pmap.c revision 1.126 1 /* $NetBSD: pmap.c,v 1.126 2003/02/23 23:40:01 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001-2002 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.126 2003/02/23 23:40:01 thorpej Exp $");
147
148 #ifdef PMAP_DEBUG
149 #define PDEBUG(_lev_,_stat_) \
150 if (pmap_debug_level >= (_lev_)) \
151 ((_stat_))
152 int pmap_debug_level = -2;
153 void pmap_dump_pvlist(vaddr_t phys, char *m);
154
155 /*
156 * for switching to potentially finer grained debugging
157 */
158 #define PDB_FOLLOW 0x0001
159 #define PDB_INIT 0x0002
160 #define PDB_ENTER 0x0004
161 #define PDB_REMOVE 0x0008
162 #define PDB_CREATE 0x0010
163 #define PDB_PTPAGE 0x0020
164 #define PDB_GROWKERN 0x0040
165 #define PDB_BITS 0x0080
166 #define PDB_COLLECT 0x0100
167 #define PDB_PROTECT 0x0200
168 #define PDB_MAP_L1 0x0400
169 #define PDB_BOOTSTRAP 0x1000
170 #define PDB_PARANOIA 0x2000
171 #define PDB_WIRING 0x4000
172 #define PDB_PVDUMP 0x8000
173
174 int debugmap = 0;
175 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW | PDB_GROWKERN | PDB_ENTER | PDB_REMOVE;
176 #define NPDEBUG(_lev_,_stat_) \
177 if (pmapdebug & (_lev_)) \
178 ((_stat_))
179
180 #else /* PMAP_DEBUG */
181 #define PDEBUG(_lev_,_stat_) /* Nothing */
182 #define NPDEBUG(_lev_,_stat_) /* Nothing */
183 #endif /* PMAP_DEBUG */
184
185 struct pmap kernel_pmap_store;
186
187 /*
188 * linked list of all non-kernel pmaps
189 */
190
191 static LIST_HEAD(, pmap) pmaps;
192
193 /*
194 * pool that pmap structures are allocated from
195 */
196
197 struct pool pmap_pmap_pool;
198
199 /*
200 * pool/cache that PT-PT's are allocated from
201 */
202
203 struct pool pmap_ptpt_pool;
204 struct pool_cache pmap_ptpt_cache;
205 u_int pmap_ptpt_cache_generation;
206
207 static void *pmap_ptpt_page_alloc(struct pool *, int);
208 static void pmap_ptpt_page_free(struct pool *, void *);
209
210 struct pool_allocator pmap_ptpt_allocator = {
211 pmap_ptpt_page_alloc, pmap_ptpt_page_free,
212 };
213
214 static int pmap_ptpt_ctor(void *, void *, int);
215
216 static pt_entry_t *csrc_pte, *cdst_pte;
217 static vaddr_t csrcp, cdstp;
218
219 char *memhook;
220 extern caddr_t msgbufaddr;
221
222 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
223 /*
224 * locking data structures
225 */
226
227 static struct lock pmap_main_lock;
228 static struct simplelock pvalloc_lock;
229 static struct simplelock pmaps_lock;
230 #ifdef LOCKDEBUG
231 #define PMAP_MAP_TO_HEAD_LOCK() \
232 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
233 #define PMAP_MAP_TO_HEAD_UNLOCK() \
234 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
235
236 #define PMAP_HEAD_TO_MAP_LOCK() \
237 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
238 #define PMAP_HEAD_TO_MAP_UNLOCK() \
239 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
240 #else
241 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
242 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
243 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
244 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
245 #endif /* LOCKDEBUG */
246
247 /*
248 * pv_page management structures: locked by pvalloc_lock
249 */
250
251 TAILQ_HEAD(pv_pagelist, pv_page);
252 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
253 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
254 static unsigned int pv_nfpvents; /* # of free pv entries */
255 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
256 static vaddr_t pv_cachedva; /* cached VA for later use */
257
258 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
259 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
260 /* high water mark */
261
262 /*
263 * local prototypes
264 */
265
266 static struct pv_entry *pmap_add_pvpage(struct pv_page *, boolean_t);
267 static struct pv_entry *pmap_alloc_pv(struct pmap *, unsigned int);
268 #define ALLOCPV_NEED 0 /* need PV now */
269 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
270 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
271 static struct pv_entry *pmap_alloc_pvpage(struct pmap *, unsigned int);
272 static void pmap_enter_pv(struct vm_page *,
273 struct pv_entry *, struct pmap *,
274 vaddr_t, struct vm_page *, unsigned int);
275 static void pmap_free_pv(struct pmap *, struct pv_entry *);
276 static void pmap_free_pvs(struct pmap *, struct pv_entry *);
277 static void pmap_free_pv_doit(struct pv_entry *);
278 static void pmap_free_pvpage(void);
279 static boolean_t pmap_is_curpmap(struct pmap *);
280 static struct pv_entry *pmap_remove_pv(struct vm_page *, struct pmap *,
281 vaddr_t);
282 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
283 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
284
285 static u_int pmap_modify_pv(struct pmap *, vaddr_t, struct vm_page *,
286 u_int, u_int);
287
288 /*
289 * Structure that describes and L1 table.
290 */
291 struct l1pt {
292 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
293 struct pglist pt_plist; /* Allocated page list */
294 vaddr_t pt_va; /* Allocated virtual address */
295 unsigned int pt_flags; /* Flags */
296 };
297 #define PTFLAG_STATIC 0x01 /* Statically allocated */
298 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
299 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
300
301 static void pmap_free_l1pt(struct l1pt *);
302 static int pmap_allocpagedir(struct pmap *);
303 static int pmap_clean_page(struct pv_entry *, boolean_t);
304 static void pmap_page_remove(struct vm_page *);
305
306 static struct vm_page *pmap_alloc_ptp(struct pmap *, vaddr_t);
307 static struct vm_page *pmap_get_ptp(struct pmap *, vaddr_t);
308 __inline static void pmap_clearbit(struct vm_page *, unsigned int);
309
310 extern paddr_t physical_start;
311 extern paddr_t physical_end;
312 extern unsigned int free_pages;
313 extern int max_processes;
314
315 vaddr_t virtual_avail;
316 vaddr_t virtual_end;
317 vaddr_t pmap_curmaxkvaddr;
318
319 vaddr_t avail_start;
320 vaddr_t avail_end;
321
322 extern pv_addr_t systempage;
323
324 /* Variables used by the L1 page table queue code */
325 SIMPLEQ_HEAD(l1pt_queue, l1pt);
326 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
327 static u_int l1pt_static_queue_count; /* items in the static l1 queue */
328 static u_int l1pt_static_create_count; /* static l1 items created */
329 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
330 static u_int l1pt_queue_count; /* items in the l1 queue */
331 static u_int l1pt_create_count; /* stat - L1's create count */
332 static u_int l1pt_reuse_count; /* stat - L1's reused count */
333
334 /* Local function prototypes (not used outside this file) */
335 void pmap_pinit(struct pmap *);
336 void pmap_freepagedir(struct pmap *);
337
338 /* Other function prototypes */
339 extern void bzero_page(vaddr_t);
340 extern void bcopy_page(vaddr_t, vaddr_t);
341
342 struct l1pt *pmap_alloc_l1pt(void);
343 static __inline void pmap_map_in_l1(struct pmap *pmap, vaddr_t va,
344 vaddr_t l2pa, unsigned int);
345
346 static pt_entry_t *pmap_map_ptes(struct pmap *);
347 static void pmap_unmap_ptes(struct pmap *);
348
349 __inline static void pmap_vac_me_harder(struct pmap *, struct vm_page *,
350 pt_entry_t *, boolean_t);
351 static void pmap_vac_me_kpmap(struct pmap *, struct vm_page *,
352 pt_entry_t *, boolean_t);
353 static void pmap_vac_me_user(struct pmap *, struct vm_page *,
354 pt_entry_t *, boolean_t);
355
356 /*
357 * real definition of pv_entry.
358 */
359
360 struct pv_entry {
361 struct pv_entry *pv_next; /* next pv_entry */
362 struct pmap *pv_pmap; /* pmap where mapping lies */
363 vaddr_t pv_va; /* virtual address for mapping */
364 unsigned int pv_flags; /* flags */
365 struct vm_page *pv_ptp; /* vm_page for the ptp */
366 };
367
368 /*
369 * pv_entrys are dynamically allocated in chunks from a single page.
370 * we keep track of how many pv_entrys are in use for each page and
371 * we can free pv_entry pages if needed. there is one lock for the
372 * entire allocation system.
373 */
374
375 struct pv_page_info {
376 TAILQ_ENTRY(pv_page) pvpi_list;
377 struct pv_entry *pvpi_pvfree;
378 unsigned int pvpi_nfree;
379 };
380
381 /*
382 * number of pv_entry's in a pv_page
383 * (note: won't work on systems where NPBG isn't a constant)
384 */
385
386 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
387 sizeof(struct pv_entry))
388
389 /*
390 * a pv_page: where pv_entrys are allocated from
391 */
392
393 struct pv_page {
394 struct pv_page_info pvinfo;
395 struct pv_entry pvents[PVE_PER_PVPAGE];
396 };
397
398 #ifdef MYCROFT_HACK
399 int mycroft_hack = 0;
400 #endif
401
402 /* Function to set the debug level of the pmap code */
403
404 #ifdef PMAP_DEBUG
405 void
406 pmap_debug(int level)
407 {
408 pmap_debug_level = level;
409 printf("pmap_debug: level=%d\n", pmap_debug_level);
410 }
411 #endif /* PMAP_DEBUG */
412
413 __inline static boolean_t
414 pmap_is_curpmap(struct pmap *pmap)
415 {
416
417 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
418 pmap == pmap_kernel())
419 return (TRUE);
420
421 return (FALSE);
422 }
423
424 /*
425 * PTE_SYNC_CURRENT:
426 *
427 * Make sure the pte is flushed to RAM. If the pmap is
428 * not the current pmap, then also evict the pte from
429 * any cache lines.
430 */
431 #define PTE_SYNC_CURRENT(pmap, pte) \
432 do { \
433 if (pmap_is_curpmap(pmap)) \
434 PTE_SYNC(pte); \
435 else \
436 PTE_FLUSH(pte); \
437 } while (/*CONSTCOND*/0)
438
439 /*
440 * PTE_FLUSH_ALT:
441 *
442 * Make sure the pte is not in any cache lines. We expect
443 * this to be used only when a pte has not been modified.
444 */
445 #define PTE_FLUSH_ALT(pmap, pte) \
446 do { \
447 if (pmap_is_curpmap(pmap) == 0) \
448 PTE_FLUSH(pte); \
449 } while (/*CONSTCOND*/0)
450
451 /*
452 * p v _ e n t r y f u n c t i o n s
453 */
454
455 /*
456 * pv_entry allocation functions:
457 * the main pv_entry allocation functions are:
458 * pmap_alloc_pv: allocate a pv_entry structure
459 * pmap_free_pv: free one pv_entry
460 * pmap_free_pvs: free a list of pv_entrys
461 *
462 * the rest are helper functions
463 */
464
465 /*
466 * pmap_alloc_pv: inline function to allocate a pv_entry structure
467 * => we lock pvalloc_lock
468 * => if we fail, we call out to pmap_alloc_pvpage
469 * => 3 modes:
470 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
471 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
472 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
473 * one now
474 *
475 * "try" is for optional functions like pmap_copy().
476 */
477
478 __inline static struct pv_entry *
479 pmap_alloc_pv(struct pmap *pmap, unsigned int mode)
480 {
481 struct pv_page *pvpage;
482 struct pv_entry *pv;
483
484 simple_lock(&pvalloc_lock);
485
486 pvpage = TAILQ_FIRST(&pv_freepages);
487
488 if (pvpage != NULL) {
489 pvpage->pvinfo.pvpi_nfree--;
490 if (pvpage->pvinfo.pvpi_nfree == 0) {
491 /* nothing left in this one? */
492 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
493 }
494 pv = pvpage->pvinfo.pvpi_pvfree;
495 KASSERT(pv);
496 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
497 pv_nfpvents--; /* took one from pool */
498 } else {
499 pv = NULL; /* need more of them */
500 }
501
502 /*
503 * if below low water mark or we didn't get a pv_entry we try and
504 * create more pv_entrys ...
505 */
506
507 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
508 if (pv == NULL)
509 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
510 mode : ALLOCPV_NEED);
511 else
512 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
513 }
514
515 simple_unlock(&pvalloc_lock);
516 return(pv);
517 }
518
519 /*
520 * pmap_alloc_pvpage: maybe allocate a new pvpage
521 *
522 * if need_entry is false: try and allocate a new pv_page
523 * if need_entry is true: try and allocate a new pv_page and return a
524 * new pv_entry from it. if we are unable to allocate a pv_page
525 * we make a last ditch effort to steal a pv_page from some other
526 * mapping. if that fails, we panic...
527 *
528 * => we assume that the caller holds pvalloc_lock
529 */
530
531 static struct pv_entry *
532 pmap_alloc_pvpage(struct pmap *pmap, unsigned int mode)
533 {
534 struct vm_page *pg;
535 struct pv_page *pvpage;
536 struct pv_entry *pv;
537
538 /*
539 * if we need_entry and we've got unused pv_pages, allocate from there
540 */
541
542 pvpage = TAILQ_FIRST(&pv_unusedpgs);
543 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
544
545 /* move it to pv_freepages list */
546 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
547 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
548
549 /* allocate a pv_entry */
550 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
551 pv = pvpage->pvinfo.pvpi_pvfree;
552 KASSERT(pv);
553 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
554
555 pv_nfpvents--; /* took one from pool */
556 return(pv);
557 }
558
559 /*
560 * see if we've got a cached unmapped VA that we can map a page in.
561 * if not, try to allocate one.
562 */
563
564
565 if (pv_cachedva == 0) {
566 int s;
567 s = splvm();
568 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
569 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
570 splx(s);
571 if (pv_cachedva == 0) {
572 return (NULL);
573 }
574 }
575
576 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
577 UVM_PGA_USERESERVE);
578
579 if (pg == NULL)
580 return (NULL);
581 pg->flags &= ~PG_BUSY; /* never busy */
582
583 /*
584 * add a mapping for our new pv_page and free its entrys (save one!)
585 *
586 * NOTE: If we are allocating a PV page for the kernel pmap, the
587 * pmap is already locked! (...but entering the mapping is safe...)
588 */
589
590 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
591 VM_PROT_READ|VM_PROT_WRITE);
592 pmap_update(pmap_kernel());
593 pvpage = (struct pv_page *) pv_cachedva;
594 pv_cachedva = 0;
595 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
596 }
597
598 /*
599 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
600 *
601 * => caller must hold pvalloc_lock
602 * => if need_entry is true, we allocate and return one pv_entry
603 */
604
605 static struct pv_entry *
606 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
607 {
608 unsigned int tofree, lcv;
609
610 /* do we need to return one? */
611 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
612
613 pvp->pvinfo.pvpi_pvfree = NULL;
614 pvp->pvinfo.pvpi_nfree = tofree;
615 for (lcv = 0 ; lcv < tofree ; lcv++) {
616 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
617 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
618 }
619 if (need_entry)
620 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
621 else
622 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
623 pv_nfpvents += tofree;
624 return((need_entry) ? &pvp->pvents[lcv] : NULL);
625 }
626
627 /*
628 * pmap_free_pv_doit: actually free a pv_entry
629 *
630 * => do not call this directly! instead use either
631 * 1. pmap_free_pv ==> free a single pv_entry
632 * 2. pmap_free_pvs => free a list of pv_entrys
633 * => we must be holding pvalloc_lock
634 */
635
636 __inline static void
637 pmap_free_pv_doit(struct pv_entry *pv)
638 {
639 struct pv_page *pvp;
640
641 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
642 pv_nfpvents++;
643 pvp->pvinfo.pvpi_nfree++;
644
645 /* nfree == 1 => fully allocated page just became partly allocated */
646 if (pvp->pvinfo.pvpi_nfree == 1) {
647 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
648 }
649
650 /* free it */
651 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
652 pvp->pvinfo.pvpi_pvfree = pv;
653
654 /*
655 * are all pv_page's pv_entry's free? move it to unused queue.
656 */
657
658 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
659 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
660 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
661 }
662 }
663
664 /*
665 * pmap_free_pv: free a single pv_entry
666 *
667 * => we gain the pvalloc_lock
668 */
669
670 __inline static void
671 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
672 {
673 simple_lock(&pvalloc_lock);
674 pmap_free_pv_doit(pv);
675
676 /*
677 * Can't free the PV page if the PV entries were associated with
678 * the kernel pmap; the pmap is already locked.
679 */
680 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
681 pmap != pmap_kernel())
682 pmap_free_pvpage();
683
684 simple_unlock(&pvalloc_lock);
685 }
686
687 /*
688 * pmap_free_pvs: free a list of pv_entrys
689 *
690 * => we gain the pvalloc_lock
691 */
692
693 __inline static void
694 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
695 {
696 struct pv_entry *nextpv;
697
698 simple_lock(&pvalloc_lock);
699
700 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
701 nextpv = pvs->pv_next;
702 pmap_free_pv_doit(pvs);
703 }
704
705 /*
706 * Can't free the PV page if the PV entries were associated with
707 * the kernel pmap; the pmap is already locked.
708 */
709 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
710 pmap != pmap_kernel())
711 pmap_free_pvpage();
712
713 simple_unlock(&pvalloc_lock);
714 }
715
716
717 /*
718 * pmap_free_pvpage: try and free an unused pv_page structure
719 *
720 * => assume caller is holding the pvalloc_lock and that
721 * there is a page on the pv_unusedpgs list
722 * => if we can't get a lock on the kmem_map we try again later
723 */
724
725 static void
726 pmap_free_pvpage(void)
727 {
728 int s;
729 struct vm_map *map;
730 struct vm_map_entry *dead_entries;
731 struct pv_page *pvp;
732
733 s = splvm(); /* protect kmem_map */
734
735 pvp = TAILQ_FIRST(&pv_unusedpgs);
736
737 /*
738 * note: watch out for pv_initpage which is allocated out of
739 * kernel_map rather than kmem_map.
740 */
741 if (pvp == pv_initpage)
742 map = kernel_map;
743 else
744 map = kmem_map;
745 if (vm_map_lock_try(map)) {
746
747 /* remove pvp from pv_unusedpgs */
748 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
749
750 /* unmap the page */
751 dead_entries = NULL;
752 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
753 &dead_entries);
754 vm_map_unlock(map);
755
756 if (dead_entries != NULL)
757 uvm_unmap_detach(dead_entries, 0);
758
759 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
760 }
761 if (pvp == pv_initpage)
762 /* no more initpage, we've freed it */
763 pv_initpage = NULL;
764
765 splx(s);
766 }
767
768 /*
769 * main pv_entry manipulation functions:
770 * pmap_enter_pv: enter a mapping onto a vm_page list
771 * pmap_remove_pv: remove a mappiing from a vm_page list
772 *
773 * NOTE: pmap_enter_pv expects to lock the pvh itself
774 * pmap_remove_pv expects te caller to lock the pvh before calling
775 */
776
777 /*
778 * pmap_enter_pv: enter a mapping onto a vm_page lst
779 *
780 * => caller should hold the proper lock on pmap_main_lock
781 * => caller should have pmap locked
782 * => we will gain the lock on the vm_page and allocate the new pv_entry
783 * => caller should adjust ptp's wire_count before calling
784 * => caller should not adjust pmap's wire_count
785 */
786
787 __inline static void
788 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
789 vaddr_t va, struct vm_page *ptp, unsigned int flags)
790 {
791 pve->pv_pmap = pmap;
792 pve->pv_va = va;
793 pve->pv_ptp = ptp; /* NULL for kernel pmap */
794 pve->pv_flags = flags;
795 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
796 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
797 pg->mdpage.pvh_list = pve; /* ... locked list */
798 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
799 if (pve->pv_flags & PVF_WIRED)
800 ++pmap->pm_stats.wired_count;
801 #ifdef PMAP_ALIAS_DEBUG
802 {
803 int s = splhigh();
804 if (pve->pv_flags & PVF_WRITE)
805 pg->mdpage.rw_mappings++;
806 else
807 pg->mdpage.ro_mappings++;
808 if (pg->mdpage.rw_mappings != 0 &&
809 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
810 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
811 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
812 pg->mdpage.krw_mappings);
813 }
814 splx(s);
815 }
816 #endif /* PMAP_ALIAS_DEBUG */
817 }
818
819 /*
820 * pmap_remove_pv: try to remove a mapping from a pv_list
821 *
822 * => caller should hold proper lock on pmap_main_lock
823 * => pmap should be locked
824 * => caller should hold lock on vm_page [so that attrs can be adjusted]
825 * => caller should adjust ptp's wire_count and free PTP if needed
826 * => caller should NOT adjust pmap's wire_count
827 * => we return the removed pve
828 */
829
830 __inline static struct pv_entry *
831 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
832 {
833 struct pv_entry *pve, **prevptr;
834
835 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
836 pve = *prevptr;
837 while (pve) {
838 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
839 *prevptr = pve->pv_next; /* remove it! */
840 if (pve->pv_flags & PVF_WIRED)
841 --pmap->pm_stats.wired_count;
842 #ifdef PMAP_ALIAS_DEBUG
843 {
844 int s = splhigh();
845 if (pve->pv_flags & PVF_WRITE) {
846 KASSERT(pg->mdpage.rw_mappings != 0);
847 pg->mdpage.rw_mappings--;
848 } else {
849 KASSERT(pg->mdpage.ro_mappings != 0);
850 pg->mdpage.ro_mappings--;
851 }
852 splx(s);
853 }
854 #endif /* PMAP_ALIAS_DEBUG */
855 break;
856 }
857 prevptr = &pve->pv_next; /* previous pointer */
858 pve = pve->pv_next; /* advance */
859 }
860 return(pve); /* return removed pve */
861 }
862
863 /*
864 *
865 * pmap_modify_pv: Update pv flags
866 *
867 * => caller should hold lock on vm_page [so that attrs can be adjusted]
868 * => caller should NOT adjust pmap's wire_count
869 * => caller must call pmap_vac_me_harder() if writable status of a page
870 * may have changed.
871 * => we return the old flags
872 *
873 * Modify a physical-virtual mapping in the pv table
874 */
875
876 static /* __inline */ u_int
877 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
878 u_int bic_mask, u_int eor_mask)
879 {
880 struct pv_entry *npv;
881 u_int flags, oflags;
882
883 /*
884 * There is at least one VA mapping this page.
885 */
886
887 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
888 if (pmap == npv->pv_pmap && va == npv->pv_va) {
889 oflags = npv->pv_flags;
890 npv->pv_flags = flags =
891 ((oflags & ~bic_mask) ^ eor_mask);
892 if ((flags ^ oflags) & PVF_WIRED) {
893 if (flags & PVF_WIRED)
894 ++pmap->pm_stats.wired_count;
895 else
896 --pmap->pm_stats.wired_count;
897 }
898 #ifdef PMAP_ALIAS_DEBUG
899 {
900 int s = splhigh();
901 if ((flags ^ oflags) & PVF_WRITE) {
902 if (flags & PVF_WRITE) {
903 pg->mdpage.rw_mappings++;
904 pg->mdpage.ro_mappings--;
905 if (pg->mdpage.rw_mappings != 0 &&
906 (pg->mdpage.kro_mappings != 0 ||
907 pg->mdpage.krw_mappings != 0)) {
908 printf("pmap_modify_pv: rw %u, "
909 "kro %u, krw %u\n",
910 pg->mdpage.rw_mappings,
911 pg->mdpage.kro_mappings,
912 pg->mdpage.krw_mappings);
913 }
914 } else {
915 KASSERT(pg->mdpage.rw_mappings != 0);
916 pg->mdpage.rw_mappings--;
917 pg->mdpage.ro_mappings++;
918 }
919 }
920 splx(s);
921 }
922 #endif /* PMAP_ALIAS_DEBUG */
923 return (oflags);
924 }
925 }
926 return (0);
927 }
928
929 /*
930 * Map the specified level 2 pagetable into the level 1 page table for
931 * the given pmap to cover a chunk of virtual address space starting from the
932 * address specified.
933 */
934 #define PMAP_PTP_SELFREF 0x01
935 #define PMAP_PTP_CACHEABLE 0x02
936
937 static __inline void
938 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, unsigned int flags)
939 {
940 vaddr_t ptva;
941
942 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
943
944 /* Calculate the index into the L1 page table. */
945 ptva = va >> L1_S_SHIFT;
946
947 /* Map page table into the L1. */
948 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
949 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
950 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
951 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
952 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
953
954 /* Map the page table into the page table area. */
955 if (flags & PMAP_PTP_SELFREF) {
956 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
957 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) |
958 ((flags & PMAP_PTP_CACHEABLE) ? pte_l2_s_cache_mode : 0);
959 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
960 }
961 }
962
963 #if 0
964 static __inline void
965 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
966 {
967 vaddr_t ptva;
968
969 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
970
971 /* Calculate the index into the L1 page table. */
972 ptva = va >> L1_S_SHIFT;
973
974 /* Unmap page table from the L1. */
975 pmap->pm_pdir[ptva + 0] = 0;
976 pmap->pm_pdir[ptva + 1] = 0;
977 pmap->pm_pdir[ptva + 2] = 0;
978 pmap->pm_pdir[ptva + 3] = 0;
979 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
980
981 /* Unmap the page table from the page table area. */
982 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
983 PTE_SYNC_CURRENT(pmap, (pt_entry_t *)(pmap->pm_vptpt + ptva));
984 }
985 #endif
986
987 /*
988 * Used to map a range of physical addresses into kernel
989 * virtual address space.
990 *
991 * For now, VM is already on, we only need to map the
992 * specified memory.
993 *
994 * XXX This routine should eventually go away; it's only used
995 * XXX by machine-dependent crash dump code.
996 */
997 vaddr_t
998 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
999 {
1000 pt_entry_t *pte;
1001
1002 while (spa < epa) {
1003 pte = vtopte(va);
1004
1005 *pte = L2_S_PROTO | spa |
1006 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
1007 PTE_SYNC(pte);
1008 cpu_tlb_flushID_SE(va);
1009 va += NBPG;
1010 spa += NBPG;
1011 }
1012 pmap_update(pmap_kernel());
1013 return(va);
1014 }
1015
1016
1017 /*
1018 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1019 *
1020 * bootstrap the pmap system. This is called from initarm and allows
1021 * the pmap system to initailise any structures it requires.
1022 *
1023 * Currently this sets up the kernel_pmap that is statically allocated
1024 * and also allocated virtual addresses for certain page hooks.
1025 * Currently the only one page hook is allocated that is used
1026 * to zero physical pages of memory.
1027 * It also initialises the start and end address of the kernel data space.
1028 */
1029
1030 char *boot_head;
1031
1032 void
1033 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1034 {
1035 pt_entry_t *pte;
1036
1037 pmap_kernel()->pm_pdir = kernel_l1pt;
1038 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1039 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1040 simple_lock_init(&pmap_kernel()->pm_lock);
1041 pmap_kernel()->pm_obj.pgops = NULL;
1042 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1043 pmap_kernel()->pm_obj.uo_npages = 0;
1044 pmap_kernel()->pm_obj.uo_refs = 1;
1045
1046 virtual_avail = KERNEL_VM_BASE;
1047 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1048
1049 /*
1050 * now we allocate the "special" VAs which are used for tmp mappings
1051 * by the pmap (and other modules). we allocate the VAs by advancing
1052 * virtual_avail (note that there are no pages mapped at these VAs).
1053 * we find the PTE that maps the allocated VA via the linear PTE
1054 * mapping.
1055 */
1056
1057 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1058
1059 csrcp = virtual_avail; csrc_pte = pte;
1060 virtual_avail += PAGE_SIZE; pte++;
1061
1062 cdstp = virtual_avail; cdst_pte = pte;
1063 virtual_avail += PAGE_SIZE; pte++;
1064
1065 memhook = (char *) virtual_avail; /* don't need pte */
1066 *pte = 0;
1067 virtual_avail += PAGE_SIZE; pte++;
1068
1069 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1070 virtual_avail += round_page(MSGBUFSIZE);
1071 pte += atop(round_page(MSGBUFSIZE));
1072
1073 /*
1074 * init the static-global locks and global lists.
1075 */
1076 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1077 simple_lock_init(&pvalloc_lock);
1078 simple_lock_init(&pmaps_lock);
1079 LIST_INIT(&pmaps);
1080 TAILQ_INIT(&pv_freepages);
1081 TAILQ_INIT(&pv_unusedpgs);
1082
1083 /*
1084 * initialize the pmap pool.
1085 */
1086
1087 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1088 &pool_allocator_nointr);
1089
1090 /*
1091 * initialize the PT-PT pool and cache.
1092 */
1093
1094 pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1095 &pmap_ptpt_allocator);
1096 pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1097 pmap_ptpt_ctor, NULL, NULL);
1098
1099 cpu_dcache_wbinv_all();
1100 }
1101
1102 /*
1103 * void pmap_init(void)
1104 *
1105 * Initialize the pmap module.
1106 * Called by vm_init() in vm/vm_init.c in order to initialise
1107 * any structures that the pmap system needs to map virtual memory.
1108 */
1109
1110 extern int physmem;
1111
1112 void
1113 pmap_init(void)
1114 {
1115
1116 /*
1117 * Set the available memory vars - These do not map to real memory
1118 * addresses and cannot as the physical memory is fragmented.
1119 * They are used by ps for %mem calculations.
1120 * One could argue whether this should be the entire memory or just
1121 * the memory that is useable in a user process.
1122 */
1123 avail_start = 0;
1124 avail_end = physmem * NBPG;
1125
1126 /*
1127 * now we need to free enough pv_entry structures to allow us to get
1128 * the kmem_map/kmem_object allocated and inited (done after this
1129 * function is finished). to do this we allocate one bootstrap page out
1130 * of kernel_map and use it to provide an initial pool of pv_entry
1131 * structures. we never free this page.
1132 */
1133
1134 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1135 if (pv_initpage == NULL)
1136 panic("pmap_init: pv_initpage");
1137 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1138 pv_nfpvents = 0;
1139 (void) pmap_add_pvpage(pv_initpage, FALSE);
1140
1141 pmap_initialized = TRUE;
1142
1143 /* Initialise our L1 page table queues and counters */
1144 SIMPLEQ_INIT(&l1pt_static_queue);
1145 l1pt_static_queue_count = 0;
1146 l1pt_static_create_count = 0;
1147 SIMPLEQ_INIT(&l1pt_queue);
1148 l1pt_queue_count = 0;
1149 l1pt_create_count = 0;
1150 l1pt_reuse_count = 0;
1151 }
1152
1153 /*
1154 * pmap_postinit()
1155 *
1156 * This routine is called after the vm and kmem subsystems have been
1157 * initialised. This allows the pmap code to perform any initialisation
1158 * that can only be done one the memory allocation is in place.
1159 */
1160
1161 void
1162 pmap_postinit(void)
1163 {
1164 unsigned int loop;
1165 struct l1pt *pt;
1166
1167 #ifdef PMAP_STATIC_L1S
1168 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1169 #else /* PMAP_STATIC_L1S */
1170 for (loop = 0; loop < max_processes; ++loop) {
1171 #endif /* PMAP_STATIC_L1S */
1172 /* Allocate a L1 page table */
1173 pt = pmap_alloc_l1pt();
1174 if (!pt)
1175 panic("Cannot allocate static L1 page tables");
1176
1177 /* Clean it */
1178 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1179 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1180 /* Add the page table to the queue */
1181 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1182 ++l1pt_static_queue_count;
1183 ++l1pt_static_create_count;
1184 }
1185 }
1186
1187
1188 /*
1189 * Create and return a physical map.
1190 *
1191 * If the size specified for the map is zero, the map is an actual physical
1192 * map, and may be referenced by the hardware.
1193 *
1194 * If the size specified is non-zero, the map will be used in software only,
1195 * and is bounded by that size.
1196 */
1197
1198 pmap_t
1199 pmap_create(void)
1200 {
1201 struct pmap *pmap;
1202
1203 /*
1204 * Fetch pmap entry from the pool
1205 */
1206
1207 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1208 /* XXX is this really needed! */
1209 memset(pmap, 0, sizeof(*pmap));
1210
1211 simple_lock_init(&pmap->pm_obj.vmobjlock);
1212 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1213 TAILQ_INIT(&pmap->pm_obj.memq);
1214 pmap->pm_obj.uo_npages = 0;
1215 pmap->pm_obj.uo_refs = 1;
1216 pmap->pm_stats.wired_count = 0;
1217 pmap->pm_stats.resident_count = 1;
1218 pmap->pm_ptphint = NULL;
1219
1220 /* Now init the machine part of the pmap */
1221 pmap_pinit(pmap);
1222 return(pmap);
1223 }
1224
1225 /*
1226 * pmap_alloc_l1pt()
1227 *
1228 * This routine allocates physical and virtual memory for a L1 page table
1229 * and wires it.
1230 * A l1pt structure is returned to describe the allocated page table.
1231 *
1232 * This routine is allowed to fail if the required memory cannot be allocated.
1233 * In this case NULL is returned.
1234 */
1235
1236 struct l1pt *
1237 pmap_alloc_l1pt(void)
1238 {
1239 paddr_t pa;
1240 vaddr_t va;
1241 struct l1pt *pt;
1242 int error;
1243 struct vm_page *m;
1244
1245 /* Allocate virtual address space for the L1 page table */
1246 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1247 if (va == 0) {
1248 #ifdef DIAGNOSTIC
1249 PDEBUG(0,
1250 printf("pmap: Cannot allocate pageable memory for L1\n"));
1251 #endif /* DIAGNOSTIC */
1252 return(NULL);
1253 }
1254
1255 /* Allocate memory for the l1pt structure */
1256 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1257
1258 /*
1259 * Allocate pages from the VM system.
1260 */
1261 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1262 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1263 if (error) {
1264 #ifdef DIAGNOSTIC
1265 PDEBUG(0,
1266 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1267 error));
1268 #endif /* DIAGNOSTIC */
1269 /* Release the resources we already have claimed */
1270 free(pt, M_VMPMAP);
1271 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1272 return(NULL);
1273 }
1274
1275 /* Map our physical pages into our virtual space */
1276 pt->pt_va = va;
1277 m = TAILQ_FIRST(&pt->pt_plist);
1278 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1279 pa = VM_PAGE_TO_PHYS(m);
1280
1281 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1282
1283 va += NBPG;
1284 m = m->pageq.tqe_next;
1285 }
1286
1287 #ifdef DIAGNOSTIC
1288 if (m)
1289 panic("pmap_alloc_l1pt: pglist not empty");
1290 #endif /* DIAGNOSTIC */
1291
1292 pt->pt_flags = 0;
1293 return(pt);
1294 }
1295
1296 /*
1297 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1298 */
1299 static void
1300 pmap_free_l1pt(struct l1pt *pt)
1301 {
1302 /* Separate the physical memory for the virtual space */
1303 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1304 pmap_update(pmap_kernel());
1305
1306 /* Return the physical memory */
1307 uvm_pglistfree(&pt->pt_plist);
1308
1309 /* Free the virtual space */
1310 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1311
1312 /* Free the l1pt structure */
1313 free(pt, M_VMPMAP);
1314 }
1315
1316 /*
1317 * pmap_ptpt_page_alloc:
1318 *
1319 * Back-end page allocator for the PT-PT pool.
1320 */
1321 static void *
1322 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1323 {
1324 struct vm_page *pg;
1325 pt_entry_t *pte;
1326 vaddr_t va;
1327
1328 /* XXX PR_WAITOK? */
1329 va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1330 if (va == 0)
1331 return (NULL);
1332
1333 for (;;) {
1334 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1335 if (pg != NULL)
1336 break;
1337 if ((flags & PR_WAITOK) == 0) {
1338 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1339 return (NULL);
1340 }
1341 uvm_wait("pmap_ptpt");
1342 }
1343
1344 pte = vtopte(va);
1345 KDASSERT(pmap_pte_v(pte) == 0);
1346
1347 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1348 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1349 PTE_SYNC(pte);
1350 #ifdef PMAP_ALIAS_DEBUG
1351 {
1352 int s = splhigh();
1353 pg->mdpage.krw_mappings++;
1354 splx(s);
1355 }
1356 #endif /* PMAP_ALIAS_DEBUG */
1357
1358 return ((void *) va);
1359 }
1360
1361 /*
1362 * pmap_ptpt_page_free:
1363 *
1364 * Back-end page free'er for the PT-PT pool.
1365 */
1366 static void
1367 pmap_ptpt_page_free(struct pool *pp, void *v)
1368 {
1369 vaddr_t va = (vaddr_t) v;
1370 paddr_t pa;
1371
1372 pa = vtophys(va);
1373
1374 pmap_kremove(va, L2_TABLE_SIZE);
1375 pmap_update(pmap_kernel());
1376
1377 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1378
1379 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1380 }
1381
1382 /*
1383 * pmap_ptpt_ctor:
1384 *
1385 * Constructor for the PT-PT cache.
1386 */
1387 static int
1388 pmap_ptpt_ctor(void *arg, void *object, int flags)
1389 {
1390 caddr_t vptpt = object;
1391
1392 /* Page is already zero'd. */
1393
1394 /*
1395 * Map in kernel PTs.
1396 *
1397 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1398 */
1399 memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1400 (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1401 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1402 (KERNEL_PD_SIZE >> 2));
1403
1404 return (0);
1405 }
1406
1407 /*
1408 * Allocate a page directory.
1409 * This routine will either allocate a new page directory from the pool
1410 * of L1 page tables currently held by the kernel or it will allocate
1411 * a new one via pmap_alloc_l1pt().
1412 * It will then initialise the l1 page table for use.
1413 */
1414 static int
1415 pmap_allocpagedir(struct pmap *pmap)
1416 {
1417 vaddr_t vptpt;
1418 struct l1pt *pt;
1419 u_int gen;
1420
1421 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1422
1423 /* Do we have any spare L1's lying around ? */
1424 if (l1pt_static_queue_count) {
1425 --l1pt_static_queue_count;
1426 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1427 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1428 } else if (l1pt_queue_count) {
1429 --l1pt_queue_count;
1430 pt = SIMPLEQ_FIRST(&l1pt_queue);
1431 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1432 ++l1pt_reuse_count;
1433 } else {
1434 pt = pmap_alloc_l1pt();
1435 if (!pt)
1436 return(ENOMEM);
1437 ++l1pt_create_count;
1438 }
1439
1440 /* Store the pointer to the l1 descriptor in the pmap. */
1441 pmap->pm_l1pt = pt;
1442
1443 /* Store the virtual address of the l1 in the pmap. */
1444 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1445
1446 /* Clean the L1 if it is dirty */
1447 if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1448 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1449 cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1450 (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1451 }
1452
1453 /* Allocate a page table to map all the page tables for this pmap */
1454 KASSERT(pmap->pm_vptpt == 0);
1455
1456 try_again:
1457 gen = pmap_ptpt_cache_generation;
1458 vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1459 if (vptpt == NULL) {
1460 PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1461 pmap_freepagedir(pmap);
1462 return (ENOMEM);
1463 }
1464
1465 /* need to lock this all up for growkernel */
1466 simple_lock(&pmaps_lock);
1467
1468 if (gen != pmap_ptpt_cache_generation) {
1469 simple_unlock(&pmaps_lock);
1470 pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1471 goto try_again;
1472 }
1473
1474 pmap->pm_vptpt = vptpt;
1475 pmap->pm_pptpt = vtophys(vptpt);
1476
1477 /* Duplicate the kernel mappings. */
1478 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1479 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1480 KERNEL_PD_SIZE);
1481 cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1482 (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1483
1484 /* Wire in this page table */
1485 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, PMAP_PTP_SELFREF);
1486
1487 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1488
1489 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1490 simple_unlock(&pmaps_lock);
1491
1492 return(0);
1493 }
1494
1495
1496 /*
1497 * Initialize a preallocated and zeroed pmap structure,
1498 * such as one in a vmspace structure.
1499 */
1500
1501 void
1502 pmap_pinit(struct pmap *pmap)
1503 {
1504 unsigned int backoff = 6;
1505 unsigned int retry = 10;
1506
1507 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1508
1509 /* Keep looping until we succeed in allocating a page directory */
1510 while (pmap_allocpagedir(pmap) != 0) {
1511 /*
1512 * Ok we failed to allocate a suitable block of memory for an
1513 * L1 page table. This means that either:
1514 * 1. 16KB of virtual address space could not be allocated
1515 * 2. 16KB of physically contiguous memory on a 16KB boundary
1516 * could not be allocated.
1517 *
1518 * Since we cannot fail we will sleep for a while and try
1519 * again.
1520 *
1521 * Searching for a suitable L1 PT is expensive:
1522 * to avoid hogging the system when memory is really
1523 * scarce, use an exponential back-off so that
1524 * eventually we won't retry more than once every 8
1525 * seconds. This should allow other processes to run
1526 * to completion and free up resources.
1527 */
1528 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1529 NULL);
1530 if (--retry == 0) {
1531 retry = 10;
1532 if (backoff)
1533 --backoff;
1534 }
1535 }
1536
1537 if (vector_page < KERNEL_BASE) {
1538 /*
1539 * Map the vector page. This will also allocate and map
1540 * an L2 table for it.
1541 */
1542 pmap_enter(pmap, vector_page, systempage.pv_pa,
1543 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1544 pmap_update(pmap);
1545 }
1546 }
1547
1548 void
1549 pmap_freepagedir(struct pmap *pmap)
1550 {
1551 /* Free the memory used for the page table mapping */
1552 if (pmap->pm_vptpt != 0) {
1553 /*
1554 * XXX Objects freed to a pool cache must be in constructed
1555 * XXX form when freed, but we don't free page tables as we
1556 * XXX go, so we need to zap the mappings here.
1557 *
1558 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1559 */
1560 memset((caddr_t) pmap->pm_vptpt, 0,
1561 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1562 pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1563 }
1564
1565 /* junk the L1 page table */
1566 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1567 /* Add the page table to the queue */
1568 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1569 pmap->pm_l1pt, pt_queue);
1570 ++l1pt_static_queue_count;
1571 } else if (l1pt_queue_count < 8) {
1572 /* Add the page table to the queue */
1573 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1574 ++l1pt_queue_count;
1575 } else
1576 pmap_free_l1pt(pmap->pm_l1pt);
1577 }
1578
1579 /*
1580 * Retire the given physical map from service.
1581 * Should only be called if the map contains no valid mappings.
1582 */
1583
1584 void
1585 pmap_destroy(struct pmap *pmap)
1586 {
1587 struct vm_page *page;
1588 unsigned int count;
1589
1590 if (pmap == NULL)
1591 return;
1592
1593 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1594
1595 /*
1596 * Drop reference count
1597 */
1598 simple_lock(&pmap->pm_obj.vmobjlock);
1599 count = --pmap->pm_obj.uo_refs;
1600 simple_unlock(&pmap->pm_obj.vmobjlock);
1601 if (count > 0) {
1602 return;
1603 }
1604
1605 /*
1606 * reference count is zero, free pmap resources and then free pmap.
1607 */
1608
1609 /*
1610 * remove it from global list of pmaps
1611 */
1612
1613 simple_lock(&pmaps_lock);
1614 LIST_REMOVE(pmap, pm_list);
1615 simple_unlock(&pmaps_lock);
1616
1617 if (vector_page < KERNEL_BASE) {
1618 /* Remove the vector page mapping */
1619 pmap_remove(pmap, vector_page, vector_page + NBPG);
1620 pmap_update(pmap);
1621 }
1622
1623 /*
1624 * Free any page tables still mapped
1625 * This is only temporay until pmap_enter can count the number
1626 * of mappings made in a page table. Then pmap_remove() can
1627 * reduce the count and free the pagetable when the count
1628 * reaches zero. Note that entries in this list should match the
1629 * contents of the ptpt, however this is faster than walking a 1024
1630 * entries looking for pt's
1631 * taken from i386 pmap.c
1632 */
1633 /*
1634 * vmobjlock must be held while freeing pages
1635 */
1636 simple_lock(&pmap->pm_obj.vmobjlock);
1637 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1638 KASSERT((page->flags & PG_BUSY) == 0);
1639
1640 /* Freeing a PT page? The contents are a throw-away. */
1641 KASSERT((page->offset & PD_OFFSET) == 0);/* XXX KDASSERT */
1642 cpu_dcache_inv_range((vaddr_t)vtopte(page->offset), PAGE_SIZE);
1643
1644 page->wire_count = 0;
1645 uvm_pagefree(page);
1646 }
1647 simple_unlock(&pmap->pm_obj.vmobjlock);
1648
1649 /* Free the page dir */
1650 pmap_freepagedir(pmap);
1651
1652 /* return the pmap to the pool */
1653 pool_put(&pmap_pmap_pool, pmap);
1654 }
1655
1656
1657 /*
1658 * void pmap_reference(struct pmap *pmap)
1659 *
1660 * Add a reference to the specified pmap.
1661 */
1662
1663 void
1664 pmap_reference(struct pmap *pmap)
1665 {
1666 if (pmap == NULL)
1667 return;
1668
1669 simple_lock(&pmap->pm_lock);
1670 pmap->pm_obj.uo_refs++;
1671 simple_unlock(&pmap->pm_lock);
1672 }
1673
1674 /*
1675 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1676 *
1677 * Return the start and end addresses of the kernel's virtual space.
1678 * These values are setup in pmap_bootstrap and are updated as pages
1679 * are allocated.
1680 */
1681
1682 void
1683 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1684 {
1685 *start = virtual_avail;
1686 *end = virtual_end;
1687 }
1688
1689 /*
1690 * Activate the address space for the specified process. If the process
1691 * is the current process, load the new MMU context.
1692 */
1693 void
1694 pmap_activate(struct lwp *l)
1695 {
1696 struct pmap *pmap = l->l_proc->p_vmspace->vm_map.pmap;
1697 struct pcb *pcb = &l->l_addr->u_pcb;
1698
1699 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1700 &pcb->pcb_pagedir);
1701
1702 PDEBUG(0,
1703 printf("pmap_activate: l=%p pmap=%p pcb=%p pdir=%p l1=0x%lx\n",
1704 l, pmap, pcb, pmap->pm_pdir, (u_long) pcb->pcb_pagedir));
1705
1706 if (l == curlwp) {
1707 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1708 setttb(pcb->pcb_pagedir);
1709 }
1710 }
1711
1712 /*
1713 * Deactivate the address space of the specified process.
1714 */
1715 void
1716 pmap_deactivate(struct lwp *l)
1717 {
1718 }
1719
1720 /*
1721 * Perform any deferred pmap operations.
1722 */
1723 void
1724 pmap_update(struct pmap *pmap)
1725 {
1726
1727 /*
1728 * We haven't deferred any pmap operations, but we do need to
1729 * make sure TLB/cache operations have completed.
1730 */
1731 cpu_cpwait();
1732 }
1733
1734 /*
1735 * pmap_clean_page()
1736 *
1737 * This is a local function used to work out the best strategy to clean
1738 * a single page referenced by its entry in the PV table. It's used by
1739 * pmap_copy_page, pmap_zero page and maybe some others later on.
1740 *
1741 * Its policy is effectively:
1742 * o If there are no mappings, we don't bother doing anything with the cache.
1743 * o If there is one mapping, we clean just that page.
1744 * o If there are multiple mappings, we clean the entire cache.
1745 *
1746 * So that some functions can be further optimised, it returns 0 if it didn't
1747 * clean the entire cache, or 1 if it did.
1748 *
1749 * XXX One bug in this routine is that if the pv_entry has a single page
1750 * mapped at 0x00000000 a whole cache clean will be performed rather than
1751 * just the 1 page. Since this should not occur in everyday use and if it does
1752 * it will just result in not the most efficient clean for the page.
1753 */
1754 static int
1755 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1756 {
1757 struct pmap *pmap;
1758 struct pv_entry *npv;
1759 boolean_t cache_needs_cleaning = FALSE;
1760 vaddr_t page_to_clean = 0;
1761
1762 if (pv == NULL) {
1763 /* nothing mapped in so nothing to flush */
1764 return (0);
1765 }
1766
1767 /*
1768 * Since we flush the cache each time we change curlwp, we
1769 * only need to flush the page if it is in the current pmap.
1770 */
1771 if (curproc)
1772 pmap = curproc->p_vmspace->vm_map.pmap;
1773 else
1774 pmap = pmap_kernel();
1775
1776 for (npv = pv; npv; npv = npv->pv_next) {
1777 if (npv->pv_pmap == pmap) {
1778 /*
1779 * The page is mapped non-cacheable in
1780 * this map. No need to flush the cache.
1781 */
1782 if (npv->pv_flags & PVF_NC) {
1783 #ifdef DIAGNOSTIC
1784 if (cache_needs_cleaning)
1785 panic("pmap_clean_page: "
1786 "cache inconsistency");
1787 #endif
1788 break;
1789 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1790 continue;
1791 if (cache_needs_cleaning) {
1792 page_to_clean = 0;
1793 break;
1794 } else
1795 page_to_clean = npv->pv_va;
1796 cache_needs_cleaning = TRUE;
1797 }
1798 }
1799
1800 if (page_to_clean) {
1801 /*
1802 * XXX If is_src, we really only need to write-back,
1803 * XXX not invalidate, too. Investigate further.
1804 * XXX --thorpej (at) netbsd.org
1805 */
1806 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1807 } else if (cache_needs_cleaning) {
1808 cpu_idcache_wbinv_all();
1809 return (1);
1810 }
1811 return (0);
1812 }
1813
1814 /*
1815 * pmap_zero_page()
1816 *
1817 * Zero a given physical page by mapping it at a page hook point.
1818 * In doing the zero page op, the page we zero is mapped cachable, as with
1819 * StrongARM accesses to non-cached pages are non-burst making writing
1820 * _any_ bulk data very slow.
1821 */
1822 #if ARM_MMU_GENERIC == 1
1823 void
1824 pmap_zero_page_generic(paddr_t phys)
1825 {
1826 #ifdef DEBUG
1827 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1828
1829 if (pg->mdpage.pvh_list != NULL)
1830 panic("pmap_zero_page: page has mappings");
1831 #endif
1832
1833 KDASSERT((phys & PGOFSET) == 0);
1834
1835 /*
1836 * Hook in the page, zero it, and purge the cache for that
1837 * zeroed page. Invalidate the TLB as needed.
1838 */
1839 *cdst_pte = L2_S_PROTO | phys |
1840 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1841 PTE_SYNC(cdst_pte);
1842 cpu_tlb_flushD_SE(cdstp);
1843 cpu_cpwait();
1844 bzero_page(cdstp);
1845 cpu_dcache_wbinv_range(cdstp, NBPG);
1846 }
1847 #endif /* ARM_MMU_GENERIC == 1 */
1848
1849 #if ARM_MMU_XSCALE == 1
1850 void
1851 pmap_zero_page_xscale(paddr_t phys)
1852 {
1853 #ifdef DEBUG
1854 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1855
1856 if (pg->mdpage.pvh_list != NULL)
1857 panic("pmap_zero_page: page has mappings");
1858 #endif
1859
1860 KDASSERT((phys & PGOFSET) == 0);
1861
1862 /*
1863 * Hook in the page, zero it, and purge the cache for that
1864 * zeroed page. Invalidate the TLB as needed.
1865 */
1866 *cdst_pte = L2_S_PROTO | phys |
1867 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1868 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1869 PTE_SYNC(cdst_pte);
1870 cpu_tlb_flushD_SE(cdstp);
1871 cpu_cpwait();
1872 bzero_page(cdstp);
1873 xscale_cache_clean_minidata();
1874 }
1875 #endif /* ARM_MMU_XSCALE == 1 */
1876
1877 /* pmap_pageidlezero()
1878 *
1879 * The same as above, except that we assume that the page is not
1880 * mapped. This means we never have to flush the cache first. Called
1881 * from the idle loop.
1882 */
1883 boolean_t
1884 pmap_pageidlezero(paddr_t phys)
1885 {
1886 unsigned int i;
1887 int *ptr;
1888 boolean_t rv = TRUE;
1889 #ifdef DEBUG
1890 struct vm_page *pg;
1891
1892 pg = PHYS_TO_VM_PAGE(phys);
1893 if (pg->mdpage.pvh_list != NULL)
1894 panic("pmap_pageidlezero: page has mappings");
1895 #endif
1896
1897 KDASSERT((phys & PGOFSET) == 0);
1898
1899 /*
1900 * Hook in the page, zero it, and purge the cache for that
1901 * zeroed page. Invalidate the TLB as needed.
1902 */
1903 *cdst_pte = L2_S_PROTO | phys |
1904 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1905 PTE_SYNC(cdst_pte);
1906 cpu_tlb_flushD_SE(cdstp);
1907 cpu_cpwait();
1908
1909 for (i = 0, ptr = (int *)cdstp;
1910 i < (NBPG / sizeof(int)); i++) {
1911 if (sched_whichqs != 0) {
1912 /*
1913 * A process has become ready. Abort now,
1914 * so we don't keep it waiting while we
1915 * do slow memory access to finish this
1916 * page.
1917 */
1918 rv = FALSE;
1919 break;
1920 }
1921 *ptr++ = 0;
1922 }
1923
1924 if (rv)
1925 /*
1926 * if we aborted we'll rezero this page again later so don't
1927 * purge it unless we finished it
1928 */
1929 cpu_dcache_wbinv_range(cdstp, NBPG);
1930 return (rv);
1931 }
1932
1933 /*
1934 * pmap_copy_page()
1935 *
1936 * Copy one physical page into another, by mapping the pages into
1937 * hook points. The same comment regarding cachability as in
1938 * pmap_zero_page also applies here.
1939 */
1940 #if ARM_MMU_GENERIC == 1
1941 void
1942 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1943 {
1944 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1945 #ifdef DEBUG
1946 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1947
1948 if (dst_pg->mdpage.pvh_list != NULL)
1949 panic("pmap_copy_page: dst page has mappings");
1950 #endif
1951
1952 KDASSERT((src & PGOFSET) == 0);
1953 KDASSERT((dst & PGOFSET) == 0);
1954
1955 /*
1956 * Clean the source page. Hold the source page's lock for
1957 * the duration of the copy so that no other mappings can
1958 * be created while we have a potentially aliased mapping.
1959 */
1960 simple_lock(&src_pg->mdpage.pvh_slock);
1961 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1962
1963 /*
1964 * Map the pages into the page hook points, copy them, and purge
1965 * the cache for the appropriate page. Invalidate the TLB
1966 * as required.
1967 */
1968 *csrc_pte = L2_S_PROTO | src |
1969 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1970 PTE_SYNC(csrc_pte);
1971 *cdst_pte = L2_S_PROTO | dst |
1972 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1973 PTE_SYNC(cdst_pte);
1974 cpu_tlb_flushD_SE(csrcp);
1975 cpu_tlb_flushD_SE(cdstp);
1976 cpu_cpwait();
1977 bcopy_page(csrcp, cdstp);
1978 cpu_dcache_inv_range(csrcp, NBPG);
1979 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1980 cpu_dcache_wbinv_range(cdstp, NBPG);
1981 }
1982 #endif /* ARM_MMU_GENERIC == 1 */
1983
1984 #if ARM_MMU_XSCALE == 1
1985 void
1986 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1987 {
1988 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1989 #ifdef DEBUG
1990 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1991
1992 if (dst_pg->mdpage.pvh_list != NULL)
1993 panic("pmap_copy_page: dst page has mappings");
1994 #endif
1995
1996 KDASSERT((src & PGOFSET) == 0);
1997 KDASSERT((dst & PGOFSET) == 0);
1998
1999 /*
2000 * Clean the source page. Hold the source page's lock for
2001 * the duration of the copy so that no other mappings can
2002 * be created while we have a potentially aliased mapping.
2003 */
2004 simple_lock(&src_pg->mdpage.pvh_slock);
2005 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2006
2007 /*
2008 * Map the pages into the page hook points, copy them, and purge
2009 * the cache for the appropriate page. Invalidate the TLB
2010 * as required.
2011 */
2012 *csrc_pte = L2_S_PROTO | src |
2013 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
2014 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2015 PTE_SYNC(csrc_pte);
2016 *cdst_pte = L2_S_PROTO | dst |
2017 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
2018 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2019 PTE_SYNC(cdst_pte);
2020 cpu_tlb_flushD_SE(csrcp);
2021 cpu_tlb_flushD_SE(cdstp);
2022 cpu_cpwait();
2023 bcopy_page(csrcp, cdstp);
2024 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2025 xscale_cache_clean_minidata();
2026 }
2027 #endif /* ARM_MMU_XSCALE == 1 */
2028
2029 #if 0
2030 void
2031 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
2032 {
2033 pd_entry_t *pde;
2034 paddr_t pa;
2035 struct vm_page *m;
2036
2037 if (pmap == pmap_kernel())
2038 return;
2039
2040 pde = pmap_pde(pmap, va & PD_FRAME);
2041 pa = pmap_pte_pa(pde);
2042 m = PHYS_TO_VM_PAGE(pa);
2043 m->wire_count++;
2044 #ifdef MYCROFT_HACK
2045 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2046 pmap, va, pde, pa, m, m->wire_count);
2047 #endif
2048 }
2049
2050 void
2051 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2052 {
2053 pd_entry_t *pde;
2054 paddr_t pa;
2055 struct vm_page *m;
2056
2057 if (pmap == pmap_kernel())
2058 return;
2059
2060 pde = pmap_pde(pmap, va & PD_FRAME);
2061 pa = pmap_pte_pa(pde);
2062 m = PHYS_TO_VM_PAGE(pa);
2063 m->wire_count--;
2064 #ifdef MYCROFT_HACK
2065 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2066 pmap, va, pde, pa, m, m->wire_count);
2067 #endif
2068 if (m->wire_count == 0) {
2069 #ifdef MYCROFT_HACK
2070 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2071 pmap, va, pde, pa, m);
2072 #endif
2073 pmap_unmap_in_l1(pmap, va & PD_FRAME);
2074 uvm_pagefree(m);
2075 --pmap->pm_stats.resident_count;
2076 }
2077 }
2078 #else
2079 #define pmap_pte_addref(pmap, va)
2080 #define pmap_pte_delref(pmap, va)
2081 #endif
2082
2083 /*
2084 * Since we have a virtually indexed cache, we may need to inhibit caching if
2085 * there is more than one mapping and at least one of them is writable.
2086 * Since we purge the cache on every context switch, we only need to check for
2087 * other mappings within the same pmap, or kernel_pmap.
2088 * This function is also called when a page is unmapped, to possibly reenable
2089 * caching on any remaining mappings.
2090 *
2091 * The code implements the following logic, where:
2092 *
2093 * KW = # of kernel read/write pages
2094 * KR = # of kernel read only pages
2095 * UW = # of user read/write pages
2096 * UR = # of user read only pages
2097 * OW = # of user read/write pages in another pmap, then
2098 *
2099 * KC = kernel mapping is cacheable
2100 * UC = user mapping is cacheable
2101 *
2102 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2103 * +---------------------------------------------
2104 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2105 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2106 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2107 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2108 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2109 *
2110 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2111 */
2112 __inline static void
2113 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2114 boolean_t clear_cache)
2115 {
2116 if (pmap == pmap_kernel())
2117 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2118 else
2119 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2120 }
2121
2122 static void
2123 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2124 boolean_t clear_cache)
2125 {
2126 unsigned int user_entries = 0;
2127 unsigned int user_writable = 0;
2128 unsigned int user_cacheable = 0;
2129 unsigned int kernel_entries = 0;
2130 unsigned int kernel_writable = 0;
2131 unsigned int kernel_cacheable = 0;
2132 struct pv_entry *pv;
2133 struct pmap *last_pmap = pmap;
2134
2135 #ifdef DIAGNOSTIC
2136 if (pmap != pmap_kernel())
2137 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2138 #endif
2139
2140 /*
2141 * Pass one, see if there are both kernel and user pmaps for
2142 * this page. Calculate whether there are user-writable or
2143 * kernel-writable pages.
2144 */
2145 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2146 if (pv->pv_pmap != pmap) {
2147 user_entries++;
2148 if (pv->pv_flags & PVF_WRITE)
2149 user_writable++;
2150 if ((pv->pv_flags & PVF_NC) == 0)
2151 user_cacheable++;
2152 } else {
2153 kernel_entries++;
2154 if (pv->pv_flags & PVF_WRITE)
2155 kernel_writable++;
2156 if ((pv->pv_flags & PVF_NC) == 0)
2157 kernel_cacheable++;
2158 }
2159 }
2160
2161 /*
2162 * We know we have just been updating a kernel entry, so if
2163 * all user pages are already cacheable, then there is nothing
2164 * further to do.
2165 */
2166 if (kernel_entries == 0 &&
2167 user_cacheable == user_entries)
2168 return;
2169
2170 if (user_entries) {
2171 /*
2172 * Scan over the list again, for each entry, if it
2173 * might not be set correctly, call pmap_vac_me_user
2174 * to recalculate the settings.
2175 */
2176 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2177 /*
2178 * We know kernel mappings will get set
2179 * correctly in other calls. We also know
2180 * that if the pmap is the same as last_pmap
2181 * then we've just handled this entry.
2182 */
2183 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2184 continue;
2185 /*
2186 * If there are kernel entries and this page
2187 * is writable but non-cacheable, then we can
2188 * skip this entry also.
2189 */
2190 if (kernel_entries > 0 &&
2191 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2192 (PVF_NC | PVF_WRITE))
2193 continue;
2194 /*
2195 * Similarly if there are no kernel-writable
2196 * entries and the page is already
2197 * read-only/cacheable.
2198 */
2199 if (kernel_writable == 0 &&
2200 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2201 continue;
2202 /*
2203 * For some of the remaining cases, we know
2204 * that we must recalculate, but for others we
2205 * can't tell if they are correct or not, so
2206 * we recalculate anyway.
2207 */
2208 pmap_unmap_ptes(last_pmap);
2209 last_pmap = pv->pv_pmap;
2210 ptes = pmap_map_ptes(last_pmap);
2211 pmap_vac_me_user(last_pmap, pg, ptes,
2212 pmap_is_curpmap(last_pmap));
2213 }
2214 /* Restore the pte mapping that was passed to us. */
2215 if (last_pmap != pmap) {
2216 pmap_unmap_ptes(last_pmap);
2217 ptes = pmap_map_ptes(pmap);
2218 }
2219 if (kernel_entries == 0)
2220 return;
2221 }
2222
2223 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2224 return;
2225 }
2226
2227 static void
2228 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2229 boolean_t clear_cache)
2230 {
2231 struct pmap *kpmap = pmap_kernel();
2232 struct pv_entry *pv, *npv;
2233 unsigned int entries = 0;
2234 unsigned int writable = 0;
2235 unsigned int cacheable_entries = 0;
2236 unsigned int kern_cacheable = 0;
2237 unsigned int other_writable = 0;
2238
2239 pv = pg->mdpage.pvh_list;
2240 KASSERT(ptes != NULL);
2241
2242 /*
2243 * Count mappings and writable mappings in this pmap.
2244 * Include kernel mappings as part of our own.
2245 * Keep a pointer to the first one.
2246 */
2247 for (npv = pv; npv; npv = npv->pv_next) {
2248 /* Count mappings in the same pmap */
2249 if (pmap == npv->pv_pmap ||
2250 kpmap == npv->pv_pmap) {
2251 if (entries++ == 0)
2252 pv = npv;
2253 /* Cacheable mappings */
2254 if ((npv->pv_flags & PVF_NC) == 0) {
2255 cacheable_entries++;
2256 if (kpmap == npv->pv_pmap)
2257 kern_cacheable++;
2258 }
2259 /* Writable mappings */
2260 if (npv->pv_flags & PVF_WRITE)
2261 ++writable;
2262 } else if (npv->pv_flags & PVF_WRITE)
2263 other_writable = 1;
2264 }
2265
2266 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2267 "writable %d cacheable %d %s\n", pmap, entries, writable,
2268 cacheable_entries, clear_cache ? "clean" : "no clean"));
2269
2270 /*
2271 * Enable or disable caching as necessary.
2272 * Note: the first entry might be part of the kernel pmap,
2273 * so we can't assume this is indicative of the state of the
2274 * other (maybe non-kpmap) entries.
2275 */
2276 if ((entries > 1 && writable) ||
2277 (entries > 0 && pmap == kpmap && other_writable)) {
2278 if (cacheable_entries == 0)
2279 return;
2280 for (npv = pv; npv; npv = npv->pv_next) {
2281 if ((pmap == npv->pv_pmap
2282 || kpmap == npv->pv_pmap) &&
2283 (npv->pv_flags & PVF_NC) == 0) {
2284 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2285 PTE_SYNC_CURRENT(pmap,
2286 &ptes[arm_btop(npv->pv_va)]);
2287 npv->pv_flags |= PVF_NC;
2288 /*
2289 * If this page needs flushing from the
2290 * cache, and we aren't going to do it
2291 * below, do it now.
2292 */
2293 if ((cacheable_entries < 4 &&
2294 (clear_cache || npv->pv_pmap == kpmap)) ||
2295 (npv->pv_pmap == kpmap &&
2296 !clear_cache && kern_cacheable < 4)) {
2297 cpu_idcache_wbinv_range(npv->pv_va,
2298 NBPG);
2299 cpu_tlb_flushID_SE(npv->pv_va);
2300 }
2301 }
2302 }
2303 if ((clear_cache && cacheable_entries >= 4) ||
2304 kern_cacheable >= 4) {
2305 cpu_idcache_wbinv_all();
2306 cpu_tlb_flushID();
2307 }
2308 cpu_cpwait();
2309 } else if (entries > cacheable_entries) {
2310 /*
2311 * Turn cacheing back on for some pages. If it is a kernel
2312 * page, only do so if there are no other writable pages.
2313 */
2314 for (npv = pv; npv; npv = npv->pv_next) {
2315 if ((pmap == npv->pv_pmap ||
2316 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2317 (npv->pv_flags & PVF_NC)) {
2318 ptes[arm_btop(npv->pv_va)] |=
2319 pte_l2_s_cache_mode;
2320 PTE_SYNC_CURRENT(pmap,
2321 &ptes[arm_btop(npv->pv_va)]);
2322 npv->pv_flags &= ~PVF_NC;
2323 }
2324 }
2325 }
2326 }
2327
2328 /*
2329 * pmap_remove()
2330 *
2331 * pmap_remove is responsible for nuking a number of mappings for a range
2332 * of virtual address space in the current pmap. To do this efficiently
2333 * is interesting, because in a number of cases a wide virtual address
2334 * range may be supplied that contains few actual mappings. So, the
2335 * optimisations are:
2336 * 1. Try and skip over hunks of address space for which an L1 entry
2337 * does not exist.
2338 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2339 * maybe do just a partial cache clean. This path of execution is
2340 * complicated by the fact that the cache must be flushed _before_
2341 * the PTE is nuked, being a VAC :-)
2342 * 3. Maybe later fast-case a single page, but I don't think this is
2343 * going to make _that_ much difference overall.
2344 */
2345
2346 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2347
2348 void
2349 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2350 {
2351 unsigned int cleanlist_idx = 0;
2352 struct pagelist {
2353 vaddr_t va;
2354 pt_entry_t *pte;
2355 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2356 pt_entry_t *pte = 0, *ptes;
2357 paddr_t pa;
2358 int pmap_active;
2359 struct vm_page *pg;
2360 struct pv_entry *pv_tofree = NULL;
2361
2362 /* Exit quick if there is no pmap */
2363 if (!pmap)
2364 return;
2365
2366 NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2367 pmap, sva, eva));
2368
2369 /*
2370 * we lock in the pmap => vm_page direction
2371 */
2372 PMAP_MAP_TO_HEAD_LOCK();
2373
2374 ptes = pmap_map_ptes(pmap);
2375 /* Get a page table pointer */
2376 while (sva < eva) {
2377 if (pmap_pde_page(pmap_pde(pmap, sva)))
2378 break;
2379 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2380 }
2381
2382 pte = &ptes[arm_btop(sva)];
2383 /* Note if the pmap is active thus require cache and tlb cleans */
2384 pmap_active = pmap_is_curpmap(pmap);
2385
2386 /* Now loop along */
2387 while (sva < eva) {
2388 /* Check if we can move to the next PDE (l1 chunk) */
2389 if ((sva & L2_ADDR_BITS) == 0) {
2390 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2391 sva += L1_S_SIZE;
2392 pte += arm_btop(L1_S_SIZE);
2393 continue;
2394 }
2395 }
2396
2397 /* We've found a valid PTE, so this page of PTEs has to go. */
2398 if (pmap_pte_v(pte)) {
2399 /* Update statistics */
2400 --pmap->pm_stats.resident_count;
2401
2402 /*
2403 * Add this page to our cache remove list, if we can.
2404 * If, however the cache remove list is totally full,
2405 * then do a complete cache invalidation taking note
2406 * to backtrack the PTE table beforehand, and ignore
2407 * the lists in future because there's no longer any
2408 * point in bothering with them (we've paid the
2409 * penalty, so will carry on unhindered). Otherwise,
2410 * when we fall out, we just clean the list.
2411 */
2412 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2413 pa = pmap_pte_pa(pte);
2414
2415 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2416 /* Add to the clean list. */
2417 cleanlist[cleanlist_idx].pte = pte;
2418 cleanlist[cleanlist_idx].va = sva;
2419 cleanlist_idx++;
2420 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2421 unsigned int cnt;
2422
2423 /* Nuke everything if needed. */
2424 if (pmap_active) {
2425 cpu_idcache_wbinv_all();
2426 cpu_tlb_flushID();
2427 }
2428
2429 /*
2430 * Roll back the previous PTE list,
2431 * and zero out the current PTE.
2432 */
2433 for (cnt = 0;
2434 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE;
2435 cnt++) {
2436 *cleanlist[cnt].pte = 0;
2437 if (pmap_active)
2438 PTE_SYNC(cleanlist[cnt].pte);
2439 else
2440 PTE_FLUSH(cleanlist[cnt].pte);
2441 pmap_pte_delref(pmap,
2442 cleanlist[cnt].va);
2443 }
2444 *pte = 0;
2445 if (pmap_active)
2446 PTE_SYNC(pte);
2447 else
2448 PTE_FLUSH(pte);
2449 pmap_pte_delref(pmap, sva);
2450 cleanlist_idx++;
2451 } else {
2452 /*
2453 * We've already nuked the cache and
2454 * TLB, so just carry on regardless,
2455 * and we won't need to do it again
2456 */
2457 *pte = 0;
2458 if (pmap_active)
2459 PTE_SYNC(pte);
2460 else
2461 PTE_FLUSH(pte);
2462 pmap_pte_delref(pmap, sva);
2463 }
2464
2465 /*
2466 * Update flags. In a number of circumstances,
2467 * we could cluster a lot of these and do a
2468 * number of sequential pages in one go.
2469 */
2470 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2471 struct pv_entry *pve;
2472 simple_lock(&pg->mdpage.pvh_slock);
2473 pve = pmap_remove_pv(pg, pmap, sva);
2474 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2475 simple_unlock(&pg->mdpage.pvh_slock);
2476 if (pve != NULL) {
2477 pve->pv_next = pv_tofree;
2478 pv_tofree = pve;
2479 }
2480 }
2481 } else if (pmap_active == 0)
2482 PTE_FLUSH(pte);
2483 sva += NBPG;
2484 pte++;
2485 }
2486
2487 /*
2488 * Now, if we've fallen through down to here, chances are that there
2489 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2490 */
2491 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2492 u_int cnt;
2493
2494 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2495 if (pmap_active) {
2496 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2497 NBPG);
2498 *cleanlist[cnt].pte = 0;
2499 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2500 PTE_SYNC(cleanlist[cnt].pte);
2501 } else {
2502 *cleanlist[cnt].pte = 0;
2503 PTE_FLUSH(cleanlist[cnt].pte);
2504 }
2505 pmap_pte_delref(pmap, cleanlist[cnt].va);
2506 }
2507 }
2508
2509 /* Delete pv entries */
2510 if (pv_tofree != NULL)
2511 pmap_free_pvs(pmap, pv_tofree);
2512
2513 pmap_unmap_ptes(pmap);
2514
2515 PMAP_MAP_TO_HEAD_UNLOCK();
2516 }
2517
2518 /*
2519 * Routine: pmap_page_remove
2520 * Function:
2521 * Removes this physical page from
2522 * all physical maps in which it resides.
2523 * Reflects back modify bits to the pager.
2524 */
2525
2526 static void
2527 pmap_page_remove(struct vm_page *pg)
2528 {
2529 struct pv_entry *pv, *npv;
2530 struct pmap *pmap;
2531 pt_entry_t *pte, *ptes;
2532
2533 PDEBUG(0, printf("pmap_page_remove: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2534
2535 /* set vm_page => pmap locking */
2536 PMAP_HEAD_TO_MAP_LOCK();
2537
2538 simple_lock(&pg->mdpage.pvh_slock);
2539
2540 pv = pg->mdpage.pvh_list;
2541 if (pv == NULL) {
2542 PDEBUG(0, printf("free page\n"));
2543 simple_unlock(&pg->mdpage.pvh_slock);
2544 PMAP_HEAD_TO_MAP_UNLOCK();
2545 return;
2546 }
2547 pmap_clean_page(pv, FALSE);
2548
2549 while (pv) {
2550 pmap = pv->pv_pmap;
2551 ptes = pmap_map_ptes(pmap);
2552 pte = &ptes[arm_btop(pv->pv_va)];
2553
2554 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2555 pv->pv_va, pv->pv_flags));
2556 #ifdef DEBUG
2557 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2558 pmap_pte_v(pte) == 0 ||
2559 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2560 panic("pmap_page_remove: bad mapping");
2561 #endif /* DEBUG */
2562
2563 /*
2564 * Update statistics
2565 */
2566 --pmap->pm_stats.resident_count;
2567
2568 /* Wired bit */
2569 if (pv->pv_flags & PVF_WIRED)
2570 --pmap->pm_stats.wired_count;
2571
2572 /*
2573 * Invalidate the PTEs.
2574 * XXX: should cluster them up and invalidate as many
2575 * as possible at once.
2576 */
2577
2578 #ifdef needednotdone
2579 reduce wiring count on page table pages as references drop
2580 #endif
2581
2582 *pte = 0;
2583 PTE_SYNC_CURRENT(pmap, pte);
2584 pmap_pte_delref(pmap, pv->pv_va);
2585
2586 npv = pv->pv_next;
2587 pmap_free_pv(pmap, pv);
2588 pv = npv;
2589 pmap_unmap_ptes(pmap);
2590 }
2591 pg->mdpage.pvh_list = NULL;
2592 simple_unlock(&pg->mdpage.pvh_slock);
2593 PMAP_HEAD_TO_MAP_UNLOCK();
2594
2595 PDEBUG(0, printf("done\n"));
2596 cpu_tlb_flushID();
2597 cpu_cpwait();
2598 }
2599
2600
2601 /*
2602 * Set the physical protection on the specified range of this map as requested.
2603 */
2604
2605 void
2606 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2607 {
2608 pt_entry_t *pte = NULL, *ptes;
2609 struct vm_page *pg;
2610 boolean_t flush = FALSE;
2611
2612 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2613 pmap, sva, eva, prot));
2614
2615 if (~prot & VM_PROT_READ) {
2616 /*
2617 * Just remove the mappings. pmap_update() is not required
2618 * here since the caller should do it.
2619 */
2620 pmap_remove(pmap, sva, eva);
2621 return;
2622 }
2623 if (prot & VM_PROT_WRITE) {
2624 /*
2625 * If this is a read->write transition, just ignore it and let
2626 * uvm_fault() take care of it later.
2627 */
2628 return;
2629 }
2630
2631 /* Need to lock map->head */
2632 PMAP_MAP_TO_HEAD_LOCK();
2633
2634 ptes = pmap_map_ptes(pmap);
2635
2636 /*
2637 * OK, at this point, we know we're doing write-protect operation.
2638 * If the pmap is active, write-back the range.
2639 */
2640 if (pmap_is_curpmap(pmap))
2641 cpu_dcache_wb_range(sva, eva - sva);
2642
2643 /*
2644 * We need to acquire a pointer to a page table page before entering
2645 * the following loop.
2646 */
2647 while (sva < eva) {
2648 if (pmap_pde_page(pmap_pde(pmap, sva)))
2649 break;
2650 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2651 }
2652
2653 pte = &ptes[arm_btop(sva)];
2654
2655 while (sva < eva) {
2656 /* only check once in a while */
2657 if ((sva & L2_ADDR_BITS) == 0) {
2658 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2659 /* We can race ahead here, to the next pde. */
2660 sva += L1_S_SIZE;
2661 pte += arm_btop(L1_S_SIZE);
2662 continue;
2663 }
2664 }
2665
2666 if (!pmap_pte_v(pte)) {
2667 PTE_FLUSH_ALT(pmap, pte);
2668 goto next;
2669 }
2670
2671 flush = TRUE;
2672
2673 pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
2674
2675 *pte &= ~L2_S_PROT_W; /* clear write bit */
2676 PTE_SYNC_CURRENT(pmap, pte); /* XXXJRT optimize */
2677
2678 /* Clear write flag */
2679 if (pg != NULL) {
2680 simple_lock(&pg->mdpage.pvh_slock);
2681 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2682 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2683 simple_unlock(&pg->mdpage.pvh_slock);
2684 }
2685
2686 next:
2687 sva += NBPG;
2688 pte++;
2689 }
2690 pmap_unmap_ptes(pmap);
2691 PMAP_MAP_TO_HEAD_UNLOCK();
2692 if (flush)
2693 cpu_tlb_flushID();
2694 }
2695
2696 /*
2697 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2698 * int flags)
2699 *
2700 * Insert the given physical page (p) at
2701 * the specified virtual address (v) in the
2702 * target physical map with the protection requested.
2703 *
2704 * If specified, the page will be wired down, meaning
2705 * that the related pte can not be reclaimed.
2706 *
2707 * NB: This is the only routine which MAY NOT lazy-evaluate
2708 * or lose information. That is, this routine must actually
2709 * insert this page into the given map NOW.
2710 */
2711
2712 int
2713 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2714 int flags)
2715 {
2716 pt_entry_t *ptes, opte, npte;
2717 paddr_t opa;
2718 boolean_t wired = (flags & PMAP_WIRED) != 0;
2719 struct vm_page *pg;
2720 struct pv_entry *pve;
2721 int error;
2722 unsigned int nflags;
2723 struct vm_page *ptp = NULL;
2724
2725 NPDEBUG(PDB_ENTER, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, flags=%08x, wired = %d\n",
2726 va, pa, pmap, prot, flags, wired));
2727
2728 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2729
2730 #ifdef DIAGNOSTIC
2731 /* Valid address ? */
2732 if (va >= (pmap_curmaxkvaddr))
2733 panic("pmap_enter: too big");
2734 if (pmap != pmap_kernel() && va != 0) {
2735 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2736 panic("pmap_enter: kernel page in user map");
2737 } else {
2738 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2739 panic("pmap_enter: user page in kernel map");
2740 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2741 panic("pmap_enter: entering PT page");
2742 }
2743 #endif
2744
2745 KDASSERT(((va | pa) & PGOFSET) == 0);
2746
2747 /*
2748 * Get a pointer to the page. Later on in this function, we
2749 * test for a managed page by checking pg != NULL.
2750 */
2751 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2752
2753 /* get lock */
2754 PMAP_MAP_TO_HEAD_LOCK();
2755
2756 /*
2757 * map the ptes. If there's not already an L2 table for this
2758 * address, allocate one.
2759 */
2760 ptes = pmap_map_ptes(pmap); /* locks pmap */
2761 /* kernel should be pre-grown */
2762 if (pmap != pmap_kernel())
2763 {
2764 /* if failure is allowed then don't try too hard */
2765 ptp = pmap_get_ptp(pmap, va & PD_FRAME);
2766 if (ptp == NULL) {
2767 if (flags & PMAP_CANFAIL) {
2768 error = ENOMEM;
2769 goto out;
2770 }
2771 panic("pmap_enter: get ptp failed");
2772 }
2773 }
2774 opte = ptes[arm_btop(va)];
2775
2776 nflags = 0;
2777 if (prot & VM_PROT_WRITE)
2778 nflags |= PVF_WRITE;
2779 if (wired)
2780 nflags |= PVF_WIRED;
2781
2782 /* Is the pte valid ? If so then this page is already mapped */
2783 if (l2pte_valid(opte)) {
2784 /* Get the physical address of the current page mapped */
2785 opa = l2pte_pa(opte);
2786
2787 /* Are we mapping the same page ? */
2788 if (opa == pa) {
2789 /* Check to see if we're doing rw->ro. */
2790 if ((opte & L2_S_PROT_W) != 0 &&
2791 (prot & VM_PROT_WRITE) == 0) {
2792 /* Yup, flush the cache if current pmap. */
2793 if (pmap_is_curpmap(pmap))
2794 cpu_dcache_wb_range(va, NBPG);
2795 }
2796
2797 /* Has the wiring changed ? */
2798 if (pg != NULL) {
2799 simple_lock(&pg->mdpage.pvh_slock);
2800 (void) pmap_modify_pv(pmap, va, pg,
2801 PVF_WRITE | PVF_WIRED, nflags);
2802 simple_unlock(&pg->mdpage.pvh_slock);
2803 }
2804 } else {
2805 struct vm_page *opg;
2806
2807 /* We are replacing the page with a new one. */
2808 cpu_idcache_wbinv_range(va, NBPG);
2809
2810 /*
2811 * If it is part of our managed memory then we
2812 * must remove it from the PV list
2813 */
2814 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2815 simple_lock(&opg->mdpage.pvh_slock);
2816 pve = pmap_remove_pv(opg, pmap, va);
2817 simple_unlock(&opg->mdpage.pvh_slock);
2818 } else {
2819 pve = NULL;
2820 }
2821
2822 goto enter;
2823 }
2824 } else {
2825 opa = 0;
2826 pve = NULL;
2827
2828 /* bump ptp ref */
2829 if (ptp != NULL)
2830 ptp->wire_count++;
2831
2832 /* pte is not valid so we must be hooking in a new page */
2833 ++pmap->pm_stats.resident_count;
2834
2835 enter:
2836 /*
2837 * Enter on the PV list if part of our managed memory
2838 */
2839 if (pg != NULL) {
2840 if (pve == NULL) {
2841 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2842 if (pve == NULL) {
2843 if (flags & PMAP_CANFAIL) {
2844 PTE_FLUSH_ALT(pmap,
2845 ptes[arm_btop(va)]);
2846 error = ENOMEM;
2847 goto out;
2848 }
2849 panic("pmap_enter: no pv entries "
2850 "available");
2851 }
2852 }
2853 /* enter_pv locks pvh when adding */
2854 pmap_enter_pv(pg, pve, pmap, va, ptp, nflags);
2855 } else {
2856 if (pve != NULL)
2857 pmap_free_pv(pmap, pve);
2858 }
2859 }
2860
2861 /* Construct the pte, giving the correct access. */
2862 npte = pa;
2863
2864 /* VA 0 is magic. */
2865 if (pmap != pmap_kernel() && va != vector_page)
2866 npte |= L2_S_PROT_U;
2867
2868 if (pg != NULL) {
2869 #ifdef DIAGNOSTIC
2870 if ((flags & VM_PROT_ALL) & ~prot)
2871 panic("pmap_enter: access_type exceeds prot");
2872 #endif
2873 npte |= pte_l2_s_cache_mode;
2874 if (flags & VM_PROT_WRITE) {
2875 npte |= L2_S_PROTO | L2_S_PROT_W;
2876 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2877 } else if (flags & VM_PROT_ALL) {
2878 npte |= L2_S_PROTO;
2879 pg->mdpage.pvh_attrs |= PVF_REF;
2880 } else
2881 npte |= L2_TYPE_INV;
2882 } else {
2883 if (prot & VM_PROT_WRITE)
2884 npte |= L2_S_PROTO | L2_S_PROT_W;
2885 else if (prot & VM_PROT_ALL)
2886 npte |= L2_S_PROTO;
2887 else
2888 npte |= L2_TYPE_INV;
2889 }
2890
2891 #if ARM_MMU_XSCALE == 1 && defined(XSCALE_CACHE_READ_WRITE_ALLOCATE)
2892 #if ARM_NMMUS > 1
2893 # error "XXX Unable to use read/write-allocate and configure non-XScale"
2894 #endif
2895 /*
2896 * XXX BRUTAL HACK! This allows us to limp along with
2897 * XXX the read/write-allocate cache mode.
2898 */
2899 if (pmap == pmap_kernel())
2900 npte &= ~L2_XSCALE_T_TEX(TEX_XSCALE_X);
2901 #endif
2902 ptes[arm_btop(va)] = npte;
2903 PTE_SYNC_CURRENT(pmap, &ptes[arm_btop(va)]);
2904
2905 if (pg != NULL) {
2906 simple_lock(&pg->mdpage.pvh_slock);
2907 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2908 simple_unlock(&pg->mdpage.pvh_slock);
2909 }
2910
2911 /* Better flush the TLB ... */
2912 cpu_tlb_flushID_SE(va);
2913 error = 0;
2914 out:
2915 pmap_unmap_ptes(pmap); /* unlocks pmap */
2916 PMAP_MAP_TO_HEAD_UNLOCK();
2917
2918 return error;
2919 }
2920
2921 /*
2922 * pmap_kenter_pa: enter a kernel mapping
2923 *
2924 * => no need to lock anything assume va is already allocated
2925 * => should be faster than normal pmap enter function
2926 */
2927 void
2928 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2929 {
2930 pt_entry_t *pte;
2931
2932 pte = vtopte(va);
2933 KASSERT(!pmap_pte_v(pte));
2934
2935 #ifdef PMAP_ALIAS_DEBUG
2936 {
2937 struct vm_page *pg;
2938 int s;
2939
2940 pg = PHYS_TO_VM_PAGE(pa);
2941 if (pg != NULL) {
2942 s = splhigh();
2943 if (pg->mdpage.ro_mappings == 0 &&
2944 pg->mdpage.rw_mappings == 0 &&
2945 pg->mdpage.kro_mappings == 0 &&
2946 pg->mdpage.krw_mappings == 0) {
2947 /* This case is okay. */
2948 } else if (pg->mdpage.rw_mappings == 0 &&
2949 pg->mdpage.krw_mappings == 0 &&
2950 (prot & VM_PROT_WRITE) == 0) {
2951 /* This case is okay. */
2952 } else {
2953 /* Something is awry. */
2954 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2955 "prot 0x%x\n", pg->mdpage.ro_mappings,
2956 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2957 pg->mdpage.krw_mappings, prot);
2958 Debugger();
2959 }
2960 if (prot & VM_PROT_WRITE)
2961 pg->mdpage.krw_mappings++;
2962 else
2963 pg->mdpage.kro_mappings++;
2964 splx(s);
2965 }
2966 }
2967 #endif /* PMAP_ALIAS_DEBUG */
2968
2969 *pte = L2_S_PROTO | pa |
2970 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2971 PTE_SYNC(pte);
2972 }
2973
2974 void
2975 pmap_kremove(vaddr_t va, vsize_t len)
2976 {
2977 pt_entry_t *pte;
2978 vaddr_t ova = va;
2979 vaddr_t olen = len;
2980
2981 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2982
2983 /*
2984 * We assume that we will only be called with small
2985 * regions of memory.
2986 */
2987
2988 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2989 pte = vtopte(va);
2990 #ifdef PMAP_ALIAS_DEBUG
2991 {
2992 struct vm_page *pg;
2993 int s;
2994
2995 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
2996 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
2997 s = splhigh();
2998 if (*pte & L2_S_PROT_W) {
2999 KASSERT(pg->mdpage.krw_mappings != 0);
3000 pg->mdpage.krw_mappings--;
3001 } else {
3002 KASSERT(pg->mdpage.kro_mappings != 0);
3003 pg->mdpage.kro_mappings--;
3004 }
3005 splx(s);
3006 }
3007 }
3008 #endif /* PMAP_ALIAS_DEBUG */
3009 cpu_idcache_wbinv_range(va, PAGE_SIZE);
3010 *pte = 0;
3011 cpu_tlb_flushID_SE(va);
3012 }
3013 PTE_SYNC_RANGE(vtopte(ova), olen >> PAGE_SHIFT);
3014 }
3015
3016 /*
3017 * pmap_page_protect:
3018 *
3019 * Lower the permission for all mappings to a given page.
3020 */
3021
3022 void
3023 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3024 {
3025
3026 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
3027 VM_PAGE_TO_PHYS(pg), prot));
3028
3029 switch(prot) {
3030 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3031 case VM_PROT_READ|VM_PROT_WRITE:
3032 return;
3033
3034 case VM_PROT_READ:
3035 case VM_PROT_READ|VM_PROT_EXECUTE:
3036 pmap_clearbit(pg, PVF_WRITE);
3037 break;
3038
3039 default:
3040 pmap_page_remove(pg);
3041 break;
3042 }
3043 }
3044
3045
3046 /*
3047 * Routine: pmap_unwire
3048 * Function: Clear the wired attribute for a map/virtual-address
3049 * pair.
3050 * In/out conditions:
3051 * The mapping must already exist in the pmap.
3052 */
3053
3054 void
3055 pmap_unwire(struct pmap *pmap, vaddr_t va)
3056 {
3057 pt_entry_t *ptes;
3058 struct vm_page *pg;
3059 paddr_t pa;
3060
3061 PMAP_MAP_TO_HEAD_LOCK();
3062 ptes = pmap_map_ptes(pmap); /* locks pmap */
3063
3064 if (pmap_pde_v(pmap_pde(pmap, va))) {
3065 #ifdef DIAGNOSTIC
3066 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3067 panic("pmap_unwire: invalid L2 PTE");
3068 #endif
3069 /* Extract the physical address of the page */
3070 pa = l2pte_pa(ptes[arm_btop(va)]);
3071 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3072
3073 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3074 goto out;
3075
3076 /* Update the wired bit in the pv entry for this page. */
3077 simple_lock(&pg->mdpage.pvh_slock);
3078 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
3079 simple_unlock(&pg->mdpage.pvh_slock);
3080 }
3081 #ifdef DIAGNOSTIC
3082 else {
3083 panic("pmap_unwire: invalid L1 PTE");
3084 }
3085 #endif
3086 out:
3087 pmap_unmap_ptes(pmap); /* unlocks pmap */
3088 PMAP_MAP_TO_HEAD_UNLOCK();
3089 }
3090
3091 /*
3092 * Routine: pmap_extract
3093 * Function:
3094 * Extract the physical page address associated
3095 * with the given map/virtual_address pair.
3096 */
3097 boolean_t
3098 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
3099 {
3100 pd_entry_t *pde;
3101 pt_entry_t *pte, *ptes;
3102 paddr_t pa;
3103
3104 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3105
3106 ptes = pmap_map_ptes(pmap); /* locks pmap */
3107
3108 pde = pmap_pde(pmap, va);
3109 pte = &ptes[arm_btop(va)];
3110
3111 if (pmap_pde_section(pde)) {
3112 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3113 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3114 goto out;
3115 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3116 PDEBUG(5, printf("no mapping\n"));
3117 goto failed;
3118 }
3119
3120 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3121 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3122 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3123 goto out;
3124 }
3125
3126 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3127 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3128
3129 out:
3130 if (pap != NULL)
3131 *pap = pa;
3132
3133 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3134 pmap_unmap_ptes(pmap); /* unlocks pmap */
3135 return (TRUE);
3136
3137 failed:
3138 PTE_FLUSH_ALT(pmap, &ptes[arm_btop(va)]);
3139 pmap_unmap_ptes(pmap); /* unlocks pmap */
3140 return (FALSE);
3141 }
3142
3143
3144 /*
3145 * pmap_copy:
3146 *
3147 * Copy the range specified by src_addr/len from the source map to the
3148 * range dst_addr/len in the destination map.
3149 *
3150 * This routine is only advisory and need not do anything.
3151 */
3152 /* Call deleted in <arm/arm32/pmap.h> */
3153
3154 #if defined(PMAP_DEBUG)
3155 void
3156 pmap_dump_pvlist(phys, m)
3157 vaddr_t phys;
3158 char *m;
3159 {
3160 struct vm_page *pg;
3161 struct pv_entry *pv;
3162
3163 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3164 printf("INVALID PA\n");
3165 return;
3166 }
3167 simple_lock(&pg->mdpage.pvh_slock);
3168 printf("%s %08lx:", m, phys);
3169 if (pg->mdpage.pvh_list == NULL) {
3170 simple_unlock(&pg->mdpage.pvh_slock);
3171 printf(" no mappings\n");
3172 return;
3173 }
3174
3175 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3176 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3177 pv->pv_va, pv->pv_flags);
3178
3179 printf("\n");
3180 simple_unlock(&pg->mdpage.pvh_slock);
3181 }
3182
3183 #endif /* PMAP_DEBUG */
3184
3185 static pt_entry_t *
3186 pmap_map_ptes(struct pmap *pmap)
3187 {
3188 struct proc *p;
3189
3190 /* the kernel's pmap is always accessible */
3191 if (pmap == pmap_kernel()) {
3192 return (pt_entry_t *)PTE_BASE;
3193 }
3194
3195 if (pmap_is_curpmap(pmap)) {
3196 simple_lock(&pmap->pm_obj.vmobjlock);
3197 return (pt_entry_t *)PTE_BASE;
3198 }
3199
3200 p = curproc;
3201 KDASSERT(p != NULL);
3202
3203 /* need to lock both curpmap and pmap: use ordered locking */
3204 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3205 simple_lock(&pmap->pm_obj.vmobjlock);
3206 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3207 } else {
3208 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3209 simple_lock(&pmap->pm_obj.vmobjlock);
3210 }
3211
3212 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
3213 pmap->pm_pptpt, 0);
3214 cpu_tlb_flushD();
3215 cpu_cpwait();
3216 return (pt_entry_t *)APTE_BASE;
3217 }
3218
3219 /*
3220 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3221 */
3222
3223 static void
3224 pmap_unmap_ptes(struct pmap *pmap)
3225 {
3226
3227 if (pmap == pmap_kernel()) {
3228 return;
3229 }
3230 if (pmap_is_curpmap(pmap)) {
3231 simple_unlock(&pmap->pm_obj.vmobjlock);
3232 } else {
3233 KDASSERT(curproc != NULL);
3234 simple_unlock(&pmap->pm_obj.vmobjlock);
3235 simple_unlock(
3236 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3237 }
3238 }
3239
3240 /*
3241 * Modify pte bits for all ptes corresponding to the given physical address.
3242 * We use `maskbits' rather than `clearbits' because we're always passing
3243 * constants and the latter would require an extra inversion at run-time.
3244 */
3245
3246 static void
3247 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3248 {
3249 struct pv_entry *pv;
3250 pt_entry_t *ptes, npte, opte;
3251 vaddr_t va;
3252
3253 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3254 VM_PAGE_TO_PHYS(pg), maskbits));
3255
3256 PMAP_HEAD_TO_MAP_LOCK();
3257 simple_lock(&pg->mdpage.pvh_slock);
3258
3259 /*
3260 * Clear saved attributes (modify, reference)
3261 */
3262 pg->mdpage.pvh_attrs &= ~maskbits;
3263
3264 if (pg->mdpage.pvh_list == NULL) {
3265 simple_unlock(&pg->mdpage.pvh_slock);
3266 PMAP_HEAD_TO_MAP_UNLOCK();
3267 return;
3268 }
3269
3270 /*
3271 * Loop over all current mappings setting/clearing as appropos
3272 */
3273 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3274 #ifdef PMAP_ALIAS_DEBUG
3275 {
3276 int s = splhigh();
3277 if ((maskbits & PVF_WRITE) != 0 &&
3278 (pv->pv_flags & PVF_WRITE) != 0) {
3279 KASSERT(pg->mdpage.rw_mappings != 0);
3280 pg->mdpage.rw_mappings--;
3281 pg->mdpage.ro_mappings++;
3282 }
3283 splx(s);
3284 }
3285 #endif /* PMAP_ALIAS_DEBUG */
3286 va = pv->pv_va;
3287 pv->pv_flags &= ~maskbits;
3288 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3289 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3290 npte = opte = ptes[arm_btop(va)];
3291 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3292 if ((pv->pv_flags & PVF_NC)) {
3293 /*
3294 * Entry is not cacheable: reenable
3295 * the cache, nothing to flush
3296 *
3297 * Don't turn caching on again if this
3298 * is a modified emulation. This
3299 * would be inconsitent with the
3300 * settings created by
3301 * pmap_vac_me_harder().
3302 *
3303 * There's no need to call
3304 * pmap_vac_me_harder() here: all
3305 * pages are loosing their write
3306 * permission.
3307 *
3308 */
3309 if (maskbits & PVF_WRITE) {
3310 npte |= pte_l2_s_cache_mode;
3311 pv->pv_flags &= ~PVF_NC;
3312 }
3313 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3314 /*
3315 * Entry is cacheable: check if pmap is
3316 * current if it is flush it,
3317 * otherwise it won't be in the cache
3318 */
3319 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3320 }
3321
3322 /* make the pte read only */
3323 npte &= ~L2_S_PROT_W;
3324 }
3325
3326 if (maskbits & PVF_REF) {
3327 if (pmap_is_curpmap(pv->pv_pmap) &&
3328 (pv->pv_flags & PVF_NC) == 0) {
3329 /*
3330 * Check npte here; we may have already
3331 * done the wbinv above, and the validity
3332 * of the PTE is the same for opte and
3333 * npte.
3334 */
3335 if (npte & L2_S_PROT_W) {
3336 cpu_idcache_wbinv_range(pv->pv_va,
3337 NBPG);
3338 } else if ((npte & L2_TYPE_MASK)
3339 != L2_TYPE_INV) {
3340 /* XXXJRT need idcache_inv_range */
3341 cpu_idcache_wbinv_range(pv->pv_va,
3342 NBPG);
3343 }
3344 }
3345
3346 /* make the pte invalid */
3347 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3348 }
3349
3350 if (npte != opte) {
3351 ptes[arm_btop(va)] = npte;
3352 PTE_SYNC_CURRENT(pv->pv_pmap, &ptes[arm_btop(va)]);
3353 /* Flush the TLB entry if a current pmap. */
3354 if (pmap_is_curpmap(pv->pv_pmap))
3355 cpu_tlb_flushID_SE(pv->pv_va);
3356 } else
3357 PTE_FLUSH_ALT(pv->pv_pmap, &ptes[arm_btop(va)]);
3358
3359 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3360 }
3361 cpu_cpwait();
3362
3363 simple_unlock(&pg->mdpage.pvh_slock);
3364 PMAP_HEAD_TO_MAP_UNLOCK();
3365 }
3366
3367 /*
3368 * pmap_clear_modify:
3369 *
3370 * Clear the "modified" attribute for a page.
3371 */
3372 boolean_t
3373 pmap_clear_modify(struct vm_page *pg)
3374 {
3375 boolean_t rv;
3376
3377 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3378 rv = TRUE;
3379 pmap_clearbit(pg, PVF_MOD);
3380 } else
3381 rv = FALSE;
3382
3383 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3384 VM_PAGE_TO_PHYS(pg), rv));
3385
3386 return (rv);
3387 }
3388
3389 /*
3390 * pmap_clear_reference:
3391 *
3392 * Clear the "referenced" attribute for a page.
3393 */
3394 boolean_t
3395 pmap_clear_reference(struct vm_page *pg)
3396 {
3397 boolean_t rv;
3398
3399 if (pg->mdpage.pvh_attrs & PVF_REF) {
3400 rv = TRUE;
3401 pmap_clearbit(pg, PVF_REF);
3402 } else
3403 rv = FALSE;
3404
3405 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3406 VM_PAGE_TO_PHYS(pg), rv));
3407
3408 return (rv);
3409 }
3410
3411 /*
3412 * pmap_is_modified:
3413 *
3414 * Test if a page has the "modified" attribute.
3415 */
3416 /* See <arm/arm32/pmap.h> */
3417
3418 /*
3419 * pmap_is_referenced:
3420 *
3421 * Test if a page has the "referenced" attribute.
3422 */
3423 /* See <arm/arm32/pmap.h> */
3424
3425 int
3426 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3427 {
3428 pt_entry_t *ptes;
3429 struct vm_page *pg;
3430 paddr_t pa;
3431 u_int flags;
3432 int rv = 0;
3433
3434 PDEBUG(2, printf("pmap_modified_emulation\n"));
3435
3436 PMAP_MAP_TO_HEAD_LOCK();
3437 ptes = pmap_map_ptes(pmap); /* locks pmap */
3438
3439 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3440 PDEBUG(2, printf("L1 PTE invalid\n"));
3441 goto out;
3442 }
3443
3444 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3445
3446 /*
3447 * Don't need to PTE_FLUSH_ALT() here; this is always done
3448 * with the current pmap.
3449 */
3450
3451 /* Check for a invalid pte */
3452 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3453 goto out;
3454
3455 /* This can happen if user code tries to access kernel memory. */
3456 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3457 goto out;
3458
3459 /* Extract the physical address of the page */
3460 pa = l2pte_pa(ptes[arm_btop(va)]);
3461 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3462 goto out;
3463
3464 /* Get the current flags for this page. */
3465 simple_lock(&pg->mdpage.pvh_slock);
3466
3467 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3468 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3469
3470 /*
3471 * Do the flags say this page is writable ? If not then it is a
3472 * genuine write fault. If yes then the write fault is our fault
3473 * as we did not reflect the write access in the PTE. Now we know
3474 * a write has occurred we can correct this and also set the
3475 * modified bit
3476 */
3477 if (~flags & PVF_WRITE) {
3478 simple_unlock(&pg->mdpage.pvh_slock);
3479 goto out;
3480 }
3481
3482 PDEBUG(0,
3483 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3484 va, ptes[arm_btop(va)]));
3485 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3486
3487 /*
3488 * Re-enable write permissions for the page. No need to call
3489 * pmap_vac_me_harder(), since this is just a
3490 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3491 * We've already set the cacheable bits based on the assumption
3492 * that we can write to this page.
3493 */
3494 ptes[arm_btop(va)] =
3495 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3496 PTE_SYNC(&ptes[arm_btop(va)]);
3497 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3498
3499 simple_unlock(&pg->mdpage.pvh_slock);
3500
3501 cpu_tlb_flushID_SE(va);
3502 cpu_cpwait();
3503 rv = 1;
3504 out:
3505 pmap_unmap_ptes(pmap); /* unlocks pmap */
3506 PMAP_MAP_TO_HEAD_UNLOCK();
3507 return (rv);
3508 }
3509
3510 int
3511 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3512 {
3513 pt_entry_t *ptes;
3514 struct vm_page *pg;
3515 paddr_t pa;
3516 int rv = 0;
3517
3518 PDEBUG(2, printf("pmap_handled_emulation\n"));
3519
3520 PMAP_MAP_TO_HEAD_LOCK();
3521 ptes = pmap_map_ptes(pmap); /* locks pmap */
3522
3523 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3524 PDEBUG(2, printf("L1 PTE invalid\n"));
3525 goto out;
3526 }
3527
3528 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3529
3530 /*
3531 * Don't need to PTE_FLUSH_ALT() here; this is always done
3532 * with the current pmap.
3533 */
3534
3535 /* Check for invalid pte */
3536 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3537 goto out;
3538
3539 /* This can happen if user code tries to access kernel memory. */
3540 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3541 goto out;
3542
3543 /* Extract the physical address of the page */
3544 pa = l2pte_pa(ptes[arm_btop(va)]);
3545 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3546 goto out;
3547
3548 simple_lock(&pg->mdpage.pvh_slock);
3549
3550 /*
3551 * Ok we just enable the pte and mark the attibs as handled
3552 * XXX Should we traverse the PV list and enable all PTEs?
3553 */
3554 PDEBUG(0,
3555 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3556 va, ptes[arm_btop(va)]));
3557 pg->mdpage.pvh_attrs |= PVF_REF;
3558
3559 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3560 PTE_SYNC(&ptes[arm_btop(va)]);
3561 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3562
3563 simple_unlock(&pg->mdpage.pvh_slock);
3564
3565 cpu_tlb_flushID_SE(va);
3566 cpu_cpwait();
3567 rv = 1;
3568 out:
3569 pmap_unmap_ptes(pmap); /* unlocks pmap */
3570 PMAP_MAP_TO_HEAD_UNLOCK();
3571 return (rv);
3572 }
3573
3574 /*
3575 * pmap_collect: free resources held by a pmap
3576 *
3577 * => optional function.
3578 * => called when a process is swapped out to free memory.
3579 */
3580
3581 void
3582 pmap_collect(struct pmap *pmap)
3583 {
3584 }
3585
3586 /*
3587 * Routine: pmap_procwr
3588 *
3589 * Function:
3590 * Synchronize caches corresponding to [addr, addr+len) in p.
3591 *
3592 */
3593 void
3594 pmap_procwr(struct proc *p, vaddr_t va, int len)
3595 {
3596 /* We only need to do anything if it is the current process. */
3597 if (p == curproc)
3598 cpu_icache_sync_range(va, len);
3599 }
3600 /*
3601 * PTP functions
3602 */
3603
3604 /*
3605 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3606 *
3607 * => pmap should NOT be pmap_kernel()
3608 * => pmap should be locked
3609 */
3610
3611 static struct vm_page *
3612 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3613 {
3614 struct vm_page *ptp;
3615 pd_entry_t *pde;
3616
3617 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3618
3619 pde = pmap_pde(pmap, va);
3620 if (pmap_pde_v(pde)) {
3621 /* valid... check hint (saves us a PA->PG lookup) */
3622 if (pmap->pm_ptphint &&
3623 ((*pde) & L2_S_FRAME) ==
3624 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3625 return (pmap->pm_ptphint);
3626 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3627 #ifdef DIAGNOSTIC
3628 if (ptp == NULL)
3629 panic("pmap_get_ptp: unmanaged user PTP");
3630 #endif
3631 pmap->pm_ptphint = ptp;
3632 return(ptp);
3633 }
3634
3635 /* allocate a new PTP (updates ptphint) */
3636 return (pmap_alloc_ptp(pmap, va));
3637 }
3638
3639 /*
3640 * pmap_alloc_ptp: allocate a PTP for a PMAP
3641 *
3642 * => pmap should already be locked by caller
3643 * => we use the ptp's wire_count to count the number of active mappings
3644 * in the PTP (we start it at one to prevent any chance this PTP
3645 * will ever leak onto the active/inactive queues)
3646 */
3647
3648 /*__inline */ static struct vm_page *
3649 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3650 {
3651 struct vm_page *ptp;
3652
3653 KASSERT((va & PD_OFFSET) == 0); /* XXX KDASSERT */
3654
3655 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3656 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3657 if (ptp == NULL)
3658 return (NULL);
3659
3660 /* got one! */
3661 ptp->flags &= ~PG_BUSY; /* never busy */
3662 ptp->wire_count = 1; /* no mappings yet */
3663 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp),
3664 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3665 pmap->pm_stats.resident_count++; /* count PTP as resident */
3666 pmap->pm_ptphint = ptp;
3667 return (ptp);
3668 }
3669
3670 vaddr_t
3671 pmap_growkernel(vaddr_t maxkvaddr)
3672 {
3673 struct pmap *kpm = pmap_kernel(), *pm;
3674 int s;
3675 paddr_t ptaddr;
3676 struct vm_page *ptp;
3677
3678 if (maxkvaddr <= pmap_curmaxkvaddr)
3679 goto out; /* we are OK */
3680 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3681 pmap_curmaxkvaddr, maxkvaddr));
3682
3683 /*
3684 * whoops! we need to add kernel PTPs
3685 */
3686
3687 s = splhigh(); /* to be safe */
3688 simple_lock(&kpm->pm_obj.vmobjlock);
3689 /* due to the way the arm pmap works we map 4MB at a time */
3690 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3691 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3692
3693 if (uvm.page_init_done == FALSE) {
3694
3695 /*
3696 * we're growing the kernel pmap early (from
3697 * uvm_pageboot_alloc()). this case must be
3698 * handled a little differently.
3699 */
3700
3701 if (uvm_page_physget(&ptaddr) == FALSE)
3702 panic("pmap_growkernel: out of memory");
3703 pmap_zero_page(ptaddr);
3704
3705 /* map this page in */
3706 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr,
3707 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3708
3709 /* count PTP as resident */
3710 kpm->pm_stats.resident_count++;
3711 continue;
3712 }
3713
3714 /*
3715 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3716 * pmap_initialized == FALSE CASE! WE MAY BE
3717 * INVOKED WHILE pmap_init() IS RUNNING!
3718 */
3719
3720 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3721 panic("pmap_growkernel: alloc ptp failed");
3722
3723 /* distribute new kernel PTP to all active pmaps */
3724 simple_lock(&pmaps_lock);
3725 LIST_FOREACH(pm, &pmaps, pm_list) {
3726 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3727 VM_PAGE_TO_PHYS(ptp),
3728 PMAP_PTP_SELFREF | PMAP_PTP_CACHEABLE);
3729 }
3730
3731 /* Invalidate the PTPT cache. */
3732 pool_cache_invalidate(&pmap_ptpt_cache);
3733 pmap_ptpt_cache_generation++;
3734
3735 simple_unlock(&pmaps_lock);
3736 }
3737
3738 /*
3739 * flush out the cache, expensive but growkernel will happen so
3740 * rarely
3741 */
3742 cpu_tlb_flushD();
3743 cpu_cpwait();
3744
3745 simple_unlock(&kpm->pm_obj.vmobjlock);
3746 splx(s);
3747
3748 out:
3749 return (pmap_curmaxkvaddr);
3750 }
3751
3752 /************************ Utility routines ****************************/
3753
3754 /*
3755 * vector_page_setprot:
3756 *
3757 * Manipulate the protection of the vector page.
3758 */
3759 void
3760 vector_page_setprot(int prot)
3761 {
3762 pt_entry_t *pte;
3763
3764 pte = vtopte(vector_page);
3765
3766 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3767 PTE_SYNC(pte);
3768 cpu_tlb_flushD_SE(vector_page);
3769 cpu_cpwait();
3770 }
3771
3772 /************************ Bootstrapping routines ****************************/
3773
3774 /*
3775 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3776 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3777 * find them as necessary.
3778 *
3779 * Note that the data on this list is not valid after initarm() returns.
3780 */
3781 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3782
3783 static vaddr_t
3784 kernel_pt_lookup(paddr_t pa)
3785 {
3786 pv_addr_t *pv;
3787
3788 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3789 if (pv->pv_pa == pa)
3790 return (pv->pv_va);
3791 }
3792 return (0);
3793 }
3794
3795 /*
3796 * pmap_map_section:
3797 *
3798 * Create a single section mapping.
3799 */
3800 void
3801 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3802 {
3803 pd_entry_t *pde = (pd_entry_t *) l1pt;
3804 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3805
3806 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3807
3808 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3809 L1_S_PROT(PTE_KERNEL, prot) | fl;
3810 }
3811
3812 /*
3813 * pmap_map_entry:
3814 *
3815 * Create a single page mapping.
3816 */
3817 void
3818 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3819 {
3820 pd_entry_t *pde = (pd_entry_t *) l1pt;
3821 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3822 pt_entry_t *pte;
3823
3824 KASSERT(((va | pa) & PGOFSET) == 0);
3825
3826 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3827 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3828
3829 pte = (pt_entry_t *)
3830 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3831 if (pte == NULL)
3832 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3833
3834 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3835 L2_S_PROT(PTE_KERNEL, prot) | fl;
3836 }
3837
3838 /*
3839 * pmap_link_l2pt:
3840 *
3841 * Link the L2 page table specified by "pa" into the L1
3842 * page table at the slot for "va".
3843 */
3844 void
3845 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3846 {
3847 pd_entry_t *pde = (pd_entry_t *) l1pt;
3848 u_int slot = va >> L1_S_SHIFT;
3849
3850 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3851
3852 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3853 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3854 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3855 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3856
3857 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3858 }
3859
3860 /*
3861 * pmap_map_chunk:
3862 *
3863 * Map a chunk of memory using the most efficient mappings
3864 * possible (section, large page, small page) into the
3865 * provided L1 and L2 tables at the specified virtual address.
3866 */
3867 vsize_t
3868 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3869 int prot, int cache)
3870 {
3871 pd_entry_t *pde = (pd_entry_t *) l1pt;
3872 pt_entry_t *pte, fl;
3873 vsize_t resid;
3874 u_int i;
3875
3876 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3877
3878 if (l1pt == 0)
3879 panic("pmap_map_chunk: no L1 table provided");
3880
3881 #ifdef VERBOSE_INIT_ARM
3882 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3883 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3884 #endif
3885
3886 size = resid;
3887
3888 while (resid > 0) {
3889 /* See if we can use a section mapping. */
3890 if (((pa | va) & L1_S_OFFSET) == 0 &&
3891 resid >= L1_S_SIZE) {
3892 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3893 #ifdef VERBOSE_INIT_ARM
3894 printf("S");
3895 #endif
3896 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3897 L1_S_PROT(PTE_KERNEL, prot) | fl;
3898 va += L1_S_SIZE;
3899 pa += L1_S_SIZE;
3900 resid -= L1_S_SIZE;
3901 continue;
3902 }
3903
3904 /*
3905 * Ok, we're going to use an L2 table. Make sure
3906 * one is actually in the corresponding L1 slot
3907 * for the current VA.
3908 */
3909 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3910 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3911
3912 pte = (pt_entry_t *)
3913 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3914 if (pte == NULL)
3915 panic("pmap_map_chunk: can't find L2 table for VA"
3916 "0x%08lx", va);
3917
3918 /* See if we can use a L2 large page mapping. */
3919 if (((pa | va) & L2_L_OFFSET) == 0 &&
3920 resid >= L2_L_SIZE) {
3921 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3922 #ifdef VERBOSE_INIT_ARM
3923 printf("L");
3924 #endif
3925 for (i = 0; i < 16; i++) {
3926 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3927 L2_L_PROTO | pa |
3928 L2_L_PROT(PTE_KERNEL, prot) | fl;
3929 }
3930 va += L2_L_SIZE;
3931 pa += L2_L_SIZE;
3932 resid -= L2_L_SIZE;
3933 continue;
3934 }
3935
3936 /* Use a small page mapping. */
3937 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3938 #ifdef VERBOSE_INIT_ARM
3939 printf("P");
3940 #endif
3941 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3942 L2_S_PROT(PTE_KERNEL, prot) | fl;
3943 va += NBPG;
3944 pa += NBPG;
3945 resid -= NBPG;
3946 }
3947 #ifdef VERBOSE_INIT_ARM
3948 printf("\n");
3949 #endif
3950 return (size);
3951 }
3952
3953 /********************** PTE initialization routines **************************/
3954
3955 /*
3956 * These routines are called when the CPU type is identified to set up
3957 * the PTE prototypes, cache modes, etc.
3958 *
3959 * The variables are always here, just in case LKMs need to reference
3960 * them (though, they shouldn't).
3961 */
3962
3963 pt_entry_t pte_l1_s_cache_mode;
3964 pt_entry_t pte_l1_s_cache_mask;
3965
3966 pt_entry_t pte_l2_l_cache_mode;
3967 pt_entry_t pte_l2_l_cache_mask;
3968
3969 pt_entry_t pte_l2_s_cache_mode;
3970 pt_entry_t pte_l2_s_cache_mask;
3971
3972 pt_entry_t pte_l2_s_prot_u;
3973 pt_entry_t pte_l2_s_prot_w;
3974 pt_entry_t pte_l2_s_prot_mask;
3975
3976 pt_entry_t pte_l1_s_proto;
3977 pt_entry_t pte_l1_c_proto;
3978 pt_entry_t pte_l2_s_proto;
3979
3980 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3981 void (*pmap_zero_page_func)(paddr_t);
3982
3983 #if ARM_MMU_GENERIC == 1
3984 void
3985 pmap_pte_init_generic(void)
3986 {
3987
3988 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3989 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3990
3991 pte_l2_l_cache_mode = L2_B|L2_C;
3992 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3993
3994 pte_l2_s_cache_mode = L2_B|L2_C;
3995 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3996
3997 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3998 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3999 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4000
4001 pte_l1_s_proto = L1_S_PROTO_generic;
4002 pte_l1_c_proto = L1_C_PROTO_generic;
4003 pte_l2_s_proto = L2_S_PROTO_generic;
4004
4005 pmap_copy_page_func = pmap_copy_page_generic;
4006 pmap_zero_page_func = pmap_zero_page_generic;
4007 }
4008
4009 #if defined(CPU_ARM9)
4010 void
4011 pmap_pte_init_arm9(void)
4012 {
4013
4014 /*
4015 * ARM9 is compatible with generic, but we want to use
4016 * write-through caching for now.
4017 */
4018 pmap_pte_init_generic();
4019
4020 pte_l1_s_cache_mode = L1_S_C;
4021 pte_l2_l_cache_mode = L2_C;
4022 pte_l2_s_cache_mode = L2_C;
4023 }
4024 #endif /* CPU_ARM9 */
4025 #endif /* ARM_MMU_GENERIC == 1 */
4026
4027 #if ARM_MMU_XSCALE == 1
4028 void
4029 pmap_pte_init_xscale(void)
4030 {
4031 uint32_t auxctl;
4032
4033 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4034 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4035
4036 pte_l2_l_cache_mode = L2_B|L2_C;
4037 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4038
4039 pte_l2_s_cache_mode = L2_B|L2_C;
4040 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4041
4042 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4043 /*
4044 * The XScale core has an enhanced mode where writes that
4045 * miss the cache cause a cache line to be allocated. This
4046 * is significantly faster than the traditional, write-through
4047 * behavior of this case.
4048 *
4049 * However, there is a bug lurking in this pmap module, or in
4050 * other parts of the VM system, or both, which causes corruption
4051 * of NFS-backed files when this cache mode is used. We have
4052 * an ugly work-around for this problem (disable r/w-allocate
4053 * for managed kernel mappings), but the bug is still evil enough
4054 * to consider this cache mode "experimental".
4055 */
4056 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4057 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4058 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4059 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4060
4061 #ifdef XSCALE_CACHE_WRITE_THROUGH
4062 /*
4063 * Some versions of the XScale core have various bugs in
4064 * their cache units, the work-around for which is to run
4065 * the cache in write-through mode. Unfortunately, this
4066 * has a major (negative) impact on performance. So, we
4067 * go ahead and run fast-and-loose, in the hopes that we
4068 * don't line up the planets in a way that will trip the
4069 * bugs.
4070 *
4071 * However, we give you the option to be slow-but-correct.
4072 */
4073 pte_l1_s_cache_mode = L1_S_C;
4074 pte_l2_l_cache_mode = L2_C;
4075 pte_l2_s_cache_mode = L2_C;
4076 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4077
4078 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4079 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4080 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4081
4082 pte_l1_s_proto = L1_S_PROTO_xscale;
4083 pte_l1_c_proto = L1_C_PROTO_xscale;
4084 pte_l2_s_proto = L2_S_PROTO_xscale;
4085
4086 pmap_copy_page_func = pmap_copy_page_xscale;
4087 pmap_zero_page_func = pmap_zero_page_xscale;
4088
4089 /*
4090 * Disable ECC protection of page table access, for now.
4091 */
4092 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4093 : "=r" (auxctl));
4094 auxctl &= ~XSCALE_AUXCTL_P;
4095 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4096 :
4097 : "r" (auxctl));
4098 }
4099
4100 /*
4101 * xscale_setup_minidata:
4102 *
4103 * Set up the mini-data cache clean area. We require the
4104 * caller to allocate the right amount of physically and
4105 * virtually contiguous space.
4106 */
4107 void
4108 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4109 {
4110 extern vaddr_t xscale_minidata_clean_addr;
4111 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4112 pd_entry_t *pde = (pd_entry_t *) l1pt;
4113 pt_entry_t *pte;
4114 vsize_t size;
4115 uint32_t auxctl;
4116
4117 xscale_minidata_clean_addr = va;
4118
4119 /* Round it to page size. */
4120 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4121
4122 for (; size != 0;
4123 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4124 pte = (pt_entry_t *)
4125 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4126 if (pte == NULL)
4127 panic("xscale_setup_minidata: can't find L2 table for "
4128 "VA 0x%08lx", va);
4129 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4130 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4131 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4132 }
4133
4134 /*
4135 * Configure the mini-data cache for write-back with
4136 * read/write-allocate.
4137 *
4138 * NOTE: In order to reconfigure the mini-data cache, we must
4139 * make sure it contains no valid data! In order to do that,
4140 * we must issue a global data cache invalidate command!
4141 *
4142 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4143 * THIS IS VERY IMPORTANT!
4144 */
4145
4146 /* Invalidate data and mini-data. */
4147 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4148 :
4149 : "r" (auxctl));
4150
4151
4152 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4153 : "=r" (auxctl));
4154 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4155 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4156 :
4157 : "r" (auxctl));
4158 }
4159 #endif /* ARM_MMU_XSCALE == 1 */
4160