pmap.c revision 1.136 1 /* $NetBSD: pmap.c,v 1.136 2003/06/15 18:18:16 thorpej Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * Performance improvements, UVM changes, overhauls and part-rewrites
144 * were contributed by Neil A. Carson <neil (at) causality.com>.
145 */
146
147 /*
148 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150 * Systems, Inc.
151 *
152 * There are still a few things outstanding at this time:
153 *
154 * - There are some unresolved issues for MP systems:
155 *
156 * o The L1 metadata needs a lock, or more specifically, some places
157 * need to acquire an exclusive lock when modifying L1 translation
158 * table entries.
159 *
160 * o When one cpu modifies an L1 entry, and that L1 table is also
161 * being used by another cpu, then the latter will need to be told
162 * that a tlb invalidation may be necessary. (But only if the old
163 * domain number in the L1 entry being over-written is currently
164 * the active domain on that cpu). I guess there are lots more tlb
165 * shootdown issues too...
166 *
167 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168 * MP systems will lose big-time because of the MMU domain hack.
169 * The only way this can be solved (apart from moving the vector
170 * page to 0xffff0000) is to reserve the first 1MB of user address
171 * space for kernel use only. This would require re-linking all
172 * applications so that the text section starts above this 1MB
173 * boundary.
174 *
175 * o Tracking which VM space is resident in the cache/tlb has not yet
176 * been implemented for MP systems.
177 *
178 * o Finally, there is a pathological condition where two cpus running
179 * two separate processes (not lwps) which happen to share an L1
180 * can get into a fight over one or more L1 entries. This will result
181 * in a significant slow-down if both processes are in tight loops.
182 */
183
184 /*
185 * Special compilation symbols
186 * PMAP_DEBUG - Build in pmap_debug_level code
187 */
188
189 /* Include header files */
190
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194
195 #include <sys/types.h>
196 #include <sys/param.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/user.h>
202 #include <sys/pool.h>
203 #include <sys/cdefs.h>
204
205 #include <uvm/uvm.h>
206
207 #include <machine/bus.h>
208 #include <machine/pmap.h>
209 #include <machine/pcb.h>
210 #include <machine/param.h>
211 #include <arm/arm32/katelib.h>
212
213 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.136 2003/06/15 18:18:16 thorpej Exp $");
214
215 #ifdef PMAP_DEBUG
216 #define PDEBUG(_lev_,_stat_) \
217 if (pmap_debug_level >= (_lev_)) \
218 ((_stat_))
219 int pmap_debug_level = 0;
220
221 /*
222 * for switching to potentially finer grained debugging
223 */
224 #define PDB_FOLLOW 0x0001
225 #define PDB_INIT 0x0002
226 #define PDB_ENTER 0x0004
227 #define PDB_REMOVE 0x0008
228 #define PDB_CREATE 0x0010
229 #define PDB_PTPAGE 0x0020
230 #define PDB_GROWKERN 0x0040
231 #define PDB_BITS 0x0080
232 #define PDB_COLLECT 0x0100
233 #define PDB_PROTECT 0x0200
234 #define PDB_MAP_L1 0x0400
235 #define PDB_BOOTSTRAP 0x1000
236 #define PDB_PARANOIA 0x2000
237 #define PDB_WIRING 0x4000
238 #define PDB_PVDUMP 0x8000
239 #define PDB_VAC 0x10000
240 #define PDB_KENTER 0x20000
241 #define PDB_KREMOVE 0x40000
242
243 int debugmap = 1;
244 int pmapdebug = 0;
245 #define NPDEBUG(_lev_,_stat_) \
246 if (pmapdebug & (_lev_)) \
247 ((_stat_))
248
249 #else /* PMAP_DEBUG */
250 #define PDEBUG(_lev_,_stat_) /* Nothing */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif /* PMAP_DEBUG */
253
254 /*
255 * pmap_kernel() points here
256 */
257 struct pmap kernel_pmap_store;
258
259 /*
260 * Which pmap is currently 'live' in the cache
261 *
262 * XXXSCW: Fix for SMP ...
263 */
264 union pmap_cache_state *pmap_cache_state;
265
266 /*
267 * Pool and cache that pmap structures are allocated from.
268 * We use a cache to avoid clearing the pm_l2[] array (1KB)
269 * in pmap_create().
270 */
271 static struct pool pmap_pmap_pool;
272 static struct pool_cache pmap_pmap_cache;
273 static LIST_HEAD(, pmap) pmap_pmaps;
274
275 /*
276 * Pool of PV structures
277 */
278 static struct pool pmap_pv_pool;
279 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
280 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
281 static struct pool_allocator pmap_bootstrap_pv_allocator = {
282 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
283 };
284
285 /*
286 * Pool and cache of l2_dtable structures.
287 * We use a cache to avoid clearing the structures when they're
288 * allocated. (196 bytes)
289 */
290 static struct pool pmap_l2dtable_pool;
291 static struct pool_cache pmap_l2dtable_cache;
292 static vaddr_t pmap_kernel_l2dtable_kva;
293
294 /*
295 * Pool and cache of L2 page descriptors.
296 * We use a cache to avoid clearing the descriptor table
297 * when they're allocated. (1KB)
298 */
299 static struct pool pmap_l2ptp_pool;
300 static struct pool_cache pmap_l2ptp_cache;
301 static vaddr_t pmap_kernel_l2ptp_kva;
302 static paddr_t pmap_kernel_l2ptp_phys;
303
304 /*
305 * pmap copy/zero page, and mem(5) hook point
306 */
307 static pt_entry_t *csrc_pte, *cdst_pte;
308 static vaddr_t csrcp, cdstp;
309 char *memhook;
310 extern caddr_t msgbufaddr;
311
312 /*
313 * Flag to indicate if pmap_init() has done its thing
314 */
315 boolean_t pmap_initialized;
316
317 /*
318 * Misc. locking data structures
319 */
320
321 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
322 static struct lock pmap_main_lock;
323
324 #define PMAP_MAP_TO_HEAD_LOCK() \
325 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
326 #define PMAP_MAP_TO_HEAD_UNLOCK() \
327 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
328 #define PMAP_HEAD_TO_MAP_LOCK() \
329 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
330 #define PMAP_HEAD_TO_MAP_UNLOCK() \
331 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
332 #else
333 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
334 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
335 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
336 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
337 #endif
338
339 #define pmap_acquire_pmap_lock(pm) \
340 do { \
341 if ((pm) != pmap_kernel()) \
342 simple_lock(&(pm)->pm_lock); \
343 } while (/*CONSTCOND*/0)
344
345 #define pmap_release_pmap_lock(pm) \
346 do { \
347 if ((pm) != pmap_kernel()) \
348 simple_unlock(&(pm)->pm_lock); \
349 } while (/*CONSTCOND*/0)
350
351
352 /*
353 * Metadata for L1 translation tables.
354 */
355 struct l1_ttable {
356 /* Entry on the L1 Table list */
357 SLIST_ENTRY(l1_ttable) l1_link;
358
359 /* Entry on the L1 Least Recently Used list */
360 TAILQ_ENTRY(l1_ttable) l1_lru;
361
362 /* Track how many domains are allocated from this L1 */
363 volatile u_int l1_domain_use_count;
364
365 /*
366 * A free-list of domain numbers for this L1.
367 * We avoid using ffs() and a bitmap to track domains since ffs()
368 * is slow on ARM.
369 */
370 u_int8_t l1_domain_first;
371 u_int8_t l1_domain_free[PMAP_DOMAINS];
372
373 /* Physical address of this L1 page table */
374 paddr_t l1_physaddr;
375
376 /* KVA of this L1 page table */
377 pd_entry_t *l1_kva;
378 };
379
380 /*
381 * Convert a virtual address into its L1 table index. That is, the
382 * index used to locate the L2 descriptor table pointer in an L1 table.
383 * This is basically used to index l1->l1_kva[].
384 *
385 * Each L2 descriptor table represents 1MB of VA space.
386 */
387 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
388
389 /*
390 * L1 Page Tables are tracked using a Least Recently Used list.
391 * - New L1s are allocated from the HEAD.
392 * - Freed L1s are added to the TAIl.
393 * - Recently accessed L1s (where an 'access' is some change to one of
394 * the userland pmaps which owns this L1) are moved to the TAIL.
395 */
396 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
397 static struct simplelock l1_lru_lock;
398
399 /*
400 * A list of all L1 tables
401 */
402 static SLIST_HEAD(, l1_ttable) l1_list;
403
404 /*
405 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
406 *
407 * This is normally 16MB worth L2 page descriptors for any given pmap.
408 * Reference counts are maintained for L2 descriptors so they can be
409 * freed when empty.
410 */
411 struct l2_dtable {
412 /* The number of L2 page descriptors allocated to this l2_dtable */
413 u_int l2_occupancy;
414
415 /* List of L2 page descriptors */
416 struct l2_bucket {
417 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
418 paddr_t l2b_phys; /* Physical address of same */
419 u_short l2b_l1idx; /* This L2 table's L1 index */
420 u_short l2b_occupancy; /* How many active descriptors */
421 } l2_bucket[L2_BUCKET_SIZE];
422 };
423
424 /*
425 * Given an L1 table index, calculate the corresponding l2_dtable index
426 * and bucket index within the l2_dtable.
427 */
428 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
429 (L2_SIZE - 1))
430 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
431
432 /*
433 * Given a virtual address, this macro returns the
434 * virtual address required to drop into the next L2 bucket.
435 */
436 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
437
438 /*
439 * L2 allocation.
440 */
441 #define pmap_alloc_l2_dtable() \
442 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
443 #define pmap_free_l2_dtable(l2) \
444 pool_cache_put(&pmap_l2dtable_cache, (l2))
445 #define pmap_alloc_l2_ptp(pap) \
446 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
447 PR_NOWAIT, (pap)))
448
449 /*
450 * We try to map the page tables write-through, if possible. However, not
451 * all CPUs have a write-through cache mode, so on those we have to sync
452 * the cache when we frob page tables.
453 *
454 * We try to evaluate this at compile time, if possible. However, it's
455 * not always possible to do that, hence this run-time var.
456 */
457 int pmap_needs_pte_sync;
458
459 /*
460 * Real definition of pv_entry.
461 */
462 struct pv_entry {
463 struct pv_entry *pv_next; /* next pv_entry */
464 pmap_t pv_pmap; /* pmap where mapping lies */
465 vaddr_t pv_va; /* virtual address for mapping */
466 u_int pv_flags; /* flags */
467 };
468
469 /*
470 * Macro to determine if a mapping might be resident in the
471 * instruction cache and/or TLB
472 */
473 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
474
475 /*
476 * Macro to determine if a mapping might be resident in the
477 * data cache and/or TLB
478 */
479 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
480
481 /*
482 * Local prototypes
483 */
484 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
485 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
486 pt_entry_t **);
487 static boolean_t pmap_is_current(pmap_t);
488 static boolean_t pmap_is_cached(pmap_t);
489 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
490 pmap_t, vaddr_t, u_int);
491 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
492 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
493 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
494 u_int, u_int);
495
496 static void pmap_pinit(pmap_t);
497 static int pmap_pmap_ctor(void *, void *, int);
498
499 static void pmap_alloc_l1(pmap_t);
500 static void pmap_free_l1(pmap_t);
501 static void pmap_use_l1(pmap_t);
502
503 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
504 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
505 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
506 static int pmap_l2ptp_ctor(void *, void *, int);
507 static int pmap_l2dtable_ctor(void *, void *, int);
508
509 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
510 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
511 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
512
513 static void pmap_clearbit(struct vm_page *, u_int);
514 static int pmap_clean_page(struct pv_entry *, boolean_t);
515 static void pmap_page_remove(struct vm_page *);
516
517 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
518 static vaddr_t kernel_pt_lookup(paddr_t);
519
520
521 /*
522 * External function prototypes
523 */
524 extern void bzero_page(vaddr_t);
525 extern void bcopy_page(vaddr_t, vaddr_t);
526
527 /*
528 * Misc variables
529 */
530 vaddr_t virtual_avail;
531 vaddr_t virtual_end;
532 vaddr_t pmap_curmaxkvaddr;
533
534 vaddr_t avail_start;
535 vaddr_t avail_end;
536
537 extern pv_addr_t systempage;
538
539 /* Function to set the debug level of the pmap code */
540
541 #ifdef PMAP_DEBUG
542 void
543 pmap_debug(int level)
544 {
545 pmap_debug_level = level;
546 printf("pmap_debug: level=%d\n", pmap_debug_level);
547 }
548 #endif /* PMAP_DEBUG */
549
550 /*
551 * A bunch of routines to conditionally flush the caches/TLB depending
552 * on whether the specified pmap actually needs to be flushed at any
553 * given time.
554 */
555 static __inline void
556 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
557 {
558
559 if (pm->pm_cstate.cs_tlb_id)
560 cpu_tlb_flushID_SE(va);
561 }
562
563 static __inline void
564 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
565 {
566
567 if (pm->pm_cstate.cs_tlb_d)
568 cpu_tlb_flushD_SE(va);
569 }
570
571 static __inline void
572 pmap_tlb_flushID(pmap_t pm)
573 {
574
575 if (pm->pm_cstate.cs_tlb_id) {
576 cpu_tlb_flushID();
577 pm->pm_cstate.cs_tlb = 0;
578 }
579 }
580
581 static __inline void
582 pmap_tlb_flushD(pmap_t pm)
583 {
584
585 if (pm->pm_cstate.cs_tlb_d) {
586 cpu_tlb_flushD();
587 pm->pm_cstate.cs_tlb_d = 0;
588 }
589 }
590
591 static __inline void
592 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
593 {
594
595 if (pm->pm_cstate.cs_cache_id)
596 cpu_idcache_wbinv_range(va, len);
597 }
598
599 static __inline void
600 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
601 boolean_t do_inv, boolean_t rd_only)
602 {
603
604 if (pm->pm_cstate.cs_cache_d) {
605 if (do_inv) {
606 if (rd_only)
607 cpu_dcache_inv_range(va, len);
608 else
609 cpu_dcache_wbinv_range(va, len);
610 } else
611 if (!rd_only)
612 cpu_dcache_wb_range(va, len);
613 }
614 }
615
616 static __inline void
617 pmap_idcache_wbinv_all(pmap_t pm)
618 {
619
620 if (pm->pm_cstate.cs_cache_id) {
621 cpu_idcache_wbinv_all();
622 pm->pm_cstate.cs_cache = 0;
623 }
624 }
625
626 static __inline void
627 pmap_dcache_wbinv_all(pmap_t pm)
628 {
629
630 if (pm->pm_cstate.cs_cache_d) {
631 cpu_dcache_wbinv_all();
632 pm->pm_cstate.cs_cache_d = 0;
633 }
634 }
635
636 static __inline boolean_t
637 pmap_is_current(pmap_t pm)
638 {
639
640 if (pm == pmap_kernel() ||
641 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
642 return (TRUE);
643
644 return (FALSE);
645 }
646
647 static __inline boolean_t
648 pmap_is_cached(pmap_t pm)
649 {
650
651 if (pm == pmap_kernel() || pmap_cache_state == NULL ||
652 pmap_cache_state == &pm->pm_cstate)
653 return (TRUE);
654
655 return (FALSE);
656 }
657
658 /*
659 * PTE_SYNC_CURRENT:
660 *
661 * Make sure the pte is written out to RAM.
662 * We need to do this for one of two cases:
663 * - We're dealing with the kernel pmap
664 * - There is no pmap active in the cache/tlb.
665 * - The specified pmap is 'active' in the cache/tlb.
666 */
667 #ifdef PMAP_INCLUDE_PTE_SYNC
668 #define PTE_SYNC_CURRENT(pm, ptep) \
669 do { \
670 if (PMAP_NEEDS_PTE_SYNC && \
671 pmap_is_cached(pm)) \
672 PTE_SYNC(ptep); \
673 } while (/*CONSTCOND*/0)
674 #else
675 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
676 #endif
677
678 /*
679 * main pv_entry manipulation functions:
680 * pmap_enter_pv: enter a mapping onto a vm_page list
681 * pmap_remove_pv: remove a mappiing from a vm_page list
682 *
683 * NOTE: pmap_enter_pv expects to lock the pvh itself
684 * pmap_remove_pv expects te caller to lock the pvh before calling
685 */
686
687 /*
688 * pmap_enter_pv: enter a mapping onto a vm_page lst
689 *
690 * => caller should hold the proper lock on pmap_main_lock
691 * => caller should have pmap locked
692 * => we will gain the lock on the vm_page and allocate the new pv_entry
693 * => caller should adjust ptp's wire_count before calling
694 * => caller should not adjust pmap's wire_count
695 */
696 static void
697 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
698 vaddr_t va, u_int flags)
699 {
700
701 NPDEBUG(PDB_PVDUMP,
702 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
703
704 pve->pv_pmap = pm;
705 pve->pv_va = va;
706 pve->pv_flags = flags;
707
708 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
709 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
710 pg->mdpage.pvh_list = pve; /* ... locked list */
711 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
712 if (pm == pmap_kernel()) {
713 if (flags & PVF_WRITE)
714 pg->mdpage.krw_mappings++;
715 else
716 pg->mdpage.kro_mappings++;
717 } else
718 if (flags & PVF_WRITE)
719 pg->mdpage.urw_mappings++;
720 else
721 pg->mdpage.uro_mappings++;
722 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
723
724 if (pve->pv_flags & PVF_WIRED)
725 ++pm->pm_stats.wired_count;
726 }
727
728 /*
729 *
730 * pmap_find_pv: Find a pv entry
731 *
732 * => caller should hold lock on vm_page
733 */
734 static __inline struct pv_entry *
735 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
736 {
737 struct pv_entry *pv;
738
739 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
740 if (pm == pv->pv_pmap && va == pv->pv_va)
741 break;
742 }
743
744 return (pv);
745 }
746
747 /*
748 * pmap_remove_pv: try to remove a mapping from a pv_list
749 *
750 * => caller should hold proper lock on pmap_main_lock
751 * => pmap should be locked
752 * => caller should hold lock on vm_page [so that attrs can be adjusted]
753 * => caller should adjust ptp's wire_count and free PTP if needed
754 * => caller should NOT adjust pmap's wire_count
755 * => we return the removed pve
756 */
757 static struct pv_entry *
758 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
759 {
760 struct pv_entry *pve, **prevptr;
761
762 NPDEBUG(PDB_PVDUMP,
763 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
764
765 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
766 pve = *prevptr;
767
768 while (pve) {
769 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
770 NPDEBUG(PDB_PVDUMP,
771 printf("pmap_remove_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, pve->pv_flags));
772 *prevptr = pve->pv_next; /* remove it! */
773 if (pve->pv_flags & PVF_WIRED)
774 --pm->pm_stats.wired_count;
775 if (pm == pmap_kernel()) {
776 if (pve->pv_flags & PVF_WRITE)
777 pg->mdpage.krw_mappings--;
778 else
779 pg->mdpage.kro_mappings--;
780 } else
781 if (pve->pv_flags & PVF_WRITE)
782 pg->mdpage.urw_mappings--;
783 else
784 pg->mdpage.uro_mappings--;
785 break;
786 }
787 prevptr = &pve->pv_next; /* previous pointer */
788 pve = pve->pv_next; /* advance */
789 }
790
791 return(pve); /* return removed pve */
792 }
793
794 /*
795 *
796 * pmap_modify_pv: Update pv flags
797 *
798 * => caller should hold lock on vm_page [so that attrs can be adjusted]
799 * => caller should NOT adjust pmap's wire_count
800 * => caller must call pmap_vac_me_harder() if writable status of a page
801 * may have changed.
802 * => we return the old flags
803 *
804 * Modify a physical-virtual mapping in the pv table
805 */
806 static u_int
807 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
808 u_int clr_mask, u_int set_mask)
809 {
810 struct pv_entry *npv;
811 u_int flags, oflags;
812
813 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
814 return (0);
815
816 NPDEBUG(PDB_PVDUMP,
817 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
818
819 /*
820 * There is at least one VA mapping this page.
821 */
822
823 if (clr_mask & (PVF_REF | PVF_MOD))
824 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
825
826 oflags = npv->pv_flags;
827 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
828
829 if ((flags ^ oflags) & PVF_WIRED) {
830 if (flags & PVF_WIRED)
831 ++pm->pm_stats.wired_count;
832 else
833 --pm->pm_stats.wired_count;
834 }
835
836 if ((flags ^ oflags) & PVF_WRITE) {
837 if (pm == pmap_kernel()) {
838 if (flags & PVF_WRITE) {
839 pg->mdpage.krw_mappings++;
840 pg->mdpage.kro_mappings--;
841 } else {
842 pg->mdpage.kro_mappings++;
843 pg->mdpage.krw_mappings--;
844 }
845 } else
846 if (flags & PVF_WRITE) {
847 pg->mdpage.urw_mappings++;
848 pg->mdpage.uro_mappings--;
849 } else {
850 pg->mdpage.uro_mappings++;
851 pg->mdpage.urw_mappings--;
852 }
853 }
854
855 return (oflags);
856 }
857
858 static void
859 pmap_pinit(pmap_t pm)
860 {
861
862 if (vector_page < KERNEL_BASE) {
863 /*
864 * Map the vector page.
865 */
866 pmap_enter(pm, vector_page, systempage.pv_pa,
867 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
868 pmap_update(pm);
869 }
870 }
871
872 /*
873 * Allocate an L1 translation table for the specified pmap.
874 * This is called at pmap creation time.
875 */
876 static void
877 pmap_alloc_l1(pmap_t pm)
878 {
879 struct l1_ttable *l1;
880 u_int8_t domain;
881
882 /*
883 * Remove the L1 at the head of the LRU list
884 */
885 simple_lock(&l1_lru_lock);
886 l1 = TAILQ_FIRST(&l1_lru_list);
887 KDASSERT(l1 != NULL);
888 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
889
890 /*
891 * Pick the first available domain number, and update
892 * the link to the next number.
893 */
894 domain = l1->l1_domain_first;
895 l1->l1_domain_first = l1->l1_domain_free[domain];
896
897 /*
898 * If there are still free domain numbers in this L1,
899 * put it back on the TAIL of the LRU list.
900 */
901 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
902 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
903
904 simple_unlock(&l1_lru_lock);
905
906 /*
907 * Fix up the relevant bits in the pmap structure
908 */
909 pm->pm_l1 = l1;
910 pm->pm_domain = domain;
911 }
912
913 /*
914 * Free an L1 translation table.
915 * This is called at pmap destruction time.
916 */
917 static void
918 pmap_free_l1(pmap_t pm)
919 {
920 struct l1_ttable *l1 = pm->pm_l1;
921
922 simple_lock(&l1_lru_lock);
923
924 /*
925 * If this L1 is currently on the LRU list, remove it.
926 */
927 if (l1->l1_domain_use_count < PMAP_DOMAINS)
928 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
929
930 /*
931 * Free up the domain number which was allocated to the pmap
932 */
933 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
934 l1->l1_domain_first = pm->pm_domain;
935 l1->l1_domain_use_count--;
936
937 /*
938 * The L1 now must have at least 1 free domain, so add
939 * it back to the LRU list. If the use count is zero,
940 * put it at the head of the list, otherwise it goes
941 * to the tail.
942 */
943 if (l1->l1_domain_use_count == 0)
944 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
945 else
946 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
947
948 simple_unlock(&l1_lru_lock);
949 }
950
951 static __inline void
952 pmap_use_l1(pmap_t pm)
953 {
954 struct l1_ttable *l1;
955
956 /*
957 * Do nothing if we're in interrupt context.
958 * Access to an L1 by the kernel pmap must not affect
959 * the LRU list.
960 */
961 if (current_intr_depth || pm == pmap_kernel())
962 return;
963
964 l1 = pm->pm_l1;
965
966 /*
967 * If the L1 is not currently on the LRU list, just return
968 */
969 if (l1->l1_domain_use_count == PMAP_DOMAINS)
970 return;
971
972 simple_lock(&l1_lru_lock);
973
974 /*
975 * Check the use count again, now that we've acquired the lock
976 */
977 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
978 simple_unlock(&l1_lru_lock);
979 return;
980 }
981
982 /*
983 * Move the L1 to the back of the LRU list
984 */
985 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
986 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
987
988 simple_unlock(&l1_lru_lock);
989 }
990
991 /*
992 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
993 *
994 * Free an L2 descriptor table.
995 */
996 static __inline void
997 #ifndef PMAP_INCLUDE_PTE_SYNC
998 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
999 #else
1000 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
1001 #endif
1002 {
1003 #ifdef PMAP_INCLUDE_PTE_SYNC
1004 /*
1005 * Note: With a write-back cache, we may need to sync this
1006 * L2 table before re-using it.
1007 * This is because it may have belonged to a non-current
1008 * pmap, in which case the cache syncs would have been
1009 * skipped when the pages were being unmapped. If the
1010 * L2 table were then to be immediately re-allocated to
1011 * the *current* pmap, it may well contain stale mappings
1012 * which have not yet been cleared by a cache write-back
1013 * and so would still be visible to the mmu.
1014 */
1015 if (need_sync)
1016 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1017 #endif
1018 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1019 }
1020
1021 /*
1022 * Returns a pointer to the L2 bucket associated with the specified pmap
1023 * and VA, or NULL if no L2 bucket exists for the address.
1024 */
1025 static __inline struct l2_bucket *
1026 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1027 {
1028 struct l2_dtable *l2;
1029 struct l2_bucket *l2b;
1030 u_short l1idx;
1031
1032 l1idx = L1_IDX(va);
1033
1034 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1035 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1036 return (NULL);
1037
1038 return (l2b);
1039 }
1040
1041 /*
1042 * Returns a pointer to the L2 bucket associated with the specified pmap
1043 * and VA.
1044 *
1045 * If no L2 bucket exists, perform the necessary allocations to put an L2
1046 * bucket/page table in place.
1047 *
1048 * Note that if a new L2 bucket/page was allocated, the caller *must*
1049 * increment the bucket occupancy counter appropriately *before*
1050 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1051 * the bucket/page in the meantime.
1052 */
1053 static struct l2_bucket *
1054 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1055 {
1056 struct l2_dtable *l2;
1057 struct l2_bucket *l2b;
1058 u_short l1idx;
1059
1060 l1idx = L1_IDX(va);
1061
1062 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1063 /*
1064 * No mapping at this address, as there is
1065 * no entry in the L1 table.
1066 * Need to allocate a new l2_dtable.
1067 */
1068 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1069 return (NULL);
1070
1071 /*
1072 * Link it into the parent pmap
1073 */
1074 pm->pm_l2[L2_IDX(l1idx)] = l2;
1075 }
1076
1077 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1078
1079 /*
1080 * Fetch pointer to the L2 page table associated with the address.
1081 */
1082 if (l2b->l2b_kva == NULL) {
1083 pt_entry_t *ptep;
1084
1085 /*
1086 * No L2 page table has been allocated. Chances are, this
1087 * is because we just allocated the l2_dtable, above.
1088 */
1089 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1090 /*
1091 * Oops, no more L2 page tables available at this
1092 * time. We may need to deallocate the l2_dtable
1093 * if we allocated a new one above.
1094 */
1095 if (l2->l2_occupancy == 0) {
1096 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1097 pmap_free_l2_dtable(l2);
1098 }
1099 return (NULL);
1100 }
1101
1102 l2->l2_occupancy++;
1103 l2b->l2b_kva = ptep;
1104 l2b->l2b_l1idx = l1idx;
1105 }
1106
1107 return (l2b);
1108 }
1109
1110 /*
1111 * One or more mappings in the specified L2 descriptor table have just been
1112 * invalidated.
1113 *
1114 * Garbage collect the metadata and descriptor table itself if necessary.
1115 *
1116 * The pmap lock must be acquired when this is called (not necessary
1117 * for the kernel pmap).
1118 */
1119 static void
1120 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1121 {
1122 struct l2_dtable *l2;
1123 pd_entry_t *pl1pd, l1pd;
1124 pt_entry_t *ptep;
1125 u_short l1idx;
1126
1127 KDASSERT(count <= l2b->l2b_occupancy);
1128
1129 /*
1130 * Update the bucket's reference count according to how many
1131 * PTEs the caller has just invalidated.
1132 */
1133 l2b->l2b_occupancy -= count;
1134
1135 /*
1136 * Note:
1137 *
1138 * Level 2 page tables allocated to the kernel pmap are never freed
1139 * as that would require checking all Level 1 page tables and
1140 * removing any references to the Level 2 page table. See also the
1141 * comment elsewhere about never freeing bootstrap L2 descriptors.
1142 *
1143 * We make do with just invalidating the mapping in the L2 table.
1144 *
1145 * This isn't really a big deal in practice and, in fact, leads
1146 * to a performance win over time as we don't need to continually
1147 * alloc/free.
1148 */
1149 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1150 return;
1151
1152 /*
1153 * There are no more valid mappings in this level 2 page table.
1154 * Go ahead and NULL-out the pointer in the bucket, then
1155 * free the page table.
1156 */
1157 l1idx = l2b->l2b_l1idx;
1158 ptep = l2b->l2b_kva;
1159 l2b->l2b_kva = NULL;
1160
1161 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1162
1163 /*
1164 * If the L1 slot matches the pmap's domain
1165 * number, then invalidate it.
1166 */
1167 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1168 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1169 *pl1pd = 0;
1170 PTE_SYNC(pl1pd);
1171 }
1172
1173 /*
1174 * Release the L2 descriptor table back to the pool cache.
1175 */
1176 #ifndef PMAP_INCLUDE_PTE_SYNC
1177 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1178 #else
1179 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1180 #endif
1181
1182 /*
1183 * Update the reference count in the associated l2_dtable
1184 */
1185 l2 = pm->pm_l2[L2_IDX(l1idx)];
1186 if (--l2->l2_occupancy > 0)
1187 return;
1188
1189 /*
1190 * There are no more valid mappings in any of the Level 1
1191 * slots managed by this l2_dtable. Go ahead and NULL-out
1192 * the pointer in the parent pmap and free the l2_dtable.
1193 */
1194 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1195 pmap_free_l2_dtable(l2);
1196 }
1197
1198 /*
1199 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1200 * structures.
1201 */
1202 static int
1203 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1204 {
1205 #ifndef PMAP_INCLUDE_PTE_SYNC
1206 struct l2_bucket *l2b;
1207 pt_entry_t *ptep, pte;
1208 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1209
1210 /*
1211 * The mappings for these page tables were initially made using
1212 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1213 * mode will not be right for page table mappings. To avoid
1214 * polluting the pmap_kenter_pa() code with a special case for
1215 * page tables, we simply fix up the cache-mode here if it's not
1216 * correct.
1217 */
1218 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1219 KDASSERT(l2b != NULL);
1220 ptep = &l2b->l2b_kva[l2pte_index(va)];
1221 pte = *ptep;
1222
1223 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1224 /*
1225 * Page tables must have the cache-mode set to Write-Thru.
1226 */
1227 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1228 PTE_SYNC(ptep);
1229 cpu_tlb_flushD_SE(va);
1230 cpu_cpwait();
1231 }
1232 #endif
1233
1234 memset(v, 0, L2_TABLE_SIZE_REAL);
1235 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1236 return (0);
1237 }
1238
1239 static int
1240 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1241 {
1242
1243 memset(v, 0, sizeof(struct l2_dtable));
1244 return (0);
1245 }
1246
1247 static int
1248 pmap_pmap_ctor(void *arg, void *v, int flags)
1249 {
1250
1251 memset(v, 0, sizeof(struct pmap));
1252 return (0);
1253 }
1254
1255 /*
1256 * Since we have a virtually indexed cache, we may need to inhibit caching if
1257 * there is more than one mapping and at least one of them is writable.
1258 * Since we purge the cache on every context switch, we only need to check for
1259 * other mappings within the same pmap, or kernel_pmap.
1260 * This function is also called when a page is unmapped, to possibly reenable
1261 * caching on any remaining mappings.
1262 *
1263 * The code implements the following logic, where:
1264 *
1265 * KW = # of kernel read/write pages
1266 * KR = # of kernel read only pages
1267 * UW = # of user read/write pages
1268 * UR = # of user read only pages
1269 *
1270 * KC = kernel mapping is cacheable
1271 * UC = user mapping is cacheable
1272 *
1273 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1274 * +---------------------------------------------
1275 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1276 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1277 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1278 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1279 */
1280
1281 static const int pmap_vac_flags[4][4] = {
1282 {-1, 0, 0, PVF_KNC},
1283 {0, 0, PVF_NC, PVF_NC},
1284 {0, PVF_NC, PVF_NC, PVF_NC},
1285 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1286 };
1287
1288 static __inline int
1289 pmap_get_vac_flags(const struct vm_page *pg)
1290 {
1291 int kidx, uidx;
1292
1293 kidx = 0;
1294 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1295 kidx |= 1;
1296 if (pg->mdpage.krw_mappings)
1297 kidx |= 2;
1298
1299 uidx = 0;
1300 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1301 uidx |= 1;
1302 if (pg->mdpage.urw_mappings)
1303 uidx |= 2;
1304
1305 return (pmap_vac_flags[uidx][kidx]);
1306 }
1307
1308 static __inline void
1309 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1310 {
1311 int nattr;
1312
1313 nattr = pmap_get_vac_flags(pg);
1314
1315 if (nattr < 0) {
1316 pg->mdpage.pvh_attrs &= ~PVF_NC;
1317 return;
1318 }
1319
1320 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1321 return;
1322
1323 if (pm == pmap_kernel())
1324 pmap_vac_me_kpmap(pg, pm, va);
1325 else
1326 pmap_vac_me_user(pg, pm, va);
1327
1328 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1329 }
1330
1331 static void
1332 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1333 {
1334 u_int u_cacheable, u_entries;
1335 struct pv_entry *pv;
1336 pmap_t last_pmap = pm;
1337
1338 /*
1339 * Pass one, see if there are both kernel and user pmaps for
1340 * this page. Calculate whether there are user-writable or
1341 * kernel-writable pages.
1342 */
1343 u_cacheable = 0;
1344 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1345 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1346 u_cacheable++;
1347 }
1348
1349 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1350
1351 /*
1352 * We know we have just been updating a kernel entry, so if
1353 * all user pages are already cacheable, then there is nothing
1354 * further to do.
1355 */
1356 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1357 return;
1358
1359 if (u_entries) {
1360 /*
1361 * Scan over the list again, for each entry, if it
1362 * might not be set correctly, call pmap_vac_me_user
1363 * to recalculate the settings.
1364 */
1365 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1366 /*
1367 * We know kernel mappings will get set
1368 * correctly in other calls. We also know
1369 * that if the pmap is the same as last_pmap
1370 * then we've just handled this entry.
1371 */
1372 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1373 continue;
1374
1375 /*
1376 * If there are kernel entries and this page
1377 * is writable but non-cacheable, then we can
1378 * skip this entry also.
1379 */
1380 if (pg->mdpage.k_mappings &&
1381 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1382 (PVF_NC | PVF_WRITE))
1383 continue;
1384
1385 /*
1386 * Similarly if there are no kernel-writable
1387 * entries and the page is already
1388 * read-only/cacheable.
1389 */
1390 if (pg->mdpage.krw_mappings == 0 &&
1391 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1392 continue;
1393
1394 /*
1395 * For some of the remaining cases, we know
1396 * that we must recalculate, but for others we
1397 * can't tell if they are correct or not, so
1398 * we recalculate anyway.
1399 */
1400 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1401 }
1402
1403 if (pg->mdpage.k_mappings == 0)
1404 return;
1405 }
1406
1407 pmap_vac_me_user(pg, pm, va);
1408 }
1409
1410 static void
1411 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1412 {
1413 pmap_t kpmap = pmap_kernel();
1414 struct pv_entry *pv, *npv;
1415 struct l2_bucket *l2b;
1416 pt_entry_t *ptep, pte;
1417 u_int entries = 0;
1418 u_int writable = 0;
1419 u_int cacheable_entries = 0;
1420 u_int kern_cacheable = 0;
1421 u_int other_writable = 0;
1422
1423 /*
1424 * Count mappings and writable mappings in this pmap.
1425 * Include kernel mappings as part of our own.
1426 * Keep a pointer to the first one.
1427 */
1428 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1429 /* Count mappings in the same pmap */
1430 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1431 if (entries++ == 0)
1432 npv = pv;
1433
1434 /* Cacheable mappings */
1435 if ((pv->pv_flags & PVF_NC) == 0) {
1436 cacheable_entries++;
1437 if (kpmap == pv->pv_pmap)
1438 kern_cacheable++;
1439 }
1440
1441 /* Writable mappings */
1442 if (pv->pv_flags & PVF_WRITE)
1443 ++writable;
1444 } else
1445 if (pv->pv_flags & PVF_WRITE)
1446 other_writable = 1;
1447 }
1448
1449 /*
1450 * Enable or disable caching as necessary.
1451 * Note: the first entry might be part of the kernel pmap,
1452 * so we can't assume this is indicative of the state of the
1453 * other (maybe non-kpmap) entries.
1454 */
1455 if ((entries > 1 && writable) ||
1456 (entries > 0 && pm == kpmap && other_writable)) {
1457 if (cacheable_entries == 0)
1458 return;
1459
1460 for (pv = npv; pv; pv = pv->pv_next) {
1461 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1462 (pv->pv_flags & PVF_NC))
1463 continue;
1464
1465 pv->pv_flags |= PVF_NC;
1466
1467 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1468 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1469 pte = *ptep & ~L2_S_CACHE_MASK;
1470
1471 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1472 l2pte_valid(pte)) {
1473 if (PV_BEEN_EXECD(pv->pv_flags)) {
1474 pmap_idcache_wbinv_range(pv->pv_pmap,
1475 pv->pv_va, PAGE_SIZE);
1476 pmap_tlb_flushID_SE(pv->pv_pmap,
1477 pv->pv_va);
1478 } else
1479 if (PV_BEEN_REFD(pv->pv_flags)) {
1480 pmap_dcache_wb_range(pv->pv_pmap,
1481 pv->pv_va, PAGE_SIZE, TRUE,
1482 (pv->pv_flags & PVF_WRITE) == 0);
1483 pmap_tlb_flushD_SE(pv->pv_pmap,
1484 pv->pv_va);
1485 }
1486 }
1487
1488 *ptep = pte;
1489 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1490 }
1491 cpu_cpwait();
1492 } else
1493 if (entries > cacheable_entries) {
1494 /*
1495 * Turn cacheing back on for some pages. If it is a kernel
1496 * page, only do so if there are no other writable pages.
1497 */
1498 for (pv = npv; pv; pv = pv->pv_next) {
1499 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1500 (kpmap != pv->pv_pmap || other_writable)))
1501 continue;
1502
1503 pv->pv_flags &= ~PVF_NC;
1504
1505 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1506 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1507 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1508
1509 if (l2pte_valid(pte)) {
1510 if (PV_BEEN_EXECD(pv->pv_flags)) {
1511 pmap_tlb_flushID_SE(pv->pv_pmap,
1512 pv->pv_va);
1513 } else
1514 if (PV_BEEN_REFD(pv->pv_flags)) {
1515 pmap_tlb_flushD_SE(pv->pv_pmap,
1516 pv->pv_va);
1517 }
1518 }
1519
1520 *ptep = pte;
1521 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1522 }
1523 }
1524 }
1525
1526 /*
1527 * Modify pte bits for all ptes corresponding to the given physical address.
1528 * We use `maskbits' rather than `clearbits' because we're always passing
1529 * constants and the latter would require an extra inversion at run-time.
1530 */
1531 static void
1532 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1533 {
1534 struct l2_bucket *l2b;
1535 struct pv_entry *pv;
1536 pt_entry_t *ptep, npte, opte;
1537 pmap_t pm;
1538 vaddr_t va;
1539 u_int oflags;
1540
1541 NPDEBUG(PDB_BITS,
1542 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1543 pg, pg->phys_addr, maskbits));
1544
1545 PMAP_HEAD_TO_MAP_LOCK();
1546 simple_lock(&pg->mdpage.pvh_slock);
1547
1548 /*
1549 * Clear saved attributes (modify, reference)
1550 */
1551 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1552
1553 if (pg->mdpage.pvh_list == NULL) {
1554 simple_unlock(&pg->mdpage.pvh_slock);
1555 PMAP_HEAD_TO_MAP_UNLOCK();
1556 return;
1557 }
1558
1559 /*
1560 * Loop over all current mappings setting/clearing as appropos
1561 */
1562 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1563 va = pv->pv_va;
1564 pm = pv->pv_pmap;
1565 oflags = pv->pv_flags;
1566 pv->pv_flags &= ~maskbits;
1567
1568 pmap_acquire_pmap_lock(pm);
1569
1570 l2b = pmap_get_l2_bucket(pm, va);
1571 KDASSERT(l2b != NULL);
1572
1573 ptep = &l2b->l2b_kva[l2pte_index(va)];
1574 npte = opte = *ptep;
1575
1576 NPDEBUG(PDB_BITS,
1577 printf(
1578 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1579 pv, pv->pv_pmap, pv->pv_va, oflags));
1580
1581 if (maskbits & (PVF_WRITE|PVF_MOD)) {
1582 if ((pv->pv_flags & PVF_NC)) {
1583 /*
1584 * Entry is not cacheable:
1585 *
1586 * Don't turn caching on again if this is a
1587 * modified emulation. This would be
1588 * inconsitent with the settings created by
1589 * pmap_vac_me_harder(). Otherwise, it's safe
1590 * to re-enable cacheing.
1591 *
1592 * There's no need to call pmap_vac_me_harder()
1593 * here: all pages are losing their write
1594 * permission.
1595 */
1596 if (maskbits & PVF_WRITE) {
1597 npte |= pte_l2_s_cache_mode;
1598 pv->pv_flags &= ~PVF_NC;
1599 }
1600 } else
1601 if (opte & L2_S_PROT_W) {
1602 /*
1603 * Entry is writable/cacheable: check if pmap
1604 * is current if it is flush it, otherwise it
1605 * won't be in the cache
1606 */
1607 if (PV_BEEN_EXECD(oflags))
1608 pmap_idcache_wbinv_range(pm, pv->pv_va,
1609 PAGE_SIZE);
1610 else
1611 if (PV_BEEN_REFD(oflags))
1612 pmap_dcache_wb_range(pm, pv->pv_va,
1613 PAGE_SIZE,
1614 (maskbits & PVF_REF) ? TRUE : FALSE,
1615 FALSE);
1616 }
1617
1618 /* make the pte read only */
1619 npte &= ~L2_S_PROT_W;
1620
1621 if (maskbits & PVF_WRITE) {
1622 /*
1623 * Keep alias accounting up to date
1624 */
1625 if (pv->pv_pmap == pmap_kernel()) {
1626 if (oflags & PVF_WRITE) {
1627 pg->mdpage.krw_mappings--;
1628 pg->mdpage.kro_mappings++;
1629 }
1630 } else
1631 if (oflags & PVF_WRITE) {
1632 pg->mdpage.urw_mappings--;
1633 pg->mdpage.uro_mappings++;
1634 }
1635 }
1636 }
1637
1638 if (maskbits & PVF_REF) {
1639 if ((pv->pv_flags & PVF_NC) == 0 &&
1640 (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1641 /*
1642 * Check npte here; we may have already
1643 * done the wbinv above, and the validity
1644 * of the PTE is the same for opte and
1645 * npte.
1646 */
1647 if (npte & L2_S_PROT_W) {
1648 if (PV_BEEN_EXECD(oflags))
1649 pmap_idcache_wbinv_range(pm,
1650 pv->pv_va, PAGE_SIZE);
1651 else
1652 if (PV_BEEN_REFD(oflags))
1653 pmap_dcache_wb_range(pm,
1654 pv->pv_va, PAGE_SIZE,
1655 TRUE, FALSE);
1656 } else
1657 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1658 /* XXXJRT need idcache_inv_range */
1659 if (PV_BEEN_EXECD(oflags))
1660 pmap_idcache_wbinv_range(pm,
1661 pv->pv_va, PAGE_SIZE);
1662 else
1663 if (PV_BEEN_REFD(oflags))
1664 pmap_dcache_wb_range(pm,
1665 pv->pv_va, PAGE_SIZE,
1666 TRUE, TRUE);
1667 }
1668 }
1669
1670 /*
1671 * Make the PTE invalid so that we will take a
1672 * page fault the next time the mapping is
1673 * referenced.
1674 */
1675 npte &= ~L2_TYPE_MASK;
1676 npte |= L2_TYPE_INV;
1677 }
1678
1679 if (npte != opte) {
1680 *ptep = npte;
1681 PTE_SYNC(ptep);
1682 /* Flush the TLB entry if a current pmap. */
1683 if (PV_BEEN_EXECD(oflags))
1684 pmap_tlb_flushID_SE(pm, pv->pv_va);
1685 else
1686 if (PV_BEEN_REFD(oflags))
1687 pmap_tlb_flushD_SE(pm, pv->pv_va);
1688 }
1689
1690 pmap_release_pmap_lock(pm);
1691
1692 NPDEBUG(PDB_BITS,
1693 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1694 pm, va, opte, npte));
1695 }
1696
1697 simple_unlock(&pg->mdpage.pvh_slock);
1698 PMAP_HEAD_TO_MAP_UNLOCK();
1699 }
1700
1701 /*
1702 * pmap_clean_page()
1703 *
1704 * This is a local function used to work out the best strategy to clean
1705 * a single page referenced by its entry in the PV table. It's used by
1706 * pmap_copy_page, pmap_zero page and maybe some others later on.
1707 *
1708 * Its policy is effectively:
1709 * o If there are no mappings, we don't bother doing anything with the cache.
1710 * o If there is one mapping, we clean just that page.
1711 * o If there are multiple mappings, we clean the entire cache.
1712 *
1713 * So that some functions can be further optimised, it returns 0 if it didn't
1714 * clean the entire cache, or 1 if it did.
1715 *
1716 * XXX One bug in this routine is that if the pv_entry has a single page
1717 * mapped at 0x00000000 a whole cache clean will be performed rather than
1718 * just the 1 page. Since this should not occur in everyday use and if it does
1719 * it will just result in not the most efficient clean for the page.
1720 */
1721 static int
1722 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1723 {
1724 pmap_t pm, pm_to_clean = NULL;
1725 struct pv_entry *npv;
1726 u_int cache_needs_cleaning = 0;
1727 u_int flags = 0;
1728 vaddr_t page_to_clean = 0;
1729
1730 if (pv == NULL) {
1731 /* nothing mapped in so nothing to flush */
1732 return (0);
1733 }
1734
1735 /*
1736 * Since we flush the cache each time we change to a different
1737 * user vmspace, we only need to flush the page if it is in the
1738 * current pmap.
1739 */
1740 if (curproc)
1741 pm = curproc->p_vmspace->vm_map.pmap;
1742 else
1743 pm = pmap_kernel();
1744
1745 for (npv = pv; npv; npv = npv->pv_next) {
1746 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1747 flags |= npv->pv_flags;
1748 /*
1749 * The page is mapped non-cacheable in
1750 * this map. No need to flush the cache.
1751 */
1752 if (npv->pv_flags & PVF_NC) {
1753 #ifdef DIAGNOSTIC
1754 if (cache_needs_cleaning)
1755 panic("pmap_clean_page: "
1756 "cache inconsistency");
1757 #endif
1758 break;
1759 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1760 continue;
1761 if (cache_needs_cleaning) {
1762 page_to_clean = 0;
1763 break;
1764 } else {
1765 page_to_clean = npv->pv_va;
1766 pm_to_clean = npv->pv_pmap;
1767 }
1768 cache_needs_cleaning = 1;
1769 }
1770 }
1771
1772 if (page_to_clean) {
1773 if (PV_BEEN_EXECD(flags))
1774 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1775 PAGE_SIZE);
1776 else
1777 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1778 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1779 } else if (cache_needs_cleaning) {
1780 if (PV_BEEN_EXECD(flags))
1781 pmap_idcache_wbinv_all(pm);
1782 else
1783 pmap_dcache_wbinv_all(pm);
1784 return (1);
1785 }
1786 return (0);
1787 }
1788
1789 /*
1790 * Routine: pmap_page_remove
1791 * Function:
1792 * Removes this physical page from
1793 * all physical maps in which it resides.
1794 * Reflects back modify bits to the pager.
1795 */
1796 static void
1797 pmap_page_remove(struct vm_page *pg)
1798 {
1799 struct l2_bucket *l2b;
1800 struct pv_entry *pv, *npv;
1801 pmap_t pm, curpm;
1802 pt_entry_t *ptep, pte;
1803 boolean_t flush;
1804 u_int flags;
1805
1806 NPDEBUG(PDB_FOLLOW,
1807 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg, pg->phys_addr));
1808
1809 PMAP_HEAD_TO_MAP_LOCK();
1810 simple_lock(&pg->mdpage.pvh_slock);
1811
1812 pv = pg->mdpage.pvh_list;
1813 if (pv == NULL) {
1814 simple_unlock(&pg->mdpage.pvh_slock);
1815 PMAP_HEAD_TO_MAP_UNLOCK();
1816 return;
1817 }
1818
1819 /*
1820 * Clear alias counts
1821 */
1822 pg->mdpage.k_mappings = 0;
1823 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1824
1825 flush = FALSE;
1826 flags = 0;
1827 if (curproc)
1828 curpm = curproc->p_vmspace->vm_map.pmap;
1829 else
1830 curpm = pmap_kernel();
1831
1832 pmap_clean_page(pv, FALSE);
1833
1834 while (pv) {
1835 pm = pv->pv_pmap;
1836 if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
1837 flush = TRUE;
1838
1839 pmap_acquire_pmap_lock(pm);
1840
1841 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1842 KDASSERT(l2b != NULL);
1843
1844 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1845 pte = *ptep;
1846
1847 /*
1848 * Update statistics
1849 */
1850 --pm->pm_stats.resident_count;
1851
1852 /* Wired bit */
1853 if (pv->pv_flags & PVF_WIRED)
1854 --pm->pm_stats.wired_count;
1855
1856 flags |= pv->pv_flags;
1857
1858 /*
1859 * Invalidate the PTEs.
1860 */
1861 *ptep = 0;
1862 PTE_SYNC_CURRENT(pm, ptep);
1863 pmap_free_l2_bucket(pm, l2b, 1);
1864
1865 npv = pv->pv_next;
1866 pool_put(&pmap_pv_pool, pv);
1867 pv = npv;
1868 pmap_release_pmap_lock(pm);
1869 }
1870 pg->mdpage.pvh_list = NULL;
1871 simple_unlock(&pg->mdpage.pvh_slock);
1872 PMAP_HEAD_TO_MAP_UNLOCK();
1873
1874 if (flush) {
1875 if (PV_BEEN_EXECD(flags))
1876 pmap_tlb_flushID(curpm);
1877 else
1878 pmap_tlb_flushD(curpm);
1879 }
1880 cpu_cpwait();
1881 }
1882
1883 /*
1884 * pmap_t pmap_create(void)
1885 *
1886 * Create a new pmap structure from scratch.
1887 */
1888 pmap_t
1889 pmap_create(void)
1890 {
1891 pmap_t pm;
1892
1893 pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
1894
1895 simple_lock_init(&pm->pm_lock);
1896 pm->pm_obj.pgops = NULL; /* currently not a mappable object */
1897 TAILQ_INIT(&pm->pm_obj.memq);
1898 pm->pm_obj.uo_npages = 0;
1899 pm->pm_obj.uo_refs = 1;
1900 pm->pm_stats.wired_count = 0;
1901 pm->pm_stats.resident_count = 1;
1902 pm->pm_cstate.cs_all = 0;
1903 pmap_alloc_l1(pm);
1904
1905 /*
1906 * Note: The pool cache ensures that the pm_l2[] array is already
1907 * initialised to zero.
1908 */
1909
1910 pmap_pinit(pm);
1911
1912 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1913
1914 return (pm);
1915 }
1916
1917 /*
1918 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1919 * int flags)
1920 *
1921 * Insert the given physical page (p) at
1922 * the specified virtual address (v) in the
1923 * target physical map with the protection requested.
1924 *
1925 * NB: This is the only routine which MAY NOT lazy-evaluate
1926 * or lose information. That is, this routine must actually
1927 * insert this page into the given map NOW.
1928 */
1929 int
1930 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1931 {
1932 struct l2_bucket *l2b;
1933 struct vm_page *pg, *opg;
1934 struct pv_entry *pve;
1935 pt_entry_t *ptep, npte, opte;
1936 u_int nflags;
1937 u_int oflags;
1938
1939 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1940
1941 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1942 KDASSERT(((va | pa) & PGOFSET) == 0);
1943
1944 /*
1945 * Get a pointer to the page. Later on in this function, we
1946 * test for a managed page by checking pg != NULL.
1947 */
1948 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1949
1950 nflags = 0;
1951 if (prot & VM_PROT_WRITE)
1952 nflags |= PVF_WRITE;
1953 if (prot & VM_PROT_EXECUTE)
1954 nflags |= PVF_EXEC;
1955 if (flags & PMAP_WIRED)
1956 nflags |= PVF_WIRED;
1957
1958 PMAP_MAP_TO_HEAD_LOCK();
1959 pmap_acquire_pmap_lock(pm);
1960
1961 /*
1962 * Fetch the L2 bucket which maps this page, allocating one if
1963 * necessary for user pmaps.
1964 */
1965 if (pm == pmap_kernel())
1966 l2b = pmap_get_l2_bucket(pm, va);
1967 else
1968 l2b = pmap_alloc_l2_bucket(pm, va);
1969 if (l2b == NULL) {
1970 if (flags & PMAP_CANFAIL) {
1971 pmap_release_pmap_lock(pm);
1972 PMAP_MAP_TO_HEAD_UNLOCK();
1973 return (ENOMEM);
1974 }
1975 panic("pmap_enter: failed to allocate L2 bucket");
1976 }
1977 ptep = &l2b->l2b_kva[l2pte_index(va)];
1978 opte = *ptep;
1979 npte = pa;
1980 oflags = 0;
1981
1982 if (opte) {
1983 /*
1984 * There is already a mapping at this address.
1985 * If the physical address is different, lookup the
1986 * vm_page.
1987 */
1988 if (l2pte_pa(opte) != pa)
1989 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
1990 else
1991 opg = pg;
1992 } else
1993 opg = NULL;
1994
1995 if (pg) {
1996 /*
1997 * This is to be a managed mapping.
1998 */
1999 if ((flags & VM_PROT_ALL) ||
2000 (pg->mdpage.pvh_attrs & PVF_REF)) {
2001 /*
2002 * - The access type indicates that we don't need
2003 * to do referenced emulation.
2004 * OR
2005 * - The physical page has already been referenced
2006 * so no need to re-do referenced emulation here.
2007 */
2008 npte |= L2_S_PROTO;
2009
2010 nflags |= PVF_REF;
2011
2012 if ((prot & VM_PROT_WRITE) != 0 &&
2013 ((flags & VM_PROT_WRITE) != 0 ||
2014 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2015 /*
2016 * This is a writable mapping, and the
2017 * page's mod state indicates it has
2018 * already been modified. Make it
2019 * writable from the outset.
2020 */
2021 npte |= L2_S_PROT_W;
2022 nflags |= PVF_MOD;
2023 }
2024 } else {
2025 /*
2026 * Need to do page referenced emulation.
2027 */
2028 npte |= L2_TYPE_INV;
2029 }
2030
2031 npte |= pte_l2_s_cache_mode;
2032
2033 if (pg == opg) {
2034 /*
2035 * We're changing the attrs of an existing mapping.
2036 */
2037 simple_lock(&pg->mdpage.pvh_slock);
2038 oflags = pmap_modify_pv(pg, pm, va,
2039 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2040 PVF_MOD | PVF_REF, nflags);
2041 simple_unlock(&pg->mdpage.pvh_slock);
2042
2043 /*
2044 * We may need to flush the cache if we're
2045 * doing rw-ro...
2046 */
2047 if (pm->pm_cstate.cs_cache_d &&
2048 (oflags & PVF_NC) == 0 &&
2049 (opte & L2_S_PROT_W) != 0 &&
2050 (prot & VM_PROT_WRITE) == 0)
2051 cpu_dcache_wb_range(va, PAGE_SIZE);
2052 } else {
2053 /*
2054 * New mapping, or changing the backing page
2055 * of an existing mapping.
2056 */
2057 if (opg) {
2058 /*
2059 * Replacing an existing mapping with a new one.
2060 * It is part of our managed memory so we
2061 * must remove it from the PV list
2062 */
2063 simple_lock(&opg->mdpage.pvh_slock);
2064 pve = pmap_remove_pv(opg, pm, va);
2065 pmap_vac_me_harder(opg, pm, 0);
2066 simple_unlock(&opg->mdpage.pvh_slock);
2067 oflags = pve->pv_flags;
2068
2069 /*
2070 * If the old mapping was valid (ref/mod
2071 * emulation creates 'invalid' mappings
2072 * initially) then make sure to frob
2073 * the cache.
2074 */
2075 if ((oflags & PVF_NC) == 0 &&
2076 l2pte_valid(opte)) {
2077 if (PV_BEEN_EXECD(oflags)) {
2078 pmap_idcache_wbinv_range(pm, va,
2079 PAGE_SIZE);
2080 } else
2081 if (PV_BEEN_REFD(oflags)) {
2082 pmap_dcache_wb_range(pm, va,
2083 PAGE_SIZE, TRUE,
2084 (oflags & PVF_WRITE) == 0);
2085 }
2086 }
2087 } else
2088 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2089 if ((flags & PMAP_CANFAIL) == 0)
2090 panic("pmap_enter: no pv entries");
2091
2092 if (pm != pmap_kernel())
2093 pmap_free_l2_bucket(pm, l2b, 0);
2094 pmap_release_pmap_lock(pm);
2095 PMAP_MAP_TO_HEAD_UNLOCK();
2096 NPDEBUG(PDB_ENTER,
2097 printf("pmap_enter: ENOMEM\n"));
2098 return (ENOMEM);
2099 }
2100
2101 pmap_enter_pv(pg, pve, pm, va, nflags);
2102 }
2103 } else {
2104 /*
2105 * We're mapping an unmanaged page.
2106 * These are always readable, and possibly writable, from
2107 * the get go as we don't need to track ref/mod status.
2108 */
2109 npte |= L2_S_PROTO;
2110 if (prot & VM_PROT_WRITE)
2111 npte |= L2_S_PROT_W;
2112
2113 /*
2114 * Make sure the vector table is mapped cacheable
2115 */
2116 if (pm != pmap_kernel() && va == vector_page)
2117 npte |= pte_l2_s_cache_mode;
2118
2119 if (opg) {
2120 /*
2121 * Looks like there's an existing 'managed' mapping
2122 * at this address.
2123 */
2124 simple_lock(&opg->mdpage.pvh_slock);
2125 pve = pmap_remove_pv(opg, pm, va);
2126 pmap_vac_me_harder(opg, pm, 0);
2127 simple_unlock(&opg->mdpage.pvh_slock);
2128 oflags = pve->pv_flags;
2129
2130 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2131 if (PV_BEEN_EXECD(oflags))
2132 pmap_idcache_wbinv_range(pm, va,
2133 PAGE_SIZE);
2134 else
2135 if (PV_BEEN_REFD(oflags))
2136 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2137 TRUE, (oflags & PVF_WRITE) == 0);
2138 }
2139 pool_put(&pmap_pv_pool, pve);
2140 }
2141 }
2142
2143 /*
2144 * Make sure userland mappings get the right permissions
2145 */
2146 if (pm != pmap_kernel() && va != vector_page)
2147 npte |= L2_S_PROT_U;
2148
2149 /*
2150 * Keep the stats up to date
2151 */
2152 if (opte == 0) {
2153 l2b->l2b_occupancy++;
2154 pm->pm_stats.resident_count++;
2155 }
2156
2157 NPDEBUG(PDB_ENTER,
2158 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2159
2160 /*
2161 * If this is just a wiring change, the two PTEs will be
2162 * identical, so there's no need to update the page table.
2163 */
2164 if (npte != opte) {
2165 boolean_t is_cached = pmap_is_cached(pm);
2166
2167 *ptep = npte;
2168 if (is_cached) {
2169 /*
2170 * We only need to frob the cache/tlb if this pmap
2171 * is current
2172 */
2173 PTE_SYNC(ptep);
2174 if (va != vector_page && l2pte_valid(npte)) {
2175 /*
2176 * This mapping is likely to be accessed as
2177 * soon as we return to userland. Fix up the
2178 * L1 entry to avoid taking another
2179 * page/domain fault.
2180 */
2181 pd_entry_t *pl1pd, l1pd;
2182
2183 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2184 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2185 L1_C_PROTO;
2186 if (*pl1pd != l1pd) {
2187 *pl1pd = l1pd;
2188 PTE_SYNC(pl1pd);
2189 }
2190 }
2191 }
2192
2193 if (PV_BEEN_EXECD(oflags))
2194 pmap_tlb_flushID_SE(pm, va);
2195 else
2196 if (PV_BEEN_REFD(oflags))
2197 pmap_tlb_flushD_SE(pm, va);
2198
2199 NPDEBUG(PDB_ENTER,
2200 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2201 is_cached, pm->pm_cstate.cs_all));
2202
2203 if (pg != NULL) {
2204 simple_lock(&pg->mdpage.pvh_slock);
2205 pmap_vac_me_harder(pg, pm, va);
2206 simple_unlock(&pg->mdpage.pvh_slock);
2207 }
2208 }
2209
2210 pmap_release_pmap_lock(pm);
2211 PMAP_MAP_TO_HEAD_UNLOCK();
2212
2213 return (0);
2214 }
2215
2216 /*
2217 * pmap_remove()
2218 *
2219 * pmap_remove is responsible for nuking a number of mappings for a range
2220 * of virtual address space in the current pmap. To do this efficiently
2221 * is interesting, because in a number of cases a wide virtual address
2222 * range may be supplied that contains few actual mappings. So, the
2223 * optimisations are:
2224 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2225 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2226 * maybe do just a partial cache clean. This path of execution is
2227 * complicated by the fact that the cache must be flushed _before_
2228 * the PTE is nuked, being a VAC :-)
2229 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2230 * all invalidations until pmap_update(), since pmap_remove_all() has
2231 * already flushed the cache.
2232 * 4. Maybe later fast-case a single page, but I don't think this is
2233 * going to make _that_ much difference overall.
2234 */
2235
2236 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2237
2238 void
2239 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
2240 {
2241 struct l2_bucket *l2b;
2242 vaddr_t next_bucket;
2243 pt_entry_t *ptep;
2244 u_int cleanlist_idx, total, cnt;
2245 struct {
2246 vaddr_t va;
2247 pt_entry_t *pte;
2248 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2249 u_int mappings, is_exec, is_refd;
2250
2251 NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2252 pm, sva, eva));
2253
2254 /*
2255 * we lock in the pmap => pv_head direction
2256 */
2257 PMAP_MAP_TO_HEAD_LOCK();
2258 pmap_acquire_pmap_lock(pm);
2259
2260 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2261 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2262 if (pm->pm_cstate.cs_tlb == 0)
2263 pm->pm_remove_all = TRUE;
2264 } else
2265 cleanlist_idx = 0;
2266
2267 total = 0;
2268
2269 while (sva < eva) {
2270 /*
2271 * Do one L2 bucket's worth at a time.
2272 */
2273 next_bucket = L2_NEXT_BUCKET(sva);
2274 if (next_bucket > eva)
2275 next_bucket = eva;
2276
2277 l2b = pmap_get_l2_bucket(pm, sva);
2278 if (l2b == NULL) {
2279 sva = next_bucket;
2280 continue;
2281 }
2282
2283 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2284 mappings = 0;
2285
2286 while (sva < next_bucket) {
2287 struct vm_page *pg;
2288 pt_entry_t pte;
2289 paddr_t pa;
2290
2291 pte = *ptep;
2292
2293 if (pte == 0) {
2294 /*
2295 * Nothing here, move along
2296 */
2297 sva += PAGE_SIZE;
2298 ptep++;
2299 continue;
2300 }
2301
2302 pm->pm_stats.resident_count--;
2303 pa = l2pte_pa(pte);
2304 is_exec = 0;
2305 is_refd = 1;
2306
2307 /*
2308 * Update flags. In a number of circumstances,
2309 * we could cluster a lot of these and do a
2310 * number of sequential pages in one go.
2311 */
2312 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2313 struct pv_entry *pve;
2314 simple_lock(&pg->mdpage.pvh_slock);
2315 pve = pmap_remove_pv(pg, pm, sva);
2316 pmap_vac_me_harder(pg, pm, 0);
2317 simple_unlock(&pg->mdpage.pvh_slock);
2318 if (pve != NULL) {
2319 if (pm->pm_remove_all == FALSE) {
2320 is_exec =
2321 PV_BEEN_EXECD(pve->pv_flags);
2322 is_refd =
2323 PV_BEEN_REFD(pve->pv_flags);
2324 }
2325 pool_put(&pmap_pv_pool, pve);
2326 }
2327 }
2328
2329 if (!l2pte_valid(pte)) {
2330 *ptep = 0;
2331 PTE_SYNC_CURRENT(pm, ptep);
2332 sva += PAGE_SIZE;
2333 ptep++;
2334 mappings++;
2335 continue;
2336 }
2337
2338 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2339 /* Add to the clean list. */
2340 cleanlist[cleanlist_idx].pte = ptep;
2341 cleanlist[cleanlist_idx].va =
2342 sva | (is_exec & 1);
2343 cleanlist_idx++;
2344 } else
2345 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2346 /* Nuke everything if needed. */
2347 pmap_idcache_wbinv_all(pm);
2348 pmap_tlb_flushID(pm);
2349
2350 /*
2351 * Roll back the previous PTE list,
2352 * and zero out the current PTE.
2353 */
2354 for (cnt = 0;
2355 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2356 *cleanlist[cnt].pte = 0;
2357 }
2358 *ptep = 0;
2359 PTE_SYNC(ptep);
2360 cleanlist_idx++;
2361 pm->pm_remove_all = TRUE;
2362 } else {
2363 *ptep = 0;
2364 PTE_SYNC(ptep);
2365 if (pm->pm_remove_all == FALSE) {
2366 if (is_exec)
2367 pmap_tlb_flushID_SE(pm, sva);
2368 else
2369 if (is_refd)
2370 pmap_tlb_flushD_SE(pm, sva);
2371 }
2372 }
2373
2374 sva += PAGE_SIZE;
2375 ptep++;
2376 mappings++;
2377 }
2378
2379 /*
2380 * Deal with any left overs
2381 */
2382 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2383 total += cleanlist_idx;
2384 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2385 if (pm->pm_cstate.cs_all != 0) {
2386 vaddr_t clva = cleanlist[cnt].va & ~1;
2387 if (cleanlist[cnt].va & 1) {
2388 pmap_idcache_wbinv_range(pm,
2389 clva, PAGE_SIZE);
2390 pmap_tlb_flushID_SE(pm, clva);
2391 } else {
2392 pmap_dcache_wb_range(pm,
2393 clva, PAGE_SIZE, TRUE,
2394 FALSE);
2395 pmap_tlb_flushD_SE(pm, clva);
2396 }
2397 }
2398 *cleanlist[cnt].pte = 0;
2399 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2400 }
2401
2402 /*
2403 * If it looks like we're removing a whole bunch
2404 * of mappings, it's faster to just write-back
2405 * the whole cache now and defer TLB flushes until
2406 * pmap_update() is called.
2407 */
2408 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2409 cleanlist_idx = 0;
2410 else {
2411 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2412 pmap_idcache_wbinv_all(pm);
2413 pm->pm_remove_all = TRUE;
2414 }
2415 }
2416
2417 pmap_free_l2_bucket(pm, l2b, mappings);
2418 }
2419
2420 pmap_release_pmap_lock(pm);
2421 PMAP_MAP_TO_HEAD_UNLOCK();
2422 }
2423
2424 /*
2425 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2426 *
2427 * We assume there is already sufficient KVM space available
2428 * to do this, as we can't allocate L2 descriptor tables/metadata
2429 * from here.
2430 */
2431 void
2432 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2433 {
2434 struct l2_bucket *l2b;
2435 pt_entry_t *ptep, opte;
2436
2437 NPDEBUG(PDB_KENTER,
2438 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2439 va, pa, prot));
2440
2441 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2442 KDASSERT(l2b != NULL);
2443
2444 ptep = &l2b->l2b_kva[l2pte_index(va)];
2445 opte = *ptep;
2446
2447 if (l2pte_valid(opte)) {
2448 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2449 cpu_tlb_flushD_SE(va);
2450 cpu_cpwait();
2451 } else
2452 if (opte == 0)
2453 l2b->l2b_occupancy++;
2454
2455 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2456 pte_l2_s_cache_mode;
2457 PTE_SYNC(ptep);
2458 }
2459
2460 void
2461 pmap_kremove(vaddr_t va, vsize_t len)
2462 {
2463 struct l2_bucket *l2b;
2464 pt_entry_t *ptep, *sptep, opte;
2465 vaddr_t next_bucket, eva;
2466 u_int mappings;
2467
2468 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2469 va, len));
2470
2471 eva = va + len;
2472
2473 while (va < eva) {
2474 next_bucket = L2_NEXT_BUCKET(va);
2475 if (next_bucket > eva)
2476 next_bucket = eva;
2477
2478 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2479 KDASSERT(l2b != NULL);
2480
2481 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2482 mappings = 0;
2483
2484 while (va < next_bucket) {
2485 opte = *ptep;
2486 if (l2pte_valid(opte)) {
2487 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2488 cpu_tlb_flushD_SE(va);
2489 }
2490 if (opte) {
2491 *ptep = 0;
2492 mappings++;
2493 }
2494 va += PAGE_SIZE;
2495 ptep++;
2496 }
2497 KDASSERT(mappings <= l2b->l2b_occupancy);
2498 l2b->l2b_occupancy -= mappings;
2499 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2500 }
2501 cpu_cpwait();
2502 }
2503
2504 boolean_t
2505 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2506 {
2507 struct l2_dtable *l2;
2508 pd_entry_t *pl1pd, l1pd;
2509 pt_entry_t *ptep, pte;
2510 paddr_t pa;
2511 u_int l1idx;
2512
2513 pmap_acquire_pmap_lock(pm);
2514
2515 l1idx = L1_IDX(va);
2516 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2517 l1pd = *pl1pd;
2518
2519 if (l1pte_section_p(l1pd)) {
2520 /*
2521 * These should only happen for pmap_kernel()
2522 */
2523 KDASSERT(pm == pmap_kernel());
2524 pmap_release_pmap_lock(pm);
2525 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2526 } else {
2527 /*
2528 * Note that we can't rely on the validity of the L1
2529 * descriptor as an indication that a mapping exists.
2530 * We have to look it up in the L2 dtable.
2531 */
2532 l2 = pm->pm_l2[L2_IDX(l1idx)];
2533
2534 if (l2 == NULL ||
2535 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2536 pmap_release_pmap_lock(pm);
2537 return (FALSE);
2538 }
2539
2540 ptep = &ptep[l2pte_index(va)];
2541 pte = *ptep;
2542 pmap_release_pmap_lock(pm);
2543
2544 if (pte == 0)
2545 return (FALSE);
2546
2547 switch (pte & L2_TYPE_MASK) {
2548 case L2_TYPE_L:
2549 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2550 break;
2551
2552 default:
2553 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2554 break;
2555 }
2556 }
2557
2558 if (pap != NULL)
2559 *pap = pa;
2560
2561 return (TRUE);
2562 }
2563
2564 void
2565 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2566 {
2567 struct l2_bucket *l2b;
2568 pt_entry_t *ptep, pte;
2569 vaddr_t next_bucket;
2570 u_int flags;
2571 int flush;
2572
2573 NPDEBUG(PDB_PROTECT,
2574 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2575 pm, sva, eva, prot));
2576
2577 if ((prot & VM_PROT_READ) == 0) {
2578 pmap_remove(pm, sva, eva);
2579 return;
2580 }
2581
2582 if (prot & VM_PROT_WRITE) {
2583 /*
2584 * If this is a read->write transition, just ignore it and let
2585 * uvm_fault() take care of it later.
2586 */
2587 return;
2588 }
2589
2590 PMAP_MAP_TO_HEAD_LOCK();
2591 pmap_acquire_pmap_lock(pm);
2592
2593 /*
2594 * OK, at this point, we know we're doing write-protect operation.
2595 * If the pmap is active, write-back the range.
2596 */
2597 pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
2598
2599 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2600 flags = 0;
2601
2602 while (sva < eva) {
2603 next_bucket = L2_NEXT_BUCKET(sva);
2604 if (next_bucket > eva)
2605 next_bucket = eva;
2606
2607 l2b = pmap_get_l2_bucket(pm, sva);
2608 if (l2b == NULL) {
2609 sva = next_bucket;
2610 continue;
2611 }
2612
2613 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2614
2615 while (sva < next_bucket) {
2616 if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2617 struct vm_page *pg;
2618 u_int f;
2619
2620 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2621 pte &= ~L2_S_PROT_W;
2622 *ptep = pte;
2623 PTE_SYNC(ptep);
2624
2625 if (pg != NULL) {
2626 simple_lock(&pg->mdpage.pvh_slock);
2627 f = pmap_modify_pv(pg, pm, sva,
2628 PVF_WRITE, 0);
2629 pmap_vac_me_harder(pg, pm, sva);
2630 simple_unlock(&pg->mdpage.pvh_slock);
2631 } else
2632 f = PVF_REF | PVF_EXEC;
2633
2634 if (flush >= 0) {
2635 flush++;
2636 flags |= f;
2637 } else
2638 if (PV_BEEN_EXECD(f))
2639 pmap_tlb_flushID_SE(pm, sva);
2640 else
2641 if (PV_BEEN_REFD(f))
2642 pmap_tlb_flushD_SE(pm, sva);
2643 }
2644
2645 sva += PAGE_SIZE;
2646 ptep++;
2647 }
2648 }
2649
2650 pmap_release_pmap_lock(pm);
2651 PMAP_MAP_TO_HEAD_UNLOCK();
2652
2653 if (flush) {
2654 if (PV_BEEN_EXECD(flags))
2655 pmap_tlb_flushID(pm);
2656 else
2657 if (PV_BEEN_REFD(flags))
2658 pmap_tlb_flushD(pm);
2659 }
2660 }
2661
2662 void
2663 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2664 {
2665
2666 NPDEBUG(PDB_PROTECT,
2667 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2668 pg, pg->phys_addr, prot));
2669
2670 switch(prot) {
2671 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2672 case VM_PROT_READ|VM_PROT_WRITE:
2673 return;
2674
2675 case VM_PROT_READ:
2676 case VM_PROT_READ|VM_PROT_EXECUTE:
2677 pmap_clearbit(pg, PVF_WRITE);
2678 break;
2679
2680 default:
2681 pmap_page_remove(pg);
2682 break;
2683 }
2684 }
2685
2686 /*
2687 * pmap_clear_modify:
2688 *
2689 * Clear the "modified" attribute for a page.
2690 */
2691 boolean_t
2692 pmap_clear_modify(struct vm_page *pg)
2693 {
2694 boolean_t rv;
2695
2696 if (pg->mdpage.pvh_attrs & PVF_MOD) {
2697 rv = TRUE;
2698 pmap_clearbit(pg, PVF_MOD);
2699 } else
2700 rv = FALSE;
2701
2702 return (rv);
2703 }
2704
2705 /*
2706 * pmap_clear_reference:
2707 *
2708 * Clear the "referenced" attribute for a page.
2709 */
2710 boolean_t
2711 pmap_clear_reference(struct vm_page *pg)
2712 {
2713 boolean_t rv;
2714
2715 if (pg->mdpage.pvh_attrs & PVF_REF) {
2716 rv = TRUE;
2717 pmap_clearbit(pg, PVF_REF);
2718 } else
2719 rv = FALSE;
2720
2721 return (rv);
2722 }
2723
2724 /*
2725 * pmap_is_modified:
2726 *
2727 * Test if a page has the "modified" attribute.
2728 */
2729 /* See <arm/arm32/pmap.h> */
2730
2731 /*
2732 * pmap_is_referenced:
2733 *
2734 * Test if a page has the "referenced" attribute.
2735 */
2736 /* See <arm/arm32/pmap.h> */
2737
2738 int
2739 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2740 {
2741 struct l2_dtable *l2;
2742 struct l2_bucket *l2b;
2743 pd_entry_t *pl1pd, l1pd;
2744 pt_entry_t *ptep, pte;
2745 paddr_t pa;
2746 u_int l1idx;
2747 int rv = 0;
2748
2749 PMAP_MAP_TO_HEAD_LOCK();
2750 pmap_acquire_pmap_lock(pm);
2751
2752 l1idx = L1_IDX(va);
2753
2754 /*
2755 * If there is no l2_dtable for this address, then the process
2756 * has no business accessing it.
2757 *
2758 * Note: This will catch userland processes trying to access
2759 * kernel addresses.
2760 */
2761 l2 = pm->pm_l2[L2_IDX(l1idx)];
2762 if (l2 == NULL)
2763 goto out;
2764
2765 /*
2766 * Likewise if there is no L2 descriptor table
2767 */
2768 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2769 if (l2b->l2b_kva == NULL)
2770 goto out;
2771
2772 /*
2773 * Check the PTE itself.
2774 */
2775 ptep = &l2b->l2b_kva[l2pte_index(va)];
2776 pte = *ptep;
2777 if (pte == 0)
2778 goto out;
2779
2780 /*
2781 * Catch a userland access to the vector page mapped at 0x0
2782 */
2783 if (user && (pte & L2_S_PROT_U) == 0)
2784 goto out;
2785
2786 pa = l2pte_pa(pte);
2787
2788 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2789 /*
2790 * This looks like a good candidate for "page modified"
2791 * emulation...
2792 */
2793 struct pv_entry *pv;
2794 struct vm_page *pg;
2795
2796 /* Extract the physical address of the page */
2797 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2798 goto out;
2799
2800 /* Get the current flags for this page. */
2801 simple_lock(&pg->mdpage.pvh_slock);
2802
2803 pv = pmap_find_pv(pg, pm, va);
2804 if (pv == NULL) {
2805 simple_unlock(&pg->mdpage.pvh_slock);
2806 goto out;
2807 }
2808
2809 /*
2810 * Do the flags say this page is writable? If not then it
2811 * is a genuine write fault. If yes then the write fault is
2812 * our fault as we did not reflect the write access in the
2813 * PTE. Now we know a write has occurred we can correct this
2814 * and also set the modified bit
2815 */
2816 if ((pv->pv_flags & PVF_WRITE) == 0) {
2817 simple_unlock(&pg->mdpage.pvh_slock);
2818 goto out;
2819 }
2820
2821 NPDEBUG(PDB_FOLLOW,
2822 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2823 pm, va, pg->phys_addr));
2824
2825 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2826 pv->pv_flags |= PVF_REF | PVF_MOD;
2827 simple_unlock(&pg->mdpage.pvh_slock);
2828
2829 /*
2830 * Re-enable write permissions for the page. No need to call
2831 * pmap_vac_me_harder(), since this is just a
2832 * modified-emulation fault, and the PVF_WRITE bit isn't
2833 * changing. We've already set the cacheable bits based on
2834 * the assumption that we can write to this page.
2835 */
2836 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2837 PTE_SYNC(ptep);
2838 rv = 1;
2839 } else
2840 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2841 /*
2842 * This looks like a good candidate for "page referenced"
2843 * emulation.
2844 */
2845 struct pv_entry *pv;
2846 struct vm_page *pg;
2847
2848 /* Extract the physical address of the page */
2849 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2850 goto out;
2851
2852 /* Get the current flags for this page. */
2853 simple_lock(&pg->mdpage.pvh_slock);
2854
2855 pv = pmap_find_pv(pg, pm, va);
2856 if (pv == NULL) {
2857 simple_unlock(&pg->mdpage.pvh_slock);
2858 goto out;
2859 }
2860
2861 pg->mdpage.pvh_attrs |= PVF_REF;
2862 pv->pv_flags |= PVF_REF;
2863 simple_unlock(&pg->mdpage.pvh_slock);
2864
2865 NPDEBUG(PDB_FOLLOW,
2866 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2867 pm, va, pg->phys_addr));
2868
2869 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2870 PTE_SYNC(ptep);
2871 rv = 1;
2872 }
2873
2874 /*
2875 * We know there is a valid mapping here, so simply
2876 * fix up the L1 if necessary.
2877 */
2878 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2879 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2880 if (*pl1pd != l1pd) {
2881 *pl1pd = l1pd;
2882 PTE_SYNC(pl1pd);
2883 rv = 1;
2884 }
2885
2886 #ifdef CPU_SA110
2887 /*
2888 * There are bugs in the rev K SA110. This is a check for one
2889 * of them.
2890 */
2891 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2892 curcpu()->ci_arm_cpurev < 3) {
2893 /* Always current pmap */
2894 if (l2pte_valid(pte)) {
2895 extern int kernel_debug;
2896 if (kernel_debug & 1) {
2897 struct proc *p = curlwp->l_proc;
2898 printf("prefetch_abort: page is already "
2899 "mapped - pte=%p *pte=%08x\n", ptep, pte);
2900 printf("prefetch_abort: pc=%08lx proc=%p "
2901 "process=%s\n", va, p, p->p_comm);
2902 printf("prefetch_abort: far=%08x fs=%x\n",
2903 cpu_faultaddress(), cpu_faultstatus());
2904 }
2905 #ifdef DDB
2906 if (kernel_debug & 2)
2907 Debugger();
2908 #endif
2909 rv = 1;
2910 }
2911 }
2912 #endif /* CPU_SA110 */
2913
2914 #ifdef DEBUG
2915 /*
2916 * If 'rv == 0' at this point, it generally indicates that there is a
2917 * stale TLB entry for the faulting address. This happens when two or
2918 * more processes are sharing an L1. Since we don't flush the TLB on
2919 * a context switch between such processes, we can take domain faults
2920 * for mappings which exist at the same VA in both processes. EVEN IF
2921 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2922 * example.
2923 *
2924 * This is extremely likely to happen if pmap_enter() updated the L1
2925 * entry for a recently entered mapping. In this case, the TLB is
2926 * flushed for the new mapping, but there may still be TLB entries for
2927 * other mappings belonging to other processes in the 1MB range
2928 * covered by the L1 entry.
2929 *
2930 * Since 'rv == 0', we know that the L1 already contains the correct
2931 * value, so the fault must be due to a stale TLB entry.
2932 *
2933 * Since we always need to flush the TLB anyway in the case where we
2934 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2935 * stale TLB entries dynamically.
2936 *
2937 * However, the above condition can ONLY happen if the current L1 is
2938 * being shared. If it happens when the L1 is unshared, it indicates
2939 * that other parts of the pmap are not doing their job WRT managing
2940 * the TLB.
2941 */
2942 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2943 extern int last_fault_code;
2944 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2945 pm, va, ftype);
2946 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2947 l2, l2b, ptep, pl1pd);
2948 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2949 pte, l1pd, last_fault_code);
2950 #ifdef DDB
2951 Debugger();
2952 #endif
2953 }
2954 #endif
2955
2956 cpu_tlb_flushID_SE(va);
2957 cpu_cpwait();
2958
2959 rv = 1;
2960
2961 out:
2962 pmap_release_pmap_lock(pm);
2963 PMAP_MAP_TO_HEAD_UNLOCK();
2964
2965 return (rv);
2966 }
2967
2968 /*
2969 * pmap_collect: free resources held by a pmap
2970 *
2971 * => optional function.
2972 * => called when a process is swapped out to free memory.
2973 */
2974 void
2975 pmap_collect(pmap_t pm)
2976 {
2977 /*
2978 * Nothing to do.
2979 * We don't even need to free-up the process' L1.
2980 */
2981 }
2982
2983 /*
2984 * Routine: pmap_procwr
2985 *
2986 * Function:
2987 * Synchronize caches corresponding to [addr, addr+len) in p.
2988 *
2989 */
2990 void
2991 pmap_procwr(struct proc *p, vaddr_t va, int len)
2992 {
2993 /* We only need to do anything if it is the current process. */
2994 if (p == curproc)
2995 cpu_icache_sync_range(va, len);
2996 }
2997
2998 /*
2999 * Routine: pmap_unwire
3000 * Function: Clear the wired attribute for a map/virtual-address pair.
3001 *
3002 * In/out conditions:
3003 * The mapping must already exist in the pmap.
3004 */
3005 void
3006 pmap_unwire(pmap_t pm, vaddr_t va)
3007 {
3008 struct l2_bucket *l2b;
3009 pt_entry_t *ptep, pte;
3010 struct vm_page *pg;
3011 paddr_t pa;
3012
3013 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3014
3015 PMAP_MAP_TO_HEAD_LOCK();
3016 pmap_acquire_pmap_lock(pm);
3017
3018 l2b = pmap_get_l2_bucket(pm, va);
3019 KDASSERT(l2b != NULL);
3020
3021 ptep = &l2b->l2b_kva[l2pte_index(va)];
3022 pte = *ptep;
3023
3024 /* Extract the physical address of the page */
3025 pa = l2pte_pa(pte);
3026
3027 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3028 /* Update the wired bit in the pv entry for this page. */
3029 simple_lock(&pg->mdpage.pvh_slock);
3030 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3031 simple_unlock(&pg->mdpage.pvh_slock);
3032 }
3033
3034 pmap_release_pmap_lock(pm);
3035 PMAP_MAP_TO_HEAD_UNLOCK();
3036 }
3037
3038 void
3039 pmap_activate(struct lwp *l)
3040 {
3041 pmap_t pm;
3042 struct pcb *pcb;
3043 int s;
3044
3045 pm = l->l_proc->p_vmspace->vm_map.pmap;
3046 pcb = &l->l_addr->u_pcb;
3047
3048 pmap_set_pcb_pagedir(pm, pcb);
3049
3050 if (l == curlwp) {
3051 u_int cur_dacr, cur_ttb;
3052
3053 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
3054 __asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
3055
3056 cur_ttb &= ~(L1_TABLE_SIZE - 1);
3057
3058 if (cur_ttb == (u_int)pcb->pcb_pagedir &&
3059 cur_dacr == pcb->pcb_dacr) {
3060 /*
3061 * No need to switch address spaces.
3062 */
3063 return;
3064 }
3065
3066 s = splhigh();
3067 pmap_acquire_pmap_lock(pm);
3068 disable_interrupts(I32_bit | F32_bit);
3069
3070 /*
3071 * We MUST, I repeat, MUST fix up the L1 entry corresponding
3072 * to 'vector_page' in the incoming L1 table before switching
3073 * to it otherwise subsequent interrupts/exceptions (including
3074 * domain faults!) will jump into hyperspace.
3075 */
3076 if (pcb->pcb_pl1vec) {
3077 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3078 /*
3079 * Don't need to PTE_SYNC() at this point since
3080 * cpu_setttb() is about to flush both the cache
3081 * and the TLB.
3082 */
3083 }
3084
3085 cpu_domains(pcb->pcb_dacr);
3086 cpu_setttb(pcb->pcb_pagedir);
3087
3088 enable_interrupts(I32_bit | F32_bit);
3089
3090 /*
3091 * Flag any previous userland pmap as being NOT
3092 * resident in the cache/tlb.
3093 */
3094 if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
3095 pmap_cache_state->cs_all = 0;
3096
3097 /*
3098 * The new pmap, however, IS resident.
3099 */
3100 pmap_cache_state = &pm->pm_cstate;
3101 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3102 pmap_release_pmap_lock(pm);
3103 splx(s);
3104 }
3105 }
3106
3107 void
3108 pmap_deactivate(struct lwp *l)
3109 {
3110 }
3111
3112 void
3113 pmap_update(pmap_t pm)
3114 {
3115
3116 if (pm->pm_remove_all) {
3117 /*
3118 * Finish up the pmap_remove_all() optimisation by flushing
3119 * the TLB.
3120 */
3121 pmap_tlb_flushID(pm);
3122 pm->pm_remove_all = FALSE;
3123 }
3124
3125 if (pmap_is_current(pm)) {
3126 /*
3127 * If we're dealing with a current userland pmap, move its L1
3128 * to the end of the LRU.
3129 */
3130 if (pm != pmap_kernel())
3131 pmap_use_l1(pm);
3132
3133 /*
3134 * We can assume we're done with frobbing the cache/tlb for
3135 * now. Make sure any future pmap ops don't skip cache/tlb
3136 * flushes.
3137 */
3138 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3139 }
3140
3141 /*
3142 * make sure TLB/cache operations have completed.
3143 */
3144 cpu_cpwait();
3145 }
3146
3147 void
3148 pmap_remove_all(pmap_t pm)
3149 {
3150
3151 /*
3152 * The vmspace described by this pmap is about to be torn down.
3153 * Until pmap_update() is called, UVM will only make calls
3154 * to pmap_remove(). We can make life much simpler by flushing
3155 * the cache now, and deferring TLB invalidation to pmap_update().
3156 */
3157 pmap_idcache_wbinv_all(pm);
3158 pm->pm_remove_all = TRUE;
3159 }
3160
3161 /*
3162 * Retire the given physical map from service.
3163 * Should only be called if the map contains no valid mappings.
3164 */
3165 void
3166 pmap_destroy(pmap_t pm)
3167 {
3168 u_int count;
3169
3170 if (pm == NULL)
3171 return;
3172
3173 if (pm->pm_remove_all) {
3174 pmap_tlb_flushID(pm);
3175 pm->pm_remove_all = FALSE;
3176 }
3177
3178 /*
3179 * Drop reference count
3180 */
3181 simple_lock(&pm->pm_lock);
3182 count = --pm->pm_obj.uo_refs;
3183 simple_unlock(&pm->pm_lock);
3184 if (count > 0) {
3185 if (pmap_is_current(pm)) {
3186 if (pm != pmap_kernel())
3187 pmap_use_l1(pm);
3188 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3189 }
3190 return;
3191 }
3192
3193 /*
3194 * reference count is zero, free pmap resources and then free pmap.
3195 */
3196
3197 if (vector_page < KERNEL_BASE) {
3198 /* Remove the vector page mapping */
3199 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3200 pmap_update(pm);
3201 }
3202
3203 LIST_REMOVE(pm, pm_list);
3204
3205 pmap_free_l1(pm);
3206
3207 /* return the pmap to the pool */
3208 pool_cache_put(&pmap_pmap_cache, pm);
3209 }
3210
3211
3212 /*
3213 * void pmap_reference(pmap_t pm)
3214 *
3215 * Add a reference to the specified pmap.
3216 */
3217 void
3218 pmap_reference(pmap_t pm)
3219 {
3220
3221 if (pm == NULL)
3222 return;
3223
3224 pmap_use_l1(pm);
3225
3226 simple_lock(&pm->pm_lock);
3227 pm->pm_obj.uo_refs++;
3228 simple_unlock(&pm->pm_lock);
3229 }
3230
3231 /*
3232 * pmap_zero_page()
3233 *
3234 * Zero a given physical page by mapping it at a page hook point.
3235 * In doing the zero page op, the page we zero is mapped cachable, as with
3236 * StrongARM accesses to non-cached pages are non-burst making writing
3237 * _any_ bulk data very slow.
3238 */
3239 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3240 void
3241 pmap_zero_page_generic(paddr_t phys)
3242 {
3243 #ifdef DEBUG
3244 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3245
3246 if (pg->mdpage.pvh_list != NULL)
3247 panic("pmap_zero_page: page has mappings");
3248 #endif
3249
3250 KDASSERT((phys & PGOFSET) == 0);
3251
3252 /*
3253 * Hook in the page, zero it, and purge the cache for that
3254 * zeroed page. Invalidate the TLB as needed.
3255 */
3256 *cdst_pte = L2_S_PROTO | phys |
3257 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3258 PTE_SYNC(cdst_pte);
3259 cpu_tlb_flushD_SE(cdstp);
3260 cpu_cpwait();
3261 bzero_page(cdstp);
3262 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3263 }
3264 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3265
3266 #if ARM_MMU_XSCALE == 1
3267 void
3268 pmap_zero_page_xscale(paddr_t phys)
3269 {
3270 #ifdef DEBUG
3271 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3272
3273 if (pg->mdpage.pvh_list != NULL)
3274 panic("pmap_zero_page: page has mappings");
3275 #endif
3276
3277 KDASSERT((phys & PGOFSET) == 0);
3278
3279 /*
3280 * Hook in the page, zero it, and purge the cache for that
3281 * zeroed page. Invalidate the TLB as needed.
3282 */
3283 *cdst_pte = L2_S_PROTO | phys |
3284 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3285 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3286 PTE_SYNC(cdst_pte);
3287 cpu_tlb_flushD_SE(cdstp);
3288 cpu_cpwait();
3289 bzero_page(cdstp);
3290 xscale_cache_clean_minidata();
3291 }
3292 #endif /* ARM_MMU_XSCALE == 1 */
3293
3294 /* pmap_pageidlezero()
3295 *
3296 * The same as above, except that we assume that the page is not
3297 * mapped. This means we never have to flush the cache first. Called
3298 * from the idle loop.
3299 */
3300 boolean_t
3301 pmap_pageidlezero(paddr_t phys)
3302 {
3303 unsigned int i;
3304 int *ptr;
3305 boolean_t rv = TRUE;
3306 #ifdef DEBUG
3307 struct vm_page *pg;
3308
3309 pg = PHYS_TO_VM_PAGE(phys);
3310 if (pg->mdpage.pvh_list != NULL)
3311 panic("pmap_pageidlezero: page has mappings");
3312 #endif
3313
3314 KDASSERT((phys & PGOFSET) == 0);
3315
3316 /*
3317 * Hook in the page, zero it, and purge the cache for that
3318 * zeroed page. Invalidate the TLB as needed.
3319 */
3320 *cdst_pte = L2_S_PROTO | phys |
3321 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3322 PTE_SYNC(cdst_pte);
3323 cpu_tlb_flushD_SE(cdstp);
3324 cpu_cpwait();
3325
3326 for (i = 0, ptr = (int *)cdstp;
3327 i < (PAGE_SIZE / sizeof(int)); i++) {
3328 if (sched_whichqs != 0) {
3329 /*
3330 * A process has become ready. Abort now,
3331 * so we don't keep it waiting while we
3332 * do slow memory access to finish this
3333 * page.
3334 */
3335 rv = FALSE;
3336 break;
3337 }
3338 *ptr++ = 0;
3339 }
3340
3341 if (rv)
3342 /*
3343 * if we aborted we'll rezero this page again later so don't
3344 * purge it unless we finished it
3345 */
3346 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3347
3348 return (rv);
3349 }
3350
3351 /*
3352 * pmap_copy_page()
3353 *
3354 * Copy one physical page into another, by mapping the pages into
3355 * hook points. The same comment regarding cachability as in
3356 * pmap_zero_page also applies here.
3357 */
3358 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3359 void
3360 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3361 {
3362 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3363 #ifdef DEBUG
3364 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3365
3366 if (dst_pg->mdpage.pvh_list != NULL)
3367 panic("pmap_copy_page: dst page has mappings");
3368 #endif
3369
3370 KDASSERT((src & PGOFSET) == 0);
3371 KDASSERT((dst & PGOFSET) == 0);
3372
3373 /*
3374 * Clean the source page. Hold the source page's lock for
3375 * the duration of the copy so that no other mappings can
3376 * be created while we have a potentially aliased mapping.
3377 */
3378 simple_lock(&src_pg->mdpage.pvh_slock);
3379 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3380
3381 /*
3382 * Map the pages into the page hook points, copy them, and purge
3383 * the cache for the appropriate page. Invalidate the TLB
3384 * as required.
3385 */
3386 *csrc_pte = L2_S_PROTO | src |
3387 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3388 PTE_SYNC(csrc_pte);
3389 *cdst_pte = L2_S_PROTO | dst |
3390 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3391 PTE_SYNC(cdst_pte);
3392 cpu_tlb_flushD_SE(csrcp);
3393 cpu_tlb_flushD_SE(cdstp);
3394 cpu_cpwait();
3395 bcopy_page(csrcp, cdstp);
3396 cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3397 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3398 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3399 }
3400 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3401
3402 #if ARM_MMU_XSCALE == 1
3403 void
3404 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3405 {
3406 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3407 #ifdef DEBUG
3408 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3409
3410 if (dst_pg->mdpage.pvh_list != NULL)
3411 panic("pmap_copy_page: dst page has mappings");
3412 #endif
3413
3414 KDASSERT((src & PGOFSET) == 0);
3415 KDASSERT((dst & PGOFSET) == 0);
3416
3417 /*
3418 * Clean the source page. Hold the source page's lock for
3419 * the duration of the copy so that no other mappings can
3420 * be created while we have a potentially aliased mapping.
3421 */
3422 simple_lock(&src_pg->mdpage.pvh_slock);
3423 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3424
3425 /*
3426 * Map the pages into the page hook points, copy them, and purge
3427 * the cache for the appropriate page. Invalidate the TLB
3428 * as required.
3429 */
3430 *csrc_pte = L2_S_PROTO | src |
3431 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3432 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3433 PTE_SYNC(csrc_pte);
3434 *cdst_pte = L2_S_PROTO | dst |
3435 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3436 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3437 PTE_SYNC(cdst_pte);
3438 cpu_tlb_flushD_SE(csrcp);
3439 cpu_tlb_flushD_SE(cdstp);
3440 cpu_cpwait();
3441 bcopy_page(csrcp, cdstp);
3442 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3443 xscale_cache_clean_minidata();
3444 }
3445 #endif /* ARM_MMU_XSCALE == 1 */
3446
3447 /*
3448 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3449 *
3450 * Return the start and end addresses of the kernel's virtual space.
3451 * These values are setup in pmap_bootstrap and are updated as pages
3452 * are allocated.
3453 */
3454 void
3455 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3456 {
3457 *start = virtual_avail;
3458 *end = virtual_end;
3459 }
3460
3461 /*
3462 * Helper function for pmap_grow_l2_bucket()
3463 */
3464 static __inline int
3465 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3466 {
3467 struct l2_bucket *l2b;
3468 pt_entry_t *ptep;
3469 paddr_t pa;
3470
3471 if (uvm.page_init_done == FALSE) {
3472 if (uvm_page_physget(&pa) == FALSE)
3473 return (1);
3474 } else {
3475 struct vm_page *pg;
3476 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3477 if (pg == NULL)
3478 return (1);
3479 pa = VM_PAGE_TO_PHYS(pg);
3480 }
3481
3482 if (pap)
3483 *pap = pa;
3484
3485 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3486 KDASSERT(l2b != NULL);
3487
3488 ptep = &l2b->l2b_kva[l2pte_index(va)];
3489 *ptep = L2_S_PROTO | pa | cache_mode |
3490 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3491 PTE_SYNC(ptep);
3492 memset((void *)va, 0, PAGE_SIZE);
3493 return (0);
3494 }
3495
3496 /*
3497 * This is the same as pmap_alloc_l2_bucket(), except that it is only
3498 * used by pmap_growkernel().
3499 */
3500 static __inline struct l2_bucket *
3501 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3502 {
3503 struct l2_dtable *l2;
3504 struct l2_bucket *l2b;
3505 u_short l1idx;
3506 vaddr_t nva;
3507
3508 l1idx = L1_IDX(va);
3509
3510 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3511 /*
3512 * No mapping at this address, as there is
3513 * no entry in the L1 table.
3514 * Need to allocate a new l2_dtable.
3515 */
3516 nva = pmap_kernel_l2dtable_kva;
3517 if ((nva & PGOFSET) == 0) {
3518 /*
3519 * Need to allocate a backing page
3520 */
3521 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3522 return (NULL);
3523 }
3524
3525 l2 = (struct l2_dtable *)nva;
3526 nva += sizeof(struct l2_dtable);
3527
3528 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3529 /*
3530 * The new l2_dtable straddles a page boundary.
3531 * Map in another page to cover it.
3532 */
3533 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3534 return (NULL);
3535 }
3536
3537 pmap_kernel_l2dtable_kva = nva;
3538
3539 /*
3540 * Link it into the parent pmap
3541 */
3542 pm->pm_l2[L2_IDX(l1idx)] = l2;
3543 }
3544
3545 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3546
3547 /*
3548 * Fetch pointer to the L2 page table associated with the address.
3549 */
3550 if (l2b->l2b_kva == NULL) {
3551 pt_entry_t *ptep;
3552
3553 /*
3554 * No L2 page table has been allocated. Chances are, this
3555 * is because we just allocated the l2_dtable, above.
3556 */
3557 nva = pmap_kernel_l2ptp_kva;
3558 ptep = (pt_entry_t *)nva;
3559 if ((nva & PGOFSET) == 0) {
3560 /*
3561 * Need to allocate a backing page
3562 */
3563 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3564 &pmap_kernel_l2ptp_phys))
3565 return (NULL);
3566 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3567 }
3568
3569 l2->l2_occupancy++;
3570 l2b->l2b_kva = ptep;
3571 l2b->l2b_l1idx = l1idx;
3572 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3573
3574 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3575 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3576 }
3577
3578 return (l2b);
3579 }
3580
3581 vaddr_t
3582 pmap_growkernel(vaddr_t maxkvaddr)
3583 {
3584 pmap_t kpm = pmap_kernel();
3585 struct l1_ttable *l1;
3586 struct l2_bucket *l2b;
3587 pd_entry_t *pl1pd;
3588 int s;
3589
3590 if (maxkvaddr <= pmap_curmaxkvaddr)
3591 goto out; /* we are OK */
3592
3593 NPDEBUG(PDB_GROWKERN,
3594 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3595 pmap_curmaxkvaddr, maxkvaddr));
3596
3597 KDASSERT(maxkvaddr <= virtual_end);
3598
3599 /*
3600 * whoops! we need to add kernel PTPs
3601 */
3602
3603 s = splhigh(); /* to be safe */
3604 simple_lock(&kpm->pm_lock);
3605
3606 /* Map 1MB at a time */
3607 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3608
3609 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3610 KDASSERT(l2b != NULL);
3611
3612 /* Distribute new L1 entry to all other L1s */
3613 SLIST_FOREACH(l1, &l1_list, l1_link) {
3614 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3615 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3616 L1_C_PROTO;
3617 PTE_SYNC(pl1pd);
3618 }
3619 }
3620
3621 /*
3622 * flush out the cache, expensive but growkernel will happen so
3623 * rarely
3624 */
3625 cpu_dcache_wbinv_all();
3626 cpu_tlb_flushD();
3627 cpu_cpwait();
3628
3629 simple_unlock(&kpm->pm_lock);
3630 splx(s);
3631
3632 out:
3633 return (pmap_curmaxkvaddr);
3634 }
3635
3636 /************************ Utility routines ****************************/
3637
3638 /*
3639 * vector_page_setprot:
3640 *
3641 * Manipulate the protection of the vector page.
3642 */
3643 void
3644 vector_page_setprot(int prot)
3645 {
3646 struct l2_bucket *l2b;
3647 pt_entry_t *ptep;
3648
3649 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3650 KDASSERT(l2b != NULL);
3651
3652 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3653
3654 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3655 PTE_SYNC(ptep);
3656 cpu_tlb_flushD_SE(vector_page);
3657 cpu_cpwait();
3658 }
3659
3660 /*
3661 * This is used to stuff certain critical values into the PCB where they
3662 * can be accessed quickly from cpu_switch() et al.
3663 */
3664 void
3665 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
3666 {
3667 struct l2_bucket *l2b;
3668
3669 KDASSERT(pm->pm_l1);
3670
3671 pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
3672 pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3673 (DOMAIN_CLIENT << (pm->pm_domain * 2));
3674 pcb->pcb_cstate = (void *)&pm->pm_cstate;
3675
3676 if (vector_page < KERNEL_BASE) {
3677 pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3678 l2b = pmap_get_l2_bucket(pm, vector_page);
3679 pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
3680 L1_C_DOM(pm->pm_domain);
3681 } else
3682 pcb->pcb_pl1vec = NULL;
3683 }
3684
3685 /*
3686 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3687 * Returns TRUE if the mapping exists, else FALSE.
3688 *
3689 * NOTE: This function is only used by a couple of arm-specific modules.
3690 * It is not safe to take any pmap locks here, since we could be right
3691 * in the middle of debugging the pmap anyway...
3692 *
3693 * It is possible for this routine to return FALSE even though a valid
3694 * mapping does exist. This is because we don't lock, so the metadata
3695 * state may be inconsistent.
3696 *
3697 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3698 * a "section" mapping.
3699 */
3700 boolean_t
3701 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3702 {
3703 struct l2_dtable *l2;
3704 pd_entry_t *pl1pd, l1pd;
3705 pt_entry_t *ptep;
3706 u_short l1idx;
3707
3708 if (pm->pm_l1 == NULL)
3709 return (FALSE);
3710
3711 l1idx = L1_IDX(va);
3712 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3713 l1pd = *pl1pd;
3714
3715 if (l1pte_section_p(l1pd)) {
3716 *ptp = NULL;
3717 return (TRUE);
3718 }
3719
3720 if (pm->pm_l2 == NULL)
3721 return (FALSE);
3722
3723 l2 = pm->pm_l2[L2_IDX(l1idx)];
3724
3725 if (l2 == NULL ||
3726 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3727 return (FALSE);
3728 }
3729
3730 *ptp = &ptep[l2pte_index(va)];
3731 return (TRUE);
3732 }
3733
3734 boolean_t
3735 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3736 {
3737 u_short l1idx;
3738
3739 if (pm->pm_l1 == NULL)
3740 return (FALSE);
3741
3742 l1idx = L1_IDX(va);
3743 *pdp = &pm->pm_l1->l1_kva[l1idx];
3744
3745 return (TRUE);
3746 }
3747
3748 /************************ Bootstrapping routines ****************************/
3749
3750 static void
3751 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3752 {
3753 int i;
3754
3755 l1->l1_kva = l1pt;
3756 l1->l1_domain_use_count = 0;
3757 l1->l1_domain_first = 0;
3758
3759 for (i = 0; i < PMAP_DOMAINS; i++)
3760 l1->l1_domain_free[i] = i + 1;
3761
3762 /*
3763 * Copy the kernel's L1 entries to each new L1.
3764 */
3765 if (pmap_initialized)
3766 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3767
3768 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3769 &l1->l1_physaddr) == FALSE)
3770 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3771
3772 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3773 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3774 }
3775
3776 /*
3777 * pmap_bootstrap() is called from the board-specific initarm() routine
3778 * once the kernel L1/L2 descriptors tables have been set up.
3779 *
3780 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3781 * spread over a number of disparate files/functions.
3782 *
3783 * We are passed the following parameters
3784 * - kernel_l1pt
3785 * This is a pointer to the base of the kernel's L1 translation table.
3786 * - vstart
3787 * 1MB-aligned start of managed kernel virtual memory.
3788 * - vend
3789 * 1MB-aligned end of managed kernel virtual memory.
3790 *
3791 * We use the first parameter to build the metadata (struct l1_ttable and
3792 * struct l2_dtable) necessary to track kernel mappings.
3793 */
3794 #define PMAP_STATIC_L2_SIZE 16
3795 void
3796 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3797 {
3798 static struct l1_ttable static_l1;
3799 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3800 struct l1_ttable *l1 = &static_l1;
3801 struct l2_dtable *l2;
3802 struct l2_bucket *l2b;
3803 pmap_t pm = pmap_kernel();
3804 pd_entry_t pde;
3805 pt_entry_t *ptep;
3806 paddr_t pa;
3807 vaddr_t va;
3808 vsize_t size;
3809 int l1idx, l2idx, l2next = 0;
3810
3811 /*
3812 * Initialise the kernel pmap object
3813 */
3814 pm->pm_l1 = l1;
3815 pm->pm_domain = PMAP_DOMAIN_KERNEL;
3816 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3817 simple_lock_init(&pm->pm_lock);
3818 pm->pm_obj.pgops = NULL;
3819 TAILQ_INIT(&pm->pm_obj.memq);
3820 pm->pm_obj.uo_npages = 0;
3821 pm->pm_obj.uo_refs = 1;
3822
3823 /*
3824 * Scan the L1 translation table created by initarm() and create
3825 * the required metadata for all valid mappings found in it.
3826 */
3827 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3828 pde = kernel_l1pt[l1idx];
3829
3830 /*
3831 * We're only interested in Coarse mappings.
3832 * pmap_extract() can deal with section mappings without
3833 * recourse to checking L2 metadata.
3834 */
3835 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3836 continue;
3837
3838 /*
3839 * Lookup the KVA of this L2 descriptor table
3840 */
3841 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3842 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3843 if (ptep == NULL) {
3844 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3845 (u_int)l1idx << L1_S_SHIFT, pa);
3846 }
3847
3848 /*
3849 * Fetch the associated L2 metadata structure.
3850 * Allocate a new one if necessary.
3851 */
3852 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3853 if (l2next == PMAP_STATIC_L2_SIZE)
3854 panic("pmap_bootstrap: out of static L2s");
3855 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3856 }
3857
3858 /*
3859 * One more L1 slot tracked...
3860 */
3861 l2->l2_occupancy++;
3862
3863 /*
3864 * Fill in the details of the L2 descriptor in the
3865 * appropriate bucket.
3866 */
3867 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3868 l2b->l2b_kva = ptep;
3869 l2b->l2b_phys = pa;
3870 l2b->l2b_l1idx = l1idx;
3871
3872 /*
3873 * Establish an initial occupancy count for this descriptor
3874 */
3875 for (l2idx = 0;
3876 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3877 l2idx++) {
3878 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3879 l2b->l2b_occupancy++;
3880 }
3881 }
3882
3883 /*
3884 * Make sure the descriptor itself has the correct cache mode.
3885 * If not, fix it, but bitch about the problem. Port-meisters
3886 * should consider this a clue to fix up their initarm()
3887 * function. :)
3888 */
3889 if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3890 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3891 "L2 pte @ %p\n", ptep);
3892 }
3893 }
3894
3895 /*
3896 * Ensure the primary (kernel) L1 has the correct cache mode for
3897 * a page table. Bitch if it is not correctly set.
3898 */
3899 for (va = (vaddr_t)kernel_l1pt;
3900 va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3901 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3902 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3903 "primary L1 @ 0x%lx\n", va);
3904 }
3905
3906 cpu_dcache_wbinv_all();
3907 cpu_tlb_flushID();
3908 cpu_cpwait();
3909
3910 /*
3911 * now we allocate the "special" VAs which are used for tmp mappings
3912 * by the pmap (and other modules). we allocate the VAs by advancing
3913 * virtual_avail (note that there are no pages mapped at these VAs).
3914 *
3915 * Managed KVM space start from wherever initarm() tells us.
3916 */
3917 virtual_avail = vstart;
3918 virtual_end = vend;
3919
3920 pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3921 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3922 pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3923 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3924 pmap_alloc_specials(&virtual_avail, 1, (vaddr_t *)&memhook, NULL);
3925 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3926 (vaddr_t *)&msgbufaddr, NULL);
3927
3928 /*
3929 * Allocate a range of kernel virtual address space to be used
3930 * for L2 descriptor tables and metadata allocation in
3931 * pmap_growkernel().
3932 */
3933 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3934 pmap_alloc_specials(&virtual_avail,
3935 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3936 &pmap_kernel_l2ptp_kva, NULL);
3937
3938 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3939 pmap_alloc_specials(&virtual_avail,
3940 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3941 &pmap_kernel_l2dtable_kva, NULL);
3942
3943 /*
3944 * init the static-global locks and global pmap list.
3945 */
3946 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
3947 spinlockinit(&pmap_main_lock, "pmaplk", 0);
3948 #endif
3949
3950 /*
3951 * We can now initialise the first L1's metadata.
3952 */
3953 SLIST_INIT(&l1_list);
3954 TAILQ_INIT(&l1_lru_list);
3955 simple_lock_init(&l1_lru_lock);
3956 pmap_init_l1(l1, kernel_l1pt);
3957
3958 /*
3959 * Initialize the pmap pool and cache
3960 */
3961 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
3962 &pool_allocator_nointr);
3963 pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
3964 pmap_pmap_ctor, NULL, NULL);
3965 LIST_INIT(&pmap_pmaps);
3966 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3967
3968 /*
3969 * Initialize the pv pool.
3970 */
3971 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
3972 &pmap_bootstrap_pv_allocator);
3973
3974 /*
3975 * Initialize the L2 dtable pool and cache.
3976 */
3977 pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
3978 "l2dtblpl", NULL);
3979 pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
3980 pmap_l2dtable_ctor, NULL, NULL);
3981
3982 /*
3983 * Initialise the L2 descriptor table pool and cache
3984 */
3985 pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
3986 0, "l2ptppl", NULL);
3987 pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
3988 pmap_l2ptp_ctor, NULL, NULL);
3989
3990 cpu_dcache_wbinv_all();
3991 }
3992
3993 static int
3994 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
3995 {
3996 pd_entry_t *pdep, pde;
3997 pt_entry_t *ptep, pte;
3998 vaddr_t pa;
3999 int rv = 0;
4000
4001 /*
4002 * Make sure the descriptor itself has the correct cache mode
4003 */
4004 pdep = &kl1[L1_IDX(va)];
4005 pde = *pdep;
4006
4007 if (l1pte_section_p(pde)) {
4008 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4009 *pdep = (pde & ~L1_S_CACHE_MASK) |
4010 pte_l1_s_cache_mode_pt;
4011 PTE_SYNC(pdep);
4012 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4013 rv = 1;
4014 }
4015 } else {
4016 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4017 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4018 if (ptep == NULL)
4019 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4020
4021 ptep = &ptep[l2pte_index(va)];
4022 pte = *ptep;
4023 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4024 *ptep = (pte & ~L2_S_CACHE_MASK) |
4025 pte_l2_s_cache_mode_pt;
4026 PTE_SYNC(ptep);
4027 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4028 rv = 1;
4029 }
4030 }
4031
4032 return (rv);
4033 }
4034
4035 static void
4036 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4037 {
4038 vaddr_t va = *availp;
4039 struct l2_bucket *l2b;
4040
4041 if (ptep) {
4042 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4043 if (l2b == NULL)
4044 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4045
4046 if (ptep)
4047 *ptep = &l2b->l2b_kva[l2pte_index(va)];
4048 }
4049
4050 *vap = va;
4051 *availp = va + (PAGE_SIZE * pages);
4052 }
4053
4054 void
4055 pmap_init(void)
4056 {
4057 extern int physmem;
4058
4059 /*
4060 * Set the available memory vars - These do not map to real memory
4061 * addresses and cannot as the physical memory is fragmented.
4062 * They are used by ps for %mem calculations.
4063 * One could argue whether this should be the entire memory or just
4064 * the memory that is useable in a user process.
4065 */
4066 avail_start = 0;
4067 avail_end = physmem * PAGE_SIZE;
4068
4069 /*
4070 * Now we need to free enough pv_entry structures to allow us to get
4071 * the kmem_map/kmem_object allocated and inited (done after this
4072 * function is finished). to do this we allocate one bootstrap page out
4073 * of kernel_map and use it to provide an initial pool of pv_entry
4074 * structures. we never free this page.
4075 */
4076 pool_setlowat(&pmap_pv_pool,
4077 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4078
4079 pmap_initialized = TRUE;
4080 }
4081
4082 static vaddr_t last_bootstrap_page = 0;
4083 static void *free_bootstrap_pages = NULL;
4084
4085 static void *
4086 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4087 {
4088 extern void *pool_page_alloc(struct pool *, int);
4089 vaddr_t new_page;
4090 void *rv;
4091
4092 if (pmap_initialized)
4093 return (pool_page_alloc(pp, flags));
4094
4095 if (free_bootstrap_pages) {
4096 rv = free_bootstrap_pages;
4097 free_bootstrap_pages = *((void **)rv);
4098 return (rv);
4099 }
4100
4101 new_page = uvm_km_kmemalloc(kernel_map, NULL, PAGE_SIZE,
4102 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT);
4103
4104 KASSERT(new_page > last_bootstrap_page);
4105 last_bootstrap_page = new_page;
4106 return ((void *)new_page);
4107 }
4108
4109 static void
4110 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4111 {
4112 extern void pool_page_free(struct pool *, void *);
4113
4114 if (pmap_initialized) {
4115 pool_page_free(pp, v);
4116 return;
4117 }
4118
4119 if ((vaddr_t)v < last_bootstrap_page) {
4120 *((void **)v) = free_bootstrap_pages;
4121 free_bootstrap_pages = v;
4122 return;
4123 }
4124 }
4125
4126 /*
4127 * pmap_postinit()
4128 *
4129 * This routine is called after the vm and kmem subsystems have been
4130 * initialised. This allows the pmap code to perform any initialisation
4131 * that can only be done one the memory allocation is in place.
4132 */
4133 void
4134 pmap_postinit(void)
4135 {
4136 extern paddr_t physical_start, physical_end;
4137 struct l2_bucket *l2b;
4138 struct l1_ttable *l1;
4139 struct pglist plist;
4140 struct vm_page *m;
4141 pd_entry_t *pl1pt;
4142 pt_entry_t *ptep, pte;
4143 vaddr_t va, eva;
4144 u_int loop, needed;
4145 int error;
4146
4147 pool_setlowat(&pmap_l2ptp_pool,
4148 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4149 pool_setlowat(&pmap_l2dtable_pool,
4150 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4151
4152 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4153 needed -= 1;
4154
4155 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4156
4157 for (loop = 0; loop < needed; loop++, l1++) {
4158 /* Allocate a L1 page table */
4159 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
4160 if (va == 0)
4161 panic("Cannot allocate L1 KVM");
4162
4163 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4164 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4165 if (error)
4166 panic("Cannot allocate L1 physical pages");
4167
4168 m = TAILQ_FIRST(&plist);
4169 eva = va + L1_TABLE_SIZE;
4170 pl1pt = (pd_entry_t *)va;
4171
4172 while (m && va < eva) {
4173 paddr_t pa = VM_PAGE_TO_PHYS(m);
4174
4175 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4176
4177 /*
4178 * Make sure the L1 descriptor table is mapped
4179 * with the cache-mode set to write-through.
4180 */
4181 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4182 ptep = &l2b->l2b_kva[l2pte_index(va)];
4183 pte = *ptep;
4184 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4185 *ptep = pte;
4186 PTE_SYNC(ptep);
4187 cpu_tlb_flushD_SE(va);
4188
4189 va += PAGE_SIZE;
4190 m = m->pageq.tqe_next;
4191 }
4192
4193 #ifdef DIAGNOSTIC
4194 if (m)
4195 panic("pmap_alloc_l1pt: pglist not empty");
4196 #endif /* DIAGNOSTIC */
4197
4198 pmap_init_l1(l1, pl1pt);
4199 }
4200
4201 #ifdef DEBUG
4202 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4203 needed);
4204 #endif
4205 }
4206
4207 /*
4208 * Note that the following routines are used by board-specific initialisation
4209 * code to configure the initial kernel page tables.
4210 *
4211 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4212 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4213 * behaviour of the old pmap, and provides an easy migration path for
4214 * initial bring-up of the new pmap on existing ports. Fortunately,
4215 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4216 * will be deprecated.
4217 *
4218 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4219 * tables.
4220 */
4221
4222 /*
4223 * This list exists for the benefit of pmap_map_chunk(). It keeps track
4224 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4225 * find them as necessary.
4226 *
4227 * Note that the data on this list MUST remain valid after initarm() returns,
4228 * as pmap_bootstrap() uses it to contruct L2 table metadata.
4229 */
4230 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4231
4232 static vaddr_t
4233 kernel_pt_lookup(paddr_t pa)
4234 {
4235 pv_addr_t *pv;
4236
4237 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4238 #ifndef ARM32_NEW_VM_LAYOUT
4239 if (pv->pv_pa == (pa & ~PGOFSET))
4240 return (pv->pv_va | (pa & PGOFSET));
4241 #else
4242 if (pv->pv_pa == pa)
4243 return (pv->pv_va);
4244 #endif
4245 }
4246 return (0);
4247 }
4248
4249 /*
4250 * pmap_map_section:
4251 *
4252 * Create a single section mapping.
4253 */
4254 void
4255 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4256 {
4257 pd_entry_t *pde = (pd_entry_t *) l1pt;
4258 pd_entry_t fl;
4259
4260 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4261
4262 switch (cache) {
4263 case PTE_NOCACHE:
4264 default:
4265 fl = 0;
4266 break;
4267
4268 case PTE_CACHE:
4269 fl = pte_l1_s_cache_mode;
4270 break;
4271
4272 case PTE_PAGETABLE:
4273 fl = pte_l1_s_cache_mode_pt;
4274 break;
4275 }
4276
4277 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4278 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4279 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4280 }
4281
4282 /*
4283 * pmap_map_entry:
4284 *
4285 * Create a single page mapping.
4286 */
4287 void
4288 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4289 {
4290 pd_entry_t *pde = (pd_entry_t *) l1pt;
4291 pt_entry_t fl;
4292 pt_entry_t *pte;
4293
4294 KASSERT(((va | pa) & PGOFSET) == 0);
4295
4296 switch (cache) {
4297 case PTE_NOCACHE:
4298 default:
4299 fl = 0;
4300 break;
4301
4302 case PTE_CACHE:
4303 fl = pte_l2_s_cache_mode;
4304 break;
4305
4306 case PTE_PAGETABLE:
4307 fl = pte_l2_s_cache_mode_pt;
4308 break;
4309 }
4310
4311 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4312 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4313
4314 #ifndef ARM32_NEW_VM_LAYOUT
4315 pte = (pt_entry_t *)
4316 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4317 #else
4318 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4319 #endif
4320 if (pte == NULL)
4321 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4322
4323 #ifndef ARM32_NEW_VM_LAYOUT
4324 pte[(va >> PGSHIFT) & 0x3ff] =
4325 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4326 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4327 #else
4328 pte[l2pte_index(va)] =
4329 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4330 PTE_SYNC(&pte[l2pte_index(va)]);
4331 #endif
4332 }
4333
4334 /*
4335 * pmap_link_l2pt:
4336 *
4337 * Link the L2 page table specified by "l2pv" into the L1
4338 * page table at the slot for "va".
4339 */
4340 void
4341 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4342 {
4343 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4344 u_int slot = va >> L1_S_SHIFT;
4345
4346 #ifndef ARM32_NEW_VM_LAYOUT
4347 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4348 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4349 #endif
4350
4351 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4352
4353 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4354 #ifdef ARM32_NEW_VM_LAYOUT
4355 PTE_SYNC(&pde[slot]);
4356 #else
4357 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4358 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4359 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4360 PTE_SYNC_RANGE(&pde[slot + 0], 4);
4361 #endif
4362
4363 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4364 }
4365
4366 /*
4367 * pmap_map_chunk:
4368 *
4369 * Map a chunk of memory using the most efficient mappings
4370 * possible (section, large page, small page) into the
4371 * provided L1 and L2 tables at the specified virtual address.
4372 */
4373 vsize_t
4374 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4375 int prot, int cache)
4376 {
4377 pd_entry_t *pde = (pd_entry_t *) l1pt;
4378 pt_entry_t *pte, f1, f2s, f2l;
4379 vsize_t resid;
4380 int i;
4381
4382 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4383
4384 if (l1pt == 0)
4385 panic("pmap_map_chunk: no L1 table provided");
4386
4387 #ifdef VERBOSE_INIT_ARM
4388 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4389 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4390 #endif
4391
4392 switch (cache) {
4393 case PTE_NOCACHE:
4394 default:
4395 f1 = 0;
4396 f2l = 0;
4397 f2s = 0;
4398 break;
4399
4400 case PTE_CACHE:
4401 f1 = pte_l1_s_cache_mode;
4402 f2l = pte_l2_l_cache_mode;
4403 f2s = pte_l2_s_cache_mode;
4404 break;
4405
4406 case PTE_PAGETABLE:
4407 f1 = pte_l1_s_cache_mode_pt;
4408 f2l = pte_l2_l_cache_mode_pt;
4409 f2s = pte_l2_s_cache_mode_pt;
4410 break;
4411 }
4412
4413 size = resid;
4414
4415 while (resid > 0) {
4416 /* See if we can use a section mapping. */
4417 if (L1_S_MAPPABLE_P(va, pa, resid)) {
4418 #ifdef VERBOSE_INIT_ARM
4419 printf("S");
4420 #endif
4421 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4422 L1_S_PROT(PTE_KERNEL, prot) | f1 |
4423 L1_S_DOM(PMAP_DOMAIN_KERNEL);
4424 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4425 va += L1_S_SIZE;
4426 pa += L1_S_SIZE;
4427 resid -= L1_S_SIZE;
4428 continue;
4429 }
4430
4431 /*
4432 * Ok, we're going to use an L2 table. Make sure
4433 * one is actually in the corresponding L1 slot
4434 * for the current VA.
4435 */
4436 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4437 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4438
4439 #ifndef ARM32_NEW_VM_LAYOUT
4440 pte = (pt_entry_t *)
4441 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4442 #else
4443 pte = (pt_entry_t *) kernel_pt_lookup(
4444 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4445 #endif
4446 if (pte == NULL)
4447 panic("pmap_map_chunk: can't find L2 table for VA"
4448 "0x%08lx", va);
4449
4450 /* See if we can use a L2 large page mapping. */
4451 if (L2_L_MAPPABLE_P(va, pa, resid)) {
4452 #ifdef VERBOSE_INIT_ARM
4453 printf("L");
4454 #endif
4455 for (i = 0; i < 16; i++) {
4456 #ifndef ARM32_NEW_VM_LAYOUT
4457 pte[((va >> PGSHIFT) & 0x3f0) + i] =
4458 L2_L_PROTO | pa |
4459 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4460 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4461 #else
4462 pte[l2pte_index(va) + i] =
4463 L2_L_PROTO | pa |
4464 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4465 PTE_SYNC(&pte[l2pte_index(va) + i]);
4466 #endif
4467 }
4468 va += L2_L_SIZE;
4469 pa += L2_L_SIZE;
4470 resid -= L2_L_SIZE;
4471 continue;
4472 }
4473
4474 /* Use a small page mapping. */
4475 #ifdef VERBOSE_INIT_ARM
4476 printf("P");
4477 #endif
4478 #ifndef ARM32_NEW_VM_LAYOUT
4479 pte[(va >> PGSHIFT) & 0x3ff] =
4480 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4481 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4482 #else
4483 pte[l2pte_index(va)] =
4484 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4485 PTE_SYNC(&pte[l2pte_index(va)]);
4486 #endif
4487 va += PAGE_SIZE;
4488 pa += PAGE_SIZE;
4489 resid -= PAGE_SIZE;
4490 }
4491 #ifdef VERBOSE_INIT_ARM
4492 printf("\n");
4493 #endif
4494 return (size);
4495 }
4496
4497 /********************** Static device map routines ***************************/
4498
4499 static const struct pmap_devmap *pmap_devmap_table;
4500
4501 /*
4502 * Register the devmap table. This is provided in case early console
4503 * initialization needs to register mappings created by bootstrap code
4504 * before pmap_devmap_bootstrap() is called.
4505 */
4506 void
4507 pmap_devmap_register(const struct pmap_devmap *table)
4508 {
4509
4510 pmap_devmap_table = table;
4511 }
4512
4513 /*
4514 * Map all of the static regions in the devmap table, and remember
4515 * the devmap table so other parts of the kernel can look up entries
4516 * later.
4517 */
4518 void
4519 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4520 {
4521 int i;
4522
4523 pmap_devmap_table = table;
4524
4525 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4526 #ifdef VERBOSE_INIT_ARM
4527 printf("devmap: %08lx -> %08lx @ %08lx\n",
4528 pmap_devmap_table[i].pd_pa,
4529 pmap_devmap_table[i].pd_pa +
4530 pmap_devmap_table[i].pd_size - 1,
4531 pmap_devmap_table[i].pd_va);
4532 #endif
4533 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4534 pmap_devmap_table[i].pd_pa,
4535 pmap_devmap_table[i].pd_size,
4536 pmap_devmap_table[i].pd_prot,
4537 pmap_devmap_table[i].pd_cache);
4538 }
4539 }
4540
4541 const struct pmap_devmap *
4542 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4543 {
4544 int i;
4545
4546 if (pmap_devmap_table == NULL)
4547 return (NULL);
4548
4549 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4550 if (pa >= pmap_devmap_table[i].pd_pa &&
4551 pa + size <= pmap_devmap_table[i].pd_pa +
4552 pmap_devmap_table[i].pd_size)
4553 return (&pmap_devmap_table[i]);
4554 }
4555
4556 return (NULL);
4557 }
4558
4559 const struct pmap_devmap *
4560 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4561 {
4562 int i;
4563
4564 if (pmap_devmap_table == NULL)
4565 return (NULL);
4566
4567 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4568 if (va >= pmap_devmap_table[i].pd_va &&
4569 va + size <= pmap_devmap_table[i].pd_va +
4570 pmap_devmap_table[i].pd_size)
4571 return (&pmap_devmap_table[i]);
4572 }
4573
4574 return (NULL);
4575 }
4576
4577 /********************** PTE initialization routines **************************/
4578
4579 /*
4580 * These routines are called when the CPU type is identified to set up
4581 * the PTE prototypes, cache modes, etc.
4582 *
4583 * The variables are always here, just in case LKMs need to reference
4584 * them (though, they shouldn't).
4585 */
4586
4587 pt_entry_t pte_l1_s_cache_mode;
4588 pt_entry_t pte_l1_s_cache_mode_pt;
4589 pt_entry_t pte_l1_s_cache_mask;
4590
4591 pt_entry_t pte_l2_l_cache_mode;
4592 pt_entry_t pte_l2_l_cache_mode_pt;
4593 pt_entry_t pte_l2_l_cache_mask;
4594
4595 pt_entry_t pte_l2_s_cache_mode;
4596 pt_entry_t pte_l2_s_cache_mode_pt;
4597 pt_entry_t pte_l2_s_cache_mask;
4598
4599 pt_entry_t pte_l2_s_prot_u;
4600 pt_entry_t pte_l2_s_prot_w;
4601 pt_entry_t pte_l2_s_prot_mask;
4602
4603 pt_entry_t pte_l1_s_proto;
4604 pt_entry_t pte_l1_c_proto;
4605 pt_entry_t pte_l2_s_proto;
4606
4607 void (*pmap_copy_page_func)(paddr_t, paddr_t);
4608 void (*pmap_zero_page_func)(paddr_t);
4609
4610 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4611 void
4612 pmap_pte_init_generic(void)
4613 {
4614
4615 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4616 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4617
4618 pte_l2_l_cache_mode = L2_B|L2_C;
4619 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4620
4621 pte_l2_s_cache_mode = L2_B|L2_C;
4622 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4623
4624 /*
4625 * If we have a write-through cache, set B and C. If
4626 * we have a write-back cache, then we assume setting
4627 * only C will make those pages write-through.
4628 */
4629 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4630 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4631 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4632 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4633 } else {
4634 pte_l1_s_cache_mode_pt = L1_S_C;
4635 pte_l2_l_cache_mode_pt = L2_C;
4636 pte_l2_s_cache_mode_pt = L2_C;
4637 }
4638
4639 pte_l2_s_prot_u = L2_S_PROT_U_generic;
4640 pte_l2_s_prot_w = L2_S_PROT_W_generic;
4641 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4642
4643 pte_l1_s_proto = L1_S_PROTO_generic;
4644 pte_l1_c_proto = L1_C_PROTO_generic;
4645 pte_l2_s_proto = L2_S_PROTO_generic;
4646
4647 pmap_copy_page_func = pmap_copy_page_generic;
4648 pmap_zero_page_func = pmap_zero_page_generic;
4649 }
4650
4651 #if defined(CPU_ARM8)
4652 void
4653 pmap_pte_init_arm8(void)
4654 {
4655
4656 /*
4657 * ARM8 is compatible with generic, but we need to use
4658 * the page tables uncached.
4659 */
4660 pmap_pte_init_generic();
4661
4662 pte_l1_s_cache_mode_pt = 0;
4663 pte_l2_l_cache_mode_pt = 0;
4664 pte_l2_s_cache_mode_pt = 0;
4665 }
4666 #endif /* CPU_ARM8 */
4667
4668 #if defined(CPU_ARM9)
4669 void
4670 pmap_pte_init_arm9(void)
4671 {
4672
4673 /*
4674 * ARM9 is compatible with generic, but we want to use
4675 * write-through caching for now.
4676 */
4677 pmap_pte_init_generic();
4678
4679 pte_l1_s_cache_mode = L1_S_C;
4680 pte_l2_l_cache_mode = L2_C;
4681 pte_l2_s_cache_mode = L2_C;
4682
4683 pte_l1_s_cache_mode_pt = L1_S_C;
4684 pte_l2_l_cache_mode_pt = L2_C;
4685 pte_l2_s_cache_mode_pt = L2_C;
4686 }
4687 #endif /* CPU_ARM9 */
4688 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4689
4690 #if ARM_MMU_SA1 == 1
4691 void
4692 pmap_pte_init_sa1(void)
4693 {
4694
4695 /*
4696 * The StrongARM SA-1 cache does not have a write-through
4697 * mode. So, do the generic initialization, then reset
4698 * the page table cache mode to B=1,C=1, and note that
4699 * the PTEs need to be sync'd.
4700 */
4701 pmap_pte_init_generic();
4702
4703 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4704 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4705 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4706
4707 pmap_needs_pte_sync = 1;
4708 }
4709 #endif /* ARM_MMU_SA1 == 1*/
4710
4711 #if ARM_MMU_XSCALE == 1
4712 void
4713 pmap_pte_init_xscale(void)
4714 {
4715 uint32_t auxctl;
4716 int write_through = 0;
4717
4718 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4719 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4720
4721 pte_l2_l_cache_mode = L2_B|L2_C;
4722 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4723
4724 pte_l2_s_cache_mode = L2_B|L2_C;
4725 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4726
4727 pte_l1_s_cache_mode_pt = L1_S_C;
4728 pte_l2_l_cache_mode_pt = L2_C;
4729 pte_l2_s_cache_mode_pt = L2_C;
4730
4731 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4732 /*
4733 * The XScale core has an enhanced mode where writes that
4734 * miss the cache cause a cache line to be allocated. This
4735 * is significantly faster than the traditional, write-through
4736 * behavior of this case.
4737 */
4738 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4739 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4740 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4741 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4742
4743 #ifdef XSCALE_CACHE_WRITE_THROUGH
4744 /*
4745 * Some versions of the XScale core have various bugs in
4746 * their cache units, the work-around for which is to run
4747 * the cache in write-through mode. Unfortunately, this
4748 * has a major (negative) impact on performance. So, we
4749 * go ahead and run fast-and-loose, in the hopes that we
4750 * don't line up the planets in a way that will trip the
4751 * bugs.
4752 *
4753 * However, we give you the option to be slow-but-correct.
4754 */
4755 write_through = 1;
4756 #elif defined(XSCALE_CACHE_WRITE_BACK)
4757 /* force write back cache mode */
4758 write_through = 0;
4759 #elif defined(CPU_XSCALE_PXA2X0)
4760 /*
4761 * Intel PXA2[15]0 processors are known to have a bug in
4762 * write-back cache on revision 4 and earlier (stepping
4763 * A[01] and B[012]). Fixed for C0 and later.
4764 */
4765 {
4766 uint32_t id, type;
4767
4768 id = cpufunc_id();
4769 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4770
4771 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4772 if ((id & CPU_ID_REVISION_MASK) < 5) {
4773 /* write through for stepping A0-1 and B0-2 */
4774 write_through = 1;
4775 }
4776 }
4777 }
4778 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4779
4780 if (write_through) {
4781 pte_l1_s_cache_mode = L1_S_C;
4782 pte_l2_l_cache_mode = L2_C;
4783 pte_l2_s_cache_mode = L2_C;
4784 }
4785
4786 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4787 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4788 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4789
4790 pte_l1_s_proto = L1_S_PROTO_xscale;
4791 pte_l1_c_proto = L1_C_PROTO_xscale;
4792 pte_l2_s_proto = L2_S_PROTO_xscale;
4793
4794 pmap_copy_page_func = pmap_copy_page_xscale;
4795 pmap_zero_page_func = pmap_zero_page_xscale;
4796
4797 /*
4798 * Disable ECC protection of page table access, for now.
4799 */
4800 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4801 : "=r" (auxctl));
4802 auxctl &= ~XSCALE_AUXCTL_P;
4803 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4804 :
4805 : "r" (auxctl));
4806 }
4807
4808 /*
4809 * xscale_setup_minidata:
4810 *
4811 * Set up the mini-data cache clean area. We require the
4812 * caller to allocate the right amount of physically and
4813 * virtually contiguous space.
4814 */
4815 void
4816 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4817 {
4818 extern vaddr_t xscale_minidata_clean_addr;
4819 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4820 pd_entry_t *pde = (pd_entry_t *) l1pt;
4821 pt_entry_t *pte;
4822 vsize_t size;
4823 uint32_t auxctl;
4824
4825 xscale_minidata_clean_addr = va;
4826
4827 /* Round it to page size. */
4828 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4829
4830 for (; size != 0;
4831 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4832 #ifndef ARM32_NEW_VM_LAYOUT
4833 pte = (pt_entry_t *)
4834 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4835 #else
4836 pte = (pt_entry_t *) kernel_pt_lookup(
4837 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4838 #endif
4839 if (pte == NULL)
4840 panic("xscale_setup_minidata: can't find L2 table for "
4841 "VA 0x%08lx", va);
4842 #ifndef ARM32_NEW_VM_LAYOUT
4843 pte[(va >> PGSHIFT) & 0x3ff] =
4844 #else
4845 pte[l2pte_index(va)] =
4846 #endif
4847 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4848 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4849 }
4850
4851 /*
4852 * Configure the mini-data cache for write-back with
4853 * read/write-allocate.
4854 *
4855 * NOTE: In order to reconfigure the mini-data cache, we must
4856 * make sure it contains no valid data! In order to do that,
4857 * we must issue a global data cache invalidate command!
4858 *
4859 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4860 * THIS IS VERY IMPORTANT!
4861 */
4862
4863 /* Invalidate data and mini-data. */
4864 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4865 :
4866 : "r" (auxctl));
4867
4868
4869 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4870 : "=r" (auxctl));
4871 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4872 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4873 :
4874 : "r" (auxctl));
4875 }
4876 #endif /* ARM_MMU_XSCALE == 1 */
4877
4878 #if defined(DDB)
4879 /*
4880 * A couple of ddb-callable functions for dumping pmaps
4881 */
4882 void pmap_dump_all(void);
4883 void pmap_dump(pmap_t);
4884
4885 void
4886 pmap_dump_all(void)
4887 {
4888 pmap_t pm;
4889
4890 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
4891 if (pm == pmap_kernel())
4892 continue;
4893 pmap_dump(pm);
4894 printf("\n");
4895 }
4896 }
4897
4898 static pt_entry_t ncptes[64];
4899 static void pmap_dump_ncpg(pmap_t);
4900
4901 void
4902 pmap_dump(pmap_t pm)
4903 {
4904 struct l2_dtable *l2;
4905 struct l2_bucket *l2b;
4906 pt_entry_t *ptep, pte;
4907 vaddr_t l2_va, l2b_va, va;
4908 int i, j, k, occ, rows = 0;
4909 char ch;
4910
4911 if (pm == pmap_kernel())
4912 printf("pmap_kernel (%p): ", pm);
4913 else
4914 printf("user pmap (%p): ", pm);
4915
4916 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
4917
4918 l2_va = 0;
4919 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
4920 l2 = pm->pm_l2[i];
4921
4922 if (l2 == NULL || l2->l2_occupancy == 0)
4923 continue;
4924
4925 l2b_va = l2_va;
4926 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
4927 l2b = &l2->l2_bucket[j];
4928
4929 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
4930 continue;
4931
4932 ptep = l2b->l2b_kva;
4933
4934 for (k = 0; k < 256 && ptep[k] == 0; k++)
4935 ;
4936
4937 k &= ~63;
4938 occ = l2b->l2b_occupancy;
4939 va = l2b_va + (k * 4096);
4940 for (; k < 256; k++, va += 0x1000) {
4941 if ((k % 64) == 0) {
4942 if ((rows % 8) == 0) {
4943 printf(
4944 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
4945 }
4946 printf("%08lx: ", va);
4947 }
4948
4949 ncptes[k & 63] = 0;
4950 pte = ptep[k];
4951 if (pte == 0) {
4952 ch = '.';
4953 } else {
4954 occ--;
4955 switch (pte & 0x0c) {
4956 case 0x00:
4957 ch = 'D'; /* No cache No buff */
4958 break;
4959 case 0x04:
4960 ch = 'B'; /* No cache buff */
4961 break;
4962 case 0x08:
4963 ch = 'C'; /* Cache No buff */
4964 break;
4965 case 0x0c:
4966 ch = 'F'; /* Cache Buff */
4967 break;
4968 }
4969
4970 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
4971 ch += 0x20;
4972
4973 if ((pte & 0xc) == 0)
4974 ncptes[k & 63] = pte;
4975 }
4976
4977 if ((k % 64) == 63) {
4978 rows++;
4979 printf("%c\n", ch);
4980 pmap_dump_ncpg(pm);
4981 if (occ == 0)
4982 break;
4983 } else
4984 printf("%c", ch);
4985 }
4986 }
4987 }
4988 }
4989
4990 static void
4991 pmap_dump_ncpg(pmap_t pm)
4992 {
4993 struct vm_page *pg;
4994 struct pv_entry *pv;
4995 int i;
4996
4997 for (i = 0; i < 63; i++) {
4998 if (ncptes[i] == 0)
4999 continue;
5000
5001 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5002 if (pg == NULL)
5003 continue;
5004
5005 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5006 pg->phys_addr,
5007 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5008 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5009
5010 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5011 printf(" %c va 0x%08lx, flags 0x%x\n",
5012 (pm == pv->pv_pmap) ? '*' : ' ',
5013 pv->pv_va, pv->pv_flags);
5014 }
5015 }
5016 }
5017 #endif
5018