pmap.c revision 1.122 1 /* $NetBSD: pmap.c,v 1.122 2002/11/12 22:14:21 chris Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001-2002 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.122 2002/11/12 22:14:21 chris Exp $");
147
148 #ifdef PMAP_DEBUG
149 #define PDEBUG(_lev_,_stat_) \
150 if (pmap_debug_level >= (_lev_)) \
151 ((_stat_))
152 int pmap_debug_level = -2;
153 void pmap_dump_pvlist(vaddr_t phys, char *m);
154
155 /*
156 * for switching to potentially finer grained debugging
157 */
158 #define PDB_FOLLOW 0x0001
159 #define PDB_INIT 0x0002
160 #define PDB_ENTER 0x0004
161 #define PDB_REMOVE 0x0008
162 #define PDB_CREATE 0x0010
163 #define PDB_PTPAGE 0x0020
164 #define PDB_GROWKERN 0x0040
165 #define PDB_BITS 0x0080
166 #define PDB_COLLECT 0x0100
167 #define PDB_PROTECT 0x0200
168 #define PDB_MAP_L1 0x0400
169 #define PDB_BOOTSTRAP 0x1000
170 #define PDB_PARANOIA 0x2000
171 #define PDB_WIRING 0x4000
172 #define PDB_PVDUMP 0x8000
173
174 int debugmap = 0;
175 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
176 #define NPDEBUG(_lev_,_stat_) \
177 if (pmapdebug & (_lev_)) \
178 ((_stat_))
179
180 #else /* PMAP_DEBUG */
181 #define PDEBUG(_lev_,_stat_) /* Nothing */
182 #define NPDEBUG(_lev_,_stat_) /* Nothing */
183 #endif /* PMAP_DEBUG */
184
185 struct pmap kernel_pmap_store;
186
187 /*
188 * linked list of all non-kernel pmaps
189 */
190
191 static LIST_HEAD(, pmap) pmaps;
192
193 /*
194 * pool that pmap structures are allocated from
195 */
196
197 struct pool pmap_pmap_pool;
198
199 /*
200 * pool/cache that PT-PT's are allocated from
201 */
202
203 struct pool pmap_ptpt_pool;
204 struct pool_cache pmap_ptpt_cache;
205 u_int pmap_ptpt_cache_generation;
206
207 static void *pmap_ptpt_page_alloc(struct pool *, int);
208 static void pmap_ptpt_page_free(struct pool *, void *);
209
210 struct pool_allocator pmap_ptpt_allocator = {
211 pmap_ptpt_page_alloc, pmap_ptpt_page_free,
212 };
213
214 static int pmap_ptpt_ctor(void *, void *, int);
215
216 static pt_entry_t *csrc_pte, *cdst_pte;
217 static vaddr_t csrcp, cdstp;
218
219 char *memhook;
220 extern caddr_t msgbufaddr;
221
222 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
223 /*
224 * locking data structures
225 */
226
227 static struct lock pmap_main_lock;
228 static struct simplelock pvalloc_lock;
229 static struct simplelock pmaps_lock;
230 #ifdef LOCKDEBUG
231 #define PMAP_MAP_TO_HEAD_LOCK() \
232 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
233 #define PMAP_MAP_TO_HEAD_UNLOCK() \
234 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
235
236 #define PMAP_HEAD_TO_MAP_LOCK() \
237 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
238 #define PMAP_HEAD_TO_MAP_UNLOCK() \
239 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
240 #else
241 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
242 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
243 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
244 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
245 #endif /* LOCKDEBUG */
246
247 /*
248 * pv_page management structures: locked by pvalloc_lock
249 */
250
251 TAILQ_HEAD(pv_pagelist, pv_page);
252 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
253 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
254 static unsigned int pv_nfpvents; /* # of free pv entries */
255 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
256 static vaddr_t pv_cachedva; /* cached VA for later use */
257
258 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
259 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
260 /* high water mark */
261
262 /*
263 * local prototypes
264 */
265
266 static struct pv_entry *pmap_add_pvpage(struct pv_page *, boolean_t);
267 static struct pv_entry *pmap_alloc_pv(struct pmap *, int); /* see codes below */
268 #define ALLOCPV_NEED 0 /* need PV now */
269 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
270 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
271 static struct pv_entry *pmap_alloc_pvpage(struct pmap *, int);
272 static void pmap_enter_pv(struct vm_page *,
273 struct pv_entry *, struct pmap *,
274 vaddr_t, struct vm_page *, unsigned int);
275 static void pmap_free_pv(struct pmap *, struct pv_entry *);
276 static void pmap_free_pvs(struct pmap *, struct pv_entry *);
277 static void pmap_free_pv_doit(struct pv_entry *);
278 static void pmap_free_pvpage(void);
279 static boolean_t pmap_is_curpmap(struct pmap *);
280 static struct pv_entry *pmap_remove_pv(struct vm_page *, struct pmap *,
281 vaddr_t);
282 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
283 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
284
285 static u_int pmap_modify_pv(struct pmap *, vaddr_t, struct vm_page *,
286 u_int, u_int);
287
288 /*
289 * Structure that describes and L1 table.
290 */
291 struct l1pt {
292 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
293 struct pglist pt_plist; /* Allocated page list */
294 vaddr_t pt_va; /* Allocated virtual address */
295 int pt_flags; /* Flags */
296 };
297 #define PTFLAG_STATIC 0x01 /* Statically allocated */
298 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
299 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
300
301 static void pmap_free_l1pt(struct l1pt *);
302 static int pmap_allocpagedir(struct pmap *);
303 static int pmap_clean_page(struct pv_entry *, boolean_t);
304 static void pmap_page_remove(struct vm_page *);
305
306 static struct vm_page *pmap_alloc_ptp(struct pmap *, vaddr_t);
307 static struct vm_page *pmap_get_ptp(struct pmap *, vaddr_t);
308 __inline static void pmap_clearbit(struct vm_page *, unsigned int);
309
310 extern paddr_t physical_start;
311 extern paddr_t physical_end;
312 extern unsigned int free_pages;
313 extern int max_processes;
314
315 vaddr_t virtual_avail;
316 vaddr_t virtual_end;
317 vaddr_t pmap_curmaxkvaddr;
318
319 vaddr_t avail_start;
320 vaddr_t avail_end;
321
322 extern pv_addr_t systempage;
323
324 /* Variables used by the L1 page table queue code */
325 SIMPLEQ_HEAD(l1pt_queue, l1pt);
326 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
327 static int l1pt_static_queue_count; /* items in the static l1 queue */
328 static int l1pt_static_create_count; /* static l1 items created */
329 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
330 static int l1pt_queue_count; /* items in the l1 queue */
331 static int l1pt_create_count; /* stat - L1's create count */
332 static int l1pt_reuse_count; /* stat - L1's reused count */
333
334 /* Local function prototypes (not used outside this file) */
335 void pmap_pinit(struct pmap *);
336 void pmap_freepagedir(struct pmap *);
337
338 /* Other function prototypes */
339 extern void bzero_page(vaddr_t);
340 extern void bcopy_page(vaddr_t, vaddr_t);
341
342 struct l1pt *pmap_alloc_l1pt(void);
343 static __inline void pmap_map_in_l1(struct pmap *pmap, vaddr_t va,
344 vaddr_t l2pa, int);
345
346 static pt_entry_t *pmap_map_ptes(struct pmap *);
347 static void pmap_unmap_ptes(struct pmap *);
348
349 __inline static void pmap_vac_me_harder(struct pmap *, struct vm_page *,
350 pt_entry_t *, boolean_t);
351 static void pmap_vac_me_kpmap(struct pmap *, struct vm_page *,
352 pt_entry_t *, boolean_t);
353 static void pmap_vac_me_user(struct pmap *, struct vm_page *,
354 pt_entry_t *, boolean_t);
355
356 /*
357 * real definition of pv_entry.
358 */
359
360 struct pv_entry {
361 struct pv_entry *pv_next; /* next pv_entry */
362 struct pmap *pv_pmap; /* pmap where mapping lies */
363 vaddr_t pv_va; /* virtual address for mapping */
364 int pv_flags; /* flags */
365 struct vm_page *pv_ptp; /* vm_page for the ptp */
366 };
367
368 /*
369 * pv_entrys are dynamically allocated in chunks from a single page.
370 * we keep track of how many pv_entrys are in use for each page and
371 * we can free pv_entry pages if needed. there is one lock for the
372 * entire allocation system.
373 */
374
375 struct pv_page_info {
376 TAILQ_ENTRY(pv_page) pvpi_list;
377 struct pv_entry *pvpi_pvfree;
378 int pvpi_nfree;
379 };
380
381 /*
382 * number of pv_entry's in a pv_page
383 * (note: won't work on systems where NPBG isn't a constant)
384 */
385
386 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
387 sizeof(struct pv_entry))
388
389 /*
390 * a pv_page: where pv_entrys are allocated from
391 */
392
393 struct pv_page {
394 struct pv_page_info pvinfo;
395 struct pv_entry pvents[PVE_PER_PVPAGE];
396 };
397
398 #ifdef MYCROFT_HACK
399 int mycroft_hack = 0;
400 #endif
401
402 /* Function to set the debug level of the pmap code */
403
404 #ifdef PMAP_DEBUG
405 void
406 pmap_debug(int level)
407 {
408 pmap_debug_level = level;
409 printf("pmap_debug: level=%d\n", pmap_debug_level);
410 }
411 #endif /* PMAP_DEBUG */
412
413 __inline static boolean_t
414 pmap_is_curpmap(struct pmap *pmap)
415 {
416
417 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
418 pmap == pmap_kernel())
419 return (TRUE);
420
421 return (FALSE);
422 }
423
424 /*
425 * PTE_SYNC_CURRENT:
426 *
427 * Make sure the pte is flushed to RAM. If the pmap is
428 * not the current pmap, then also evict the pte from
429 * any cache lines.
430 */
431 #define PTE_SYNC_CURRENT(pmap, pte) \
432 do { \
433 if (pmap_is_curpmap(pmap)) \
434 PTE_SYNC(pte); \
435 else \
436 PTE_FLUSH(pte); \
437 } while (/*CONSTCOND*/0)
438
439 /*
440 * PTE_FLUSH_ALT:
441 *
442 * Make sure the pte is not in any cache lines. We expect
443 * this to be used only when a pte has not been modified.
444 */
445 #define PTE_FLUSH_ALT(pmap, pte) \
446 do { \
447 if (pmap_is_curpmap(pmap) == 0) \
448 PTE_FLUSH(pte); \
449 } while (/*CONSTCOND*/0)
450
451 /*
452 * p v _ e n t r y f u n c t i o n s
453 */
454
455 /*
456 * pv_entry allocation functions:
457 * the main pv_entry allocation functions are:
458 * pmap_alloc_pv: allocate a pv_entry structure
459 * pmap_free_pv: free one pv_entry
460 * pmap_free_pvs: free a list of pv_entrys
461 *
462 * the rest are helper functions
463 */
464
465 /*
466 * pmap_alloc_pv: inline function to allocate a pv_entry structure
467 * => we lock pvalloc_lock
468 * => if we fail, we call out to pmap_alloc_pvpage
469 * => 3 modes:
470 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
471 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
472 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
473 * one now
474 *
475 * "try" is for optional functions like pmap_copy().
476 */
477
478 __inline static struct pv_entry *
479 pmap_alloc_pv(struct pmap *pmap, int mode)
480 {
481 struct pv_page *pvpage;
482 struct pv_entry *pv;
483
484 simple_lock(&pvalloc_lock);
485
486 pvpage = TAILQ_FIRST(&pv_freepages);
487
488 if (pvpage != NULL) {
489 pvpage->pvinfo.pvpi_nfree--;
490 if (pvpage->pvinfo.pvpi_nfree == 0) {
491 /* nothing left in this one? */
492 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
493 }
494 pv = pvpage->pvinfo.pvpi_pvfree;
495 KASSERT(pv);
496 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
497 pv_nfpvents--; /* took one from pool */
498 } else {
499 pv = NULL; /* need more of them */
500 }
501
502 /*
503 * if below low water mark or we didn't get a pv_entry we try and
504 * create more pv_entrys ...
505 */
506
507 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
508 if (pv == NULL)
509 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
510 mode : ALLOCPV_NEED);
511 else
512 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
513 }
514
515 simple_unlock(&pvalloc_lock);
516 return(pv);
517 }
518
519 /*
520 * pmap_alloc_pvpage: maybe allocate a new pvpage
521 *
522 * if need_entry is false: try and allocate a new pv_page
523 * if need_entry is true: try and allocate a new pv_page and return a
524 * new pv_entry from it. if we are unable to allocate a pv_page
525 * we make a last ditch effort to steal a pv_page from some other
526 * mapping. if that fails, we panic...
527 *
528 * => we assume that the caller holds pvalloc_lock
529 */
530
531 static struct pv_entry *
532 pmap_alloc_pvpage(struct pmap *pmap, int mode)
533 {
534 struct vm_page *pg;
535 struct pv_page *pvpage;
536 struct pv_entry *pv;
537
538 /*
539 * if we need_entry and we've got unused pv_pages, allocate from there
540 */
541
542 pvpage = TAILQ_FIRST(&pv_unusedpgs);
543 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
544
545 /* move it to pv_freepages list */
546 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
547 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
548
549 /* allocate a pv_entry */
550 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
551 pv = pvpage->pvinfo.pvpi_pvfree;
552 KASSERT(pv);
553 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
554
555 pv_nfpvents--; /* took one from pool */
556 return(pv);
557 }
558
559 /*
560 * see if we've got a cached unmapped VA that we can map a page in.
561 * if not, try to allocate one.
562 */
563
564
565 if (pv_cachedva == 0) {
566 int s;
567 s = splvm();
568 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
569 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
570 splx(s);
571 if (pv_cachedva == 0) {
572 return (NULL);
573 }
574 }
575
576 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
577 UVM_PGA_USERESERVE);
578
579 if (pg == NULL)
580 return (NULL);
581 pg->flags &= ~PG_BUSY; /* never busy */
582
583 /*
584 * add a mapping for our new pv_page and free its entrys (save one!)
585 *
586 * NOTE: If we are allocating a PV page for the kernel pmap, the
587 * pmap is already locked! (...but entering the mapping is safe...)
588 */
589
590 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
591 VM_PROT_READ|VM_PROT_WRITE);
592 pmap_update(pmap_kernel());
593 pvpage = (struct pv_page *) pv_cachedva;
594 pv_cachedva = 0;
595 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
596 }
597
598 /*
599 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
600 *
601 * => caller must hold pvalloc_lock
602 * => if need_entry is true, we allocate and return one pv_entry
603 */
604
605 static struct pv_entry *
606 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
607 {
608 unsigned int tofree, lcv;
609
610 /* do we need to return one? */
611 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
612
613 pvp->pvinfo.pvpi_pvfree = NULL;
614 pvp->pvinfo.pvpi_nfree = tofree;
615 for (lcv = 0 ; lcv < tofree ; lcv++) {
616 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
617 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
618 }
619 if (need_entry)
620 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
621 else
622 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
623 pv_nfpvents += tofree;
624 return((need_entry) ? &pvp->pvents[lcv] : NULL);
625 }
626
627 /*
628 * pmap_free_pv_doit: actually free a pv_entry
629 *
630 * => do not call this directly! instead use either
631 * 1. pmap_free_pv ==> free a single pv_entry
632 * 2. pmap_free_pvs => free a list of pv_entrys
633 * => we must be holding pvalloc_lock
634 */
635
636 __inline static void
637 pmap_free_pv_doit(struct pv_entry *pv)
638 {
639 struct pv_page *pvp;
640
641 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
642 pv_nfpvents++;
643 pvp->pvinfo.pvpi_nfree++;
644
645 /* nfree == 1 => fully allocated page just became partly allocated */
646 if (pvp->pvinfo.pvpi_nfree == 1) {
647 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
648 }
649
650 /* free it */
651 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
652 pvp->pvinfo.pvpi_pvfree = pv;
653
654 /*
655 * are all pv_page's pv_entry's free? move it to unused queue.
656 */
657
658 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
659 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
660 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
661 }
662 }
663
664 /*
665 * pmap_free_pv: free a single pv_entry
666 *
667 * => we gain the pvalloc_lock
668 */
669
670 __inline static void
671 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
672 {
673 simple_lock(&pvalloc_lock);
674 pmap_free_pv_doit(pv);
675
676 /*
677 * Can't free the PV page if the PV entries were associated with
678 * the kernel pmap; the pmap is already locked.
679 */
680 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
681 pmap != pmap_kernel())
682 pmap_free_pvpage();
683
684 simple_unlock(&pvalloc_lock);
685 }
686
687 /*
688 * pmap_free_pvs: free a list of pv_entrys
689 *
690 * => we gain the pvalloc_lock
691 */
692
693 __inline static void
694 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
695 {
696 struct pv_entry *nextpv;
697
698 simple_lock(&pvalloc_lock);
699
700 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
701 nextpv = pvs->pv_next;
702 pmap_free_pv_doit(pvs);
703 }
704
705 /*
706 * Can't free the PV page if the PV entries were associated with
707 * the kernel pmap; the pmap is already locked.
708 */
709 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
710 pmap != pmap_kernel())
711 pmap_free_pvpage();
712
713 simple_unlock(&pvalloc_lock);
714 }
715
716
717 /*
718 * pmap_free_pvpage: try and free an unused pv_page structure
719 *
720 * => assume caller is holding the pvalloc_lock and that
721 * there is a page on the pv_unusedpgs list
722 * => if we can't get a lock on the kmem_map we try again later
723 */
724
725 static void
726 pmap_free_pvpage(void)
727 {
728 int s;
729 struct vm_map *map;
730 struct vm_map_entry *dead_entries;
731 struct pv_page *pvp;
732
733 s = splvm(); /* protect kmem_map */
734
735 pvp = TAILQ_FIRST(&pv_unusedpgs);
736
737 /*
738 * note: watch out for pv_initpage which is allocated out of
739 * kernel_map rather than kmem_map.
740 */
741 if (pvp == pv_initpage)
742 map = kernel_map;
743 else
744 map = kmem_map;
745 if (vm_map_lock_try(map)) {
746
747 /* remove pvp from pv_unusedpgs */
748 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
749
750 /* unmap the page */
751 dead_entries = NULL;
752 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
753 &dead_entries);
754 vm_map_unlock(map);
755
756 if (dead_entries != NULL)
757 uvm_unmap_detach(dead_entries, 0);
758
759 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
760 }
761 if (pvp == pv_initpage)
762 /* no more initpage, we've freed it */
763 pv_initpage = NULL;
764
765 splx(s);
766 }
767
768 /*
769 * main pv_entry manipulation functions:
770 * pmap_enter_pv: enter a mapping onto a vm_page list
771 * pmap_remove_pv: remove a mappiing from a vm_page list
772 *
773 * NOTE: pmap_enter_pv expects to lock the pvh itself
774 * pmap_remove_pv expects te caller to lock the pvh before calling
775 */
776
777 /*
778 * pmap_enter_pv: enter a mapping onto a vm_page lst
779 *
780 * => caller should hold the proper lock on pmap_main_lock
781 * => caller should have pmap locked
782 * => we will gain the lock on the vm_page and allocate the new pv_entry
783 * => caller should adjust ptp's wire_count before calling
784 * => caller should not adjust pmap's wire_count
785 */
786
787 __inline static void
788 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
789 vaddr_t va, struct vm_page *ptp, unsigned int flags)
790 {
791 pve->pv_pmap = pmap;
792 pve->pv_va = va;
793 pve->pv_ptp = ptp; /* NULL for kernel pmap */
794 pve->pv_flags = flags;
795 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
796 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
797 pg->mdpage.pvh_list = pve; /* ... locked list */
798 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
799 if (pve->pv_flags & PVF_WIRED)
800 ++pmap->pm_stats.wired_count;
801 #ifdef PMAP_ALIAS_DEBUG
802 {
803 int s = splhigh();
804 if (pve->pv_flags & PVF_WRITE)
805 pg->mdpage.rw_mappings++;
806 else
807 pg->mdpage.ro_mappings++;
808 if (pg->mdpage.rw_mappings != 0 &&
809 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
810 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
811 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
812 pg->mdpage.krw_mappings);
813 }
814 splx(s);
815 }
816 #endif /* PMAP_ALIAS_DEBUG */
817 }
818
819 /*
820 * pmap_remove_pv: try to remove a mapping from a pv_list
821 *
822 * => caller should hold proper lock on pmap_main_lock
823 * => pmap should be locked
824 * => caller should hold lock on vm_page [so that attrs can be adjusted]
825 * => caller should adjust ptp's wire_count and free PTP if needed
826 * => caller should NOT adjust pmap's wire_count
827 * => we return the removed pve
828 */
829
830 __inline static struct pv_entry *
831 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
832 {
833 struct pv_entry *pve, **prevptr;
834
835 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
836 pve = *prevptr;
837 while (pve) {
838 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
839 *prevptr = pve->pv_next; /* remove it! */
840 if (pve->pv_flags & PVF_WIRED)
841 --pmap->pm_stats.wired_count;
842 #ifdef PMAP_ALIAS_DEBUG
843 {
844 int s = splhigh();
845 if (pve->pv_flags & PVF_WRITE) {
846 KASSERT(pg->mdpage.rw_mappings != 0);
847 pg->mdpage.rw_mappings--;
848 } else {
849 KASSERT(pg->mdpage.ro_mappings != 0);
850 pg->mdpage.ro_mappings--;
851 }
852 splx(s);
853 }
854 #endif /* PMAP_ALIAS_DEBUG */
855 break;
856 }
857 prevptr = &pve->pv_next; /* previous pointer */
858 pve = pve->pv_next; /* advance */
859 }
860 return(pve); /* return removed pve */
861 }
862
863 /*
864 *
865 * pmap_modify_pv: Update pv flags
866 *
867 * => caller should hold lock on vm_page [so that attrs can be adjusted]
868 * => caller should NOT adjust pmap's wire_count
869 * => caller must call pmap_vac_me_harder() if writable status of a page
870 * may have changed.
871 * => we return the old flags
872 *
873 * Modify a physical-virtual mapping in the pv table
874 */
875
876 static /* __inline */ u_int
877 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
878 u_int bic_mask, u_int eor_mask)
879 {
880 struct pv_entry *npv;
881 u_int flags, oflags;
882
883 /*
884 * There is at least one VA mapping this page.
885 */
886
887 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
888 if (pmap == npv->pv_pmap && va == npv->pv_va) {
889 oflags = npv->pv_flags;
890 npv->pv_flags = flags =
891 ((oflags & ~bic_mask) ^ eor_mask);
892 if ((flags ^ oflags) & PVF_WIRED) {
893 if (flags & PVF_WIRED)
894 ++pmap->pm_stats.wired_count;
895 else
896 --pmap->pm_stats.wired_count;
897 }
898 #ifdef PMAP_ALIAS_DEBUG
899 {
900 int s = splhigh();
901 if ((flags ^ oflags) & PVF_WRITE) {
902 if (flags & PVF_WRITE) {
903 pg->mdpage.rw_mappings++;
904 pg->mdpage.ro_mappings--;
905 if (pg->mdpage.rw_mappings != 0 &&
906 (pg->mdpage.kro_mappings != 0 ||
907 pg->mdpage.krw_mappings != 0)) {
908 printf("pmap_modify_pv: rw %u, "
909 "kro %u, krw %u\n",
910 pg->mdpage.rw_mappings,
911 pg->mdpage.kro_mappings,
912 pg->mdpage.krw_mappings);
913 }
914 } else {
915 KASSERT(pg->mdpage.rw_mappings != 0);
916 pg->mdpage.rw_mappings--;
917 pg->mdpage.ro_mappings++;
918 }
919 }
920 splx(s);
921 }
922 #endif /* PMAP_ALIAS_DEBUG */
923 return (oflags);
924 }
925 }
926 return (0);
927 }
928
929 /*
930 * Map the specified level 2 pagetable into the level 1 page table for
931 * the given pmap to cover a chunk of virtual address space starting from the
932 * address specified.
933 */
934 #define PMAP_PTP_SELFREF 0x01
935 #define PMAP_PTP_CACHEABLE 0x02
936
937 static __inline void
938 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, int flags)
939 {
940 vaddr_t ptva;
941
942 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
943
944 /* Calculate the index into the L1 page table. */
945 ptva = va >> L1_S_SHIFT;
946
947 /* Map page table into the L1. */
948 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
949 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
950 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
951 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
952 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
953
954 /* Map the page table into the page table area. */
955 if (flags & PMAP_PTP_SELFREF) {
956 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
957 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
958 ((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
959 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
960 }
961 }
962
963 #if 0
964 static __inline void
965 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
966 {
967 vaddr_t ptva;
968
969 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
970
971 /* Calculate the index into the L1 page table. */
972 ptva = va >> L1_S_SHIFT;
973
974 /* Unmap page table from the L1. */
975 pmap->pm_pdir[ptva + 0] = 0;
976 pmap->pm_pdir[ptva + 1] = 0;
977 pmap->pm_pdir[ptva + 2] = 0;
978 pmap->pm_pdir[ptva + 3] = 0;
979 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
980
981 /* Unmap the page table from the page table area. */
982 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
983 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
984 }
985 #endif
986
987 /*
988 * Used to map a range of physical addresses into kernel
989 * virtual address space.
990 *
991 * For now, VM is already on, we only need to map the
992 * specified memory.
993 *
994 * XXX This routine should eventually go away; it's only used
995 * XXX by machine-dependent crash dump code.
996 */
997 vaddr_t
998 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
999 {
1000 pt_entry_t *pte;
1001
1002 while (spa < epa) {
1003 pte = vtopte(va);
1004
1005 *pte = L2_S_PROTO | spa |
1006 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
1007 PTE_SYNC(pte);
1008 cpu_tlb_flushID_SE(va);
1009 va += NBPG;
1010 spa += NBPG;
1011 }
1012 pmap_update(pmap_kernel());
1013 return(va);
1014 }
1015
1016
1017 /*
1018 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1019 *
1020 * bootstrap the pmap system. This is called from initarm and allows
1021 * the pmap system to initailise any structures it requires.
1022 *
1023 * Currently this sets up the kernel_pmap that is statically allocated
1024 * and also allocated virtual addresses for certain page hooks.
1025 * Currently the only one page hook is allocated that is used
1026 * to zero physical pages of memory.
1027 * It also initialises the start and end address of the kernel data space.
1028 */
1029
1030 char *boot_head;
1031
1032 void
1033 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1034 {
1035 pt_entry_t *pte;
1036
1037 pmap_kernel()->pm_pdir = kernel_l1pt;
1038 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1039 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1040 simple_lock_init(&pmap_kernel()->pm_lock);
1041 pmap_kernel()->pm_obj.pgops = NULL;
1042 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1043 pmap_kernel()->pm_obj.uo_npages = 0;
1044 pmap_kernel()->pm_obj.uo_refs = 1;
1045
1046 virtual_avail = KERNEL_VM_BASE;
1047 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1048
1049 /*
1050 * now we allocate the "special" VAs which are used for tmp mappings
1051 * by the pmap (and other modules). we allocate the VAs by advancing
1052 * virtual_avail (note that there are no pages mapped at these VAs).
1053 * we find the PTE that maps the allocated VA via the linear PTE
1054 * mapping.
1055 */
1056
1057 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1058
1059 csrcp = virtual_avail; csrc_pte = pte;
1060 virtual_avail += PAGE_SIZE; pte++;
1061
1062 cdstp = virtual_avail; cdst_pte = pte;
1063 virtual_avail += PAGE_SIZE; pte++;
1064
1065 memhook = (char *) virtual_avail; /* don't need pte */
1066 virtual_avail += PAGE_SIZE; pte++;
1067
1068 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1069 virtual_avail += round_page(MSGBUFSIZE);
1070 pte += atop(round_page(MSGBUFSIZE));
1071
1072 /*
1073 * init the static-global locks and global lists.
1074 */
1075 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1076 simple_lock_init(&pvalloc_lock);
1077 simple_lock_init(&pmaps_lock);
1078 LIST_INIT(&pmaps);
1079 TAILQ_INIT(&pv_freepages);
1080 TAILQ_INIT(&pv_unusedpgs);
1081
1082 /*
1083 * initialize the pmap pool.
1084 */
1085
1086 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1087 &pool_allocator_nointr);
1088
1089 /*
1090 * initialize the PT-PT pool and cache.
1091 */
1092
1093 pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1094 &pmap_ptpt_allocator);
1095 pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1096 pmap_ptpt_ctor, NULL, NULL);
1097
1098 cpu_dcache_wbinv_all();
1099 }
1100
1101 /*
1102 * void pmap_init(void)
1103 *
1104 * Initialize the pmap module.
1105 * Called by vm_init() in vm/vm_init.c in order to initialise
1106 * any structures that the pmap system needs to map virtual memory.
1107 */
1108
1109 extern int physmem;
1110
1111 void
1112 pmap_init(void)
1113 {
1114
1115 /*
1116 * Set the available memory vars - These do not map to real memory
1117 * addresses and cannot as the physical memory is fragmented.
1118 * They are used by ps for %mem calculations.
1119 * One could argue whether this should be the entire memory or just
1120 * the memory that is useable in a user process.
1121 */
1122 avail_start = 0;
1123 avail_end = physmem * NBPG;
1124
1125 /*
1126 * now we need to free enough pv_entry structures to allow us to get
1127 * the kmem_map/kmem_object allocated and inited (done after this
1128 * function is finished). to do this we allocate one bootstrap page out
1129 * of kernel_map and use it to provide an initial pool of pv_entry
1130 * structures. we never free this page.
1131 */
1132
1133 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1134 if (pv_initpage == NULL)
1135 panic("pmap_init: pv_initpage");
1136 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1137 pv_nfpvents = 0;
1138 (void) pmap_add_pvpage(pv_initpage, FALSE);
1139
1140 pmap_initialized = TRUE;
1141
1142 /* Initialise our L1 page table queues and counters */
1143 SIMPLEQ_INIT(&l1pt_static_queue);
1144 l1pt_static_queue_count = 0;
1145 l1pt_static_create_count = 0;
1146 SIMPLEQ_INIT(&l1pt_queue);
1147 l1pt_queue_count = 0;
1148 l1pt_create_count = 0;
1149 l1pt_reuse_count = 0;
1150 }
1151
1152 /*
1153 * pmap_postinit()
1154 *
1155 * This routine is called after the vm and kmem subsystems have been
1156 * initialised. This allows the pmap code to perform any initialisation
1157 * that can only be done one the memory allocation is in place.
1158 */
1159
1160 void
1161 pmap_postinit(void)
1162 {
1163 unsigned int loop;
1164 struct l1pt *pt;
1165
1166 #ifdef PMAP_STATIC_L1S
1167 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1168 #else /* PMAP_STATIC_L1S */
1169 for (loop = 0; loop < max_processes; ++loop) {
1170 #endif /* PMAP_STATIC_L1S */
1171 /* Allocate a L1 page table */
1172 pt = pmap_alloc_l1pt();
1173 if (!pt)
1174 panic("Cannot allocate static L1 page tables");
1175
1176 /* Clean it */
1177 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1178 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1179 /* Add the page table to the queue */
1180 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1181 ++l1pt_static_queue_count;
1182 ++l1pt_static_create_count;
1183 }
1184 }
1185
1186
1187 /*
1188 * Create and return a physical map.
1189 *
1190 * If the size specified for the map is zero, the map is an actual physical
1191 * map, and may be referenced by the hardware.
1192 *
1193 * If the size specified is non-zero, the map will be used in software only,
1194 * and is bounded by that size.
1195 */
1196
1197 pmap_t
1198 pmap_create(void)
1199 {
1200 struct pmap *pmap;
1201
1202 /*
1203 * Fetch pmap entry from the pool
1204 */
1205
1206 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1207 /* XXX is this really needed! */
1208 memset(pmap, 0, sizeof(*pmap));
1209
1210 simple_lock_init(&pmap->pm_obj.vmobjlock);
1211 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1212 TAILQ_INIT(&pmap->pm_obj.memq);
1213 pmap->pm_obj.uo_npages = 0;
1214 pmap->pm_obj.uo_refs = 1;
1215 pmap->pm_stats.wired_count = 0;
1216 pmap->pm_stats.resident_count = 1;
1217 pmap->pm_ptphint = NULL;
1218
1219 /* Now init the machine part of the pmap */
1220 pmap_pinit(pmap);
1221 return(pmap);
1222 }
1223
1224 /*
1225 * pmap_alloc_l1pt()
1226 *
1227 * This routine allocates physical and virtual memory for a L1 page table
1228 * and wires it.
1229 * A l1pt structure is returned to describe the allocated page table.
1230 *
1231 * This routine is allowed to fail if the required memory cannot be allocated.
1232 * In this case NULL is returned.
1233 */
1234
1235 struct l1pt *
1236 pmap_alloc_l1pt(void)
1237 {
1238 paddr_t pa;
1239 vaddr_t va;
1240 struct l1pt *pt;
1241 int error;
1242 struct vm_page *m;
1243
1244 /* Allocate virtual address space for the L1 page table */
1245 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1246 if (va == 0) {
1247 #ifdef DIAGNOSTIC
1248 PDEBUG(0,
1249 printf("pmap: Cannot allocate pageable memory for L1\n"));
1250 #endif /* DIAGNOSTIC */
1251 return(NULL);
1252 }
1253
1254 /* Allocate memory for the l1pt structure */
1255 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1256
1257 /*
1258 * Allocate pages from the VM system.
1259 */
1260 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1261 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1262 if (error) {
1263 #ifdef DIAGNOSTIC
1264 PDEBUG(0,
1265 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1266 error));
1267 #endif /* DIAGNOSTIC */
1268 /* Release the resources we already have claimed */
1269 free(pt, M_VMPMAP);
1270 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1271 return(NULL);
1272 }
1273
1274 /* Map our physical pages into our virtual space */
1275 pt->pt_va = va;
1276 m = TAILQ_FIRST(&pt->pt_plist);
1277 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1278 pa = VM_PAGE_TO_PHYS(m);
1279
1280 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1281
1282 va += NBPG;
1283 m = m->pageq.tqe_next;
1284 }
1285
1286 #ifdef DIAGNOSTIC
1287 if (m)
1288 panic("pmap_alloc_l1pt: pglist not empty");
1289 #endif /* DIAGNOSTIC */
1290
1291 pt->pt_flags = 0;
1292 return(pt);
1293 }
1294
1295 /*
1296 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1297 */
1298 static void
1299 pmap_free_l1pt(struct l1pt *pt)
1300 {
1301 /* Separate the physical memory for the virtual space */
1302 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1303 pmap_update(pmap_kernel());
1304
1305 /* Return the physical memory */
1306 uvm_pglistfree(&pt->pt_plist);
1307
1308 /* Free the virtual space */
1309 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1310
1311 /* Free the l1pt structure */
1312 free(pt, M_VMPMAP);
1313 }
1314
1315 /*
1316 * pmap_ptpt_page_alloc:
1317 *
1318 * Back-end page allocator for the PT-PT pool.
1319 */
1320 static void *
1321 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1322 {
1323 struct vm_page *pg;
1324 pt_entry_t *pte;
1325 vaddr_t va;
1326
1327 /* XXX PR_WAITOK? */
1328 va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1329 if (va == 0)
1330 return (NULL);
1331
1332 for (;;) {
1333 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1334 if (pg != NULL)
1335 break;
1336 if ((flags & PR_WAITOK) == 0) {
1337 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1338 return (NULL);
1339 }
1340 uvm_wait("pmap_ptpt");
1341 }
1342
1343 pte = vtopte(va);
1344 KDASSERT(pmap_pte_v(pte) == 0);
1345
1346 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1347 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1348 PTE_SYNC(pte);
1349 #ifdef PMAP_ALIAS_DEBUG
1350 {
1351 int s = splhigh();
1352 pg->mdpage.krw_mappings++;
1353 splx(s);
1354 }
1355 #endif /* PMAP_ALIAS_DEBUG */
1356
1357 return ((void *) va);
1358 }
1359
1360 /*
1361 * pmap_ptpt_page_free:
1362 *
1363 * Back-end page free'er for the PT-PT pool.
1364 */
1365 static void
1366 pmap_ptpt_page_free(struct pool *pp, void *v)
1367 {
1368 vaddr_t va = (vaddr_t) v;
1369 paddr_t pa;
1370
1371 pa = vtophys(va);
1372
1373 pmap_kremove(va, L2_TABLE_SIZE);
1374 pmap_update(pmap_kernel());
1375
1376 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1377
1378 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1379 }
1380
1381 /*
1382 * pmap_ptpt_ctor:
1383 *
1384 * Constructor for the PT-PT cache.
1385 */
1386 static int
1387 pmap_ptpt_ctor(void *arg, void *object, int flags)
1388 {
1389 caddr_t vptpt = object;
1390
1391 /* Page is already zero'd. */
1392
1393 /*
1394 * Map in kernel PTs.
1395 *
1396 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1397 */
1398 memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1399 (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1400 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1401 (KERNEL_PD_SIZE >> 2));
1402
1403 return (0);
1404 }
1405
1406 /*
1407 * Allocate a page directory.
1408 * This routine will either allocate a new page directory from the pool
1409 * of L1 page tables currently held by the kernel or it will allocate
1410 * a new one via pmap_alloc_l1pt().
1411 * It will then initialise the l1 page table for use.
1412 */
1413 static int
1414 pmap_allocpagedir(struct pmap *pmap)
1415 {
1416 vaddr_t vptpt;
1417 struct l1pt *pt;
1418 u_int gen;
1419
1420 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1421
1422 /* Do we have any spare L1's lying around ? */
1423 if (l1pt_static_queue_count) {
1424 --l1pt_static_queue_count;
1425 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1426 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1427 } else if (l1pt_queue_count) {
1428 --l1pt_queue_count;
1429 pt = SIMPLEQ_FIRST(&l1pt_queue);
1430 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1431 ++l1pt_reuse_count;
1432 } else {
1433 pt = pmap_alloc_l1pt();
1434 if (!pt)
1435 return(ENOMEM);
1436 ++l1pt_create_count;
1437 }
1438
1439 /* Store the pointer to the l1 descriptor in the pmap. */
1440 pmap->pm_l1pt = pt;
1441
1442 /* Store the virtual address of the l1 in the pmap. */
1443 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1444
1445 /* Clean the L1 if it is dirty */
1446 if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1447 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1448 cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1449 (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1450 }
1451
1452 /* Allocate a page table to map all the page tables for this pmap */
1453 KASSERT(pmap->pm_vptpt == 0);
1454
1455 try_again:
1456 gen = pmap_ptpt_cache_generation;
1457 vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1458 if (vptpt == NULL) {
1459 PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1460 pmap_freepagedir(pmap);
1461 return (ENOMEM);
1462 }
1463
1464 /* need to lock this all up for growkernel */
1465 simple_lock(&pmaps_lock);
1466
1467 if (gen != pmap_ptpt_cache_generation) {
1468 simple_unlock(&pmaps_lock);
1469 pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1470 goto try_again;
1471 }
1472
1473 pmap->pm_vptpt = vptpt;
1474 pmap->pm_pptpt = vtophys(vptpt);
1475
1476 /* Duplicate the kernel mappings. */
1477 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1478 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1479 KERNEL_PD_SIZE);
1480 cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1481 (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1482
1483 /* Wire in this page table */
1484 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
1485
1486 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1487
1488 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1489 simple_unlock(&pmaps_lock);
1490
1491 return(0);
1492 }
1493
1494
1495 /*
1496 * Initialize a preallocated and zeroed pmap structure,
1497 * such as one in a vmspace structure.
1498 */
1499
1500 void
1501 pmap_pinit(struct pmap *pmap)
1502 {
1503 int backoff = 6;
1504 int retry = 10;
1505
1506 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1507
1508 /* Keep looping until we succeed in allocating a page directory */
1509 while (pmap_allocpagedir(pmap) != 0) {
1510 /*
1511 * Ok we failed to allocate a suitable block of memory for an
1512 * L1 page table. This means that either:
1513 * 1. 16KB of virtual address space could not be allocated
1514 * 2. 16KB of physically contiguous memory on a 16KB boundary
1515 * could not be allocated.
1516 *
1517 * Since we cannot fail we will sleep for a while and try
1518 * again.
1519 *
1520 * Searching for a suitable L1 PT is expensive:
1521 * to avoid hogging the system when memory is really
1522 * scarce, use an exponential back-off so that
1523 * eventually we won't retry more than once every 8
1524 * seconds. This should allow other processes to run
1525 * to completion and free up resources.
1526 */
1527 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1528 NULL);
1529 if (--retry == 0) {
1530 retry = 10;
1531 if (backoff)
1532 --backoff;
1533 }
1534 }
1535
1536 if (vector_page < KERNEL_BASE) {
1537 /*
1538 * Map the vector page. This will also allocate and map
1539 * an L2 table for it.
1540 */
1541 pmap_enter(pmap, vector_page, systempage.pv_pa,
1542 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1543 pmap_update(pmap);
1544 }
1545 }
1546
1547 void
1548 pmap_freepagedir(struct pmap *pmap)
1549 {
1550 /* Free the memory used for the page table mapping */
1551 if (pmap->pm_vptpt != 0) {
1552 /*
1553 * XXX Objects freed to a pool cache must be in constructed
1554 * XXX form when freed, but we don't free page tables as we
1555 * XXX go, so we need to zap the mappings here.
1556 *
1557 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1558 */
1559 memset((caddr_t) pmap->pm_vptpt, 0,
1560 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1561 pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1562 }
1563
1564 /* junk the L1 page table */
1565 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1566 /* Add the page table to the queue */
1567 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1568 pmap->pm_l1pt, pt_queue);
1569 ++l1pt_static_queue_count;
1570 } else if (l1pt_queue_count < 8) {
1571 /* Add the page table to the queue */
1572 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1573 ++l1pt_queue_count;
1574 } else
1575 pmap_free_l1pt(pmap->pm_l1pt);
1576 }
1577
1578 /*
1579 * Retire the given physical map from service.
1580 * Should only be called if the map contains no valid mappings.
1581 */
1582
1583 void
1584 pmap_destroy(struct pmap *pmap)
1585 {
1586 struct vm_page *page;
1587 int count;
1588
1589 if (pmap == NULL)
1590 return;
1591
1592 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1593
1594 /*
1595 * Drop reference count
1596 */
1597 simple_lock(&pmap->pm_obj.vmobjlock);
1598 count = --pmap->pm_obj.uo_refs;
1599 simple_unlock(&pmap->pm_obj.vmobjlock);
1600 if (count > 0) {
1601 return;
1602 }
1603
1604 /*
1605 * reference count is zero, free pmap resources and then free pmap.
1606 */
1607
1608 /*
1609 * remove it from global list of pmaps
1610 */
1611
1612 simple_lock(&pmaps_lock);
1613 LIST_REMOVE(pmap, pm_list);
1614 simple_unlock(&pmaps_lock);
1615
1616 if (vector_page < KERNEL_BASE) {
1617 /* Remove the vector page mapping */
1618 pmap_remove(pmap, vector_page, vector_page + NBPG);
1619 pmap_update(pmap);
1620 }
1621
1622 /*
1623 * Free any page tables still mapped
1624 * This is only temporay until pmap_enter can count the number
1625 * of mappings made in a page table. Then pmap_remove() can
1626 * reduce the count and free the pagetable when the count
1627 * reaches zero. Note that entries in this list should match the
1628 * contents of the ptpt, however this is faster than walking a 1024
1629 * entries looking for pt's
1630 * taken from i386 pmap.c
1631 */
1632 /*
1633 * vmobjlock must be held while freeing pages
1634 */
1635 simple_lock(&pmap->pm_obj.vmobjlock);
1636 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1637 KASSERT((page->flags & PG_BUSY) == 0);
1638
1639 /* Freeing a PT page? The contents are a throw-away. */
1640 KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
1641 cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
1642
1643 page->wire_count = 0;
1644 uvm_pagefree(page);
1645 }
1646 simple_unlock(&pmap->pm_obj.vmobjlock);
1647
1648 /* Free the page dir */
1649 pmap_freepagedir(pmap);
1650
1651 /* return the pmap to the pool */
1652 pool_put(&pmap_pmap_pool, pmap);
1653 }
1654
1655
1656 /*
1657 * void pmap_reference(struct pmap *pmap)
1658 *
1659 * Add a reference to the specified pmap.
1660 */
1661
1662 void
1663 pmap_reference(struct pmap *pmap)
1664 {
1665 if (pmap == NULL)
1666 return;
1667
1668 simple_lock(&pmap->pm_lock);
1669 pmap->pm_obj.uo_refs++;
1670 simple_unlock(&pmap->pm_lock);
1671 }
1672
1673 /*
1674 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1675 *
1676 * Return the start and end addresses of the kernel's virtual space.
1677 * These values are setup in pmap_bootstrap and are updated as pages
1678 * are allocated.
1679 */
1680
1681 void
1682 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1683 {
1684 *start = virtual_avail;
1685 *end = virtual_end;
1686 }
1687
1688 /*
1689 * Activate the address space for the specified process. If the process
1690 * is the current process, load the new MMU context.
1691 */
1692 void
1693 pmap_activate(struct proc *p)
1694 {
1695 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1696 struct pcb *pcb = &p->p_addr->u_pcb;
1697
1698 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1699 (paddr_t *)&pcb->pcb_pagedir);
1700
1701 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1702 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1703
1704 if (p == curproc) {
1705 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1706 setttb((u_int)pcb->pcb_pagedir);
1707 }
1708 }
1709
1710 /*
1711 * Deactivate the address space of the specified process.
1712 */
1713 void
1714 pmap_deactivate(struct proc *p)
1715 {
1716 }
1717
1718 /*
1719 * Perform any deferred pmap operations.
1720 */
1721 void
1722 pmap_update(struct pmap *pmap)
1723 {
1724
1725 /*
1726 * We haven't deferred any pmap operations, but we do need to
1727 * make sure TLB/cache operations have completed.
1728 */
1729 cpu_cpwait();
1730 }
1731
1732 /*
1733 * pmap_clean_page()
1734 *
1735 * This is a local function used to work out the best strategy to clean
1736 * a single page referenced by its entry in the PV table. It's used by
1737 * pmap_copy_page, pmap_zero page and maybe some others later on.
1738 *
1739 * Its policy is effectively:
1740 * o If there are no mappings, we don't bother doing anything with the cache.
1741 * o If there is one mapping, we clean just that page.
1742 * o If there are multiple mappings, we clean the entire cache.
1743 *
1744 * So that some functions can be further optimised, it returns 0 if it didn't
1745 * clean the entire cache, or 1 if it did.
1746 *
1747 * XXX One bug in this routine is that if the pv_entry has a single page
1748 * mapped at 0x00000000 a whole cache clean will be performed rather than
1749 * just the 1 page. Since this should not occur in everyday use and if it does
1750 * it will just result in not the most efficient clean for the page.
1751 */
1752 static int
1753 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1754 {
1755 struct pmap *pmap;
1756 struct pv_entry *npv;
1757 int cache_needs_cleaning = 0;
1758 vaddr_t page_to_clean = 0;
1759
1760 if (pv == NULL) {
1761 /* nothing mapped in so nothing to flush */
1762 return (0);
1763 }
1764
1765 /*
1766 * Since we flush the cache each time we change curproc, we
1767 * only need to flush the page if it is in the current pmap.
1768 */
1769 if (curproc)
1770 pmap = curproc->p_vmspace->vm_map.pmap;
1771 else
1772 pmap = pmap_kernel();
1773
1774 for (npv = pv; npv; npv = npv->pv_next) {
1775 if (npv->pv_pmap == pmap) {
1776 /*
1777 * The page is mapped non-cacheable in
1778 * this map. No need to flush the cache.
1779 */
1780 if (npv->pv_flags & PVF_NC) {
1781 #ifdef DIAGNOSTIC
1782 if (cache_needs_cleaning)
1783 panic("pmap_clean_page: "
1784 "cache inconsistency");
1785 #endif
1786 break;
1787 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1788 continue;
1789 if (cache_needs_cleaning) {
1790 page_to_clean = 0;
1791 break;
1792 } else
1793 page_to_clean = npv->pv_va;
1794 cache_needs_cleaning = 1;
1795 }
1796 }
1797
1798 if (page_to_clean) {
1799 /*
1800 * XXX If is_src, we really only need to write-back,
1801 * XXX not invalidate, too. Investigate further.
1802 * XXX --thorpej (at) netbsd.org
1803 */
1804 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1805 } else if (cache_needs_cleaning) {
1806 cpu_idcache_wbinv_all();
1807 return (1);
1808 }
1809 return (0);
1810 }
1811
1812 /*
1813 * pmap_zero_page()
1814 *
1815 * Zero a given physical page by mapping it at a page hook point.
1816 * In doing the zero page op, the page we zero is mapped cachable, as with
1817 * StrongARM accesses to non-cached pages are non-burst making writing
1818 * _any_ bulk data very slow.
1819 */
1820 #if ARM_MMU_GENERIC == 1
1821 void
1822 pmap_zero_page_generic(paddr_t phys)
1823 {
1824 #ifdef DEBUG
1825 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1826
1827 if (pg->mdpage.pvh_list != NULL)
1828 panic("pmap_zero_page: page has mappings");
1829 #endif
1830
1831 KDASSERT((phys & PGOFSET) == 0);
1832
1833 /*
1834 * Hook in the page, zero it, and purge the cache for that
1835 * zeroed page. Invalidate the TLB as needed.
1836 */
1837 *cdst_pte = L2_S_PROTO | phys |
1838 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1839 PTE_SYNC(cdst_pte);
1840 cpu_tlb_flushD_SE(cdstp);
1841 cpu_cpwait();
1842 bzero_page(cdstp);
1843 cpu_dcache_wbinv_range(cdstp, NBPG);
1844 }
1845 #endif /* ARM_MMU_GENERIC == 1 */
1846
1847 #if ARM_MMU_XSCALE == 1
1848 void
1849 pmap_zero_page_xscale(paddr_t phys)
1850 {
1851 #ifdef DEBUG
1852 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1853
1854 if (pg->mdpage.pvh_list != NULL)
1855 panic("pmap_zero_page: page has mappings");
1856 #endif
1857
1858 KDASSERT((phys & PGOFSET) == 0);
1859
1860 /*
1861 * Hook in the page, zero it, and purge the cache for that
1862 * zeroed page. Invalidate the TLB as needed.
1863 */
1864 *cdst_pte = L2_S_PROTO | phys |
1865 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1866 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1867 PTE_SYNC(cdst_pte);
1868 cpu_tlb_flushD_SE(cdstp);
1869 cpu_cpwait();
1870 bzero_page(cdstp);
1871 xscale_cache_clean_minidata();
1872 }
1873 #endif /* ARM_MMU_XSCALE == 1 */
1874
1875 /* pmap_pageidlezero()
1876 *
1877 * The same as above, except that we assume that the page is not
1878 * mapped. This means we never have to flush the cache first. Called
1879 * from the idle loop.
1880 */
1881 boolean_t
1882 pmap_pageidlezero(paddr_t phys)
1883 {
1884 unsigned int i;
1885 int *ptr;
1886 boolean_t rv = TRUE;
1887 #ifdef DEBUG
1888 struct vm_page *pg;
1889
1890 pg = PHYS_TO_VM_PAGE(phys);
1891 if (pg->mdpage.pvh_list != NULL)
1892 panic("pmap_pageidlezero: page has mappings");
1893 #endif
1894
1895 KDASSERT((phys & PGOFSET) == 0);
1896
1897 /*
1898 * Hook in the page, zero it, and purge the cache for that
1899 * zeroed page. Invalidate the TLB as needed.
1900 */
1901 *cdst_pte = L2_S_PROTO | phys |
1902 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1903 PTE_SYNC(cdst_pte);
1904 cpu_tlb_flushD_SE(cdstp);
1905 cpu_cpwait();
1906
1907 for (i = 0, ptr = (int *)cdstp;
1908 i < (NBPG / sizeof(int)); i++) {
1909 if (sched_whichqs != 0) {
1910 /*
1911 * A process has become ready. Abort now,
1912 * so we don't keep it waiting while we
1913 * do slow memory access to finish this
1914 * page.
1915 */
1916 rv = FALSE;
1917 break;
1918 }
1919 *ptr++ = 0;
1920 }
1921
1922 if (rv)
1923 /*
1924 * if we aborted we'll rezero this page again later so don't
1925 * purge it unless we finished it
1926 */
1927 cpu_dcache_wbinv_range(cdstp, NBPG);
1928 return (rv);
1929 }
1930
1931 /*
1932 * pmap_copy_page()
1933 *
1934 * Copy one physical page into another, by mapping the pages into
1935 * hook points. The same comment regarding cachability as in
1936 * pmap_zero_page also applies here.
1937 */
1938 #if ARM_MMU_GENERIC == 1
1939 void
1940 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1941 {
1942 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1943 #ifdef DEBUG
1944 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1945
1946 if (dst_pg->mdpage.pvh_list != NULL)
1947 panic("pmap_copy_page: dst page has mappings");
1948 #endif
1949
1950 KDASSERT((src & PGOFSET) == 0);
1951 KDASSERT((dst & PGOFSET) == 0);
1952
1953 /*
1954 * Clean the source page. Hold the source page's lock for
1955 * the duration of the copy so that no other mappings can
1956 * be created while we have a potentially aliased mapping.
1957 */
1958 simple_lock(&src_pg->mdpage.pvh_slock);
1959 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1960
1961 /*
1962 * Map the pages into the page hook points, copy them, and purge
1963 * the cache for the appropriate page. Invalidate the TLB
1964 * as required.
1965 */
1966 *csrc_pte = L2_S_PROTO | src |
1967 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1968 PTE_SYNC(csrc_pte);
1969 *cdst_pte = L2_S_PROTO | dst |
1970 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1971 PTE_SYNC(cdst_pte);
1972 cpu_tlb_flushD_SE(csrcp);
1973 cpu_tlb_flushD_SE(cdstp);
1974 cpu_cpwait();
1975 bcopy_page(csrcp, cdstp);
1976 cpu_dcache_inv_range(csrcp, NBPG);
1977 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1978 cpu_dcache_wbinv_range(cdstp, NBPG);
1979 }
1980 #endif /* ARM_MMU_GENERIC == 1 */
1981
1982 #if ARM_MMU_XSCALE == 1
1983 void
1984 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1985 {
1986 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1987 #ifdef DEBUG
1988 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1989
1990 if (dst_pg->mdpage.pvh_list != NULL)
1991 panic("pmap_copy_page: dst page has mappings");
1992 #endif
1993
1994 KDASSERT((src & PGOFSET) == 0);
1995 KDASSERT((dst & PGOFSET) == 0);
1996
1997 /*
1998 * Clean the source page. Hold the source page's lock for
1999 * the duration of the copy so that no other mappings can
2000 * be created while we have a potentially aliased mapping.
2001 */
2002 simple_lock(&src_pg->mdpage.pvh_slock);
2003 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2004
2005 /*
2006 * Map the pages into the page hook points, copy them, and purge
2007 * the cache for the appropriate page. Invalidate the TLB
2008 * as required.
2009 */
2010 *csrc_pte = L2_S_PROTO | src |
2011 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
2012 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2013 PTE_SYNC(csrc_pte);
2014 *cdst_pte = L2_S_PROTO | dst |
2015 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
2016 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2017 PTE_SYNC(cdst_pte);
2018 cpu_tlb_flushD_SE(csrcp);
2019 cpu_tlb_flushD_SE(cdstp);
2020 cpu_cpwait();
2021 bcopy_page(csrcp, cdstp);
2022 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2023 xscale_cache_clean_minidata();
2024 }
2025 #endif /* ARM_MMU_XSCALE == 1 */
2026
2027 #if 0
2028 void
2029 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
2030 {
2031 pd_entry_t *pde;
2032 paddr_t pa;
2033 struct vm_page *m;
2034
2035 if (pmap == pmap_kernel())
2036 return;
2037
2038 pde = pmap_pde(pmap, va & PD_FRAME);
2039 pa = pmap_pte_pa(pde);
2040 m = PHYS_TO_VM_PAGE(pa);
2041 m->wire_count++;
2042 #ifdef MYCROFT_HACK
2043 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2044 pmap, va, pde, pa, m, m->wire_count);
2045 #endif
2046 }
2047
2048 void
2049 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2050 {
2051 pd_entry_t *pde;
2052 paddr_t pa;
2053 struct vm_page *m;
2054
2055 if (pmap == pmap_kernel())
2056 return;
2057
2058 pde = pmap_pde(pmap, va & PD_FRAME);
2059 pa = pmap_pte_pa(pde);
2060 m = PHYS_TO_VM_PAGE(pa);
2061 m->wire_count--;
2062 #ifdef MYCROFT_HACK
2063 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2064 pmap, va, pde, pa, m, m->wire_count);
2065 #endif
2066 if (m->wire_count == 0) {
2067 #ifdef MYCROFT_HACK
2068 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2069 pmap, va, pde, pa, m);
2070 #endif
2071 pmap_unmap_in_l1(pmap, va & PD_FRAME);
2072 uvm_pagefree(m);
2073 --pmap->pm_stats.resident_count;
2074 }
2075 }
2076 #else
2077 #define pmap_pte_addref(pmap, va)
2078 #define pmap_pte_delref(pmap, va)
2079 #endif
2080
2081 /*
2082 * Since we have a virtually indexed cache, we may need to inhibit caching if
2083 * there is more than one mapping and at least one of them is writable.
2084 * Since we purge the cache on every context switch, we only need to check for
2085 * other mappings within the same pmap, or kernel_pmap.
2086 * This function is also called when a page is unmapped, to possibly reenable
2087 * caching on any remaining mappings.
2088 *
2089 * The code implements the following logic, where:
2090 *
2091 * KW = # of kernel read/write pages
2092 * KR = # of kernel read only pages
2093 * UW = # of user read/write pages
2094 * UR = # of user read only pages
2095 * OW = # of user read/write pages in another pmap, then
2096 *
2097 * KC = kernel mapping is cacheable
2098 * UC = user mapping is cacheable
2099 *
2100 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2101 * +---------------------------------------------
2102 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2103 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2104 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2105 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2106 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2107 *
2108 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2109 */
2110 __inline static void
2111 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2112 boolean_t clear_cache)
2113 {
2114 if (pmap == pmap_kernel())
2115 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2116 else
2117 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2118 }
2119
2120 static void
2121 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2122 boolean_t clear_cache)
2123 {
2124 unsigned int user_entries = 0;
2125 unsigned int user_writable = 0;
2126 unsigned int user_cacheable = 0;
2127 unsigned int kernel_entries = 0;
2128 unsigned int kernel_writable = 0;
2129 unsigned int kernel_cacheable = 0;
2130 struct pv_entry *pv;
2131 struct pmap *last_pmap = pmap;
2132
2133 #ifdef DIAGNOSTIC
2134 if (pmap != pmap_kernel())
2135 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2136 #endif
2137
2138 /*
2139 * Pass one, see if there are both kernel and user pmaps for
2140 * this page. Calculate whether there are user-writable or
2141 * kernel-writable pages.
2142 */
2143 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2144 if (pv->pv_pmap != pmap) {
2145 user_entries++;
2146 if (pv->pv_flags & PVF_WRITE)
2147 user_writable++;
2148 if ((pv->pv_flags & PVF_NC) == 0)
2149 user_cacheable++;
2150 } else {
2151 kernel_entries++;
2152 if (pv->pv_flags & PVF_WRITE)
2153 kernel_writable++;
2154 if ((pv->pv_flags & PVF_NC) == 0)
2155 kernel_cacheable++;
2156 }
2157 }
2158
2159 /*
2160 * We know we have just been updating a kernel entry, so if
2161 * all user pages are already cacheable, then there is nothing
2162 * further to do.
2163 */
2164 if (kernel_entries == 0 &&
2165 user_cacheable == user_entries)
2166 return;
2167
2168 if (user_entries) {
2169 /*
2170 * Scan over the list again, for each entry, if it
2171 * might not be set correctly, call pmap_vac_me_user
2172 * to recalculate the settings.
2173 */
2174 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2175 /*
2176 * We know kernel mappings will get set
2177 * correctly in other calls. We also know
2178 * that if the pmap is the same as last_pmap
2179 * then we've just handled this entry.
2180 */
2181 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2182 continue;
2183 /*
2184 * If there are kernel entries and this page
2185 * is writable but non-cacheable, then we can
2186 * skip this entry also.
2187 */
2188 if (kernel_entries > 0 &&
2189 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2190 (PVF_NC | PVF_WRITE))
2191 continue;
2192 /*
2193 * Similarly if there are no kernel-writable
2194 * entries and the page is already
2195 * read-only/cacheable.
2196 */
2197 if (kernel_writable == 0 &&
2198 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2199 continue;
2200 /*
2201 * For some of the remaining cases, we know
2202 * that we must recalculate, but for others we
2203 * can't tell if they are correct or not, so
2204 * we recalculate anyway.
2205 */
2206 pmap_unmap_ptes(last_pmap);
2207 last_pmap = pv->pv_pmap;
2208 ptes = pmap_map_ptes(last_pmap);
2209 pmap_vac_me_user(last_pmap, pg, ptes,
2210 pmap_is_curpmap(last_pmap));
2211 }
2212 /* Restore the pte mapping that was passed to us. */
2213 if (last_pmap != pmap) {
2214 pmap_unmap_ptes(last_pmap);
2215 ptes = pmap_map_ptes(pmap);
2216 }
2217 if (kernel_entries == 0)
2218 return;
2219 }
2220
2221 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2222 return;
2223 }
2224
2225 static void
2226 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2227 boolean_t clear_cache)
2228 {
2229 struct pmap *kpmap = pmap_kernel();
2230 struct pv_entry *pv, *npv;
2231 unsigned int entries = 0;
2232 unsigned int writable = 0;
2233 unsigned int cacheable_entries = 0;
2234 unsigned int kern_cacheable = 0;
2235 unsigned int other_writable = 0;
2236
2237 pv = pg->mdpage.pvh_list;
2238 KASSERT(ptes != NULL);
2239
2240 /*
2241 * Count mappings and writable mappings in this pmap.
2242 * Include kernel mappings as part of our own.
2243 * Keep a pointer to the first one.
2244 */
2245 for (npv = pv; npv; npv = npv->pv_next) {
2246 /* Count mappings in the same pmap */
2247 if (pmap == npv->pv_pmap ||
2248 kpmap == npv->pv_pmap) {
2249 if (entries++ == 0)
2250 pv = npv;
2251 /* Cacheable mappings */
2252 if ((npv->pv_flags & PVF_NC) == 0) {
2253 cacheable_entries++;
2254 if (kpmap == npv->pv_pmap)
2255 kern_cacheable++;
2256 }
2257 /* Writable mappings */
2258 if (npv->pv_flags & PVF_WRITE)
2259 ++writable;
2260 } else if (npv->pv_flags & PVF_WRITE)
2261 other_writable = 1;
2262 }
2263
2264 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2265 "writable %d cacheable %d %s\n", pmap, entries, writable,
2266 cacheable_entries, clear_cache ? "clean" : "no clean"));
2267
2268 /*
2269 * Enable or disable caching as necessary.
2270 * Note: the first entry might be part of the kernel pmap,
2271 * so we can't assume this is indicative of the state of the
2272 * other (maybe non-kpmap) entries.
2273 */
2274 if ((entries > 1 && writable) ||
2275 (entries > 0 && pmap == kpmap && other_writable)) {
2276 if (cacheable_entries == 0)
2277 return;
2278 for (npv = pv; npv; npv = npv->pv_next) {
2279 if ((pmap == npv->pv_pmap
2280 || kpmap == npv->pv_pmap) &&
2281 (npv->pv_flags & PVF_NC) == 0) {
2282 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2283 PTE_SYNC_CURRENT(pmap,
2284 &ptes[arm_btop(npv->pv_va)]);
2285 npv->pv_flags |= PVF_NC;
2286 /*
2287 * If this page needs flushing from the
2288 * cache, and we aren't going to do it
2289 * below, do it now.
2290 */
2291 if ((cacheable_entries < 4 &&
2292 (clear_cache || npv->pv_pmap == kpmap)) ||
2293 (npv->pv_pmap == kpmap &&
2294 !clear_cache && kern_cacheable < 4)) {
2295 cpu_idcache_wbinv_range(npv->pv_va,
2296 NBPG);
2297 cpu_tlb_flushID_SE(npv->pv_va);
2298 }
2299 }
2300 }
2301 if ((clear_cache && cacheable_entries >= 4) ||
2302 kern_cacheable >= 4) {
2303 cpu_idcache_wbinv_all();
2304 cpu_tlb_flushID();
2305 }
2306 cpu_cpwait();
2307 } else if (entries > cacheable_entries) {
2308 /*
2309 * Turn cacheing back on for some pages. If it is a kernel
2310 * page, only do so if there are no other writable pages.
2311 */
2312 for (npv = pv; npv; npv = npv->pv_next) {
2313 if ((pmap == npv->pv_pmap ||
2314 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2315 (npv->pv_flags & PVF_NC)) {
2316 ptes[arm_btop(npv->pv_va)] |=
2317 pte_l2_s_cache_mode;
2318 PTE_SYNC_CURRENT(pmap,
2319 &ptes[arm_btop(npv->pv_va)]);
2320 npv->pv_flags &= ~PVF_NC;
2321 }
2322 }
2323 }
2324 }
2325
2326 /*
2327 * pmap_remove()
2328 *
2329 * pmap_remove is responsible for nuking a number of mappings for a range
2330 * of virtual address space in the current pmap. To do this efficiently
2331 * is interesting, because in a number of cases a wide virtual address
2332 * range may be supplied that contains few actual mappings. So, the
2333 * optimisations are:
2334 * 1. Try and skip over hunks of address space for which an L1 entry
2335 * does not exist.
2336 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2337 * maybe do just a partial cache clean. This path of execution is
2338 * complicated by the fact that the cache must be flushed _before_
2339 * the PTE is nuked, being a VAC :-)
2340 * 3. Maybe later fast-case a single page, but I don't think this is
2341 * going to make _that_ much difference overall.
2342 */
2343
2344 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2345
2346 void
2347 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2348 {
2349 unsigned int cleanlist_idx = 0;
2350 struct pagelist {
2351 vaddr_t va;
2352 pt_entry_t *pte;
2353 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2354 pt_entry_t *pte = 0, *ptes;
2355 paddr_t pa;
2356 int pmap_active;
2357 struct vm_page *pg;
2358 struct pv_entry *pv_tofree = NULL;
2359
2360 /* Exit quick if there is no pmap */
2361 if (!pmap)
2362 return;
2363
2364 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2365 pmap, sva, eva));
2366
2367 /*
2368 * we lock in the pmap => vm_page direction
2369 */
2370 PMAP_MAP_TO_HEAD_LOCK();
2371
2372 ptes = pmap_map_ptes(pmap);
2373 /* Get a page table pointer */
2374 while (sva < eva) {
2375 if (pmap_pde_page(pmap_pde(pmap, sva)))
2376 break;
2377 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2378 }
2379
2380 pte = &ptes[arm_btop(sva)];
2381 /* Note if the pmap is active thus require cache and tlb cleans */
2382 pmap_active = pmap_is_curpmap(pmap);
2383
2384 /* Now loop along */
2385 while (sva < eva) {
2386 /* Check if we can move to the next PDE (l1 chunk) */
2387 if ((sva & L2_ADDR_BITS) == 0) {
2388 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2389 sva += L1_S_SIZE;
2390 pte += arm_btop(L1_S_SIZE);
2391 continue;
2392 }
2393 }
2394
2395 /* We've found a valid PTE, so this page of PTEs has to go. */
2396 if (pmap_pte_v(pte)) {
2397 /* Update statistics */
2398 --pmap->pm_stats.resident_count;
2399
2400 /*
2401 * Add this page to our cache remove list, if we can.
2402 * If, however the cache remove list is totally full,
2403 * then do a complete cache invalidation taking note
2404 * to backtrack the PTE table beforehand, and ignore
2405 * the lists in future because there's no longer any
2406 * point in bothering with them (we've paid the
2407 * penalty, so will carry on unhindered). Otherwise,
2408 * when we fall out, we just clean the list.
2409 */
2410 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2411 pa = pmap_pte_pa(pte);
2412
2413 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2414 /* Add to the clean list. */
2415 cleanlist[cleanlist_idx].pte = pte;
2416 cleanlist[cleanlist_idx].va = sva;
2417 cleanlist_idx++;
2418 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2419 int cnt;
2420
2421 /* Nuke everything if needed. */
2422 if (pmap_active) {
2423 cpu_idcache_wbinv_all();
2424 cpu_tlb_flushID();
2425 }
2426
2427 /*
2428 * Roll back the previous PTE list,
2429 * and zero out the current PTE.
2430 */
2431 for (cnt = 0;
2432 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
2433 cnt++) {
2434 *cleanlist[cnt].pte = 0;
2435 if (pmap_active)
2436 PTE_SYNC(cleanlist[cnt].pte);
2437 else
2438 PTE_FLUSH(cleanlist[cnt].pte);
2439 pmap_pte_delref(pmap,
2440 cleanlist[cnt].va);
2441 }
2442 *pte = 0;
2443 if (pmap_active)
2444 PTE_SYNC(pte);
2445 else
2446 PTE_FLUSH(pte);
2447 pmap_pte_delref(pmap, sva);
2448 cleanlist_idx++;
2449 } else {
2450 /*
2451 * We've already nuked the cache and
2452 * TLB, so just carry on regardless,
2453 * and we won't need to do it again
2454 */
2455 *pte = 0;
2456 if (pmap_active)
2457 PTE_SYNC(pte);
2458 else
2459 PTE_FLUSH(pte);
2460 pmap_pte_delref(pmap, sva);
2461 }
2462
2463 /*
2464 * Update flags. In a number of circumstances,
2465 * we could cluster a lot of these and do a
2466 * number of sequential pages in one go.
2467 */
2468 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2469 struct pv_entry *pve;
2470 simple_lock(&pg->mdpage.pvh_slock);
2471 pve = pmap_remove_pv(pg, pmap, sva);
2472 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2473 simple_unlock(&pg->mdpage.pvh_slock);
2474 if (pve != NULL) {
2475 pve->pv_next = pv_tofree;
2476 pv_tofree = pve;
2477 }
2478 }
2479 } else if (pmap_active == 0)
2480 PTE_FLUSH(pte);
2481 sva += NBPG;
2482 pte++;
2483 }
2484
2485 /*
2486 * Now, if we've fallen through down to here, chances are that there
2487 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2488 */
2489 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2490 u_int cnt;
2491
2492 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2493 if (pmap_active) {
2494 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2495 NBPG);
2496 *cleanlist[cnt].pte = 0;
2497 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2498 PTE_SYNC(cleanlist[cnt].pte);
2499 } else {
2500 *cleanlist[cnt].pte = 0;
2501 PTE_FLUSH(cleanlist[cnt].pte);
2502 }
2503 pmap_pte_delref(pmap, cleanlist[cnt].va);
2504 }
2505 }
2506
2507 /* Delete pv entries */
2508 if (pv_tofree != NULL)
2509 pmap_free_pvs(pmap, pv_tofree);
2510
2511 pmap_unmap_ptes(pmap);
2512
2513 PMAP_MAP_TO_HEAD_UNLOCK();
2514 }
2515
2516 /*
2517 * Routine: pmap_page_remove
2518 * Function:
2519 * Removes this physical page from
2520 * all physical maps in which it resides.
2521 * Reflects back modify bits to the pager.
2522 */
2523
2524 static void
2525 pmap_page_remove(struct vm_page *pg)
2526 {
2527 struct pv_entry *pv, *npv;
2528 struct pmap *pmap;
2529 pt_entry_t *pte, *ptes;
2530
2531 PDEBUG(0, printf("pmap_page_remove: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2532
2533 /* set vm_page => pmap locking */
2534 PMAP_HEAD_TO_MAP_LOCK();
2535
2536 simple_lock(&pg->mdpage.pvh_slock);
2537
2538 pv = pg->mdpage.pvh_list;
2539 if (pv == NULL) {
2540 PDEBUG(0, printf("free page\n"));
2541 simple_unlock(&pg->mdpage.pvh_slock);
2542 PMAP_HEAD_TO_MAP_UNLOCK();
2543 return;
2544 }
2545 pmap_clean_page(pv, FALSE);
2546
2547 while (pv) {
2548 pmap = pv->pv_pmap;
2549 ptes = pmap_map_ptes(pmap);
2550 pte = &ptes[arm_btop(pv->pv_va)];
2551
2552 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2553 pv->pv_va, pv->pv_flags));
2554 #ifdef DEBUG
2555 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2556 pmap_pte_v(pte) == 0 ||
2557 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2558 panic("pmap_page_remove: bad mapping");
2559 #endif /* DEBUG */
2560
2561 /*
2562 * Update statistics
2563 */
2564 --pmap->pm_stats.resident_count;
2565
2566 /* Wired bit */
2567 if (pv->pv_flags & PVF_WIRED)
2568 --pmap->pm_stats.wired_count;
2569
2570 /*
2571 * Invalidate the PTEs.
2572 * XXX: should cluster them up and invalidate as many
2573 * as possible at once.
2574 */
2575
2576 #ifdef needednotdone
2577 reduce wiring count on page table pages as references drop
2578 #endif
2579
2580 *pte = 0;
2581 PTE_SYNC_CURRENT(pmap, pte);
2582 pmap_pte_delref(pmap, pv->pv_va);
2583
2584 npv = pv->pv_next;
2585 pmap_free_pv(pmap, pv);
2586 pv = npv;
2587 pmap_unmap_ptes(pmap);
2588 }
2589 pg->mdpage.pvh_list = NULL;
2590 simple_unlock(&pg->mdpage.pvh_slock);
2591 PMAP_HEAD_TO_MAP_UNLOCK();
2592
2593 PDEBUG(0, printf("done\n"));
2594 cpu_tlb_flushID();
2595 cpu_cpwait();
2596 }
2597
2598
2599 /*
2600 * Set the physical protection on the specified range of this map as requested.
2601 */
2602
2603 void
2604 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2605 {
2606 pt_entry_t *pte = NULL, *ptes;
2607 struct vm_page *pg;
2608 int flush = 0;
2609
2610 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2611 pmap, sva, eva, prot));
2612
2613 if (~prot & VM_PROT_READ) {
2614 /*
2615 * Just remove the mappings. pmap_update() is not required
2616 * here since the caller should do it.
2617 */
2618 pmap_remove(pmap, sva, eva);
2619 return;
2620 }
2621 if (prot & VM_PROT_WRITE) {
2622 /*
2623 * If this is a read->write transition, just ignore it and let
2624 * uvm_fault() take care of it later.
2625 */
2626 return;
2627 }
2628
2629 /* Need to lock map->head */
2630 PMAP_MAP_TO_HEAD_LOCK();
2631
2632 ptes = pmap_map_ptes(pmap);
2633
2634 /*
2635 * OK, at this point, we know we're doing write-protect operation.
2636 * If the pmap is active, write-back the range.
2637 */
2638 if (pmap_is_curpmap(pmap))
2639 cpu_dcache_wb_range(sva, eva - sva);
2640
2641 /*
2642 * We need to acquire a pointer to a page table page before entering
2643 * the following loop.
2644 */
2645 while (sva < eva) {
2646 if (pmap_pde_page(pmap_pde(pmap, sva)))
2647 break;
2648 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2649 }
2650
2651 pte = &ptes[arm_btop(sva)];
2652
2653 while (sva < eva) {
2654 /* only check once in a while */
2655 if ((sva & L2_ADDR_BITS) == 0) {
2656 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2657 /* We can race ahead here, to the next pde. */
2658 sva += L1_S_SIZE;
2659 pte += arm_btop(L1_S_SIZE);
2660 continue;
2661 }
2662 }
2663
2664 if (!pmap_pte_v(pte)) {
2665 PTE_FLUSH_ALT(pmap, pte);
2666 goto next;
2667 }
2668
2669 flush = 1;
2670
2671 pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
2672
2673 *pte &= ~L2_S_PROT_W; /* clear write bit */
2674 PTE_SYNC_CURRENT(pmap, pte); /* XXXJRT optimize */
2675
2676 /* Clear write flag */
2677 if (pg != NULL) {
2678 simple_lock(&pg->mdpage.pvh_slock);
2679 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2680 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2681 simple_unlock(&pg->mdpage.pvh_slock);
2682 }
2683
2684 next:
2685 sva += NBPG;
2686 pte++;
2687 }
2688 pmap_unmap_ptes(pmap);
2689 PMAP_MAP_TO_HEAD_UNLOCK();
2690 if (flush)
2691 cpu_tlb_flushID();
2692 }
2693
2694 /*
2695 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2696 * int flags)
2697 *
2698 * Insert the given physical page (p) at
2699 * the specified virtual address (v) in the
2700 * target physical map with the protection requested.
2701 *
2702 * If specified, the page will be wired down, meaning
2703 * that the related pte can not be reclaimed.
2704 *
2705 * NB: This is the only routine which MAY NOT lazy-evaluate
2706 * or lose information. That is, this routine must actually
2707 * insert this page into the given map NOW.
2708 */
2709
2710 int
2711 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2712 int flags)
2713 {
2714 pt_entry_t *ptes, opte, npte;
2715 paddr_t opa;
2716 boolean_t wired = (flags & PMAP_WIRED) != 0;
2717 struct vm_page *pg;
2718 struct pv_entry *pve;
2719 int error, nflags;
2720 struct vm_page *ptp = NULL;
2721
2722 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2723 va, pa, pmap, prot, wired));
2724
2725 #ifdef DIAGNOSTIC
2726 /* Valid address ? */
2727 if (va >= (pmap_curmaxkvaddr))
2728 panic("pmap_enter: too big");
2729 if (pmap != pmap_kernel() && va != 0) {
2730 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2731 panic("pmap_enter: kernel page in user map");
2732 } else {
2733 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2734 panic("pmap_enter: user page in kernel map");
2735 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2736 panic("pmap_enter: entering PT page");
2737 }
2738 #endif
2739
2740 KDASSERT(((va | pa) & PGOFSET) == 0);
2741
2742 /*
2743 * Get a pointer to the page. Later on in this function, we
2744 * test for a managed page by checking pg != NULL.
2745 */
2746 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2747
2748 /* get lock */
2749 PMAP_MAP_TO_HEAD_LOCK();
2750
2751 /*
2752 * map the ptes. If there's not already an L2 table for this
2753 * address, allocate one.
2754 */
2755 ptes = pmap_map_ptes(pmap); /* locks pmap */
2756 /* kernel should be pre-grown */
2757 if (pmap != pmap_kernel())
2758 {
2759 /* if failure is allowed then don't try too hard */
2760 ptp = pmap_get_ptp(pmap, va & PD_FRAME);
2761 if (ptp == NULL) {
2762 if (flags & PMAP_CANFAIL) {
2763 error = ENOMEM;
2764 goto out;
2765 }
2766 panic("pmap_enter: get ptp failed");
2767 }
2768 }
2769 opte = ptes[arm_btop(va)];
2770
2771 nflags = 0;
2772 if (prot & VM_PROT_WRITE)
2773 nflags |= PVF_WRITE;
2774 if (wired)
2775 nflags |= PVF_WIRED;
2776
2777 /* Is the pte valid ? If so then this page is already mapped */
2778 if (l2pte_valid(opte)) {
2779 /* Get the physical address of the current page mapped */
2780 opa = l2pte_pa(opte);
2781
2782 /* Are we mapping the same page ? */
2783 if (opa == pa) {
2784 /* Check to see if we're doing rw->ro. */
2785 if ((opte & L2_S_PROT_W) != 0 &&
2786 (prot & VM_PROT_WRITE) == 0) {
2787 /* Yup, flush the cache if current pmap. */
2788 if (pmap_is_curpmap(pmap))
2789 cpu_dcache_wb_range(va, NBPG);
2790 }
2791
2792 /* Has the wiring changed ? */
2793 if (pg != NULL) {
2794 simple_lock(&pg->mdpage.pvh_slock);
2795 (void) pmap_modify_pv(pmap, va, pg,
2796 PVF_WRITE | PVF_WIRED, nflags);
2797 simple_unlock(&pg->mdpage.pvh_slock);
2798 }
2799 } else {
2800 struct vm_page *opg;
2801
2802 /* We are replacing the page with a new one. */
2803 cpu_idcache_wbinv_range(va, NBPG);
2804
2805 /*
2806 * If it is part of our managed memory then we
2807 * must remove it from the PV list
2808 */
2809 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2810 simple_lock(&opg->mdpage.pvh_slock);
2811 pve = pmap_remove_pv(opg, pmap, va);
2812 simple_unlock(&opg->mdpage.pvh_slock);
2813 } else {
2814 pve = NULL;
2815 }
2816
2817 goto enter;
2818 }
2819 } else {
2820 opa = 0;
2821 pve = NULL;
2822
2823 /* bump ptp ref */
2824 if (ptp != NULL)
2825 ptp->wire_count++;
2826
2827 /* pte is not valid so we must be hooking in a new page */
2828 ++pmap->pm_stats.resident_count;
2829
2830 enter:
2831 /*
2832 * Enter on the PV list if part of our managed memory
2833 */
2834 if (pg != NULL) {
2835 if (pve == NULL) {
2836 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2837 if (pve == NULL) {
2838 if (flags & PMAP_CANFAIL) {
2839 PTE_FLUSH_ALT(pmap,
2840 ptes[arm_btop(va)]);
2841 error = ENOMEM;
2842 goto out;
2843 }
2844 panic("pmap_enter: no pv entries "
2845 "available");
2846 }
2847 }
2848 /* enter_pv locks pvh when adding */
2849 pmap_enter_pv(pg, pve, pmap, va, ptp, nflags);
2850 } else {
2851 if (pve != NULL)
2852 pmap_free_pv(pmap, pve);
2853 }
2854 }
2855
2856 /* Construct the pte, giving the correct access. */
2857 npte = pa;
2858
2859 /* VA 0 is magic. */
2860 if (pmap != pmap_kernel() && va != vector_page)
2861 npte |= L2_S_PROT_U;
2862
2863 if (pg != NULL) {
2864 #ifdef DIAGNOSTIC
2865 if ((flags & VM_PROT_ALL) & ~prot)
2866 panic("pmap_enter: access_type exceeds prot");
2867 #endif
2868 npte |= pte_l2_s_cache_mode;
2869 if (flags & VM_PROT_WRITE) {
2870 npte |= L2_S_PROTO | L2_S_PROT_W;
2871 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2872 } else if (flags & VM_PROT_ALL) {
2873 npte |= L2_S_PROTO;
2874 pg->mdpage.pvh_attrs |= PVF_REF;
2875 } else
2876 npte |= L2_TYPE_INV;
2877 } else {
2878 if (prot & VM_PROT_WRITE)
2879 npte |= L2_S_PROTO | L2_S_PROT_W;
2880 else if (prot & VM_PROT_ALL)
2881 npte |= L2_S_PROTO;
2882 else
2883 npte |= L2_TYPE_INV;
2884 }
2885
2886 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
2887 #if ARM_NMMUS > 1
2888 # error "XXX Unable to use read/write-allocate and configure non-XScale"
2889 #endif
2890 /*
2891 * XXX BRUTAL HACK! This allows us to limp along with
2892 * XXX the read/write-allocate cache mode.
2893 */
2894 if (pmap == pmap_kernel())
2895 npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
2896 #endif
2897 ptes[arm_btop(va)] = npte;
2898 PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
2899
2900 if (pg != NULL) {
2901 simple_lock(&pg->mdpage.pvh_slock);
2902 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2903 simple_unlock(&pg->mdpage.pvh_slock);
2904 }
2905
2906 /* Better flush the TLB ... */
2907 cpu_tlb_flushID_SE(va);
2908 error = 0;
2909 out:
2910 pmap_unmap_ptes(pmap); /* unlocks pmap */
2911 PMAP_MAP_TO_HEAD_UNLOCK();
2912
2913 return error;
2914 }
2915
2916 /*
2917 * pmap_kenter_pa: enter a kernel mapping
2918 *
2919 * => no need to lock anything assume va is already allocated
2920 * => should be faster than normal pmap enter function
2921 */
2922 void
2923 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2924 {
2925 pt_entry_t *pte;
2926
2927 pte = vtopte(va);
2928 KASSERT(!pmap_pte_v(pte));
2929
2930 #ifdef PMAP_ALIAS_DEBUG
2931 {
2932 struct vm_page *pg;
2933 int s;
2934
2935 pg = PHYS_TO_VM_PAGE(pa);
2936 if (pg != NULL) {
2937 s = splhigh();
2938 if (pg->mdpage.ro_mappings == 0 &&
2939 pg->mdpage.rw_mappings == 0 &&
2940 pg->mdpage.kro_mappings == 0 &&
2941 pg->mdpage.krw_mappings == 0) {
2942 /* This case is okay. */
2943 } else if (pg->mdpage.rw_mappings == 0 &&
2944 pg->mdpage.krw_mappings == 0 &&
2945 (prot & VM_PROT_WRITE) == 0) {
2946 /* This case is okay. */
2947 } else {
2948 /* Something is awry. */
2949 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2950 "prot 0x%x\n", pg->mdpage.ro_mappings,
2951 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2952 pg->mdpage.krw_mappings, prot);
2953 Debugger();
2954 }
2955 if (prot & VM_PROT_WRITE)
2956 pg->mdpage.krw_mappings++;
2957 else
2958 pg->mdpage.kro_mappings++;
2959 splx(s);
2960 }
2961 }
2962 #endif /* PMAP_ALIAS_DEBUG */
2963
2964 *pte = L2_S_PROTO | pa |
2965 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2966 PTE_SYNC(pte);
2967 }
2968
2969 void
2970 pmap_kremove(vaddr_t va, vsize_t len)
2971 {
2972 pt_entry_t *pte;
2973 vaddr_t ova = va;
2974 vaddr_t olen = len;
2975
2976 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2977
2978 /*
2979 * We assume that we will only be called with small
2980 * regions of memory.
2981 */
2982
2983 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2984 pte = vtopte(va);
2985 #ifdef PMAP_ALIAS_DEBUG
2986 {
2987 struct vm_page *pg;
2988 int s;
2989
2990 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2991 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2992 s = splhigh();
2993 if (*pte & L2_S_PROT_W) {
2994 KASSERT(pg->mdpage.krw_mappings != 0);
2995 pg->mdpage.krw_mappings--;
2996 } else {
2997 KASSERT(pg->mdpage.kro_mappings != 0);
2998 pg->mdpage.kro_mappings--;
2999 }
3000 splx(s);
3001 }
3002 }
3003 #endif /* PMAP_ALIAS_DEBUG */
3004 cpu_idcache_wbinv_range(va, PAGE_SIZE);
3005 *pte = 0;
3006 cpu_tlb_flushID_SE(va);
3007 }
3008 PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
3009 }
3010
3011 /*
3012 * pmap_page_protect:
3013 *
3014 * Lower the permission for all mappings to a given page.
3015 */
3016
3017 void
3018 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3019 {
3020
3021 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
3022 VM_PAGE_TO_PHYS(pg), prot));
3023
3024 switch(prot) {
3025 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3026 case VM_PROT_READ|VM_PROT_WRITE:
3027 return;
3028
3029 case VM_PROT_READ:
3030 case VM_PROT_READ|VM_PROT_EXECUTE:
3031 pmap_clearbit(pg, PVF_WRITE);
3032 break;
3033
3034 default:
3035 pmap_page_remove(pg);
3036 break;
3037 }
3038 }
3039
3040
3041 /*
3042 * Routine: pmap_unwire
3043 * Function: Clear the wired attribute for a map/virtual-address
3044 * pair.
3045 * In/out conditions:
3046 * The mapping must already exist in the pmap.
3047 */
3048
3049 void
3050 pmap_unwire(struct pmap *pmap, vaddr_t va)
3051 {
3052 pt_entry_t *ptes;
3053 struct vm_page *pg;
3054 paddr_t pa;
3055
3056 PMAP_MAP_TO_HEAD_LOCK();
3057 ptes = pmap_map_ptes(pmap); /* locks pmap */
3058
3059 if (pmap_pde_v(pmap_pde(pmap, va))) {
3060 #ifdef DIAGNOSTIC
3061 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3062 panic("pmap_unwire: invalid L2 PTE");
3063 #endif
3064 /* Extract the physical address of the page */
3065 pa = l2pte_pa(ptes[arm_btop(va)]);
3066 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3067
3068 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3069 goto out;
3070
3071 /* Update the wired bit in the pv entry for this page. */
3072 simple_lock(&pg->mdpage.pvh_slock);
3073 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
3074 simple_unlock(&pg->mdpage.pvh_slock);
3075 }
3076 #ifdef DIAGNOSTIC
3077 else {
3078 panic("pmap_unwire: invalid L1 PTE");
3079 }
3080 #endif
3081 out:
3082 pmap_unmap_ptes(pmap); /* unlocks pmap */
3083 PMAP_MAP_TO_HEAD_UNLOCK();
3084 }
3085
3086 /*
3087 * Routine: pmap_extract
3088 * Function:
3089 * Extract the physical page address associated
3090 * with the given map/virtual_address pair.
3091 */
3092 boolean_t
3093 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
3094 {
3095 pd_entry_t *pde;
3096 pt_entry_t *pte, *ptes;
3097 paddr_t pa;
3098
3099 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3100
3101 ptes = pmap_map_ptes(pmap); /* locks pmap */
3102
3103 pde = pmap_pde(pmap, va);
3104 pte = &ptes[arm_btop(va)];
3105
3106 if (pmap_pde_section(pde)) {
3107 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3108 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3109 goto out;
3110 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3111 PDEBUG(5, printf("no mapping\n"));
3112 goto failed;
3113 }
3114
3115 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3116 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3117 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3118 goto out;
3119 }
3120
3121 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3122 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3123
3124 out:
3125 if (pap != NULL)
3126 *pap = pa;
3127
3128 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3129 pmap_unmap_ptes(pmap); /* unlocks pmap */
3130 return (TRUE);
3131
3132 failed:
3133 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3134 pmap_unmap_ptes(pmap); /* unlocks pmap */
3135 return (FALSE);
3136 }
3137
3138
3139 /*
3140 * pmap_copy:
3141 *
3142 * Copy the range specified by src_addr/len from the source map to the
3143 * range dst_addr/len in the destination map.
3144 *
3145 * This routine is only advisory and need not do anything.
3146 */
3147 /* Call deleted in <arm/arm32/pmap.h> */
3148
3149 #if defined(PMAP_DEBUG)
3150 void
3151 pmap_dump_pvlist(phys, m)
3152 vaddr_t phys;
3153 char *m;
3154 {
3155 struct vm_page *pg;
3156 struct pv_entry *pv;
3157
3158 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3159 printf("INVALID PA\n");
3160 return;
3161 }
3162 simple_lock(&pg->mdpage.pvh_slock);
3163 printf("%s %08lx:", m, phys);
3164 if (pg->mdpage.pvh_list == NULL) {
3165 simple_unlock(&pg->mdpage.pvh_slock);
3166 printf(" no mappings\n");
3167 return;
3168 }
3169
3170 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3171 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3172 pv->pv_va, pv->pv_flags);
3173
3174 printf("\n");
3175 simple_unlock(&pg->mdpage.pvh_slock);
3176 }
3177
3178 #endif /* PMAP_DEBUG */
3179
3180 static pt_entry_t *
3181 pmap_map_ptes(struct pmap *pmap)
3182 {
3183 struct proc *p;
3184
3185 /* the kernel's pmap is always accessible */
3186 if (pmap == pmap_kernel()) {
3187 return (pt_entry_t *)PTE_BASE;
3188 }
3189
3190 if (pmap_is_curpmap(pmap)) {
3191 simple_lock(&pmap->pm_obj.vmobjlock);
3192 return (pt_entry_t *)PTE_BASE;
3193 }
3194
3195 p = curproc;
3196 KDASSERT(p != NULL);
3197
3198 /* need to lock both curpmap and pmap: use ordered locking */
3199 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3200 simple_lock(&pmap->pm_obj.vmobjlock);
3201 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3202 } else {
3203 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3204 simple_lock(&pmap->pm_obj.vmobjlock);
3205 }
3206
3207 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3208 pmap->pm_pptpt, 0);
3209 cpu_tlb_flushD();
3210 cpu_cpwait();
3211 return (pt_entry_t *)APTE_BASE;
3212 }
3213
3214 /*
3215 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3216 */
3217
3218 static void
3219 pmap_unmap_ptes(struct pmap *pmap)
3220 {
3221
3222 if (pmap == pmap_kernel()) {
3223 return;
3224 }
3225 if (pmap_is_curpmap(pmap)) {
3226 simple_unlock(&pmap->pm_obj.vmobjlock);
3227 } else {
3228 KDASSERT(curproc != NULL);
3229 simple_unlock(&pmap->pm_obj.vmobjlock);
3230 simple_unlock(
3231 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3232 }
3233 }
3234
3235 /*
3236 * Modify pte bits for all ptes corresponding to the given physical address.
3237 * We use `maskbits' rather than `clearbits' because we're always passing
3238 * constants and the latter would require an extra inversion at run-time.
3239 */
3240
3241 static void
3242 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3243 {
3244 struct pv_entry *pv;
3245 pt_entry_t *ptes, npte, opte;
3246 vaddr_t va;
3247
3248 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3249 VM_PAGE_TO_PHYS(pg), maskbits));
3250
3251 PMAP_HEAD_TO_MAP_LOCK();
3252 simple_lock(&pg->mdpage.pvh_slock);
3253
3254 /*
3255 * Clear saved attributes (modify, reference)
3256 */
3257 pg->mdpage.pvh_attrs &= ~maskbits;
3258
3259 if (pg->mdpage.pvh_list == NULL) {
3260 simple_unlock(&pg->mdpage.pvh_slock);
3261 PMAP_HEAD_TO_MAP_UNLOCK();
3262 return;
3263 }
3264
3265 /*
3266 * Loop over all current mappings setting/clearing as appropos
3267 */
3268 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3269 #ifdef PMAP_ALIAS_DEBUG
3270 {
3271 int s = splhigh();
3272 if ((maskbits & PVF_WRITE) != 0 &&
3273 (pv->pv_flags & PVF_WRITE) != 0) {
3274 KASSERT(pg->mdpage.rw_mappings != 0);
3275 pg->mdpage.rw_mappings--;
3276 pg->mdpage.ro_mappings++;
3277 }
3278 splx(s);
3279 }
3280 #endif /* PMAP_ALIAS_DEBUG */
3281 va = pv->pv_va;
3282 pv->pv_flags &= ~maskbits;
3283 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3284 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3285 npte = opte = ptes[arm_btop(va)];
3286 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3287 if ((pv->pv_flags & PVF_NC)) {
3288 /*
3289 * Entry is not cacheable: reenable
3290 * the cache, nothing to flush
3291 *
3292 * Don't turn caching on again if this
3293 * is a modified emulation. This
3294 * would be inconsitent with the
3295 * settings created by
3296 * pmap_vac_me_harder().
3297 *
3298 * There's no need to call
3299 * pmap_vac_me_harder() here: all
3300 * pages are loosing their write
3301 * permission.
3302 *
3303 */
3304 if (maskbits & PVF_WRITE) {
3305 npte |= pte_l2_s_cache_mode;
3306 pv->pv_flags &= ~PVF_NC;
3307 }
3308 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3309 /*
3310 * Entry is cacheable: check if pmap is
3311 * current if it is flush it,
3312 * otherwise it won't be in the cache
3313 */
3314 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3315 }
3316
3317 /* make the pte read only */
3318 npte &= ~L2_S_PROT_W;
3319 }
3320
3321 if (maskbits & PVF_REF) {
3322 if (pmap_is_curpmap(pv->pv_pmap) &&
3323 (pv->pv_flags & PVF_NC) == 0) {
3324 /*
3325 * Check npte here; we may have already
3326 * done the wbinv above, and the validity
3327 * of the PTE is the same for opte and
3328 * npte.
3329 */
3330 if (npte & L2_S_PROT_W) {
3331 cpu_idcache_wbinv_range(pv->pv_va,
3332 NBPG);
3333 } else if ((npte & L2_TYPE_MASK)
3334 != L2_TYPE_INV) {
3335 /* XXXJRT need idcache_inv_range */
3336 cpu_idcache_wbinv_range(pv->pv_va,
3337 NBPG);
3338 }
3339 }
3340
3341 /* make the pte invalid */
3342 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3343 }
3344
3345 if (npte != opte) {
3346 ptes[arm_btop(va)] = npte;
3347 PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
3348 /* Flush the TLB entry if a current pmap. */
3349 if (pmap_is_curpmap(pv->pv_pmap))
3350 cpu_tlb_flushID_SE(pv->pv_va);
3351 } else
3352 PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
3353
3354 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3355 }
3356 cpu_cpwait();
3357
3358 simple_unlock(&pg->mdpage.pvh_slock);
3359 PMAP_HEAD_TO_MAP_UNLOCK();
3360 }
3361
3362 /*
3363 * pmap_clear_modify:
3364 *
3365 * Clear the "modified" attribute for a page.
3366 */
3367 boolean_t
3368 pmap_clear_modify(struct vm_page *pg)
3369 {
3370 boolean_t rv;
3371
3372 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3373 rv = TRUE;
3374 pmap_clearbit(pg, PVF_MOD);
3375 } else
3376 rv = FALSE;
3377
3378 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3379 VM_PAGE_TO_PHYS(pg), rv));
3380
3381 return (rv);
3382 }
3383
3384 /*
3385 * pmap_clear_reference:
3386 *
3387 * Clear the "referenced" attribute for a page.
3388 */
3389 boolean_t
3390 pmap_clear_reference(struct vm_page *pg)
3391 {
3392 boolean_t rv;
3393
3394 if (pg->mdpage.pvh_attrs & PVF_REF) {
3395 rv = TRUE;
3396 pmap_clearbit(pg, PVF_REF);
3397 } else
3398 rv = FALSE;
3399
3400 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3401 VM_PAGE_TO_PHYS(pg), rv));
3402
3403 return (rv);
3404 }
3405
3406 /*
3407 * pmap_is_modified:
3408 *
3409 * Test if a page has the "modified" attribute.
3410 */
3411 /* See <arm/arm32/pmap.h> */
3412
3413 /*
3414 * pmap_is_referenced:
3415 *
3416 * Test if a page has the "referenced" attribute.
3417 */
3418 /* See <arm/arm32/pmap.h> */
3419
3420 int
3421 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3422 {
3423 pt_entry_t *ptes;
3424 struct vm_page *pg;
3425 paddr_t pa;
3426 u_int flags;
3427 int rv = 0;
3428
3429 PDEBUG(2, printf("pmap_modified_emulation\n"));
3430
3431 PMAP_MAP_TO_HEAD_LOCK();
3432 ptes = pmap_map_ptes(pmap); /* locks pmap */
3433
3434 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3435 PDEBUG(2, printf("L1 PTE invalid\n"));
3436 goto out;
3437 }
3438
3439 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3440
3441 /*
3442 * Don't need to PTE_FLUSH_ALT() here; this is always done
3443 * with the current pmap.
3444 */
3445
3446 /* Check for a invalid pte */
3447 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3448 goto out;
3449
3450 /* This can happen if user code tries to access kernel memory. */
3451 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3452 goto out;
3453
3454 /* Extract the physical address of the page */
3455 pa = l2pte_pa(ptes[arm_btop(va)]);
3456 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3457 goto out;
3458
3459 /* Get the current flags for this page. */
3460 simple_lock(&pg->mdpage.pvh_slock);
3461
3462 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3463 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3464
3465 /*
3466 * Do the flags say this page is writable ? If not then it is a
3467 * genuine write fault. If yes then the write fault is our fault
3468 * as we did not reflect the write access in the PTE. Now we know
3469 * a write has occurred we can correct this and also set the
3470 * modified bit
3471 */
3472 if (~flags & PVF_WRITE) {
3473 simple_unlock(&pg->mdpage.pvh_slock);
3474 goto out;
3475 }
3476
3477 PDEBUG(0,
3478 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3479 va, ptes[arm_btop(va)]));
3480 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3481
3482 /*
3483 * Re-enable write permissions for the page. No need to call
3484 * pmap_vac_me_harder(), since this is just a
3485 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3486 * We've already set the cacheable bits based on the assumption
3487 * that we can write to this page.
3488 */
3489 ptes[arm_btop(va)] =
3490 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3491 PTE_SYNC(&ptes[arm_btop(va)]);
3492 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3493
3494 simple_unlock(&pg->mdpage.pvh_slock);
3495
3496 cpu_tlb_flushID_SE(va);
3497 cpu_cpwait();
3498 rv = 1;
3499 out:
3500 pmap_unmap_ptes(pmap); /* unlocks pmap */
3501 PMAP_MAP_TO_HEAD_UNLOCK();
3502 return (rv);
3503 }
3504
3505 int
3506 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3507 {
3508 pt_entry_t *ptes;
3509 struct vm_page *pg;
3510 paddr_t pa;
3511 int rv = 0;
3512
3513 PDEBUG(2, printf("pmap_handled_emulation\n"));
3514
3515 PMAP_MAP_TO_HEAD_LOCK();
3516 ptes = pmap_map_ptes(pmap); /* locks pmap */
3517
3518 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3519 PDEBUG(2, printf("L1 PTE invalid\n"));
3520 goto out;
3521 }
3522
3523 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3524
3525 /*
3526 * Don't need to PTE_FLUSH_ALT() here; this is always done
3527 * with the current pmap.
3528 */
3529
3530 /* Check for invalid pte */
3531 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3532 goto out;
3533
3534 /* This can happen if user code tries to access kernel memory. */
3535 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3536 goto out;
3537
3538 /* Extract the physical address of the page */
3539 pa = l2pte_pa(ptes[arm_btop(va)]);
3540 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3541 goto out;
3542
3543 simple_lock(&pg->mdpage.pvh_slock);
3544
3545 /*
3546 * Ok we just enable the pte and mark the attibs as handled
3547 * XXX Should we traverse the PV list and enable all PTEs?
3548 */
3549 PDEBUG(0,
3550 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3551 va, ptes[arm_btop(va)]));
3552 pg->mdpage.pvh_attrs |= PVF_REF;
3553
3554 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3555 PTE_SYNC(&ptes[arm_btop(va)]);
3556 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3557
3558 simple_unlock(&pg->mdpage.pvh_slock);
3559
3560 cpu_tlb_flushID_SE(va);
3561 cpu_cpwait();
3562 rv = 1;
3563 out:
3564 pmap_unmap_ptes(pmap); /* unlocks pmap */
3565 PMAP_MAP_TO_HEAD_UNLOCK();
3566 return (rv);
3567 }
3568
3569 /*
3570 * pmap_collect: free resources held by a pmap
3571 *
3572 * => optional function.
3573 * => called when a process is swapped out to free memory.
3574 */
3575
3576 void
3577 pmap_collect(struct pmap *pmap)
3578 {
3579 }
3580
3581 /*
3582 * Routine: pmap_procwr
3583 *
3584 * Function:
3585 * Synchronize caches corresponding to [addr, addr+len) in p.
3586 *
3587 */
3588 void
3589 pmap_procwr(struct proc *p, vaddr_t va, int len)
3590 {
3591 /* We only need to do anything if it is the current process. */
3592 if (p == curproc)
3593 cpu_icache_sync_range(va, len);
3594 }
3595 /*
3596 * PTP functions
3597 */
3598
3599 /*
3600 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3601 *
3602 * => pmap should NOT be pmap_kernel()
3603 * => pmap should be locked
3604 */
3605
3606 static struct vm_page *
3607 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3608 {
3609 struct vm_page *ptp;
3610 pd_entry_t *pde;
3611
3612 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3613
3614 pde = pmap_pde(pmap, va);
3615 if (pmap_pde_v(pde)) {
3616 /* valid... check hint (saves us a PA->PG lookup) */
3617 if (pmap->pm_ptphint &&
3618 ((*pde) & L2_S_FRAME) ==
3619 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3620 return (pmap->pm_ptphint);
3621 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3622 #ifdef DIAGNOSTIC
3623 if (ptp == NULL)
3624 panic("pmap_get_ptp: unmanaged user PTP");
3625 #endif
3626 pmap->pm_ptphint = ptp;
3627 return(ptp);
3628 }
3629
3630 /* allocate a new PTP (updates ptphint) */
3631 return (pmap_alloc_ptp(pmap, va));
3632 }
3633
3634 /*
3635 * pmap_alloc_ptp: allocate a PTP for a PMAP
3636 *
3637 * => pmap should already be locked by caller
3638 * => we use the ptp's wire_count to count the number of active mappings
3639 * in the PTP (we start it at one to prevent any chance this PTP
3640 * will ever leak onto the active/inactive queues)
3641 */
3642
3643 /*__inline */ static struct vm_page *
3644 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3645 {
3646 struct vm_page *ptp;
3647
3648 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3649
3650 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3651 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3652 if (ptp == NULL)
3653 return (NULL);
3654
3655 /* got one! */
3656 ptp->flags &= ~PG_BUSY; /* never busy */
3657 ptp->wire_count = 1; /* no mappings yet */
3658 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
3659 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3660 pmap->pm_stats.resident_count++; /* count PTP as resident */
3661 pmap->pm_ptphint = ptp;
3662 return (ptp);
3663 }
3664
3665 vaddr_t
3666 pmap_growkernel(vaddr_t maxkvaddr)
3667 {
3668 struct pmap *kpm = pmap_kernel(), *pm;
3669 int s;
3670 paddr_t ptaddr;
3671 struct vm_page *ptp;
3672
3673 if (maxkvaddr <= pmap_curmaxkvaddr)
3674 goto out; /* we are OK */
3675 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3676 pmap_curmaxkvaddr, maxkvaddr));
3677
3678 /*
3679 * whoops! we need to add kernel PTPs
3680 */
3681
3682 s = splhigh(); /* to be safe */
3683 simple_lock(&kpm->pm_obj.vmobjlock);
3684 /* due to the way the arm pmap works we map 4MB at a time */
3685 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3686 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3687
3688 if (uvm.page_init_done == FALSE) {
3689
3690 /*
3691 * we're growing the kernel pmap early (from
3692 * uvm_pageboot_alloc()). this case must be
3693 * handled a little differently.
3694 */
3695
3696 if (uvm_page_physget(&ptaddr) == FALSE)
3697 panic("pmap_growkernel: out of memory");
3698 pmap_zero_page(ptaddr);
3699
3700 /* map this page in */
3701 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
3702 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3703
3704 /* count PTP as resident */
3705 kpm->pm_stats.resident_count++;
3706 continue;
3707 }
3708
3709 /*
3710 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3711 * pmap_initialized == FALSE CASE! WE MAY BE
3712 * INVOKED WHILE pmap_init() IS RUNNING!
3713 */
3714
3715 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3716 panic("pmap_growkernel: alloc ptp failed");
3717
3718 /* distribute new kernel PTP to all active pmaps */
3719 simple_lock(&pmaps_lock);
3720 LIST_FOREACH(pm, &pmaps, pm_list) {
3721 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3722 VM_PAGE_TO_PHYS(ptp),
3723 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3724 }
3725
3726 /* Invalidate the PTPT cache. */
3727 pool_cache_invalidate(&pmap_ptpt_cache);
3728 pmap_ptpt_cache_generation++;
3729
3730 simple_unlock(&pmaps_lock);
3731 }
3732
3733 /*
3734 * flush out the cache, expensive but growkernel will happen so
3735 * rarely
3736 */
3737 cpu_tlb_flushD();
3738 cpu_cpwait();
3739
3740 simple_unlock(&kpm->pm_obj.vmobjlock);
3741 splx(s);
3742
3743 out:
3744 return (pmap_curmaxkvaddr);
3745 }
3746
3747 /************************ Utility routines ****************************/
3748
3749 /*
3750 * vector_page_setprot:
3751 *
3752 * Manipulate the protection of the vector page.
3753 */
3754 void
3755 vector_page_setprot(int prot)
3756 {
3757 pt_entry_t *pte;
3758
3759 pte = vtopte(vector_page);
3760
3761 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3762 PTE_SYNC(pte);
3763 cpu_tlb_flushD_SE(vector_page);
3764 cpu_cpwait();
3765 }
3766
3767 /************************ Bootstrapping routines ****************************/
3768
3769 /*
3770 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3771 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3772 * find them as necessary.
3773 *
3774 * Note that the data on this list is not valid after initarm() returns.
3775 */
3776 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3777
3778 static vaddr_t
3779 kernel_pt_lookup(paddr_t pa)
3780 {
3781 pv_addr_t *pv;
3782
3783 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3784 if (pv->pv_pa == pa)
3785 return (pv->pv_va);
3786 }
3787 return (0);
3788 }
3789
3790 /*
3791 * pmap_map_section:
3792 *
3793 * Create a single section mapping.
3794 */
3795 void
3796 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3797 {
3798 pd_entry_t *pde = (pd_entry_t *) l1pt;
3799 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3800
3801 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3802
3803 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3804 L1_S_PROT(PTE_KERNEL, prot) | fl;
3805 }
3806
3807 /*
3808 * pmap_map_entry:
3809 *
3810 * Create a single page mapping.
3811 */
3812 void
3813 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3814 {
3815 pd_entry_t *pde = (pd_entry_t *) l1pt;
3816 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3817 pt_entry_t *pte;
3818
3819 KASSERT(((va | pa) & PGOFSET) == 0);
3820
3821 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3822 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3823
3824 pte = (pt_entry_t *)
3825 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3826 if (pte == NULL)
3827 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3828
3829 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3830 L2_S_PROT(PTE_KERNEL, prot) | fl;
3831 }
3832
3833 /*
3834 * pmap_link_l2pt:
3835 *
3836 * Link the L2 page table specified by "pa" into the L1
3837 * page table at the slot for "va".
3838 */
3839 void
3840 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3841 {
3842 pd_entry_t *pde = (pd_entry_t *) l1pt;
3843 u_int slot = va >> L1_S_SHIFT;
3844
3845 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3846
3847 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3848 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3849 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3850 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3851
3852 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3853 }
3854
3855 /*
3856 * pmap_map_chunk:
3857 *
3858 * Map a chunk of memory using the most efficient mappings
3859 * possible (section, large page, small page) into the
3860 * provided L1 and L2 tables at the specified virtual address.
3861 */
3862 vsize_t
3863 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3864 int prot, int cache)
3865 {
3866 pd_entry_t *pde = (pd_entry_t *) l1pt;
3867 pt_entry_t *pte, fl;
3868 vsize_t resid;
3869 int i;
3870
3871 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3872
3873 if (l1pt == 0)
3874 panic("pmap_map_chunk: no L1 table provided");
3875
3876 #ifdef VERBOSE_INIT_ARM
3877 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3878 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3879 #endif
3880
3881 size = resid;
3882
3883 while (resid > 0) {
3884 /* See if we can use a section mapping. */
3885 if (((pa | va) & L1_S_OFFSET) == 0 &&
3886 resid >= L1_S_SIZE) {
3887 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3888 #ifdef VERBOSE_INIT_ARM
3889 printf("S");
3890 #endif
3891 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3892 L1_S_PROT(PTE_KERNEL, prot) | fl;
3893 va += L1_S_SIZE;
3894 pa += L1_S_SIZE;
3895 resid -= L1_S_SIZE;
3896 continue;
3897 }
3898
3899 /*
3900 * Ok, we're going to use an L2 table. Make sure
3901 * one is actually in the corresponding L1 slot
3902 * for the current VA.
3903 */
3904 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3905 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3906
3907 pte = (pt_entry_t *)
3908 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3909 if (pte == NULL)
3910 panic("pmap_map_chunk: can't find L2 table for VA"
3911 "0x%08lx", va);
3912
3913 /* See if we can use a L2 large page mapping. */
3914 if (((pa | va) & L2_L_OFFSET) == 0 &&
3915 resid >= L2_L_SIZE) {
3916 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3917 #ifdef VERBOSE_INIT_ARM
3918 printf("L");
3919 #endif
3920 for (i = 0; i < 16; i++) {
3921 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3922 L2_L_PROTO | pa |
3923 L2_L_PROT(PTE_KERNEL, prot) | fl;
3924 }
3925 va += L2_L_SIZE;
3926 pa += L2_L_SIZE;
3927 resid -= L2_L_SIZE;
3928 continue;
3929 }
3930
3931 /* Use a small page mapping. */
3932 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3933 #ifdef VERBOSE_INIT_ARM
3934 printf("P");
3935 #endif
3936 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3937 L2_S_PROT(PTE_KERNEL, prot) | fl;
3938 va += NBPG;
3939 pa += NBPG;
3940 resid -= NBPG;
3941 }
3942 #ifdef VERBOSE_INIT_ARM
3943 printf("\n");
3944 #endif
3945 return (size);
3946 }
3947
3948 /********************** PTE initialization routines **************************/
3949
3950 /*
3951 * These routines are called when the CPU type is identified to set up
3952 * the PTE prototypes, cache modes, etc.
3953 *
3954 * The variables are always here, just in case LKMs need to reference
3955 * them (though, they shouldn't).
3956 */
3957
3958 pt_entry_t pte_l1_s_cache_mode;
3959 pt_entry_t pte_l1_s_cache_mask;
3960
3961 pt_entry_t pte_l2_l_cache_mode;
3962 pt_entry_t pte_l2_l_cache_mask;
3963
3964 pt_entry_t pte_l2_s_cache_mode;
3965 pt_entry_t pte_l2_s_cache_mask;
3966
3967 pt_entry_t pte_l2_s_prot_u;
3968 pt_entry_t pte_l2_s_prot_w;
3969 pt_entry_t pte_l2_s_prot_mask;
3970
3971 pt_entry_t pte_l1_s_proto;
3972 pt_entry_t pte_l1_c_proto;
3973 pt_entry_t pte_l2_s_proto;
3974
3975 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3976 void (*pmap_zero_page_func)(paddr_t);
3977
3978 #if ARM_MMU_GENERIC == 1
3979 void
3980 pmap_pte_init_generic(void)
3981 {
3982
3983 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3984 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3985
3986 pte_l2_l_cache_mode = L2_B|L2_C;
3987 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3988
3989 pte_l2_s_cache_mode = L2_B|L2_C;
3990 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3991
3992 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3993 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3994 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3995
3996 pte_l1_s_proto = L1_S_PROTO_generic;
3997 pte_l1_c_proto = L1_C_PROTO_generic;
3998 pte_l2_s_proto = L2_S_PROTO_generic;
3999
4000 pmap_copy_page_func = pmap_copy_page_generic;
4001 pmap_zero_page_func = pmap_zero_page_generic;
4002 }
4003
4004 #if defined(CPU_ARM9)
4005 void
4006 pmap_pte_init_arm9(void)
4007 {
4008
4009 /*
4010 * ARM9 is compatible with generic, but we want to use
4011 * write-through caching for now.
4012 */
4013 pmap_pte_init_generic();
4014
4015 pte_l1_s_cache_mode = L1_S_C;
4016 pte_l2_l_cache_mode = L2_C;
4017 pte_l2_s_cache_mode = L2_C;
4018 }
4019 #endif /* CPU_ARM9 */
4020 #endif /* ARM_MMU_GENERIC == 1 */
4021
4022 #if ARM_MMU_XSCALE == 1
4023 void
4024 pmap_pte_init_xscale(void)
4025 {
4026 uint32_t auxctl;
4027
4028 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4029 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4030
4031 pte_l2_l_cache_mode = L2_B|L2_C;
4032 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4033
4034 pte_l2_s_cache_mode = L2_B|L2_C;
4035 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4036
4037 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4038 /*
4039 * The XScale core has an enhanced mode where writes that
4040 * miss the cache cause a cache line to be allocated. This
4041 * is significantly faster than the traditional, write-through
4042 * behavior of this case.
4043 *
4044 * However, there is a bug lurking in this pmap module, or in
4045 * other parts of the VM system, or both, which causes corruption
4046 * of NFS-backed files when this cache mode is used. We have
4047 * an ugly work-around for this problem (disable r/w-allocate
4048 * for managed kernel mappings), but the bug is still evil enough
4049 * to consider this cache mode "experimental".
4050 */
4051 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4052 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4053 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4054 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4055
4056 #ifdef XSCALE_CACHE_WRITE_THROUGH
4057 /*
4058 * Some versions of the XScale core have various bugs in
4059 * their cache units, the work-around for which is to run
4060 * the cache in write-through mode. Unfortunately, this
4061 * has a major (negative) impact on performance. So, we
4062 * go ahead and run fast-and-loose, in the hopes that we
4063 * don't line up the planets in a way that will trip the
4064 * bugs.
4065 *
4066 * However, we give you the option to be slow-but-correct.
4067 */
4068 pte_l1_s_cache_mode = L1_S_C;
4069 pte_l2_l_cache_mode = L2_C;
4070 pte_l2_s_cache_mode = L2_C;
4071 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4072
4073 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4074 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4075 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4076
4077 pte_l1_s_proto = L1_S_PROTO_xscale;
4078 pte_l1_c_proto = L1_C_PROTO_xscale;
4079 pte_l2_s_proto = L2_S_PROTO_xscale;
4080
4081 pmap_copy_page_func = pmap_copy_page_xscale;
4082 pmap_zero_page_func = pmap_zero_page_xscale;
4083
4084 /*
4085 * Disable ECC protection of page table access, for now.
4086 */
4087 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4088 : "=r" (auxctl));
4089 auxctl &= ~XSCALE_AUXCTL_P;
4090 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4091 :
4092 : "r" (auxctl));
4093 }
4094
4095 /*
4096 * xscale_setup_minidata:
4097 *
4098 * Set up the mini-data cache clean area. We require the
4099 * caller to allocate the right amount of physically and
4100 * virtually contiguous space.
4101 */
4102 void
4103 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4104 {
4105 extern vaddr_t xscale_minidata_clean_addr;
4106 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4107 pd_entry_t *pde = (pd_entry_t *) l1pt;
4108 pt_entry_t *pte;
4109 vsize_t size;
4110 uint32_t auxctl;
4111
4112 xscale_minidata_clean_addr = va;
4113
4114 /* Round it to page size. */
4115 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4116
4117 for (; size != 0;
4118 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4119 pte = (pt_entry_t *)
4120 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4121 if (pte == NULL)
4122 panic("xscale_setup_minidata: can't find L2 table for "
4123 "VA 0x%08lx", va);
4124 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4125 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4126 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4127 }
4128
4129 /*
4130 * Configure the mini-data cache for write-back with
4131 * read/write-allocate.
4132 *
4133 * NOTE: In order to reconfigure the mini-data cache, we must
4134 * make sure it contains no valid data! In order to do that,
4135 * we must issue a global data cache invalidate command!
4136 *
4137 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4138 * THIS IS VERY IMPORTANT!
4139 */
4140
4141 /* Invalidate data and mini-data. */
4142 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4143 :
4144 : "r" (auxctl));
4145
4146
4147 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4148 : "=r" (auxctl));
4149 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4150 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4151 :
4152 : "r" (auxctl));
4153 }
4154 #endif /* ARM_MMU_XSCALE == 1 */
4155