pmap.c revision 1.157 1 /* $NetBSD: pmap.c,v 1.157 2005/12/24 20:06:47 perry Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * Performance improvements, UVM changes, overhauls and part-rewrites
144 * were contributed by Neil A. Carson <neil (at) causality.com>.
145 */
146
147 /*
148 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150 * Systems, Inc.
151 *
152 * There are still a few things outstanding at this time:
153 *
154 * - There are some unresolved issues for MP systems:
155 *
156 * o The L1 metadata needs a lock, or more specifically, some places
157 * need to acquire an exclusive lock when modifying L1 translation
158 * table entries.
159 *
160 * o When one cpu modifies an L1 entry, and that L1 table is also
161 * being used by another cpu, then the latter will need to be told
162 * that a tlb invalidation may be necessary. (But only if the old
163 * domain number in the L1 entry being over-written is currently
164 * the active domain on that cpu). I guess there are lots more tlb
165 * shootdown issues too...
166 *
167 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168 * MP systems will lose big-time because of the MMU domain hack.
169 * The only way this can be solved (apart from moving the vector
170 * page to 0xffff0000) is to reserve the first 1MB of user address
171 * space for kernel use only. This would require re-linking all
172 * applications so that the text section starts above this 1MB
173 * boundary.
174 *
175 * o Tracking which VM space is resident in the cache/tlb has not yet
176 * been implemented for MP systems.
177 *
178 * o Finally, there is a pathological condition where two cpus running
179 * two separate processes (not lwps) which happen to share an L1
180 * can get into a fight over one or more L1 entries. This will result
181 * in a significant slow-down if both processes are in tight loops.
182 */
183
184 /*
185 * Special compilation symbols
186 * PMAP_DEBUG - Build in pmap_debug_level code
187 */
188
189 /* Include header files */
190
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194 #include "opt_lockdebug.h"
195 #include "opt_multiprocessor.h"
196
197 #include <sys/types.h>
198 #include <sys/param.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/user.h>
204 #include <sys/pool.h>
205 #include <sys/cdefs.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.157 2005/12/24 20:06:47 perry Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243
244 int debugmap = 1;
245 int pmapdebug = 0;
246 #define NPDEBUG(_lev_,_stat_) \
247 if (pmapdebug & (_lev_)) \
248 ((_stat_))
249
250 #else /* PMAP_DEBUG */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif /* PMAP_DEBUG */
253
254 /*
255 * pmap_kernel() points here
256 */
257 struct pmap kernel_pmap_store;
258
259 /*
260 * Which pmap is currently 'live' in the cache
261 *
262 * XXXSCW: Fix for SMP ...
263 */
264 union pmap_cache_state *pmap_cache_state;
265
266 /*
267 * Pool and cache that pmap structures are allocated from.
268 * We use a cache to avoid clearing the pm_l2[] array (1KB)
269 * in pmap_create().
270 */
271 static struct pool pmap_pmap_pool;
272 static struct pool_cache pmap_pmap_cache;
273 static LIST_HEAD(, pmap) pmap_pmaps;
274
275 /*
276 * Pool of PV structures
277 */
278 static struct pool pmap_pv_pool;
279 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
280 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
281 static struct pool_allocator pmap_bootstrap_pv_allocator = {
282 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
283 };
284
285 /*
286 * Pool and cache of l2_dtable structures.
287 * We use a cache to avoid clearing the structures when they're
288 * allocated. (196 bytes)
289 */
290 static struct pool pmap_l2dtable_pool;
291 static struct pool_cache pmap_l2dtable_cache;
292 static vaddr_t pmap_kernel_l2dtable_kva;
293
294 /*
295 * Pool and cache of L2 page descriptors.
296 * We use a cache to avoid clearing the descriptor table
297 * when they're allocated. (1KB)
298 */
299 static struct pool pmap_l2ptp_pool;
300 static struct pool_cache pmap_l2ptp_cache;
301 static vaddr_t pmap_kernel_l2ptp_kva;
302 static paddr_t pmap_kernel_l2ptp_phys;
303
304 /*
305 * pmap copy/zero page, and mem(5) hook point
306 */
307 static pt_entry_t *csrc_pte, *cdst_pte;
308 static vaddr_t csrcp, cdstp;
309 char *memhook;
310 extern caddr_t msgbufaddr;
311
312 /*
313 * Flag to indicate if pmap_init() has done its thing
314 */
315 boolean_t pmap_initialized;
316
317 /*
318 * Misc. locking data structures
319 */
320
321 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
322 static struct lock pmap_main_lock;
323
324 #define PMAP_MAP_TO_HEAD_LOCK() \
325 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
326 #define PMAP_MAP_TO_HEAD_UNLOCK() \
327 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
328 #define PMAP_HEAD_TO_MAP_LOCK() \
329 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
330 #define PMAP_HEAD_TO_MAP_UNLOCK() \
331 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
332 #else
333 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
334 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
335 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
336 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
337 #endif
338
339 #define pmap_acquire_pmap_lock(pm) \
340 do { \
341 if ((pm) != pmap_kernel()) \
342 simple_lock(&(pm)->pm_lock); \
343 } while (/*CONSTCOND*/0)
344
345 #define pmap_release_pmap_lock(pm) \
346 do { \
347 if ((pm) != pmap_kernel()) \
348 simple_unlock(&(pm)->pm_lock); \
349 } while (/*CONSTCOND*/0)
350
351
352 /*
353 * Metadata for L1 translation tables.
354 */
355 struct l1_ttable {
356 /* Entry on the L1 Table list */
357 SLIST_ENTRY(l1_ttable) l1_link;
358
359 /* Entry on the L1 Least Recently Used list */
360 TAILQ_ENTRY(l1_ttable) l1_lru;
361
362 /* Track how many domains are allocated from this L1 */
363 volatile u_int l1_domain_use_count;
364
365 /*
366 * A free-list of domain numbers for this L1.
367 * We avoid using ffs() and a bitmap to track domains since ffs()
368 * is slow on ARM.
369 */
370 u_int8_t l1_domain_first;
371 u_int8_t l1_domain_free[PMAP_DOMAINS];
372
373 /* Physical address of this L1 page table */
374 paddr_t l1_physaddr;
375
376 /* KVA of this L1 page table */
377 pd_entry_t *l1_kva;
378 };
379
380 /*
381 * Convert a virtual address into its L1 table index. That is, the
382 * index used to locate the L2 descriptor table pointer in an L1 table.
383 * This is basically used to index l1->l1_kva[].
384 *
385 * Each L2 descriptor table represents 1MB of VA space.
386 */
387 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
388
389 /*
390 * L1 Page Tables are tracked using a Least Recently Used list.
391 * - New L1s are allocated from the HEAD.
392 * - Freed L1s are added to the TAIl.
393 * - Recently accessed L1s (where an 'access' is some change to one of
394 * the userland pmaps which owns this L1) are moved to the TAIL.
395 */
396 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
397 static struct simplelock l1_lru_lock;
398
399 /*
400 * A list of all L1 tables
401 */
402 static SLIST_HEAD(, l1_ttable) l1_list;
403
404 /*
405 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
406 *
407 * This is normally 16MB worth L2 page descriptors for any given pmap.
408 * Reference counts are maintained for L2 descriptors so they can be
409 * freed when empty.
410 */
411 struct l2_dtable {
412 /* The number of L2 page descriptors allocated to this l2_dtable */
413 u_int l2_occupancy;
414
415 /* List of L2 page descriptors */
416 struct l2_bucket {
417 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
418 paddr_t l2b_phys; /* Physical address of same */
419 u_short l2b_l1idx; /* This L2 table's L1 index */
420 u_short l2b_occupancy; /* How many active descriptors */
421 } l2_bucket[L2_BUCKET_SIZE];
422 };
423
424 /*
425 * Given an L1 table index, calculate the corresponding l2_dtable index
426 * and bucket index within the l2_dtable.
427 */
428 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
429 (L2_SIZE - 1))
430 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
431
432 /*
433 * Given a virtual address, this macro returns the
434 * virtual address required to drop into the next L2 bucket.
435 */
436 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
437
438 /*
439 * L2 allocation.
440 */
441 #define pmap_alloc_l2_dtable() \
442 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
443 #define pmap_free_l2_dtable(l2) \
444 pool_cache_put(&pmap_l2dtable_cache, (l2))
445 #define pmap_alloc_l2_ptp(pap) \
446 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
447 PR_NOWAIT, (pap)))
448
449 /*
450 * We try to map the page tables write-through, if possible. However, not
451 * all CPUs have a write-through cache mode, so on those we have to sync
452 * the cache when we frob page tables.
453 *
454 * We try to evaluate this at compile time, if possible. However, it's
455 * not always possible to do that, hence this run-time var.
456 */
457 int pmap_needs_pte_sync;
458
459 /*
460 * Real definition of pv_entry.
461 */
462 struct pv_entry {
463 struct pv_entry *pv_next; /* next pv_entry */
464 pmap_t pv_pmap; /* pmap where mapping lies */
465 vaddr_t pv_va; /* virtual address for mapping */
466 u_int pv_flags; /* flags */
467 };
468
469 /*
470 * Macro to determine if a mapping might be resident in the
471 * instruction cache and/or TLB
472 */
473 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
474
475 /*
476 * Macro to determine if a mapping might be resident in the
477 * data cache and/or TLB
478 */
479 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
480
481 /*
482 * Local prototypes
483 */
484 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
485 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
486 pt_entry_t **);
487 static boolean_t pmap_is_current(pmap_t);
488 static boolean_t pmap_is_cached(pmap_t);
489 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
490 pmap_t, vaddr_t, u_int);
491 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
492 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
493 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
494 u_int, u_int);
495
496 static void pmap_pinit(pmap_t);
497 static int pmap_pmap_ctor(void *, void *, int);
498
499 static void pmap_alloc_l1(pmap_t);
500 static void pmap_free_l1(pmap_t);
501 static void pmap_use_l1(pmap_t);
502
503 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
504 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
505 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
506 static int pmap_l2ptp_ctor(void *, void *, int);
507 static int pmap_l2dtable_ctor(void *, void *, int);
508
509 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
510 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
511 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
512
513 static void pmap_clearbit(struct vm_page *, u_int);
514 static int pmap_clean_page(struct pv_entry *, boolean_t);
515 static void pmap_page_remove(struct vm_page *);
516
517 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
518 static vaddr_t kernel_pt_lookup(paddr_t);
519
520
521 /*
522 * External function prototypes
523 */
524 extern void bzero_page(vaddr_t);
525 extern void bcopy_page(vaddr_t, vaddr_t);
526
527 /*
528 * Misc variables
529 */
530 vaddr_t virtual_avail;
531 vaddr_t virtual_end;
532 vaddr_t pmap_curmaxkvaddr;
533
534 vaddr_t avail_start;
535 vaddr_t avail_end;
536
537 extern pv_addr_t systempage;
538
539 /* Function to set the debug level of the pmap code */
540
541 #ifdef PMAP_DEBUG
542 void
543 pmap_debug(int level)
544 {
545 pmap_debug_level = level;
546 printf("pmap_debug: level=%d\n", pmap_debug_level);
547 }
548 #endif /* PMAP_DEBUG */
549
550 /*
551 * A bunch of routines to conditionally flush the caches/TLB depending
552 * on whether the specified pmap actually needs to be flushed at any
553 * given time.
554 */
555 static inline void
556 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
557 {
558
559 if (pm->pm_cstate.cs_tlb_id)
560 cpu_tlb_flushID_SE(va);
561 }
562
563 static inline void
564 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
565 {
566
567 if (pm->pm_cstate.cs_tlb_d)
568 cpu_tlb_flushD_SE(va);
569 }
570
571 static inline void
572 pmap_tlb_flushID(pmap_t pm)
573 {
574
575 if (pm->pm_cstate.cs_tlb_id) {
576 cpu_tlb_flushID();
577 pm->pm_cstate.cs_tlb = 0;
578 }
579 }
580
581 static inline void
582 pmap_tlb_flushD(pmap_t pm)
583 {
584
585 if (pm->pm_cstate.cs_tlb_d) {
586 cpu_tlb_flushD();
587 pm->pm_cstate.cs_tlb_d = 0;
588 }
589 }
590
591 static inline void
592 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
593 {
594
595 if (pm->pm_cstate.cs_cache_id)
596 cpu_idcache_wbinv_range(va, len);
597 }
598
599 static inline void
600 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
601 boolean_t do_inv, boolean_t rd_only)
602 {
603
604 if (pm->pm_cstate.cs_cache_d) {
605 if (do_inv) {
606 if (rd_only)
607 cpu_dcache_inv_range(va, len);
608 else
609 cpu_dcache_wbinv_range(va, len);
610 } else
611 if (!rd_only)
612 cpu_dcache_wb_range(va, len);
613 }
614 }
615
616 static inline void
617 pmap_idcache_wbinv_all(pmap_t pm)
618 {
619
620 if (pm->pm_cstate.cs_cache_id) {
621 cpu_idcache_wbinv_all();
622 pm->pm_cstate.cs_cache = 0;
623 }
624 }
625
626 static inline void
627 pmap_dcache_wbinv_all(pmap_t pm)
628 {
629
630 if (pm->pm_cstate.cs_cache_d) {
631 cpu_dcache_wbinv_all();
632 pm->pm_cstate.cs_cache_d = 0;
633 }
634 }
635
636 static inline boolean_t
637 pmap_is_current(pmap_t pm)
638 {
639
640 if (pm == pmap_kernel() ||
641 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
642 return (TRUE);
643
644 return (FALSE);
645 }
646
647 static inline boolean_t
648 pmap_is_cached(pmap_t pm)
649 {
650
651 if (pm == pmap_kernel() || pmap_cache_state == NULL ||
652 pmap_cache_state == &pm->pm_cstate)
653 return (TRUE);
654
655 return (FALSE);
656 }
657
658 /*
659 * PTE_SYNC_CURRENT:
660 *
661 * Make sure the pte is written out to RAM.
662 * We need to do this for one of two cases:
663 * - We're dealing with the kernel pmap
664 * - There is no pmap active in the cache/tlb.
665 * - The specified pmap is 'active' in the cache/tlb.
666 */
667 #ifdef PMAP_INCLUDE_PTE_SYNC
668 #define PTE_SYNC_CURRENT(pm, ptep) \
669 do { \
670 if (PMAP_NEEDS_PTE_SYNC && \
671 pmap_is_cached(pm)) \
672 PTE_SYNC(ptep); \
673 } while (/*CONSTCOND*/0)
674 #else
675 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
676 #endif
677
678 /*
679 * main pv_entry manipulation functions:
680 * pmap_enter_pv: enter a mapping onto a vm_page list
681 * pmap_remove_pv: remove a mappiing from a vm_page list
682 *
683 * NOTE: pmap_enter_pv expects to lock the pvh itself
684 * pmap_remove_pv expects te caller to lock the pvh before calling
685 */
686
687 /*
688 * pmap_enter_pv: enter a mapping onto a vm_page lst
689 *
690 * => caller should hold the proper lock on pmap_main_lock
691 * => caller should have pmap locked
692 * => we will gain the lock on the vm_page and allocate the new pv_entry
693 * => caller should adjust ptp's wire_count before calling
694 * => caller should not adjust pmap's wire_count
695 */
696 static void
697 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
698 vaddr_t va, u_int flags)
699 {
700
701 NPDEBUG(PDB_PVDUMP,
702 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
703
704 pve->pv_pmap = pm;
705 pve->pv_va = va;
706 pve->pv_flags = flags;
707
708 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
709 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
710 pg->mdpage.pvh_list = pve; /* ... locked list */
711 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
712 if (pm == pmap_kernel()) {
713 if (flags & PVF_WRITE)
714 pg->mdpage.krw_mappings++;
715 else
716 pg->mdpage.kro_mappings++;
717 } else
718 if (flags & PVF_WRITE)
719 pg->mdpage.urw_mappings++;
720 else
721 pg->mdpage.uro_mappings++;
722 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
723
724 if (pve->pv_flags & PVF_WIRED)
725 ++pm->pm_stats.wired_count;
726 }
727
728 /*
729 *
730 * pmap_find_pv: Find a pv entry
731 *
732 * => caller should hold lock on vm_page
733 */
734 static inline struct pv_entry *
735 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
736 {
737 struct pv_entry *pv;
738
739 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
740 if (pm == pv->pv_pmap && va == pv->pv_va)
741 break;
742 }
743
744 return (pv);
745 }
746
747 /*
748 * pmap_remove_pv: try to remove a mapping from a pv_list
749 *
750 * => caller should hold proper lock on pmap_main_lock
751 * => pmap should be locked
752 * => caller should hold lock on vm_page [so that attrs can be adjusted]
753 * => caller should adjust ptp's wire_count and free PTP if needed
754 * => caller should NOT adjust pmap's wire_count
755 * => we return the removed pve
756 */
757 static struct pv_entry *
758 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
759 {
760 struct pv_entry *pve, **prevptr;
761
762 NPDEBUG(PDB_PVDUMP,
763 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
764
765 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
766 pve = *prevptr;
767
768 while (pve) {
769 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
770 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
771 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
772 if (pve->pv_flags & PVF_WIRED) {
773 if (skip_wired)
774 return (NULL);
775 --pm->pm_stats.wired_count;
776 }
777 *prevptr = pve->pv_next; /* remove it! */
778 if (pm == pmap_kernel()) {
779 if (pve->pv_flags & PVF_WRITE)
780 pg->mdpage.krw_mappings--;
781 else
782 pg->mdpage.kro_mappings--;
783 } else
784 if (pve->pv_flags & PVF_WRITE)
785 pg->mdpage.urw_mappings--;
786 else
787 pg->mdpage.uro_mappings--;
788 break;
789 }
790 prevptr = &pve->pv_next; /* previous pointer */
791 pve = pve->pv_next; /* advance */
792 }
793
794 return(pve); /* return removed pve */
795 }
796
797 /*
798 *
799 * pmap_modify_pv: Update pv flags
800 *
801 * => caller should hold lock on vm_page [so that attrs can be adjusted]
802 * => caller should NOT adjust pmap's wire_count
803 * => caller must call pmap_vac_me_harder() if writable status of a page
804 * may have changed.
805 * => we return the old flags
806 *
807 * Modify a physical-virtual mapping in the pv table
808 */
809 static u_int
810 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
811 u_int clr_mask, u_int set_mask)
812 {
813 struct pv_entry *npv;
814 u_int flags, oflags;
815
816 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
817 return (0);
818
819 NPDEBUG(PDB_PVDUMP,
820 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
821
822 /*
823 * There is at least one VA mapping this page.
824 */
825
826 if (clr_mask & (PVF_REF | PVF_MOD))
827 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
828
829 oflags = npv->pv_flags;
830 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
831
832 if ((flags ^ oflags) & PVF_WIRED) {
833 if (flags & PVF_WIRED)
834 ++pm->pm_stats.wired_count;
835 else
836 --pm->pm_stats.wired_count;
837 }
838
839 if ((flags ^ oflags) & PVF_WRITE) {
840 if (pm == pmap_kernel()) {
841 if (flags & PVF_WRITE) {
842 pg->mdpage.krw_mappings++;
843 pg->mdpage.kro_mappings--;
844 } else {
845 pg->mdpage.kro_mappings++;
846 pg->mdpage.krw_mappings--;
847 }
848 } else
849 if (flags & PVF_WRITE) {
850 pg->mdpage.urw_mappings++;
851 pg->mdpage.uro_mappings--;
852 } else {
853 pg->mdpage.uro_mappings++;
854 pg->mdpage.urw_mappings--;
855 }
856 }
857
858 return (oflags);
859 }
860
861 static void
862 pmap_pinit(pmap_t pm)
863 {
864
865 if (vector_page < KERNEL_BASE) {
866 /*
867 * Map the vector page.
868 */
869 pmap_enter(pm, vector_page, systempage.pv_pa,
870 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
871 pmap_update(pm);
872 }
873 }
874
875 /*
876 * Allocate an L1 translation table for the specified pmap.
877 * This is called at pmap creation time.
878 */
879 static void
880 pmap_alloc_l1(pmap_t pm)
881 {
882 struct l1_ttable *l1;
883 u_int8_t domain;
884
885 /*
886 * Remove the L1 at the head of the LRU list
887 */
888 simple_lock(&l1_lru_lock);
889 l1 = TAILQ_FIRST(&l1_lru_list);
890 KDASSERT(l1 != NULL);
891 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
892
893 /*
894 * Pick the first available domain number, and update
895 * the link to the next number.
896 */
897 domain = l1->l1_domain_first;
898 l1->l1_domain_first = l1->l1_domain_free[domain];
899
900 /*
901 * If there are still free domain numbers in this L1,
902 * put it back on the TAIL of the LRU list.
903 */
904 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
905 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
906
907 simple_unlock(&l1_lru_lock);
908
909 /*
910 * Fix up the relevant bits in the pmap structure
911 */
912 pm->pm_l1 = l1;
913 pm->pm_domain = domain;
914 }
915
916 /*
917 * Free an L1 translation table.
918 * This is called at pmap destruction time.
919 */
920 static void
921 pmap_free_l1(pmap_t pm)
922 {
923 struct l1_ttable *l1 = pm->pm_l1;
924
925 simple_lock(&l1_lru_lock);
926
927 /*
928 * If this L1 is currently on the LRU list, remove it.
929 */
930 if (l1->l1_domain_use_count < PMAP_DOMAINS)
931 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
932
933 /*
934 * Free up the domain number which was allocated to the pmap
935 */
936 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
937 l1->l1_domain_first = pm->pm_domain;
938 l1->l1_domain_use_count--;
939
940 /*
941 * The L1 now must have at least 1 free domain, so add
942 * it back to the LRU list. If the use count is zero,
943 * put it at the head of the list, otherwise it goes
944 * to the tail.
945 */
946 if (l1->l1_domain_use_count == 0)
947 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
948 else
949 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
950
951 simple_unlock(&l1_lru_lock);
952 }
953
954 static inline void
955 pmap_use_l1(pmap_t pm)
956 {
957 struct l1_ttable *l1;
958
959 /*
960 * Do nothing if we're in interrupt context.
961 * Access to an L1 by the kernel pmap must not affect
962 * the LRU list.
963 */
964 if (current_intr_depth || pm == pmap_kernel())
965 return;
966
967 l1 = pm->pm_l1;
968
969 /*
970 * If the L1 is not currently on the LRU list, just return
971 */
972 if (l1->l1_domain_use_count == PMAP_DOMAINS)
973 return;
974
975 simple_lock(&l1_lru_lock);
976
977 /*
978 * Check the use count again, now that we've acquired the lock
979 */
980 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
981 simple_unlock(&l1_lru_lock);
982 return;
983 }
984
985 /*
986 * Move the L1 to the back of the LRU list
987 */
988 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
989 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
990
991 simple_unlock(&l1_lru_lock);
992 }
993
994 /*
995 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
996 *
997 * Free an L2 descriptor table.
998 */
999 static inline void
1000 #ifndef PMAP_INCLUDE_PTE_SYNC
1001 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1002 #else
1003 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
1004 #endif
1005 {
1006 #ifdef PMAP_INCLUDE_PTE_SYNC
1007 /*
1008 * Note: With a write-back cache, we may need to sync this
1009 * L2 table before re-using it.
1010 * This is because it may have belonged to a non-current
1011 * pmap, in which case the cache syncs would have been
1012 * skipped when the pages were being unmapped. If the
1013 * L2 table were then to be immediately re-allocated to
1014 * the *current* pmap, it may well contain stale mappings
1015 * which have not yet been cleared by a cache write-back
1016 * and so would still be visible to the mmu.
1017 */
1018 if (need_sync)
1019 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1020 #endif
1021 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1022 }
1023
1024 /*
1025 * Returns a pointer to the L2 bucket associated with the specified pmap
1026 * and VA, or NULL if no L2 bucket exists for the address.
1027 */
1028 static inline struct l2_bucket *
1029 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1030 {
1031 struct l2_dtable *l2;
1032 struct l2_bucket *l2b;
1033 u_short l1idx;
1034
1035 l1idx = L1_IDX(va);
1036
1037 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1038 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1039 return (NULL);
1040
1041 return (l2b);
1042 }
1043
1044 /*
1045 * Returns a pointer to the L2 bucket associated with the specified pmap
1046 * and VA.
1047 *
1048 * If no L2 bucket exists, perform the necessary allocations to put an L2
1049 * bucket/page table in place.
1050 *
1051 * Note that if a new L2 bucket/page was allocated, the caller *must*
1052 * increment the bucket occupancy counter appropriately *before*
1053 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1054 * the bucket/page in the meantime.
1055 */
1056 static struct l2_bucket *
1057 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1058 {
1059 struct l2_dtable *l2;
1060 struct l2_bucket *l2b;
1061 u_short l1idx;
1062
1063 l1idx = L1_IDX(va);
1064
1065 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1066 /*
1067 * No mapping at this address, as there is
1068 * no entry in the L1 table.
1069 * Need to allocate a new l2_dtable.
1070 */
1071 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1072 return (NULL);
1073
1074 /*
1075 * Link it into the parent pmap
1076 */
1077 pm->pm_l2[L2_IDX(l1idx)] = l2;
1078 }
1079
1080 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1081
1082 /*
1083 * Fetch pointer to the L2 page table associated with the address.
1084 */
1085 if (l2b->l2b_kva == NULL) {
1086 pt_entry_t *ptep;
1087
1088 /*
1089 * No L2 page table has been allocated. Chances are, this
1090 * is because we just allocated the l2_dtable, above.
1091 */
1092 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1093 /*
1094 * Oops, no more L2 page tables available at this
1095 * time. We may need to deallocate the l2_dtable
1096 * if we allocated a new one above.
1097 */
1098 if (l2->l2_occupancy == 0) {
1099 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1100 pmap_free_l2_dtable(l2);
1101 }
1102 return (NULL);
1103 }
1104
1105 l2->l2_occupancy++;
1106 l2b->l2b_kva = ptep;
1107 l2b->l2b_l1idx = l1idx;
1108 }
1109
1110 return (l2b);
1111 }
1112
1113 /*
1114 * One or more mappings in the specified L2 descriptor table have just been
1115 * invalidated.
1116 *
1117 * Garbage collect the metadata and descriptor table itself if necessary.
1118 *
1119 * The pmap lock must be acquired when this is called (not necessary
1120 * for the kernel pmap).
1121 */
1122 static void
1123 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1124 {
1125 struct l2_dtable *l2;
1126 pd_entry_t *pl1pd, l1pd;
1127 pt_entry_t *ptep;
1128 u_short l1idx;
1129
1130 KDASSERT(count <= l2b->l2b_occupancy);
1131
1132 /*
1133 * Update the bucket's reference count according to how many
1134 * PTEs the caller has just invalidated.
1135 */
1136 l2b->l2b_occupancy -= count;
1137
1138 /*
1139 * Note:
1140 *
1141 * Level 2 page tables allocated to the kernel pmap are never freed
1142 * as that would require checking all Level 1 page tables and
1143 * removing any references to the Level 2 page table. See also the
1144 * comment elsewhere about never freeing bootstrap L2 descriptors.
1145 *
1146 * We make do with just invalidating the mapping in the L2 table.
1147 *
1148 * This isn't really a big deal in practice and, in fact, leads
1149 * to a performance win over time as we don't need to continually
1150 * alloc/free.
1151 */
1152 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1153 return;
1154
1155 /*
1156 * There are no more valid mappings in this level 2 page table.
1157 * Go ahead and NULL-out the pointer in the bucket, then
1158 * free the page table.
1159 */
1160 l1idx = l2b->l2b_l1idx;
1161 ptep = l2b->l2b_kva;
1162 l2b->l2b_kva = NULL;
1163
1164 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1165
1166 /*
1167 * If the L1 slot matches the pmap's domain
1168 * number, then invalidate it.
1169 */
1170 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1171 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1172 *pl1pd = 0;
1173 PTE_SYNC(pl1pd);
1174 }
1175
1176 /*
1177 * Release the L2 descriptor table back to the pool cache.
1178 */
1179 #ifndef PMAP_INCLUDE_PTE_SYNC
1180 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1181 #else
1182 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1183 #endif
1184
1185 /*
1186 * Update the reference count in the associated l2_dtable
1187 */
1188 l2 = pm->pm_l2[L2_IDX(l1idx)];
1189 if (--l2->l2_occupancy > 0)
1190 return;
1191
1192 /*
1193 * There are no more valid mappings in any of the Level 1
1194 * slots managed by this l2_dtable. Go ahead and NULL-out
1195 * the pointer in the parent pmap and free the l2_dtable.
1196 */
1197 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1198 pmap_free_l2_dtable(l2);
1199 }
1200
1201 /*
1202 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1203 * structures.
1204 */
1205 static int
1206 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1207 {
1208 #ifndef PMAP_INCLUDE_PTE_SYNC
1209 struct l2_bucket *l2b;
1210 pt_entry_t *ptep, pte;
1211 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1212
1213 /*
1214 * The mappings for these page tables were initially made using
1215 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1216 * mode will not be right for page table mappings. To avoid
1217 * polluting the pmap_kenter_pa() code with a special case for
1218 * page tables, we simply fix up the cache-mode here if it's not
1219 * correct.
1220 */
1221 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1222 KDASSERT(l2b != NULL);
1223 ptep = &l2b->l2b_kva[l2pte_index(va)];
1224 pte = *ptep;
1225
1226 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1227 /*
1228 * Page tables must have the cache-mode set to Write-Thru.
1229 */
1230 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1231 PTE_SYNC(ptep);
1232 cpu_tlb_flushD_SE(va);
1233 cpu_cpwait();
1234 }
1235 #endif
1236
1237 memset(v, 0, L2_TABLE_SIZE_REAL);
1238 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1239 return (0);
1240 }
1241
1242 static int
1243 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1244 {
1245
1246 memset(v, 0, sizeof(struct l2_dtable));
1247 return (0);
1248 }
1249
1250 static int
1251 pmap_pmap_ctor(void *arg, void *v, int flags)
1252 {
1253
1254 memset(v, 0, sizeof(struct pmap));
1255 return (0);
1256 }
1257
1258 /*
1259 * Since we have a virtually indexed cache, we may need to inhibit caching if
1260 * there is more than one mapping and at least one of them is writable.
1261 * Since we purge the cache on every context switch, we only need to check for
1262 * other mappings within the same pmap, or kernel_pmap.
1263 * This function is also called when a page is unmapped, to possibly reenable
1264 * caching on any remaining mappings.
1265 *
1266 * The code implements the following logic, where:
1267 *
1268 * KW = # of kernel read/write pages
1269 * KR = # of kernel read only pages
1270 * UW = # of user read/write pages
1271 * UR = # of user read only pages
1272 *
1273 * KC = kernel mapping is cacheable
1274 * UC = user mapping is cacheable
1275 *
1276 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1277 * +---------------------------------------------
1278 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1279 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1280 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1281 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1282 */
1283
1284 static const int pmap_vac_flags[4][4] = {
1285 {-1, 0, 0, PVF_KNC},
1286 {0, 0, PVF_NC, PVF_NC},
1287 {0, PVF_NC, PVF_NC, PVF_NC},
1288 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1289 };
1290
1291 static inline int
1292 pmap_get_vac_flags(const struct vm_page *pg)
1293 {
1294 int kidx, uidx;
1295
1296 kidx = 0;
1297 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1298 kidx |= 1;
1299 if (pg->mdpage.krw_mappings)
1300 kidx |= 2;
1301
1302 uidx = 0;
1303 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1304 uidx |= 1;
1305 if (pg->mdpage.urw_mappings)
1306 uidx |= 2;
1307
1308 return (pmap_vac_flags[uidx][kidx]);
1309 }
1310
1311 static inline void
1312 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1313 {
1314 int nattr;
1315
1316 nattr = pmap_get_vac_flags(pg);
1317
1318 if (nattr < 0) {
1319 pg->mdpage.pvh_attrs &= ~PVF_NC;
1320 return;
1321 }
1322
1323 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1324 return;
1325
1326 if (pm == pmap_kernel())
1327 pmap_vac_me_kpmap(pg, pm, va);
1328 else
1329 pmap_vac_me_user(pg, pm, va);
1330
1331 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1332 }
1333
1334 static void
1335 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1336 {
1337 u_int u_cacheable, u_entries;
1338 struct pv_entry *pv;
1339 pmap_t last_pmap = pm;
1340
1341 /*
1342 * Pass one, see if there are both kernel and user pmaps for
1343 * this page. Calculate whether there are user-writable or
1344 * kernel-writable pages.
1345 */
1346 u_cacheable = 0;
1347 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1348 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1349 u_cacheable++;
1350 }
1351
1352 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1353
1354 /*
1355 * We know we have just been updating a kernel entry, so if
1356 * all user pages are already cacheable, then there is nothing
1357 * further to do.
1358 */
1359 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1360 return;
1361
1362 if (u_entries) {
1363 /*
1364 * Scan over the list again, for each entry, if it
1365 * might not be set correctly, call pmap_vac_me_user
1366 * to recalculate the settings.
1367 */
1368 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1369 /*
1370 * We know kernel mappings will get set
1371 * correctly in other calls. We also know
1372 * that if the pmap is the same as last_pmap
1373 * then we've just handled this entry.
1374 */
1375 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1376 continue;
1377
1378 /*
1379 * If there are kernel entries and this page
1380 * is writable but non-cacheable, then we can
1381 * skip this entry also.
1382 */
1383 if (pg->mdpage.k_mappings &&
1384 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1385 (PVF_NC | PVF_WRITE))
1386 continue;
1387
1388 /*
1389 * Similarly if there are no kernel-writable
1390 * entries and the page is already
1391 * read-only/cacheable.
1392 */
1393 if (pg->mdpage.krw_mappings == 0 &&
1394 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1395 continue;
1396
1397 /*
1398 * For some of the remaining cases, we know
1399 * that we must recalculate, but for others we
1400 * can't tell if they are correct or not, so
1401 * we recalculate anyway.
1402 */
1403 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1404 }
1405
1406 if (pg->mdpage.k_mappings == 0)
1407 return;
1408 }
1409
1410 pmap_vac_me_user(pg, pm, va);
1411 }
1412
1413 static void
1414 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1415 {
1416 pmap_t kpmap = pmap_kernel();
1417 struct pv_entry *pv, *npv;
1418 struct l2_bucket *l2b;
1419 pt_entry_t *ptep, pte;
1420 u_int entries = 0;
1421 u_int writable = 0;
1422 u_int cacheable_entries = 0;
1423 u_int kern_cacheable = 0;
1424 u_int other_writable = 0;
1425
1426 /*
1427 * Count mappings and writable mappings in this pmap.
1428 * Include kernel mappings as part of our own.
1429 * Keep a pointer to the first one.
1430 */
1431 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1432 /* Count mappings in the same pmap */
1433 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1434 if (entries++ == 0)
1435 npv = pv;
1436
1437 /* Cacheable mappings */
1438 if ((pv->pv_flags & PVF_NC) == 0) {
1439 cacheable_entries++;
1440 if (kpmap == pv->pv_pmap)
1441 kern_cacheable++;
1442 }
1443
1444 /* Writable mappings */
1445 if (pv->pv_flags & PVF_WRITE)
1446 ++writable;
1447 } else
1448 if (pv->pv_flags & PVF_WRITE)
1449 other_writable = 1;
1450 }
1451
1452 /*
1453 * Enable or disable caching as necessary.
1454 * Note: the first entry might be part of the kernel pmap,
1455 * so we can't assume this is indicative of the state of the
1456 * other (maybe non-kpmap) entries.
1457 */
1458 if ((entries > 1 && writable) ||
1459 (entries > 0 && pm == kpmap && other_writable)) {
1460 if (cacheable_entries == 0)
1461 return;
1462
1463 for (pv = npv; pv; pv = pv->pv_next) {
1464 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1465 (pv->pv_flags & PVF_NC))
1466 continue;
1467
1468 pv->pv_flags |= PVF_NC;
1469
1470 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1471 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1472 pte = *ptep & ~L2_S_CACHE_MASK;
1473
1474 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1475 l2pte_valid(pte)) {
1476 if (PV_BEEN_EXECD(pv->pv_flags)) {
1477 pmap_idcache_wbinv_range(pv->pv_pmap,
1478 pv->pv_va, PAGE_SIZE);
1479 pmap_tlb_flushID_SE(pv->pv_pmap,
1480 pv->pv_va);
1481 } else
1482 if (PV_BEEN_REFD(pv->pv_flags)) {
1483 pmap_dcache_wb_range(pv->pv_pmap,
1484 pv->pv_va, PAGE_SIZE, TRUE,
1485 (pv->pv_flags & PVF_WRITE) == 0);
1486 pmap_tlb_flushD_SE(pv->pv_pmap,
1487 pv->pv_va);
1488 }
1489 }
1490
1491 *ptep = pte;
1492 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1493 }
1494 cpu_cpwait();
1495 } else
1496 if (entries > cacheable_entries) {
1497 /*
1498 * Turn cacheing back on for some pages. If it is a kernel
1499 * page, only do so if there are no other writable pages.
1500 */
1501 for (pv = npv; pv; pv = pv->pv_next) {
1502 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1503 (kpmap != pv->pv_pmap || other_writable)))
1504 continue;
1505
1506 pv->pv_flags &= ~PVF_NC;
1507
1508 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1509 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1510 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1511
1512 if (l2pte_valid(pte)) {
1513 if (PV_BEEN_EXECD(pv->pv_flags)) {
1514 pmap_tlb_flushID_SE(pv->pv_pmap,
1515 pv->pv_va);
1516 } else
1517 if (PV_BEEN_REFD(pv->pv_flags)) {
1518 pmap_tlb_flushD_SE(pv->pv_pmap,
1519 pv->pv_va);
1520 }
1521 }
1522
1523 *ptep = pte;
1524 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1525 }
1526 }
1527 }
1528
1529 /*
1530 * Modify pte bits for all ptes corresponding to the given physical address.
1531 * We use `maskbits' rather than `clearbits' because we're always passing
1532 * constants and the latter would require an extra inversion at run-time.
1533 */
1534 static void
1535 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1536 {
1537 struct l2_bucket *l2b;
1538 struct pv_entry *pv;
1539 pt_entry_t *ptep, npte, opte;
1540 pmap_t pm;
1541 vaddr_t va;
1542 u_int oflags;
1543
1544 NPDEBUG(PDB_BITS,
1545 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1546 pg, VM_PAGE_TO_PHYS(pg), maskbits));
1547
1548 PMAP_HEAD_TO_MAP_LOCK();
1549 simple_lock(&pg->mdpage.pvh_slock);
1550
1551 /*
1552 * Clear saved attributes (modify, reference)
1553 */
1554 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1555
1556 if (pg->mdpage.pvh_list == NULL) {
1557 simple_unlock(&pg->mdpage.pvh_slock);
1558 PMAP_HEAD_TO_MAP_UNLOCK();
1559 return;
1560 }
1561
1562 /*
1563 * Loop over all current mappings setting/clearing as appropos
1564 */
1565 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1566 va = pv->pv_va;
1567 pm = pv->pv_pmap;
1568 oflags = pv->pv_flags;
1569 pv->pv_flags &= ~maskbits;
1570
1571 pmap_acquire_pmap_lock(pm);
1572
1573 l2b = pmap_get_l2_bucket(pm, va);
1574 KDASSERT(l2b != NULL);
1575
1576 ptep = &l2b->l2b_kva[l2pte_index(va)];
1577 npte = opte = *ptep;
1578
1579 NPDEBUG(PDB_BITS,
1580 printf(
1581 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1582 pv, pv->pv_pmap, pv->pv_va, oflags));
1583
1584 if (maskbits & (PVF_WRITE|PVF_MOD)) {
1585 if ((pv->pv_flags & PVF_NC)) {
1586 /*
1587 * Entry is not cacheable:
1588 *
1589 * Don't turn caching on again if this is a
1590 * modified emulation. This would be
1591 * inconsitent with the settings created by
1592 * pmap_vac_me_harder(). Otherwise, it's safe
1593 * to re-enable cacheing.
1594 *
1595 * There's no need to call pmap_vac_me_harder()
1596 * here: all pages are losing their write
1597 * permission.
1598 */
1599 if (maskbits & PVF_WRITE) {
1600 npte |= pte_l2_s_cache_mode;
1601 pv->pv_flags &= ~PVF_NC;
1602 }
1603 } else
1604 if (opte & L2_S_PROT_W) {
1605 /*
1606 * Entry is writable/cacheable: check if pmap
1607 * is current if it is flush it, otherwise it
1608 * won't be in the cache
1609 */
1610 if (PV_BEEN_EXECD(oflags))
1611 pmap_idcache_wbinv_range(pm, pv->pv_va,
1612 PAGE_SIZE);
1613 else
1614 if (PV_BEEN_REFD(oflags))
1615 pmap_dcache_wb_range(pm, pv->pv_va,
1616 PAGE_SIZE,
1617 (maskbits & PVF_REF) ? TRUE : FALSE,
1618 FALSE);
1619 }
1620
1621 /* make the pte read only */
1622 npte &= ~L2_S_PROT_W;
1623
1624 if (maskbits & PVF_WRITE) {
1625 /*
1626 * Keep alias accounting up to date
1627 */
1628 if (pv->pv_pmap == pmap_kernel()) {
1629 if (oflags & PVF_WRITE) {
1630 pg->mdpage.krw_mappings--;
1631 pg->mdpage.kro_mappings++;
1632 }
1633 } else
1634 if (oflags & PVF_WRITE) {
1635 pg->mdpage.urw_mappings--;
1636 pg->mdpage.uro_mappings++;
1637 }
1638 }
1639 }
1640
1641 if (maskbits & PVF_REF) {
1642 if ((pv->pv_flags & PVF_NC) == 0 &&
1643 (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1644 /*
1645 * Check npte here; we may have already
1646 * done the wbinv above, and the validity
1647 * of the PTE is the same for opte and
1648 * npte.
1649 */
1650 if (npte & L2_S_PROT_W) {
1651 if (PV_BEEN_EXECD(oflags))
1652 pmap_idcache_wbinv_range(pm,
1653 pv->pv_va, PAGE_SIZE);
1654 else
1655 if (PV_BEEN_REFD(oflags))
1656 pmap_dcache_wb_range(pm,
1657 pv->pv_va, PAGE_SIZE,
1658 TRUE, FALSE);
1659 } else
1660 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1661 /* XXXJRT need idcache_inv_range */
1662 if (PV_BEEN_EXECD(oflags))
1663 pmap_idcache_wbinv_range(pm,
1664 pv->pv_va, PAGE_SIZE);
1665 else
1666 if (PV_BEEN_REFD(oflags))
1667 pmap_dcache_wb_range(pm,
1668 pv->pv_va, PAGE_SIZE,
1669 TRUE, TRUE);
1670 }
1671 }
1672
1673 /*
1674 * Make the PTE invalid so that we will take a
1675 * page fault the next time the mapping is
1676 * referenced.
1677 */
1678 npte &= ~L2_TYPE_MASK;
1679 npte |= L2_TYPE_INV;
1680 }
1681
1682 if (npte != opte) {
1683 *ptep = npte;
1684 PTE_SYNC(ptep);
1685 /* Flush the TLB entry if a current pmap. */
1686 if (PV_BEEN_EXECD(oflags))
1687 pmap_tlb_flushID_SE(pm, pv->pv_va);
1688 else
1689 if (PV_BEEN_REFD(oflags))
1690 pmap_tlb_flushD_SE(pm, pv->pv_va);
1691 }
1692
1693 pmap_release_pmap_lock(pm);
1694
1695 NPDEBUG(PDB_BITS,
1696 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1697 pm, va, opte, npte));
1698 }
1699
1700 simple_unlock(&pg->mdpage.pvh_slock);
1701 PMAP_HEAD_TO_MAP_UNLOCK();
1702 }
1703
1704 /*
1705 * pmap_clean_page()
1706 *
1707 * This is a local function used to work out the best strategy to clean
1708 * a single page referenced by its entry in the PV table. It's used by
1709 * pmap_copy_page, pmap_zero page and maybe some others later on.
1710 *
1711 * Its policy is effectively:
1712 * o If there are no mappings, we don't bother doing anything with the cache.
1713 * o If there is one mapping, we clean just that page.
1714 * o If there are multiple mappings, we clean the entire cache.
1715 *
1716 * So that some functions can be further optimised, it returns 0 if it didn't
1717 * clean the entire cache, or 1 if it did.
1718 *
1719 * XXX One bug in this routine is that if the pv_entry has a single page
1720 * mapped at 0x00000000 a whole cache clean will be performed rather than
1721 * just the 1 page. Since this should not occur in everyday use and if it does
1722 * it will just result in not the most efficient clean for the page.
1723 */
1724 static int
1725 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1726 {
1727 pmap_t pm, pm_to_clean = NULL;
1728 struct pv_entry *npv;
1729 u_int cache_needs_cleaning = 0;
1730 u_int flags = 0;
1731 vaddr_t page_to_clean = 0;
1732
1733 if (pv == NULL) {
1734 /* nothing mapped in so nothing to flush */
1735 return (0);
1736 }
1737
1738 /*
1739 * Since we flush the cache each time we change to a different
1740 * user vmspace, we only need to flush the page if it is in the
1741 * current pmap.
1742 */
1743 if (curproc)
1744 pm = curproc->p_vmspace->vm_map.pmap;
1745 else
1746 pm = pmap_kernel();
1747
1748 for (npv = pv; npv; npv = npv->pv_next) {
1749 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1750 flags |= npv->pv_flags;
1751 /*
1752 * The page is mapped non-cacheable in
1753 * this map. No need to flush the cache.
1754 */
1755 if (npv->pv_flags & PVF_NC) {
1756 #ifdef DIAGNOSTIC
1757 if (cache_needs_cleaning)
1758 panic("pmap_clean_page: "
1759 "cache inconsistency");
1760 #endif
1761 break;
1762 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1763 continue;
1764 if (cache_needs_cleaning) {
1765 page_to_clean = 0;
1766 break;
1767 } else {
1768 page_to_clean = npv->pv_va;
1769 pm_to_clean = npv->pv_pmap;
1770 }
1771 cache_needs_cleaning = 1;
1772 }
1773 }
1774
1775 if (page_to_clean) {
1776 if (PV_BEEN_EXECD(flags))
1777 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1778 PAGE_SIZE);
1779 else
1780 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1781 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1782 } else if (cache_needs_cleaning) {
1783 if (PV_BEEN_EXECD(flags))
1784 pmap_idcache_wbinv_all(pm);
1785 else
1786 pmap_dcache_wbinv_all(pm);
1787 return (1);
1788 }
1789 return (0);
1790 }
1791
1792 /*
1793 * Routine: pmap_page_remove
1794 * Function:
1795 * Removes this physical page from
1796 * all physical maps in which it resides.
1797 * Reflects back modify bits to the pager.
1798 */
1799 static void
1800 pmap_page_remove(struct vm_page *pg)
1801 {
1802 struct l2_bucket *l2b;
1803 struct pv_entry *pv, *npv;
1804 pmap_t pm, curpm;
1805 pt_entry_t *ptep, pte;
1806 boolean_t flush;
1807 u_int flags;
1808
1809 NPDEBUG(PDB_FOLLOW,
1810 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
1811 VM_PAGE_TO_PHYS(pg)));
1812
1813 PMAP_HEAD_TO_MAP_LOCK();
1814 simple_lock(&pg->mdpage.pvh_slock);
1815
1816 pv = pg->mdpage.pvh_list;
1817 if (pv == NULL) {
1818 simple_unlock(&pg->mdpage.pvh_slock);
1819 PMAP_HEAD_TO_MAP_UNLOCK();
1820 return;
1821 }
1822
1823 /*
1824 * Clear alias counts
1825 */
1826 pg->mdpage.k_mappings = 0;
1827 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1828
1829 flush = FALSE;
1830 flags = 0;
1831 if (curproc)
1832 curpm = curproc->p_vmspace->vm_map.pmap;
1833 else
1834 curpm = pmap_kernel();
1835
1836 pmap_clean_page(pv, FALSE);
1837
1838 while (pv) {
1839 pm = pv->pv_pmap;
1840 if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
1841 flush = TRUE;
1842
1843 pmap_acquire_pmap_lock(pm);
1844
1845 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1846 KDASSERT(l2b != NULL);
1847
1848 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1849 pte = *ptep;
1850
1851 /*
1852 * Update statistics
1853 */
1854 --pm->pm_stats.resident_count;
1855
1856 /* Wired bit */
1857 if (pv->pv_flags & PVF_WIRED)
1858 --pm->pm_stats.wired_count;
1859
1860 flags |= pv->pv_flags;
1861
1862 /*
1863 * Invalidate the PTEs.
1864 */
1865 *ptep = 0;
1866 PTE_SYNC_CURRENT(pm, ptep);
1867 pmap_free_l2_bucket(pm, l2b, 1);
1868
1869 npv = pv->pv_next;
1870 pool_put(&pmap_pv_pool, pv);
1871 pv = npv;
1872 pmap_release_pmap_lock(pm);
1873 }
1874 pg->mdpage.pvh_list = NULL;
1875 simple_unlock(&pg->mdpage.pvh_slock);
1876 PMAP_HEAD_TO_MAP_UNLOCK();
1877
1878 if (flush) {
1879 /*
1880 * Note: We can't use pmap_tlb_flush{I,}D() here since that
1881 * would need a subsequent call to pmap_update() to ensure
1882 * curpm->pm_cstate.cs_all is reset. Our callers are not
1883 * required to do that (see pmap(9)), so we can't modify
1884 * the current pmap's state.
1885 */
1886 if (PV_BEEN_EXECD(flags))
1887 cpu_tlb_flushID();
1888 else
1889 cpu_tlb_flushD();
1890 }
1891 cpu_cpwait();
1892 }
1893
1894 /*
1895 * pmap_t pmap_create(void)
1896 *
1897 * Create a new pmap structure from scratch.
1898 */
1899 pmap_t
1900 pmap_create(void)
1901 {
1902 pmap_t pm;
1903
1904 pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
1905
1906 simple_lock_init(&pm->pm_lock);
1907 pm->pm_obj.pgops = NULL; /* currently not a mappable object */
1908 TAILQ_INIT(&pm->pm_obj.memq);
1909 pm->pm_obj.uo_npages = 0;
1910 pm->pm_obj.uo_refs = 1;
1911 pm->pm_stats.wired_count = 0;
1912 pm->pm_stats.resident_count = 1;
1913 pm->pm_cstate.cs_all = 0;
1914 pmap_alloc_l1(pm);
1915
1916 /*
1917 * Note: The pool cache ensures that the pm_l2[] array is already
1918 * initialised to zero.
1919 */
1920
1921 pmap_pinit(pm);
1922
1923 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1924
1925 return (pm);
1926 }
1927
1928 /*
1929 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1930 * int flags)
1931 *
1932 * Insert the given physical page (p) at
1933 * the specified virtual address (v) in the
1934 * target physical map with the protection requested.
1935 *
1936 * NB: This is the only routine which MAY NOT lazy-evaluate
1937 * or lose information. That is, this routine must actually
1938 * insert this page into the given map NOW.
1939 */
1940 int
1941 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1942 {
1943 struct l2_bucket *l2b;
1944 struct vm_page *pg, *opg;
1945 struct pv_entry *pve;
1946 pt_entry_t *ptep, npte, opte;
1947 u_int nflags;
1948 u_int oflags;
1949
1950 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1951
1952 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1953 KDASSERT(((va | pa) & PGOFSET) == 0);
1954
1955 /*
1956 * Get a pointer to the page. Later on in this function, we
1957 * test for a managed page by checking pg != NULL.
1958 */
1959 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1960
1961 nflags = 0;
1962 if (prot & VM_PROT_WRITE)
1963 nflags |= PVF_WRITE;
1964 if (prot & VM_PROT_EXECUTE)
1965 nflags |= PVF_EXEC;
1966 if (flags & PMAP_WIRED)
1967 nflags |= PVF_WIRED;
1968
1969 PMAP_MAP_TO_HEAD_LOCK();
1970 pmap_acquire_pmap_lock(pm);
1971
1972 /*
1973 * Fetch the L2 bucket which maps this page, allocating one if
1974 * necessary for user pmaps.
1975 */
1976 if (pm == pmap_kernel())
1977 l2b = pmap_get_l2_bucket(pm, va);
1978 else
1979 l2b = pmap_alloc_l2_bucket(pm, va);
1980 if (l2b == NULL) {
1981 if (flags & PMAP_CANFAIL) {
1982 pmap_release_pmap_lock(pm);
1983 PMAP_MAP_TO_HEAD_UNLOCK();
1984 return (ENOMEM);
1985 }
1986 panic("pmap_enter: failed to allocate L2 bucket");
1987 }
1988 ptep = &l2b->l2b_kva[l2pte_index(va)];
1989 opte = *ptep;
1990 npte = pa;
1991 oflags = 0;
1992
1993 if (opte) {
1994 /*
1995 * There is already a mapping at this address.
1996 * If the physical address is different, lookup the
1997 * vm_page.
1998 */
1999 if (l2pte_pa(opte) != pa)
2000 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2001 else
2002 opg = pg;
2003 } else
2004 opg = NULL;
2005
2006 if (pg) {
2007 /*
2008 * This is to be a managed mapping.
2009 */
2010 if ((flags & VM_PROT_ALL) ||
2011 (pg->mdpage.pvh_attrs & PVF_REF)) {
2012 /*
2013 * - The access type indicates that we don't need
2014 * to do referenced emulation.
2015 * OR
2016 * - The physical page has already been referenced
2017 * so no need to re-do referenced emulation here.
2018 */
2019 npte |= L2_S_PROTO;
2020
2021 nflags |= PVF_REF;
2022
2023 if ((prot & VM_PROT_WRITE) != 0 &&
2024 ((flags & VM_PROT_WRITE) != 0 ||
2025 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2026 /*
2027 * This is a writable mapping, and the
2028 * page's mod state indicates it has
2029 * already been modified. Make it
2030 * writable from the outset.
2031 */
2032 npte |= L2_S_PROT_W;
2033 nflags |= PVF_MOD;
2034 }
2035 } else {
2036 /*
2037 * Need to do page referenced emulation.
2038 */
2039 npte |= L2_TYPE_INV;
2040 }
2041
2042 npte |= pte_l2_s_cache_mode;
2043
2044 if (pg == opg) {
2045 /*
2046 * We're changing the attrs of an existing mapping.
2047 */
2048 simple_lock(&pg->mdpage.pvh_slock);
2049 oflags = pmap_modify_pv(pg, pm, va,
2050 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2051 PVF_MOD | PVF_REF, nflags);
2052 simple_unlock(&pg->mdpage.pvh_slock);
2053
2054 /*
2055 * We may need to flush the cache if we're
2056 * doing rw-ro...
2057 */
2058 if (pm->pm_cstate.cs_cache_d &&
2059 (oflags & PVF_NC) == 0 &&
2060 (opte & L2_S_PROT_W) != 0 &&
2061 (prot & VM_PROT_WRITE) == 0)
2062 cpu_dcache_wb_range(va, PAGE_SIZE);
2063 } else {
2064 /*
2065 * New mapping, or changing the backing page
2066 * of an existing mapping.
2067 */
2068 if (opg) {
2069 /*
2070 * Replacing an existing mapping with a new one.
2071 * It is part of our managed memory so we
2072 * must remove it from the PV list
2073 */
2074 simple_lock(&opg->mdpage.pvh_slock);
2075 pve = pmap_remove_pv(opg, pm, va, 0);
2076 pmap_vac_me_harder(opg, pm, 0);
2077 simple_unlock(&opg->mdpage.pvh_slock);
2078 oflags = pve->pv_flags;
2079
2080 /*
2081 * If the old mapping was valid (ref/mod
2082 * emulation creates 'invalid' mappings
2083 * initially) then make sure to frob
2084 * the cache.
2085 */
2086 if ((oflags & PVF_NC) == 0 &&
2087 l2pte_valid(opte)) {
2088 if (PV_BEEN_EXECD(oflags)) {
2089 pmap_idcache_wbinv_range(pm, va,
2090 PAGE_SIZE);
2091 } else
2092 if (PV_BEEN_REFD(oflags)) {
2093 pmap_dcache_wb_range(pm, va,
2094 PAGE_SIZE, TRUE,
2095 (oflags & PVF_WRITE) == 0);
2096 }
2097 }
2098 } else
2099 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2100 if ((flags & PMAP_CANFAIL) == 0)
2101 panic("pmap_enter: no pv entries");
2102
2103 if (pm != pmap_kernel())
2104 pmap_free_l2_bucket(pm, l2b, 0);
2105 pmap_release_pmap_lock(pm);
2106 PMAP_MAP_TO_HEAD_UNLOCK();
2107 NPDEBUG(PDB_ENTER,
2108 printf("pmap_enter: ENOMEM\n"));
2109 return (ENOMEM);
2110 }
2111
2112 pmap_enter_pv(pg, pve, pm, va, nflags);
2113 }
2114 } else {
2115 /*
2116 * We're mapping an unmanaged page.
2117 * These are always readable, and possibly writable, from
2118 * the get go as we don't need to track ref/mod status.
2119 */
2120 npte |= L2_S_PROTO;
2121 if (prot & VM_PROT_WRITE)
2122 npte |= L2_S_PROT_W;
2123
2124 /*
2125 * Make sure the vector table is mapped cacheable
2126 */
2127 if (pm != pmap_kernel() && va == vector_page)
2128 npte |= pte_l2_s_cache_mode;
2129
2130 if (opg) {
2131 /*
2132 * Looks like there's an existing 'managed' mapping
2133 * at this address.
2134 */
2135 simple_lock(&opg->mdpage.pvh_slock);
2136 pve = pmap_remove_pv(opg, pm, va, 0);
2137 pmap_vac_me_harder(opg, pm, 0);
2138 simple_unlock(&opg->mdpage.pvh_slock);
2139 oflags = pve->pv_flags;
2140
2141 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2142 if (PV_BEEN_EXECD(oflags))
2143 pmap_idcache_wbinv_range(pm, va,
2144 PAGE_SIZE);
2145 else
2146 if (PV_BEEN_REFD(oflags))
2147 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2148 TRUE, (oflags & PVF_WRITE) == 0);
2149 }
2150 pool_put(&pmap_pv_pool, pve);
2151 }
2152 }
2153
2154 /*
2155 * Make sure userland mappings get the right permissions
2156 */
2157 if (pm != pmap_kernel() && va != vector_page)
2158 npte |= L2_S_PROT_U;
2159
2160 /*
2161 * Keep the stats up to date
2162 */
2163 if (opte == 0) {
2164 l2b->l2b_occupancy++;
2165 pm->pm_stats.resident_count++;
2166 }
2167
2168 NPDEBUG(PDB_ENTER,
2169 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2170
2171 /*
2172 * If this is just a wiring change, the two PTEs will be
2173 * identical, so there's no need to update the page table.
2174 */
2175 if (npte != opte) {
2176 boolean_t is_cached = pmap_is_cached(pm);
2177
2178 *ptep = npte;
2179 if (is_cached) {
2180 /*
2181 * We only need to frob the cache/tlb if this pmap
2182 * is current
2183 */
2184 PTE_SYNC(ptep);
2185 if (va != vector_page && l2pte_valid(npte)) {
2186 /*
2187 * This mapping is likely to be accessed as
2188 * soon as we return to userland. Fix up the
2189 * L1 entry to avoid taking another
2190 * page/domain fault.
2191 */
2192 pd_entry_t *pl1pd, l1pd;
2193
2194 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2195 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2196 L1_C_PROTO;
2197 if (*pl1pd != l1pd) {
2198 *pl1pd = l1pd;
2199 PTE_SYNC(pl1pd);
2200 }
2201 }
2202 }
2203
2204 if (PV_BEEN_EXECD(oflags))
2205 pmap_tlb_flushID_SE(pm, va);
2206 else
2207 if (PV_BEEN_REFD(oflags))
2208 pmap_tlb_flushD_SE(pm, va);
2209
2210 NPDEBUG(PDB_ENTER,
2211 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2212 is_cached, pm->pm_cstate.cs_all));
2213
2214 if (pg != NULL) {
2215 simple_lock(&pg->mdpage.pvh_slock);
2216 pmap_vac_me_harder(pg, pm, va);
2217 simple_unlock(&pg->mdpage.pvh_slock);
2218 }
2219 }
2220
2221 pmap_release_pmap_lock(pm);
2222 PMAP_MAP_TO_HEAD_UNLOCK();
2223
2224 return (0);
2225 }
2226
2227 /*
2228 * pmap_remove()
2229 *
2230 * pmap_remove is responsible for nuking a number of mappings for a range
2231 * of virtual address space in the current pmap. To do this efficiently
2232 * is interesting, because in a number of cases a wide virtual address
2233 * range may be supplied that contains few actual mappings. So, the
2234 * optimisations are:
2235 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2236 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2237 * maybe do just a partial cache clean. This path of execution is
2238 * complicated by the fact that the cache must be flushed _before_
2239 * the PTE is nuked, being a VAC :-)
2240 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2241 * all invalidations until pmap_update(), since pmap_remove_all() has
2242 * already flushed the cache.
2243 * 4. Maybe later fast-case a single page, but I don't think this is
2244 * going to make _that_ much difference overall.
2245 */
2246
2247 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2248
2249 void
2250 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
2251 {
2252 struct l2_bucket *l2b;
2253 vaddr_t next_bucket;
2254 pt_entry_t *ptep;
2255 u_int cleanlist_idx, total, cnt;
2256 struct {
2257 vaddr_t va;
2258 pt_entry_t *pte;
2259 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2260 u_int mappings, is_exec, is_refd;
2261
2262 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
2263 "eva=%08lx\n", pm, sva, eva));
2264
2265 /*
2266 * we lock in the pmap => pv_head direction
2267 */
2268 PMAP_MAP_TO_HEAD_LOCK();
2269 pmap_acquire_pmap_lock(pm);
2270
2271 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2272 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2273 if (pm->pm_cstate.cs_tlb == 0)
2274 pm->pm_remove_all = TRUE;
2275 } else
2276 cleanlist_idx = 0;
2277
2278 total = 0;
2279
2280 while (sva < eva) {
2281 /*
2282 * Do one L2 bucket's worth at a time.
2283 */
2284 next_bucket = L2_NEXT_BUCKET(sva);
2285 if (next_bucket > eva)
2286 next_bucket = eva;
2287
2288 l2b = pmap_get_l2_bucket(pm, sva);
2289 if (l2b == NULL) {
2290 sva = next_bucket;
2291 continue;
2292 }
2293
2294 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2295
2296 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
2297 struct vm_page *pg;
2298 pt_entry_t pte;
2299 paddr_t pa;
2300
2301 pte = *ptep;
2302
2303 if (pte == 0) {
2304 /* Nothing here, move along */
2305 continue;
2306 }
2307
2308 pa = l2pte_pa(pte);
2309 is_exec = 0;
2310 is_refd = 1;
2311
2312 /*
2313 * Update flags. In a number of circumstances,
2314 * we could cluster a lot of these and do a
2315 * number of sequential pages in one go.
2316 */
2317 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2318 struct pv_entry *pve;
2319 simple_lock(&pg->mdpage.pvh_slock);
2320 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
2321 pmap_vac_me_harder(pg, pm, 0);
2322 simple_unlock(&pg->mdpage.pvh_slock);
2323 if (pve != NULL) {
2324 if (pm->pm_remove_all == FALSE) {
2325 is_exec =
2326 PV_BEEN_EXECD(pve->pv_flags);
2327 is_refd =
2328 PV_BEEN_REFD(pve->pv_flags);
2329 }
2330 pool_put(&pmap_pv_pool, pve);
2331 } else
2332 if (skip_wired) {
2333 /* The mapping is wired. Skip it */
2334 continue;
2335 }
2336 } else
2337 if (skip_wired) {
2338 /* Unmanaged pages are always wired. */
2339 continue;
2340 }
2341
2342 mappings++;
2343
2344 if (!l2pte_valid(pte)) {
2345 /*
2346 * Ref/Mod emulation is still active for this
2347 * mapping, therefore it is has not yet been
2348 * accessed. No need to frob the cache/tlb.
2349 */
2350 *ptep = 0;
2351 PTE_SYNC_CURRENT(pm, ptep);
2352 continue;
2353 }
2354
2355 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2356 /* Add to the clean list. */
2357 cleanlist[cleanlist_idx].pte = ptep;
2358 cleanlist[cleanlist_idx].va =
2359 sva | (is_exec & 1);
2360 cleanlist_idx++;
2361 } else
2362 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2363 /* Nuke everything if needed. */
2364 pmap_idcache_wbinv_all(pm);
2365 pmap_tlb_flushID(pm);
2366
2367 /*
2368 * Roll back the previous PTE list,
2369 * and zero out the current PTE.
2370 */
2371 for (cnt = 0;
2372 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2373 *cleanlist[cnt].pte = 0;
2374 }
2375 *ptep = 0;
2376 PTE_SYNC(ptep);
2377 cleanlist_idx++;
2378 pm->pm_remove_all = TRUE;
2379 } else {
2380 *ptep = 0;
2381 PTE_SYNC(ptep);
2382 if (pm->pm_remove_all == FALSE) {
2383 if (is_exec)
2384 pmap_tlb_flushID_SE(pm, sva);
2385 else
2386 if (is_refd)
2387 pmap_tlb_flushD_SE(pm, sva);
2388 }
2389 }
2390 }
2391
2392 /*
2393 * Deal with any left overs
2394 */
2395 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2396 total += cleanlist_idx;
2397 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2398 if (pm->pm_cstate.cs_all != 0) {
2399 vaddr_t clva = cleanlist[cnt].va & ~1;
2400 if (cleanlist[cnt].va & 1) {
2401 pmap_idcache_wbinv_range(pm,
2402 clva, PAGE_SIZE);
2403 pmap_tlb_flushID_SE(pm, clva);
2404 } else {
2405 pmap_dcache_wb_range(pm,
2406 clva, PAGE_SIZE, TRUE,
2407 FALSE);
2408 pmap_tlb_flushD_SE(pm, clva);
2409 }
2410 }
2411 *cleanlist[cnt].pte = 0;
2412 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2413 }
2414
2415 /*
2416 * If it looks like we're removing a whole bunch
2417 * of mappings, it's faster to just write-back
2418 * the whole cache now and defer TLB flushes until
2419 * pmap_update() is called.
2420 */
2421 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2422 cleanlist_idx = 0;
2423 else {
2424 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2425 pmap_idcache_wbinv_all(pm);
2426 pm->pm_remove_all = TRUE;
2427 }
2428 }
2429
2430 pmap_free_l2_bucket(pm, l2b, mappings);
2431 pm->pm_stats.resident_count -= mappings;
2432 }
2433
2434 pmap_release_pmap_lock(pm);
2435 PMAP_MAP_TO_HEAD_UNLOCK();
2436 }
2437
2438 /*
2439 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2440 *
2441 * We assume there is already sufficient KVM space available
2442 * to do this, as we can't allocate L2 descriptor tables/metadata
2443 * from here.
2444 */
2445 void
2446 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2447 {
2448 struct l2_bucket *l2b;
2449 pt_entry_t *ptep, opte;
2450
2451 NPDEBUG(PDB_KENTER,
2452 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2453 va, pa, prot));
2454
2455 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2456 KDASSERT(l2b != NULL);
2457
2458 ptep = &l2b->l2b_kva[l2pte_index(va)];
2459 opte = *ptep;
2460
2461 if (l2pte_valid(opte)) {
2462 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2463 cpu_tlb_flushD_SE(va);
2464 cpu_cpwait();
2465 } else
2466 if (opte == 0)
2467 l2b->l2b_occupancy++;
2468
2469 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2470 pte_l2_s_cache_mode;
2471 PTE_SYNC(ptep);
2472 }
2473
2474 void
2475 pmap_kremove(vaddr_t va, vsize_t len)
2476 {
2477 struct l2_bucket *l2b;
2478 pt_entry_t *ptep, *sptep, opte;
2479 vaddr_t next_bucket, eva;
2480 u_int mappings;
2481
2482 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2483 va, len));
2484
2485 eva = va + len;
2486
2487 while (va < eva) {
2488 next_bucket = L2_NEXT_BUCKET(va);
2489 if (next_bucket > eva)
2490 next_bucket = eva;
2491
2492 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2493 KDASSERT(l2b != NULL);
2494
2495 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2496 mappings = 0;
2497
2498 while (va < next_bucket) {
2499 opte = *ptep;
2500 if (l2pte_valid(opte)) {
2501 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2502 cpu_tlb_flushD_SE(va);
2503 }
2504 if (opte) {
2505 *ptep = 0;
2506 mappings++;
2507 }
2508 va += PAGE_SIZE;
2509 ptep++;
2510 }
2511 KDASSERT(mappings <= l2b->l2b_occupancy);
2512 l2b->l2b_occupancy -= mappings;
2513 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2514 }
2515 cpu_cpwait();
2516 }
2517
2518 boolean_t
2519 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2520 {
2521 struct l2_dtable *l2;
2522 pd_entry_t *pl1pd, l1pd;
2523 pt_entry_t *ptep, pte;
2524 paddr_t pa;
2525 u_int l1idx;
2526
2527 pmap_acquire_pmap_lock(pm);
2528
2529 l1idx = L1_IDX(va);
2530 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2531 l1pd = *pl1pd;
2532
2533 if (l1pte_section_p(l1pd)) {
2534 /*
2535 * These should only happen for pmap_kernel()
2536 */
2537 KDASSERT(pm == pmap_kernel());
2538 pmap_release_pmap_lock(pm);
2539 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2540 } else {
2541 /*
2542 * Note that we can't rely on the validity of the L1
2543 * descriptor as an indication that a mapping exists.
2544 * We have to look it up in the L2 dtable.
2545 */
2546 l2 = pm->pm_l2[L2_IDX(l1idx)];
2547
2548 if (l2 == NULL ||
2549 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2550 pmap_release_pmap_lock(pm);
2551 return (FALSE);
2552 }
2553
2554 ptep = &ptep[l2pte_index(va)];
2555 pte = *ptep;
2556 pmap_release_pmap_lock(pm);
2557
2558 if (pte == 0)
2559 return (FALSE);
2560
2561 switch (pte & L2_TYPE_MASK) {
2562 case L2_TYPE_L:
2563 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2564 break;
2565
2566 default:
2567 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2568 break;
2569 }
2570 }
2571
2572 if (pap != NULL)
2573 *pap = pa;
2574
2575 return (TRUE);
2576 }
2577
2578 void
2579 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2580 {
2581 struct l2_bucket *l2b;
2582 pt_entry_t *ptep, pte;
2583 vaddr_t next_bucket;
2584 u_int flags;
2585 int flush;
2586
2587 NPDEBUG(PDB_PROTECT,
2588 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2589 pm, sva, eva, prot));
2590
2591 if ((prot & VM_PROT_READ) == 0) {
2592 pmap_remove(pm, sva, eva);
2593 return;
2594 }
2595
2596 if (prot & VM_PROT_WRITE) {
2597 /*
2598 * If this is a read->write transition, just ignore it and let
2599 * uvm_fault() take care of it later.
2600 */
2601 return;
2602 }
2603
2604 PMAP_MAP_TO_HEAD_LOCK();
2605 pmap_acquire_pmap_lock(pm);
2606
2607 /*
2608 * OK, at this point, we know we're doing write-protect operation.
2609 * If the pmap is active, write-back the range.
2610 */
2611 pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
2612
2613 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2614 flags = 0;
2615
2616 while (sva < eva) {
2617 next_bucket = L2_NEXT_BUCKET(sva);
2618 if (next_bucket > eva)
2619 next_bucket = eva;
2620
2621 l2b = pmap_get_l2_bucket(pm, sva);
2622 if (l2b == NULL) {
2623 sva = next_bucket;
2624 continue;
2625 }
2626
2627 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2628
2629 while (sva < next_bucket) {
2630 if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2631 struct vm_page *pg;
2632 u_int f;
2633
2634 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2635 pte &= ~L2_S_PROT_W;
2636 *ptep = pte;
2637 PTE_SYNC(ptep);
2638
2639 if (pg != NULL) {
2640 simple_lock(&pg->mdpage.pvh_slock);
2641 f = pmap_modify_pv(pg, pm, sva,
2642 PVF_WRITE, 0);
2643 pmap_vac_me_harder(pg, pm, sva);
2644 simple_unlock(&pg->mdpage.pvh_slock);
2645 } else
2646 f = PVF_REF | PVF_EXEC;
2647
2648 if (flush >= 0) {
2649 flush++;
2650 flags |= f;
2651 } else
2652 if (PV_BEEN_EXECD(f))
2653 pmap_tlb_flushID_SE(pm, sva);
2654 else
2655 if (PV_BEEN_REFD(f))
2656 pmap_tlb_flushD_SE(pm, sva);
2657 }
2658
2659 sva += PAGE_SIZE;
2660 ptep++;
2661 }
2662 }
2663
2664 pmap_release_pmap_lock(pm);
2665 PMAP_MAP_TO_HEAD_UNLOCK();
2666
2667 if (flush) {
2668 if (PV_BEEN_EXECD(flags))
2669 pmap_tlb_flushID(pm);
2670 else
2671 if (PV_BEEN_REFD(flags))
2672 pmap_tlb_flushD(pm);
2673 }
2674 }
2675
2676 void
2677 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2678 {
2679
2680 NPDEBUG(PDB_PROTECT,
2681 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2682 pg, VM_PAGE_TO_PHYS(pg), prot));
2683
2684 switch(prot) {
2685 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2686 case VM_PROT_READ|VM_PROT_WRITE:
2687 return;
2688
2689 case VM_PROT_READ:
2690 case VM_PROT_READ|VM_PROT_EXECUTE:
2691 pmap_clearbit(pg, PVF_WRITE);
2692 break;
2693
2694 default:
2695 pmap_page_remove(pg);
2696 break;
2697 }
2698 }
2699
2700 /*
2701 * pmap_clear_modify:
2702 *
2703 * Clear the "modified" attribute for a page.
2704 */
2705 boolean_t
2706 pmap_clear_modify(struct vm_page *pg)
2707 {
2708 boolean_t rv;
2709
2710 if (pg->mdpage.pvh_attrs & PVF_MOD) {
2711 rv = TRUE;
2712 pmap_clearbit(pg, PVF_MOD);
2713 } else
2714 rv = FALSE;
2715
2716 return (rv);
2717 }
2718
2719 /*
2720 * pmap_clear_reference:
2721 *
2722 * Clear the "referenced" attribute for a page.
2723 */
2724 boolean_t
2725 pmap_clear_reference(struct vm_page *pg)
2726 {
2727 boolean_t rv;
2728
2729 if (pg->mdpage.pvh_attrs & PVF_REF) {
2730 rv = TRUE;
2731 pmap_clearbit(pg, PVF_REF);
2732 } else
2733 rv = FALSE;
2734
2735 return (rv);
2736 }
2737
2738 /*
2739 * pmap_is_modified:
2740 *
2741 * Test if a page has the "modified" attribute.
2742 */
2743 /* See <arm/arm32/pmap.h> */
2744
2745 /*
2746 * pmap_is_referenced:
2747 *
2748 * Test if a page has the "referenced" attribute.
2749 */
2750 /* See <arm/arm32/pmap.h> */
2751
2752 int
2753 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2754 {
2755 struct l2_dtable *l2;
2756 struct l2_bucket *l2b;
2757 pd_entry_t *pl1pd, l1pd;
2758 pt_entry_t *ptep, pte;
2759 paddr_t pa;
2760 u_int l1idx;
2761 int rv = 0;
2762
2763 PMAP_MAP_TO_HEAD_LOCK();
2764 pmap_acquire_pmap_lock(pm);
2765
2766 l1idx = L1_IDX(va);
2767
2768 /*
2769 * If there is no l2_dtable for this address, then the process
2770 * has no business accessing it.
2771 *
2772 * Note: This will catch userland processes trying to access
2773 * kernel addresses.
2774 */
2775 l2 = pm->pm_l2[L2_IDX(l1idx)];
2776 if (l2 == NULL)
2777 goto out;
2778
2779 /*
2780 * Likewise if there is no L2 descriptor table
2781 */
2782 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2783 if (l2b->l2b_kva == NULL)
2784 goto out;
2785
2786 /*
2787 * Check the PTE itself.
2788 */
2789 ptep = &l2b->l2b_kva[l2pte_index(va)];
2790 pte = *ptep;
2791 if (pte == 0)
2792 goto out;
2793
2794 /*
2795 * Catch a userland access to the vector page mapped at 0x0
2796 */
2797 if (user && (pte & L2_S_PROT_U) == 0)
2798 goto out;
2799
2800 pa = l2pte_pa(pte);
2801
2802 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2803 /*
2804 * This looks like a good candidate for "page modified"
2805 * emulation...
2806 */
2807 struct pv_entry *pv;
2808 struct vm_page *pg;
2809
2810 /* Extract the physical address of the page */
2811 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2812 goto out;
2813
2814 /* Get the current flags for this page. */
2815 simple_lock(&pg->mdpage.pvh_slock);
2816
2817 pv = pmap_find_pv(pg, pm, va);
2818 if (pv == NULL) {
2819 simple_unlock(&pg->mdpage.pvh_slock);
2820 goto out;
2821 }
2822
2823 /*
2824 * Do the flags say this page is writable? If not then it
2825 * is a genuine write fault. If yes then the write fault is
2826 * our fault as we did not reflect the write access in the
2827 * PTE. Now we know a write has occurred we can correct this
2828 * and also set the modified bit
2829 */
2830 if ((pv->pv_flags & PVF_WRITE) == 0) {
2831 simple_unlock(&pg->mdpage.pvh_slock);
2832 goto out;
2833 }
2834
2835 NPDEBUG(PDB_FOLLOW,
2836 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2837 pm, va, VM_PAGE_TO_PHYS(pg)));
2838
2839 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2840 pv->pv_flags |= PVF_REF | PVF_MOD;
2841 simple_unlock(&pg->mdpage.pvh_slock);
2842
2843 /*
2844 * Re-enable write permissions for the page. No need to call
2845 * pmap_vac_me_harder(), since this is just a
2846 * modified-emulation fault, and the PVF_WRITE bit isn't
2847 * changing. We've already set the cacheable bits based on
2848 * the assumption that we can write to this page.
2849 */
2850 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2851 PTE_SYNC(ptep);
2852 rv = 1;
2853 } else
2854 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2855 /*
2856 * This looks like a good candidate for "page referenced"
2857 * emulation.
2858 */
2859 struct pv_entry *pv;
2860 struct vm_page *pg;
2861
2862 /* Extract the physical address of the page */
2863 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2864 goto out;
2865
2866 /* Get the current flags for this page. */
2867 simple_lock(&pg->mdpage.pvh_slock);
2868
2869 pv = pmap_find_pv(pg, pm, va);
2870 if (pv == NULL) {
2871 simple_unlock(&pg->mdpage.pvh_slock);
2872 goto out;
2873 }
2874
2875 pg->mdpage.pvh_attrs |= PVF_REF;
2876 pv->pv_flags |= PVF_REF;
2877 simple_unlock(&pg->mdpage.pvh_slock);
2878
2879 NPDEBUG(PDB_FOLLOW,
2880 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2881 pm, va, VM_PAGE_TO_PHYS(pg)));
2882
2883 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2884 PTE_SYNC(ptep);
2885 rv = 1;
2886 }
2887
2888 /*
2889 * We know there is a valid mapping here, so simply
2890 * fix up the L1 if necessary.
2891 */
2892 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2893 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2894 if (*pl1pd != l1pd) {
2895 *pl1pd = l1pd;
2896 PTE_SYNC(pl1pd);
2897 rv = 1;
2898 }
2899
2900 #ifdef CPU_SA110
2901 /*
2902 * There are bugs in the rev K SA110. This is a check for one
2903 * of them.
2904 */
2905 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2906 curcpu()->ci_arm_cpurev < 3) {
2907 /* Always current pmap */
2908 if (l2pte_valid(pte)) {
2909 extern int kernel_debug;
2910 if (kernel_debug & 1) {
2911 struct proc *p = curlwp->l_proc;
2912 printf("prefetch_abort: page is already "
2913 "mapped - pte=%p *pte=%08x\n", ptep, pte);
2914 printf("prefetch_abort: pc=%08lx proc=%p "
2915 "process=%s\n", va, p, p->p_comm);
2916 printf("prefetch_abort: far=%08x fs=%x\n",
2917 cpu_faultaddress(), cpu_faultstatus());
2918 }
2919 #ifdef DDB
2920 if (kernel_debug & 2)
2921 Debugger();
2922 #endif
2923 rv = 1;
2924 }
2925 }
2926 #endif /* CPU_SA110 */
2927
2928 #ifdef DEBUG
2929 /*
2930 * If 'rv == 0' at this point, it generally indicates that there is a
2931 * stale TLB entry for the faulting address. This happens when two or
2932 * more processes are sharing an L1. Since we don't flush the TLB on
2933 * a context switch between such processes, we can take domain faults
2934 * for mappings which exist at the same VA in both processes. EVEN IF
2935 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2936 * example.
2937 *
2938 * This is extremely likely to happen if pmap_enter() updated the L1
2939 * entry for a recently entered mapping. In this case, the TLB is
2940 * flushed for the new mapping, but there may still be TLB entries for
2941 * other mappings belonging to other processes in the 1MB range
2942 * covered by the L1 entry.
2943 *
2944 * Since 'rv == 0', we know that the L1 already contains the correct
2945 * value, so the fault must be due to a stale TLB entry.
2946 *
2947 * Since we always need to flush the TLB anyway in the case where we
2948 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2949 * stale TLB entries dynamically.
2950 *
2951 * However, the above condition can ONLY happen if the current L1 is
2952 * being shared. If it happens when the L1 is unshared, it indicates
2953 * that other parts of the pmap are not doing their job WRT managing
2954 * the TLB.
2955 */
2956 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2957 extern int last_fault_code;
2958 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2959 pm, va, ftype);
2960 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2961 l2, l2b, ptep, pl1pd);
2962 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2963 pte, l1pd, last_fault_code);
2964 #ifdef DDB
2965 Debugger();
2966 #endif
2967 }
2968 #endif
2969
2970 cpu_tlb_flushID_SE(va);
2971 cpu_cpwait();
2972
2973 rv = 1;
2974
2975 out:
2976 pmap_release_pmap_lock(pm);
2977 PMAP_MAP_TO_HEAD_UNLOCK();
2978
2979 return (rv);
2980 }
2981
2982 /*
2983 * pmap_collect: free resources held by a pmap
2984 *
2985 * => optional function.
2986 * => called when a process is swapped out to free memory.
2987 */
2988 void
2989 pmap_collect(pmap_t pm)
2990 {
2991
2992 pmap_idcache_wbinv_all(pm);
2993 pm->pm_remove_all = TRUE;
2994 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
2995 pmap_update(pm);
2996 }
2997
2998 /*
2999 * Routine: pmap_procwr
3000 *
3001 * Function:
3002 * Synchronize caches corresponding to [addr, addr+len) in p.
3003 *
3004 */
3005 void
3006 pmap_procwr(struct proc *p, vaddr_t va, int len)
3007 {
3008 /* We only need to do anything if it is the current process. */
3009 if (p == curproc)
3010 cpu_icache_sync_range(va, len);
3011 }
3012
3013 /*
3014 * Routine: pmap_unwire
3015 * Function: Clear the wired attribute for a map/virtual-address pair.
3016 *
3017 * In/out conditions:
3018 * The mapping must already exist in the pmap.
3019 */
3020 void
3021 pmap_unwire(pmap_t pm, vaddr_t va)
3022 {
3023 struct l2_bucket *l2b;
3024 pt_entry_t *ptep, pte;
3025 struct vm_page *pg;
3026 paddr_t pa;
3027
3028 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3029
3030 PMAP_MAP_TO_HEAD_LOCK();
3031 pmap_acquire_pmap_lock(pm);
3032
3033 l2b = pmap_get_l2_bucket(pm, va);
3034 KDASSERT(l2b != NULL);
3035
3036 ptep = &l2b->l2b_kva[l2pte_index(va)];
3037 pte = *ptep;
3038
3039 /* Extract the physical address of the page */
3040 pa = l2pte_pa(pte);
3041
3042 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3043 /* Update the wired bit in the pv entry for this page. */
3044 simple_lock(&pg->mdpage.pvh_slock);
3045 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3046 simple_unlock(&pg->mdpage.pvh_slock);
3047 }
3048
3049 pmap_release_pmap_lock(pm);
3050 PMAP_MAP_TO_HEAD_UNLOCK();
3051 }
3052
3053 void
3054 pmap_activate(struct lwp *l)
3055 {
3056 pmap_t pm;
3057 struct pcb *pcb;
3058 int s;
3059
3060 pm = l->l_proc->p_vmspace->vm_map.pmap;
3061 pcb = &l->l_addr->u_pcb;
3062
3063 pmap_set_pcb_pagedir(pm, pcb);
3064
3065 if (l == curlwp) {
3066 u_int cur_dacr, cur_ttb;
3067
3068 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
3069 __asm volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
3070
3071 cur_ttb &= ~(L1_TABLE_SIZE - 1);
3072
3073 if (cur_ttb == (u_int)pcb->pcb_pagedir &&
3074 cur_dacr == pcb->pcb_dacr) {
3075 /*
3076 * No need to switch address spaces.
3077 */
3078 return;
3079 }
3080
3081 s = splhigh();
3082 pmap_acquire_pmap_lock(pm);
3083 disable_interrupts(I32_bit | F32_bit);
3084
3085 /*
3086 * We MUST, I repeat, MUST fix up the L1 entry corresponding
3087 * to 'vector_page' in the incoming L1 table before switching
3088 * to it otherwise subsequent interrupts/exceptions (including
3089 * domain faults!) will jump into hyperspace.
3090 */
3091 if (pcb->pcb_pl1vec) {
3092 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3093 /*
3094 * Don't need to PTE_SYNC() at this point since
3095 * cpu_setttb() is about to flush both the cache
3096 * and the TLB.
3097 */
3098 }
3099
3100 cpu_domains(pcb->pcb_dacr);
3101 cpu_setttb(pcb->pcb_pagedir);
3102
3103 enable_interrupts(I32_bit | F32_bit);
3104
3105 /*
3106 * Flag any previous userland pmap as being NOT
3107 * resident in the cache/tlb.
3108 */
3109 if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
3110 pmap_cache_state->cs_all = 0;
3111
3112 /*
3113 * The new pmap, however, IS resident.
3114 */
3115 pmap_cache_state = &pm->pm_cstate;
3116 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3117 pmap_release_pmap_lock(pm);
3118 splx(s);
3119 }
3120 }
3121
3122 void
3123 pmap_deactivate(struct lwp *l)
3124 {
3125 }
3126
3127 void
3128 pmap_update(pmap_t pm)
3129 {
3130
3131 if (pm->pm_remove_all) {
3132 /*
3133 * Finish up the pmap_remove_all() optimisation by flushing
3134 * the TLB.
3135 */
3136 pmap_tlb_flushID(pm);
3137 pm->pm_remove_all = FALSE;
3138 }
3139
3140 if (pmap_is_current(pm)) {
3141 /*
3142 * If we're dealing with a current userland pmap, move its L1
3143 * to the end of the LRU.
3144 */
3145 if (pm != pmap_kernel())
3146 pmap_use_l1(pm);
3147
3148 /*
3149 * We can assume we're done with frobbing the cache/tlb for
3150 * now. Make sure any future pmap ops don't skip cache/tlb
3151 * flushes.
3152 */
3153 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3154 }
3155
3156 /*
3157 * make sure TLB/cache operations have completed.
3158 */
3159 cpu_cpwait();
3160 }
3161
3162 void
3163 pmap_remove_all(pmap_t pm)
3164 {
3165
3166 /*
3167 * The vmspace described by this pmap is about to be torn down.
3168 * Until pmap_update() is called, UVM will only make calls
3169 * to pmap_remove(). We can make life much simpler by flushing
3170 * the cache now, and deferring TLB invalidation to pmap_update().
3171 */
3172 pmap_idcache_wbinv_all(pm);
3173 pm->pm_remove_all = TRUE;
3174 }
3175
3176 /*
3177 * Retire the given physical map from service.
3178 * Should only be called if the map contains no valid mappings.
3179 */
3180 void
3181 pmap_destroy(pmap_t pm)
3182 {
3183 u_int count;
3184
3185 if (pm == NULL)
3186 return;
3187
3188 if (pm->pm_remove_all) {
3189 pmap_tlb_flushID(pm);
3190 pm->pm_remove_all = FALSE;
3191 }
3192
3193 /*
3194 * Drop reference count
3195 */
3196 simple_lock(&pm->pm_lock);
3197 count = --pm->pm_obj.uo_refs;
3198 simple_unlock(&pm->pm_lock);
3199 if (count > 0) {
3200 if (pmap_is_current(pm)) {
3201 if (pm != pmap_kernel())
3202 pmap_use_l1(pm);
3203 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3204 }
3205 return;
3206 }
3207
3208 /*
3209 * reference count is zero, free pmap resources and then free pmap.
3210 */
3211
3212 if (vector_page < KERNEL_BASE) {
3213 struct pcb *pcb = &lwp0.l_addr->u_pcb;
3214
3215 if (pmap_is_current(pm)) {
3216 /*
3217 * Frob the L1 entry corresponding to the vector
3218 * page so that it contains the kernel pmap's domain
3219 * number. This will ensure pmap_remove() does not
3220 * pull the current vector page out from under us.
3221 */
3222 disable_interrupts(I32_bit | F32_bit);
3223 *pcb->pcb_pl1vec = pcb->pcb_l1vec;
3224 cpu_domains(pcb->pcb_dacr);
3225 cpu_setttb(pcb->pcb_pagedir);
3226 enable_interrupts(I32_bit | F32_bit);
3227 }
3228
3229 /* Remove the vector page mapping */
3230 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3231 pmap_update(pm);
3232
3233 /*
3234 * Make sure cpu_switch(), et al, DTRT. This is safe to do
3235 * since this process has no remaining mappings of its own.
3236 */
3237 curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
3238 curpcb->pcb_l1vec = pcb->pcb_l1vec;
3239 curpcb->pcb_dacr = pcb->pcb_dacr;
3240 curpcb->pcb_pagedir = pcb->pcb_pagedir;
3241 }
3242
3243 LIST_REMOVE(pm, pm_list);
3244
3245 pmap_free_l1(pm);
3246
3247 /* return the pmap to the pool */
3248 pool_cache_put(&pmap_pmap_cache, pm);
3249 }
3250
3251
3252 /*
3253 * void pmap_reference(pmap_t pm)
3254 *
3255 * Add a reference to the specified pmap.
3256 */
3257 void
3258 pmap_reference(pmap_t pm)
3259 {
3260
3261 if (pm == NULL)
3262 return;
3263
3264 pmap_use_l1(pm);
3265
3266 simple_lock(&pm->pm_lock);
3267 pm->pm_obj.uo_refs++;
3268 simple_unlock(&pm->pm_lock);
3269 }
3270
3271 /*
3272 * pmap_zero_page()
3273 *
3274 * Zero a given physical page by mapping it at a page hook point.
3275 * In doing the zero page op, the page we zero is mapped cachable, as with
3276 * StrongARM accesses to non-cached pages are non-burst making writing
3277 * _any_ bulk data very slow.
3278 */
3279 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3280 void
3281 pmap_zero_page_generic(paddr_t phys)
3282 {
3283 #ifdef DEBUG
3284 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3285
3286 if (pg->mdpage.pvh_list != NULL)
3287 panic("pmap_zero_page: page has mappings");
3288 #endif
3289
3290 KDASSERT((phys & PGOFSET) == 0);
3291
3292 /*
3293 * Hook in the page, zero it, and purge the cache for that
3294 * zeroed page. Invalidate the TLB as needed.
3295 */
3296 *cdst_pte = L2_S_PROTO | phys |
3297 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3298 PTE_SYNC(cdst_pte);
3299 cpu_tlb_flushD_SE(cdstp);
3300 cpu_cpwait();
3301 bzero_page(cdstp);
3302 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3303 }
3304 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3305
3306 #if ARM_MMU_XSCALE == 1
3307 void
3308 pmap_zero_page_xscale(paddr_t phys)
3309 {
3310 #ifdef DEBUG
3311 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3312
3313 if (pg->mdpage.pvh_list != NULL)
3314 panic("pmap_zero_page: page has mappings");
3315 #endif
3316
3317 KDASSERT((phys & PGOFSET) == 0);
3318
3319 /*
3320 * Hook in the page, zero it, and purge the cache for that
3321 * zeroed page. Invalidate the TLB as needed.
3322 */
3323 *cdst_pte = L2_S_PROTO | phys |
3324 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3325 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3326 PTE_SYNC(cdst_pte);
3327 cpu_tlb_flushD_SE(cdstp);
3328 cpu_cpwait();
3329 bzero_page(cdstp);
3330 xscale_cache_clean_minidata();
3331 }
3332 #endif /* ARM_MMU_XSCALE == 1 */
3333
3334 /* pmap_pageidlezero()
3335 *
3336 * The same as above, except that we assume that the page is not
3337 * mapped. This means we never have to flush the cache first. Called
3338 * from the idle loop.
3339 */
3340 boolean_t
3341 pmap_pageidlezero(paddr_t phys)
3342 {
3343 unsigned int i;
3344 int *ptr;
3345 boolean_t rv = TRUE;
3346 #ifdef DEBUG
3347 struct vm_page *pg;
3348
3349 pg = PHYS_TO_VM_PAGE(phys);
3350 if (pg->mdpage.pvh_list != NULL)
3351 panic("pmap_pageidlezero: page has mappings");
3352 #endif
3353
3354 KDASSERT((phys & PGOFSET) == 0);
3355
3356 /*
3357 * Hook in the page, zero it, and purge the cache for that
3358 * zeroed page. Invalidate the TLB as needed.
3359 */
3360 *cdst_pte = L2_S_PROTO | phys |
3361 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3362 PTE_SYNC(cdst_pte);
3363 cpu_tlb_flushD_SE(cdstp);
3364 cpu_cpwait();
3365
3366 for (i = 0, ptr = (int *)cdstp;
3367 i < (PAGE_SIZE / sizeof(int)); i++) {
3368 if (sched_whichqs != 0) {
3369 /*
3370 * A process has become ready. Abort now,
3371 * so we don't keep it waiting while we
3372 * do slow memory access to finish this
3373 * page.
3374 */
3375 rv = FALSE;
3376 break;
3377 }
3378 *ptr++ = 0;
3379 }
3380
3381 if (rv)
3382 /*
3383 * if we aborted we'll rezero this page again later so don't
3384 * purge it unless we finished it
3385 */
3386 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3387
3388 return (rv);
3389 }
3390
3391 /*
3392 * pmap_copy_page()
3393 *
3394 * Copy one physical page into another, by mapping the pages into
3395 * hook points. The same comment regarding cachability as in
3396 * pmap_zero_page also applies here.
3397 */
3398 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3399 void
3400 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3401 {
3402 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3403 #ifdef DEBUG
3404 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3405
3406 if (dst_pg->mdpage.pvh_list != NULL)
3407 panic("pmap_copy_page: dst page has mappings");
3408 #endif
3409
3410 KDASSERT((src & PGOFSET) == 0);
3411 KDASSERT((dst & PGOFSET) == 0);
3412
3413 /*
3414 * Clean the source page. Hold the source page's lock for
3415 * the duration of the copy so that no other mappings can
3416 * be created while we have a potentially aliased mapping.
3417 */
3418 simple_lock(&src_pg->mdpage.pvh_slock);
3419 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3420
3421 /*
3422 * Map the pages into the page hook points, copy them, and purge
3423 * the cache for the appropriate page. Invalidate the TLB
3424 * as required.
3425 */
3426 *csrc_pte = L2_S_PROTO | src |
3427 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3428 PTE_SYNC(csrc_pte);
3429 *cdst_pte = L2_S_PROTO | dst |
3430 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3431 PTE_SYNC(cdst_pte);
3432 cpu_tlb_flushD_SE(csrcp);
3433 cpu_tlb_flushD_SE(cdstp);
3434 cpu_cpwait();
3435 bcopy_page(csrcp, cdstp);
3436 cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3437 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3438 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3439 }
3440 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3441
3442 #if ARM_MMU_XSCALE == 1
3443 void
3444 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3445 {
3446 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3447 #ifdef DEBUG
3448 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3449
3450 if (dst_pg->mdpage.pvh_list != NULL)
3451 panic("pmap_copy_page: dst page has mappings");
3452 #endif
3453
3454 KDASSERT((src & PGOFSET) == 0);
3455 KDASSERT((dst & PGOFSET) == 0);
3456
3457 /*
3458 * Clean the source page. Hold the source page's lock for
3459 * the duration of the copy so that no other mappings can
3460 * be created while we have a potentially aliased mapping.
3461 */
3462 simple_lock(&src_pg->mdpage.pvh_slock);
3463 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
3464
3465 /*
3466 * Map the pages into the page hook points, copy them, and purge
3467 * the cache for the appropriate page. Invalidate the TLB
3468 * as required.
3469 */
3470 *csrc_pte = L2_S_PROTO | src |
3471 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3472 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3473 PTE_SYNC(csrc_pte);
3474 *cdst_pte = L2_S_PROTO | dst |
3475 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3476 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3477 PTE_SYNC(cdst_pte);
3478 cpu_tlb_flushD_SE(csrcp);
3479 cpu_tlb_flushD_SE(cdstp);
3480 cpu_cpwait();
3481 bcopy_page(csrcp, cdstp);
3482 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3483 xscale_cache_clean_minidata();
3484 }
3485 #endif /* ARM_MMU_XSCALE == 1 */
3486
3487 /*
3488 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3489 *
3490 * Return the start and end addresses of the kernel's virtual space.
3491 * These values are setup in pmap_bootstrap and are updated as pages
3492 * are allocated.
3493 */
3494 void
3495 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3496 {
3497 *start = virtual_avail;
3498 *end = virtual_end;
3499 }
3500
3501 /*
3502 * Helper function for pmap_grow_l2_bucket()
3503 */
3504 static inline int
3505 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3506 {
3507 struct l2_bucket *l2b;
3508 pt_entry_t *ptep;
3509 paddr_t pa;
3510
3511 if (uvm.page_init_done == FALSE) {
3512 if (uvm_page_physget(&pa) == FALSE)
3513 return (1);
3514 } else {
3515 struct vm_page *pg;
3516 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3517 if (pg == NULL)
3518 return (1);
3519 pa = VM_PAGE_TO_PHYS(pg);
3520 }
3521
3522 if (pap)
3523 *pap = pa;
3524
3525 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3526 KDASSERT(l2b != NULL);
3527
3528 ptep = &l2b->l2b_kva[l2pte_index(va)];
3529 *ptep = L2_S_PROTO | pa | cache_mode |
3530 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3531 PTE_SYNC(ptep);
3532 memset((void *)va, 0, PAGE_SIZE);
3533 return (0);
3534 }
3535
3536 /*
3537 * This is the same as pmap_alloc_l2_bucket(), except that it is only
3538 * used by pmap_growkernel().
3539 */
3540 static inline struct l2_bucket *
3541 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3542 {
3543 struct l2_dtable *l2;
3544 struct l2_bucket *l2b;
3545 u_short l1idx;
3546 vaddr_t nva;
3547
3548 l1idx = L1_IDX(va);
3549
3550 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3551 /*
3552 * No mapping at this address, as there is
3553 * no entry in the L1 table.
3554 * Need to allocate a new l2_dtable.
3555 */
3556 nva = pmap_kernel_l2dtable_kva;
3557 if ((nva & PGOFSET) == 0) {
3558 /*
3559 * Need to allocate a backing page
3560 */
3561 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3562 return (NULL);
3563 }
3564
3565 l2 = (struct l2_dtable *)nva;
3566 nva += sizeof(struct l2_dtable);
3567
3568 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3569 /*
3570 * The new l2_dtable straddles a page boundary.
3571 * Map in another page to cover it.
3572 */
3573 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3574 return (NULL);
3575 }
3576
3577 pmap_kernel_l2dtable_kva = nva;
3578
3579 /*
3580 * Link it into the parent pmap
3581 */
3582 pm->pm_l2[L2_IDX(l1idx)] = l2;
3583 }
3584
3585 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3586
3587 /*
3588 * Fetch pointer to the L2 page table associated with the address.
3589 */
3590 if (l2b->l2b_kva == NULL) {
3591 pt_entry_t *ptep;
3592
3593 /*
3594 * No L2 page table has been allocated. Chances are, this
3595 * is because we just allocated the l2_dtable, above.
3596 */
3597 nva = pmap_kernel_l2ptp_kva;
3598 ptep = (pt_entry_t *)nva;
3599 if ((nva & PGOFSET) == 0) {
3600 /*
3601 * Need to allocate a backing page
3602 */
3603 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3604 &pmap_kernel_l2ptp_phys))
3605 return (NULL);
3606 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3607 }
3608
3609 l2->l2_occupancy++;
3610 l2b->l2b_kva = ptep;
3611 l2b->l2b_l1idx = l1idx;
3612 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3613
3614 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3615 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3616 }
3617
3618 return (l2b);
3619 }
3620
3621 vaddr_t
3622 pmap_growkernel(vaddr_t maxkvaddr)
3623 {
3624 pmap_t kpm = pmap_kernel();
3625 struct l1_ttable *l1;
3626 struct l2_bucket *l2b;
3627 pd_entry_t *pl1pd;
3628 int s;
3629
3630 if (maxkvaddr <= pmap_curmaxkvaddr)
3631 goto out; /* we are OK */
3632
3633 NPDEBUG(PDB_GROWKERN,
3634 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3635 pmap_curmaxkvaddr, maxkvaddr));
3636
3637 KDASSERT(maxkvaddr <= virtual_end);
3638
3639 /*
3640 * whoops! we need to add kernel PTPs
3641 */
3642
3643 s = splhigh(); /* to be safe */
3644 simple_lock(&kpm->pm_lock);
3645
3646 /* Map 1MB at a time */
3647 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3648
3649 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3650 KDASSERT(l2b != NULL);
3651
3652 /* Distribute new L1 entry to all other L1s */
3653 SLIST_FOREACH(l1, &l1_list, l1_link) {
3654 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3655 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3656 L1_C_PROTO;
3657 PTE_SYNC(pl1pd);
3658 }
3659 }
3660
3661 /*
3662 * flush out the cache, expensive but growkernel will happen so
3663 * rarely
3664 */
3665 cpu_dcache_wbinv_all();
3666 cpu_tlb_flushD();
3667 cpu_cpwait();
3668
3669 simple_unlock(&kpm->pm_lock);
3670 splx(s);
3671
3672 out:
3673 return (pmap_curmaxkvaddr);
3674 }
3675
3676 /************************ Utility routines ****************************/
3677
3678 /*
3679 * vector_page_setprot:
3680 *
3681 * Manipulate the protection of the vector page.
3682 */
3683 void
3684 vector_page_setprot(int prot)
3685 {
3686 struct l2_bucket *l2b;
3687 pt_entry_t *ptep;
3688
3689 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3690 KDASSERT(l2b != NULL);
3691
3692 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3693
3694 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3695 PTE_SYNC(ptep);
3696 cpu_tlb_flushD_SE(vector_page);
3697 cpu_cpwait();
3698 }
3699
3700 /*
3701 * This is used to stuff certain critical values into the PCB where they
3702 * can be accessed quickly from cpu_switch() et al.
3703 */
3704 void
3705 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
3706 {
3707 struct l2_bucket *l2b;
3708
3709 KDASSERT(pm->pm_l1);
3710
3711 pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
3712 pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3713 (DOMAIN_CLIENT << (pm->pm_domain * 2));
3714 pcb->pcb_cstate = (void *)&pm->pm_cstate;
3715
3716 if (vector_page < KERNEL_BASE) {
3717 pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3718 l2b = pmap_get_l2_bucket(pm, vector_page);
3719 pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
3720 L1_C_DOM(pm->pm_domain);
3721 } else
3722 pcb->pcb_pl1vec = NULL;
3723 }
3724
3725 /*
3726 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3727 * Returns TRUE if the mapping exists, else FALSE.
3728 *
3729 * NOTE: This function is only used by a couple of arm-specific modules.
3730 * It is not safe to take any pmap locks here, since we could be right
3731 * in the middle of debugging the pmap anyway...
3732 *
3733 * It is possible for this routine to return FALSE even though a valid
3734 * mapping does exist. This is because we don't lock, so the metadata
3735 * state may be inconsistent.
3736 *
3737 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3738 * a "section" mapping.
3739 */
3740 boolean_t
3741 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3742 {
3743 struct l2_dtable *l2;
3744 pd_entry_t *pl1pd, l1pd;
3745 pt_entry_t *ptep;
3746 u_short l1idx;
3747
3748 if (pm->pm_l1 == NULL)
3749 return (FALSE);
3750
3751 l1idx = L1_IDX(va);
3752 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3753 l1pd = *pl1pd;
3754
3755 if (l1pte_section_p(l1pd)) {
3756 *ptp = NULL;
3757 return (TRUE);
3758 }
3759
3760 if (pm->pm_l2 == NULL)
3761 return (FALSE);
3762
3763 l2 = pm->pm_l2[L2_IDX(l1idx)];
3764
3765 if (l2 == NULL ||
3766 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3767 return (FALSE);
3768 }
3769
3770 *ptp = &ptep[l2pte_index(va)];
3771 return (TRUE);
3772 }
3773
3774 boolean_t
3775 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3776 {
3777 u_short l1idx;
3778
3779 if (pm->pm_l1 == NULL)
3780 return (FALSE);
3781
3782 l1idx = L1_IDX(va);
3783 *pdp = &pm->pm_l1->l1_kva[l1idx];
3784
3785 return (TRUE);
3786 }
3787
3788 /************************ Bootstrapping routines ****************************/
3789
3790 static void
3791 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3792 {
3793 int i;
3794
3795 l1->l1_kva = l1pt;
3796 l1->l1_domain_use_count = 0;
3797 l1->l1_domain_first = 0;
3798
3799 for (i = 0; i < PMAP_DOMAINS; i++)
3800 l1->l1_domain_free[i] = i + 1;
3801
3802 /*
3803 * Copy the kernel's L1 entries to each new L1.
3804 */
3805 if (pmap_initialized)
3806 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3807
3808 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3809 &l1->l1_physaddr) == FALSE)
3810 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3811
3812 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3813 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3814 }
3815
3816 /*
3817 * pmap_bootstrap() is called from the board-specific initarm() routine
3818 * once the kernel L1/L2 descriptors tables have been set up.
3819 *
3820 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3821 * spread over a number of disparate files/functions.
3822 *
3823 * We are passed the following parameters
3824 * - kernel_l1pt
3825 * This is a pointer to the base of the kernel's L1 translation table.
3826 * - vstart
3827 * 1MB-aligned start of managed kernel virtual memory.
3828 * - vend
3829 * 1MB-aligned end of managed kernel virtual memory.
3830 *
3831 * We use the first parameter to build the metadata (struct l1_ttable and
3832 * struct l2_dtable) necessary to track kernel mappings.
3833 */
3834 #define PMAP_STATIC_L2_SIZE 16
3835 void
3836 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3837 {
3838 static struct l1_ttable static_l1;
3839 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3840 struct l1_ttable *l1 = &static_l1;
3841 struct l2_dtable *l2;
3842 struct l2_bucket *l2b;
3843 pmap_t pm = pmap_kernel();
3844 pd_entry_t pde;
3845 pt_entry_t *ptep;
3846 paddr_t pa;
3847 vaddr_t va;
3848 vsize_t size;
3849 int l1idx, l2idx, l2next = 0;
3850
3851 /*
3852 * Initialise the kernel pmap object
3853 */
3854 pm->pm_l1 = l1;
3855 pm->pm_domain = PMAP_DOMAIN_KERNEL;
3856 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3857 simple_lock_init(&pm->pm_lock);
3858 pm->pm_obj.pgops = NULL;
3859 TAILQ_INIT(&pm->pm_obj.memq);
3860 pm->pm_obj.uo_npages = 0;
3861 pm->pm_obj.uo_refs = 1;
3862
3863 /*
3864 * Scan the L1 translation table created by initarm() and create
3865 * the required metadata for all valid mappings found in it.
3866 */
3867 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3868 pde = kernel_l1pt[l1idx];
3869
3870 /*
3871 * We're only interested in Coarse mappings.
3872 * pmap_extract() can deal with section mappings without
3873 * recourse to checking L2 metadata.
3874 */
3875 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3876 continue;
3877
3878 /*
3879 * Lookup the KVA of this L2 descriptor table
3880 */
3881 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3882 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3883 if (ptep == NULL) {
3884 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3885 (u_int)l1idx << L1_S_SHIFT, pa);
3886 }
3887
3888 /*
3889 * Fetch the associated L2 metadata structure.
3890 * Allocate a new one if necessary.
3891 */
3892 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3893 if (l2next == PMAP_STATIC_L2_SIZE)
3894 panic("pmap_bootstrap: out of static L2s");
3895 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3896 }
3897
3898 /*
3899 * One more L1 slot tracked...
3900 */
3901 l2->l2_occupancy++;
3902
3903 /*
3904 * Fill in the details of the L2 descriptor in the
3905 * appropriate bucket.
3906 */
3907 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3908 l2b->l2b_kva = ptep;
3909 l2b->l2b_phys = pa;
3910 l2b->l2b_l1idx = l1idx;
3911
3912 /*
3913 * Establish an initial occupancy count for this descriptor
3914 */
3915 for (l2idx = 0;
3916 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3917 l2idx++) {
3918 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3919 l2b->l2b_occupancy++;
3920 }
3921 }
3922
3923 /*
3924 * Make sure the descriptor itself has the correct cache mode.
3925 * If not, fix it, but whine about the problem. Port-meisters
3926 * should consider this a clue to fix up their initarm()
3927 * function. :)
3928 */
3929 if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3930 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3931 "L2 pte @ %p\n", ptep);
3932 }
3933 }
3934
3935 /*
3936 * Ensure the primary (kernel) L1 has the correct cache mode for
3937 * a page table. Bitch if it is not correctly set.
3938 */
3939 for (va = (vaddr_t)kernel_l1pt;
3940 va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3941 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3942 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3943 "primary L1 @ 0x%lx\n", va);
3944 }
3945
3946 cpu_dcache_wbinv_all();
3947 cpu_tlb_flushID();
3948 cpu_cpwait();
3949
3950 /*
3951 * now we allocate the "special" VAs which are used for tmp mappings
3952 * by the pmap (and other modules). we allocate the VAs by advancing
3953 * virtual_avail (note that there are no pages mapped at these VAs).
3954 *
3955 * Managed KVM space start from wherever initarm() tells us.
3956 */
3957 virtual_avail = vstart;
3958 virtual_end = vend;
3959
3960 pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3961 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3962 pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3963 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3964 pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
3965 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3966 (void *)&msgbufaddr, NULL);
3967
3968 /*
3969 * Allocate a range of kernel virtual address space to be used
3970 * for L2 descriptor tables and metadata allocation in
3971 * pmap_growkernel().
3972 */
3973 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3974 pmap_alloc_specials(&virtual_avail,
3975 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3976 &pmap_kernel_l2ptp_kva, NULL);
3977
3978 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3979 pmap_alloc_specials(&virtual_avail,
3980 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3981 &pmap_kernel_l2dtable_kva, NULL);
3982
3983 /*
3984 * init the static-global locks and global pmap list.
3985 */
3986 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
3987 spinlockinit(&pmap_main_lock, "pmaplk", 0);
3988 #endif
3989
3990 /*
3991 * We can now initialise the first L1's metadata.
3992 */
3993 SLIST_INIT(&l1_list);
3994 TAILQ_INIT(&l1_lru_list);
3995 simple_lock_init(&l1_lru_lock);
3996 pmap_init_l1(l1, kernel_l1pt);
3997
3998 /*
3999 * Initialize the pmap pool and cache
4000 */
4001 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
4002 &pool_allocator_nointr);
4003 pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
4004 pmap_pmap_ctor, NULL, NULL);
4005 LIST_INIT(&pmap_pmaps);
4006 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
4007
4008 /*
4009 * Initialize the pv pool.
4010 */
4011 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
4012 &pmap_bootstrap_pv_allocator);
4013
4014 /*
4015 * Initialize the L2 dtable pool and cache.
4016 */
4017 pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
4018 "l2dtblpl", NULL);
4019 pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
4020 pmap_l2dtable_ctor, NULL, NULL);
4021
4022 /*
4023 * Initialise the L2 descriptor table pool and cache
4024 */
4025 pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
4026 0, "l2ptppl", NULL);
4027 pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
4028 pmap_l2ptp_ctor, NULL, NULL);
4029
4030 cpu_dcache_wbinv_all();
4031 }
4032
4033 static int
4034 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
4035 {
4036 pd_entry_t *pdep, pde;
4037 pt_entry_t *ptep, pte;
4038 vaddr_t pa;
4039 int rv = 0;
4040
4041 /*
4042 * Make sure the descriptor itself has the correct cache mode
4043 */
4044 pdep = &kl1[L1_IDX(va)];
4045 pde = *pdep;
4046
4047 if (l1pte_section_p(pde)) {
4048 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4049 *pdep = (pde & ~L1_S_CACHE_MASK) |
4050 pte_l1_s_cache_mode_pt;
4051 PTE_SYNC(pdep);
4052 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4053 rv = 1;
4054 }
4055 } else {
4056 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4057 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4058 if (ptep == NULL)
4059 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4060
4061 ptep = &ptep[l2pte_index(va)];
4062 pte = *ptep;
4063 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4064 *ptep = (pte & ~L2_S_CACHE_MASK) |
4065 pte_l2_s_cache_mode_pt;
4066 PTE_SYNC(ptep);
4067 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4068 rv = 1;
4069 }
4070 }
4071
4072 return (rv);
4073 }
4074
4075 static void
4076 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4077 {
4078 vaddr_t va = *availp;
4079 struct l2_bucket *l2b;
4080
4081 if (ptep) {
4082 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4083 if (l2b == NULL)
4084 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4085
4086 if (ptep)
4087 *ptep = &l2b->l2b_kva[l2pte_index(va)];
4088 }
4089
4090 *vap = va;
4091 *availp = va + (PAGE_SIZE * pages);
4092 }
4093
4094 void
4095 pmap_init(void)
4096 {
4097 extern int physmem;
4098
4099 /*
4100 * Set the available memory vars - These do not map to real memory
4101 * addresses and cannot as the physical memory is fragmented.
4102 * They are used by ps for %mem calculations.
4103 * One could argue whether this should be the entire memory or just
4104 * the memory that is useable in a user process.
4105 */
4106 avail_start = 0;
4107 avail_end = physmem * PAGE_SIZE;
4108
4109 /*
4110 * Now we need to free enough pv_entry structures to allow us to get
4111 * the kmem_map/kmem_object allocated and inited (done after this
4112 * function is finished). to do this we allocate one bootstrap page out
4113 * of kernel_map and use it to provide an initial pool of pv_entry
4114 * structures. we never free this page.
4115 */
4116 pool_setlowat(&pmap_pv_pool,
4117 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4118
4119 pmap_initialized = TRUE;
4120 }
4121
4122 static vaddr_t last_bootstrap_page = 0;
4123 static void *free_bootstrap_pages = NULL;
4124
4125 static void *
4126 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4127 {
4128 extern void *pool_page_alloc(struct pool *, int);
4129 vaddr_t new_page;
4130 void *rv;
4131
4132 if (pmap_initialized)
4133 return (pool_page_alloc(pp, flags));
4134
4135 if (free_bootstrap_pages) {
4136 rv = free_bootstrap_pages;
4137 free_bootstrap_pages = *((void **)rv);
4138 return (rv);
4139 }
4140
4141 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
4142 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
4143
4144 KASSERT(new_page > last_bootstrap_page);
4145 last_bootstrap_page = new_page;
4146 return ((void *)new_page);
4147 }
4148
4149 static void
4150 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4151 {
4152 extern void pool_page_free(struct pool *, void *);
4153
4154 if ((vaddr_t)v <= last_bootstrap_page) {
4155 *((void **)v) = free_bootstrap_pages;
4156 free_bootstrap_pages = v;
4157 return;
4158 }
4159
4160 if (pmap_initialized) {
4161 pool_page_free(pp, v);
4162 return;
4163 }
4164 }
4165
4166 /*
4167 * pmap_postinit()
4168 *
4169 * This routine is called after the vm and kmem subsystems have been
4170 * initialised. This allows the pmap code to perform any initialisation
4171 * that can only be done one the memory allocation is in place.
4172 */
4173 void
4174 pmap_postinit(void)
4175 {
4176 extern paddr_t physical_start, physical_end;
4177 struct l2_bucket *l2b;
4178 struct l1_ttable *l1;
4179 struct pglist plist;
4180 struct vm_page *m;
4181 pd_entry_t *pl1pt;
4182 pt_entry_t *ptep, pte;
4183 vaddr_t va, eva;
4184 u_int loop, needed;
4185 int error;
4186
4187 pool_setlowat(&pmap_l2ptp_pool,
4188 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4189 pool_setlowat(&pmap_l2dtable_pool,
4190 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4191
4192 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4193 needed -= 1;
4194
4195 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4196
4197 for (loop = 0; loop < needed; loop++, l1++) {
4198 /* Allocate a L1 page table */
4199 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
4200 if (va == 0)
4201 panic("Cannot allocate L1 KVM");
4202
4203 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4204 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4205 if (error)
4206 panic("Cannot allocate L1 physical pages");
4207
4208 m = TAILQ_FIRST(&plist);
4209 eva = va + L1_TABLE_SIZE;
4210 pl1pt = (pd_entry_t *)va;
4211
4212 while (m && va < eva) {
4213 paddr_t pa = VM_PAGE_TO_PHYS(m);
4214
4215 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4216
4217 /*
4218 * Make sure the L1 descriptor table is mapped
4219 * with the cache-mode set to write-through.
4220 */
4221 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4222 ptep = &l2b->l2b_kva[l2pte_index(va)];
4223 pte = *ptep;
4224 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4225 *ptep = pte;
4226 PTE_SYNC(ptep);
4227 cpu_tlb_flushD_SE(va);
4228
4229 va += PAGE_SIZE;
4230 m = TAILQ_NEXT(m, pageq);
4231 }
4232
4233 #ifdef DIAGNOSTIC
4234 if (m)
4235 panic("pmap_alloc_l1pt: pglist not empty");
4236 #endif /* DIAGNOSTIC */
4237
4238 pmap_init_l1(l1, pl1pt);
4239 }
4240
4241 #ifdef DEBUG
4242 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4243 needed);
4244 #endif
4245 }
4246
4247 /*
4248 * Note that the following routines are used by board-specific initialisation
4249 * code to configure the initial kernel page tables.
4250 *
4251 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4252 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4253 * behaviour of the old pmap, and provides an easy migration path for
4254 * initial bring-up of the new pmap on existing ports. Fortunately,
4255 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4256 * will be deprecated.
4257 *
4258 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4259 * tables.
4260 */
4261
4262 /*
4263 * This list exists for the benefit of pmap_map_chunk(). It keeps track
4264 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4265 * find them as necessary.
4266 *
4267 * Note that the data on this list MUST remain valid after initarm() returns,
4268 * as pmap_bootstrap() uses it to contruct L2 table metadata.
4269 */
4270 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4271
4272 static vaddr_t
4273 kernel_pt_lookup(paddr_t pa)
4274 {
4275 pv_addr_t *pv;
4276
4277 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4278 #ifndef ARM32_NEW_VM_LAYOUT
4279 if (pv->pv_pa == (pa & ~PGOFSET))
4280 return (pv->pv_va | (pa & PGOFSET));
4281 #else
4282 if (pv->pv_pa == pa)
4283 return (pv->pv_va);
4284 #endif
4285 }
4286 return (0);
4287 }
4288
4289 /*
4290 * pmap_map_section:
4291 *
4292 * Create a single section mapping.
4293 */
4294 void
4295 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4296 {
4297 pd_entry_t *pde = (pd_entry_t *) l1pt;
4298 pd_entry_t fl;
4299
4300 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4301
4302 switch (cache) {
4303 case PTE_NOCACHE:
4304 default:
4305 fl = 0;
4306 break;
4307
4308 case PTE_CACHE:
4309 fl = pte_l1_s_cache_mode;
4310 break;
4311
4312 case PTE_PAGETABLE:
4313 fl = pte_l1_s_cache_mode_pt;
4314 break;
4315 }
4316
4317 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4318 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4319 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4320 }
4321
4322 /*
4323 * pmap_map_entry:
4324 *
4325 * Create a single page mapping.
4326 */
4327 void
4328 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4329 {
4330 pd_entry_t *pde = (pd_entry_t *) l1pt;
4331 pt_entry_t fl;
4332 pt_entry_t *pte;
4333
4334 KASSERT(((va | pa) & PGOFSET) == 0);
4335
4336 switch (cache) {
4337 case PTE_NOCACHE:
4338 default:
4339 fl = 0;
4340 break;
4341
4342 case PTE_CACHE:
4343 fl = pte_l2_s_cache_mode;
4344 break;
4345
4346 case PTE_PAGETABLE:
4347 fl = pte_l2_s_cache_mode_pt;
4348 break;
4349 }
4350
4351 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4352 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4353
4354 #ifndef ARM32_NEW_VM_LAYOUT
4355 pte = (pt_entry_t *)
4356 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4357 #else
4358 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4359 #endif
4360 if (pte == NULL)
4361 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4362
4363 #ifndef ARM32_NEW_VM_LAYOUT
4364 pte[(va >> PGSHIFT) & 0x3ff] =
4365 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4366 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4367 #else
4368 pte[l2pte_index(va)] =
4369 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4370 PTE_SYNC(&pte[l2pte_index(va)]);
4371 #endif
4372 }
4373
4374 /*
4375 * pmap_link_l2pt:
4376 *
4377 * Link the L2 page table specified by "l2pv" into the L1
4378 * page table at the slot for "va".
4379 */
4380 void
4381 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4382 {
4383 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4384 u_int slot = va >> L1_S_SHIFT;
4385
4386 #ifndef ARM32_NEW_VM_LAYOUT
4387 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4388 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4389 #endif
4390
4391 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4392
4393 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4394 #ifdef ARM32_NEW_VM_LAYOUT
4395 PTE_SYNC(&pde[slot]);
4396 #else
4397 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4398 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4399 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4400 PTE_SYNC_RANGE(&pde[slot + 0], 4);
4401 #endif
4402
4403 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4404 }
4405
4406 /*
4407 * pmap_map_chunk:
4408 *
4409 * Map a chunk of memory using the most efficient mappings
4410 * possible (section, large page, small page) into the
4411 * provided L1 and L2 tables at the specified virtual address.
4412 */
4413 vsize_t
4414 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4415 int prot, int cache)
4416 {
4417 pd_entry_t *pde = (pd_entry_t *) l1pt;
4418 pt_entry_t *pte, f1, f2s, f2l;
4419 vsize_t resid;
4420 int i;
4421
4422 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4423
4424 if (l1pt == 0)
4425 panic("pmap_map_chunk: no L1 table provided");
4426
4427 #ifdef VERBOSE_INIT_ARM
4428 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4429 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4430 #endif
4431
4432 switch (cache) {
4433 case PTE_NOCACHE:
4434 default:
4435 f1 = 0;
4436 f2l = 0;
4437 f2s = 0;
4438 break;
4439
4440 case PTE_CACHE:
4441 f1 = pte_l1_s_cache_mode;
4442 f2l = pte_l2_l_cache_mode;
4443 f2s = pte_l2_s_cache_mode;
4444 break;
4445
4446 case PTE_PAGETABLE:
4447 f1 = pte_l1_s_cache_mode_pt;
4448 f2l = pte_l2_l_cache_mode_pt;
4449 f2s = pte_l2_s_cache_mode_pt;
4450 break;
4451 }
4452
4453 size = resid;
4454
4455 while (resid > 0) {
4456 /* See if we can use a section mapping. */
4457 if (L1_S_MAPPABLE_P(va, pa, resid)) {
4458 #ifdef VERBOSE_INIT_ARM
4459 printf("S");
4460 #endif
4461 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4462 L1_S_PROT(PTE_KERNEL, prot) | f1 |
4463 L1_S_DOM(PMAP_DOMAIN_KERNEL);
4464 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4465 va += L1_S_SIZE;
4466 pa += L1_S_SIZE;
4467 resid -= L1_S_SIZE;
4468 continue;
4469 }
4470
4471 /*
4472 * Ok, we're going to use an L2 table. Make sure
4473 * one is actually in the corresponding L1 slot
4474 * for the current VA.
4475 */
4476 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4477 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4478
4479 #ifndef ARM32_NEW_VM_LAYOUT
4480 pte = (pt_entry_t *)
4481 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4482 #else
4483 pte = (pt_entry_t *) kernel_pt_lookup(
4484 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4485 #endif
4486 if (pte == NULL)
4487 panic("pmap_map_chunk: can't find L2 table for VA"
4488 "0x%08lx", va);
4489
4490 /* See if we can use a L2 large page mapping. */
4491 if (L2_L_MAPPABLE_P(va, pa, resid)) {
4492 #ifdef VERBOSE_INIT_ARM
4493 printf("L");
4494 #endif
4495 for (i = 0; i < 16; i++) {
4496 #ifndef ARM32_NEW_VM_LAYOUT
4497 pte[((va >> PGSHIFT) & 0x3f0) + i] =
4498 L2_L_PROTO | pa |
4499 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4500 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4501 #else
4502 pte[l2pte_index(va) + i] =
4503 L2_L_PROTO | pa |
4504 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4505 PTE_SYNC(&pte[l2pte_index(va) + i]);
4506 #endif
4507 }
4508 va += L2_L_SIZE;
4509 pa += L2_L_SIZE;
4510 resid -= L2_L_SIZE;
4511 continue;
4512 }
4513
4514 /* Use a small page mapping. */
4515 #ifdef VERBOSE_INIT_ARM
4516 printf("P");
4517 #endif
4518 #ifndef ARM32_NEW_VM_LAYOUT
4519 pte[(va >> PGSHIFT) & 0x3ff] =
4520 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4521 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4522 #else
4523 pte[l2pte_index(va)] =
4524 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4525 PTE_SYNC(&pte[l2pte_index(va)]);
4526 #endif
4527 va += PAGE_SIZE;
4528 pa += PAGE_SIZE;
4529 resid -= PAGE_SIZE;
4530 }
4531 #ifdef VERBOSE_INIT_ARM
4532 printf("\n");
4533 #endif
4534 return (size);
4535 }
4536
4537 /********************** Static device map routines ***************************/
4538
4539 static const struct pmap_devmap *pmap_devmap_table;
4540
4541 /*
4542 * Register the devmap table. This is provided in case early console
4543 * initialization needs to register mappings created by bootstrap code
4544 * before pmap_devmap_bootstrap() is called.
4545 */
4546 void
4547 pmap_devmap_register(const struct pmap_devmap *table)
4548 {
4549
4550 pmap_devmap_table = table;
4551 }
4552
4553 /*
4554 * Map all of the static regions in the devmap table, and remember
4555 * the devmap table so other parts of the kernel can look up entries
4556 * later.
4557 */
4558 void
4559 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4560 {
4561 int i;
4562
4563 pmap_devmap_table = table;
4564
4565 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4566 #ifdef VERBOSE_INIT_ARM
4567 printf("devmap: %08lx -> %08lx @ %08lx\n",
4568 pmap_devmap_table[i].pd_pa,
4569 pmap_devmap_table[i].pd_pa +
4570 pmap_devmap_table[i].pd_size - 1,
4571 pmap_devmap_table[i].pd_va);
4572 #endif
4573 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4574 pmap_devmap_table[i].pd_pa,
4575 pmap_devmap_table[i].pd_size,
4576 pmap_devmap_table[i].pd_prot,
4577 pmap_devmap_table[i].pd_cache);
4578 }
4579 }
4580
4581 const struct pmap_devmap *
4582 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4583 {
4584 uint64_t endpa;
4585 int i;
4586
4587 if (pmap_devmap_table == NULL)
4588 return (NULL);
4589
4590 endpa = (uint64_t)pa + (uint64_t)size;
4591
4592 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4593 if (pa >= pmap_devmap_table[i].pd_pa &&
4594 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
4595 (uint64_t)pmap_devmap_table[i].pd_size)
4596 return (&pmap_devmap_table[i]);
4597 }
4598
4599 return (NULL);
4600 }
4601
4602 const struct pmap_devmap *
4603 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4604 {
4605 int i;
4606
4607 if (pmap_devmap_table == NULL)
4608 return (NULL);
4609
4610 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4611 if (va >= pmap_devmap_table[i].pd_va &&
4612 va + size <= pmap_devmap_table[i].pd_va +
4613 pmap_devmap_table[i].pd_size)
4614 return (&pmap_devmap_table[i]);
4615 }
4616
4617 return (NULL);
4618 }
4619
4620 /********************** PTE initialization routines **************************/
4621
4622 /*
4623 * These routines are called when the CPU type is identified to set up
4624 * the PTE prototypes, cache modes, etc.
4625 *
4626 * The variables are always here, just in case LKMs need to reference
4627 * them (though, they shouldn't).
4628 */
4629
4630 pt_entry_t pte_l1_s_cache_mode;
4631 pt_entry_t pte_l1_s_cache_mode_pt;
4632 pt_entry_t pte_l1_s_cache_mask;
4633
4634 pt_entry_t pte_l2_l_cache_mode;
4635 pt_entry_t pte_l2_l_cache_mode_pt;
4636 pt_entry_t pte_l2_l_cache_mask;
4637
4638 pt_entry_t pte_l2_s_cache_mode;
4639 pt_entry_t pte_l2_s_cache_mode_pt;
4640 pt_entry_t pte_l2_s_cache_mask;
4641
4642 pt_entry_t pte_l2_s_prot_u;
4643 pt_entry_t pte_l2_s_prot_w;
4644 pt_entry_t pte_l2_s_prot_mask;
4645
4646 pt_entry_t pte_l1_s_proto;
4647 pt_entry_t pte_l1_c_proto;
4648 pt_entry_t pte_l2_s_proto;
4649
4650 void (*pmap_copy_page_func)(paddr_t, paddr_t);
4651 void (*pmap_zero_page_func)(paddr_t);
4652
4653 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4654 void
4655 pmap_pte_init_generic(void)
4656 {
4657
4658 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4659 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4660
4661 pte_l2_l_cache_mode = L2_B|L2_C;
4662 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4663
4664 pte_l2_s_cache_mode = L2_B|L2_C;
4665 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4666
4667 /*
4668 * If we have a write-through cache, set B and C. If
4669 * we have a write-back cache, then we assume setting
4670 * only C will make those pages write-through.
4671 */
4672 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4673 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4674 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4675 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4676 } else {
4677 pte_l1_s_cache_mode_pt = L1_S_C;
4678 pte_l2_l_cache_mode_pt = L2_C;
4679 pte_l2_s_cache_mode_pt = L2_C;
4680 }
4681
4682 pte_l2_s_prot_u = L2_S_PROT_U_generic;
4683 pte_l2_s_prot_w = L2_S_PROT_W_generic;
4684 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4685
4686 pte_l1_s_proto = L1_S_PROTO_generic;
4687 pte_l1_c_proto = L1_C_PROTO_generic;
4688 pte_l2_s_proto = L2_S_PROTO_generic;
4689
4690 pmap_copy_page_func = pmap_copy_page_generic;
4691 pmap_zero_page_func = pmap_zero_page_generic;
4692 }
4693
4694 #if defined(CPU_ARM8)
4695 void
4696 pmap_pte_init_arm8(void)
4697 {
4698
4699 /*
4700 * ARM8 is compatible with generic, but we need to use
4701 * the page tables uncached.
4702 */
4703 pmap_pte_init_generic();
4704
4705 pte_l1_s_cache_mode_pt = 0;
4706 pte_l2_l_cache_mode_pt = 0;
4707 pte_l2_s_cache_mode_pt = 0;
4708 }
4709 #endif /* CPU_ARM8 */
4710
4711 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
4712 void
4713 pmap_pte_init_arm9(void)
4714 {
4715
4716 /*
4717 * ARM9 is compatible with generic, but we want to use
4718 * write-through caching for now.
4719 */
4720 pmap_pte_init_generic();
4721
4722 pte_l1_s_cache_mode = L1_S_C;
4723 pte_l2_l_cache_mode = L2_C;
4724 pte_l2_s_cache_mode = L2_C;
4725
4726 pte_l1_s_cache_mode_pt = L1_S_C;
4727 pte_l2_l_cache_mode_pt = L2_C;
4728 pte_l2_s_cache_mode_pt = L2_C;
4729 }
4730 #endif /* CPU_ARM9 */
4731 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4732
4733 #if defined(CPU_ARM10)
4734 void
4735 pmap_pte_init_arm10(void)
4736 {
4737
4738 /*
4739 * ARM10 is compatible with generic, but we want to use
4740 * write-through caching for now.
4741 */
4742 pmap_pte_init_generic();
4743
4744 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
4745 pte_l2_l_cache_mode = L2_B | L2_C;
4746 pte_l2_s_cache_mode = L2_B | L2_C;
4747
4748 pte_l1_s_cache_mode_pt = L1_S_C;
4749 pte_l2_l_cache_mode_pt = L2_C;
4750 pte_l2_s_cache_mode_pt = L2_C;
4751
4752 }
4753 #endif /* CPU_ARM10 */
4754
4755 #if ARM_MMU_SA1 == 1
4756 void
4757 pmap_pte_init_sa1(void)
4758 {
4759
4760 /*
4761 * The StrongARM SA-1 cache does not have a write-through
4762 * mode. So, do the generic initialization, then reset
4763 * the page table cache mode to B=1,C=1, and note that
4764 * the PTEs need to be sync'd.
4765 */
4766 pmap_pte_init_generic();
4767
4768 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4769 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4770 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4771
4772 pmap_needs_pte_sync = 1;
4773 }
4774 #endif /* ARM_MMU_SA1 == 1*/
4775
4776 #if ARM_MMU_XSCALE == 1
4777 #if (ARM_NMMUS > 1)
4778 static u_int xscale_use_minidata;
4779 #endif
4780
4781 void
4782 pmap_pte_init_xscale(void)
4783 {
4784 uint32_t auxctl;
4785 int write_through = 0;
4786
4787 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4788 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4789
4790 pte_l2_l_cache_mode = L2_B|L2_C;
4791 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4792
4793 pte_l2_s_cache_mode = L2_B|L2_C;
4794 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4795
4796 pte_l1_s_cache_mode_pt = L1_S_C;
4797 pte_l2_l_cache_mode_pt = L2_C;
4798 pte_l2_s_cache_mode_pt = L2_C;
4799
4800 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4801 /*
4802 * The XScale core has an enhanced mode where writes that
4803 * miss the cache cause a cache line to be allocated. This
4804 * is significantly faster than the traditional, write-through
4805 * behavior of this case.
4806 */
4807 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4808 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4809 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4810 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4811
4812 #ifdef XSCALE_CACHE_WRITE_THROUGH
4813 /*
4814 * Some versions of the XScale core have various bugs in
4815 * their cache units, the work-around for which is to run
4816 * the cache in write-through mode. Unfortunately, this
4817 * has a major (negative) impact on performance. So, we
4818 * go ahead and run fast-and-loose, in the hopes that we
4819 * don't line up the planets in a way that will trip the
4820 * bugs.
4821 *
4822 * However, we give you the option to be slow-but-correct.
4823 */
4824 write_through = 1;
4825 #elif defined(XSCALE_CACHE_WRITE_BACK)
4826 /* force write back cache mode */
4827 write_through = 0;
4828 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
4829 /*
4830 * Intel PXA2[15]0 processors are known to have a bug in
4831 * write-back cache on revision 4 and earlier (stepping
4832 * A[01] and B[012]). Fixed for C0 and later.
4833 */
4834 {
4835 uint32_t id, type;
4836
4837 id = cpufunc_id();
4838 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4839
4840 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4841 if ((id & CPU_ID_REVISION_MASK) < 5) {
4842 /* write through for stepping A0-1 and B0-2 */
4843 write_through = 1;
4844 }
4845 }
4846 }
4847 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4848
4849 if (write_through) {
4850 pte_l1_s_cache_mode = L1_S_C;
4851 pte_l2_l_cache_mode = L2_C;
4852 pte_l2_s_cache_mode = L2_C;
4853 }
4854
4855 #if (ARM_NMMUS > 1)
4856 xscale_use_minidata = 1;
4857 #endif
4858
4859 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4860 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4861 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4862
4863 pte_l1_s_proto = L1_S_PROTO_xscale;
4864 pte_l1_c_proto = L1_C_PROTO_xscale;
4865 pte_l2_s_proto = L2_S_PROTO_xscale;
4866
4867 pmap_copy_page_func = pmap_copy_page_xscale;
4868 pmap_zero_page_func = pmap_zero_page_xscale;
4869
4870 /*
4871 * Disable ECC protection of page table access, for now.
4872 */
4873 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4874 auxctl &= ~XSCALE_AUXCTL_P;
4875 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4876 }
4877
4878 /*
4879 * xscale_setup_minidata:
4880 *
4881 * Set up the mini-data cache clean area. We require the
4882 * caller to allocate the right amount of physically and
4883 * virtually contiguous space.
4884 */
4885 void
4886 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4887 {
4888 extern vaddr_t xscale_minidata_clean_addr;
4889 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4890 pd_entry_t *pde = (pd_entry_t *) l1pt;
4891 pt_entry_t *pte;
4892 vsize_t size;
4893 uint32_t auxctl;
4894
4895 xscale_minidata_clean_addr = va;
4896
4897 /* Round it to page size. */
4898 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4899
4900 for (; size != 0;
4901 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4902 #ifndef ARM32_NEW_VM_LAYOUT
4903 pte = (pt_entry_t *)
4904 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4905 #else
4906 pte = (pt_entry_t *) kernel_pt_lookup(
4907 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4908 #endif
4909 if (pte == NULL)
4910 panic("xscale_setup_minidata: can't find L2 table for "
4911 "VA 0x%08lx", va);
4912 #ifndef ARM32_NEW_VM_LAYOUT
4913 pte[(va >> PGSHIFT) & 0x3ff] =
4914 #else
4915 pte[l2pte_index(va)] =
4916 #endif
4917 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4918 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4919 }
4920
4921 /*
4922 * Configure the mini-data cache for write-back with
4923 * read/write-allocate.
4924 *
4925 * NOTE: In order to reconfigure the mini-data cache, we must
4926 * make sure it contains no valid data! In order to do that,
4927 * we must issue a global data cache invalidate command!
4928 *
4929 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4930 * THIS IS VERY IMPORTANT!
4931 */
4932
4933 /* Invalidate data and mini-data. */
4934 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
4935 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4936 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4937 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4938 }
4939
4940 /*
4941 * Change the PTEs for the specified kernel mappings such that they
4942 * will use the mini data cache instead of the main data cache.
4943 */
4944 void
4945 pmap_uarea(vaddr_t va)
4946 {
4947 struct l2_bucket *l2b;
4948 pt_entry_t *ptep, *sptep, pte;
4949 vaddr_t next_bucket, eva;
4950
4951 #if (ARM_NMMUS > 1)
4952 if (xscale_use_minidata == 0)
4953 return;
4954 #endif
4955
4956 eva = va + USPACE;
4957
4958 while (va < eva) {
4959 next_bucket = L2_NEXT_BUCKET(va);
4960 if (next_bucket > eva)
4961 next_bucket = eva;
4962
4963 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4964 KDASSERT(l2b != NULL);
4965
4966 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4967
4968 while (va < next_bucket) {
4969 pte = *ptep;
4970 if (!l2pte_minidata(pte)) {
4971 cpu_dcache_wbinv_range(va, PAGE_SIZE);
4972 cpu_tlb_flushD_SE(va);
4973 *ptep = pte & ~L2_B;
4974 }
4975 ptep++;
4976 va += PAGE_SIZE;
4977 }
4978 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4979 }
4980 cpu_cpwait();
4981 }
4982 #endif /* ARM_MMU_XSCALE == 1 */
4983
4984 #if defined(DDB)
4985 /*
4986 * A couple of ddb-callable functions for dumping pmaps
4987 */
4988 void pmap_dump_all(void);
4989 void pmap_dump(pmap_t);
4990
4991 void
4992 pmap_dump_all(void)
4993 {
4994 pmap_t pm;
4995
4996 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
4997 if (pm == pmap_kernel())
4998 continue;
4999 pmap_dump(pm);
5000 printf("\n");
5001 }
5002 }
5003
5004 static pt_entry_t ncptes[64];
5005 static void pmap_dump_ncpg(pmap_t);
5006
5007 void
5008 pmap_dump(pmap_t pm)
5009 {
5010 struct l2_dtable *l2;
5011 struct l2_bucket *l2b;
5012 pt_entry_t *ptep, pte;
5013 vaddr_t l2_va, l2b_va, va;
5014 int i, j, k, occ, rows = 0;
5015
5016 if (pm == pmap_kernel())
5017 printf("pmap_kernel (%p): ", pm);
5018 else
5019 printf("user pmap (%p): ", pm);
5020
5021 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
5022
5023 l2_va = 0;
5024 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
5025 l2 = pm->pm_l2[i];
5026
5027 if (l2 == NULL || l2->l2_occupancy == 0)
5028 continue;
5029
5030 l2b_va = l2_va;
5031 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
5032 l2b = &l2->l2_bucket[j];
5033
5034 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
5035 continue;
5036
5037 ptep = l2b->l2b_kva;
5038
5039 for (k = 0; k < 256 && ptep[k] == 0; k++)
5040 ;
5041
5042 k &= ~63;
5043 occ = l2b->l2b_occupancy;
5044 va = l2b_va + (k * 4096);
5045 for (; k < 256; k++, va += 0x1000) {
5046 char ch = ' ';
5047 if ((k % 64) == 0) {
5048 if ((rows % 8) == 0) {
5049 printf(
5050 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
5051 }
5052 printf("%08lx: ", va);
5053 }
5054
5055 ncptes[k & 63] = 0;
5056 pte = ptep[k];
5057 if (pte == 0) {
5058 ch = '.';
5059 } else {
5060 occ--;
5061 switch (pte & 0x0c) {
5062 case 0x00:
5063 ch = 'D'; /* No cache No buff */
5064 break;
5065 case 0x04:
5066 ch = 'B'; /* No cache buff */
5067 break;
5068 case 0x08:
5069 if (pte & 0x40)
5070 ch = 'm';
5071 else
5072 ch = 'C'; /* Cache No buff */
5073 break;
5074 case 0x0c:
5075 ch = 'F'; /* Cache Buff */
5076 break;
5077 }
5078
5079 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
5080 ch += 0x20;
5081
5082 if ((pte & 0xc) == 0)
5083 ncptes[k & 63] = pte;
5084 }
5085
5086 if ((k % 64) == 63) {
5087 rows++;
5088 printf("%c\n", ch);
5089 pmap_dump_ncpg(pm);
5090 if (occ == 0)
5091 break;
5092 } else
5093 printf("%c", ch);
5094 }
5095 }
5096 }
5097 }
5098
5099 static void
5100 pmap_dump_ncpg(pmap_t pm)
5101 {
5102 struct vm_page *pg;
5103 struct pv_entry *pv;
5104 int i;
5105
5106 for (i = 0; i < 63; i++) {
5107 if (ncptes[i] == 0)
5108 continue;
5109
5110 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5111 if (pg == NULL)
5112 continue;
5113
5114 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5115 VM_PAGE_TO_PHYS(pg),
5116 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5117 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5118
5119 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5120 printf(" %c va 0x%08lx, flags 0x%x\n",
5121 (pm == pv->pv_pmap) ? '*' : ' ',
5122 pv->pv_va, pv->pv_flags);
5123 }
5124 }
5125 }
5126 #endif
5127