pmap.c revision 1.139 1 /* $NetBSD: pmap.c,v 1.139 2003/09/21 00:26:09 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * Performance improvements, UVM changes, overhauls and part-rewrites
144 * were contributed by Neil A. Carson <neil (at) causality.com>.
145 */
146
147 /*
148 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150 * Systems, Inc.
151 *
152 * There are still a few things outstanding at this time:
153 *
154 * - There are some unresolved issues for MP systems:
155 *
156 * o The L1 metadata needs a lock, or more specifically, some places
157 * need to acquire an exclusive lock when modifying L1 translation
158 * table entries.
159 *
160 * o When one cpu modifies an L1 entry, and that L1 table is also
161 * being used by another cpu, then the latter will need to be told
162 * that a tlb invalidation may be necessary. (But only if the old
163 * domain number in the L1 entry being over-written is currently
164 * the active domain on that cpu). I guess there are lots more tlb
165 * shootdown issues too...
166 *
167 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168 * MP systems will lose big-time because of the MMU domain hack.
169 * The only way this can be solved (apart from moving the vector
170 * page to 0xffff0000) is to reserve the first 1MB of user address
171 * space for kernel use only. This would require re-linking all
172 * applications so that the text section starts above this 1MB
173 * boundary.
174 *
175 * o Tracking which VM space is resident in the cache/tlb has not yet
176 * been implemented for MP systems.
177 *
178 * o Finally, there is a pathological condition where two cpus running
179 * two separate processes (not lwps) which happen to share an L1
180 * can get into a fight over one or more L1 entries. This will result
181 * in a significant slow-down if both processes are in tight loops.
182 */
183
184 /*
185 * Special compilation symbols
186 * PMAP_DEBUG - Build in pmap_debug_level code
187 */
188
189 /* Include header files */
190
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194 #include "opt_lockdebug.h"
195 #include "opt_multiprocessor.h"
196
197 #include <sys/types.h>
198 #include <sys/param.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/user.h>
204 #include <sys/pool.h>
205 #include <sys/cdefs.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.139 2003/09/21 00:26:09 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218 #define PDEBUG(_lev_,_stat_) \
219 if (pmap_debug_level >= (_lev_)) \
220 ((_stat_))
221 int pmap_debug_level = 0;
222
223 /*
224 * for switching to potentially finer grained debugging
225 */
226 #define PDB_FOLLOW 0x0001
227 #define PDB_INIT 0x0002
228 #define PDB_ENTER 0x0004
229 #define PDB_REMOVE 0x0008
230 #define PDB_CREATE 0x0010
231 #define PDB_PTPAGE 0x0020
232 #define PDB_GROWKERN 0x0040
233 #define PDB_BITS 0x0080
234 #define PDB_COLLECT 0x0100
235 #define PDB_PROTECT 0x0200
236 #define PDB_MAP_L1 0x0400
237 #define PDB_BOOTSTRAP 0x1000
238 #define PDB_PARANOIA 0x2000
239 #define PDB_WIRING 0x4000
240 #define PDB_PVDUMP 0x8000
241 #define PDB_VAC 0x10000
242 #define PDB_KENTER 0x20000
243 #define PDB_KREMOVE 0x40000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define PDEBUG(_lev_,_stat_) /* Nothing */
253 #define NPDEBUG(_lev_,_stat_) /* Nothing */
254 #endif /* PMAP_DEBUG */
255
256 /*
257 * pmap_kernel() points here
258 */
259 struct pmap kernel_pmap_store;
260
261 /*
262 * Which pmap is currently 'live' in the cache
263 *
264 * XXXSCW: Fix for SMP ...
265 */
266 union pmap_cache_state *pmap_cache_state;
267
268 /*
269 * Pool and cache that pmap structures are allocated from.
270 * We use a cache to avoid clearing the pm_l2[] array (1KB)
271 * in pmap_create().
272 */
273 static struct pool pmap_pmap_pool;
274 static struct pool_cache pmap_pmap_cache;
275 static LIST_HEAD(, pmap) pmap_pmaps;
276
277 /*
278 * Pool of PV structures
279 */
280 static struct pool pmap_pv_pool;
281 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
282 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
283 static struct pool_allocator pmap_bootstrap_pv_allocator = {
284 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
285 };
286
287 /*
288 * Pool and cache of l2_dtable structures.
289 * We use a cache to avoid clearing the structures when they're
290 * allocated. (196 bytes)
291 */
292 static struct pool pmap_l2dtable_pool;
293 static struct pool_cache pmap_l2dtable_cache;
294 static vaddr_t pmap_kernel_l2dtable_kva;
295
296 /*
297 * Pool and cache of L2 page descriptors.
298 * We use a cache to avoid clearing the descriptor table
299 * when they're allocated. (1KB)
300 */
301 static struct pool pmap_l2ptp_pool;
302 static struct pool_cache pmap_l2ptp_cache;
303 static vaddr_t pmap_kernel_l2ptp_kva;
304 static paddr_t pmap_kernel_l2ptp_phys;
305
306 /*
307 * pmap copy/zero page, and mem(5) hook point
308 */
309 static pt_entry_t *csrc_pte, *cdst_pte;
310 static vaddr_t csrcp, cdstp;
311 char *memhook;
312 extern caddr_t msgbufaddr;
313
314 /*
315 * Flag to indicate if pmap_init() has done its thing
316 */
317 boolean_t pmap_initialized;
318
319 /*
320 * Misc. locking data structures
321 */
322
323 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
324 static struct lock pmap_main_lock;
325
326 #define PMAP_MAP_TO_HEAD_LOCK() \
327 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
328 #define PMAP_MAP_TO_HEAD_UNLOCK() \
329 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
330 #define PMAP_HEAD_TO_MAP_LOCK() \
331 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
332 #define PMAP_HEAD_TO_MAP_UNLOCK() \
333 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
334 #else
335 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
336 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
337 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
338 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
339 #endif
340
341 #define pmap_acquire_pmap_lock(pm) \
342 do { \
343 if ((pm) != pmap_kernel()) \
344 simple_lock(&(pm)->pm_lock); \
345 } while (/*CONSTCOND*/0)
346
347 #define pmap_release_pmap_lock(pm) \
348 do { \
349 if ((pm) != pmap_kernel()) \
350 simple_unlock(&(pm)->pm_lock); \
351 } while (/*CONSTCOND*/0)
352
353
354 /*
355 * Metadata for L1 translation tables.
356 */
357 struct l1_ttable {
358 /* Entry on the L1 Table list */
359 SLIST_ENTRY(l1_ttable) l1_link;
360
361 /* Entry on the L1 Least Recently Used list */
362 TAILQ_ENTRY(l1_ttable) l1_lru;
363
364 /* Track how many domains are allocated from this L1 */
365 volatile u_int l1_domain_use_count;
366
367 /*
368 * A free-list of domain numbers for this L1.
369 * We avoid using ffs() and a bitmap to track domains since ffs()
370 * is slow on ARM.
371 */
372 u_int8_t l1_domain_first;
373 u_int8_t l1_domain_free[PMAP_DOMAINS];
374
375 /* Physical address of this L1 page table */
376 paddr_t l1_physaddr;
377
378 /* KVA of this L1 page table */
379 pd_entry_t *l1_kva;
380 };
381
382 /*
383 * Convert a virtual address into its L1 table index. That is, the
384 * index used to locate the L2 descriptor table pointer in an L1 table.
385 * This is basically used to index l1->l1_kva[].
386 *
387 * Each L2 descriptor table represents 1MB of VA space.
388 */
389 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
390
391 /*
392 * L1 Page Tables are tracked using a Least Recently Used list.
393 * - New L1s are allocated from the HEAD.
394 * - Freed L1s are added to the TAIl.
395 * - Recently accessed L1s (where an 'access' is some change to one of
396 * the userland pmaps which owns this L1) are moved to the TAIL.
397 */
398 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
399 static struct simplelock l1_lru_lock;
400
401 /*
402 * A list of all L1 tables
403 */
404 static SLIST_HEAD(, l1_ttable) l1_list;
405
406 /*
407 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
408 *
409 * This is normally 16MB worth L2 page descriptors for any given pmap.
410 * Reference counts are maintained for L2 descriptors so they can be
411 * freed when empty.
412 */
413 struct l2_dtable {
414 /* The number of L2 page descriptors allocated to this l2_dtable */
415 u_int l2_occupancy;
416
417 /* List of L2 page descriptors */
418 struct l2_bucket {
419 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
420 paddr_t l2b_phys; /* Physical address of same */
421 u_short l2b_l1idx; /* This L2 table's L1 index */
422 u_short l2b_occupancy; /* How many active descriptors */
423 } l2_bucket[L2_BUCKET_SIZE];
424 };
425
426 /*
427 * Given an L1 table index, calculate the corresponding l2_dtable index
428 * and bucket index within the l2_dtable.
429 */
430 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
431 (L2_SIZE - 1))
432 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
433
434 /*
435 * Given a virtual address, this macro returns the
436 * virtual address required to drop into the next L2 bucket.
437 */
438 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
439
440 /*
441 * L2 allocation.
442 */
443 #define pmap_alloc_l2_dtable() \
444 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
445 #define pmap_free_l2_dtable(l2) \
446 pool_cache_put(&pmap_l2dtable_cache, (l2))
447 #define pmap_alloc_l2_ptp(pap) \
448 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
449 PR_NOWAIT, (pap)))
450
451 /*
452 * We try to map the page tables write-through, if possible. However, not
453 * all CPUs have a write-through cache mode, so on those we have to sync
454 * the cache when we frob page tables.
455 *
456 * We try to evaluate this at compile time, if possible. However, it's
457 * not always possible to do that, hence this run-time var.
458 */
459 int pmap_needs_pte_sync;
460
461 /*
462 * Real definition of pv_entry.
463 */
464 struct pv_entry {
465 struct pv_entry *pv_next; /* next pv_entry */
466 pmap_t pv_pmap; /* pmap where mapping lies */
467 vaddr_t pv_va; /* virtual address for mapping */
468 u_int pv_flags; /* flags */
469 };
470
471 /*
472 * Macro to determine if a mapping might be resident in the
473 * instruction cache and/or TLB
474 */
475 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
476
477 /*
478 * Macro to determine if a mapping might be resident in the
479 * data cache and/or TLB
480 */
481 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
482
483 /*
484 * Local prototypes
485 */
486 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
487 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
488 pt_entry_t **);
489 static boolean_t pmap_is_current(pmap_t);
490 static boolean_t pmap_is_cached(pmap_t);
491 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
492 pmap_t, vaddr_t, u_int);
493 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
494 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
495 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
496 u_int, u_int);
497
498 static void pmap_pinit(pmap_t);
499 static int pmap_pmap_ctor(void *, void *, int);
500
501 static void pmap_alloc_l1(pmap_t);
502 static void pmap_free_l1(pmap_t);
503 static void pmap_use_l1(pmap_t);
504
505 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
506 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
507 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
508 static int pmap_l2ptp_ctor(void *, void *, int);
509 static int pmap_l2dtable_ctor(void *, void *, int);
510
511 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
512 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
513 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
514
515 static void pmap_clearbit(struct vm_page *, u_int);
516 static int pmap_clean_page(struct pv_entry *, boolean_t);
517 static void pmap_page_remove(struct vm_page *);
518
519 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
520 static vaddr_t kernel_pt_lookup(paddr_t);
521
522
523 /*
524 * External function prototypes
525 */
526 extern void bzero_page(vaddr_t);
527 extern void bcopy_page(vaddr_t, vaddr_t);
528
529 /*
530 * Misc variables
531 */
532 vaddr_t virtual_avail;
533 vaddr_t virtual_end;
534 vaddr_t pmap_curmaxkvaddr;
535
536 vaddr_t avail_start;
537 vaddr_t avail_end;
538
539 extern pv_addr_t systempage;
540
541 /* Function to set the debug level of the pmap code */
542
543 #ifdef PMAP_DEBUG
544 void
545 pmap_debug(int level)
546 {
547 pmap_debug_level = level;
548 printf("pmap_debug: level=%d\n", pmap_debug_level);
549 }
550 #endif /* PMAP_DEBUG */
551
552 /*
553 * A bunch of routines to conditionally flush the caches/TLB depending
554 * on whether the specified pmap actually needs to be flushed at any
555 * given time.
556 */
557 static __inline void
558 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
559 {
560
561 if (pm->pm_cstate.cs_tlb_id)
562 cpu_tlb_flushID_SE(va);
563 }
564
565 static __inline void
566 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
567 {
568
569 if (pm->pm_cstate.cs_tlb_d)
570 cpu_tlb_flushD_SE(va);
571 }
572
573 static __inline void
574 pmap_tlb_flushID(pmap_t pm)
575 {
576
577 if (pm->pm_cstate.cs_tlb_id) {
578 cpu_tlb_flushID();
579 pm->pm_cstate.cs_tlb = 0;
580 }
581 }
582
583 static __inline void
584 pmap_tlb_flushD(pmap_t pm)
585 {
586
587 if (pm->pm_cstate.cs_tlb_d) {
588 cpu_tlb_flushD();
589 pm->pm_cstate.cs_tlb_d = 0;
590 }
591 }
592
593 static __inline void
594 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
595 {
596
597 if (pm->pm_cstate.cs_cache_id)
598 cpu_idcache_wbinv_range(va, len);
599 }
600
601 static __inline void
602 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
603 boolean_t do_inv, boolean_t rd_only)
604 {
605
606 if (pm->pm_cstate.cs_cache_d) {
607 if (do_inv) {
608 if (rd_only)
609 cpu_dcache_inv_range(va, len);
610 else
611 cpu_dcache_wbinv_range(va, len);
612 } else
613 if (!rd_only)
614 cpu_dcache_wb_range(va, len);
615 }
616 }
617
618 static __inline void
619 pmap_idcache_wbinv_all(pmap_t pm)
620 {
621
622 if (pm->pm_cstate.cs_cache_id) {
623 cpu_idcache_wbinv_all();
624 pm->pm_cstate.cs_cache = 0;
625 }
626 }
627
628 static __inline void
629 pmap_dcache_wbinv_all(pmap_t pm)
630 {
631
632 if (pm->pm_cstate.cs_cache_d) {
633 cpu_dcache_wbinv_all();
634 pm->pm_cstate.cs_cache_d = 0;
635 }
636 }
637
638 static __inline boolean_t
639 pmap_is_current(pmap_t pm)
640 {
641
642 if (pm == pmap_kernel() ||
643 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
644 return (TRUE);
645
646 return (FALSE);
647 }
648
649 static __inline boolean_t
650 pmap_is_cached(pmap_t pm)
651 {
652
653 if (pm == pmap_kernel() || pmap_cache_state == NULL ||
654 pmap_cache_state == &pm->pm_cstate)
655 return (TRUE);
656
657 return (FALSE);
658 }
659
660 /*
661 * PTE_SYNC_CURRENT:
662 *
663 * Make sure the pte is written out to RAM.
664 * We need to do this for one of two cases:
665 * - We're dealing with the kernel pmap
666 * - There is no pmap active in the cache/tlb.
667 * - The specified pmap is 'active' in the cache/tlb.
668 */
669 #ifdef PMAP_INCLUDE_PTE_SYNC
670 #define PTE_SYNC_CURRENT(pm, ptep) \
671 do { \
672 if (PMAP_NEEDS_PTE_SYNC && \
673 pmap_is_cached(pm)) \
674 PTE_SYNC(ptep); \
675 } while (/*CONSTCOND*/0)
676 #else
677 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
678 #endif
679
680 /*
681 * main pv_entry manipulation functions:
682 * pmap_enter_pv: enter a mapping onto a vm_page list
683 * pmap_remove_pv: remove a mappiing from a vm_page list
684 *
685 * NOTE: pmap_enter_pv expects to lock the pvh itself
686 * pmap_remove_pv expects te caller to lock the pvh before calling
687 */
688
689 /*
690 * pmap_enter_pv: enter a mapping onto a vm_page lst
691 *
692 * => caller should hold the proper lock on pmap_main_lock
693 * => caller should have pmap locked
694 * => we will gain the lock on the vm_page and allocate the new pv_entry
695 * => caller should adjust ptp's wire_count before calling
696 * => caller should not adjust pmap's wire_count
697 */
698 static void
699 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
700 vaddr_t va, u_int flags)
701 {
702
703 NPDEBUG(PDB_PVDUMP,
704 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
705
706 pve->pv_pmap = pm;
707 pve->pv_va = va;
708 pve->pv_flags = flags;
709
710 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
711 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
712 pg->mdpage.pvh_list = pve; /* ... locked list */
713 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
714 if (pm == pmap_kernel()) {
715 if (flags & PVF_WRITE)
716 pg->mdpage.krw_mappings++;
717 else
718 pg->mdpage.kro_mappings++;
719 } else
720 if (flags & PVF_WRITE)
721 pg->mdpage.urw_mappings++;
722 else
723 pg->mdpage.uro_mappings++;
724 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
725
726 if (pve->pv_flags & PVF_WIRED)
727 ++pm->pm_stats.wired_count;
728 }
729
730 /*
731 *
732 * pmap_find_pv: Find a pv entry
733 *
734 * => caller should hold lock on vm_page
735 */
736 static __inline struct pv_entry *
737 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
738 {
739 struct pv_entry *pv;
740
741 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
742 if (pm == pv->pv_pmap && va == pv->pv_va)
743 break;
744 }
745
746 return (pv);
747 }
748
749 /*
750 * pmap_remove_pv: try to remove a mapping from a pv_list
751 *
752 * => caller should hold proper lock on pmap_main_lock
753 * => pmap should be locked
754 * => caller should hold lock on vm_page [so that attrs can be adjusted]
755 * => caller should adjust ptp's wire_count and free PTP if needed
756 * => caller should NOT adjust pmap's wire_count
757 * => we return the removed pve
758 */
759 static struct pv_entry *
760 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
761 {
762 struct pv_entry *pve, **prevptr;
763
764 NPDEBUG(PDB_PVDUMP,
765 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
766
767 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
768 pve = *prevptr;
769
770 while (pve) {
771 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
772 NPDEBUG(PDB_PVDUMP,
773 printf("pmap_remove_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, pve->pv_flags));
774 *prevptr = pve->pv_next; /* remove it! */
775 if (pve->pv_flags & PVF_WIRED)
776 --pm->pm_stats.wired_count;
777 if (pm == pmap_kernel()) {
778 if (pve->pv_flags & PVF_WRITE)
779 pg->mdpage.krw_mappings--;
780 else
781 pg->mdpage.kro_mappings--;
782 } else
783 if (pve->pv_flags & PVF_WRITE)
784 pg->mdpage.urw_mappings--;
785 else
786 pg->mdpage.uro_mappings--;
787 break;
788 }
789 prevptr = &pve->pv_next; /* previous pointer */
790 pve = pve->pv_next; /* advance */
791 }
792
793 return(pve); /* return removed pve */
794 }
795
796 /*
797 *
798 * pmap_modify_pv: Update pv flags
799 *
800 * => caller should hold lock on vm_page [so that attrs can be adjusted]
801 * => caller should NOT adjust pmap's wire_count
802 * => caller must call pmap_vac_me_harder() if writable status of a page
803 * may have changed.
804 * => we return the old flags
805 *
806 * Modify a physical-virtual mapping in the pv table
807 */
808 static u_int
809 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
810 u_int clr_mask, u_int set_mask)
811 {
812 struct pv_entry *npv;
813 u_int flags, oflags;
814
815 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
816 return (0);
817
818 NPDEBUG(PDB_PVDUMP,
819 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
820
821 /*
822 * There is at least one VA mapping this page.
823 */
824
825 if (clr_mask & (PVF_REF | PVF_MOD))
826 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
827
828 oflags = npv->pv_flags;
829 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
830
831 if ((flags ^ oflags) & PVF_WIRED) {
832 if (flags & PVF_WIRED)
833 ++pm->pm_stats.wired_count;
834 else
835 --pm->pm_stats.wired_count;
836 }
837
838 if ((flags ^ oflags) & PVF_WRITE) {
839 if (pm == pmap_kernel()) {
840 if (flags & PVF_WRITE) {
841 pg->mdpage.krw_mappings++;
842 pg->mdpage.kro_mappings--;
843 } else {
844 pg->mdpage.kro_mappings++;
845 pg->mdpage.krw_mappings--;
846 }
847 } else
848 if (flags & PVF_WRITE) {
849 pg->mdpage.urw_mappings++;
850 pg->mdpage.uro_mappings--;
851 } else {
852 pg->mdpage.uro_mappings++;
853 pg->mdpage.urw_mappings--;
854 }
855 }
856
857 return (oflags);
858 }
859
860 static void
861 pmap_pinit(pmap_t pm)
862 {
863
864 if (vector_page < KERNEL_BASE) {
865 /*
866 * Map the vector page.
867 */
868 pmap_enter(pm, vector_page, systempage.pv_pa,
869 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
870 pmap_update(pm);
871 }
872 }
873
874 /*
875 * Allocate an L1 translation table for the specified pmap.
876 * This is called at pmap creation time.
877 */
878 static void
879 pmap_alloc_l1(pmap_t pm)
880 {
881 struct l1_ttable *l1;
882 u_int8_t domain;
883
884 /*
885 * Remove the L1 at the head of the LRU list
886 */
887 simple_lock(&l1_lru_lock);
888 l1 = TAILQ_FIRST(&l1_lru_list);
889 KDASSERT(l1 != NULL);
890 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
891
892 /*
893 * Pick the first available domain number, and update
894 * the link to the next number.
895 */
896 domain = l1->l1_domain_first;
897 l1->l1_domain_first = l1->l1_domain_free[domain];
898
899 /*
900 * If there are still free domain numbers in this L1,
901 * put it back on the TAIL of the LRU list.
902 */
903 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
904 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
905
906 simple_unlock(&l1_lru_lock);
907
908 /*
909 * Fix up the relevant bits in the pmap structure
910 */
911 pm->pm_l1 = l1;
912 pm->pm_domain = domain;
913 }
914
915 /*
916 * Free an L1 translation table.
917 * This is called at pmap destruction time.
918 */
919 static void
920 pmap_free_l1(pmap_t pm)
921 {
922 struct l1_ttable *l1 = pm->pm_l1;
923
924 simple_lock(&l1_lru_lock);
925
926 /*
927 * If this L1 is currently on the LRU list, remove it.
928 */
929 if (l1->l1_domain_use_count < PMAP_DOMAINS)
930 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
931
932 /*
933 * Free up the domain number which was allocated to the pmap
934 */
935 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
936 l1->l1_domain_first = pm->pm_domain;
937 l1->l1_domain_use_count--;
938
939 /*
940 * The L1 now must have at least 1 free domain, so add
941 * it back to the LRU list. If the use count is zero,
942 * put it at the head of the list, otherwise it goes
943 * to the tail.
944 */
945 if (l1->l1_domain_use_count == 0)
946 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
947 else
948 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
949
950 simple_unlock(&l1_lru_lock);
951 }
952
953 static __inline void
954 pmap_use_l1(pmap_t pm)
955 {
956 struct l1_ttable *l1;
957
958 /*
959 * Do nothing if we're in interrupt context.
960 * Access to an L1 by the kernel pmap must not affect
961 * the LRU list.
962 */
963 if (current_intr_depth || pm == pmap_kernel())
964 return;
965
966 l1 = pm->pm_l1;
967
968 /*
969 * If the L1 is not currently on the LRU list, just return
970 */
971 if (l1->l1_domain_use_count == PMAP_DOMAINS)
972 return;
973
974 simple_lock(&l1_lru_lock);
975
976 /*
977 * Check the use count again, now that we've acquired the lock
978 */
979 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
980 simple_unlock(&l1_lru_lock);
981 return;
982 }
983
984 /*
985 * Move the L1 to the back of the LRU list
986 */
987 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
988 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
989
990 simple_unlock(&l1_lru_lock);
991 }
992
993 /*
994 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
995 *
996 * Free an L2 descriptor table.
997 */
998 static __inline void
999 #ifndef PMAP_INCLUDE_PTE_SYNC
1000 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1001 #else
1002 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
1003 #endif
1004 {
1005 #ifdef PMAP_INCLUDE_PTE_SYNC
1006 /*
1007 * Note: With a write-back cache, we may need to sync this
1008 * L2 table before re-using it.
1009 * This is because it may have belonged to a non-current
1010 * pmap, in which case the cache syncs would have been
1011 * skipped when the pages were being unmapped. If the
1012 * L2 table were then to be immediately re-allocated to
1013 * the *current* pmap, it may well contain stale mappings
1014 * which have not yet been cleared by a cache write-back
1015 * and so would still be visible to the mmu.
1016 */
1017 if (need_sync)
1018 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1019 #endif
1020 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1021 }
1022
1023 /*
1024 * Returns a pointer to the L2 bucket associated with the specified pmap
1025 * and VA, or NULL if no L2 bucket exists for the address.
1026 */
1027 static __inline struct l2_bucket *
1028 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1029 {
1030 struct l2_dtable *l2;
1031 struct l2_bucket *l2b;
1032 u_short l1idx;
1033
1034 l1idx = L1_IDX(va);
1035
1036 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1037 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1038 return (NULL);
1039
1040 return (l2b);
1041 }
1042
1043 /*
1044 * Returns a pointer to the L2 bucket associated with the specified pmap
1045 * and VA.
1046 *
1047 * If no L2 bucket exists, perform the necessary allocations to put an L2
1048 * bucket/page table in place.
1049 *
1050 * Note that if a new L2 bucket/page was allocated, the caller *must*
1051 * increment the bucket occupancy counter appropriately *before*
1052 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1053 * the bucket/page in the meantime.
1054 */
1055 static struct l2_bucket *
1056 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1057 {
1058 struct l2_dtable *l2;
1059 struct l2_bucket *l2b;
1060 u_short l1idx;
1061
1062 l1idx = L1_IDX(va);
1063
1064 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1065 /*
1066 * No mapping at this address, as there is
1067 * no entry in the L1 table.
1068 * Need to allocate a new l2_dtable.
1069 */
1070 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1071 return (NULL);
1072
1073 /*
1074 * Link it into the parent pmap
1075 */
1076 pm->pm_l2[L2_IDX(l1idx)] = l2;
1077 }
1078
1079 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1080
1081 /*
1082 * Fetch pointer to the L2 page table associated with the address.
1083 */
1084 if (l2b->l2b_kva == NULL) {
1085 pt_entry_t *ptep;
1086
1087 /*
1088 * No L2 page table has been allocated. Chances are, this
1089 * is because we just allocated the l2_dtable, above.
1090 */
1091 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1092 /*
1093 * Oops, no more L2 page tables available at this
1094 * time. We may need to deallocate the l2_dtable
1095 * if we allocated a new one above.
1096 */
1097 if (l2->l2_occupancy == 0) {
1098 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1099 pmap_free_l2_dtable(l2);
1100 }
1101 return (NULL);
1102 }
1103
1104 l2->l2_occupancy++;
1105 l2b->l2b_kva = ptep;
1106 l2b->l2b_l1idx = l1idx;
1107 }
1108
1109 return (l2b);
1110 }
1111
1112 /*
1113 * One or more mappings in the specified L2 descriptor table have just been
1114 * invalidated.
1115 *
1116 * Garbage collect the metadata and descriptor table itself if necessary.
1117 *
1118 * The pmap lock must be acquired when this is called (not necessary
1119 * for the kernel pmap).
1120 */
1121 static void
1122 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1123 {
1124 struct l2_dtable *l2;
1125 pd_entry_t *pl1pd, l1pd;
1126 pt_entry_t *ptep;
1127 u_short l1idx;
1128
1129 KDASSERT(count <= l2b->l2b_occupancy);
1130
1131 /*
1132 * Update the bucket's reference count according to how many
1133 * PTEs the caller has just invalidated.
1134 */
1135 l2b->l2b_occupancy -= count;
1136
1137 /*
1138 * Note:
1139 *
1140 * Level 2 page tables allocated to the kernel pmap are never freed
1141 * as that would require checking all Level 1 page tables and
1142 * removing any references to the Level 2 page table. See also the
1143 * comment elsewhere about never freeing bootstrap L2 descriptors.
1144 *
1145 * We make do with just invalidating the mapping in the L2 table.
1146 *
1147 * This isn't really a big deal in practice and, in fact, leads
1148 * to a performance win over time as we don't need to continually
1149 * alloc/free.
1150 */
1151 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1152 return;
1153
1154 /*
1155 * There are no more valid mappings in this level 2 page table.
1156 * Go ahead and NULL-out the pointer in the bucket, then
1157 * free the page table.
1158 */
1159 l1idx = l2b->l2b_l1idx;
1160 ptep = l2b->l2b_kva;
1161 l2b->l2b_kva = NULL;
1162
1163 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1164
1165 /*
1166 * If the L1 slot matches the pmap's domain
1167 * number, then invalidate it.
1168 */
1169 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1170 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1171 *pl1pd = 0;
1172 PTE_SYNC(pl1pd);
1173 }
1174
1175 /*
1176 * Release the L2 descriptor table back to the pool cache.
1177 */
1178 #ifndef PMAP_INCLUDE_PTE_SYNC
1179 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1180 #else
1181 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1182 #endif
1183
1184 /*
1185 * Update the reference count in the associated l2_dtable
1186 */
1187 l2 = pm->pm_l2[L2_IDX(l1idx)];
1188 if (--l2->l2_occupancy > 0)
1189 return;
1190
1191 /*
1192 * There are no more valid mappings in any of the Level 1
1193 * slots managed by this l2_dtable. Go ahead and NULL-out
1194 * the pointer in the parent pmap and free the l2_dtable.
1195 */
1196 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1197 pmap_free_l2_dtable(l2);
1198 }
1199
1200 /*
1201 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1202 * structures.
1203 */
1204 static int
1205 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1206 {
1207 #ifndef PMAP_INCLUDE_PTE_SYNC
1208 struct l2_bucket *l2b;
1209 pt_entry_t *ptep, pte;
1210 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1211
1212 /*
1213 * The mappings for these page tables were initially made using
1214 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1215 * mode will not be right for page table mappings. To avoid
1216 * polluting the pmap_kenter_pa() code with a special case for
1217 * page tables, we simply fix up the cache-mode here if it's not
1218 * correct.
1219 */
1220 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1221 KDASSERT(l2b != NULL);
1222 ptep = &l2b->l2b_kva[l2pte_index(va)];
1223 pte = *ptep;
1224
1225 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1226 /*
1227 * Page tables must have the cache-mode set to Write-Thru.
1228 */
1229 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1230 PTE_SYNC(ptep);
1231 cpu_tlb_flushD_SE(va);
1232 cpu_cpwait();
1233 }
1234 #endif
1235
1236 memset(v, 0, L2_TABLE_SIZE_REAL);
1237 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1238 return (0);
1239 }
1240
1241 static int
1242 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1243 {
1244
1245 memset(v, 0, sizeof(struct l2_dtable));
1246 return (0);
1247 }
1248
1249 static int
1250 pmap_pmap_ctor(void *arg, void *v, int flags)
1251 {
1252
1253 memset(v, 0, sizeof(struct pmap));
1254 return (0);
1255 }
1256
1257 /*
1258 * Since we have a virtually indexed cache, we may need to inhibit caching if
1259 * there is more than one mapping and at least one of them is writable.
1260 * Since we purge the cache on every context switch, we only need to check for
1261 * other mappings within the same pmap, or kernel_pmap.
1262 * This function is also called when a page is unmapped, to possibly reenable
1263 * caching on any remaining mappings.
1264 *
1265 * The code implements the following logic, where:
1266 *
1267 * KW = # of kernel read/write pages
1268 * KR = # of kernel read only pages
1269 * UW = # of user read/write pages
1270 * UR = # of user read only pages
1271 *
1272 * KC = kernel mapping is cacheable
1273 * UC = user mapping is cacheable
1274 *
1275 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1276 * +---------------------------------------------
1277 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1278 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1279 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1280 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1281 */
1282
1283 static const int pmap_vac_flags[4][4] = {
1284 {-1, 0, 0, PVF_KNC},
1285 {0, 0, PVF_NC, PVF_NC},
1286 {0, PVF_NC, PVF_NC, PVF_NC},
1287 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1288 };
1289
1290 static __inline int
1291 pmap_get_vac_flags(const struct vm_page *pg)
1292 {
1293 int kidx, uidx;
1294
1295 kidx = 0;
1296 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1297 kidx |= 1;
1298 if (pg->mdpage.krw_mappings)
1299 kidx |= 2;
1300
1301 uidx = 0;
1302 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1303 uidx |= 1;
1304 if (pg->mdpage.urw_mappings)
1305 uidx |= 2;
1306
1307 return (pmap_vac_flags[uidx][kidx]);
1308 }
1309
1310 static __inline void
1311 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1312 {
1313 int nattr;
1314
1315 nattr = pmap_get_vac_flags(pg);
1316
1317 if (nattr < 0) {
1318 pg->mdpage.pvh_attrs &= ~PVF_NC;
1319 return;
1320 }
1321
1322 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1323 return;
1324
1325 if (pm == pmap_kernel())
1326 pmap_vac_me_kpmap(pg, pm, va);
1327 else
1328 pmap_vac_me_user(pg, pm, va);
1329
1330 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1331 }
1332
1333 static void
1334 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1335 {
1336 u_int u_cacheable, u_entries;
1337 struct pv_entry *pv;
1338 pmap_t last_pmap = pm;
1339
1340 /*
1341 * Pass one, see if there are both kernel and user pmaps for
1342 * this page. Calculate whether there are user-writable or
1343 * kernel-writable pages.
1344 */
1345 u_cacheable = 0;
1346 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1347 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1348 u_cacheable++;
1349 }
1350
1351 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1352
1353 /*
1354 * We know we have just been updating a kernel entry, so if
1355 * all user pages are already cacheable, then there is nothing
1356 * further to do.
1357 */
1358 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1359 return;
1360
1361 if (u_entries) {
1362 /*
1363 * Scan over the list again, for each entry, if it
1364 * might not be set correctly, call pmap_vac_me_user
1365 * to recalculate the settings.
1366 */
1367 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1368 /*
1369 * We know kernel mappings will get set
1370 * correctly in other calls. We also know
1371 * that if the pmap is the same as last_pmap
1372 * then we've just handled this entry.
1373 */
1374 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1375 continue;
1376
1377 /*
1378 * If there are kernel entries and this page
1379 * is writable but non-cacheable, then we can
1380 * skip this entry also.
1381 */
1382 if (pg->mdpage.k_mappings &&
1383 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1384 (PVF_NC | PVF_WRITE))
1385 continue;
1386
1387 /*
1388 * Similarly if there are no kernel-writable
1389 * entries and the page is already
1390 * read-only/cacheable.
1391 */
1392 if (pg->mdpage.krw_mappings == 0 &&
1393 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1394 continue;
1395
1396 /*
1397 * For some of the remaining cases, we know
1398 * that we must recalculate, but for others we
1399 * can't tell if they are correct or not, so
1400 * we recalculate anyway.
1401 */
1402 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1403 }
1404
1405 if (pg->mdpage.k_mappings == 0)
1406 return;
1407 }
1408
1409 pmap_vac_me_user(pg, pm, va);
1410 }
1411
1412 static void
1413 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1414 {
1415 pmap_t kpmap = pmap_kernel();
1416 struct pv_entry *pv, *npv;
1417 struct l2_bucket *l2b;
1418 pt_entry_t *ptep, pte;
1419 u_int entries = 0;
1420 u_int writable = 0;
1421 u_int cacheable_entries = 0;
1422 u_int kern_cacheable = 0;
1423 u_int other_writable = 0;
1424
1425 /*
1426 * Count mappings and writable mappings in this pmap.
1427 * Include kernel mappings as part of our own.
1428 * Keep a pointer to the first one.
1429 */
1430 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1431 /* Count mappings in the same pmap */
1432 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1433 if (entries++ == 0)
1434 npv = pv;
1435
1436 /* Cacheable mappings */
1437 if ((pv->pv_flags & PVF_NC) == 0) {
1438 cacheable_entries++;
1439 if (kpmap == pv->pv_pmap)
1440 kern_cacheable++;
1441 }
1442
1443 /* Writable mappings */
1444 if (pv->pv_flags & PVF_WRITE)
1445 ++writable;
1446 } else
1447 if (pv->pv_flags & PVF_WRITE)
1448 other_writable = 1;
1449 }
1450
1451 /*
1452 * Enable or disable caching as necessary.
1453 * Note: the first entry might be part of the kernel pmap,
1454 * so we can't assume this is indicative of the state of the
1455 * other (maybe non-kpmap) entries.
1456 */
1457 if ((entries > 1 && writable) ||
1458 (entries > 0 && pm == kpmap && other_writable)) {
1459 if (cacheable_entries == 0)
1460 return;
1461
1462 for (pv = npv; pv; pv = pv->pv_next) {
1463 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1464 (pv->pv_flags & PVF_NC))
1465 continue;
1466
1467 pv->pv_flags |= PVF_NC;
1468
1469 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1470 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1471 pte = *ptep & ~L2_S_CACHE_MASK;
1472
1473 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1474 l2pte_valid(pte)) {
1475 if (PV_BEEN_EXECD(pv->pv_flags)) {
1476 pmap_idcache_wbinv_range(pv->pv_pmap,
1477 pv->pv_va, PAGE_SIZE);
1478 pmap_tlb_flushID_SE(pv->pv_pmap,
1479 pv->pv_va);
1480 } else
1481 if (PV_BEEN_REFD(pv->pv_flags)) {
1482 pmap_dcache_wb_range(pv->pv_pmap,
1483 pv->pv_va, PAGE_SIZE, TRUE,
1484 (pv->pv_flags & PVF_WRITE) == 0);
1485 pmap_tlb_flushD_SE(pv->pv_pmap,
1486 pv->pv_va);
1487 }
1488 }
1489
1490 *ptep = pte;
1491 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1492 }
1493 cpu_cpwait();
1494 } else
1495 if (entries > cacheable_entries) {
1496 /*
1497 * Turn cacheing back on for some pages. If it is a kernel
1498 * page, only do so if there are no other writable pages.
1499 */
1500 for (pv = npv; pv; pv = pv->pv_next) {
1501 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1502 (kpmap != pv->pv_pmap || other_writable)))
1503 continue;
1504
1505 pv->pv_flags &= ~PVF_NC;
1506
1507 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1508 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1509 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1510
1511 if (l2pte_valid(pte)) {
1512 if (PV_BEEN_EXECD(pv->pv_flags)) {
1513 pmap_tlb_flushID_SE(pv->pv_pmap,
1514 pv->pv_va);
1515 } else
1516 if (PV_BEEN_REFD(pv->pv_flags)) {
1517 pmap_tlb_flushD_SE(pv->pv_pmap,
1518 pv->pv_va);
1519 }
1520 }
1521
1522 *ptep = pte;
1523 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1524 }
1525 }
1526 }
1527
1528 /*
1529 * Modify pte bits for all ptes corresponding to the given physical address.
1530 * We use `maskbits' rather than `clearbits' because we're always passing
1531 * constants and the latter would require an extra inversion at run-time.
1532 */
1533 static void
1534 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1535 {
1536 struct l2_bucket *l2b;
1537 struct pv_entry *pv;
1538 pt_entry_t *ptep, npte, opte;
1539 pmap_t pm;
1540 vaddr_t va;
1541 u_int oflags;
1542
1543 NPDEBUG(PDB_BITS,
1544 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1545 pg, pg->phys_addr, maskbits));
1546
1547 PMAP_HEAD_TO_MAP_LOCK();
1548 simple_lock(&pg->mdpage.pvh_slock);
1549
1550 /*
1551 * Clear saved attributes (modify, reference)
1552 */
1553 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1554
1555 if (pg->mdpage.pvh_list == NULL) {
1556 simple_unlock(&pg->mdpage.pvh_slock);
1557 PMAP_HEAD_TO_MAP_UNLOCK();
1558 return;
1559 }
1560
1561 /*
1562 * Loop over all current mappings setting/clearing as appropos
1563 */
1564 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1565 va = pv->pv_va;
1566 pm = pv->pv_pmap;
1567 oflags = pv->pv_flags;
1568 pv->pv_flags &= ~maskbits;
1569
1570 pmap_acquire_pmap_lock(pm);
1571
1572 l2b = pmap_get_l2_bucket(pm, va);
1573 KDASSERT(l2b != NULL);
1574
1575 ptep = &l2b->l2b_kva[l2pte_index(va)];
1576 npte = opte = *ptep;
1577
1578 NPDEBUG(PDB_BITS,
1579 printf(
1580 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1581 pv, pv->pv_pmap, pv->pv_va, oflags));
1582
1583 if (maskbits & (PVF_WRITE|PVF_MOD)) {
1584 if ((pv->pv_flags & PVF_NC)) {
1585 /*
1586 * Entry is not cacheable:
1587 *
1588 * Don't turn caching on again if this is a
1589 * modified emulation. This would be
1590 * inconsitent with the settings created by
1591 * pmap_vac_me_harder(). Otherwise, it's safe
1592 * to re-enable cacheing.
1593 *
1594 * There's no need to call pmap_vac_me_harder()
1595 * here: all pages are losing their write
1596 * permission.
1597 */
1598 if (maskbits & PVF_WRITE) {
1599 npte |= pte_l2_s_cache_mode;
1600 pv->pv_flags &= ~PVF_NC;
1601 }
1602 } else
1603 if (opte & L2_S_PROT_W) {
1604 /*
1605 * Entry is writable/cacheable: check if pmap
1606 * is current if it is flush it, otherwise it
1607 * won't be in the cache
1608 */
1609 if (PV_BEEN_EXECD(oflags))
1610 pmap_idcache_wbinv_range(pm, pv->pv_va,
1611 PAGE_SIZE);
1612 else
1613 if (PV_BEEN_REFD(oflags))
1614 pmap_dcache_wb_range(pm, pv->pv_va,
1615 PAGE_SIZE,
1616 (maskbits & PVF_REF) ? TRUE : FALSE,
1617 FALSE);
1618 }
1619
1620 /* make the pte read only */
1621 npte &= ~L2_S_PROT_W;
1622
1623 if (maskbits & PVF_WRITE) {
1624 /*
1625 * Keep alias accounting up to date
1626 */
1627 if (pv->pv_pmap == pmap_kernel()) {
1628 if (oflags & PVF_WRITE) {
1629 pg->mdpage.krw_mappings--;
1630 pg->mdpage.kro_mappings++;
1631 }
1632 } else
1633 if (oflags & PVF_WRITE) {
1634 pg->mdpage.urw_mappings--;
1635 pg->mdpage.uro_mappings++;
1636 }
1637 }
1638 }
1639
1640 if (maskbits & PVF_REF) {
1641 if ((pv->pv_flags & PVF_NC) == 0 &&
1642 (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1643 /*
1644 * Check npte here; we may have already
1645 * done the wbinv above, and the validity
1646 * of the PTE is the same for opte and
1647 * npte.
1648 */
1649 if (npte & L2_S_PROT_W) {
1650 if (PV_BEEN_EXECD(oflags))
1651 pmap_idcache_wbinv_range(pm,
1652 pv->pv_va, PAGE_SIZE);
1653 else
1654 if (PV_BEEN_REFD(oflags))
1655 pmap_dcache_wb_range(pm,
1656 pv->pv_va, PAGE_SIZE,
1657 TRUE, FALSE);
1658 } else
1659 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1660 /* XXXJRT need idcache_inv_range */
1661 if (PV_BEEN_EXECD(oflags))
1662 pmap_idcache_wbinv_range(pm,
1663 pv->pv_va, PAGE_SIZE);
1664 else
1665 if (PV_BEEN_REFD(oflags))
1666 pmap_dcache_wb_range(pm,
1667 pv->pv_va, PAGE_SIZE,
1668 TRUE, TRUE);
1669 }
1670 }
1671
1672 /*
1673 * Make the PTE invalid so that we will take a
1674 * page fault the next time the mapping is
1675 * referenced.
1676 */
1677 npte &= ~L2_TYPE_MASK;
1678 npte |= L2_TYPE_INV;
1679 }
1680
1681 if (npte != opte) {
1682 *ptep = npte;
1683 PTE_SYNC(ptep);
1684 /* Flush the TLB entry if a current pmap. */
1685 if (PV_BEEN_EXECD(oflags))
1686 pmap_tlb_flushID_SE(pm, pv->pv_va);
1687 else
1688 if (PV_BEEN_REFD(oflags))
1689 pmap_tlb_flushD_SE(pm, pv->pv_va);
1690 }
1691
1692 pmap_release_pmap_lock(pm);
1693
1694 NPDEBUG(PDB_BITS,
1695 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1696 pm, va, opte, npte));
1697 }
1698
1699 simple_unlock(&pg->mdpage.pvh_slock);
1700 PMAP_HEAD_TO_MAP_UNLOCK();
1701 }
1702
1703 /*
1704 * pmap_clean_page()
1705 *
1706 * This is a local function used to work out the best strategy to clean
1707 * a single page referenced by its entry in the PV table. It's used by
1708 * pmap_copy_page, pmap_zero page and maybe some others later on.
1709 *
1710 * Its policy is effectively:
1711 * o If there are no mappings, we don't bother doing anything with the cache.
1712 * o If there is one mapping, we clean just that page.
1713 * o If there are multiple mappings, we clean the entire cache.
1714 *
1715 * So that some functions can be further optimised, it returns 0 if it didn't
1716 * clean the entire cache, or 1 if it did.
1717 *
1718 * XXX One bug in this routine is that if the pv_entry has a single page
1719 * mapped at 0x00000000 a whole cache clean will be performed rather than
1720 * just the 1 page. Since this should not occur in everyday use and if it does
1721 * it will just result in not the most efficient clean for the page.
1722 */
1723 static int
1724 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1725 {
1726 pmap_t pm, pm_to_clean = NULL;
1727 struct pv_entry *npv;
1728 u_int cache_needs_cleaning = 0;
1729 u_int flags = 0;
1730 vaddr_t page_to_clean = 0;
1731
1732 if (pv == NULL) {
1733 /* nothing mapped in so nothing to flush */
1734 return (0);
1735 }
1736
1737 /*
1738 * Since we flush the cache each time we change to a different
1739 * user vmspace, we only need to flush the page if it is in the
1740 * current pmap.
1741 */
1742 if (curproc)
1743 pm = curproc->p_vmspace->vm_map.pmap;
1744 else
1745 pm = pmap_kernel();
1746
1747 for (npv = pv; npv; npv = npv->pv_next) {
1748 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1749 flags |= npv->pv_flags;
1750 /*
1751 * The page is mapped non-cacheable in
1752 * this map. No need to flush the cache.
1753 */
1754 if (npv->pv_flags & PVF_NC) {
1755 #ifdef DIAGNOSTIC
1756 if (cache_needs_cleaning)
1757 panic("pmap_clean_page: "
1758 "cache inconsistency");
1759 #endif
1760 break;
1761 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1762 continue;
1763 if (cache_needs_cleaning) {
1764 page_to_clean = 0;
1765 break;
1766 } else {
1767 page_to_clean = npv->pv_va;
1768 pm_to_clean = npv->pv_pmap;
1769 }
1770 cache_needs_cleaning = 1;
1771 }
1772 }
1773
1774 if (page_to_clean) {
1775 if (PV_BEEN_EXECD(flags))
1776 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1777 PAGE_SIZE);
1778 else
1779 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1780 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1781 } else if (cache_needs_cleaning) {
1782 if (PV_BEEN_EXECD(flags))
1783 pmap_idcache_wbinv_all(pm);
1784 else
1785 pmap_dcache_wbinv_all(pm);
1786 return (1);
1787 }
1788 return (0);
1789 }
1790
1791 /*
1792 * Routine: pmap_page_remove
1793 * Function:
1794 * Removes this physical page from
1795 * all physical maps in which it resides.
1796 * Reflects back modify bits to the pager.
1797 */
1798 static void
1799 pmap_page_remove(struct vm_page *pg)
1800 {
1801 struct l2_bucket *l2b;
1802 struct pv_entry *pv, *npv;
1803 pmap_t pm, curpm;
1804 pt_entry_t *ptep, pte;
1805 boolean_t flush;
1806 u_int flags;
1807
1808 NPDEBUG(PDB_FOLLOW,
1809 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg, pg->phys_addr));
1810
1811 PMAP_HEAD_TO_MAP_LOCK();
1812 simple_lock(&pg->mdpage.pvh_slock);
1813
1814 pv = pg->mdpage.pvh_list;
1815 if (pv == NULL) {
1816 simple_unlock(&pg->mdpage.pvh_slock);
1817 PMAP_HEAD_TO_MAP_UNLOCK();
1818 return;
1819 }
1820
1821 /*
1822 * Clear alias counts
1823 */
1824 pg->mdpage.k_mappings = 0;
1825 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1826
1827 flush = FALSE;
1828 flags = 0;
1829 if (curproc)
1830 curpm = curproc->p_vmspace->vm_map.pmap;
1831 else
1832 curpm = pmap_kernel();
1833
1834 pmap_clean_page(pv, FALSE);
1835
1836 while (pv) {
1837 pm = pv->pv_pmap;
1838 if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
1839 flush = TRUE;
1840
1841 pmap_acquire_pmap_lock(pm);
1842
1843 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1844 KDASSERT(l2b != NULL);
1845
1846 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1847 pte = *ptep;
1848
1849 /*
1850 * Update statistics
1851 */
1852 --pm->pm_stats.resident_count;
1853
1854 /* Wired bit */
1855 if (pv->pv_flags & PVF_WIRED)
1856 --pm->pm_stats.wired_count;
1857
1858 flags |= pv->pv_flags;
1859
1860 /*
1861 * Invalidate the PTEs.
1862 */
1863 *ptep = 0;
1864 PTE_SYNC_CURRENT(pm, ptep);
1865 pmap_free_l2_bucket(pm, l2b, 1);
1866
1867 npv = pv->pv_next;
1868 pool_put(&pmap_pv_pool, pv);
1869 pv = npv;
1870 pmap_release_pmap_lock(pm);
1871 }
1872 pg->mdpage.pvh_list = NULL;
1873 simple_unlock(&pg->mdpage.pvh_slock);
1874 PMAP_HEAD_TO_MAP_UNLOCK();
1875
1876 if (flush) {
1877 if (PV_BEEN_EXECD(flags))
1878 pmap_tlb_flushID(curpm);
1879 else
1880 pmap_tlb_flushD(curpm);
1881 }
1882 cpu_cpwait();
1883 }
1884
1885 /*
1886 * pmap_t pmap_create(void)
1887 *
1888 * Create a new pmap structure from scratch.
1889 */
1890 pmap_t
1891 pmap_create(void)
1892 {
1893 pmap_t pm;
1894
1895 pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
1896
1897 simple_lock_init(&pm->pm_lock);
1898 pm->pm_obj.pgops = NULL; /* currently not a mappable object */
1899 TAILQ_INIT(&pm->pm_obj.memq);
1900 pm->pm_obj.uo_npages = 0;
1901 pm->pm_obj.uo_refs = 1;
1902 pm->pm_stats.wired_count = 0;
1903 pm->pm_stats.resident_count = 1;
1904 pm->pm_cstate.cs_all = 0;
1905 pmap_alloc_l1(pm);
1906
1907 /*
1908 * Note: The pool cache ensures that the pm_l2[] array is already
1909 * initialised to zero.
1910 */
1911
1912 pmap_pinit(pm);
1913
1914 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1915
1916 return (pm);
1917 }
1918
1919 /*
1920 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1921 * int flags)
1922 *
1923 * Insert the given physical page (p) at
1924 * the specified virtual address (v) in the
1925 * target physical map with the protection requested.
1926 *
1927 * NB: This is the only routine which MAY NOT lazy-evaluate
1928 * or lose information. That is, this routine must actually
1929 * insert this page into the given map NOW.
1930 */
1931 int
1932 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1933 {
1934 struct l2_bucket *l2b;
1935 struct vm_page *pg, *opg;
1936 struct pv_entry *pve;
1937 pt_entry_t *ptep, npte, opte;
1938 u_int nflags;
1939 u_int oflags;
1940
1941 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1942
1943 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1944 KDASSERT(((va | pa) & PGOFSET) == 0);
1945
1946 /*
1947 * Get a pointer to the page. Later on in this function, we
1948 * test for a managed page by checking pg != NULL.
1949 */
1950 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1951
1952 nflags = 0;
1953 if (prot & VM_PROT_WRITE)
1954 nflags |= PVF_WRITE;
1955 if (prot & VM_PROT_EXECUTE)
1956 nflags |= PVF_EXEC;
1957 if (flags & PMAP_WIRED)
1958 nflags |= PVF_WIRED;
1959
1960 PMAP_MAP_TO_HEAD_LOCK();
1961 pmap_acquire_pmap_lock(pm);
1962
1963 /*
1964 * Fetch the L2 bucket which maps this page, allocating one if
1965 * necessary for user pmaps.
1966 */
1967 if (pm == pmap_kernel())
1968 l2b = pmap_get_l2_bucket(pm, va);
1969 else
1970 l2b = pmap_alloc_l2_bucket(pm, va);
1971 if (l2b == NULL) {
1972 if (flags & PMAP_CANFAIL) {
1973 pmap_release_pmap_lock(pm);
1974 PMAP_MAP_TO_HEAD_UNLOCK();
1975 return (ENOMEM);
1976 }
1977 panic("pmap_enter: failed to allocate L2 bucket");
1978 }
1979 ptep = &l2b->l2b_kva[l2pte_index(va)];
1980 opte = *ptep;
1981 npte = pa;
1982 oflags = 0;
1983
1984 if (opte) {
1985 /*
1986 * There is already a mapping at this address.
1987 * If the physical address is different, lookup the
1988 * vm_page.
1989 */
1990 if (l2pte_pa(opte) != pa)
1991 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
1992 else
1993 opg = pg;
1994 } else
1995 opg = NULL;
1996
1997 if (pg) {
1998 /*
1999 * This is to be a managed mapping.
2000 */
2001 if ((flags & VM_PROT_ALL) ||
2002 (pg->mdpage.pvh_attrs & PVF_REF)) {
2003 /*
2004 * - The access type indicates that we don't need
2005 * to do referenced emulation.
2006 * OR
2007 * - The physical page has already been referenced
2008 * so no need to re-do referenced emulation here.
2009 */
2010 npte |= L2_S_PROTO;
2011
2012 nflags |= PVF_REF;
2013
2014 if ((prot & VM_PROT_WRITE) != 0 &&
2015 ((flags & VM_PROT_WRITE) != 0 ||
2016 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2017 /*
2018 * This is a writable mapping, and the
2019 * page's mod state indicates it has
2020 * already been modified. Make it
2021 * writable from the outset.
2022 */
2023 npte |= L2_S_PROT_W;
2024 nflags |= PVF_MOD;
2025 }
2026 } else {
2027 /*
2028 * Need to do page referenced emulation.
2029 */
2030 npte |= L2_TYPE_INV;
2031 }
2032
2033 npte |= pte_l2_s_cache_mode;
2034
2035 if (pg == opg) {
2036 /*
2037 * We're changing the attrs of an existing mapping.
2038 */
2039 simple_lock(&pg->mdpage.pvh_slock);
2040 oflags = pmap_modify_pv(pg, pm, va,
2041 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2042 PVF_MOD | PVF_REF, nflags);
2043 simple_unlock(&pg->mdpage.pvh_slock);
2044
2045 /*
2046 * We may need to flush the cache if we're
2047 * doing rw-ro...
2048 */
2049 if (pm->pm_cstate.cs_cache_d &&
2050 (oflags & PVF_NC) == 0 &&
2051 (opte & L2_S_PROT_W) != 0 &&
2052 (prot & VM_PROT_WRITE) == 0)
2053 cpu_dcache_wb_range(va, PAGE_SIZE);
2054 } else {
2055 /*
2056 * New mapping, or changing the backing page
2057 * of an existing mapping.
2058 */
2059 if (opg) {
2060 /*
2061 * Replacing an existing mapping with a new one.
2062 * It is part of our managed memory so we
2063 * must remove it from the PV list
2064 */
2065 simple_lock(&opg->mdpage.pvh_slock);
2066 pve = pmap_remove_pv(opg, pm, va);
2067 pmap_vac_me_harder(opg, pm, 0);
2068 simple_unlock(&opg->mdpage.pvh_slock);
2069 oflags = pve->pv_flags;
2070
2071 /*
2072 * If the old mapping was valid (ref/mod
2073 * emulation creates 'invalid' mappings
2074 * initially) then make sure to frob
2075 * the cache.
2076 */
2077 if ((oflags & PVF_NC) == 0 &&
2078 l2pte_valid(opte)) {
2079 if (PV_BEEN_EXECD(oflags)) {
2080 pmap_idcache_wbinv_range(pm, va,
2081 PAGE_SIZE);
2082 } else
2083 if (PV_BEEN_REFD(oflags)) {
2084 pmap_dcache_wb_range(pm, va,
2085 PAGE_SIZE, TRUE,
2086 (oflags & PVF_WRITE) == 0);
2087 }
2088 }
2089 } else
2090 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2091 if ((flags & PMAP_CANFAIL) == 0)
2092 panic("pmap_enter: no pv entries");
2093
2094 if (pm != pmap_kernel())
2095 pmap_free_l2_bucket(pm, l2b, 0);
2096 pmap_release_pmap_lock(pm);
2097 PMAP_MAP_TO_HEAD_UNLOCK();
2098 NPDEBUG(PDB_ENTER,
2099 printf("pmap_enter: ENOMEM\n"));
2100 return (ENOMEM);
2101 }
2102
2103 pmap_enter_pv(pg, pve, pm, va, nflags);
2104 }
2105 } else {
2106 /*
2107 * We're mapping an unmanaged page.
2108 * These are always readable, and possibly writable, from
2109 * the get go as we don't need to track ref/mod status.
2110 */
2111 npte |= L2_S_PROTO;
2112 if (prot & VM_PROT_WRITE)
2113 npte |= L2_S_PROT_W;
2114
2115 /*
2116 * Make sure the vector table is mapped cacheable
2117 */
2118 if (pm != pmap_kernel() && va == vector_page)
2119 npte |= pte_l2_s_cache_mode;
2120
2121 if (opg) {
2122 /*
2123 * Looks like there's an existing 'managed' mapping
2124 * at this address.
2125 */
2126 simple_lock(&opg->mdpage.pvh_slock);
2127 pve = pmap_remove_pv(opg, pm, va);
2128 pmap_vac_me_harder(opg, pm, 0);
2129 simple_unlock(&opg->mdpage.pvh_slock);
2130 oflags = pve->pv_flags;
2131
2132 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2133 if (PV_BEEN_EXECD(oflags))
2134 pmap_idcache_wbinv_range(pm, va,
2135 PAGE_SIZE);
2136 else
2137 if (PV_BEEN_REFD(oflags))
2138 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2139 TRUE, (oflags & PVF_WRITE) == 0);
2140 }
2141 pool_put(&pmap_pv_pool, pve);
2142 }
2143 }
2144
2145 /*
2146 * Make sure userland mappings get the right permissions
2147 */
2148 if (pm != pmap_kernel() && va != vector_page)
2149 npte |= L2_S_PROT_U;
2150
2151 /*
2152 * Keep the stats up to date
2153 */
2154 if (opte == 0) {
2155 l2b->l2b_occupancy++;
2156 pm->pm_stats.resident_count++;
2157 }
2158
2159 NPDEBUG(PDB_ENTER,
2160 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2161
2162 /*
2163 * If this is just a wiring change, the two PTEs will be
2164 * identical, so there's no need to update the page table.
2165 */
2166 if (npte != opte) {
2167 boolean_t is_cached = pmap_is_cached(pm);
2168
2169 *ptep = npte;
2170 if (is_cached) {
2171 /*
2172 * We only need to frob the cache/tlb if this pmap
2173 * is current
2174 */
2175 PTE_SYNC(ptep);
2176 if (va != vector_page && l2pte_valid(npte)) {
2177 /*
2178 * This mapping is likely to be accessed as
2179 * soon as we return to userland. Fix up the
2180 * L1 entry to avoid taking another
2181 * page/domain fault.
2182 */
2183 pd_entry_t *pl1pd, l1pd;
2184
2185 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2186 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2187 L1_C_PROTO;
2188 if (*pl1pd != l1pd) {
2189 *pl1pd = l1pd;
2190 PTE_SYNC(pl1pd);
2191 }
2192 }
2193 }
2194
2195 if (PV_BEEN_EXECD(oflags))
2196 pmap_tlb_flushID_SE(pm, va);
2197 else
2198 if (PV_BEEN_REFD(oflags))
2199 pmap_tlb_flushD_SE(pm, va);
2200
2201 NPDEBUG(PDB_ENTER,
2202 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2203 is_cached, pm->pm_cstate.cs_all));
2204
2205 if (pg != NULL) {
2206 simple_lock(&pg->mdpage.pvh_slock);
2207 pmap_vac_me_harder(pg, pm, va);
2208 simple_unlock(&pg->mdpage.pvh_slock);
2209 }
2210 }
2211
2212 pmap_release_pmap_lock(pm);
2213 PMAP_MAP_TO_HEAD_UNLOCK();
2214
2215 return (0);
2216 }
2217
2218 /*
2219 * pmap_remove()
2220 *
2221 * pmap_remove is responsible for nuking a number of mappings for a range
2222 * of virtual address space in the current pmap. To do this efficiently
2223 * is interesting, because in a number of cases a wide virtual address
2224 * range may be supplied that contains few actual mappings. So, the
2225 * optimisations are:
2226 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2227 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2228 * maybe do just a partial cache clean. This path of execution is
2229 * complicated by the fact that the cache must be flushed _before_
2230 * the PTE is nuked, being a VAC :-)
2231 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2232 * all invalidations until pmap_update(), since pmap_remove_all() has
2233 * already flushed the cache.
2234 * 4. Maybe later fast-case a single page, but I don't think this is
2235 * going to make _that_ much difference overall.
2236 */
2237
2238 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2239
2240 void
2241 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
2242 {
2243 struct l2_bucket *l2b;
2244 vaddr_t next_bucket;
2245 pt_entry_t *ptep;
2246 u_int cleanlist_idx, total, cnt;
2247 struct {
2248 vaddr_t va;
2249 pt_entry_t *pte;
2250 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2251 u_int mappings, is_exec, is_refd;
2252
2253 NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2254 pm, sva, eva));
2255
2256 /*
2257 * we lock in the pmap => pv_head direction
2258 */
2259 PMAP_MAP_TO_HEAD_LOCK();
2260 pmap_acquire_pmap_lock(pm);
2261
2262 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2263 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2264 if (pm->pm_cstate.cs_tlb == 0)
2265 pm->pm_remove_all = TRUE;
2266 } else
2267 cleanlist_idx = 0;
2268
2269 total = 0;
2270
2271 while (sva < eva) {
2272 /*
2273 * Do one L2 bucket's worth at a time.
2274 */
2275 next_bucket = L2_NEXT_BUCKET(sva);
2276 if (next_bucket > eva)
2277 next_bucket = eva;
2278
2279 l2b = pmap_get_l2_bucket(pm, sva);
2280 if (l2b == NULL) {
2281 sva = next_bucket;
2282 continue;
2283 }
2284
2285 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2286 mappings = 0;
2287
2288 while (sva < next_bucket) {
2289 struct vm_page *pg;
2290 pt_entry_t pte;
2291 paddr_t pa;
2292
2293 pte = *ptep;
2294
2295 if (pte == 0) {
2296 /*
2297 * Nothing here, move along
2298 */
2299 sva += PAGE_SIZE;
2300 ptep++;
2301 continue;
2302 }
2303
2304 pm->pm_stats.resident_count--;
2305 pa = l2pte_pa(pte);
2306 is_exec = 0;
2307 is_refd = 1;
2308
2309 /*
2310 * Update flags. In a number of circumstances,
2311 * we could cluster a lot of these and do a
2312 * number of sequential pages in one go.
2313 */
2314 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2315 struct pv_entry *pve;
2316 simple_lock(&pg->mdpage.pvh_slock);
2317 pve = pmap_remove_pv(pg, pm, sva);
2318 pmap_vac_me_harder(pg, pm, 0);
2319 simple_unlock(&pg->mdpage.pvh_slock);
2320 if (pve != NULL) {
2321 if (pm->pm_remove_all == FALSE) {
2322 is_exec =
2323 PV_BEEN_EXECD(pve->pv_flags);
2324 is_refd =
2325 PV_BEEN_REFD(pve->pv_flags);
2326 }
2327 pool_put(&pmap_pv_pool, pve);
2328 }
2329 }
2330
2331 if (!l2pte_valid(pte)) {
2332 *ptep = 0;
2333 PTE_SYNC_CURRENT(pm, ptep);
2334 sva += PAGE_SIZE;
2335 ptep++;
2336 mappings++;
2337 continue;
2338 }
2339
2340 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2341 /* Add to the clean list. */
2342 cleanlist[cleanlist_idx].pte = ptep;
2343 cleanlist[cleanlist_idx].va =
2344 sva | (is_exec & 1);
2345 cleanlist_idx++;
2346 } else
2347 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2348 /* Nuke everything if needed. */
2349 pmap_idcache_wbinv_all(pm);
2350 pmap_tlb_flushID(pm);
2351
2352 /*
2353 * Roll back the previous PTE list,
2354 * and zero out the current PTE.
2355 */
2356 for (cnt = 0;
2357 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2358 *cleanlist[cnt].pte = 0;
2359 }
2360 *ptep = 0;
2361 PTE_SYNC(ptep);
2362 cleanlist_idx++;
2363 pm->pm_remove_all = TRUE;
2364 } else {
2365 *ptep = 0;
2366 PTE_SYNC(ptep);
2367 if (pm->pm_remove_all == FALSE) {
2368 if (is_exec)
2369 pmap_tlb_flushID_SE(pm, sva);
2370 else
2371 if (is_refd)
2372 pmap_tlb_flushD_SE(pm, sva);
2373 }
2374 }
2375
2376 sva += PAGE_SIZE;
2377 ptep++;
2378 mappings++;
2379 }
2380
2381 /*
2382 * Deal with any left overs
2383 */
2384 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2385 total += cleanlist_idx;
2386 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2387 if (pm->pm_cstate.cs_all != 0) {
2388 vaddr_t clva = cleanlist[cnt].va & ~1;
2389 if (cleanlist[cnt].va & 1) {
2390 pmap_idcache_wbinv_range(pm,
2391 clva, PAGE_SIZE);
2392 pmap_tlb_flushID_SE(pm, clva);
2393 } else {
2394 pmap_dcache_wb_range(pm,
2395 clva, PAGE_SIZE, TRUE,
2396 FALSE);
2397 pmap_tlb_flushD_SE(pm, clva);
2398 }
2399 }
2400 *cleanlist[cnt].pte = 0;
2401 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2402 }
2403
2404 /*
2405 * If it looks like we're removing a whole bunch
2406 * of mappings, it's faster to just write-back
2407 * the whole cache now and defer TLB flushes until
2408 * pmap_update() is called.
2409 */
2410 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2411 cleanlist_idx = 0;
2412 else {
2413 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2414 pmap_idcache_wbinv_all(pm);
2415 pm->pm_remove_all = TRUE;
2416 }
2417 }
2418
2419 pmap_free_l2_bucket(pm, l2b, mappings);
2420 }
2421
2422 pmap_release_pmap_lock(pm);
2423 PMAP_MAP_TO_HEAD_UNLOCK();
2424 }
2425
2426 /*
2427 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2428 *
2429 * We assume there is already sufficient KVM space available
2430 * to do this, as we can't allocate L2 descriptor tables/metadata
2431 * from here.
2432 */
2433 void
2434 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2435 {
2436 struct l2_bucket *l2b;
2437 pt_entry_t *ptep, opte;
2438
2439 NPDEBUG(PDB_KENTER,
2440 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2441 va, pa, prot));
2442
2443 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2444 KDASSERT(l2b != NULL);
2445
2446 ptep = &l2b->l2b_kva[l2pte_index(va)];
2447 opte = *ptep;
2448
2449 if (l2pte_valid(opte)) {
2450 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2451 cpu_tlb_flushD_SE(va);
2452 cpu_cpwait();
2453 } else
2454 if (opte == 0)
2455 l2b->l2b_occupancy++;
2456
2457 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2458 pte_l2_s_cache_mode;
2459 PTE_SYNC(ptep);
2460 }
2461
2462 void
2463 pmap_kremove(vaddr_t va, vsize_t len)
2464 {
2465 struct l2_bucket *l2b;
2466 pt_entry_t *ptep, *sptep, opte;
2467 vaddr_t next_bucket, eva;
2468 u_int mappings;
2469
2470 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2471 va, len));
2472
2473 eva = va + len;
2474
2475 while (va < eva) {
2476 next_bucket = L2_NEXT_BUCKET(va);
2477 if (next_bucket > eva)
2478 next_bucket = eva;
2479
2480 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2481 KDASSERT(l2b != NULL);
2482
2483 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2484 mappings = 0;
2485
2486 while (va < next_bucket) {
2487 opte = *ptep;
2488 if (l2pte_valid(opte)) {
2489 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2490 cpu_tlb_flushD_SE(va);
2491 }
2492 if (opte) {
2493 *ptep = 0;
2494 mappings++;
2495 }
2496 va += PAGE_SIZE;
2497 ptep++;
2498 }
2499 KDASSERT(mappings <= l2b->l2b_occupancy);
2500 l2b->l2b_occupancy -= mappings;
2501 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2502 }
2503 cpu_cpwait();
2504 }
2505
2506 boolean_t
2507 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2508 {
2509 struct l2_dtable *l2;
2510 pd_entry_t *pl1pd, l1pd;
2511 pt_entry_t *ptep, pte;
2512 paddr_t pa;
2513 u_int l1idx;
2514
2515 pmap_acquire_pmap_lock(pm);
2516
2517 l1idx = L1_IDX(va);
2518 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2519 l1pd = *pl1pd;
2520
2521 if (l1pte_section_p(l1pd)) {
2522 /*
2523 * These should only happen for pmap_kernel()
2524 */
2525 KDASSERT(pm == pmap_kernel());
2526 pmap_release_pmap_lock(pm);
2527 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2528 } else {
2529 /*
2530 * Note that we can't rely on the validity of the L1
2531 * descriptor as an indication that a mapping exists.
2532 * We have to look it up in the L2 dtable.
2533 */
2534 l2 = pm->pm_l2[L2_IDX(l1idx)];
2535
2536 if (l2 == NULL ||
2537 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2538 pmap_release_pmap_lock(pm);
2539 return (FALSE);
2540 }
2541
2542 ptep = &ptep[l2pte_index(va)];
2543 pte = *ptep;
2544 pmap_release_pmap_lock(pm);
2545
2546 if (pte == 0)
2547 return (FALSE);
2548
2549 switch (pte & L2_TYPE_MASK) {
2550 case L2_TYPE_L:
2551 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2552 break;
2553
2554 default:
2555 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2556 break;
2557 }
2558 }
2559
2560 if (pap != NULL)
2561 *pap = pa;
2562
2563 return (TRUE);
2564 }
2565
2566 void
2567 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2568 {
2569 struct l2_bucket *l2b;
2570 pt_entry_t *ptep, pte;
2571 vaddr_t next_bucket;
2572 u_int flags;
2573 int flush;
2574
2575 NPDEBUG(PDB_PROTECT,
2576 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2577 pm, sva, eva, prot));
2578
2579 if ((prot & VM_PROT_READ) == 0) {
2580 pmap_remove(pm, sva, eva);
2581 return;
2582 }
2583
2584 if (prot & VM_PROT_WRITE) {
2585 /*
2586 * If this is a read->write transition, just ignore it and let
2587 * uvm_fault() take care of it later.
2588 */
2589 return;
2590 }
2591
2592 PMAP_MAP_TO_HEAD_LOCK();
2593 pmap_acquire_pmap_lock(pm);
2594
2595 /*
2596 * OK, at this point, we know we're doing write-protect operation.
2597 * If the pmap is active, write-back the range.
2598 */
2599 pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
2600
2601 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2602 flags = 0;
2603
2604 while (sva < eva) {
2605 next_bucket = L2_NEXT_BUCKET(sva);
2606 if (next_bucket > eva)
2607 next_bucket = eva;
2608
2609 l2b = pmap_get_l2_bucket(pm, sva);
2610 if (l2b == NULL) {
2611 sva = next_bucket;
2612 continue;
2613 }
2614
2615 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2616
2617 while (sva < next_bucket) {
2618 if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2619 struct vm_page *pg;
2620 u_int f;
2621
2622 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2623 pte &= ~L2_S_PROT_W;
2624 *ptep = pte;
2625 PTE_SYNC(ptep);
2626
2627 if (pg != NULL) {
2628 simple_lock(&pg->mdpage.pvh_slock);
2629 f = pmap_modify_pv(pg, pm, sva,
2630 PVF_WRITE, 0);
2631 pmap_vac_me_harder(pg, pm, sva);
2632 simple_unlock(&pg->mdpage.pvh_slock);
2633 } else
2634 f = PVF_REF | PVF_EXEC;
2635
2636 if (flush >= 0) {
2637 flush++;
2638 flags |= f;
2639 } else
2640 if (PV_BEEN_EXECD(f))
2641 pmap_tlb_flushID_SE(pm, sva);
2642 else
2643 if (PV_BEEN_REFD(f))
2644 pmap_tlb_flushD_SE(pm, sva);
2645 }
2646
2647 sva += PAGE_SIZE;
2648 ptep++;
2649 }
2650 }
2651
2652 pmap_release_pmap_lock(pm);
2653 PMAP_MAP_TO_HEAD_UNLOCK();
2654
2655 if (flush) {
2656 if (PV_BEEN_EXECD(flags))
2657 pmap_tlb_flushID(pm);
2658 else
2659 if (PV_BEEN_REFD(flags))
2660 pmap_tlb_flushD(pm);
2661 }
2662 }
2663
2664 void
2665 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2666 {
2667
2668 NPDEBUG(PDB_PROTECT,
2669 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2670 pg, pg->phys_addr, prot));
2671
2672 switch(prot) {
2673 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2674 case VM_PROT_READ|VM_PROT_WRITE:
2675 return;
2676
2677 case VM_PROT_READ:
2678 case VM_PROT_READ|VM_PROT_EXECUTE:
2679 pmap_clearbit(pg, PVF_WRITE);
2680 break;
2681
2682 default:
2683 pmap_page_remove(pg);
2684 break;
2685 }
2686 }
2687
2688 /*
2689 * pmap_clear_modify:
2690 *
2691 * Clear the "modified" attribute for a page.
2692 */
2693 boolean_t
2694 pmap_clear_modify(struct vm_page *pg)
2695 {
2696 boolean_t rv;
2697
2698 if (pg->mdpage.pvh_attrs & PVF_MOD) {
2699 rv = TRUE;
2700 pmap_clearbit(pg, PVF_MOD);
2701 } else
2702 rv = FALSE;
2703
2704 return (rv);
2705 }
2706
2707 /*
2708 * pmap_clear_reference:
2709 *
2710 * Clear the "referenced" attribute for a page.
2711 */
2712 boolean_t
2713 pmap_clear_reference(struct vm_page *pg)
2714 {
2715 boolean_t rv;
2716
2717 if (pg->mdpage.pvh_attrs & PVF_REF) {
2718 rv = TRUE;
2719 pmap_clearbit(pg, PVF_REF);
2720 } else
2721 rv = FALSE;
2722
2723 return (rv);
2724 }
2725
2726 /*
2727 * pmap_is_modified:
2728 *
2729 * Test if a page has the "modified" attribute.
2730 */
2731 /* See <arm/arm32/pmap.h> */
2732
2733 /*
2734 * pmap_is_referenced:
2735 *
2736 * Test if a page has the "referenced" attribute.
2737 */
2738 /* See <arm/arm32/pmap.h> */
2739
2740 int
2741 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2742 {
2743 struct l2_dtable *l2;
2744 struct l2_bucket *l2b;
2745 pd_entry_t *pl1pd, l1pd;
2746 pt_entry_t *ptep, pte;
2747 paddr_t pa;
2748 u_int l1idx;
2749 int rv = 0;
2750
2751 PMAP_MAP_TO_HEAD_LOCK();
2752 pmap_acquire_pmap_lock(pm);
2753
2754 l1idx = L1_IDX(va);
2755
2756 /*
2757 * If there is no l2_dtable for this address, then the process
2758 * has no business accessing it.
2759 *
2760 * Note: This will catch userland processes trying to access
2761 * kernel addresses.
2762 */
2763 l2 = pm->pm_l2[L2_IDX(l1idx)];
2764 if (l2 == NULL)
2765 goto out;
2766
2767 /*
2768 * Likewise if there is no L2 descriptor table
2769 */
2770 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2771 if (l2b->l2b_kva == NULL)
2772 goto out;
2773
2774 /*
2775 * Check the PTE itself.
2776 */
2777 ptep = &l2b->l2b_kva[l2pte_index(va)];
2778 pte = *ptep;
2779 if (pte == 0)
2780 goto out;
2781
2782 /*
2783 * Catch a userland access to the vector page mapped at 0x0
2784 */
2785 if (user && (pte & L2_S_PROT_U) == 0)
2786 goto out;
2787
2788 pa = l2pte_pa(pte);
2789
2790 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2791 /*
2792 * This looks like a good candidate for "page modified"
2793 * emulation...
2794 */
2795 struct pv_entry *pv;
2796 struct vm_page *pg;
2797
2798 /* Extract the physical address of the page */
2799 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2800 goto out;
2801
2802 /* Get the current flags for this page. */
2803 simple_lock(&pg->mdpage.pvh_slock);
2804
2805 pv = pmap_find_pv(pg, pm, va);
2806 if (pv == NULL) {
2807 simple_unlock(&pg->mdpage.pvh_slock);
2808 goto out;
2809 }
2810
2811 /*
2812 * Do the flags say this page is writable? If not then it
2813 * is a genuine write fault. If yes then the write fault is
2814 * our fault as we did not reflect the write access in the
2815 * PTE. Now we know a write has occurred we can correct this
2816 * and also set the modified bit
2817 */
2818 if ((pv->pv_flags & PVF_WRITE) == 0) {
2819 simple_unlock(&pg->mdpage.pvh_slock);
2820 goto out;
2821 }
2822
2823 NPDEBUG(PDB_FOLLOW,
2824 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2825 pm, va, pg->phys_addr));
2826
2827 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2828 pv->pv_flags |= PVF_REF | PVF_MOD;
2829 simple_unlock(&pg->mdpage.pvh_slock);
2830
2831 /*
2832 * Re-enable write permissions for the page. No need to call
2833 * pmap_vac_me_harder(), since this is just a
2834 * modified-emulation fault, and the PVF_WRITE bit isn't
2835 * changing. We've already set the cacheable bits based on
2836 * the assumption that we can write to this page.
2837 */
2838 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2839 PTE_SYNC(ptep);
2840 rv = 1;
2841 } else
2842 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2843 /*
2844 * This looks like a good candidate for "page referenced"
2845 * emulation.
2846 */
2847 struct pv_entry *pv;
2848 struct vm_page *pg;
2849
2850 /* Extract the physical address of the page */
2851 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2852 goto out;
2853
2854 /* Get the current flags for this page. */
2855 simple_lock(&pg->mdpage.pvh_slock);
2856
2857 pv = pmap_find_pv(pg, pm, va);
2858 if (pv == NULL) {
2859 simple_unlock(&pg->mdpage.pvh_slock);
2860 goto out;
2861 }
2862
2863 pg->mdpage.pvh_attrs |= PVF_REF;
2864 pv->pv_flags |= PVF_REF;
2865 simple_unlock(&pg->mdpage.pvh_slock);
2866
2867 NPDEBUG(PDB_FOLLOW,
2868 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2869 pm, va, pg->phys_addr));
2870
2871 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2872 PTE_SYNC(ptep);
2873 rv = 1;
2874 }
2875
2876 /*
2877 * We know there is a valid mapping here, so simply
2878 * fix up the L1 if necessary.
2879 */
2880 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2881 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2882 if (*pl1pd != l1pd) {
2883 *pl1pd = l1pd;
2884 PTE_SYNC(pl1pd);
2885 rv = 1;
2886 }
2887
2888 #ifdef CPU_SA110
2889 /*
2890 * There are bugs in the rev K SA110. This is a check for one
2891 * of them.
2892 */
2893 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2894 curcpu()->ci_arm_cpurev < 3) {
2895 /* Always current pmap */
2896 if (l2pte_valid(pte)) {
2897 extern int kernel_debug;
2898 if (kernel_debug & 1) {
2899 struct proc *p = curlwp->l_proc;
2900 printf("prefetch_abort: page is already "
2901 "mapped - pte=%p *pte=%08x\n", ptep, pte);
2902 printf("prefetch_abort: pc=%08lx proc=%p "
2903 "process=%s\n", va, p, p->p_comm);
2904 printf("prefetch_abort: far=%08x fs=%x\n",
2905 cpu_faultaddress(), cpu_faultstatus());
2906 }
2907 #ifdef DDB
2908 if (kernel_debug & 2)
2909 Debugger();
2910 #endif
2911 rv = 1;
2912 }
2913 }
2914 #endif /* CPU_SA110 */
2915
2916 #ifdef DEBUG
2917 /*
2918 * If 'rv == 0' at this point, it generally indicates that there is a
2919 * stale TLB entry for the faulting address. This happens when two or
2920 * more processes are sharing an L1. Since we don't flush the TLB on
2921 * a context switch between such processes, we can take domain faults
2922 * for mappings which exist at the same VA in both processes. EVEN IF
2923 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2924 * example.
2925 *
2926 * This is extremely likely to happen if pmap_enter() updated the L1
2927 * entry for a recently entered mapping. In this case, the TLB is
2928 * flushed for the new mapping, but there may still be TLB entries for
2929 * other mappings belonging to other processes in the 1MB range
2930 * covered by the L1 entry.
2931 *
2932 * Since 'rv == 0', we know that the L1 already contains the correct
2933 * value, so the fault must be due to a stale TLB entry.
2934 *
2935 * Since we always need to flush the TLB anyway in the case where we
2936 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2937 * stale TLB entries dynamically.
2938 *
2939 * However, the above condition can ONLY happen if the current L1 is
2940 * being shared. If it happens when the L1 is unshared, it indicates
2941 * that other parts of the pmap are not doing their job WRT managing
2942 * the TLB.
2943 */
2944 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2945 extern int last_fault_code;
2946 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2947 pm, va, ftype);
2948 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2949 l2, l2b, ptep, pl1pd);
2950 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2951 pte, l1pd, last_fault_code);
2952 #ifdef DDB
2953 Debugger();
2954 #endif
2955 }
2956 #endif
2957
2958 cpu_tlb_flushID_SE(va);
2959 cpu_cpwait();
2960
2961 rv = 1;
2962
2963 out:
2964 pmap_release_pmap_lock(pm);
2965 PMAP_MAP_TO_HEAD_UNLOCK();
2966
2967 return (rv);
2968 }
2969
2970 /*
2971 * pmap_collect: free resources held by a pmap
2972 *
2973 * => optional function.
2974 * => called when a process is swapped out to free memory.
2975 */
2976 void
2977 pmap_collect(pmap_t pm)
2978 {
2979 /*
2980 * Nothing to do.
2981 * We don't even need to free-up the process' L1.
2982 */
2983 }
2984
2985 /*
2986 * Routine: pmap_procwr
2987 *
2988 * Function:
2989 * Synchronize caches corresponding to [addr, addr+len) in p.
2990 *
2991 */
2992 void
2993 pmap_procwr(struct proc *p, vaddr_t va, int len)
2994 {
2995 /* We only need to do anything if it is the current process. */
2996 if (p == curproc)
2997 cpu_icache_sync_range(va, len);
2998 }
2999
3000 /*
3001 * Routine: pmap_unwire
3002 * Function: Clear the wired attribute for a map/virtual-address pair.
3003 *
3004 * In/out conditions:
3005 * The mapping must already exist in the pmap.
3006 */
3007 void
3008 pmap_unwire(pmap_t pm, vaddr_t va)
3009 {
3010 struct l2_bucket *l2b;
3011 pt_entry_t *ptep, pte;
3012 struct vm_page *pg;
3013 paddr_t pa;
3014
3015 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3016
3017 PMAP_MAP_TO_HEAD_LOCK();
3018 pmap_acquire_pmap_lock(pm);
3019
3020 l2b = pmap_get_l2_bucket(pm, va);
3021 KDASSERT(l2b != NULL);
3022
3023 ptep = &l2b->l2b_kva[l2pte_index(va)];
3024 pte = *ptep;
3025
3026 /* Extract the physical address of the page */
3027 pa = l2pte_pa(pte);
3028
3029 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3030 /* Update the wired bit in the pv entry for this page. */
3031 simple_lock(&pg->mdpage.pvh_slock);
3032 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3033 simple_unlock(&pg->mdpage.pvh_slock);
3034 }
3035
3036 pmap_release_pmap_lock(pm);
3037 PMAP_MAP_TO_HEAD_UNLOCK();
3038 }
3039
3040 void
3041 pmap_activate(struct lwp *l)
3042 {
3043 pmap_t pm;
3044 struct pcb *pcb;
3045 int s;
3046
3047 pm = l->l_proc->p_vmspace->vm_map.pmap;
3048 pcb = &l->l_addr->u_pcb;
3049
3050 pmap_set_pcb_pagedir(pm, pcb);
3051
3052 if (l == curlwp) {
3053 u_int cur_dacr, cur_ttb;
3054
3055 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
3056 __asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
3057
3058 cur_ttb &= ~(L1_TABLE_SIZE - 1);
3059
3060 if (cur_ttb == (u_int)pcb->pcb_pagedir &&
3061 cur_dacr == pcb->pcb_dacr) {
3062 /*
3063 * No need to switch address spaces.
3064 */
3065 return;
3066 }
3067
3068 s = splhigh();
3069 pmap_acquire_pmap_lock(pm);
3070 disable_interrupts(I32_bit | F32_bit);
3071
3072 /*
3073 * We MUST, I repeat, MUST fix up the L1 entry corresponding
3074 * to 'vector_page' in the incoming L1 table before switching
3075 * to it otherwise subsequent interrupts/exceptions (including
3076 * domain faults!) will jump into hyperspace.
3077 */
3078 if (pcb->pcb_pl1vec) {
3079 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3080 /*
3081 * Don't need to PTE_SYNC() at this point since
3082 * cpu_setttb() is about to flush both the cache
3083 * and the TLB.
3084 */
3085 }
3086
3087 cpu_domains(pcb->pcb_dacr);
3088 cpu_setttb(pcb->pcb_pagedir);
3089
3090 enable_interrupts(I32_bit | F32_bit);
3091
3092 /*
3093 * Flag any previous userland pmap as being NOT
3094 * resident in the cache/tlb.
3095 */
3096 if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
3097 pmap_cache_state->cs_all = 0;
3098
3099 /*
3100 * The new pmap, however, IS resident.
3101 */
3102 pmap_cache_state = &pm->pm_cstate;
3103 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3104 pmap_release_pmap_lock(pm);
3105 splx(s);
3106 }
3107 }
3108
3109 void
3110 pmap_deactivate(struct lwp *l)
3111 {
3112 }
3113
3114 void
3115 pmap_update(pmap_t pm)
3116 {
3117
3118 if (pm->pm_remove_all) {
3119 /*
3120 * Finish up the pmap_remove_all() optimisation by flushing
3121 * the TLB.
3122 */
3123 pmap_tlb_flushID(pm);
3124 pm->pm_remove_all = FALSE;
3125 }
3126
3127 if (pmap_is_current(pm)) {
3128 /*
3129 * If we're dealing with a current userland pmap, move its L1
3130 * to the end of the LRU.
3131 */
3132 if (pm != pmap_kernel())
3133 pmap_use_l1(pm);
3134
3135 /*
3136 * We can assume we're done with frobbing the cache/tlb for
3137 * now. Make sure any future pmap ops don't skip cache/tlb
3138 * flushes.
3139 */
3140 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3141 }
3142
3143 /*
3144 * make sure TLB/cache operations have completed.
3145 */
3146 cpu_cpwait();
3147 }
3148
3149 void
3150 pmap_remove_all(pmap_t pm)
3151 {
3152
3153 /*
3154 * The vmspace described by this pmap is about to be torn down.
3155 * Until pmap_update() is called, UVM will only make calls
3156 * to pmap_remove(). We can make life much simpler by flushing
3157 * the cache now, and deferring TLB invalidation to pmap_update().
3158 */
3159 pmap_idcache_wbinv_all(pm);
3160 pm->pm_remove_all = TRUE;
3161 }
3162
3163 /*
3164 * Retire the given physical map from service.
3165 * Should only be called if the map contains no valid mappings.
3166 */
3167 void
3168 pmap_destroy(pmap_t pm)
3169 {
3170 u_int count;
3171
3172 if (pm == NULL)
3173 return;
3174
3175 if (pm->pm_remove_all) {
3176 pmap_tlb_flushID(pm);
3177 pm->pm_remove_all = FALSE;
3178 }
3179
3180 /*
3181 * Drop reference count
3182 */
3183 simple_lock(&pm->pm_lock);
3184 count = --pm->pm_obj.uo_refs;
3185 simple_unlock(&pm->pm_lock);
3186 if (count > 0) {
3187 if (pmap_is_current(pm)) {
3188 if (pm != pmap_kernel())
3189 pmap_use_l1(pm);
3190 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3191 }
3192 return;
3193 }
3194
3195 /*
3196 * reference count is zero, free pmap resources and then free pmap.
3197 */
3198
3199 if (vector_page < KERNEL_BASE) {
3200 /* Remove the vector page mapping */
3201 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3202 pmap_update(pm);
3203 }
3204
3205 LIST_REMOVE(pm, pm_list);
3206
3207 pmap_free_l1(pm);
3208
3209 /* return the pmap to the pool */
3210 pool_cache_put(&pmap_pmap_cache, pm);
3211 }
3212
3213
3214 /*
3215 * void pmap_reference(pmap_t pm)
3216 *
3217 * Add a reference to the specified pmap.
3218 */
3219 void
3220 pmap_reference(pmap_t pm)
3221 {
3222
3223 if (pm == NULL)
3224 return;
3225
3226 pmap_use_l1(pm);
3227
3228 simple_lock(&pm->pm_lock);
3229 pm->pm_obj.uo_refs++;
3230 simple_unlock(&pm->pm_lock);
3231 }
3232
3233 /*
3234 * pmap_zero_page()
3235 *
3236 * Zero a given physical page by mapping it at a page hook point.
3237 * In doing the zero page op, the page we zero is mapped cachable, as with
3238 * StrongARM accesses to non-cached pages are non-burst making writing
3239 * _any_ bulk data very slow.
3240 */
3241 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3242 void
3243 pmap_zero_page_generic(paddr_t phys)
3244 {
3245 #ifdef DEBUG
3246 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3247
3248 if (pg->mdpage.pvh_list != NULL)
3249 panic("pmap_zero_page: page has mappings");
3250 #endif
3251
3252 KDASSERT((phys & PGOFSET) == 0);
3253
3254 /*
3255 * Hook in the page, zero it, and purge the cache for that
3256 * zeroed page. Invalidate the TLB as needed.
3257 */
3258 *cdst_pte = L2_S_PROTO | phys |
3259 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3260 PTE_SYNC(cdst_pte);
3261 cpu_tlb_flushD_SE(cdstp);
3262 cpu_cpwait();
3263 bzero_page(cdstp);
3264 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3265 }
3266 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3267
3268 #if ARM_MMU_XSCALE == 1
3269 void
3270 pmap_zero_page_xscale(paddr_t phys)
3271 {
3272 #ifdef DEBUG
3273 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3274
3275 if (pg->mdpage.pvh_list != NULL)
3276 panic("pmap_zero_page: page has mappings");
3277 #endif
3278
3279 KDASSERT((phys & PGOFSET) == 0);
3280
3281 /*
3282 * Hook in the page, zero it, and purge the cache for that
3283 * zeroed page. Invalidate the TLB as needed.
3284 */
3285 *cdst_pte = L2_S_PROTO | phys |
3286 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3287 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3288 PTE_SYNC(cdst_pte);
3289 cpu_tlb_flushD_SE(cdstp);
3290 cpu_cpwait();
3291 bzero_page(cdstp);
3292 xscale_cache_clean_minidata();
3293 }
3294 #endif /* ARM_MMU_XSCALE == 1 */
3295
3296 /* pmap_pageidlezero()
3297 *
3298 * The same as above, except that we assume that the page is not
3299 * mapped. This means we never have to flush the cache first. Called
3300 * from the idle loop.
3301 */
3302 boolean_t
3303 pmap_pageidlezero(paddr_t phys)
3304 {
3305 unsigned int i;
3306 int *ptr;
3307 boolean_t rv = TRUE;
3308 #ifdef DEBUG
3309 struct vm_page *pg;
3310
3311 pg = PHYS_TO_VM_PAGE(phys);
3312 if (pg->mdpage.pvh_list != NULL)
3313 panic("pmap_pageidlezero: page has mappings");
3314 #endif
3315
3316 KDASSERT((phys & PGOFSET) == 0);
3317
3318 /*
3319 * Hook in the page, zero it, and purge the cache for that
3320 * zeroed page. Invalidate the TLB as needed.
3321 */
3322 *cdst_pte = L2_S_PROTO | phys |
3323 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3324 PTE_SYNC(cdst_pte);
3325 cpu_tlb_flushD_SE(cdstp);
3326 cpu_cpwait();
3327
3328 for (i = 0, ptr = (int *)cdstp;
3329 i < (PAGE_SIZE / sizeof(int)); i++) {
3330 if (sched_whichqs != 0) {
3331 /*
3332 * A process has become ready. Abort now,
3333 * so we don't keep it waiting while we
3334 * do slow memory access to finish this
3335 * page.
3336 */
3337 rv = FALSE;
3338 break;
3339 }
3340 *ptr++ = 0;
3341 }
3342
3343 if (rv)
3344 /*
3345 * if we aborted we'll rezero this page again later so don't
3346 * purge it unless we finished it
3347 */
3348 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3349
3350 return (rv);
3351 }
3352
3353 /*
3354 * pmap_copy_page()
3355 *
3356 * Copy one physical page into another, by mapping the pages into
3357 * hook points. The same comment regarding cachability as in
3358 * pmap_zero_page also applies here.
3359 */
3360 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3361 void
3362 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3363 {
3364 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3365 #ifdef DEBUG
3366 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3367
3368 if (dst_pg->mdpage.pvh_list != NULL)
3369 panic("pmap_copy_page: dst page has mappings");
3370 #endif
3371
3372 KDASSERT((src & PGOFSET) == 0);
3373 KDASSERT((dst & PGOFSET) == 0);
3374
3375 /*
3376 * Clean the source page. Hold the source page's lock for
3377 * the duration of the copy so that no other mappings can
3378 * be created while we have a potentially aliased mapping.
3379 */
3380 simple_lock(&src_pg->mdpage.pvh_slock);
3381 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3382
3383 /*
3384 * Map the pages into the page hook points, copy them, and purge
3385 * the cache for the appropriate page. Invalidate the TLB
3386 * as required.
3387 */
3388 *csrc_pte = L2_S_PROTO | src |
3389 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3390 PTE_SYNC(csrc_pte);
3391 *cdst_pte = L2_S_PROTO | dst |
3392 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3393 PTE_SYNC(cdst_pte);
3394 cpu_tlb_flushD_SE(csrcp);
3395 cpu_tlb_flushD_SE(cdstp);
3396 cpu_cpwait();
3397 bcopy_page(csrcp, cdstp);
3398 cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3399 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3400 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3401 }
3402 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3403
3404 #if ARM_MMU_XSCALE == 1
3405 void
3406 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3407 {
3408 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3409 #ifdef DEBUG
3410 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3411
3412 if (dst_pg->mdpage.pvh_list != NULL)
3413 panic("pmap_copy_page: dst page has mappings");
3414 #endif
3415
3416 KDASSERT((src & PGOFSET) == 0);
3417 KDASSERT((dst & PGOFSET) == 0);
3418
3419 /*
3420 * Clean the source page. Hold the source page's lock for
3421 * the duration of the copy so that no other mappings can
3422 * be created while we have a potentially aliased mapping.
3423 */
3424 simple_lock(&src_pg->mdpage.pvh_slock);
3425 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3426
3427 /*
3428 * Map the pages into the page hook points, copy them, and purge
3429 * the cache for the appropriate page. Invalidate the TLB
3430 * as required.
3431 */
3432 *csrc_pte = L2_S_PROTO | src |
3433 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3434 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3435 PTE_SYNC(csrc_pte);
3436 *cdst_pte = L2_S_PROTO | dst |
3437 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3438 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3439 PTE_SYNC(cdst_pte);
3440 cpu_tlb_flushD_SE(csrcp);
3441 cpu_tlb_flushD_SE(cdstp);
3442 cpu_cpwait();
3443 bcopy_page(csrcp, cdstp);
3444 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3445 xscale_cache_clean_minidata();
3446 }
3447 #endif /* ARM_MMU_XSCALE == 1 */
3448
3449 /*
3450 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3451 *
3452 * Return the start and end addresses of the kernel's virtual space.
3453 * These values are setup in pmap_bootstrap and are updated as pages
3454 * are allocated.
3455 */
3456 void
3457 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3458 {
3459 *start = virtual_avail;
3460 *end = virtual_end;
3461 }
3462
3463 /*
3464 * Helper function for pmap_grow_l2_bucket()
3465 */
3466 static __inline int
3467 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3468 {
3469 struct l2_bucket *l2b;
3470 pt_entry_t *ptep;
3471 paddr_t pa;
3472
3473 if (uvm.page_init_done == FALSE) {
3474 if (uvm_page_physget(&pa) == FALSE)
3475 return (1);
3476 } else {
3477 struct vm_page *pg;
3478 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3479 if (pg == NULL)
3480 return (1);
3481 pa = VM_PAGE_TO_PHYS(pg);
3482 }
3483
3484 if (pap)
3485 *pap = pa;
3486
3487 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3488 KDASSERT(l2b != NULL);
3489
3490 ptep = &l2b->l2b_kva[l2pte_index(va)];
3491 *ptep = L2_S_PROTO | pa | cache_mode |
3492 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3493 PTE_SYNC(ptep);
3494 memset((void *)va, 0, PAGE_SIZE);
3495 return (0);
3496 }
3497
3498 /*
3499 * This is the same as pmap_alloc_l2_bucket(), except that it is only
3500 * used by pmap_growkernel().
3501 */
3502 static __inline struct l2_bucket *
3503 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3504 {
3505 struct l2_dtable *l2;
3506 struct l2_bucket *l2b;
3507 u_short l1idx;
3508 vaddr_t nva;
3509
3510 l1idx = L1_IDX(va);
3511
3512 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3513 /*
3514 * No mapping at this address, as there is
3515 * no entry in the L1 table.
3516 * Need to allocate a new l2_dtable.
3517 */
3518 nva = pmap_kernel_l2dtable_kva;
3519 if ((nva & PGOFSET) == 0) {
3520 /*
3521 * Need to allocate a backing page
3522 */
3523 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3524 return (NULL);
3525 }
3526
3527 l2 = (struct l2_dtable *)nva;
3528 nva += sizeof(struct l2_dtable);
3529
3530 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3531 /*
3532 * The new l2_dtable straddles a page boundary.
3533 * Map in another page to cover it.
3534 */
3535 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3536 return (NULL);
3537 }
3538
3539 pmap_kernel_l2dtable_kva = nva;
3540
3541 /*
3542 * Link it into the parent pmap
3543 */
3544 pm->pm_l2[L2_IDX(l1idx)] = l2;
3545 }
3546
3547 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3548
3549 /*
3550 * Fetch pointer to the L2 page table associated with the address.
3551 */
3552 if (l2b->l2b_kva == NULL) {
3553 pt_entry_t *ptep;
3554
3555 /*
3556 * No L2 page table has been allocated. Chances are, this
3557 * is because we just allocated the l2_dtable, above.
3558 */
3559 nva = pmap_kernel_l2ptp_kva;
3560 ptep = (pt_entry_t *)nva;
3561 if ((nva & PGOFSET) == 0) {
3562 /*
3563 * Need to allocate a backing page
3564 */
3565 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3566 &pmap_kernel_l2ptp_phys))
3567 return (NULL);
3568 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3569 }
3570
3571 l2->l2_occupancy++;
3572 l2b->l2b_kva = ptep;
3573 l2b->l2b_l1idx = l1idx;
3574 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3575
3576 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3577 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3578 }
3579
3580 return (l2b);
3581 }
3582
3583 vaddr_t
3584 pmap_growkernel(vaddr_t maxkvaddr)
3585 {
3586 pmap_t kpm = pmap_kernel();
3587 struct l1_ttable *l1;
3588 struct l2_bucket *l2b;
3589 pd_entry_t *pl1pd;
3590 int s;
3591
3592 if (maxkvaddr <= pmap_curmaxkvaddr)
3593 goto out; /* we are OK */
3594
3595 NPDEBUG(PDB_GROWKERN,
3596 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3597 pmap_curmaxkvaddr, maxkvaddr));
3598
3599 KDASSERT(maxkvaddr <= virtual_end);
3600
3601 /*
3602 * whoops! we need to add kernel PTPs
3603 */
3604
3605 s = splhigh(); /* to be safe */
3606 simple_lock(&kpm->pm_lock);
3607
3608 /* Map 1MB at a time */
3609 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3610
3611 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3612 KDASSERT(l2b != NULL);
3613
3614 /* Distribute new L1 entry to all other L1s */
3615 SLIST_FOREACH(l1, &l1_list, l1_link) {
3616 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3617 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3618 L1_C_PROTO;
3619 PTE_SYNC(pl1pd);
3620 }
3621 }
3622
3623 /*
3624 * flush out the cache, expensive but growkernel will happen so
3625 * rarely
3626 */
3627 cpu_dcache_wbinv_all();
3628 cpu_tlb_flushD();
3629 cpu_cpwait();
3630
3631 simple_unlock(&kpm->pm_lock);
3632 splx(s);
3633
3634 out:
3635 return (pmap_curmaxkvaddr);
3636 }
3637
3638 /************************ Utility routines ****************************/
3639
3640 /*
3641 * vector_page_setprot:
3642 *
3643 * Manipulate the protection of the vector page.
3644 */
3645 void
3646 vector_page_setprot(int prot)
3647 {
3648 struct l2_bucket *l2b;
3649 pt_entry_t *ptep;
3650
3651 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3652 KDASSERT(l2b != NULL);
3653
3654 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3655
3656 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3657 PTE_SYNC(ptep);
3658 cpu_tlb_flushD_SE(vector_page);
3659 cpu_cpwait();
3660 }
3661
3662 /*
3663 * This is used to stuff certain critical values into the PCB where they
3664 * can be accessed quickly from cpu_switch() et al.
3665 */
3666 void
3667 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
3668 {
3669 struct l2_bucket *l2b;
3670
3671 KDASSERT(pm->pm_l1);
3672
3673 pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
3674 pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3675 (DOMAIN_CLIENT << (pm->pm_domain * 2));
3676 pcb->pcb_cstate = (void *)&pm->pm_cstate;
3677
3678 if (vector_page < KERNEL_BASE) {
3679 pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3680 l2b = pmap_get_l2_bucket(pm, vector_page);
3681 pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
3682 L1_C_DOM(pm->pm_domain);
3683 } else
3684 pcb->pcb_pl1vec = NULL;
3685 }
3686
3687 /*
3688 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3689 * Returns TRUE if the mapping exists, else FALSE.
3690 *
3691 * NOTE: This function is only used by a couple of arm-specific modules.
3692 * It is not safe to take any pmap locks here, since we could be right
3693 * in the middle of debugging the pmap anyway...
3694 *
3695 * It is possible for this routine to return FALSE even though a valid
3696 * mapping does exist. This is because we don't lock, so the metadata
3697 * state may be inconsistent.
3698 *
3699 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3700 * a "section" mapping.
3701 */
3702 boolean_t
3703 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3704 {
3705 struct l2_dtable *l2;
3706 pd_entry_t *pl1pd, l1pd;
3707 pt_entry_t *ptep;
3708 u_short l1idx;
3709
3710 if (pm->pm_l1 == NULL)
3711 return (FALSE);
3712
3713 l1idx = L1_IDX(va);
3714 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3715 l1pd = *pl1pd;
3716
3717 if (l1pte_section_p(l1pd)) {
3718 *ptp = NULL;
3719 return (TRUE);
3720 }
3721
3722 if (pm->pm_l2 == NULL)
3723 return (FALSE);
3724
3725 l2 = pm->pm_l2[L2_IDX(l1idx)];
3726
3727 if (l2 == NULL ||
3728 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3729 return (FALSE);
3730 }
3731
3732 *ptp = &ptep[l2pte_index(va)];
3733 return (TRUE);
3734 }
3735
3736 boolean_t
3737 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3738 {
3739 u_short l1idx;
3740
3741 if (pm->pm_l1 == NULL)
3742 return (FALSE);
3743
3744 l1idx = L1_IDX(va);
3745 *pdp = &pm->pm_l1->l1_kva[l1idx];
3746
3747 return (TRUE);
3748 }
3749
3750 /************************ Bootstrapping routines ****************************/
3751
3752 static void
3753 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3754 {
3755 int i;
3756
3757 l1->l1_kva = l1pt;
3758 l1->l1_domain_use_count = 0;
3759 l1->l1_domain_first = 0;
3760
3761 for (i = 0; i < PMAP_DOMAINS; i++)
3762 l1->l1_domain_free[i] = i + 1;
3763
3764 /*
3765 * Copy the kernel's L1 entries to each new L1.
3766 */
3767 if (pmap_initialized)
3768 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3769
3770 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3771 &l1->l1_physaddr) == FALSE)
3772 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3773
3774 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3775 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3776 }
3777
3778 /*
3779 * pmap_bootstrap() is called from the board-specific initarm() routine
3780 * once the kernel L1/L2 descriptors tables have been set up.
3781 *
3782 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3783 * spread over a number of disparate files/functions.
3784 *
3785 * We are passed the following parameters
3786 * - kernel_l1pt
3787 * This is a pointer to the base of the kernel's L1 translation table.
3788 * - vstart
3789 * 1MB-aligned start of managed kernel virtual memory.
3790 * - vend
3791 * 1MB-aligned end of managed kernel virtual memory.
3792 *
3793 * We use the first parameter to build the metadata (struct l1_ttable and
3794 * struct l2_dtable) necessary to track kernel mappings.
3795 */
3796 #define PMAP_STATIC_L2_SIZE 16
3797 void
3798 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3799 {
3800 static struct l1_ttable static_l1;
3801 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3802 struct l1_ttable *l1 = &static_l1;
3803 struct l2_dtable *l2;
3804 struct l2_bucket *l2b;
3805 pmap_t pm = pmap_kernel();
3806 pd_entry_t pde;
3807 pt_entry_t *ptep;
3808 paddr_t pa;
3809 vaddr_t va;
3810 vsize_t size;
3811 int l1idx, l2idx, l2next = 0;
3812
3813 /*
3814 * Initialise the kernel pmap object
3815 */
3816 pm->pm_l1 = l1;
3817 pm->pm_domain = PMAP_DOMAIN_KERNEL;
3818 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3819 simple_lock_init(&pm->pm_lock);
3820 pm->pm_obj.pgops = NULL;
3821 TAILQ_INIT(&pm->pm_obj.memq);
3822 pm->pm_obj.uo_npages = 0;
3823 pm->pm_obj.uo_refs = 1;
3824
3825 /*
3826 * Scan the L1 translation table created by initarm() and create
3827 * the required metadata for all valid mappings found in it.
3828 */
3829 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3830 pde = kernel_l1pt[l1idx];
3831
3832 /*
3833 * We're only interested in Coarse mappings.
3834 * pmap_extract() can deal with section mappings without
3835 * recourse to checking L2 metadata.
3836 */
3837 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3838 continue;
3839
3840 /*
3841 * Lookup the KVA of this L2 descriptor table
3842 */
3843 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3844 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3845 if (ptep == NULL) {
3846 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3847 (u_int)l1idx << L1_S_SHIFT, pa);
3848 }
3849
3850 /*
3851 * Fetch the associated L2 metadata structure.
3852 * Allocate a new one if necessary.
3853 */
3854 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3855 if (l2next == PMAP_STATIC_L2_SIZE)
3856 panic("pmap_bootstrap: out of static L2s");
3857 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3858 }
3859
3860 /*
3861 * One more L1 slot tracked...
3862 */
3863 l2->l2_occupancy++;
3864
3865 /*
3866 * Fill in the details of the L2 descriptor in the
3867 * appropriate bucket.
3868 */
3869 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3870 l2b->l2b_kva = ptep;
3871 l2b->l2b_phys = pa;
3872 l2b->l2b_l1idx = l1idx;
3873
3874 /*
3875 * Establish an initial occupancy count for this descriptor
3876 */
3877 for (l2idx = 0;
3878 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3879 l2idx++) {
3880 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3881 l2b->l2b_occupancy++;
3882 }
3883 }
3884
3885 /*
3886 * Make sure the descriptor itself has the correct cache mode.
3887 * If not, fix it, but bitch about the problem. Port-meisters
3888 * should consider this a clue to fix up their initarm()
3889 * function. :)
3890 */
3891 if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3892 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3893 "L2 pte @ %p\n", ptep);
3894 }
3895 }
3896
3897 /*
3898 * Ensure the primary (kernel) L1 has the correct cache mode for
3899 * a page table. Bitch if it is not correctly set.
3900 */
3901 for (va = (vaddr_t)kernel_l1pt;
3902 va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3903 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3904 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3905 "primary L1 @ 0x%lx\n", va);
3906 }
3907
3908 cpu_dcache_wbinv_all();
3909 cpu_tlb_flushID();
3910 cpu_cpwait();
3911
3912 /*
3913 * now we allocate the "special" VAs which are used for tmp mappings
3914 * by the pmap (and other modules). we allocate the VAs by advancing
3915 * virtual_avail (note that there are no pages mapped at these VAs).
3916 *
3917 * Managed KVM space start from wherever initarm() tells us.
3918 */
3919 virtual_avail = vstart;
3920 virtual_end = vend;
3921
3922 pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3923 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3924 pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3925 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3926 pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
3927 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3928 (void *)&msgbufaddr, NULL);
3929
3930 /*
3931 * Allocate a range of kernel virtual address space to be used
3932 * for L2 descriptor tables and metadata allocation in
3933 * pmap_growkernel().
3934 */
3935 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3936 pmap_alloc_specials(&virtual_avail,
3937 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3938 &pmap_kernel_l2ptp_kva, NULL);
3939
3940 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3941 pmap_alloc_specials(&virtual_avail,
3942 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3943 &pmap_kernel_l2dtable_kva, NULL);
3944
3945 /*
3946 * init the static-global locks and global pmap list.
3947 */
3948 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
3949 spinlockinit(&pmap_main_lock, "pmaplk", 0);
3950 #endif
3951
3952 /*
3953 * We can now initialise the first L1's metadata.
3954 */
3955 SLIST_INIT(&l1_list);
3956 TAILQ_INIT(&l1_lru_list);
3957 simple_lock_init(&l1_lru_lock);
3958 pmap_init_l1(l1, kernel_l1pt);
3959
3960 /*
3961 * Initialize the pmap pool and cache
3962 */
3963 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
3964 &pool_allocator_nointr);
3965 pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
3966 pmap_pmap_ctor, NULL, NULL);
3967 LIST_INIT(&pmap_pmaps);
3968 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3969
3970 /*
3971 * Initialize the pv pool.
3972 */
3973 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
3974 &pmap_bootstrap_pv_allocator);
3975
3976 /*
3977 * Initialize the L2 dtable pool and cache.
3978 */
3979 pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
3980 "l2dtblpl", NULL);
3981 pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
3982 pmap_l2dtable_ctor, NULL, NULL);
3983
3984 /*
3985 * Initialise the L2 descriptor table pool and cache
3986 */
3987 pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
3988 0, "l2ptppl", NULL);
3989 pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
3990 pmap_l2ptp_ctor, NULL, NULL);
3991
3992 cpu_dcache_wbinv_all();
3993 }
3994
3995 static int
3996 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
3997 {
3998 pd_entry_t *pdep, pde;
3999 pt_entry_t *ptep, pte;
4000 vaddr_t pa;
4001 int rv = 0;
4002
4003 /*
4004 * Make sure the descriptor itself has the correct cache mode
4005 */
4006 pdep = &kl1[L1_IDX(va)];
4007 pde = *pdep;
4008
4009 if (l1pte_section_p(pde)) {
4010 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4011 *pdep = (pde & ~L1_S_CACHE_MASK) |
4012 pte_l1_s_cache_mode_pt;
4013 PTE_SYNC(pdep);
4014 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4015 rv = 1;
4016 }
4017 } else {
4018 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4019 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4020 if (ptep == NULL)
4021 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4022
4023 ptep = &ptep[l2pte_index(va)];
4024 pte = *ptep;
4025 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4026 *ptep = (pte & ~L2_S_CACHE_MASK) |
4027 pte_l2_s_cache_mode_pt;
4028 PTE_SYNC(ptep);
4029 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4030 rv = 1;
4031 }
4032 }
4033
4034 return (rv);
4035 }
4036
4037 static void
4038 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4039 {
4040 vaddr_t va = *availp;
4041 struct l2_bucket *l2b;
4042
4043 if (ptep) {
4044 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4045 if (l2b == NULL)
4046 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4047
4048 if (ptep)
4049 *ptep = &l2b->l2b_kva[l2pte_index(va)];
4050 }
4051
4052 *vap = va;
4053 *availp = va + (PAGE_SIZE * pages);
4054 }
4055
4056 void
4057 pmap_init(void)
4058 {
4059 extern int physmem;
4060
4061 /*
4062 * Set the available memory vars - These do not map to real memory
4063 * addresses and cannot as the physical memory is fragmented.
4064 * They are used by ps for %mem calculations.
4065 * One could argue whether this should be the entire memory or just
4066 * the memory that is useable in a user process.
4067 */
4068 avail_start = 0;
4069 avail_end = physmem * PAGE_SIZE;
4070
4071 /*
4072 * Now we need to free enough pv_entry structures to allow us to get
4073 * the kmem_map/kmem_object allocated and inited (done after this
4074 * function is finished). to do this we allocate one bootstrap page out
4075 * of kernel_map and use it to provide an initial pool of pv_entry
4076 * structures. we never free this page.
4077 */
4078 pool_setlowat(&pmap_pv_pool,
4079 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4080
4081 pmap_initialized = TRUE;
4082 }
4083
4084 static vaddr_t last_bootstrap_page = 0;
4085 static void *free_bootstrap_pages = NULL;
4086
4087 static void *
4088 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4089 {
4090 extern void *pool_page_alloc(struct pool *, int);
4091 vaddr_t new_page;
4092 void *rv;
4093
4094 if (pmap_initialized)
4095 return (pool_page_alloc(pp, flags));
4096
4097 if (free_bootstrap_pages) {
4098 rv = free_bootstrap_pages;
4099 free_bootstrap_pages = *((void **)rv);
4100 return (rv);
4101 }
4102
4103 new_page = uvm_km_kmemalloc(kernel_map, NULL, PAGE_SIZE,
4104 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT);
4105
4106 KASSERT(new_page > last_bootstrap_page);
4107 last_bootstrap_page = new_page;
4108 return ((void *)new_page);
4109 }
4110
4111 static void
4112 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4113 {
4114 extern void pool_page_free(struct pool *, void *);
4115
4116 if (pmap_initialized) {
4117 pool_page_free(pp, v);
4118 return;
4119 }
4120
4121 if ((vaddr_t)v < last_bootstrap_page) {
4122 *((void **)v) = free_bootstrap_pages;
4123 free_bootstrap_pages = v;
4124 return;
4125 }
4126 }
4127
4128 /*
4129 * pmap_postinit()
4130 *
4131 * This routine is called after the vm and kmem subsystems have been
4132 * initialised. This allows the pmap code to perform any initialisation
4133 * that can only be done one the memory allocation is in place.
4134 */
4135 void
4136 pmap_postinit(void)
4137 {
4138 extern paddr_t physical_start, physical_end;
4139 struct l2_bucket *l2b;
4140 struct l1_ttable *l1;
4141 struct pglist plist;
4142 struct vm_page *m;
4143 pd_entry_t *pl1pt;
4144 pt_entry_t *ptep, pte;
4145 vaddr_t va, eva;
4146 u_int loop, needed;
4147 int error;
4148
4149 pool_setlowat(&pmap_l2ptp_pool,
4150 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4151 pool_setlowat(&pmap_l2dtable_pool,
4152 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4153
4154 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4155 needed -= 1;
4156
4157 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4158
4159 for (loop = 0; loop < needed; loop++, l1++) {
4160 /* Allocate a L1 page table */
4161 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
4162 if (va == 0)
4163 panic("Cannot allocate L1 KVM");
4164
4165 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4166 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4167 if (error)
4168 panic("Cannot allocate L1 physical pages");
4169
4170 m = TAILQ_FIRST(&plist);
4171 eva = va + L1_TABLE_SIZE;
4172 pl1pt = (pd_entry_t *)va;
4173
4174 while (m && va < eva) {
4175 paddr_t pa = VM_PAGE_TO_PHYS(m);
4176
4177 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4178
4179 /*
4180 * Make sure the L1 descriptor table is mapped
4181 * with the cache-mode set to write-through.
4182 */
4183 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4184 ptep = &l2b->l2b_kva[l2pte_index(va)];
4185 pte = *ptep;
4186 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4187 *ptep = pte;
4188 PTE_SYNC(ptep);
4189 cpu_tlb_flushD_SE(va);
4190
4191 va += PAGE_SIZE;
4192 m = m->pageq.tqe_next;
4193 }
4194
4195 #ifdef DIAGNOSTIC
4196 if (m)
4197 panic("pmap_alloc_l1pt: pglist not empty");
4198 #endif /* DIAGNOSTIC */
4199
4200 pmap_init_l1(l1, pl1pt);
4201 }
4202
4203 #ifdef DEBUG
4204 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4205 needed);
4206 #endif
4207 }
4208
4209 /*
4210 * Note that the following routines are used by board-specific initialisation
4211 * code to configure the initial kernel page tables.
4212 *
4213 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4214 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4215 * behaviour of the old pmap, and provides an easy migration path for
4216 * initial bring-up of the new pmap on existing ports. Fortunately,
4217 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4218 * will be deprecated.
4219 *
4220 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4221 * tables.
4222 */
4223
4224 /*
4225 * This list exists for the benefit of pmap_map_chunk(). It keeps track
4226 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4227 * find them as necessary.
4228 *
4229 * Note that the data on this list MUST remain valid after initarm() returns,
4230 * as pmap_bootstrap() uses it to contruct L2 table metadata.
4231 */
4232 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4233
4234 static vaddr_t
4235 kernel_pt_lookup(paddr_t pa)
4236 {
4237 pv_addr_t *pv;
4238
4239 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4240 #ifndef ARM32_NEW_VM_LAYOUT
4241 if (pv->pv_pa == (pa & ~PGOFSET))
4242 return (pv->pv_va | (pa & PGOFSET));
4243 #else
4244 if (pv->pv_pa == pa)
4245 return (pv->pv_va);
4246 #endif
4247 }
4248 return (0);
4249 }
4250
4251 /*
4252 * pmap_map_section:
4253 *
4254 * Create a single section mapping.
4255 */
4256 void
4257 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4258 {
4259 pd_entry_t *pde = (pd_entry_t *) l1pt;
4260 pd_entry_t fl;
4261
4262 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4263
4264 switch (cache) {
4265 case PTE_NOCACHE:
4266 default:
4267 fl = 0;
4268 break;
4269
4270 case PTE_CACHE:
4271 fl = pte_l1_s_cache_mode;
4272 break;
4273
4274 case PTE_PAGETABLE:
4275 fl = pte_l1_s_cache_mode_pt;
4276 break;
4277 }
4278
4279 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4280 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4281 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4282 }
4283
4284 /*
4285 * pmap_map_entry:
4286 *
4287 * Create a single page mapping.
4288 */
4289 void
4290 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4291 {
4292 pd_entry_t *pde = (pd_entry_t *) l1pt;
4293 pt_entry_t fl;
4294 pt_entry_t *pte;
4295
4296 KASSERT(((va | pa) & PGOFSET) == 0);
4297
4298 switch (cache) {
4299 case PTE_NOCACHE:
4300 default:
4301 fl = 0;
4302 break;
4303
4304 case PTE_CACHE:
4305 fl = pte_l2_s_cache_mode;
4306 break;
4307
4308 case PTE_PAGETABLE:
4309 fl = pte_l2_s_cache_mode_pt;
4310 break;
4311 }
4312
4313 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4314 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4315
4316 #ifndef ARM32_NEW_VM_LAYOUT
4317 pte = (pt_entry_t *)
4318 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4319 #else
4320 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4321 #endif
4322 if (pte == NULL)
4323 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4324
4325 #ifndef ARM32_NEW_VM_LAYOUT
4326 pte[(va >> PGSHIFT) & 0x3ff] =
4327 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4328 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4329 #else
4330 pte[l2pte_index(va)] =
4331 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4332 PTE_SYNC(&pte[l2pte_index(va)]);
4333 #endif
4334 }
4335
4336 /*
4337 * pmap_link_l2pt:
4338 *
4339 * Link the L2 page table specified by "l2pv" into the L1
4340 * page table at the slot for "va".
4341 */
4342 void
4343 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4344 {
4345 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4346 u_int slot = va >> L1_S_SHIFT;
4347
4348 #ifndef ARM32_NEW_VM_LAYOUT
4349 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4350 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4351 #endif
4352
4353 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4354
4355 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4356 #ifdef ARM32_NEW_VM_LAYOUT
4357 PTE_SYNC(&pde[slot]);
4358 #else
4359 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4360 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4361 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4362 PTE_SYNC_RANGE(&pde[slot + 0], 4);
4363 #endif
4364
4365 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4366 }
4367
4368 /*
4369 * pmap_map_chunk:
4370 *
4371 * Map a chunk of memory using the most efficient mappings
4372 * possible (section, large page, small page) into the
4373 * provided L1 and L2 tables at the specified virtual address.
4374 */
4375 vsize_t
4376 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4377 int prot, int cache)
4378 {
4379 pd_entry_t *pde = (pd_entry_t *) l1pt;
4380 pt_entry_t *pte, f1, f2s, f2l;
4381 vsize_t resid;
4382 int i;
4383
4384 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4385
4386 if (l1pt == 0)
4387 panic("pmap_map_chunk: no L1 table provided");
4388
4389 #ifdef VERBOSE_INIT_ARM
4390 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4391 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4392 #endif
4393
4394 switch (cache) {
4395 case PTE_NOCACHE:
4396 default:
4397 f1 = 0;
4398 f2l = 0;
4399 f2s = 0;
4400 break;
4401
4402 case PTE_CACHE:
4403 f1 = pte_l1_s_cache_mode;
4404 f2l = pte_l2_l_cache_mode;
4405 f2s = pte_l2_s_cache_mode;
4406 break;
4407
4408 case PTE_PAGETABLE:
4409 f1 = pte_l1_s_cache_mode_pt;
4410 f2l = pte_l2_l_cache_mode_pt;
4411 f2s = pte_l2_s_cache_mode_pt;
4412 break;
4413 }
4414
4415 size = resid;
4416
4417 while (resid > 0) {
4418 /* See if we can use a section mapping. */
4419 if (L1_S_MAPPABLE_P(va, pa, resid)) {
4420 #ifdef VERBOSE_INIT_ARM
4421 printf("S");
4422 #endif
4423 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4424 L1_S_PROT(PTE_KERNEL, prot) | f1 |
4425 L1_S_DOM(PMAP_DOMAIN_KERNEL);
4426 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4427 va += L1_S_SIZE;
4428 pa += L1_S_SIZE;
4429 resid -= L1_S_SIZE;
4430 continue;
4431 }
4432
4433 /*
4434 * Ok, we're going to use an L2 table. Make sure
4435 * one is actually in the corresponding L1 slot
4436 * for the current VA.
4437 */
4438 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4439 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4440
4441 #ifndef ARM32_NEW_VM_LAYOUT
4442 pte = (pt_entry_t *)
4443 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4444 #else
4445 pte = (pt_entry_t *) kernel_pt_lookup(
4446 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4447 #endif
4448 if (pte == NULL)
4449 panic("pmap_map_chunk: can't find L2 table for VA"
4450 "0x%08lx", va);
4451
4452 /* See if we can use a L2 large page mapping. */
4453 if (L2_L_MAPPABLE_P(va, pa, resid)) {
4454 #ifdef VERBOSE_INIT_ARM
4455 printf("L");
4456 #endif
4457 for (i = 0; i < 16; i++) {
4458 #ifndef ARM32_NEW_VM_LAYOUT
4459 pte[((va >> PGSHIFT) & 0x3f0) + i] =
4460 L2_L_PROTO | pa |
4461 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4462 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4463 #else
4464 pte[l2pte_index(va) + i] =
4465 L2_L_PROTO | pa |
4466 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4467 PTE_SYNC(&pte[l2pte_index(va) + i]);
4468 #endif
4469 }
4470 va += L2_L_SIZE;
4471 pa += L2_L_SIZE;
4472 resid -= L2_L_SIZE;
4473 continue;
4474 }
4475
4476 /* Use a small page mapping. */
4477 #ifdef VERBOSE_INIT_ARM
4478 printf("P");
4479 #endif
4480 #ifndef ARM32_NEW_VM_LAYOUT
4481 pte[(va >> PGSHIFT) & 0x3ff] =
4482 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4483 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4484 #else
4485 pte[l2pte_index(va)] =
4486 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4487 PTE_SYNC(&pte[l2pte_index(va)]);
4488 #endif
4489 va += PAGE_SIZE;
4490 pa += PAGE_SIZE;
4491 resid -= PAGE_SIZE;
4492 }
4493 #ifdef VERBOSE_INIT_ARM
4494 printf("\n");
4495 #endif
4496 return (size);
4497 }
4498
4499 /********************** Static device map routines ***************************/
4500
4501 static const struct pmap_devmap *pmap_devmap_table;
4502
4503 /*
4504 * Register the devmap table. This is provided in case early console
4505 * initialization needs to register mappings created by bootstrap code
4506 * before pmap_devmap_bootstrap() is called.
4507 */
4508 void
4509 pmap_devmap_register(const struct pmap_devmap *table)
4510 {
4511
4512 pmap_devmap_table = table;
4513 }
4514
4515 /*
4516 * Map all of the static regions in the devmap table, and remember
4517 * the devmap table so other parts of the kernel can look up entries
4518 * later.
4519 */
4520 void
4521 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4522 {
4523 int i;
4524
4525 pmap_devmap_table = table;
4526
4527 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4528 #ifdef VERBOSE_INIT_ARM
4529 printf("devmap: %08lx -> %08lx @ %08lx\n",
4530 pmap_devmap_table[i].pd_pa,
4531 pmap_devmap_table[i].pd_pa +
4532 pmap_devmap_table[i].pd_size - 1,
4533 pmap_devmap_table[i].pd_va);
4534 #endif
4535 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4536 pmap_devmap_table[i].pd_pa,
4537 pmap_devmap_table[i].pd_size,
4538 pmap_devmap_table[i].pd_prot,
4539 pmap_devmap_table[i].pd_cache);
4540 }
4541 }
4542
4543 const struct pmap_devmap *
4544 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4545 {
4546 int i;
4547
4548 if (pmap_devmap_table == NULL)
4549 return (NULL);
4550
4551 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4552 if (pa >= pmap_devmap_table[i].pd_pa &&
4553 pa + size <= pmap_devmap_table[i].pd_pa +
4554 pmap_devmap_table[i].pd_size)
4555 return (&pmap_devmap_table[i]);
4556 }
4557
4558 return (NULL);
4559 }
4560
4561 const struct pmap_devmap *
4562 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4563 {
4564 int i;
4565
4566 if (pmap_devmap_table == NULL)
4567 return (NULL);
4568
4569 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4570 if (va >= pmap_devmap_table[i].pd_va &&
4571 va + size <= pmap_devmap_table[i].pd_va +
4572 pmap_devmap_table[i].pd_size)
4573 return (&pmap_devmap_table[i]);
4574 }
4575
4576 return (NULL);
4577 }
4578
4579 /********************** PTE initialization routines **************************/
4580
4581 /*
4582 * These routines are called when the CPU type is identified to set up
4583 * the PTE prototypes, cache modes, etc.
4584 *
4585 * The variables are always here, just in case LKMs need to reference
4586 * them (though, they shouldn't).
4587 */
4588
4589 pt_entry_t pte_l1_s_cache_mode;
4590 pt_entry_t pte_l1_s_cache_mode_pt;
4591 pt_entry_t pte_l1_s_cache_mask;
4592
4593 pt_entry_t pte_l2_l_cache_mode;
4594 pt_entry_t pte_l2_l_cache_mode_pt;
4595 pt_entry_t pte_l2_l_cache_mask;
4596
4597 pt_entry_t pte_l2_s_cache_mode;
4598 pt_entry_t pte_l2_s_cache_mode_pt;
4599 pt_entry_t pte_l2_s_cache_mask;
4600
4601 pt_entry_t pte_l2_s_prot_u;
4602 pt_entry_t pte_l2_s_prot_w;
4603 pt_entry_t pte_l2_s_prot_mask;
4604
4605 pt_entry_t pte_l1_s_proto;
4606 pt_entry_t pte_l1_c_proto;
4607 pt_entry_t pte_l2_s_proto;
4608
4609 void (*pmap_copy_page_func)(paddr_t, paddr_t);
4610 void (*pmap_zero_page_func)(paddr_t);
4611
4612 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4613 void
4614 pmap_pte_init_generic(void)
4615 {
4616
4617 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4618 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4619
4620 pte_l2_l_cache_mode = L2_B|L2_C;
4621 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4622
4623 pte_l2_s_cache_mode = L2_B|L2_C;
4624 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4625
4626 /*
4627 * If we have a write-through cache, set B and C. If
4628 * we have a write-back cache, then we assume setting
4629 * only C will make those pages write-through.
4630 */
4631 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4632 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4633 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4634 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4635 } else {
4636 pte_l1_s_cache_mode_pt = L1_S_C;
4637 pte_l2_l_cache_mode_pt = L2_C;
4638 pte_l2_s_cache_mode_pt = L2_C;
4639 }
4640
4641 pte_l2_s_prot_u = L2_S_PROT_U_generic;
4642 pte_l2_s_prot_w = L2_S_PROT_W_generic;
4643 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4644
4645 pte_l1_s_proto = L1_S_PROTO_generic;
4646 pte_l1_c_proto = L1_C_PROTO_generic;
4647 pte_l2_s_proto = L2_S_PROTO_generic;
4648
4649 pmap_copy_page_func = pmap_copy_page_generic;
4650 pmap_zero_page_func = pmap_zero_page_generic;
4651 }
4652
4653 #if defined(CPU_ARM8)
4654 void
4655 pmap_pte_init_arm8(void)
4656 {
4657
4658 /*
4659 * ARM8 is compatible with generic, but we need to use
4660 * the page tables uncached.
4661 */
4662 pmap_pte_init_generic();
4663
4664 pte_l1_s_cache_mode_pt = 0;
4665 pte_l2_l_cache_mode_pt = 0;
4666 pte_l2_s_cache_mode_pt = 0;
4667 }
4668 #endif /* CPU_ARM8 */
4669
4670 #if defined(CPU_ARM9)
4671 void
4672 pmap_pte_init_arm9(void)
4673 {
4674
4675 /*
4676 * ARM9 is compatible with generic, but we want to use
4677 * write-through caching for now.
4678 */
4679 pmap_pte_init_generic();
4680
4681 pte_l1_s_cache_mode = L1_S_C;
4682 pte_l2_l_cache_mode = L2_C;
4683 pte_l2_s_cache_mode = L2_C;
4684
4685 pte_l1_s_cache_mode_pt = L1_S_C;
4686 pte_l2_l_cache_mode_pt = L2_C;
4687 pte_l2_s_cache_mode_pt = L2_C;
4688 }
4689 #endif /* CPU_ARM9 */
4690 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4691
4692 #if defined(CPU_ARM10)
4693 void
4694 pmap_pte_init_arm10(void)
4695 {
4696
4697 /*
4698 * ARM10 is compatible with generic, but we want to use
4699 * write-through caching for now.
4700 */
4701 pmap_pte_init_generic();
4702
4703 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
4704 pte_l2_l_cache_mode = L2_B | L2_C;
4705 pte_l2_s_cache_mode = L2_B | L2_C;
4706
4707 pte_l1_s_cache_mode_pt = L1_S_C;
4708 pte_l2_l_cache_mode_pt = L2_C;
4709 pte_l2_s_cache_mode_pt = L2_C;
4710
4711 }
4712 #endif /* CPU_ARM10 */
4713
4714 #if ARM_MMU_SA1 == 1
4715 void
4716 pmap_pte_init_sa1(void)
4717 {
4718
4719 /*
4720 * The StrongARM SA-1 cache does not have a write-through
4721 * mode. So, do the generic initialization, then reset
4722 * the page table cache mode to B=1,C=1, and note that
4723 * the PTEs need to be sync'd.
4724 */
4725 pmap_pte_init_generic();
4726
4727 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4728 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4729 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4730
4731 pmap_needs_pte_sync = 1;
4732 }
4733 #endif /* ARM_MMU_SA1 == 1*/
4734
4735 #if ARM_MMU_XSCALE == 1
4736 void
4737 pmap_pte_init_xscale(void)
4738 {
4739 uint32_t auxctl;
4740 int write_through = 0;
4741
4742 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4743 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4744
4745 pte_l2_l_cache_mode = L2_B|L2_C;
4746 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4747
4748 pte_l2_s_cache_mode = L2_B|L2_C;
4749 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4750
4751 pte_l1_s_cache_mode_pt = L1_S_C;
4752 pte_l2_l_cache_mode_pt = L2_C;
4753 pte_l2_s_cache_mode_pt = L2_C;
4754
4755 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4756 /*
4757 * The XScale core has an enhanced mode where writes that
4758 * miss the cache cause a cache line to be allocated. This
4759 * is significantly faster than the traditional, write-through
4760 * behavior of this case.
4761 */
4762 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4763 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4764 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4765 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4766
4767 #ifdef XSCALE_CACHE_WRITE_THROUGH
4768 /*
4769 * Some versions of the XScale core have various bugs in
4770 * their cache units, the work-around for which is to run
4771 * the cache in write-through mode. Unfortunately, this
4772 * has a major (negative) impact on performance. So, we
4773 * go ahead and run fast-and-loose, in the hopes that we
4774 * don't line up the planets in a way that will trip the
4775 * bugs.
4776 *
4777 * However, we give you the option to be slow-but-correct.
4778 */
4779 write_through = 1;
4780 #elif defined(XSCALE_CACHE_WRITE_BACK)
4781 /* force write back cache mode */
4782 write_through = 0;
4783 #elif defined(CPU_XSCALE_PXA2X0)
4784 /*
4785 * Intel PXA2[15]0 processors are known to have a bug in
4786 * write-back cache on revision 4 and earlier (stepping
4787 * A[01] and B[012]). Fixed for C0 and later.
4788 */
4789 {
4790 uint32_t id, type;
4791
4792 id = cpufunc_id();
4793 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4794
4795 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4796 if ((id & CPU_ID_REVISION_MASK) < 5) {
4797 /* write through for stepping A0-1 and B0-2 */
4798 write_through = 1;
4799 }
4800 }
4801 }
4802 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4803
4804 if (write_through) {
4805 pte_l1_s_cache_mode = L1_S_C;
4806 pte_l2_l_cache_mode = L2_C;
4807 pte_l2_s_cache_mode = L2_C;
4808 }
4809
4810 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4811 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4812 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4813
4814 pte_l1_s_proto = L1_S_PROTO_xscale;
4815 pte_l1_c_proto = L1_C_PROTO_xscale;
4816 pte_l2_s_proto = L2_S_PROTO_xscale;
4817
4818 pmap_copy_page_func = pmap_copy_page_xscale;
4819 pmap_zero_page_func = pmap_zero_page_xscale;
4820
4821 /*
4822 * Disable ECC protection of page table access, for now.
4823 */
4824 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4825 : "=r" (auxctl));
4826 auxctl &= ~XSCALE_AUXCTL_P;
4827 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4828 :
4829 : "r" (auxctl));
4830 }
4831
4832 /*
4833 * xscale_setup_minidata:
4834 *
4835 * Set up the mini-data cache clean area. We require the
4836 * caller to allocate the right amount of physically and
4837 * virtually contiguous space.
4838 */
4839 void
4840 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4841 {
4842 extern vaddr_t xscale_minidata_clean_addr;
4843 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4844 pd_entry_t *pde = (pd_entry_t *) l1pt;
4845 pt_entry_t *pte;
4846 vsize_t size;
4847 uint32_t auxctl;
4848
4849 xscale_minidata_clean_addr = va;
4850
4851 /* Round it to page size. */
4852 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4853
4854 for (; size != 0;
4855 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4856 #ifndef ARM32_NEW_VM_LAYOUT
4857 pte = (pt_entry_t *)
4858 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4859 #else
4860 pte = (pt_entry_t *) kernel_pt_lookup(
4861 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4862 #endif
4863 if (pte == NULL)
4864 panic("xscale_setup_minidata: can't find L2 table for "
4865 "VA 0x%08lx", va);
4866 #ifndef ARM32_NEW_VM_LAYOUT
4867 pte[(va >> PGSHIFT) & 0x3ff] =
4868 #else
4869 pte[l2pte_index(va)] =
4870 #endif
4871 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4872 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4873 }
4874
4875 /*
4876 * Configure the mini-data cache for write-back with
4877 * read/write-allocate.
4878 *
4879 * NOTE: In order to reconfigure the mini-data cache, we must
4880 * make sure it contains no valid data! In order to do that,
4881 * we must issue a global data cache invalidate command!
4882 *
4883 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4884 * THIS IS VERY IMPORTANT!
4885 */
4886
4887 /* Invalidate data and mini-data. */
4888 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4889 :
4890 : "r" (auxctl));
4891
4892
4893 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4894 : "=r" (auxctl));
4895 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4896 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4897 :
4898 : "r" (auxctl));
4899 }
4900 #endif /* ARM_MMU_XSCALE == 1 */
4901
4902 #if defined(DDB)
4903 /*
4904 * A couple of ddb-callable functions for dumping pmaps
4905 */
4906 void pmap_dump_all(void);
4907 void pmap_dump(pmap_t);
4908
4909 void
4910 pmap_dump_all(void)
4911 {
4912 pmap_t pm;
4913
4914 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
4915 if (pm == pmap_kernel())
4916 continue;
4917 pmap_dump(pm);
4918 printf("\n");
4919 }
4920 }
4921
4922 static pt_entry_t ncptes[64];
4923 static void pmap_dump_ncpg(pmap_t);
4924
4925 void
4926 pmap_dump(pmap_t pm)
4927 {
4928 struct l2_dtable *l2;
4929 struct l2_bucket *l2b;
4930 pt_entry_t *ptep, pte;
4931 vaddr_t l2_va, l2b_va, va;
4932 int i, j, k, occ, rows = 0;
4933 char ch;
4934
4935 if (pm == pmap_kernel())
4936 printf("pmap_kernel (%p): ", pm);
4937 else
4938 printf("user pmap (%p): ", pm);
4939
4940 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
4941
4942 l2_va = 0;
4943 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
4944 l2 = pm->pm_l2[i];
4945
4946 if (l2 == NULL || l2->l2_occupancy == 0)
4947 continue;
4948
4949 l2b_va = l2_va;
4950 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
4951 l2b = &l2->l2_bucket[j];
4952
4953 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
4954 continue;
4955
4956 ptep = l2b->l2b_kva;
4957
4958 for (k = 0; k < 256 && ptep[k] == 0; k++)
4959 ;
4960
4961 k &= ~63;
4962 occ = l2b->l2b_occupancy;
4963 va = l2b_va + (k * 4096);
4964 for (; k < 256; k++, va += 0x1000) {
4965 if ((k % 64) == 0) {
4966 if ((rows % 8) == 0) {
4967 printf(
4968 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
4969 }
4970 printf("%08lx: ", va);
4971 }
4972
4973 ncptes[k & 63] = 0;
4974 pte = ptep[k];
4975 if (pte == 0) {
4976 ch = '.';
4977 } else {
4978 occ--;
4979 switch (pte & 0x0c) {
4980 case 0x00:
4981 ch = 'D'; /* No cache No buff */
4982 break;
4983 case 0x04:
4984 ch = 'B'; /* No cache buff */
4985 break;
4986 case 0x08:
4987 ch = 'C'; /* Cache No buff */
4988 break;
4989 case 0x0c:
4990 ch = 'F'; /* Cache Buff */
4991 break;
4992 }
4993
4994 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
4995 ch += 0x20;
4996
4997 if ((pte & 0xc) == 0)
4998 ncptes[k & 63] = pte;
4999 }
5000
5001 if ((k % 64) == 63) {
5002 rows++;
5003 printf("%c\n", ch);
5004 pmap_dump_ncpg(pm);
5005 if (occ == 0)
5006 break;
5007 } else
5008 printf("%c", ch);
5009 }
5010 }
5011 }
5012 }
5013
5014 static void
5015 pmap_dump_ncpg(pmap_t pm)
5016 {
5017 struct vm_page *pg;
5018 struct pv_entry *pv;
5019 int i;
5020
5021 for (i = 0; i < 63; i++) {
5022 if (ncptes[i] == 0)
5023 continue;
5024
5025 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5026 if (pg == NULL)
5027 continue;
5028
5029 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5030 pg->phys_addr,
5031 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5032 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5033
5034 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5035 printf(" %c va 0x%08lx, flags 0x%x\n",
5036 (pm == pv->pv_pmap) ? '*' : ' ',
5037 pv->pv_va, pv->pv_flags);
5038 }
5039 }
5040 }
5041 #endif
5042