Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.157.24.1.4.2
      1 /*	$NetBSD: pmap.c,v 1.157.24.1.4.2 2007/11/10 04:00:01 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *        This product includes software developed by the NetBSD
     84  *        Foundation, Inc. and its contributors.
     85  * 4. Neither the name of The NetBSD Foundation nor the names of its
     86  *    contributors may be used to endorse or promote products derived
     87  *    from this software without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     90  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     91  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     92  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     93  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     94  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     95  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     96  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     97  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     98  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     99  * POSSIBILITY OF SUCH DAMAGE.
    100  */
    101 
    102 /*
    103  * Copyright (c) 1994-1998 Mark Brinicombe.
    104  * Copyright (c) 1994 Brini.
    105  * All rights reserved.
    106  *
    107  * This code is derived from software written for Brini by Mark Brinicombe
    108  *
    109  * Redistribution and use in source and binary forms, with or without
    110  * modification, are permitted provided that the following conditions
    111  * are met:
    112  * 1. Redistributions of source code must retain the above copyright
    113  *    notice, this list of conditions and the following disclaimer.
    114  * 2. Redistributions in binary form must reproduce the above copyright
    115  *    notice, this list of conditions and the following disclaimer in the
    116  *    documentation and/or other materials provided with the distribution.
    117  * 3. All advertising materials mentioning features or use of this software
    118  *    must display the following acknowledgement:
    119  *	This product includes software developed by Mark Brinicombe.
    120  * 4. The name of the author may not be used to endorse or promote products
    121  *    derived from this software without specific prior written permission.
    122  *
    123  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    124  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    125  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    126  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    127  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    128  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    129  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    130  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    131  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    132  *
    133  * RiscBSD kernel project
    134  *
    135  * pmap.c
    136  *
    137  * Machine dependant vm stuff
    138  *
    139  * Created      : 20/09/94
    140  */
    141 
    142 /*
    143  * armv6 and VIPT cache support by 3am Software Foundry,
    144  * Copyright (c) 2007 Danger Inc
    145  */
    146 
    147 /*
    148  * Performance improvements, UVM changes, overhauls and part-rewrites
    149  * were contributed by Neil A. Carson <neil (at) causality.com>.
    150  */
    151 
    152 /*
    153  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    154  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    155  * Systems, Inc.
    156  *
    157  * There are still a few things outstanding at this time:
    158  *
    159  *   - There are some unresolved issues for MP systems:
    160  *
    161  *     o The L1 metadata needs a lock, or more specifically, some places
    162  *       need to acquire an exclusive lock when modifying L1 translation
    163  *       table entries.
    164  *
    165  *     o When one cpu modifies an L1 entry, and that L1 table is also
    166  *       being used by another cpu, then the latter will need to be told
    167  *       that a tlb invalidation may be necessary. (But only if the old
    168  *       domain number in the L1 entry being over-written is currently
    169  *       the active domain on that cpu). I guess there are lots more tlb
    170  *       shootdown issues too...
    171  *
    172  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    173  *       MP systems will lose big-time because of the MMU domain hack.
    174  *       The only way this can be solved (apart from moving the vector
    175  *       page to 0xffff0000) is to reserve the first 1MB of user address
    176  *       space for kernel use only. This would require re-linking all
    177  *       applications so that the text section starts above this 1MB
    178  *       boundary.
    179  *
    180  *     o Tracking which VM space is resident in the cache/tlb has not yet
    181  *       been implemented for MP systems.
    182  *
    183  *     o Finally, there is a pathological condition where two cpus running
    184  *       two separate processes (not lwps) which happen to share an L1
    185  *       can get into a fight over one or more L1 entries. This will result
    186  *       in a significant slow-down if both processes are in tight loops.
    187  */
    188 
    189 /*
    190  * Special compilation symbols
    191  * PMAP_DEBUG		- Build in pmap_debug_level code
    192  */
    193 
    194 /* Include header files */
    195 
    196 #include "opt_cpuoptions.h"
    197 #include "opt_pmap_debug.h"
    198 #include "opt_ddb.h"
    199 #include "opt_lockdebug.h"
    200 #include "opt_multiprocessor.h"
    201 
    202 #include <sys/types.h>
    203 #include <sys/param.h>
    204 #include <sys/kernel.h>
    205 #include <sys/systm.h>
    206 #include <sys/proc.h>
    207 #include <sys/malloc.h>
    208 #include <sys/user.h>
    209 #include <sys/pool.h>
    210 #include <sys/cdefs.h>
    211 
    212 #include <uvm/uvm.h>
    213 
    214 #include <machine/bus.h>
    215 #include <machine/pmap.h>
    216 #include <machine/pcb.h>
    217 #include <machine/param.h>
    218 #include <arm/arm32/katelib.h>
    219 
    220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.157.24.1.4.2 2007/11/10 04:00:01 matt Exp $");
    221 
    222 #ifdef PMAP_DEBUG
    223 
    224 /* XXX need to get rid of all refs to this */
    225 int pmap_debug_level = 0;
    226 
    227 /*
    228  * for switching to potentially finer grained debugging
    229  */
    230 #define	PDB_FOLLOW	0x0001
    231 #define	PDB_INIT	0x0002
    232 #define	PDB_ENTER	0x0004
    233 #define	PDB_REMOVE	0x0008
    234 #define	PDB_CREATE	0x0010
    235 #define	PDB_PTPAGE	0x0020
    236 #define	PDB_GROWKERN	0x0040
    237 #define	PDB_BITS	0x0080
    238 #define	PDB_COLLECT	0x0100
    239 #define	PDB_PROTECT	0x0200
    240 #define	PDB_MAP_L1	0x0400
    241 #define	PDB_BOOTSTRAP	0x1000
    242 #define	PDB_PARANOIA	0x2000
    243 #define	PDB_WIRING	0x4000
    244 #define	PDB_PVDUMP	0x8000
    245 #define	PDB_VAC		0x10000
    246 #define	PDB_KENTER	0x20000
    247 #define	PDB_KREMOVE	0x40000
    248 #define	PDB_EXEC	0x80000
    249 
    250 int debugmap = 1;
    251 int pmapdebug = 0;
    252 #define	NPDEBUG(_lev_,_stat_) \
    253 	if (pmapdebug & (_lev_)) \
    254         	((_stat_))
    255 
    256 #else	/* PMAP_DEBUG */
    257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    258 #endif	/* PMAP_DEBUG */
    259 
    260 /*
    261  * pmap_kernel() points here
    262  */
    263 struct pmap     kernel_pmap_store;
    264 
    265 /*
    266  * Which pmap is currently 'live' in the cache
    267  *
    268  * XXXSCW: Fix for SMP ...
    269  */
    270 union pmap_cache_state *pmap_cache_state;
    271 
    272 /*
    273  * Pool and cache that pmap structures are allocated from.
    274  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    275  * in pmap_create().
    276  */
    277 static struct pool pmap_pmap_pool;
    278 static struct pool_cache pmap_pmap_cache;
    279 static LIST_HEAD(, pmap) pmap_pmaps;
    280 
    281 /*
    282  * Pool of PV structures
    283  */
    284 static struct pool pmap_pv_pool;
    285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    288 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    289 };
    290 
    291 /*
    292  * Pool and cache of l2_dtable structures.
    293  * We use a cache to avoid clearing the structures when they're
    294  * allocated. (196 bytes)
    295  */
    296 static struct pool pmap_l2dtable_pool;
    297 static struct pool_cache pmap_l2dtable_cache;
    298 static vaddr_t pmap_kernel_l2dtable_kva;
    299 
    300 /*
    301  * Pool and cache of L2 page descriptors.
    302  * We use a cache to avoid clearing the descriptor table
    303  * when they're allocated. (1KB)
    304  */
    305 static struct pool pmap_l2ptp_pool;
    306 static struct pool_cache pmap_l2ptp_cache;
    307 static vaddr_t pmap_kernel_l2ptp_kva;
    308 static paddr_t pmap_kernel_l2ptp_phys;
    309 
    310 #ifdef PMAPCOUNTERS
    311 #define	PMAP_EVCNT_INITIALIZER(name) \
    312 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    313 
    314 static struct evcnt pmap_ev_vac_color_new =
    315    PMAP_EVCNT_INITIALIZER("new page color");
    316 static struct evcnt pmap_ev_vac_color_reuse =
    317    PMAP_EVCNT_INITIALIZER("ok first page color");
    318 static struct evcnt pmap_ev_vac_color_ok =
    319    PMAP_EVCNT_INITIALIZER("ok page color");
    320 static struct evcnt pmap_ev_vac_color_change =
    321    PMAP_EVCNT_INITIALIZER("change page color");
    322 static struct evcnt pmap_ev_vac_color_erase =
    323    PMAP_EVCNT_INITIALIZER("erase page color");
    324 static struct evcnt pmap_ev_vac_color_none =
    325    PMAP_EVCNT_INITIALIZER("no page color");
    326 static struct evcnt pmap_ev_vac_color_restore =
    327    PMAP_EVCNT_INITIALIZER("restore page color");
    328 
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    336 
    337 static struct evcnt pmap_ev_mappings =
    338    PMAP_EVCNT_INITIALIZER("pages mapped");
    339 static struct evcnt pmap_ev_unmappings =
    340    PMAP_EVCNT_INITIALIZER("pages unmapped");
    341 static struct evcnt pmap_ev_remappings =
    342    PMAP_EVCNT_INITIALIZER("pages remapped");
    343 
    344 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    345 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    346 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    347 
    348 static struct evcnt pmap_ev_kernel_mappings =
    349    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    350 static struct evcnt pmap_ev_kernel_unmappings =
    351    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    352 static struct evcnt pmap_ev_kernel_remappings =
    353    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    354 
    355 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    356 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    358 
    359 static struct evcnt pmap_ev_kenter_mappings =
    360    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    361 static struct evcnt pmap_ev_kenter_unmappings =
    362    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    363 static struct evcnt pmap_ev_kenter_remappings =
    364    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    365 static struct evcnt pmap_ev_pt_mappings =
    366    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    367 
    368 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    369 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    371 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    372 
    373 static struct evcnt pmap_ev_exec_mappings =
    374    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    375 static struct evcnt pmap_ev_exec_cached =
    376    PMAP_EVCNT_INITIALIZER("exec pages cached");
    377 
    378 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    379 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    380 
    381 static struct evcnt pmap_ev_exec_synced =
    382    PMAP_EVCNT_INITIALIZER("exec pages synced");
    383 static struct evcnt pmap_ev_exec_synced_map =
    384    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    385 static struct evcnt pmap_ev_exec_synced_unmap =
    386    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    387 static struct evcnt pmap_ev_exec_synced_remap =
    388    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    389 static struct evcnt pmap_ev_exec_synced_clearbit =
    390    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    391 static struct evcnt pmap_ev_exec_synced_kremove =
    392    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    393 
    394 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    400 
    401 static struct evcnt pmap_ev_exec_discarded_unmap =
    402    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    403 static struct evcnt pmap_ev_exec_discarded_zero =
    404    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    405 static struct evcnt pmap_ev_exec_discarded_copy =
    406    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    407 static struct evcnt pmap_ev_exec_discarded_page_protect =
    408    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    409 static struct evcnt pmap_ev_exec_discarded_clearbit =
    410    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    411 static struct evcnt pmap_ev_exec_discarded_kremove =
    412    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    413 
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    420 
    421 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    422 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    423 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    424 
    425 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    426 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    427 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    428 
    429 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    430 #else
    431 #define	PMAPCOUNT(x)	((void)0)
    432 #endif
    433 
    434 /*
    435  * pmap copy/zero page, and mem(5) hook point
    436  */
    437 static pt_entry_t *csrc_pte, *cdst_pte;
    438 static vaddr_t csrcp, cdstp;
    439 char *memhook;
    440 extern caddr_t msgbufaddr;
    441 
    442 /*
    443  * Flag to indicate if pmap_init() has done its thing
    444  */
    445 boolean_t pmap_initialized;
    446 
    447 /*
    448  * Misc. locking data structures
    449  */
    450 
    451 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    452 static struct lock pmap_main_lock;
    453 
    454 #define PMAP_MAP_TO_HEAD_LOCK() \
    455      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    456 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    457      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    458 #define PMAP_HEAD_TO_MAP_LOCK() \
    459      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    460 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    461      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    462 #else
    463 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    464 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    465 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    466 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    467 #endif
    468 
    469 #define	pmap_acquire_pmap_lock(pm)			\
    470 	do {						\
    471 		if ((pm) != pmap_kernel())		\
    472 			simple_lock(&(pm)->pm_lock);	\
    473 	} while (/*CONSTCOND*/0)
    474 
    475 #define	pmap_release_pmap_lock(pm)			\
    476 	do {						\
    477 		if ((pm) != pmap_kernel())		\
    478 			simple_unlock(&(pm)->pm_lock);	\
    479 	} while (/*CONSTCOND*/0)
    480 
    481 
    482 /*
    483  * Metadata for L1 translation tables.
    484  */
    485 struct l1_ttable {
    486 	/* Entry on the L1 Table list */
    487 	SLIST_ENTRY(l1_ttable) l1_link;
    488 
    489 	/* Entry on the L1 Least Recently Used list */
    490 	TAILQ_ENTRY(l1_ttable) l1_lru;
    491 
    492 	/* Track how many domains are allocated from this L1 */
    493 	volatile u_int l1_domain_use_count;
    494 
    495 	/*
    496 	 * A free-list of domain numbers for this L1.
    497 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    498 	 * is slow on ARM.
    499 	 */
    500 	u_int8_t l1_domain_first;
    501 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    502 
    503 	/* Physical address of this L1 page table */
    504 	paddr_t l1_physaddr;
    505 
    506 	/* KVA of this L1 page table */
    507 	pd_entry_t *l1_kva;
    508 };
    509 
    510 /*
    511  * Convert a virtual address into its L1 table index. That is, the
    512  * index used to locate the L2 descriptor table pointer in an L1 table.
    513  * This is basically used to index l1->l1_kva[].
    514  *
    515  * Each L2 descriptor table represents 1MB of VA space.
    516  */
    517 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    518 
    519 /*
    520  * L1 Page Tables are tracked using a Least Recently Used list.
    521  *  - New L1s are allocated from the HEAD.
    522  *  - Freed L1s are added to the TAIl.
    523  *  - Recently accessed L1s (where an 'access' is some change to one of
    524  *    the userland pmaps which owns this L1) are moved to the TAIL.
    525  */
    526 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    527 static struct simplelock l1_lru_lock;
    528 
    529 /*
    530  * A list of all L1 tables
    531  */
    532 static SLIST_HEAD(, l1_ttable) l1_list;
    533 
    534 /*
    535  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    536  *
    537  * This is normally 16MB worth L2 page descriptors for any given pmap.
    538  * Reference counts are maintained for L2 descriptors so they can be
    539  * freed when empty.
    540  */
    541 struct l2_dtable {
    542 	/* The number of L2 page descriptors allocated to this l2_dtable */
    543 	u_int l2_occupancy;
    544 
    545 	/* List of L2 page descriptors */
    546 	struct l2_bucket {
    547 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    548 		paddr_t l2b_phys;	/* Physical address of same */
    549 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    550 		u_short l2b_occupancy;	/* How many active descriptors */
    551 	} l2_bucket[L2_BUCKET_SIZE];
    552 };
    553 
    554 /*
    555  * Given an L1 table index, calculate the corresponding l2_dtable index
    556  * and bucket index within the l2_dtable.
    557  */
    558 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    559 				 (L2_SIZE - 1))
    560 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    561 
    562 /*
    563  * Given a virtual address, this macro returns the
    564  * virtual address required to drop into the next L2 bucket.
    565  */
    566 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    567 
    568 /*
    569  * L2 allocation.
    570  */
    571 #define	pmap_alloc_l2_dtable()		\
    572 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    573 #define	pmap_free_l2_dtable(l2)		\
    574 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    575 #define pmap_alloc_l2_ptp(pap)		\
    576 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    577 	    PR_NOWAIT, (pap)))
    578 
    579 /*
    580  * We try to map the page tables write-through, if possible.  However, not
    581  * all CPUs have a write-through cache mode, so on those we have to sync
    582  * the cache when we frob page tables.
    583  *
    584  * We try to evaluate this at compile time, if possible.  However, it's
    585  * not always possible to do that, hence this run-time var.
    586  */
    587 int	pmap_needs_pte_sync;
    588 
    589 /*
    590  * Real definition of pv_entry.
    591  */
    592 struct pv_entry {
    593 	struct pv_entry *pv_next;       /* next pv_entry */
    594 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    595 	vaddr_t		pv_va;          /* virtual address for mapping */
    596 	u_int		pv_flags;       /* flags */
    597 };
    598 
    599 /*
    600  * Macro to determine if a mapping might be resident in the
    601  * instruction cache and/or TLB
    602  */
    603 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    604 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    605 
    606 /*
    607  * Macro to determine if a mapping might be resident in the
    608  * data cache and/or TLB
    609  */
    610 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    611 
    612 /*
    613  * Local prototypes
    614  */
    615 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    616 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    617 			    pt_entry_t **);
    618 static boolean_t	pmap_is_current(pmap_t);
    619 static boolean_t	pmap_is_cached(pmap_t);
    620 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    621 			    pmap_t, vaddr_t, u_int);
    622 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    623 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    624 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    625 			    u_int, u_int);
    626 
    627 static void		pmap_pinit(pmap_t);
    628 static int		pmap_pmap_ctor(void *, void *, int);
    629 
    630 static void		pmap_alloc_l1(pmap_t);
    631 static void		pmap_free_l1(pmap_t);
    632 static void		pmap_use_l1(pmap_t);
    633 
    634 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    635 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    636 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    637 static int		pmap_l2ptp_ctor(void *, void *, int);
    638 static int		pmap_l2dtable_ctor(void *, void *, int);
    639 
    640 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    641 #ifdef PMAP_CACHE_VIVT
    642 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    643 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    644 #endif
    645 
    646 static void		pmap_clearbit(struct vm_page *, u_int);
    647 #ifdef PMAP_CACHE_VIVT
    648 static int		pmap_clean_page(struct pv_entry *, boolean_t);
    649 #endif
    650 #ifdef PMAP_CACHE_VIPT
    651 static void		pmap_syncicache_page(struct vm_page *);
    652 static void		pmap_flush_page(struct vm_page *);
    653 #endif
    654 static void		pmap_page_remove(struct vm_page *);
    655 
    656 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    657 static vaddr_t		kernel_pt_lookup(paddr_t);
    658 
    659 
    660 /*
    661  * External function prototypes
    662  */
    663 extern void bzero_page(vaddr_t);
    664 extern void bcopy_page(vaddr_t, vaddr_t);
    665 
    666 /*
    667  * Misc variables
    668  */
    669 vaddr_t virtual_avail;
    670 vaddr_t virtual_end;
    671 vaddr_t pmap_curmaxkvaddr;
    672 
    673 vaddr_t avail_start;
    674 vaddr_t avail_end;
    675 
    676 extern pv_addr_t systempage;
    677 
    678 /* Function to set the debug level of the pmap code */
    679 
    680 #ifdef PMAP_DEBUG
    681 void
    682 pmap_debug(int level)
    683 {
    684 	pmap_debug_level = level;
    685 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    686 }
    687 #endif	/* PMAP_DEBUG */
    688 
    689 /*
    690  * A bunch of routines to conditionally flush the caches/TLB depending
    691  * on whether the specified pmap actually needs to be flushed at any
    692  * given time.
    693  */
    694 static inline void
    695 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    696 {
    697 
    698 	if (pm->pm_cstate.cs_tlb_id)
    699 		cpu_tlb_flushID_SE(va);
    700 }
    701 
    702 static inline void
    703 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    704 {
    705 
    706 	if (pm->pm_cstate.cs_tlb_d)
    707 		cpu_tlb_flushD_SE(va);
    708 }
    709 
    710 static inline void
    711 pmap_tlb_flushID(pmap_t pm)
    712 {
    713 
    714 	if (pm->pm_cstate.cs_tlb_id) {
    715 		cpu_tlb_flushID();
    716 		pm->pm_cstate.cs_tlb = 0;
    717 	}
    718 }
    719 
    720 static inline void
    721 pmap_tlb_flushD(pmap_t pm)
    722 {
    723 
    724 	if (pm->pm_cstate.cs_tlb_d) {
    725 		cpu_tlb_flushD();
    726 		pm->pm_cstate.cs_tlb_d = 0;
    727 	}
    728 }
    729 
    730 #ifdef PMAP_CACHE_VIVT
    731 static inline void
    732 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    733 {
    734 	if (pm->pm_cstate.cs_cache_id) {
    735 		cpu_idcache_wbinv_range(va, len);
    736 	}
    737 }
    738 
    739 static inline void
    740 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    741     boolean_t do_inv, boolean_t rd_only)
    742 {
    743 
    744 	if (pm->pm_cstate.cs_cache_d) {
    745 		if (do_inv) {
    746 			if (rd_only)
    747 				cpu_dcache_inv_range(va, len);
    748 			else
    749 				cpu_dcache_wbinv_range(va, len);
    750 		} else
    751 		if (!rd_only)
    752 			cpu_dcache_wb_range(va, len);
    753 	}
    754 }
    755 
    756 static inline void
    757 pmap_idcache_wbinv_all(pmap_t pm)
    758 {
    759 	if (pm->pm_cstate.cs_cache_id) {
    760 		cpu_idcache_wbinv_all();
    761 		pm->pm_cstate.cs_cache = 0;
    762 	}
    763 }
    764 
    765 static inline void
    766 pmap_dcache_wbinv_all(pmap_t pm)
    767 {
    768 	if (pm->pm_cstate.cs_cache_d) {
    769 		cpu_dcache_wbinv_all();
    770 		pm->pm_cstate.cs_cache_d = 0;
    771 	}
    772 }
    773 #endif /* PMAP_CACHE_VIVT */
    774 
    775 static inline boolean_t
    776 pmap_is_current(pmap_t pm)
    777 {
    778 
    779 	if (pm == pmap_kernel() ||
    780 	    (curproc && curproc->p_vmspace->vm_map.pmap == pm))
    781 		return (TRUE);
    782 
    783 	return (FALSE);
    784 }
    785 
    786 static inline boolean_t
    787 pmap_is_cached(pmap_t pm)
    788 {
    789 
    790 	if (pm == pmap_kernel() || pmap_cache_state == NULL ||
    791 	   pmap_cache_state == &pm->pm_cstate)
    792 		return (TRUE);
    793 
    794 	return (FALSE);
    795 }
    796 
    797 /*
    798  * PTE_SYNC_CURRENT:
    799  *
    800  *     Make sure the pte is written out to RAM.
    801  *     We need to do this for one of two cases:
    802  *       - We're dealing with the kernel pmap
    803  *       - There is no pmap active in the cache/tlb.
    804  *       - The specified pmap is 'active' in the cache/tlb.
    805  */
    806 #ifdef PMAP_INCLUDE_PTE_SYNC
    807 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    808 do {					\
    809 	if (PMAP_NEEDS_PTE_SYNC && 	\
    810 	    pmap_is_cached(pm))		\
    811 		PTE_SYNC(ptep);		\
    812 } while (/*CONSTCOND*/0)
    813 #else
    814 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    815 #endif
    816 
    817 /*
    818  * main pv_entry manipulation functions:
    819  *   pmap_enter_pv: enter a mapping onto a vm_page list
    820  *   pmap_remove_pv: remove a mappiing from a vm_page list
    821  *
    822  * NOTE: pmap_enter_pv expects to lock the pvh itself
    823  *       pmap_remove_pv expects te caller to lock the pvh before calling
    824  */
    825 
    826 /*
    827  * pmap_enter_pv: enter a mapping onto a vm_page lst
    828  *
    829  * => caller should hold the proper lock on pmap_main_lock
    830  * => caller should have pmap locked
    831  * => we will gain the lock on the vm_page and allocate the new pv_entry
    832  * => caller should adjust ptp's wire_count before calling
    833  * => caller should not adjust pmap's wire_count
    834  */
    835 static void
    836 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    837     vaddr_t va, u_int flags)
    838 {
    839 
    840 	NPDEBUG(PDB_PVDUMP,
    841 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    842 
    843 	pve->pv_pmap = pm;
    844 	pve->pv_va = va;
    845 	pve->pv_flags = flags;
    846 
    847 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    848 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    849 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    850 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    851 	if (pm == pmap_kernel()) {
    852 		PMAPCOUNT(kernel_mappings);
    853 		if (flags & PVF_WRITE)
    854 			pg->mdpage.krw_mappings++;
    855 		else
    856 			pg->mdpage.kro_mappings++;
    857 	} else
    858 	if (flags & PVF_WRITE)
    859 		pg->mdpage.urw_mappings++;
    860 	else
    861 		pg->mdpage.uro_mappings++;
    862 
    863 #ifdef PMAP_CACHE_VIPT
    864 	/*
    865 	 * If this is an exec mapping and its the first exec mapping
    866 	 * for this page, make sure to sync the I-cache.
    867 	 */
    868 	if (PV_IS_EXEC_P(flags)) {
    869 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    870 			pmap_syncicache_page(pg);
    871 			PMAPCOUNT(exec_synced_map);
    872 		}
    873 		PMAPCOUNT(exec_mappings);
    874 	}
    875 #endif
    876 
    877 	PMAPCOUNT(mappings);
    878 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    879 
    880 	if (pve->pv_flags & PVF_WIRED)
    881 		++pm->pm_stats.wired_count;
    882 }
    883 
    884 /*
    885  *
    886  * pmap_find_pv: Find a pv entry
    887  *
    888  * => caller should hold lock on vm_page
    889  */
    890 static inline struct pv_entry *
    891 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    892 {
    893 	struct pv_entry *pv;
    894 
    895 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
    896 		if (pm == pv->pv_pmap && va == pv->pv_va)
    897 			break;
    898 	}
    899 
    900 	return (pv);
    901 }
    902 
    903 /*
    904  * pmap_remove_pv: try to remove a mapping from a pv_list
    905  *
    906  * => caller should hold proper lock on pmap_main_lock
    907  * => pmap should be locked
    908  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    909  * => caller should adjust ptp's wire_count and free PTP if needed
    910  * => caller should NOT adjust pmap's wire_count
    911  * => we return the removed pve
    912  */
    913 static struct pv_entry *
    914 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    915 {
    916 	struct pv_entry *pve, **prevptr;
    917 
    918 	NPDEBUG(PDB_PVDUMP,
    919 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    920 
    921 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    922 	pve = *prevptr;
    923 
    924 	while (pve) {
    925 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    926 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    927 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    928 			if (pve->pv_flags & PVF_WIRED) {
    929 				if (skip_wired)
    930 					return (NULL);
    931 				--pm->pm_stats.wired_count;
    932 			}
    933 			*prevptr = pve->pv_next;		/* remove it! */
    934 			if (pm == pmap_kernel()) {
    935 				PMAPCOUNT(kernel_unmappings);
    936 				if (pve->pv_flags & PVF_WRITE)
    937 					pg->mdpage.krw_mappings--;
    938 				else
    939 					pg->mdpage.kro_mappings--;
    940 			} else
    941 			if (pve->pv_flags & PVF_WRITE)
    942 				pg->mdpage.urw_mappings--;
    943 			else
    944 				pg->mdpage.uro_mappings--;
    945 
    946 			PMAPCOUNT(unmappings);
    947 #ifdef PMAP_CACHE_VIPT
    948 			if (!(pve->pv_flags & PVF_WRITE))
    949 				break;
    950 			/*
    951 			 * If this page has had an exec mapping, then if
    952 			 * this was the last mapping, discard the contents,
    953 			 * otherwise sync the i-cache for this page.
    954 			 */
    955 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    956 				if (pg->mdpage.pvh_list == NULL) {
    957 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
    958 					PMAPCOUNT(exec_discarded_unmap);
    959 				} else {
    960 					pmap_syncicache_page(pg);
    961 					PMAPCOUNT(exec_synced_unmap);
    962 				}
    963 			}
    964 #endif
    965 			break;
    966 		}
    967 		prevptr = &pve->pv_next;		/* previous pointer */
    968 		pve = pve->pv_next;			/* advance */
    969 	}
    970 
    971 	return(pve);				/* return removed pve */
    972 }
    973 
    974 /*
    975  *
    976  * pmap_modify_pv: Update pv flags
    977  *
    978  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    979  * => caller should NOT adjust pmap's wire_count
    980  * => caller must call pmap_vac_me_harder() if writable status of a page
    981  *    may have changed.
    982  * => we return the old flags
    983  *
    984  * Modify a physical-virtual mapping in the pv table
    985  */
    986 static u_int
    987 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
    988     u_int clr_mask, u_int set_mask)
    989 {
    990 	struct pv_entry *npv;
    991 	u_int flags, oflags;
    992 
    993 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
    994 		return (0);
    995 
    996 	NPDEBUG(PDB_PVDUMP,
    997 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
    998 
    999 	/*
   1000 	 * There is at least one VA mapping this page.
   1001 	 */
   1002 
   1003 	if (clr_mask & (PVF_REF | PVF_MOD))
   1004 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1005 
   1006 	oflags = npv->pv_flags;
   1007 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1008 
   1009 	if ((flags ^ oflags) & PVF_WIRED) {
   1010 		if (flags & PVF_WIRED)
   1011 			++pm->pm_stats.wired_count;
   1012 		else
   1013 			--pm->pm_stats.wired_count;
   1014 	}
   1015 
   1016 	if ((flags ^ oflags) & PVF_WRITE) {
   1017 		if (pm == pmap_kernel()) {
   1018 			if (flags & PVF_WRITE) {
   1019 				pg->mdpage.krw_mappings++;
   1020 				pg->mdpage.kro_mappings--;
   1021 			} else {
   1022 				pg->mdpage.kro_mappings++;
   1023 				pg->mdpage.krw_mappings--;
   1024 			}
   1025 		} else
   1026 		if (flags & PVF_WRITE) {
   1027 			pg->mdpage.urw_mappings++;
   1028 			pg->mdpage.uro_mappings--;
   1029 		} else {
   1030 			pg->mdpage.uro_mappings++;
   1031 			pg->mdpage.urw_mappings--;
   1032 		}
   1033 	}
   1034 #ifdef PMAP_CACHE_VIPT
   1035 	/*
   1036 	 * We have two cases here: the first is from enter_pv (new exec
   1037 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1038 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1039 	 * to do what pmap_remove_pv would do.
   1040 	 */
   1041 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1042 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1043 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1044 		pmap_syncicache_page(pg);
   1045 		PMAPCOUNT(exec_synced_remap);
   1046 	}
   1047 #endif
   1048 
   1049 	PMAPCOUNT(remappings);
   1050 
   1051 	return (oflags);
   1052 }
   1053 
   1054 static void
   1055 pmap_pinit(pmap_t pm)
   1056 {
   1057 
   1058 	if (vector_page < KERNEL_BASE) {
   1059 		/*
   1060 		 * Map the vector page.
   1061 		 */
   1062 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1063 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1064 		pmap_update(pm);
   1065 	}
   1066 }
   1067 
   1068 /*
   1069  * Allocate an L1 translation table for the specified pmap.
   1070  * This is called at pmap creation time.
   1071  */
   1072 static void
   1073 pmap_alloc_l1(pmap_t pm)
   1074 {
   1075 	struct l1_ttable *l1;
   1076 	u_int8_t domain;
   1077 
   1078 	/*
   1079 	 * Remove the L1 at the head of the LRU list
   1080 	 */
   1081 	simple_lock(&l1_lru_lock);
   1082 	l1 = TAILQ_FIRST(&l1_lru_list);
   1083 	KDASSERT(l1 != NULL);
   1084 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1085 
   1086 	/*
   1087 	 * Pick the first available domain number, and update
   1088 	 * the link to the next number.
   1089 	 */
   1090 	domain = l1->l1_domain_first;
   1091 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1092 
   1093 	/*
   1094 	 * If there are still free domain numbers in this L1,
   1095 	 * put it back on the TAIL of the LRU list.
   1096 	 */
   1097 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1098 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1099 
   1100 	simple_unlock(&l1_lru_lock);
   1101 
   1102 	/*
   1103 	 * Fix up the relevant bits in the pmap structure
   1104 	 */
   1105 	pm->pm_l1 = l1;
   1106 	pm->pm_domain = domain;
   1107 }
   1108 
   1109 /*
   1110  * Free an L1 translation table.
   1111  * This is called at pmap destruction time.
   1112  */
   1113 static void
   1114 pmap_free_l1(pmap_t pm)
   1115 {
   1116 	struct l1_ttable *l1 = pm->pm_l1;
   1117 
   1118 	simple_lock(&l1_lru_lock);
   1119 
   1120 	/*
   1121 	 * If this L1 is currently on the LRU list, remove it.
   1122 	 */
   1123 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1124 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1125 
   1126 	/*
   1127 	 * Free up the domain number which was allocated to the pmap
   1128 	 */
   1129 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1130 	l1->l1_domain_first = pm->pm_domain;
   1131 	l1->l1_domain_use_count--;
   1132 
   1133 	/*
   1134 	 * The L1 now must have at least 1 free domain, so add
   1135 	 * it back to the LRU list. If the use count is zero,
   1136 	 * put it at the head of the list, otherwise it goes
   1137 	 * to the tail.
   1138 	 */
   1139 	if (l1->l1_domain_use_count == 0)
   1140 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1141 	else
   1142 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1143 
   1144 	simple_unlock(&l1_lru_lock);
   1145 }
   1146 
   1147 static inline void
   1148 pmap_use_l1(pmap_t pm)
   1149 {
   1150 	struct l1_ttable *l1;
   1151 
   1152 	/*
   1153 	 * Do nothing if we're in interrupt context.
   1154 	 * Access to an L1 by the kernel pmap must not affect
   1155 	 * the LRU list.
   1156 	 */
   1157 	if (current_intr_depth || pm == pmap_kernel())
   1158 		return;
   1159 
   1160 	l1 = pm->pm_l1;
   1161 
   1162 	/*
   1163 	 * If the L1 is not currently on the LRU list, just return
   1164 	 */
   1165 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1166 		return;
   1167 
   1168 	simple_lock(&l1_lru_lock);
   1169 
   1170 	/*
   1171 	 * Check the use count again, now that we've acquired the lock
   1172 	 */
   1173 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1174 		simple_unlock(&l1_lru_lock);
   1175 		return;
   1176 	}
   1177 
   1178 	/*
   1179 	 * Move the L1 to the back of the LRU list
   1180 	 */
   1181 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1182 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1183 
   1184 	simple_unlock(&l1_lru_lock);
   1185 }
   1186 
   1187 /*
   1188  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1189  *
   1190  * Free an L2 descriptor table.
   1191  */
   1192 static inline void
   1193 #ifndef PMAP_INCLUDE_PTE_SYNC
   1194 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1195 #else
   1196 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
   1197 #endif
   1198 {
   1199 #ifdef PMAP_INCLUDE_PTE_SYNC
   1200 #ifdef PMAP_CACHE_VIVT
   1201 	/*
   1202 	 * Note: With a write-back cache, we may need to sync this
   1203 	 * L2 table before re-using it.
   1204 	 * This is because it may have belonged to a non-current
   1205 	 * pmap, in which case the cache syncs would have been
   1206 	 * skipped for the pages that were being unmapped. If the
   1207 	 * L2 table were then to be immediately re-allocated to
   1208 	 * the *current* pmap, it may well contain stale mappings
   1209 	 * which have not yet been cleared by a cache write-back
   1210 	 * and so would still be visible to the mmu.
   1211 	 */
   1212 	if (need_sync)
   1213 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1214 #endif /* PMAP_CACHE_VIVT */
   1215 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1216 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1217 }
   1218 
   1219 /*
   1220  * Returns a pointer to the L2 bucket associated with the specified pmap
   1221  * and VA, or NULL if no L2 bucket exists for the address.
   1222  */
   1223 static inline struct l2_bucket *
   1224 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1225 {
   1226 	struct l2_dtable *l2;
   1227 	struct l2_bucket *l2b;
   1228 	u_short l1idx;
   1229 
   1230 	l1idx = L1_IDX(va);
   1231 
   1232 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1233 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1234 		return (NULL);
   1235 
   1236 	return (l2b);
   1237 }
   1238 
   1239 /*
   1240  * Returns a pointer to the L2 bucket associated with the specified pmap
   1241  * and VA.
   1242  *
   1243  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1244  * bucket/page table in place.
   1245  *
   1246  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1247  * increment the bucket occupancy counter appropriately *before*
   1248  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1249  * the bucket/page in the meantime.
   1250  */
   1251 static struct l2_bucket *
   1252 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1253 {
   1254 	struct l2_dtable *l2;
   1255 	struct l2_bucket *l2b;
   1256 	u_short l1idx;
   1257 
   1258 	l1idx = L1_IDX(va);
   1259 
   1260 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1261 		/*
   1262 		 * No mapping at this address, as there is
   1263 		 * no entry in the L1 table.
   1264 		 * Need to allocate a new l2_dtable.
   1265 		 */
   1266 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1267 			return (NULL);
   1268 
   1269 		/*
   1270 		 * Link it into the parent pmap
   1271 		 */
   1272 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1273 	}
   1274 
   1275 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1276 
   1277 	/*
   1278 	 * Fetch pointer to the L2 page table associated with the address.
   1279 	 */
   1280 	if (l2b->l2b_kva == NULL) {
   1281 		pt_entry_t *ptep;
   1282 
   1283 		/*
   1284 		 * No L2 page table has been allocated. Chances are, this
   1285 		 * is because we just allocated the l2_dtable, above.
   1286 		 */
   1287 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1288 			/*
   1289 			 * Oops, no more L2 page tables available at this
   1290 			 * time. We may need to deallocate the l2_dtable
   1291 			 * if we allocated a new one above.
   1292 			 */
   1293 			if (l2->l2_occupancy == 0) {
   1294 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1295 				pmap_free_l2_dtable(l2);
   1296 			}
   1297 			return (NULL);
   1298 		}
   1299 
   1300 		l2->l2_occupancy++;
   1301 		l2b->l2b_kva = ptep;
   1302 		l2b->l2b_l1idx = l1idx;
   1303 	}
   1304 
   1305 	return (l2b);
   1306 }
   1307 
   1308 /*
   1309  * One or more mappings in the specified L2 descriptor table have just been
   1310  * invalidated.
   1311  *
   1312  * Garbage collect the metadata and descriptor table itself if necessary.
   1313  *
   1314  * The pmap lock must be acquired when this is called (not necessary
   1315  * for the kernel pmap).
   1316  */
   1317 static void
   1318 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1319 {
   1320 	struct l2_dtable *l2;
   1321 	pd_entry_t *pl1pd, l1pd;
   1322 	pt_entry_t *ptep;
   1323 	u_short l1idx;
   1324 
   1325 	KDASSERT(count <= l2b->l2b_occupancy);
   1326 
   1327 	/*
   1328 	 * Update the bucket's reference count according to how many
   1329 	 * PTEs the caller has just invalidated.
   1330 	 */
   1331 	l2b->l2b_occupancy -= count;
   1332 
   1333 	/*
   1334 	 * Note:
   1335 	 *
   1336 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1337 	 * as that would require checking all Level 1 page tables and
   1338 	 * removing any references to the Level 2 page table. See also the
   1339 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1340 	 *
   1341 	 * We make do with just invalidating the mapping in the L2 table.
   1342 	 *
   1343 	 * This isn't really a big deal in practice and, in fact, leads
   1344 	 * to a performance win over time as we don't need to continually
   1345 	 * alloc/free.
   1346 	 */
   1347 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1348 		return;
   1349 
   1350 	/*
   1351 	 * There are no more valid mappings in this level 2 page table.
   1352 	 * Go ahead and NULL-out the pointer in the bucket, then
   1353 	 * free the page table.
   1354 	 */
   1355 	l1idx = l2b->l2b_l1idx;
   1356 	ptep = l2b->l2b_kva;
   1357 	l2b->l2b_kva = NULL;
   1358 
   1359 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1360 
   1361 	/*
   1362 	 * If the L1 slot matches the pmap's domain
   1363 	 * number, then invalidate it.
   1364 	 */
   1365 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1366 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1367 		*pl1pd = 0;
   1368 		PTE_SYNC(pl1pd);
   1369 	}
   1370 
   1371 	/*
   1372 	 * Release the L2 descriptor table back to the pool cache.
   1373 	 */
   1374 #ifndef PMAP_INCLUDE_PTE_SYNC
   1375 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1376 #else
   1377 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1378 #endif
   1379 
   1380 	/*
   1381 	 * Update the reference count in the associated l2_dtable
   1382 	 */
   1383 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1384 	if (--l2->l2_occupancy > 0)
   1385 		return;
   1386 
   1387 	/*
   1388 	 * There are no more valid mappings in any of the Level 1
   1389 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1390 	 * the pointer in the parent pmap and free the l2_dtable.
   1391 	 */
   1392 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1393 	pmap_free_l2_dtable(l2);
   1394 }
   1395 
   1396 /*
   1397  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1398  * structures.
   1399  */
   1400 static int
   1401 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1402 {
   1403 #ifndef PMAP_INCLUDE_PTE_SYNC
   1404 	struct l2_bucket *l2b;
   1405 	pt_entry_t *ptep, pte;
   1406 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1407 
   1408 	/*
   1409 	 * The mappings for these page tables were initially made using
   1410 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1411 	 * mode will not be right for page table mappings. To avoid
   1412 	 * polluting the pmap_kenter_pa() code with a special case for
   1413 	 * page tables, we simply fix up the cache-mode here if it's not
   1414 	 * correct.
   1415 	 */
   1416 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1417 	KDASSERT(l2b != NULL);
   1418 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1419 	pte = *ptep;
   1420 
   1421 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1422 		/*
   1423 		 * Page tables must have the cache-mode set to Write-Thru.
   1424 		 */
   1425 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1426 		PTE_SYNC(ptep);
   1427 		cpu_tlb_flushD_SE(va);
   1428 		cpu_cpwait();
   1429 	}
   1430 #endif
   1431 
   1432 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1433 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1434 	return (0);
   1435 }
   1436 
   1437 static int
   1438 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1439 {
   1440 
   1441 	memset(v, 0, sizeof(struct l2_dtable));
   1442 	return (0);
   1443 }
   1444 
   1445 static int
   1446 pmap_pmap_ctor(void *arg, void *v, int flags)
   1447 {
   1448 
   1449 	memset(v, 0, sizeof(struct pmap));
   1450 	return (0);
   1451 }
   1452 
   1453 #ifdef PMAP_CACHE_VIVT
   1454 /*
   1455  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1456  * there is more than one mapping and at least one of them is writable.
   1457  * Since we purge the cache on every context switch, we only need to check for
   1458  * other mappings within the same pmap, or kernel_pmap.
   1459  * This function is also called when a page is unmapped, to possibly reenable
   1460  * caching on any remaining mappings.
   1461  *
   1462  * The code implements the following logic, where:
   1463  *
   1464  * KW = # of kernel read/write pages
   1465  * KR = # of kernel read only pages
   1466  * UW = # of user read/write pages
   1467  * UR = # of user read only pages
   1468  *
   1469  * KC = kernel mapping is cacheable
   1470  * UC = user mapping is cacheable
   1471  *
   1472  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1473  *             +---------------------------------------------
   1474  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1475  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1476  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1477  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1478  */
   1479 
   1480 static const int pmap_vac_flags[4][4] = {
   1481 	{-1,		0,		0,		PVF_KNC},
   1482 	{0,		0,		PVF_NC,		PVF_NC},
   1483 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1484 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1485 };
   1486 
   1487 static inline int
   1488 pmap_get_vac_flags(const struct vm_page *pg)
   1489 {
   1490 	int kidx, uidx;
   1491 
   1492 	kidx = 0;
   1493 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1494 		kidx |= 1;
   1495 	if (pg->mdpage.krw_mappings)
   1496 		kidx |= 2;
   1497 
   1498 	uidx = 0;
   1499 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1500 		uidx |= 1;
   1501 	if (pg->mdpage.urw_mappings)
   1502 		uidx |= 2;
   1503 
   1504 	return (pmap_vac_flags[uidx][kidx]);
   1505 }
   1506 
   1507 static inline void
   1508 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1509 {
   1510 	int nattr;
   1511 
   1512 	nattr = pmap_get_vac_flags(pg);
   1513 
   1514 	if (nattr < 0) {
   1515 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1516 		return;
   1517 	}
   1518 
   1519 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1520 		return;
   1521 
   1522 	if (pm == pmap_kernel())
   1523 		pmap_vac_me_kpmap(pg, pm, va);
   1524 	else
   1525 		pmap_vac_me_user(pg, pm, va);
   1526 
   1527 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1528 }
   1529 
   1530 static void
   1531 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1532 {
   1533 	u_int u_cacheable, u_entries;
   1534 	struct pv_entry *pv;
   1535 	pmap_t last_pmap = pm;
   1536 
   1537 	/*
   1538 	 * Pass one, see if there are both kernel and user pmaps for
   1539 	 * this page.  Calculate whether there are user-writable or
   1540 	 * kernel-writable pages.
   1541 	 */
   1542 	u_cacheable = 0;
   1543 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1544 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1545 			u_cacheable++;
   1546 	}
   1547 
   1548 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1549 
   1550 	/*
   1551 	 * We know we have just been updating a kernel entry, so if
   1552 	 * all user pages are already cacheable, then there is nothing
   1553 	 * further to do.
   1554 	 */
   1555 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1556 		return;
   1557 
   1558 	if (u_entries) {
   1559 		/*
   1560 		 * Scan over the list again, for each entry, if it
   1561 		 * might not be set correctly, call pmap_vac_me_user
   1562 		 * to recalculate the settings.
   1563 		 */
   1564 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1565 			/*
   1566 			 * We know kernel mappings will get set
   1567 			 * correctly in other calls.  We also know
   1568 			 * that if the pmap is the same as last_pmap
   1569 			 * then we've just handled this entry.
   1570 			 */
   1571 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1572 				continue;
   1573 
   1574 			/*
   1575 			 * If there are kernel entries and this page
   1576 			 * is writable but non-cacheable, then we can
   1577 			 * skip this entry also.
   1578 			 */
   1579 			if (pg->mdpage.k_mappings &&
   1580 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1581 			    (PVF_NC | PVF_WRITE))
   1582 				continue;
   1583 
   1584 			/*
   1585 			 * Similarly if there are no kernel-writable
   1586 			 * entries and the page is already
   1587 			 * read-only/cacheable.
   1588 			 */
   1589 			if (pg->mdpage.krw_mappings == 0 &&
   1590 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1591 				continue;
   1592 
   1593 			/*
   1594 			 * For some of the remaining cases, we know
   1595 			 * that we must recalculate, but for others we
   1596 			 * can't tell if they are correct or not, so
   1597 			 * we recalculate anyway.
   1598 			 */
   1599 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1600 		}
   1601 
   1602 		if (pg->mdpage.k_mappings == 0)
   1603 			return;
   1604 	}
   1605 
   1606 	pmap_vac_me_user(pg, pm, va);
   1607 }
   1608 
   1609 static void
   1610 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1611 {
   1612 	pmap_t kpmap = pmap_kernel();
   1613 	struct pv_entry *pv, *npv;
   1614 	struct l2_bucket *l2b;
   1615 	pt_entry_t *ptep, pte;
   1616 	u_int entries = 0;
   1617 	u_int writable = 0;
   1618 	u_int cacheable_entries = 0;
   1619 	u_int kern_cacheable = 0;
   1620 	u_int other_writable = 0;
   1621 
   1622 	/*
   1623 	 * Count mappings and writable mappings in this pmap.
   1624 	 * Include kernel mappings as part of our own.
   1625 	 * Keep a pointer to the first one.
   1626 	 */
   1627 	for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1628 		/* Count mappings in the same pmap */
   1629 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1630 			if (entries++ == 0)
   1631 				npv = pv;
   1632 
   1633 			/* Cacheable mappings */
   1634 			if ((pv->pv_flags & PVF_NC) == 0) {
   1635 				cacheable_entries++;
   1636 				if (kpmap == pv->pv_pmap)
   1637 					kern_cacheable++;
   1638 			}
   1639 
   1640 			/* Writable mappings */
   1641 			if (pv->pv_flags & PVF_WRITE)
   1642 				++writable;
   1643 		} else
   1644 		if (pv->pv_flags & PVF_WRITE)
   1645 			other_writable = 1;
   1646 	}
   1647 
   1648 	/*
   1649 	 * Enable or disable caching as necessary.
   1650 	 * Note: the first entry might be part of the kernel pmap,
   1651 	 * so we can't assume this is indicative of the state of the
   1652 	 * other (maybe non-kpmap) entries.
   1653 	 */
   1654 	if ((entries > 1 && writable) ||
   1655 	    (entries > 0 && pm == kpmap && other_writable)) {
   1656 		if (cacheable_entries == 0)
   1657 			return;
   1658 
   1659 		for (pv = npv; pv; pv = pv->pv_next) {
   1660 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1661 			    (pv->pv_flags & PVF_NC))
   1662 				continue;
   1663 
   1664 			pv->pv_flags |= PVF_NC;
   1665 
   1666 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1667 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1668 			pte = *ptep & ~L2_S_CACHE_MASK;
   1669 
   1670 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1671 			    l2pte_valid(pte)) {
   1672 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1673 #ifdef PMAP_CACHE_VIVT
   1674 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1675 					    pv->pv_va, PAGE_SIZE);
   1676 #endif
   1677 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1678 					    pv->pv_va);
   1679 				} else
   1680 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1681 #ifdef PMAP_CACHE_VIVT
   1682 					pmap_dcache_wb_range(pv->pv_pmap,
   1683 					    pv->pv_va, PAGE_SIZE, TRUE,
   1684 					    (pv->pv_flags & PVF_WRITE) == 0);
   1685 #endif
   1686 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1687 					    pv->pv_va);
   1688 				}
   1689 			}
   1690 
   1691 			*ptep = pte;
   1692 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1693 		}
   1694 		cpu_cpwait();
   1695 	} else
   1696 	if (entries > cacheable_entries) {
   1697 		/*
   1698 		 * Turn cacheing back on for some pages.  If it is a kernel
   1699 		 * page, only do so if there are no other writable pages.
   1700 		 */
   1701 		for (pv = npv; pv; pv = pv->pv_next) {
   1702 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1703 			    (kpmap != pv->pv_pmap || other_writable)))
   1704 				continue;
   1705 
   1706 			pv->pv_flags &= ~PVF_NC;
   1707 
   1708 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1709 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1710 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1711 
   1712 			if (l2pte_valid(pte)) {
   1713 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1714 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1715 					    pv->pv_va);
   1716 				} else
   1717 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1718 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1719 					    pv->pv_va);
   1720 				}
   1721 			}
   1722 
   1723 			*ptep = pte;
   1724 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1725 		}
   1726 	}
   1727 }
   1728 #endif
   1729 
   1730 #ifdef PMAP_CACHE_VIPT
   1731 /*
   1732  * For virtually indexed / physically tagged caches, what we have to worry
   1733  * about is illegal cache aliases.  To prevent this, we must ensure that
   1734  * virtual addresses that map the physical page use the same bits for those
   1735  * bits masked by "arm_cache_prefer_mask" (bits 12+).  If there is a conflict,
   1736  * all mappings of the page must be non-cached.
   1737  */
   1738 static void
   1739 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1740 {
   1741 	struct pv_entry *pv, pv0;
   1742 	vaddr_t tst_mask;
   1743 	bool bad_alias;
   1744 	struct l2_bucket *l2b;
   1745 	pt_entry_t *ptep, pte, opte;
   1746 
   1747 	/* do we need to do anything? */
   1748 	if (arm_cache_prefer_mask == 0)
   1749 		return;
   1750 
   1751 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1752 	    pg, pm, va));
   1753 
   1754 #define popc4(x) \
   1755 	(((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
   1756 
   1757 	KASSERT(!va || pm || (pg->mdpage.pvh_attrs & PVF_KENTRY));
   1758 
   1759 	/* Already a conflict? */
   1760 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1761 		/* just an add, things are already non-cached */
   1762 		bad_alias = false;
   1763 		if (va) {
   1764 			PMAPCOUNT(vac_color_none);
   1765 			bad_alias = true;
   1766 			goto fixup;
   1767 		}
   1768 		pv = pg->mdpage.pvh_list;
   1769 		/* the list can't be empty because it would be cachable */
   1770 		if (pg->mdpage.pvh_attrs & PVF_KENTRY) {
   1771 			tst_mask = pg->mdpage.pvh_attrs;
   1772 		} else {
   1773 			KASSERT(pv);
   1774 			tst_mask = pv->pv_va;
   1775 			pv = pv->pv_next;
   1776 		}
   1777 		tst_mask &= arm_cache_prefer_mask;
   1778 		for (; pv && !bad_alias; pv = pv->pv_next) {
   1779 			/* if there's a bad alias, stop checking. */
   1780 			if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1781 				bad_alias = true;
   1782 		}
   1783 		/* If no conflicting colors, set everything back to cached */
   1784 		if (!bad_alias) {
   1785 			PMAPCOUNT(vac_color_restore);
   1786 			pg->mdpage.pvh_attrs |= PVF_COLORED;
   1787 			if (!(pg->mdpage.pvh_attrs & PVF_KENTRY)) {
   1788 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1789 				pg->mdpage.pvh_attrs |= tst_mask;
   1790 			}
   1791 			pg->mdpage.pvh_attrs &= ~PVF_NC;
   1792 		} else {
   1793 			KASSERT(pg->mdpage.pvh_list != NULL);
   1794 			KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY)
   1795 			     || pg->mdpage.pvh_list->pv_next != NULL);
   1796 		}
   1797 	} else if (!va) {
   1798 		KASSERT(pmap_is_page_colored_p(pg));
   1799 		if (pm == NULL)
   1800 			pg->mdpage.pvh_attrs &=
   1801 			    (PAGE_SIZE - 1) | arm_cache_prefer_mask;
   1802 		return;
   1803 	} else if (!pmap_is_page_colored_p(pg)) {
   1804 		/* not colored so we just use its color */
   1805 		PMAPCOUNT(vac_color_new);
   1806 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1807 		if (pm == NULL)
   1808 			pg->mdpage.pvh_attrs |= PVF_COLORED | va;
   1809 		else
   1810 			pg->mdpage.pvh_attrs |= PVF_COLORED
   1811 			    | (va & arm_cache_prefer_mask);
   1812 		return;
   1813 	} else if (!((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask)) {
   1814 		if (pm == NULL) {
   1815 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1816 			pg->mdpage.pvh_attrs |= va;
   1817 		}
   1818 		if (pg->mdpage.pvh_list)
   1819 			PMAPCOUNT(vac_color_reuse);
   1820 		else
   1821 			PMAPCOUNT(vac_color_ok);
   1822 		/* matching color, just return */
   1823 		return;
   1824 	} else {
   1825 		/* color conflict.  evict from cache. */
   1826 		pmap_flush_page(pg);
   1827 
   1828 		/* the list can't be empty because this was a enter/modify */
   1829 		pv = pg->mdpage.pvh_list;
   1830 		KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY) || pv);
   1831 
   1832 		/*
   1833 		 * If there's only one mapped page, change color to the
   1834 		 * page's new color and return.
   1835 		 */
   1836 		if (((pg->mdpage.pvh_attrs & PVF_KENTRY)
   1837 		    ? pv : pv->pv_next) == NULL) {
   1838 			PMAPCOUNT(vac_color_change);
   1839 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1840 			if (pm == NULL)
   1841 				pg->mdpage.pvh_attrs |= va;
   1842 			else
   1843 				pg->mdpage.pvh_attrs |=
   1844 				    (va & arm_cache_prefer_mask);
   1845 			return;
   1846 		}
   1847 		bad_alias = true;
   1848 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1849 		pg->mdpage.pvh_attrs |= PVF_NC;
   1850 		PMAPCOUNT(vac_color_erase);
   1851 	}
   1852 
   1853   fixup:
   1854 	/*
   1855 	 * If the pmap is NULL, then we got called from pmap_kenter_pa
   1856 	 * and we must save the kenter'ed va.  And this changes the
   1857 	 * color to match the kenter'ed page.  if this is a remove clear
   1858 	 * saved va bits which retaining the color bits.
   1859 	 */
   1860 	if (pm == NULL) {
   1861 		if (va) {
   1862 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1);
   1863 			pg->mdpage.pvh_attrs |= va;
   1864 		} else {
   1865 			pg->mdpage.pvh_attrs &=
   1866 			    ((PAGE_SIZE - 1) | arm_cache_prefer_mask);
   1867 		}
   1868 	}
   1869 
   1870 	pv = pg->mdpage.pvh_list;
   1871 
   1872 	/*
   1873 	 * If this page has an kenter'ed mapping, fake up a pv entry.
   1874 	 */
   1875 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_KENTRY)) {
   1876 		pv0.pv_pmap = pmap_kernel();
   1877 		pv0.pv_va = pg->mdpage.pvh_attrs & ~(PAGE_SIZE - 1);
   1878 		pv0.pv_next = pv;
   1879 		pv0.pv_flags = PVF_REF;
   1880 		pv = &pv0;
   1881 	}
   1882 
   1883 	/*
   1884 	 * Turn cacheing on/off for all pages.
   1885 	 */
   1886 	for (; pv; pv = pv->pv_next) {
   1887 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1888 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1889 		opte = *ptep;
   1890 		pte = opte & ~L2_S_CACHE_MASK;
   1891 		if (bad_alias) {
   1892 			pv->pv_flags |= PVF_NC;
   1893 		} else {
   1894 			pv->pv_flags &= ~PVF_NC;
   1895 			pte |= pte_l2_s_cache_mode;
   1896 		}
   1897 		if (opte == pte)	/* only update is there's a change */
   1898 			continue;
   1899 
   1900 		if (l2pte_valid(pte)) {
   1901 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   1902 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   1903 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   1904 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   1905 			}
   1906 		}
   1907 
   1908 		*ptep = pte;
   1909 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1910 	}
   1911 }
   1912 #endif	/* PMAP_CACHE_VIPT */
   1913 
   1914 
   1915 /*
   1916  * Modify pte bits for all ptes corresponding to the given physical address.
   1917  * We use `maskbits' rather than `clearbits' because we're always passing
   1918  * constants and the latter would require an extra inversion at run-time.
   1919  */
   1920 static void
   1921 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   1922 {
   1923 	struct l2_bucket *l2b;
   1924 	struct pv_entry *pv;
   1925 	pt_entry_t *ptep, npte, opte;
   1926 	pmap_t pm;
   1927 	vaddr_t va;
   1928 	u_int oflags;
   1929 #ifdef PMAP_CACHE_VIPT
   1930 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   1931 	bool need_syncicache = false;
   1932 	bool did_syncicache = false;
   1933 #endif
   1934 
   1935 	NPDEBUG(PDB_BITS,
   1936 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   1937 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   1938 
   1939 	PMAP_HEAD_TO_MAP_LOCK();
   1940 	simple_lock(&pg->mdpage.pvh_slock);
   1941 
   1942 #ifdef PMAP_CACHE_VIPT
   1943 	/*
   1944 	 * If we might want to sync the I-cache and we've modified it,
   1945 	 * then we know we definitely need to sync or discard it.
   1946 	 */
   1947 	if (want_syncicache)
   1948 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   1949 #endif
   1950 	/*
   1951 	 * Clear saved attributes (modify, reference)
   1952 	 */
   1953 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   1954 
   1955 	if (pg->mdpage.pvh_list == NULL) {
   1956 #ifdef PMAP_CACHE_VIPT
   1957 		if (need_syncicache) {
   1958 			/*
   1959 			 * No one has it mapped, so just discard it.  The next
   1960 			 * exec remapping will cause it to be synced.
   1961 			 */
   1962 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   1963 			PMAPCOUNT(exec_discarded_clearbit);
   1964 		}
   1965 #endif
   1966 		simple_unlock(&pg->mdpage.pvh_slock);
   1967 		PMAP_HEAD_TO_MAP_UNLOCK();
   1968 		return;
   1969 	}
   1970 
   1971 	/*
   1972 	 * Loop over all current mappings setting/clearing as appropos
   1973 	 */
   1974 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1975 		va = pv->pv_va;
   1976 		pm = pv->pv_pmap;
   1977 		oflags = pv->pv_flags;
   1978 		pv->pv_flags &= ~maskbits;
   1979 
   1980 		pmap_acquire_pmap_lock(pm);
   1981 
   1982 		l2b = pmap_get_l2_bucket(pm, va);
   1983 		KDASSERT(l2b != NULL);
   1984 
   1985 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   1986 		npte = opte = *ptep;
   1987 
   1988 		NPDEBUG(PDB_BITS,
   1989 		    printf(
   1990 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   1991 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   1992 
   1993 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   1994 #ifdef PMAP_CACHE_VIVT
   1995 			if ((pv->pv_flags & PVF_NC)) {
   1996 				/*
   1997 				 * Entry is not cacheable:
   1998 				 *
   1999 				 * Don't turn caching on again if this is a
   2000 				 * modified emulation. This would be
   2001 				 * inconsitent with the settings created by
   2002 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2003 				 * to re-enable cacheing.
   2004 				 *
   2005 				 * There's no need to call pmap_vac_me_harder()
   2006 				 * here: all pages are losing their write
   2007 				 * permission.
   2008 				 */
   2009 				if (maskbits & PVF_WRITE) {
   2010 					npte |= pte_l2_s_cache_mode;
   2011 					pv->pv_flags &= ~PVF_NC;
   2012 				}
   2013 			} else
   2014 			if (opte & L2_S_PROT_W) {
   2015 				/*
   2016 				 * Entry is writable/cacheable: check if pmap
   2017 				 * is current if it is flush it, otherwise it
   2018 				 * won't be in the cache
   2019 				 */
   2020 				if (PV_BEEN_EXECD(oflags))
   2021 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2022 					    PAGE_SIZE);
   2023 				else
   2024 				if (PV_BEEN_REFD(oflags))
   2025 					pmap_dcache_wb_range(pm, pv->pv_va,
   2026 					    PAGE_SIZE,
   2027 					    (maskbits & PVF_REF) ? TRUE : FALSE,
   2028 					    FALSE);
   2029 			}
   2030 #endif
   2031 
   2032 			/* make the pte read only */
   2033 			npte &= ~L2_S_PROT_W;
   2034 
   2035 			if (maskbits & oflags & PVF_WRITE) {
   2036 				/*
   2037 				 * Keep alias accounting up to date
   2038 				 */
   2039 				if (pv->pv_pmap == pmap_kernel()) {
   2040 					pg->mdpage.krw_mappings--;
   2041 					pg->mdpage.kro_mappings++;
   2042 				} else {
   2043 					pg->mdpage.urw_mappings--;
   2044 					pg->mdpage.uro_mappings++;
   2045 				}
   2046 #ifdef PMAP_CACHE_VIPT
   2047 				if (want_syncicache)
   2048 					need_syncicache = true;
   2049 #endif
   2050 			}
   2051 		}
   2052 
   2053 		if (maskbits & PVF_REF) {
   2054 #ifdef PMAP_CACHE_VIVT
   2055 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2056 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2057 			    l2pte_valid(npte)) {
   2058 				/*
   2059 				 * Check npte here; we may have already
   2060 				 * done the wbinv above, and the validity
   2061 				 * of the PTE is the same for opte and
   2062 				 * npte.
   2063 				 */
   2064 				/* XXXJRT need idcache_inv_range */
   2065 				if (PV_BEEN_EXECD(oflags))
   2066 					pmap_idcache_wbinv_range(pm,
   2067 					    pv->pv_va, PAGE_SIZE);
   2068 				else
   2069 				if (PV_BEEN_REFD(oflags))
   2070 					pmap_dcache_wb_range(pm,
   2071 					    pv->pv_va, PAGE_SIZE,
   2072 					    TRUE, TRUE);
   2073 			}
   2074 #endif
   2075 
   2076 			/*
   2077 			 * Make the PTE invalid so that we will take a
   2078 			 * page fault the next time the mapping is
   2079 			 * referenced.
   2080 			 */
   2081 			npte &= ~L2_TYPE_MASK;
   2082 			npte |= L2_TYPE_INV;
   2083 		}
   2084 
   2085 		if (npte != opte) {
   2086 			*ptep = npte;
   2087 			PTE_SYNC(ptep);
   2088 			/* Flush the TLB entry if a current pmap. */
   2089 			if (PV_BEEN_EXECD(oflags))
   2090 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2091 			else
   2092 			if (PV_BEEN_REFD(oflags))
   2093 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2094 		}
   2095 
   2096 		pmap_release_pmap_lock(pm);
   2097 
   2098 		NPDEBUG(PDB_BITS,
   2099 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2100 		    pm, va, opte, npte));
   2101 	}
   2102 
   2103 #ifdef PMAP_CACHE_VIPT
   2104 	/*
   2105 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2106 	 */
   2107 	if (need_syncicache && !did_syncicache) {
   2108 		pmap_syncicache_page(pg);
   2109 		PMAPCOUNT(exec_synced_clearbit);
   2110 	}
   2111 #endif
   2112 
   2113 	simple_unlock(&pg->mdpage.pvh_slock);
   2114 	PMAP_HEAD_TO_MAP_UNLOCK();
   2115 }
   2116 
   2117 /*
   2118  * pmap_clean_page()
   2119  *
   2120  * This is a local function used to work out the best strategy to clean
   2121  * a single page referenced by its entry in the PV table. It's used by
   2122  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2123  *
   2124  * Its policy is effectively:
   2125  *  o If there are no mappings, we don't bother doing anything with the cache.
   2126  *  o If there is one mapping, we clean just that page.
   2127  *  o If there are multiple mappings, we clean the entire cache.
   2128  *
   2129  * So that some functions can be further optimised, it returns 0 if it didn't
   2130  * clean the entire cache, or 1 if it did.
   2131  *
   2132  * XXX One bug in this routine is that if the pv_entry has a single page
   2133  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2134  * just the 1 page. Since this should not occur in everyday use and if it does
   2135  * it will just result in not the most efficient clean for the page.
   2136  */
   2137 #ifdef PMAP_CACHE_VIVT
   2138 static int
   2139 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   2140 {
   2141 	pmap_t pm, pm_to_clean = NULL;
   2142 	struct pv_entry *npv;
   2143 	u_int cache_needs_cleaning = 0;
   2144 	u_int flags = 0;
   2145 	vaddr_t page_to_clean = 0;
   2146 
   2147 	if (pv == NULL) {
   2148 		/* nothing mapped in so nothing to flush */
   2149 		return (0);
   2150 	}
   2151 
   2152 	/*
   2153 	 * Since we flush the cache each time we change to a different
   2154 	 * user vmspace, we only need to flush the page if it is in the
   2155 	 * current pmap.
   2156 	 */
   2157 	if (curproc)
   2158 		pm = curproc->p_vmspace->vm_map.pmap;
   2159 	else
   2160 		pm = pmap_kernel();
   2161 
   2162 	for (npv = pv; npv; npv = npv->pv_next) {
   2163 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2164 			flags |= npv->pv_flags;
   2165 			/*
   2166 			 * The page is mapped non-cacheable in
   2167 			 * this map.  No need to flush the cache.
   2168 			 */
   2169 			if (npv->pv_flags & PVF_NC) {
   2170 #ifdef DIAGNOSTIC
   2171 				if (cache_needs_cleaning)
   2172 					panic("pmap_clean_page: "
   2173 					    "cache inconsistency");
   2174 #endif
   2175 				break;
   2176 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2177 				continue;
   2178 			if (cache_needs_cleaning) {
   2179 				page_to_clean = 0;
   2180 				break;
   2181 			} else {
   2182 				page_to_clean = npv->pv_va;
   2183 				pm_to_clean = npv->pv_pmap;
   2184 			}
   2185 			cache_needs_cleaning = 1;
   2186 		}
   2187 	}
   2188 
   2189 	if (page_to_clean) {
   2190 		if (PV_BEEN_EXECD(flags))
   2191 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2192 			    PAGE_SIZE);
   2193 		else
   2194 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2195 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2196 	} else if (cache_needs_cleaning) {
   2197 		if (PV_BEEN_EXECD(flags))
   2198 			pmap_idcache_wbinv_all(pm);
   2199 		else
   2200 			pmap_dcache_wbinv_all(pm);
   2201 		return (1);
   2202 	}
   2203 	return (0);
   2204 }
   2205 #endif
   2206 
   2207 #ifdef PMAP_CACHE_VIPT
   2208 /*
   2209  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2210  * right cache alias to make sure we flush the right stuff.
   2211  */
   2212 void
   2213 pmap_syncicache_page(struct vm_page *pg)
   2214 {
   2215 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2216 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2217 
   2218 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2219 	    pg, pg->mdpage.pvh_attrs));
   2220 	/*
   2221 	 * No need to clean the page if it's non-cached.
   2222 	 */
   2223 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2224 		return;
   2225 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2226 
   2227 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2228 	/*
   2229 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2230 	 */
   2231 	*ptep = L2_S_PROTO |
   2232 	    VM_PAGE_TO_PHYS(pg)
   2233 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2234 	    | pte_l2_s_cache_mode;
   2235 	PTE_SYNC(ptep);
   2236 
   2237 	/*
   2238 	 * Flush it.
   2239 	 */
   2240 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2241 	/*
   2242 	 * Unmap the page.
   2243 	 */
   2244 	*ptep = 0;
   2245 	PTE_SYNC(ptep);
   2246 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2247 
   2248 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2249 	PMAPCOUNT(exec_synced);
   2250 }
   2251 
   2252 void
   2253 pmap_flush_page(struct vm_page *pg)
   2254 {
   2255 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2256 	const size_t pte_offset = va_offset >> PGSHIFT;
   2257 	pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2258 
   2259 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2260 
   2261 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2262 	    pg, pg->mdpage.pvh_attrs));
   2263 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2264 	/*
   2265 	 * Set up a PTE with the right coloring to flush existing cache entries.
   2266 	 */
   2267 	*ptep = L2_S_PROTO
   2268 	    | VM_PAGE_TO_PHYS(pg)
   2269 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2270 	    | pte_l2_s_cache_mode;
   2271 	PTE_SYNC(ptep);
   2272 
   2273 	/*
   2274 	 * Flush it.
   2275 	 */
   2276 	cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   2277 
   2278 	/*
   2279 	 * Unmap the page.
   2280 	 */
   2281 	*ptep = 0;
   2282 	PTE_SYNC(ptep);
   2283 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2284 }
   2285 #endif /* PMAP_CACHE_VIPT */
   2286 
   2287 /*
   2288  * Routine:	pmap_page_remove
   2289  * Function:
   2290  *		Removes this physical page from
   2291  *		all physical maps in which it resides.
   2292  *		Reflects back modify bits to the pager.
   2293  */
   2294 static void
   2295 pmap_page_remove(struct vm_page *pg)
   2296 {
   2297 	struct l2_bucket *l2b;
   2298 	struct pv_entry *pv, *npv;
   2299 	pmap_t pm, curpm;
   2300 	pt_entry_t *ptep, pte;
   2301 	boolean_t flush;
   2302 	u_int flags;
   2303 
   2304 	NPDEBUG(PDB_FOLLOW,
   2305 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2306 	    VM_PAGE_TO_PHYS(pg)));
   2307 
   2308 	PMAP_HEAD_TO_MAP_LOCK();
   2309 	simple_lock(&pg->mdpage.pvh_slock);
   2310 
   2311 	pv = pg->mdpage.pvh_list;
   2312 	if (pv == NULL) {
   2313 #ifdef PMAP_CACHE_VIPT
   2314 		/*
   2315 		 * We *know* the page contents are about to be replaced.
   2316 		 * Discard the exec contents
   2317 		 */
   2318 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2319 			PMAPCOUNT(exec_discarded_page_protect);
   2320 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2321 #endif
   2322 		simple_unlock(&pg->mdpage.pvh_slock);
   2323 		PMAP_HEAD_TO_MAP_UNLOCK();
   2324 		return;
   2325 	}
   2326 #ifdef PMAP_CACHE_VIPT
   2327 	KASSERT(pmap_is_page_colored_p(pg));
   2328 #endif
   2329 
   2330 	/*
   2331 	 * Clear alias counts
   2332 	 */
   2333 	pg->mdpage.k_mappings = 0;
   2334 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2335 
   2336 	flush = FALSE;
   2337 	flags = 0;
   2338 	if (curproc)
   2339 		curpm = curproc->p_vmspace->vm_map.pmap;
   2340 	else
   2341 		curpm = pmap_kernel();
   2342 
   2343 #ifdef PMAP_CACHE_VIVT
   2344 	pmap_clean_page(pv, FALSE);
   2345 #endif
   2346 
   2347 	while (pv) {
   2348 		pm = pv->pv_pmap;
   2349 		if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
   2350 			flush = TRUE;
   2351 
   2352 		if (pm == pmap_kernel())
   2353 			PMAPCOUNT(kernel_unmappings);
   2354 		PMAPCOUNT(unmappings);
   2355 
   2356 		pmap_acquire_pmap_lock(pm);
   2357 
   2358 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2359 		KDASSERT(l2b != NULL);
   2360 
   2361 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2362 		pte = *ptep;
   2363 
   2364 		/*
   2365 		 * Update statistics
   2366 		 */
   2367 		--pm->pm_stats.resident_count;
   2368 
   2369 		/* Wired bit */
   2370 		if (pv->pv_flags & PVF_WIRED)
   2371 			--pm->pm_stats.wired_count;
   2372 
   2373 		flags |= pv->pv_flags;
   2374 
   2375 		/*
   2376 		 * Invalidate the PTEs.
   2377 		 */
   2378 		*ptep = 0;
   2379 		PTE_SYNC_CURRENT(pm, ptep);
   2380 		pmap_free_l2_bucket(pm, l2b, 1);
   2381 
   2382 		npv = pv->pv_next;
   2383 		pool_put(&pmap_pv_pool, pv);
   2384 		pv = npv;
   2385 #ifdef PMAP_CACHE_VIPT
   2386 		/*
   2387 		 * If this is the last pv entry and there is a kenter alias
   2388 		 * we must call pmap_me_me_harder to restore its cacheability.
   2389 		 * We need a pmap (to indicate we are removing a normal
   2390 		 * mapping) so use this one.
   2391 		 */
   2392 		if (pv == NULL) {
   2393 			pg->mdpage.pvh_list = NULL;
   2394 			if (pg->mdpage.pvh_attrs & PVF_KENTRY)
   2395 				pmap_vac_me_harder(pg, pm, 0);
   2396 		}
   2397 #endif
   2398 		pmap_release_pmap_lock(pm);
   2399 	}
   2400 #ifdef PMAP_CACHE_VIPT
   2401 	/*
   2402 	 * Since there are now no mappings, there isn't reason to mark it
   2403 	 * as uncached.  Its EXEC cache is also gone.
   2404 	 */
   2405 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2406 		PMAPCOUNT(exec_discarded_page_protect);
   2407 	pg->mdpage.pvh_attrs &= ~(PVF_NC|PVF_EXEC);
   2408 #endif
   2409 #ifdef PMAP_CACHE_VIVT
   2410 	pg->mdpage.pvh_list = NULL;
   2411 #endif
   2412 	simple_unlock(&pg->mdpage.pvh_slock);
   2413 	PMAP_HEAD_TO_MAP_UNLOCK();
   2414 
   2415 	if (flush) {
   2416 		/*
   2417 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2418 		 * would need a subsequent call to pmap_update() to ensure
   2419 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2420 		 * required to do that (see pmap(9)), so we can't modify
   2421 		 * the current pmap's state.
   2422 		 */
   2423 		if (PV_BEEN_EXECD(flags))
   2424 			cpu_tlb_flushID();
   2425 		else
   2426 			cpu_tlb_flushD();
   2427 	}
   2428 	cpu_cpwait();
   2429 }
   2430 
   2431 /*
   2432  * pmap_t pmap_create(void)
   2433  *
   2434  *      Create a new pmap structure from scratch.
   2435  */
   2436 pmap_t
   2437 pmap_create(void)
   2438 {
   2439 	pmap_t pm;
   2440 
   2441 	pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
   2442 
   2443 	simple_lock_init(&pm->pm_lock);
   2444 	pm->pm_obj.pgops = NULL;	/* currently not a mappable object */
   2445 	TAILQ_INIT(&pm->pm_obj.memq);
   2446 	pm->pm_obj.uo_npages = 0;
   2447 	pm->pm_obj.uo_refs = 1;
   2448 	pm->pm_stats.wired_count = 0;
   2449 	pm->pm_stats.resident_count = 1;
   2450 	pm->pm_cstate.cs_all = 0;
   2451 	pmap_alloc_l1(pm);
   2452 
   2453 	/*
   2454 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2455 	 * initialised to zero.
   2456 	 */
   2457 
   2458 	pmap_pinit(pm);
   2459 
   2460 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2461 
   2462 	return (pm);
   2463 }
   2464 
   2465 /*
   2466  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2467  *     int flags)
   2468  *
   2469  *      Insert the given physical page (p) at
   2470  *      the specified virtual address (v) in the
   2471  *      target physical map with the protection requested.
   2472  *
   2473  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2474  *      or lose information.  That is, this routine must actually
   2475  *      insert this page into the given map NOW.
   2476  */
   2477 int
   2478 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2479 {
   2480 	struct l2_bucket *l2b;
   2481 	struct vm_page *pg, *opg;
   2482 	struct pv_entry *pve;
   2483 	pt_entry_t *ptep, npte, opte;
   2484 	u_int nflags;
   2485 	u_int oflags;
   2486 
   2487 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2488 
   2489 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2490 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2491 
   2492 	/*
   2493 	 * Get a pointer to the page.  Later on in this function, we
   2494 	 * test for a managed page by checking pg != NULL.
   2495 	 */
   2496 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2497 
   2498 	nflags = 0;
   2499 	if (prot & VM_PROT_WRITE)
   2500 		nflags |= PVF_WRITE;
   2501 	if (prot & VM_PROT_EXECUTE)
   2502 		nflags |= PVF_EXEC;
   2503 	if (flags & PMAP_WIRED)
   2504 		nflags |= PVF_WIRED;
   2505 
   2506 	PMAP_MAP_TO_HEAD_LOCK();
   2507 	pmap_acquire_pmap_lock(pm);
   2508 
   2509 	/*
   2510 	 * Fetch the L2 bucket which maps this page, allocating one if
   2511 	 * necessary for user pmaps.
   2512 	 */
   2513 	if (pm == pmap_kernel())
   2514 		l2b = pmap_get_l2_bucket(pm, va);
   2515 	else
   2516 		l2b = pmap_alloc_l2_bucket(pm, va);
   2517 	if (l2b == NULL) {
   2518 		if (flags & PMAP_CANFAIL) {
   2519 			pmap_release_pmap_lock(pm);
   2520 			PMAP_MAP_TO_HEAD_UNLOCK();
   2521 			return (ENOMEM);
   2522 		}
   2523 		panic("pmap_enter: failed to allocate L2 bucket");
   2524 	}
   2525 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2526 	opte = *ptep;
   2527 	npte = pa;
   2528 	oflags = 0;
   2529 
   2530 	if (opte) {
   2531 		/*
   2532 		 * There is already a mapping at this address.
   2533 		 * If the physical address is different, lookup the
   2534 		 * vm_page.
   2535 		 */
   2536 		if (l2pte_pa(opte) != pa)
   2537 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2538 		else
   2539 			opg = pg;
   2540 	} else
   2541 		opg = NULL;
   2542 
   2543 	if (pg) {
   2544 		/*
   2545 		 * This is to be a managed mapping.
   2546 		 */
   2547 		if ((flags & VM_PROT_ALL) ||
   2548 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2549 			/*
   2550 			 * - The access type indicates that we don't need
   2551 			 *   to do referenced emulation.
   2552 			 * OR
   2553 			 * - The physical page has already been referenced
   2554 			 *   so no need to re-do referenced emulation here.
   2555 			 */
   2556 			npte |= L2_S_PROTO;
   2557 
   2558 			nflags |= PVF_REF;
   2559 
   2560 			if ((prot & VM_PROT_WRITE) != 0 &&
   2561 			    ((flags & VM_PROT_WRITE) != 0 ||
   2562 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2563 				/*
   2564 				 * This is a writable mapping, and the
   2565 				 * page's mod state indicates it has
   2566 				 * already been modified. Make it
   2567 				 * writable from the outset.
   2568 				 */
   2569 				npte |= L2_S_PROT_W;
   2570 				nflags |= PVF_MOD;
   2571 			}
   2572 		} else {
   2573 			/*
   2574 			 * Need to do page referenced emulation.
   2575 			 */
   2576 			npte |= L2_TYPE_INV;
   2577 		}
   2578 
   2579 		npte |= pte_l2_s_cache_mode;
   2580 
   2581 		if (pg == opg) {
   2582 			/*
   2583 			 * We're changing the attrs of an existing mapping.
   2584 			 */
   2585 			simple_lock(&pg->mdpage.pvh_slock);
   2586 			oflags = pmap_modify_pv(pg, pm, va,
   2587 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2588 			    PVF_MOD | PVF_REF, nflags);
   2589 			simple_unlock(&pg->mdpage.pvh_slock);
   2590 
   2591 #ifdef PMAP_CACHE_VIVT
   2592 			/*
   2593 			 * We may need to flush the cache if we're
   2594 			 * doing rw-ro...
   2595 			 */
   2596 			if (pm->pm_cstate.cs_cache_d &&
   2597 			    (oflags & PVF_NC) == 0 &&
   2598 			    (opte & L2_S_PROT_W) != 0 &&
   2599 			    (prot & VM_PROT_WRITE) == 0)
   2600 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2601 #endif
   2602 		} else {
   2603 			/*
   2604 			 * New mapping, or changing the backing page
   2605 			 * of an existing mapping.
   2606 			 */
   2607 			if (opg) {
   2608 				/*
   2609 				 * Replacing an existing mapping with a new one.
   2610 				 * It is part of our managed memory so we
   2611 				 * must remove it from the PV list
   2612 				 */
   2613 				simple_lock(&opg->mdpage.pvh_slock);
   2614 				pve = pmap_remove_pv(opg, pm, va, 0);
   2615 				pmap_vac_me_harder(opg, pm, 0);
   2616 				simple_unlock(&opg->mdpage.pvh_slock);
   2617 				oflags = pve->pv_flags;
   2618 
   2619 #ifdef PMAP_CACHE_VIVT
   2620 				/*
   2621 				 * If the old mapping was valid (ref/mod
   2622 				 * emulation creates 'invalid' mappings
   2623 				 * initially) then make sure to frob
   2624 				 * the cache.
   2625 				 */
   2626 				if ((oflags & PVF_NC) == 0 &&
   2627 				    l2pte_valid(opte)) {
   2628 					if (PV_BEEN_EXECD(oflags)) {
   2629 						pmap_idcache_wbinv_range(pm, va,
   2630 						    PAGE_SIZE);
   2631 					} else
   2632 					if (PV_BEEN_REFD(oflags)) {
   2633 						pmap_dcache_wb_range(pm, va,
   2634 						    PAGE_SIZE, TRUE,
   2635 						    (oflags & PVF_WRITE) == 0);
   2636 					}
   2637 				}
   2638 #endif
   2639 			} else
   2640 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2641 				if ((flags & PMAP_CANFAIL) == 0)
   2642 					panic("pmap_enter: no pv entries");
   2643 
   2644 				if (pm != pmap_kernel())
   2645 					pmap_free_l2_bucket(pm, l2b, 0);
   2646 				pmap_release_pmap_lock(pm);
   2647 				PMAP_MAP_TO_HEAD_UNLOCK();
   2648 				NPDEBUG(PDB_ENTER,
   2649 				    printf("pmap_enter: ENOMEM\n"));
   2650 				return (ENOMEM);
   2651 			}
   2652 
   2653 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2654 		}
   2655 	} else {
   2656 		/*
   2657 		 * We're mapping an unmanaged page.
   2658 		 * These are always readable, and possibly writable, from
   2659 		 * the get go as we don't need to track ref/mod status.
   2660 		 */
   2661 		npte |= L2_S_PROTO;
   2662 		if (prot & VM_PROT_WRITE)
   2663 			npte |= L2_S_PROT_W;
   2664 
   2665 		/*
   2666 		 * Make sure the vector table is mapped cacheable
   2667 		 */
   2668 		if (pm != pmap_kernel() && va == vector_page)
   2669 			npte |= pte_l2_s_cache_mode;
   2670 
   2671 		if (opg) {
   2672 			/*
   2673 			 * Looks like there's an existing 'managed' mapping
   2674 			 * at this address.
   2675 			 */
   2676 			simple_lock(&opg->mdpage.pvh_slock);
   2677 			pve = pmap_remove_pv(opg, pm, va, 0);
   2678 			pmap_vac_me_harder(opg, pm, 0);
   2679 			simple_unlock(&opg->mdpage.pvh_slock);
   2680 			oflags = pve->pv_flags;
   2681 
   2682 #ifdef PMAP_CACHE_VIVT
   2683 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2684 				if (PV_BEEN_EXECD(oflags))
   2685 					pmap_idcache_wbinv_range(pm, va,
   2686 					    PAGE_SIZE);
   2687 				else
   2688 				if (PV_BEEN_REFD(oflags))
   2689 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2690 					    TRUE, (oflags & PVF_WRITE) == 0);
   2691 			}
   2692 #endif
   2693 			pool_put(&pmap_pv_pool, pve);
   2694 		}
   2695 	}
   2696 
   2697 	/*
   2698 	 * Make sure userland mappings get the right permissions
   2699 	 */
   2700 	if (pm != pmap_kernel() && va != vector_page)
   2701 		npte |= L2_S_PROT_U;
   2702 
   2703 	/*
   2704 	 * Keep the stats up to date
   2705 	 */
   2706 	if (opte == 0) {
   2707 		l2b->l2b_occupancy++;
   2708 		pm->pm_stats.resident_count++;
   2709 	}
   2710 
   2711 	NPDEBUG(PDB_ENTER,
   2712 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2713 
   2714 	/*
   2715 	 * If this is just a wiring change, the two PTEs will be
   2716 	 * identical, so there's no need to update the page table.
   2717 	 */
   2718 	if (npte != opte) {
   2719 		boolean_t is_cached = pmap_is_cached(pm);
   2720 
   2721 		*ptep = npte;
   2722 		if (is_cached) {
   2723 			/*
   2724 			 * We only need to frob the cache/tlb if this pmap
   2725 			 * is current
   2726 			 */
   2727 			PTE_SYNC(ptep);
   2728 			if (va != vector_page && l2pte_valid(npte)) {
   2729 				/*
   2730 				 * This mapping is likely to be accessed as
   2731 				 * soon as we return to userland. Fix up the
   2732 				 * L1 entry to avoid taking another
   2733 				 * page/domain fault.
   2734 				 */
   2735 				pd_entry_t *pl1pd, l1pd;
   2736 
   2737 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2738 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2739 				    L1_C_PROTO;
   2740 				if (*pl1pd != l1pd) {
   2741 					*pl1pd = l1pd;
   2742 					PTE_SYNC(pl1pd);
   2743 				}
   2744 			}
   2745 		}
   2746 
   2747 		if (PV_BEEN_EXECD(oflags))
   2748 			pmap_tlb_flushID_SE(pm, va);
   2749 		else
   2750 		if (PV_BEEN_REFD(oflags))
   2751 			pmap_tlb_flushD_SE(pm, va);
   2752 
   2753 		NPDEBUG(PDB_ENTER,
   2754 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2755 		    is_cached, pm->pm_cstate.cs_all));
   2756 
   2757 		if (pg != NULL) {
   2758 			simple_lock(&pg->mdpage.pvh_slock);
   2759 			pmap_vac_me_harder(pg, pm, va);
   2760 			simple_unlock(&pg->mdpage.pvh_slock);
   2761 		}
   2762 	}
   2763 
   2764 	pmap_release_pmap_lock(pm);
   2765 	PMAP_MAP_TO_HEAD_UNLOCK();
   2766 
   2767 	return (0);
   2768 }
   2769 
   2770 /*
   2771  * pmap_remove()
   2772  *
   2773  * pmap_remove is responsible for nuking a number of mappings for a range
   2774  * of virtual address space in the current pmap. To do this efficiently
   2775  * is interesting, because in a number of cases a wide virtual address
   2776  * range may be supplied that contains few actual mappings. So, the
   2777  * optimisations are:
   2778  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   2779  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2780  *     maybe do just a partial cache clean. This path of execution is
   2781  *     complicated by the fact that the cache must be flushed _before_
   2782  *     the PTE is nuked, being a VAC :-)
   2783  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   2784  *     all invalidations until pmap_update(), since pmap_remove_all() has
   2785  *     already flushed the cache.
   2786  *  4. Maybe later fast-case a single page, but I don't think this is
   2787  *     going to make _that_ much difference overall.
   2788  */
   2789 
   2790 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2791 
   2792 void
   2793 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   2794 {
   2795 	struct l2_bucket *l2b;
   2796 	vaddr_t next_bucket;
   2797 	pt_entry_t *ptep;
   2798 	u_int cleanlist_idx, total, cnt;
   2799 	struct {
   2800 		vaddr_t va;
   2801 		pt_entry_t *ptep;
   2802 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2803 	u_int mappings, is_exec, is_refd;
   2804 
   2805 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   2806 	    "eva=%08lx\n", pm, sva, eva));
   2807 
   2808 	/*
   2809 	 * we lock in the pmap => pv_head direction
   2810 	 */
   2811 	PMAP_MAP_TO_HEAD_LOCK();
   2812 	pmap_acquire_pmap_lock(pm);
   2813 
   2814 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   2815 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   2816 		if (pm->pm_cstate.cs_tlb == 0)
   2817 			pm->pm_remove_all = TRUE;
   2818 	} else
   2819 		cleanlist_idx = 0;
   2820 
   2821 	total = 0;
   2822 
   2823 	while (sva < eva) {
   2824 		/*
   2825 		 * Do one L2 bucket's worth at a time.
   2826 		 */
   2827 		next_bucket = L2_NEXT_BUCKET(sva);
   2828 		if (next_bucket > eva)
   2829 			next_bucket = eva;
   2830 
   2831 		l2b = pmap_get_l2_bucket(pm, sva);
   2832 		if (l2b == NULL) {
   2833 			sva = next_bucket;
   2834 			continue;
   2835 		}
   2836 
   2837 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   2838 
   2839 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   2840 			struct vm_page *pg;
   2841 			pt_entry_t pte;
   2842 			paddr_t pa;
   2843 
   2844 			pte = *ptep;
   2845 
   2846 			if (pte == 0) {
   2847 				/* Nothing here, move along */
   2848 				continue;
   2849 			}
   2850 
   2851 			pa = l2pte_pa(pte);
   2852 			is_exec = 0;
   2853 			is_refd = 1;
   2854 
   2855 			/*
   2856 			 * Update flags. In a number of circumstances,
   2857 			 * we could cluster a lot of these and do a
   2858 			 * number of sequential pages in one go.
   2859 			 */
   2860 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2861 				struct pv_entry *pve;
   2862 				simple_lock(&pg->mdpage.pvh_slock);
   2863 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   2864 				pmap_vac_me_harder(pg, pm, 0);
   2865 				simple_unlock(&pg->mdpage.pvh_slock);
   2866 				if (pve != NULL) {
   2867 					if (pm->pm_remove_all == FALSE) {
   2868 						is_exec =
   2869 						   PV_BEEN_EXECD(pve->pv_flags);
   2870 						is_refd =
   2871 						   PV_BEEN_REFD(pve->pv_flags);
   2872 					}
   2873 					pool_put(&pmap_pv_pool, pve);
   2874 				} else
   2875 				if (skip_wired) {
   2876 					/* The mapping is wired. Skip it */
   2877 					continue;
   2878 				}
   2879 			} else
   2880 			if (skip_wired) {
   2881 				/* Unmanaged pages are always wired. */
   2882 				continue;
   2883 			}
   2884 
   2885 			mappings++;
   2886 
   2887 			if (!l2pte_valid(pte)) {
   2888 				/*
   2889 				 * Ref/Mod emulation is still active for this
   2890 				 * mapping, therefore it is has not yet been
   2891 				 * accessed. No need to frob the cache/tlb.
   2892 				 */
   2893 				*ptep = 0;
   2894 				PTE_SYNC_CURRENT(pm, ptep);
   2895 				continue;
   2896 			}
   2897 
   2898 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2899 				/* Add to the clean list. */
   2900 				cleanlist[cleanlist_idx].ptep = ptep;
   2901 				cleanlist[cleanlist_idx].va =
   2902 				    sva | (is_exec & 1);
   2903 				cleanlist_idx++;
   2904 			} else
   2905 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2906 				/* Nuke everything if needed. */
   2907 #ifdef PMAP_CACHE_VIVT
   2908 				pmap_idcache_wbinv_all(pm);
   2909 #endif
   2910 				pmap_tlb_flushID(pm);
   2911 
   2912 				/*
   2913 				 * Roll back the previous PTE list,
   2914 				 * and zero out the current PTE.
   2915 				 */
   2916 				for (cnt = 0;
   2917 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2918 					*cleanlist[cnt].ptep = 0;
   2919 				}
   2920 				*ptep = 0;
   2921 				PTE_SYNC(ptep);
   2922 				cleanlist_idx++;
   2923 				pm->pm_remove_all = TRUE;
   2924 			} else {
   2925 				*ptep = 0;
   2926 				PTE_SYNC(ptep);
   2927 				if (pm->pm_remove_all == FALSE) {
   2928 					if (is_exec)
   2929 						pmap_tlb_flushID_SE(pm, sva);
   2930 					else
   2931 					if (is_refd)
   2932 						pmap_tlb_flushD_SE(pm, sva);
   2933 				}
   2934 			}
   2935 		}
   2936 
   2937 		/*
   2938 		 * Deal with any left overs
   2939 		 */
   2940 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2941 			total += cleanlist_idx;
   2942 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2943 				if (pm->pm_cstate.cs_all != 0) {
   2944 					vaddr_t clva = cleanlist[cnt].va & ~1;
   2945 					if (cleanlist[cnt].va & 1) {
   2946 #ifdef PMAP_CACHE_VIVT
   2947 						pmap_idcache_wbinv_range(pm,
   2948 						    clva, PAGE_SIZE);
   2949 #endif
   2950 						pmap_tlb_flushID_SE(pm, clva);
   2951 					} else {
   2952 #ifdef PMAP_CACHE_VIVT
   2953 						pmap_dcache_wb_range(pm,
   2954 						    clva, PAGE_SIZE, TRUE,
   2955 						    FALSE);
   2956 #endif
   2957 						pmap_tlb_flushD_SE(pm, clva);
   2958 					}
   2959 				}
   2960 				*cleanlist[cnt].ptep = 0;
   2961 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   2962 			}
   2963 
   2964 			/*
   2965 			 * If it looks like we're removing a whole bunch
   2966 			 * of mappings, it's faster to just write-back
   2967 			 * the whole cache now and defer TLB flushes until
   2968 			 * pmap_update() is called.
   2969 			 */
   2970 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   2971 				cleanlist_idx = 0;
   2972 			else {
   2973 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   2974 #ifdef PMAP_CACHE_VIVT
   2975 				pmap_idcache_wbinv_all(pm);
   2976 #endif
   2977 				pm->pm_remove_all = TRUE;
   2978 			}
   2979 		}
   2980 
   2981 		pmap_free_l2_bucket(pm, l2b, mappings);
   2982 		pm->pm_stats.resident_count -= mappings;
   2983 	}
   2984 
   2985 	pmap_release_pmap_lock(pm);
   2986 	PMAP_MAP_TO_HEAD_UNLOCK();
   2987 }
   2988 
   2989 /*
   2990  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   2991  *
   2992  * We assume there is already sufficient KVM space available
   2993  * to do this, as we can't allocate L2 descriptor tables/metadata
   2994  * from here.
   2995  */
   2996 void
   2997 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2998 {
   2999 	struct l2_bucket *l2b;
   3000 	pt_entry_t *ptep, opte;
   3001 #ifdef PMAP_CACHE_VIPT
   3002 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3003 	struct vm_page *opg;
   3004 #endif
   3005 
   3006 
   3007 	NPDEBUG(PDB_KENTER,
   3008 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3009 	    va, pa, prot));
   3010 
   3011 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3012 	KDASSERT(l2b != NULL);
   3013 
   3014 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3015 	opte = *ptep;
   3016 
   3017 	if (opte == 0) {
   3018 		PMAPCOUNT(kenter_mappings);
   3019 		l2b->l2b_occupancy++;
   3020 	} else {
   3021 		PMAPCOUNT(kenter_remappings);
   3022 #ifdef PMAP_CACHE_VIPT
   3023 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3024 		if (opg) {
   3025 			KASSERT(opg != pg);
   3026 			simple_lock(&opg->mdpage.pvh_slock);
   3027 			KASSERT(opg->mdpage.pvh_attrs & PVF_KENTRY);
   3028 			if (PV_IS_EXEC_P(opg->mdpage.pvh_attrs)
   3029 			    && !(opg->mdpage.pvh_attrs & PVF_NC)) {
   3030 				if (opg->mdpage.pvh_list == NULL) {
   3031 					opg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3032 					PMAPCOUNT(exec_discarded_kremove);
   3033 				} else {
   3034 					pmap_syncicache_page(opg);
   3035 					PMAPCOUNT(exec_synced_kremove);
   3036 				}
   3037 			}
   3038 			KASSERT(opg->mdpage.pvh_attrs | (PVF_COLORED|PVF_NC));
   3039 			opg->mdpage.pvh_attrs &= ~PVF_KENTRY;
   3040 			pmap_vac_me_harder(opg, NULL, 0);
   3041 			simple_unlock(&opg->mdpage.pvh_slock);
   3042 		}
   3043 #endif
   3044 		if (l2pte_valid(opte)) {
   3045 #ifdef PMAP_CACHE_VIVT
   3046 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3047 #endif
   3048 			cpu_tlb_flushD_SE(va);
   3049 			cpu_cpwait();
   3050 		}
   3051 	}
   3052 
   3053 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3054 	    pte_l2_s_cache_mode;
   3055 	PTE_SYNC(ptep);
   3056 
   3057 #ifdef PMAP_CACHE_VIPT
   3058 	if (pg) {
   3059 		simple_lock(&pg->mdpage.pvh_slock);
   3060 		KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY) == 0);
   3061 		pg->mdpage.pvh_attrs |= PVF_KENTRY;
   3062 		pmap_vac_me_harder(pg, NULL, va);
   3063 		simple_unlock(&pg->mdpage.pvh_slock);
   3064 	}
   3065 #endif
   3066 }
   3067 
   3068 void
   3069 pmap_kremove(vaddr_t va, vsize_t len)
   3070 {
   3071 	struct l2_bucket *l2b;
   3072 	pt_entry_t *ptep, *sptep, opte;
   3073 	vaddr_t next_bucket, eva;
   3074 	u_int mappings;
   3075 #ifdef PMAP_CACHE_VIPT
   3076 	struct vm_page *opg;
   3077 #endif
   3078 
   3079 	PMAPCOUNT(kenter_unmappings);
   3080 
   3081 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3082 	    va, len));
   3083 
   3084 	eva = va + len;
   3085 
   3086 	while (va < eva) {
   3087 		next_bucket = L2_NEXT_BUCKET(va);
   3088 		if (next_bucket > eva)
   3089 			next_bucket = eva;
   3090 
   3091 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3092 		KDASSERT(l2b != NULL);
   3093 
   3094 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3095 		mappings = 0;
   3096 
   3097 		while (va < next_bucket) {
   3098 			opte = *ptep;
   3099 #ifdef PMAP_CACHE_VIPT
   3100 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3101 			if (opg) {
   3102 				simple_lock(&opg->mdpage.pvh_slock);
   3103 				KASSERT(opg->mdpage.pvh_attrs & PVF_KENTRY);
   3104 				if (PV_IS_EXEC_P(opg->mdpage.pvh_attrs)
   3105 				    && !(opg->mdpage.pvh_attrs & PVF_NC)) {
   3106 					if (opg->mdpage.pvh_list == NULL) {
   3107 						opg->mdpage.pvh_attrs &=
   3108 						    ~PVF_EXEC;
   3109 						PMAPCOUNT(exec_discarded_kremove);
   3110 					} else {
   3111 						pmap_syncicache_page(opg);
   3112 						PMAPCOUNT(exec_synced_kremove);
   3113 					}
   3114 				}
   3115 				KASSERT(opg->mdpage.pvh_attrs | (PVF_COLORED|PVF_NC));
   3116 				opg->mdpage.pvh_attrs &= ~PVF_KENTRY;
   3117 				pmap_vac_me_harder(opg, NULL, 0);
   3118 				simple_unlock(&opg->mdpage.pvh_slock);
   3119 			}
   3120 #endif
   3121 			if (l2pte_valid(opte)) {
   3122 #ifdef PMAP_CACHE_VIVT
   3123 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3124 #endif
   3125 				cpu_tlb_flushD_SE(va);
   3126 			}
   3127 			if (opte) {
   3128 				*ptep = 0;
   3129 				mappings++;
   3130 			}
   3131 			va += PAGE_SIZE;
   3132 			ptep++;
   3133 		}
   3134 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3135 		l2b->l2b_occupancy -= mappings;
   3136 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3137 	}
   3138 	cpu_cpwait();
   3139 }
   3140 
   3141 boolean_t
   3142 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3143 {
   3144 	struct l2_dtable *l2;
   3145 	pd_entry_t *pl1pd, l1pd;
   3146 	pt_entry_t *ptep, pte;
   3147 	paddr_t pa;
   3148 	u_int l1idx;
   3149 
   3150 	pmap_acquire_pmap_lock(pm);
   3151 
   3152 	l1idx = L1_IDX(va);
   3153 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3154 	l1pd = *pl1pd;
   3155 
   3156 	if (l1pte_section_p(l1pd)) {
   3157 		/*
   3158 		 * These should only happen for pmap_kernel()
   3159 		 */
   3160 		KDASSERT(pm == pmap_kernel());
   3161 		pmap_release_pmap_lock(pm);
   3162 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3163 	} else {
   3164 		/*
   3165 		 * Note that we can't rely on the validity of the L1
   3166 		 * descriptor as an indication that a mapping exists.
   3167 		 * We have to look it up in the L2 dtable.
   3168 		 */
   3169 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3170 
   3171 		if (l2 == NULL ||
   3172 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3173 			pmap_release_pmap_lock(pm);
   3174 			return (FALSE);
   3175 		}
   3176 
   3177 		ptep = &ptep[l2pte_index(va)];
   3178 		pte = *ptep;
   3179 		pmap_release_pmap_lock(pm);
   3180 
   3181 		if (pte == 0)
   3182 			return (FALSE);
   3183 
   3184 		switch (pte & L2_TYPE_MASK) {
   3185 		case L2_TYPE_L:
   3186 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3187 			break;
   3188 
   3189 		default:
   3190 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3191 			break;
   3192 		}
   3193 	}
   3194 
   3195 	if (pap != NULL)
   3196 		*pap = pa;
   3197 
   3198 	return (TRUE);
   3199 }
   3200 
   3201 void
   3202 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3203 {
   3204 	struct l2_bucket *l2b;
   3205 	pt_entry_t *ptep, pte;
   3206 	vaddr_t next_bucket;
   3207 	u_int flags;
   3208 	u_int clr_mask;
   3209 	int flush;
   3210 
   3211 	NPDEBUG(PDB_PROTECT,
   3212 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3213 	    pm, sva, eva, prot));
   3214 
   3215 	if ((prot & VM_PROT_READ) == 0) {
   3216 		pmap_remove(pm, sva, eva);
   3217 		return;
   3218 	}
   3219 
   3220 	if (prot & VM_PROT_WRITE) {
   3221 		/*
   3222 		 * If this is a read->write transition, just ignore it and let
   3223 		 * uvm_fault() take care of it later.
   3224 		 */
   3225 		return;
   3226 	}
   3227 
   3228 	PMAP_MAP_TO_HEAD_LOCK();
   3229 	pmap_acquire_pmap_lock(pm);
   3230 
   3231 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3232 	flags = 0;
   3233 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3234 
   3235 	while (sva < eva) {
   3236 		next_bucket = L2_NEXT_BUCKET(sva);
   3237 		if (next_bucket > eva)
   3238 			next_bucket = eva;
   3239 
   3240 		l2b = pmap_get_l2_bucket(pm, sva);
   3241 		if (l2b == NULL) {
   3242 			sva = next_bucket;
   3243 			continue;
   3244 		}
   3245 
   3246 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3247 
   3248 		while (sva < next_bucket) {
   3249 			pte = *ptep;
   3250 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3251 				struct vm_page *pg;
   3252 				u_int f;
   3253 
   3254 #ifdef PMAP_CACHE_VIVT
   3255 				/*
   3256 				 * OK, at this point, we know we're doing
   3257 				 * write-protect operation.  If the pmap is
   3258 				 * active, write-back the page.
   3259 				 */
   3260 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3261 				    FALSE, FALSE);
   3262 #endif
   3263 
   3264 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3265 				pte &= ~L2_S_PROT_W;
   3266 				*ptep = pte;
   3267 				PTE_SYNC(ptep);
   3268 
   3269 				if (pg != NULL) {
   3270 					simple_lock(&pg->mdpage.pvh_slock);
   3271 					f = pmap_modify_pv(pg, pm, sva,
   3272 					    clr_mask, 0);
   3273 					pmap_vac_me_harder(pg, pm, sva);
   3274 					simple_unlock(&pg->mdpage.pvh_slock);
   3275 				} else
   3276 					f = PVF_REF | PVF_EXEC;
   3277 
   3278 				if (flush >= 0) {
   3279 					flush++;
   3280 					flags |= f;
   3281 				} else
   3282 				if (PV_BEEN_EXECD(f))
   3283 					pmap_tlb_flushID_SE(pm, sva);
   3284 				else
   3285 				if (PV_BEEN_REFD(f))
   3286 					pmap_tlb_flushD_SE(pm, sva);
   3287 			}
   3288 
   3289 			sva += PAGE_SIZE;
   3290 			ptep++;
   3291 		}
   3292 	}
   3293 
   3294 	pmap_release_pmap_lock(pm);
   3295 	PMAP_MAP_TO_HEAD_UNLOCK();
   3296 
   3297 	if (flush) {
   3298 		if (PV_BEEN_EXECD(flags))
   3299 			pmap_tlb_flushID(pm);
   3300 		else
   3301 		if (PV_BEEN_REFD(flags))
   3302 			pmap_tlb_flushD(pm);
   3303 	}
   3304 }
   3305 
   3306 void
   3307 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3308 {
   3309 	struct l2_bucket *l2b;
   3310 	pt_entry_t *ptep;
   3311 	vaddr_t next_bucket;
   3312 
   3313 	NPDEBUG(PDB_EXEC,
   3314 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3315 	    pm, sva, eva));
   3316 
   3317 	PMAP_MAP_TO_HEAD_LOCK();
   3318 	pmap_acquire_pmap_lock(pm);
   3319 
   3320 	while (sva < eva) {
   3321 		next_bucket = L2_NEXT_BUCKET(sva);
   3322 		if (next_bucket > eva)
   3323 			next_bucket = eva;
   3324 
   3325 		l2b = pmap_get_l2_bucket(pm, sva);
   3326 		if (l2b == NULL) {
   3327 			sva = next_bucket;
   3328 			continue;
   3329 		}
   3330 
   3331 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3332 		     sva < next_bucket;
   3333 		     sva += PAGE_SIZE, ptep++) {
   3334 			if (l2pte_valid(*ptep)) {
   3335 				cpu_icache_sync_range(sva,
   3336 				    min(PAGE_SIZE, eva - sva));
   3337 			}
   3338 		}
   3339 	}
   3340 
   3341 	pmap_release_pmap_lock(pm);
   3342 	PMAP_MAP_TO_HEAD_UNLOCK();
   3343 }
   3344 
   3345 void
   3346 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3347 {
   3348 
   3349 	NPDEBUG(PDB_PROTECT,
   3350 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3351 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3352 
   3353 	switch(prot) {
   3354 		return;
   3355 	case VM_PROT_READ|VM_PROT_WRITE:
   3356 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3357 		pmap_clearbit(pg, PVF_EXEC);
   3358 		break;
   3359 #endif
   3360 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3361 		break;
   3362 
   3363 	case VM_PROT_READ:
   3364 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3365 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3366 		break;
   3367 #endif
   3368 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3369 		pmap_clearbit(pg, PVF_WRITE);
   3370 		break;
   3371 
   3372 	default:
   3373 		pmap_page_remove(pg);
   3374 		break;
   3375 	}
   3376 }
   3377 
   3378 /*
   3379  * pmap_clear_modify:
   3380  *
   3381  *	Clear the "modified" attribute for a page.
   3382  */
   3383 boolean_t
   3384 pmap_clear_modify(struct vm_page *pg)
   3385 {
   3386 	boolean_t rv;
   3387 
   3388 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3389 		rv = TRUE;
   3390 		pmap_clearbit(pg, PVF_MOD);
   3391 	} else
   3392 		rv = FALSE;
   3393 
   3394 	return (rv);
   3395 }
   3396 
   3397 /*
   3398  * pmap_clear_reference:
   3399  *
   3400  *	Clear the "referenced" attribute for a page.
   3401  */
   3402 boolean_t
   3403 pmap_clear_reference(struct vm_page *pg)
   3404 {
   3405 	boolean_t rv;
   3406 
   3407 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3408 		rv = TRUE;
   3409 		pmap_clearbit(pg, PVF_REF);
   3410 	} else
   3411 		rv = FALSE;
   3412 
   3413 	return (rv);
   3414 }
   3415 
   3416 /*
   3417  * pmap_is_modified:
   3418  *
   3419  *	Test if a page has the "modified" attribute.
   3420  */
   3421 /* See <arm/arm32/pmap.h> */
   3422 
   3423 /*
   3424  * pmap_is_referenced:
   3425  *
   3426  *	Test if a page has the "referenced" attribute.
   3427  */
   3428 /* See <arm/arm32/pmap.h> */
   3429 
   3430 int
   3431 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3432 {
   3433 	struct l2_dtable *l2;
   3434 	struct l2_bucket *l2b;
   3435 	pd_entry_t *pl1pd, l1pd;
   3436 	pt_entry_t *ptep, pte;
   3437 	paddr_t pa;
   3438 	u_int l1idx;
   3439 	int rv = 0;
   3440 
   3441 	PMAP_MAP_TO_HEAD_LOCK();
   3442 	pmap_acquire_pmap_lock(pm);
   3443 
   3444 	l1idx = L1_IDX(va);
   3445 
   3446 	/*
   3447 	 * If there is no l2_dtable for this address, then the process
   3448 	 * has no business accessing it.
   3449 	 *
   3450 	 * Note: This will catch userland processes trying to access
   3451 	 * kernel addresses.
   3452 	 */
   3453 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3454 	if (l2 == NULL)
   3455 		goto out;
   3456 
   3457 	/*
   3458 	 * Likewise if there is no L2 descriptor table
   3459 	 */
   3460 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3461 	if (l2b->l2b_kva == NULL)
   3462 		goto out;
   3463 
   3464 	/*
   3465 	 * Check the PTE itself.
   3466 	 */
   3467 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3468 	pte = *ptep;
   3469 	if (pte == 0)
   3470 		goto out;
   3471 
   3472 	/*
   3473 	 * Catch a userland access to the vector page mapped at 0x0
   3474 	 */
   3475 	if (user && (pte & L2_S_PROT_U) == 0)
   3476 		goto out;
   3477 
   3478 	pa = l2pte_pa(pte);
   3479 
   3480 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3481 		/*
   3482 		 * This looks like a good candidate for "page modified"
   3483 		 * emulation...
   3484 		 */
   3485 		struct pv_entry *pv;
   3486 		struct vm_page *pg;
   3487 
   3488 		/* Extract the physical address of the page */
   3489 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3490 			goto out;
   3491 
   3492 		/* Get the current flags for this page. */
   3493 		simple_lock(&pg->mdpage.pvh_slock);
   3494 
   3495 		pv = pmap_find_pv(pg, pm, va);
   3496 		if (pv == NULL) {
   3497 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3498 			goto out;
   3499 		}
   3500 
   3501 		/*
   3502 		 * Do the flags say this page is writable? If not then it
   3503 		 * is a genuine write fault. If yes then the write fault is
   3504 		 * our fault as we did not reflect the write access in the
   3505 		 * PTE. Now we know a write has occurred we can correct this
   3506 		 * and also set the modified bit
   3507 		 */
   3508 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3509 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3510 			goto out;
   3511 		}
   3512 
   3513 		NPDEBUG(PDB_FOLLOW,
   3514 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3515 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3516 
   3517 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3518 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3519 		simple_unlock(&pg->mdpage.pvh_slock);
   3520 
   3521 		/*
   3522 		 * Re-enable write permissions for the page.  No need to call
   3523 		 * pmap_vac_me_harder(), since this is just a
   3524 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3525 		 * changing. We've already set the cacheable bits based on
   3526 		 * the assumption that we can write to this page.
   3527 		 */
   3528 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3529 		PTE_SYNC(ptep);
   3530 		rv = 1;
   3531 	} else
   3532 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3533 		/*
   3534 		 * This looks like a good candidate for "page referenced"
   3535 		 * emulation.
   3536 		 */
   3537 		struct pv_entry *pv;
   3538 		struct vm_page *pg;
   3539 
   3540 		/* Extract the physical address of the page */
   3541 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3542 			goto out;
   3543 
   3544 		/* Get the current flags for this page. */
   3545 		simple_lock(&pg->mdpage.pvh_slock);
   3546 
   3547 		pv = pmap_find_pv(pg, pm, va);
   3548 		if (pv == NULL) {
   3549 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3550 			goto out;
   3551 		}
   3552 
   3553 		pg->mdpage.pvh_attrs |= PVF_REF;
   3554 		pv->pv_flags |= PVF_REF;
   3555 		simple_unlock(&pg->mdpage.pvh_slock);
   3556 
   3557 		NPDEBUG(PDB_FOLLOW,
   3558 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3559 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3560 
   3561 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3562 		PTE_SYNC(ptep);
   3563 		rv = 1;
   3564 	}
   3565 
   3566 	/*
   3567 	 * We know there is a valid mapping here, so simply
   3568 	 * fix up the L1 if necessary.
   3569 	 */
   3570 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3571 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3572 	if (*pl1pd != l1pd) {
   3573 		*pl1pd = l1pd;
   3574 		PTE_SYNC(pl1pd);
   3575 		rv = 1;
   3576 	}
   3577 
   3578 #ifdef CPU_SA110
   3579 	/*
   3580 	 * There are bugs in the rev K SA110.  This is a check for one
   3581 	 * of them.
   3582 	 */
   3583 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3584 	    curcpu()->ci_arm_cpurev < 3) {
   3585 		/* Always current pmap */
   3586 		if (l2pte_valid(pte)) {
   3587 			extern int kernel_debug;
   3588 			if (kernel_debug & 1) {
   3589 				struct proc *p = curlwp->l_proc;
   3590 				printf("prefetch_abort: page is already "
   3591 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3592 				printf("prefetch_abort: pc=%08lx proc=%p "
   3593 				    "process=%s\n", va, p, p->p_comm);
   3594 				printf("prefetch_abort: far=%08x fs=%x\n",
   3595 				    cpu_faultaddress(), cpu_faultstatus());
   3596 			}
   3597 #ifdef DDB
   3598 			if (kernel_debug & 2)
   3599 				Debugger();
   3600 #endif
   3601 			rv = 1;
   3602 		}
   3603 	}
   3604 #endif /* CPU_SA110 */
   3605 
   3606 #ifdef DEBUG
   3607 	/*
   3608 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3609 	 * stale TLB entry for the faulting address. This happens when two or
   3610 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3611 	 * a context switch between such processes, we can take domain faults
   3612 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3613 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3614 	 * example.
   3615 	 *
   3616 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3617 	 * entry for a recently entered mapping. In this case, the TLB is
   3618 	 * flushed for the new mapping, but there may still be TLB entries for
   3619 	 * other mappings belonging to other processes in the 1MB range
   3620 	 * covered by the L1 entry.
   3621 	 *
   3622 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3623 	 * value, so the fault must be due to a stale TLB entry.
   3624 	 *
   3625 	 * Since we always need to flush the TLB anyway in the case where we
   3626 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3627 	 * stale TLB entries dynamically.
   3628 	 *
   3629 	 * However, the above condition can ONLY happen if the current L1 is
   3630 	 * being shared. If it happens when the L1 is unshared, it indicates
   3631 	 * that other parts of the pmap are not doing their job WRT managing
   3632 	 * the TLB.
   3633 	 */
   3634 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   3635 		extern int last_fault_code;
   3636 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   3637 		    pm, va, ftype);
   3638 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   3639 		    l2, l2b, ptep, pl1pd);
   3640 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   3641 		    pte, l1pd, last_fault_code);
   3642 #ifdef DDB
   3643 		Debugger();
   3644 #endif
   3645 	}
   3646 #endif
   3647 
   3648 	cpu_tlb_flushID_SE(va);
   3649 	cpu_cpwait();
   3650 
   3651 	rv = 1;
   3652 
   3653 out:
   3654 	pmap_release_pmap_lock(pm);
   3655 	PMAP_MAP_TO_HEAD_UNLOCK();
   3656 
   3657 	return (rv);
   3658 }
   3659 
   3660 /*
   3661  * pmap_collect: free resources held by a pmap
   3662  *
   3663  * => optional function.
   3664  * => called when a process is swapped out to free memory.
   3665  */
   3666 void
   3667 pmap_collect(pmap_t pm)
   3668 {
   3669 
   3670 #ifdef PMAP_CACHE_VIVT
   3671 	pmap_idcache_wbinv_all(pm);
   3672 #endif
   3673 	pm->pm_remove_all = TRUE;
   3674 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3675 	pmap_update(pm);
   3676 	PMAPCOUNT(collects);
   3677 }
   3678 
   3679 /*
   3680  * Routine:	pmap_procwr
   3681  *
   3682  * Function:
   3683  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3684  *
   3685  */
   3686 void
   3687 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3688 {
   3689 	/* We only need to do anything if it is the current process. */
   3690 	if (p == curproc)
   3691 		cpu_icache_sync_range(va, len);
   3692 }
   3693 
   3694 /*
   3695  * Routine:	pmap_unwire
   3696  * Function:	Clear the wired attribute for a map/virtual-address pair.
   3697  *
   3698  * In/out conditions:
   3699  *		The mapping must already exist in the pmap.
   3700  */
   3701 void
   3702 pmap_unwire(pmap_t pm, vaddr_t va)
   3703 {
   3704 	struct l2_bucket *l2b;
   3705 	pt_entry_t *ptep, pte;
   3706 	struct vm_page *pg;
   3707 	paddr_t pa;
   3708 
   3709 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   3710 
   3711 	PMAP_MAP_TO_HEAD_LOCK();
   3712 	pmap_acquire_pmap_lock(pm);
   3713 
   3714 	l2b = pmap_get_l2_bucket(pm, va);
   3715 	KDASSERT(l2b != NULL);
   3716 
   3717 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3718 	pte = *ptep;
   3719 
   3720 	/* Extract the physical address of the page */
   3721 	pa = l2pte_pa(pte);
   3722 
   3723 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3724 		/* Update the wired bit in the pv entry for this page. */
   3725 		simple_lock(&pg->mdpage.pvh_slock);
   3726 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   3727 		simple_unlock(&pg->mdpage.pvh_slock);
   3728 	}
   3729 
   3730 	pmap_release_pmap_lock(pm);
   3731 	PMAP_MAP_TO_HEAD_UNLOCK();
   3732 }
   3733 
   3734 void
   3735 pmap_activate(struct lwp *l)
   3736 {
   3737 	pmap_t pm;
   3738 	struct pcb *pcb;
   3739 	int s;
   3740 
   3741 	pm = l->l_proc->p_vmspace->vm_map.pmap;
   3742 	pcb = &l->l_addr->u_pcb;
   3743 
   3744 	pmap_set_pcb_pagedir(pm, pcb);
   3745 
   3746 	PMAPCOUNT(activations);
   3747 
   3748 	if (l == curlwp) {
   3749 		u_int cur_dacr, cur_ttb;
   3750 
   3751 		__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
   3752 		__asm volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
   3753 
   3754 		cur_ttb &= ~(L1_TABLE_SIZE - 1);
   3755 
   3756 		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
   3757 		    cur_dacr == pcb->pcb_dacr) {
   3758 			/*
   3759 			 * No need to switch address spaces.
   3760 			 */
   3761 			return;
   3762 		}
   3763 
   3764 		s = splhigh();
   3765 		pmap_acquire_pmap_lock(pm);
   3766 		disable_interrupts(I32_bit | F32_bit);
   3767 
   3768 		/*
   3769 		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
   3770 		 * to 'vector_page' in the incoming L1 table before switching
   3771 		 * to it otherwise subsequent interrupts/exceptions (including
   3772 		 * domain faults!) will jump into hyperspace.
   3773 		 */
   3774 		if (pcb->pcb_pl1vec) {
   3775 			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
   3776 			/*
   3777 			 * Don't need to PTE_SYNC() at this point since
   3778 			 * cpu_setttb() is about to flush both the cache
   3779 			 * and the TLB.
   3780 			 */
   3781 		}
   3782 
   3783 		cpu_domains(pcb->pcb_dacr);
   3784 		cpu_setttb(pcb->pcb_pagedir);
   3785 
   3786 		enable_interrupts(I32_bit | F32_bit);
   3787 
   3788 		/*
   3789 		 * Flag any previous userland pmap as being NOT
   3790 		 * resident in the cache/tlb.
   3791 		 */
   3792 		if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
   3793 			pmap_cache_state->cs_all = 0;
   3794 
   3795 		/*
   3796 		 * The new pmap, however, IS resident.
   3797 		 */
   3798 		pmap_cache_state = &pm->pm_cstate;
   3799 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3800 		pmap_release_pmap_lock(pm);
   3801 		splx(s);
   3802 	}
   3803 }
   3804 
   3805 void
   3806 pmap_deactivate(struct lwp *l)
   3807 {
   3808 }
   3809 
   3810 void
   3811 pmap_update(pmap_t pm)
   3812 {
   3813 
   3814 	if (pm->pm_remove_all) {
   3815 		/*
   3816 		 * Finish up the pmap_remove_all() optimisation by flushing
   3817 		 * the TLB.
   3818 		 */
   3819 		pmap_tlb_flushID(pm);
   3820 		pm->pm_remove_all = FALSE;
   3821 	}
   3822 
   3823 	if (pmap_is_current(pm)) {
   3824 		/*
   3825 		 * If we're dealing with a current userland pmap, move its L1
   3826 		 * to the end of the LRU.
   3827 		 */
   3828 		if (pm != pmap_kernel())
   3829 			pmap_use_l1(pm);
   3830 
   3831 		/*
   3832 		 * We can assume we're done with frobbing the cache/tlb for
   3833 		 * now. Make sure any future pmap ops don't skip cache/tlb
   3834 		 * flushes.
   3835 		 */
   3836 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3837 	}
   3838 
   3839 	PMAPCOUNT(updates);
   3840 
   3841 	/*
   3842 	 * make sure TLB/cache operations have completed.
   3843 	 */
   3844 	cpu_cpwait();
   3845 }
   3846 
   3847 void
   3848 pmap_remove_all(pmap_t pm)
   3849 {
   3850 
   3851 	/*
   3852 	 * The vmspace described by this pmap is about to be torn down.
   3853 	 * Until pmap_update() is called, UVM will only make calls
   3854 	 * to pmap_remove(). We can make life much simpler by flushing
   3855 	 * the cache now, and deferring TLB invalidation to pmap_update().
   3856 	 */
   3857 #ifdef PMAP_CACHE_VIVT
   3858 	pmap_idcache_wbinv_all(pm);
   3859 #endif
   3860 	pm->pm_remove_all = TRUE;
   3861 }
   3862 
   3863 /*
   3864  * Retire the given physical map from service.
   3865  * Should only be called if the map contains no valid mappings.
   3866  */
   3867 void
   3868 pmap_destroy(pmap_t pm)
   3869 {
   3870 	u_int count;
   3871 
   3872 	if (pm == NULL)
   3873 		return;
   3874 
   3875 	if (pm->pm_remove_all) {
   3876 		pmap_tlb_flushID(pm);
   3877 		pm->pm_remove_all = FALSE;
   3878 	}
   3879 
   3880 	/*
   3881 	 * Drop reference count
   3882 	 */
   3883 	simple_lock(&pm->pm_lock);
   3884 	count = --pm->pm_obj.uo_refs;
   3885 	simple_unlock(&pm->pm_lock);
   3886 	if (count > 0) {
   3887 		if (pmap_is_current(pm)) {
   3888 			if (pm != pmap_kernel())
   3889 				pmap_use_l1(pm);
   3890 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3891 		}
   3892 		return;
   3893 	}
   3894 
   3895 	/*
   3896 	 * reference count is zero, free pmap resources and then free pmap.
   3897 	 */
   3898 
   3899 	if (vector_page < KERNEL_BASE) {
   3900 		struct pcb *pcb = &lwp0.l_addr->u_pcb;
   3901 
   3902 		if (pmap_is_current(pm)) {
   3903 			/*
   3904 			 * Frob the L1 entry corresponding to the vector
   3905 			 * page so that it contains the kernel pmap's domain
   3906 			 * number. This will ensure pmap_remove() does not
   3907 			 * pull the current vector page out from under us.
   3908 			 */
   3909 			disable_interrupts(I32_bit | F32_bit);
   3910 			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
   3911 			cpu_domains(pcb->pcb_dacr);
   3912 			cpu_setttb(pcb->pcb_pagedir);
   3913 			enable_interrupts(I32_bit | F32_bit);
   3914 		}
   3915 
   3916 		/* Remove the vector page mapping */
   3917 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   3918 		pmap_update(pm);
   3919 
   3920 		/*
   3921 		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
   3922 		 * since this process has no remaining mappings of its own.
   3923 		 */
   3924 		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
   3925 		curpcb->pcb_l1vec = pcb->pcb_l1vec;
   3926 		curpcb->pcb_dacr = pcb->pcb_dacr;
   3927 		curpcb->pcb_pagedir = pcb->pcb_pagedir;
   3928 	}
   3929 
   3930 	LIST_REMOVE(pm, pm_list);
   3931 
   3932 	pmap_free_l1(pm);
   3933 
   3934 	/* return the pmap to the pool */
   3935 	pool_cache_put(&pmap_pmap_cache, pm);
   3936 }
   3937 
   3938 
   3939 /*
   3940  * void pmap_reference(pmap_t pm)
   3941  *
   3942  * Add a reference to the specified pmap.
   3943  */
   3944 void
   3945 pmap_reference(pmap_t pm)
   3946 {
   3947 
   3948 	if (pm == NULL)
   3949 		return;
   3950 
   3951 	pmap_use_l1(pm);
   3952 
   3953 	simple_lock(&pm->pm_lock);
   3954 	pm->pm_obj.uo_refs++;
   3955 	simple_unlock(&pm->pm_lock);
   3956 }
   3957 
   3958 #if ARM_MMU_V6 > 0
   3959 
   3960 static struct evcnt pmap_prefer_nochange_ev =
   3961     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   3962 static struct evcnt pmap_prefer_change_ev =
   3963     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   3964 
   3965 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   3966 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   3967 
   3968 void
   3969 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   3970 {
   3971 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   3972 	vaddr_t va = *vap;
   3973 	vaddr_t diff = (hint - va) & mask;
   3974 	if (diff == 0) {
   3975 		pmap_prefer_nochange_ev.ev_count++;
   3976 	} else {
   3977 		pmap_prefer_change_ev.ev_count++;
   3978 		if (__predict_false(td))
   3979 			va -= mask + 1;
   3980 		*vap = va + diff;
   3981 	}
   3982 }
   3983 #endif /* ARM_MMU_V6 */
   3984 
   3985 /*
   3986  * pmap_zero_page()
   3987  *
   3988  * Zero a given physical page by mapping it at a page hook point.
   3989  * In doing the zero page op, the page we zero is mapped cachable, as with
   3990  * StrongARM accesses to non-cached pages are non-burst making writing
   3991  * _any_ bulk data very slow.
   3992  */
   3993 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   3994 void
   3995 pmap_zero_page_generic(paddr_t phys)
   3996 {
   3997 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   3998 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   3999 #endif
   4000 #ifdef PMAP_CACHE_VIPT
   4001 	/* Choose the last page color it had, if any */
   4002 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4003 #else
   4004 	const vsize_t va_offset = 0;
   4005 #endif
   4006 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4007 
   4008 #ifdef DEBUG
   4009 	if (pg->mdpage.pvh_list != NULL)
   4010 		panic("pmap_zero_page: page has mappings");
   4011 #endif
   4012 
   4013 	KDASSERT((phys & PGOFSET) == 0);
   4014 
   4015 	/*
   4016 	 * Hook in the page, zero it, and purge the cache for that
   4017 	 * zeroed page. Invalidate the TLB as needed.
   4018 	 */
   4019 	*ptep = L2_S_PROTO | phys |
   4020 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4021 	PTE_SYNC(ptep);
   4022 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4023 	cpu_cpwait();
   4024 	bzero_page(cdstp + va_offset);
   4025 	/*
   4026 	 * Unmap the page.
   4027 	 */
   4028 	*ptep = 0;
   4029 	PTE_SYNC(ptep);
   4030 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4031 #ifdef PMAP_CACHE_VIVT
   4032 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4033 #endif
   4034 #ifdef PMAP_CACHE_VIPT
   4035 	/*
   4036 	 * This page is now cache resident so it now has a page color.
   4037 	 * Any contents have been obliterated so clear the EXEC flag.
   4038 	 */
   4039 	if (!pmap_is_page_colored_p(pg)) {
   4040 		PMAPCOUNT(vac_color_new);
   4041 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4042 	}
   4043 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4044 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4045 		PMAPCOUNT(exec_discarded_zero);
   4046 	}
   4047 #endif
   4048 }
   4049 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4050 
   4051 #if ARM_MMU_XSCALE == 1
   4052 void
   4053 pmap_zero_page_xscale(paddr_t phys)
   4054 {
   4055 #ifdef DEBUG
   4056 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4057 
   4058 	if (pg->mdpage.pvh_list != NULL)
   4059 		panic("pmap_zero_page: page has mappings");
   4060 #endif
   4061 
   4062 	KDASSERT((phys & PGOFSET) == 0);
   4063 
   4064 	/*
   4065 	 * Hook in the page, zero it, and purge the cache for that
   4066 	 * zeroed page. Invalidate the TLB as needed.
   4067 	 */
   4068 	*cdst_pte = L2_S_PROTO | phys |
   4069 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4070 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4071 	PTE_SYNC(cdst_pte);
   4072 	cpu_tlb_flushD_SE(cdstp);
   4073 	cpu_cpwait();
   4074 	bzero_page(cdstp);
   4075 	xscale_cache_clean_minidata();
   4076 }
   4077 #endif /* ARM_MMU_XSCALE == 1 */
   4078 
   4079 /* pmap_pageidlezero()
   4080  *
   4081  * The same as above, except that we assume that the page is not
   4082  * mapped.  This means we never have to flush the cache first.  Called
   4083  * from the idle loop.
   4084  */
   4085 boolean_t
   4086 pmap_pageidlezero(paddr_t phys)
   4087 {
   4088 	unsigned int i;
   4089 	int *ptr;
   4090 	boolean_t rv = TRUE;
   4091 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4092 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4093 #endif
   4094 #ifdef PMAP_CACHE_VIPT
   4095 	/* Choose the last page color it had, if any */
   4096 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4097 #else
   4098 	const vsize_t va_offset = 0;
   4099 #endif
   4100 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4101 
   4102 
   4103 #ifdef DEBUG
   4104 	if (pg->mdpage.pvh_list != NULL)
   4105 		panic("pmap_pageidlezero: page has mappings");
   4106 #endif
   4107 
   4108 	KDASSERT((phys & PGOFSET) == 0);
   4109 
   4110 	/*
   4111 	 * Hook in the page, zero it, and purge the cache for that
   4112 	 * zeroed page. Invalidate the TLB as needed.
   4113 	 */
   4114 	*ptep = L2_S_PROTO | phys |
   4115 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4116 	PTE_SYNC(ptep);
   4117 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4118 	cpu_cpwait();
   4119 
   4120 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4121 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4122 		if (sched_whichqs != 0) {
   4123 			/*
   4124 			 * A process has become ready.  Abort now,
   4125 			 * so we don't keep it waiting while we
   4126 			 * do slow memory access to finish this
   4127 			 * page.
   4128 			 */
   4129 			rv = FALSE;
   4130 			break;
   4131 		}
   4132 		*ptr++ = 0;
   4133 	}
   4134 
   4135 #ifdef PMAP_CACHE_VIVT
   4136 	if (rv)
   4137 		/*
   4138 		 * if we aborted we'll rezero this page again later so don't
   4139 		 * purge it unless we finished it
   4140 		 */
   4141 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4142 #elif defined(PMAP_CACHE_VIPT)
   4143 	/*
   4144 	 * This page is now cache resident so it now has a page color.
   4145 	 * Any contents have been obliterated so clear the EXEC flag.
   4146 	 */
   4147 	if (!pmap_is_page_colored_p(pg)) {
   4148 		PMAPCOUNT(vac_color_new);
   4149 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4150 	}
   4151 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4152 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4153 		PMAPCOUNT(exec_discarded_zero);
   4154 	}
   4155 #endif
   4156 	/*
   4157 	 * Unmap the page.
   4158 	 */
   4159 	*ptep = 0;
   4160 	PTE_SYNC(ptep);
   4161 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4162 
   4163 	return (rv);
   4164 }
   4165 
   4166 /*
   4167  * pmap_copy_page()
   4168  *
   4169  * Copy one physical page into another, by mapping the pages into
   4170  * hook points. The same comment regarding cachability as in
   4171  * pmap_zero_page also applies here.
   4172  */
   4173 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4174 void
   4175 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4176 {
   4177 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4178 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4179 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4180 #endif
   4181 #ifdef PMAP_CACHE_VIPT
   4182 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4183 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4184 #else
   4185 	const vsize_t src_va_offset = 0;
   4186 	const vsize_t dst_va_offset = 0;
   4187 #endif
   4188 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4189 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4190 
   4191 #ifdef DEBUG
   4192 	if (dst_pg->mdpage.pvh_list != NULL)
   4193 		panic("pmap_copy_page: dst page has mappings");
   4194 #endif
   4195 
   4196 #ifdef PMAP_CACHE_VIPT
   4197 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4198 #endif
   4199 	KDASSERT((src & PGOFSET) == 0);
   4200 	KDASSERT((dst & PGOFSET) == 0);
   4201 
   4202 	/*
   4203 	 * Clean the source page.  Hold the source page's lock for
   4204 	 * the duration of the copy so that no other mappings can
   4205 	 * be created while we have a potentially aliased mapping.
   4206 	 */
   4207 	simple_lock(&src_pg->mdpage.pvh_slock);
   4208 #ifdef PMAP_CACHE_VIVT
   4209 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   4210 #endif
   4211 
   4212 	/*
   4213 	 * Map the pages into the page hook points, copy them, and purge
   4214 	 * the cache for the appropriate page. Invalidate the TLB
   4215 	 * as required.
   4216 	 */
   4217 	*src_ptep = L2_S_PROTO
   4218 	    | src
   4219 #ifdef PMAP_CACHE_VIPT
   4220 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4221 #endif
   4222 #ifdef PMAP_CACHE_VIVT
   4223 	    | pte_l2_s_cache_mode
   4224 #endif
   4225 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4226 	*dst_ptep = L2_S_PROTO | dst |
   4227 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4228 	PTE_SYNC(src_ptep);
   4229 	PTE_SYNC(dst_ptep);
   4230 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4231 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4232 	cpu_cpwait();
   4233 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4234 #ifdef PMAP_CACHE_VIVT
   4235 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4236 #endif
   4237 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4238 #ifdef PMAP_CACHE_VIVT
   4239 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4240 #endif
   4241 	/*
   4242 	 * Unmap the pages.
   4243 	 */
   4244 	*src_ptep = 0;
   4245 	*dst_ptep = 0;
   4246 	PTE_SYNC(src_ptep);
   4247 	PTE_SYNC(dst_ptep);
   4248 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4249 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4250 #ifdef PMAP_CACHE_VIPT
   4251 	/*
   4252 	 * Now that the destination page is in the cache, mark it as colored.
   4253 	 * If this was an exec page, discard it.
   4254 	 */
   4255 	if (!pmap_is_page_colored_p(dst_pg)) {
   4256 		PMAPCOUNT(vac_color_new);
   4257 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4258 	}
   4259 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4260 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4261 		PMAPCOUNT(exec_discarded_copy);
   4262 	}
   4263 #endif
   4264 }
   4265 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4266 
   4267 #if ARM_MMU_XSCALE == 1
   4268 void
   4269 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4270 {
   4271 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4272 #ifdef DEBUG
   4273 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4274 
   4275 	if (dst_pg->mdpage.pvh_list != NULL)
   4276 		panic("pmap_copy_page: dst page has mappings");
   4277 #endif
   4278 
   4279 	KDASSERT((src & PGOFSET) == 0);
   4280 	KDASSERT((dst & PGOFSET) == 0);
   4281 
   4282 	/*
   4283 	 * Clean the source page.  Hold the source page's lock for
   4284 	 * the duration of the copy so that no other mappings can
   4285 	 * be created while we have a potentially aliased mapping.
   4286 	 */
   4287 	simple_lock(&src_pg->mdpage.pvh_slock);
   4288 #ifdef PMAP_CACHE_VIVT
   4289 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   4290 #endif
   4291 
   4292 	/*
   4293 	 * Map the pages into the page hook points, copy them, and purge
   4294 	 * the cache for the appropriate page. Invalidate the TLB
   4295 	 * as required.
   4296 	 */
   4297 	*csrc_pte = L2_S_PROTO | src |
   4298 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4299 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4300 	PTE_SYNC(csrc_pte);
   4301 	*cdst_pte = L2_S_PROTO | dst |
   4302 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4303 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4304 	PTE_SYNC(cdst_pte);
   4305 	cpu_tlb_flushD_SE(csrcp);
   4306 	cpu_tlb_flushD_SE(cdstp);
   4307 	cpu_cpwait();
   4308 	bcopy_page(csrcp, cdstp);
   4309 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4310 	xscale_cache_clean_minidata();
   4311 }
   4312 #endif /* ARM_MMU_XSCALE == 1 */
   4313 
   4314 /*
   4315  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4316  *
   4317  * Return the start and end addresses of the kernel's virtual space.
   4318  * These values are setup in pmap_bootstrap and are updated as pages
   4319  * are allocated.
   4320  */
   4321 void
   4322 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4323 {
   4324 	*start = virtual_avail;
   4325 	*end = virtual_end;
   4326 }
   4327 
   4328 /*
   4329  * Helper function for pmap_grow_l2_bucket()
   4330  */
   4331 static inline int
   4332 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4333 {
   4334 	struct l2_bucket *l2b;
   4335 	pt_entry_t *ptep;
   4336 	paddr_t pa;
   4337 
   4338 	if (uvm.page_init_done == FALSE) {
   4339 		if (uvm_page_physget(&pa) == FALSE)
   4340 			return (1);
   4341 	} else {
   4342 		struct vm_page *pg;
   4343 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4344 		if (pg == NULL)
   4345 			return (1);
   4346 		pa = VM_PAGE_TO_PHYS(pg);
   4347 #ifdef PMAP_CACHE_VIPT
   4348 		/*
   4349 		 * This new page must not have any mappings.  However, it might
   4350 		 * have previously used and therefore present in the cache.  If
   4351 		 * it doesn't have the desired color, we have to flush it from
   4352 		 * the cache.  And while we are at it, make sure to clear its
   4353 		 * EXEC status.
   4354 		 */
   4355 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_KENTRY));
   4356 		KASSERT(pg->mdpage.pvh_list == NULL);
   4357 		if (pmap_is_page_colored_p(pg)) {
   4358 			if ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask) {
   4359 				pmap_flush_page(pg);
   4360 				PMAPCOUNT(vac_color_change);
   4361 			} else {
   4362 				PMAPCOUNT(vac_color_reuse);
   4363 			}
   4364 		} else {
   4365 			PMAPCOUNT(vac_color_new);
   4366 		}
   4367 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   4368 			PMAPCOUNT(exec_discarded_kremove);
   4369 		/*
   4370 		 * We'll pretend this page was entered by pmap_kenter_pa
   4371 		 */
   4372 		pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_EXEC;
   4373 		pg->mdpage.pvh_attrs |= va | PVF_KENTRY | PVF_COLORED | PVF_REF | PVF_MOD;
   4374 #endif
   4375 	}
   4376 
   4377 	if (pap)
   4378 		*pap = pa;
   4379 
   4380 	PMAPCOUNT(pt_mappings);
   4381 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4382 	KDASSERT(l2b != NULL);
   4383 
   4384 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4385 	*ptep = L2_S_PROTO | pa | cache_mode |
   4386 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4387 	PTE_SYNC(ptep);
   4388 	memset((void *)va, 0, PAGE_SIZE);
   4389 	return (0);
   4390 }
   4391 
   4392 /*
   4393  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4394  * used by pmap_growkernel().
   4395  */
   4396 static inline struct l2_bucket *
   4397 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4398 {
   4399 	struct l2_dtable *l2;
   4400 	struct l2_bucket *l2b;
   4401 	u_short l1idx;
   4402 	vaddr_t nva;
   4403 
   4404 	l1idx = L1_IDX(va);
   4405 
   4406 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4407 		/*
   4408 		 * No mapping at this address, as there is
   4409 		 * no entry in the L1 table.
   4410 		 * Need to allocate a new l2_dtable.
   4411 		 */
   4412 		nva = pmap_kernel_l2dtable_kva;
   4413 		if ((nva & PGOFSET) == 0) {
   4414 			/*
   4415 			 * Need to allocate a backing page
   4416 			 */
   4417 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4418 				return (NULL);
   4419 		}
   4420 
   4421 		l2 = (struct l2_dtable *)nva;
   4422 		nva += sizeof(struct l2_dtable);
   4423 
   4424 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4425 			/*
   4426 			 * The new l2_dtable straddles a page boundary.
   4427 			 * Map in another page to cover it.
   4428 			 */
   4429 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4430 				return (NULL);
   4431 		}
   4432 
   4433 		pmap_kernel_l2dtable_kva = nva;
   4434 
   4435 		/*
   4436 		 * Link it into the parent pmap
   4437 		 */
   4438 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4439 	}
   4440 
   4441 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4442 
   4443 	/*
   4444 	 * Fetch pointer to the L2 page table associated with the address.
   4445 	 */
   4446 	if (l2b->l2b_kva == NULL) {
   4447 		pt_entry_t *ptep;
   4448 
   4449 		/*
   4450 		 * No L2 page table has been allocated. Chances are, this
   4451 		 * is because we just allocated the l2_dtable, above.
   4452 		 */
   4453 		nva = pmap_kernel_l2ptp_kva;
   4454 		ptep = (pt_entry_t *)nva;
   4455 		if ((nva & PGOFSET) == 0) {
   4456 			/*
   4457 			 * Need to allocate a backing page
   4458 			 */
   4459 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4460 			    &pmap_kernel_l2ptp_phys))
   4461 				return (NULL);
   4462 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4463 		}
   4464 
   4465 		l2->l2_occupancy++;
   4466 		l2b->l2b_kva = ptep;
   4467 		l2b->l2b_l1idx = l1idx;
   4468 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4469 
   4470 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4471 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4472 	}
   4473 
   4474 	return (l2b);
   4475 }
   4476 
   4477 vaddr_t
   4478 pmap_growkernel(vaddr_t maxkvaddr)
   4479 {
   4480 	pmap_t kpm = pmap_kernel();
   4481 	struct l1_ttable *l1;
   4482 	struct l2_bucket *l2b;
   4483 	pd_entry_t *pl1pd;
   4484 	int s;
   4485 
   4486 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4487 		goto out;		/* we are OK */
   4488 
   4489 	NPDEBUG(PDB_GROWKERN,
   4490 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4491 	    pmap_curmaxkvaddr, maxkvaddr));
   4492 
   4493 	KDASSERT(maxkvaddr <= virtual_end);
   4494 
   4495 	/*
   4496 	 * whoops!   we need to add kernel PTPs
   4497 	 */
   4498 
   4499 	s = splhigh();	/* to be safe */
   4500 	simple_lock(&kpm->pm_lock);
   4501 
   4502 	/* Map 1MB at a time */
   4503 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4504 
   4505 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4506 		KDASSERT(l2b != NULL);
   4507 
   4508 		/* Distribute new L1 entry to all other L1s */
   4509 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4510 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4511 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4512 			    L1_C_PROTO;
   4513 			PTE_SYNC(pl1pd);
   4514 		}
   4515 	}
   4516 
   4517 	/*
   4518 	 * flush out the cache, expensive but growkernel will happen so
   4519 	 * rarely
   4520 	 */
   4521 	cpu_dcache_wbinv_all();
   4522 	cpu_tlb_flushD();
   4523 	cpu_cpwait();
   4524 
   4525 	simple_unlock(&kpm->pm_lock);
   4526 	splx(s);
   4527 
   4528 out:
   4529 	return (pmap_curmaxkvaddr);
   4530 }
   4531 
   4532 /************************ Utility routines ****************************/
   4533 
   4534 /*
   4535  * vector_page_setprot:
   4536  *
   4537  *	Manipulate the protection of the vector page.
   4538  */
   4539 void
   4540 vector_page_setprot(int prot)
   4541 {
   4542 	struct l2_bucket *l2b;
   4543 	pt_entry_t *ptep;
   4544 
   4545 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4546 	KDASSERT(l2b != NULL);
   4547 
   4548 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4549 
   4550 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4551 	PTE_SYNC(ptep);
   4552 	cpu_tlb_flushD_SE(vector_page);
   4553 	cpu_cpwait();
   4554 }
   4555 
   4556 /*
   4557  * This is used to stuff certain critical values into the PCB where they
   4558  * can be accessed quickly from cpu_switch() et al.
   4559  */
   4560 void
   4561 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
   4562 {
   4563 	struct l2_bucket *l2b;
   4564 
   4565 	KDASSERT(pm->pm_l1);
   4566 
   4567 	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
   4568 	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4569 	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
   4570 	pcb->pcb_cstate = (void *)&pm->pm_cstate;
   4571 
   4572 	if (vector_page < KERNEL_BASE) {
   4573 		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   4574 		l2b = pmap_get_l2_bucket(pm, vector_page);
   4575 		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
   4576 		    L1_C_DOM(pm->pm_domain);
   4577 	} else
   4578 		pcb->pcb_pl1vec = NULL;
   4579 }
   4580 
   4581 /*
   4582  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4583  * Returns TRUE if the mapping exists, else FALSE.
   4584  *
   4585  * NOTE: This function is only used by a couple of arm-specific modules.
   4586  * It is not safe to take any pmap locks here, since we could be right
   4587  * in the middle of debugging the pmap anyway...
   4588  *
   4589  * It is possible for this routine to return FALSE even though a valid
   4590  * mapping does exist. This is because we don't lock, so the metadata
   4591  * state may be inconsistent.
   4592  *
   4593  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4594  * a "section" mapping.
   4595  */
   4596 boolean_t
   4597 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4598 {
   4599 	struct l2_dtable *l2;
   4600 	pd_entry_t *pl1pd, l1pd;
   4601 	pt_entry_t *ptep;
   4602 	u_short l1idx;
   4603 
   4604 	if (pm->pm_l1 == NULL)
   4605 		return (FALSE);
   4606 
   4607 	l1idx = L1_IDX(va);
   4608 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4609 	l1pd = *pl1pd;
   4610 
   4611 	if (l1pte_section_p(l1pd)) {
   4612 		*ptp = NULL;
   4613 		return (TRUE);
   4614 	}
   4615 
   4616 	if (pm->pm_l2 == NULL)
   4617 		return (FALSE);
   4618 
   4619 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4620 
   4621 	if (l2 == NULL ||
   4622 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4623 		return (FALSE);
   4624 	}
   4625 
   4626 	*ptp = &ptep[l2pte_index(va)];
   4627 	return (TRUE);
   4628 }
   4629 
   4630 boolean_t
   4631 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4632 {
   4633 	u_short l1idx;
   4634 
   4635 	if (pm->pm_l1 == NULL)
   4636 		return (FALSE);
   4637 
   4638 	l1idx = L1_IDX(va);
   4639 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4640 
   4641 	return (TRUE);
   4642 }
   4643 
   4644 /************************ Bootstrapping routines ****************************/
   4645 
   4646 static void
   4647 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4648 {
   4649 	int i;
   4650 
   4651 	l1->l1_kva = l1pt;
   4652 	l1->l1_domain_use_count = 0;
   4653 	l1->l1_domain_first = 0;
   4654 
   4655 	for (i = 0; i < PMAP_DOMAINS; i++)
   4656 		l1->l1_domain_free[i] = i + 1;
   4657 
   4658 	/*
   4659 	 * Copy the kernel's L1 entries to each new L1.
   4660 	 */
   4661 	if (pmap_initialized)
   4662 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   4663 
   4664 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   4665 	    &l1->l1_physaddr) == FALSE)
   4666 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   4667 
   4668 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   4669 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   4670 }
   4671 
   4672 /*
   4673  * pmap_bootstrap() is called from the board-specific initarm() routine
   4674  * once the kernel L1/L2 descriptors tables have been set up.
   4675  *
   4676  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   4677  * spread over a number of disparate files/functions.
   4678  *
   4679  * We are passed the following parameters
   4680  *  - kernel_l1pt
   4681  *    This is a pointer to the base of the kernel's L1 translation table.
   4682  *  - vstart
   4683  *    1MB-aligned start of managed kernel virtual memory.
   4684  *  - vend
   4685  *    1MB-aligned end of managed kernel virtual memory.
   4686  *
   4687  * We use the first parameter to build the metadata (struct l1_ttable and
   4688  * struct l2_dtable) necessary to track kernel mappings.
   4689  */
   4690 #define	PMAP_STATIC_L2_SIZE 16
   4691 void
   4692 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
   4693 {
   4694 	static struct l1_ttable static_l1;
   4695 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   4696 	struct l1_ttable *l1 = &static_l1;
   4697 	struct l2_dtable *l2;
   4698 	struct l2_bucket *l2b;
   4699 	pmap_t pm = pmap_kernel();
   4700 	pd_entry_t pde;
   4701 	pt_entry_t *ptep;
   4702 	paddr_t pa;
   4703 	vaddr_t va;
   4704 	vsize_t size;
   4705 	int nptes, l1idx, l2idx, l2next = 0;
   4706 
   4707 	/*
   4708 	 * Initialise the kernel pmap object
   4709 	 */
   4710 	pm->pm_l1 = l1;
   4711 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   4712 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4713 	simple_lock_init(&pm->pm_lock);
   4714 	pm->pm_obj.pgops = NULL;
   4715 	TAILQ_INIT(&pm->pm_obj.memq);
   4716 	pm->pm_obj.uo_npages = 0;
   4717 	pm->pm_obj.uo_refs = 1;
   4718 
   4719 	/*
   4720 	 * Scan the L1 translation table created by initarm() and create
   4721 	 * the required metadata for all valid mappings found in it.
   4722 	 */
   4723 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   4724 		pde = kernel_l1pt[l1idx];
   4725 
   4726 		/*
   4727 		 * We're only interested in Coarse mappings.
   4728 		 * pmap_extract() can deal with section mappings without
   4729 		 * recourse to checking L2 metadata.
   4730 		 */
   4731 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   4732 			continue;
   4733 
   4734 		/*
   4735 		 * Lookup the KVA of this L2 descriptor table
   4736 		 */
   4737 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   4738 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   4739 		if (ptep == NULL) {
   4740 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   4741 			    (u_int)l1idx << L1_S_SHIFT, pa);
   4742 		}
   4743 
   4744 		/*
   4745 		 * Fetch the associated L2 metadata structure.
   4746 		 * Allocate a new one if necessary.
   4747 		 */
   4748 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4749 			if (l2next == PMAP_STATIC_L2_SIZE)
   4750 				panic("pmap_bootstrap: out of static L2s");
   4751 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   4752 		}
   4753 
   4754 		/*
   4755 		 * One more L1 slot tracked...
   4756 		 */
   4757 		l2->l2_occupancy++;
   4758 
   4759 		/*
   4760 		 * Fill in the details of the L2 descriptor in the
   4761 		 * appropriate bucket.
   4762 		 */
   4763 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4764 		l2b->l2b_kva = ptep;
   4765 		l2b->l2b_phys = pa;
   4766 		l2b->l2b_l1idx = l1idx;
   4767 
   4768 		/*
   4769 		 * Establish an initial occupancy count for this descriptor
   4770 		 */
   4771 		for (l2idx = 0;
   4772 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   4773 		    l2idx++) {
   4774 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   4775 				l2b->l2b_occupancy++;
   4776 			}
   4777 		}
   4778 
   4779 		/*
   4780 		 * Make sure the descriptor itself has the correct cache mode.
   4781 		 * If not, fix it, but whine about the problem. Port-meisters
   4782 		 * should consider this a clue to fix up their initarm()
   4783 		 * function. :)
   4784 		 */
   4785 		if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
   4786 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   4787 			    "L2 pte @ %p\n", ptep);
   4788 		}
   4789 	}
   4790 
   4791 	/*
   4792 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   4793 	 * a page table. Bitch if it is not correctly set.
   4794 	 */
   4795 	for (va = (vaddr_t)kernel_l1pt;
   4796 	    va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   4797 		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
   4798 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   4799 			    "primary L1 @ 0x%lx\n", va);
   4800 	}
   4801 
   4802 	cpu_dcache_wbinv_all();
   4803 	cpu_tlb_flushID();
   4804 	cpu_cpwait();
   4805 
   4806 	/*
   4807 	 * now we allocate the "special" VAs which are used for tmp mappings
   4808 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   4809 	 * virtual_avail (note that there are no pages mapped at these VAs).
   4810 	 *
   4811 	 * Managed KVM space start from wherever initarm() tells us.
   4812 	 */
   4813 	virtual_avail = vstart;
   4814 	virtual_end = vend;
   4815 
   4816 #ifdef PMAP_CACHE_VIPT
   4817 	/*
   4818 	 * If we have a VIPT cache, we need one page/pte per possible alias
   4819 	 * page so we won't violate cache aliasing rules.
   4820 	 */
   4821 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   4822 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   4823 #else
   4824 	nptes = 1;
   4825 #endif
   4826 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   4827 	pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
   4828 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   4829 	pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
   4830 	pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
   4831 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   4832 	    (void *)&msgbufaddr, NULL);
   4833 
   4834 	/*
   4835 	 * Allocate a range of kernel virtual address space to be used
   4836 	 * for L2 descriptor tables and metadata allocation in
   4837 	 * pmap_growkernel().
   4838 	 */
   4839 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   4840 	pmap_alloc_specials(&virtual_avail,
   4841 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   4842 	    &pmap_kernel_l2ptp_kva, NULL);
   4843 
   4844 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   4845 	pmap_alloc_specials(&virtual_avail,
   4846 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   4847 	    &pmap_kernel_l2dtable_kva, NULL);
   4848 
   4849 	/*
   4850 	 * init the static-global locks and global pmap list.
   4851 	 */
   4852 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   4853 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   4854 #endif
   4855 
   4856 	/*
   4857 	 * We can now initialise the first L1's metadata.
   4858 	 */
   4859 	SLIST_INIT(&l1_list);
   4860 	TAILQ_INIT(&l1_lru_list);
   4861 	simple_lock_init(&l1_lru_lock);
   4862 	pmap_init_l1(l1, kernel_l1pt);
   4863 
   4864 	/*
   4865 	 * Initialize the pmap pool and cache
   4866 	 */
   4867 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   4868 	    &pool_allocator_nointr);
   4869 	pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
   4870 	    pmap_pmap_ctor, NULL, NULL);
   4871 	LIST_INIT(&pmap_pmaps);
   4872 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   4873 
   4874 	/*
   4875 	 * Initialize the pv pool.
   4876 	 */
   4877 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   4878 	    &pmap_bootstrap_pv_allocator);
   4879 
   4880 	/*
   4881 	 * Initialize the L2 dtable pool and cache.
   4882 	 */
   4883 	pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
   4884 	    "l2dtblpl", NULL);
   4885 	pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
   4886 	    pmap_l2dtable_ctor, NULL, NULL);
   4887 
   4888 	/*
   4889 	 * Initialise the L2 descriptor table pool and cache
   4890 	 */
   4891 	pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
   4892 	    0, "l2ptppl", NULL);
   4893 	pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
   4894 	    pmap_l2ptp_ctor, NULL, NULL);
   4895 
   4896 	cpu_dcache_wbinv_all();
   4897 }
   4898 
   4899 static int
   4900 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   4901 {
   4902 	pd_entry_t *pdep, pde;
   4903 	pt_entry_t *ptep, pte;
   4904 	vaddr_t pa;
   4905 	int rv = 0;
   4906 
   4907 	/*
   4908 	 * Make sure the descriptor itself has the correct cache mode
   4909 	 */
   4910 	pdep = &kl1[L1_IDX(va)];
   4911 	pde = *pdep;
   4912 
   4913 	if (l1pte_section_p(pde)) {
   4914 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   4915 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   4916 			    pte_l1_s_cache_mode_pt;
   4917 			PTE_SYNC(pdep);
   4918 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   4919 			rv = 1;
   4920 		}
   4921 	} else {
   4922 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   4923 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   4924 		if (ptep == NULL)
   4925 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   4926 
   4927 		ptep = &ptep[l2pte_index(va)];
   4928 		pte = *ptep;
   4929 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   4930 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   4931 			    pte_l2_s_cache_mode_pt;
   4932 			PTE_SYNC(ptep);
   4933 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   4934 			rv = 1;
   4935 		}
   4936 	}
   4937 
   4938 	return (rv);
   4939 }
   4940 
   4941 static void
   4942 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   4943 {
   4944 	vaddr_t va = *availp;
   4945 	struct l2_bucket *l2b;
   4946 
   4947 	if (ptep) {
   4948 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4949 		if (l2b == NULL)
   4950 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   4951 
   4952 		if (ptep)
   4953 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   4954 	}
   4955 
   4956 	*vap = va;
   4957 	*availp = va + (PAGE_SIZE * pages);
   4958 }
   4959 
   4960 void
   4961 pmap_init(void)
   4962 {
   4963 	extern int physmem;
   4964 
   4965 	/*
   4966 	 * Set the available memory vars - These do not map to real memory
   4967 	 * addresses and cannot as the physical memory is fragmented.
   4968 	 * They are used by ps for %mem calculations.
   4969 	 * One could argue whether this should be the entire memory or just
   4970 	 * the memory that is useable in a user process.
   4971 	 */
   4972 	avail_start = 0;
   4973 	avail_end = physmem * PAGE_SIZE;
   4974 
   4975 	/*
   4976 	 * Now we need to free enough pv_entry structures to allow us to get
   4977 	 * the kmem_map/kmem_object allocated and inited (done after this
   4978 	 * function is finished).  to do this we allocate one bootstrap page out
   4979 	 * of kernel_map and use it to provide an initial pool of pv_entry
   4980 	 * structures.   we never free this page.
   4981 	 */
   4982 	pool_setlowat(&pmap_pv_pool,
   4983 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   4984 
   4985 	pmap_initialized = TRUE;
   4986 }
   4987 
   4988 static vaddr_t last_bootstrap_page = 0;
   4989 static void *free_bootstrap_pages = NULL;
   4990 
   4991 static void *
   4992 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   4993 {
   4994 	extern void *pool_page_alloc(struct pool *, int);
   4995 	vaddr_t new_page;
   4996 	void *rv;
   4997 
   4998 	if (pmap_initialized)
   4999 		return (pool_page_alloc(pp, flags));
   5000 
   5001 	if (free_bootstrap_pages) {
   5002 		rv = free_bootstrap_pages;
   5003 		free_bootstrap_pages = *((void **)rv);
   5004 		return (rv);
   5005 	}
   5006 
   5007 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5008 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5009 
   5010 	KASSERT(new_page > last_bootstrap_page);
   5011 	last_bootstrap_page = new_page;
   5012 	return ((void *)new_page);
   5013 }
   5014 
   5015 static void
   5016 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5017 {
   5018 	extern void pool_page_free(struct pool *, void *);
   5019 
   5020 	if ((vaddr_t)v <= last_bootstrap_page) {
   5021 		*((void **)v) = free_bootstrap_pages;
   5022 		free_bootstrap_pages = v;
   5023 		return;
   5024 	}
   5025 
   5026 	if (pmap_initialized) {
   5027 		pool_page_free(pp, v);
   5028 		return;
   5029 	}
   5030 }
   5031 
   5032 /*
   5033  * pmap_postinit()
   5034  *
   5035  * This routine is called after the vm and kmem subsystems have been
   5036  * initialised. This allows the pmap code to perform any initialisation
   5037  * that can only be done one the memory allocation is in place.
   5038  */
   5039 void
   5040 pmap_postinit(void)
   5041 {
   5042 	extern paddr_t physical_start, physical_end;
   5043 	struct l2_bucket *l2b;
   5044 	struct l1_ttable *l1;
   5045 	struct pglist plist;
   5046 	struct vm_page *m;
   5047 	pd_entry_t *pl1pt;
   5048 	pt_entry_t *ptep, pte;
   5049 	vaddr_t va, eva;
   5050 	u_int loop, needed;
   5051 	int error;
   5052 
   5053 	pool_setlowat(&pmap_l2ptp_pool,
   5054 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5055 	pool_setlowat(&pmap_l2dtable_pool,
   5056 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5057 
   5058 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5059 	needed -= 1;
   5060 
   5061 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5062 
   5063 	for (loop = 0; loop < needed; loop++, l1++) {
   5064 		/* Allocate a L1 page table */
   5065 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5066 		if (va == 0)
   5067 			panic("Cannot allocate L1 KVM");
   5068 
   5069 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5070 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5071 		if (error)
   5072 			panic("Cannot allocate L1 physical pages");
   5073 
   5074 		m = TAILQ_FIRST(&plist);
   5075 		eva = va + L1_TABLE_SIZE;
   5076 		pl1pt = (pd_entry_t *)va;
   5077 
   5078 		while (m && va < eva) {
   5079 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5080 
   5081 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   5082 
   5083 			/*
   5084 			 * Make sure the L1 descriptor table is mapped
   5085 			 * with the cache-mode set to write-through.
   5086 			 */
   5087 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5088 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5089 			pte = *ptep;
   5090 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5091 			*ptep = pte;
   5092 			PTE_SYNC(ptep);
   5093 			cpu_tlb_flushD_SE(va);
   5094 
   5095 			va += PAGE_SIZE;
   5096 			m = TAILQ_NEXT(m, pageq);
   5097 		}
   5098 
   5099 #ifdef DIAGNOSTIC
   5100 		if (m)
   5101 			panic("pmap_alloc_l1pt: pglist not empty");
   5102 #endif	/* DIAGNOSTIC */
   5103 
   5104 		pmap_init_l1(l1, pl1pt);
   5105 	}
   5106 
   5107 #ifdef DEBUG
   5108 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5109 	    needed);
   5110 #endif
   5111 }
   5112 
   5113 /*
   5114  * Note that the following routines are used by board-specific initialisation
   5115  * code to configure the initial kernel page tables.
   5116  *
   5117  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5118  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5119  * behaviour of the old pmap, and provides an easy migration path for
   5120  * initial bring-up of the new pmap on existing ports. Fortunately,
   5121  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5122  * will be deprecated.
   5123  *
   5124  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5125  * tables.
   5126  */
   5127 
   5128 /*
   5129  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5130  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5131  * find them as necessary.
   5132  *
   5133  * Note that the data on this list MUST remain valid after initarm() returns,
   5134  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5135  */
   5136 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5137 
   5138 static vaddr_t
   5139 kernel_pt_lookup(paddr_t pa)
   5140 {
   5141 	pv_addr_t *pv;
   5142 
   5143 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5144 #ifndef ARM32_NEW_VM_LAYOUT
   5145 		if (pv->pv_pa == (pa & ~PGOFSET))
   5146 			return (pv->pv_va | (pa & PGOFSET));
   5147 #else
   5148 		if (pv->pv_pa == pa)
   5149 			return (pv->pv_va);
   5150 #endif
   5151 	}
   5152 	return (0);
   5153 }
   5154 
   5155 /*
   5156  * pmap_map_section:
   5157  *
   5158  *	Create a single section mapping.
   5159  */
   5160 void
   5161 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5162 {
   5163 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5164 	pd_entry_t fl;
   5165 
   5166 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5167 
   5168 	switch (cache) {
   5169 	case PTE_NOCACHE:
   5170 	default:
   5171 		fl = 0;
   5172 		break;
   5173 
   5174 	case PTE_CACHE:
   5175 		fl = pte_l1_s_cache_mode;
   5176 		break;
   5177 
   5178 	case PTE_PAGETABLE:
   5179 		fl = pte_l1_s_cache_mode_pt;
   5180 		break;
   5181 	}
   5182 
   5183 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5184 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5185 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5186 }
   5187 
   5188 /*
   5189  * pmap_map_entry:
   5190  *
   5191  *	Create a single page mapping.
   5192  */
   5193 void
   5194 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5195 {
   5196 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5197 	pt_entry_t fl;
   5198 	pt_entry_t *pte;
   5199 
   5200 	KASSERT(((va | pa) & PGOFSET) == 0);
   5201 
   5202 	switch (cache) {
   5203 	case PTE_NOCACHE:
   5204 	default:
   5205 		fl = 0;
   5206 		break;
   5207 
   5208 	case PTE_CACHE:
   5209 		fl = pte_l2_s_cache_mode;
   5210 		break;
   5211 
   5212 	case PTE_PAGETABLE:
   5213 		fl = pte_l2_s_cache_mode_pt;
   5214 		break;
   5215 	}
   5216 
   5217 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5218 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5219 
   5220 #ifndef ARM32_NEW_VM_LAYOUT
   5221 	pte = (pt_entry_t *)
   5222 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5223 #else
   5224 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5225 #endif
   5226 	if (pte == NULL)
   5227 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5228 
   5229 #ifndef ARM32_NEW_VM_LAYOUT
   5230 	pte[(va >> PGSHIFT) & 0x3ff] =
   5231 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5232 	PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5233 #else
   5234 	pte[l2pte_index(va)] =
   5235 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5236 	PTE_SYNC(&pte[l2pte_index(va)]);
   5237 #endif
   5238 }
   5239 
   5240 /*
   5241  * pmap_link_l2pt:
   5242  *
   5243  *	Link the L2 page table specified by "l2pv" into the L1
   5244  *	page table at the slot for "va".
   5245  */
   5246 void
   5247 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5248 {
   5249 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5250 	u_int slot = va >> L1_S_SHIFT;
   5251 
   5252 #ifndef ARM32_NEW_VM_LAYOUT
   5253 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5254 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5255 #endif
   5256 
   5257 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5258 
   5259 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5260 #ifdef ARM32_NEW_VM_LAYOUT
   5261 	PTE_SYNC(&pde[slot]);
   5262 #else
   5263 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5264 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5265 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5266 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5267 #endif
   5268 
   5269 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5270 }
   5271 
   5272 /*
   5273  * pmap_map_chunk:
   5274  *
   5275  *	Map a chunk of memory using the most efficient mappings
   5276  *	possible (section, large page, small page) into the
   5277  *	provided L1 and L2 tables at the specified virtual address.
   5278  */
   5279 vsize_t
   5280 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5281     int prot, int cache)
   5282 {
   5283 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5284 	pt_entry_t *pte, f1, f2s, f2l;
   5285 	vsize_t resid;
   5286 	int i;
   5287 
   5288 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5289 
   5290 	if (l1pt == 0)
   5291 		panic("pmap_map_chunk: no L1 table provided");
   5292 
   5293 #ifdef VERBOSE_INIT_ARM
   5294 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5295 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5296 #endif
   5297 
   5298 	switch (cache) {
   5299 	case PTE_NOCACHE:
   5300 	default:
   5301 		f1 = 0;
   5302 		f2l = 0;
   5303 		f2s = 0;
   5304 		break;
   5305 
   5306 	case PTE_CACHE:
   5307 		f1 = pte_l1_s_cache_mode;
   5308 		f2l = pte_l2_l_cache_mode;
   5309 		f2s = pte_l2_s_cache_mode;
   5310 		break;
   5311 
   5312 	case PTE_PAGETABLE:
   5313 		f1 = pte_l1_s_cache_mode_pt;
   5314 		f2l = pte_l2_l_cache_mode_pt;
   5315 		f2s = pte_l2_s_cache_mode_pt;
   5316 		break;
   5317 	}
   5318 
   5319 	size = resid;
   5320 
   5321 	while (resid > 0) {
   5322 		/* See if we can use a section mapping. */
   5323 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5324 #ifdef VERBOSE_INIT_ARM
   5325 			printf("S");
   5326 #endif
   5327 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5328 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5329 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5330 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5331 			va += L1_S_SIZE;
   5332 			pa += L1_S_SIZE;
   5333 			resid -= L1_S_SIZE;
   5334 			continue;
   5335 		}
   5336 
   5337 		/*
   5338 		 * Ok, we're going to use an L2 table.  Make sure
   5339 		 * one is actually in the corresponding L1 slot
   5340 		 * for the current VA.
   5341 		 */
   5342 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5343 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5344 
   5345 #ifndef ARM32_NEW_VM_LAYOUT
   5346 		pte = (pt_entry_t *)
   5347 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5348 #else
   5349 		pte = (pt_entry_t *) kernel_pt_lookup(
   5350 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5351 #endif
   5352 		if (pte == NULL)
   5353 			panic("pmap_map_chunk: can't find L2 table for VA"
   5354 			    "0x%08lx", va);
   5355 
   5356 		/* See if we can use a L2 large page mapping. */
   5357 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5358 #ifdef VERBOSE_INIT_ARM
   5359 			printf("L");
   5360 #endif
   5361 			for (i = 0; i < 16; i++) {
   5362 #ifndef ARM32_NEW_VM_LAYOUT
   5363 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5364 				    L2_L_PROTO | pa |
   5365 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5366 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5367 #else
   5368 				pte[l2pte_index(va) + i] =
   5369 				    L2_L_PROTO | pa |
   5370 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5371 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5372 #endif
   5373 			}
   5374 			va += L2_L_SIZE;
   5375 			pa += L2_L_SIZE;
   5376 			resid -= L2_L_SIZE;
   5377 			continue;
   5378 		}
   5379 
   5380 		/* Use a small page mapping. */
   5381 #ifdef VERBOSE_INIT_ARM
   5382 		printf("P");
   5383 #endif
   5384 #ifndef ARM32_NEW_VM_LAYOUT
   5385 		pte[(va >> PGSHIFT) & 0x3ff] =
   5386 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5387 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5388 #else
   5389 		pte[l2pte_index(va)] =
   5390 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5391 		PTE_SYNC(&pte[l2pte_index(va)]);
   5392 #endif
   5393 		va += PAGE_SIZE;
   5394 		pa += PAGE_SIZE;
   5395 		resid -= PAGE_SIZE;
   5396 	}
   5397 #ifdef VERBOSE_INIT_ARM
   5398 	printf("\n");
   5399 #endif
   5400 	return (size);
   5401 }
   5402 
   5403 /********************** Static device map routines ***************************/
   5404 
   5405 static const struct pmap_devmap *pmap_devmap_table;
   5406 
   5407 /*
   5408  * Register the devmap table.  This is provided in case early console
   5409  * initialization needs to register mappings created by bootstrap code
   5410  * before pmap_devmap_bootstrap() is called.
   5411  */
   5412 void
   5413 pmap_devmap_register(const struct pmap_devmap *table)
   5414 {
   5415 
   5416 	pmap_devmap_table = table;
   5417 }
   5418 
   5419 /*
   5420  * Map all of the static regions in the devmap table, and remember
   5421  * the devmap table so other parts of the kernel can look up entries
   5422  * later.
   5423  */
   5424 void
   5425 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5426 {
   5427 	int i;
   5428 
   5429 	pmap_devmap_table = table;
   5430 
   5431 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5432 #ifdef VERBOSE_INIT_ARM
   5433 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5434 		    pmap_devmap_table[i].pd_pa,
   5435 		    pmap_devmap_table[i].pd_pa +
   5436 			pmap_devmap_table[i].pd_size - 1,
   5437 		    pmap_devmap_table[i].pd_va);
   5438 #endif
   5439 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5440 		    pmap_devmap_table[i].pd_pa,
   5441 		    pmap_devmap_table[i].pd_size,
   5442 		    pmap_devmap_table[i].pd_prot,
   5443 		    pmap_devmap_table[i].pd_cache);
   5444 	}
   5445 }
   5446 
   5447 const struct pmap_devmap *
   5448 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5449 {
   5450 	uint64_t endpa;
   5451 	int i;
   5452 
   5453 	if (pmap_devmap_table == NULL)
   5454 		return (NULL);
   5455 
   5456 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5457 
   5458 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5459 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5460 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5461 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5462 			return (&pmap_devmap_table[i]);
   5463 	}
   5464 
   5465 	return (NULL);
   5466 }
   5467 
   5468 const struct pmap_devmap *
   5469 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5470 {
   5471 	int i;
   5472 
   5473 	if (pmap_devmap_table == NULL)
   5474 		return (NULL);
   5475 
   5476 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5477 		if (va >= pmap_devmap_table[i].pd_va &&
   5478 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5479 				     pmap_devmap_table[i].pd_size - 1)
   5480 			return (&pmap_devmap_table[i]);
   5481 	}
   5482 
   5483 	return (NULL);
   5484 }
   5485 
   5486 /********************** PTE initialization routines **************************/
   5487 
   5488 /*
   5489  * These routines are called when the CPU type is identified to set up
   5490  * the PTE prototypes, cache modes, etc.
   5491  *
   5492  * The variables are always here, just in case LKMs need to reference
   5493  * them (though, they shouldn't).
   5494  */
   5495 
   5496 pt_entry_t	pte_l1_s_cache_mode;
   5497 pt_entry_t	pte_l1_s_cache_mode_pt;
   5498 pt_entry_t	pte_l1_s_cache_mask;
   5499 
   5500 pt_entry_t	pte_l2_l_cache_mode;
   5501 pt_entry_t	pte_l2_l_cache_mode_pt;
   5502 pt_entry_t	pte_l2_l_cache_mask;
   5503 
   5504 pt_entry_t	pte_l2_s_cache_mode;
   5505 pt_entry_t	pte_l2_s_cache_mode_pt;
   5506 pt_entry_t	pte_l2_s_cache_mask;
   5507 
   5508 pt_entry_t	pte_l2_s_prot_u;
   5509 pt_entry_t	pte_l2_s_prot_w;
   5510 pt_entry_t	pte_l2_s_prot_mask;
   5511 
   5512 pt_entry_t	pte_l1_s_proto;
   5513 pt_entry_t	pte_l1_c_proto;
   5514 pt_entry_t	pte_l2_s_proto;
   5515 
   5516 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5517 void		(*pmap_zero_page_func)(paddr_t);
   5518 
   5519 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5520 void
   5521 pmap_pte_init_generic(void)
   5522 {
   5523 
   5524 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5525 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5526 
   5527 	pte_l2_l_cache_mode = L2_B|L2_C;
   5528 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5529 
   5530 	pte_l2_s_cache_mode = L2_B|L2_C;
   5531 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5532 
   5533 	/*
   5534 	 * If we have a write-through cache, set B and C.  If
   5535 	 * we have a write-back cache, then we assume setting
   5536 	 * only C will make those pages write-through.
   5537 	 */
   5538 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5539 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5540 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5541 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5542 	} else {
   5543 #if ARM_MMU_V6 > 1
   5544 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5545 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5546 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5547 #else
   5548 		pte_l1_s_cache_mode_pt = L1_S_C;
   5549 		pte_l2_l_cache_mode_pt = L2_C;
   5550 		pte_l2_s_cache_mode_pt = L2_C;
   5551 #endif
   5552 	}
   5553 
   5554 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5555 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5556 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5557 
   5558 	pte_l1_s_proto = L1_S_PROTO_generic;
   5559 	pte_l1_c_proto = L1_C_PROTO_generic;
   5560 	pte_l2_s_proto = L2_S_PROTO_generic;
   5561 
   5562 	pmap_copy_page_func = pmap_copy_page_generic;
   5563 	pmap_zero_page_func = pmap_zero_page_generic;
   5564 }
   5565 
   5566 #if defined(CPU_ARM8)
   5567 void
   5568 pmap_pte_init_arm8(void)
   5569 {
   5570 
   5571 	/*
   5572 	 * ARM8 is compatible with generic, but we need to use
   5573 	 * the page tables uncached.
   5574 	 */
   5575 	pmap_pte_init_generic();
   5576 
   5577 	pte_l1_s_cache_mode_pt = 0;
   5578 	pte_l2_l_cache_mode_pt = 0;
   5579 	pte_l2_s_cache_mode_pt = 0;
   5580 }
   5581 #endif /* CPU_ARM8 */
   5582 
   5583 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5584 void
   5585 pmap_pte_init_arm9(void)
   5586 {
   5587 
   5588 	/*
   5589 	 * ARM9 is compatible with generic, but we want to use
   5590 	 * write-through caching for now.
   5591 	 */
   5592 	pmap_pte_init_generic();
   5593 
   5594 	pte_l1_s_cache_mode = L1_S_C;
   5595 	pte_l2_l_cache_mode = L2_C;
   5596 	pte_l2_s_cache_mode = L2_C;
   5597 
   5598 	pte_l1_s_cache_mode_pt = L1_S_C;
   5599 	pte_l2_l_cache_mode_pt = L2_C;
   5600 	pte_l2_s_cache_mode_pt = L2_C;
   5601 }
   5602 #endif /* CPU_ARM9 */
   5603 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5604 
   5605 #if defined(CPU_ARM10)
   5606 void
   5607 pmap_pte_init_arm10(void)
   5608 {
   5609 
   5610 	/*
   5611 	 * ARM10 is compatible with generic, but we want to use
   5612 	 * write-through caching for now.
   5613 	 */
   5614 	pmap_pte_init_generic();
   5615 
   5616 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5617 	pte_l2_l_cache_mode = L2_B | L2_C;
   5618 	pte_l2_s_cache_mode = L2_B | L2_C;
   5619 
   5620 	pte_l1_s_cache_mode_pt = L1_S_C;
   5621 	pte_l2_l_cache_mode_pt = L2_C;
   5622 	pte_l2_s_cache_mode_pt = L2_C;
   5623 
   5624 }
   5625 #endif /* CPU_ARM10 */
   5626 
   5627 #if ARM_MMU_SA1 == 1
   5628 void
   5629 pmap_pte_init_sa1(void)
   5630 {
   5631 
   5632 	/*
   5633 	 * The StrongARM SA-1 cache does not have a write-through
   5634 	 * mode.  So, do the generic initialization, then reset
   5635 	 * the page table cache mode to B=1,C=1, and note that
   5636 	 * the PTEs need to be sync'd.
   5637 	 */
   5638 	pmap_pte_init_generic();
   5639 
   5640 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5641 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5642 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5643 
   5644 	pmap_needs_pte_sync = 1;
   5645 }
   5646 #endif /* ARM_MMU_SA1 == 1*/
   5647 
   5648 #if ARM_MMU_XSCALE == 1
   5649 #if (ARM_NMMUS > 1)
   5650 static u_int xscale_use_minidata;
   5651 #endif
   5652 
   5653 void
   5654 pmap_pte_init_xscale(void)
   5655 {
   5656 	uint32_t auxctl;
   5657 	int write_through = 0;
   5658 
   5659 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5660 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   5661 
   5662 	pte_l2_l_cache_mode = L2_B|L2_C;
   5663 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   5664 
   5665 	pte_l2_s_cache_mode = L2_B|L2_C;
   5666 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   5667 
   5668 	pte_l1_s_cache_mode_pt = L1_S_C;
   5669 	pte_l2_l_cache_mode_pt = L2_C;
   5670 	pte_l2_s_cache_mode_pt = L2_C;
   5671 
   5672 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   5673 	/*
   5674 	 * The XScale core has an enhanced mode where writes that
   5675 	 * miss the cache cause a cache line to be allocated.  This
   5676 	 * is significantly faster than the traditional, write-through
   5677 	 * behavior of this case.
   5678 	 */
   5679 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
   5680 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
   5681 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
   5682 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   5683 
   5684 #ifdef XSCALE_CACHE_WRITE_THROUGH
   5685 	/*
   5686 	 * Some versions of the XScale core have various bugs in
   5687 	 * their cache units, the work-around for which is to run
   5688 	 * the cache in write-through mode.  Unfortunately, this
   5689 	 * has a major (negative) impact on performance.  So, we
   5690 	 * go ahead and run fast-and-loose, in the hopes that we
   5691 	 * don't line up the planets in a way that will trip the
   5692 	 * bugs.
   5693 	 *
   5694 	 * However, we give you the option to be slow-but-correct.
   5695 	 */
   5696 	write_through = 1;
   5697 #elif defined(XSCALE_CACHE_WRITE_BACK)
   5698 	/* force write back cache mode */
   5699 	write_through = 0;
   5700 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   5701 	/*
   5702 	 * Intel PXA2[15]0 processors are known to have a bug in
   5703 	 * write-back cache on revision 4 and earlier (stepping
   5704 	 * A[01] and B[012]).  Fixed for C0 and later.
   5705 	 */
   5706 	{
   5707 		uint32_t id, type;
   5708 
   5709 		id = cpufunc_id();
   5710 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   5711 
   5712 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   5713 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   5714 				/* write through for stepping A0-1 and B0-2 */
   5715 				write_through = 1;
   5716 			}
   5717 		}
   5718 	}
   5719 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   5720 
   5721 	if (write_through) {
   5722 		pte_l1_s_cache_mode = L1_S_C;
   5723 		pte_l2_l_cache_mode = L2_C;
   5724 		pte_l2_s_cache_mode = L2_C;
   5725 	}
   5726 
   5727 #if (ARM_NMMUS > 1)
   5728 	xscale_use_minidata = 1;
   5729 #endif
   5730 
   5731 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   5732 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   5733 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   5734 
   5735 	pte_l1_s_proto = L1_S_PROTO_xscale;
   5736 	pte_l1_c_proto = L1_C_PROTO_xscale;
   5737 	pte_l2_s_proto = L2_S_PROTO_xscale;
   5738 
   5739 	pmap_copy_page_func = pmap_copy_page_xscale;
   5740 	pmap_zero_page_func = pmap_zero_page_xscale;
   5741 
   5742 	/*
   5743 	 * Disable ECC protection of page table access, for now.
   5744 	 */
   5745 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   5746 	auxctl &= ~XSCALE_AUXCTL_P;
   5747 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   5748 }
   5749 
   5750 /*
   5751  * xscale_setup_minidata:
   5752  *
   5753  *	Set up the mini-data cache clean area.  We require the
   5754  *	caller to allocate the right amount of physically and
   5755  *	virtually contiguous space.
   5756  */
   5757 void
   5758 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   5759 {
   5760 	extern vaddr_t xscale_minidata_clean_addr;
   5761 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   5762 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5763 	pt_entry_t *pte;
   5764 	vsize_t size;
   5765 	uint32_t auxctl;
   5766 
   5767 	xscale_minidata_clean_addr = va;
   5768 
   5769 	/* Round it to page size. */
   5770 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   5771 
   5772 	for (; size != 0;
   5773 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   5774 #ifndef ARM32_NEW_VM_LAYOUT
   5775 		pte = (pt_entry_t *)
   5776 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5777 #else
   5778 		pte = (pt_entry_t *) kernel_pt_lookup(
   5779 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5780 #endif
   5781 		if (pte == NULL)
   5782 			panic("xscale_setup_minidata: can't find L2 table for "
   5783 			    "VA 0x%08lx", va);
   5784 #ifndef ARM32_NEW_VM_LAYOUT
   5785 		pte[(va >> PGSHIFT) & 0x3ff] =
   5786 #else
   5787 		pte[l2pte_index(va)] =
   5788 #endif
   5789 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   5790 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   5791 	}
   5792 
   5793 	/*
   5794 	 * Configure the mini-data cache for write-back with
   5795 	 * read/write-allocate.
   5796 	 *
   5797 	 * NOTE: In order to reconfigure the mini-data cache, we must
   5798 	 * make sure it contains no valid data!  In order to do that,
   5799 	 * we must issue a global data cache invalidate command!
   5800 	 *
   5801 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   5802 	 * THIS IS VERY IMPORTANT!
   5803 	 */
   5804 
   5805 	/* Invalidate data and mini-data. */
   5806 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   5807 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   5808 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   5809 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   5810 }
   5811 
   5812 /*
   5813  * Change the PTEs for the specified kernel mappings such that they
   5814  * will use the mini data cache instead of the main data cache.
   5815  */
   5816 void
   5817 pmap_uarea(vaddr_t va)
   5818 {
   5819 	struct l2_bucket *l2b;
   5820 	pt_entry_t *ptep, *sptep, pte;
   5821 	vaddr_t next_bucket, eva;
   5822 
   5823 #if (ARM_NMMUS > 1)
   5824 	if (xscale_use_minidata == 0)
   5825 		return;
   5826 #endif
   5827 
   5828 	eva = va + USPACE;
   5829 
   5830 	while (va < eva) {
   5831 		next_bucket = L2_NEXT_BUCKET(va);
   5832 		if (next_bucket > eva)
   5833 			next_bucket = eva;
   5834 
   5835 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5836 		KDASSERT(l2b != NULL);
   5837 
   5838 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   5839 
   5840 		while (va < next_bucket) {
   5841 			pte = *ptep;
   5842 			if (!l2pte_minidata(pte)) {
   5843 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   5844 				cpu_tlb_flushD_SE(va);
   5845 				*ptep = pte & ~L2_B;
   5846 			}
   5847 			ptep++;
   5848 			va += PAGE_SIZE;
   5849 		}
   5850 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   5851 	}
   5852 	cpu_cpwait();
   5853 }
   5854 #endif /* ARM_MMU_XSCALE == 1 */
   5855 
   5856 #if defined(DDB)
   5857 /*
   5858  * A couple of ddb-callable functions for dumping pmaps
   5859  */
   5860 void pmap_dump_all(void);
   5861 void pmap_dump(pmap_t);
   5862 
   5863 void
   5864 pmap_dump_all(void)
   5865 {
   5866 	pmap_t pm;
   5867 
   5868 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   5869 		if (pm == pmap_kernel())
   5870 			continue;
   5871 		pmap_dump(pm);
   5872 		printf("\n");
   5873 	}
   5874 }
   5875 
   5876 static pt_entry_t ncptes[64];
   5877 static void pmap_dump_ncpg(pmap_t);
   5878 
   5879 void
   5880 pmap_dump(pmap_t pm)
   5881 {
   5882 	struct l2_dtable *l2;
   5883 	struct l2_bucket *l2b;
   5884 	pt_entry_t *ptep, pte;
   5885 	vaddr_t l2_va, l2b_va, va;
   5886 	int i, j, k, occ, rows = 0;
   5887 
   5888 	if (pm == pmap_kernel())
   5889 		printf("pmap_kernel (%p): ", pm);
   5890 	else
   5891 		printf("user pmap (%p): ", pm);
   5892 
   5893 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   5894 
   5895 	l2_va = 0;
   5896 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   5897 		l2 = pm->pm_l2[i];
   5898 
   5899 		if (l2 == NULL || l2->l2_occupancy == 0)
   5900 			continue;
   5901 
   5902 		l2b_va = l2_va;
   5903 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   5904 			l2b = &l2->l2_bucket[j];
   5905 
   5906 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   5907 				continue;
   5908 
   5909 			ptep = l2b->l2b_kva;
   5910 
   5911 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   5912 				;
   5913 
   5914 			k &= ~63;
   5915 			occ = l2b->l2b_occupancy;
   5916 			va = l2b_va + (k * 4096);
   5917 			for (; k < 256; k++, va += 0x1000) {
   5918 				char ch = ' ';
   5919 				if ((k % 64) == 0) {
   5920 					if ((rows % 8) == 0) {
   5921 						printf(
   5922 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   5923 					}
   5924 					printf("%08lx: ", va);
   5925 				}
   5926 
   5927 				ncptes[k & 63] = 0;
   5928 				pte = ptep[k];
   5929 				if (pte == 0) {
   5930 					ch = '.';
   5931 				} else {
   5932 					occ--;
   5933 					switch (pte & 0x0c) {
   5934 					case 0x00:
   5935 						ch = 'D'; /* No cache No buff */
   5936 						break;
   5937 					case 0x04:
   5938 						ch = 'B'; /* No cache buff */
   5939 						break;
   5940 					case 0x08:
   5941 						if (pte & 0x40)
   5942 							ch = 'm';
   5943 						else
   5944 						   ch = 'C'; /* Cache No buff */
   5945 						break;
   5946 					case 0x0c:
   5947 						ch = 'F'; /* Cache Buff */
   5948 						break;
   5949 					}
   5950 
   5951 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   5952 						ch += 0x20;
   5953 
   5954 					if ((pte & 0xc) == 0)
   5955 						ncptes[k & 63] = pte;
   5956 				}
   5957 
   5958 				if ((k % 64) == 63) {
   5959 					rows++;
   5960 					printf("%c\n", ch);
   5961 					pmap_dump_ncpg(pm);
   5962 					if (occ == 0)
   5963 						break;
   5964 				} else
   5965 					printf("%c", ch);
   5966 			}
   5967 		}
   5968 	}
   5969 }
   5970 
   5971 static void
   5972 pmap_dump_ncpg(pmap_t pm)
   5973 {
   5974 	struct vm_page *pg;
   5975 	struct pv_entry *pv;
   5976 	int i;
   5977 
   5978 	for (i = 0; i < 63; i++) {
   5979 		if (ncptes[i] == 0)
   5980 			continue;
   5981 
   5982 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   5983 		if (pg == NULL)
   5984 			continue;
   5985 
   5986 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   5987 		    VM_PAGE_TO_PHYS(pg),
   5988 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   5989 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   5990 
   5991 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   5992 			printf("   %c va 0x%08lx, flags 0x%x\n",
   5993 			    (pm == pv->pv_pmap) ? '*' : ' ',
   5994 			    pv->pv_va, pv->pv_flags);
   5995 		}
   5996 	}
   5997 }
   5998 #endif
   5999