Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.13
      1 /*	$NetBSD: pmap.c,v 1.13 2001/07/06 20:15:13 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Richard Earnshaw
      5  * Copyright (c) 2001 Christopher Gilbert
      6  * All rights reserved.
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. The name of the company nor the name of the author may be used to
     14  *    endorse or promote products derived from this software without specific
     15  *    prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     21  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     23  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 
     30 /*-
     31  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     32  * All rights reserved.
     33  *
     34  * This code is derived from software contributed to The NetBSD Foundation
     35  * by Charles M. Hannum.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *        This product includes software developed by the NetBSD
     48  *        Foundation, Inc. and its contributors.
     49  * 4. Neither the name of The NetBSD Foundation nor the names of its
     50  *    contributors may be used to endorse or promote products derived
     51  *    from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 /*
     67  * Copyright (c) 1994-1998 Mark Brinicombe.
     68  * Copyright (c) 1994 Brini.
     69  * All rights reserved.
     70  *
     71  * This code is derived from software written for Brini by Mark Brinicombe
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by Mark Brinicombe.
     84  * 4. The name of the author may not be used to endorse or promote products
     85  *    derived from this software without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     88  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     89  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     90  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     91  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     92  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     93  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     94  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     95  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     96  *
     97  * RiscBSD kernel project
     98  *
     99  * pmap.c
    100  *
    101  * Machine dependant vm stuff
    102  *
    103  * Created      : 20/09/94
    104  */
    105 
    106 /*
    107  * Performance improvements, UVM changes, overhauls and part-rewrites
    108  * were contributed by Neil A. Carson <neil (at) causality.com>.
    109  */
    110 
    111 /*
    112  * The dram block info is currently referenced from the bootconfig.
    113  * This should be placed in a separate structure.
    114  */
    115 
    116 /*
    117  * Special compilation symbols
    118  * PMAP_DEBUG		- Build in pmap_debug_level code
    119  */
    120 
    121 /* Include header files */
    122 
    123 #include "opt_pmap_debug.h"
    124 #include "opt_ddb.h"
    125 
    126 #include <sys/types.h>
    127 #include <sys/param.h>
    128 #include <sys/kernel.h>
    129 #include <sys/systm.h>
    130 #include <sys/proc.h>
    131 #include <sys/malloc.h>
    132 #include <sys/user.h>
    133 #include <sys/pool.h>
    134 
    135 #include <uvm/uvm.h>
    136 
    137 #include <machine/bootconfig.h>
    138 #include <machine/bus.h>
    139 #include <machine/pmap.h>
    140 #include <machine/pcb.h>
    141 #include <machine/param.h>
    142 #include <machine/katelib.h>
    143 
    144 #ifdef PMAP_DEBUG
    145 #define	PDEBUG(_lev_,_stat_) \
    146 	if (pmap_debug_level >= (_lev_)) \
    147         	((_stat_))
    148 int pmap_debug_level = -2;
    149 #else	/* PMAP_DEBUG */
    150 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    151 #endif	/* PMAP_DEBUG */
    152 
    153 struct pmap     kernel_pmap_store;
    154 pmap_t          kernel_pmap;
    155 
    156 /*
    157  * pool that pmap structures are allocated from
    158  */
    159 
    160 struct pool pmap_pmap_pool;
    161 
    162 pagehook_t page_hook0;
    163 pagehook_t page_hook1;
    164 char *memhook;
    165 pt_entry_t msgbufpte;
    166 extern caddr_t msgbufaddr;
    167 
    168 #ifdef DIAGNOSTIC
    169 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    170 #endif
    171 
    172 TAILQ_HEAD(pv_page_list, pv_page) pv_page_freelist;
    173 
    174 int pv_nfree = 0;
    175 
    176 vsize_t npages;
    177 
    178 extern paddr_t physical_start;
    179 extern paddr_t physical_freestart;
    180 extern paddr_t physical_end;
    181 extern paddr_t physical_freeend;
    182 extern unsigned int free_pages;
    183 extern int max_processes;
    184 
    185 vaddr_t virtual_start;
    186 vaddr_t virtual_end;
    187 
    188 vaddr_t avail_start;
    189 vaddr_t avail_end;
    190 
    191 extern pv_addr_t systempage;
    192 
    193 #define ALLOC_PAGE_HOOK(x, s) \
    194 	x.va = virtual_start; \
    195 	x.pte = (pt_entry_t *)pmap_pte(kernel_pmap, virtual_start); \
    196 	virtual_start += s;
    197 
    198 /* Variables used by the L1 page table queue code */
    199 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    200 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    201 int l1pt_static_queue_count;		/* items in the static l1 queue */
    202 int l1pt_static_create_count;		/* static l1 items created */
    203 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    204 int l1pt_queue_count;			/* items in the l1 queue */
    205 int l1pt_create_count;			/* stat - L1's create count */
    206 int l1pt_reuse_count;			/* stat - L1's reused count */
    207 
    208 /* Local function prototypes (not used outside this file) */
    209 pt_entry_t *pmap_pte __P((pmap_t pmap, vaddr_t va));
    210 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
    211     paddr_t pa, unsigned int flags));
    212 void pmap_copy_on_write __P((paddr_t pa));
    213 void pmap_pinit __P((pmap_t));
    214 void pmap_freepagedir __P((pmap_t));
    215 void pmap_release __P((pmap_t));
    216 
    217 /* Other function prototypes */
    218 extern void bzero_page __P((vaddr_t));
    219 extern void bcopy_page __P((vaddr_t, vaddr_t));
    220 
    221 struct l1pt *pmap_alloc_l1pt __P((void));
    222 static __inline void pmap_map_in_l1 __P((pmap_t pmap, vaddr_t va,
    223      vaddr_t l2pa));
    224 
    225 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    226 /* eventually this will be a function */
    227 #define pmap_unmap_ptes(a)
    228 
    229 void pmap_vac_me_harder __P((struct pmap *, struct pv_entry *,
    230 	    pt_entry_t *, boolean_t));
    231 
    232 #ifdef MYCROFT_HACK
    233 int mycroft_hack = 0;
    234 #endif
    235 
    236 /* Function to set the debug level of the pmap code */
    237 
    238 #ifdef PMAP_DEBUG
    239 void
    240 pmap_debug(level)
    241 	int level;
    242 {
    243 	pmap_debug_level = level;
    244 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    245 }
    246 #endif	/* PMAP_DEBUG */
    247 
    248 #include "isadma.h"
    249 
    250 #if NISADMA > 0
    251 /*
    252  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    253  * pages into the system, memory intersects with any of these ranges,
    254  * the intersecting memory will be loaded into a lower-priority free list.
    255  */
    256 bus_dma_segment_t *pmap_isa_dma_ranges;
    257 int pmap_isa_dma_nranges;
    258 
    259 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    260 	    paddr_t *, psize_t *));
    261 
    262 /*
    263  * Check if a memory range intersects with an ISA DMA range, and
    264  * return the page-rounded intersection if it does.  The intersection
    265  * will be placed on a lower-priority free list.
    266  */
    267 boolean_t
    268 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    269 	paddr_t pa;
    270 	psize_t size;
    271 	paddr_t *pap;
    272 	psize_t *sizep;
    273 {
    274 	bus_dma_segment_t *ds;
    275 	int i;
    276 
    277 	if (pmap_isa_dma_ranges == NULL)
    278 		return (FALSE);
    279 
    280 	for (i = 0, ds = pmap_isa_dma_ranges;
    281 	     i < pmap_isa_dma_nranges; i++, ds++) {
    282 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    283 			/*
    284 			 * Beginning of region intersects with this range.
    285 			 */
    286 			*pap = trunc_page(pa);
    287 			*sizep = round_page(min(pa + size,
    288 			    ds->ds_addr + ds->ds_len) - pa);
    289 			return (TRUE);
    290 		}
    291 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    292 			/*
    293 			 * End of region intersects with this range.
    294 			 */
    295 			*pap = trunc_page(ds->ds_addr);
    296 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    297 			    ds->ds_len));
    298 			return (TRUE);
    299 		}
    300 	}
    301 
    302 	/*
    303 	 * No intersection found.
    304 	 */
    305 	return (FALSE);
    306 }
    307 #endif /* NISADMA > 0 */
    308 
    309 /*
    310  * Functions for manipluation pv_entry structures. These are used to keep a
    311  * record of the mappings of virtual addresses and the associated physical
    312  * pages.
    313  */
    314 
    315 /*
    316  * Allocate a new pv_entry structure from the freelist. If the list is
    317  * empty allocate a new page and fill the freelist.
    318  */
    319 struct pv_entry *
    320 pmap_alloc_pv()
    321 {
    322 	struct pv_page *pvp;
    323 	struct pv_entry *pv;
    324 	int i;
    325 
    326 	/*
    327 	 * Do we have any free pv_entry structures left ?
    328 	 * If not allocate a page of them
    329 	 */
    330 
    331 	if (pv_nfree == 0) {
    332 		/* NOTE: can't lock kernel_map here */
    333 		MALLOC(pvp, struct pv_page *, NBPG, M_VMPVENT, M_WAITOK);
    334 		if (pvp == 0)
    335 			panic("pmap_alloc_pv: kmem_alloc() failed");
    336 		pvp->pvp_pgi.pgi_freelist = pv = &pvp->pvp_pv[1];
    337 		for (i = NPVPPG - 2; i; i--, pv++)
    338 			pv->pv_next = pv + 1;
    339 		pv->pv_next = 0;
    340 		pv_nfree += pvp->pvp_pgi.pgi_nfree = NPVPPG - 1;
    341 		TAILQ_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    342 		pv = &pvp->pvp_pv[0];
    343 	} else {
    344 		--pv_nfree;
    345 		pvp = pv_page_freelist.tqh_first;
    346 		if (--pvp->pvp_pgi.pgi_nfree == 0) {
    347 			TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    348 		}
    349 		pv = pvp->pvp_pgi.pgi_freelist;
    350 #ifdef DIAGNOSTIC
    351 		if (pv == 0)
    352 			panic("pmap_alloc_pv: pgi_nfree inconsistent");
    353 #endif	/* DIAGNOSTIC */
    354 		pvp->pvp_pgi.pgi_freelist = pv->pv_next;
    355 	}
    356 	return pv;
    357 }
    358 
    359 /*
    360  * Release a pv_entry structure putting it back on the freelist.
    361  */
    362 
    363 void
    364 pmap_free_pv(pv)
    365 	struct pv_entry *pv;
    366 {
    367 	struct pv_page *pvp;
    368 
    369 	pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
    370 	switch (++pvp->pvp_pgi.pgi_nfree) {
    371 	case 1:
    372 		TAILQ_INSERT_TAIL(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    373 	default:
    374 		pv->pv_next = pvp->pvp_pgi.pgi_freelist;
    375 		pvp->pvp_pgi.pgi_freelist = pv;
    376 		++pv_nfree;
    377 		break;
    378 	case NPVPPG:
    379 		pv_nfree -= NPVPPG - 1;
    380 		TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    381 		FREE((vaddr_t)pvp, M_VMPVENT);
    382 		break;
    383 	}
    384 }
    385 
    386 #if 0
    387 void
    388 pmap_collect_pv()
    389 {
    390 	struct pv_page_list pv_page_collectlist;
    391 	struct pv_page *pvp, *npvp;
    392 	struct pv_entry *ph, *ppv, *pv, *npv;
    393 	int s;
    394 
    395 	TAILQ_INIT(&pv_page_collectlist);
    396 
    397 	for (pvp = pv_page_freelist.tqh_first; pvp; pvp = npvp) {
    398 		if (pv_nfree < NPVPPG)
    399 			break;
    400 		npvp = pvp->pvp_pgi.pgi_list.tqe_next;
    401 		if (pvp->pvp_pgi.pgi_nfree > NPVPPG / 3) {
    402 			TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    403 			TAILQ_INSERT_TAIL(&pv_page_collectlist, pvp,
    404 			    pvp_pgi.pgi_list);
    405 			pv_nfree -= NPVPPG;
    406 			pvp->pvp_pgi.pgi_nfree = -1;
    407 		}
    408 	}
    409 
    410 	if (pv_page_collectlist.tqh_first == 0)
    411 		return;
    412 
    413 	for (ph = &pv_table[npages - 1]; ph >= &pv_table[0]; ph--) {
    414 		if (ph->pv_pmap == 0)
    415 			continue;
    416 		s = splvm();
    417 		for (ppv = ph; (pv = ppv->pv_next) != 0; ) {
    418 			pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
    419 			if (pvp->pvp_pgi.pgi_nfree == -1) {
    420 				pvp = pv_page_freelist.tqh_first;
    421 				if (--pvp->pvp_pgi.pgi_nfree == 0) {
    422 					TAILQ_REMOVE(&pv_page_freelist,
    423 					    pvp, pvp_pgi.pgi_list);
    424 				}
    425 				npv = pvp->pvp_pgi.pgi_freelist;
    426 #ifdef DIAGNOSTIC
    427 				if (npv == 0)
    428 					panic("pmap_collect_pv: pgi_nfree inconsistent");
    429 #endif	/* DIAGNOSTIC */
    430 				pvp->pvp_pgi.pgi_freelist = npv->pv_next;
    431 				*npv = *pv;
    432 				ppv->pv_next = npv;
    433 				ppv = npv;
    434 			} else
    435 				ppv = pv;
    436 		}
    437 		splx(s);
    438 	}
    439 
    440 	for (pvp = pv_page_collectlist.tqh_first; pvp; pvp = npvp) {
    441 		npvp = pvp->pvp_pgi.pgi_list.tqe_next;
    442 		FREE((vaddr_t)pvp, M_VMPVENT);
    443 	}
    444 }
    445 #endif
    446 
    447 /*
    448  * Enter a new physical-virtual mapping into the pv table
    449  */
    450 
    451 /*__inline*/ void
    452 pmap_enter_pv(pmap, va, pv, flags)
    453 	pmap_t pmap;
    454 	vaddr_t va;
    455 	struct pv_entry *pv;
    456 	u_int flags;
    457 {
    458 	struct pv_entry *npv;
    459 	u_int s;
    460 
    461 #ifdef DIAGNOSTIC
    462 	if (!pmap_initialized)
    463 		panic("pmap_enter_pv: !pmap_initialized");
    464 #endif
    465 
    466 	s = splvm();
    467 
    468 	PDEBUG(5, printf("pmap_enter_pv: pv %p: %08lx/%p/%p\n",
    469 	    pv, pv->pv_va, pv->pv_pmap, pv->pv_next));
    470 
    471 	if (pv->pv_pmap == NULL) {
    472 		/*
    473 		 * No entries yet, use header as the first entry
    474 		 */
    475 		pv->pv_va = va;
    476 		pv->pv_pmap = pmap;
    477 		pv->pv_next = NULL;
    478 		pv->pv_flags = flags;
    479 	} else {
    480 		/*
    481 		 * There is at least one other VA mapping this page.
    482 		 * Place this entry after the header.
    483 		 */
    484 #ifdef PMAP_DEBUG
    485 		for (npv = pv; npv; npv = npv->pv_next)
    486 			if (pmap == npv->pv_pmap && va == npv->pv_va)
    487 				panic("pmap_enter_pv: already in pv_tab pv %p: %08lx/%p/%p",
    488 				    pv, pv->pv_va, pv->pv_pmap, pv->pv_next);
    489 #endif
    490 		npv = pmap_alloc_pv();
    491 		/* Must make sure that the new entry is before any others
    492 		 * for the same pmap.  Otherwise the vac handling code
    493 		 * will get confused.
    494 		 * XXX this would be better if we used lists like i386 (infact
    495 		 * this would be a lot simpler)
    496 		 */
    497 		*npv = *pv;
    498  		pv->pv_va = va;
    499  		pv->pv_pmap = pmap;
    500  		pv->pv_flags = flags;
    501 		pv->pv_next = npv;
    502 	}
    503 
    504 	if (flags & PT_W)
    505 		++pmap->pm_stats.wired_count;
    506 
    507 	splx(s);
    508 }
    509 
    510 
    511 /*
    512  * Remove a physical-virtual mapping from the pv table
    513  */
    514 
    515 /*__inline*/ void
    516 pmap_remove_pv(pmap, va, pv)
    517 	pmap_t pmap;
    518 	vaddr_t va;
    519 	struct pv_entry *pv;
    520 {
    521 	struct pv_entry *npv;
    522 	u_int s;
    523 	u_int flags = 0;
    524 
    525 #ifdef DIAGNOSTIC
    526 	if (!pmap_initialized)
    527 		panic("pmap_remove_pv: !pmap_initialized");
    528 #endif
    529 
    530 	s = splvm();
    531 
    532 	/*
    533 	 * If it is the first entry on the list, it is actually
    534 	 * in the header and we must copy the following entry up
    535 	 * to the header.  Otherwise we must search the list for
    536 	 * the entry.  In either case we free the now unused entry.
    537 	 */
    538 
    539 	if (pmap == pv->pv_pmap && va == pv->pv_va) {
    540 		npv = pv->pv_next;
    541 		if (npv) {
    542 			*pv = *npv;
    543 			flags = npv->pv_flags;
    544 			pmap_free_pv(npv);
    545 		} else {
    546 			flags = pv->pv_flags;
    547 			pv->pv_pmap = NULL;
    548 		}
    549 	} else {
    550 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
    551 			if (pmap == npv->pv_pmap && va == npv->pv_va)
    552 				break;
    553 		}
    554 		if (npv) {
    555 			pv->pv_next = npv->pv_next;
    556 			flags = npv->pv_flags;
    557 			pmap_free_pv(npv);
    558 		} else
    559 			panic("pmap_remove_pv: lost entry");
    560 	}
    561 
    562 	if (flags & PT_W)
    563 		--pmap->pm_stats.wired_count;
    564 
    565 	splx(s);
    566 }
    567 
    568 /*
    569  * Modify a physical-virtual mapping in the pv table
    570  */
    571 
    572 /*__inline */ u_int
    573 pmap_modify_pv(pmap, va, pv, bic_mask, eor_mask)
    574 	pmap_t pmap;
    575 	vaddr_t va;
    576 	struct pv_entry *pv;
    577 	u_int bic_mask;
    578 	u_int eor_mask;
    579 {
    580 	struct pv_entry *npv;
    581 	u_int s;
    582 	u_int flags, oflags;
    583 
    584 	PDEBUG(5, printf("pmap_modify_pv(pmap=%p, va=%08lx, pv=%p, bic_mask=%08x, eor_mask=%08x)\n",
    585 	    pmap, va, pv, bic_mask, eor_mask));
    586 
    587 #ifdef DIAGNOSTIC
    588 	if (!pmap_initialized)
    589 		panic("pmap_modify_pv: !pmap_initialized");
    590 #endif
    591 
    592 	s = splvm();
    593 
    594 	PDEBUG(5, printf("pmap_modify_pv: pv %p: %08lx/%p/%p/%08x ",
    595 	    pv, pv->pv_va, pv->pv_pmap, pv->pv_next, pv->pv_flags));
    596 
    597 	/*
    598 	 * There is at least one VA mapping this page.
    599 	 */
    600 
    601 	for (npv = pv; npv; npv = npv->pv_next) {
    602 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    603 			oflags = npv->pv_flags;
    604 			npv->pv_flags = flags =
    605 			    ((oflags & ~bic_mask) ^ eor_mask);
    606 			if ((flags ^ oflags) & PT_W) {
    607 				if (flags & PT_W)
    608 					++pmap->pm_stats.wired_count;
    609 				else
    610 					--pmap->pm_stats.wired_count;
    611 			}
    612 			PDEBUG(0, printf("done flags=%08x\n", flags));
    613 			splx(s);
    614 			return (oflags);
    615 		}
    616 	}
    617 
    618 	PDEBUG(0, printf("done.\n"));
    619 	splx(s);
    620 	return (0);
    621 }
    622 
    623 
    624 /*
    625  * Map the specified level 2 pagetable into the level 1 page table for
    626  * the given pmap to cover a chunk of virtual address space starting from the
    627  * address specified.
    628  */
    629 static /*__inline*/ void
    630 pmap_map_in_l1(pmap, va, l2pa)
    631 	pmap_t pmap;
    632 	vaddr_t va, l2pa;
    633 {
    634 	vaddr_t ptva;
    635 
    636 	/* Calculate the index into the L1 page table. */
    637 	ptva = (va >> PDSHIFT) & ~3;
    638 
    639 	PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    640 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    641 
    642 	/* Map page table into the L1. */
    643 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    644 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    645 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    646 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    647 
    648 	PDEBUG(0, printf("pt self reference %lx in %lx\n",
    649 	    L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    650 
    651 	/* Map the page table into the page table area. */
    652 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_PTE_NC_NB(l2pa, AP_KRW);
    653 
    654 	/* XXX should be a purge */
    655 /*	cpu_tlb_flushD();*/
    656 }
    657 
    658 #if 0
    659 static /*__inline*/ void
    660 pmap_unmap_in_l1(pmap, va)
    661 	pmap_t pmap;
    662 	vaddr_t va;
    663 {
    664 	vaddr_t ptva;
    665 
    666 	/* Calculate the index into the L1 page table. */
    667 	ptva = (va >> PDSHIFT) & ~3;
    668 
    669 	/* Unmap page table from the L1. */
    670 	pmap->pm_pdir[ptva + 0] = 0;
    671 	pmap->pm_pdir[ptva + 1] = 0;
    672 	pmap->pm_pdir[ptva + 2] = 0;
    673 	pmap->pm_pdir[ptva + 3] = 0;
    674 
    675 	/* Unmap the page table from the page table area. */
    676 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    677 
    678 	/* XXX should be a purge */
    679 /*	cpu_tlb_flushD();*/
    680 }
    681 #endif
    682 
    683 
    684 /*
    685  *	Used to map a range of physical addresses into kernel
    686  *	virtual address space.
    687  *
    688  *	For now, VM is already on, we only need to map the
    689  *	specified memory.
    690  */
    691 vaddr_t
    692 pmap_map(va, spa, epa, prot)
    693 	vaddr_t va, spa, epa;
    694 	int prot;
    695 {
    696 	while (spa < epa) {
    697 		pmap_enter(pmap_kernel(), va, spa, prot, 0);
    698 		va += NBPG;
    699 		spa += NBPG;
    700 	}
    701 	pmap_update();
    702 	return(va);
    703 }
    704 
    705 
    706 /*
    707  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    708  *
    709  * bootstrap the pmap system. This is called from initarm and allows
    710  * the pmap system to initailise any structures it requires.
    711  *
    712  * Currently this sets up the kernel_pmap that is statically allocated
    713  * and also allocated virtual addresses for certain page hooks.
    714  * Currently the only one page hook is allocated that is used
    715  * to zero physical pages of memory.
    716  * It also initialises the start and end address of the kernel data space.
    717  */
    718 extern paddr_t physical_freestart;
    719 extern paddr_t physical_freeend;
    720 
    721 struct pv_entry *boot_pvent;
    722 char *boot_attrs;
    723 
    724 void
    725 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
    726 	pd_entry_t *kernel_l1pt;
    727 	pv_addr_t kernel_ptpt;
    728 {
    729 	int loop;
    730 	paddr_t start, end;
    731 #if NISADMA > 0
    732 	paddr_t istart;
    733 	psize_t isize;
    734 #endif
    735 	vsize_t size;
    736 
    737 	kernel_pmap = &kernel_pmap_store;
    738 
    739 	kernel_pmap->pm_pdir = kernel_l1pt;
    740 	kernel_pmap->pm_pptpt = kernel_ptpt.pv_pa;
    741 	kernel_pmap->pm_vptpt = kernel_ptpt.pv_va;
    742 	simple_lock_init(&kernel_pmap->pm_lock);
    743 	kernel_pmap->pm_count = 1;
    744 
    745 	/*
    746 	 * Initialize PAGE_SIZE-dependent variables.
    747 	 */
    748 	uvm_setpagesize();
    749 
    750 	npages = 0;
    751 	loop = 0;
    752 	while (loop < bootconfig.dramblocks) {
    753 		start = (paddr_t)bootconfig.dram[loop].address;
    754 		end = start + (bootconfig.dram[loop].pages * NBPG);
    755 		if (start < physical_freestart)
    756 			start = physical_freestart;
    757 		if (end > physical_freeend)
    758 			end = physical_freeend;
    759 #if 0
    760 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
    761 #endif
    762 #if NISADMA > 0
    763 		if (pmap_isa_dma_range_intersect(start, end - start,
    764 		    &istart, &isize)) {
    765 			/*
    766 			 * Place the pages that intersect with the
    767 			 * ISA DMA range onto the ISA DMA free list.
    768 			 */
    769 #if 0
    770 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
    771 			    istart + isize - 1);
    772 #endif
    773 			uvm_page_physload(atop(istart),
    774 			    atop(istart + isize), atop(istart),
    775 			    atop(istart + isize), VM_FREELIST_ISADMA);
    776 			npages += atop(istart + isize) - atop(istart);
    777 
    778 			/*
    779 			 * Load the pieces that come before
    780 			 * the intersection into the default
    781 			 * free list.
    782 			 */
    783 			if (start < istart) {
    784 #if 0
    785 				printf("    BEFORE 0x%lx -> 0x%lx\n",
    786 				    start, istart - 1);
    787 #endif
    788 				uvm_page_physload(atop(start),
    789 				    atop(istart), atop(start),
    790 				    atop(istart), VM_FREELIST_DEFAULT);
    791 				npages += atop(istart) - atop(start);
    792 			}
    793 
    794 			/*
    795 			 * Load the pieces that come after
    796 			 * the intersection into the default
    797 			 * free list.
    798 			 */
    799 			if ((istart + isize) < end) {
    800 #if 0
    801 				printf("     AFTER 0x%lx -> 0x%lx\n",
    802 				    (istart + isize), end - 1);
    803 #endif
    804 				uvm_page_physload(atop(istart + isize),
    805 				    atop(end), atop(istart + isize),
    806 				    atop(end), VM_FREELIST_DEFAULT);
    807 				npages += atop(end) - atop(istart + isize);
    808 			}
    809 		} else {
    810 			uvm_page_physload(atop(start), atop(end),
    811 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
    812 			npages += atop(end) - atop(start);
    813 		}
    814 #else	/* NISADMA > 0 */
    815 		uvm_page_physload(atop(start), atop(end),
    816 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
    817 		npages += atop(end) - atop(start);
    818 #endif /* NISADMA > 0 */
    819 		++loop;
    820 	}
    821 
    822 #ifdef MYCROFT_HACK
    823 	printf("npages = %ld\n", npages);
    824 #endif
    825 
    826 	virtual_start = KERNEL_VM_BASE;
    827 	virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
    828 
    829 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
    830 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
    831 
    832 	/*
    833 	 * The mem special device needs a virtual hook but we don't
    834 	 * need a pte
    835 	 */
    836 	memhook = (char *)virtual_start;
    837 	virtual_start += NBPG;
    838 
    839 	msgbufaddr = (caddr_t)virtual_start;
    840 	msgbufpte = (pt_entry_t)pmap_pte(kernel_pmap, virtual_start);
    841 	virtual_start += round_page(MSGBUFSIZE);
    842 
    843 	size = npages * sizeof(struct pv_entry);
    844 	boot_pvent = (struct pv_entry *)uvm_pageboot_alloc(size);
    845 	bzero(boot_pvent, size);
    846 	size = npages * sizeof(char);
    847 	boot_attrs = (char *)uvm_pageboot_alloc(size);
    848 	bzero(boot_attrs, size);
    849 
    850 	/*
    851 	 * initialize the pmap pool.
    852 	 */
    853 
    854 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
    855 		  0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
    856 
    857 	cpu_cache_cleanD();
    858 }
    859 
    860 /*
    861  * void pmap_init(void)
    862  *
    863  * Initialize the pmap module.
    864  * Called by vm_init() in vm/vm_init.c in order to initialise
    865  * any structures that the pmap system needs to map virtual memory.
    866  */
    867 
    868 extern int physmem;
    869 
    870 void
    871 pmap_init()
    872 {
    873 	int lcv;
    874 
    875 #ifdef MYCROFT_HACK
    876 	printf("physmem = %d\n", physmem);
    877 #endif
    878 
    879 	/*
    880 	 * Set the available memory vars - These do not map to real memory
    881 	 * addresses and cannot as the physical memory is fragmented.
    882 	 * They are used by ps for %mem calculations.
    883 	 * One could argue whether this should be the entire memory or just
    884 	 * the memory that is useable in a user process.
    885 	 */
    886 	avail_start = 0;
    887 	avail_end = physmem * NBPG;
    888 
    889 	/* Set up pmap info for physsegs. */
    890 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
    891 		vm_physmem[lcv].pmseg.pvent = boot_pvent;
    892 		boot_pvent += vm_physmem[lcv].end - vm_physmem[lcv].start;
    893 		vm_physmem[lcv].pmseg.attrs = boot_attrs;
    894 		boot_attrs += vm_physmem[lcv].end - vm_physmem[lcv].start;
    895 	}
    896 #ifdef MYCROFT_HACK
    897 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    898 		printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
    899 		    lcv,
    900 		    vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
    901 		    vm_physmem[lcv].start, vm_physmem[lcv].end);
    902 	}
    903 #endif
    904 	TAILQ_INIT(&pv_page_freelist);
    905 
    906 #ifdef DIAGNOSTIC
    907 	/* Now it is safe to enable pv_entry recording. */
    908 	pmap_initialized = TRUE;
    909 #endif
    910 
    911 	/* Initialise our L1 page table queues and counters */
    912 	SIMPLEQ_INIT(&l1pt_static_queue);
    913 	l1pt_static_queue_count = 0;
    914 	l1pt_static_create_count = 0;
    915 	SIMPLEQ_INIT(&l1pt_queue);
    916 	l1pt_queue_count = 0;
    917 	l1pt_create_count = 0;
    918 	l1pt_reuse_count = 0;
    919 }
    920 
    921 /*
    922  * pmap_postinit()
    923  *
    924  * This routine is called after the vm and kmem subsystems have been
    925  * initialised. This allows the pmap code to perform any initialisation
    926  * that can only be done one the memory allocation is in place.
    927  */
    928 
    929 void
    930 pmap_postinit()
    931 {
    932 	int loop;
    933 	struct l1pt *pt;
    934 
    935 #ifdef PMAP_STATIC_L1S
    936 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
    937 #else	/* PMAP_STATIC_L1S */
    938 	for (loop = 0; loop < max_processes; ++loop) {
    939 #endif	/* PMAP_STATIC_L1S */
    940 		/* Allocate a L1 page table */
    941 		pt = pmap_alloc_l1pt();
    942 		if (!pt)
    943 			panic("Cannot allocate static L1 page tables\n");
    944 
    945 		/* Clean it */
    946 		bzero((void *)pt->pt_va, PD_SIZE);
    947 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
    948 		/* Add the page table to the queue */
    949 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
    950 		++l1pt_static_queue_count;
    951 		++l1pt_static_create_count;
    952 	}
    953 }
    954 
    955 
    956 /*
    957  * Create and return a physical map.
    958  *
    959  * If the size specified for the map is zero, the map is an actual physical
    960  * map, and may be referenced by the hardware.
    961  *
    962  * If the size specified is non-zero, the map will be used in software only,
    963  * and is bounded by that size.
    964  */
    965 
    966 pmap_t
    967 pmap_create()
    968 {
    969 	pmap_t pmap;
    970 
    971 	/*
    972 	 * Fetch pmap entry from the pool
    973 	 */
    974 
    975 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
    976 	bzero(pmap, sizeof(*pmap));
    977 
    978 	/* Now init the machine part of the pmap */
    979 	pmap_pinit(pmap);
    980 	return(pmap);
    981 }
    982 
    983 /*
    984  * pmap_alloc_l1pt()
    985  *
    986  * This routine allocates physical and virtual memory for a L1 page table
    987  * and wires it.
    988  * A l1pt structure is returned to describe the allocated page table.
    989  *
    990  * This routine is allowed to fail if the required memory cannot be allocated.
    991  * In this case NULL is returned.
    992  */
    993 
    994 struct l1pt *
    995 pmap_alloc_l1pt(void)
    996 {
    997 	paddr_t pa;
    998 	vaddr_t va;
    999 	struct l1pt *pt;
   1000 	int error;
   1001 	struct vm_page *m;
   1002 	pt_entry_t *ptes;
   1003 
   1004 	/* Allocate virtual address space for the L1 page table */
   1005 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1006 	if (va == 0) {
   1007 #ifdef DIAGNOSTIC
   1008 		printf("pmap: Cannot allocate pageable memory for L1\n");
   1009 #endif	/* DIAGNOSTIC */
   1010 		return(NULL);
   1011 	}
   1012 
   1013 	/* Allocate memory for the l1pt structure */
   1014 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1015 
   1016 	/*
   1017 	 * Allocate pages from the VM system.
   1018 	 */
   1019 	TAILQ_INIT(&pt->pt_plist);
   1020 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1021 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1022 	if (error) {
   1023 #ifdef DIAGNOSTIC
   1024 		printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
   1025 		    error);
   1026 #endif	/* DIAGNOSTIC */
   1027 		/* Release the resources we already have claimed */
   1028 		free(pt, M_VMPMAP);
   1029 		uvm_km_free(kernel_map, va, PD_SIZE);
   1030 		return(NULL);
   1031 	}
   1032 
   1033 	/* Map our physical pages into our virtual space */
   1034 	pt->pt_va = va;
   1035 	m = pt->pt_plist.tqh_first;
   1036 	ptes = pmap_map_ptes(pmap_kernel());
   1037 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1038 		pa = VM_PAGE_TO_PHYS(m);
   1039 
   1040 		pmap_enter(pmap_kernel(), va, pa,
   1041 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
   1042 
   1043 		/* Revoke cacheability and bufferability */
   1044 		/* XXX should be done better than this */
   1045 		ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
   1046 
   1047 		va += NBPG;
   1048 		m = m->pageq.tqe_next;
   1049 	}
   1050 	pmap_unmap_ptes(pmap_kernel());
   1051 	pmap_update();
   1052 
   1053 #ifdef DIAGNOSTIC
   1054 	if (m)
   1055 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1056 #endif	/* DIAGNOSTIC */
   1057 
   1058 	pt->pt_flags = 0;
   1059 	return(pt);
   1060 }
   1061 
   1062 /*
   1063  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1064  */
   1065 void
   1066 pmap_free_l1pt(pt)
   1067 	struct l1pt *pt;
   1068 {
   1069 	/* Separate the physical memory for the virtual space */
   1070 	pmap_remove(kernel_pmap, pt->pt_va, pt->pt_va + PD_SIZE);
   1071 	pmap_update();
   1072 
   1073 	/* Return the physical memory */
   1074 	uvm_pglistfree(&pt->pt_plist);
   1075 
   1076 	/* Free the virtual space */
   1077 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1078 
   1079 	/* Free the l1pt structure */
   1080 	free(pt, M_VMPMAP);
   1081 }
   1082 
   1083 /*
   1084  * Allocate a page directory.
   1085  * This routine will either allocate a new page directory from the pool
   1086  * of L1 page tables currently held by the kernel or it will allocate
   1087  * a new one via pmap_alloc_l1pt().
   1088  * It will then initialise the l1 page table for use.
   1089  */
   1090 int
   1091 pmap_allocpagedir(pmap)
   1092 	struct pmap *pmap;
   1093 {
   1094 	paddr_t pa;
   1095 	struct l1pt *pt;
   1096 	pt_entry_t *pte;
   1097 
   1098 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1099 
   1100 	/* Do we have any spare L1's lying around ? */
   1101 	if (l1pt_static_queue_count) {
   1102 		--l1pt_static_queue_count;
   1103 		pt = l1pt_static_queue.sqh_first;
   1104 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1105 	} else if (l1pt_queue_count) {
   1106 		--l1pt_queue_count;
   1107 		pt = l1pt_queue.sqh_first;
   1108 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1109 		++l1pt_reuse_count;
   1110 	} else {
   1111 		pt = pmap_alloc_l1pt();
   1112 		if (!pt)
   1113 			return(ENOMEM);
   1114 		++l1pt_create_count;
   1115 	}
   1116 
   1117 	/* Store the pointer to the l1 descriptor in the pmap. */
   1118 	pmap->pm_l1pt = pt;
   1119 
   1120 	/* Get the physical address of the start of the l1 */
   1121 	pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
   1122 
   1123 	/* Store the virtual address of the l1 in the pmap. */
   1124 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1125 
   1126 	/* Clean the L1 if it is dirty */
   1127 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1128 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1129 
   1130 	/* Do we already have the kernel mappings ? */
   1131 	if (!(pt->pt_flags & PTFLAG_KPT)) {
   1132 		/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1133 
   1134 		bcopy((char *)kernel_pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1135 		    (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1136 		    KERNEL_PD_SIZE);
   1137 		pt->pt_flags |= PTFLAG_KPT;
   1138 	}
   1139 
   1140 	/* Allocate a page table to map all the page tables for this pmap */
   1141 
   1142 #ifdef DIAGNOSTIC
   1143 	if (pmap->pm_vptpt) {
   1144 		/* XXX What if we have one already ? */
   1145 		panic("pmap_allocpagedir: have pt already\n");
   1146 	}
   1147 #endif	/* DIAGNOSTIC */
   1148 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1149 	if (pmap->pm_vptpt == 0) {
   1150 		pmap_freepagedir(pmap);
   1151 		return(ENOMEM);
   1152 	}
   1153 
   1154 	(void) pmap_extract(kernel_pmap, pmap->pm_vptpt, &pmap->pm_pptpt);
   1155 	pmap->pm_pptpt &= PG_FRAME;
   1156 	/* Revoke cacheability and bufferability */
   1157 	/* XXX should be done better than this */
   1158 	pte = pmap_pte(kernel_pmap, pmap->pm_vptpt);
   1159 	*pte = *pte & ~(PT_C | PT_B);
   1160 
   1161 	/* Wire in this page table */
   1162 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt);
   1163 
   1164 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1165 
   1166 	/*
   1167 	 * Map the kernel page tables for 0xf0000000 +
   1168 	 * into the page table used to map the
   1169 	 * pmap's page tables
   1170 	 */
   1171 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1172 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1173 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1174 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1175 	    (KERNEL_PD_SIZE >> 2));
   1176 
   1177 	pmap->pm_count = 1;
   1178 	simple_lock_init(&pmap->pm_lock);
   1179 
   1180 	return(0);
   1181 }
   1182 
   1183 
   1184 /*
   1185  * Initialize a preallocated and zeroed pmap structure,
   1186  * such as one in a vmspace structure.
   1187  */
   1188 
   1189 static int pmap_pagedir_ident;	/* tsleep() ident */
   1190 
   1191 void
   1192 pmap_pinit(pmap)
   1193 	struct pmap *pmap;
   1194 {
   1195 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1196 
   1197 	/* Keep looping until we succeed in allocating a page directory */
   1198 	while (pmap_allocpagedir(pmap) != 0) {
   1199 		/*
   1200 		 * Ok we failed to allocate a suitable block of memory for an
   1201 		 * L1 page table. This means that either:
   1202 		 * 1. 16KB of virtual address space could not be allocated
   1203 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1204 		 *    could not be allocated.
   1205 		 *
   1206 		 * Since we cannot fail we will sleep for a while and try
   1207 		 * again. Although we will be wakened when another page table
   1208 		 * is freed other memory releasing and swapping may occur
   1209 		 * that will mean we can succeed so we will keep trying
   1210 		 * regularly just in case.
   1211 		 */
   1212 
   1213 		if (tsleep((caddr_t)&pmap_pagedir_ident, PZERO,
   1214 		   "l1ptwait", 1000) == EWOULDBLOCK)
   1215 			printf("pmap: Cannot allocate L1 page table, sleeping ...\n");
   1216 	}
   1217 
   1218 	/* Map zero page for the pmap. This will also map the L2 for it */
   1219 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1220 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1221 	pmap_update();
   1222 }
   1223 
   1224 
   1225 void
   1226 pmap_freepagedir(pmap)
   1227 	pmap_t pmap;
   1228 {
   1229 	/* Free the memory used for the page table mapping */
   1230 	if (pmap->pm_vptpt != 0)
   1231 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1232 
   1233 	/* junk the L1 page table */
   1234 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1235 		/* Add the page table to the queue */
   1236 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1237 		++l1pt_static_queue_count;
   1238 		/* Wake up any sleeping processes waiting for a l1 page table */
   1239 		wakeup((caddr_t)&pmap_pagedir_ident);
   1240 	} else if (l1pt_queue_count < 8) {
   1241 		/* Add the page table to the queue */
   1242 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1243 		++l1pt_queue_count;
   1244 		/* Wake up any sleeping processes waiting for a l1 page table */
   1245 		wakeup((caddr_t)&pmap_pagedir_ident);
   1246 	} else
   1247 		pmap_free_l1pt(pmap->pm_l1pt);
   1248 }
   1249 
   1250 
   1251 /*
   1252  * Retire the given physical map from service.
   1253  * Should only be called if the map contains no valid mappings.
   1254  */
   1255 
   1256 void
   1257 pmap_destroy(pmap)
   1258 	pmap_t pmap;
   1259 {
   1260 	int count;
   1261 
   1262 	if (pmap == NULL)
   1263 		return;
   1264 
   1265 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1266 	simple_lock(&pmap->pm_lock);
   1267 	count = --pmap->pm_count;
   1268 	simple_unlock(&pmap->pm_lock);
   1269 	if (count == 0) {
   1270 		pmap_release(pmap);
   1271 		pool_put(&pmap_pmap_pool, pmap);
   1272 	}
   1273 }
   1274 
   1275 
   1276 /*
   1277  * Release any resources held by the given physical map.
   1278  * Called when a pmap initialized by pmap_pinit is being released.
   1279  * Should only be called if the map contains no valid mappings.
   1280  */
   1281 
   1282 void
   1283 pmap_release(pmap)
   1284 	pmap_t pmap;
   1285 {
   1286 	struct vm_page *page;
   1287 	pt_entry_t *pte;
   1288 	int loop;
   1289 
   1290 	PDEBUG(0, printf("pmap_release(%p)\n", pmap));
   1291 
   1292 #if 0
   1293 	if (pmap->pm_count != 1)		/* XXX: needs sorting */
   1294 		panic("pmap_release count %d", pmap->pm_count);
   1295 #endif
   1296 
   1297 	/* Remove the zero page mapping */
   1298 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1299 	pmap_update();
   1300 
   1301 	/*
   1302 	 * Free any page tables still mapped
   1303 	 * This is only temporay until pmap_enter can count the number
   1304 	 * of mappings made in a page table. Then pmap_remove() can
   1305 	 * reduce the count and free the pagetable when the count
   1306 	 * reaches zero.
   1307 	 */
   1308 	for (loop = 0; loop < (((PD_SIZE - KERNEL_PD_SIZE) >> 4) - 1); ++loop) {
   1309 		pte = (pt_entry_t *)(pmap->pm_vptpt + loop * 4);
   1310 		if (*pte != 0) {
   1311 			PDEBUG(0, printf("%x: pte=%p:%08x\n", loop, pte, *pte));
   1312 			page = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
   1313 			if (page == NULL)
   1314 				panic("pmap_release: bad address for phys page");
   1315 			uvm_pagefree(page);
   1316 		}
   1317 	}
   1318 	/* Free the page dir */
   1319 	pmap_freepagedir(pmap);
   1320 }
   1321 
   1322 
   1323 /*
   1324  * void pmap_reference(pmap_t pmap)
   1325  *
   1326  * Add a reference to the specified pmap.
   1327  */
   1328 
   1329 void
   1330 pmap_reference(pmap)
   1331 	pmap_t pmap;
   1332 {
   1333 	if (pmap == NULL)
   1334 		return;
   1335 
   1336 	simple_lock(&pmap->pm_lock);
   1337 	pmap->pm_count++;
   1338 	simple_unlock(&pmap->pm_lock);
   1339 }
   1340 
   1341 /*
   1342  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1343  *
   1344  * Return the start and end addresses of the kernel's virtual space.
   1345  * These values are setup in pmap_bootstrap and are updated as pages
   1346  * are allocated.
   1347  */
   1348 
   1349 void
   1350 pmap_virtual_space(start, end)
   1351 	vaddr_t *start;
   1352 	vaddr_t *end;
   1353 {
   1354 	*start = virtual_start;
   1355 	*end = virtual_end;
   1356 }
   1357 
   1358 
   1359 /*
   1360  * Activate the address space for the specified process.  If the process
   1361  * is the current process, load the new MMU context.
   1362  */
   1363 void
   1364 pmap_activate(p)
   1365 	struct proc *p;
   1366 {
   1367 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   1368 	struct pcb *pcb = &p->p_addr->u_pcb;
   1369 
   1370 	(void) pmap_extract(kernel_pmap, (vaddr_t)pmap->pm_pdir,
   1371 	    (paddr_t *)&pcb->pcb_pagedir);
   1372 
   1373 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1374 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1375 
   1376 	if (p == curproc) {
   1377 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1378 		setttb((u_int)pcb->pcb_pagedir);
   1379 	}
   1380 #if 0
   1381 	pmap->pm_pdchanged = FALSE;
   1382 #endif
   1383 }
   1384 
   1385 
   1386 /*
   1387  * Deactivate the address space of the specified process.
   1388  */
   1389 void
   1390 pmap_deactivate(p)
   1391 	struct proc *p;
   1392 {
   1393 }
   1394 
   1395 
   1396 /*
   1397  * pmap_clean_page()
   1398  *
   1399  * This is a local function used to work out the best strategy to clean
   1400  * a single page referenced by its entry in the PV table. It's used by
   1401  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1402  *
   1403  * Its policy is effectively:
   1404  *  o If there are no mappings, we don't bother doing anything with the cache.
   1405  *  o If there is one mapping, we clean just that page.
   1406  *  o If there are multiple mappings, we clean the entire cache.
   1407  *
   1408  * So that some functions can be further optimised, it returns 0 if it didn't
   1409  * clean the entire cache, or 1 if it did.
   1410  *
   1411  * XXX One bug in this routine is that if the pv_entry has a single page
   1412  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1413  * just the 1 page. Since this should not occur in everyday use and if it does
   1414  * it will just result in not the most efficient clean for the page.
   1415  */
   1416 static int
   1417 pmap_clean_page(pv)
   1418 	struct pv_entry *pv;
   1419 {
   1420 	int s;
   1421 	int cache_needs_cleaning = 0;
   1422 	vaddr_t page_to_clean = 0;
   1423 
   1424 	/* Go to splvm() so we get exclusive lock for a mo */
   1425 	s = splvm();
   1426 	if (pv->pv_pmap) {
   1427 		cache_needs_cleaning = 1;
   1428 		if (!pv->pv_next)
   1429 			page_to_clean = pv->pv_va;
   1430 	}
   1431 	splx(s);
   1432 
   1433 	/* Do cache ops outside the splvm. */
   1434 	if (page_to_clean)
   1435 		cpu_cache_purgeID_rng(page_to_clean, NBPG);
   1436 	else if (cache_needs_cleaning) {
   1437 		cpu_cache_purgeID();
   1438 		return (1);
   1439 	}
   1440 	return (0);
   1441 }
   1442 
   1443 /*
   1444  * pmap_find_pv()
   1445  *
   1446  * This is a local function that finds a PV entry for a given physical page.
   1447  * This is a common op, and this function removes loads of ifdefs in the code.
   1448  */
   1449 static __inline struct pv_entry *
   1450 pmap_find_pv(phys)
   1451 	paddr_t phys;
   1452 {
   1453 	int bank, off;
   1454 	struct pv_entry *pv;
   1455 
   1456 #ifdef DIAGNOSTIC
   1457 	if (!pmap_initialized)
   1458 		panic("pmap_find_pv: !pmap_initialized");
   1459 #endif
   1460 
   1461 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
   1462 		panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
   1463 	pv = &vm_physmem[bank].pmseg.pvent[off];
   1464 	return (pv);
   1465 }
   1466 
   1467 /*
   1468  * pmap_zero_page()
   1469  *
   1470  * Zero a given physical page by mapping it at a page hook point.
   1471  * In doing the zero page op, the page we zero is mapped cachable, as with
   1472  * StrongARM accesses to non-cached pages are non-burst making writing
   1473  * _any_ bulk data very slow.
   1474  */
   1475 void
   1476 pmap_zero_page(phys)
   1477 	paddr_t phys;
   1478 {
   1479 	struct pv_entry *pv;
   1480 
   1481 	/* Get an entry for this page, and clean it it. */
   1482 	pv = pmap_find_pv(phys);
   1483 	pmap_clean_page(pv);
   1484 
   1485 	/*
   1486 	 * Hook in the page, zero it, and purge the cache for that
   1487 	 * zeroed page. Invalidate the TLB as needed.
   1488 	 */
   1489 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1490 	cpu_tlb_flushD_SE(page_hook0.va);
   1491 	bzero_page(page_hook0.va);
   1492 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1493 }
   1494 
   1495 /*
   1496  * pmap_copy_page()
   1497  *
   1498  * Copy one physical page into another, by mapping the pages into
   1499  * hook points. The same comment regarding cachability as in
   1500  * pmap_zero_page also applies here.
   1501  */
   1502 void
   1503 pmap_copy_page(src, dest)
   1504 	paddr_t src;
   1505 	paddr_t dest;
   1506 {
   1507 	struct pv_entry *src_pv, *dest_pv;
   1508 
   1509 	/* Get PV entries for the pages, and clean them if needed. */
   1510 	src_pv = pmap_find_pv(src);
   1511 	dest_pv = pmap_find_pv(dest);
   1512 	if (!pmap_clean_page(src_pv))
   1513 		pmap_clean_page(dest_pv);
   1514 
   1515 	/*
   1516 	 * Map the pages into the page hook points, copy them, and purge
   1517 	 * the cache for the appropriate page. Invalidate the TLB
   1518 	 * as required.
   1519 	 */
   1520 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1521 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1522 	cpu_tlb_flushD_SE(page_hook0.va);
   1523 	cpu_tlb_flushD_SE(page_hook1.va);
   1524 	bcopy_page(page_hook0.va, page_hook1.va);
   1525 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1526 	cpu_cache_purgeD_rng(page_hook1.va, NBPG);
   1527 }
   1528 
   1529 /*
   1530  * int pmap_next_phys_page(paddr_t *addr)
   1531  *
   1532  * Allocate another physical page returning true or false depending
   1533  * on whether a page could be allocated.
   1534  */
   1535 
   1536 paddr_t
   1537 pmap_next_phys_page(addr)
   1538 	paddr_t addr;
   1539 
   1540 {
   1541 	int loop;
   1542 
   1543 	if (addr < bootconfig.dram[0].address)
   1544 		return(bootconfig.dram[0].address);
   1545 
   1546 	loop = 0;
   1547 
   1548 	while (bootconfig.dram[loop].address != 0
   1549 	    && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
   1550 		++loop;
   1551 
   1552 	if (bootconfig.dram[loop].address == 0)
   1553 		return(0);
   1554 
   1555 	addr += NBPG;
   1556 
   1557 	if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
   1558 		if (bootconfig.dram[loop + 1].address == 0)
   1559 			return(0);
   1560 		addr = bootconfig.dram[loop + 1].address;
   1561 	}
   1562 
   1563 	return(addr);
   1564 }
   1565 
   1566 #if 0
   1567 void
   1568 pmap_pte_addref(pmap, va)
   1569 	pmap_t pmap;
   1570 	vaddr_t va;
   1571 {
   1572 	pd_entry_t *pde;
   1573 	paddr_t pa;
   1574 	struct vm_page *m;
   1575 
   1576 	if (pmap == pmap_kernel())
   1577 		return;
   1578 
   1579 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1580 	pa = pmap_pte_pa(pde);
   1581 	m = PHYS_TO_VM_PAGE(pa);
   1582 	++m->wire_count;
   1583 #ifdef MYCROFT_HACK
   1584 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1585 	    pmap, va, pde, pa, m, m->wire_count);
   1586 #endif
   1587 }
   1588 
   1589 void
   1590 pmap_pte_delref(pmap, va)
   1591 	pmap_t pmap;
   1592 	vaddr_t va;
   1593 {
   1594 	pd_entry_t *pde;
   1595 	paddr_t pa;
   1596 	struct vm_page *m;
   1597 
   1598 	if (pmap == pmap_kernel())
   1599 		return;
   1600 
   1601 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1602 	pa = pmap_pte_pa(pde);
   1603 	m = PHYS_TO_VM_PAGE(pa);
   1604 	--m->wire_count;
   1605 #ifdef MYCROFT_HACK
   1606 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1607 	    pmap, va, pde, pa, m, m->wire_count);
   1608 #endif
   1609 	if (m->wire_count == 0) {
   1610 #ifdef MYCROFT_HACK
   1611 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1612 		    pmap, va, pde, pa, m);
   1613 #endif
   1614 		pmap_unmap_in_l1(pmap, va);
   1615 		uvm_pagefree(m);
   1616 		--pmap->pm_stats.resident_count;
   1617 	}
   1618 }
   1619 #else
   1620 #define	pmap_pte_addref(pmap, va)
   1621 #define	pmap_pte_delref(pmap, va)
   1622 #endif
   1623 
   1624 /*
   1625  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1626  * there is more than one mapping and at least one of them is writable.
   1627  * Since we purge the cache on every context switch, we only need to check for
   1628  * other mappings within the same pmap, or kernel_pmap.
   1629  * This function is also called when a page is unmapped, to possibly reenable
   1630  * caching on any remaining mappings.
   1631  *
   1632  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   1633  */
   1634 void
   1635 pmap_vac_me_harder(struct pmap *pmap, struct pv_entry *pv, pt_entry_t *ptes,
   1636 	boolean_t clear_cache)
   1637 {
   1638 	struct pv_entry *npv;
   1639 	pt_entry_t *pte;
   1640 	int entries = 0;
   1641 	int writeable = 0;
   1642 	int cacheable_entries = 0;
   1643 
   1644 	if (pv->pv_pmap == NULL)
   1645 		return;
   1646 	KASSERT(ptes != NULL);
   1647 
   1648 	/*
   1649 	 * Count mappings and writable mappings in this pmap.
   1650 	 * Keep a pointer to the first one.
   1651 	 */
   1652 	for (npv = pv; npv; npv = npv->pv_next) {
   1653 		/* Count mappings in the same pmap */
   1654 		if (pmap == npv->pv_pmap) {
   1655 			if (entries++ == 0)
   1656 				pv = npv;
   1657 			/* Cacheable mappings */
   1658 			if ((npv->pv_flags & PT_NC) == 0)
   1659 				cacheable_entries++;
   1660 			/* Writeable mappings */
   1661 			if (npv->pv_flags & PT_Wr)
   1662 				++writeable;
   1663 		}
   1664 	}
   1665 
   1666 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   1667 		"writeable %d cacheable %d %s\n", pmap, entries, writeable,
   1668 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   1669 
   1670 	/*
   1671 	 * Enable or disable caching as necessary.
   1672 	 * We do a quick check of the first PTE to avoid walking the list if
   1673 	 * we're already in the right state.
   1674 	 */
   1675 	if (entries > 1 && writeable) {
   1676 		if (cacheable_entries == 0)
   1677 		    return;
   1678 		if (pv->pv_flags & PT_NC) {
   1679 #ifdef DIAGNOSTIC
   1680     			/* We have cacheable entries, but the first one
   1681  			isn't among them. Something is wrong.  */
   1682     			if (cacheable_entries)
   1683 				panic("pmap_vac_me_harder: "
   1684 	    				"cacheable inconsistent");
   1685 #endif
   1686 			return;
   1687 		}
   1688 		pte =  &ptes[arm_byte_to_page(pv->pv_va)];
   1689 		*pte &= ~(PT_C | PT_B);
   1690 		pv->pv_flags |= PT_NC;
   1691 		if (clear_cache && cacheable_entries < 4) {
   1692 			cpu_cache_purgeID_rng(pv->pv_va, NBPG);
   1693 			cpu_tlb_flushID_SE(pv->pv_va);
   1694 		}
   1695 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   1696 			if (pmap == npv->pv_pmap &&
   1697 			    (npv->pv_flags & PT_NC) == 0) {
   1698 				ptes[arm_byte_to_page(npv->pv_va)] &=
   1699 				    ~(PT_C | PT_B);
   1700  				npv->pv_flags |= PT_NC;
   1701 				if (clear_cache && cacheable_entries < 4) {
   1702 					cpu_cache_purgeID_rng(npv->pv_va,
   1703 					    NBPG);
   1704 					cpu_tlb_flushID_SE(npv->pv_va);
   1705 				}
   1706 			}
   1707 		}
   1708 		if (clear_cache && cacheable_entries >= 4) {
   1709 			cpu_cache_purgeID();
   1710 			cpu_tlb_flushID();
   1711 		}
   1712 	} else if (entries > 0) {
   1713 		if ((pv->pv_flags & PT_NC) == 0)
   1714 			return;
   1715 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   1716 		*pte |= (PT_C | PT_B);
   1717 		pv->pv_flags &= ~PT_NC;
   1718 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   1719 			if (pmap == npv->pv_pmap &&
   1720 				(npv->pv_flags & PT_NC)) {
   1721 				ptes[arm_byte_to_page(npv->pv_va)] |=
   1722 				    (PT_C | PT_B);
   1723 				npv->pv_flags &= ~PT_NC;
   1724 			}
   1725 		}
   1726 	}
   1727 }
   1728 
   1729 /*
   1730  * pmap_remove()
   1731  *
   1732  * pmap_remove is responsible for nuking a number of mappings for a range
   1733  * of virtual address space in the current pmap. To do this efficiently
   1734  * is interesting, because in a number of cases a wide virtual address
   1735  * range may be supplied that contains few actual mappings. So, the
   1736  * optimisations are:
   1737  *  1. Try and skip over hunks of address space for which an L1 entry
   1738  *     does not exist.
   1739  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   1740  *     maybe do just a partial cache clean. This path of execution is
   1741  *     complicated by the fact that the cache must be flushed _before_
   1742  *     the PTE is nuked, being a VAC :-)
   1743  *  3. Maybe later fast-case a single page, but I don't think this is
   1744  *     going to make _that_ much difference overall.
   1745  */
   1746 
   1747 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   1748 
   1749 void
   1750 pmap_remove(pmap, sva, eva)
   1751 	pmap_t pmap;
   1752 	vaddr_t sva;
   1753 	vaddr_t eva;
   1754 {
   1755 	int cleanlist_idx = 0;
   1756 	struct pagelist {
   1757 		vaddr_t va;
   1758 		pt_entry_t *pte;
   1759 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   1760 	pt_entry_t *pte = 0, *ptes;
   1761 	paddr_t pa;
   1762 	int pmap_active;
   1763 	struct pv_entry *pv;
   1764 
   1765 	/* Exit quick if there is no pmap */
   1766 	if (!pmap)
   1767 		return;
   1768 
   1769 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   1770 
   1771 	sva &= PG_FRAME;
   1772 	eva &= PG_FRAME;
   1773 
   1774 	ptes = pmap_map_ptes(pmap);
   1775 	/* Get a page table pointer */
   1776 	while (sva < eva) {
   1777 		if (pmap_pde_v(pmap_pde(pmap, sva)))
   1778 			break;
   1779 		sva = (sva & PD_MASK) + NBPD;
   1780 	}
   1781 
   1782 	pte = &ptes[arm_byte_to_page(sva)];
   1783 	/* Note if the pmap is active thus require cache and tlb cleans */
   1784 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   1785 	    || (pmap == kernel_pmap))
   1786 		pmap_active = 1;
   1787 	else
   1788 		pmap_active = 0;
   1789 
   1790 	/* Now loop along */
   1791 	while (sva < eva) {
   1792 		/* Check if we can move to the next PDE (l1 chunk) */
   1793 		if (!(sva & PT_MASK))
   1794 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   1795 				sva += NBPD;
   1796 				pte += arm_byte_to_page(NBPD);
   1797 				continue;
   1798 			}
   1799 
   1800 		/* We've found a valid PTE, so this page of PTEs has to go. */
   1801 		if (pmap_pte_v(pte)) {
   1802 			int bank, off;
   1803 
   1804 			/* Update statistics */
   1805 			--pmap->pm_stats.resident_count;
   1806 
   1807 			/*
   1808 			 * Add this page to our cache remove list, if we can.
   1809 			 * If, however the cache remove list is totally full,
   1810 			 * then do a complete cache invalidation taking note
   1811 			 * to backtrack the PTE table beforehand, and ignore
   1812 			 * the lists in future because there's no longer any
   1813 			 * point in bothering with them (we've paid the
   1814 			 * penalty, so will carry on unhindered). Otherwise,
   1815 			 * when we fall out, we just clean the list.
   1816 			 */
   1817 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   1818 			pa = pmap_pte_pa(pte);
   1819 
   1820 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1821 				/* Add to the clean list. */
   1822 				cleanlist[cleanlist_idx].pte = pte;
   1823 				cleanlist[cleanlist_idx].va = sva;
   1824 				cleanlist_idx++;
   1825 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1826 				int cnt;
   1827 
   1828 				/* Nuke everything if needed. */
   1829 				if (pmap_active) {
   1830 					cpu_cache_purgeID();
   1831 					cpu_tlb_flushID();
   1832 				}
   1833 
   1834 				/*
   1835 				 * Roll back the previous PTE list,
   1836 				 * and zero out the current PTE.
   1837 				 */
   1838 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   1839 					*cleanlist[cnt].pte = 0;
   1840 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   1841 				}
   1842 				*pte = 0;
   1843 				pmap_pte_delref(pmap, sva);
   1844 				cleanlist_idx++;
   1845 			} else {
   1846 				/*
   1847 				 * We've already nuked the cache and
   1848 				 * TLB, so just carry on regardless,
   1849 				 * and we won't need to do it again
   1850 				 */
   1851 				*pte = 0;
   1852 				pmap_pte_delref(pmap, sva);
   1853 			}
   1854 
   1855 			/*
   1856 			 * Update flags. In a number of circumstances,
   1857 			 * we could cluster a lot of these and do a
   1858 			 * number of sequential pages in one go.
   1859 			 */
   1860 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   1861 				pv = &vm_physmem[bank].pmseg.pvent[off];
   1862 				pmap_remove_pv(pmap, sva, pv);
   1863 				pmap_vac_me_harder(pmap, pv, ptes, FALSE);
   1864 			}
   1865 		}
   1866 		sva += NBPG;
   1867 		pte++;
   1868 	}
   1869 
   1870 	pmap_unmap_ptes(pmap);
   1871 	/*
   1872 	 * Now, if we've fallen through down to here, chances are that there
   1873 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   1874 	 */
   1875 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1876 		u_int cnt;
   1877 
   1878 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   1879 			if (pmap_active) {
   1880 				cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
   1881 				*cleanlist[cnt].pte = 0;
   1882 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   1883 			} else
   1884 				*cleanlist[cnt].pte = 0;
   1885 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   1886 		}
   1887 	}
   1888 }
   1889 
   1890 /*
   1891  * Routine:	pmap_remove_all
   1892  * Function:
   1893  *		Removes this physical page from
   1894  *		all physical maps in which it resides.
   1895  *		Reflects back modify bits to the pager.
   1896  */
   1897 
   1898 void
   1899 pmap_remove_all(pa)
   1900 	paddr_t pa;
   1901 {
   1902 	struct pv_entry *ph, *pv, *npv;
   1903 	pmap_t pmap;
   1904 	pt_entry_t *pte, *ptes;
   1905 	int s;
   1906 
   1907 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
   1908 
   1909 	pv = ph = pmap_find_pv(pa);
   1910 	pmap_clean_page(pv);
   1911 
   1912 	s = splvm();
   1913 
   1914 	if (ph->pv_pmap == NULL) {
   1915 		PDEBUG(0, printf("free page\n"));
   1916 		splx(s);
   1917 		return;
   1918 	}
   1919 
   1920 
   1921 
   1922 	while (pv) {
   1923 		pmap = pv->pv_pmap;
   1924 		ptes = pmap_map_ptes(pmap);
   1925 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   1926 
   1927 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   1928 		    pv->pv_va, pv->pv_flags));
   1929 #ifdef DEBUG
   1930 		if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
   1931 			    || pmap_pte_pa(pte) != pa)
   1932 			panic("pmap_remove_all: bad mapping");
   1933 #endif	/* DEBUG */
   1934 
   1935 		/*
   1936 		 * Update statistics
   1937 		 */
   1938 		--pmap->pm_stats.resident_count;
   1939 
   1940 		/* Wired bit */
   1941 		if (pv->pv_flags & PT_W)
   1942 			--pmap->pm_stats.wired_count;
   1943 
   1944 		/*
   1945 		 * Invalidate the PTEs.
   1946 		 * XXX: should cluster them up and invalidate as many
   1947 		 * as possible at once.
   1948 		 */
   1949 
   1950 #ifdef needednotdone
   1951 reduce wiring count on page table pages as references drop
   1952 #endif
   1953 
   1954 		*pte = 0;
   1955 		pmap_pte_delref(pmap, pv->pv_va);
   1956 
   1957 		npv = pv->pv_next;
   1958 		if (pv == ph)
   1959 			ph->pv_pmap = NULL;
   1960 		else
   1961 			pmap_free_pv(pv);
   1962 		pv = npv;
   1963 		pmap_unmap_ptes(pmap);
   1964 	}
   1965 
   1966 	splx(s);
   1967 
   1968 	PDEBUG(0, printf("done\n"));
   1969 	cpu_tlb_flushID();
   1970 }
   1971 
   1972 
   1973 /*
   1974  * Set the physical protection on the specified range of this map as requested.
   1975  */
   1976 
   1977 void
   1978 pmap_protect(pmap, sva, eva, prot)
   1979 	pmap_t pmap;
   1980 	vaddr_t sva;
   1981 	vaddr_t eva;
   1982 	vm_prot_t prot;
   1983 {
   1984 	pt_entry_t *pte = NULL, *ptes;
   1985 	int armprot;
   1986 	int flush = 0;
   1987 	paddr_t pa;
   1988 	int bank, off;
   1989 	struct pv_entry *pv;
   1990 
   1991 	/*
   1992 	 * Make sure pmap is valid. -dct
   1993 	 */
   1994 	if (pmap == NULL)
   1995 		return;
   1996 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   1997 	    pmap, sva, eva, prot));
   1998 
   1999 	if (~prot & VM_PROT_READ) {
   2000 		/* Just remove the mappings. */
   2001 		pmap_remove(pmap, sva, eva);
   2002 		return;
   2003 	}
   2004 	if (prot & VM_PROT_WRITE) {
   2005 		/*
   2006 		 * If this is a read->write transition, just ignore it and let
   2007 		 * uvm_fault() take care of it later.
   2008 		 */
   2009 		return;
   2010 	}
   2011 
   2012 	sva &= PG_FRAME;
   2013 	eva &= PG_FRAME;
   2014 
   2015 	ptes = pmap_map_ptes(pmap);
   2016 	/*
   2017 	 * We need to acquire a pointer to a page table page before entering
   2018 	 * the following loop.
   2019 	 */
   2020 	while (sva < eva) {
   2021 		if (pmap_pde_v(pmap_pde(pmap, sva)))
   2022 			break;
   2023 		sva = (sva & PD_MASK) + NBPD;
   2024 	}
   2025 
   2026 	pte = &ptes[arm_byte_to_page(sva)];
   2027 
   2028 	while (sva < eva) {
   2029 		/* only check once in a while */
   2030 		if ((sva & PT_MASK) == 0) {
   2031 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   2032 				/* We can race ahead here, to the next pde. */
   2033 				sva += NBPD;
   2034 				pte += arm_byte_to_page(NBPD);
   2035 				continue;
   2036 			}
   2037 		}
   2038 
   2039 		if (!pmap_pte_v(pte))
   2040 			goto next;
   2041 
   2042 		flush = 1;
   2043 
   2044 		armprot = 0;
   2045 		if (sva < VM_MAXUSER_ADDRESS)
   2046 			armprot |= PT_AP(AP_U);
   2047 		else if (sva < VM_MAX_ADDRESS)
   2048 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2049 		*pte = (*pte & 0xfffff00f) | armprot;
   2050 
   2051 		pa = pmap_pte_pa(pte);
   2052 
   2053 		/* Get the physical page index */
   2054 
   2055 		/* Clear write flag */
   2056 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2057 			pv = &vm_physmem[bank].pmseg.pvent[off];
   2058 			(void) pmap_modify_pv(pmap, sva, pv, PT_Wr, 0);
   2059 			pmap_vac_me_harder(pmap, pv, ptes, FALSE);
   2060 		}
   2061 
   2062 next:
   2063 		sva += NBPG;
   2064 		pte++;
   2065 	}
   2066 	pmap_unmap_ptes(pmap);
   2067 	if (flush)
   2068 		cpu_tlb_flushID();
   2069 }
   2070 
   2071 /*
   2072  * void pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2073  * int flags)
   2074  *
   2075  *      Insert the given physical page (p) at
   2076  *      the specified virtual address (v) in the
   2077  *      target physical map with the protection requested.
   2078  *
   2079  *      If specified, the page will be wired down, meaning
   2080  *      that the related pte can not be reclaimed.
   2081  *
   2082  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2083  *      or lose information.  That is, this routine must actually
   2084  *      insert this page into the given map NOW.
   2085  */
   2086 
   2087 int
   2088 pmap_enter(pmap, va, pa, prot, flags)
   2089 	pmap_t pmap;
   2090 	vaddr_t va;
   2091 	paddr_t pa;
   2092 	vm_prot_t prot;
   2093 	int flags;
   2094 {
   2095 	pt_entry_t *pte, *ptes;
   2096 	u_int npte;
   2097 	int bank, off;
   2098 	struct pv_entry *pv = NULL;
   2099 	paddr_t opa;
   2100 	int nflags;
   2101 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2102 
   2103 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2104 	    va, pa, pmap, prot, wired));
   2105 
   2106 #ifdef DIAGNOSTIC
   2107 	/* Valid address ? */
   2108 	if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
   2109 		panic("pmap_enter: too big");
   2110 	if (pmap != pmap_kernel() && va != 0) {
   2111 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2112 			panic("pmap_enter: kernel page in user map");
   2113 	} else {
   2114 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2115 			panic("pmap_enter: user page in kernel map");
   2116 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2117 			panic("pmap_enter: entering PT page");
   2118 	}
   2119 #endif
   2120 
   2121 	/*
   2122 	 * Get a pointer to the pte for this virtual address. If the
   2123 	 * pte pointer is NULL then we are missing the L2 page table
   2124 	 * so we need to create one.
   2125 	 */
   2126 	pte = pmap_pte(pmap, va);
   2127 	if (!pte) {
   2128 		paddr_t l2pa;
   2129 		struct vm_page *m;
   2130 
   2131 		/* Allocate a page table */
   2132 		for (;;) {
   2133 			m = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   2134 			if (m != NULL)
   2135 				break;
   2136 
   2137 			/*
   2138 			 * No page available.  If we're the kernel
   2139 			 * pmap, we die, since we might not have
   2140 			 * a valid thread context.  For user pmaps,
   2141 			 * we assume that we _do_ have a valid thread
   2142 			 * context, so we wait here for the pagedaemon
   2143 			 * to free up some pages.
   2144 			 *
   2145 			 * XXX THE VM CODE IS PROBABLY HOLDING LOCKS
   2146 			 * XXX RIGHT NOW, BUT ONLY ON OUR PARENT VM_MAP
   2147 			 * XXX SO THIS IS PROBABLY SAFE.  In any case,
   2148 			 * XXX other pmap modules claim it is safe to
   2149 			 * XXX sleep here if it's a user pmap.
   2150 			 */
   2151 			if (pmap == pmap_kernel())
   2152 				panic("pmap_enter: no free pages");
   2153 			else
   2154 				uvm_wait("pmap_enter");
   2155 		}
   2156 
   2157 		/* Wire this page table into the L1. */
   2158 		l2pa = VM_PAGE_TO_PHYS(m);
   2159 		pmap_zero_page(l2pa);
   2160 		pmap_map_in_l1(pmap, va, l2pa);
   2161 		++pmap->pm_stats.resident_count;
   2162 
   2163 		pte = pmap_pte(pmap, va);
   2164 #ifdef DIAGNOSTIC
   2165 		if (!pte)
   2166 			panic("pmap_enter: no pte");
   2167 #endif
   2168 	}
   2169 
   2170 	nflags = 0;
   2171 	if (prot & VM_PROT_WRITE)
   2172 		nflags |= PT_Wr;
   2173 	if (wired)
   2174 		nflags |= PT_W;
   2175 
   2176 	/* More debugging info */
   2177 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2178 	    *pte));
   2179 
   2180 	/* Is the pte valid ? If so then this page is already mapped */
   2181 	if (pmap_pte_v(pte)) {
   2182 		/* Get the physical address of the current page mapped */
   2183 		opa = pmap_pte_pa(pte);
   2184 
   2185 #ifdef MYCROFT_HACK
   2186 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2187 #endif
   2188 
   2189 		/* Are we mapping the same page ? */
   2190 		if (opa == pa) {
   2191 			/* All we must be doing is changing the protection */
   2192 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2193 			    va, pa));
   2194 
   2195 			/* Has the wiring changed ? */
   2196 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2197 				pv = &vm_physmem[bank].pmseg.pvent[off];
   2198 				(void) pmap_modify_pv(pmap, va, pv,
   2199 				    PT_Wr | PT_W, nflags);
   2200  			}
   2201 		} else {
   2202 			/* We are replacing the page with a new one. */
   2203 			cpu_cache_purgeID_rng(va, NBPG);
   2204 
   2205 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2206 			    va, pa, opa));
   2207 
   2208 			/*
   2209 			 * If it is part of our managed memory then we
   2210 			 * must remove it from the PV list
   2211 			 */
   2212 			if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
   2213 				pv = &vm_physmem[bank].pmseg.pvent[off];
   2214 				pmap_remove_pv(pmap, va, pv);
   2215 			}
   2216 
   2217 			goto enter;
   2218 		}
   2219 	} else {
   2220 		opa = 0;
   2221 		pmap_pte_addref(pmap, va);
   2222 
   2223 		/* pte is not valid so we must be hooking in a new page */
   2224 		++pmap->pm_stats.resident_count;
   2225 
   2226 	enter:
   2227 		/*
   2228 		 * Enter on the PV list if part of our managed memory
   2229 		 */
   2230 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2231 			pv = &vm_physmem[bank].pmseg.pvent[off];
   2232 			pmap_enter_pv(pmap, va, pv, nflags);
   2233 		}
   2234 	}
   2235 
   2236 #ifdef MYCROFT_HACK
   2237 	if (mycroft_hack)
   2238 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2239 #endif
   2240 
   2241 	/* Construct the pte, giving the correct access. */
   2242 	npte = (pa & PG_FRAME);
   2243 
   2244 	/* VA 0 is magic. */
   2245 	if (pmap != pmap_kernel() && va != 0)
   2246 		npte |= PT_AP(AP_U);
   2247 
   2248 	if (bank != -1) {
   2249 #ifdef DIAGNOSTIC
   2250 		if ((flags & VM_PROT_ALL) & ~prot)
   2251 			panic("pmap_enter: access_type exceeds prot");
   2252 #endif
   2253 		npte |= PT_C | PT_B;
   2254 		if (flags & VM_PROT_WRITE) {
   2255 			npte |= L2_SPAGE | PT_AP(AP_W);
   2256 			vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2257 		} else if (flags & VM_PROT_ALL) {
   2258 			npte |= L2_SPAGE;
   2259 			vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2260 		} else
   2261 			npte |= L2_INVAL;
   2262 	} else {
   2263 		if (prot & VM_PROT_WRITE)
   2264 			npte |= L2_SPAGE | PT_AP(AP_W);
   2265 		else if (prot & VM_PROT_ALL)
   2266 			npte |= L2_SPAGE;
   2267 		else
   2268 			npte |= L2_INVAL;
   2269 	}
   2270 
   2271 #ifdef MYCROFT_HACK
   2272 	if (mycroft_hack)
   2273 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2274 #endif
   2275 
   2276 	*pte = npte;
   2277 
   2278 	if (bank != -1)
   2279 	{
   2280 		boolean_t pmap_active = FALSE;
   2281 		/* XXX this will change once the whole of pmap_enter uses
   2282 		 * map_ptes
   2283 		 */
   2284 		ptes = pmap_map_ptes(pmap);
   2285 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2286 		    || (pmap == kernel_pmap))
   2287 			pmap_active = TRUE;
   2288  		pmap_vac_me_harder(pmap, pv, ptes, pmap_active);
   2289 		pmap_unmap_ptes(pmap);
   2290 	}
   2291 
   2292 	/* Better flush the TLB ... */
   2293 	cpu_tlb_flushID_SE(va);
   2294 
   2295 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2296 
   2297 	return 0;
   2298 }
   2299 
   2300 void
   2301 pmap_kenter_pa(va, pa, prot)
   2302 	vaddr_t va;
   2303 	paddr_t pa;
   2304 	vm_prot_t prot;
   2305 {
   2306 	pt_entry_t *pte;
   2307 
   2308 #ifdef DIAGNOSTIC
   2309 	int bank, off;
   2310 
   2311 	if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2312 		struct pv_entry *pv;
   2313 
   2314 		pv = &vm_physmem[bank].pmseg.pvent[off];
   2315 		if (pv->pv_pmap != NULL)
   2316 			panic("pmap_kenter_pa: %08lx multiply mapped\n", pa);
   2317 	}
   2318 #endif
   2319 
   2320 	if (!pmap_pde_v(pmap_pde(pmap_kernel(), va))) {
   2321 		/*
   2322 		 * For the kernel pmaps it would be better to ensure
   2323 		 * that they are always present, and to grow the
   2324 		 * kernel as required.
   2325 		 */
   2326 		vm_offset_t l2pa;
   2327 		struct vm_page *m;
   2328 
   2329 		/* Allocate a page table */
   2330 		m = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   2331 		if (m == NULL) {
   2332 			/*
   2333 			 * No page available.  We're the kernel
   2334 			 * pmap, so die.
   2335 			 */
   2336 			panic("pmap_kenter_pa: no free pages");
   2337 		}
   2338 
   2339 		/* Wire this page table into the L1. */
   2340 		l2pa = VM_PAGE_TO_PHYS(m);
   2341 		pmap_zero_page(l2pa);
   2342 		pmap_map_in_l1(pmap_kernel(), va, l2pa);
   2343 		++(pmap_kernel())->pm_stats.resident_count;
   2344 	}
   2345 	pte = vtopte(va);
   2346 
   2347 	if (pmap_pte_v(pte))
   2348 	{
   2349 		cpu_tlb_flushID_SE(va);
   2350 		cpu_cache_purgeID_rng(va, PAGE_SIZE);
   2351 	}
   2352 	*pte = L2_PTE(pa, AP_KRW);
   2353 /*	pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED); */
   2354 }
   2355 
   2356 void
   2357 pmap_kremove(va, len)
   2358 	vaddr_t va;
   2359 	vsize_t len;
   2360 {
   2361 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2362 		pt_entry_t *pte;
   2363 #ifdef DIAGNOSTIC
   2364 		int bank, off;
   2365 		paddr_t pa;
   2366 
   2367 		if (!pmap_pde_v(pmap_pde(pmap_kernel(), va)))
   2368 			panic("pmap_kremove: no pde\n");
   2369 #endif
   2370 		pte = vtopte(va);
   2371 
   2372 #ifdef DIAGNOSTIC
   2373 		pa = pmap_pte_pa(pte);
   2374 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2375 			struct pv_entry *pv;
   2376 
   2377 			pv = &vm_physmem[bank].pmseg.pvent[off];
   2378 			if (pv->pv_pmap != NULL)
   2379 				panic("pmap_kremove: %08lx multiply mapped\n",
   2380 						pa);
   2381 		}
   2382 #endif
   2383 
   2384 		/* We assume that we will only be called with small
   2385 		   regions of memory.  */
   2386 		cpu_cache_purgeID_rng(va, PAGE_SIZE);
   2387 		*pte = 0;
   2388 		cpu_tlb_flushID_SE(va);
   2389 		/* pmap_remove(pmap_kernel(), va, va + PAGE_SIZE); */
   2390 	}
   2391 }
   2392 
   2393 /*
   2394  * pmap_page_protect:
   2395  *
   2396  * Lower the permission for all mappings to a given page.
   2397  */
   2398 
   2399 void
   2400 pmap_page_protect(pg, prot)
   2401 	struct vm_page *pg;
   2402 	vm_prot_t prot;
   2403 {
   2404 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2405 
   2406 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
   2407 
   2408 	switch(prot) {
   2409 	case VM_PROT_READ:
   2410 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2411 		pmap_copy_on_write(pa);
   2412 		break;
   2413 
   2414 	case VM_PROT_ALL:
   2415 		break;
   2416 
   2417 	default:
   2418 		pmap_remove_all(pa);
   2419 		break;
   2420 	}
   2421 }
   2422 
   2423 
   2424 /*
   2425  * Routine:	pmap_unwire
   2426  * Function:	Clear the wired attribute for a map/virtual-address
   2427  *		pair.
   2428  * In/out conditions:
   2429  *		The mapping must already exist in the pmap.
   2430  */
   2431 
   2432 void
   2433 pmap_unwire(pmap, va)
   2434 	pmap_t pmap;
   2435 	vaddr_t va;
   2436 {
   2437 	pt_entry_t *pte;
   2438 	paddr_t pa;
   2439 	int bank, off;
   2440 	struct pv_entry *pv;
   2441 
   2442 	/*
   2443 	 * Make sure pmap is valid. -dct
   2444 	 */
   2445 	if (pmap == NULL)
   2446 		return;
   2447 
   2448 	/* Get the pte */
   2449 	pte = pmap_pte(pmap, va);
   2450 	if (!pte)
   2451 		return;
   2452 
   2453 	/* Extract the physical address of the page */
   2454 	pa = pmap_pte_pa(pte);
   2455 
   2456 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2457 		return;
   2458 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2459 	/* Update the wired bit in the pv entry for this page. */
   2460 	(void) pmap_modify_pv(pmap, va, pv, PT_W, 0);
   2461 }
   2462 
   2463 /*
   2464  * pt_entry_t *pmap_pte(pmap_t pmap, vaddr_t va)
   2465  *
   2466  * Return the pointer to a page table entry corresponding to the supplied
   2467  * virtual address.
   2468  *
   2469  * The page directory is first checked to make sure that a page table
   2470  * for the address in question exists and if it does a pointer to the
   2471  * entry is returned.
   2472  *
   2473  * The way this works is that that the kernel page tables are mapped
   2474  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   2475  * This allows page tables to be located quickly.
   2476  */
   2477 pt_entry_t *
   2478 pmap_pte(pmap, va)
   2479 	pmap_t pmap;
   2480 	vaddr_t va;
   2481 {
   2482 	pt_entry_t *ptp;
   2483 	pt_entry_t *result;
   2484 
   2485 	/* The pmap must be valid */
   2486 	if (!pmap)
   2487 		return(NULL);
   2488 
   2489 	/* Return the address of the pte */
   2490 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2491 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2492 
   2493 	/* Do we have a valid pde ? If not we don't have a page table */
   2494 	if (!pmap_pde_v(pmap_pde(pmap, va))) {
   2495 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2496 		    pmap_pde(pmap, va)));
   2497 		return(NULL);
   2498 	}
   2499 
   2500 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2501 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2502 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2503 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   2504 
   2505 	/*
   2506 	 * If the pmap is the kernel pmap or the pmap is the active one
   2507 	 * then we can just return a pointer to entry relative to
   2508 	 * PROCESS_PAGE_TBLS_BASE.
   2509 	 * Otherwise we need to map the page tables to an alternative
   2510 	 * address and reference them there.
   2511 	 */
   2512 	if (pmap == kernel_pmap || pmap->pm_pptpt
   2513 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2514 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   2515 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2516 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   2517 	} else {
   2518 		struct proc *p = curproc;
   2519 
   2520 		/* If we don't have a valid curproc use proc0 */
   2521 		/* Perhaps we should just use kernel_pmap instead */
   2522 		if (p == NULL)
   2523 			p = &proc0;
   2524 #ifdef DIAGNOSTIC
   2525 		/*
   2526 		 * The pmap should always be valid for the process so
   2527 		 * panic if it is not.
   2528 		 */
   2529 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2530 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2531 			    va, p, p->p_vmspace);
   2532 			console_debugger();
   2533 		}
   2534 		/*
   2535 		 * The pmap for the current process should be mapped. If it
   2536 		 * is not then we have a problem.
   2537 		 */
   2538 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   2539 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2540 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2541 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2542 			printf("pmap pagetable = P%08lx current = P%08x ",
   2543 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2544 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2545 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   2546 			    PG_FRAME));
   2547 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   2548 			panic("pmap_pte: current and pmap mismatch\n");
   2549 		}
   2550 #endif
   2551 
   2552 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   2553 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   2554 		    pmap->pm_pptpt);
   2555 		cpu_tlb_flushD();
   2556 	}
   2557 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   2558 	    ((va >> (PGSHIFT-2)) & ~3)));
   2559 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   2560 	return(result);
   2561 }
   2562 
   2563 /*
   2564  * Routine:  pmap_extract
   2565  * Function:
   2566  *           Extract the physical page address associated
   2567  *           with the given map/virtual_address pair.
   2568  */
   2569 boolean_t
   2570 pmap_extract(pmap, va, pap)
   2571 	pmap_t pmap;
   2572 	vaddr_t va;
   2573 	paddr_t *pap;
   2574 {
   2575 	pt_entry_t *pte, *ptes;
   2576 	paddr_t pa;
   2577 
   2578 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   2579 
   2580 	/*
   2581 	 * Get the pte for this virtual address.
   2582 	 */
   2583 	ptes = pmap_map_ptes(pmap);
   2584 	pte = &ptes[arm_byte_to_page(va)];
   2585 
   2586 	/*
   2587 	 * If there is no pte then there is no page table etc.
   2588 	 * Is the pte valid ? If not then no paged is actually mapped here
   2589 	 */
   2590 	if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
   2591 	    pmap_unmap_ptes(pmap);
   2592     	    return (FALSE);
   2593 	}
   2594 
   2595 	/* Return the physical address depending on the PTE type */
   2596 	/* XXX What about L1 section mappings ? */
   2597 	if ((*(pte) & L2_MASK) == L2_LPAGE) {
   2598 		/* Extract the physical address from the pte */
   2599 		pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
   2600 
   2601 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   2602 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   2603 
   2604 		if (pap != NULL)
   2605 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   2606 	} else {
   2607 		/* Extract the physical address from the pte */
   2608 		pa = pmap_pte_pa(pte);
   2609 
   2610 		PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   2611 		    (pa | (va & ~PG_FRAME))));
   2612 
   2613 		if (pap != NULL)
   2614 			*pap = pa | (va & ~PG_FRAME);
   2615 	}
   2616 	pmap_unmap_ptes(pmap);
   2617 	return (TRUE);
   2618 }
   2619 
   2620 
   2621 /*
   2622  * Copy the range specified by src_addr/len from the source map to the
   2623  * range dst_addr/len in the destination map.
   2624  *
   2625  * This routine is only advisory and need not do anything.
   2626  */
   2627 
   2628 void
   2629 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   2630 	pmap_t dst_pmap;
   2631 	pmap_t src_pmap;
   2632 	vaddr_t dst_addr;
   2633 	vsize_t len;
   2634 	vaddr_t src_addr;
   2635 {
   2636 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   2637 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   2638 }
   2639 
   2640 #if defined(PMAP_DEBUG)
   2641 void
   2642 pmap_dump_pvlist(phys, m)
   2643 	vaddr_t phys;
   2644 	char *m;
   2645 {
   2646 	struct pv_entry *pv;
   2647 	int bank, off;
   2648 
   2649 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
   2650 		printf("INVALID PA\n");
   2651 		return;
   2652 	}
   2653 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2654 	printf("%s %08lx:", m, phys);
   2655 	if (pv->pv_pmap == NULL) {
   2656 		printf(" no mappings\n");
   2657 		return;
   2658 	}
   2659 
   2660 	for (; pv; pv = pv->pv_next)
   2661 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   2662 		    pv->pv_va, pv->pv_flags);
   2663 
   2664 	printf("\n");
   2665 }
   2666 
   2667 #endif	/* PMAP_DEBUG */
   2668 
   2669 boolean_t
   2670 pmap_testbit(pa, setbits)
   2671 	paddr_t pa;
   2672 	int setbits;
   2673 {
   2674 	int bank, off;
   2675 
   2676 	PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
   2677 
   2678 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2679 		return(FALSE);
   2680 
   2681 	/*
   2682 	 * Check saved info only
   2683 	 */
   2684 	if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
   2685 		PDEBUG(0, printf("pmap_attributes = %02x\n",
   2686 		    vm_physmem[bank].pmseg.attrs[off]));
   2687 		return(TRUE);
   2688 	}
   2689 
   2690 	return(FALSE);
   2691 }
   2692 
   2693 static pt_entry_t *
   2694 pmap_map_ptes(struct pmap *pmap)
   2695 {
   2696     struct proc *p;
   2697 
   2698     /* the kernel's pmap is always accessible */
   2699     if (pmap == pmap_kernel()) {
   2700 	return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
   2701     }
   2702 
   2703     if (curproc &&
   2704 	    curproc->p_vmspace->vm_map.pmap == pmap)
   2705 	return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   2706 
   2707     p = curproc;
   2708 
   2709     if (p == NULL)
   2710 	p = &proc0;
   2711 
   2712     pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   2713 	    pmap->pm_pptpt);
   2714     cpu_tlb_flushD();
   2715     return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   2716 }
   2717 
   2718 /*
   2719  * Modify pte bits for all ptes corresponding to the given physical address.
   2720  * We use `maskbits' rather than `clearbits' because we're always passing
   2721  * constants and the latter would require an extra inversion at run-time.
   2722  */
   2723 
   2724 void
   2725 pmap_clearbit(pa, maskbits)
   2726 	paddr_t pa;
   2727 	int maskbits;
   2728 {
   2729 	struct pv_entry *pv;
   2730 	pt_entry_t *pte;
   2731 	vaddr_t va;
   2732 	int bank, off;
   2733 	int s;
   2734 
   2735 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   2736 	    pa, maskbits));
   2737 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2738 		return;
   2739 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2740 	s = splvm();
   2741 
   2742 	/*
   2743 	 * Clear saved attributes (modify, reference)
   2744 	 */
   2745 	vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
   2746 
   2747 	if (pv->pv_pmap == NULL) {
   2748 		splx(s);
   2749 		return;
   2750 	}
   2751 
   2752 	/*
   2753 	 * Loop over all current mappings setting/clearing as appropos
   2754 	 */
   2755 	for (; pv; pv = pv->pv_next) {
   2756 		va = pv->pv_va;
   2757 
   2758 		/*
   2759 		 * XXX don't write protect pager mappings
   2760 		 */
   2761 		if (va >= uvm.pager_sva && va < uvm.pager_eva) {
   2762 			printf("pmap_clearbit: found page VA on pv_list\n");
   2763 			continue;
   2764 		}
   2765 
   2766 		pv->pv_flags &= ~maskbits;
   2767 		pte = pmap_pte(pv->pv_pmap, va);
   2768 		if (maskbits & (PT_Wr|PT_M))
   2769 			*pte = *pte & ~PT_AP(AP_W);
   2770 		if (maskbits & PT_H)
   2771 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   2772 	}
   2773 	cpu_tlb_flushID();
   2774 
   2775 	splx(s);
   2776 }
   2777 
   2778 
   2779 boolean_t
   2780 pmap_clear_modify(pg)
   2781 	struct vm_page *pg;
   2782 {
   2783 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2784 	boolean_t rv;
   2785 
   2786 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
   2787 	rv = pmap_testbit(pa, PT_M);
   2788 	pmap_clearbit(pa, PT_M);
   2789 	return rv;
   2790 }
   2791 
   2792 
   2793 boolean_t
   2794 pmap_clear_reference(pg)
   2795 	struct vm_page *pg;
   2796 {
   2797 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2798 	boolean_t rv;
   2799 
   2800 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
   2801 	rv = pmap_testbit(pa, PT_H);
   2802 	pmap_clearbit(pa, PT_H);
   2803 	return rv;
   2804 }
   2805 
   2806 
   2807 void
   2808 pmap_copy_on_write(pa)
   2809 	paddr_t pa;
   2810 {
   2811 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
   2812 	pmap_clearbit(pa, PT_Wr);
   2813 }
   2814 
   2815 
   2816 boolean_t
   2817 pmap_is_modified(pg)
   2818 	struct vm_page *pg;
   2819 {
   2820 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2821 	boolean_t result;
   2822 
   2823 	result = pmap_testbit(pa, PT_M);
   2824 	PDEBUG(0, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
   2825 	return (result);
   2826 }
   2827 
   2828 
   2829 boolean_t
   2830 pmap_is_referenced(pg)
   2831 	struct vm_page *pg;
   2832 {
   2833 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2834 	boolean_t result;
   2835 
   2836 	result = pmap_testbit(pa, PT_H);
   2837 	PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
   2838 	return (result);
   2839 }
   2840 
   2841 
   2842 int
   2843 pmap_modified_emulation(pmap, va)
   2844 	pmap_t pmap;
   2845 	vaddr_t va;
   2846 {
   2847 	pt_entry_t *pte;
   2848 	paddr_t pa;
   2849 	int bank, off;
   2850 	struct pv_entry *pv;
   2851 	u_int flags;
   2852 
   2853 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   2854 
   2855 	/* Get the pte */
   2856 	pte = pmap_pte(pmap, va);
   2857 	if (!pte) {
   2858 		PDEBUG(2, printf("no pte\n"));
   2859 		return(0);
   2860 	}
   2861 
   2862 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   2863 
   2864 	/* Check for a zero pte */
   2865 	if (*pte == 0)
   2866 		return(0);
   2867 
   2868 	/* This can happen if user code tries to access kernel memory. */
   2869 	if ((*pte & PT_AP(AP_W)) != 0)
   2870 		return (0);
   2871 
   2872 	/* Extract the physical address of the page */
   2873 	pa = pmap_pte_pa(pte);
   2874 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2875 		return(0);
   2876 
   2877 	/* Get the current flags for this page. */
   2878 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2879 	flags = pmap_modify_pv(pmap, va, pv, 0, 0);
   2880 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   2881 
   2882 	/*
   2883 	 * Do the flags say this page is writable ? If not then it is a
   2884 	 * genuine write fault. If yes then the write fault is our fault
   2885 	 * as we did not reflect the write access in the PTE. Now we know
   2886 	 * a write has occurred we can correct this and also set the
   2887 	 * modified bit
   2888 	 */
   2889 	if (~flags & PT_Wr)
   2890 		return(0);
   2891 
   2892 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   2893 	    va, pte, *pte));
   2894 	vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2895 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   2896 	PDEBUG(0, printf("->(%08x)\n", *pte));
   2897 
   2898 	/* Return, indicating the problem has been dealt with */
   2899 	cpu_tlb_flushID_SE(va);
   2900 	return(1);
   2901 }
   2902 
   2903 
   2904 int
   2905 pmap_handled_emulation(pmap, va)
   2906 	pmap_t pmap;
   2907 	vaddr_t va;
   2908 {
   2909 	pt_entry_t *pte;
   2910 	paddr_t pa;
   2911 	int bank, off;
   2912 
   2913 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   2914 
   2915 	/* Get the pte */
   2916 	pte = pmap_pte(pmap, va);
   2917 	if (!pte) {
   2918 		PDEBUG(2, printf("no pte\n"));
   2919 		return(0);
   2920 	}
   2921 
   2922 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   2923 
   2924 	/* Check for a zero pte */
   2925 	if (*pte == 0)
   2926 		return(0);
   2927 
   2928 	/* This can happen if user code tries to access kernel memory. */
   2929 	if ((*pte & L2_MASK) != L2_INVAL)
   2930 		return (0);
   2931 
   2932 	/* Extract the physical address of the page */
   2933 	pa = pmap_pte_pa(pte);
   2934 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2935 		return(0);
   2936 
   2937 	/*
   2938 	 * Ok we just enable the pte and mark the attibs as handled
   2939 	 */
   2940 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   2941 	    va, pte, *pte));
   2942 	vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2943 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   2944 	PDEBUG(0, printf("->(%08x)\n", *pte));
   2945 
   2946 	/* Return, indicating the problem has been dealt with */
   2947 	cpu_tlb_flushID_SE(va);
   2948 	return(1);
   2949 }
   2950 
   2951 /*
   2952  * pmap_collect: free resources held by a pmap
   2953  *
   2954  * => optional function.
   2955  * => called when a process is swapped out to free memory.
   2956  */
   2957 
   2958 void
   2959 pmap_collect(pmap)
   2960 	pmap_t pmap;
   2961 {
   2962 }
   2963 
   2964 /*
   2965  * Routine:	pmap_procwr
   2966  *
   2967  * Function:
   2968  *	Synchronize caches corresponding to [addr, addr+len) in p.
   2969  *
   2970  */
   2971 void
   2972 pmap_procwr(p, va, len)
   2973 	struct proc	*p;
   2974 	vaddr_t		va;
   2975 	int		len;
   2976 {
   2977 	/* We only need to do anything if it is the current process. */
   2978 	if (p == curproc)
   2979 		cpu_cache_syncI_rng(va, len);
   2980 }
   2981 
   2982 /* End of pmap.c */
   2983