 				page_to_clean = npv->pv_va;
   1794 			cache_needs_cleaning = 1;
   1795 		}
   1796 	}
   1797 
   1798 	if (page_to_clean) {
   1799 		/*
   1800 		 * XXX If is_src, we really only need to write-back,
   1801 		 * XXX not invalidate, too.  Investigate further.
   1802 		 * XXX --thorpej (at) netbsd.org
   1803 		 */
   1804 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1805 	} else if (cache_needs_cleaning) {
   1806 		cpu_idcache_wbinv_all();
   1807 		return (1);
   1808 	}
   1809 	return (0);
   1810 }
   1811 
   1812 /*
   1813  * pmap_zero_page()
   1814  *
   1815  * Zero a given physical page by mapping it at a page hook point.
   1816  * In doing the zero page op, the page we zero is mapped cachable, as with
   1817  * StrongARM accesses to non-cached pages are non-burst making writing
   1818  * _any_ bulk data very slow.
   1819  */
   1820 #if ARM_MMU_GENERIC == 1
   1821 void
   1822 pmap_zero_page_generic(paddr_t phys)
   1823 {
   1824 #ifdef DEBUG
   1825 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1826 
   1827 	if (pg->mdpage.pvh_list != NULL)
   1828 		panic("pmap_zero_page: page has mappings");
   1829 #endif
   1830 
   1831 	KDASSERT((phys & PGOFSET) == 0);
   1832 
   1833 	/*
   1834 	 * Hook in the page, zero it, and purge the cache for that
   1835 	 * zeroed page. Invalidate the TLB as needed.
   1836 	 */
   1837 	*cdst_pte = L2_S_PROTO | phys |
   1838 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1839 	PTE_SYNC(cdst_pte);
   1840 	cpu_tlb_flushD_SE(cdstp);
   1841 	cpu_cpwait();
   1842 	bzero_page(cdstp);
   1843 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1844 }
   1845 #endif /* ARM_MMU_GENERIC == 1 */
   1846 
   1847 #if ARM_MMU_XSCALE == 1
   1848 void
   1849 pmap_zero_page_xscale(paddr_t phys)
   1850 {
   1851 #ifdef DEBUG
   1852 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1853 
   1854 	if (pg->mdpage.pvh_list != NULL)
   1855 		panic("pmap_zero_page: page has mappings");
   1856 #endif
   1857 
   1858 	KDASSERT((phys & PGOFSET) == 0);
   1859 
   1860 	/*
   1861 	 * Hook in the page, zero it, and purge the cache for that
   1862 	 * zeroed page. Invalidate the TLB as needed.
   1863 	 */
   1864 	*cdst_pte = L2_S_PROTO | phys |
   1865 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1866 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1867 	PTE_SYNC(cdst_pte);
   1868 	cpu_tlb_flushD_SE(cdstp);
   1869 	cpu_cpwait();
   1870 	bzero_page(cdstp);
   1871 	xscale_cache_clean_minidata();
   1872 }
   1873 #endif /* ARM_MMU_XSCALE == 1 */
   1874 
   1875 /* pmap_pageidlezero()
   1876  *
   1877  * The same as above, except that we assume that the page is not
   1878  * mapped.  This means we never have to flush the cache first.  Called
   1879  * from the idle loop.
   1880  */
   1881 boolean_t
   1882 pmap_pageidlezero(paddr_t phys)
   1883 {
   1884 	int i, *ptr;
   1885 	boolean_t rv = TRUE;
   1886 #ifdef DEBUG
   1887 	struct vm_page *pg;
   1888 
   1889 	pg = PHYS_TO_VM_PAGE(phys);
   1890 	if (pg->mdpage.pvh_list != NULL)
   1891 		panic("pmap_pageidlezero: page has mappings");
   1892 #endif
   1893 
   1894 	KDASSERT((phys & PGOFSET) == 0);
   1895 
   1896 	/*
   1897 	 * Hook in the page, zero it, and purge the cache for that
   1898 	 * zeroed page. Invalidate the TLB as needed.
   1899 	 */
   1900 	*cdst_pte = L2_S_PROTO | phys |
   1901 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1902 	PTE_SYNC(cdst_pte);
   1903 	cpu_tlb_flushD_SE(cdstp);
   1904 	cpu_cpwait();
   1905 
   1906 	for (i = 0, ptr = (int *)cdstp;
   1907 			i < (NBPG / sizeof(int)); i++) {
   1908 		if (sched_whichqs != 0) {
   1909 			/*
   1910 			 * A process has become ready.  Abort now,
   1911 			 * so we don't keep it waiting while we
   1912 			 * do slow memory access to finish this
   1913 			 * page.
   1914 			 */
   1915 			rv = FALSE;
   1916 			break;
   1917 		}
   1918 		*ptr++ = 0;
   1919 	}
   1920 
   1921 	if (rv)
   1922 		/*
   1923 		 * if we aborted we'll rezero this page again later so don't
   1924 		 * purge it unless we finished it
   1925 		 */
   1926 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1927 	return (rv);
   1928 }
   1929 
   1930 /*
   1931  * pmap_copy_page()
   1932  *
   1933  * Copy one physical page into another, by mapping the pages into
   1934  * hook points. The same comment regarding cachability as in
   1935  * pmap_zero_page also applies here.
   1936  */
   1937 #if ARM_MMU_GENERIC == 1
   1938 void
   1939 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   1940 {
   1941 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1942 #ifdef DEBUG
   1943 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1944 
   1945 	if (dst_pg->mdpage.pvh_list != NULL)
   1946 		panic("pmap_copy_page: dst page has mappings");
   1947 #endif
   1948 
   1949 	KDASSERT((src & PGOFSET) == 0);
   1950 	KDASSERT((dst & PGOFSET) == 0);
   1951 
   1952 	/*
   1953 	 * Clean the source page.  Hold the source page's lock for
   1954 	 * the duration of the copy so that no other mappings can
   1955 	 * be created while we have a potentially aliased mapping.
   1956 	 */
   1957 	simple_lock(&src_pg->mdpage.pvh_slock);
   1958 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1959 
   1960 	/*
   1961 	 * Map the pages into the page hook points, copy them, and purge
   1962 	 * the cache for the appropriate page. Invalidate the TLB
   1963 	 * as required.
   1964 	 */
   1965 	*csrc_pte = L2_S_PROTO | src |
   1966 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
   1967 	PTE_SYNC(csrc_pte);
   1968 	*cdst_pte = L2_S_PROTO | dst |
   1969 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1970 	PTE_SYNC(cdst_pte);
   1971 	cpu_tlb_flushD_SE(csrcp);
   1972 	cpu_tlb_flushD_SE(cdstp);
   1973 	cpu_cpwait();
   1974 	bcopy_page(csrcp, cdstp);
   1975 	cpu_dcache_inv_range(csrcp, NBPG);
   1976 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1977 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1978 }
   1979 #endif /* ARM_MMU_GENERIC == 1 */
   1980 
   1981 #if ARM_MMU_XSCALE == 1
   1982 void
   1983 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   1984 {
   1985 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1986 #ifdef DEBUG
   1987 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1988 
   1989 	if (dst_pg->mdpage.pvh_list != NULL)
   1990 		panic("pmap_copy_page: dst page has mappings");
   1991 #endif
   1992 
   1993 	KDASSERT((src & PGOFSET) == 0);
   1994 	KDASSERT((dst & PGOFSET) == 0);
   1995 
   1996 	/*
   1997 	 * Clean the source page.  Hold the source page's lock for
   1998 	 * the duration of the copy so that no other mappings can
   1999 	 * be created while we have a potentially aliased mapping.
   2000 	 */
   2001 	simple_lock(&src_pg->mdpage.pvh_slock);
   2002 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   2003 
   2004 	/*
   2005 	 * Map the pages into the page hook points, copy them, and purge
   2006 	 * the cache for the appropriate page. Invalidate the TLB
   2007 	 * as required.
   2008 	 */
   2009 	*csrc_pte = L2_S_PROTO | src |
   2010 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   2011 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   2012 	PTE_SYNC(csrc_pte);
   2013 	*cdst_pte = L2_S_PROTO | dst |
   2014 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   2015 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   2016 	PTE_SYNC(cdst_pte);
   2017 	cpu_tlb_flushD_SE(csrcp);
   2018 	cpu_tlb_flushD_SE(cdstp);
   2019 	cpu_cpwait();
   2020 	bcopy_page(csrcp, cdstp);
   2021 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   2022 	xscale_cache_clean_minidata();
   2023 }
   2024 #endif /* ARM_MMU_XSCALE == 1 */
   2025 
   2026 #if 0
   2027 void
   2028 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   2029 {
   2030 	pd_entry_t *pde;
   2031 	paddr_t pa;
   2032 	struct vm_page *m;
   2033 
   2034 	if (pmap == pmap_kernel())
   2035 		return;
   2036 
   2037 	pde = pmap_pde(pmap, va & PD_FRAME);
   2038 	pa = pmap_pte_pa(pde);
   2039 	m = PHYS_TO_VM_PAGE(pa);
   2040 	m->wire_count++;
   2041 #ifdef MYCROFT_HACK
   2042 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2043 	    pmap, va, pde, pa, m, m->wire_count);
   2044 #endif
   2045 }
   2046 
   2047 void
   2048 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   2049 {
   2050 	pd_entry_t *pde;
   2051 	paddr_t pa;
   2052 	struct vm_page *m;
   2053 
   2054 	if (pmap == pmap_kernel())
   2055 		return;
   2056 
   2057 	pde = pmap_pde(pmap, va & PD_FRAME);
   2058 	pa = pmap_pte_pa(pde);
   2059 	m = PHYS_TO_VM_PAGE(pa);
   2060 	m->wire_count--;
   2061 #ifdef MYCROFT_HACK
   2062 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2063 	    pmap, va, pde, pa, m, m->wire_count);
   2064 #endif
   2065 	if (m->wire_count == 0) {
   2066 #ifdef MYCROFT_HACK
   2067 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2068 		    pmap, va, pde, pa, m);
   2069 #endif
   2070 		pmap_unmap_in_l1(pmap, va & PD_FRAME);
   2071 		uvm_pagefree(m);
   2072 		--pmap->pm_stats.resident_count;
   2073 	}
   2074 }
   2075 #else
   2076 #define	pmap_pte_addref(pmap, va)
   2077 #define	pmap_pte_delref(pmap, va)
   2078 #endif
   2079 
   2080 /*
   2081  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2082  * there is more than one mapping and at least one of them is writable.
   2083  * Since we purge the cache on every context switch, we only need to check for
   2084  * other mappings within the same pmap, or kernel_pmap.
   2085  * This function is also called when a page is unmapped, to possibly reenable
   2086  * caching on any remaining mappings.
   2087  *
   2088  * The code implements the following logic, where:
   2089  *
   2090  * KW = # of kernel read/write pages
   2091  * KR = # of kernel read only pages
   2092  * UW = # of user read/write pages
   2093  * UR = # of user read only pages
   2094  * OW = # of user read/write pages in another pmap, then
   2095  *
   2096  * KC = kernel mapping is cacheable
   2097  * UC = user mapping is cacheable
   2098  *
   2099  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2100  *                   +---------------------------------------------
   2101  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2102  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2103  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2104  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2105  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2106  *
   2107  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2108  */
   2109 __inline static void
   2110 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2111 	boolean_t clear_cache)
   2112 {
   2113 	if (pmap == pmap_kernel())
   2114 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2115 	else
   2116 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2117 }
   2118 
   2119 static void
   2120 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2121 	boolean_t clear_cache)
   2122 {
   2123 	int user_entries = 0;
   2124 	int user_writable = 0;
   2125 	int user_cacheable = 0;
   2126 	int kernel_entries = 0;
   2127 	int kernel_writable = 0;
   2128 	int kernel_cacheable = 0;
   2129 	struct pv_entry *pv;
   2130 	struct pmap *last_pmap = pmap;
   2131 
   2132 #ifdef DIAGNOSTIC
   2133 	if (pmap != pmap_kernel())
   2134 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2135 #endif
   2136 
   2137 	/*
   2138 	 * Pass one, see if there are both kernel and user pmaps for
   2139 	 * this page.  Calculate whether there are user-writable or
   2140 	 * kernel-writable pages.
   2141 	 */
   2142 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2143 		if (pv->pv_pmap != pmap) {
   2144 			user_entries++;
   2145 			if (pv->pv_flags & PVF_WRITE)
   2146 				user_writable++;
   2147 			if ((pv->pv_flags & PVF_NC) == 0)
   2148 				user_cacheable++;
   2149 		} else {
   2150 			kernel_entries++;
   2151 			if (pv->pv_flags & PVF_WRITE)
   2152 				kernel_writable++;
   2153 			if ((pv->pv_flags & PVF_NC) == 0)
   2154 				kernel_cacheable++;
   2155 		}
   2156 	}
   2157 
   2158 	/*
   2159 	 * We know we have just been updating a kernel entry, so if
   2160 	 * all user pages are already cacheable, then there is nothing
   2161 	 * further to do.
   2162 	 */
   2163 	if (kernel_entries == 0 &&
   2164 	    user_cacheable == user_entries)
   2165 		return;
   2166 
   2167 	if (user_entries) {
   2168 		/*
   2169 		 * Scan over the list again, for each entry, if it
   2170 		 * might not be set correctly, call pmap_vac_me_user
   2171 		 * to recalculate the settings.
   2172 		 */
   2173 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2174 			/*
   2175 			 * We know kernel mappings will get set
   2176 			 * correctly in other calls.  We also know
   2177 			 * that if the pmap is the same as last_pmap
   2178 			 * then we've just handled this entry.
   2179 			 */
   2180 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2181 				continue;
   2182 			/*
   2183 			 * If there are kernel entries and this page
   2184 			 * is writable but non-cacheable, then we can
   2185 			 * skip this entry also.
   2186 			 */
   2187 			if (kernel_entries > 0 &&
   2188 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   2189 			    (PVF_NC | PVF_WRITE))
   2190 				continue;
   2191 			/*
   2192 			 * Similarly if there are no kernel-writable
   2193 			 * entries and the page is already
   2194 			 * read-only/cacheable.
   2195 			 */
   2196 			if (kernel_writable == 0 &&
   2197 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   2198 				continue;
   2199 			/*
   2200 			 * For some of the remaining cases, we know
   2201 			 * that we must recalculate, but for others we
   2202 			 * can't tell if they are correct or not, so
   2203 			 * we recalculate anyway.
   2204 			 */
   2205 			pmap_unmap_ptes(last_pmap);
   2206 			last_pmap = pv->pv_pmap;
   2207 			ptes = pmap_map_ptes(last_pmap);
   2208 			pmap_vac_me_user(last_pmap, pg, ptes,
   2209 			    pmap_is_curpmap(last_pmap));
   2210 		}
   2211 		/* Restore the pte mapping that was passed to us.  */
   2212 		if (last_pmap != pmap) {
   2213 			pmap_unmap_ptes(last_pmap);
   2214 			ptes = pmap_map_ptes(pmap);
   2215 		}
   2216 		if (kernel_entries == 0)
   2217 			return;
   2218 	}
   2219 
   2220 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2221 	return;
   2222 }
   2223 
   2224 static void
   2225 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2226 	boolean_t clear_cache)
   2227 {
   2228 	struct pmap *kpmap = pmap_kernel();
   2229 	struct pv_entry *pv, *npv;
   2230 	int entries = 0;
   2231 	int writable = 0;
   2232 	int cacheable_entries = 0;
   2233 	int kern_cacheable = 0;
   2234 	int other_writable = 0;
   2235 
   2236 	pv = pg->mdpage.pvh_list;
   2237 	KASSERT(ptes != NULL);
   2238 
   2239 	/*
   2240 	 * Count mappings and writable mappings in this pmap.
   2241 	 * Include kernel mappings as part of our own.
   2242 	 * Keep a pointer to the first one.
   2243 	 */
   2244 	for (npv = pv; npv; npv = npv->pv_next) {
   2245 		/* Count mappings in the same pmap */
   2246 		if (pmap == npv->pv_pmap ||
   2247 		    kpmap == npv->pv_pmap) {
   2248 			if (entries++ == 0)
   2249 				pv = npv;
   2250 			/* Cacheable mappings */
   2251 			if ((npv->pv_flags & PVF_NC) == 0) {
   2252 				cacheable_entries++;
   2253 				if (kpmap == npv->pv_pmap)
   2254 					kern_cacheable++;
   2255 			}
   2256 			/* Writable mappings */
   2257 			if (npv->pv_flags & PVF_WRITE)
   2258 				++writable;
   2259 		} else if (npv->pv_flags & PVF_WRITE)
   2260 			other_writable = 1;
   2261 	}
   2262 
   2263 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2264 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2265 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2266 
   2267 	/*
   2268 	 * Enable or disable caching as necessary.
   2269 	 * Note: the first entry might be part of the kernel pmap,
   2270 	 * so we can't assume this is indicative of the state of the
   2271 	 * other (maybe non-kpmap) entries.
   2272 	 */
   2273 	if ((entries > 1 && writable) ||
   2274 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2275 		if (cacheable_entries == 0)
   2276 		    return;
   2277 		for (npv = pv; npv; npv = npv->pv_next) {
   2278 			if ((pmap == npv->pv_pmap
   2279 			    || kpmap == npv->pv_pmap) &&
   2280 			    (npv->pv_flags & PVF_NC) == 0) {
   2281 				ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
   2282 				PTE_SYNC_CURRENT(pmap,
   2283 				    &ptes[arm_btop(npv->pv_va)]);
   2284  				npv->pv_flags |= PVF_NC;
   2285 				/*
   2286 				 * If this page needs flushing from the
   2287 				 * cache, and we aren't going to do it
   2288 				 * below, do it now.
   2289 				 */
   2290 				if ((cacheable_entries < 4 &&
   2291 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2292 				    (npv->pv_pmap == kpmap &&
   2293 				    !clear_cache && kern_cacheable < 4)) {
   2294 					cpu_idcache_wbinv_range(npv->pv_va,
   2295 					    NBPG);
   2296 					cpu_tlb_flushID_SE(npv->pv_va);
   2297 				}
   2298 			}
   2299 		}
   2300 		if ((clear_cache && cacheable_entries >= 4) ||
   2301 		    kern_cacheable >= 4) {
   2302 			cpu_idcache_wbinv_all();
   2303 			cpu_tlb_flushID();
   2304 		}
   2305 		cpu_cpwait();
   2306 	} else if (entries > 0) {
   2307 		/*
   2308 		 * Turn cacheing back on for some pages.  If it is a kernel
   2309 		 * page, only do so if there are no other writable pages.
   2310 		 */
   2311 		for (npv = pv; npv; npv = npv->pv_next) {
   2312 			if ((pmap == npv->pv_pmap ||
   2313 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2314 			    (npv->pv_flags & PVF_NC)) {
   2315 				ptes[arm_btop(npv->pv_va)] |=
   2316 				    pte_l2_s_cache_mode;
   2317 				PTE_SYNC_CURRENT(pmap,
   2318 				    &ptes[arm_btop(npv->pv_va)]);
   2319 				npv->pv_flags &= ~PVF_NC;
   2320 			}
   2321 		}
   2322 	}
   2323 }
   2324 
   2325 /*
   2326  * pmap_remove()
   2327  *
   2328  * pmap_remove is responsible for nuking a number of mappings for a range
   2329  * of virtual address space in the current pmap. To do this efficiently
   2330  * is interesting, because in a number of cases a wide virtual address
   2331  * range may be supplied that contains few actual mappings. So, the
   2332  * optimisations are:
   2333  *  1. Try and skip over hunks of address space for which an L1 entry
   2334  *     does not exist.
   2335  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2336  *     maybe do just a partial cache clean. This path of execution is
   2337  *     complicated by the fact that the cache must be flushed _before_
   2338  *     the PTE is nuked, being a VAC :-)
   2339  *  3. Maybe later fast-case a single page, but I don't think this is
   2340  *     going to make _that_ much difference overall.
   2341  */
   2342 
   2343 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2344 
   2345 void
   2346 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2347 {
   2348 	int cleanlist_idx = 0;
   2349 	struct pagelist {
   2350 		vaddr_t va;
   2351 		pt_entry_t *pte;
   2352 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2353 	pt_entry_t *pte = 0, *ptes;
   2354 	paddr_t pa;
   2355 	int pmap_active;
   2356 	struct vm_page *pg;
   2357 	struct pv_entry *pv_tofree = NULL;
   2358 
   2359 	/* Exit quick if there is no pmap */
   2360 	if (!pmap)
   2361 		return;
   2362 
   2363 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
   2364 	    pmap, sva, eva));
   2365 
   2366 	/*
   2367 	 * we lock in the pmap => vm_page direction
   2368 	 */
   2369 	PMAP_MAP_TO_HEAD_LOCK();
   2370 
   2371 	ptes = pmap_map_ptes(pmap);
   2372 	/* Get a page table pointer */
   2373 	while (sva < eva) {
   2374 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2375 			break;
   2376 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2377 	}
   2378 
   2379 	pte = &ptes[arm_btop(sva)];
   2380 	/* Note if the pmap is active thus require cache and tlb cleans */
   2381 	pmap_active = pmap_is_curpmap(pmap);
   2382 
   2383 	/* Now loop along */
   2384 	while (sva < eva) {
   2385 		/* Check if we can move to the next PDE (l1 chunk) */
   2386 		if ((sva & L2_ADDR_BITS) == 0) {
   2387 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2388 				sva += L1_S_SIZE;
   2389 				pte += arm_btop(L1_S_SIZE);
   2390 				continue;
   2391 			}
   2392 		}
   2393 
   2394 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2395 		if (pmap_pte_v(pte)) {
   2396 			/* Update statistics */
   2397 			--pmap->pm_stats.resident_count;
   2398 
   2399 			/*
   2400 			 * Add this page to our cache remove list, if we can.
   2401 			 * If, however the cache remove list is totally full,
   2402 			 * then do a complete cache invalidation taking note
   2403 			 * to backtrack the PTE table beforehand, and ignore
   2404 			 * the lists in future because there's no longer any
   2405 			 * point in bothering with them (we've paid the
   2406 			 * penalty, so will carry on unhindered). Otherwise,
   2407 			 * when we fall out, we just clean the list.
   2408 			 */
   2409 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2410 			pa = pmap_pte_pa(pte);
   2411 
   2412 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2413 				/* Add to the clean list. */
   2414 				cleanlist[cleanlist_idx].pte = pte;
   2415 				cleanlist[cleanlist_idx].va = sva;
   2416 				cleanlist_idx++;
   2417 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2418 				int cnt;
   2419 
   2420 				/* Nuke everything if needed. */
   2421 				if (pmap_active) {
   2422 					cpu_idcache_wbinv_all();
   2423 					cpu_tlb_flushID();
   2424 				}
   2425 
   2426 				/*
   2427 				 * Roll back the previous PTE list,
   2428 				 * and zero out the current PTE.
   2429 				 */
   2430 				for (cnt = 0;
   2431 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
   2432 				     cnt++) {
   2433 					*cleanlist[cnt].pte = 0;
   2434 					if (pmap_active)
   2435 						PTE_SYNC(cleanlist[cnt].pte);
   2436 					else
   2437 						PTE_FLUSH(cleanlist[cnt].pte);
   2438 					pmap_pte_delref(pmap,
   2439 					    cleanlist[cnt].va);
   2440 				}
   2441 				*pte = 0;
   2442 				if (pmap_active)
   2443 					PTE_SYNC(pte);
   2444 				else
   2445 					PTE_FLUSH(pte);
   2446 				pmap_pte_delref(pmap, sva);
   2447 				cleanlist_idx++;
   2448 			} else {
   2449 				/*
   2450 				 * We've already nuked the cache and
   2451 				 * TLB, so just carry on regardless,
   2452 				 * and we won't need to do it again
   2453 				 */
   2454 				*pte = 0;
   2455 				if (pmap_active)
   2456 					PTE_SYNC(pte);
   2457 				else
   2458 					PTE_FLUSH(pte);
   2459 				pmap_pte_delref(pmap, sva);
   2460 			}
   2461 
   2462 			/*
   2463 			 * Update flags. In a number of circumstances,
   2464 			 * we could cluster a lot of these and do a
   2465 			 * number of sequential pages in one go.
   2466 			 */
   2467 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2468 				struct pv_entry *pve;
   2469 				simple_lock(&pg->mdpage.pvh_slock);
   2470 				pve = pmap_remove_pv(pg, pmap, sva);
   2471 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2472 				simple_unlock(&pg->mdpage.pvh_slock);
   2473 				if (pve != NULL) {
   2474 					pve->pv_next = pv_tofree;
   2475 					pv_tofree = pve;
   2476 				}
   2477 			}
   2478 		} else if (pmap_active == 0)
   2479 			PTE_FLUSH(pte);
   2480 		sva += NBPG;
   2481 		pte++;
   2482 	}
   2483 
   2484 	/*
   2485 	 * Now, if we've fallen through down to here, chances are that there
   2486 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2487 	 */
   2488 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2489 		u_int cnt;
   2490 
   2491 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2492 			if (pmap_active) {
   2493 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2494 				    NBPG);
   2495 				*cleanlist[cnt].pte = 0;
   2496 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2497 				PTE_SYNC(cleanlist[cnt].pte);
   2498 			} else {
   2499 				*cleanlist[cnt].pte = 0;
   2500 				PTE_FLUSH(cleanlist[cnt].pte);
   2501 			}
   2502 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2503 		}
   2504 	}
   2505 
   2506 	/* Delete pv entries */
   2507 	if (pv_tofree != NULL)
   2508 		pmap_free_pvs(pmap, pv_tofree);
   2509 
   2510 	pmap_unmap_ptes(pmap);
   2511 
   2512 	PMAP_MAP_TO_HEAD_UNLOCK();
   2513 }
   2514 
   2515 /*
   2516  * Routine:	pmap_page_remove
   2517  * Function:
   2518  *		Removes this physical page from
   2519  *		all physical maps in which it resides.
   2520  *		Reflects back modify bits to the pager.
   2521  */
   2522 
   2523 static void
   2524 pmap_page_remove(struct vm_page *pg)
   2525 {
   2526 	struct pv_entry *pv, *npv;
   2527 	struct pmap *pmap;
   2528 	pt_entry_t *pte, *ptes;
   2529 
   2530 	PDEBUG(0, printf("pmap_page_remove: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2531 
   2532 	/* set vm_page => pmap locking */
   2533 	PMAP_HEAD_TO_MAP_LOCK();
   2534 
   2535 	simple_lock(&pg->mdpage.pvh_slock);
   2536 
   2537 	pv = pg->mdpage.pvh_list;
   2538 	if (pv == NULL) {
   2539 		PDEBUG(0, printf("free page\n"));
   2540 		simple_unlock(&pg->mdpage.pvh_slock);
   2541 		PMAP_HEAD_TO_MAP_UNLOCK();
   2542 		return;
   2543 	}
   2544 	pmap_clean_page(pv, FALSE);
   2545 
   2546 	while (pv) {
   2547 		pmap = pv->pv_pmap;
   2548 		ptes = pmap_map_ptes(pmap);
   2549 		pte = &ptes[arm_btop(pv->pv_va)];
   2550 
   2551 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2552 		    pv->pv_va, pv->pv_flags));
   2553 #ifdef DEBUG
   2554 		if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
   2555 		    pmap_pte_v(pte) == 0 ||
   2556 		    pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
   2557 			panic("pmap_page_remove: bad mapping");
   2558 #endif	/* DEBUG */
   2559 
   2560 		/*
   2561 		 * Update statistics
   2562 		 */
   2563 		--pmap->pm_stats.resident_count;
   2564 
   2565 		/* Wired bit */
   2566 		if (pv->pv_flags & PVF_WIRED)
   2567 			--pmap->pm_stats.wired_count;
   2568 
   2569 		/*
   2570 		 * Invalidate the PTEs.
   2571 		 * XXX: should cluster them up and invalidate as many
   2572 		 * as possible at once.
   2573 		 */
   2574 
   2575 #ifdef needednotdone
   2576 reduce wiring count on page table pages as references drop
   2577 #endif
   2578 
   2579 		*pte = 0;
   2580 		PTE_SYNC_CURRENT(pmap, pte);
   2581 		pmap_pte_delref(pmap, pv->pv_va);
   2582 
   2583 		npv = pv->pv_next;
   2584 		pmap_free_pv(pmap, pv);
   2585 		pv = npv;
   2586 		pmap_unmap_ptes(pmap);
   2587 	}
   2588 	pg->mdpage.pvh_list = NULL;
   2589 	simple_unlock(&pg->mdpage.pvh_slock);
   2590 	PMAP_HEAD_TO_MAP_UNLOCK();
   2591 
   2592 	PDEBUG(0, printf("done\n"));
   2593 	cpu_tlb_flushID();
   2594 	cpu_cpwait();
   2595 }
   2596 
   2597 
   2598 /*
   2599  * Set the physical protection on the specified range of this map as requested.
   2600  */
   2601 
   2602 void
   2603 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2604 {
   2605 	pt_entry_t *pte = NULL, *ptes;
   2606 	struct vm_page *pg;
   2607 	int flush = 0;
   2608 
   2609 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2610 	    pmap, sva, eva, prot));
   2611 
   2612 	if (~prot & VM_PROT_READ) {
   2613 		/*
   2614 		 * Just remove the mappings.  pmap_update() is not required
   2615 		 * here since the caller should do it.
   2616 		 */
   2617 		pmap_remove(pmap, sva, eva);
   2618 		return;
   2619 	}
   2620 	if (prot & VM_PROT_WRITE) {
   2621 		/*
   2622 		 * If this is a read->write transition, just ignore it and let
   2623 		 * uvm_fault() take care of it later.
   2624 		 */
   2625 		return;
   2626 	}
   2627 
   2628 	/* Need to lock map->head */
   2629 	PMAP_MAP_TO_HEAD_LOCK();
   2630 
   2631 	ptes = pmap_map_ptes(pmap);
   2632 
   2633 	/*
   2634 	 * OK, at this point, we know we're doing write-protect operation.
   2635 	 * If the pmap is active, write-back the range.
   2636 	 */
   2637 	if (pmap_is_curpmap(pmap))
   2638 		cpu_dcache_wb_range(sva, eva - sva);
   2639 
   2640 	/*
   2641 	 * We need to acquire a pointer to a page table page before entering
   2642 	 * the following loop.
   2643 	 */
   2644 	while (sva < eva) {
   2645 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2646 			break;
   2647 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2648 	}
   2649 
   2650 	pte = &ptes[arm_btop(sva)];
   2651 
   2652 	while (sva < eva) {
   2653 		/* only check once in a while */
   2654 		if ((sva & L2_ADDR_BITS) == 0) {
   2655 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2656 				/* We can race ahead here, to the next pde. */
   2657 				sva += L1_S_SIZE;
   2658 				pte += arm_btop(L1_S_SIZE);
   2659 				continue;
   2660 			}
   2661 		}
   2662 
   2663 		if (!pmap_pte_v(pte)) {
   2664 			PTE_FLUSH_ALT(pmap, pte);
   2665 			goto next;
   2666 		}
   2667 
   2668 		flush = 1;
   2669 
   2670 		pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
   2671 
   2672 		*pte &= ~L2_S_PROT_W;		/* clear write bit */
   2673 		PTE_SYNC_CURRENT(pmap, pte);	/* XXXJRT optimize */
   2674 
   2675 		/* Clear write flag */
   2676 		if (pg != NULL) {
   2677 			simple_lock(&pg->mdpage.pvh_slock);
   2678 			(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
   2679 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2680 			simple_unlock(&pg->mdpage.pvh_slock);
   2681 		}
   2682 
   2683  next:
   2684 		sva += NBPG;
   2685 		pte++;
   2686 	}
   2687 	pmap_unmap_ptes(pmap);
   2688 	PMAP_MAP_TO_HEAD_UNLOCK();
   2689 	if (flush)
   2690 		cpu_tlb_flushID();
   2691 }
   2692 
   2693 /*
   2694  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2695  * int flags)
   2696  *
   2697  *      Insert the given physical page (p) at
   2698  *      the specified virtual address (v) in the
   2699  *      target physical map with the protection requested.
   2700  *
   2701  *      If specified, the page will be wired down, meaning
   2702  *      that the related pte can not be reclaimed.
   2703  *
   2704  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2705  *      or lose information.  That is, this routine must actually
   2706  *      insert this page into the given map NOW.
   2707  */
   2708 
   2709 int
   2710 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2711     int flags)
   2712 {
   2713 	pt_entry_t *ptes, opte, npte;
   2714 	paddr_t opa;
   2715 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2716 	struct vm_page *pg;
   2717 	struct pv_entry *pve;
   2718 	int error, nflags;
   2719 	struct vm_page *ptp = NULL;
   2720 
   2721 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2722 	    va, pa, pmap, prot, wired));
   2723 
   2724 #ifdef DIAGNOSTIC
   2725 	/* Valid address ? */
   2726 	if (va >= (pmap_curmaxkvaddr))
   2727 		panic("pmap_enter: too big");
   2728 	if (pmap != pmap_kernel() && va != 0) {
   2729 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2730 			panic("pmap_enter: kernel page in user map");
   2731 	} else {
   2732 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2733 			panic("pmap_enter: user page in kernel map");
   2734 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2735 			panic("pmap_enter: entering PT page");
   2736 	}
   2737 #endif
   2738 
   2739 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2740 
   2741 	/*
   2742 	 * Get a pointer to the page.  Later on in this function, we
   2743 	 * test for a managed page by checking pg != NULL.
   2744 	 */
   2745 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2746 
   2747 	/* get lock */
   2748 	PMAP_MAP_TO_HEAD_LOCK();
   2749 
   2750 	/*
   2751 	 * map the ptes.  If there's not already an L2 table for this
   2752 	 * address, allocate one.
   2753 	 */
   2754 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2755 	/* kernel should be pre-grown */
   2756 	if (pmap != pmap_kernel())
   2757 	{
   2758 		/* if failure is allowed then don't try too hard */
   2759 		ptp = pmap_get_ptp(pmap, va & PD_FRAME);
   2760 		if (ptp == NULL) {
   2761 			if (flags & PMAP_CANFAIL) {
   2762 				error = ENOMEM;
   2763 				goto out;
   2764 			}
   2765 			panic("pmap_enter: get ptp failed");
   2766 		}
   2767 	}
   2768 	opte = ptes[arm_btop(va)];
   2769 
   2770 	nflags = 0;
   2771 	if (prot & VM_PROT_WRITE)
   2772 		nflags |= PVF_WRITE;
   2773 	if (wired)
   2774 		nflags |= PVF_WIRED;
   2775 
   2776 	/* Is the pte valid ? If so then this page is already mapped */
   2777 	if (l2pte_valid(opte)) {
   2778 		/* Get the physical address of the current page mapped */
   2779 		opa = l2pte_pa(opte);
   2780 
   2781 		/* Are we mapping the same page ? */
   2782 		if (opa == pa) {
   2783 			/* Check to see if we're doing rw->ro. */
   2784 			if ((opte & L2_S_PROT_W) != 0 &&
   2785 			    (prot & VM_PROT_WRITE) == 0) {
   2786 				/* Yup, flush the cache if current pmap. */
   2787 				if (pmap_is_curpmap(pmap))
   2788 					cpu_dcache_wb_range(va, NBPG);
   2789 			}
   2790 
   2791 			/* Has the wiring changed ? */
   2792 			if (pg != NULL) {
   2793 				simple_lock(&pg->mdpage.pvh_slock);
   2794 				(void) pmap_modify_pv(pmap, va, pg,
   2795 				    PVF_WRITE | PVF_WIRED, nflags);
   2796 				simple_unlock(&pg->mdpage.pvh_slock);
   2797  			}
   2798 		} else {
   2799 			struct vm_page *opg;
   2800 
   2801 			/* We are replacing the page with a new one. */
   2802 			cpu_idcache_wbinv_range(va, NBPG);
   2803 
   2804 			/*
   2805 			 * If it is part of our managed memory then we
   2806 			 * must remove it from the PV list
   2807 			 */
   2808 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2809 				simple_lock(&opg->mdpage.pvh_slock);
   2810 				pve = pmap_remove_pv(opg, pmap, va);
   2811 				simple_unlock(&opg->mdpage.pvh_slock);
   2812 			} else {
   2813 				pve = NULL;
   2814 			}
   2815 
   2816 			goto enter;
   2817 		}
   2818 	} else {
   2819 		opa = 0;
   2820 		pve = NULL;
   2821 
   2822 		/* bump ptp ref */
   2823 		if (ptp != NULL)
   2824 			ptp->wire_count++;
   2825 
   2826 		/* pte is not valid so we must be hooking in a new page */
   2827 		++pmap->pm_stats.resident_count;
   2828 
   2829 	enter:
   2830 		/*
   2831 		 * Enter on the PV list if part of our managed memory
   2832 		 */
   2833 		if (pg != NULL) {
   2834 			if (pve == NULL) {
   2835 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2836 				if (pve == NULL) {
   2837 					if (flags & PMAP_CANFAIL) {
   2838 						PTE_FLUSH_ALT(pmap,
   2839 						    ptes[arm_btop(va)]);
   2840 						error = ENOMEM;
   2841 						goto out;
   2842 					}
   2843 					panic("pmap_enter: no pv entries "
   2844 					    "available");
   2845 				}
   2846 			}
   2847 			/* enter_pv locks pvh when adding */
   2848 			pmap_enter_pv(pg, pve, pmap, va, ptp, nflags);
   2849 		} else {
   2850 			if (pve != NULL)
   2851 				pmap_free_pv(pmap, pve);
   2852 		}
   2853 	}
   2854 
   2855 	/* Construct the pte, giving the correct access. */
   2856 	npte = pa;
   2857 
   2858 	/* VA 0 is magic. */
   2859 	if (pmap != pmap_kernel() && va != vector_page)
   2860 		npte |= L2_S_PROT_U;
   2861 
   2862 	if (pg != NULL) {
   2863 #ifdef DIAGNOSTIC
   2864 		if ((flags & VM_PROT_ALL) & ~prot)
   2865 			panic("pmap_enter: access_type exceeds prot");
   2866 #endif
   2867 		npte |= pte_l2_s_cache_mode;
   2868 		if (flags & VM_PROT_WRITE) {
   2869 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2870 			pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   2871 		} else if (flags & VM_PROT_ALL) {
   2872 			npte |= L2_S_PROTO;
   2873 			pg->mdpage.pvh_attrs |= PVF_REF;
   2874 		} else
   2875 			npte |= L2_TYPE_INV;
   2876 	} else {
   2877 		if (prot & VM_PROT_WRITE)
   2878 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2879 		else if (prot & VM_PROT_ALL)
   2880 			npte |= L2_S_PROTO;
   2881 		else
   2882 			npte |= L2_TYPE_INV;
   2883 	}
   2884 
   2885 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
   2886 #if ARM_NMMUS > 1
   2887 # error "XXX Unable to use read/write-allocate and configure non-XScale"
   2888 #endif
   2889 	/*
   2890 	 * XXX BRUTAL HACK!  This allows us to limp along with
   2891 	 * XXX the read/write-allocate cache mode.
   2892 	 */
   2893 	if (pmap == pmap_kernel())
   2894 		npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
   2895 #endif
   2896 	ptes[arm_btop(va)] = npte;
   2897 	PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
   2898 
   2899 	if (pg != NULL) {
   2900 		simple_lock(&pg->mdpage.pvh_slock);
   2901  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2902 		simple_unlock(&pg->mdpage.pvh_slock);
   2903 	}
   2904 
   2905 	/* Better flush the TLB ... */
   2906 	cpu_tlb_flushID_SE(va);
   2907 	error = 0;
   2908 out:
   2909 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2910 	PMAP_MAP_TO_HEAD_UNLOCK();
   2911 
   2912 	return error;
   2913 }
   2914 
   2915 /*
   2916  * pmap_kenter_pa: enter a kernel mapping
   2917  *
   2918  * => no need to lock anything assume va is already allocated
   2919  * => should be faster than normal pmap enter function
   2920  */
   2921 void
   2922 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2923 {
   2924 	pt_entry_t *pte;
   2925 
   2926 	pte = vtopte(va);
   2927 	KASSERT(!pmap_pte_v(pte));
   2928 
   2929 #ifdef PMAP_ALIAS_DEBUG
   2930     {
   2931 	struct vm_page *pg;
   2932 	int s;
   2933 
   2934 	pg = PHYS_TO_VM_PAGE(pa);
   2935 	if (pg != NULL) {
   2936 		s = splhigh();
   2937 		if (pg->mdpage.ro_mappings == 0 &&
   2938 		    pg->mdpage.rw_mappings == 0 &&
   2939 		    pg->mdpage.kro_mappings == 0 &&
   2940 		    pg->mdpage.krw_mappings == 0) {
   2941 			/* This case is okay. */
   2942 		} else if (pg->mdpage.rw_mappings == 0 &&
   2943 			   pg->mdpage.krw_mappings == 0 &&
   2944 			   (prot & VM_PROT_WRITE) == 0) {
   2945 			/* This case is okay. */
   2946 		} else {
   2947 			/* Something is awry. */
   2948 			printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
   2949 			    "prot 0x%x\n", pg->mdpage.ro_mappings,
   2950 			    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
   2951 			    pg->mdpage.krw_mappings, prot);
   2952 			Debugger();
   2953 		}
   2954 		if (prot & VM_PROT_WRITE)
   2955 			pg->mdpage.krw_mappings++;
   2956 		else
   2957 			pg->mdpage.kro_mappings++;
   2958 		splx(s);
   2959 	}
   2960     }
   2961 #endif /* PMAP_ALIAS_DEBUG */
   2962 
   2963 	*pte = L2_S_PROTO | pa |
   2964 	    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   2965 	PTE_SYNC(pte);
   2966 }
   2967 
   2968 void
   2969 pmap_kremove(vaddr_t va, vsize_t len)
   2970 {
   2971 	pt_entry_t *pte;
   2972 	vaddr_t ova = va;
   2973 	vaddr_t olen = len;
   2974 
   2975 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2976 
   2977 		/*
   2978 		 * We assume that we will only be called with small
   2979 		 * regions of memory.
   2980 		 */
   2981 
   2982 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2983 		pte = vtopte(va);
   2984 #ifdef PMAP_ALIAS_DEBUG
   2985     {
   2986 		struct vm_page *pg;
   2987 		int s;
   2988 
   2989 		if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
   2990 		    (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
   2991 			s = splhigh();
   2992 			if (*pte & L2_S_PROT_W) {
   2993 				KASSERT(pg->mdpage.krw_mappings != 0);
   2994 				pg->mdpage.krw_mappings--;
   2995 			} else {
   2996 				KASSERT(pg->mdpage.kro_mappings != 0);
   2997 				pg->mdpage.kro_mappings--;
   2998 			}
   2999 			splx(s);
   3000 		}
   3001     }
   3002 #endif /* PMAP_ALIAS_DEBUG */
   3003 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   3004 		*pte = 0;
   3005 		cpu_tlb_flushID_SE(va);
   3006 	}
   3007 	PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
   3008 }
   3009 
   3010 /*
   3011  * pmap_page_protect:
   3012  *
   3013  * Lower the permission for all mappings to a given page.
   3014  */
   3015 
   3016 void
   3017 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3018 {
   3019 
   3020 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   3021 	    VM_PAGE_TO_PHYS(pg), prot));
   3022 
   3023 	switch(prot) {
   3024 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3025 	case VM_PROT_READ|VM_PROT_WRITE:
   3026 		return;
   3027 
   3028 	case VM_PROT_READ:
   3029 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3030 		pmap_clearbit(pg, PVF_WRITE);
   3031 		break;
   3032 
   3033 	default:
   3034 		pmap_page_remove(pg);
   3035 		break;
   3036 	}
   3037 }
   3038 
   3039 
   3040 /*
   3041  * Routine:	pmap_unwire
   3042  * Function:	Clear the wired attribute for a map/virtual-address
   3043  *		pair.
   3044  * In/out conditions:
   3045  *		The mapping must already exist in the pmap.
   3046  */
   3047 
   3048 void
   3049 pmap_unwire(struct pmap *pmap, vaddr_t va)
   3050 {
   3051 	pt_entry_t *ptes;
   3052 	struct vm_page *pg;
   3053 	paddr_t pa;
   3054 
   3055 	PMAP_MAP_TO_HEAD_LOCK();
   3056 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3057 
   3058 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   3059 #ifdef DIAGNOSTIC
   3060 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3061 			panic("pmap_unwire: invalid L2 PTE");
   3062 #endif
   3063 		/* Extract the physical address of the page */
   3064 		pa = l2pte_pa(ptes[arm_btop(va)]);
   3065 		PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
   3066 
   3067 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3068 			goto out;
   3069 
   3070 		/* Update the wired bit in the pv entry for this page. */
   3071 		simple_lock(&pg->mdpage.pvh_slock);
   3072 		(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
   3073 		simple_unlock(&pg->mdpage.pvh_slock);
   3074 	}
   3075 #ifdef DIAGNOSTIC
   3076 	else {
   3077 		panic("pmap_unwire: invalid L1 PTE");
   3078 	}
   3079 #endif
   3080  out:
   3081 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3082 	PMAP_MAP_TO_HEAD_UNLOCK();
   3083 }
   3084 
   3085 /*
   3086  * Routine:  pmap_extract
   3087  * Function:
   3088  *           Extract the physical page address associated
   3089  *           with the given map/virtual_address pair.
   3090  */
   3091 boolean_t
   3092 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   3093 {
   3094 	pd_entry_t *pde;
   3095 	pt_entry_t *pte, *ptes;
   3096 	paddr_t pa;
   3097 
   3098 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
   3099 
   3100 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3101 
   3102 	pde = pmap_pde(pmap, va);
   3103 	pte = &ptes[arm_btop(va)];
   3104 
   3105 	if (pmap_pde_section(pde)) {
   3106 		pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3107 		PDEBUG(5, printf("section pa=0x%08lx\n", pa));
   3108 		goto out;
   3109 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3110 		PDEBUG(5, printf("no mapping\n"));
   3111 		goto failed;
   3112 	}
   3113 
   3114 	if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
   3115 		pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3116 		PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
   3117 		goto out;
   3118 	}
   3119 
   3120 	pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3121 	PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
   3122 
   3123  out:
   3124 	if (pap != NULL)
   3125 		*pap = pa;
   3126 
   3127 	PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
   3128 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3129 	return (TRUE);
   3130 
   3131  failed:
   3132 	PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
   3133 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3134 	return (FALSE);
   3135 }
   3136 
   3137 
   3138 /*
   3139  * pmap_copy:
   3140  *
   3141  *	Copy the range specified by src_addr/len from the source map to the
   3142  *	range dst_addr/len in the destination map.
   3143  *
   3144  *	This routine is only advisory and need not do anything.
   3145  */
   3146 /* Call deleted in <arm/arm32/pmap.h> */
   3147 
   3148 #if defined(PMAP_DEBUG)
   3149 void
   3150 pmap_dump_pvlist(phys, m)
   3151 	vaddr_t phys;
   3152 	char *m;
   3153 {
   3154 	struct vm_page *pg;
   3155 	struct pv_entry *pv;
   3156 
   3157 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3158 		printf("INVALID PA\n");
   3159 		return;
   3160 	}
   3161 	simple_lock(&pg->mdpage.pvh_slock);
   3162 	printf("%s %08lx:", m, phys);
   3163 	if (pg->mdpage.pvh_list == NULL) {
   3164 		simple_unlock(&pg->mdpage.pvh_slock);
   3165 		printf(" no mappings\n");
   3166 		return;
   3167 	}
   3168 
   3169 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3170 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3171 		    pv->pv_va, pv->pv_flags);
   3172 
   3173 	printf("\n");
   3174 	simple_unlock(&pg->mdpage.pvh_slock);
   3175 }
   3176 
   3177 #endif	/* PMAP_DEBUG */
   3178 
   3179 static pt_entry_t *
   3180 pmap_map_ptes(struct pmap *pmap)
   3181 {
   3182 	struct proc *p;
   3183 
   3184     	/* the kernel's pmap is always accessible */
   3185 	if (pmap == pmap_kernel()) {
   3186 		return (pt_entry_t *)PTE_BASE;
   3187 	}
   3188 
   3189 	if (pmap_is_curpmap(pmap)) {
   3190 		simple_lock(&pmap->pm_obj.vmobjlock);
   3191 		return (pt_entry_t *)PTE_BASE;
   3192 	}
   3193 
   3194 	p = curproc;
   3195 	KDASSERT(p != NULL);
   3196 
   3197 	/* need to lock both curpmap and pmap: use ordered locking */
   3198 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   3199 		simple_lock(&pmap->pm_obj.vmobjlock);
   3200 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3201 	} else {
   3202 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3203 		simple_lock(&pmap->pm_obj.vmobjlock);
   3204 	}
   3205 
   3206 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
   3207 	    pmap->pm_pptpt, 0);
   3208 	cpu_tlb_flushD();
   3209 	cpu_cpwait();
   3210 	return (pt_entry_t *)APTE_BASE;
   3211 }
   3212 
   3213 /*
   3214  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3215  */
   3216 
   3217 static void
   3218 pmap_unmap_ptes(struct pmap *pmap)
   3219 {
   3220 
   3221 	if (pmap == pmap_kernel()) {
   3222 		return;
   3223 	}
   3224 	if (pmap_is_curpmap(pmap)) {
   3225 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3226 	} else {
   3227 		KDASSERT(curproc != NULL);
   3228 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3229 		simple_unlock(
   3230 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3231 	}
   3232 }
   3233 
   3234 /*
   3235  * Modify pte bits for all ptes corresponding to the given physical address.
   3236  * We use `maskbits' rather than `clearbits' because we're always passing
   3237  * constants and the latter would require an extra inversion at run-time.
   3238  */
   3239 
   3240 static void
   3241 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   3242 {
   3243 	struct pv_entry *pv;
   3244 	pt_entry_t *ptes, npte, opte;
   3245 	vaddr_t va;
   3246 
   3247 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3248 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3249 
   3250 	PMAP_HEAD_TO_MAP_LOCK();
   3251 	simple_lock(&pg->mdpage.pvh_slock);
   3252 
   3253 	/*
   3254 	 * Clear saved attributes (modify, reference)
   3255 	 */
   3256 	pg->mdpage.pvh_attrs &= ~maskbits;
   3257 
   3258 	if (pg->mdpage.pvh_list == NULL) {
   3259 		simple_unlock(&pg->mdpage.pvh_slock);
   3260 		PMAP_HEAD_TO_MAP_UNLOCK();
   3261 		return;
   3262 	}
   3263 
   3264 	/*
   3265 	 * Loop over all current mappings setting/clearing as appropos
   3266 	 */
   3267 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3268 #ifdef PMAP_ALIAS_DEBUG
   3269     {
   3270 		int s = splhigh();
   3271 		if ((maskbits & PVF_WRITE) != 0 &&
   3272 		    (pv->pv_flags & PVF_WRITE) != 0) {
   3273 			KASSERT(pg->mdpage.rw_mappings != 0);
   3274 			pg->mdpage.rw_mappings--;
   3275 			pg->mdpage.ro_mappings++;
   3276 		}
   3277 		splx(s);
   3278     }
   3279 #endif /* PMAP_ALIAS_DEBUG */
   3280 		va = pv->pv_va;
   3281 		pv->pv_flags &= ~maskbits;
   3282 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3283 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3284 		npte = opte = ptes[arm_btop(va)];
   3285 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   3286 			if ((pv->pv_flags & PVF_NC)) {
   3287 				/*
   3288 				 * Entry is not cacheable: reenable
   3289 				 * the cache, nothing to flush
   3290 				 *
   3291 				 * Don't turn caching on again if this
   3292 				 * is a modified emulation.  This
   3293 				 * would be inconsitent with the
   3294 				 * settings created by
   3295 				 * pmap_vac_me_harder().
   3296 				 *
   3297 				 * There's no need to call
   3298 				 * pmap_vac_me_harder() here: all
   3299 				 * pages are loosing their write
   3300 				 * permission.
   3301 				 *
   3302 				 */
   3303 				if (maskbits & PVF_WRITE) {
   3304 					npte |= pte_l2_s_cache_mode;
   3305 					pv->pv_flags &= ~PVF_NC;
   3306 				}
   3307 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3308 				/*
   3309 				 * Entry is cacheable: check if pmap is
   3310 				 * current if it is flush it,
   3311 				 * otherwise it won't be in the cache
   3312 				 */
   3313 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3314 			}
   3315 
   3316 			/* make the pte read only */
   3317 			npte &= ~L2_S_PROT_W;
   3318 		}
   3319 
   3320 		if (maskbits & PVF_REF) {
   3321 			if (pmap_is_curpmap(pv->pv_pmap) &&
   3322 			    (pv->pv_flags & PVF_NC) == 0) {
   3323 				/*
   3324 				 * Check npte here; we may have already
   3325 				 * done the wbinv above, and the validity
   3326 				 * of the PTE is the same for opte and
   3327 				 * npte.
   3328 				 */
   3329 				if (npte & L2_S_PROT_W) {
   3330 					cpu_idcache_wbinv_range(pv->pv_va,
   3331 					    NBPG);
   3332 				} else if ((npte & L2_TYPE_MASK)
   3333 					   != L2_TYPE_INV) {
   3334 					/* XXXJRT need idcache_inv_range */
   3335 					cpu_idcache_wbinv_range(pv->pv_va,
   3336 					    NBPG);
   3337 				}
   3338 			}
   3339 
   3340 			/* make the pte invalid */
   3341 			npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
   3342 		}
   3343 
   3344 		if (npte != opte) {
   3345 			ptes[arm_btop(va)] = npte;
   3346 			PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
   3347 			/* Flush the TLB entry if a current pmap. */
   3348 			if (pmap_is_curpmap(pv->pv_pmap))
   3349 				cpu_tlb_flushID_SE(pv->pv_va);
   3350 		} else
   3351 			PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
   3352 
   3353 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3354 	}
   3355 	cpu_cpwait();
   3356 
   3357 	simple_unlock(&pg->mdpage.pvh_slock);
   3358 	PMAP_HEAD_TO_MAP_UNLOCK();
   3359 }
   3360 
   3361 /*
   3362  * pmap_clear_modify:
   3363  *
   3364  *	Clear the "modified" attribute for a page.
   3365  */
   3366 boolean_t
   3367 pmap_clear_modify(struct vm_page *pg)
   3368 {
   3369 	boolean_t rv;
   3370 
   3371 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3372 		rv = TRUE;
   3373 		pmap_clearbit(pg, PVF_MOD);
   3374 	} else
   3375 		rv = FALSE;
   3376 
   3377 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3378 	    VM_PAGE_TO_PHYS(pg), rv));
   3379 
   3380 	return (rv);
   3381 }
   3382 
   3383 /*
   3384  * pmap_clear_reference:
   3385  *
   3386  *	Clear the "referenced" attribute for a page.
   3387  */
   3388 boolean_t
   3389 pmap_clear_reference(struct vm_page *pg)
   3390 {
   3391 	boolean_t rv;
   3392 
   3393 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3394 		rv = TRUE;
   3395 		pmap_clearbit(pg, PVF_REF);
   3396 	} else
   3397 		rv = FALSE;
   3398 
   3399 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3400 	    VM_PAGE_TO_PHYS(pg), rv));
   3401 
   3402 	return (rv);
   3403 }
   3404 
   3405 /*
   3406  * pmap_is_modified:
   3407  *
   3408  *	Test if a page has the "modified" attribute.
   3409  */
   3410 /* See <arm/arm32/pmap.h> */
   3411 
   3412 /*
   3413  * pmap_is_referenced:
   3414  *
   3415  *	Test if a page has the "referenced" attribute.
   3416  */
   3417 /* See <arm/arm32/pmap.h> */
   3418 
   3419 int
   3420 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3421 {
   3422 	pt_entry_t *ptes;
   3423 	struct vm_page *pg;
   3424 	paddr_t pa;
   3425 	u_int flags;
   3426 	int rv = 0;
   3427 
   3428 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3429 
   3430 	PMAP_MAP_TO_HEAD_LOCK();
   3431 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3432 
   3433 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3434 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3435 		goto out;
   3436 	}
   3437 
   3438 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3439 
   3440 	/*
   3441 	 * Don't need to PTE_FLUSH_ALT() here; this is always done
   3442 	 * with the current pmap.
   3443 	 */
   3444 
   3445 	/* Check for a invalid pte */
   3446 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3447 		goto out;
   3448 
   3449 	/* This can happen if user code tries to access kernel memory. */
   3450 	if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
   3451 		goto out;
   3452 
   3453 	/* Extract the physical address of the page */
   3454 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3455 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3456 		goto out;
   3457 
   3458 	/* Get the current flags for this page. */
   3459 	simple_lock(&pg->mdpage.pvh_slock);
   3460 
   3461 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3462 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3463 
   3464 	/*
   3465 	 * Do the flags say this page is writable ? If not then it is a
   3466 	 * genuine write fault. If yes then the write fault is our fault
   3467 	 * as we did not reflect the write access in the PTE. Now we know
   3468 	 * a write has occurred we can correct this and also set the
   3469 	 * modified bit
   3470 	 */
   3471 	if (~flags & PVF_WRITE) {
   3472 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3473 		goto out;
   3474 	}
   3475 
   3476 	PDEBUG(0,
   3477 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3478 	    va, ptes[arm_btop(va)]));
   3479 	pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3480 
   3481 	/*
   3482 	 * Re-enable write permissions for the page.  No need to call
   3483 	 * pmap_vac_me_harder(), since this is just a
   3484 	 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
   3485 	 * We've already set the cacheable bits based on the assumption
   3486 	 * that we can write to this page.
   3487 	 */
   3488 	ptes[arm_btop(va)] =
   3489 	    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3490 	PTE_SYNC(&ptes[arm_btop(va)]);
   3491 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3492 
   3493 	simple_unlock(&pg->mdpage.pvh_slock);
   3494 
   3495 	cpu_tlb_flushID_SE(va);
   3496 	cpu_cpwait();
   3497 	rv = 1;
   3498  out:
   3499 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3500 	PMAP_MAP_TO_HEAD_UNLOCK();
   3501 	return (rv);
   3502 }
   3503 
   3504 int
   3505 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3506 {
   3507 	pt_entry_t *ptes;
   3508 	struct vm_page *pg;
   3509 	paddr_t pa;
   3510 	int rv = 0;
   3511 
   3512 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3513 
   3514 	PMAP_MAP_TO_HEAD_LOCK();
   3515 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3516 
   3517 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3518 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3519 		goto out;
   3520 	}
   3521 
   3522 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3523 
   3524 	/*
   3525 	 * Don't need to PTE_FLUSH_ALT() here; this is always done
   3526 	 * with the current pmap.
   3527 	 */
   3528 
   3529 	/* Check for invalid pte */
   3530 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3531 		goto out;
   3532 
   3533 	/* This can happen if user code tries to access kernel memory. */
   3534 	if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
   3535 		goto out;
   3536 
   3537 	/* Extract the physical address of the page */
   3538 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3539 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3540 		goto out;
   3541 
   3542 	simple_lock(&pg->mdpage.pvh_slock);
   3543 
   3544 	/*
   3545 	 * Ok we just enable the pte and mark the attibs as handled
   3546 	 * XXX Should we traverse the PV list and enable all PTEs?
   3547 	 */
   3548 	PDEBUG(0,
   3549 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3550 	    va, ptes[arm_btop(va)]));
   3551 	pg->mdpage.pvh_attrs |= PVF_REF;
   3552 
   3553 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
   3554 	PTE_SYNC(&ptes[arm_btop(va)]);
   3555 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3556 
   3557 	simple_unlock(&pg->mdpage.pvh_slock);
   3558 
   3559 	cpu_tlb_flushID_SE(va);
   3560 	cpu_cpwait();
   3561 	rv = 1;
   3562  out:
   3563 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3564 	PMAP_MAP_TO_HEAD_UNLOCK();
   3565 	return (rv);
   3566 }
   3567 
   3568 /*
   3569  * pmap_collect: free resources held by a pmap
   3570  *
   3571  * => optional function.
   3572  * => called when a process is swapped out to free memory.
   3573  */
   3574 
   3575 void
   3576 pmap_collect(struct pmap *pmap)
   3577 {
   3578 }
   3579 
   3580 /*
   3581  * Routine:	pmap_procwr
   3582  *
   3583  * Function:
   3584  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3585  *
   3586  */
   3587 void
   3588 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3589 {
   3590 	/* We only need to do anything if it is the current process. */
   3591 	if (p == curproc)
   3592 		cpu_icache_sync_range(va, len);
   3593 }
   3594 /*
   3595  * PTP functions
   3596  */
   3597 
   3598 /*
   3599  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3600  *
   3601  * => pmap should NOT be pmap_kernel()
   3602  * => pmap should be locked
   3603  */
   3604 
   3605 static struct vm_page *
   3606 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3607 {
   3608 	struct vm_page *ptp;
   3609 	pd_entry_t	*pde;
   3610 
   3611 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
   3612 
   3613 	pde = pmap_pde(pmap, va);
   3614 	if (pmap_pde_v(pde)) {
   3615 		/* valid... check hint (saves us a PA->PG lookup) */
   3616 		if (pmap->pm_ptphint &&
   3617 		    ((*pde) & L2_S_FRAME) ==
   3618 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3619 			return (pmap->pm_ptphint);
   3620 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3621 #ifdef DIAGNOSTIC
   3622 		if (ptp == NULL)
   3623 			panic("pmap_get_ptp: unmanaged user PTP");
   3624 #endif
   3625 		pmap->pm_ptphint = ptp;
   3626 		return(ptp);
   3627 	}
   3628 
   3629 	/* allocate a new PTP (updates ptphint) */
   3630 	return (pmap_alloc_ptp(pmap, va));
   3631 }
   3632 
   3633 /*
   3634  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3635  *
   3636  * => pmap should already be locked by caller
   3637  * => we use the ptp's wire_count to count the number of active mappings
   3638  *	in the PTP (we start it at one to prevent any chance this PTP
   3639  *	will ever leak onto the active/inactive queues)
   3640  */
   3641 
   3642 /*__inline */ static struct vm_page *
   3643 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3644 {
   3645 	struct vm_page *ptp;
   3646 
   3647 	KASSERT((va & PD_OFFSET) == 0);		/* XXX KDASSERT */
   3648 
   3649 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3650 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3651 	if (ptp == NULL)
   3652 		return (NULL);
   3653 
   3654 	/* got one! */
   3655 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3656 	ptp->wire_count = 1;	/* no mappings yet */
   3657 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
   3658 	    PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
   3659 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3660 	pmap->pm_ptphint = ptp;
   3661 	return (ptp);
   3662 }
   3663 
   3664 vaddr_t
   3665 pmap_growkernel(vaddr_t maxkvaddr)
   3666 {
   3667 	struct pmap *kpm = pmap_kernel(), *pm;
   3668 	int s;
   3669 	paddr_t ptaddr;
   3670 	struct vm_page *ptp;
   3671 
   3672 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3673 		goto out;		/* we are OK */
   3674 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3675 		    pmap_curmaxkvaddr, maxkvaddr));
   3676 
   3677 	/*
   3678 	 * whoops!   we need to add kernel PTPs
   3679 	 */
   3680 
   3681 	s = splhigh();	/* to be safe */
   3682 	simple_lock(&kpm->pm_obj.vmobjlock);
   3683 	/* due to the way the arm pmap works we map 4MB at a time */
   3684 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3685 	     pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
   3686 
   3687 		if (uvm.page_init_done == FALSE) {
   3688 
   3689 			/*
   3690 			 * we're growing the kernel pmap early (from
   3691 			 * uvm_pageboot_alloc()).  this case must be
   3692 			 * handled a little differently.
   3693 			 */
   3694 
   3695 			if (uvm_page_physget(&ptaddr) == FALSE)
   3696 				panic("pmap_growkernel: out of memory");
   3697 			pmap_zero_page(ptaddr);
   3698 
   3699 			/* map this page in */
   3700 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
   3701 			    PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
   3702 
   3703 			/* count PTP as resident */
   3704 			kpm->pm_stats.resident_count++;
   3705 			continue;
   3706 		}
   3707 
   3708 		/*
   3709 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3710 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3711 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3712 		 */
   3713 
   3714 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3715 			panic("pmap_growkernel: alloc ptp failed");
   3716 
   3717 		/* distribute new kernel PTP to all active pmaps */
   3718 		simple_lock(&pmaps_lock);
   3719 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3720 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3721 			    VM_PAGE_TO_PHYS(ptp),
   3722 			    PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
   3723 		}
   3724 
   3725 		/* Invalidate the PTPT cache. */
   3726 		pool_cache_invalidate(&pmap_ptpt_cache);
   3727 		pmap_ptpt_cache_generation++;
   3728 
   3729 		simple_unlock(&pmaps_lock);
   3730 	}
   3731 
   3732 	/*
   3733 	 * flush out the cache, expensive but growkernel will happen so
   3734 	 * rarely
   3735 	 */
   3736 	cpu_tlb_flushD();
   3737 	cpu_cpwait();
   3738 
   3739 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3740 	splx(s);
   3741 
   3742 out:
   3743 	return (pmap_curmaxkvaddr);
   3744 }
   3745 
   3746 /************************ Utility routines ****************************/
   3747 
   3748 /*
   3749  * vector_page_setprot:
   3750  *
   3751  *	Manipulate the protection of the vector page.
   3752  */
   3753 void
   3754 vector_page_setprot(int prot)
   3755 {
   3756 	pt_entry_t *pte;
   3757 
   3758 	pte = vtopte(vector_page);
   3759 
   3760 	*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   3761 	PTE_SYNC(pte);
   3762 	cpu_tlb_flushD_SE(vector_page);
   3763 	cpu_cpwait();
   3764 }
   3765 
   3766 /************************ Bootstrapping routines ****************************/
   3767 
   3768 /*
   3769  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3770  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3771  * find them as necessary.
   3772  *
   3773  * Note that the data on this list is not valid after initarm() returns.
   3774  */
   3775 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3776 
   3777 static vaddr_t
   3778 kernel_pt_lookup(paddr_t pa)
   3779 {
   3780 	pv_addr_t *pv;
   3781 
   3782 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3783 		if (pv->pv_pa == pa)
   3784 			return (pv->pv_va);
   3785 	}
   3786 	return (0);
   3787 }
   3788 
   3789 /*
   3790  * pmap_map_section:
   3791  *
   3792  *	Create a single section mapping.
   3793  */
   3794 void
   3795 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3796 {
   3797 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3798 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3799 
   3800 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   3801 
   3802 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3803 	    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3804 }
   3805 
   3806 /*
   3807  * pmap_map_entry:
   3808  *
   3809  *	Create a single page mapping.
   3810  */
   3811 void
   3812 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3813 {
   3814 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3815 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3816 	pt_entry_t *pte;
   3817 
   3818 	KASSERT(((va | pa) & PGOFSET) == 0);
   3819 
   3820 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3821 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3822 
   3823 	pte = (pt_entry_t *)
   3824 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3825 	if (pte == NULL)
   3826 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3827 
   3828 	pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3829 	    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3830 }
   3831 
   3832 /*
   3833  * pmap_link_l2pt:
   3834  *
   3835  *	Link the L2 page table specified by "pa" into the L1
   3836  *	page table at the slot for "va".
   3837  */
   3838 void
   3839 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3840 {
   3841 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3842 	u_int slot = va >> L1_S_SHIFT;
   3843 
   3844 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3845 
   3846 	pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
   3847 	pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
   3848 	pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
   3849 	pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
   3850 
   3851 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3852 }
   3853 
   3854 /*
   3855  * pmap_map_chunk:
   3856  *
   3857  *	Map a chunk of memory using the most efficient mappings
   3858  *	possible (section, large page, small page) into the
   3859  *	provided L1 and L2 tables at the specified virtual address.
   3860  */
   3861 vsize_t
   3862 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3863     int prot, int cache)
   3864 {
   3865 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3866 	pt_entry_t *pte, fl;
   3867 	vsize_t resid;
   3868 	int i;
   3869 
   3870 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3871 
   3872 	if (l1pt == 0)
   3873 		panic("pmap_map_chunk: no L1 table provided");
   3874 
   3875 #ifdef VERBOSE_INIT_ARM
   3876 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3877 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3878 #endif
   3879 
   3880 	size = resid;
   3881 
   3882 	while (resid > 0) {
   3883 		/* See if we can use a section mapping. */
   3884 		if (((pa | va) & L1_S_OFFSET) == 0 &&
   3885 		    resid >= L1_S_SIZE) {
   3886 			fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3887 #ifdef VERBOSE_INIT_ARM
   3888 			printf("S");
   3889 #endif
   3890 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3891 			    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3892 			va += L1_S_SIZE;
   3893 			pa += L1_S_SIZE;
   3894 			resid -= L1_S_SIZE;
   3895 			continue;
   3896 		}
   3897 
   3898 		/*
   3899 		 * Ok, we're going to use an L2 table.  Make sure
   3900 		 * one is actually in the corresponding L1 slot
   3901 		 * for the current VA.
   3902 		 */
   3903 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3904 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3905 
   3906 		pte = (pt_entry_t *)
   3907 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3908 		if (pte == NULL)
   3909 			panic("pmap_map_chunk: can't find L2 table for VA"
   3910 			    "0x%08lx", va);
   3911 
   3912 		/* See if we can use a L2 large page mapping. */
   3913 		if (((pa | va) & L2_L_OFFSET) == 0 &&
   3914 		    resid >= L2_L_SIZE) {
   3915 			fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
   3916 #ifdef VERBOSE_INIT_ARM
   3917 			printf("L");
   3918 #endif
   3919 			for (i = 0; i < 16; i++) {
   3920 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3921 				    L2_L_PROTO | pa |
   3922 				    L2_L_PROT(PTE_KERNEL, prot) | fl;
   3923 			}
   3924 			va += L2_L_SIZE;
   3925 			pa += L2_L_SIZE;
   3926 			resid -= L2_L_SIZE;
   3927 			continue;
   3928 		}
   3929 
   3930 		/* Use a small page mapping. */
   3931 		fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3932 #ifdef VERBOSE_INIT_ARM
   3933 		printf("P");
   3934 #endif
   3935 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3936 		    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3937 		va += NBPG;
   3938 		pa += NBPG;
   3939 		resid -= NBPG;
   3940 	}
   3941 #ifdef VERBOSE_INIT_ARM
   3942 	printf("\n");
   3943 #endif
   3944 	return (size);
   3945 }
   3946 
   3947 /********************** PTE initialization routines **************************/
   3948 
   3949 /*
   3950  * These routines are called when the CPU type is identified to set up
   3951  * the PTE prototypes, cache modes, etc.
   3952  *
   3953  * The variables are always here, just in case LKMs need to reference
   3954  * them (though, they shouldn't).
   3955  */
   3956 
   3957 pt_entry_t	pte_l1_s_cache_mode;
   3958 pt_entry_t	pte_l1_s_cache_mask;
   3959 
   3960 pt_entry_t	pte_l2_l_cache_mode;
   3961 pt_entry_t	pte_l2_l_cache_mask;
   3962 
   3963 pt_entry_t	pte_l2_s_cache_mode;
   3964 pt_entry_t	pte_l2_s_cache_mask;
   3965 
   3966 pt_entry_t	pte_l2_s_prot_u;
   3967 pt_entry_t	pte_l2_s_prot_w;
   3968 pt_entry_t	pte_l2_s_prot_mask;
   3969 
   3970 pt_entry_t	pte_l1_s_proto;
   3971 pt_entry_t	pte_l1_c_proto;
   3972 pt_entry_t	pte_l2_s_proto;
   3973 
   3974 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   3975 void		(*pmap_zero_page_func)(paddr_t);
   3976 
   3977 #if ARM_MMU_GENERIC == 1
   3978 void
   3979 pmap_pte_init_generic(void)
   3980 {
   3981 
   3982 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3983 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   3984 
   3985 	pte_l2_l_cache_mode = L2_B|L2_C;
   3986 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   3987 
   3988 	pte_l2_s_cache_mode = L2_B|L2_C;
   3989 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   3990 
   3991 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   3992 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   3993 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   3994 
   3995 	pte_l1_s_proto = L1_S_PROTO_generic;
   3996 	pte_l1_c_proto = L1_C_PROTO_generic;
   3997 	pte_l2_s_proto = L2_S_PROTO_generic;
   3998 
   3999 	pmap_copy_page_func = pmap_copy_page_generic;
   4000 	pmap_zero_page_func = pmap_zero_page_generic;
   4001 }
   4002 
   4003 #if defined(CPU_ARM9)
   4004 void
   4005 pmap_pte_init_arm9(void)
   4006 {
   4007 
   4008 	/*
   4009 	 * ARM9 is compatible with generic, but we want to use
   4010 	 * write-through caching for now.
   4011 	 */
   4012 	pmap_pte_init_generic();
   4013 
   4014 	pte_l1_s_cache_mode = L1_S_C;
   4015 	pte_l2_l_cache_mode = L2_C;
   4016 	pte_l2_s_cache_mode = L2_C;
   4017 }
   4018 #endif /* CPU_ARM9 */
   4019 #endif /* ARM_MMU_GENERIC == 1 */
   4020 
   4021 #if ARM_MMU_XSCALE == 1
   4022 void
   4023 pmap_pte_init_xscale(void)
   4024 {
   4025 	uint32_t auxctl;
   4026 
   4027 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   4028 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   4029 
   4030 	pte_l2_l_cache_mode = L2_B|L2_C;
   4031 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   4032 
   4033 	pte_l2_s_cache_mode = L2_B|L2_C;
   4034 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   4035 
   4036 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   4037 	/*
   4038 	 * The XScale core has an enhanced mode where writes that
   4039 	 * miss the cache cause a cache line to be allocated.  This
   4040 	 * is significantly faster than the traditional, write-through
   4041 	 * behavior of this case.
   4042 	 *
   4043 	 * However, there is a bug lurking in this pmap module, or in
   4044 	 * other parts of the VM system, or both, which causes corruption
   4045 	 * of NFS-backed files when this cache mode is used.  We have
   4046 	 * an ugly work-around for this problem (disable r/w-allocate
   4047 	 * for managed kernel mappings), but the bug is still evil enough
   4048 	 * to consider this cache mode "experimental".
   4049 	 */
   4050 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
   4051 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
   4052 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
   4053 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   4054 
   4055 #ifdef XSCALE_CACHE_WRITE_THROUGH
   4056 	/*
   4057 	 * Some versions of the XScale core have various bugs in
   4058 	 * their cache units, the work-around for which is to run
   4059 	 * the cache in write-through mode.  Unfortunately, this
   4060 	 * has a major (negative) impact on performance.  So, we
   4061 	 * go ahead and run fast-and-loose, in the hopes that we
   4062 	 * don't line up the planets in a way that will trip the
   4063 	 * bugs.
   4064 	 *
   4065 	 * However, we give you the option to be slow-but-correct.
   4066 	 */
   4067 	pte_l1_s_cache_mode = L1_S_C;
   4068 	pte_l2_l_cache_mode = L2_C;
   4069 	pte_l2_s_cache_mode = L2_C;
   4070 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   4071 
   4072 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   4073 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   4074 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   4075 
   4076 	pte_l1_s_proto = L1_S_PROTO_xscale;
   4077 	pte_l1_c_proto = L1_C_PROTO_xscale;
   4078 	pte_l2_s_proto = L2_S_PROTO_xscale;
   4079 
   4080 	pmap_copy_page_func = pmap_copy_page_xscale;
   4081 	pmap_zero_page_func = pmap_zero_page_xscale;
   4082 
   4083 	/*
   4084 	 * Disable ECC protection of page table access, for now.
   4085 	 */
   4086 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   4087 		: "=r" (auxctl));
   4088 	auxctl &= ~XSCALE_AUXCTL_P;
   4089 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   4090 		:
   4091 		: "r" (auxctl));
   4092 }
   4093 
   4094 /*
   4095  * xscale_setup_minidata:
   4096  *
   4097  *	Set up the mini-data cache clean area.  We require the
   4098  *	caller to allocate the right amount of physically and
   4099  *	virtually contiguous space.
   4100  */
   4101 void
   4102 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   4103 {
   4104 	extern vaddr_t xscale_minidata_clean_addr;
   4105 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   4106 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   4107 	pt_entry_t *pte;
   4108 	vsize_t size;
   4109 	uint32_t auxctl;
   4110 
   4111 	xscale_minidata_clean_addr = va;
   4112 
   4113 	/* Round it to page size. */
   4114 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   4115 
   4116 	for (; size != 0;
   4117 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   4118 		pte = (pt_entry_t *)
   4119 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   4120 		if (pte == NULL)
   4121 			panic("xscale_setup_minidata: can't find L2 table for "
   4122 			    "VA 0x%08lx", va);
   4123 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   4124 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4125 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   4126 	}
   4127 
   4128 	/*
   4129 	 * Configure the mini-data cache for write-back with
   4130 	 * read/write-allocate.
   4131 	 *
   4132 	 * NOTE: In order to reconfigure the mini-data cache, we must
   4133 	 * make sure it contains no valid data!  In order to do that,
   4134 	 * we must issue a global data cache invalidate command!
   4135 	 *
   4136 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   4137 	 * THIS IS VERY IMPORTANT!
   4138 	 */
   4139 
   4140 	/* Invalidate data and mini-data. */
   4141 	__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
   4142 		:
   4143 		: "r" (auxctl));
   4144 
   4145 
   4146 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   4147 		: "=r" (auxctl));
   4148 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   4149 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   4150 		:
   4151 		: "r" (auxctl));
   4152 }
   4153 #endif /* ARM_MMU_XSCALE == 1 */
   4154