pmap.c revision 1.155 1 /* $NetBSD: pmap.c,v 1.155 2005/12/08 22:41:44 yamt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * Performance improvements, UVM changes, overhauls and part-rewrites
144 * were contributed by Neil A. Carson <neil (at) causality.com>.
145 */
146
147 /*
148 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150 * Systems, Inc.
151 *
152 * There are still a few things outstanding at this time:
153 *
154 * - There are some unresolved issues for MP systems:
155 *
156 * o The L1 metadata needs a lock, or more specifically, some places
157 * need to acquire an exclusive lock when modifying L1 translation
158 * table entries.
159 *
160 * o When one cpu modifies an L1 entry, and that L1 table is also
161 * being used by another cpu, then the latter will need to be told
162 * that a tlb invalidation may be necessary. (But only if the old
163 * domain number in the L1 entry being over-written is currently
164 * the active domain on that cpu). I guess there are lots more tlb
165 * shootdown issues too...
166 *
167 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168 * MP systems will lose big-time because of the MMU domain hack.
169 * The only way this can be solved (apart from moving the vector
170 * page to 0xffff0000) is to reserve the first 1MB of user address
171 * space for kernel use only. This would require re-linking all
172 * applications so that the text section starts above this 1MB
173 * boundary.
174 *
175 * o Tracking which VM space is resident in the cache/tlb has not yet
176 * been implemented for MP systems.
177 *
178 * o Finally, there is a pathological condition where two cpus running
179 * two separate processes (not lwps) which happen to share an L1
180 * can get into a fight over one or more L1 entries. This will result
181 * in a significant slow-down if both processes are in tight loops.
182 */
183
184 /*
185 * Special compilation symbols
186 * PMAP_DEBUG - Build in pmap_debug_level code
187 */
188
189 /* Include header files */
190
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194 #include "opt_lockdebug.h"
195 #include "opt_multiprocessor.h"
196
197 #include <sys/types.h>
198 #include <sys/param.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/user.h>
204 #include <sys/pool.h>
205 #include <sys/cdefs.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.155 2005/12/08 22:41:44 yamt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243
244 int debugmap = 1;
245 int pmapdebug = 0;
246 #define NPDEBUG(_lev_,_stat_) \
247 if (pmapdebug & (_lev_)) \
248 ((_stat_))
249
250 #else /* PMAP_DEBUG */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif /* PMAP_DEBUG */
253
254 /*
255 * pmap_kernel() points here
256 */
257 struct pmap kernel_pmap_store;
258
259 /*
260 * Which pmap is currently 'live' in the cache
261 *
262 * XXXSCW: Fix for SMP ...
263 */
264 union pmap_cache_state *pmap_cache_state;
265
266 /*
267 * Pool and cache that pmap structures are allocated from.
268 * We use a cache to avoid clearing the pm_l2[] array (1KB)
269 * in pmap_create().
270 */
271 static struct pool pmap_pmap_pool;
272 static struct pool_cache pmap_pmap_cache;
273 static LIST_HEAD(, pmap) pmap_pmaps;
274
275 /*
276 * Pool of PV structures
277 */
278 static struct pool pmap_pv_pool;
279 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
280 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
281 static struct pool_allocator pmap_bootstrap_pv_allocator = {
282 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
283 };
284
285 /*
286 * Pool and cache of l2_dtable structures.
287 * We use a cache to avoid clearing the structures when they're
288 * allocated. (196 bytes)
289 */
290 static struct pool pmap_l2dtable_pool;
291 static struct pool_cache pmap_l2dtable_cache;
292 static vaddr_t pmap_kernel_l2dtable_kva;
293
294 /*
295 * Pool and cache of L2 page descriptors.
296 * We use a cache to avoid clearing the descriptor table
297 * when they're allocated. (1KB)
298 */
299 static struct pool pmap_l2ptp_pool;
300 static struct pool_cache pmap_l2ptp_cache;
301 static vaddr_t pmap_kernel_l2ptp_kva;
302 static paddr_t pmap_kernel_l2ptp_phys;
303
304 /*
305 * pmap copy/zero page, and mem(5) hook point
306 */
307 static pt_entry_t *csrc_pte, *cdst_pte;
308 static vaddr_t csrcp, cdstp;
309 char *memhook;
310 extern caddr_t msgbufaddr;
311
312 /*
313 * Flag to indicate if pmap_init() has done its thing
314 */
315 boolean_t pmap_initialized;
316
317 /*
318 * Misc. locking data structures
319 */
320
321 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
322 static struct lock pmap_main_lock;
323
324 #define PMAP_MAP_TO_HEAD_LOCK() \
325 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
326 #define PMAP_MAP_TO_HEAD_UNLOCK() \
327 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
328 #define PMAP_HEAD_TO_MAP_LOCK() \
329 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
330 #define PMAP_HEAD_TO_MAP_UNLOCK() \
331 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
332 #else
333 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
334 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
335 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
336 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
337 #endif
338
339 #define pmap_acquire_pmap_lock(pm) \
340 do { \
341 if ((pm) != pmap_kernel()) \
342 simple_lock(&(pm)->pm_lock); \
343 } while (/*CONSTCOND*/0)
344
345 #define pmap_release_pmap_lock(pm) \
346 do { \
347 if ((pm) != pmap_kernel()) \
348 simple_unlock(&(pm)->pm_lock); \
349 } while (/*CONSTCOND*/0)
350
351
352 /*
353 * Metadata for L1 translation tables.
354 */
355 struct l1_ttable {
356 /* Entry on the L1 Table list */
357 SLIST_ENTRY(l1_ttable) l1_link;
358
359 /* Entry on the L1 Least Recently Used list */
360 TAILQ_ENTRY(l1_ttable) l1_lru;
361
362 /* Track how many domains are allocated from this L1 */
363 volatile u_int l1_domain_use_count;
364
365 /*
366 * A free-list of domain numbers for this L1.
367 * We avoid using ffs() and a bitmap to track domains since ffs()
368 * is slow on ARM.
369 */
370 u_int8_t l1_domain_first;
371 u_int8_t l1_domain_free[PMAP_DOMAINS];
372
373 /* Physical address of this L1 page table */
374 paddr_t l1_physaddr;
375
376 /* KVA of this L1 page table */
377 pd_entry_t *l1_kva;
378 };
379
380 /*
381 * Convert a virtual address into its L1 table index. That is, the
382 * index used to locate the L2 descriptor table pointer in an L1 table.
383 * This is basically used to index l1->l1_kva[].
384 *
385 * Each L2 descriptor table represents 1MB of VA space.
386 */
387 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
388
389 /*
390 * L1 Page Tables are tracked using a Least Recently Used list.
391 * - New L1s are allocated from the HEAD.
392 * - Freed L1s are added to the TAIl.
393 * - Recently accessed L1s (where an 'access' is some change to one of
394 * the userland pmaps which owns this L1) are moved to the TAIL.
395 */
396 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
397 static struct simplelock l1_lru_lock;
398
399 /*
400 * A list of all L1 tables
401 */
402 static SLIST_HEAD(, l1_ttable) l1_list;
403
404 /*
405 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
406 *
407 * This is normally 16MB worth L2 page descriptors for any given pmap.
408 * Reference counts are maintained for L2 descriptors so they can be
409 * freed when empty.
410 */
411 struct l2_dtable {
412 /* The number of L2 page descriptors allocated to this l2_dtable */
413 u_int l2_occupancy;
414
415 /* List of L2 page descriptors */
416 struct l2_bucket {
417 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
418 paddr_t l2b_phys; /* Physical address of same */
419 u_short l2b_l1idx; /* This L2 table's L1 index */
420 u_short l2b_occupancy; /* How many active descriptors */
421 } l2_bucket[L2_BUCKET_SIZE];
422 };
423
424 /*
425 * Given an L1 table index, calculate the corresponding l2_dtable index
426 * and bucket index within the l2_dtable.
427 */
428 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
429 (L2_SIZE - 1))
430 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
431
432 /*
433 * Given a virtual address, this macro returns the
434 * virtual address required to drop into the next L2 bucket.
435 */
436 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
437
438 /*
439 * L2 allocation.
440 */
441 #define pmap_alloc_l2_dtable() \
442 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
443 #define pmap_free_l2_dtable(l2) \
444 pool_cache_put(&pmap_l2dtable_cache, (l2))
445 #define pmap_alloc_l2_ptp(pap) \
446 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
447 PR_NOWAIT, (pap)))
448
449 /*
450 * We try to map the page tables write-through, if possible. However, not
451 * all CPUs have a write-through cache mode, so on those we have to sync
452 * the cache when we frob page tables.
453 *
454 * We try to evaluate this at compile time, if possible. However, it's
455 * not always possible to do that, hence this run-time var.
456 */
457 int pmap_needs_pte_sync;
458
459 /*
460 * Real definition of pv_entry.
461 */
462 struct pv_entry {
463 struct pv_entry *pv_next; /* next pv_entry */
464 pmap_t pv_pmap; /* pmap where mapping lies */
465 vaddr_t pv_va; /* virtual address for mapping */
466 u_int pv_flags; /* flags */
467 };
468
469 /*
470 * Macro to determine if a mapping might be resident in the
471 * instruction cache and/or TLB
472 */
473 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
474
475 /*
476 * Macro to determine if a mapping might be resident in the
477 * data cache and/or TLB
478 */
479 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
480
481 /*
482 * Local prototypes
483 */
484 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
485 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
486 pt_entry_t **);
487 static boolean_t pmap_is_current(pmap_t);
488 static boolean_t pmap_is_cached(pmap_t);
489 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
490 pmap_t, vaddr_t, u_int);
491 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
492 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
493 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
494 u_int, u_int);
495
496 static void pmap_pinit(pmap_t);
497 static int pmap_pmap_ctor(void *, void *, int);
498
499 static void pmap_alloc_l1(pmap_t);
500 static void pmap_free_l1(pmap_t);
501 static void pmap_use_l1(pmap_t);
502
503 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
504 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
505 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
506 static int pmap_l2ptp_ctor(void *, void *, int);
507 static int pmap_l2dtable_ctor(void *, void *, int);
508
509 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
510 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
511 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
512
513 static void pmap_clearbit(struct vm_page *, u_int);
514 static int pmap_clean_page(struct pv_entry *, boolean_t);
515 static void pmap_page_remove(struct vm_page *);
516
517 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
518 static vaddr_t kernel_pt_lookup(paddr_t);
519
520
521 /*
522 * External function prototypes
523 */
524 extern void bzero_page(vaddr_t);
525 extern void bcopy_page(vaddr_t, vaddr_t);
526
527 /*
528 * Misc variables
529 */
530 vaddr_t virtual_avail;
531 vaddr_t virtual_end;
532 vaddr_t pmap_curmaxkvaddr;
533
534 vaddr_t avail_start;
535 vaddr_t avail_end;
536
537 extern pv_addr_t systempage;
538
539 /* Function to set the debug level of the pmap code */
540
541 #ifdef PMAP_DEBUG
542 void
543 pmap_debug(int level)
544 {
545 pmap_debug_level = level;
546 printf("pmap_debug: level=%d\n", pmap_debug_level);
547 }
548 #endif /* PMAP_DEBUG */
549
550 /*
551 * A bunch of routines to conditionally flush the caches/TLB depending
552 * on whether the specified pmap actually needs to be flushed at any
553 * given time.
554 */
555 static __inline void
556 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
557 {
558
559 if (pm->pm_cstate.cs_tlb_id)
560 cpu_tlb_flushID_SE(va);
561 }
562
563 static __inline void
564 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
565 {
566
567 if (pm->pm_cstate.cs_tlb_d)
568 cpu_tlb_flushD_SE(va);
569 }
570
571 static __inline void
572 pmap_tlb_flushID(pmap_t pm)
573 {
574
575 if (pm->pm_cstate.cs_tlb_id) {
576 cpu_tlb_flushID();
577 pm->pm_cstate.cs_tlb = 0;
578 }
579 }
580
581 static __inline void
582 pmap_tlb_flushD(pmap_t pm)
583 {
584
585 if (pm->pm_cstate.cs_tlb_d) {
586 cpu_tlb_flushD();
587 pm->pm_cstate.cs_tlb_d = 0;
588 }
589 }
590
591 static __inline void
592 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
593 {
594
595 if (pm->pm_cstate.cs_cache_id)
596 cpu_idcache_wbinv_range(va, len);
597 }
598
599 static __inline void
600 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
601 boolean_t do_inv, boolean_t rd_only)
602 {
603
604 if (pm->pm_cstate.cs_cache_d) {
605 if (do_inv) {
606 if (rd_only)
607 cpu_dcache_inv_range(va, len);
608 else
609 cpu_dcache_wbinv_range(va, len);
610 } else
611 if (!rd_only)
612 cpu_dcache_wb_range(va, len);
613 }
614 }
615
616 static __inline void
617 pmap_idcache_wbinv_all(pmap_t pm)
618 {
619
620 if (pm->pm_cstate.cs_cache_id) {
621 cpu_idcache_wbinv_all();
622 pm->pm_cstate.cs_cache = 0;
623 }
624 }
625
626 static __inline void
627 pmap_dcache_wbinv_all(pmap_t pm)
628 {
629
630 if (pm->pm_cstate.cs_cache_d) {
631 cpu_dcache_wbinv_all();
632 pm->pm_cstate.cs_cache_d = 0;
633 }
634 }
635
636 static __inline boolean_t
637 pmap_is_current(pmap_t pm)
638 {
639
640 if (pm == pmap_kernel() ||
641 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
642 return (TRUE);
643
644 return (FALSE);
645 }
646
647 static __inline boolean_t
648 pmap_is_cached(pmap_t pm)
649 {
650
651 if (pm == pmap_kernel() || pmap_cache_state == NULL ||
652 pmap_cache_state == &pm->pm_cstate)
653 return (TRUE);
654
655 return (FALSE);
656 }
657
658 /*
659 * PTE_SYNC_CURRENT:
660 *
661 * Make sure the pte is written out to RAM.
662 * We need to do this for one of two cases:
663 * - We're dealing with the kernel pmap
664 * - There is no pmap active in the cache/tlb.
665 * - The specified pmap is 'active' in the cache/tlb.
666 */
667 #ifdef PMAP_INCLUDE_PTE_SYNC
668 #define PTE_SYNC_CURRENT(pm, ptep) \
669 do { \
670 if (PMAP_NEEDS_PTE_SYNC && \
671 pmap_is_cached(pm)) \
672 PTE_SYNC(ptep); \
673 } while (/*CONSTCOND*/0)
674 #else
675 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
676 #endif
677
678 /*
679 * main pv_entry manipulation functions:
680 * pmap_enter_pv: enter a mapping onto a vm_page list
681 * pmap_remove_pv: remove a mappiing from a vm_page list
682 *
683 * NOTE: pmap_enter_pv expects to lock the pvh itself
684 * pmap_remove_pv expects te caller to lock the pvh before calling
685 */
686
687 /*
688 * pmap_enter_pv: enter a mapping onto a vm_page lst
689 *
690 * => caller should hold the proper lock on pmap_main_lock
691 * => caller should have pmap locked
692 * => we will gain the lock on the vm_page and allocate the new pv_entry
693 * => caller should adjust ptp's wire_count before calling
694 * => caller should not adjust pmap's wire_count
695 */
696 static void
697 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
698 vaddr_t va, u_int flags)
699 {
700
701 NPDEBUG(PDB_PVDUMP,
702 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
703
704 pve->pv_pmap = pm;
705 pve->pv_va = va;
706 pve->pv_flags = flags;
707
708 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
709 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
710 pg->mdpage.pvh_list = pve; /* ... locked list */
711 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
712 if (pm == pmap_kernel()) {
713 if (flags & PVF_WRITE)
714 pg->mdpage.krw_mappings++;
715 else
716 pg->mdpage.kro_mappings++;
717 } else
718 if (flags & PVF_WRITE)
719 pg->mdpage.urw_mappings++;
720 else
721 pg->mdpage.uro_mappings++;
722 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
723
724 if (pve->pv_flags & PVF_WIRED)
725 ++pm->pm_stats.wired_count;
726 }
727
728 /*
729 *
730 * pmap_find_pv: Find a pv entry
731 *
732 * => caller should hold lock on vm_page
733 */
734 static __inline struct pv_entry *
735 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
736 {
737 struct pv_entry *pv;
738
739 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
740 if (pm == pv->pv_pmap && va == pv->pv_va)
741 break;
742 }
743
744 return (pv);
745 }
746
747 /*
748 * pmap_remove_pv: try to remove a mapping from a pv_list
749 *
750 * => caller should hold proper lock on pmap_main_lock
751 * => pmap should be locked
752 * => caller should hold lock on vm_page [so that attrs can be adjusted]
753 * => caller should adjust ptp's wire_count and free PTP if needed
754 * => caller should NOT adjust pmap's wire_count
755 * => we return the removed pve
756 */
757 static struct pv_entry *
758 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
759 {
760 struct pv_entry *pve, **prevptr;
761
762 NPDEBUG(PDB_PVDUMP,
763 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
764
765 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
766 pve = *prevptr;
767
768 while (pve) {
769 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
770 NPDEBUG(PDB_PVDUMP,
771 printf("pmap_remove_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, pve->pv_flags));
772 *prevptr = pve->pv_next; /* remove it! */
773 if (pve->pv_flags & PVF_WIRED)
774 --pm->pm_stats.wired_count;
775 if (pm == pmap_kernel()) {
776 if (pve->pv_flags & PVF_WRITE)
777 pg->mdpage.krw_mappings--;
778 else
779 pg->mdpage.kro_mappings--;
780 } else
781 if (pve->pv_flags & PVF_WRITE)
782 pg->mdpage.urw_mappings--;
783 else
784 pg->mdpage.uro_mappings--;
785 break;
786 }
787 prevptr = &pve->pv_next; /* previous pointer */
788 pve = pve->pv_next; /* advance */
789 }
790
791 return(pve); /* return removed pve */
792 }
793
794 /*
795 *
796 * pmap_modify_pv: Update pv flags
797 *
798 * => caller should hold lock on vm_page [so that attrs can be adjusted]
799 * => caller should NOT adjust pmap's wire_count
800 * => caller must call pmap_vac_me_harder() if writable status of a page
801 * may have changed.
802 * => we return the old flags
803 *
804 * Modify a physical-virtual mapping in the pv table
805 */
806 static u_int
807 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
808 u_int clr_mask, u_int set_mask)
809 {
810 struct pv_entry *npv;
811 u_int flags, oflags;
812
813 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
814 return (0);
815
816 NPDEBUG(PDB_PVDUMP,
817 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
818
819 /*
820 * There is at least one VA mapping this page.
821 */
822
823 if (clr_mask & (PVF_REF | PVF_MOD))
824 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
825
826 oflags = npv->pv_flags;
827 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
828
829 if ((flags ^ oflags) & PVF_WIRED) {
830 if (flags & PVF_WIRED)
831 ++pm->pm_stats.wired_count;
832 else
833 --pm->pm_stats.wired_count;
834 }
835
836 if ((flags ^ oflags) & PVF_WRITE) {
837 if (pm == pmap_kernel()) {
838 if (flags & PVF_WRITE) {
839 pg->mdpage.krw_mappings++;
840 pg->mdpage.kro_mappings--;
841 } else {
842 pg->mdpage.kro_mappings++;
843 pg->mdpage.krw_mappings--;
844 }
845 } else
846 if (flags & PVF_WRITE) {
847 pg->mdpage.urw_mappings++;
848 pg->mdpage.uro_mappings--;
849 } else {
850 pg->mdpage.uro_mappings++;
851 pg->mdpage.urw_mappings--;
852 }
853 }
854
855 return (oflags);
856 }
857
858 static void
859 pmap_pinit(pmap_t pm)
860 {
861
862 if (vector_page < KERNEL_BASE) {
863 /*
864 * Map the vector page.
865 */
866 pmap_enter(pm, vector_page, systempage.pv_pa,
867 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
868 pmap_update(pm);
869 }
870 }
871
872 /*
873 * Allocate an L1 translation table for the specified pmap.
874 * This is called at pmap creation time.
875 */
876 static void
877 pmap_alloc_l1(pmap_t pm)
878 {
879 struct l1_ttable *l1;
880 u_int8_t domain;
881
882 /*
883 * Remove the L1 at the head of the LRU list
884 */
885 simple_lock(&l1_lru_lock);
886 l1 = TAILQ_FIRST(&l1_lru_list);
887 KDASSERT(l1 != NULL);
888 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
889
890 /*
891 * Pick the first available domain number, and update
892 * the link to the next number.
893 */
894 domain = l1->l1_domain_first;
895 l1->l1_domain_first = l1->l1_domain_free[domain];
896
897 /*
898 * If there are still free domain numbers in this L1,
899 * put it back on the TAIL of the LRU list.
900 */
901 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
902 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
903
904 simple_unlock(&l1_lru_lock);
905
906 /*
907 * Fix up the relevant bits in the pmap structure
908 */
909 pm->pm_l1 = l1;
910 pm->pm_domain = domain;
911 }
912
913 /*
914 * Free an L1 translation table.
915 * This is called at pmap destruction time.
916 */
917 static void
918 pmap_free_l1(pmap_t pm)
919 {
920 struct l1_ttable *l1 = pm->pm_l1;
921
922 simple_lock(&l1_lru_lock);
923
924 /*
925 * If this L1 is currently on the LRU list, remove it.
926 */
927 if (l1->l1_domain_use_count < PMAP_DOMAINS)
928 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
929
930 /*
931 * Free up the domain number which was allocated to the pmap
932 */
933 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
934 l1->l1_domain_first = pm->pm_domain;
935 l1->l1_domain_use_count--;
936
937 /*
938 * The L1 now must have at least 1 free domain, so add
939 * it back to the LRU list. If the use count is zero,
940 * put it at the head of the list, otherwise it goes
941 * to the tail.
942 */
943 if (l1->l1_domain_use_count == 0)
944 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
945 else
946 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
947
948 simple_unlock(&l1_lru_lock);
949 }
950
951 static __inline void
952 pmap_use_l1(pmap_t pm)
953 {
954 struct l1_ttable *l1;
955
956 /*
957 * Do nothing if we're in interrupt context.
958 * Access to an L1 by the kernel pmap must not affect
959 * the LRU list.
960 */
961 if (current_intr_depth || pm == pmap_kernel())
962 return;
963
964 l1 = pm->pm_l1;
965
966 /*
967 * If the L1 is not currently on the LRU list, just return
968 */
969 if (l1->l1_domain_use_count == PMAP_DOMAINS)
970 return;
971
972 simple_lock(&l1_lru_lock);
973
974 /*
975 * Check the use count again, now that we've acquired the lock
976 */
977 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
978 simple_unlock(&l1_lru_lock);
979 return;
980 }
981
982 /*
983 * Move the L1 to the back of the LRU list
984 */
985 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
986 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
987
988 simple_unlock(&l1_lru_lock);
989 }
990
991 /*
992 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
993 *
994 * Free an L2 descriptor table.
995 */
996 static __inline void
997 #ifndef PMAP_INCLUDE_PTE_SYNC
998 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
999 #else
1000 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
1001 #endif
1002 {
1003 #ifdef PMAP_INCLUDE_PTE_SYNC
1004 /*
1005 * Note: With a write-back cache, we may need to sync this
1006 * L2 table before re-using it.
1007 * This is because it may have belonged to a non-current
1008 * pmap, in which case the cache syncs would have been
1009 * skipped when the pages were being unmapped. If the
1010 * L2 table were then to be immediately re-allocated to
1011 * the *current* pmap, it may well contain stale mappings
1012 * which have not yet been cleared by a cache write-back
1013 * and so would still be visible to the mmu.
1014 */
1015 if (need_sync)
1016 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1017 #endif
1018 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1019 }
1020
1021 /*
1022 * Returns a pointer to the L2 bucket associated with the specified pmap
1023 * and VA, or NULL if no L2 bucket exists for the address.
1024 */
1025 static __inline struct l2_bucket *
1026 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1027 {
1028 struct l2_dtable *l2;
1029 struct l2_bucket *l2b;
1030 u_short l1idx;
1031
1032 l1idx = L1_IDX(va);
1033
1034 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1035 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1036 return (NULL);
1037
1038 return (l2b);
1039 }
1040
1041 /*
1042 * Returns a pointer to the L2 bucket associated with the specified pmap
1043 * and VA.
1044 *
1045 * If no L2 bucket exists, perform the necessary allocations to put an L2
1046 * bucket/page table in place.
1047 *
1048 * Note that if a new L2 bucket/page was allocated, the caller *must*
1049 * increment the bucket occupancy counter appropriately *before*
1050 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1051 * the bucket/page in the meantime.
1052 */
1053 static struct l2_bucket *
1054 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1055 {
1056 struct l2_dtable *l2;
1057 struct l2_bucket *l2b;
1058 u_short l1idx;
1059
1060 l1idx = L1_IDX(va);
1061
1062 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1063 /*
1064 * No mapping at this address, as there is
1065 * no entry in the L1 table.
1066 * Need to allocate a new l2_dtable.
1067 */
1068 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1069 return (NULL);
1070
1071 /*
1072 * Link it into the parent pmap
1073 */
1074 pm->pm_l2[L2_IDX(l1idx)] = l2;
1075 }
1076
1077 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1078
1079 /*
1080 * Fetch pointer to the L2 page table associated with the address.
1081 */
1082 if (l2b->l2b_kva == NULL) {
1083 pt_entry_t *ptep;
1084
1085 /*
1086 * No L2 page table has been allocated. Chances are, this
1087 * is because we just allocated the l2_dtable, above.
1088 */
1089 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1090 /*
1091 * Oops, no more L2 page tables available at this
1092 * time. We may need to deallocate the l2_dtable
1093 * if we allocated a new one above.
1094 */
1095 if (l2->l2_occupancy == 0) {
1096 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1097 pmap_free_l2_dtable(l2);
1098 }
1099 return (NULL);
1100 }
1101
1102 l2->l2_occupancy++;
1103 l2b->l2b_kva = ptep;
1104 l2b->l2b_l1idx = l1idx;
1105 }
1106
1107 return (l2b);
1108 }
1109
1110 /*
1111 * One or more mappings in the specified L2 descriptor table have just been
1112 * invalidated.
1113 *
1114 * Garbage collect the metadata and descriptor table itself if necessary.
1115 *
1116 * The pmap lock must be acquired when this is called (not necessary
1117 * for the kernel pmap).
1118 */
1119 static void
1120 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1121 {
1122 struct l2_dtable *l2;
1123 pd_entry_t *pl1pd, l1pd;
1124 pt_entry_t *ptep;
1125 u_short l1idx;
1126
1127 KDASSERT(count <= l2b->l2b_occupancy);
1128
1129 /*
1130 * Update the bucket's reference count according to how many
1131 * PTEs the caller has just invalidated.
1132 */
1133 l2b->l2b_occupancy -= count;
1134
1135 /*
1136 * Note:
1137 *
1138 * Level 2 page tables allocated to the kernel pmap are never freed
1139 * as that would require checking all Level 1 page tables and
1140 * removing any references to the Level 2 page table. See also the
1141 * comment elsewhere about never freeing bootstrap L2 descriptors.
1142 *
1143 * We make do with just invalidating the mapping in the L2 table.
1144 *
1145 * This isn't really a big deal in practice and, in fact, leads
1146 * to a performance win over time as we don't need to continually
1147 * alloc/free.
1148 */
1149 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1150 return;
1151
1152 /*
1153 * There are no more valid mappings in this level 2 page table.
1154 * Go ahead and NULL-out the pointer in the bucket, then
1155 * free the page table.
1156 */
1157 l1idx = l2b->l2b_l1idx;
1158 ptep = l2b->l2b_kva;
1159 l2b->l2b_kva = NULL;
1160
1161 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1162
1163 /*
1164 * If the L1 slot matches the pmap's domain
1165 * number, then invalidate it.
1166 */
1167 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1168 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1169 *pl1pd = 0;
1170 PTE_SYNC(pl1pd);
1171 }
1172
1173 /*
1174 * Release the L2 descriptor table back to the pool cache.
1175 */
1176 #ifndef PMAP_INCLUDE_PTE_SYNC
1177 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1178 #else
1179 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1180 #endif
1181
1182 /*
1183 * Update the reference count in the associated l2_dtable
1184 */
1185 l2 = pm->pm_l2[L2_IDX(l1idx)];
1186 if (--l2->l2_occupancy > 0)
1187 return;
1188
1189 /*
1190 * There are no more valid mappings in any of the Level 1
1191 * slots managed by this l2_dtable. Go ahead and NULL-out
1192 * the pointer in the parent pmap and free the l2_dtable.
1193 */
1194 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1195 pmap_free_l2_dtable(l2);
1196 }
1197
1198 /*
1199 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1200 * structures.
1201 */
1202 static int
1203 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1204 {
1205 #ifndef PMAP_INCLUDE_PTE_SYNC
1206 struct l2_bucket *l2b;
1207 pt_entry_t *ptep, pte;
1208 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1209
1210 /*
1211 * The mappings for these page tables were initially made using
1212 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1213 * mode will not be right for page table mappings. To avoid
1214 * polluting the pmap_kenter_pa() code with a special case for
1215 * page tables, we simply fix up the cache-mode here if it's not
1216 * correct.
1217 */
1218 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1219 KDASSERT(l2b != NULL);
1220 ptep = &l2b->l2b_kva[l2pte_index(va)];
1221 pte = *ptep;
1222
1223 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1224 /*
1225 * Page tables must have the cache-mode set to Write-Thru.
1226 */
1227 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1228 PTE_SYNC(ptep);
1229 cpu_tlb_flushD_SE(va);
1230 cpu_cpwait();
1231 }
1232 #endif
1233
1234 memset(v, 0, L2_TABLE_SIZE_REAL);
1235 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1236 return (0);
1237 }
1238
1239 static int
1240 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1241 {
1242
1243 memset(v, 0, sizeof(struct l2_dtable));
1244 return (0);
1245 }
1246
1247 static int
1248 pmap_pmap_ctor(void *arg, void *v, int flags)
1249 {
1250
1251 memset(v, 0, sizeof(struct pmap));
1252 return (0);
1253 }
1254
1255 /*
1256 * Since we have a virtually indexed cache, we may need to inhibit caching if
1257 * there is more than one mapping and at least one of them is writable.
1258 * Since we purge the cache on every context switch, we only need to check for
1259 * other mappings within the same pmap, or kernel_pmap.
1260 * This function is also called when a page is unmapped, to possibly reenable
1261 * caching on any remaining mappings.
1262 *
1263 * The code implements the following logic, where:
1264 *
1265 * KW = # of kernel read/write pages
1266 * KR = # of kernel read only pages
1267 * UW = # of user read/write pages
1268 * UR = # of user read only pages
1269 *
1270 * KC = kernel mapping is cacheable
1271 * UC = user mapping is cacheable
1272 *
1273 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1274 * +---------------------------------------------
1275 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1276 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1277 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1278 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1279 */
1280
1281 static const int pmap_vac_flags[4][4] = {
1282 {-1, 0, 0, PVF_KNC},
1283 {0, 0, PVF_NC, PVF_NC},
1284 {0, PVF_NC, PVF_NC, PVF_NC},
1285 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1286 };
1287
1288 static __inline int
1289 pmap_get_vac_flags(const struct vm_page *pg)
1290 {
1291 int kidx, uidx;
1292
1293 kidx = 0;
1294 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1295 kidx |= 1;
1296 if (pg->mdpage.krw_mappings)
1297 kidx |= 2;
1298
1299 uidx = 0;
1300 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1301 uidx |= 1;
1302 if (pg->mdpage.urw_mappings)
1303 uidx |= 2;
1304
1305 return (pmap_vac_flags[uidx][kidx]);
1306 }
1307
1308 static __inline void
1309 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1310 {
1311 int nattr;
1312
1313 nattr = pmap_get_vac_flags(pg);
1314
1315 if (nattr < 0) {
1316 pg->mdpage.pvh_attrs &= ~PVF_NC;
1317 return;
1318 }
1319
1320 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1321 return;
1322
1323 if (pm == pmap_kernel())
1324 pmap_vac_me_kpmap(pg, pm, va);
1325 else
1326 pmap_vac_me_user(pg, pm, va);
1327
1328 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1329 }
1330
1331 static void
1332 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1333 {
1334 u_int u_cacheable, u_entries;
1335 struct pv_entry *pv;
1336 pmap_t last_pmap = pm;
1337
1338 /*
1339 * Pass one, see if there are both kernel and user pmaps for
1340 * this page. Calculate whether there are user-writable or
1341 * kernel-writable pages.
1342 */
1343 u_cacheable = 0;
1344 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1345 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1346 u_cacheable++;
1347 }
1348
1349 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1350
1351 /*
1352 * We know we have just been updating a kernel entry, so if
1353 * all user pages are already cacheable, then there is nothing
1354 * further to do.
1355 */
1356 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1357 return;
1358
1359 if (u_entries) {
1360 /*
1361 * Scan over the list again, for each entry, if it
1362 * might not be set correctly, call pmap_vac_me_user
1363 * to recalculate the settings.
1364 */
1365 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1366 /*
1367 * We know kernel mappings will get set
1368 * correctly in other calls. We also know
1369 * that if the pmap is the same as last_pmap
1370 * then we've just handled this entry.
1371 */
1372 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1373 continue;
1374
1375 /*
1376 * If there are kernel entries and this page
1377 * is writable but non-cacheable, then we can
1378 * skip this entry also.
1379 */
1380 if (pg->mdpage.k_mappings &&
1381 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1382 (PVF_NC | PVF_WRITE))
1383 continue;
1384
1385 /*
1386 * Similarly if there are no kernel-writable
1387 * entries and the page is already
1388 * read-only/cacheable.
1389 */
1390 if (pg->mdpage.krw_mappings == 0 &&
1391 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1392 continue;
1393
1394 /*
1395 * For some of the remaining cases, we know
1396 * that we must recalculate, but for others we
1397 * can't tell if they are correct or not, so
1398 * we recalculate anyway.
1399 */
1400 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1401 }
1402
1403 if (pg->mdpage.k_mappings == 0)
1404 return;
1405 }
1406
1407 pmap_vac_me_user(pg, pm, va);
1408 }
1409
1410 static void
1411 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1412 {
1413 pmap_t kpmap = pmap_kernel();
1414 struct pv_entry *pv, *npv;
1415 struct l2_bucket *l2b;
1416 pt_entry_t *ptep, pte;
1417 u_int entries = 0;
1418 u_int writable = 0;
1419 u_int cacheable_entries = 0;
1420 u_int kern_cacheable = 0;
1421 u_int other_writable = 0;
1422
1423 /*
1424 * Count mappings and writable mappings in this pmap.
1425 * Include kernel mappings as part of our own.
1426 * Keep a pointer to the first one.
1427 */
1428 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1429 /* Count mappings in the same pmap */
1430 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1431 if (entries++ == 0)
1432 npv = pv;
1433
1434 /* Cacheable mappings */
1435 if ((pv->pv_flags & PVF_NC) == 0) {
1436 cacheable_entries++;
1437 if (kpmap == pv->pv_pmap)
1438 kern_cacheable++;
1439 }
1440
1441 /* Writable mappings */
1442 if (pv->pv_flags & PVF_WRITE)
1443 ++writable;
1444 } else
1445 if (pv->pv_flags & PVF_WRITE)
1446 other_writable = 1;
1447 }
1448
1449 /*
1450 * Enable or disable caching as necessary.
1451 * Note: the first entry might be part of the kernel pmap,
1452 * so we can't assume this is indicative of the state of the
1453 * other (maybe non-kpmap) entries.
1454 */
1455 if ((entries > 1 && writable) ||
1456 (entries > 0 && pm == kpmap && other_writable)) {
1457 if (cacheable_entries == 0)
1458 return;
1459
1460 for (pv = npv; pv; pv = pv->pv_next) {
1461 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1462 (pv->pv_flags & PVF_NC))
1463 continue;
1464
1465 pv->pv_flags |= PVF_NC;
1466
1467 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1468 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1469 pte = *ptep & ~L2_S_CACHE_MASK;
1470
1471 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1472 l2pte_valid(pte)) {
1473 if (PV_BEEN_EXECD(pv->pv_flags)) {
1474 pmap_idcache_wbinv_range(pv->pv_pmap,
1475 pv->pv_va, PAGE_SIZE);
1476 pmap_tlb_flushID_SE(pv->pv_pmap,
1477 pv->pv_va);
1478 } else
1479 if (PV_BEEN_REFD(pv->pv_flags)) {
1480 pmap_dcache_wb_range(pv->pv_pmap,
1481 pv->pv_va, PAGE_SIZE, TRUE,
1482 (pv->pv_flags & PVF_WRITE) == 0);
1483 pmap_tlb_flushD_SE(pv->pv_pmap,
1484 pv->pv_va);
1485 }
1486 }
1487
1488 *ptep = pte;
1489 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1490 }
1491 cpu_cpwait();
1492 } else
1493 if (entries > cacheable_entries) {
1494 /*
1495 * Turn cacheing back on for some pages. If it is a kernel
1496 * page, only do so if there are no other writable pages.
1497 */
1498 for (pv = npv; pv; pv = pv->pv_next) {
1499 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1500 (kpmap != pv->pv_pmap || other_writable)))
1501 continue;
1502
1503 pv->pv_flags &= ~PVF_NC;
1504
1505 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1506 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1507 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1508
1509 if (l2pte_valid(pte)) {
1510 if (PV_BEEN_EXECD(pv->pv_flags)) {
1511 pmap_tlb_flushID_SE(pv->pv_pmap,
1512 pv->pv_va);
1513 } else
1514 if (PV_BEEN_REFD(pv->pv_flags)) {
1515 pmap_tlb_flushD_SE(pv->pv_pmap,
1516 pv->pv_va);
1517 }
1518 }
1519
1520 *ptep = pte;
1521 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1522 }
1523 }
1524 }
1525
1526 /*
1527 * Modify pte bits for all ptes corresponding to the given physical address.
1528 * We use `maskbits' rather than `clearbits' because we're always passing
1529 * constants and the latter would require an extra inversion at run-time.
1530 */
1531 static void
1532 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1533 {
1534 struct l2_bucket *l2b;
1535 struct pv_entry *pv;
1536 pt_entry_t *ptep, npte, opte;
1537 pmap_t pm;
1538 vaddr_t va;
1539 u_int oflags;
1540
1541 NPDEBUG(PDB_BITS,
1542 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1543 pg, VM_PAGE_TO_PHYS(pg), maskbits));
1544
1545 PMAP_HEAD_TO_MAP_LOCK();
1546 simple_lock(&pg->mdpage.pvh_slock);
1547
1548 /*
1549 * Clear saved attributes (modify, reference)
1550 */
1551 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1552
1553 if (pg->mdpage.pvh_list == NULL) {
1554 simple_unlock(&pg->mdpage.pvh_slock);
1555 PMAP_HEAD_TO_MAP_UNLOCK();
1556 return;
1557 }
1558
1559 /*
1560 * Loop over all current mappings setting/clearing as appropos
1561 */
1562 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1563 va = pv->pv_va;
1564 pm = pv->pv_pmap;
1565 oflags = pv->pv_flags;
1566 pv->pv_flags &= ~maskbits;
1567
1568 pmap_acquire_pmap_lock(pm);
1569
1570 l2b = pmap_get_l2_bucket(pm, va);
1571 KDASSERT(l2b != NULL);
1572
1573 ptep = &l2b->l2b_kva[l2pte_index(va)];
1574 npte = opte = *ptep;
1575
1576 NPDEBUG(PDB_BITS,
1577 printf(
1578 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1579 pv, pv->pv_pmap, pv->pv_va, oflags));
1580
1581 if (maskbits & (PVF_WRITE|PVF_MOD)) {
1582 if ((pv->pv_flags & PVF_NC)) {
1583 /*
1584 * Entry is not cacheable:
1585 *
1586 * Don't turn caching on again if this is a
1587 * modified emulation. This would be
1588 * inconsitent with the settings created by
1589 * pmap_vac_me_harder(). Otherwise, it's safe
1590 * to re-enable cacheing.
1591 *
1592 * There's no need to call pmap_vac_me_harder()
1593 * here: all pages are losing their write
1594 * permission.
1595 */
1596 if (maskbits & PVF_WRITE) {
1597 npte |= pte_l2_s_cache_mode;
1598 pv->pv_flags &= ~PVF_NC;
1599 }
1600 } else
1601 if (opte & L2_S_PROT_W) {
1602 /*
1603 * Entry is writable/cacheable: check if pmap
1604 * is current if it is flush it, otherwise it
1605 * won't be in the cache
1606 */
1607 if (PV_BEEN_EXECD(oflags))
1608 pmap_idcache_wbinv_range(pm, pv->pv_va,
1609 PAGE_SIZE);
1610 else
1611 if (PV_BEEN_REFD(oflags))
1612 pmap_dcache_wb_range(pm, pv->pv_va,
1613 PAGE_SIZE,
1614 (maskbits & PVF_REF) ? TRUE : FALSE,
1615 FALSE);
1616 }
1617
1618 /* make the pte read only */
1619 npte &= ~L2_S_PROT_W;
1620
1621 if (maskbits & PVF_WRITE) {
1622 /*
1623 * Keep alias accounting up to date
1624 */
1625 if (pv->pv_pmap == pmap_kernel()) {
1626 if (oflags & PVF_WRITE) {
1627 pg->mdpage.krw_mappings--;
1628 pg->mdpage.kro_mappings++;
1629 }
1630 } else
1631 if (oflags & PVF_WRITE) {
1632 pg->mdpage.urw_mappings--;
1633 pg->mdpage.uro_mappings++;
1634 }
1635 }
1636 }
1637
1638 if (maskbits & PVF_REF) {
1639 if ((pv->pv_flags & PVF_NC) == 0 &&
1640 (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1641 /*
1642 * Check npte here; we may have already
1643 * done the wbinv above, and the validity
1644 * of the PTE is the same for opte and
1645 * npte.
1646 */
1647 if (npte & L2_S_PROT_W) {
1648 if (PV_BEEN_EXECD(oflags))
1649 pmap_idcache_wbinv_range(pm,
1650 pv->pv_va, PAGE_SIZE);
1651 else
1652 if (PV_BEEN_REFD(oflags))
1653 pmap_dcache_wb_range(pm,
1654 pv->pv_va, PAGE_SIZE,
1655 TRUE, FALSE);
1656 } else
1657 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1658 /* XXXJRT need idcache_inv_range */
1659 if (PV_BEEN_EXECD(oflags))
1660 pmap_idcache_wbinv_range(pm,
1661 pv->pv_va, PAGE_SIZE);
1662 else
1663 if (PV_BEEN_REFD(oflags))
1664 pmap_dcache_wb_range(pm,
1665 pv->pv_va, PAGE_SIZE,
1666 TRUE, TRUE);
1667 }
1668 }
1669
1670 /*
1671 * Make the PTE invalid so that we will take a
1672 * page fault the next time the mapping is
1673 * referenced.
1674 */
1675 npte &= ~L2_TYPE_MASK;
1676 npte |= L2_TYPE_INV;
1677 }
1678
1679 if (npte != opte) {
1680 *ptep = npte;
1681 PTE_SYNC(ptep);
1682 /* Flush the TLB entry if a current pmap. */
1683 if (PV_BEEN_EXECD(oflags))
1684 pmap_tlb_flushID_SE(pm, pv->pv_va);
1685 else
1686 if (PV_BEEN_REFD(oflags))
1687 pmap_tlb_flushD_SE(pm, pv->pv_va);
1688 }
1689
1690 pmap_release_pmap_lock(pm);
1691
1692 NPDEBUG(PDB_BITS,
1693 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1694 pm, va, opte, npte));
1695 }
1696
1697 simple_unlock(&pg->mdpage.pvh_slock);
1698 PMAP_HEAD_TO_MAP_UNLOCK();
1699 }
1700
1701 /*
1702 * pmap_clean_page()
1703 *
1704 * This is a local function used to work out the best strategy to clean
1705 * a single page referenced by its entry in the PV table. It's used by
1706 * pmap_copy_page, pmap_zero page and maybe some others later on.
1707 *
1708 * Its policy is effectively:
1709 * o If there are no mappings, we don't bother doing anything with the cache.
1710 * o If there is one mapping, we clean just that page.
1711 * o If there are multiple mappings, we clean the entire cache.
1712 *
1713 * So that some functions can be further optimised, it returns 0 if it didn't
1714 * clean the entire cache, or 1 if it did.
1715 *
1716 * XXX One bug in this routine is that if the pv_entry has a single page
1717 * mapped at 0x00000000 a whole cache clean will be performed rather than
1718 * just the 1 page. Since this should not occur in everyday use and if it does
1719 * it will just result in not the most efficient clean for the page.
1720 */
1721 static int
1722 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1723 {
1724 pmap_t pm, pm_to_clean = NULL;
1725 struct pv_entry *npv;
1726 u_int cache_needs_cleaning = 0;
1727 u_int flags = 0;
1728 vaddr_t page_to_clean = 0;
1729
1730 if (pv == NULL) {
1731 /* nothing mapped in so nothing to flush */
1732 return (0);
1733 }
1734
1735 /*
1736 * Since we flush the cache each time we change to a different
1737 * user vmspace, we only need to flush the page if it is in the
1738 * current pmap.
1739 */
1740 if (curproc)
1741 pm = curproc->p_vmspace->vm_map.pmap;
1742 else
1743 pm = pmap_kernel();
1744
1745 for (npv = pv; npv; npv = npv->pv_next) {
1746 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1747 flags |= npv->pv_flags;
1748 /*
1749 * The page is mapped non-cacheable in
1750 * this map. No need to flush the cache.
1751 */
1752 if (npv->pv_flags & PVF_NC) {
1753 #ifdef DIAGNOSTIC
1754 if (cache_needs_cleaning)
1755 panic("pmap_clean_page: "
1756 "cache inconsistency");
1757 #endif
1758 break;
1759 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1760 continue;
1761 if (cache_needs_cleaning) {
1762 page_to_clean = 0;
1763 break;
1764 } else {
1765 page_to_clean = npv->pv_va;
1766 pm_to_clean = npv->pv_pmap;
1767 }
1768 cache_needs_cleaning = 1;
1769 }
1770 }
1771
1772 if (page_to_clean) {
1773 if (PV_BEEN_EXECD(flags))
1774 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1775 PAGE_SIZE);
1776 else
1777 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1778 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1779 } else if (cache_needs_cleaning) {
1780 if (PV_BEEN_EXECD(flags))
1781 pmap_idcache_wbinv_all(pm);
1782 else
1783 pmap_dcache_wbinv_all(pm);
1784 return (1);
1785 }
1786 return (0);
1787 }
1788
1789 /*
1790 * Routine: pmap_page_remove
1791 * Function:
1792 * Removes this physical page from
1793 * all physical maps in which it resides.
1794 * Reflects back modify bits to the pager.
1795 */
1796 static void
1797 pmap_page_remove(struct vm_page *pg)
1798 {
1799 struct l2_bucket *l2b;
1800 struct pv_entry *pv, *npv;
1801 pmap_t pm, curpm;
1802 pt_entry_t *ptep, pte;
1803 boolean_t flush;
1804 u_int flags;
1805
1806 NPDEBUG(PDB_FOLLOW,
1807 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
1808 VM_PAGE_TO_PHYS(pg)));
1809
1810 PMAP_HEAD_TO_MAP_LOCK();
1811 simple_lock(&pg->mdpage.pvh_slock);
1812
1813 pv = pg->mdpage.pvh_list;
1814 if (pv == NULL) {
1815 simple_unlock(&pg->mdpage.pvh_slock);
1816 PMAP_HEAD_TO_MAP_UNLOCK();
1817 return;
1818 }
1819
1820 /*
1821 * Clear alias counts
1822 */
1823 pg->mdpage.k_mappings = 0;
1824 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1825
1826 flush = FALSE;
1827 flags = 0;
1828 if (curproc)
1829 curpm = curproc->p_vmspace->vm_map.pmap;
1830 else
1831 curpm = pmap_kernel();
1832
1833 pmap_clean_page(pv, FALSE);
1834
1835 while (pv) {
1836 pm = pv->pv_pmap;
1837 if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
1838 flush = TRUE;
1839
1840 pmap_acquire_pmap_lock(pm);
1841
1842 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1843 KDASSERT(l2b != NULL);
1844
1845 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1846 pte = *ptep;
1847
1848 /*
1849 * Update statistics
1850 */
1851 --pm->pm_stats.resident_count;
1852
1853 /* Wired bit */
1854 if (pv->pv_flags & PVF_WIRED)
1855 --pm->pm_stats.wired_count;
1856
1857 flags |= pv->pv_flags;
1858
1859 /*
1860 * Invalidate the PTEs.
1861 */
1862 *ptep = 0;
1863 PTE_SYNC_CURRENT(pm, ptep);
1864 pmap_free_l2_bucket(pm, l2b, 1);
1865
1866 npv = pv->pv_next;
1867 pool_put(&pmap_pv_pool, pv);
1868 pv = npv;
1869 pmap_release_pmap_lock(pm);
1870 }
1871 pg->mdpage.pvh_list = NULL;
1872 simple_unlock(&pg->mdpage.pvh_slock);
1873 PMAP_HEAD_TO_MAP_UNLOCK();
1874
1875 if (flush) {
1876 /*
1877 * Note: We can't use pmap_tlb_flush{I,}D() here since that
1878 * would need a subsequent call to pmap_update() to ensure
1879 * curpm->pm_cstate.cs_all is reset. Our callers are not
1880 * required to do that (see pmap(9)), so we can't modify
1881 * the current pmap's state.
1882 */
1883 if (PV_BEEN_EXECD(flags))
1884 cpu_tlb_flushID();
1885 else
1886 cpu_tlb_flushD();
1887 }
1888 cpu_cpwait();
1889 }
1890
1891 /*
1892 * pmap_t pmap_create(void)
1893 *
1894 * Create a new pmap structure from scratch.
1895 */
1896 pmap_t
1897 pmap_create(void)
1898 {
1899 pmap_t pm;
1900
1901 pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
1902
1903 simple_lock_init(&pm->pm_lock);
1904 pm->pm_obj.pgops = NULL; /* currently not a mappable object */
1905 TAILQ_INIT(&pm->pm_obj.memq);
1906 pm->pm_obj.uo_npages = 0;
1907 pm->pm_obj.uo_refs = 1;
1908 pm->pm_stats.wired_count = 0;
1909 pm->pm_stats.resident_count = 1;
1910 pm->pm_cstate.cs_all = 0;
1911 pmap_alloc_l1(pm);
1912
1913 /*
1914 * Note: The pool cache ensures that the pm_l2[] array is already
1915 * initialised to zero.
1916 */
1917
1918 pmap_pinit(pm);
1919
1920 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1921
1922 return (pm);
1923 }
1924
1925 /*
1926 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1927 * int flags)
1928 *
1929 * Insert the given physical page (p) at
1930 * the specified virtual address (v) in the
1931 * target physical map with the protection requested.
1932 *
1933 * NB: This is the only routine which MAY NOT lazy-evaluate
1934 * or lose information. That is, this routine must actually
1935 * insert this page into the given map NOW.
1936 */
1937 int
1938 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1939 {
1940 struct l2_bucket *l2b;
1941 struct vm_page *pg, *opg;
1942 struct pv_entry *pve;
1943 pt_entry_t *ptep, npte, opte;
1944 u_int nflags;
1945 u_int oflags;
1946
1947 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1948
1949 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1950 KDASSERT(((va | pa) & PGOFSET) == 0);
1951
1952 /*
1953 * Get a pointer to the page. Later on in this function, we
1954 * test for a managed page by checking pg != NULL.
1955 */
1956 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1957
1958 nflags = 0;
1959 if (prot & VM_PROT_WRITE)
1960 nflags |= PVF_WRITE;
1961 if (prot & VM_PROT_EXECUTE)
1962 nflags |= PVF_EXEC;
1963 if (flags & PMAP_WIRED)
1964 nflags |= PVF_WIRED;
1965
1966 PMAP_MAP_TO_HEAD_LOCK();
1967 pmap_acquire_pmap_lock(pm);
1968
1969 /*
1970 * Fetch the L2 bucket which maps this page, allocating one if
1971 * necessary for user pmaps.
1972 */
1973 if (pm == pmap_kernel())
1974 l2b = pmap_get_l2_bucket(pm, va);
1975 else
1976 l2b = pmap_alloc_l2_bucket(pm, va);
1977 if (l2b == NULL) {
1978 if (flags & PMAP_CANFAIL) {
1979 pmap_release_pmap_lock(pm);
1980 PMAP_MAP_TO_HEAD_UNLOCK();
1981 return (ENOMEM);
1982 }
1983 panic("pmap_enter: failed to allocate L2 bucket");
1984 }
1985 ptep = &l2b->l2b_kva[l2pte_index(va)];
1986 opte = *ptep;
1987 npte = pa;
1988 oflags = 0;
1989
1990 if (opte) {
1991 /*
1992 * There is already a mapping at this address.
1993 * If the physical address is different, lookup the
1994 * vm_page.
1995 */
1996 if (l2pte_pa(opte) != pa)
1997 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
1998 else
1999 opg = pg;
2000 } else
2001 opg = NULL;
2002
2003 if (pg) {
2004 /*
2005 * This is to be a managed mapping.
2006 */
2007 if ((flags & VM_PROT_ALL) ||
2008 (pg->mdpage.pvh_attrs & PVF_REF)) {
2009 /*
2010 * - The access type indicates that we don't need
2011 * to do referenced emulation.
2012 * OR
2013 * - The physical page has already been referenced
2014 * so no need to re-do referenced emulation here.
2015 */
2016 npte |= L2_S_PROTO;
2017
2018 nflags |= PVF_REF;
2019
2020 if ((prot & VM_PROT_WRITE) != 0 &&
2021 ((flags & VM_PROT_WRITE) != 0 ||
2022 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2023 /*
2024 * This is a writable mapping, and the
2025 * page's mod state indicates it has
2026 * already been modified. Make it
2027 * writable from the outset.
2028 */
2029 npte |= L2_S_PROT_W;
2030 nflags |= PVF_MOD;
2031 }
2032 } else {
2033 /*
2034 * Need to do page referenced emulation.
2035 */
2036 npte |= L2_TYPE_INV;
2037 }
2038
2039 npte |= pte_l2_s_cache_mode;
2040
2041 if (pg == opg) {
2042 /*
2043 * We're changing the attrs of an existing mapping.
2044 */
2045 simple_lock(&pg->mdpage.pvh_slock);
2046 oflags = pmap_modify_pv(pg, pm, va,
2047 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2048 PVF_MOD | PVF_REF, nflags);
2049 simple_unlock(&pg->mdpage.pvh_slock);
2050
2051 /*
2052 * We may need to flush the cache if we're
2053 * doing rw-ro...
2054 */
2055 if (pm->pm_cstate.cs_cache_d &&
2056 (oflags & PVF_NC) == 0 &&
2057 (opte & L2_S_PROT_W) != 0 &&
2058 (prot & VM_PROT_WRITE) == 0)
2059 cpu_dcache_wb_range(va, PAGE_SIZE);
2060 } else {
2061 /*
2062 * New mapping, or changing the backing page
2063 * of an existing mapping.
2064 */
2065 if (opg) {
2066 /*
2067 * Replacing an existing mapping with a new one.
2068 * It is part of our managed memory so we
2069 * must remove it from the PV list
2070 */
2071 simple_lock(&opg->mdpage.pvh_slock);
2072 pve = pmap_remove_pv(opg, pm, va);
2073 pmap_vac_me_harder(opg, pm, 0);
2074 simple_unlock(&opg->mdpage.pvh_slock);
2075 oflags = pve->pv_flags;
2076
2077 /*
2078 * If the old mapping was valid (ref/mod
2079 * emulation creates 'invalid' mappings
2080 * initially) then make sure to frob
2081 * the cache.
2082 */
2083 if ((oflags & PVF_NC) == 0 &&
2084 l2pte_valid(opte)) {
2085 if (PV_BEEN_EXECD(oflags)) {
2086 pmap_idcache_wbinv_range(pm, va,
2087 PAGE_SIZE);
2088 } else
2089 if (PV_BEEN_REFD(oflags)) {
2090 pmap_dcache_wb_range(pm, va,
2091 PAGE_SIZE, TRUE,
2092 (oflags & PVF_WRITE) == 0);
2093 }
2094 }
2095 } else
2096 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2097 if ((flags & PMAP_CANFAIL) == 0)
2098 panic("pmap_enter: no pv entries");
2099
2100 if (pm != pmap_kernel())
2101 pmap_free_l2_bucket(pm, l2b, 0);
2102 pmap_release_pmap_lock(pm);
2103 PMAP_MAP_TO_HEAD_UNLOCK();
2104 NPDEBUG(PDB_ENTER,
2105 printf("pmap_enter: ENOMEM\n"));
2106 return (ENOMEM);
2107 }
2108
2109 pmap_enter_pv(pg, pve, pm, va, nflags);
2110 }
2111 } else {
2112 /*
2113 * We're mapping an unmanaged page.
2114 * These are always readable, and possibly writable, from
2115 * the get go as we don't need to track ref/mod status.
2116 */
2117 npte |= L2_S_PROTO;
2118 if (prot & VM_PROT_WRITE)
2119 npte |= L2_S_PROT_W;
2120
2121 /*
2122 * Make sure the vector table is mapped cacheable
2123 */
2124 if (pm != pmap_kernel() && va == vector_page)
2125 npte |= pte_l2_s_cache_mode;
2126
2127 if (opg) {
2128 /*
2129 * Looks like there's an existing 'managed' mapping
2130 * at this address.
2131 */
2132 simple_lock(&opg->mdpage.pvh_slock);
2133 pve = pmap_remove_pv(opg, pm, va);
2134 pmap_vac_me_harder(opg, pm, 0);
2135 simple_unlock(&opg->mdpage.pvh_slock);
2136 oflags = pve->pv_flags;
2137
2138 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2139 if (PV_BEEN_EXECD(oflags))
2140 pmap_idcache_wbinv_range(pm, va,
2141 PAGE_SIZE);
2142 else
2143 if (PV_BEEN_REFD(oflags))
2144 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2145 TRUE, (oflags & PVF_WRITE) == 0);
2146 }
2147 pool_put(&pmap_pv_pool, pve);
2148 }
2149 }
2150
2151 /*
2152 * Make sure userland mappings get the right permissions
2153 */
2154 if (pm != pmap_kernel() && va != vector_page)
2155 npte |= L2_S_PROT_U;
2156
2157 /*
2158 * Keep the stats up to date
2159 */
2160 if (opte == 0) {
2161 l2b->l2b_occupancy++;
2162 pm->pm_stats.resident_count++;
2163 }
2164
2165 NPDEBUG(PDB_ENTER,
2166 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2167
2168 /*
2169 * If this is just a wiring change, the two PTEs will be
2170 * identical, so there's no need to update the page table.
2171 */
2172 if (npte != opte) {
2173 boolean_t is_cached = pmap_is_cached(pm);
2174
2175 *ptep = npte;
2176 if (is_cached) {
2177 /*
2178 * We only need to frob the cache/tlb if this pmap
2179 * is current
2180 */
2181 PTE_SYNC(ptep);
2182 if (va != vector_page && l2pte_valid(npte)) {
2183 /*
2184 * This mapping is likely to be accessed as
2185 * soon as we return to userland. Fix up the
2186 * L1 entry to avoid taking another
2187 * page/domain fault.
2188 */
2189 pd_entry_t *pl1pd, l1pd;
2190
2191 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2192 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2193 L1_C_PROTO;
2194 if (*pl1pd != l1pd) {
2195 *pl1pd = l1pd;
2196 PTE_SYNC(pl1pd);
2197 }
2198 }
2199 }
2200
2201 if (PV_BEEN_EXECD(oflags))
2202 pmap_tlb_flushID_SE(pm, va);
2203 else
2204 if (PV_BEEN_REFD(oflags))
2205 pmap_tlb_flushD_SE(pm, va);
2206
2207 NPDEBUG(PDB_ENTER,
2208 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2209 is_cached, pm->pm_cstate.cs_all));
2210
2211 if (pg != NULL) {
2212 simple_lock(&pg->mdpage.pvh_slock);
2213 pmap_vac_me_harder(pg, pm, va);
2214 simple_unlock(&pg->mdpage.pvh_slock);
2215 }
2216 }
2217
2218 pmap_release_pmap_lock(pm);
2219 PMAP_MAP_TO_HEAD_UNLOCK();
2220
2221 return (0);
2222 }
2223
2224 /*
2225 * pmap_remove()
2226 *
2227 * pmap_remove is responsible for nuking a number of mappings for a range
2228 * of virtual address space in the current pmap. To do this efficiently
2229 * is interesting, because in a number of cases a wide virtual address
2230 * range may be supplied that contains few actual mappings. So, the
2231 * optimisations are:
2232 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2233 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2234 * maybe do just a partial cache clean. This path of execution is
2235 * complicated by the fact that the cache must be flushed _before_
2236 * the PTE is nuked, being a VAC :-)
2237 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2238 * all invalidations until pmap_update(), since pmap_remove_all() has
2239 * already flushed the cache.
2240 * 4. Maybe later fast-case a single page, but I don't think this is
2241 * going to make _that_ much difference overall.
2242 */
2243
2244 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2245
2246 void
2247 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
2248 {
2249 struct l2_bucket *l2b;
2250 vaddr_t next_bucket;
2251 pt_entry_t *ptep;
2252 u_int cleanlist_idx, total, cnt;
2253 struct {
2254 vaddr_t va;
2255 pt_entry_t *pte;
2256 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2257 u_int mappings, is_exec, is_refd;
2258
2259 NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2260 pm, sva, eva));
2261
2262 /*
2263 * we lock in the pmap => pv_head direction
2264 */
2265 PMAP_MAP_TO_HEAD_LOCK();
2266 pmap_acquire_pmap_lock(pm);
2267
2268 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2269 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2270 if (pm->pm_cstate.cs_tlb == 0)
2271 pm->pm_remove_all = TRUE;
2272 } else
2273 cleanlist_idx = 0;
2274
2275 total = 0;
2276
2277 while (sva < eva) {
2278 /*
2279 * Do one L2 bucket's worth at a time.
2280 */
2281 next_bucket = L2_NEXT_BUCKET(sva);
2282 if (next_bucket > eva)
2283 next_bucket = eva;
2284
2285 l2b = pmap_get_l2_bucket(pm, sva);
2286 if (l2b == NULL) {
2287 sva = next_bucket;
2288 continue;
2289 }
2290
2291 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2292 mappings = 0;
2293
2294 while (sva < next_bucket) {
2295 struct vm_page *pg;
2296 pt_entry_t pte;
2297 paddr_t pa;
2298
2299 pte = *ptep;
2300
2301 if (pte == 0) {
2302 /*
2303 * Nothing here, move along
2304 */
2305 sva += PAGE_SIZE;
2306 ptep++;
2307 continue;
2308 }
2309
2310 pm->pm_stats.resident_count--;
2311 pa = l2pte_pa(pte);
2312 is_exec = 0;
2313 is_refd = 1;
2314
2315 /*
2316 * Update flags. In a number of circumstances,
2317 * we could cluster a lot of these and do a
2318 * number of sequential pages in one go.
2319 */
2320 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2321 struct pv_entry *pve;
2322 simple_lock(&pg->mdpage.pvh_slock);
2323 pve = pmap_remove_pv(pg, pm, sva);
2324 pmap_vac_me_harder(pg, pm, 0);
2325 simple_unlock(&pg->mdpage.pvh_slock);
2326 if (pve != NULL) {
2327 if (pm->pm_remove_all == FALSE) {
2328 is_exec =
2329 PV_BEEN_EXECD(pve->pv_flags);
2330 is_refd =
2331 PV_BEEN_REFD(pve->pv_flags);
2332 }
2333 pool_put(&pmap_pv_pool, pve);
2334 }
2335 }
2336
2337 if (!l2pte_valid(pte)) {
2338 *ptep = 0;
2339 PTE_SYNC_CURRENT(pm, ptep);
2340 sva += PAGE_SIZE;
2341 ptep++;
2342 mappings++;
2343 continue;
2344 }
2345
2346 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2347 /* Add to the clean list. */
2348 cleanlist[cleanlist_idx].pte = ptep;
2349 cleanlist[cleanlist_idx].va =
2350 sva | (is_exec & 1);
2351 cleanlist_idx++;
2352 } else
2353 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2354 /* Nuke everything if needed. */
2355 pmap_idcache_wbinv_all(pm);
2356 pmap_tlb_flushID(pm);
2357
2358 /*
2359 * Roll back the previous PTE list,
2360 * and zero out the current PTE.
2361 */
2362 for (cnt = 0;
2363 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2364 *cleanlist[cnt].pte = 0;
2365 }
2366 *ptep = 0;
2367 PTE_SYNC(ptep);
2368 cleanlist_idx++;
2369 pm->pm_remove_all = TRUE;
2370 } else {
2371 *ptep = 0;
2372 PTE_SYNC(ptep);
2373 if (pm->pm_remove_all == FALSE) {
2374 if (is_exec)
2375 pmap_tlb_flushID_SE(pm, sva);
2376 else
2377 if (is_refd)
2378 pmap_tlb_flushD_SE(pm, sva);
2379 }
2380 }
2381
2382 sva += PAGE_SIZE;
2383 ptep++;
2384 mappings++;
2385 }
2386
2387 /*
2388 * Deal with any left overs
2389 */
2390 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2391 total += cleanlist_idx;
2392 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2393 if (pm->pm_cstate.cs_all != 0) {
2394 vaddr_t clva = cleanlist[cnt].va & ~1;
2395 if (cleanlist[cnt].va & 1) {
2396 pmap_idcache_wbinv_range(pm,
2397 clva, PAGE_SIZE);
2398 pmap_tlb_flushID_SE(pm, clva);
2399 } else {
2400 pmap_dcache_wb_range(pm,
2401 clva, PAGE_SIZE, TRUE,
2402 FALSE);
2403 pmap_tlb_flushD_SE(pm, clva);
2404 }
2405 }
2406 *cleanlist[cnt].pte = 0;
2407 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2408 }
2409
2410 /*
2411 * If it looks like we're removing a whole bunch
2412 * of mappings, it's faster to just write-back
2413 * the whole cache now and defer TLB flushes until
2414 * pmap_update() is called.
2415 */
2416 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2417 cleanlist_idx = 0;
2418 else {
2419 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2420 pmap_idcache_wbinv_all(pm);
2421 pm->pm_remove_all = TRUE;
2422 }
2423 }
2424
2425 pmap_free_l2_bucket(pm, l2b, mappings);
2426 }
2427
2428 pmap_release_pmap_lock(pm);
2429 PMAP_MAP_TO_HEAD_UNLOCK();
2430 }
2431
2432 /*
2433 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2434 *
2435 * We assume there is already sufficient KVM space available
2436 * to do this, as we can't allocate L2 descriptor tables/metadata
2437 * from here.
2438 */
2439 void
2440 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2441 {
2442 struct l2_bucket *l2b;
2443 pt_entry_t *ptep, opte;
2444
2445 NPDEBUG(PDB_KENTER,
2446 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2447 va, pa, prot));
2448
2449 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2450 KDASSERT(l2b != NULL);
2451
2452 ptep = &l2b->l2b_kva[l2pte_index(va)];
2453 opte = *ptep;
2454
2455 if (l2pte_valid(opte)) {
2456 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2457 cpu_tlb_flushD_SE(va);
2458 cpu_cpwait();
2459 } else
2460 if (opte == 0)
2461 l2b->l2b_occupancy++;
2462
2463 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2464 pte_l2_s_cache_mode;
2465 PTE_SYNC(ptep);
2466 }
2467
2468 void
2469 pmap_kremove(vaddr_t va, vsize_t len)
2470 {
2471 struct l2_bucket *l2b;
2472 pt_entry_t *ptep, *sptep, opte;
2473 vaddr_t next_bucket, eva;
2474 u_int mappings;
2475
2476 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2477 va, len));
2478
2479 eva = va + len;
2480
2481 while (va < eva) {
2482 next_bucket = L2_NEXT_BUCKET(va);
2483 if (next_bucket > eva)
2484 next_bucket = eva;
2485
2486 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2487 KDASSERT(l2b != NULL);
2488
2489 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2490 mappings = 0;
2491
2492 while (va < next_bucket) {
2493 opte = *ptep;
2494 if (l2pte_valid(opte)) {
2495 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2496 cpu_tlb_flushD_SE(va);
2497 }
2498 if (opte) {
2499 *ptep = 0;
2500 mappings++;
2501 }
2502 va += PAGE_SIZE;
2503 ptep++;
2504 }
2505 KDASSERT(mappings <= l2b->l2b_occupancy);
2506 l2b->l2b_occupancy -= mappings;
2507 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2508 }
2509 cpu_cpwait();
2510 }
2511
2512 boolean_t
2513 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2514 {
2515 struct l2_dtable *l2;
2516 pd_entry_t *pl1pd, l1pd;
2517 pt_entry_t *ptep, pte;
2518 paddr_t pa;
2519 u_int l1idx;
2520
2521 pmap_acquire_pmap_lock(pm);
2522
2523 l1idx = L1_IDX(va);
2524 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2525 l1pd = *pl1pd;
2526
2527 if (l1pte_section_p(l1pd)) {
2528 /*
2529 * These should only happen for pmap_kernel()
2530 */
2531 KDASSERT(pm == pmap_kernel());
2532 pmap_release_pmap_lock(pm);
2533 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2534 } else {
2535 /*
2536 * Note that we can't rely on the validity of the L1
2537 * descriptor as an indication that a mapping exists.
2538 * We have to look it up in the L2 dtable.
2539 */
2540 l2 = pm->pm_l2[L2_IDX(l1idx)];
2541
2542 if (l2 == NULL ||
2543 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2544 pmap_release_pmap_lock(pm);
2545 return (FALSE);
2546 }
2547
2548 ptep = &ptep[l2pte_index(va)];
2549 pte = *ptep;
2550 pmap_release_pmap_lock(pm);
2551
2552 if (pte == 0)
2553 return (FALSE);
2554
2555 switch (pte & L2_TYPE_MASK) {
2556 case L2_TYPE_L:
2557 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2558 break;
2559
2560 default:
2561 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2562 break;
2563 }
2564 }
2565
2566 if (pap != NULL)
2567 *pap = pa;
2568
2569 return (TRUE);
2570 }
2571
2572 void
2573 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2574 {
2575 struct l2_bucket *l2b;
2576 pt_entry_t *ptep, pte;
2577 vaddr_t next_bucket;
2578 u_int flags;
2579 int flush;
2580
2581 NPDEBUG(PDB_PROTECT,
2582 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2583 pm, sva, eva, prot));
2584
2585 if ((prot & VM_PROT_READ) == 0) {
2586 pmap_remove(pm, sva, eva);
2587 return;
2588 }
2589
2590 if (prot & VM_PROT_WRITE) {
2591 /*
2592 * If this is a read->write transition, just ignore it and let
2593 * uvm_fault() take care of it later.
2594 */
2595 return;
2596 }
2597
2598 PMAP_MAP_TO_HEAD_LOCK();
2599 pmap_acquire_pmap_lock(pm);
2600
2601 /*
2602 * OK, at this point, we know we're doing write-protect operation.
2603 * If the pmap is active, write-back the range.
2604 */
2605 pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
2606
2607 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2608 flags = 0;
2609
2610 while (sva < eva) {
2611 next_bucket = L2_NEXT_BUCKET(sva);
2612 if (next_bucket > eva)
2613 next_bucket = eva;
2614
2615 l2b = pmap_get_l2_bucket(pm, sva);
2616 if (l2b == NULL) {
2617 sva = next_bucket;
2618 continue;
2619 }
2620
2621 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2622
2623 while (sva < next_bucket) {
2624 if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2625 struct vm_page *pg;
2626 u_int f;
2627
2628 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2629 pte &= ~L2_S_PROT_W;
2630 *ptep = pte;
2631 PTE_SYNC(ptep);
2632
2633 if (pg != NULL) {
2634 simple_lock(&pg->mdpage.pvh_slock);
2635 f = pmap_modify_pv(pg, pm, sva,
2636 PVF_WRITE, 0);
2637 pmap_vac_me_harder(pg, pm, sva);
2638 simple_unlock(&pg->mdpage.pvh_slock);
2639 } else
2640 f = PVF_REF | PVF_EXEC;
2641
2642 if (flush >= 0) {
2643 flush++;
2644 flags |= f;
2645 } else
2646 if (PV_BEEN_EXECD(f))
2647 pmap_tlb_flushID_SE(pm, sva);
2648 else
2649 if (PV_BEEN_REFD(f))
2650 pmap_tlb_flushD_SE(pm, sva);
2651 }
2652
2653 sva += PAGE_SIZE;
2654 ptep++;
2655 }
2656 }
2657
2658 pmap_release_pmap_lock(pm);
2659 PMAP_MAP_TO_HEAD_UNLOCK();
2660
2661 if (flush) {
2662 if (PV_BEEN_EXECD(flags))
2663 pmap_tlb_flushID(pm);
2664 else
2665 if (PV_BEEN_REFD(flags))
2666 pmap_tlb_flushD(pm);
2667 }
2668 }
2669
2670 void
2671 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2672 {
2673
2674 NPDEBUG(PDB_PROTECT,
2675 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2676 pg, VM_PAGE_TO_PHYS(pg), prot));
2677
2678 switch(prot) {
2679 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2680 case VM_PROT_READ|VM_PROT_WRITE:
2681 return;
2682
2683 case VM_PROT_READ:
2684 case VM_PROT_READ|VM_PROT_EXECUTE:
2685 pmap_clearbit(pg, PVF_WRITE);
2686 break;
2687
2688 default:
2689 pmap_page_remove(pg);
2690 break;
2691 }
2692 }
2693
2694 /*
2695 * pmap_clear_modify:
2696 *
2697 * Clear the "modified" attribute for a page.
2698 */
2699 boolean_t
2700 pmap_clear_modify(struct vm_page *pg)
2701 {
2702 boolean_t rv;
2703
2704 if (pg->mdpage.pvh_attrs & PVF_MOD) {
2705 rv = TRUE;
2706 pmap_clearbit(pg, PVF_MOD);
2707 } else
2708 rv = FALSE;
2709
2710 return (rv);
2711 }
2712
2713 /*
2714 * pmap_clear_reference:
2715 *
2716 * Clear the "referenced" attribute for a page.
2717 */
2718 boolean_t
2719 pmap_clear_reference(struct vm_page *pg)
2720 {
2721 boolean_t rv;
2722
2723 if (pg->mdpage.pvh_attrs & PVF_REF) {
2724 rv = TRUE;
2725 pmap_clearbit(pg, PVF_REF);
2726 } else
2727 rv = FALSE;
2728
2729 return (rv);
2730 }
2731
2732 /*
2733 * pmap_is_modified:
2734 *
2735 * Test if a page has the "modified" attribute.
2736 */
2737 /* See <arm/arm32/pmap.h> */
2738
2739 /*
2740 * pmap_is_referenced:
2741 *
2742 * Test if a page has the "referenced" attribute.
2743 */
2744 /* See <arm/arm32/pmap.h> */
2745
2746 int
2747 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2748 {
2749 struct l2_dtable *l2;
2750 struct l2_bucket *l2b;
2751 pd_entry_t *pl1pd, l1pd;
2752 pt_entry_t *ptep, pte;
2753 paddr_t pa;
2754 u_int l1idx;
2755 int rv = 0;
2756
2757 PMAP_MAP_TO_HEAD_LOCK();
2758 pmap_acquire_pmap_lock(pm);
2759
2760 l1idx = L1_IDX(va);
2761
2762 /*
2763 * If there is no l2_dtable for this address, then the process
2764 * has no business accessing it.
2765 *
2766 * Note: This will catch userland processes trying to access
2767 * kernel addresses.
2768 */
2769 l2 = pm->pm_l2[L2_IDX(l1idx)];
2770 if (l2 == NULL)
2771 goto out;
2772
2773 /*
2774 * Likewise if there is no L2 descriptor table
2775 */
2776 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2777 if (l2b->l2b_kva == NULL)
2778 goto out;
2779
2780 /*
2781 * Check the PTE itself.
2782 */
2783 ptep = &l2b->l2b_kva[l2pte_index(va)];
2784 pte = *ptep;
2785 if (pte == 0)
2786 goto out;
2787
2788 /*
2789 * Catch a userland access to the vector page mapped at 0x0
2790 */
2791 if (user && (pte & L2_S_PROT_U) == 0)
2792 goto out;
2793
2794 pa = l2pte_pa(pte);
2795
2796 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2797 /*
2798 * This looks like a good candidate for "page modified"
2799 * emulation...
2800 */
2801 struct pv_entry *pv;
2802 struct vm_page *pg;
2803
2804 /* Extract the physical address of the page */
2805 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2806 goto out;
2807
2808 /* Get the current flags for this page. */
2809 simple_lock(&pg->mdpage.pvh_slock);
2810
2811 pv = pmap_find_pv(pg, pm, va);
2812 if (pv == NULL) {
2813 simple_unlock(&pg->mdpage.pvh_slock);
2814 goto out;
2815 }
2816
2817 /*
2818 * Do the flags say this page is writable? If not then it
2819 * is a genuine write fault. If yes then the write fault is
2820 * our fault as we did not reflect the write access in the
2821 * PTE. Now we know a write has occurred we can correct this
2822 * and also set the modified bit
2823 */
2824 if ((pv->pv_flags & PVF_WRITE) == 0) {
2825 simple_unlock(&pg->mdpage.pvh_slock);
2826 goto out;
2827 }
2828
2829 NPDEBUG(PDB_FOLLOW,
2830 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2831 pm, va, VM_PAGE_TO_PHYS(pg)));
2832
2833 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2834 pv->pv_flags |= PVF_REF | PVF_MOD;
2835 simple_unlock(&pg->mdpage.pvh_slock);
2836
2837 /*
2838 * Re-enable write permissions for the page. No need to call
2839 * pmap_vac_me_harder(), since this is just a
2840 * modified-emulation fault, and the PVF_WRITE bit isn't
2841 * changing. We've already set the cacheable bits based on
2842 * the assumption that we can write to this page.
2843 */
2844 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2845 PTE_SYNC(ptep);
2846 rv = 1;
2847 } else
2848 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2849 /*
2850 * This looks like a good candidate for "page referenced"
2851 * emulation.
2852 */
2853 struct pv_entry *pv;
2854 struct vm_page *pg;
2855
2856 /* Extract the physical address of the page */
2857 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2858 goto out;
2859
2860 /* Get the current flags for this page. */
2861 simple_lock(&pg->mdpage.pvh_slock);
2862
2863 pv = pmap_find_pv(pg, pm, va);
2864 if (pv == NULL) {
2865 simple_unlock(&pg->mdpage.pvh_slock);
2866 goto out;
2867 }
2868
2869 pg->mdpage.pvh_attrs |= PVF_REF;
2870 pv->pv_flags |= PVF_REF;
2871 simple_unlock(&pg->mdpage.pvh_slock);
2872
2873 NPDEBUG(PDB_FOLLOW,
2874 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2875 pm, va, VM_PAGE_TO_PHYS(pg)));
2876
2877 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2878 PTE_SYNC(ptep);
2879 rv = 1;
2880 }
2881
2882 /*
2883 * We know there is a valid mapping here, so simply
2884 * fix up the L1 if necessary.
2885 */
2886 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2887 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2888 if (*pl1pd != l1pd) {
2889 *pl1pd = l1pd;
2890 PTE_SYNC(pl1pd);
2891 rv = 1;
2892 }
2893
2894 #ifdef CPU_SA110
2895 /*
2896 * There are bugs in the rev K SA110. This is a check for one
2897 * of them.
2898 */
2899 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2900 curcpu()->ci_arm_cpurev < 3) {
2901 /* Always current pmap */
2902 if (l2pte_valid(pte)) {
2903 extern int kernel_debug;
2904 if (kernel_debug & 1) {
2905 struct proc *p = curlwp->l_proc;
2906 printf("prefetch_abort: page is already "
2907 "mapped - pte=%p *pte=%08x\n", ptep, pte);
2908 printf("prefetch_abort: pc=%08lx proc=%p "
2909 "process=%s\n", va, p, p->p_comm);
2910 printf("prefetch_abort: far=%08x fs=%x\n",
2911 cpu_faultaddress(), cpu_faultstatus());
2912 }
2913 #ifdef DDB
2914 if (kernel_debug & 2)
2915 Debugger();
2916 #endif
2917 rv = 1;
2918 }
2919 }
2920 #endif /* CPU_SA110 */
2921
2922 #ifdef DEBUG
2923 /*
2924 * If 'rv == 0' at this point, it generally indicates that there is a
2925 * stale TLB entry for the faulting address. This happens when two or
2926 * more processes are sharing an L1. Since we don't flush the TLB on
2927 * a context switch between such processes, we can take domain faults
2928 * for mappings which exist at the same VA in both processes. EVEN IF
2929 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2930 * example.
2931 *
2932 * This is extremely likely to happen if pmap_enter() updated the L1
2933 * entry for a recently entered mapping. In this case, the TLB is
2934 * flushed for the new mapping, but there may still be TLB entries for
2935 * other mappings belonging to other processes in the 1MB range
2936 * covered by the L1 entry.
2937 *
2938 * Since 'rv == 0', we know that the L1 already contains the correct
2939 * value, so the fault must be due to a stale TLB entry.
2940 *
2941 * Since we always need to flush the TLB anyway in the case where we
2942 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2943 * stale TLB entries dynamically.
2944 *
2945 * However, the above condition can ONLY happen if the current L1 is
2946 * being shared. If it happens when the L1 is unshared, it indicates
2947 * that other parts of the pmap are not doing their job WRT managing
2948 * the TLB.
2949 */
2950 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2951 extern int last_fault_code;
2952 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2953 pm, va, ftype);
2954 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2955 l2, l2b, ptep, pl1pd);
2956 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2957 pte, l1pd, last_fault_code);
2958 #ifdef DDB
2959 Debugger();
2960 #endif
2961 }
2962 #endif
2963
2964 cpu_tlb_flushID_SE(va);
2965 cpu_cpwait();
2966
2967 rv = 1;
2968
2969 out:
2970 pmap_release_pmap_lock(pm);
2971 PMAP_MAP_TO_HEAD_UNLOCK();
2972
2973 return (rv);
2974 }
2975
2976 /*
2977 * pmap_collect: free resources held by a pmap
2978 *
2979 * => optional function.
2980 * => called when a process is swapped out to free memory.
2981 */
2982 void
2983 pmap_collect(pmap_t pm)
2984 {
2985 /*
2986 * Nothing to do.
2987 * We don't even need to free-up the process' L1.
2988 */
2989 }
2990
2991 /*
2992 * Routine: pmap_procwr
2993 *
2994 * Function:
2995 * Synchronize caches corresponding to [addr, addr+len) in p.
2996 *
2997 */
2998 void
2999 pmap_procwr(struct proc *p, vaddr_t va, int len)
3000 {
3001 /* We only need to do anything if it is the current process. */
3002 if (p == curproc)
3003 cpu_icache_sync_range(va, len);
3004 }
3005
3006 /*
3007 * Routine: pmap_unwire
3008 * Function: Clear the wired attribute for a map/virtual-address pair.
3009 *
3010 * In/out conditions:
3011 * The mapping must already exist in the pmap.
3012 */
3013 void
3014 pmap_unwire(pmap_t pm, vaddr_t va)
3015 {
3016 struct l2_bucket *l2b;
3017 pt_entry_t *ptep, pte;
3018 struct vm_page *pg;
3019 paddr_t pa;
3020
3021 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3022
3023 PMAP_MAP_TO_HEAD_LOCK();
3024 pmap_acquire_pmap_lock(pm);
3025
3026 l2b = pmap_get_l2_bucket(pm, va);
3027 KDASSERT(l2b != NULL);
3028
3029 ptep = &l2b->l2b_kva[l2pte_index(va)];
3030 pte = *ptep;
3031
3032 /* Extract the physical address of the page */
3033 pa = l2pte_pa(pte);
3034
3035 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3036 /* Update the wired bit in the pv entry for this page. */
3037 simple_lock(&pg->mdpage.pvh_slock);
3038 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3039 simple_unlock(&pg->mdpage.pvh_slock);
3040 }
3041
3042 pmap_release_pmap_lock(pm);
3043 PMAP_MAP_TO_HEAD_UNLOCK();
3044 }
3045
3046 void
3047 pmap_activate(struct lwp *l)
3048 {
3049 pmap_t pm;
3050 struct pcb *pcb;
3051 int s;
3052
3053 pm = l->l_proc->p_vmspace->vm_map.pmap;
3054 pcb = &l->l_addr->u_pcb;
3055
3056 pmap_set_pcb_pagedir(pm, pcb);
3057
3058 if (l == curlwp) {
3059 u_int cur_dacr, cur_ttb;
3060
3061 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
3062 __asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
3063
3064 cur_ttb &= ~(L1_TABLE_SIZE - 1);
3065
3066 if (cur_ttb == (u_int)pcb->pcb_pagedir &&
3067 cur_dacr == pcb->pcb_dacr) {
3068 /*
3069 * No need to switch address spaces.
3070 */
3071 return;
3072 }
3073
3074 s = splhigh();
3075 pmap_acquire_pmap_lock(pm);
3076 disable_interrupts(I32_bit | F32_bit);
3077
3078 /*
3079 * We MUST, I repeat, MUST fix up the L1 entry corresponding
3080 * to 'vector_page' in the incoming L1 table before switching
3081 * to it otherwise subsequent interrupts/exceptions (including
3082 * domain faults!) will jump into hyperspace.
3083 */
3084 if (pcb->pcb_pl1vec) {
3085 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3086 /*
3087 * Don't need to PTE_SYNC() at this point since
3088 * cpu_setttb() is about to flush both the cache
3089 * and the TLB.
3090 */
3091 }
3092
3093 cpu_domains(pcb->pcb_dacr);
3094 cpu_setttb(pcb->pcb_pagedir);
3095
3096 enable_interrupts(I32_bit | F32_bit);
3097
3098 /*
3099 * Flag any previous userland pmap as being NOT
3100 * resident in the cache/tlb.
3101 */
3102 if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
3103 pmap_cache_state->cs_all = 0;
3104
3105 /*
3106 * The new pmap, however, IS resident.
3107 */
3108 pmap_cache_state = &pm->pm_cstate;
3109 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3110 pmap_release_pmap_lock(pm);
3111 splx(s);
3112 }
3113 }
3114
3115 void
3116 pmap_deactivate(struct lwp *l)
3117 {
3118 }
3119
3120 void
3121 pmap_update(pmap_t pm)
3122 {
3123
3124 if (pm->pm_remove_all) {
3125 /*
3126 * Finish up the pmap_remove_all() optimisation by flushing
3127 * the TLB.
3128 */
3129 pmap_tlb_flushID(pm);
3130 pm->pm_remove_all = FALSE;
3131 }
3132
3133 if (pmap_is_current(pm)) {
3134 /*
3135 * If we're dealing with a current userland pmap, move its L1
3136 * to the end of the LRU.
3137 */
3138 if (pm != pmap_kernel())
3139 pmap_use_l1(pm);
3140
3141 /*
3142 * We can assume we're done with frobbing the cache/tlb for
3143 * now. Make sure any future pmap ops don't skip cache/tlb
3144 * flushes.
3145 */
3146 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3147 }
3148
3149 /*
3150 * make sure TLB/cache operations have completed.
3151 */
3152 cpu_cpwait();
3153 }
3154
3155 void
3156 pmap_remove_all(pmap_t pm)
3157 {
3158
3159 /*
3160 * The vmspace described by this pmap is about to be torn down.
3161 * Until pmap_update() is called, UVM will only make calls
3162 * to pmap_remove(). We can make life much simpler by flushing
3163 * the cache now, and deferring TLB invalidation to pmap_update().
3164 */
3165 pmap_idcache_wbinv_all(pm);
3166 pm->pm_remove_all = TRUE;
3167 }
3168
3169 /*
3170 * Retire the given physical map from service.
3171 * Should only be called if the map contains no valid mappings.
3172 */
3173 void
3174 pmap_destroy(pmap_t pm)
3175 {
3176 u_int count;
3177
3178 if (pm == NULL)
3179 return;
3180
3181 if (pm->pm_remove_all) {
3182 pmap_tlb_flushID(pm);
3183 pm->pm_remove_all = FALSE;
3184 }
3185
3186 /*
3187 * Drop reference count
3188 */
3189 simple_lock(&pm->pm_lock);
3190 count = --pm->pm_obj.uo_refs;
3191 simple_unlock(&pm->pm_lock);
3192 if (count > 0) {
3193 if (pmap_is_current(pm)) {
3194 if (pm != pmap_kernel())
3195 pmap_use_l1(pm);
3196 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3197 }
3198 return;
3199 }
3200
3201 /*
3202 * reference count is zero, free pmap resources and then free pmap.
3203 */
3204
3205 if (vector_page < KERNEL_BASE) {
3206 struct pcb *pcb = &lwp0.l_addr->u_pcb;
3207
3208 if (pmap_is_current(pm)) {
3209 /*
3210 * Frob the L1 entry corresponding to the vector
3211 * page so that it contains the kernel pmap's domain
3212 * number. This will ensure pmap_remove() does not
3213 * pull the current vector page out from under us.
3214 */
3215 disable_interrupts(I32_bit | F32_bit);
3216 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3217 cpu_domains(pcb->pcb_dacr);
3218 cpu_setttb(pcb->pcb_pagedir);
3219 enable_interrupts(I32_bit | F32_bit);
3220 }
3221
3222 /* Remove the vector page mapping */
3223 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3224 pmap_update(pm);
3225
3226 /*
3227 * Make sure cpu_switch(), et al, DTRT. This is safe to do
3228 * since this process has no remaining mappings of its own.
3229 */
3230 curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
3231 curpcb->pcb_l1vec = pcb->pcb_l1vec;
3232 curpcb->pcb_dacr = pcb->pcb_dacr;
3233 curpcb->pcb_pagedir = pcb->pcb_pagedir;
3234 }
3235
3236 LIST_REMOVE(pm, pm_list);
3237
3238 pmap_free_l1(pm);
3239
3240 /* return the pmap to the pool */
3241 pool_cache_put(&pmap_pmap_cache, pm);
3242 }
3243
3244
3245 /*
3246 * void pmap_reference(pmap_t pm)
3247 *
3248 * Add a reference to the specified pmap.
3249 */
3250 void
3251 pmap_reference(pmap_t pm)
3252 {
3253
3254 if (pm == NULL)
3255 return;
3256
3257 pmap_use_l1(pm);
3258
3259 simple_lock(&pm->pm_lock);
3260 pm->pm_obj.uo_refs++;
3261 simple_unlock(&pm->pm_lock);
3262 }
3263
3264 /*
3265 * pmap_zero_page()
3266 *
3267 * Zero a given physical page by mapping it at a page hook point.
3268 * In doing the zero page op, the page we zero is mapped cachable, as with
3269 * StrongARM accesses to non-cached pages are non-burst making writing
3270 * _any_ bulk data very slow.
3271 */
3272 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3273 void
3274 pmap_zero_page_generic(paddr_t phys)
3275 {
3276 #ifdef DEBUG
3277 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3278
3279 if (pg->mdpage.pvh_list != NULL)
3280 panic("pmap_zero_page: page has mappings");
3281 #endif
3282
3283 KDASSERT((phys & PGOFSET) == 0);
3284
3285 /*
3286 * Hook in the page, zero it, and purge the cache for that
3287 * zeroed page. Invalidate the TLB as needed.
3288 */
3289 *cdst_pte = L2_S_PROTO | phys |
3290 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3291 PTE_SYNC(cdst_pte);
3292 cpu_tlb_flushD_SE(cdstp);
3293 cpu_cpwait();
3294 bzero_page(cdstp);
3295 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3296 }
3297 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3298
3299 #if ARM_MMU_XSCALE == 1
3300 void
3301 pmap_zero_page_xscale(paddr_t phys)
3302 {
3303 #ifdef DEBUG
3304 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3305
3306 if (pg->mdpage.pvh_list != NULL)
3307 panic("pmap_zero_page: page has mappings");
3308 #endif
3309
3310 KDASSERT((phys & PGOFSET) == 0);
3311
3312 /*
3313 * Hook in the page, zero it, and purge the cache for that
3314 * zeroed page. Invalidate the TLB as needed.
3315 */
3316 *cdst_pte = L2_S_PROTO | phys |
3317 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3318 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3319 PTE_SYNC(cdst_pte);
3320 cpu_tlb_flushD_SE(cdstp);
3321 cpu_cpwait();
3322 bzero_page(cdstp);
3323 xscale_cache_clean_minidata();
3324 }
3325 #endif /* ARM_MMU_XSCALE == 1 */
3326
3327 /* pmap_pageidlezero()
3328 *
3329 * The same as above, except that we assume that the page is not
3330 * mapped. This means we never have to flush the cache first. Called
3331 * from the idle loop.
3332 */
3333 boolean_t
3334 pmap_pageidlezero(paddr_t phys)
3335 {
3336 unsigned int i;
3337 int *ptr;
3338 boolean_t rv = TRUE;
3339 #ifdef DEBUG
3340 struct vm_page *pg;
3341
3342 pg = PHYS_TO_VM_PAGE(phys);
3343 if (pg->mdpage.pvh_list != NULL)
3344 panic("pmap_pageidlezero: page has mappings");
3345 #endif
3346
3347 KDASSERT((phys & PGOFSET) == 0);
3348
3349 /*
3350 * Hook in the page, zero it, and purge the cache for that
3351 * zeroed page. Invalidate the TLB as needed.
3352 */
3353 *cdst_pte = L2_S_PROTO | phys |
3354 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3355 PTE_SYNC(cdst_pte);
3356 cpu_tlb_flushD_SE(cdstp);
3357 cpu_cpwait();
3358
3359 for (i = 0, ptr = (int *)cdstp;
3360 i < (PAGE_SIZE / sizeof(int)); i++) {
3361 if (sched_whichqs != 0) {
3362 /*
3363 * A process has become ready. Abort now,
3364 * so we don't keep it waiting while we
3365 * do slow memory access to finish this
3366 * page.
3367 */
3368 rv = FALSE;
3369 break;
3370 }
3371 *ptr++ = 0;
3372 }
3373
3374 if (rv)
3375 /*
3376 * if we aborted we'll rezero this page again later so don't
3377 * purge it unless we finished it
3378 */
3379 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3380
3381 return (rv);
3382 }
3383
3384 /*
3385 * pmap_copy_page()
3386 *
3387 * Copy one physical page into another, by mapping the pages into
3388 * hook points. The same comment regarding cachability as in
3389 * pmap_zero_page also applies here.
3390 */
3391 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3392 void
3393 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3394 {
3395 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3396 #ifdef DEBUG
3397 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3398
3399 if (dst_pg->mdpage.pvh_list != NULL)
3400 panic("pmap_copy_page: dst page has mappings");
3401 #endif
3402
3403 KDASSERT((src & PGOFSET) == 0);
3404 KDASSERT((dst & PGOFSET) == 0);
3405
3406 /*
3407 * Clean the source page. Hold the source page's lock for
3408 * the duration of the copy so that no other mappings can
3409 * be created while we have a potentially aliased mapping.
3410 */
3411 simple_lock(&src_pg->mdpage.pvh_slock);
3412 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3413
3414 /*
3415 * Map the pages into the page hook points, copy them, and purge
3416 * the cache for the appropriate page. Invalidate the TLB
3417 * as required.
3418 */
3419 *csrc_pte = L2_S_PROTO | src |
3420 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3421 PTE_SYNC(csrc_pte);
3422 *cdst_pte = L2_S_PROTO | dst |
3423 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3424 PTE_SYNC(cdst_pte);
3425 cpu_tlb_flushD_SE(csrcp);
3426 cpu_tlb_flushD_SE(cdstp);
3427 cpu_cpwait();
3428 bcopy_page(csrcp, cdstp);
3429 cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3430 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3431 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3432 }
3433 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3434
3435 #if ARM_MMU_XSCALE == 1
3436 void
3437 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3438 {
3439 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3440 #ifdef DEBUG
3441 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3442
3443 if (dst_pg->mdpage.pvh_list != NULL)
3444 panic("pmap_copy_page: dst page has mappings");
3445 #endif
3446
3447 KDASSERT((src & PGOFSET) == 0);
3448 KDASSERT((dst & PGOFSET) == 0);
3449
3450 /*
3451 * Clean the source page. Hold the source page's lock for
3452 * the duration of the copy so that no other mappings can
3453 * be created while we have a potentially aliased mapping.
3454 */
3455 simple_lock(&src_pg->mdpage.pvh_slock);
3456 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3457
3458 /*
3459 * Map the pages into the page hook points, copy them, and purge
3460 * the cache for the appropriate page. Invalidate the TLB
3461 * as required.
3462 */
3463 *csrc_pte = L2_S_PROTO | src |
3464 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3465 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3466 PTE_SYNC(csrc_pte);
3467 *cdst_pte = L2_S_PROTO | dst |
3468 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3469 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3470 PTE_SYNC(cdst_pte);
3471 cpu_tlb_flushD_SE(csrcp);
3472 cpu_tlb_flushD_SE(cdstp);
3473 cpu_cpwait();
3474 bcopy_page(csrcp, cdstp);
3475 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3476 xscale_cache_clean_minidata();
3477 }
3478 #endif /* ARM_MMU_XSCALE == 1 */
3479
3480 /*
3481 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3482 *
3483 * Return the start and end addresses of the kernel's virtual space.
3484 * These values are setup in pmap_bootstrap and are updated as pages
3485 * are allocated.
3486 */
3487 void
3488 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3489 {
3490 *start = virtual_avail;
3491 *end = virtual_end;
3492 }
3493
3494 /*
3495 * Helper function for pmap_grow_l2_bucket()
3496 */
3497 static __inline int
3498 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3499 {
3500 struct l2_bucket *l2b;
3501 pt_entry_t *ptep;
3502 paddr_t pa;
3503
3504 if (uvm.page_init_done == FALSE) {
3505 if (uvm_page_physget(&pa) == FALSE)
3506 return (1);
3507 } else {
3508 struct vm_page *pg;
3509 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3510 if (pg == NULL)
3511 return (1);
3512 pa = VM_PAGE_TO_PHYS(pg);
3513 }
3514
3515 if (pap)
3516 *pap = pa;
3517
3518 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3519 KDASSERT(l2b != NULL);
3520
3521 ptep = &l2b->l2b_kva[l2pte_index(va)];
3522 *ptep = L2_S_PROTO | pa | cache_mode |
3523 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3524 PTE_SYNC(ptep);
3525 memset((void *)va, 0, PAGE_SIZE);
3526 return (0);
3527 }
3528
3529 /*
3530 * This is the same as pmap_alloc_l2_bucket(), except that it is only
3531 * used by pmap_growkernel().
3532 */
3533 static __inline struct l2_bucket *
3534 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3535 {
3536 struct l2_dtable *l2;
3537 struct l2_bucket *l2b;
3538 u_short l1idx;
3539 vaddr_t nva;
3540
3541 l1idx = L1_IDX(va);
3542
3543 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3544 /*
3545 * No mapping at this address, as there is
3546 * no entry in the L1 table.
3547 * Need to allocate a new l2_dtable.
3548 */
3549 nva = pmap_kernel_l2dtable_kva;
3550 if ((nva & PGOFSET) == 0) {
3551 /*
3552 * Need to allocate a backing page
3553 */
3554 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3555 return (NULL);
3556 }
3557
3558 l2 = (struct l2_dtable *)nva;
3559 nva += sizeof(struct l2_dtable);
3560
3561 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3562 /*
3563 * The new l2_dtable straddles a page boundary.
3564 * Map in another page to cover it.
3565 */
3566 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3567 return (NULL);
3568 }
3569
3570 pmap_kernel_l2dtable_kva = nva;
3571
3572 /*
3573 * Link it into the parent pmap
3574 */
3575 pm->pm_l2[L2_IDX(l1idx)] = l2;
3576 }
3577
3578 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3579
3580 /*
3581 * Fetch pointer to the L2 page table associated with the address.
3582 */
3583 if (l2b->l2b_kva == NULL) {
3584 pt_entry_t *ptep;
3585
3586 /*
3587 * No L2 page table has been allocated. Chances are, this
3588 * is because we just allocated the l2_dtable, above.
3589 */
3590 nva = pmap_kernel_l2ptp_kva;
3591 ptep = (pt_entry_t *)nva;
3592 if ((nva & PGOFSET) == 0) {
3593 /*
3594 * Need to allocate a backing page
3595 */
3596 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3597 &pmap_kernel_l2ptp_phys))
3598 return (NULL);
3599 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3600 }
3601
3602 l2->l2_occupancy++;
3603 l2b->l2b_kva = ptep;
3604 l2b->l2b_l1idx = l1idx;
3605 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3606
3607 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3608 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3609 }
3610
3611 return (l2b);
3612 }
3613
3614 vaddr_t
3615 pmap_growkernel(vaddr_t maxkvaddr)
3616 {
3617 pmap_t kpm = pmap_kernel();
3618 struct l1_ttable *l1;
3619 struct l2_bucket *l2b;
3620 pd_entry_t *pl1pd;
3621 int s;
3622
3623 if (maxkvaddr <= pmap_curmaxkvaddr)
3624 goto out; /* we are OK */
3625
3626 NPDEBUG(PDB_GROWKERN,
3627 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3628 pmap_curmaxkvaddr, maxkvaddr));
3629
3630 KDASSERT(maxkvaddr <= virtual_end);
3631
3632 /*
3633 * whoops! we need to add kernel PTPs
3634 */
3635
3636 s = splhigh(); /* to be safe */
3637 simple_lock(&kpm->pm_lock);
3638
3639 /* Map 1MB at a time */
3640 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3641
3642 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3643 KDASSERT(l2b != NULL);
3644
3645 /* Distribute new L1 entry to all other L1s */
3646 SLIST_FOREACH(l1, &l1_list, l1_link) {
3647 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3648 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3649 L1_C_PROTO;
3650 PTE_SYNC(pl1pd);
3651 }
3652 }
3653
3654 /*
3655 * flush out the cache, expensive but growkernel will happen so
3656 * rarely
3657 */
3658 cpu_dcache_wbinv_all();
3659 cpu_tlb_flushD();
3660 cpu_cpwait();
3661
3662 simple_unlock(&kpm->pm_lock);
3663 splx(s);
3664
3665 out:
3666 return (pmap_curmaxkvaddr);
3667 }
3668
3669 /************************ Utility routines ****************************/
3670
3671 /*
3672 * vector_page_setprot:
3673 *
3674 * Manipulate the protection of the vector page.
3675 */
3676 void
3677 vector_page_setprot(int prot)
3678 {
3679 struct l2_bucket *l2b;
3680 pt_entry_t *ptep;
3681
3682 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3683 KDASSERT(l2b != NULL);
3684
3685 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3686
3687 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3688 PTE_SYNC(ptep);
3689 cpu_tlb_flushD_SE(vector_page);
3690 cpu_cpwait();
3691 }
3692
3693 /*
3694 * This is used to stuff certain critical values into the PCB where they
3695 * can be accessed quickly from cpu_switch() et al.
3696 */
3697 void
3698 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
3699 {
3700 struct l2_bucket *l2b;
3701
3702 KDASSERT(pm->pm_l1);
3703
3704 pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
3705 pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3706 (DOMAIN_CLIENT << (pm->pm_domain * 2));
3707 pcb->pcb_cstate = (void *)&pm->pm_cstate;
3708
3709 if (vector_page < KERNEL_BASE) {
3710 pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3711 l2b = pmap_get_l2_bucket(pm, vector_page);
3712 pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
3713 L1_C_DOM(pm->pm_domain);
3714 } else
3715 pcb->pcb_pl1vec = NULL;
3716 }
3717
3718 /*
3719 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3720 * Returns TRUE if the mapping exists, else FALSE.
3721 *
3722 * NOTE: This function is only used by a couple of arm-specific modules.
3723 * It is not safe to take any pmap locks here, since we could be right
3724 * in the middle of debugging the pmap anyway...
3725 *
3726 * It is possible for this routine to return FALSE even though a valid
3727 * mapping does exist. This is because we don't lock, so the metadata
3728 * state may be inconsistent.
3729 *
3730 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3731 * a "section" mapping.
3732 */
3733 boolean_t
3734 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3735 {
3736 struct l2_dtable *l2;
3737 pd_entry_t *pl1pd, l1pd;
3738 pt_entry_t *ptep;
3739 u_short l1idx;
3740
3741 if (pm->pm_l1 == NULL)
3742 return (FALSE);
3743
3744 l1idx = L1_IDX(va);
3745 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3746 l1pd = *pl1pd;
3747
3748 if (l1pte_section_p(l1pd)) {
3749 *ptp = NULL;
3750 return (TRUE);
3751 }
3752
3753 if (pm->pm_l2 == NULL)
3754 return (FALSE);
3755
3756 l2 = pm->pm_l2[L2_IDX(l1idx)];
3757
3758 if (l2 == NULL ||
3759 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3760 return (FALSE);
3761 }
3762
3763 *ptp = &ptep[l2pte_index(va)];
3764 return (TRUE);
3765 }
3766
3767 boolean_t
3768 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3769 {
3770 u_short l1idx;
3771
3772 if (pm->pm_l1 == NULL)
3773 return (FALSE);
3774
3775 l1idx = L1_IDX(va);
3776 *pdp = &pm->pm_l1->l1_kva[l1idx];
3777
3778 return (TRUE);
3779 }
3780
3781 /************************ Bootstrapping routines ****************************/
3782
3783 static void
3784 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3785 {
3786 int i;
3787
3788 l1->l1_kva = l1pt;
3789 l1->l1_domain_use_count = 0;
3790 l1->l1_domain_first = 0;
3791
3792 for (i = 0; i < PMAP_DOMAINS; i++)
3793 l1->l1_domain_free[i] = i + 1;
3794
3795 /*
3796 * Copy the kernel's L1 entries to each new L1.
3797 */
3798 if (pmap_initialized)
3799 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3800
3801 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3802 &l1->l1_physaddr) == FALSE)
3803 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3804
3805 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3806 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3807 }
3808
3809 /*
3810 * pmap_bootstrap() is called from the board-specific initarm() routine
3811 * once the kernel L1/L2 descriptors tables have been set up.
3812 *
3813 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3814 * spread over a number of disparate files/functions.
3815 *
3816 * We are passed the following parameters
3817 * - kernel_l1pt
3818 * This is a pointer to the base of the kernel's L1 translation table.
3819 * - vstart
3820 * 1MB-aligned start of managed kernel virtual memory.
3821 * - vend
3822 * 1MB-aligned end of managed kernel virtual memory.
3823 *
3824 * We use the first parameter to build the metadata (struct l1_ttable and
3825 * struct l2_dtable) necessary to track kernel mappings.
3826 */
3827 #define PMAP_STATIC_L2_SIZE 16
3828 void
3829 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3830 {
3831 static struct l1_ttable static_l1;
3832 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3833 struct l1_ttable *l1 = &static_l1;
3834 struct l2_dtable *l2;
3835 struct l2_bucket *l2b;
3836 pmap_t pm = pmap_kernel();
3837 pd_entry_t pde;
3838 pt_entry_t *ptep;
3839 paddr_t pa;
3840 vaddr_t va;
3841 vsize_t size;
3842 int l1idx, l2idx, l2next = 0;
3843
3844 /*
3845 * Initialise the kernel pmap object
3846 */
3847 pm->pm_l1 = l1;
3848 pm->pm_domain = PMAP_DOMAIN_KERNEL;
3849 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3850 simple_lock_init(&pm->pm_lock);
3851 pm->pm_obj.pgops = NULL;
3852 TAILQ_INIT(&pm->pm_obj.memq);
3853 pm->pm_obj.uo_npages = 0;
3854 pm->pm_obj.uo_refs = 1;
3855
3856 /*
3857 * Scan the L1 translation table created by initarm() and create
3858 * the required metadata for all valid mappings found in it.
3859 */
3860 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3861 pde = kernel_l1pt[l1idx];
3862
3863 /*
3864 * We're only interested in Coarse mappings.
3865 * pmap_extract() can deal with section mappings without
3866 * recourse to checking L2 metadata.
3867 */
3868 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3869 continue;
3870
3871 /*
3872 * Lookup the KVA of this L2 descriptor table
3873 */
3874 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3875 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3876 if (ptep == NULL) {
3877 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3878 (u_int)l1idx << L1_S_SHIFT, pa);
3879 }
3880
3881 /*
3882 * Fetch the associated L2 metadata structure.
3883 * Allocate a new one if necessary.
3884 */
3885 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3886 if (l2next == PMAP_STATIC_L2_SIZE)
3887 panic("pmap_bootstrap: out of static L2s");
3888 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3889 }
3890
3891 /*
3892 * One more L1 slot tracked...
3893 */
3894 l2->l2_occupancy++;
3895
3896 /*
3897 * Fill in the details of the L2 descriptor in the
3898 * appropriate bucket.
3899 */
3900 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3901 l2b->l2b_kva = ptep;
3902 l2b->l2b_phys = pa;
3903 l2b->l2b_l1idx = l1idx;
3904
3905 /*
3906 * Establish an initial occupancy count for this descriptor
3907 */
3908 for (l2idx = 0;
3909 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3910 l2idx++) {
3911 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3912 l2b->l2b_occupancy++;
3913 }
3914 }
3915
3916 /*
3917 * Make sure the descriptor itself has the correct cache mode.
3918 * If not, fix it, but whine about the problem. Port-meisters
3919 * should consider this a clue to fix up their initarm()
3920 * function. :)
3921 */
3922 if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3923 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3924 "L2 pte @ %p\n", ptep);
3925 }
3926 }
3927
3928 /*
3929 * Ensure the primary (kernel) L1 has the correct cache mode for
3930 * a page table. Bitch if it is not correctly set.
3931 */
3932 for (va = (vaddr_t)kernel_l1pt;
3933 va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3934 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3935 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3936 "primary L1 @ 0x%lx\n", va);
3937 }
3938
3939 cpu_dcache_wbinv_all();
3940 cpu_tlb_flushID();
3941 cpu_cpwait();
3942
3943 /*
3944 * now we allocate the "special" VAs which are used for tmp mappings
3945 * by the pmap (and other modules). we allocate the VAs by advancing
3946 * virtual_avail (note that there are no pages mapped at these VAs).
3947 *
3948 * Managed KVM space start from wherever initarm() tells us.
3949 */
3950 virtual_avail = vstart;
3951 virtual_end = vend;
3952
3953 pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3954 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3955 pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3956 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3957 pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
3958 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3959 (void *)&msgbufaddr, NULL);
3960
3961 /*
3962 * Allocate a range of kernel virtual address space to be used
3963 * for L2 descriptor tables and metadata allocation in
3964 * pmap_growkernel().
3965 */
3966 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3967 pmap_alloc_specials(&virtual_avail,
3968 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3969 &pmap_kernel_l2ptp_kva, NULL);
3970
3971 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3972 pmap_alloc_specials(&virtual_avail,
3973 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3974 &pmap_kernel_l2dtable_kva, NULL);
3975
3976 /*
3977 * init the static-global locks and global pmap list.
3978 */
3979 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
3980 spinlockinit(&pmap_main_lock, "pmaplk", 0);
3981 #endif
3982
3983 /*
3984 * We can now initialise the first L1's metadata.
3985 */
3986 SLIST_INIT(&l1_list);
3987 TAILQ_INIT(&l1_lru_list);
3988 simple_lock_init(&l1_lru_lock);
3989 pmap_init_l1(l1, kernel_l1pt);
3990
3991 /*
3992 * Initialize the pmap pool and cache
3993 */
3994 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
3995 &pool_allocator_nointr);
3996 pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
3997 pmap_pmap_ctor, NULL, NULL);
3998 LIST_INIT(&pmap_pmaps);
3999 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
4000
4001 /*
4002 * Initialize the pv pool.
4003 */
4004 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
4005 &pmap_bootstrap_pv_allocator);
4006
4007 /*
4008 * Initialize the L2 dtable pool and cache.
4009 */
4010 pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
4011 "l2dtblpl", NULL);
4012 pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
4013 pmap_l2dtable_ctor, NULL, NULL);
4014
4015 /*
4016 * Initialise the L2 descriptor table pool and cache
4017 */
4018 pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
4019 0, "l2ptppl", NULL);
4020 pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
4021 pmap_l2ptp_ctor, NULL, NULL);
4022
4023 cpu_dcache_wbinv_all();
4024 }
4025
4026 static int
4027 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
4028 {
4029 pd_entry_t *pdep, pde;
4030 pt_entry_t *ptep, pte;
4031 vaddr_t pa;
4032 int rv = 0;
4033
4034 /*
4035 * Make sure the descriptor itself has the correct cache mode
4036 */
4037 pdep = &kl1[L1_IDX(va)];
4038 pde = *pdep;
4039
4040 if (l1pte_section_p(pde)) {
4041 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4042 *pdep = (pde & ~L1_S_CACHE_MASK) |
4043 pte_l1_s_cache_mode_pt;
4044 PTE_SYNC(pdep);
4045 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4046 rv = 1;
4047 }
4048 } else {
4049 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4050 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4051 if (ptep == NULL)
4052 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4053
4054 ptep = &ptep[l2pte_index(va)];
4055 pte = *ptep;
4056 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4057 *ptep = (pte & ~L2_S_CACHE_MASK) |
4058 pte_l2_s_cache_mode_pt;
4059 PTE_SYNC(ptep);
4060 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4061 rv = 1;
4062 }
4063 }
4064
4065 return (rv);
4066 }
4067
4068 static void
4069 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4070 {
4071 vaddr_t va = *availp;
4072 struct l2_bucket *l2b;
4073
4074 if (ptep) {
4075 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4076 if (l2b == NULL)
4077 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4078
4079 if (ptep)
4080 *ptep = &l2b->l2b_kva[l2pte_index(va)];
4081 }
4082
4083 *vap = va;
4084 *availp = va + (PAGE_SIZE * pages);
4085 }
4086
4087 void
4088 pmap_init(void)
4089 {
4090 extern int physmem;
4091
4092 /*
4093 * Set the available memory vars - These do not map to real memory
4094 * addresses and cannot as the physical memory is fragmented.
4095 * They are used by ps for %mem calculations.
4096 * One could argue whether this should be the entire memory or just
4097 * the memory that is useable in a user process.
4098 */
4099 avail_start = 0;
4100 avail_end = physmem * PAGE_SIZE;
4101
4102 /*
4103 * Now we need to free enough pv_entry structures to allow us to get
4104 * the kmem_map/kmem_object allocated and inited (done after this
4105 * function is finished). to do this we allocate one bootstrap page out
4106 * of kernel_map and use it to provide an initial pool of pv_entry
4107 * structures. we never free this page.
4108 */
4109 pool_setlowat(&pmap_pv_pool,
4110 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4111
4112 pmap_initialized = TRUE;
4113 }
4114
4115 static vaddr_t last_bootstrap_page = 0;
4116 static void *free_bootstrap_pages = NULL;
4117
4118 static void *
4119 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4120 {
4121 extern void *pool_page_alloc(struct pool *, int);
4122 vaddr_t new_page;
4123 void *rv;
4124
4125 if (pmap_initialized)
4126 return (pool_page_alloc(pp, flags));
4127
4128 if (free_bootstrap_pages) {
4129 rv = free_bootstrap_pages;
4130 free_bootstrap_pages = *((void **)rv);
4131 return (rv);
4132 }
4133
4134 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
4135 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
4136
4137 KASSERT(new_page > last_bootstrap_page);
4138 last_bootstrap_page = new_page;
4139 return ((void *)new_page);
4140 }
4141
4142 static void
4143 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4144 {
4145 extern void pool_page_free(struct pool *, void *);
4146
4147 if ((vaddr_t)v <= last_bootstrap_page) {
4148 *((void **)v) = free_bootstrap_pages;
4149 free_bootstrap_pages = v;
4150 return;
4151 }
4152
4153 if (pmap_initialized) {
4154 pool_page_free(pp, v);
4155 return;
4156 }
4157 }
4158
4159 /*
4160 * pmap_postinit()
4161 *
4162 * This routine is called after the vm and kmem subsystems have been
4163 * initialised. This allows the pmap code to perform any initialisation
4164 * that can only be done one the memory allocation is in place.
4165 */
4166 void
4167 pmap_postinit(void)
4168 {
4169 extern paddr_t physical_start, physical_end;
4170 struct l2_bucket *l2b;
4171 struct l1_ttable *l1;
4172 struct pglist plist;
4173 struct vm_page *m;
4174 pd_entry_t *pl1pt;
4175 pt_entry_t *ptep, pte;
4176 vaddr_t va, eva;
4177 u_int loop, needed;
4178 int error;
4179
4180 pool_setlowat(&pmap_l2ptp_pool,
4181 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4182 pool_setlowat(&pmap_l2dtable_pool,
4183 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4184
4185 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4186 needed -= 1;
4187
4188 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4189
4190 for (loop = 0; loop < needed; loop++, l1++) {
4191 /* Allocate a L1 page table */
4192 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
4193 if (va == 0)
4194 panic("Cannot allocate L1 KVM");
4195
4196 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4197 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4198 if (error)
4199 panic("Cannot allocate L1 physical pages");
4200
4201 m = TAILQ_FIRST(&plist);
4202 eva = va + L1_TABLE_SIZE;
4203 pl1pt = (pd_entry_t *)va;
4204
4205 while (m && va < eva) {
4206 paddr_t pa = VM_PAGE_TO_PHYS(m);
4207
4208 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4209
4210 /*
4211 * Make sure the L1 descriptor table is mapped
4212 * with the cache-mode set to write-through.
4213 */
4214 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4215 ptep = &l2b->l2b_kva[l2pte_index(va)];
4216 pte = *ptep;
4217 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4218 *ptep = pte;
4219 PTE_SYNC(ptep);
4220 cpu_tlb_flushD_SE(va);
4221
4222 va += PAGE_SIZE;
4223 m = TAILQ_NEXT(m, pageq);
4224 }
4225
4226 #ifdef DIAGNOSTIC
4227 if (m)
4228 panic("pmap_alloc_l1pt: pglist not empty");
4229 #endif /* DIAGNOSTIC */
4230
4231 pmap_init_l1(l1, pl1pt);
4232 }
4233
4234 #ifdef DEBUG
4235 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4236 needed);
4237 #endif
4238 }
4239
4240 /*
4241 * Note that the following routines are used by board-specific initialisation
4242 * code to configure the initial kernel page tables.
4243 *
4244 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4245 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4246 * behaviour of the old pmap, and provides an easy migration path for
4247 * initial bring-up of the new pmap on existing ports. Fortunately,
4248 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4249 * will be deprecated.
4250 *
4251 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4252 * tables.
4253 */
4254
4255 /*
4256 * This list exists for the benefit of pmap_map_chunk(). It keeps track
4257 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4258 * find them as necessary.
4259 *
4260 * Note that the data on this list MUST remain valid after initarm() returns,
4261 * as pmap_bootstrap() uses it to contruct L2 table metadata.
4262 */
4263 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4264
4265 static vaddr_t
4266 kernel_pt_lookup(paddr_t pa)
4267 {
4268 pv_addr_t *pv;
4269
4270 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4271 #ifndef ARM32_NEW_VM_LAYOUT
4272 if (pv->pv_pa == (pa & ~PGOFSET))
4273 return (pv->pv_va | (pa & PGOFSET));
4274 #else
4275 if (pv->pv_pa == pa)
4276 return (pv->pv_va);
4277 #endif
4278 }
4279 return (0);
4280 }
4281
4282 /*
4283 * pmap_map_section:
4284 *
4285 * Create a single section mapping.
4286 */
4287 void
4288 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4289 {
4290 pd_entry_t *pde = (pd_entry_t *) l1pt;
4291 pd_entry_t fl;
4292
4293 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4294
4295 switch (cache) {
4296 case PTE_NOCACHE:
4297 default:
4298 fl = 0;
4299 break;
4300
4301 case PTE_CACHE:
4302 fl = pte_l1_s_cache_mode;
4303 break;
4304
4305 case PTE_PAGETABLE:
4306 fl = pte_l1_s_cache_mode_pt;
4307 break;
4308 }
4309
4310 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4311 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4312 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4313 }
4314
4315 /*
4316 * pmap_map_entry:
4317 *
4318 * Create a single page mapping.
4319 */
4320 void
4321 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4322 {
4323 pd_entry_t *pde = (pd_entry_t *) l1pt;
4324 pt_entry_t fl;
4325 pt_entry_t *pte;
4326
4327 KASSERT(((va | pa) & PGOFSET) == 0);
4328
4329 switch (cache) {
4330 case PTE_NOCACHE:
4331 default:
4332 fl = 0;
4333 break;
4334
4335 case PTE_CACHE:
4336 fl = pte_l2_s_cache_mode;
4337 break;
4338
4339 case PTE_PAGETABLE:
4340 fl = pte_l2_s_cache_mode_pt;
4341 break;
4342 }
4343
4344 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4345 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4346
4347 #ifndef ARM32_NEW_VM_LAYOUT
4348 pte = (pt_entry_t *)
4349 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4350 #else
4351 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4352 #endif
4353 if (pte == NULL)
4354 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4355
4356 #ifndef ARM32_NEW_VM_LAYOUT
4357 pte[(va >> PGSHIFT) & 0x3ff] =
4358 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4359 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4360 #else
4361 pte[l2pte_index(va)] =
4362 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4363 PTE_SYNC(&pte[l2pte_index(va)]);
4364 #endif
4365 }
4366
4367 /*
4368 * pmap_link_l2pt:
4369 *
4370 * Link the L2 page table specified by "l2pv" into the L1
4371 * page table at the slot for "va".
4372 */
4373 void
4374 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4375 {
4376 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4377 u_int slot = va >> L1_S_SHIFT;
4378
4379 #ifndef ARM32_NEW_VM_LAYOUT
4380 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4381 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4382 #endif
4383
4384 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4385
4386 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4387 #ifdef ARM32_NEW_VM_LAYOUT
4388 PTE_SYNC(&pde[slot]);
4389 #else
4390 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4391 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4392 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4393 PTE_SYNC_RANGE(&pde[slot + 0], 4);
4394 #endif
4395
4396 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4397 }
4398
4399 /*
4400 * pmap_map_chunk:
4401 *
4402 * Map a chunk of memory using the most efficient mappings
4403 * possible (section, large page, small page) into the
4404 * provided L1 and L2 tables at the specified virtual address.
4405 */
4406 vsize_t
4407 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4408 int prot, int cache)
4409 {
4410 pd_entry_t *pde = (pd_entry_t *) l1pt;
4411 pt_entry_t *pte, f1, f2s, f2l;
4412 vsize_t resid;
4413 int i;
4414
4415 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4416
4417 if (l1pt == 0)
4418 panic("pmap_map_chunk: no L1 table provided");
4419
4420 #ifdef VERBOSE_INIT_ARM
4421 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4422 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4423 #endif
4424
4425 switch (cache) {
4426 case PTE_NOCACHE:
4427 default:
4428 f1 = 0;
4429 f2l = 0;
4430 f2s = 0;
4431 break;
4432
4433 case PTE_CACHE:
4434 f1 = pte_l1_s_cache_mode;
4435 f2l = pte_l2_l_cache_mode;
4436 f2s = pte_l2_s_cache_mode;
4437 break;
4438
4439 case PTE_PAGETABLE:
4440 f1 = pte_l1_s_cache_mode_pt;
4441 f2l = pte_l2_l_cache_mode_pt;
4442 f2s = pte_l2_s_cache_mode_pt;
4443 break;
4444 }
4445
4446 size = resid;
4447
4448 while (resid > 0) {
4449 /* See if we can use a section mapping. */
4450 if (L1_S_MAPPABLE_P(va, pa, resid)) {
4451 #ifdef VERBOSE_INIT_ARM
4452 printf("S");
4453 #endif
4454 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4455 L1_S_PROT(PTE_KERNEL, prot) | f1 |
4456 L1_S_DOM(PMAP_DOMAIN_KERNEL);
4457 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4458 va += L1_S_SIZE;
4459 pa += L1_S_SIZE;
4460 resid -= L1_S_SIZE;
4461 continue;
4462 }
4463
4464 /*
4465 * Ok, we're going to use an L2 table. Make sure
4466 * one is actually in the corresponding L1 slot
4467 * for the current VA.
4468 */
4469 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4470 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4471
4472 #ifndef ARM32_NEW_VM_LAYOUT
4473 pte = (pt_entry_t *)
4474 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4475 #else
4476 pte = (pt_entry_t *) kernel_pt_lookup(
4477 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4478 #endif
4479 if (pte == NULL)
4480 panic("pmap_map_chunk: can't find L2 table for VA"
4481 "0x%08lx", va);
4482
4483 /* See if we can use a L2 large page mapping. */
4484 if (L2_L_MAPPABLE_P(va, pa, resid)) {
4485 #ifdef VERBOSE_INIT_ARM
4486 printf("L");
4487 #endif
4488 for (i = 0; i < 16; i++) {
4489 #ifndef ARM32_NEW_VM_LAYOUT
4490 pte[((va >> PGSHIFT) & 0x3f0) + i] =
4491 L2_L_PROTO | pa |
4492 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4493 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4494 #else
4495 pte[l2pte_index(va) + i] =
4496 L2_L_PROTO | pa |
4497 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4498 PTE_SYNC(&pte[l2pte_index(va) + i]);
4499 #endif
4500 }
4501 va += L2_L_SIZE;
4502 pa += L2_L_SIZE;
4503 resid -= L2_L_SIZE;
4504 continue;
4505 }
4506
4507 /* Use a small page mapping. */
4508 #ifdef VERBOSE_INIT_ARM
4509 printf("P");
4510 #endif
4511 #ifndef ARM32_NEW_VM_LAYOUT
4512 pte[(va >> PGSHIFT) & 0x3ff] =
4513 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4514 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4515 #else
4516 pte[l2pte_index(va)] =
4517 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4518 PTE_SYNC(&pte[l2pte_index(va)]);
4519 #endif
4520 va += PAGE_SIZE;
4521 pa += PAGE_SIZE;
4522 resid -= PAGE_SIZE;
4523 }
4524 #ifdef VERBOSE_INIT_ARM
4525 printf("\n");
4526 #endif
4527 return (size);
4528 }
4529
4530 /********************** Static device map routines ***************************/
4531
4532 static const struct pmap_devmap *pmap_devmap_table;
4533
4534 /*
4535 * Register the devmap table. This is provided in case early console
4536 * initialization needs to register mappings created by bootstrap code
4537 * before pmap_devmap_bootstrap() is called.
4538 */
4539 void
4540 pmap_devmap_register(const struct pmap_devmap *table)
4541 {
4542
4543 pmap_devmap_table = table;
4544 }
4545
4546 /*
4547 * Map all of the static regions in the devmap table, and remember
4548 * the devmap table so other parts of the kernel can look up entries
4549 * later.
4550 */
4551 void
4552 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4553 {
4554 int i;
4555
4556 pmap_devmap_table = table;
4557
4558 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4559 #ifdef VERBOSE_INIT_ARM
4560 printf("devmap: %08lx -> %08lx @ %08lx\n",
4561 pmap_devmap_table[i].pd_pa,
4562 pmap_devmap_table[i].pd_pa +
4563 pmap_devmap_table[i].pd_size - 1,
4564 pmap_devmap_table[i].pd_va);
4565 #endif
4566 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4567 pmap_devmap_table[i].pd_pa,
4568 pmap_devmap_table[i].pd_size,
4569 pmap_devmap_table[i].pd_prot,
4570 pmap_devmap_table[i].pd_cache);
4571 }
4572 }
4573
4574 const struct pmap_devmap *
4575 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4576 {
4577 uint64_t endpa;
4578 int i;
4579
4580 if (pmap_devmap_table == NULL)
4581 return (NULL);
4582
4583 endpa = (uint64_t)pa + (uint64_t)size;
4584
4585 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4586 if (pa >= pmap_devmap_table[i].pd_pa &&
4587 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
4588 (uint64_t)pmap_devmap_table[i].pd_size)
4589 return (&pmap_devmap_table[i]);
4590 }
4591
4592 return (NULL);
4593 }
4594
4595 const struct pmap_devmap *
4596 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4597 {
4598 int i;
4599
4600 if (pmap_devmap_table == NULL)
4601 return (NULL);
4602
4603 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4604 if (va >= pmap_devmap_table[i].pd_va &&
4605 va + size <= pmap_devmap_table[i].pd_va +
4606 pmap_devmap_table[i].pd_size)
4607 return (&pmap_devmap_table[i]);
4608 }
4609
4610 return (NULL);
4611 }
4612
4613 /********************** PTE initialization routines **************************/
4614
4615 /*
4616 * These routines are called when the CPU type is identified to set up
4617 * the PTE prototypes, cache modes, etc.
4618 *
4619 * The variables are always here, just in case LKMs need to reference
4620 * them (though, they shouldn't).
4621 */
4622
4623 pt_entry_t pte_l1_s_cache_mode;
4624 pt_entry_t pte_l1_s_cache_mode_pt;
4625 pt_entry_t pte_l1_s_cache_mask;
4626
4627 pt_entry_t pte_l2_l_cache_mode;
4628 pt_entry_t pte_l2_l_cache_mode_pt;
4629 pt_entry_t pte_l2_l_cache_mask;
4630
4631 pt_entry_t pte_l2_s_cache_mode;
4632 pt_entry_t pte_l2_s_cache_mode_pt;
4633 pt_entry_t pte_l2_s_cache_mask;
4634
4635 pt_entry_t pte_l2_s_prot_u;
4636 pt_entry_t pte_l2_s_prot_w;
4637 pt_entry_t pte_l2_s_prot_mask;
4638
4639 pt_entry_t pte_l1_s_proto;
4640 pt_entry_t pte_l1_c_proto;
4641 pt_entry_t pte_l2_s_proto;
4642
4643 void (*pmap_copy_page_func)(paddr_t, paddr_t);
4644 void (*pmap_zero_page_func)(paddr_t);
4645
4646 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4647 void
4648 pmap_pte_init_generic(void)
4649 {
4650
4651 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4652 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4653
4654 pte_l2_l_cache_mode = L2_B|L2_C;
4655 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4656
4657 pte_l2_s_cache_mode = L2_B|L2_C;
4658 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4659
4660 /*
4661 * If we have a write-through cache, set B and C. If
4662 * we have a write-back cache, then we assume setting
4663 * only C will make those pages write-through.
4664 */
4665 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4666 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4667 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4668 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4669 } else {
4670 pte_l1_s_cache_mode_pt = L1_S_C;
4671 pte_l2_l_cache_mode_pt = L2_C;
4672 pte_l2_s_cache_mode_pt = L2_C;
4673 }
4674
4675 pte_l2_s_prot_u = L2_S_PROT_U_generic;
4676 pte_l2_s_prot_w = L2_S_PROT_W_generic;
4677 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4678
4679 pte_l1_s_proto = L1_S_PROTO_generic;
4680 pte_l1_c_proto = L1_C_PROTO_generic;
4681 pte_l2_s_proto = L2_S_PROTO_generic;
4682
4683 pmap_copy_page_func = pmap_copy_page_generic;
4684 pmap_zero_page_func = pmap_zero_page_generic;
4685 }
4686
4687 #if defined(CPU_ARM8)
4688 void
4689 pmap_pte_init_arm8(void)
4690 {
4691
4692 /*
4693 * ARM8 is compatible with generic, but we need to use
4694 * the page tables uncached.
4695 */
4696 pmap_pte_init_generic();
4697
4698 pte_l1_s_cache_mode_pt = 0;
4699 pte_l2_l_cache_mode_pt = 0;
4700 pte_l2_s_cache_mode_pt = 0;
4701 }
4702 #endif /* CPU_ARM8 */
4703
4704 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
4705 void
4706 pmap_pte_init_arm9(void)
4707 {
4708
4709 /*
4710 * ARM9 is compatible with generic, but we want to use
4711 * write-through caching for now.
4712 */
4713 pmap_pte_init_generic();
4714
4715 pte_l1_s_cache_mode = L1_S_C;
4716 pte_l2_l_cache_mode = L2_C;
4717 pte_l2_s_cache_mode = L2_C;
4718
4719 pte_l1_s_cache_mode_pt = L1_S_C;
4720 pte_l2_l_cache_mode_pt = L2_C;
4721 pte_l2_s_cache_mode_pt = L2_C;
4722 }
4723 #endif /* CPU_ARM9 */
4724 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4725
4726 #if defined(CPU_ARM10)
4727 void
4728 pmap_pte_init_arm10(void)
4729 {
4730
4731 /*
4732 * ARM10 is compatible with generic, but we want to use
4733 * write-through caching for now.
4734 */
4735 pmap_pte_init_generic();
4736
4737 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
4738 pte_l2_l_cache_mode = L2_B | L2_C;
4739 pte_l2_s_cache_mode = L2_B | L2_C;
4740
4741 pte_l1_s_cache_mode_pt = L1_S_C;
4742 pte_l2_l_cache_mode_pt = L2_C;
4743 pte_l2_s_cache_mode_pt = L2_C;
4744
4745 }
4746 #endif /* CPU_ARM10 */
4747
4748 #if ARM_MMU_SA1 == 1
4749 void
4750 pmap_pte_init_sa1(void)
4751 {
4752
4753 /*
4754 * The StrongARM SA-1 cache does not have a write-through
4755 * mode. So, do the generic initialization, then reset
4756 * the page table cache mode to B=1,C=1, and note that
4757 * the PTEs need to be sync'd.
4758 */
4759 pmap_pte_init_generic();
4760
4761 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4762 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4763 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4764
4765 pmap_needs_pte_sync = 1;
4766 }
4767 #endif /* ARM_MMU_SA1 == 1*/
4768
4769 #if ARM_MMU_XSCALE == 1
4770 #if (ARM_NMMUS > 1)
4771 static u_int xscale_use_minidata;
4772 #endif
4773
4774 void
4775 pmap_pte_init_xscale(void)
4776 {
4777 uint32_t auxctl;
4778 int write_through = 0;
4779
4780 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4781 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4782
4783 pte_l2_l_cache_mode = L2_B|L2_C;
4784 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4785
4786 pte_l2_s_cache_mode = L2_B|L2_C;
4787 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4788
4789 pte_l1_s_cache_mode_pt = L1_S_C;
4790 pte_l2_l_cache_mode_pt = L2_C;
4791 pte_l2_s_cache_mode_pt = L2_C;
4792
4793 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4794 /*
4795 * The XScale core has an enhanced mode where writes that
4796 * miss the cache cause a cache line to be allocated. This
4797 * is significantly faster than the traditional, write-through
4798 * behavior of this case.
4799 */
4800 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4801 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4802 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4803 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4804
4805 #ifdef XSCALE_CACHE_WRITE_THROUGH
4806 /*
4807 * Some versions of the XScale core have various bugs in
4808 * their cache units, the work-around for which is to run
4809 * the cache in write-through mode. Unfortunately, this
4810 * has a major (negative) impact on performance. So, we
4811 * go ahead and run fast-and-loose, in the hopes that we
4812 * don't line up the planets in a way that will trip the
4813 * bugs.
4814 *
4815 * However, we give you the option to be slow-but-correct.
4816 */
4817 write_through = 1;
4818 #elif defined(XSCALE_CACHE_WRITE_BACK)
4819 /* force write back cache mode */
4820 write_through = 0;
4821 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
4822 /*
4823 * Intel PXA2[15]0 processors are known to have a bug in
4824 * write-back cache on revision 4 and earlier (stepping
4825 * A[01] and B[012]). Fixed for C0 and later.
4826 */
4827 {
4828 uint32_t id, type;
4829
4830 id = cpufunc_id();
4831 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4832
4833 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4834 if ((id & CPU_ID_REVISION_MASK) < 5) {
4835 /* write through for stepping A0-1 and B0-2 */
4836 write_through = 1;
4837 }
4838 }
4839 }
4840 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4841
4842 if (write_through) {
4843 pte_l1_s_cache_mode = L1_S_C;
4844 pte_l2_l_cache_mode = L2_C;
4845 pte_l2_s_cache_mode = L2_C;
4846 }
4847
4848 #if (ARM_NMMUS > 1)
4849 xscale_use_minidata = 1;
4850 #endif
4851
4852 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4853 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4854 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4855
4856 pte_l1_s_proto = L1_S_PROTO_xscale;
4857 pte_l1_c_proto = L1_C_PROTO_xscale;
4858 pte_l2_s_proto = L2_S_PROTO_xscale;
4859
4860 pmap_copy_page_func = pmap_copy_page_xscale;
4861 pmap_zero_page_func = pmap_zero_page_xscale;
4862
4863 /*
4864 * Disable ECC protection of page table access, for now.
4865 */
4866 __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4867 auxctl &= ~XSCALE_AUXCTL_P;
4868 __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4869 }
4870
4871 /*
4872 * xscale_setup_minidata:
4873 *
4874 * Set up the mini-data cache clean area. We require the
4875 * caller to allocate the right amount of physically and
4876 * virtually contiguous space.
4877 */
4878 void
4879 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4880 {
4881 extern vaddr_t xscale_minidata_clean_addr;
4882 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4883 pd_entry_t *pde = (pd_entry_t *) l1pt;
4884 pt_entry_t *pte;
4885 vsize_t size;
4886 uint32_t auxctl;
4887
4888 xscale_minidata_clean_addr = va;
4889
4890 /* Round it to page size. */
4891 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4892
4893 for (; size != 0;
4894 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4895 #ifndef ARM32_NEW_VM_LAYOUT
4896 pte = (pt_entry_t *)
4897 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4898 #else
4899 pte = (pt_entry_t *) kernel_pt_lookup(
4900 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4901 #endif
4902 if (pte == NULL)
4903 panic("xscale_setup_minidata: can't find L2 table for "
4904 "VA 0x%08lx", va);
4905 #ifndef ARM32_NEW_VM_LAYOUT
4906 pte[(va >> PGSHIFT) & 0x3ff] =
4907 #else
4908 pte[l2pte_index(va)] =
4909 #endif
4910 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4911 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4912 }
4913
4914 /*
4915 * Configure the mini-data cache for write-back with
4916 * read/write-allocate.
4917 *
4918 * NOTE: In order to reconfigure the mini-data cache, we must
4919 * make sure it contains no valid data! In order to do that,
4920 * we must issue a global data cache invalidate command!
4921 *
4922 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4923 * THIS IS VERY IMPORTANT!
4924 */
4925
4926 /* Invalidate data and mini-data. */
4927 __asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
4928 __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4929 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4930 __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4931 }
4932
4933 /*
4934 * Change the PTEs for the specified kernel mappings such that they
4935 * will use the mini data cache instead of the main data cache.
4936 */
4937 void
4938 pmap_uarea(vaddr_t va)
4939 {
4940 struct l2_bucket *l2b;
4941 pt_entry_t *ptep, *sptep, pte;
4942 vaddr_t next_bucket, eva;
4943
4944 #if (ARM_NMMUS > 1)
4945 if (xscale_use_minidata == 0)
4946 return;
4947 #endif
4948
4949 eva = va + USPACE;
4950
4951 while (va < eva) {
4952 next_bucket = L2_NEXT_BUCKET(va);
4953 if (next_bucket > eva)
4954 next_bucket = eva;
4955
4956 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4957 KDASSERT(l2b != NULL);
4958
4959 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4960
4961 while (va < next_bucket) {
4962 pte = *ptep;
4963 if (!l2pte_minidata(pte)) {
4964 cpu_dcache_wbinv_range(va, PAGE_SIZE);
4965 cpu_tlb_flushD_SE(va);
4966 *ptep = pte & ~L2_B;
4967 }
4968 ptep++;
4969 va += PAGE_SIZE;
4970 }
4971 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4972 }
4973 cpu_cpwait();
4974 }
4975 #endif /* ARM_MMU_XSCALE == 1 */
4976
4977 #if defined(DDB)
4978 /*
4979 * A couple of ddb-callable functions for dumping pmaps
4980 */
4981 void pmap_dump_all(void);
4982 void pmap_dump(pmap_t);
4983
4984 void
4985 pmap_dump_all(void)
4986 {
4987 pmap_t pm;
4988
4989 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
4990 if (pm == pmap_kernel())
4991 continue;
4992 pmap_dump(pm);
4993 printf("\n");
4994 }
4995 }
4996
4997 static pt_entry_t ncptes[64];
4998 static void pmap_dump_ncpg(pmap_t);
4999
5000 void
5001 pmap_dump(pmap_t pm)
5002 {
5003 struct l2_dtable *l2;
5004 struct l2_bucket *l2b;
5005 pt_entry_t *ptep, pte;
5006 vaddr_t l2_va, l2b_va, va;
5007 int i, j, k, occ, rows = 0;
5008
5009 if (pm == pmap_kernel())
5010 printf("pmap_kernel (%p): ", pm);
5011 else
5012 printf("user pmap (%p): ", pm);
5013
5014 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
5015
5016 l2_va = 0;
5017 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
5018 l2 = pm->pm_l2[i];
5019
5020 if (l2 == NULL || l2->l2_occupancy == 0)
5021 continue;
5022
5023 l2b_va = l2_va;
5024 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
5025 l2b = &l2->l2_bucket[j];
5026
5027 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
5028 continue;
5029
5030 ptep = l2b->l2b_kva;
5031
5032 for (k = 0; k < 256 && ptep[k] == 0; k++)
5033 ;
5034
5035 k &= ~63;
5036 occ = l2b->l2b_occupancy;
5037 va = l2b_va + (k * 4096);
5038 for (; k < 256; k++, va += 0x1000) {
5039 char ch = ' ';
5040 if ((k % 64) == 0) {
5041 if ((rows % 8) == 0) {
5042 printf(
5043 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
5044 }
5045 printf("%08lx: ", va);
5046 }
5047
5048 ncptes[k & 63] = 0;
5049 pte = ptep[k];
5050 if (pte == 0) {
5051 ch = '.';
5052 } else {
5053 occ--;
5054 switch (pte & 0x0c) {
5055 case 0x00:
5056 ch = 'D'; /* No cache No buff */
5057 break;
5058 case 0x04:
5059 ch = 'B'; /* No cache buff */
5060 break;
5061 case 0x08:
5062 if (pte & 0x40)
5063 ch = 'm';
5064 else
5065 ch = 'C'; /* Cache No buff */
5066 break;
5067 case 0x0c:
5068 ch = 'F'; /* Cache Buff */
5069 break;
5070 }
5071
5072 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
5073 ch += 0x20;
5074
5075 if ((pte & 0xc) == 0)
5076 ncptes[k & 63] = pte;
5077 }
5078
5079 if ((k % 64) == 63) {
5080 rows++;
5081 printf("%c\n", ch);
5082 pmap_dump_ncpg(pm);
5083 if (occ == 0)
5084 break;
5085 } else
5086 printf("%c", ch);
5087 }
5088 }
5089 }
5090 }
5091
5092 static void
5093 pmap_dump_ncpg(pmap_t pm)
5094 {
5095 struct vm_page *pg;
5096 struct pv_entry *pv;
5097 int i;
5098
5099 for (i = 0; i < 63; i++) {
5100 if (ncptes[i] == 0)
5101 continue;
5102
5103 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5104 if (pg == NULL)
5105 continue;
5106
5107 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5108 VM_PAGE_TO_PHYS(pg),
5109 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5110 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5111
5112 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5113 printf(" %c va 0x%08lx, flags 0x%x\n",
5114 (pm == pv->pv_pmap) ? '*' : ' ',
5115 pv->pv_va, pv->pv_flags);
5116 }
5117 }
5118 }
5119 #endif
5120