Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.14.2.5
      1 /*	$NetBSD: pmap.c,v 1.14.2.5 2002/02/11 20:07:18 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Richard Earnshaw
      5  * Copyright (c) 2001 Christopher Gilbert
      6  * All rights reserved.
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. The name of the company nor the name of the author may be used to
     14  *    endorse or promote products derived from this software without specific
     15  *    prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     21  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     23  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 
     30 /*-
     31  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     32  * All rights reserved.
     33  *
     34  * This code is derived from software contributed to The NetBSD Foundation
     35  * by Charles M. Hannum.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *        This product includes software developed by the NetBSD
     48  *        Foundation, Inc. and its contributors.
     49  * 4. Neither the name of The NetBSD Foundation nor the names of its
     50  *    contributors may be used to endorse or promote products derived
     51  *    from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 /*
     67  * Copyright (c) 1994-1998 Mark Brinicombe.
     68  * Copyright (c) 1994 Brini.
     69  * All rights reserved.
     70  *
     71  * This code is derived from software written for Brini by Mark Brinicombe
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by Mark Brinicombe.
     84  * 4. The name of the author may not be used to endorse or promote products
     85  *    derived from this software without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     88  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     89  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     90  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     91  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     92  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     93  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     94  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     95  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     96  *
     97  * RiscBSD kernel project
     98  *
     99  * pmap.c
    100  *
    101  * Machine dependant vm stuff
    102  *
    103  * Created      : 20/09/94
    104  */
    105 
    106 /*
    107  * Performance improvements, UVM changes, overhauls and part-rewrites
    108  * were contributed by Neil A. Carson <neil (at) causality.com>.
    109  */
    110 
    111 /*
    112  * The dram block info is currently referenced from the bootconfig.
    113  * This should be placed in a separate structure.
    114  */
    115 
    116 /*
    117  * Special compilation symbols
    118  * PMAP_DEBUG		- Build in pmap_debug_level code
    119  */
    120 
    121 /* Include header files */
    122 
    123 #include "opt_pmap_debug.h"
    124 #include "opt_ddb.h"
    125 
    126 #include <sys/types.h>
    127 #include <sys/param.h>
    128 #include <sys/kernel.h>
    129 #include <sys/systm.h>
    130 #include <sys/proc.h>
    131 #include <sys/malloc.h>
    132 #include <sys/user.h>
    133 #include <sys/pool.h>
    134 #include <sys/cdefs.h>
    135 
    136 #include <uvm/uvm.h>
    137 
    138 #include <machine/bootconfig.h>
    139 #include <machine/bus.h>
    140 #include <machine/pmap.h>
    141 #include <machine/pcb.h>
    142 #include <machine/param.h>
    143 #include <arm/arm32/katelib.h>
    144 
    145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.14.2.5 2002/02/11 20:07:18 jdolecek Exp $");
    146 
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 
    153 /*
    154  * for switching to potentially finer grained debugging
    155  */
    156 #define	PDB_FOLLOW	0x0001
    157 #define	PDB_INIT	0x0002
    158 #define	PDB_ENTER	0x0004
    159 #define	PDB_REMOVE	0x0008
    160 #define	PDB_CREATE	0x0010
    161 #define	PDB_PTPAGE	0x0020
    162 #define	PDB_ASN		0x0040
    163 #define	PDB_BITS	0x0080
    164 #define	PDB_COLLECT	0x0100
    165 #define	PDB_PROTECT	0x0200
    166 #define	PDB_BOOTSTRAP	0x1000
    167 #define	PDB_PARANOIA	0x2000
    168 #define	PDB_WIRING	0x4000
    169 #define	PDB_PVDUMP	0x8000
    170 
    171 int debugmap = 0;
    172 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    173 #define	NPDEBUG(_lev_,_stat_) \
    174 	if (pmapdebug & (_lev_)) \
    175         	((_stat_))
    176 
    177 #else	/* PMAP_DEBUG */
    178 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    179 #define PDEBUG(_lev_,_stat_) /* Nothing */
    180 #endif	/* PMAP_DEBUG */
    181 
    182 struct pmap     kernel_pmap_store;
    183 
    184 /*
    185  * pool that pmap structures are allocated from
    186  */
    187 
    188 struct pool pmap_pmap_pool;
    189 
    190 pagehook_t page_hook0;
    191 pagehook_t page_hook1;
    192 char *memhook;
    193 pt_entry_t msgbufpte;
    194 extern caddr_t msgbufaddr;
    195 
    196 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    197 /*
    198  * locking data structures
    199  */
    200 
    201 static struct lock pmap_main_lock;
    202 static struct simplelock pvalloc_lock;
    203 #ifdef LOCKDEBUG
    204 #define PMAP_MAP_TO_HEAD_LOCK() \
    205      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    206 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    207      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    208 
    209 #define PMAP_HEAD_TO_MAP_LOCK() \
    210      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    211 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    212      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    213 #else
    214 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    215 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    216 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    217 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    218 #endif /* LOCKDEBUG */
    219 
    220 /*
    221  * pv_page management structures: locked by pvalloc_lock
    222  */
    223 
    224 TAILQ_HEAD(pv_pagelist, pv_page);
    225 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    226 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    227 static int pv_nfpvents;			/* # of free pv entries */
    228 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    229 static vaddr_t pv_cachedva;		/* cached VA for later use */
    230 
    231 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    232 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    233 					/* high water mark */
    234 
    235 /*
    236  * local prototypes
    237  */
    238 
    239 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    240 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    241 #define ALLOCPV_NEED	0	/* need PV now */
    242 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    243 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    244 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    245 static void		 pmap_enter_pv __P((struct pv_head *,
    246 					    struct pv_entry *, struct pmap *,
    247 					    vaddr_t, struct vm_page *, int));
    248 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    249 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    250 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    251 static void		 pmap_free_pvpage __P((void));
    252 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    253 static struct pv_entry	*pmap_remove_pv __P((struct pv_head *, struct pmap *,
    254 			vaddr_t));
    255 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    256 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    257 
    258 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct pv_head *,
    259 	u_int, u_int));
    260 
    261 static void pmap_free_l1pt __P((struct l1pt *));
    262 static int pmap_allocpagedir __P((struct pmap *));
    263 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    264 static struct pv_head *pmap_find_pvh __P((paddr_t));
    265 static void pmap_remove_all __P((paddr_t));
    266 
    267 
    268 vsize_t npages;
    269 
    270 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
    271 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
    272 __inline static void pmap_clearbit __P((paddr_t, unsigned int));
    273 __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
    274 
    275 extern paddr_t physical_start;
    276 extern paddr_t physical_freestart;
    277 extern paddr_t physical_end;
    278 extern paddr_t physical_freeend;
    279 extern unsigned int free_pages;
    280 extern int max_processes;
    281 
    282 vaddr_t virtual_start;
    283 vaddr_t virtual_end;
    284 
    285 vaddr_t avail_start;
    286 vaddr_t avail_end;
    287 
    288 extern pv_addr_t systempage;
    289 
    290 #define ALLOC_PAGE_HOOK(x, s) \
    291 	x.va = virtual_start; \
    292 	x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
    293 	virtual_start += s;
    294 
    295 /* Variables used by the L1 page table queue code */
    296 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    297 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    298 int l1pt_static_queue_count;		/* items in the static l1 queue */
    299 int l1pt_static_create_count;		/* static l1 items created */
    300 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    301 int l1pt_queue_count;			/* items in the l1 queue */
    302 int l1pt_create_count;			/* stat - L1's create count */
    303 int l1pt_reuse_count;			/* stat - L1's reused count */
    304 
    305 /* Local function prototypes (not used outside this file) */
    306 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    307 void pmap_copy_on_write __P((paddr_t pa));
    308 void pmap_pinit __P((struct pmap *));
    309 void pmap_freepagedir __P((struct pmap *));
    310 
    311 /* Other function prototypes */
    312 extern void bzero_page __P((vaddr_t));
    313 extern void bcopy_page __P((vaddr_t, vaddr_t));
    314 
    315 struct l1pt *pmap_alloc_l1pt __P((void));
    316 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    317      vaddr_t l2pa, boolean_t));
    318 
    319 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    320 static void pmap_unmap_ptes __P((struct pmap *));
    321 
    322 __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
    323     pt_entry_t *, boolean_t));
    324 static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
    325     pt_entry_t *, boolean_t));
    326 static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
    327     pt_entry_t *, boolean_t));
    328 
    329 /*
    330  * Cache enable bits in PTE to use on pages that are cacheable.
    331  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    332  * can chose between write-through and write-back cacheing.
    333  */
    334 pt_entry_t pte_cache_mode = (PT_C | PT_B);
    335 
    336 /*
    337  * real definition of pv_entry.
    338  */
    339 
    340 struct pv_entry {
    341 	struct pv_entry *pv_next;       /* next pv_entry */
    342 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    343 	vaddr_t         pv_va;          /* virtual address for mapping */
    344 	int             pv_flags;       /* flags */
    345 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    346 };
    347 
    348 /*
    349  * pv_entrys are dynamically allocated in chunks from a single page.
    350  * we keep track of how many pv_entrys are in use for each page and
    351  * we can free pv_entry pages if needed.  there is one lock for the
    352  * entire allocation system.
    353  */
    354 
    355 struct pv_page_info {
    356 	TAILQ_ENTRY(pv_page) pvpi_list;
    357 	struct pv_entry *pvpi_pvfree;
    358 	int pvpi_nfree;
    359 };
    360 
    361 /*
    362  * number of pv_entry's in a pv_page
    363  * (note: won't work on systems where NPBG isn't a constant)
    364  */
    365 
    366 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    367 			sizeof(struct pv_entry))
    368 
    369 /*
    370  * a pv_page: where pv_entrys are allocated from
    371  */
    372 
    373 struct pv_page {
    374 	struct pv_page_info pvinfo;
    375 	struct pv_entry pvents[PVE_PER_PVPAGE];
    376 };
    377 
    378 #ifdef MYCROFT_HACK
    379 int mycroft_hack = 0;
    380 #endif
    381 
    382 /* Function to set the debug level of the pmap code */
    383 
    384 #ifdef PMAP_DEBUG
    385 void
    386 pmap_debug(level)
    387 	int level;
    388 {
    389 	pmap_debug_level = level;
    390 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    391 }
    392 #endif	/* PMAP_DEBUG */
    393 
    394 __inline static boolean_t
    395 pmap_is_curpmap(struct pmap *pmap)
    396 {
    397     if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
    398 	    || (pmap == pmap_kernel()))
    399 	return (TRUE);
    400     return (FALSE);
    401 }
    402 #include "isadma.h"
    403 
    404 #if NISADMA > 0
    405 /*
    406  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    407  * pages into the system, memory intersects with any of these ranges,
    408  * the intersecting memory will be loaded into a lower-priority free list.
    409  */
    410 bus_dma_segment_t *pmap_isa_dma_ranges;
    411 int pmap_isa_dma_nranges;
    412 
    413 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    414 	    paddr_t *, psize_t *));
    415 
    416 /*
    417  * Check if a memory range intersects with an ISA DMA range, and
    418  * return the page-rounded intersection if it does.  The intersection
    419  * will be placed on a lower-priority free list.
    420  */
    421 boolean_t
    422 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    423 	paddr_t pa;
    424 	psize_t size;
    425 	paddr_t *pap;
    426 	psize_t *sizep;
    427 {
    428 	bus_dma_segment_t *ds;
    429 	int i;
    430 
    431 	if (pmap_isa_dma_ranges == NULL)
    432 		return (FALSE);
    433 
    434 	for (i = 0, ds = pmap_isa_dma_ranges;
    435 	     i < pmap_isa_dma_nranges; i++, ds++) {
    436 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    437 			/*
    438 			 * Beginning of region intersects with this range.
    439 			 */
    440 			*pap = trunc_page(pa);
    441 			*sizep = round_page(min(pa + size,
    442 			    ds->ds_addr + ds->ds_len) - pa);
    443 			return (TRUE);
    444 		}
    445 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    446 			/*
    447 			 * End of region intersects with this range.
    448 			 */
    449 			*pap = trunc_page(ds->ds_addr);
    450 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    451 			    ds->ds_len));
    452 			return (TRUE);
    453 		}
    454 	}
    455 
    456 	/*
    457 	 * No intersection found.
    458 	 */
    459 	return (FALSE);
    460 }
    461 #endif /* NISADMA > 0 */
    462 
    463 /*
    464  * p v _ e n t r y   f u n c t i o n s
    465  */
    466 
    467 /*
    468  * pv_entry allocation functions:
    469  *   the main pv_entry allocation functions are:
    470  *     pmap_alloc_pv: allocate a pv_entry structure
    471  *     pmap_free_pv: free one pv_entry
    472  *     pmap_free_pvs: free a list of pv_entrys
    473  *
    474  * the rest are helper functions
    475  */
    476 
    477 /*
    478  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    479  * => we lock pvalloc_lock
    480  * => if we fail, we call out to pmap_alloc_pvpage
    481  * => 3 modes:
    482  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    483  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    484  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    485  *			one now
    486  *
    487  * "try" is for optional functions like pmap_copy().
    488  */
    489 
    490 __inline static struct pv_entry *
    491 pmap_alloc_pv(pmap, mode)
    492 	struct pmap *pmap;
    493 	int mode;
    494 {
    495 	struct pv_page *pvpage;
    496 	struct pv_entry *pv;
    497 
    498 	simple_lock(&pvalloc_lock);
    499 
    500 	if (pv_freepages.tqh_first != NULL) {
    501 		pvpage = pv_freepages.tqh_first;
    502 		pvpage->pvinfo.pvpi_nfree--;
    503 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    504 			/* nothing left in this one? */
    505 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    506 		}
    507 		pv = pvpage->pvinfo.pvpi_pvfree;
    508 #ifdef DIAGNOSTIC
    509 		if (pv == NULL)
    510 			panic("pmap_alloc_pv: pvpi_nfree off");
    511 #endif
    512 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    513 		pv_nfpvents--;  /* took one from pool */
    514 	} else {
    515 		pv = NULL;		/* need more of them */
    516 	}
    517 
    518 	/*
    519 	 * if below low water mark or we didn't get a pv_entry we try and
    520 	 * create more pv_entrys ...
    521 	 */
    522 
    523 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    524 		if (pv == NULL)
    525 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    526 					       mode : ALLOCPV_NEED);
    527 		else
    528 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    529 	}
    530 
    531 	simple_unlock(&pvalloc_lock);
    532 	return(pv);
    533 }
    534 
    535 /*
    536  * pmap_alloc_pvpage: maybe allocate a new pvpage
    537  *
    538  * if need_entry is false: try and allocate a new pv_page
    539  * if need_entry is true: try and allocate a new pv_page and return a
    540  *	new pv_entry from it.   if we are unable to allocate a pv_page
    541  *	we make a last ditch effort to steal a pv_page from some other
    542  *	mapping.    if that fails, we panic...
    543  *
    544  * => we assume that the caller holds pvalloc_lock
    545  */
    546 
    547 static struct pv_entry *
    548 pmap_alloc_pvpage(pmap, mode)
    549 	struct pmap *pmap;
    550 	int mode;
    551 {
    552 	struct vm_page *pg;
    553 	struct pv_page *pvpage;
    554 	struct pv_entry *pv;
    555 	int s;
    556 
    557 	/*
    558 	 * if we need_entry and we've got unused pv_pages, allocate from there
    559 	 */
    560 
    561 	if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
    562 
    563 		/* move it to pv_freepages list */
    564 		pvpage = pv_unusedpgs.tqh_first;
    565 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    566 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    567 
    568 		/* allocate a pv_entry */
    569 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    570 		pv = pvpage->pvinfo.pvpi_pvfree;
    571 #ifdef DIAGNOSTIC
    572 		if (pv == NULL)
    573 			panic("pmap_alloc_pvpage: pvpi_nfree off");
    574 #endif
    575 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    576 
    577 		pv_nfpvents--;  /* took one from pool */
    578 		return(pv);
    579 	}
    580 
    581 	/*
    582 	 *  see if we've got a cached unmapped VA that we can map a page in.
    583 	 * if not, try to allocate one.
    584 	 */
    585 
    586 
    587 	if (pv_cachedva == 0) {
    588 		s = splvm();
    589 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    590 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    591 		splx(s);
    592 		if (pv_cachedva == 0) {
    593 			return (NULL);
    594 		}
    595 	}
    596 
    597 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    598 	    UVM_PGA_USERESERVE);
    599 	if (pg)
    600 		pg->flags &= ~PG_BUSY;	/* never busy */
    601 
    602 	if (pg == NULL)
    603 		return (NULL);
    604 
    605 	/*
    606 	 * add a mapping for our new pv_page and free its entrys (save one!)
    607 	 *
    608 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    609 	 * pmap is already locked!  (...but entering the mapping is safe...)
    610 	 */
    611 
    612 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    613 	pmap_update(pmap_kernel());
    614 	pvpage = (struct pv_page *) pv_cachedva;
    615 	pv_cachedva = 0;
    616 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    617 }
    618 
    619 /*
    620  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    621  *
    622  * => caller must hold pvalloc_lock
    623  * => if need_entry is true, we allocate and return one pv_entry
    624  */
    625 
    626 static struct pv_entry *
    627 pmap_add_pvpage(pvp, need_entry)
    628 	struct pv_page *pvp;
    629 	boolean_t need_entry;
    630 {
    631 	int tofree, lcv;
    632 
    633 	/* do we need to return one? */
    634 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    635 
    636 	pvp->pvinfo.pvpi_pvfree = NULL;
    637 	pvp->pvinfo.pvpi_nfree = tofree;
    638 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    639 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    640 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    641 	}
    642 	if (need_entry)
    643 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    644 	else
    645 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    646 	pv_nfpvents += tofree;
    647 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    648 }
    649 
    650 /*
    651  * pmap_free_pv_doit: actually free a pv_entry
    652  *
    653  * => do not call this directly!  instead use either
    654  *    1. pmap_free_pv ==> free a single pv_entry
    655  *    2. pmap_free_pvs => free a list of pv_entrys
    656  * => we must be holding pvalloc_lock
    657  */
    658 
    659 __inline static void
    660 pmap_free_pv_doit(pv)
    661 	struct pv_entry *pv;
    662 {
    663 	struct pv_page *pvp;
    664 
    665 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    666 	pv_nfpvents++;
    667 	pvp->pvinfo.pvpi_nfree++;
    668 
    669 	/* nfree == 1 => fully allocated page just became partly allocated */
    670 	if (pvp->pvinfo.pvpi_nfree == 1) {
    671 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    672 	}
    673 
    674 	/* free it */
    675 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    676 	pvp->pvinfo.pvpi_pvfree = pv;
    677 
    678 	/*
    679 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    680 	 */
    681 
    682 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    683 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    684 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    685 	}
    686 }
    687 
    688 /*
    689  * pmap_free_pv: free a single pv_entry
    690  *
    691  * => we gain the pvalloc_lock
    692  */
    693 
    694 __inline static void
    695 pmap_free_pv(pmap, pv)
    696 	struct pmap *pmap;
    697 	struct pv_entry *pv;
    698 {
    699 	simple_lock(&pvalloc_lock);
    700 	pmap_free_pv_doit(pv);
    701 
    702 	/*
    703 	 * Can't free the PV page if the PV entries were associated with
    704 	 * the kernel pmap; the pmap is already locked.
    705 	 */
    706 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    707 	    pmap != pmap_kernel())
    708 		pmap_free_pvpage();
    709 
    710 	simple_unlock(&pvalloc_lock);
    711 }
    712 
    713 /*
    714  * pmap_free_pvs: free a list of pv_entrys
    715  *
    716  * => we gain the pvalloc_lock
    717  */
    718 
    719 __inline static void
    720 pmap_free_pvs(pmap, pvs)
    721 	struct pmap *pmap;
    722 	struct pv_entry *pvs;
    723 {
    724 	struct pv_entry *nextpv;
    725 
    726 	simple_lock(&pvalloc_lock);
    727 
    728 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    729 		nextpv = pvs->pv_next;
    730 		pmap_free_pv_doit(pvs);
    731 	}
    732 
    733 	/*
    734 	 * Can't free the PV page if the PV entries were associated with
    735 	 * the kernel pmap; the pmap is already locked.
    736 	 */
    737 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    738 	    pmap != pmap_kernel())
    739 		pmap_free_pvpage();
    740 
    741 	simple_unlock(&pvalloc_lock);
    742 }
    743 
    744 
    745 /*
    746  * pmap_free_pvpage: try and free an unused pv_page structure
    747  *
    748  * => assume caller is holding the pvalloc_lock and that
    749  *	there is a page on the pv_unusedpgs list
    750  * => if we can't get a lock on the kmem_map we try again later
    751  * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
    752  *	that if we can lock the kmem_map then we are not already
    753  *	holding kmem_object's lock.
    754  */
    755 
    756 static void
    757 pmap_free_pvpage()
    758 {
    759 	int s;
    760 	struct vm_map *map;
    761 	struct vm_map_entry *dead_entries;
    762 	struct pv_page *pvp;
    763 
    764 	s = splvm(); /* protect kmem_map */
    765 
    766 	pvp = pv_unusedpgs.tqh_first;
    767 
    768 	/*
    769 	 * note: watch out for pv_initpage which is allocated out of
    770 	 * kernel_map rather than kmem_map.
    771 	 */
    772 	if (pvp == pv_initpage)
    773 		map = kernel_map;
    774 	else
    775 		map = kmem_map;
    776 
    777 	if (vm_map_lock_try(map)) {
    778 
    779 		/* remove pvp from pv_unusedpgs */
    780 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    781 
    782 		/* unmap the page */
    783 		dead_entries = NULL;
    784 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    785 		    &dead_entries);
    786 		vm_map_unlock(map);
    787 
    788 		if (dead_entries != NULL)
    789 			uvm_unmap_detach(dead_entries, 0);
    790 
    791 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    792 	}
    793 
    794 	if (pvp == pv_initpage)
    795 		/* no more initpage, we've freed it */
    796 		pv_initpage = NULL;
    797 
    798 	splx(s);
    799 }
    800 
    801 /*
    802  * main pv_entry manipulation functions:
    803  *   pmap_enter_pv: enter a mapping onto a pv_head list
    804  *   pmap_remove_pv: remove a mappiing from a pv_head list
    805  *
    806  * NOTE: pmap_enter_pv expects to lock the pvh itself
    807  *       pmap_remove_pv expects te caller to lock the pvh before calling
    808  */
    809 
    810 /*
    811  * pmap_enter_pv: enter a mapping onto a pv_head lst
    812  *
    813  * => caller should hold the proper lock on pmap_main_lock
    814  * => caller should have pmap locked
    815  * => we will gain the lock on the pv_head and allocate the new pv_entry
    816  * => caller should adjust ptp's wire_count before calling
    817  * => caller should not adjust pmap's wire_count
    818  */
    819 
    820 __inline static void
    821 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
    822 	struct pv_head *pvh;
    823 	struct pv_entry *pve;	/* preallocated pve for us to use */
    824 	struct pmap *pmap;
    825 	vaddr_t va;
    826 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    827 	int flags;
    828 {
    829 	pve->pv_pmap = pmap;
    830 	pve->pv_va = va;
    831 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    832 	pve->pv_flags = flags;
    833 	simple_lock(&pvh->pvh_lock);		/* lock pv_head */
    834 	pve->pv_next = pvh->pvh_list;		/* add to ... */
    835 	pvh->pvh_list = pve;			/* ... locked list */
    836 	simple_unlock(&pvh->pvh_lock);		/* unlock, done! */
    837 	if (pve->pv_flags & PT_W)
    838 		++pmap->pm_stats.wired_count;
    839 }
    840 
    841 /*
    842  * pmap_remove_pv: try to remove a mapping from a pv_list
    843  *
    844  * => caller should hold proper lock on pmap_main_lock
    845  * => pmap should be locked
    846  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    847  * => caller should adjust ptp's wire_count and free PTP if needed
    848  * => caller should NOT adjust pmap's wire_count
    849  * => we return the removed pve
    850  */
    851 
    852 __inline static struct pv_entry *
    853 pmap_remove_pv(pvh, pmap, va)
    854 	struct pv_head *pvh;
    855 	struct pmap *pmap;
    856 	vaddr_t va;
    857 {
    858 	struct pv_entry *pve, **prevptr;
    859 
    860 	prevptr = &pvh->pvh_list;		/* previous pv_entry pointer */
    861 	pve = *prevptr;
    862 	while (pve) {
    863 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    864 			*prevptr = pve->pv_next;		/* remove it! */
    865 			if (pve->pv_flags & PT_W)
    866 			    --pmap->pm_stats.wired_count;
    867 			break;
    868 		}
    869 		prevptr = &pve->pv_next;		/* previous pointer */
    870 		pve = pve->pv_next;			/* advance */
    871 	}
    872 	return(pve);				/* return removed pve */
    873 }
    874 
    875 /*
    876  *
    877  * pmap_modify_pv: Update pv flags
    878  *
    879  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    880  * => caller should NOT adjust pmap's wire_count
    881  * => caller must call pmap_vac_me_harder() if writable status of a page
    882  *    may have changed.
    883  * => we return the old flags
    884  *
    885  * Modify a physical-virtual mapping in the pv table
    886  */
    887 
    888 /*__inline */
    889 static u_int
    890 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
    891 	struct pmap *pmap;
    892 	vaddr_t va;
    893 	struct pv_head *pvh;
    894 	u_int bic_mask;
    895 	u_int eor_mask;
    896 {
    897 	struct pv_entry *npv;
    898 	u_int flags, oflags;
    899 
    900 	/*
    901 	 * There is at least one VA mapping this page.
    902 	 */
    903 
    904 	for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
    905 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    906 			oflags = npv->pv_flags;
    907 			npv->pv_flags = flags =
    908 			    ((oflags & ~bic_mask) ^ eor_mask);
    909 			if ((flags ^ oflags) & PT_W) {
    910 				if (flags & PT_W)
    911 					++pmap->pm_stats.wired_count;
    912 				else
    913 					--pmap->pm_stats.wired_count;
    914 			}
    915 			return (oflags);
    916 		}
    917 	}
    918 	return (0);
    919 }
    920 
    921 /*
    922  * Map the specified level 2 pagetable into the level 1 page table for
    923  * the given pmap to cover a chunk of virtual address space starting from the
    924  * address specified.
    925  */
    926 static /*__inline*/ void
    927 pmap_map_in_l1(pmap, va, l2pa, selfref)
    928 	struct pmap *pmap;
    929 	vaddr_t va, l2pa;
    930 	boolean_t selfref;
    931 {
    932 	vaddr_t ptva;
    933 
    934 	/* Calculate the index into the L1 page table. */
    935 	ptva = (va >> PDSHIFT) & ~3;
    936 
    937 	PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    938 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    939 
    940 	/* Map page table into the L1. */
    941 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    942 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    943 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    944 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    945 
    946 	PDEBUG(0, printf("pt self reference %lx in %lx\n",
    947 	    L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    948 
    949 	/* Map the page table into the page table area. */
    950 	if (selfref) {
    951 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    952 			L2_PTE_NC_NB(l2pa, AP_KRW);
    953 	}
    954 	/* XXX should be a purge */
    955 /*	cpu_tlb_flushD();*/
    956 }
    957 
    958 #if 0
    959 static /*__inline*/ void
    960 pmap_unmap_in_l1(pmap, va)
    961 	struct pmap *pmap;
    962 	vaddr_t va;
    963 {
    964 	vaddr_t ptva;
    965 
    966 	/* Calculate the index into the L1 page table. */
    967 	ptva = (va >> PDSHIFT) & ~3;
    968 
    969 	/* Unmap page table from the L1. */
    970 	pmap->pm_pdir[ptva + 0] = 0;
    971 	pmap->pm_pdir[ptva + 1] = 0;
    972 	pmap->pm_pdir[ptva + 2] = 0;
    973 	pmap->pm_pdir[ptva + 3] = 0;
    974 
    975 	/* Unmap the page table from the page table area. */
    976 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    977 
    978 	/* XXX should be a purge */
    979 /*	cpu_tlb_flushD();*/
    980 }
    981 #endif
    982 
    983 /*
    984  *	Used to map a range of physical addresses into kernel
    985  *	virtual address space.
    986  *
    987  *	For now, VM is already on, we only need to map the
    988  *	specified memory.
    989  */
    990 vaddr_t
    991 pmap_map(va, spa, epa, prot)
    992 	vaddr_t va, spa, epa;
    993 	int prot;
    994 {
    995 	while (spa < epa) {
    996 		pmap_kenter_pa(va, spa, prot);
    997 		va += NBPG;
    998 		spa += NBPG;
    999 	}
   1000 	pmap_update(pmap_kernel());
   1001 	return(va);
   1002 }
   1003 
   1004 
   1005 /*
   1006  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1007  *
   1008  * bootstrap the pmap system. This is called from initarm and allows
   1009  * the pmap system to initailise any structures it requires.
   1010  *
   1011  * Currently this sets up the kernel_pmap that is statically allocated
   1012  * and also allocated virtual addresses for certain page hooks.
   1013  * Currently the only one page hook is allocated that is used
   1014  * to zero physical pages of memory.
   1015  * It also initialises the start and end address of the kernel data space.
   1016  */
   1017 extern paddr_t physical_freestart;
   1018 extern paddr_t physical_freeend;
   1019 
   1020 char *boot_head;
   1021 
   1022 void
   1023 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1024 	pd_entry_t *kernel_l1pt;
   1025 	pv_addr_t kernel_ptpt;
   1026 {
   1027 	int loop;
   1028 	paddr_t start, end;
   1029 #if NISADMA > 0
   1030 	paddr_t istart;
   1031 	psize_t isize;
   1032 #endif
   1033 
   1034 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1035 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1036 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1037 	simple_lock_init(&pmap_kernel()->pm_lock);
   1038 	pmap_kernel()->pm_obj.pgops = NULL;
   1039 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1040 	pmap_kernel()->pm_obj.uo_npages = 0;
   1041 	pmap_kernel()->pm_obj.uo_refs = 1;
   1042 
   1043 	/*
   1044 	 * Initialize PAGE_SIZE-dependent variables.
   1045 	 */
   1046 	uvm_setpagesize();
   1047 
   1048 	npages = 0;
   1049 	loop = 0;
   1050 	while (loop < bootconfig.dramblocks) {
   1051 		start = (paddr_t)bootconfig.dram[loop].address;
   1052 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1053 		if (start < physical_freestart)
   1054 			start = physical_freestart;
   1055 		if (end > physical_freeend)
   1056 			end = physical_freeend;
   1057 #if 0
   1058 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1059 #endif
   1060 #if NISADMA > 0
   1061 		if (pmap_isa_dma_range_intersect(start, end - start,
   1062 		    &istart, &isize)) {
   1063 			/*
   1064 			 * Place the pages that intersect with the
   1065 			 * ISA DMA range onto the ISA DMA free list.
   1066 			 */
   1067 #if 0
   1068 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1069 			    istart + isize - 1);
   1070 #endif
   1071 			uvm_page_physload(atop(istart),
   1072 			    atop(istart + isize), atop(istart),
   1073 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1074 			npages += atop(istart + isize) - atop(istart);
   1075 
   1076 			/*
   1077 			 * Load the pieces that come before
   1078 			 * the intersection into the default
   1079 			 * free list.
   1080 			 */
   1081 			if (start < istart) {
   1082 #if 0
   1083 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1084 				    start, istart - 1);
   1085 #endif
   1086 				uvm_page_physload(atop(start),
   1087 				    atop(istart), atop(start),
   1088 				    atop(istart), VM_FREELIST_DEFAULT);
   1089 				npages += atop(istart) - atop(start);
   1090 			}
   1091 
   1092 			/*
   1093 			 * Load the pieces that come after
   1094 			 * the intersection into the default
   1095 			 * free list.
   1096 			 */
   1097 			if ((istart + isize) < end) {
   1098 #if 0
   1099 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1100 				    (istart + isize), end - 1);
   1101 #endif
   1102 				uvm_page_physload(atop(istart + isize),
   1103 				    atop(end), atop(istart + isize),
   1104 				    atop(end), VM_FREELIST_DEFAULT);
   1105 				npages += atop(end) - atop(istart + isize);
   1106 			}
   1107 		} else {
   1108 			uvm_page_physload(atop(start), atop(end),
   1109 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1110 			npages += atop(end) - atop(start);
   1111 		}
   1112 #else	/* NISADMA > 0 */
   1113 		uvm_page_physload(atop(start), atop(end),
   1114 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1115 		npages += atop(end) - atop(start);
   1116 #endif /* NISADMA > 0 */
   1117 		++loop;
   1118 	}
   1119 
   1120 #ifdef MYCROFT_HACK
   1121 	printf("npages = %ld\n", npages);
   1122 #endif
   1123 
   1124 	virtual_start = KERNEL_VM_BASE;
   1125 	virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
   1126 
   1127 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
   1128 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
   1129 
   1130 	/*
   1131 	 * The mem special device needs a virtual hook but we don't
   1132 	 * need a pte
   1133 	 */
   1134 	memhook = (char *)virtual_start;
   1135 	virtual_start += NBPG;
   1136 
   1137 	msgbufaddr = (caddr_t)virtual_start;
   1138 	msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
   1139 	virtual_start += round_page(MSGBUFSIZE);
   1140 
   1141 	/*
   1142 	 * init the static-global locks and global lists.
   1143 	 */
   1144 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1145 	simple_lock_init(&pvalloc_lock);
   1146 	TAILQ_INIT(&pv_freepages);
   1147 	TAILQ_INIT(&pv_unusedpgs);
   1148 
   1149 	/*
   1150 	 * compute the number of pages we have and then allocate RAM
   1151 	 * for each pages' pv_head and saved attributes.
   1152 	 */
   1153 	{
   1154 	       	int npages, lcv;
   1155 		vsize_t s;
   1156 
   1157 		npages = 0;
   1158 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
   1159 			npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
   1160 		s = (vsize_t) (sizeof(struct pv_head) * npages +
   1161 				sizeof(char) * npages);
   1162 		s = round_page(s); /* round up */
   1163 		boot_head = (char *)uvm_pageboot_alloc(s);
   1164 		bzero((char *)boot_head, s);
   1165 		if (boot_head == 0)
   1166 			panic("pmap_init: unable to allocate pv_heads");
   1167 	}
   1168 
   1169 	/*
   1170 	 * initialize the pmap pool.
   1171 	 */
   1172 
   1173 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1174 		  0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
   1175 
   1176 	cpu_dcache_wbinv_all();
   1177 }
   1178 
   1179 /*
   1180  * void pmap_init(void)
   1181  *
   1182  * Initialize the pmap module.
   1183  * Called by vm_init() in vm/vm_init.c in order to initialise
   1184  * any structures that the pmap system needs to map virtual memory.
   1185  */
   1186 
   1187 extern int physmem;
   1188 
   1189 void
   1190 pmap_init()
   1191 {
   1192 	int lcv, i;
   1193 
   1194 #ifdef MYCROFT_HACK
   1195 	printf("physmem = %d\n", physmem);
   1196 #endif
   1197 
   1198 	/*
   1199 	 * Set the available memory vars - These do not map to real memory
   1200 	 * addresses and cannot as the physical memory is fragmented.
   1201 	 * They are used by ps for %mem calculations.
   1202 	 * One could argue whether this should be the entire memory or just
   1203 	 * the memory that is useable in a user process.
   1204 	 */
   1205 	avail_start = 0;
   1206 	avail_end = physmem * NBPG;
   1207 
   1208 	/* allocate pv_head stuff first */
   1209 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1210 		vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
   1211 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
   1212 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1213 		for (i = 0;
   1214 		     i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
   1215 			simple_lock_init(
   1216 			    &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
   1217 		}
   1218 	}
   1219 
   1220 	/* now allocate attrs */
   1221 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1222 		vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
   1223 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
   1224 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1225 	}
   1226 
   1227 	/*
   1228 	 * now we need to free enough pv_entry structures to allow us to get
   1229 	 * the kmem_map/kmem_object allocated and inited (done after this
   1230 	 * function is finished).  to do this we allocate one bootstrap page out
   1231 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1232 	 * structures.   we never free this page.
   1233 	 */
   1234 
   1235 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1236 	if (pv_initpage == NULL)
   1237 		panic("pmap_init: pv_initpage");
   1238 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1239 	pv_nfpvents = 0;
   1240 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1241 
   1242 #ifdef MYCROFT_HACK
   1243 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1244 		printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
   1245 		    lcv,
   1246 		    vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
   1247 		    vm_physmem[lcv].start, vm_physmem[lcv].end);
   1248 	}
   1249 #endif
   1250 	pmap_initialized = TRUE;
   1251 
   1252 	/* Initialise our L1 page table queues and counters */
   1253 	SIMPLEQ_INIT(&l1pt_static_queue);
   1254 	l1pt_static_queue_count = 0;
   1255 	l1pt_static_create_count = 0;
   1256 	SIMPLEQ_INIT(&l1pt_queue);
   1257 	l1pt_queue_count = 0;
   1258 	l1pt_create_count = 0;
   1259 	l1pt_reuse_count = 0;
   1260 }
   1261 
   1262 /*
   1263  * pmap_postinit()
   1264  *
   1265  * This routine is called after the vm and kmem subsystems have been
   1266  * initialised. This allows the pmap code to perform any initialisation
   1267  * that can only be done one the memory allocation is in place.
   1268  */
   1269 
   1270 void
   1271 pmap_postinit()
   1272 {
   1273 	int loop;
   1274 	struct l1pt *pt;
   1275 
   1276 #ifdef PMAP_STATIC_L1S
   1277 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1278 #else	/* PMAP_STATIC_L1S */
   1279 	for (loop = 0; loop < max_processes; ++loop) {
   1280 #endif	/* PMAP_STATIC_L1S */
   1281 		/* Allocate a L1 page table */
   1282 		pt = pmap_alloc_l1pt();
   1283 		if (!pt)
   1284 			panic("Cannot allocate static L1 page tables\n");
   1285 
   1286 		/* Clean it */
   1287 		bzero((void *)pt->pt_va, PD_SIZE);
   1288 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1289 		/* Add the page table to the queue */
   1290 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1291 		++l1pt_static_queue_count;
   1292 		++l1pt_static_create_count;
   1293 	}
   1294 }
   1295 
   1296 
   1297 /*
   1298  * Create and return a physical map.
   1299  *
   1300  * If the size specified for the map is zero, the map is an actual physical
   1301  * map, and may be referenced by the hardware.
   1302  *
   1303  * If the size specified is non-zero, the map will be used in software only,
   1304  * and is bounded by that size.
   1305  */
   1306 
   1307 pmap_t
   1308 pmap_create()
   1309 {
   1310 	struct pmap *pmap;
   1311 
   1312 	/*
   1313 	 * Fetch pmap entry from the pool
   1314 	 */
   1315 
   1316 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1317 	/* XXX is this really needed! */
   1318 	memset(pmap, 0, sizeof(*pmap));
   1319 
   1320 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1321 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1322 	TAILQ_INIT(&pmap->pm_obj.memq);
   1323 	pmap->pm_obj.uo_npages = 0;
   1324 	pmap->pm_obj.uo_refs = 1;
   1325 	pmap->pm_stats.wired_count = 0;
   1326 	pmap->pm_stats.resident_count = 1;
   1327 
   1328 	/* Now init the machine part of the pmap */
   1329 	pmap_pinit(pmap);
   1330 	return(pmap);
   1331 }
   1332 
   1333 /*
   1334  * pmap_alloc_l1pt()
   1335  *
   1336  * This routine allocates physical and virtual memory for a L1 page table
   1337  * and wires it.
   1338  * A l1pt structure is returned to describe the allocated page table.
   1339  *
   1340  * This routine is allowed to fail if the required memory cannot be allocated.
   1341  * In this case NULL is returned.
   1342  */
   1343 
   1344 struct l1pt *
   1345 pmap_alloc_l1pt(void)
   1346 {
   1347 	paddr_t pa;
   1348 	vaddr_t va;
   1349 	struct l1pt *pt;
   1350 	int error;
   1351 	struct vm_page *m;
   1352 	pt_entry_t *ptes;
   1353 
   1354 	/* Allocate virtual address space for the L1 page table */
   1355 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1356 	if (va == 0) {
   1357 #ifdef DIAGNOSTIC
   1358 		PDEBUG(0,
   1359 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1360 #endif	/* DIAGNOSTIC */
   1361 		return(NULL);
   1362 	}
   1363 
   1364 	/* Allocate memory for the l1pt structure */
   1365 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1366 
   1367 	/*
   1368 	 * Allocate pages from the VM system.
   1369 	 */
   1370 	TAILQ_INIT(&pt->pt_plist);
   1371 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1372 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1373 	if (error) {
   1374 #ifdef DIAGNOSTIC
   1375 		PDEBUG(0,
   1376 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1377 		    error));
   1378 #endif	/* DIAGNOSTIC */
   1379 		/* Release the resources we already have claimed */
   1380 		free(pt, M_VMPMAP);
   1381 		uvm_km_free(kernel_map, va, PD_SIZE);
   1382 		return(NULL);
   1383 	}
   1384 
   1385 	/* Map our physical pages into our virtual space */
   1386 	pt->pt_va = va;
   1387 	m = pt->pt_plist.tqh_first;
   1388 	ptes = pmap_map_ptes(pmap_kernel());
   1389 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1390 		pa = VM_PAGE_TO_PHYS(m);
   1391 
   1392 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1393 
   1394 		/* Revoke cacheability and bufferability */
   1395 		/* XXX should be done better than this */
   1396 		ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
   1397 
   1398 		va += NBPG;
   1399 		m = m->pageq.tqe_next;
   1400 	}
   1401 	pmap_unmap_ptes(pmap_kernel());
   1402 	pmap_update(pmap_kernel());
   1403 
   1404 #ifdef DIAGNOSTIC
   1405 	if (m)
   1406 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1407 #endif	/* DIAGNOSTIC */
   1408 
   1409 	pt->pt_flags = 0;
   1410 	return(pt);
   1411 }
   1412 
   1413 /*
   1414  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1415  */
   1416 static void
   1417 pmap_free_l1pt(pt)
   1418 	struct l1pt *pt;
   1419 {
   1420 	/* Separate the physical memory for the virtual space */
   1421 	pmap_kremove(pt->pt_va, PD_SIZE);
   1422 	pmap_update(pmap_kernel());
   1423 
   1424 	/* Return the physical memory */
   1425 	uvm_pglistfree(&pt->pt_plist);
   1426 
   1427 	/* Free the virtual space */
   1428 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1429 
   1430 	/* Free the l1pt structure */
   1431 	free(pt, M_VMPMAP);
   1432 }
   1433 
   1434 /*
   1435  * Allocate a page directory.
   1436  * This routine will either allocate a new page directory from the pool
   1437  * of L1 page tables currently held by the kernel or it will allocate
   1438  * a new one via pmap_alloc_l1pt().
   1439  * It will then initialise the l1 page table for use.
   1440  */
   1441 static int
   1442 pmap_allocpagedir(pmap)
   1443 	struct pmap *pmap;
   1444 {
   1445 	paddr_t pa;
   1446 	struct l1pt *pt;
   1447 	pt_entry_t *pte;
   1448 
   1449 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1450 
   1451 	/* Do we have any spare L1's lying around ? */
   1452 	if (l1pt_static_queue_count) {
   1453 		--l1pt_static_queue_count;
   1454 		pt = l1pt_static_queue.sqh_first;
   1455 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1456 	} else if (l1pt_queue_count) {
   1457 		--l1pt_queue_count;
   1458 		pt = l1pt_queue.sqh_first;
   1459 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1460 		++l1pt_reuse_count;
   1461 	} else {
   1462 		pt = pmap_alloc_l1pt();
   1463 		if (!pt)
   1464 			return(ENOMEM);
   1465 		++l1pt_create_count;
   1466 	}
   1467 
   1468 	/* Store the pointer to the l1 descriptor in the pmap. */
   1469 	pmap->pm_l1pt = pt;
   1470 
   1471 	/* Get the physical address of the start of the l1 */
   1472 	pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
   1473 
   1474 	/* Store the virtual address of the l1 in the pmap. */
   1475 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1476 
   1477 	/* Clean the L1 if it is dirty */
   1478 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1479 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1480 
   1481 	/* Do we already have the kernel mappings ? */
   1482 	if (!(pt->pt_flags & PTFLAG_KPT)) {
   1483 		/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1484 
   1485 		bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1486 		    (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1487 		    KERNEL_PD_SIZE);
   1488 		pt->pt_flags |= PTFLAG_KPT;
   1489 	}
   1490 
   1491 	/* Allocate a page table to map all the page tables for this pmap */
   1492 
   1493 #ifdef DIAGNOSTIC
   1494 	if (pmap->pm_vptpt) {
   1495 		/* XXX What if we have one already ? */
   1496 		panic("pmap_allocpagedir: have pt already\n");
   1497 	}
   1498 #endif	/* DIAGNOSTIC */
   1499 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1500 	if (pmap->pm_vptpt == 0) {
   1501 		pmap_freepagedir(pmap);
   1502 		return(ENOMEM);
   1503 	}
   1504 
   1505 	(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
   1506 	pmap->pm_pptpt &= PG_FRAME;
   1507 	/* Revoke cacheability and bufferability */
   1508 	/* XXX should be done better than this */
   1509 	pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
   1510 	*pte = *pte & ~(PT_C | PT_B);
   1511 
   1512 	/* Wire in this page table */
   1513 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
   1514 
   1515 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1516 
   1517 	/*
   1518 	 * Map the kernel page tables for 0xf0000000 +
   1519 	 * into the page table used to map the
   1520 	 * pmap's page tables
   1521 	 */
   1522 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1523 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1524 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1525 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1526 	    (KERNEL_PD_SIZE >> 2));
   1527 
   1528 	return(0);
   1529 }
   1530 
   1531 
   1532 /*
   1533  * Initialize a preallocated and zeroed pmap structure,
   1534  * such as one in a vmspace structure.
   1535  */
   1536 
   1537 void
   1538 pmap_pinit(pmap)
   1539 	struct pmap *pmap;
   1540 {
   1541 	int backoff = 6;
   1542 	int retry = 10;
   1543 
   1544 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1545 
   1546 	/* Keep looping until we succeed in allocating a page directory */
   1547 	while (pmap_allocpagedir(pmap) != 0) {
   1548 		/*
   1549 		 * Ok we failed to allocate a suitable block of memory for an
   1550 		 * L1 page table. This means that either:
   1551 		 * 1. 16KB of virtual address space could not be allocated
   1552 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1553 		 *    could not be allocated.
   1554 		 *
   1555 		 * Since we cannot fail we will sleep for a while and try
   1556 		 * again.
   1557 		 *
   1558 		 * Searching for a suitable L1 PT is expensive:
   1559 		 * to avoid hogging the system when memory is really
   1560 		 * scarce, use an exponential back-off so that
   1561 		 * eventually we won't retry more than once every 8
   1562 		 * seconds.  This should allow other processes to run
   1563 		 * to completion and free up resources.
   1564 		 */
   1565 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1566 		    NULL);
   1567 		if (--retry == 0) {
   1568 			retry = 10;
   1569 			if (backoff)
   1570 				--backoff;
   1571 		}
   1572 	}
   1573 
   1574 	/* Map zero page for the pmap. This will also map the L2 for it */
   1575 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1576 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1577 	pmap_update(pmap);
   1578 }
   1579 
   1580 
   1581 void
   1582 pmap_freepagedir(pmap)
   1583 	struct pmap *pmap;
   1584 {
   1585 	/* Free the memory used for the page table mapping */
   1586 	if (pmap->pm_vptpt != 0)
   1587 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1588 
   1589 	/* junk the L1 page table */
   1590 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1591 		/* Add the page table to the queue */
   1592 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1593 		++l1pt_static_queue_count;
   1594 	} else if (l1pt_queue_count < 8) {
   1595 		/* Add the page table to the queue */
   1596 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1597 		++l1pt_queue_count;
   1598 	} else
   1599 		pmap_free_l1pt(pmap->pm_l1pt);
   1600 }
   1601 
   1602 
   1603 /*
   1604  * Retire the given physical map from service.
   1605  * Should only be called if the map contains no valid mappings.
   1606  */
   1607 
   1608 void
   1609 pmap_destroy(pmap)
   1610 	struct pmap *pmap;
   1611 {
   1612 	struct vm_page *page;
   1613 	int count;
   1614 
   1615 	if (pmap == NULL)
   1616 		return;
   1617 
   1618 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1619 
   1620 	/*
   1621 	 * Drop reference count
   1622 	 */
   1623 	simple_lock(&pmap->pm_obj.vmobjlock);
   1624 	count = --pmap->pm_obj.uo_refs;
   1625 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1626 	if (count > 0) {
   1627 		return;
   1628 	}
   1629 
   1630 	/*
   1631 	 * reference count is zero, free pmap resources and then free pmap.
   1632 	 */
   1633 
   1634 	/* Remove the zero page mapping */
   1635 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1636 	pmap_update(pmap);
   1637 
   1638 	/*
   1639 	 * Free any page tables still mapped
   1640 	 * This is only temporay until pmap_enter can count the number
   1641 	 * of mappings made in a page table. Then pmap_remove() can
   1642 	 * reduce the count and free the pagetable when the count
   1643 	 * reaches zero.  Note that entries in this list should match the
   1644 	 * contents of the ptpt, however this is faster than walking a 1024
   1645 	 * entries looking for pt's
   1646 	 * taken from i386 pmap.c
   1647 	 */
   1648 	while (pmap->pm_obj.memq.tqh_first != NULL) {
   1649 		page = pmap->pm_obj.memq.tqh_first;
   1650 #ifdef DIAGNOSTIC
   1651 		if (page->flags & PG_BUSY)
   1652 			panic("pmap_release: busy page table page");
   1653 #endif
   1654 		/* pmap_page_protect?  currently no need for it. */
   1655 
   1656 		page->wire_count = 0;
   1657 		uvm_pagefree(page);
   1658 	}
   1659 
   1660 	/* Free the page dir */
   1661 	pmap_freepagedir(pmap);
   1662 
   1663 	/* return the pmap to the pool */
   1664 	pool_put(&pmap_pmap_pool, pmap);
   1665 }
   1666 
   1667 
   1668 /*
   1669  * void pmap_reference(struct pmap *pmap)
   1670  *
   1671  * Add a reference to the specified pmap.
   1672  */
   1673 
   1674 void
   1675 pmap_reference(pmap)
   1676 	struct pmap *pmap;
   1677 {
   1678 	if (pmap == NULL)
   1679 		return;
   1680 
   1681 	simple_lock(&pmap->pm_lock);
   1682 	pmap->pm_obj.uo_refs++;
   1683 	simple_unlock(&pmap->pm_lock);
   1684 }
   1685 
   1686 /*
   1687  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1688  *
   1689  * Return the start and end addresses of the kernel's virtual space.
   1690  * These values are setup in pmap_bootstrap and are updated as pages
   1691  * are allocated.
   1692  */
   1693 
   1694 void
   1695 pmap_virtual_space(start, end)
   1696 	vaddr_t *start;
   1697 	vaddr_t *end;
   1698 {
   1699 	*start = virtual_start;
   1700 	*end = virtual_end;
   1701 }
   1702 
   1703 
   1704 /*
   1705  * Activate the address space for the specified process.  If the process
   1706  * is the current process, load the new MMU context.
   1707  */
   1708 void
   1709 pmap_activate(p)
   1710 	struct proc *p;
   1711 {
   1712 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1713 	struct pcb *pcb = &p->p_addr->u_pcb;
   1714 
   1715 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1716 	    (paddr_t *)&pcb->pcb_pagedir);
   1717 
   1718 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1719 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1720 
   1721 	if (p == curproc) {
   1722 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1723 		setttb((u_int)pcb->pcb_pagedir);
   1724 	}
   1725 #if 0
   1726 	pmap->pm_pdchanged = FALSE;
   1727 #endif
   1728 }
   1729 
   1730 
   1731 /*
   1732  * Deactivate the address space of the specified process.
   1733  */
   1734 void
   1735 pmap_deactivate(p)
   1736 	struct proc *p;
   1737 {
   1738 }
   1739 
   1740 /*
   1741  * Perform any deferred pmap operations.
   1742  */
   1743 void
   1744 pmap_update(struct pmap *pmap)
   1745 {
   1746 
   1747 	/*
   1748 	 * We haven't deferred any pmap operations, but we do need to
   1749 	 * make sure TLB/cache operations have completed.
   1750 	 */
   1751 	cpu_cpwait();
   1752 }
   1753 
   1754 /*
   1755  * pmap_clean_page()
   1756  *
   1757  * This is a local function used to work out the best strategy to clean
   1758  * a single page referenced by its entry in the PV table. It's used by
   1759  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1760  *
   1761  * Its policy is effectively:
   1762  *  o If there are no mappings, we don't bother doing anything with the cache.
   1763  *  o If there is one mapping, we clean just that page.
   1764  *  o If there are multiple mappings, we clean the entire cache.
   1765  *
   1766  * So that some functions can be further optimised, it returns 0 if it didn't
   1767  * clean the entire cache, or 1 if it did.
   1768  *
   1769  * XXX One bug in this routine is that if the pv_entry has a single page
   1770  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1771  * just the 1 page. Since this should not occur in everyday use and if it does
   1772  * it will just result in not the most efficient clean for the page.
   1773  */
   1774 static int
   1775 pmap_clean_page(pv, is_src)
   1776 	struct pv_entry *pv;
   1777 	boolean_t is_src;
   1778 {
   1779 	struct pmap *pmap;
   1780 	struct pv_entry *npv;
   1781 	int cache_needs_cleaning = 0;
   1782 	vaddr_t page_to_clean = 0;
   1783 
   1784 	if (pv == NULL)
   1785 		/* nothing mapped in so nothing to flush */
   1786 		return (0);
   1787 
   1788 	/* Since we flush the cache each time we change curproc, we
   1789 	 * only need to flush the page if it is in the current pmap.
   1790 	 */
   1791 	if (curproc)
   1792 		pmap = curproc->p_vmspace->vm_map.pmap;
   1793 	else
   1794 		pmap = pmap_kernel();
   1795 
   1796 	for (npv = pv; npv; npv = npv->pv_next) {
   1797 		if (npv->pv_pmap == pmap) {
   1798 			/* The page is mapped non-cacheable in
   1799 			 * this map.  No need to flush the cache.
   1800 			 */
   1801 			if (npv->pv_flags & PT_NC) {
   1802 #ifdef DIAGNOSTIC
   1803 				if (cache_needs_cleaning)
   1804 					panic("pmap_clean_page: "
   1805 							"cache inconsistency");
   1806 #endif
   1807 				break;
   1808 			}
   1809 #if 0
   1810 			/* This doesn't work, because pmap_protect
   1811 			   doesn't flush changes on pages that it
   1812 			   has write-protected.  */
   1813 
   1814 			/* If the page is not writable and this
   1815 			   is the source, then there is no need
   1816 			   to flush it from the cache.  */
   1817 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1818 				continue;
   1819 #endif
   1820 			if (cache_needs_cleaning){
   1821 				page_to_clean = 0;
   1822 				break;
   1823 			}
   1824 			else
   1825 				page_to_clean = npv->pv_va;
   1826 			cache_needs_cleaning = 1;
   1827 		}
   1828 	}
   1829 
   1830 	if (page_to_clean)
   1831 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1832 	else if (cache_needs_cleaning) {
   1833 		cpu_idcache_wbinv_all();
   1834 		return (1);
   1835 	}
   1836 	return (0);
   1837 }
   1838 
   1839 /*
   1840  * pmap_find_pv()
   1841  *
   1842  * This is a local function that finds a PV head for a given physical page.
   1843  * This is a common op, and this function removes loads of ifdefs in the code.
   1844  */
   1845 static __inline struct pv_head *
   1846 pmap_find_pvh(phys)
   1847 	paddr_t phys;
   1848 {
   1849 	int bank, off;
   1850 	struct pv_head *pvh;
   1851 
   1852 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
   1853 		panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
   1854 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   1855 	return (pvh);
   1856 }
   1857 
   1858 /*
   1859  * pmap_zero_page()
   1860  *
   1861  * Zero a given physical page by mapping it at a page hook point.
   1862  * In doing the zero page op, the page we zero is mapped cachable, as with
   1863  * StrongARM accesses to non-cached pages are non-burst making writing
   1864  * _any_ bulk data very slow.
   1865  */
   1866 void
   1867 pmap_zero_page(phys)
   1868 	paddr_t phys;
   1869 {
   1870 	struct pv_head *pvh;
   1871 
   1872 	/* Get an entry for this page, and clean it it. */
   1873 	pvh = pmap_find_pvh(phys);
   1874 	simple_lock(&pvh->pvh_lock);
   1875 	pmap_clean_page(pvh->pvh_list, FALSE);
   1876 	simple_unlock(&pvh->pvh_lock);
   1877 
   1878 	/*
   1879 	 * Hook in the page, zero it, and purge the cache for that
   1880 	 * zeroed page. Invalidate the TLB as needed.
   1881 	 */
   1882 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1883 	cpu_tlb_flushD_SE(page_hook0.va);
   1884 	cpu_cpwait();
   1885 	bzero_page(page_hook0.va);
   1886 	cpu_dcache_wbinv_range(page_hook0.va, NBPG);
   1887 }
   1888 
   1889 /* pmap_pageidlezero()
   1890  *
   1891  * The same as above, except that we assume that the page is not
   1892  * mapped.  This means we never have to flush the cache first.  Called
   1893  * from the idle loop.
   1894  */
   1895 boolean_t
   1896 pmap_pageidlezero(phys)
   1897     paddr_t phys;
   1898 {
   1899 	int i, *ptr;
   1900 	boolean_t rv = TRUE;
   1901 
   1902 #ifdef DIAGNOSTIC
   1903 	struct pv_head *pvh;
   1904 
   1905 	pvh = pmap_find_pvh(phys);
   1906 	if (pvh->pvh_list != NULL)
   1907 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1908 #endif
   1909 
   1910 	/*
   1911 	 * Hook in the page, zero it, and purge the cache for that
   1912 	 * zeroed page. Invalidate the TLB as needed.
   1913 	 */
   1914 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1915 	cpu_tlb_flushD_SE(page_hook0.va);
   1916 	cpu_cpwait();
   1917 
   1918 	for (i = 0, ptr = (int *)page_hook0.va;
   1919 			i < (NBPG / sizeof(int)); i++) {
   1920 		if (sched_whichqs != 0) {
   1921 			/*
   1922 			 * A process has become ready.  Abort now,
   1923 			 * so we don't keep it waiting while we
   1924 			 * do slow memory access to finish this
   1925 			 * page.
   1926 			 */
   1927 			rv = FALSE;
   1928 			break;
   1929 		}
   1930 		*ptr++ = 0;
   1931 	}
   1932 
   1933 	if (rv)
   1934 		/*
   1935 		 * if we aborted we'll rezero this page again later so don't
   1936 		 * purge it unless we finished it
   1937 		 */
   1938 		cpu_dcache_wbinv_range(page_hook0.va, NBPG);
   1939 	return (rv);
   1940 }
   1941 
   1942 /*
   1943  * pmap_copy_page()
   1944  *
   1945  * Copy one physical page into another, by mapping the pages into
   1946  * hook points. The same comment regarding cachability as in
   1947  * pmap_zero_page also applies here.
   1948  */
   1949 void
   1950 pmap_copy_page(src, dest)
   1951 	paddr_t src;
   1952 	paddr_t dest;
   1953 {
   1954 	struct pv_head *src_pvh, *dest_pvh;
   1955 	boolean_t cleanedcache;
   1956 
   1957 	/* Get PV entries for the pages, and clean them if needed. */
   1958 	src_pvh = pmap_find_pvh(src);
   1959 
   1960 	simple_lock(&src_pvh->pvh_lock);
   1961 	cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
   1962 	simple_unlock(&src_pvh->pvh_lock);
   1963 
   1964 	if (cleanedcache == 0) {
   1965 		dest_pvh = pmap_find_pvh(dest);
   1966 		simple_lock(&dest_pvh->pvh_lock);
   1967 		pmap_clean_page(dest_pvh->pvh_list, FALSE);
   1968 		simple_unlock(&dest_pvh->pvh_lock);
   1969 	}
   1970 	/*
   1971 	 * Map the pages into the page hook points, copy them, and purge
   1972 	 * the cache for the appropriate page. Invalidate the TLB
   1973 	 * as required.
   1974 	 */
   1975 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1976 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1977 	cpu_tlb_flushD_SE(page_hook0.va);
   1978 	cpu_tlb_flushD_SE(page_hook1.va);
   1979 	cpu_cpwait();
   1980 	bcopy_page(page_hook0.va, page_hook1.va);
   1981 	cpu_dcache_wbinv_range(page_hook0.va, NBPG);
   1982 	cpu_dcache_wbinv_range(page_hook1.va, NBPG);
   1983 }
   1984 
   1985 #if 0
   1986 void
   1987 pmap_pte_addref(pmap, va)
   1988 	struct pmap *pmap;
   1989 	vaddr_t va;
   1990 {
   1991 	pd_entry_t *pde;
   1992 	paddr_t pa;
   1993 	struct vm_page *m;
   1994 
   1995 	if (pmap == pmap_kernel())
   1996 		return;
   1997 
   1998 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1999 	pa = pmap_pte_pa(pde);
   2000 	m = PHYS_TO_VM_PAGE(pa);
   2001 	++m->wire_count;
   2002 #ifdef MYCROFT_HACK
   2003 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2004 	    pmap, va, pde, pa, m, m->wire_count);
   2005 #endif
   2006 }
   2007 
   2008 void
   2009 pmap_pte_delref(pmap, va)
   2010 	struct pmap *pmap;
   2011 	vaddr_t va;
   2012 {
   2013 	pd_entry_t *pde;
   2014 	paddr_t pa;
   2015 	struct vm_page *m;
   2016 
   2017 	if (pmap == pmap_kernel())
   2018 		return;
   2019 
   2020 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   2021 	pa = pmap_pte_pa(pde);
   2022 	m = PHYS_TO_VM_PAGE(pa);
   2023 	--m->wire_count;
   2024 #ifdef MYCROFT_HACK
   2025 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2026 	    pmap, va, pde, pa, m, m->wire_count);
   2027 #endif
   2028 	if (m->wire_count == 0) {
   2029 #ifdef MYCROFT_HACK
   2030 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2031 		    pmap, va, pde, pa, m);
   2032 #endif
   2033 		pmap_unmap_in_l1(pmap, va);
   2034 		uvm_pagefree(m);
   2035 		--pmap->pm_stats.resident_count;
   2036 	}
   2037 }
   2038 #else
   2039 #define	pmap_pte_addref(pmap, va)
   2040 #define	pmap_pte_delref(pmap, va)
   2041 #endif
   2042 
   2043 /*
   2044  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2045  * there is more than one mapping and at least one of them is writable.
   2046  * Since we purge the cache on every context switch, we only need to check for
   2047  * other mappings within the same pmap, or kernel_pmap.
   2048  * This function is also called when a page is unmapped, to possibly reenable
   2049  * caching on any remaining mappings.
   2050  *
   2051  * The code implements the following logic, where:
   2052  *
   2053  * KW = # of kernel read/write pages
   2054  * KR = # of kernel read only pages
   2055  * UW = # of user read/write pages
   2056  * UR = # of user read only pages
   2057  * OW = # of user read/write pages in another pmap, then
   2058  *
   2059  * KC = kernel mapping is cacheable
   2060  * UC = user mapping is cacheable
   2061  *
   2062  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2063  *                   +---------------------------------------------
   2064  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2065  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2066  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2067  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2068  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2069  *
   2070  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2071  */
   2072 __inline static void
   2073 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2074 	boolean_t clear_cache)
   2075 {
   2076 	if (pmap == pmap_kernel())
   2077 		pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
   2078 	else
   2079 		pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
   2080 }
   2081 
   2082 static void
   2083 pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2084 	boolean_t clear_cache)
   2085 {
   2086 	int user_entries = 0;
   2087 	int user_writable = 0;
   2088 	int user_cacheable = 0;
   2089 	int kernel_entries = 0;
   2090 	int kernel_writable = 0;
   2091 	int kernel_cacheable = 0;
   2092 	struct pv_entry *pv;
   2093 	struct pmap *last_pmap = pmap;
   2094 
   2095 #ifdef DIAGNOSTIC
   2096 	if (pmap != pmap_kernel())
   2097 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2098 #endif
   2099 
   2100 	/*
   2101 	 * Pass one, see if there are both kernel and user pmaps for
   2102 	 * this page.  Calculate whether there are user-writable or
   2103 	 * kernel-writable pages.
   2104 	 */
   2105 	for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
   2106 		if (pv->pv_pmap != pmap) {
   2107 			user_entries++;
   2108 			if (pv->pv_flags & PT_Wr)
   2109 				user_writable++;
   2110 			if ((pv->pv_flags & PT_NC) == 0)
   2111 				user_cacheable++;
   2112 		} else {
   2113 			kernel_entries++;
   2114 			if (pv->pv_flags & PT_Wr)
   2115 				kernel_writable++;
   2116 			if ((pv->pv_flags & PT_NC) == 0)
   2117 				kernel_cacheable++;
   2118 		}
   2119 	}
   2120 
   2121 	/*
   2122 	 * We know we have just been updating a kernel entry, so if
   2123 	 * all user pages are already cacheable, then there is nothing
   2124 	 * further to do.
   2125 	 */
   2126 	if (kernel_entries == 0 &&
   2127 	    user_cacheable == user_entries)
   2128 		return;
   2129 
   2130 	if (user_entries) {
   2131 		/*
   2132 		 * Scan over the list again, for each entry, if it
   2133 		 * might not be set correctly, call pmap_vac_me_user
   2134 		 * to recalculate the settings.
   2135 		 */
   2136 		for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
   2137 			/*
   2138 			 * We know kernel mappings will get set
   2139 			 * correctly in other calls.  We also know
   2140 			 * that if the pmap is the same as last_pmap
   2141 			 * then we've just handled this entry.
   2142 			 */
   2143 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2144 				continue;
   2145 			/*
   2146 			 * If there are kernel entries and this page
   2147 			 * is writable but non-cacheable, then we can
   2148 			 * skip this entry also.
   2149 			 */
   2150 			if (kernel_entries > 0 &&
   2151 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2152 			    (PT_NC | PT_Wr))
   2153 				continue;
   2154 			/*
   2155 			 * Similarly if there are no kernel-writable
   2156 			 * entries and the page is already
   2157 			 * read-only/cacheable.
   2158 			 */
   2159 			if (kernel_writable == 0 &&
   2160 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2161 				continue;
   2162 			/*
   2163 			 * For some of the remaining cases, we know
   2164 			 * that we must recalculate, but for others we
   2165 			 * can't tell if they are correct or not, so
   2166 			 * we recalculate anyway.
   2167 			 */
   2168 			pmap_unmap_ptes(last_pmap);
   2169 			last_pmap = pv->pv_pmap;
   2170 			ptes = pmap_map_ptes(last_pmap);
   2171 			pmap_vac_me_user(last_pmap, pvh, ptes,
   2172 			    pmap_is_curpmap(last_pmap));
   2173 		}
   2174 		/* Restore the pte mapping that was passed to us.  */
   2175 		if (last_pmap != pmap) {
   2176 			pmap_unmap_ptes(last_pmap);
   2177 			ptes = pmap_map_ptes(pmap);
   2178 		}
   2179 		if (kernel_entries == 0)
   2180 			return;
   2181 	}
   2182 
   2183 	pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
   2184 	return;
   2185 }
   2186 
   2187 static void
   2188 pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2189 	boolean_t clear_cache)
   2190 {
   2191 	struct pmap *kpmap = pmap_kernel();
   2192 	struct pv_entry *pv, *npv;
   2193 	int entries = 0;
   2194 	int writable = 0;
   2195 	int cacheable_entries = 0;
   2196 	int kern_cacheable = 0;
   2197 	int other_writable = 0;
   2198 
   2199 	pv = pvh->pvh_list;
   2200 	KASSERT(ptes != NULL);
   2201 
   2202 	/*
   2203 	 * Count mappings and writable mappings in this pmap.
   2204 	 * Include kernel mappings as part of our own.
   2205 	 * Keep a pointer to the first one.
   2206 	 */
   2207 	for (npv = pv; npv; npv = npv->pv_next) {
   2208 		/* Count mappings in the same pmap */
   2209 		if (pmap == npv->pv_pmap ||
   2210 		    kpmap == npv->pv_pmap) {
   2211 			if (entries++ == 0)
   2212 				pv = npv;
   2213 			/* Cacheable mappings */
   2214 			if ((npv->pv_flags & PT_NC) == 0) {
   2215 				cacheable_entries++;
   2216 				if (kpmap == npv->pv_pmap)
   2217 					kern_cacheable++;
   2218 			}
   2219 			/* Writable mappings */
   2220 			if (npv->pv_flags & PT_Wr)
   2221 				++writable;
   2222 		} else if (npv->pv_flags & PT_Wr)
   2223 			other_writable = 1;
   2224 	}
   2225 
   2226 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2227 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2228 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2229 
   2230 	/*
   2231 	 * Enable or disable caching as necessary.
   2232 	 * Note: the first entry might be part of the kernel pmap,
   2233 	 * so we can't assume this is indicative of the state of the
   2234 	 * other (maybe non-kpmap) entries.
   2235 	 */
   2236 	if ((entries > 1 && writable) ||
   2237 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2238 		if (cacheable_entries == 0)
   2239 		    return;
   2240 		for (npv = pv; npv; npv = npv->pv_next) {
   2241 			if ((pmap == npv->pv_pmap
   2242 			    || kpmap == npv->pv_pmap) &&
   2243 			    (npv->pv_flags & PT_NC) == 0) {
   2244 				ptes[arm_byte_to_page(npv->pv_va)] &=
   2245 				    ~(PT_C | PT_B);
   2246  				npv->pv_flags |= PT_NC;
   2247 				/*
   2248 				 * If this page needs flushing from the
   2249 				 * cache, and we aren't going to do it
   2250 				 * below, do it now.
   2251 				 */
   2252 				if ((cacheable_entries < 4 &&
   2253 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2254 				    (npv->pv_pmap == kpmap &&
   2255 				    !clear_cache && kern_cacheable < 4)) {
   2256 					cpu_idcache_wbinv_range(npv->pv_va,
   2257 					    NBPG);
   2258 					cpu_tlb_flushID_SE(npv->pv_va);
   2259 				}
   2260 			}
   2261 		}
   2262 		if ((clear_cache && cacheable_entries >= 4) ||
   2263 		    kern_cacheable >= 4) {
   2264 			cpu_idcache_wbinv_all();
   2265 			cpu_tlb_flushID();
   2266 		}
   2267 		cpu_cpwait();
   2268 	} else if (entries > 0) {
   2269 		/*
   2270 		 * Turn cacheing back on for some pages.  If it is a kernel
   2271 		 * page, only do so if there are no other writable pages.
   2272 		 */
   2273 		for (npv = pv; npv; npv = npv->pv_next) {
   2274 			if ((pmap == npv->pv_pmap ||
   2275 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2276 			    (npv->pv_flags & PT_NC)) {
   2277 				ptes[arm_byte_to_page(npv->pv_va)] |=
   2278 				    pte_cache_mode;
   2279 				npv->pv_flags &= ~PT_NC;
   2280 			}
   2281 		}
   2282 	}
   2283 }
   2284 
   2285 /*
   2286  * pmap_remove()
   2287  *
   2288  * pmap_remove is responsible for nuking a number of mappings for a range
   2289  * of virtual address space in the current pmap. To do this efficiently
   2290  * is interesting, because in a number of cases a wide virtual address
   2291  * range may be supplied that contains few actual mappings. So, the
   2292  * optimisations are:
   2293  *  1. Try and skip over hunks of address space for which an L1 entry
   2294  *     does not exist.
   2295  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2296  *     maybe do just a partial cache clean. This path of execution is
   2297  *     complicated by the fact that the cache must be flushed _before_
   2298  *     the PTE is nuked, being a VAC :-)
   2299  *  3. Maybe later fast-case a single page, but I don't think this is
   2300  *     going to make _that_ much difference overall.
   2301  */
   2302 
   2303 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2304 
   2305 void
   2306 pmap_remove(pmap, sva, eva)
   2307 	struct pmap *pmap;
   2308 	vaddr_t sva;
   2309 	vaddr_t eva;
   2310 {
   2311 	int cleanlist_idx = 0;
   2312 	struct pagelist {
   2313 		vaddr_t va;
   2314 		pt_entry_t *pte;
   2315 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2316 	pt_entry_t *pte = 0, *ptes;
   2317 	paddr_t pa;
   2318 	int pmap_active;
   2319 	struct pv_head *pvh;
   2320 
   2321 	/* Exit quick if there is no pmap */
   2322 	if (!pmap)
   2323 		return;
   2324 
   2325 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2326 
   2327 	sva &= PG_FRAME;
   2328 	eva &= PG_FRAME;
   2329 
   2330 	/*
   2331 	 * we lock in the pmap => pv_head direction
   2332 	 */
   2333 	PMAP_MAP_TO_HEAD_LOCK();
   2334 
   2335 	ptes = pmap_map_ptes(pmap);
   2336 	/* Get a page table pointer */
   2337 	while (sva < eva) {
   2338 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2339 			break;
   2340 		sva = (sva & PD_MASK) + NBPD;
   2341 	}
   2342 
   2343 	pte = &ptes[arm_byte_to_page(sva)];
   2344 	/* Note if the pmap is active thus require cache and tlb cleans */
   2345 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2346 	    || (pmap == pmap_kernel()))
   2347 		pmap_active = 1;
   2348 	else
   2349 		pmap_active = 0;
   2350 
   2351 	/* Now loop along */
   2352 	while (sva < eva) {
   2353 		/* Check if we can move to the next PDE (l1 chunk) */
   2354 		if (!(sva & PT_MASK))
   2355 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2356 				sva += NBPD;
   2357 				pte += arm_byte_to_page(NBPD);
   2358 				continue;
   2359 			}
   2360 
   2361 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2362 		if (pmap_pte_v(pte)) {
   2363 			int bank, off;
   2364 
   2365 			/* Update statistics */
   2366 			--pmap->pm_stats.resident_count;
   2367 
   2368 			/*
   2369 			 * Add this page to our cache remove list, if we can.
   2370 			 * If, however the cache remove list is totally full,
   2371 			 * then do a complete cache invalidation taking note
   2372 			 * to backtrack the PTE table beforehand, and ignore
   2373 			 * the lists in future because there's no longer any
   2374 			 * point in bothering with them (we've paid the
   2375 			 * penalty, so will carry on unhindered). Otherwise,
   2376 			 * when we fall out, we just clean the list.
   2377 			 */
   2378 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2379 			pa = pmap_pte_pa(pte);
   2380 
   2381 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2382 				/* Add to the clean list. */
   2383 				cleanlist[cleanlist_idx].pte = pte;
   2384 				cleanlist[cleanlist_idx].va = sva;
   2385 				cleanlist_idx++;
   2386 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2387 				int cnt;
   2388 
   2389 				/* Nuke everything if needed. */
   2390 				if (pmap_active) {
   2391 					cpu_idcache_wbinv_all();
   2392 					cpu_tlb_flushID();
   2393 				}
   2394 
   2395 				/*
   2396 				 * Roll back the previous PTE list,
   2397 				 * and zero out the current PTE.
   2398 				 */
   2399 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2400 					*cleanlist[cnt].pte = 0;
   2401 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2402 				}
   2403 				*pte = 0;
   2404 				pmap_pte_delref(pmap, sva);
   2405 				cleanlist_idx++;
   2406 			} else {
   2407 				/*
   2408 				 * We've already nuked the cache and
   2409 				 * TLB, so just carry on regardless,
   2410 				 * and we won't need to do it again
   2411 				 */
   2412 				*pte = 0;
   2413 				pmap_pte_delref(pmap, sva);
   2414 			}
   2415 
   2416 			/*
   2417 			 * Update flags. In a number of circumstances,
   2418 			 * we could cluster a lot of these and do a
   2419 			 * number of sequential pages in one go.
   2420 			 */
   2421 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2422 				struct pv_entry *pve;
   2423 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2424 				simple_lock(&pvh->pvh_lock);
   2425 				pve = pmap_remove_pv(pvh, pmap, sva);
   2426 				pmap_free_pv(pmap, pve);
   2427 				pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2428 				simple_unlock(&pvh->pvh_lock);
   2429 			}
   2430 		}
   2431 		sva += NBPG;
   2432 		pte++;
   2433 	}
   2434 
   2435 	pmap_unmap_ptes(pmap);
   2436 	/*
   2437 	 * Now, if we've fallen through down to here, chances are that there
   2438 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2439 	 */
   2440 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2441 		u_int cnt;
   2442 
   2443 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2444 			if (pmap_active) {
   2445 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2446 				    NBPG);
   2447 				*cleanlist[cnt].pte = 0;
   2448 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2449 			} else
   2450 				*cleanlist[cnt].pte = 0;
   2451 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2452 		}
   2453 	}
   2454 	PMAP_MAP_TO_HEAD_UNLOCK();
   2455 }
   2456 
   2457 /*
   2458  * Routine:	pmap_remove_all
   2459  * Function:
   2460  *		Removes this physical page from
   2461  *		all physical maps in which it resides.
   2462  *		Reflects back modify bits to the pager.
   2463  */
   2464 
   2465 static void
   2466 pmap_remove_all(pa)
   2467 	paddr_t pa;
   2468 {
   2469 	struct pv_entry *pv, *npv;
   2470 	struct pv_head *pvh;
   2471 	struct pmap *pmap;
   2472 	pt_entry_t *pte, *ptes;
   2473 
   2474 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
   2475 
   2476 	/* set pv_head => pmap locking */
   2477 	PMAP_HEAD_TO_MAP_LOCK();
   2478 
   2479 	pvh = pmap_find_pvh(pa);
   2480 	simple_lock(&pvh->pvh_lock);
   2481 
   2482 	pv = pvh->pvh_list;
   2483 	if (pv == NULL)
   2484 	{
   2485 	    PDEBUG(0, printf("free page\n"));
   2486 	    simple_unlock(&pvh->pvh_lock);
   2487 	    PMAP_HEAD_TO_MAP_UNLOCK();
   2488 	    return;
   2489 	}
   2490 	pmap_clean_page(pv, FALSE);
   2491 
   2492 	while (pv) {
   2493 		pmap = pv->pv_pmap;
   2494 		ptes = pmap_map_ptes(pmap);
   2495 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   2496 
   2497 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2498 		    pv->pv_va, pv->pv_flags));
   2499 #ifdef DEBUG
   2500 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2501 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2502 			panic("pmap_remove_all: bad mapping");
   2503 #endif	/* DEBUG */
   2504 
   2505 		/*
   2506 		 * Update statistics
   2507 		 */
   2508 		--pmap->pm_stats.resident_count;
   2509 
   2510 		/* Wired bit */
   2511 		if (pv->pv_flags & PT_W)
   2512 			--pmap->pm_stats.wired_count;
   2513 
   2514 		/*
   2515 		 * Invalidate the PTEs.
   2516 		 * XXX: should cluster them up and invalidate as many
   2517 		 * as possible at once.
   2518 		 */
   2519 
   2520 #ifdef needednotdone
   2521 reduce wiring count on page table pages as references drop
   2522 #endif
   2523 
   2524 		*pte = 0;
   2525 		pmap_pte_delref(pmap, pv->pv_va);
   2526 
   2527 		npv = pv->pv_next;
   2528 		pmap_free_pv(pmap, pv);
   2529 		pv = npv;
   2530 		pmap_unmap_ptes(pmap);
   2531 	}
   2532 	pvh->pvh_list = NULL;
   2533 	simple_unlock(&pvh->pvh_lock);
   2534 	PMAP_HEAD_TO_MAP_UNLOCK();
   2535 
   2536 	PDEBUG(0, printf("done\n"));
   2537 	cpu_tlb_flushID();
   2538 	cpu_cpwait();
   2539 }
   2540 
   2541 
   2542 /*
   2543  * Set the physical protection on the specified range of this map as requested.
   2544  */
   2545 
   2546 void
   2547 pmap_protect(pmap, sva, eva, prot)
   2548 	struct pmap *pmap;
   2549 	vaddr_t sva;
   2550 	vaddr_t eva;
   2551 	vm_prot_t prot;
   2552 {
   2553 	pt_entry_t *pte = NULL, *ptes;
   2554 	int armprot;
   2555 	int flush = 0;
   2556 	paddr_t pa;
   2557 	int bank, off;
   2558 	struct pv_head *pvh;
   2559 
   2560 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2561 	    pmap, sva, eva, prot));
   2562 
   2563 	if (~prot & VM_PROT_READ) {
   2564 		/* Just remove the mappings. */
   2565 		pmap_remove(pmap, sva, eva);
   2566 		/* pmap_update not needed as it should be called by the caller
   2567 		 * of pmap_protect */
   2568 		return;
   2569 	}
   2570 	if (prot & VM_PROT_WRITE) {
   2571 		/*
   2572 		 * If this is a read->write transition, just ignore it and let
   2573 		 * uvm_fault() take care of it later.
   2574 		 */
   2575 		return;
   2576 	}
   2577 
   2578 	sva &= PG_FRAME;
   2579 	eva &= PG_FRAME;
   2580 
   2581 	/* Need to lock map->head */
   2582 	PMAP_MAP_TO_HEAD_LOCK();
   2583 
   2584 	ptes = pmap_map_ptes(pmap);
   2585 	/*
   2586 	 * We need to acquire a pointer to a page table page before entering
   2587 	 * the following loop.
   2588 	 */
   2589 	while (sva < eva) {
   2590 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2591 			break;
   2592 		sva = (sva & PD_MASK) + NBPD;
   2593 	}
   2594 
   2595 	pte = &ptes[arm_byte_to_page(sva)];
   2596 
   2597 	while (sva < eva) {
   2598 		/* only check once in a while */
   2599 		if ((sva & PT_MASK) == 0) {
   2600 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2601 				/* We can race ahead here, to the next pde. */
   2602 				sva += NBPD;
   2603 				pte += arm_byte_to_page(NBPD);
   2604 				continue;
   2605 			}
   2606 		}
   2607 
   2608 		if (!pmap_pte_v(pte))
   2609 			goto next;
   2610 
   2611 		flush = 1;
   2612 
   2613 		armprot = 0;
   2614 		if (sva < VM_MAXUSER_ADDRESS)
   2615 			armprot |= PT_AP(AP_U);
   2616 		else if (sva < VM_MAX_ADDRESS)
   2617 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2618 		*pte = (*pte & 0xfffff00f) | armprot;
   2619 
   2620 		pa = pmap_pte_pa(pte);
   2621 
   2622 		/* Get the physical page index */
   2623 
   2624 		/* Clear write flag */
   2625 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2626 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2627 			simple_lock(&pvh->pvh_lock);
   2628 			(void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
   2629 			pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2630 			simple_unlock(&pvh->pvh_lock);
   2631 		}
   2632 
   2633 next:
   2634 		sva += NBPG;
   2635 		pte++;
   2636 	}
   2637 	pmap_unmap_ptes(pmap);
   2638 	PMAP_MAP_TO_HEAD_UNLOCK();
   2639 	if (flush)
   2640 		cpu_tlb_flushID();
   2641 }
   2642 
   2643 /*
   2644  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2645  * int flags)
   2646  *
   2647  *      Insert the given physical page (p) at
   2648  *      the specified virtual address (v) in the
   2649  *      target physical map with the protection requested.
   2650  *
   2651  *      If specified, the page will be wired down, meaning
   2652  *      that the related pte can not be reclaimed.
   2653  *
   2654  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2655  *      or lose information.  That is, this routine must actually
   2656  *      insert this page into the given map NOW.
   2657  */
   2658 
   2659 int
   2660 pmap_enter(pmap, va, pa, prot, flags)
   2661 	struct pmap *pmap;
   2662 	vaddr_t va;
   2663 	paddr_t pa;
   2664 	vm_prot_t prot;
   2665 	int flags;
   2666 {
   2667 	pt_entry_t *pte, *ptes;
   2668 	u_int npte;
   2669 	int bank, off;
   2670 	paddr_t opa;
   2671 	int nflags;
   2672 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2673 	struct pv_entry *pve;
   2674 	struct pv_head	*pvh;
   2675 	int error;
   2676 
   2677 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2678 	    va, pa, pmap, prot, wired));
   2679 
   2680 #ifdef DIAGNOSTIC
   2681 	/* Valid address ? */
   2682 	if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
   2683 		panic("pmap_enter: too big");
   2684 	if (pmap != pmap_kernel() && va != 0) {
   2685 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2686 			panic("pmap_enter: kernel page in user map");
   2687 	} else {
   2688 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2689 			panic("pmap_enter: user page in kernel map");
   2690 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2691 			panic("pmap_enter: entering PT page");
   2692 	}
   2693 #endif
   2694 	/* get lock */
   2695 	PMAP_MAP_TO_HEAD_LOCK();
   2696 	/*
   2697 	 * Get a pointer to the pte for this virtual address. If the
   2698 	 * pte pointer is NULL then we are missing the L2 page table
   2699 	 * so we need to create one.
   2700 	 */
   2701 	/* XXX horrible hack to get us working with lockdebug */
   2702 	simple_lock(&pmap->pm_obj.vmobjlock);
   2703 	pte = pmap_pte(pmap, va);
   2704 	if (!pte) {
   2705 		struct vm_page *ptp;
   2706 
   2707 		/* if failure is allowed then don't try too hard */
   2708 		ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
   2709 		if (ptp == NULL) {
   2710 			if (flags & PMAP_CANFAIL) {
   2711 				error = ENOMEM;
   2712 				goto out;
   2713 			}
   2714 			panic("pmap_enter: get ptp failed");
   2715 		}
   2716 
   2717 		pte = pmap_pte(pmap, va);
   2718 #ifdef DIAGNOSTIC
   2719 		if (!pte)
   2720 			panic("pmap_enter: no pte");
   2721 #endif
   2722 	}
   2723 
   2724 	nflags = 0;
   2725 	if (prot & VM_PROT_WRITE)
   2726 		nflags |= PT_Wr;
   2727 	if (wired)
   2728 		nflags |= PT_W;
   2729 
   2730 	/* More debugging info */
   2731 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2732 	    *pte));
   2733 
   2734 	/* Is the pte valid ? If so then this page is already mapped */
   2735 	if (pmap_pte_v(pte)) {
   2736 		/* Get the physical address of the current page mapped */
   2737 		opa = pmap_pte_pa(pte);
   2738 
   2739 #ifdef MYCROFT_HACK
   2740 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2741 #endif
   2742 
   2743 		/* Are we mapping the same page ? */
   2744 		if (opa == pa) {
   2745 			/* All we must be doing is changing the protection */
   2746 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2747 			    va, pa));
   2748 
   2749 			/* Has the wiring changed ? */
   2750 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2751 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2752 				simple_lock(&pvh->pvh_lock);
   2753 				(void) pmap_modify_pv(pmap, va, pvh,
   2754 				    PT_Wr | PT_W, nflags);
   2755 				simple_unlock(&pvh->pvh_lock);
   2756  			} else {
   2757 				pvh = NULL;
   2758 			}
   2759 		} else {
   2760 			/* We are replacing the page with a new one. */
   2761 			cpu_idcache_wbinv_range(va, NBPG);
   2762 
   2763 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2764 			    va, pa, opa));
   2765 
   2766 			/*
   2767 			 * If it is part of our managed memory then we
   2768 			 * must remove it from the PV list
   2769 			 */
   2770 			if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
   2771 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2772 				simple_lock(&pvh->pvh_lock);
   2773 				pve = pmap_remove_pv(pvh, pmap, va);
   2774 				simple_unlock(&pvh->pvh_lock);
   2775 			} else {
   2776 				pve = NULL;
   2777 			}
   2778 
   2779 			goto enter;
   2780 		}
   2781 	} else {
   2782 		opa = 0;
   2783 		pve = NULL;
   2784 		pmap_pte_addref(pmap, va);
   2785 
   2786 		/* pte is not valid so we must be hooking in a new page */
   2787 		++pmap->pm_stats.resident_count;
   2788 
   2789 	enter:
   2790 		/*
   2791 		 * Enter on the PV list if part of our managed memory
   2792 		 */
   2793 		bank = vm_physseg_find(atop(pa), &off);
   2794 
   2795 		if (pmap_initialized && (bank != -1)) {
   2796 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2797 			if (pve == NULL) {
   2798 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2799 				if (pve == NULL) {
   2800 					if (flags & PMAP_CANFAIL) {
   2801 						error = ENOMEM;
   2802 						goto out;
   2803 					}
   2804 					panic("pmap_enter: no pv entries available");
   2805 				}
   2806 			}
   2807 			/* enter_pv locks pvh when adding */
   2808 			pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
   2809 		} else {
   2810 			pvh = NULL;
   2811 			if (pve != NULL)
   2812 				pmap_free_pv(pmap, pve);
   2813 		}
   2814 	}
   2815 
   2816 #ifdef MYCROFT_HACK
   2817 	if (mycroft_hack)
   2818 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2819 #endif
   2820 
   2821 	/* Construct the pte, giving the correct access. */
   2822 	npte = (pa & PG_FRAME);
   2823 
   2824 	/* VA 0 is magic. */
   2825 	if (pmap != pmap_kernel() && va != 0)
   2826 		npte |= PT_AP(AP_U);
   2827 
   2828 	if (pmap_initialized && bank != -1) {
   2829 #ifdef DIAGNOSTIC
   2830 		if ((flags & VM_PROT_ALL) & ~prot)
   2831 			panic("pmap_enter: access_type exceeds prot");
   2832 #endif
   2833 		npte |= pte_cache_mode;
   2834 		if (flags & VM_PROT_WRITE) {
   2835 			npte |= L2_SPAGE | PT_AP(AP_W);
   2836 			vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2837 		} else if (flags & VM_PROT_ALL) {
   2838 			npte |= L2_SPAGE;
   2839 			vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2840 		} else
   2841 			npte |= L2_INVAL;
   2842 	} else {
   2843 		if (prot & VM_PROT_WRITE)
   2844 			npte |= L2_SPAGE | PT_AP(AP_W);
   2845 		else if (prot & VM_PROT_ALL)
   2846 			npte |= L2_SPAGE;
   2847 		else
   2848 			npte |= L2_INVAL;
   2849 	}
   2850 
   2851 #ifdef MYCROFT_HACK
   2852 	if (mycroft_hack)
   2853 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2854 #endif
   2855 
   2856 	*pte = npte;
   2857 
   2858 	if (pmap_initialized && bank != -1)
   2859 	{
   2860 		boolean_t pmap_active = FALSE;
   2861 		/* XXX this will change once the whole of pmap_enter uses
   2862 		 * map_ptes
   2863 		 */
   2864 		ptes = pmap_map_ptes(pmap);
   2865 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2866 		    || (pmap == pmap_kernel()))
   2867 			pmap_active = TRUE;
   2868 		simple_lock(&pvh->pvh_lock);
   2869  		pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
   2870 		simple_unlock(&pvh->pvh_lock);
   2871 		pmap_unmap_ptes(pmap);
   2872 	}
   2873 
   2874 	/* Better flush the TLB ... */
   2875 	cpu_tlb_flushID_SE(va);
   2876 	error = 0;
   2877 out:
   2878 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2879 	PMAP_MAP_TO_HEAD_UNLOCK();
   2880 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2881 
   2882 	return error;
   2883 }
   2884 
   2885 void
   2886 pmap_kenter_pa(va, pa, prot)
   2887 	vaddr_t va;
   2888 	paddr_t pa;
   2889 	vm_prot_t prot;
   2890 {
   2891 	struct pmap *pmap = pmap_kernel();
   2892 	pt_entry_t *pte;
   2893 	struct vm_page *pg;
   2894 
   2895 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   2896 
   2897 #ifdef DIAGNOSTIC
   2898 		if (pmap_pde_v(pmap_pde(pmap, va)))
   2899 			panic("Trying to map kernel page into section mapping"
   2900 			    " VA=%lx PA=%lx", va, pa);
   2901 #endif
   2902 		/*
   2903 		 * For the kernel pmaps it would be better to ensure
   2904 		 * that they are always present, and to grow the
   2905 		 * kernel as required.
   2906 		 */
   2907 
   2908 	    	/* must lock the pmap */
   2909 	    	simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
   2910 		/* Allocate a page table */
   2911 		pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
   2912 		    UVM_PGA_USERESERVE | UVM_PGA_ZERO);
   2913 		if (pg == NULL) {
   2914 			panic("pmap_kenter_pa: no free pages");
   2915 		}
   2916 		pg->flags &= ~PG_BUSY;	/* never busy */
   2917 
   2918 		/* Wire this page table into the L1. */
   2919 		pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
   2920 		simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
   2921 	}
   2922 	pte = vtopte(va);
   2923 	KASSERT(!pmap_pte_v(pte));
   2924 	*pte = L2_PTE(pa, AP_KRW);
   2925 }
   2926 
   2927 void
   2928 pmap_kremove(va, len)
   2929 	vaddr_t va;
   2930 	vsize_t len;
   2931 {
   2932 	pt_entry_t *pte;
   2933 
   2934 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2935 
   2936 		/*
   2937 		 * We assume that we will only be called with small
   2938 		 * regions of memory.
   2939 		 */
   2940 
   2941 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2942 		pte = vtopte(va);
   2943 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2944 		*pte = 0;
   2945 		cpu_tlb_flushID_SE(va);
   2946 	}
   2947 }
   2948 
   2949 /*
   2950  * pmap_page_protect:
   2951  *
   2952  * Lower the permission for all mappings to a given page.
   2953  */
   2954 
   2955 void
   2956 pmap_page_protect(pg, prot)
   2957 	struct vm_page *pg;
   2958 	vm_prot_t prot;
   2959 {
   2960 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2961 
   2962 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
   2963 
   2964 	switch(prot) {
   2965 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2966 	case VM_PROT_READ|VM_PROT_WRITE:
   2967 		return;
   2968 
   2969 	case VM_PROT_READ:
   2970 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2971 		pmap_copy_on_write(pa);
   2972 		break;
   2973 
   2974 	default:
   2975 		pmap_remove_all(pa);
   2976 		break;
   2977 	}
   2978 }
   2979 
   2980 
   2981 /*
   2982  * Routine:	pmap_unwire
   2983  * Function:	Clear the wired attribute for a map/virtual-address
   2984  *		pair.
   2985  * In/out conditions:
   2986  *		The mapping must already exist in the pmap.
   2987  */
   2988 
   2989 void
   2990 pmap_unwire(pmap, va)
   2991 	struct pmap *pmap;
   2992 	vaddr_t va;
   2993 {
   2994 	pt_entry_t *pte;
   2995 	paddr_t pa;
   2996 	int bank, off;
   2997 	struct pv_head *pvh;
   2998 
   2999 	/*
   3000 	 * Make sure pmap is valid. -dct
   3001 	 */
   3002 	if (pmap == NULL)
   3003 		return;
   3004 
   3005 	/* Get the pte */
   3006 	pte = pmap_pte(pmap, va);
   3007 	if (!pte)
   3008 		return;
   3009 
   3010 	/* Extract the physical address of the page */
   3011 	pa = pmap_pte_pa(pte);
   3012 
   3013 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3014 		return;
   3015 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3016 	simple_lock(&pvh->pvh_lock);
   3017 	/* Update the wired bit in the pv entry for this page. */
   3018 	(void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
   3019 	simple_unlock(&pvh->pvh_lock);
   3020 }
   3021 
   3022 /*
   3023  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   3024  *
   3025  * Return the pointer to a page table entry corresponding to the supplied
   3026  * virtual address.
   3027  *
   3028  * The page directory is first checked to make sure that a page table
   3029  * for the address in question exists and if it does a pointer to the
   3030  * entry is returned.
   3031  *
   3032  * The way this works is that that the kernel page tables are mapped
   3033  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   3034  * This allows page tables to be located quickly.
   3035  */
   3036 pt_entry_t *
   3037 pmap_pte(pmap, va)
   3038 	struct pmap *pmap;
   3039 	vaddr_t va;
   3040 {
   3041 	pt_entry_t *ptp;
   3042 	pt_entry_t *result;
   3043 
   3044 	/* The pmap must be valid */
   3045 	if (!pmap)
   3046 		return(NULL);
   3047 
   3048 	/* Return the address of the pte */
   3049 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   3050 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   3051 
   3052 	/* Do we have a valid pde ? If not we don't have a page table */
   3053 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   3054 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   3055 		    pmap_pde(pmap, va)));
   3056 		return(NULL);
   3057 	}
   3058 
   3059 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   3060 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3061 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3062 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   3063 
   3064 	/*
   3065 	 * If the pmap is the kernel pmap or the pmap is the active one
   3066 	 * then we can just return a pointer to entry relative to
   3067 	 * PROCESS_PAGE_TBLS_BASE.
   3068 	 * Otherwise we need to map the page tables to an alternative
   3069 	 * address and reference them there.
   3070 	 */
   3071 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   3072 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3073 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   3074 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   3075 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3076 	} else {
   3077 		struct proc *p = curproc;
   3078 
   3079 		/* If we don't have a valid curproc use proc0 */
   3080 		/* Perhaps we should just use kernel_pmap instead */
   3081 		if (p == NULL)
   3082 			p = &proc0;
   3083 #ifdef DIAGNOSTIC
   3084 		/*
   3085 		 * The pmap should always be valid for the process so
   3086 		 * panic if it is not.
   3087 		 */
   3088 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   3089 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   3090 			    va, p, p->p_vmspace);
   3091 			console_debugger();
   3092 		}
   3093 		/*
   3094 		 * The pmap for the current process should be mapped. If it
   3095 		 * is not then we have a problem.
   3096 		 */
   3097 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   3098 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3099 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3100 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   3101 			printf("pmap pagetable = P%08lx current = P%08x ",
   3102 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3103 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3104 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   3105 			    PG_FRAME));
   3106 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   3107 			panic("pmap_pte: current and pmap mismatch\n");
   3108 		}
   3109 #endif
   3110 
   3111 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3112 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3113 		    pmap->pm_pptpt, FALSE);
   3114 		cpu_tlb_flushD();
   3115 		cpu_cpwait();
   3116 	}
   3117 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   3118 	    ((va >> (PGSHIFT-2)) & ~3)));
   3119 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   3120 	return(result);
   3121 }
   3122 
   3123 /*
   3124  * Routine:  pmap_extract
   3125  * Function:
   3126  *           Extract the physical page address associated
   3127  *           with the given map/virtual_address pair.
   3128  */
   3129 boolean_t
   3130 pmap_extract(pmap, va, pap)
   3131 	struct pmap *pmap;
   3132 	vaddr_t va;
   3133 	paddr_t *pap;
   3134 {
   3135 	pd_entry_t *pde;
   3136 	pt_entry_t *pte, *ptes;
   3137 	paddr_t pa;
   3138 	boolean_t rv = TRUE;
   3139 
   3140 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   3141 
   3142 	/*
   3143 	 * Get the pte for this virtual address.
   3144 	 */
   3145 	pde = pmap_pde(pmap, va);
   3146 	ptes = pmap_map_ptes(pmap);
   3147 	pte = &ptes[arm_byte_to_page(va)];
   3148 
   3149 	if (pmap_pde_section(pde)) {
   3150 		pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
   3151 		goto out;
   3152 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3153 		rv = FALSE;
   3154 		goto out;
   3155 	}
   3156 
   3157 	if ((*pte & L2_MASK) == L2_LPAGE) {
   3158 		/* Extract the physical address from the pte */
   3159 		pa = *pte & ~(L2_LPAGE_SIZE - 1);
   3160 
   3161 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   3162 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   3163 
   3164 		if (pap != NULL)
   3165 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3166 		goto out;
   3167 	}
   3168 
   3169 	/* Extract the physical address from the pte */
   3170 	pa = pmap_pte_pa(pte);
   3171 
   3172 	PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3173 	    (pa | (va & ~PG_FRAME))));
   3174 
   3175 	if (pap != NULL)
   3176 		*pap = pa | (va & ~PG_FRAME);
   3177  out:
   3178 	pmap_unmap_ptes(pmap);
   3179 	return (rv);
   3180 }
   3181 
   3182 
   3183 /*
   3184  * Copy the range specified by src_addr/len from the source map to the
   3185  * range dst_addr/len in the destination map.
   3186  *
   3187  * This routine is only advisory and need not do anything.
   3188  */
   3189 
   3190 void
   3191 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3192 	struct pmap *dst_pmap;
   3193 	struct pmap *src_pmap;
   3194 	vaddr_t dst_addr;
   3195 	vsize_t len;
   3196 	vaddr_t src_addr;
   3197 {
   3198 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3199 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3200 }
   3201 
   3202 #if defined(PMAP_DEBUG)
   3203 void
   3204 pmap_dump_pvlist(phys, m)
   3205 	vaddr_t phys;
   3206 	char *m;
   3207 {
   3208 	struct pv_head *pvh;
   3209 	struct pv_entry *pv;
   3210 	int bank, off;
   3211 
   3212 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
   3213 		printf("INVALID PA\n");
   3214 		return;
   3215 	}
   3216 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3217 	simple_lock(&pvh->pvh_lock);
   3218 	printf("%s %08lx:", m, phys);
   3219 	if (pvh->pvh_list == NULL) {
   3220 		printf(" no mappings\n");
   3221 		return;
   3222 	}
   3223 
   3224 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
   3225 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3226 		    pv->pv_va, pv->pv_flags);
   3227 
   3228 	printf("\n");
   3229 	simple_unlock(&pvh->pvh_lock);
   3230 }
   3231 
   3232 #endif	/* PMAP_DEBUG */
   3233 
   3234 __inline static boolean_t
   3235 pmap_testbit(pa, setbits)
   3236 	paddr_t pa;
   3237 	unsigned int setbits;
   3238 {
   3239 	int bank, off;
   3240 
   3241 	PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
   3242 
   3243 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3244 		return(FALSE);
   3245 
   3246 	/*
   3247 	 * Check saved info only
   3248 	 */
   3249 	if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
   3250 		PDEBUG(0, printf("pmap_attributes = %02x\n",
   3251 		    vm_physmem[bank].pmseg.attrs[off]));
   3252 		return(TRUE);
   3253 	}
   3254 
   3255 	return(FALSE);
   3256 }
   3257 
   3258 static pt_entry_t *
   3259 pmap_map_ptes(struct pmap *pmap)
   3260 {
   3261     	struct proc *p;
   3262 
   3263     	/* the kernel's pmap is always accessible */
   3264 	if (pmap == pmap_kernel()) {
   3265 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
   3266 	}
   3267 
   3268 	if (pmap_is_curpmap(pmap)) {
   3269 		simple_lock(&pmap->pm_obj.vmobjlock);
   3270 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3271 	}
   3272 
   3273 	p = curproc;
   3274 
   3275 	if (p == NULL)
   3276 		p = &proc0;
   3277 
   3278 	/* need to lock both curpmap and pmap: use ordered locking */
   3279 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3280 		simple_lock(&pmap->pm_obj.vmobjlock);
   3281 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3282 	} else {
   3283 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3284 		simple_lock(&pmap->pm_obj.vmobjlock);
   3285 	}
   3286 
   3287 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3288 			pmap->pm_pptpt, FALSE);
   3289 	cpu_tlb_flushD();
   3290 	cpu_cpwait();
   3291 	return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3292 }
   3293 
   3294 /*
   3295  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3296  */
   3297 
   3298 static void
   3299 pmap_unmap_ptes(pmap)
   3300 	struct pmap *pmap;
   3301 {
   3302 	if (pmap == pmap_kernel()) {
   3303 		return;
   3304 	}
   3305 	if (pmap_is_curpmap(pmap)) {
   3306 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3307 	} else {
   3308 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3309 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3310 	}
   3311 }
   3312 
   3313 /*
   3314  * Modify pte bits for all ptes corresponding to the given physical address.
   3315  * We use `maskbits' rather than `clearbits' because we're always passing
   3316  * constants and the latter would require an extra inversion at run-time.
   3317  */
   3318 
   3319 static void
   3320 pmap_clearbit(pa, maskbits)
   3321 	paddr_t pa;
   3322 	unsigned int maskbits;
   3323 {
   3324 	struct pv_entry *pv;
   3325 	struct pv_head *pvh;
   3326 	pt_entry_t *pte;
   3327 	vaddr_t va;
   3328 	int bank, off, tlbentry;
   3329 
   3330 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3331 	    pa, maskbits));
   3332 
   3333 	tlbentry = 0;
   3334 
   3335 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3336 		return;
   3337 	PMAP_HEAD_TO_MAP_LOCK();
   3338 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3339 	simple_lock(&pvh->pvh_lock);
   3340 
   3341 	/*
   3342 	 * Clear saved attributes (modify, reference)
   3343 	 */
   3344 	vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
   3345 
   3346 	if (pvh->pvh_list == NULL) {
   3347 		simple_unlock(&pvh->pvh_lock);
   3348 		PMAP_HEAD_TO_MAP_UNLOCK();
   3349 		return;
   3350 	}
   3351 
   3352 	/*
   3353 	 * Loop over all current mappings setting/clearing as appropos
   3354 	 */
   3355 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
   3356 		va = pv->pv_va;
   3357 		pv->pv_flags &= ~maskbits;
   3358 		pte = pmap_pte(pv->pv_pmap, va);
   3359 		KASSERT(pte != NULL);
   3360 		if (maskbits & (PT_Wr|PT_M)) {
   3361 			if ((pv->pv_flags & PT_NC)) {
   3362 				/*
   3363 				 * Entry is not cacheable: reenable
   3364 				 * the cache, nothing to flush
   3365 				 *
   3366 				 * Don't turn caching on again if this
   3367 				 * is a modified emulation.  This
   3368 				 * would be inconsitent with the
   3369 				 * settings created by
   3370 				 * pmap_vac_me_harder().
   3371 				 *
   3372 				 * There's no need to call
   3373 				 * pmap_vac_me_harder() here: all
   3374 				 * pages are loosing their write
   3375 				 * permission.
   3376 				 *
   3377 				 */
   3378 				if (maskbits & PT_Wr) {
   3379 					*pte |= pte_cache_mode;
   3380 					pv->pv_flags &= ~PT_NC;
   3381 				}
   3382 			} else if (pmap_is_curpmap(pv->pv_pmap))
   3383 				/*
   3384 				 * Entry is cacheable: check if pmap is
   3385 				 * current if it is flush it,
   3386 				 * otherwise it won't be in the cache
   3387 				 */
   3388 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3389 
   3390 			/* make the pte read only */
   3391 			*pte &= ~PT_AP(AP_W);
   3392 		}
   3393 
   3394 		if (maskbits & PT_H)
   3395 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   3396 
   3397 		if (pmap_is_curpmap(pv->pv_pmap))
   3398 			/*
   3399 			 * if we had cacheable pte's we'd clean the
   3400 			 * pte out to memory here
   3401 			 *
   3402 			 * flush tlb entry as it's in the current pmap
   3403 			 */
   3404 			cpu_tlb_flushID_SE(pv->pv_va);
   3405 	}
   3406 	cpu_cpwait();
   3407 
   3408 	simple_unlock(&pvh->pvh_lock);
   3409 	PMAP_HEAD_TO_MAP_UNLOCK();
   3410 }
   3411 
   3412 
   3413 boolean_t
   3414 pmap_clear_modify(pg)
   3415 	struct vm_page *pg;
   3416 {
   3417 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3418 	boolean_t rv;
   3419 
   3420 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
   3421 	rv = pmap_testbit(pa, PT_M);
   3422 	pmap_clearbit(pa, PT_M);
   3423 	return rv;
   3424 }
   3425 
   3426 
   3427 boolean_t
   3428 pmap_clear_reference(pg)
   3429 	struct vm_page *pg;
   3430 {
   3431 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3432 	boolean_t rv;
   3433 
   3434 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
   3435 	rv = pmap_testbit(pa, PT_H);
   3436 	pmap_clearbit(pa, PT_H);
   3437 	return rv;
   3438 }
   3439 
   3440 
   3441 void
   3442 pmap_copy_on_write(pa)
   3443 	paddr_t pa;
   3444 {
   3445 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
   3446 	pmap_clearbit(pa, PT_Wr);
   3447 }
   3448 
   3449 
   3450 boolean_t
   3451 pmap_is_modified(pg)
   3452 	struct vm_page *pg;
   3453 {
   3454 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3455 	boolean_t result;
   3456 
   3457 	result = pmap_testbit(pa, PT_M);
   3458 	PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
   3459 	return (result);
   3460 }
   3461 
   3462 
   3463 boolean_t
   3464 pmap_is_referenced(pg)
   3465 	struct vm_page *pg;
   3466 {
   3467 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3468 	boolean_t result;
   3469 
   3470 	result = pmap_testbit(pa, PT_H);
   3471 	PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
   3472 	return (result);
   3473 }
   3474 
   3475 
   3476 int
   3477 pmap_modified_emulation(pmap, va)
   3478 	struct pmap *pmap;
   3479 	vaddr_t va;
   3480 {
   3481 	pt_entry_t *pte;
   3482 	paddr_t pa;
   3483 	int bank, off;
   3484 	struct pv_head *pvh;
   3485 	u_int flags;
   3486 
   3487 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3488 
   3489 	/* Get the pte */
   3490 	pte = pmap_pte(pmap, va);
   3491 	if (!pte) {
   3492 		PDEBUG(2, printf("no pte\n"));
   3493 		return(0);
   3494 	}
   3495 
   3496 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3497 
   3498 	/* Check for a zero pte */
   3499 	if (*pte == 0)
   3500 		return(0);
   3501 
   3502 	/* This can happen if user code tries to access kernel memory. */
   3503 	if ((*pte & PT_AP(AP_W)) != 0)
   3504 		return (0);
   3505 
   3506 	/* Extract the physical address of the page */
   3507 	pa = pmap_pte_pa(pte);
   3508 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3509 		return(0);
   3510 
   3511 	PMAP_HEAD_TO_MAP_LOCK();
   3512 	/* Get the current flags for this page. */
   3513 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3514 	/* XXX: needed if we hold head->map lock? */
   3515 	simple_lock(&pvh->pvh_lock);
   3516 
   3517 	flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
   3518 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3519 
   3520 	/*
   3521 	 * Do the flags say this page is writable ? If not then it is a
   3522 	 * genuine write fault. If yes then the write fault is our fault
   3523 	 * as we did not reflect the write access in the PTE. Now we know
   3524 	 * a write has occurred we can correct this and also set the
   3525 	 * modified bit
   3526 	 */
   3527 	if (~flags & PT_Wr) {
   3528 	    	simple_unlock(&pvh->pvh_lock);
   3529 		PMAP_HEAD_TO_MAP_UNLOCK();
   3530 		return(0);
   3531 	}
   3532 
   3533 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   3534 	    va, pte, *pte));
   3535 	vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   3536 
   3537 	/*
   3538 	 * Re-enable write permissions for the page.  No need to call
   3539 	 * pmap_vac_me_harder(), since this is just a
   3540 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3541 	 * already set the cacheable bits based on the assumption that we
   3542 	 * can write to this page.
   3543 	 */
   3544 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3545 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3546 
   3547 	simple_unlock(&pvh->pvh_lock);
   3548 	PMAP_HEAD_TO_MAP_UNLOCK();
   3549 	/* Return, indicating the problem has been dealt with */
   3550 	cpu_tlb_flushID_SE(va);
   3551 	cpu_cpwait();
   3552 	return(1);
   3553 }
   3554 
   3555 
   3556 int
   3557 pmap_handled_emulation(pmap, va)
   3558 	struct pmap *pmap;
   3559 	vaddr_t va;
   3560 {
   3561 	pt_entry_t *pte;
   3562 	paddr_t pa;
   3563 	int bank, off;
   3564 
   3565 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3566 
   3567 	/* Get the pte */
   3568 	pte = pmap_pte(pmap, va);
   3569 	if (!pte) {
   3570 		PDEBUG(2, printf("no pte\n"));
   3571 		return(0);
   3572 	}
   3573 
   3574 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3575 
   3576 	/* Check for a zero pte */
   3577 	if (*pte == 0)
   3578 		return(0);
   3579 
   3580 	/* This can happen if user code tries to access kernel memory. */
   3581 	if ((*pte & L2_MASK) != L2_INVAL)
   3582 		return (0);
   3583 
   3584 	/* Extract the physical address of the page */
   3585 	pa = pmap_pte_pa(pte);
   3586 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3587 		return(0);
   3588 
   3589 	/*
   3590 	 * Ok we just enable the pte and mark the attibs as handled
   3591 	 */
   3592 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   3593 	    va, pte, *pte));
   3594 	vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   3595 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   3596 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3597 
   3598 	/* Return, indicating the problem has been dealt with */
   3599 	cpu_tlb_flushID_SE(va);
   3600 	cpu_cpwait();
   3601 	return(1);
   3602 }
   3603 
   3604 
   3605 
   3606 
   3607 /*
   3608  * pmap_collect: free resources held by a pmap
   3609  *
   3610  * => optional function.
   3611  * => called when a process is swapped out to free memory.
   3612  */
   3613 
   3614 void
   3615 pmap_collect(pmap)
   3616 	struct pmap *pmap;
   3617 {
   3618 }
   3619 
   3620 /*
   3621  * Routine:	pmap_procwr
   3622  *
   3623  * Function:
   3624  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3625  *
   3626  */
   3627 void
   3628 pmap_procwr(p, va, len)
   3629 	struct proc	*p;
   3630 	vaddr_t		va;
   3631 	int		len;
   3632 {
   3633 	/* We only need to do anything if it is the current process. */
   3634 	if (p == curproc)
   3635 		cpu_icache_sync_range(va, len);
   3636 }
   3637 /*
   3638  * PTP functions
   3639  */
   3640 
   3641 /*
   3642  * pmap_steal_ptp: Steal a PTP from somewhere else.
   3643  *
   3644  * This is just a placeholder, for now we never steal.
   3645  */
   3646 
   3647 static struct vm_page *
   3648 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
   3649 {
   3650     return (NULL);
   3651 }
   3652 
   3653 /*
   3654  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3655  *
   3656  * => pmap should NOT be pmap_kernel()
   3657  * => pmap should be locked
   3658  */
   3659 
   3660 static struct vm_page *
   3661 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3662 {
   3663     struct vm_page *ptp;
   3664 
   3665     if (pmap_pde_page(pmap_pde(pmap, va))) {
   3666 
   3667 	/* valid... check hint (saves us a PA->PG lookup) */
   3668 #if 0
   3669 	if (pmap->pm_ptphint &&
   3670     		((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3671 		VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3672 	    return (pmap->pm_ptphint);
   3673 #endif
   3674 	ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3675 #ifdef DIAGNOSTIC
   3676 	if (ptp == NULL)
   3677     	    panic("pmap_get_ptp: unmanaged user PTP");
   3678 #endif
   3679 //	pmap->pm_ptphint = ptp;
   3680 	return(ptp);
   3681     }
   3682 
   3683     /* allocate a new PTP (updates ptphint) */
   3684     return(pmap_alloc_ptp(pmap, va, just_try));
   3685 }
   3686 
   3687 /*
   3688  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3689  *
   3690  * => pmap should already be locked by caller
   3691  * => we use the ptp's wire_count to count the number of active mappings
   3692  *	in the PTP (we start it at one to prevent any chance this PTP
   3693  *	will ever leak onto the active/inactive queues)
   3694  */
   3695 
   3696 /*__inline */ static struct vm_page *
   3697 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3698 {
   3699 	struct vm_page *ptp;
   3700 
   3701 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3702 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3703 	if (ptp == NULL) {
   3704 	    if (just_try)
   3705 		return (NULL);
   3706 
   3707 	    ptp = pmap_steal_ptp(pmap, va);
   3708 
   3709 	    if (ptp == NULL)
   3710 		return (NULL);
   3711 	    /* Stole a page, zero it.  */
   3712 	    pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
   3713 	}
   3714 
   3715 	/* got one! */
   3716 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3717 	ptp->wire_count = 1;	/* no mappings yet */
   3718 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3719 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3720 //	pmap->pm_ptphint = ptp;
   3721 	return (ptp);
   3722 }
   3723 
   3724 /* End of pmap.c */
   3725