pmap.c revision 1.154 1 /* $NetBSD: pmap.c,v 1.154 2005/07/04 00:42:37 bsh Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * Performance improvements, UVM changes, overhauls and part-rewrites
144 * were contributed by Neil A. Carson <neil (at) causality.com>.
145 */
146
147 /*
148 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150 * Systems, Inc.
151 *
152 * There are still a few things outstanding at this time:
153 *
154 * - There are some unresolved issues for MP systems:
155 *
156 * o The L1 metadata needs a lock, or more specifically, some places
157 * need to acquire an exclusive lock when modifying L1 translation
158 * table entries.
159 *
160 * o When one cpu modifies an L1 entry, and that L1 table is also
161 * being used by another cpu, then the latter will need to be told
162 * that a tlb invalidation may be necessary. (But only if the old
163 * domain number in the L1 entry being over-written is currently
164 * the active domain on that cpu). I guess there are lots more tlb
165 * shootdown issues too...
166 *
167 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168 * MP systems will lose big-time because of the MMU domain hack.
169 * The only way this can be solved (apart from moving the vector
170 * page to 0xffff0000) is to reserve the first 1MB of user address
171 * space for kernel use only. This would require re-linking all
172 * applications so that the text section starts above this 1MB
173 * boundary.
174 *
175 * o Tracking which VM space is resident in the cache/tlb has not yet
176 * been implemented for MP systems.
177 *
178 * o Finally, there is a pathological condition where two cpus running
179 * two separate processes (not lwps) which happen to share an L1
180 * can get into a fight over one or more L1 entries. This will result
181 * in a significant slow-down if both processes are in tight loops.
182 */
183
184 /*
185 * Special compilation symbols
186 * PMAP_DEBUG - Build in pmap_debug_level code
187 */
188
189 /* Include header files */
190
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194 #include "opt_lockdebug.h"
195 #include "opt_multiprocessor.h"
196
197 #include <sys/types.h>
198 #include <sys/param.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/user.h>
204 #include <sys/pool.h>
205 #include <sys/cdefs.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.154 2005/07/04 00:42:37 bsh Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243
244 int debugmap = 1;
245 int pmapdebug = 0;
246 #define NPDEBUG(_lev_,_stat_) \
247 if (pmapdebug & (_lev_)) \
248 ((_stat_))
249
250 #else /* PMAP_DEBUG */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif /* PMAP_DEBUG */
253
254 /*
255 * pmap_kernel() points here
256 */
257 struct pmap kernel_pmap_store;
258
259 /*
260 * Which pmap is currently 'live' in the cache
261 *
262 * XXXSCW: Fix for SMP ...
263 */
264 union pmap_cache_state *pmap_cache_state;
265
266 /*
267 * Pool and cache that pmap structures are allocated from.
268 * We use a cache to avoid clearing the pm_l2[] array (1KB)
269 * in pmap_create().
270 */
271 static struct pool pmap_pmap_pool;
272 static struct pool_cache pmap_pmap_cache;
273 static LIST_HEAD(, pmap) pmap_pmaps;
274
275 /*
276 * Pool of PV structures
277 */
278 static struct pool pmap_pv_pool;
279 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
280 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
281 static struct pool_allocator pmap_bootstrap_pv_allocator = {
282 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
283 };
284
285 /*
286 * Pool and cache of l2_dtable structures.
287 * We use a cache to avoid clearing the structures when they're
288 * allocated. (196 bytes)
289 */
290 static struct pool pmap_l2dtable_pool;
291 static struct pool_cache pmap_l2dtable_cache;
292 static vaddr_t pmap_kernel_l2dtable_kva;
293
294 /*
295 * Pool and cache of L2 page descriptors.
296 * We use a cache to avoid clearing the descriptor table
297 * when they're allocated. (1KB)
298 */
299 static struct pool pmap_l2ptp_pool;
300 static struct pool_cache pmap_l2ptp_cache;
301 static vaddr_t pmap_kernel_l2ptp_kva;
302 static paddr_t pmap_kernel_l2ptp_phys;
303
304 /*
305 * pmap copy/zero page, and mem(5) hook point
306 */
307 static pt_entry_t *csrc_pte, *cdst_pte;
308 static vaddr_t csrcp, cdstp;
309 char *memhook;
310 extern caddr_t msgbufaddr;
311
312 /*
313 * Flag to indicate if pmap_init() has done its thing
314 */
315 boolean_t pmap_initialized;
316
317 /*
318 * Misc. locking data structures
319 */
320
321 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
322 static struct lock pmap_main_lock;
323
324 #define PMAP_MAP_TO_HEAD_LOCK() \
325 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
326 #define PMAP_MAP_TO_HEAD_UNLOCK() \
327 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
328 #define PMAP_HEAD_TO_MAP_LOCK() \
329 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
330 #define PMAP_HEAD_TO_MAP_UNLOCK() \
331 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
332 #else
333 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
334 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
335 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
336 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
337 #endif
338
339 #define pmap_acquire_pmap_lock(pm) \
340 do { \
341 if ((pm) != pmap_kernel()) \
342 simple_lock(&(pm)->pm_lock); \
343 } while (/*CONSTCOND*/0)
344
345 #define pmap_release_pmap_lock(pm) \
346 do { \
347 if ((pm) != pmap_kernel()) \
348 simple_unlock(&(pm)->pm_lock); \
349 } while (/*CONSTCOND*/0)
350
351
352 /*
353 * Metadata for L1 translation tables.
354 */
355 struct l1_ttable {
356 /* Entry on the L1 Table list */
357 SLIST_ENTRY(l1_ttable) l1_link;
358
359 /* Entry on the L1 Least Recently Used list */
360 TAILQ_ENTRY(l1_ttable) l1_lru;
361
362 /* Track how many domains are allocated from this L1 */
363 volatile u_int l1_domain_use_count;
364
365 /*
366 * A free-list of domain numbers for this L1.
367 * We avoid using ffs() and a bitmap to track domains since ffs()
368 * is slow on ARM.
369 */
370 u_int8_t l1_domain_first;
371 u_int8_t l1_domain_free[PMAP_DOMAINS];
372
373 /* Physical address of this L1 page table */
374 paddr_t l1_physaddr;
375
376 /* KVA of this L1 page table */
377 pd_entry_t *l1_kva;
378 };
379
380 /*
381 * Convert a virtual address into its L1 table index. That is, the
382 * index used to locate the L2 descriptor table pointer in an L1 table.
383 * This is basically used to index l1->l1_kva[].
384 *
385 * Each L2 descriptor table represents 1MB of VA space.
386 */
387 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
388
389 /*
390 * L1 Page Tables are tracked using a Least Recently Used list.
391 * - New L1s are allocated from the HEAD.
392 * - Freed L1s are added to the TAIl.
393 * - Recently accessed L1s (where an 'access' is some change to one of
394 * the userland pmaps which owns this L1) are moved to the TAIL.
395 */
396 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
397 static struct simplelock l1_lru_lock;
398
399 /*
400 * A list of all L1 tables
401 */
402 static SLIST_HEAD(, l1_ttable) l1_list;
403
404 /*
405 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
406 *
407 * This is normally 16MB worth L2 page descriptors for any given pmap.
408 * Reference counts are maintained for L2 descriptors so they can be
409 * freed when empty.
410 */
411 struct l2_dtable {
412 /* The number of L2 page descriptors allocated to this l2_dtable */
413 u_int l2_occupancy;
414
415 /* List of L2 page descriptors */
416 struct l2_bucket {
417 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
418 paddr_t l2b_phys; /* Physical address of same */
419 u_short l2b_l1idx; /* This L2 table's L1 index */
420 u_short l2b_occupancy; /* How many active descriptors */
421 } l2_bucket[L2_BUCKET_SIZE];
422 };
423
424 /*
425 * Given an L1 table index, calculate the corresponding l2_dtable index
426 * and bucket index within the l2_dtable.
427 */
428 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
429 (L2_SIZE - 1))
430 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
431
432 /*
433 * Given a virtual address, this macro returns the
434 * virtual address required to drop into the next L2 bucket.
435 */
436 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
437
438 /*
439 * L2 allocation.
440 */
441 #define pmap_alloc_l2_dtable() \
442 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
443 #define pmap_free_l2_dtable(l2) \
444 pool_cache_put(&pmap_l2dtable_cache, (l2))
445 #define pmap_alloc_l2_ptp(pap) \
446 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
447 PR_NOWAIT, (pap)))
448
449 /*
450 * We try to map the page tables write-through, if possible. However, not
451 * all CPUs have a write-through cache mode, so on those we have to sync
452 * the cache when we frob page tables.
453 *
454 * We try to evaluate this at compile time, if possible. However, it's
455 * not always possible to do that, hence this run-time var.
456 */
457 int pmap_needs_pte_sync;
458
459 /*
460 * Real definition of pv_entry.
461 */
462 struct pv_entry {
463 struct pv_entry *pv_next; /* next pv_entry */
464 pmap_t pv_pmap; /* pmap where mapping lies */
465 vaddr_t pv_va; /* virtual address for mapping */
466 u_int pv_flags; /* flags */
467 };
468
469 /*
470 * Macro to determine if a mapping might be resident in the
471 * instruction cache and/or TLB
472 */
473 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
474
475 /*
476 * Macro to determine if a mapping might be resident in the
477 * data cache and/or TLB
478 */
479 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
480
481 /*
482 * Local prototypes
483 */
484 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
485 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
486 pt_entry_t **);
487 static boolean_t pmap_is_current(pmap_t);
488 static boolean_t pmap_is_cached(pmap_t);
489 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
490 pmap_t, vaddr_t, u_int);
491 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
492 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
493 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
494 u_int, u_int);
495
496 static void pmap_pinit(pmap_t);
497 static int pmap_pmap_ctor(void *, void *, int);
498
499 static void pmap_alloc_l1(pmap_t);
500 static void pmap_free_l1(pmap_t);
501 static void pmap_use_l1(pmap_t);
502
503 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
504 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
505 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
506 static int pmap_l2ptp_ctor(void *, void *, int);
507 static int pmap_l2dtable_ctor(void *, void *, int);
508
509 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
510 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
511 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
512
513 static void pmap_clearbit(struct vm_page *, u_int);
514 static int pmap_clean_page(struct pv_entry *, boolean_t);
515 static void pmap_page_remove(struct vm_page *);
516
517 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
518 static vaddr_t kernel_pt_lookup(paddr_t);
519
520
521 /*
522 * External function prototypes
523 */
524 extern void bzero_page(vaddr_t);
525 extern void bcopy_page(vaddr_t, vaddr_t);
526
527 /*
528 * Misc variables
529 */
530 vaddr_t virtual_avail;
531 vaddr_t virtual_end;
532 vaddr_t pmap_curmaxkvaddr;
533
534 vaddr_t avail_start;
535 vaddr_t avail_end;
536
537 extern pv_addr_t systempage;
538
539 /* Function to set the debug level of the pmap code */
540
541 #ifdef PMAP_DEBUG
542 void
543 pmap_debug(int level)
544 {
545 pmap_debug_level = level;
546 printf("pmap_debug: level=%d\n", pmap_debug_level);
547 }
548 #endif /* PMAP_DEBUG */
549
550 /*
551 * A bunch of routines to conditionally flush the caches/TLB depending
552 * on whether the specified pmap actually needs to be flushed at any
553 * given time.
554 */
555 static __inline void
556 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
557 {
558
559 if (pm->pm_cstate.cs_tlb_id)
560 cpu_tlb_flushID_SE(va);
561 }
562
563 static __inline void
564 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
565 {
566
567 if (pm->pm_cstate.cs_tlb_d)
568 cpu_tlb_flushD_SE(va);
569 }
570
571 static __inline void
572 pmap_tlb_flushID(pmap_t pm)
573 {
574
575 if (pm->pm_cstate.cs_tlb_id) {
576 cpu_tlb_flushID();
577 pm->pm_cstate.cs_tlb = 0;
578 }
579 }
580
581 static __inline void
582 pmap_tlb_flushD(pmap_t pm)
583 {
584
585 if (pm->pm_cstate.cs_tlb_d) {
586 cpu_tlb_flushD();
587 pm->pm_cstate.cs_tlb_d = 0;
588 }
589 }
590
591 static __inline void
592 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
593 {
594
595 if (pm->pm_cstate.cs_cache_id)
596 cpu_idcache_wbinv_range(va, len);
597 }
598
599 static __inline void
600 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
601 boolean_t do_inv, boolean_t rd_only)
602 {
603
604 if (pm->pm_cstate.cs_cache_d) {
605 if (do_inv) {
606 if (rd_only)
607 cpu_dcache_inv_range(va, len);
608 else
609 cpu_dcache_wbinv_range(va, len);
610 } else
611 if (!rd_only)
612 cpu_dcache_wb_range(va, len);
613 }
614 }
615
616 static __inline void
617 pmap_idcache_wbinv_all(pmap_t pm)
618 {
619
620 if (pm->pm_cstate.cs_cache_id) {
621 cpu_idcache_wbinv_all();
622 pm->pm_cstate.cs_cache = 0;
623 }
624 }
625
626 static __inline void
627 pmap_dcache_wbinv_all(pmap_t pm)
628 {
629
630 if (pm->pm_cstate.cs_cache_d) {
631 cpu_dcache_wbinv_all();
632 pm->pm_cstate.cs_cache_d = 0;
633 }
634 }
635
636 static __inline boolean_t
637 pmap_is_current(pmap_t pm)
638 {
639
640 if (pm == pmap_kernel() ||
641 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
642 return (TRUE);
643
644 return (FALSE);
645 }
646
647 static __inline boolean_t
648 pmap_is_cached(pmap_t pm)
649 {
650
651 if (pm == pmap_kernel() || pmap_cache_state == NULL ||
652 pmap_cache_state == &pm->pm_cstate)
653 return (TRUE);
654
655 return (FALSE);
656 }
657
658 /*
659 * PTE_SYNC_CURRENT:
660 *
661 * Make sure the pte is written out to RAM.
662 * We need to do this for one of two cases:
663 * - We're dealing with the kernel pmap
664 * - There is no pmap active in the cache/tlb.
665 * - The specified pmap is 'active' in the cache/tlb.
666 */
667 #ifdef PMAP_INCLUDE_PTE_SYNC
668 #define PTE_SYNC_CURRENT(pm, ptep) \
669 do { \
670 if (PMAP_NEEDS_PTE_SYNC && \
671 pmap_is_cached(pm)) \
672 PTE_SYNC(ptep); \
673 } while (/*CONSTCOND*/0)
674 #else
675 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
676 #endif
677
678 /*
679 * main pv_entry manipulation functions:
680 * pmap_enter_pv: enter a mapping onto a vm_page list
681 * pmap_remove_pv: remove a mappiing from a vm_page list
682 *
683 * NOTE: pmap_enter_pv expects to lock the pvh itself
684 * pmap_remove_pv expects te caller to lock the pvh before calling
685 */
686
687 /*
688 * pmap_enter_pv: enter a mapping onto a vm_page lst
689 *
690 * => caller should hold the proper lock on pmap_main_lock
691 * => caller should have pmap locked
692 * => we will gain the lock on the vm_page and allocate the new pv_entry
693 * => caller should adjust ptp's wire_count before calling
694 * => caller should not adjust pmap's wire_count
695 */
696 static void
697 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
698 vaddr_t va, u_int flags)
699 {
700
701 NPDEBUG(PDB_PVDUMP,
702 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
703
704 pve->pv_pmap = pm;
705 pve->pv_va = va;
706 pve->pv_flags = flags;
707
708 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
709 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
710 pg->mdpage.pvh_list = pve; /* ... locked list */
711 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
712 if (pm == pmap_kernel()) {
713 if (flags & PVF_WRITE)
714 pg->mdpage.krw_mappings++;
715 else
716 pg->mdpage.kro_mappings++;
717 } else
718 if (flags & PVF_WRITE)
719 pg->mdpage.urw_mappings++;
720 else
721 pg->mdpage.uro_mappings++;
722 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
723
724 if (pve->pv_flags & PVF_WIRED)
725 ++pm->pm_stats.wired_count;
726 }
727
728 /*
729 *
730 * pmap_find_pv: Find a pv entry
731 *
732 * => caller should hold lock on vm_page
733 */
734 static __inline struct pv_entry *
735 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
736 {
737 struct pv_entry *pv;
738
739 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
740 if (pm == pv->pv_pmap && va == pv->pv_va)
741 break;
742 }
743
744 return (pv);
745 }
746
747 /*
748 * pmap_remove_pv: try to remove a mapping from a pv_list
749 *
750 * => caller should hold proper lock on pmap_main_lock
751 * => pmap should be locked
752 * => caller should hold lock on vm_page [so that attrs can be adjusted]
753 * => caller should adjust ptp's wire_count and free PTP if needed
754 * => caller should NOT adjust pmap's wire_count
755 * => we return the removed pve
756 */
757 static struct pv_entry *
758 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
759 {
760 struct pv_entry *pve, **prevptr;
761
762 NPDEBUG(PDB_PVDUMP,
763 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
764
765 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
766 pve = *prevptr;
767
768 while (pve) {
769 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
770 NPDEBUG(PDB_PVDUMP,
771 printf("pmap_remove_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, pve->pv_flags));
772 *prevptr = pve->pv_next; /* remove it! */
773 if (pve->pv_flags & PVF_WIRED)
774 --pm->pm_stats.wired_count;
775 if (pm == pmap_kernel()) {
776 if (pve->pv_flags & PVF_WRITE)
777 pg->mdpage.krw_mappings--;
778 else
779 pg->mdpage.kro_mappings--;
780 } else
781 if (pve->pv_flags & PVF_WRITE)
782 pg->mdpage.urw_mappings--;
783 else
784 pg->mdpage.uro_mappings--;
785 break;
786 }
787 prevptr = &pve->pv_next; /* previous pointer */
788 pve = pve->pv_next; /* advance */
789 }
790
791 return(pve); /* return removed pve */
792 }
793
794 /*
795 *
796 * pmap_modify_pv: Update pv flags
797 *
798 * => caller should hold lock on vm_page [so that attrs can be adjusted]
799 * => caller should NOT adjust pmap's wire_count
800 * => caller must call pmap_vac_me_harder() if writable status of a page
801 * may have changed.
802 * => we return the old flags
803 *
804 * Modify a physical-virtual mapping in the pv table
805 */
806 static u_int
807 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
808 u_int clr_mask, u_int set_mask)
809 {
810 struct pv_entry *npv;
811 u_int flags, oflags;
812
813 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
814 return (0);
815
816 NPDEBUG(PDB_PVDUMP,
817 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
818
819 /*
820 * There is at least one VA mapping this page.
821 */
822
823 if (clr_mask & (PVF_REF | PVF_MOD))
824 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
825
826 oflags = npv->pv_flags;
827 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
828
829 if ((flags ^ oflags) & PVF_WIRED) {
830 if (flags & PVF_WIRED)
831 ++pm->pm_stats.wired_count;
832 else
833 --pm->pm_stats.wired_count;
834 }
835
836 if ((flags ^ oflags) & PVF_WRITE) {
837 if (pm == pmap_kernel()) {
838 if (flags & PVF_WRITE) {
839 pg->mdpage.krw_mappings++;
840 pg->mdpage.kro_mappings--;
841 } else {
842 pg->mdpage.kro_mappings++;
843 pg->mdpage.krw_mappings--;
844 }
845 } else
846 if (flags & PVF_WRITE) {
847 pg->mdpage.urw_mappings++;
848 pg->mdpage.uro_mappings--;
849 } else {
850 pg->mdpage.uro_mappings++;
851 pg->mdpage.urw_mappings--;
852 }
853 }
854
855 return (oflags);
856 }
857
858 static void
859 pmap_pinit(pmap_t pm)
860 {
861
862 if (vector_page < KERNEL_BASE) {
863 /*
864 * Map the vector page.
865 */
866 pmap_enter(pm, vector_page, systempage.pv_pa,
867 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
868 pmap_update(pm);
869 }
870 }
871
872 /*
873 * Allocate an L1 translation table for the specified pmap.
874 * This is called at pmap creation time.
875 */
876 static void
877 pmap_alloc_l1(pmap_t pm)
878 {
879 struct l1_ttable *l1;
880 u_int8_t domain;
881
882 /*
883 * Remove the L1 at the head of the LRU list
884 */
885 simple_lock(&l1_lru_lock);
886 l1 = TAILQ_FIRST(&l1_lru_list);
887 KDASSERT(l1 != NULL);
888 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
889
890 /*
891 * Pick the first available domain number, and update
892 * the link to the next number.
893 */
894 domain = l1->l1_domain_first;
895 l1->l1_domain_first = l1->l1_domain_free[domain];
896
897 /*
898 * If there are still free domain numbers in this L1,
899 * put it back on the TAIL of the LRU list.
900 */
901 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
902 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
903
904 simple_unlock(&l1_lru_lock);
905
906 /*
907 * Fix up the relevant bits in the pmap structure
908 */
909 pm->pm_l1 = l1;
910 pm->pm_domain = domain;
911 }
912
913 /*
914 * Free an L1 translation table.
915 * This is called at pmap destruction time.
916 */
917 static void
918 pmap_free_l1(pmap_t pm)
919 {
920 struct l1_ttable *l1 = pm->pm_l1;
921
922 simple_lock(&l1_lru_lock);
923
924 /*
925 * If this L1 is currently on the LRU list, remove it.
926 */
927 if (l1->l1_domain_use_count < PMAP_DOMAINS)
928 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
929
930 /*
931 * Free up the domain number which was allocated to the pmap
932 */
933 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
934 l1->l1_domain_first = pm->pm_domain;
935 l1->l1_domain_use_count--;
936
937 /*
938 * The L1 now must have at least 1 free domain, so add
939 * it back to the LRU list. If the use count is zero,
940 * put it at the head of the list, otherwise it goes
941 * to the tail.
942 */
943 if (l1->l1_domain_use_count == 0)
944 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
945 else
946 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
947
948 simple_unlock(&l1_lru_lock);
949 }
950
951 static __inline void
952 pmap_use_l1(pmap_t pm)
953 {
954 struct l1_ttable *l1;
955
956 /*
957 * Do nothing if we're in interrupt context.
958 * Access to an L1 by the kernel pmap must not affect
959 * the LRU list.
960 */
961 if (current_intr_depth || pm == pmap_kernel())
962 return;
963
964 l1 = pm->pm_l1;
965
966 /*
967 * If the L1 is not currently on the LRU list, just return
968 */
969 if (l1->l1_domain_use_count == PMAP_DOMAINS)
970 return;
971
972 simple_lock(&l1_lru_lock);
973
974 /*
975 * Check the use count again, now that we've acquired the lock
976 */
977 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
978 simple_unlock(&l1_lru_lock);
979 return;
980 }
981
982 /*
983 * Move the L1 to the back of the LRU list
984 */
985 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
986 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
987
988 simple_unlock(&l1_lru_lock);
989 }
990
991 /*
992 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
993 *
994 * Free an L2 descriptor table.
995 */
996 static __inline void
997 #ifndef PMAP_INCLUDE_PTE_SYNC
998 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
999 #else
1000 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
1001 #endif
1002 {
1003 #ifdef PMAP_INCLUDE_PTE_SYNC
1004 /*
1005 * Note: With a write-back cache, we may need to sync this
1006 * L2 table before re-using it.
1007 * This is because it may have belonged to a non-current
1008 * pmap, in which case the cache syncs would have been
1009 * skipped when the pages were being unmapped. If the
1010 * L2 table were then to be immediately re-allocated to
1011 * the *current* pmap, it may well contain stale mappings
1012 * which have not yet been cleared by a cache write-back
1013 * and so would still be visible to the mmu.
1014 */
1015 if (need_sync)
1016 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1017 #endif
1018 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1019 }
1020
1021 /*
1022 * Returns a pointer to the L2 bucket associated with the specified pmap
1023 * and VA, or NULL if no L2 bucket exists for the address.
1024 */
1025 static __inline struct l2_bucket *
1026 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1027 {
1028 struct l2_dtable *l2;
1029 struct l2_bucket *l2b;
1030 u_short l1idx;
1031
1032 l1idx = L1_IDX(va);
1033
1034 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1035 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1036 return (NULL);
1037
1038 return (l2b);
1039 }
1040
1041 /*
1042 * Returns a pointer to the L2 bucket associated with the specified pmap
1043 * and VA.
1044 *
1045 * If no L2 bucket exists, perform the necessary allocations to put an L2
1046 * bucket/page table in place.
1047 *
1048 * Note that if a new L2 bucket/page was allocated, the caller *must*
1049 * increment the bucket occupancy counter appropriately *before*
1050 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1051 * the bucket/page in the meantime.
1052 */
1053 static struct l2_bucket *
1054 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1055 {
1056 struct l2_dtable *l2;
1057 struct l2_bucket *l2b;
1058 u_short l1idx;
1059
1060 l1idx = L1_IDX(va);
1061
1062 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1063 /*
1064 * No mapping at this address, as there is
1065 * no entry in the L1 table.
1066 * Need to allocate a new l2_dtable.
1067 */
1068 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1069 return (NULL);
1070
1071 /*
1072 * Link it into the parent pmap
1073 */
1074 pm->pm_l2[L2_IDX(l1idx)] = l2;
1075 }
1076
1077 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1078
1079 /*
1080 * Fetch pointer to the L2 page table associated with the address.
1081 */
1082 if (l2b->l2b_kva == NULL) {
1083 pt_entry_t *ptep;
1084
1085 /*
1086 * No L2 page table has been allocated. Chances are, this
1087 * is because we just allocated the l2_dtable, above.
1088 */
1089 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1090 /*
1091 * Oops, no more L2 page tables available at this
1092 * time. We may need to deallocate the l2_dtable
1093 * if we allocated a new one above.
1094 */
1095 if (l2->l2_occupancy == 0) {
1096 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1097 pmap_free_l2_dtable(l2);
1098 }
1099 return (NULL);
1100 }
1101
1102 l2->l2_occupancy++;
1103 l2b->l2b_kva = ptep;
1104 l2b->l2b_l1idx = l1idx;
1105 }
1106
1107 return (l2b);
1108 }
1109
1110 /*
1111 * One or more mappings in the specified L2 descriptor table have just been
1112 * invalidated.
1113 *
1114 * Garbage collect the metadata and descriptor table itself if necessary.
1115 *
1116 * The pmap lock must be acquired when this is called (not necessary
1117 * for the kernel pmap).
1118 */
1119 static void
1120 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1121 {
1122 struct l2_dtable *l2;
1123 pd_entry_t *pl1pd, l1pd;
1124 pt_entry_t *ptep;
1125 u_short l1idx;
1126
1127 KDASSERT(count <= l2b->l2b_occupancy);
1128
1129 /*
1130 * Update the bucket's reference count according to how many
1131 * PTEs the caller has just invalidated.
1132 */
1133 l2b->l2b_occupancy -= count;
1134
1135 /*
1136 * Note:
1137 *
1138 * Level 2 page tables allocated to the kernel pmap are never freed
1139 * as that would require checking all Level 1 page tables and
1140 * removing any references to the Level 2 page table. See also the
1141 * comment elsewhere about never freeing bootstrap L2 descriptors.
1142 *
1143 * We make do with just invalidating the mapping in the L2 table.
1144 *
1145 * This isn't really a big deal in practice and, in fact, leads
1146 * to a performance win over time as we don't need to continually
1147 * alloc/free.
1148 */
1149 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1150 return;
1151
1152 /*
1153 * There are no more valid mappings in this level 2 page table.
1154 * Go ahead and NULL-out the pointer in the bucket, then
1155 * free the page table.
1156 */
1157 l1idx = l2b->l2b_l1idx;
1158 ptep = l2b->l2b_kva;
1159 l2b->l2b_kva = NULL;
1160
1161 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1162
1163 /*
1164 * If the L1 slot matches the pmap's domain
1165 * number, then invalidate it.
1166 */
1167 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1168 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1169 *pl1pd = 0;
1170 PTE_SYNC(pl1pd);
1171 }
1172
1173 /*
1174 * Release the L2 descriptor table back to the pool cache.
1175 */
1176 #ifndef PMAP_INCLUDE_PTE_SYNC
1177 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1178 #else
1179 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1180 #endif
1181
1182 /*
1183 * Update the reference count in the associated l2_dtable
1184 */
1185 l2 = pm->pm_l2[L2_IDX(l1idx)];
1186 if (--l2->l2_occupancy > 0)
1187 return;
1188
1189 /*
1190 * There are no more valid mappings in any of the Level 1
1191 * slots managed by this l2_dtable. Go ahead and NULL-out
1192 * the pointer in the parent pmap and free the l2_dtable.
1193 */
1194 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1195 pmap_free_l2_dtable(l2);
1196 }
1197
1198 /*
1199 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1200 * structures.
1201 */
1202 static int
1203 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1204 {
1205 #ifndef PMAP_INCLUDE_PTE_SYNC
1206 struct l2_bucket *l2b;
1207 pt_entry_t *ptep, pte;
1208 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1209
1210 /*
1211 * The mappings for these page tables were initially made using
1212 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1213 * mode will not be right for page table mappings. To avoid
1214 * polluting the pmap_kenter_pa() code with a special case for
1215 * page tables, we simply fix up the cache-mode here if it's not
1216 * correct.
1217 */
1218 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1219 KDASSERT(l2b != NULL);
1220 ptep = &l2b->l2b_kva[l2pte_index(va)];
1221 pte = *ptep;
1222
1223 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1224 /*
1225 * Page tables must have the cache-mode set to Write-Thru.
1226 */
1227 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1228 PTE_SYNC(ptep);
1229 cpu_tlb_flushD_SE(va);
1230 cpu_cpwait();
1231 }
1232 #endif
1233
1234 memset(v, 0, L2_TABLE_SIZE_REAL);
1235 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1236 return (0);
1237 }
1238
1239 static int
1240 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1241 {
1242
1243 memset(v, 0, sizeof(struct l2_dtable));
1244 return (0);
1245 }
1246
1247 static int
1248 pmap_pmap_ctor(void *arg, void *v, int flags)
1249 {
1250
1251 memset(v, 0, sizeof(struct pmap));
1252 return (0);
1253 }
1254
1255 /*
1256 * Since we have a virtually indexed cache, we may need to inhibit caching if
1257 * there is more than one mapping and at least one of them is writable.
1258 * Since we purge the cache on every context switch, we only need to check for
1259 * other mappings within the same pmap, or kernel_pmap.
1260 * This function is also called when a page is unmapped, to possibly reenable
1261 * caching on any remaining mappings.
1262 *
1263 * The code implements the following logic, where:
1264 *
1265 * KW = # of kernel read/write pages
1266 * KR = # of kernel read only pages
1267 * UW = # of user read/write pages
1268 * UR = # of user read only pages
1269 *
1270 * KC = kernel mapping is cacheable
1271 * UC = user mapping is cacheable
1272 *
1273 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1274 * +---------------------------------------------
1275 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1276 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1277 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1278 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1279 */
1280
1281 static const int pmap_vac_flags[4][4] = {
1282 {-1, 0, 0, PVF_KNC},
1283 {0, 0, PVF_NC, PVF_NC},
1284 {0, PVF_NC, PVF_NC, PVF_NC},
1285 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1286 };
1287
1288 static __inline int
1289 pmap_get_vac_flags(const struct vm_page *pg)
1290 {
1291 int kidx, uidx;
1292
1293 kidx = 0;
1294 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1295 kidx |= 1;
1296 if (pg->mdpage.krw_mappings)
1297 kidx |= 2;
1298
1299 uidx = 0;
1300 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1301 uidx |= 1;
1302 if (pg->mdpage.urw_mappings)
1303 uidx |= 2;
1304
1305 return (pmap_vac_flags[uidx][kidx]);
1306 }
1307
1308 static __inline void
1309 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1310 {
1311 int nattr;
1312
1313 nattr = pmap_get_vac_flags(pg);
1314
1315 if (nattr < 0) {
1316 pg->mdpage.pvh_attrs &= ~PVF_NC;
1317 return;
1318 }
1319
1320 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1321 return;
1322
1323 if (pm == pmap_kernel())
1324 pmap_vac_me_kpmap(pg, pm, va);
1325 else
1326 pmap_vac_me_user(pg, pm, va);
1327
1328 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1329 }
1330
1331 static void
1332 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1333 {
1334 u_int u_cacheable, u_entries;
1335 struct pv_entry *pv;
1336 pmap_t last_pmap = pm;
1337
1338 /*
1339 * Pass one, see if there are both kernel and user pmaps for
1340 * this page. Calculate whether there are user-writable or
1341 * kernel-writable pages.
1342 */
1343 u_cacheable = 0;
1344 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1345 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1346 u_cacheable++;
1347 }
1348
1349 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1350
1351 /*
1352 * We know we have just been updating a kernel entry, so if
1353 * all user pages are already cacheable, then there is nothing
1354 * further to do.
1355 */
1356 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1357 return;
1358
1359 if (u_entries) {
1360 /*
1361 * Scan over the list again, for each entry, if it
1362 * might not be set correctly, call pmap_vac_me_user
1363 * to recalculate the settings.
1364 */
1365 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1366 /*
1367 * We know kernel mappings will get set
1368 * correctly in other calls. We also know
1369 * that if the pmap is the same as last_pmap
1370 * then we've just handled this entry.
1371 */
1372 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1373 continue;
1374
1375 /*
1376 * If there are kernel entries and this page
1377 * is writable but non-cacheable, then we can
1378 * skip this entry also.
1379 */
1380 if (pg->mdpage.k_mappings &&
1381 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1382 (PVF_NC | PVF_WRITE))
1383 continue;
1384
1385 /*
1386 * Similarly if there are no kernel-writable
1387 * entries and the page is already
1388 * read-only/cacheable.
1389 */
1390 if (pg->mdpage.krw_mappings == 0 &&
1391 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1392 continue;
1393
1394 /*
1395 * For some of the remaining cases, we know
1396 * that we must recalculate, but for others we
1397 * can't tell if they are correct or not, so
1398 * we recalculate anyway.
1399 */
1400 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1401 }
1402
1403 if (pg->mdpage.k_mappings == 0)
1404 return;
1405 }
1406
1407 pmap_vac_me_user(pg, pm, va);
1408 }
1409
1410 static void
1411 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1412 {
1413 pmap_t kpmap = pmap_kernel();
1414 struct pv_entry *pv, *npv;
1415 struct l2_bucket *l2b;
1416 pt_entry_t *ptep, pte;
1417 u_int entries = 0;
1418 u_int writable = 0;
1419 u_int cacheable_entries = 0;
1420 u_int kern_cacheable = 0;
1421 u_int other_writable = 0;
1422
1423 /*
1424 * Count mappings and writable mappings in this pmap.
1425 * Include kernel mappings as part of our own.
1426 * Keep a pointer to the first one.
1427 */
1428 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1429 /* Count mappings in the same pmap */
1430 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1431 if (entries++ == 0)
1432 npv = pv;
1433
1434 /* Cacheable mappings */
1435 if ((pv->pv_flags & PVF_NC) == 0) {
1436 cacheable_entries++;
1437 if (kpmap == pv->pv_pmap)
1438 kern_cacheable++;
1439 }
1440
1441 /* Writable mappings */
1442 if (pv->pv_flags & PVF_WRITE)
1443 ++writable;
1444 } else
1445 if (pv->pv_flags & PVF_WRITE)
1446 other_writable = 1;
1447 }
1448
1449 /*
1450 * Enable or disable caching as necessary.
1451 * Note: the first entry might be part of the kernel pmap,
1452 * so we can't assume this is indicative of the state of the
1453 * other (maybe non-kpmap) entries.
1454 */
1455 if ((entries > 1 && writable) ||
1456 (entries > 0 && pm == kpmap && other_writable)) {
1457 if (cacheable_entries == 0)
1458 return;
1459
1460 for (pv = npv; pv; pv = pv->pv_next) {
1461 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1462 (pv->pv_flags & PVF_NC))
1463 continue;
1464
1465 pv->pv_flags |= PVF_NC;
1466
1467 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1468 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1469 pte = *ptep & ~L2_S_CACHE_MASK;
1470
1471 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1472 l2pte_valid(pte)) {
1473 if (PV_BEEN_EXECD(pv->pv_flags)) {
1474 pmap_idcache_wbinv_range(pv->pv_pmap,
1475 pv->pv_va, PAGE_SIZE);
1476 pmap_tlb_flushID_SE(pv->pv_pmap,
1477 pv->pv_va);
1478 } else
1479 if (PV_BEEN_REFD(pv->pv_flags)) {
1480 pmap_dcache_wb_range(pv->pv_pmap,
1481 pv->pv_va, PAGE_SIZE, TRUE,
1482 (pv->pv_flags & PVF_WRITE) == 0);
1483 pmap_tlb_flushD_SE(pv->pv_pmap,
1484 pv->pv_va);
1485 }
1486 }
1487
1488 *ptep = pte;
1489 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1490 }
1491 cpu_cpwait();
1492 } else
1493 if (entries > cacheable_entries) {
1494 /*
1495 * Turn cacheing back on for some pages. If it is a kernel
1496 * page, only do so if there are no other writable pages.
1497 */
1498 for (pv = npv; pv; pv = pv->pv_next) {
1499 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1500 (kpmap != pv->pv_pmap || other_writable)))
1501 continue;
1502
1503 pv->pv_flags &= ~PVF_NC;
1504
1505 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1506 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1507 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1508
1509 if (l2pte_valid(pte)) {
1510 if (PV_BEEN_EXECD(pv->pv_flags)) {
1511 pmap_tlb_flushID_SE(pv->pv_pmap,
1512 pv->pv_va);
1513 } else
1514 if (PV_BEEN_REFD(pv->pv_flags)) {
1515 pmap_tlb_flushD_SE(pv->pv_pmap,
1516 pv->pv_va);
1517 }
1518 }
1519
1520 *ptep = pte;
1521 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1522 }
1523 }
1524 }
1525
1526 /*
1527 * Modify pte bits for all ptes corresponding to the given physical address.
1528 * We use `maskbits' rather than `clearbits' because we're always passing
1529 * constants and the latter would require an extra inversion at run-time.
1530 */
1531 static void
1532 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1533 {
1534 struct l2_bucket *l2b;
1535 struct pv_entry *pv;
1536 pt_entry_t *ptep, npte, opte;
1537 pmap_t pm;
1538 vaddr_t va;
1539 u_int oflags;
1540
1541 NPDEBUG(PDB_BITS,
1542 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1543 pg, pg->phys_addr, maskbits));
1544
1545 PMAP_HEAD_TO_MAP_LOCK();
1546 simple_lock(&pg->mdpage.pvh_slock);
1547
1548 /*
1549 * Clear saved attributes (modify, reference)
1550 */
1551 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1552
1553 if (pg->mdpage.pvh_list == NULL) {
1554 simple_unlock(&pg->mdpage.pvh_slock);
1555 PMAP_HEAD_TO_MAP_UNLOCK();
1556 return;
1557 }
1558
1559 /*
1560 * Loop over all current mappings setting/clearing as appropos
1561 */
1562 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1563 va = pv->pv_va;
1564 pm = pv->pv_pmap;
1565 oflags = pv->pv_flags;
1566 pv->pv_flags &= ~maskbits;
1567
1568 pmap_acquire_pmap_lock(pm);
1569
1570 l2b = pmap_get_l2_bucket(pm, va);
1571 KDASSERT(l2b != NULL);
1572
1573 ptep = &l2b->l2b_kva[l2pte_index(va)];
1574 npte = opte = *ptep;
1575
1576 NPDEBUG(PDB_BITS,
1577 printf(
1578 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1579 pv, pv->pv_pmap, pv->pv_va, oflags));
1580
1581 if (maskbits & (PVF_WRITE|PVF_MOD)) {
1582 if ((pv->pv_flags & PVF_NC)) {
1583 /*
1584 * Entry is not cacheable:
1585 *
1586 * Don't turn caching on again if this is a
1587 * modified emulation. This would be
1588 * inconsitent with the settings created by
1589 * pmap_vac_me_harder(). Otherwise, it's safe
1590 * to re-enable cacheing.
1591 *
1592 * There's no need to call pmap_vac_me_harder()
1593 * here: all pages are losing their write
1594 * permission.
1595 */
1596 if (maskbits & PVF_WRITE) {
1597 npte |= pte_l2_s_cache_mode;
1598 pv->pv_flags &= ~PVF_NC;
1599 }
1600 } else
1601 if (opte & L2_S_PROT_W) {
1602 /*
1603 * Entry is writable/cacheable: check if pmap
1604 * is current if it is flush it, otherwise it
1605 * won't be in the cache
1606 */
1607 if (PV_BEEN_EXECD(oflags))
1608 pmap_idcache_wbinv_range(pm, pv->pv_va,
1609 PAGE_SIZE);
1610 else
1611 if (PV_BEEN_REFD(oflags))
1612 pmap_dcache_wb_range(pm, pv->pv_va,
1613 PAGE_SIZE,
1614 (maskbits & PVF_REF) ? TRUE : FALSE,
1615 FALSE);
1616 }
1617
1618 /* make the pte read only */
1619 npte &= ~L2_S_PROT_W;
1620
1621 if (maskbits & PVF_WRITE) {
1622 /*
1623 * Keep alias accounting up to date
1624 */
1625 if (pv->pv_pmap == pmap_kernel()) {
1626 if (oflags & PVF_WRITE) {
1627 pg->mdpage.krw_mappings--;
1628 pg->mdpage.kro_mappings++;
1629 }
1630 } else
1631 if (oflags & PVF_WRITE) {
1632 pg->mdpage.urw_mappings--;
1633 pg->mdpage.uro_mappings++;
1634 }
1635 }
1636 }
1637
1638 if (maskbits & PVF_REF) {
1639 if ((pv->pv_flags & PVF_NC) == 0 &&
1640 (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1641 /*
1642 * Check npte here; we may have already
1643 * done the wbinv above, and the validity
1644 * of the PTE is the same for opte and
1645 * npte.
1646 */
1647 if (npte & L2_S_PROT_W) {
1648 if (PV_BEEN_EXECD(oflags))
1649 pmap_idcache_wbinv_range(pm,
1650 pv->pv_va, PAGE_SIZE);
1651 else
1652 if (PV_BEEN_REFD(oflags))
1653 pmap_dcache_wb_range(pm,
1654 pv->pv_va, PAGE_SIZE,
1655 TRUE, FALSE);
1656 } else
1657 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1658 /* XXXJRT need idcache_inv_range */
1659 if (PV_BEEN_EXECD(oflags))
1660 pmap_idcache_wbinv_range(pm,
1661 pv->pv_va, PAGE_SIZE);
1662 else
1663 if (PV_BEEN_REFD(oflags))
1664 pmap_dcache_wb_range(pm,
1665 pv->pv_va, PAGE_SIZE,
1666 TRUE, TRUE);
1667 }
1668 }
1669
1670 /*
1671 * Make the PTE invalid so that we will take a
1672 * page fault the next time the mapping is
1673 * referenced.
1674 */
1675 npte &= ~L2_TYPE_MASK;
1676 npte |= L2_TYPE_INV;
1677 }
1678
1679 if (npte != opte) {
1680 *ptep = npte;
1681 PTE_SYNC(ptep);
1682 /* Flush the TLB entry if a current pmap. */
1683 if (PV_BEEN_EXECD(oflags))
1684 pmap_tlb_flushID_SE(pm, pv->pv_va);
1685 else
1686 if (PV_BEEN_REFD(oflags))
1687 pmap_tlb_flushD_SE(pm, pv->pv_va);
1688 }
1689
1690 pmap_release_pmap_lock(pm);
1691
1692 NPDEBUG(PDB_BITS,
1693 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1694 pm, va, opte, npte));
1695 }
1696
1697 simple_unlock(&pg->mdpage.pvh_slock);
1698 PMAP_HEAD_TO_MAP_UNLOCK();
1699 }
1700
1701 /*
1702 * pmap_clean_page()
1703 *
1704 * This is a local function used to work out the best strategy to clean
1705 * a single page referenced by its entry in the PV table. It's used by
1706 * pmap_copy_page, pmap_zero page and maybe some others later on.
1707 *
1708 * Its policy is effectively:
1709 * o If there are no mappings, we don't bother doing anything with the cache.
1710 * o If there is one mapping, we clean just that page.
1711 * o If there are multiple mappings, we clean the entire cache.
1712 *
1713 * So that some functions can be further optimised, it returns 0 if it didn't
1714 * clean the entire cache, or 1 if it did.
1715 *
1716 * XXX One bug in this routine is that if the pv_entry has a single page
1717 * mapped at 0x00000000 a whole cache clean will be performed rather than
1718 * just the 1 page. Since this should not occur in everyday use and if it does
1719 * it will just result in not the most efficient clean for the page.
1720 */
1721 static int
1722 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1723 {
1724 pmap_t pm, pm_to_clean = NULL;
1725 struct pv_entry *npv;
1726 u_int cache_needs_cleaning = 0;
1727 u_int flags = 0;
1728 vaddr_t page_to_clean = 0;
1729
1730 if (pv == NULL) {
1731 /* nothing mapped in so nothing to flush */
1732 return (0);
1733 }
1734
1735 /*
1736 * Since we flush the cache each time we change to a different
1737 * user vmspace, we only need to flush the page if it is in the
1738 * current pmap.
1739 */
1740 if (curproc)
1741 pm = curproc->p_vmspace->vm_map.pmap;
1742 else
1743 pm = pmap_kernel();
1744
1745 for (npv = pv; npv; npv = npv->pv_next) {
1746 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1747 flags |= npv->pv_flags;
1748 /*
1749 * The page is mapped non-cacheable in
1750 * this map. No need to flush the cache.
1751 */
1752 if (npv->pv_flags & PVF_NC) {
1753 #ifdef DIAGNOSTIC
1754 if (cache_needs_cleaning)
1755 panic("pmap_clean_page: "
1756 "cache inconsistency");
1757 #endif
1758 break;
1759 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1760 continue;
1761 if (cache_needs_cleaning) {
1762 page_to_clean = 0;
1763 break;
1764 } else {
1765 page_to_clean = npv->pv_va;
1766 pm_to_clean = npv->pv_pmap;
1767 }
1768 cache_needs_cleaning = 1;
1769 }
1770 }
1771
1772 if (page_to_clean) {
1773 if (PV_BEEN_EXECD(flags))
1774 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1775 PAGE_SIZE);
1776 else
1777 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1778 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1779 } else if (cache_needs_cleaning) {
1780 if (PV_BEEN_EXECD(flags))
1781 pmap_idcache_wbinv_all(pm);
1782 else
1783 pmap_dcache_wbinv_all(pm);
1784 return (1);
1785 }
1786 return (0);
1787 }
1788
1789 /*
1790 * Routine: pmap_page_remove
1791 * Function:
1792 * Removes this physical page from
1793 * all physical maps in which it resides.
1794 * Reflects back modify bits to the pager.
1795 */
1796 static void
1797 pmap_page_remove(struct vm_page *pg)
1798 {
1799 struct l2_bucket *l2b;
1800 struct pv_entry *pv, *npv;
1801 pmap_t pm, curpm;
1802 pt_entry_t *ptep, pte;
1803 boolean_t flush;
1804 u_int flags;
1805
1806 NPDEBUG(PDB_FOLLOW,
1807 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg, pg->phys_addr));
1808
1809 PMAP_HEAD_TO_MAP_LOCK();
1810 simple_lock(&pg->mdpage.pvh_slock);
1811
1812 pv = pg->mdpage.pvh_list;
1813 if (pv == NULL) {
1814 simple_unlock(&pg->mdpage.pvh_slock);
1815 PMAP_HEAD_TO_MAP_UNLOCK();
1816 return;
1817 }
1818
1819 /*
1820 * Clear alias counts
1821 */
1822 pg->mdpage.k_mappings = 0;
1823 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1824
1825 flush = FALSE;
1826 flags = 0;
1827 if (curproc)
1828 curpm = curproc->p_vmspace->vm_map.pmap;
1829 else
1830 curpm = pmap_kernel();
1831
1832 pmap_clean_page(pv, FALSE);
1833
1834 while (pv) {
1835 pm = pv->pv_pmap;
1836 if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
1837 flush = TRUE;
1838
1839 pmap_acquire_pmap_lock(pm);
1840
1841 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1842 KDASSERT(l2b != NULL);
1843
1844 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1845 pte = *ptep;
1846
1847 /*
1848 * Update statistics
1849 */
1850 --pm->pm_stats.resident_count;
1851
1852 /* Wired bit */
1853 if (pv->pv_flags & PVF_WIRED)
1854 --pm->pm_stats.wired_count;
1855
1856 flags |= pv->pv_flags;
1857
1858 /*
1859 * Invalidate the PTEs.
1860 */
1861 *ptep = 0;
1862 PTE_SYNC_CURRENT(pm, ptep);
1863 pmap_free_l2_bucket(pm, l2b, 1);
1864
1865 npv = pv->pv_next;
1866 pool_put(&pmap_pv_pool, pv);
1867 pv = npv;
1868 pmap_release_pmap_lock(pm);
1869 }
1870 pg->mdpage.pvh_list = NULL;
1871 simple_unlock(&pg->mdpage.pvh_slock);
1872 PMAP_HEAD_TO_MAP_UNLOCK();
1873
1874 if (flush) {
1875 /*
1876 * Note: We can't use pmap_tlb_flush{I,}D() here since that
1877 * would need a subsequent call to pmap_update() to ensure
1878 * curpm->pm_cstate.cs_all is reset. Our callers are not
1879 * required to do that (see pmap(9)), so we can't modify
1880 * the current pmap's state.
1881 */
1882 if (PV_BEEN_EXECD(flags))
1883 cpu_tlb_flushID();
1884 else
1885 cpu_tlb_flushD();
1886 }
1887 cpu_cpwait();
1888 }
1889
1890 /*
1891 * pmap_t pmap_create(void)
1892 *
1893 * Create a new pmap structure from scratch.
1894 */
1895 pmap_t
1896 pmap_create(void)
1897 {
1898 pmap_t pm;
1899
1900 pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
1901
1902 simple_lock_init(&pm->pm_lock);
1903 pm->pm_obj.pgops = NULL; /* currently not a mappable object */
1904 TAILQ_INIT(&pm->pm_obj.memq);
1905 pm->pm_obj.uo_npages = 0;
1906 pm->pm_obj.uo_refs = 1;
1907 pm->pm_stats.wired_count = 0;
1908 pm->pm_stats.resident_count = 1;
1909 pm->pm_cstate.cs_all = 0;
1910 pmap_alloc_l1(pm);
1911
1912 /*
1913 * Note: The pool cache ensures that the pm_l2[] array is already
1914 * initialised to zero.
1915 */
1916
1917 pmap_pinit(pm);
1918
1919 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1920
1921 return (pm);
1922 }
1923
1924 /*
1925 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1926 * int flags)
1927 *
1928 * Insert the given physical page (p) at
1929 * the specified virtual address (v) in the
1930 * target physical map with the protection requested.
1931 *
1932 * NB: This is the only routine which MAY NOT lazy-evaluate
1933 * or lose information. That is, this routine must actually
1934 * insert this page into the given map NOW.
1935 */
1936 int
1937 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1938 {
1939 struct l2_bucket *l2b;
1940 struct vm_page *pg, *opg;
1941 struct pv_entry *pve;
1942 pt_entry_t *ptep, npte, opte;
1943 u_int nflags;
1944 u_int oflags;
1945
1946 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1947
1948 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1949 KDASSERT(((va | pa) & PGOFSET) == 0);
1950
1951 /*
1952 * Get a pointer to the page. Later on in this function, we
1953 * test for a managed page by checking pg != NULL.
1954 */
1955 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1956
1957 nflags = 0;
1958 if (prot & VM_PROT_WRITE)
1959 nflags |= PVF_WRITE;
1960 if (prot & VM_PROT_EXECUTE)
1961 nflags |= PVF_EXEC;
1962 if (flags & PMAP_WIRED)
1963 nflags |= PVF_WIRED;
1964
1965 PMAP_MAP_TO_HEAD_LOCK();
1966 pmap_acquire_pmap_lock(pm);
1967
1968 /*
1969 * Fetch the L2 bucket which maps this page, allocating one if
1970 * necessary for user pmaps.
1971 */
1972 if (pm == pmap_kernel())
1973 l2b = pmap_get_l2_bucket(pm, va);
1974 else
1975 l2b = pmap_alloc_l2_bucket(pm, va);
1976 if (l2b == NULL) {
1977 if (flags & PMAP_CANFAIL) {
1978 pmap_release_pmap_lock(pm);
1979 PMAP_MAP_TO_HEAD_UNLOCK();
1980 return (ENOMEM);
1981 }
1982 panic("pmap_enter: failed to allocate L2 bucket");
1983 }
1984 ptep = &l2b->l2b_kva[l2pte_index(va)];
1985 opte = *ptep;
1986 npte = pa;
1987 oflags = 0;
1988
1989 if (opte) {
1990 /*
1991 * There is already a mapping at this address.
1992 * If the physical address is different, lookup the
1993 * vm_page.
1994 */
1995 if (l2pte_pa(opte) != pa)
1996 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
1997 else
1998 opg = pg;
1999 } else
2000 opg = NULL;
2001
2002 if (pg) {
2003 /*
2004 * This is to be a managed mapping.
2005 */
2006 if ((flags & VM_PROT_ALL) ||
2007 (pg->mdpage.pvh_attrs & PVF_REF)) {
2008 /*
2009 * - The access type indicates that we don't need
2010 * to do referenced emulation.
2011 * OR
2012 * - The physical page has already been referenced
2013 * so no need to re-do referenced emulation here.
2014 */
2015 npte |= L2_S_PROTO;
2016
2017 nflags |= PVF_REF;
2018
2019 if ((prot & VM_PROT_WRITE) != 0 &&
2020 ((flags & VM_PROT_WRITE) != 0 ||
2021 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2022 /*
2023 * This is a writable mapping, and the
2024 * page's mod state indicates it has
2025 * already been modified. Make it
2026 * writable from the outset.
2027 */
2028 npte |= L2_S_PROT_W;
2029 nflags |= PVF_MOD;
2030 }
2031 } else {
2032 /*
2033 * Need to do page referenced emulation.
2034 */
2035 npte |= L2_TYPE_INV;
2036 }
2037
2038 npte |= pte_l2_s_cache_mode;
2039
2040 if (pg == opg) {
2041 /*
2042 * We're changing the attrs of an existing mapping.
2043 */
2044 simple_lock(&pg->mdpage.pvh_slock);
2045 oflags = pmap_modify_pv(pg, pm, va,
2046 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2047 PVF_MOD | PVF_REF, nflags);
2048 simple_unlock(&pg->mdpage.pvh_slock);
2049
2050 /*
2051 * We may need to flush the cache if we're
2052 * doing rw-ro...
2053 */
2054 if (pm->pm_cstate.cs_cache_d &&
2055 (oflags & PVF_NC) == 0 &&
2056 (opte & L2_S_PROT_W) != 0 &&
2057 (prot & VM_PROT_WRITE) == 0)
2058 cpu_dcache_wb_range(va, PAGE_SIZE);
2059 } else {
2060 /*
2061 * New mapping, or changing the backing page
2062 * of an existing mapping.
2063 */
2064 if (opg) {
2065 /*
2066 * Replacing an existing mapping with a new one.
2067 * It is part of our managed memory so we
2068 * must remove it from the PV list
2069 */
2070 simple_lock(&opg->mdpage.pvh_slock);
2071 pve = pmap_remove_pv(opg, pm, va);
2072 pmap_vac_me_harder(opg, pm, 0);
2073 simple_unlock(&opg->mdpage.pvh_slock);
2074 oflags = pve->pv_flags;
2075
2076 /*
2077 * If the old mapping was valid (ref/mod
2078 * emulation creates 'invalid' mappings
2079 * initially) then make sure to frob
2080 * the cache.
2081 */
2082 if ((oflags & PVF_NC) == 0 &&
2083 l2pte_valid(opte)) {
2084 if (PV_BEEN_EXECD(oflags)) {
2085 pmap_idcache_wbinv_range(pm, va,
2086 PAGE_SIZE);
2087 } else
2088 if (PV_BEEN_REFD(oflags)) {
2089 pmap_dcache_wb_range(pm, va,
2090 PAGE_SIZE, TRUE,
2091 (oflags & PVF_WRITE) == 0);
2092 }
2093 }
2094 } else
2095 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2096 if ((flags & PMAP_CANFAIL) == 0)
2097 panic("pmap_enter: no pv entries");
2098
2099 if (pm != pmap_kernel())
2100 pmap_free_l2_bucket(pm, l2b, 0);
2101 pmap_release_pmap_lock(pm);
2102 PMAP_MAP_TO_HEAD_UNLOCK();
2103 NPDEBUG(PDB_ENTER,
2104 printf("pmap_enter: ENOMEM\n"));
2105 return (ENOMEM);
2106 }
2107
2108 pmap_enter_pv(pg, pve, pm, va, nflags);
2109 }
2110 } else {
2111 /*
2112 * We're mapping an unmanaged page.
2113 * These are always readable, and possibly writable, from
2114 * the get go as we don't need to track ref/mod status.
2115 */
2116 npte |= L2_S_PROTO;
2117 if (prot & VM_PROT_WRITE)
2118 npte |= L2_S_PROT_W;
2119
2120 /*
2121 * Make sure the vector table is mapped cacheable
2122 */
2123 if (pm != pmap_kernel() && va == vector_page)
2124 npte |= pte_l2_s_cache_mode;
2125
2126 if (opg) {
2127 /*
2128 * Looks like there's an existing 'managed' mapping
2129 * at this address.
2130 */
2131 simple_lock(&opg->mdpage.pvh_slock);
2132 pve = pmap_remove_pv(opg, pm, va);
2133 pmap_vac_me_harder(opg, pm, 0);
2134 simple_unlock(&opg->mdpage.pvh_slock);
2135 oflags = pve->pv_flags;
2136
2137 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2138 if (PV_BEEN_EXECD(oflags))
2139 pmap_idcache_wbinv_range(pm, va,
2140 PAGE_SIZE);
2141 else
2142 if (PV_BEEN_REFD(oflags))
2143 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2144 TRUE, (oflags & PVF_WRITE) == 0);
2145 }
2146 pool_put(&pmap_pv_pool, pve);
2147 }
2148 }
2149
2150 /*
2151 * Make sure userland mappings get the right permissions
2152 */
2153 if (pm != pmap_kernel() && va != vector_page)
2154 npte |= L2_S_PROT_U;
2155
2156 /*
2157 * Keep the stats up to date
2158 */
2159 if (opte == 0) {
2160 l2b->l2b_occupancy++;
2161 pm->pm_stats.resident_count++;
2162 }
2163
2164 NPDEBUG(PDB_ENTER,
2165 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2166
2167 /*
2168 * If this is just a wiring change, the two PTEs will be
2169 * identical, so there's no need to update the page table.
2170 */
2171 if (npte != opte) {
2172 boolean_t is_cached = pmap_is_cached(pm);
2173
2174 *ptep = npte;
2175 if (is_cached) {
2176 /*
2177 * We only need to frob the cache/tlb if this pmap
2178 * is current
2179 */
2180 PTE_SYNC(ptep);
2181 if (va != vector_page && l2pte_valid(npte)) {
2182 /*
2183 * This mapping is likely to be accessed as
2184 * soon as we return to userland. Fix up the
2185 * L1 entry to avoid taking another
2186 * page/domain fault.
2187 */
2188 pd_entry_t *pl1pd, l1pd;
2189
2190 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2191 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2192 L1_C_PROTO;
2193 if (*pl1pd != l1pd) {
2194 *pl1pd = l1pd;
2195 PTE_SYNC(pl1pd);
2196 }
2197 }
2198 }
2199
2200 if (PV_BEEN_EXECD(oflags))
2201 pmap_tlb_flushID_SE(pm, va);
2202 else
2203 if (PV_BEEN_REFD(oflags))
2204 pmap_tlb_flushD_SE(pm, va);
2205
2206 NPDEBUG(PDB_ENTER,
2207 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2208 is_cached, pm->pm_cstate.cs_all));
2209
2210 if (pg != NULL) {
2211 simple_lock(&pg->mdpage.pvh_slock);
2212 pmap_vac_me_harder(pg, pm, va);
2213 simple_unlock(&pg->mdpage.pvh_slock);
2214 }
2215 }
2216
2217 pmap_release_pmap_lock(pm);
2218 PMAP_MAP_TO_HEAD_UNLOCK();
2219
2220 return (0);
2221 }
2222
2223 /*
2224 * pmap_remove()
2225 *
2226 * pmap_remove is responsible for nuking a number of mappings for a range
2227 * of virtual address space in the current pmap. To do this efficiently
2228 * is interesting, because in a number of cases a wide virtual address
2229 * range may be supplied that contains few actual mappings. So, the
2230 * optimisations are:
2231 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2232 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2233 * maybe do just a partial cache clean. This path of execution is
2234 * complicated by the fact that the cache must be flushed _before_
2235 * the PTE is nuked, being a VAC :-)
2236 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2237 * all invalidations until pmap_update(), since pmap_remove_all() has
2238 * already flushed the cache.
2239 * 4. Maybe later fast-case a single page, but I don't think this is
2240 * going to make _that_ much difference overall.
2241 */
2242
2243 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2244
2245 void
2246 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
2247 {
2248 struct l2_bucket *l2b;
2249 vaddr_t next_bucket;
2250 pt_entry_t *ptep;
2251 u_int cleanlist_idx, total, cnt;
2252 struct {
2253 vaddr_t va;
2254 pt_entry_t *pte;
2255 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2256 u_int mappings, is_exec, is_refd;
2257
2258 NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2259 pm, sva, eva));
2260
2261 /*
2262 * we lock in the pmap => pv_head direction
2263 */
2264 PMAP_MAP_TO_HEAD_LOCK();
2265 pmap_acquire_pmap_lock(pm);
2266
2267 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2268 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2269 if (pm->pm_cstate.cs_tlb == 0)
2270 pm->pm_remove_all = TRUE;
2271 } else
2272 cleanlist_idx = 0;
2273
2274 total = 0;
2275
2276 while (sva < eva) {
2277 /*
2278 * Do one L2 bucket's worth at a time.
2279 */
2280 next_bucket = L2_NEXT_BUCKET(sva);
2281 if (next_bucket > eva)
2282 next_bucket = eva;
2283
2284 l2b = pmap_get_l2_bucket(pm, sva);
2285 if (l2b == NULL) {
2286 sva = next_bucket;
2287 continue;
2288 }
2289
2290 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2291 mappings = 0;
2292
2293 while (sva < next_bucket) {
2294 struct vm_page *pg;
2295 pt_entry_t pte;
2296 paddr_t pa;
2297
2298 pte = *ptep;
2299
2300 if (pte == 0) {
2301 /*
2302 * Nothing here, move along
2303 */
2304 sva += PAGE_SIZE;
2305 ptep++;
2306 continue;
2307 }
2308
2309 pm->pm_stats.resident_count--;
2310 pa = l2pte_pa(pte);
2311 is_exec = 0;
2312 is_refd = 1;
2313
2314 /*
2315 * Update flags. In a number of circumstances,
2316 * we could cluster a lot of these and do a
2317 * number of sequential pages in one go.
2318 */
2319 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2320 struct pv_entry *pve;
2321 simple_lock(&pg->mdpage.pvh_slock);
2322 pve = pmap_remove_pv(pg, pm, sva);
2323 pmap_vac_me_harder(pg, pm, 0);
2324 simple_unlock(&pg->mdpage.pvh_slock);
2325 if (pve != NULL) {
2326 if (pm->pm_remove_all == FALSE) {
2327 is_exec =
2328 PV_BEEN_EXECD(pve->pv_flags);
2329 is_refd =
2330 PV_BEEN_REFD(pve->pv_flags);
2331 }
2332 pool_put(&pmap_pv_pool, pve);
2333 }
2334 }
2335
2336 if (!l2pte_valid(pte)) {
2337 *ptep = 0;
2338 PTE_SYNC_CURRENT(pm, ptep);
2339 sva += PAGE_SIZE;
2340 ptep++;
2341 mappings++;
2342 continue;
2343 }
2344
2345 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2346 /* Add to the clean list. */
2347 cleanlist[cleanlist_idx].pte = ptep;
2348 cleanlist[cleanlist_idx].va =
2349 sva | (is_exec & 1);
2350 cleanlist_idx++;
2351 } else
2352 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2353 /* Nuke everything if needed. */
2354 pmap_idcache_wbinv_all(pm);
2355 pmap_tlb_flushID(pm);
2356
2357 /*
2358 * Roll back the previous PTE list,
2359 * and zero out the current PTE.
2360 */
2361 for (cnt = 0;
2362 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2363 *cleanlist[cnt].pte = 0;
2364 }
2365 *ptep = 0;
2366 PTE_SYNC(ptep);
2367 cleanlist_idx++;
2368 pm->pm_remove_all = TRUE;
2369 } else {
2370 *ptep = 0;
2371 PTE_SYNC(ptep);
2372 if (pm->pm_remove_all == FALSE) {
2373 if (is_exec)
2374 pmap_tlb_flushID_SE(pm, sva);
2375 else
2376 if (is_refd)
2377 pmap_tlb_flushD_SE(pm, sva);
2378 }
2379 }
2380
2381 sva += PAGE_SIZE;
2382 ptep++;
2383 mappings++;
2384 }
2385
2386 /*
2387 * Deal with any left overs
2388 */
2389 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2390 total += cleanlist_idx;
2391 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2392 if (pm->pm_cstate.cs_all != 0) {
2393 vaddr_t clva = cleanlist[cnt].va & ~1;
2394 if (cleanlist[cnt].va & 1) {
2395 pmap_idcache_wbinv_range(pm,
2396 clva, PAGE_SIZE);
2397 pmap_tlb_flushID_SE(pm, clva);
2398 } else {
2399 pmap_dcache_wb_range(pm,
2400 clva, PAGE_SIZE, TRUE,
2401 FALSE);
2402 pmap_tlb_flushD_SE(pm, clva);
2403 }
2404 }
2405 *cleanlist[cnt].pte = 0;
2406 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2407 }
2408
2409 /*
2410 * If it looks like we're removing a whole bunch
2411 * of mappings, it's faster to just write-back
2412 * the whole cache now and defer TLB flushes until
2413 * pmap_update() is called.
2414 */
2415 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2416 cleanlist_idx = 0;
2417 else {
2418 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2419 pmap_idcache_wbinv_all(pm);
2420 pm->pm_remove_all = TRUE;
2421 }
2422 }
2423
2424 pmap_free_l2_bucket(pm, l2b, mappings);
2425 }
2426
2427 pmap_release_pmap_lock(pm);
2428 PMAP_MAP_TO_HEAD_UNLOCK();
2429 }
2430
2431 /*
2432 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2433 *
2434 * We assume there is already sufficient KVM space available
2435 * to do this, as we can't allocate L2 descriptor tables/metadata
2436 * from here.
2437 */
2438 void
2439 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2440 {
2441 struct l2_bucket *l2b;
2442 pt_entry_t *ptep, opte;
2443
2444 NPDEBUG(PDB_KENTER,
2445 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2446 va, pa, prot));
2447
2448 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2449 KDASSERT(l2b != NULL);
2450
2451 ptep = &l2b->l2b_kva[l2pte_index(va)];
2452 opte = *ptep;
2453
2454 if (l2pte_valid(opte)) {
2455 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2456 cpu_tlb_flushD_SE(va);
2457 cpu_cpwait();
2458 } else
2459 if (opte == 0)
2460 l2b->l2b_occupancy++;
2461
2462 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2463 pte_l2_s_cache_mode;
2464 PTE_SYNC(ptep);
2465 }
2466
2467 void
2468 pmap_kremove(vaddr_t va, vsize_t len)
2469 {
2470 struct l2_bucket *l2b;
2471 pt_entry_t *ptep, *sptep, opte;
2472 vaddr_t next_bucket, eva;
2473 u_int mappings;
2474
2475 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2476 va, len));
2477
2478 eva = va + len;
2479
2480 while (va < eva) {
2481 next_bucket = L2_NEXT_BUCKET(va);
2482 if (next_bucket > eva)
2483 next_bucket = eva;
2484
2485 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2486 KDASSERT(l2b != NULL);
2487
2488 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2489 mappings = 0;
2490
2491 while (va < next_bucket) {
2492 opte = *ptep;
2493 if (l2pte_valid(opte)) {
2494 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2495 cpu_tlb_flushD_SE(va);
2496 }
2497 if (opte) {
2498 *ptep = 0;
2499 mappings++;
2500 }
2501 va += PAGE_SIZE;
2502 ptep++;
2503 }
2504 KDASSERT(mappings <= l2b->l2b_occupancy);
2505 l2b->l2b_occupancy -= mappings;
2506 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2507 }
2508 cpu_cpwait();
2509 }
2510
2511 boolean_t
2512 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2513 {
2514 struct l2_dtable *l2;
2515 pd_entry_t *pl1pd, l1pd;
2516 pt_entry_t *ptep, pte;
2517 paddr_t pa;
2518 u_int l1idx;
2519
2520 pmap_acquire_pmap_lock(pm);
2521
2522 l1idx = L1_IDX(va);
2523 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2524 l1pd = *pl1pd;
2525
2526 if (l1pte_section_p(l1pd)) {
2527 /*
2528 * These should only happen for pmap_kernel()
2529 */
2530 KDASSERT(pm == pmap_kernel());
2531 pmap_release_pmap_lock(pm);
2532 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2533 } else {
2534 /*
2535 * Note that we can't rely on the validity of the L1
2536 * descriptor as an indication that a mapping exists.
2537 * We have to look it up in the L2 dtable.
2538 */
2539 l2 = pm->pm_l2[L2_IDX(l1idx)];
2540
2541 if (l2 == NULL ||
2542 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2543 pmap_release_pmap_lock(pm);
2544 return (FALSE);
2545 }
2546
2547 ptep = &ptep[l2pte_index(va)];
2548 pte = *ptep;
2549 pmap_release_pmap_lock(pm);
2550
2551 if (pte == 0)
2552 return (FALSE);
2553
2554 switch (pte & L2_TYPE_MASK) {
2555 case L2_TYPE_L:
2556 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2557 break;
2558
2559 default:
2560 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2561 break;
2562 }
2563 }
2564
2565 if (pap != NULL)
2566 *pap = pa;
2567
2568 return (TRUE);
2569 }
2570
2571 void
2572 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2573 {
2574 struct l2_bucket *l2b;
2575 pt_entry_t *ptep, pte;
2576 vaddr_t next_bucket;
2577 u_int flags;
2578 int flush;
2579
2580 NPDEBUG(PDB_PROTECT,
2581 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2582 pm, sva, eva, prot));
2583
2584 if ((prot & VM_PROT_READ) == 0) {
2585 pmap_remove(pm, sva, eva);
2586 return;
2587 }
2588
2589 if (prot & VM_PROT_WRITE) {
2590 /*
2591 * If this is a read->write transition, just ignore it and let
2592 * uvm_fault() take care of it later.
2593 */
2594 return;
2595 }
2596
2597 PMAP_MAP_TO_HEAD_LOCK();
2598 pmap_acquire_pmap_lock(pm);
2599
2600 /*
2601 * OK, at this point, we know we're doing write-protect operation.
2602 * If the pmap is active, write-back the range.
2603 */
2604 pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
2605
2606 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2607 flags = 0;
2608
2609 while (sva < eva) {
2610 next_bucket = L2_NEXT_BUCKET(sva);
2611 if (next_bucket > eva)
2612 next_bucket = eva;
2613
2614 l2b = pmap_get_l2_bucket(pm, sva);
2615 if (l2b == NULL) {
2616 sva = next_bucket;
2617 continue;
2618 }
2619
2620 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2621
2622 while (sva < next_bucket) {
2623 if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2624 struct vm_page *pg;
2625 u_int f;
2626
2627 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2628 pte &= ~L2_S_PROT_W;
2629 *ptep = pte;
2630 PTE_SYNC(ptep);
2631
2632 if (pg != NULL) {
2633 simple_lock(&pg->mdpage.pvh_slock);
2634 f = pmap_modify_pv(pg, pm, sva,
2635 PVF_WRITE, 0);
2636 pmap_vac_me_harder(pg, pm, sva);
2637 simple_unlock(&pg->mdpage.pvh_slock);
2638 } else
2639 f = PVF_REF | PVF_EXEC;
2640
2641 if (flush >= 0) {
2642 flush++;
2643 flags |= f;
2644 } else
2645 if (PV_BEEN_EXECD(f))
2646 pmap_tlb_flushID_SE(pm, sva);
2647 else
2648 if (PV_BEEN_REFD(f))
2649 pmap_tlb_flushD_SE(pm, sva);
2650 }
2651
2652 sva += PAGE_SIZE;
2653 ptep++;
2654 }
2655 }
2656
2657 pmap_release_pmap_lock(pm);
2658 PMAP_MAP_TO_HEAD_UNLOCK();
2659
2660 if (flush) {
2661 if (PV_BEEN_EXECD(flags))
2662 pmap_tlb_flushID(pm);
2663 else
2664 if (PV_BEEN_REFD(flags))
2665 pmap_tlb_flushD(pm);
2666 }
2667 }
2668
2669 void
2670 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2671 {
2672
2673 NPDEBUG(PDB_PROTECT,
2674 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2675 pg, pg->phys_addr, prot));
2676
2677 switch(prot) {
2678 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2679 case VM_PROT_READ|VM_PROT_WRITE:
2680 return;
2681
2682 case VM_PROT_READ:
2683 case VM_PROT_READ|VM_PROT_EXECUTE:
2684 pmap_clearbit(pg, PVF_WRITE);
2685 break;
2686
2687 default:
2688 pmap_page_remove(pg);
2689 break;
2690 }
2691 }
2692
2693 /*
2694 * pmap_clear_modify:
2695 *
2696 * Clear the "modified" attribute for a page.
2697 */
2698 boolean_t
2699 pmap_clear_modify(struct vm_page *pg)
2700 {
2701 boolean_t rv;
2702
2703 if (pg->mdpage.pvh_attrs & PVF_MOD) {
2704 rv = TRUE;
2705 pmap_clearbit(pg, PVF_MOD);
2706 } else
2707 rv = FALSE;
2708
2709 return (rv);
2710 }
2711
2712 /*
2713 * pmap_clear_reference:
2714 *
2715 * Clear the "referenced" attribute for a page.
2716 */
2717 boolean_t
2718 pmap_clear_reference(struct vm_page *pg)
2719 {
2720 boolean_t rv;
2721
2722 if (pg->mdpage.pvh_attrs & PVF_REF) {
2723 rv = TRUE;
2724 pmap_clearbit(pg, PVF_REF);
2725 } else
2726 rv = FALSE;
2727
2728 return (rv);
2729 }
2730
2731 /*
2732 * pmap_is_modified:
2733 *
2734 * Test if a page has the "modified" attribute.
2735 */
2736 /* See <arm/arm32/pmap.h> */
2737
2738 /*
2739 * pmap_is_referenced:
2740 *
2741 * Test if a page has the "referenced" attribute.
2742 */
2743 /* See <arm/arm32/pmap.h> */
2744
2745 int
2746 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2747 {
2748 struct l2_dtable *l2;
2749 struct l2_bucket *l2b;
2750 pd_entry_t *pl1pd, l1pd;
2751 pt_entry_t *ptep, pte;
2752 paddr_t pa;
2753 u_int l1idx;
2754 int rv = 0;
2755
2756 PMAP_MAP_TO_HEAD_LOCK();
2757 pmap_acquire_pmap_lock(pm);
2758
2759 l1idx = L1_IDX(va);
2760
2761 /*
2762 * If there is no l2_dtable for this address, then the process
2763 * has no business accessing it.
2764 *
2765 * Note: This will catch userland processes trying to access
2766 * kernel addresses.
2767 */
2768 l2 = pm->pm_l2[L2_IDX(l1idx)];
2769 if (l2 == NULL)
2770 goto out;
2771
2772 /*
2773 * Likewise if there is no L2 descriptor table
2774 */
2775 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2776 if (l2b->l2b_kva == NULL)
2777 goto out;
2778
2779 /*
2780 * Check the PTE itself.
2781 */
2782 ptep = &l2b->l2b_kva[l2pte_index(va)];
2783 pte = *ptep;
2784 if (pte == 0)
2785 goto out;
2786
2787 /*
2788 * Catch a userland access to the vector page mapped at 0x0
2789 */
2790 if (user && (pte & L2_S_PROT_U) == 0)
2791 goto out;
2792
2793 pa = l2pte_pa(pte);
2794
2795 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2796 /*
2797 * This looks like a good candidate for "page modified"
2798 * emulation...
2799 */
2800 struct pv_entry *pv;
2801 struct vm_page *pg;
2802
2803 /* Extract the physical address of the page */
2804 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2805 goto out;
2806
2807 /* Get the current flags for this page. */
2808 simple_lock(&pg->mdpage.pvh_slock);
2809
2810 pv = pmap_find_pv(pg, pm, va);
2811 if (pv == NULL) {
2812 simple_unlock(&pg->mdpage.pvh_slock);
2813 goto out;
2814 }
2815
2816 /*
2817 * Do the flags say this page is writable? If not then it
2818 * is a genuine write fault. If yes then the write fault is
2819 * our fault as we did not reflect the write access in the
2820 * PTE. Now we know a write has occurred we can correct this
2821 * and also set the modified bit
2822 */
2823 if ((pv->pv_flags & PVF_WRITE) == 0) {
2824 simple_unlock(&pg->mdpage.pvh_slock);
2825 goto out;
2826 }
2827
2828 NPDEBUG(PDB_FOLLOW,
2829 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2830 pm, va, pg->phys_addr));
2831
2832 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2833 pv->pv_flags |= PVF_REF | PVF_MOD;
2834 simple_unlock(&pg->mdpage.pvh_slock);
2835
2836 /*
2837 * Re-enable write permissions for the page. No need to call
2838 * pmap_vac_me_harder(), since this is just a
2839 * modified-emulation fault, and the PVF_WRITE bit isn't
2840 * changing. We've already set the cacheable bits based on
2841 * the assumption that we can write to this page.
2842 */
2843 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2844 PTE_SYNC(ptep);
2845 rv = 1;
2846 } else
2847 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2848 /*
2849 * This looks like a good candidate for "page referenced"
2850 * emulation.
2851 */
2852 struct pv_entry *pv;
2853 struct vm_page *pg;
2854
2855 /* Extract the physical address of the page */
2856 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2857 goto out;
2858
2859 /* Get the current flags for this page. */
2860 simple_lock(&pg->mdpage.pvh_slock);
2861
2862 pv = pmap_find_pv(pg, pm, va);
2863 if (pv == NULL) {
2864 simple_unlock(&pg->mdpage.pvh_slock);
2865 goto out;
2866 }
2867
2868 pg->mdpage.pvh_attrs |= PVF_REF;
2869 pv->pv_flags |= PVF_REF;
2870 simple_unlock(&pg->mdpage.pvh_slock);
2871
2872 NPDEBUG(PDB_FOLLOW,
2873 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2874 pm, va, pg->phys_addr));
2875
2876 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2877 PTE_SYNC(ptep);
2878 rv = 1;
2879 }
2880
2881 /*
2882 * We know there is a valid mapping here, so simply
2883 * fix up the L1 if necessary.
2884 */
2885 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2886 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2887 if (*pl1pd != l1pd) {
2888 *pl1pd = l1pd;
2889 PTE_SYNC(pl1pd);
2890 rv = 1;
2891 }
2892
2893 #ifdef CPU_SA110
2894 /*
2895 * There are bugs in the rev K SA110. This is a check for one
2896 * of them.
2897 */
2898 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2899 curcpu()->ci_arm_cpurev < 3) {
2900 /* Always current pmap */
2901 if (l2pte_valid(pte)) {
2902 extern int kernel_debug;
2903 if (kernel_debug & 1) {
2904 struct proc *p = curlwp->l_proc;
2905 printf("prefetch_abort: page is already "
2906 "mapped - pte=%p *pte=%08x\n", ptep, pte);
2907 printf("prefetch_abort: pc=%08lx proc=%p "
2908 "process=%s\n", va, p, p->p_comm);
2909 printf("prefetch_abort: far=%08x fs=%x\n",
2910 cpu_faultaddress(), cpu_faultstatus());
2911 }
2912 #ifdef DDB
2913 if (kernel_debug & 2)
2914 Debugger();
2915 #endif
2916 rv = 1;
2917 }
2918 }
2919 #endif /* CPU_SA110 */
2920
2921 #ifdef DEBUG
2922 /*
2923 * If 'rv == 0' at this point, it generally indicates that there is a
2924 * stale TLB entry for the faulting address. This happens when two or
2925 * more processes are sharing an L1. Since we don't flush the TLB on
2926 * a context switch between such processes, we can take domain faults
2927 * for mappings which exist at the same VA in both processes. EVEN IF
2928 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2929 * example.
2930 *
2931 * This is extremely likely to happen if pmap_enter() updated the L1
2932 * entry for a recently entered mapping. In this case, the TLB is
2933 * flushed for the new mapping, but there may still be TLB entries for
2934 * other mappings belonging to other processes in the 1MB range
2935 * covered by the L1 entry.
2936 *
2937 * Since 'rv == 0', we know that the L1 already contains the correct
2938 * value, so the fault must be due to a stale TLB entry.
2939 *
2940 * Since we always need to flush the TLB anyway in the case where we
2941 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2942 * stale TLB entries dynamically.
2943 *
2944 * However, the above condition can ONLY happen if the current L1 is
2945 * being shared. If it happens when the L1 is unshared, it indicates
2946 * that other parts of the pmap are not doing their job WRT managing
2947 * the TLB.
2948 */
2949 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2950 extern int last_fault_code;
2951 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2952 pm, va, ftype);
2953 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2954 l2, l2b, ptep, pl1pd);
2955 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2956 pte, l1pd, last_fault_code);
2957 #ifdef DDB
2958 Debugger();
2959 #endif
2960 }
2961 #endif
2962
2963 cpu_tlb_flushID_SE(va);
2964 cpu_cpwait();
2965
2966 rv = 1;
2967
2968 out:
2969 pmap_release_pmap_lock(pm);
2970 PMAP_MAP_TO_HEAD_UNLOCK();
2971
2972 return (rv);
2973 }
2974
2975 /*
2976 * pmap_collect: free resources held by a pmap
2977 *
2978 * => optional function.
2979 * => called when a process is swapped out to free memory.
2980 */
2981 void
2982 pmap_collect(pmap_t pm)
2983 {
2984 /*
2985 * Nothing to do.
2986 * We don't even need to free-up the process' L1.
2987 */
2988 }
2989
2990 /*
2991 * Routine: pmap_procwr
2992 *
2993 * Function:
2994 * Synchronize caches corresponding to [addr, addr+len) in p.
2995 *
2996 */
2997 void
2998 pmap_procwr(struct proc *p, vaddr_t va, int len)
2999 {
3000 /* We only need to do anything if it is the current process. */
3001 if (p == curproc)
3002 cpu_icache_sync_range(va, len);
3003 }
3004
3005 /*
3006 * Routine: pmap_unwire
3007 * Function: Clear the wired attribute for a map/virtual-address pair.
3008 *
3009 * In/out conditions:
3010 * The mapping must already exist in the pmap.
3011 */
3012 void
3013 pmap_unwire(pmap_t pm, vaddr_t va)
3014 {
3015 struct l2_bucket *l2b;
3016 pt_entry_t *ptep, pte;
3017 struct vm_page *pg;
3018 paddr_t pa;
3019
3020 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3021
3022 PMAP_MAP_TO_HEAD_LOCK();
3023 pmap_acquire_pmap_lock(pm);
3024
3025 l2b = pmap_get_l2_bucket(pm, va);
3026 KDASSERT(l2b != NULL);
3027
3028 ptep = &l2b->l2b_kva[l2pte_index(va)];
3029 pte = *ptep;
3030
3031 /* Extract the physical address of the page */
3032 pa = l2pte_pa(pte);
3033
3034 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3035 /* Update the wired bit in the pv entry for this page. */
3036 simple_lock(&pg->mdpage.pvh_slock);
3037 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3038 simple_unlock(&pg->mdpage.pvh_slock);
3039 }
3040
3041 pmap_release_pmap_lock(pm);
3042 PMAP_MAP_TO_HEAD_UNLOCK();
3043 }
3044
3045 void
3046 pmap_activate(struct lwp *l)
3047 {
3048 pmap_t pm;
3049 struct pcb *pcb;
3050 int s;
3051
3052 pm = l->l_proc->p_vmspace->vm_map.pmap;
3053 pcb = &l->l_addr->u_pcb;
3054
3055 pmap_set_pcb_pagedir(pm, pcb);
3056
3057 if (l == curlwp) {
3058 u_int cur_dacr, cur_ttb;
3059
3060 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
3061 __asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
3062
3063 cur_ttb &= ~(L1_TABLE_SIZE - 1);
3064
3065 if (cur_ttb == (u_int)pcb->pcb_pagedir &&
3066 cur_dacr == pcb->pcb_dacr) {
3067 /*
3068 * No need to switch address spaces.
3069 */
3070 return;
3071 }
3072
3073 s = splhigh();
3074 pmap_acquire_pmap_lock(pm);
3075 disable_interrupts(I32_bit | F32_bit);
3076
3077 /*
3078 * We MUST, I repeat, MUST fix up the L1 entry corresponding
3079 * to 'vector_page' in the incoming L1 table before switching
3080 * to it otherwise subsequent interrupts/exceptions (including
3081 * domain faults!) will jump into hyperspace.
3082 */
3083 if (pcb->pcb_pl1vec) {
3084 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3085 /*
3086 * Don't need to PTE_SYNC() at this point since
3087 * cpu_setttb() is about to flush both the cache
3088 * and the TLB.
3089 */
3090 }
3091
3092 cpu_domains(pcb->pcb_dacr);
3093 cpu_setttb(pcb->pcb_pagedir);
3094
3095 enable_interrupts(I32_bit | F32_bit);
3096
3097 /*
3098 * Flag any previous userland pmap as being NOT
3099 * resident in the cache/tlb.
3100 */
3101 if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
3102 pmap_cache_state->cs_all = 0;
3103
3104 /*
3105 * The new pmap, however, IS resident.
3106 */
3107 pmap_cache_state = &pm->pm_cstate;
3108 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3109 pmap_release_pmap_lock(pm);
3110 splx(s);
3111 }
3112 }
3113
3114 void
3115 pmap_deactivate(struct lwp *l)
3116 {
3117 }
3118
3119 void
3120 pmap_update(pmap_t pm)
3121 {
3122
3123 if (pm->pm_remove_all) {
3124 /*
3125 * Finish up the pmap_remove_all() optimisation by flushing
3126 * the TLB.
3127 */
3128 pmap_tlb_flushID(pm);
3129 pm->pm_remove_all = FALSE;
3130 }
3131
3132 if (pmap_is_current(pm)) {
3133 /*
3134 * If we're dealing with a current userland pmap, move its L1
3135 * to the end of the LRU.
3136 */
3137 if (pm != pmap_kernel())
3138 pmap_use_l1(pm);
3139
3140 /*
3141 * We can assume we're done with frobbing the cache/tlb for
3142 * now. Make sure any future pmap ops don't skip cache/tlb
3143 * flushes.
3144 */
3145 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3146 }
3147
3148 /*
3149 * make sure TLB/cache operations have completed.
3150 */
3151 cpu_cpwait();
3152 }
3153
3154 void
3155 pmap_remove_all(pmap_t pm)
3156 {
3157
3158 /*
3159 * The vmspace described by this pmap is about to be torn down.
3160 * Until pmap_update() is called, UVM will only make calls
3161 * to pmap_remove(). We can make life much simpler by flushing
3162 * the cache now, and deferring TLB invalidation to pmap_update().
3163 */
3164 pmap_idcache_wbinv_all(pm);
3165 pm->pm_remove_all = TRUE;
3166 }
3167
3168 /*
3169 * Retire the given physical map from service.
3170 * Should only be called if the map contains no valid mappings.
3171 */
3172 void
3173 pmap_destroy(pmap_t pm)
3174 {
3175 u_int count;
3176
3177 if (pm == NULL)
3178 return;
3179
3180 if (pm->pm_remove_all) {
3181 pmap_tlb_flushID(pm);
3182 pm->pm_remove_all = FALSE;
3183 }
3184
3185 /*
3186 * Drop reference count
3187 */
3188 simple_lock(&pm->pm_lock);
3189 count = --pm->pm_obj.uo_refs;
3190 simple_unlock(&pm->pm_lock);
3191 if (count > 0) {
3192 if (pmap_is_current(pm)) {
3193 if (pm != pmap_kernel())
3194 pmap_use_l1(pm);
3195 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3196 }
3197 return;
3198 }
3199
3200 /*
3201 * reference count is zero, free pmap resources and then free pmap.
3202 */
3203
3204 if (vector_page < KERNEL_BASE) {
3205 struct pcb *pcb = &lwp0.l_addr->u_pcb;
3206
3207 if (pmap_is_current(pm)) {
3208 /*
3209 * Frob the L1 entry corresponding to the vector
3210 * page so that it contains the kernel pmap's domain
3211 * number. This will ensure pmap_remove() does not
3212 * pull the current vector page out from under us.
3213 */
3214 disable_interrupts(I32_bit | F32_bit);
3215 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3216 cpu_domains(pcb->pcb_dacr);
3217 cpu_setttb(pcb->pcb_pagedir);
3218 enable_interrupts(I32_bit | F32_bit);
3219 }
3220
3221 /* Remove the vector page mapping */
3222 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3223 pmap_update(pm);
3224
3225 /*
3226 * Make sure cpu_switch(), et al, DTRT. This is safe to do
3227 * since this process has no remaining mappings of its own.
3228 */
3229 curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
3230 curpcb->pcb_l1vec = pcb->pcb_l1vec;
3231 curpcb->pcb_dacr = pcb->pcb_dacr;
3232 curpcb->pcb_pagedir = pcb->pcb_pagedir;
3233 }
3234
3235 LIST_REMOVE(pm, pm_list);
3236
3237 pmap_free_l1(pm);
3238
3239 /* return the pmap to the pool */
3240 pool_cache_put(&pmap_pmap_cache, pm);
3241 }
3242
3243
3244 /*
3245 * void pmap_reference(pmap_t pm)
3246 *
3247 * Add a reference to the specified pmap.
3248 */
3249 void
3250 pmap_reference(pmap_t pm)
3251 {
3252
3253 if (pm == NULL)
3254 return;
3255
3256 pmap_use_l1(pm);
3257
3258 simple_lock(&pm->pm_lock);
3259 pm->pm_obj.uo_refs++;
3260 simple_unlock(&pm->pm_lock);
3261 }
3262
3263 /*
3264 * pmap_zero_page()
3265 *
3266 * Zero a given physical page by mapping it at a page hook point.
3267 * In doing the zero page op, the page we zero is mapped cachable, as with
3268 * StrongARM accesses to non-cached pages are non-burst making writing
3269 * _any_ bulk data very slow.
3270 */
3271 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3272 void
3273 pmap_zero_page_generic(paddr_t phys)
3274 {
3275 #ifdef DEBUG
3276 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3277
3278 if (pg->mdpage.pvh_list != NULL)
3279 panic("pmap_zero_page: page has mappings");
3280 #endif
3281
3282 KDASSERT((phys & PGOFSET) == 0);
3283
3284 /*
3285 * Hook in the page, zero it, and purge the cache for that
3286 * zeroed page. Invalidate the TLB as needed.
3287 */
3288 *cdst_pte = L2_S_PROTO | phys |
3289 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3290 PTE_SYNC(cdst_pte);
3291 cpu_tlb_flushD_SE(cdstp);
3292 cpu_cpwait();
3293 bzero_page(cdstp);
3294 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3295 }
3296 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3297
3298 #if ARM_MMU_XSCALE == 1
3299 void
3300 pmap_zero_page_xscale(paddr_t phys)
3301 {
3302 #ifdef DEBUG
3303 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3304
3305 if (pg->mdpage.pvh_list != NULL)
3306 panic("pmap_zero_page: page has mappings");
3307 #endif
3308
3309 KDASSERT((phys & PGOFSET) == 0);
3310
3311 /*
3312 * Hook in the page, zero it, and purge the cache for that
3313 * zeroed page. Invalidate the TLB as needed.
3314 */
3315 *cdst_pte = L2_S_PROTO | phys |
3316 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3317 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3318 PTE_SYNC(cdst_pte);
3319 cpu_tlb_flushD_SE(cdstp);
3320 cpu_cpwait();
3321 bzero_page(cdstp);
3322 xscale_cache_clean_minidata();
3323 }
3324 #endif /* ARM_MMU_XSCALE == 1 */
3325
3326 /* pmap_pageidlezero()
3327 *
3328 * The same as above, except that we assume that the page is not
3329 * mapped. This means we never have to flush the cache first. Called
3330 * from the idle loop.
3331 */
3332 boolean_t
3333 pmap_pageidlezero(paddr_t phys)
3334 {
3335 unsigned int i;
3336 int *ptr;
3337 boolean_t rv = TRUE;
3338 #ifdef DEBUG
3339 struct vm_page *pg;
3340
3341 pg = PHYS_TO_VM_PAGE(phys);
3342 if (pg->mdpage.pvh_list != NULL)
3343 panic("pmap_pageidlezero: page has mappings");
3344 #endif
3345
3346 KDASSERT((phys & PGOFSET) == 0);
3347
3348 /*
3349 * Hook in the page, zero it, and purge the cache for that
3350 * zeroed page. Invalidate the TLB as needed.
3351 */
3352 *cdst_pte = L2_S_PROTO | phys |
3353 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3354 PTE_SYNC(cdst_pte);
3355 cpu_tlb_flushD_SE(cdstp);
3356 cpu_cpwait();
3357
3358 for (i = 0, ptr = (int *)cdstp;
3359 i < (PAGE_SIZE / sizeof(int)); i++) {
3360 if (sched_whichqs != 0) {
3361 /*
3362 * A process has become ready. Abort now,
3363 * so we don't keep it waiting while we
3364 * do slow memory access to finish this
3365 * page.
3366 */
3367 rv = FALSE;
3368 break;
3369 }
3370 *ptr++ = 0;
3371 }
3372
3373 if (rv)
3374 /*
3375 * if we aborted we'll rezero this page again later so don't
3376 * purge it unless we finished it
3377 */
3378 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3379
3380 return (rv);
3381 }
3382
3383 /*
3384 * pmap_copy_page()
3385 *
3386 * Copy one physical page into another, by mapping the pages into
3387 * hook points. The same comment regarding cachability as in
3388 * pmap_zero_page also applies here.
3389 */
3390 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3391 void
3392 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3393 {
3394 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3395 #ifdef DEBUG
3396 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3397
3398 if (dst_pg->mdpage.pvh_list != NULL)
3399 panic("pmap_copy_page: dst page has mappings");
3400 #endif
3401
3402 KDASSERT((src & PGOFSET) == 0);
3403 KDASSERT((dst & PGOFSET) == 0);
3404
3405 /*
3406 * Clean the source page. Hold the source page's lock for
3407 * the duration of the copy so that no other mappings can
3408 * be created while we have a potentially aliased mapping.
3409 */
3410 simple_lock(&src_pg->mdpage.pvh_slock);
3411 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3412
3413 /*
3414 * Map the pages into the page hook points, copy them, and purge
3415 * the cache for the appropriate page. Invalidate the TLB
3416 * as required.
3417 */
3418 *csrc_pte = L2_S_PROTO | src |
3419 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3420 PTE_SYNC(csrc_pte);
3421 *cdst_pte = L2_S_PROTO | dst |
3422 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3423 PTE_SYNC(cdst_pte);
3424 cpu_tlb_flushD_SE(csrcp);
3425 cpu_tlb_flushD_SE(cdstp);
3426 cpu_cpwait();
3427 bcopy_page(csrcp, cdstp);
3428 cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3429 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3430 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3431 }
3432 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3433
3434 #if ARM_MMU_XSCALE == 1
3435 void
3436 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3437 {
3438 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3439 #ifdef DEBUG
3440 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3441
3442 if (dst_pg->mdpage.pvh_list != NULL)
3443 panic("pmap_copy_page: dst page has mappings");
3444 #endif
3445
3446 KDASSERT((src & PGOFSET) == 0);
3447 KDASSERT((dst & PGOFSET) == 0);
3448
3449 /*
3450 * Clean the source page. Hold the source page's lock for
3451 * the duration of the copy so that no other mappings can
3452 * be created while we have a potentially aliased mapping.
3453 */
3454 simple_lock(&src_pg->mdpage.pvh_slock);
3455 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3456
3457 /*
3458 * Map the pages into the page hook points, copy them, and purge
3459 * the cache for the appropriate page. Invalidate the TLB
3460 * as required.
3461 */
3462 *csrc_pte = L2_S_PROTO | src |
3463 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3464 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3465 PTE_SYNC(csrc_pte);
3466 *cdst_pte = L2_S_PROTO | dst |
3467 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3468 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3469 PTE_SYNC(cdst_pte);
3470 cpu_tlb_flushD_SE(csrcp);
3471 cpu_tlb_flushD_SE(cdstp);
3472 cpu_cpwait();
3473 bcopy_page(csrcp, cdstp);
3474 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3475 xscale_cache_clean_minidata();
3476 }
3477 #endif /* ARM_MMU_XSCALE == 1 */
3478
3479 /*
3480 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3481 *
3482 * Return the start and end addresses of the kernel's virtual space.
3483 * These values are setup in pmap_bootstrap and are updated as pages
3484 * are allocated.
3485 */
3486 void
3487 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3488 {
3489 *start = virtual_avail;
3490 *end = virtual_end;
3491 }
3492
3493 /*
3494 * Helper function for pmap_grow_l2_bucket()
3495 */
3496 static __inline int
3497 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3498 {
3499 struct l2_bucket *l2b;
3500 pt_entry_t *ptep;
3501 paddr_t pa;
3502
3503 if (uvm.page_init_done == FALSE) {
3504 if (uvm_page_physget(&pa) == FALSE)
3505 return (1);
3506 } else {
3507 struct vm_page *pg;
3508 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3509 if (pg == NULL)
3510 return (1);
3511 pa = VM_PAGE_TO_PHYS(pg);
3512 }
3513
3514 if (pap)
3515 *pap = pa;
3516
3517 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3518 KDASSERT(l2b != NULL);
3519
3520 ptep = &l2b->l2b_kva[l2pte_index(va)];
3521 *ptep = L2_S_PROTO | pa | cache_mode |
3522 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3523 PTE_SYNC(ptep);
3524 memset((void *)va, 0, PAGE_SIZE);
3525 return (0);
3526 }
3527
3528 /*
3529 * This is the same as pmap_alloc_l2_bucket(), except that it is only
3530 * used by pmap_growkernel().
3531 */
3532 static __inline struct l2_bucket *
3533 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3534 {
3535 struct l2_dtable *l2;
3536 struct l2_bucket *l2b;
3537 u_short l1idx;
3538 vaddr_t nva;
3539
3540 l1idx = L1_IDX(va);
3541
3542 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3543 /*
3544 * No mapping at this address, as there is
3545 * no entry in the L1 table.
3546 * Need to allocate a new l2_dtable.
3547 */
3548 nva = pmap_kernel_l2dtable_kva;
3549 if ((nva & PGOFSET) == 0) {
3550 /*
3551 * Need to allocate a backing page
3552 */
3553 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3554 return (NULL);
3555 }
3556
3557 l2 = (struct l2_dtable *)nva;
3558 nva += sizeof(struct l2_dtable);
3559
3560 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3561 /*
3562 * The new l2_dtable straddles a page boundary.
3563 * Map in another page to cover it.
3564 */
3565 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3566 return (NULL);
3567 }
3568
3569 pmap_kernel_l2dtable_kva = nva;
3570
3571 /*
3572 * Link it into the parent pmap
3573 */
3574 pm->pm_l2[L2_IDX(l1idx)] = l2;
3575 }
3576
3577 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3578
3579 /*
3580 * Fetch pointer to the L2 page table associated with the address.
3581 */
3582 if (l2b->l2b_kva == NULL) {
3583 pt_entry_t *ptep;
3584
3585 /*
3586 * No L2 page table has been allocated. Chances are, this
3587 * is because we just allocated the l2_dtable, above.
3588 */
3589 nva = pmap_kernel_l2ptp_kva;
3590 ptep = (pt_entry_t *)nva;
3591 if ((nva & PGOFSET) == 0) {
3592 /*
3593 * Need to allocate a backing page
3594 */
3595 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3596 &pmap_kernel_l2ptp_phys))
3597 return (NULL);
3598 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3599 }
3600
3601 l2->l2_occupancy++;
3602 l2b->l2b_kva = ptep;
3603 l2b->l2b_l1idx = l1idx;
3604 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3605
3606 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3607 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3608 }
3609
3610 return (l2b);
3611 }
3612
3613 vaddr_t
3614 pmap_growkernel(vaddr_t maxkvaddr)
3615 {
3616 pmap_t kpm = pmap_kernel();
3617 struct l1_ttable *l1;
3618 struct l2_bucket *l2b;
3619 pd_entry_t *pl1pd;
3620 int s;
3621
3622 if (maxkvaddr <= pmap_curmaxkvaddr)
3623 goto out; /* we are OK */
3624
3625 NPDEBUG(PDB_GROWKERN,
3626 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3627 pmap_curmaxkvaddr, maxkvaddr));
3628
3629 KDASSERT(maxkvaddr <= virtual_end);
3630
3631 /*
3632 * whoops! we need to add kernel PTPs
3633 */
3634
3635 s = splhigh(); /* to be safe */
3636 simple_lock(&kpm->pm_lock);
3637
3638 /* Map 1MB at a time */
3639 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3640
3641 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3642 KDASSERT(l2b != NULL);
3643
3644 /* Distribute new L1 entry to all other L1s */
3645 SLIST_FOREACH(l1, &l1_list, l1_link) {
3646 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3647 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3648 L1_C_PROTO;
3649 PTE_SYNC(pl1pd);
3650 }
3651 }
3652
3653 /*
3654 * flush out the cache, expensive but growkernel will happen so
3655 * rarely
3656 */
3657 cpu_dcache_wbinv_all();
3658 cpu_tlb_flushD();
3659 cpu_cpwait();
3660
3661 simple_unlock(&kpm->pm_lock);
3662 splx(s);
3663
3664 out:
3665 return (pmap_curmaxkvaddr);
3666 }
3667
3668 /************************ Utility routines ****************************/
3669
3670 /*
3671 * vector_page_setprot:
3672 *
3673 * Manipulate the protection of the vector page.
3674 */
3675 void
3676 vector_page_setprot(int prot)
3677 {
3678 struct l2_bucket *l2b;
3679 pt_entry_t *ptep;
3680
3681 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3682 KDASSERT(l2b != NULL);
3683
3684 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3685
3686 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3687 PTE_SYNC(ptep);
3688 cpu_tlb_flushD_SE(vector_page);
3689 cpu_cpwait();
3690 }
3691
3692 /*
3693 * This is used to stuff certain critical values into the PCB where they
3694 * can be accessed quickly from cpu_switch() et al.
3695 */
3696 void
3697 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
3698 {
3699 struct l2_bucket *l2b;
3700
3701 KDASSERT(pm->pm_l1);
3702
3703 pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
3704 pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3705 (DOMAIN_CLIENT << (pm->pm_domain * 2));
3706 pcb->pcb_cstate = (void *)&pm->pm_cstate;
3707
3708 if (vector_page < KERNEL_BASE) {
3709 pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3710 l2b = pmap_get_l2_bucket(pm, vector_page);
3711 pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
3712 L1_C_DOM(pm->pm_domain);
3713 } else
3714 pcb->pcb_pl1vec = NULL;
3715 }
3716
3717 /*
3718 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3719 * Returns TRUE if the mapping exists, else FALSE.
3720 *
3721 * NOTE: This function is only used by a couple of arm-specific modules.
3722 * It is not safe to take any pmap locks here, since we could be right
3723 * in the middle of debugging the pmap anyway...
3724 *
3725 * It is possible for this routine to return FALSE even though a valid
3726 * mapping does exist. This is because we don't lock, so the metadata
3727 * state may be inconsistent.
3728 *
3729 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3730 * a "section" mapping.
3731 */
3732 boolean_t
3733 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3734 {
3735 struct l2_dtable *l2;
3736 pd_entry_t *pl1pd, l1pd;
3737 pt_entry_t *ptep;
3738 u_short l1idx;
3739
3740 if (pm->pm_l1 == NULL)
3741 return (FALSE);
3742
3743 l1idx = L1_IDX(va);
3744 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3745 l1pd = *pl1pd;
3746
3747 if (l1pte_section_p(l1pd)) {
3748 *ptp = NULL;
3749 return (TRUE);
3750 }
3751
3752 if (pm->pm_l2 == NULL)
3753 return (FALSE);
3754
3755 l2 = pm->pm_l2[L2_IDX(l1idx)];
3756
3757 if (l2 == NULL ||
3758 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3759 return (FALSE);
3760 }
3761
3762 *ptp = &ptep[l2pte_index(va)];
3763 return (TRUE);
3764 }
3765
3766 boolean_t
3767 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3768 {
3769 u_short l1idx;
3770
3771 if (pm->pm_l1 == NULL)
3772 return (FALSE);
3773
3774 l1idx = L1_IDX(va);
3775 *pdp = &pm->pm_l1->l1_kva[l1idx];
3776
3777 return (TRUE);
3778 }
3779
3780 /************************ Bootstrapping routines ****************************/
3781
3782 static void
3783 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3784 {
3785 int i;
3786
3787 l1->l1_kva = l1pt;
3788 l1->l1_domain_use_count = 0;
3789 l1->l1_domain_first = 0;
3790
3791 for (i = 0; i < PMAP_DOMAINS; i++)
3792 l1->l1_domain_free[i] = i + 1;
3793
3794 /*
3795 * Copy the kernel's L1 entries to each new L1.
3796 */
3797 if (pmap_initialized)
3798 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3799
3800 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3801 &l1->l1_physaddr) == FALSE)
3802 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3803
3804 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3805 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3806 }
3807
3808 /*
3809 * pmap_bootstrap() is called from the board-specific initarm() routine
3810 * once the kernel L1/L2 descriptors tables have been set up.
3811 *
3812 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3813 * spread over a number of disparate files/functions.
3814 *
3815 * We are passed the following parameters
3816 * - kernel_l1pt
3817 * This is a pointer to the base of the kernel's L1 translation table.
3818 * - vstart
3819 * 1MB-aligned start of managed kernel virtual memory.
3820 * - vend
3821 * 1MB-aligned end of managed kernel virtual memory.
3822 *
3823 * We use the first parameter to build the metadata (struct l1_ttable and
3824 * struct l2_dtable) necessary to track kernel mappings.
3825 */
3826 #define PMAP_STATIC_L2_SIZE 16
3827 void
3828 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3829 {
3830 static struct l1_ttable static_l1;
3831 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3832 struct l1_ttable *l1 = &static_l1;
3833 struct l2_dtable *l2;
3834 struct l2_bucket *l2b;
3835 pmap_t pm = pmap_kernel();
3836 pd_entry_t pde;
3837 pt_entry_t *ptep;
3838 paddr_t pa;
3839 vaddr_t va;
3840 vsize_t size;
3841 int l1idx, l2idx, l2next = 0;
3842
3843 /*
3844 * Initialise the kernel pmap object
3845 */
3846 pm->pm_l1 = l1;
3847 pm->pm_domain = PMAP_DOMAIN_KERNEL;
3848 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3849 simple_lock_init(&pm->pm_lock);
3850 pm->pm_obj.pgops = NULL;
3851 TAILQ_INIT(&pm->pm_obj.memq);
3852 pm->pm_obj.uo_npages = 0;
3853 pm->pm_obj.uo_refs = 1;
3854
3855 /*
3856 * Scan the L1 translation table created by initarm() and create
3857 * the required metadata for all valid mappings found in it.
3858 */
3859 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3860 pde = kernel_l1pt[l1idx];
3861
3862 /*
3863 * We're only interested in Coarse mappings.
3864 * pmap_extract() can deal with section mappings without
3865 * recourse to checking L2 metadata.
3866 */
3867 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3868 continue;
3869
3870 /*
3871 * Lookup the KVA of this L2 descriptor table
3872 */
3873 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3874 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3875 if (ptep == NULL) {
3876 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3877 (u_int)l1idx << L1_S_SHIFT, pa);
3878 }
3879
3880 /*
3881 * Fetch the associated L2 metadata structure.
3882 * Allocate a new one if necessary.
3883 */
3884 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3885 if (l2next == PMAP_STATIC_L2_SIZE)
3886 panic("pmap_bootstrap: out of static L2s");
3887 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3888 }
3889
3890 /*
3891 * One more L1 slot tracked...
3892 */
3893 l2->l2_occupancy++;
3894
3895 /*
3896 * Fill in the details of the L2 descriptor in the
3897 * appropriate bucket.
3898 */
3899 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3900 l2b->l2b_kva = ptep;
3901 l2b->l2b_phys = pa;
3902 l2b->l2b_l1idx = l1idx;
3903
3904 /*
3905 * Establish an initial occupancy count for this descriptor
3906 */
3907 for (l2idx = 0;
3908 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3909 l2idx++) {
3910 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3911 l2b->l2b_occupancy++;
3912 }
3913 }
3914
3915 /*
3916 * Make sure the descriptor itself has the correct cache mode.
3917 * If not, fix it, but whine about the problem. Port-meisters
3918 * should consider this a clue to fix up their initarm()
3919 * function. :)
3920 */
3921 if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3922 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3923 "L2 pte @ %p\n", ptep);
3924 }
3925 }
3926
3927 /*
3928 * Ensure the primary (kernel) L1 has the correct cache mode for
3929 * a page table. Bitch if it is not correctly set.
3930 */
3931 for (va = (vaddr_t)kernel_l1pt;
3932 va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3933 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3934 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3935 "primary L1 @ 0x%lx\n", va);
3936 }
3937
3938 cpu_dcache_wbinv_all();
3939 cpu_tlb_flushID();
3940 cpu_cpwait();
3941
3942 /*
3943 * now we allocate the "special" VAs which are used for tmp mappings
3944 * by the pmap (and other modules). we allocate the VAs by advancing
3945 * virtual_avail (note that there are no pages mapped at these VAs).
3946 *
3947 * Managed KVM space start from wherever initarm() tells us.
3948 */
3949 virtual_avail = vstart;
3950 virtual_end = vend;
3951
3952 pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3953 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3954 pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3955 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3956 pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
3957 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3958 (void *)&msgbufaddr, NULL);
3959
3960 /*
3961 * Allocate a range of kernel virtual address space to be used
3962 * for L2 descriptor tables and metadata allocation in
3963 * pmap_growkernel().
3964 */
3965 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3966 pmap_alloc_specials(&virtual_avail,
3967 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3968 &pmap_kernel_l2ptp_kva, NULL);
3969
3970 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3971 pmap_alloc_specials(&virtual_avail,
3972 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3973 &pmap_kernel_l2dtable_kva, NULL);
3974
3975 /*
3976 * init the static-global locks and global pmap list.
3977 */
3978 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
3979 spinlockinit(&pmap_main_lock, "pmaplk", 0);
3980 #endif
3981
3982 /*
3983 * We can now initialise the first L1's metadata.
3984 */
3985 SLIST_INIT(&l1_list);
3986 TAILQ_INIT(&l1_lru_list);
3987 simple_lock_init(&l1_lru_lock);
3988 pmap_init_l1(l1, kernel_l1pt);
3989
3990 /*
3991 * Initialize the pmap pool and cache
3992 */
3993 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
3994 &pool_allocator_nointr);
3995 pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
3996 pmap_pmap_ctor, NULL, NULL);
3997 LIST_INIT(&pmap_pmaps);
3998 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
3999
4000 /*
4001 * Initialize the pv pool.
4002 */
4003 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
4004 &pmap_bootstrap_pv_allocator);
4005
4006 /*
4007 * Initialize the L2 dtable pool and cache.
4008 */
4009 pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
4010 "l2dtblpl", NULL);
4011 pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
4012 pmap_l2dtable_ctor, NULL, NULL);
4013
4014 /*
4015 * Initialise the L2 descriptor table pool and cache
4016 */
4017 pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
4018 0, "l2ptppl", NULL);
4019 pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
4020 pmap_l2ptp_ctor, NULL, NULL);
4021
4022 cpu_dcache_wbinv_all();
4023 }
4024
4025 static int
4026 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
4027 {
4028 pd_entry_t *pdep, pde;
4029 pt_entry_t *ptep, pte;
4030 vaddr_t pa;
4031 int rv = 0;
4032
4033 /*
4034 * Make sure the descriptor itself has the correct cache mode
4035 */
4036 pdep = &kl1[L1_IDX(va)];
4037 pde = *pdep;
4038
4039 if (l1pte_section_p(pde)) {
4040 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4041 *pdep = (pde & ~L1_S_CACHE_MASK) |
4042 pte_l1_s_cache_mode_pt;
4043 PTE_SYNC(pdep);
4044 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4045 rv = 1;
4046 }
4047 } else {
4048 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4049 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4050 if (ptep == NULL)
4051 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4052
4053 ptep = &ptep[l2pte_index(va)];
4054 pte = *ptep;
4055 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4056 *ptep = (pte & ~L2_S_CACHE_MASK) |
4057 pte_l2_s_cache_mode_pt;
4058 PTE_SYNC(ptep);
4059 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4060 rv = 1;
4061 }
4062 }
4063
4064 return (rv);
4065 }
4066
4067 static void
4068 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4069 {
4070 vaddr_t va = *availp;
4071 struct l2_bucket *l2b;
4072
4073 if (ptep) {
4074 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4075 if (l2b == NULL)
4076 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4077
4078 if (ptep)
4079 *ptep = &l2b->l2b_kva[l2pte_index(va)];
4080 }
4081
4082 *vap = va;
4083 *availp = va + (PAGE_SIZE * pages);
4084 }
4085
4086 void
4087 pmap_init(void)
4088 {
4089 extern int physmem;
4090
4091 /*
4092 * Set the available memory vars - These do not map to real memory
4093 * addresses and cannot as the physical memory is fragmented.
4094 * They are used by ps for %mem calculations.
4095 * One could argue whether this should be the entire memory or just
4096 * the memory that is useable in a user process.
4097 */
4098 avail_start = 0;
4099 avail_end = physmem * PAGE_SIZE;
4100
4101 /*
4102 * Now we need to free enough pv_entry structures to allow us to get
4103 * the kmem_map/kmem_object allocated and inited (done after this
4104 * function is finished). to do this we allocate one bootstrap page out
4105 * of kernel_map and use it to provide an initial pool of pv_entry
4106 * structures. we never free this page.
4107 */
4108 pool_setlowat(&pmap_pv_pool,
4109 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4110
4111 pmap_initialized = TRUE;
4112 }
4113
4114 static vaddr_t last_bootstrap_page = 0;
4115 static void *free_bootstrap_pages = NULL;
4116
4117 static void *
4118 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4119 {
4120 extern void *pool_page_alloc(struct pool *, int);
4121 vaddr_t new_page;
4122 void *rv;
4123
4124 if (pmap_initialized)
4125 return (pool_page_alloc(pp, flags));
4126
4127 if (free_bootstrap_pages) {
4128 rv = free_bootstrap_pages;
4129 free_bootstrap_pages = *((void **)rv);
4130 return (rv);
4131 }
4132
4133 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
4134 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
4135
4136 KASSERT(new_page > last_bootstrap_page);
4137 last_bootstrap_page = new_page;
4138 return ((void *)new_page);
4139 }
4140
4141 static void
4142 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4143 {
4144 extern void pool_page_free(struct pool *, void *);
4145
4146 if ((vaddr_t)v <= last_bootstrap_page) {
4147 *((void **)v) = free_bootstrap_pages;
4148 free_bootstrap_pages = v;
4149 return;
4150 }
4151
4152 if (pmap_initialized) {
4153 pool_page_free(pp, v);
4154 return;
4155 }
4156 }
4157
4158 /*
4159 * pmap_postinit()
4160 *
4161 * This routine is called after the vm and kmem subsystems have been
4162 * initialised. This allows the pmap code to perform any initialisation
4163 * that can only be done one the memory allocation is in place.
4164 */
4165 void
4166 pmap_postinit(void)
4167 {
4168 extern paddr_t physical_start, physical_end;
4169 struct l2_bucket *l2b;
4170 struct l1_ttable *l1;
4171 struct pglist plist;
4172 struct vm_page *m;
4173 pd_entry_t *pl1pt;
4174 pt_entry_t *ptep, pte;
4175 vaddr_t va, eva;
4176 u_int loop, needed;
4177 int error;
4178
4179 pool_setlowat(&pmap_l2ptp_pool,
4180 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4181 pool_setlowat(&pmap_l2dtable_pool,
4182 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4183
4184 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4185 needed -= 1;
4186
4187 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4188
4189 for (loop = 0; loop < needed; loop++, l1++) {
4190 /* Allocate a L1 page table */
4191 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
4192 if (va == 0)
4193 panic("Cannot allocate L1 KVM");
4194
4195 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4196 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4197 if (error)
4198 panic("Cannot allocate L1 physical pages");
4199
4200 m = TAILQ_FIRST(&plist);
4201 eva = va + L1_TABLE_SIZE;
4202 pl1pt = (pd_entry_t *)va;
4203
4204 while (m && va < eva) {
4205 paddr_t pa = VM_PAGE_TO_PHYS(m);
4206
4207 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4208
4209 /*
4210 * Make sure the L1 descriptor table is mapped
4211 * with the cache-mode set to write-through.
4212 */
4213 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4214 ptep = &l2b->l2b_kva[l2pte_index(va)];
4215 pte = *ptep;
4216 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4217 *ptep = pte;
4218 PTE_SYNC(ptep);
4219 cpu_tlb_flushD_SE(va);
4220
4221 va += PAGE_SIZE;
4222 m = TAILQ_NEXT(m, pageq);
4223 }
4224
4225 #ifdef DIAGNOSTIC
4226 if (m)
4227 panic("pmap_alloc_l1pt: pglist not empty");
4228 #endif /* DIAGNOSTIC */
4229
4230 pmap_init_l1(l1, pl1pt);
4231 }
4232
4233 #ifdef DEBUG
4234 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4235 needed);
4236 #endif
4237 }
4238
4239 /*
4240 * Note that the following routines are used by board-specific initialisation
4241 * code to configure the initial kernel page tables.
4242 *
4243 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4244 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4245 * behaviour of the old pmap, and provides an easy migration path for
4246 * initial bring-up of the new pmap on existing ports. Fortunately,
4247 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4248 * will be deprecated.
4249 *
4250 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4251 * tables.
4252 */
4253
4254 /*
4255 * This list exists for the benefit of pmap_map_chunk(). It keeps track
4256 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4257 * find them as necessary.
4258 *
4259 * Note that the data on this list MUST remain valid after initarm() returns,
4260 * as pmap_bootstrap() uses it to contruct L2 table metadata.
4261 */
4262 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4263
4264 static vaddr_t
4265 kernel_pt_lookup(paddr_t pa)
4266 {
4267 pv_addr_t *pv;
4268
4269 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4270 #ifndef ARM32_NEW_VM_LAYOUT
4271 if (pv->pv_pa == (pa & ~PGOFSET))
4272 return (pv->pv_va | (pa & PGOFSET));
4273 #else
4274 if (pv->pv_pa == pa)
4275 return (pv->pv_va);
4276 #endif
4277 }
4278 return (0);
4279 }
4280
4281 /*
4282 * pmap_map_section:
4283 *
4284 * Create a single section mapping.
4285 */
4286 void
4287 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4288 {
4289 pd_entry_t *pde = (pd_entry_t *) l1pt;
4290 pd_entry_t fl;
4291
4292 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4293
4294 switch (cache) {
4295 case PTE_NOCACHE:
4296 default:
4297 fl = 0;
4298 break;
4299
4300 case PTE_CACHE:
4301 fl = pte_l1_s_cache_mode;
4302 break;
4303
4304 case PTE_PAGETABLE:
4305 fl = pte_l1_s_cache_mode_pt;
4306 break;
4307 }
4308
4309 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4310 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4311 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4312 }
4313
4314 /*
4315 * pmap_map_entry:
4316 *
4317 * Create a single page mapping.
4318 */
4319 void
4320 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4321 {
4322 pd_entry_t *pde = (pd_entry_t *) l1pt;
4323 pt_entry_t fl;
4324 pt_entry_t *pte;
4325
4326 KASSERT(((va | pa) & PGOFSET) == 0);
4327
4328 switch (cache) {
4329 case PTE_NOCACHE:
4330 default:
4331 fl = 0;
4332 break;
4333
4334 case PTE_CACHE:
4335 fl = pte_l2_s_cache_mode;
4336 break;
4337
4338 case PTE_PAGETABLE:
4339 fl = pte_l2_s_cache_mode_pt;
4340 break;
4341 }
4342
4343 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4344 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4345
4346 #ifndef ARM32_NEW_VM_LAYOUT
4347 pte = (pt_entry_t *)
4348 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4349 #else
4350 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4351 #endif
4352 if (pte == NULL)
4353 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4354
4355 #ifndef ARM32_NEW_VM_LAYOUT
4356 pte[(va >> PGSHIFT) & 0x3ff] =
4357 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4358 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4359 #else
4360 pte[l2pte_index(va)] =
4361 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4362 PTE_SYNC(&pte[l2pte_index(va)]);
4363 #endif
4364 }
4365
4366 /*
4367 * pmap_link_l2pt:
4368 *
4369 * Link the L2 page table specified by "l2pv" into the L1
4370 * page table at the slot for "va".
4371 */
4372 void
4373 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4374 {
4375 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4376 u_int slot = va >> L1_S_SHIFT;
4377
4378 #ifndef ARM32_NEW_VM_LAYOUT
4379 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4380 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4381 #endif
4382
4383 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4384
4385 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4386 #ifdef ARM32_NEW_VM_LAYOUT
4387 PTE_SYNC(&pde[slot]);
4388 #else
4389 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4390 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4391 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4392 PTE_SYNC_RANGE(&pde[slot + 0], 4);
4393 #endif
4394
4395 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4396 }
4397
4398 /*
4399 * pmap_map_chunk:
4400 *
4401 * Map a chunk of memory using the most efficient mappings
4402 * possible (section, large page, small page) into the
4403 * provided L1 and L2 tables at the specified virtual address.
4404 */
4405 vsize_t
4406 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4407 int prot, int cache)
4408 {
4409 pd_entry_t *pde = (pd_entry_t *) l1pt;
4410 pt_entry_t *pte, f1, f2s, f2l;
4411 vsize_t resid;
4412 int i;
4413
4414 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4415
4416 if (l1pt == 0)
4417 panic("pmap_map_chunk: no L1 table provided");
4418
4419 #ifdef VERBOSE_INIT_ARM
4420 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4421 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4422 #endif
4423
4424 switch (cache) {
4425 case PTE_NOCACHE:
4426 default:
4427 f1 = 0;
4428 f2l = 0;
4429 f2s = 0;
4430 break;
4431
4432 case PTE_CACHE:
4433 f1 = pte_l1_s_cache_mode;
4434 f2l = pte_l2_l_cache_mode;
4435 f2s = pte_l2_s_cache_mode;
4436 break;
4437
4438 case PTE_PAGETABLE:
4439 f1 = pte_l1_s_cache_mode_pt;
4440 f2l = pte_l2_l_cache_mode_pt;
4441 f2s = pte_l2_s_cache_mode_pt;
4442 break;
4443 }
4444
4445 size = resid;
4446
4447 while (resid > 0) {
4448 /* See if we can use a section mapping. */
4449 if (L1_S_MAPPABLE_P(va, pa, resid)) {
4450 #ifdef VERBOSE_INIT_ARM
4451 printf("S");
4452 #endif
4453 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4454 L1_S_PROT(PTE_KERNEL, prot) | f1 |
4455 L1_S_DOM(PMAP_DOMAIN_KERNEL);
4456 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4457 va += L1_S_SIZE;
4458 pa += L1_S_SIZE;
4459 resid -= L1_S_SIZE;
4460 continue;
4461 }
4462
4463 /*
4464 * Ok, we're going to use an L2 table. Make sure
4465 * one is actually in the corresponding L1 slot
4466 * for the current VA.
4467 */
4468 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4469 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4470
4471 #ifndef ARM32_NEW_VM_LAYOUT
4472 pte = (pt_entry_t *)
4473 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4474 #else
4475 pte = (pt_entry_t *) kernel_pt_lookup(
4476 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4477 #endif
4478 if (pte == NULL)
4479 panic("pmap_map_chunk: can't find L2 table for VA"
4480 "0x%08lx", va);
4481
4482 /* See if we can use a L2 large page mapping. */
4483 if (L2_L_MAPPABLE_P(va, pa, resid)) {
4484 #ifdef VERBOSE_INIT_ARM
4485 printf("L");
4486 #endif
4487 for (i = 0; i < 16; i++) {
4488 #ifndef ARM32_NEW_VM_LAYOUT
4489 pte[((va >> PGSHIFT) & 0x3f0) + i] =
4490 L2_L_PROTO | pa |
4491 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4492 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4493 #else
4494 pte[l2pte_index(va) + i] =
4495 L2_L_PROTO | pa |
4496 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4497 PTE_SYNC(&pte[l2pte_index(va) + i]);
4498 #endif
4499 }
4500 va += L2_L_SIZE;
4501 pa += L2_L_SIZE;
4502 resid -= L2_L_SIZE;
4503 continue;
4504 }
4505
4506 /* Use a small page mapping. */
4507 #ifdef VERBOSE_INIT_ARM
4508 printf("P");
4509 #endif
4510 #ifndef ARM32_NEW_VM_LAYOUT
4511 pte[(va >> PGSHIFT) & 0x3ff] =
4512 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4513 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4514 #else
4515 pte[l2pte_index(va)] =
4516 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4517 PTE_SYNC(&pte[l2pte_index(va)]);
4518 #endif
4519 va += PAGE_SIZE;
4520 pa += PAGE_SIZE;
4521 resid -= PAGE_SIZE;
4522 }
4523 #ifdef VERBOSE_INIT_ARM
4524 printf("\n");
4525 #endif
4526 return (size);
4527 }
4528
4529 /********************** Static device map routines ***************************/
4530
4531 static const struct pmap_devmap *pmap_devmap_table;
4532
4533 /*
4534 * Register the devmap table. This is provided in case early console
4535 * initialization needs to register mappings created by bootstrap code
4536 * before pmap_devmap_bootstrap() is called.
4537 */
4538 void
4539 pmap_devmap_register(const struct pmap_devmap *table)
4540 {
4541
4542 pmap_devmap_table = table;
4543 }
4544
4545 /*
4546 * Map all of the static regions in the devmap table, and remember
4547 * the devmap table so other parts of the kernel can look up entries
4548 * later.
4549 */
4550 void
4551 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4552 {
4553 int i;
4554
4555 pmap_devmap_table = table;
4556
4557 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4558 #ifdef VERBOSE_INIT_ARM
4559 printf("devmap: %08lx -> %08lx @ %08lx\n",
4560 pmap_devmap_table[i].pd_pa,
4561 pmap_devmap_table[i].pd_pa +
4562 pmap_devmap_table[i].pd_size - 1,
4563 pmap_devmap_table[i].pd_va);
4564 #endif
4565 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4566 pmap_devmap_table[i].pd_pa,
4567 pmap_devmap_table[i].pd_size,
4568 pmap_devmap_table[i].pd_prot,
4569 pmap_devmap_table[i].pd_cache);
4570 }
4571 }
4572
4573 const struct pmap_devmap *
4574 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4575 {
4576 uint64_t endpa;
4577 int i;
4578
4579 if (pmap_devmap_table == NULL)
4580 return (NULL);
4581
4582 endpa = (uint64_t)pa + (uint64_t)size;
4583
4584 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4585 if (pa >= pmap_devmap_table[i].pd_pa &&
4586 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
4587 (uint64_t)pmap_devmap_table[i].pd_size)
4588 return (&pmap_devmap_table[i]);
4589 }
4590
4591 return (NULL);
4592 }
4593
4594 const struct pmap_devmap *
4595 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4596 {
4597 int i;
4598
4599 if (pmap_devmap_table == NULL)
4600 return (NULL);
4601
4602 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4603 if (va >= pmap_devmap_table[i].pd_va &&
4604 va + size <= pmap_devmap_table[i].pd_va +
4605 pmap_devmap_table[i].pd_size)
4606 return (&pmap_devmap_table[i]);
4607 }
4608
4609 return (NULL);
4610 }
4611
4612 /********************** PTE initialization routines **************************/
4613
4614 /*
4615 * These routines are called when the CPU type is identified to set up
4616 * the PTE prototypes, cache modes, etc.
4617 *
4618 * The variables are always here, just in case LKMs need to reference
4619 * them (though, they shouldn't).
4620 */
4621
4622 pt_entry_t pte_l1_s_cache_mode;
4623 pt_entry_t pte_l1_s_cache_mode_pt;
4624 pt_entry_t pte_l1_s_cache_mask;
4625
4626 pt_entry_t pte_l2_l_cache_mode;
4627 pt_entry_t pte_l2_l_cache_mode_pt;
4628 pt_entry_t pte_l2_l_cache_mask;
4629
4630 pt_entry_t pte_l2_s_cache_mode;
4631 pt_entry_t pte_l2_s_cache_mode_pt;
4632 pt_entry_t pte_l2_s_cache_mask;
4633
4634 pt_entry_t pte_l2_s_prot_u;
4635 pt_entry_t pte_l2_s_prot_w;
4636 pt_entry_t pte_l2_s_prot_mask;
4637
4638 pt_entry_t pte_l1_s_proto;
4639 pt_entry_t pte_l1_c_proto;
4640 pt_entry_t pte_l2_s_proto;
4641
4642 void (*pmap_copy_page_func)(paddr_t, paddr_t);
4643 void (*pmap_zero_page_func)(paddr_t);
4644
4645 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4646 void
4647 pmap_pte_init_generic(void)
4648 {
4649
4650 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4651 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4652
4653 pte_l2_l_cache_mode = L2_B|L2_C;
4654 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4655
4656 pte_l2_s_cache_mode = L2_B|L2_C;
4657 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4658
4659 /*
4660 * If we have a write-through cache, set B and C. If
4661 * we have a write-back cache, then we assume setting
4662 * only C will make those pages write-through.
4663 */
4664 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4665 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4666 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4667 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4668 } else {
4669 pte_l1_s_cache_mode_pt = L1_S_C;
4670 pte_l2_l_cache_mode_pt = L2_C;
4671 pte_l2_s_cache_mode_pt = L2_C;
4672 }
4673
4674 pte_l2_s_prot_u = L2_S_PROT_U_generic;
4675 pte_l2_s_prot_w = L2_S_PROT_W_generic;
4676 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4677
4678 pte_l1_s_proto = L1_S_PROTO_generic;
4679 pte_l1_c_proto = L1_C_PROTO_generic;
4680 pte_l2_s_proto = L2_S_PROTO_generic;
4681
4682 pmap_copy_page_func = pmap_copy_page_generic;
4683 pmap_zero_page_func = pmap_zero_page_generic;
4684 }
4685
4686 #if defined(CPU_ARM8)
4687 void
4688 pmap_pte_init_arm8(void)
4689 {
4690
4691 /*
4692 * ARM8 is compatible with generic, but we need to use
4693 * the page tables uncached.
4694 */
4695 pmap_pte_init_generic();
4696
4697 pte_l1_s_cache_mode_pt = 0;
4698 pte_l2_l_cache_mode_pt = 0;
4699 pte_l2_s_cache_mode_pt = 0;
4700 }
4701 #endif /* CPU_ARM8 */
4702
4703 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
4704 void
4705 pmap_pte_init_arm9(void)
4706 {
4707
4708 /*
4709 * ARM9 is compatible with generic, but we want to use
4710 * write-through caching for now.
4711 */
4712 pmap_pte_init_generic();
4713
4714 pte_l1_s_cache_mode = L1_S_C;
4715 pte_l2_l_cache_mode = L2_C;
4716 pte_l2_s_cache_mode = L2_C;
4717
4718 pte_l1_s_cache_mode_pt = L1_S_C;
4719 pte_l2_l_cache_mode_pt = L2_C;
4720 pte_l2_s_cache_mode_pt = L2_C;
4721 }
4722 #endif /* CPU_ARM9 */
4723 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4724
4725 #if defined(CPU_ARM10)
4726 void
4727 pmap_pte_init_arm10(void)
4728 {
4729
4730 /*
4731 * ARM10 is compatible with generic, but we want to use
4732 * write-through caching for now.
4733 */
4734 pmap_pte_init_generic();
4735
4736 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
4737 pte_l2_l_cache_mode = L2_B | L2_C;
4738 pte_l2_s_cache_mode = L2_B | L2_C;
4739
4740 pte_l1_s_cache_mode_pt = L1_S_C;
4741 pte_l2_l_cache_mode_pt = L2_C;
4742 pte_l2_s_cache_mode_pt = L2_C;
4743
4744 }
4745 #endif /* CPU_ARM10 */
4746
4747 #if ARM_MMU_SA1 == 1
4748 void
4749 pmap_pte_init_sa1(void)
4750 {
4751
4752 /*
4753 * The StrongARM SA-1 cache does not have a write-through
4754 * mode. So, do the generic initialization, then reset
4755 * the page table cache mode to B=1,C=1, and note that
4756 * the PTEs need to be sync'd.
4757 */
4758 pmap_pte_init_generic();
4759
4760 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4761 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4762 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4763
4764 pmap_needs_pte_sync = 1;
4765 }
4766 #endif /* ARM_MMU_SA1 == 1*/
4767
4768 #if ARM_MMU_XSCALE == 1
4769 #if (ARM_NMMUS > 1)
4770 static u_int xscale_use_minidata;
4771 #endif
4772
4773 void
4774 pmap_pte_init_xscale(void)
4775 {
4776 uint32_t auxctl;
4777 int write_through = 0;
4778
4779 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4780 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4781
4782 pte_l2_l_cache_mode = L2_B|L2_C;
4783 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4784
4785 pte_l2_s_cache_mode = L2_B|L2_C;
4786 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4787
4788 pte_l1_s_cache_mode_pt = L1_S_C;
4789 pte_l2_l_cache_mode_pt = L2_C;
4790 pte_l2_s_cache_mode_pt = L2_C;
4791
4792 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4793 /*
4794 * The XScale core has an enhanced mode where writes that
4795 * miss the cache cause a cache line to be allocated. This
4796 * is significantly faster than the traditional, write-through
4797 * behavior of this case.
4798 */
4799 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4800 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4801 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4802 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4803
4804 #ifdef XSCALE_CACHE_WRITE_THROUGH
4805 /*
4806 * Some versions of the XScale core have various bugs in
4807 * their cache units, the work-around for which is to run
4808 * the cache in write-through mode. Unfortunately, this
4809 * has a major (negative) impact on performance. So, we
4810 * go ahead and run fast-and-loose, in the hopes that we
4811 * don't line up the planets in a way that will trip the
4812 * bugs.
4813 *
4814 * However, we give you the option to be slow-but-correct.
4815 */
4816 write_through = 1;
4817 #elif defined(XSCALE_CACHE_WRITE_BACK)
4818 /* force write back cache mode */
4819 write_through = 0;
4820 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
4821 /*
4822 * Intel PXA2[15]0 processors are known to have a bug in
4823 * write-back cache on revision 4 and earlier (stepping
4824 * A[01] and B[012]). Fixed for C0 and later.
4825 */
4826 {
4827 uint32_t id, type;
4828
4829 id = cpufunc_id();
4830 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4831
4832 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4833 if ((id & CPU_ID_REVISION_MASK) < 5) {
4834 /* write through for stepping A0-1 and B0-2 */
4835 write_through = 1;
4836 }
4837 }
4838 }
4839 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4840
4841 if (write_through) {
4842 pte_l1_s_cache_mode = L1_S_C;
4843 pte_l2_l_cache_mode = L2_C;
4844 pte_l2_s_cache_mode = L2_C;
4845 }
4846
4847 #if (ARM_NMMUS > 1)
4848 xscale_use_minidata = 1;
4849 #endif
4850
4851 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4852 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4853 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4854
4855 pte_l1_s_proto = L1_S_PROTO_xscale;
4856 pte_l1_c_proto = L1_C_PROTO_xscale;
4857 pte_l2_s_proto = L2_S_PROTO_xscale;
4858
4859 pmap_copy_page_func = pmap_copy_page_xscale;
4860 pmap_zero_page_func = pmap_zero_page_xscale;
4861
4862 /*
4863 * Disable ECC protection of page table access, for now.
4864 */
4865 __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4866 auxctl &= ~XSCALE_AUXCTL_P;
4867 __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4868 }
4869
4870 /*
4871 * xscale_setup_minidata:
4872 *
4873 * Set up the mini-data cache clean area. We require the
4874 * caller to allocate the right amount of physically and
4875 * virtually contiguous space.
4876 */
4877 void
4878 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4879 {
4880 extern vaddr_t xscale_minidata_clean_addr;
4881 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4882 pd_entry_t *pde = (pd_entry_t *) l1pt;
4883 pt_entry_t *pte;
4884 vsize_t size;
4885 uint32_t auxctl;
4886
4887 xscale_minidata_clean_addr = va;
4888
4889 /* Round it to page size. */
4890 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4891
4892 for (; size != 0;
4893 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4894 #ifndef ARM32_NEW_VM_LAYOUT
4895 pte = (pt_entry_t *)
4896 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4897 #else
4898 pte = (pt_entry_t *) kernel_pt_lookup(
4899 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4900 #endif
4901 if (pte == NULL)
4902 panic("xscale_setup_minidata: can't find L2 table for "
4903 "VA 0x%08lx", va);
4904 #ifndef ARM32_NEW_VM_LAYOUT
4905 pte[(va >> PGSHIFT) & 0x3ff] =
4906 #else
4907 pte[l2pte_index(va)] =
4908 #endif
4909 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4910 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4911 }
4912
4913 /*
4914 * Configure the mini-data cache for write-back with
4915 * read/write-allocate.
4916 *
4917 * NOTE: In order to reconfigure the mini-data cache, we must
4918 * make sure it contains no valid data! In order to do that,
4919 * we must issue a global data cache invalidate command!
4920 *
4921 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4922 * THIS IS VERY IMPORTANT!
4923 */
4924
4925 /* Invalidate data and mini-data. */
4926 __asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
4927 __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4928 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4929 __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4930 }
4931
4932 /*
4933 * Change the PTEs for the specified kernel mappings such that they
4934 * will use the mini data cache instead of the main data cache.
4935 */
4936 void
4937 pmap_uarea(vaddr_t va)
4938 {
4939 struct l2_bucket *l2b;
4940 pt_entry_t *ptep, *sptep, pte;
4941 vaddr_t next_bucket, eva;
4942
4943 #if (ARM_NMMUS > 1)
4944 if (xscale_use_minidata == 0)
4945 return;
4946 #endif
4947
4948 eva = va + USPACE;
4949
4950 while (va < eva) {
4951 next_bucket = L2_NEXT_BUCKET(va);
4952 if (next_bucket > eva)
4953 next_bucket = eva;
4954
4955 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4956 KDASSERT(l2b != NULL);
4957
4958 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4959
4960 while (va < next_bucket) {
4961 pte = *ptep;
4962 if (!l2pte_minidata(pte)) {
4963 cpu_dcache_wbinv_range(va, PAGE_SIZE);
4964 cpu_tlb_flushD_SE(va);
4965 *ptep = pte & ~L2_B;
4966 }
4967 ptep++;
4968 va += PAGE_SIZE;
4969 }
4970 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4971 }
4972 cpu_cpwait();
4973 }
4974 #endif /* ARM_MMU_XSCALE == 1 */
4975
4976 #if defined(DDB)
4977 /*
4978 * A couple of ddb-callable functions for dumping pmaps
4979 */
4980 void pmap_dump_all(void);
4981 void pmap_dump(pmap_t);
4982
4983 void
4984 pmap_dump_all(void)
4985 {
4986 pmap_t pm;
4987
4988 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
4989 if (pm == pmap_kernel())
4990 continue;
4991 pmap_dump(pm);
4992 printf("\n");
4993 }
4994 }
4995
4996 static pt_entry_t ncptes[64];
4997 static void pmap_dump_ncpg(pmap_t);
4998
4999 void
5000 pmap_dump(pmap_t pm)
5001 {
5002 struct l2_dtable *l2;
5003 struct l2_bucket *l2b;
5004 pt_entry_t *ptep, pte;
5005 vaddr_t l2_va, l2b_va, va;
5006 int i, j, k, occ, rows = 0;
5007
5008 if (pm == pmap_kernel())
5009 printf("pmap_kernel (%p): ", pm);
5010 else
5011 printf("user pmap (%p): ", pm);
5012
5013 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
5014
5015 l2_va = 0;
5016 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
5017 l2 = pm->pm_l2[i];
5018
5019 if (l2 == NULL || l2->l2_occupancy == 0)
5020 continue;
5021
5022 l2b_va = l2_va;
5023 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
5024 l2b = &l2->l2_bucket[j];
5025
5026 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
5027 continue;
5028
5029 ptep = l2b->l2b_kva;
5030
5031 for (k = 0; k < 256 && ptep[k] == 0; k++)
5032 ;
5033
5034 k &= ~63;
5035 occ = l2b->l2b_occupancy;
5036 va = l2b_va + (k * 4096);
5037 for (; k < 256; k++, va += 0x1000) {
5038 char ch = ' ';
5039 if ((k % 64) == 0) {
5040 if ((rows % 8) == 0) {
5041 printf(
5042 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
5043 }
5044 printf("%08lx: ", va);
5045 }
5046
5047 ncptes[k & 63] = 0;
5048 pte = ptep[k];
5049 if (pte == 0) {
5050 ch = '.';
5051 } else {
5052 occ--;
5053 switch (pte & 0x0c) {
5054 case 0x00:
5055 ch = 'D'; /* No cache No buff */
5056 break;
5057 case 0x04:
5058 ch = 'B'; /* No cache buff */
5059 break;
5060 case 0x08:
5061 if (pte & 0x40)
5062 ch = 'm';
5063 else
5064 ch = 'C'; /* Cache No buff */
5065 break;
5066 case 0x0c:
5067 ch = 'F'; /* Cache Buff */
5068 break;
5069 }
5070
5071 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
5072 ch += 0x20;
5073
5074 if ((pte & 0xc) == 0)
5075 ncptes[k & 63] = pte;
5076 }
5077
5078 if ((k % 64) == 63) {
5079 rows++;
5080 printf("%c\n", ch);
5081 pmap_dump_ncpg(pm);
5082 if (occ == 0)
5083 break;
5084 } else
5085 printf("%c", ch);
5086 }
5087 }
5088 }
5089 }
5090
5091 static void
5092 pmap_dump_ncpg(pmap_t pm)
5093 {
5094 struct vm_page *pg;
5095 struct pv_entry *pv;
5096 int i;
5097
5098 for (i = 0; i < 63; i++) {
5099 if (ncptes[i] == 0)
5100 continue;
5101
5102 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5103 if (pg == NULL)
5104 continue;
5105
5106 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5107 pg->phys_addr,
5108 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5109 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5110
5111 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5112 printf(" %c va 0x%08lx, flags 0x%x\n",
5113 (pm == pv->pv_pmap) ? '*' : ' ',
5114 pv->pv_va, pv->pv_flags);
5115 }
5116 }
5117 }
5118 #endif
5119