Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.16
      1 /*	$NetBSD: pmap.c,v 1.16 2001/07/29 12:45:27 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Richard Earnshaw
      5  * Copyright (c) 2001 Christopher Gilbert
      6  * All rights reserved.
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. The name of the company nor the name of the author may be used to
     14  *    endorse or promote products derived from this software without specific
     15  *    prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     21  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     23  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 
     30 /*-
     31  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     32  * All rights reserved.
     33  *
     34  * This code is derived from software contributed to The NetBSD Foundation
     35  * by Charles M. Hannum.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *        This product includes software developed by the NetBSD
     48  *        Foundation, Inc. and its contributors.
     49  * 4. Neither the name of The NetBSD Foundation nor the names of its
     50  *    contributors may be used to endorse or promote products derived
     51  *    from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 /*
     67  * Copyright (c) 1994-1998 Mark Brinicombe.
     68  * Copyright (c) 1994 Brini.
     69  * All rights reserved.
     70  *
     71  * This code is derived from software written for Brini by Mark Brinicombe
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by Mark Brinicombe.
     84  * 4. The name of the author may not be used to endorse or promote products
     85  *    derived from this software without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     88  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     89  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     90  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     91  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     92  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     93  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     94  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     95  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     96  *
     97  * RiscBSD kernel project
     98  *
     99  * pmap.c
    100  *
    101  * Machine dependant vm stuff
    102  *
    103  * Created      : 20/09/94
    104  */
    105 
    106 /*
    107  * Performance improvements, UVM changes, overhauls and part-rewrites
    108  * were contributed by Neil A. Carson <neil (at) causality.com>.
    109  */
    110 
    111 /*
    112  * The dram block info is currently referenced from the bootconfig.
    113  * This should be placed in a separate structure.
    114  */
    115 
    116 /*
    117  * Special compilation symbols
    118  * PMAP_DEBUG		- Build in pmap_debug_level code
    119  */
    120 
    121 /* Include header files */
    122 
    123 #include "opt_pmap_debug.h"
    124 #include "opt_ddb.h"
    125 
    126 #include <sys/types.h>
    127 #include <sys/param.h>
    128 #include <sys/kernel.h>
    129 #include <sys/systm.h>
    130 #include <sys/proc.h>
    131 #include <sys/malloc.h>
    132 #include <sys/user.h>
    133 #include <sys/pool.h>
    134 #include <sys/cdefs.h>
    135 
    136 #include <uvm/uvm.h>
    137 
    138 #include <machine/bootconfig.h>
    139 #include <machine/bus.h>
    140 #include <machine/pmap.h>
    141 #include <machine/pcb.h>
    142 #include <machine/param.h>
    143 #include <machine/katelib.h>
    144 
    145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.16 2001/07/29 12:45:27 chris Exp $");
    146 
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 #else	/* PMAP_DEBUG */
    153 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    154 #endif	/* PMAP_DEBUG */
    155 
    156 struct pmap     kernel_pmap_store;
    157 
    158 /*
    159  * pool that pmap structures are allocated from
    160  */
    161 
    162 struct pool pmap_pmap_pool;
    163 
    164 pagehook_t page_hook0;
    165 pagehook_t page_hook1;
    166 char *memhook;
    167 pt_entry_t msgbufpte;
    168 extern caddr_t msgbufaddr;
    169 
    170 #ifdef DIAGNOSTIC
    171 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    172 #endif
    173 
    174 TAILQ_HEAD(pv_page_list, pv_page) pv_page_freelist;
    175 
    176 int pv_nfree = 0;
    177 
    178 vsize_t npages;
    179 
    180 extern paddr_t physical_start;
    181 extern paddr_t physical_freestart;
    182 extern paddr_t physical_end;
    183 extern paddr_t physical_freeend;
    184 extern unsigned int free_pages;
    185 extern int max_processes;
    186 
    187 vaddr_t virtual_start;
    188 vaddr_t virtual_end;
    189 
    190 vaddr_t avail_start;
    191 vaddr_t avail_end;
    192 
    193 extern pv_addr_t systempage;
    194 
    195 #define ALLOC_PAGE_HOOK(x, s) \
    196 	x.va = virtual_start; \
    197 	x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
    198 	virtual_start += s;
    199 
    200 /* Variables used by the L1 page table queue code */
    201 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    202 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    203 int l1pt_static_queue_count;		/* items in the static l1 queue */
    204 int l1pt_static_create_count;		/* static l1 items created */
    205 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    206 int l1pt_queue_count;			/* items in the l1 queue */
    207 int l1pt_create_count;			/* stat - L1's create count */
    208 int l1pt_reuse_count;			/* stat - L1's reused count */
    209 
    210 /* Local function prototypes (not used outside this file) */
    211 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    212 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
    213     paddr_t pa, unsigned int flags));
    214 void pmap_copy_on_write __P((paddr_t pa));
    215 void pmap_pinit __P((struct pmap *));
    216 void pmap_freepagedir __P((struct pmap *));
    217 void pmap_release __P((struct pmap *));
    218 
    219 /* Other function prototypes */
    220 extern void bzero_page __P((vaddr_t));
    221 extern void bcopy_page __P((vaddr_t, vaddr_t));
    222 
    223 struct l1pt *pmap_alloc_l1pt __P((void));
    224 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    225      vaddr_t l2pa));
    226 
    227 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    228 /* eventually this will be a function */
    229 #define pmap_unmap_ptes(a)
    230 
    231 void pmap_vac_me_harder __P((struct pmap *, struct pv_entry *,
    232 	    pt_entry_t *, boolean_t));
    233 
    234 #ifdef MYCROFT_HACK
    235 int mycroft_hack = 0;
    236 #endif
    237 
    238 /* Function to set the debug level of the pmap code */
    239 
    240 #ifdef PMAP_DEBUG
    241 void
    242 pmap_debug(level)
    243 	int level;
    244 {
    245 	pmap_debug_level = level;
    246 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    247 }
    248 #endif	/* PMAP_DEBUG */
    249 
    250 #include "isadma.h"
    251 
    252 #if NISADMA > 0
    253 /*
    254  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    255  * pages into the system, memory intersects with any of these ranges,
    256  * the intersecting memory will be loaded into a lower-priority free list.
    257  */
    258 bus_dma_segment_t *pmap_isa_dma_ranges;
    259 int pmap_isa_dma_nranges;
    260 
    261 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    262 	    paddr_t *, psize_t *));
    263 
    264 /*
    265  * Check if a memory range intersects with an ISA DMA range, and
    266  * return the page-rounded intersection if it does.  The intersection
    267  * will be placed on a lower-priority free list.
    268  */
    269 boolean_t
    270 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    271 	paddr_t pa;
    272 	psize_t size;
    273 	paddr_t *pap;
    274 	psize_t *sizep;
    275 {
    276 	bus_dma_segment_t *ds;
    277 	int i;
    278 
    279 	if (pmap_isa_dma_ranges == NULL)
    280 		return (FALSE);
    281 
    282 	for (i = 0, ds = pmap_isa_dma_ranges;
    283 	     i < pmap_isa_dma_nranges; i++, ds++) {
    284 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    285 			/*
    286 			 * Beginning of region intersects with this range.
    287 			 */
    288 			*pap = trunc_page(pa);
    289 			*sizep = round_page(min(pa + size,
    290 			    ds->ds_addr + ds->ds_len) - pa);
    291 			return (TRUE);
    292 		}
    293 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    294 			/*
    295 			 * End of region intersects with this range.
    296 			 */
    297 			*pap = trunc_page(ds->ds_addr);
    298 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    299 			    ds->ds_len));
    300 			return (TRUE);
    301 		}
    302 	}
    303 
    304 	/*
    305 	 * No intersection found.
    306 	 */
    307 	return (FALSE);
    308 }
    309 #endif /* NISADMA > 0 */
    310 
    311 /*
    312  * Functions for manipluation pv_entry structures. These are used to keep a
    313  * record of the mappings of virtual addresses and the associated physical
    314  * pages.
    315  */
    316 
    317 /*
    318  * Allocate a new pv_entry structure from the freelist. If the list is
    319  * empty allocate a new page and fill the freelist.
    320  */
    321 struct pv_entry *
    322 pmap_alloc_pv()
    323 {
    324 	struct pv_page *pvp;
    325 	struct pv_entry *pv;
    326 	int i;
    327 
    328 	/*
    329 	 * Do we have any free pv_entry structures left ?
    330 	 * If not allocate a page of them
    331 	 */
    332 
    333 	if (pv_nfree == 0) {
    334 		/* NOTE: can't lock kernel_map here */
    335 		MALLOC(pvp, struct pv_page *, NBPG, M_VMPVENT, M_WAITOK);
    336 		if (pvp == 0)
    337 			panic("pmap_alloc_pv: kmem_alloc() failed");
    338 		pvp->pvp_pgi.pgi_freelist = pv = &pvp->pvp_pv[1];
    339 		for (i = NPVPPG - 2; i; i--, pv++)
    340 			pv->pv_next = pv + 1;
    341 		pv->pv_next = 0;
    342 		pv_nfree += pvp->pvp_pgi.pgi_nfree = NPVPPG - 1;
    343 		TAILQ_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    344 		pv = &pvp->pvp_pv[0];
    345 	} else {
    346 		--pv_nfree;
    347 		pvp = pv_page_freelist.tqh_first;
    348 		if (--pvp->pvp_pgi.pgi_nfree == 0) {
    349 			TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    350 		}
    351 		pv = pvp->pvp_pgi.pgi_freelist;
    352 #ifdef DIAGNOSTIC
    353 		if (pv == 0)
    354 			panic("pmap_alloc_pv: pgi_nfree inconsistent");
    355 #endif	/* DIAGNOSTIC */
    356 		pvp->pvp_pgi.pgi_freelist = pv->pv_next;
    357 	}
    358 	return pv;
    359 }
    360 
    361 /*
    362  * Release a pv_entry structure putting it back on the freelist.
    363  */
    364 
    365 void
    366 pmap_free_pv(pv)
    367 	struct pv_entry *pv;
    368 {
    369 	struct pv_page *pvp;
    370 
    371 	pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
    372 	switch (++pvp->pvp_pgi.pgi_nfree) {
    373 	case 1:
    374 		TAILQ_INSERT_TAIL(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    375 	default:
    376 		pv->pv_next = pvp->pvp_pgi.pgi_freelist;
    377 		pvp->pvp_pgi.pgi_freelist = pv;
    378 		++pv_nfree;
    379 		break;
    380 	case NPVPPG:
    381 		pv_nfree -= NPVPPG - 1;
    382 		TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    383 		FREE((vaddr_t)pvp, M_VMPVENT);
    384 		break;
    385 	}
    386 }
    387 
    388 #if 0
    389 void
    390 pmap_collect_pv()
    391 {
    392 	struct pv_page_list pv_page_collectlist;
    393 	struct pv_page *pvp, *npvp;
    394 	struct pv_entry *ph, *ppv, *pv, *npv;
    395 	int s;
    396 
    397 	TAILQ_INIT(&pv_page_collectlist);
    398 
    399 	for (pvp = pv_page_freelist.tqh_first; pvp; pvp = npvp) {
    400 		if (pv_nfree < NPVPPG)
    401 			break;
    402 		npvp = pvp->pvp_pgi.pgi_list.tqe_next;
    403 		if (pvp->pvp_pgi.pgi_nfree > NPVPPG / 3) {
    404 			TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    405 			TAILQ_INSERT_TAIL(&pv_page_collectlist, pvp,
    406 			    pvp_pgi.pgi_list);
    407 			pv_nfree -= NPVPPG;
    408 			pvp->pvp_pgi.pgi_nfree = -1;
    409 		}
    410 	}
    411 
    412 	if (pv_page_collectlist.tqh_first == 0)
    413 		return;
    414 
    415 	for (ph = &pv_table[npages - 1]; ph >= &pv_table[0]; ph--) {
    416 		if (ph->pv_pmap == 0)
    417 			continue;
    418 		s = splvm();
    419 		for (ppv = ph; (pv = ppv->pv_next) != 0; ) {
    420 			pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
    421 			if (pvp->pvp_pgi.pgi_nfree == -1) {
    422 				pvp = pv_page_freelist.tqh_first;
    423 				if (--pvp->pvp_pgi.pgi_nfree == 0) {
    424 					TAILQ_REMOVE(&pv_page_freelist,
    425 					    pvp, pvp_pgi.pgi_list);
    426 				}
    427 				npv = pvp->pvp_pgi.pgi_freelist;
    428 #ifdef DIAGNOSTIC
    429 				if (npv == 0)
    430 					panic("pmap_collect_pv: pgi_nfree inconsistent");
    431 #endif	/* DIAGNOSTIC */
    432 				pvp->pvp_pgi.pgi_freelist = npv->pv_next;
    433 				*npv = *pv;
    434 				ppv->pv_next = npv;
    435 				ppv = npv;
    436 			} else
    437 				ppv = pv;
    438 		}
    439 		splx(s);
    440 	}
    441 
    442 	for (pvp = pv_page_collectlist.tqh_first; pvp; pvp = npvp) {
    443 		npvp = pvp->pvp_pgi.pgi_list.tqe_next;
    444 		FREE((vaddr_t)pvp, M_VMPVENT);
    445 	}
    446 }
    447 #endif
    448 
    449 /*
    450  * Enter a new physical-virtual mapping into the pv table
    451  */
    452 
    453 /*__inline*/ void
    454 pmap_enter_pv(pmap, va, pv, flags)
    455 	struct pmap *pmap;
    456 	vaddr_t va;
    457 	struct pv_entry *pv;
    458 	u_int flags;
    459 {
    460 	struct pv_entry *npv;
    461 	u_int s;
    462 
    463 #ifdef DIAGNOSTIC
    464 	if (!pmap_initialized)
    465 		panic("pmap_enter_pv: !pmap_initialized");
    466 #endif
    467 
    468 	s = splvm();
    469 
    470 	PDEBUG(5, printf("pmap_enter_pv: pv %p: %08lx/%p/%p\n",
    471 	    pv, pv->pv_va, pv->pv_pmap, pv->pv_next));
    472 
    473 	if (pv->pv_pmap == NULL) {
    474 		/*
    475 		 * No entries yet, use header as the first entry
    476 		 */
    477 		pv->pv_va = va;
    478 		pv->pv_pmap = pmap;
    479 		pv->pv_next = NULL;
    480 		pv->pv_flags = flags;
    481 	} else {
    482 		/*
    483 		 * There is at least one other VA mapping this page.
    484 		 * Place this entry after the header.
    485 		 */
    486 #ifdef PMAP_DEBUG
    487 		for (npv = pv; npv; npv = npv->pv_next)
    488 			if (pmap == npv->pv_pmap && va == npv->pv_va)
    489 				panic("pmap_enter_pv: already in pv_tab pv %p: %08lx/%p/%p",
    490 				    pv, pv->pv_va, pv->pv_pmap, pv->pv_next);
    491 #endif
    492 		npv = pmap_alloc_pv();
    493 		/* Must make sure that the new entry is before any others
    494 		 * for the same pmap.  Otherwise the vac handling code
    495 		 * will get confused.
    496 		 * XXX this would be better if we used lists like i386 (infact
    497 		 * this would be a lot simpler)
    498 		 */
    499 		*npv = *pv;
    500  		pv->pv_va = va;
    501  		pv->pv_pmap = pmap;
    502  		pv->pv_flags = flags;
    503 		pv->pv_next = npv;
    504 	}
    505 
    506 	if (flags & PT_W)
    507 		++pmap->pm_stats.wired_count;
    508 
    509 	splx(s);
    510 }
    511 
    512 
    513 /*
    514  * Remove a physical-virtual mapping from the pv table
    515  */
    516 
    517 /*__inline*/ void
    518 pmap_remove_pv(pmap, va, pv)
    519 	struct pmap *pmap;
    520 	vaddr_t va;
    521 	struct pv_entry *pv;
    522 {
    523 	struct pv_entry *npv;
    524 	u_int s;
    525 	u_int flags = 0;
    526 
    527 #ifdef DIAGNOSTIC
    528 	if (!pmap_initialized)
    529 		panic("pmap_remove_pv: !pmap_initialized");
    530 #endif
    531 
    532 	s = splvm();
    533 
    534 	/*
    535 	 * If it is the first entry on the list, it is actually
    536 	 * in the header and we must copy the following entry up
    537 	 * to the header.  Otherwise we must search the list for
    538 	 * the entry.  In either case we free the now unused entry.
    539 	 */
    540 
    541 	if (pmap == pv->pv_pmap && va == pv->pv_va) {
    542 		npv = pv->pv_next;
    543 		if (npv) {
    544 			*pv = *npv;
    545 			flags = npv->pv_flags;
    546 			pmap_free_pv(npv);
    547 		} else {
    548 			flags = pv->pv_flags;
    549 			pv->pv_pmap = NULL;
    550 		}
    551 	} else {
    552 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
    553 			if (pmap == npv->pv_pmap && va == npv->pv_va)
    554 				break;
    555 		}
    556 		if (npv) {
    557 			pv->pv_next = npv->pv_next;
    558 			flags = npv->pv_flags;
    559 			pmap_free_pv(npv);
    560 		} else
    561 			panic("pmap_remove_pv: lost entry");
    562 	}
    563 
    564 	if (flags & PT_W)
    565 		--pmap->pm_stats.wired_count;
    566 
    567 	splx(s);
    568 }
    569 
    570 /*
    571  * Modify a physical-virtual mapping in the pv table
    572  */
    573 
    574 /*__inline */ u_int
    575 pmap_modify_pv(pmap, va, pv, bic_mask, eor_mask)
    576 	struct pmap *pmap;
    577 	vaddr_t va;
    578 	struct pv_entry *pv;
    579 	u_int bic_mask;
    580 	u_int eor_mask;
    581 {
    582 	struct pv_entry *npv;
    583 	u_int s;
    584 	u_int flags, oflags;
    585 
    586 	PDEBUG(5, printf("pmap_modify_pv(pmap=%p, va=%08lx, pv=%p, bic_mask=%08x, eor_mask=%08x)\n",
    587 	    pmap, va, pv, bic_mask, eor_mask));
    588 
    589 #ifdef DIAGNOSTIC
    590 	if (!pmap_initialized)
    591 		panic("pmap_modify_pv: !pmap_initialized");
    592 #endif
    593 
    594 	s = splvm();
    595 
    596 	PDEBUG(5, printf("pmap_modify_pv: pv %p: %08lx/%p/%p/%08x ",
    597 	    pv, pv->pv_va, pv->pv_pmap, pv->pv_next, pv->pv_flags));
    598 
    599 	/*
    600 	 * There is at least one VA mapping this page.
    601 	 */
    602 
    603 	for (npv = pv; npv; npv = npv->pv_next) {
    604 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    605 			oflags = npv->pv_flags;
    606 			npv->pv_flags = flags =
    607 			    ((oflags & ~bic_mask) ^ eor_mask);
    608 			if ((flags ^ oflags) & PT_W) {
    609 				if (flags & PT_W)
    610 					++pmap->pm_stats.wired_count;
    611 				else
    612 					--pmap->pm_stats.wired_count;
    613 			}
    614 			PDEBUG(0, printf("done flags=%08x\n", flags));
    615 			splx(s);
    616 			return (oflags);
    617 		}
    618 	}
    619 
    620 	PDEBUG(0, printf("done.\n"));
    621 	splx(s);
    622 	return (0);
    623 }
    624 
    625 
    626 /*
    627  * Map the specified level 2 pagetable into the level 1 page table for
    628  * the given pmap to cover a chunk of virtual address space starting from the
    629  * address specified.
    630  */
    631 static /*__inline*/ void
    632 pmap_map_in_l1(pmap, va, l2pa)
    633 	struct pmap *pmap;
    634 	vaddr_t va, l2pa;
    635 {
    636 	vaddr_t ptva;
    637 
    638 	/* Calculate the index into the L1 page table. */
    639 	ptva = (va >> PDSHIFT) & ~3;
    640 
    641 	PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    642 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    643 
    644 	/* Map page table into the L1. */
    645 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    646 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    647 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    648 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    649 
    650 	PDEBUG(0, printf("pt self reference %lx in %lx\n",
    651 	    L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    652 
    653 	/* Map the page table into the page table area. */
    654 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_PTE_NC_NB(l2pa, AP_KRW);
    655 
    656 	/* XXX should be a purge */
    657 /*	cpu_tlb_flushD();*/
    658 }
    659 
    660 #if 0
    661 static /*__inline*/ void
    662 pmap_unmap_in_l1(pmap, va)
    663 	struct pmap *pmap;
    664 	vaddr_t va;
    665 {
    666 	vaddr_t ptva;
    667 
    668 	/* Calculate the index into the L1 page table. */
    669 	ptva = (va >> PDSHIFT) & ~3;
    670 
    671 	/* Unmap page table from the L1. */
    672 	pmap->pm_pdir[ptva + 0] = 0;
    673 	pmap->pm_pdir[ptva + 1] = 0;
    674 	pmap->pm_pdir[ptva + 2] = 0;
    675 	pmap->pm_pdir[ptva + 3] = 0;
    676 
    677 	/* Unmap the page table from the page table area. */
    678 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    679 
    680 	/* XXX should be a purge */
    681 /*	cpu_tlb_flushD();*/
    682 }
    683 #endif
    684 
    685 
    686 /*
    687  *	Used to map a range of physical addresses into kernel
    688  *	virtual address space.
    689  *
    690  *	For now, VM is already on, we only need to map the
    691  *	specified memory.
    692  */
    693 vaddr_t
    694 pmap_map(va, spa, epa, prot)
    695 	vaddr_t va, spa, epa;
    696 	int prot;
    697 {
    698 	while (spa < epa) {
    699 		pmap_enter(pmap_kernel(), va, spa, prot, 0);
    700 		va += NBPG;
    701 		spa += NBPG;
    702 	}
    703 	pmap_update();
    704 	return(va);
    705 }
    706 
    707 
    708 /*
    709  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    710  *
    711  * bootstrap the pmap system. This is called from initarm and allows
    712  * the pmap system to initailise any structures it requires.
    713  *
    714  * Currently this sets up the kernel_pmap that is statically allocated
    715  * and also allocated virtual addresses for certain page hooks.
    716  * Currently the only one page hook is allocated that is used
    717  * to zero physical pages of memory.
    718  * It also initialises the start and end address of the kernel data space.
    719  */
    720 extern paddr_t physical_freestart;
    721 extern paddr_t physical_freeend;
    722 
    723 struct pv_entry *boot_pvent;
    724 char *boot_attrs;
    725 
    726 void
    727 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
    728 	pd_entry_t *kernel_l1pt;
    729 	pv_addr_t kernel_ptpt;
    730 {
    731 	int loop;
    732 	paddr_t start, end;
    733 #if NISADMA > 0
    734 	paddr_t istart;
    735 	psize_t isize;
    736 #endif
    737 	vsize_t size;
    738 
    739 	pmap_kernel()->pm_pdir = kernel_l1pt;
    740 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
    741 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
    742 	simple_lock_init(&pmap_kernel()->pm_lock);
    743 	pmap_kernel()->pm_obj.pgops = NULL;
    744 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
    745 	pmap_kernel()->pm_obj.uo_npages = 0;
    746 	pmap_kernel()->pm_obj.uo_refs = 1;
    747 
    748 	/*
    749 	 * Initialize PAGE_SIZE-dependent variables.
    750 	 */
    751 	uvm_setpagesize();
    752 
    753 	npages = 0;
    754 	loop = 0;
    755 	while (loop < bootconfig.dramblocks) {
    756 		start = (paddr_t)bootconfig.dram[loop].address;
    757 		end = start + (bootconfig.dram[loop].pages * NBPG);
    758 		if (start < physical_freestart)
    759 			start = physical_freestart;
    760 		if (end > physical_freeend)
    761 			end = physical_freeend;
    762 #if 0
    763 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
    764 #endif
    765 #if NISADMA > 0
    766 		if (pmap_isa_dma_range_intersect(start, end - start,
    767 		    &istart, &isize)) {
    768 			/*
    769 			 * Place the pages that intersect with the
    770 			 * ISA DMA range onto the ISA DMA free list.
    771 			 */
    772 #if 0
    773 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
    774 			    istart + isize - 1);
    775 #endif
    776 			uvm_page_physload(atop(istart),
    777 			    atop(istart + isize), atop(istart),
    778 			    atop(istart + isize), VM_FREELIST_ISADMA);
    779 			npages += atop(istart + isize) - atop(istart);
    780 
    781 			/*
    782 			 * Load the pieces that come before
    783 			 * the intersection into the default
    784 			 * free list.
    785 			 */
    786 			if (start < istart) {
    787 #if 0
    788 				printf("    BEFORE 0x%lx -> 0x%lx\n",
    789 				    start, istart - 1);
    790 #endif
    791 				uvm_page_physload(atop(start),
    792 				    atop(istart), atop(start),
    793 				    atop(istart), VM_FREELIST_DEFAULT);
    794 				npages += atop(istart) - atop(start);
    795 			}
    796 
    797 			/*
    798 			 * Load the pieces that come after
    799 			 * the intersection into the default
    800 			 * free list.
    801 			 */
    802 			if ((istart + isize) < end) {
    803 #if 0
    804 				printf("     AFTER 0x%lx -> 0x%lx\n",
    805 				    (istart + isize), end - 1);
    806 #endif
    807 				uvm_page_physload(atop(istart + isize),
    808 				    atop(end), atop(istart + isize),
    809 				    atop(end), VM_FREELIST_DEFAULT);
    810 				npages += atop(end) - atop(istart + isize);
    811 			}
    812 		} else {
    813 			uvm_page_physload(atop(start), atop(end),
    814 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
    815 			npages += atop(end) - atop(start);
    816 		}
    817 #else	/* NISADMA > 0 */
    818 		uvm_page_physload(atop(start), atop(end),
    819 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
    820 		npages += atop(end) - atop(start);
    821 #endif /* NISADMA > 0 */
    822 		++loop;
    823 	}
    824 
    825 #ifdef MYCROFT_HACK
    826 	printf("npages = %ld\n", npages);
    827 #endif
    828 
    829 	virtual_start = KERNEL_VM_BASE;
    830 	virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
    831 
    832 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
    833 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
    834 
    835 	/*
    836 	 * The mem special device needs a virtual hook but we don't
    837 	 * need a pte
    838 	 */
    839 	memhook = (char *)virtual_start;
    840 	virtual_start += NBPG;
    841 
    842 	msgbufaddr = (caddr_t)virtual_start;
    843 	msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
    844 	virtual_start += round_page(MSGBUFSIZE);
    845 
    846 	size = npages * sizeof(struct pv_entry);
    847 	boot_pvent = (struct pv_entry *)uvm_pageboot_alloc(size);
    848 	bzero(boot_pvent, size);
    849 	size = npages * sizeof(char);
    850 	boot_attrs = (char *)uvm_pageboot_alloc(size);
    851 	bzero(boot_attrs, size);
    852 
    853 	/*
    854 	 * initialize the pmap pool.
    855 	 */
    856 
    857 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
    858 		  0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
    859 
    860 	cpu_cache_cleanD();
    861 }
    862 
    863 /*
    864  * void pmap_init(void)
    865  *
    866  * Initialize the pmap module.
    867  * Called by vm_init() in vm/vm_init.c in order to initialise
    868  * any structures that the pmap system needs to map virtual memory.
    869  */
    870 
    871 extern int physmem;
    872 
    873 void
    874 pmap_init()
    875 {
    876 	int lcv;
    877 
    878 #ifdef MYCROFT_HACK
    879 	printf("physmem = %d\n", physmem);
    880 #endif
    881 
    882 	/*
    883 	 * Set the available memory vars - These do not map to real memory
    884 	 * addresses and cannot as the physical memory is fragmented.
    885 	 * They are used by ps for %mem calculations.
    886 	 * One could argue whether this should be the entire memory or just
    887 	 * the memory that is useable in a user process.
    888 	 */
    889 	avail_start = 0;
    890 	avail_end = physmem * NBPG;
    891 
    892 	/* Set up pmap info for physsegs. */
    893 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
    894 		vm_physmem[lcv].pmseg.pvent = boot_pvent;
    895 		boot_pvent += vm_physmem[lcv].end - vm_physmem[lcv].start;
    896 		vm_physmem[lcv].pmseg.attrs = boot_attrs;
    897 		boot_attrs += vm_physmem[lcv].end - vm_physmem[lcv].start;
    898 	}
    899 #ifdef MYCROFT_HACK
    900 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    901 		printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
    902 		    lcv,
    903 		    vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
    904 		    vm_physmem[lcv].start, vm_physmem[lcv].end);
    905 	}
    906 #endif
    907 	TAILQ_INIT(&pv_page_freelist);
    908 
    909 #ifdef DIAGNOSTIC
    910 	/* Now it is safe to enable pv_entry recording. */
    911 	pmap_initialized = TRUE;
    912 #endif
    913 
    914 	/* Initialise our L1 page table queues and counters */
    915 	SIMPLEQ_INIT(&l1pt_static_queue);
    916 	l1pt_static_queue_count = 0;
    917 	l1pt_static_create_count = 0;
    918 	SIMPLEQ_INIT(&l1pt_queue);
    919 	l1pt_queue_count = 0;
    920 	l1pt_create_count = 0;
    921 	l1pt_reuse_count = 0;
    922 }
    923 
    924 /*
    925  * pmap_postinit()
    926  *
    927  * This routine is called after the vm and kmem subsystems have been
    928  * initialised. This allows the pmap code to perform any initialisation
    929  * that can only be done one the memory allocation is in place.
    930  */
    931 
    932 void
    933 pmap_postinit()
    934 {
    935 	int loop;
    936 	struct l1pt *pt;
    937 
    938 #ifdef PMAP_STATIC_L1S
    939 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
    940 #else	/* PMAP_STATIC_L1S */
    941 	for (loop = 0; loop < max_processes; ++loop) {
    942 #endif	/* PMAP_STATIC_L1S */
    943 		/* Allocate a L1 page table */
    944 		pt = pmap_alloc_l1pt();
    945 		if (!pt)
    946 			panic("Cannot allocate static L1 page tables\n");
    947 
    948 		/* Clean it */
    949 		bzero((void *)pt->pt_va, PD_SIZE);
    950 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
    951 		/* Add the page table to the queue */
    952 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
    953 		++l1pt_static_queue_count;
    954 		++l1pt_static_create_count;
    955 	}
    956 }
    957 
    958 
    959 /*
    960  * Create and return a physical map.
    961  *
    962  * If the size specified for the map is zero, the map is an actual physical
    963  * map, and may be referenced by the hardware.
    964  *
    965  * If the size specified is non-zero, the map will be used in software only,
    966  * and is bounded by that size.
    967  */
    968 
    969 pmap_t
    970 pmap_create()
    971 {
    972 	struct pmap *pmap;
    973 
    974 	/*
    975 	 * Fetch pmap entry from the pool
    976 	 */
    977 
    978 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
    979 	bzero(pmap, sizeof(*pmap));
    980 
    981 	simple_lock_init(&pmap->pm_obj.vmobjlock);
    982 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
    983 	TAILQ_INIT(&pmap->pm_obj.memq);
    984 	pmap->pm_obj.uo_npages = 0;
    985 	pmap->pm_obj.uo_refs = 1;
    986 	pmap->pm_stats.wired_count = 0;
    987 	pmap->pm_stats.resident_count = 1;
    988 
    989 	/* Now init the machine part of the pmap */
    990 	pmap_pinit(pmap);
    991 	return(pmap);
    992 }
    993 
    994 /*
    995  * pmap_alloc_l1pt()
    996  *
    997  * This routine allocates physical and virtual memory for a L1 page table
    998  * and wires it.
    999  * A l1pt structure is returned to describe the allocated page table.
   1000  *
   1001  * This routine is allowed to fail if the required memory cannot be allocated.
   1002  * In this case NULL is returned.
   1003  */
   1004 
   1005 struct l1pt *
   1006 pmap_alloc_l1pt(void)
   1007 {
   1008 	paddr_t pa;
   1009 	vaddr_t va;
   1010 	struct l1pt *pt;
   1011 	int error;
   1012 	struct vm_page *m;
   1013 	pt_entry_t *ptes;
   1014 
   1015 	/* Allocate virtual address space for the L1 page table */
   1016 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1017 	if (va == 0) {
   1018 #ifdef DIAGNOSTIC
   1019 		printf("pmap: Cannot allocate pageable memory for L1\n");
   1020 #endif	/* DIAGNOSTIC */
   1021 		return(NULL);
   1022 	}
   1023 
   1024 	/* Allocate memory for the l1pt structure */
   1025 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1026 
   1027 	/*
   1028 	 * Allocate pages from the VM system.
   1029 	 */
   1030 	TAILQ_INIT(&pt->pt_plist);
   1031 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1032 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1033 	if (error) {
   1034 #ifdef DIAGNOSTIC
   1035 		printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
   1036 		    error);
   1037 #endif	/* DIAGNOSTIC */
   1038 		/* Release the resources we already have claimed */
   1039 		free(pt, M_VMPMAP);
   1040 		uvm_km_free(kernel_map, va, PD_SIZE);
   1041 		return(NULL);
   1042 	}
   1043 
   1044 	/* Map our physical pages into our virtual space */
   1045 	pt->pt_va = va;
   1046 	m = pt->pt_plist.tqh_first;
   1047 	ptes = pmap_map_ptes(pmap_kernel());
   1048 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1049 		pa = VM_PAGE_TO_PHYS(m);
   1050 
   1051 		pmap_enter(pmap_kernel(), va, pa,
   1052 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
   1053 
   1054 		/* Revoke cacheability and bufferability */
   1055 		/* XXX should be done better than this */
   1056 		ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
   1057 
   1058 		va += NBPG;
   1059 		m = m->pageq.tqe_next;
   1060 	}
   1061 	pmap_unmap_ptes(pmap_kernel());
   1062 	pmap_update();
   1063 
   1064 #ifdef DIAGNOSTIC
   1065 	if (m)
   1066 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1067 #endif	/* DIAGNOSTIC */
   1068 
   1069 	pt->pt_flags = 0;
   1070 	return(pt);
   1071 }
   1072 
   1073 /*
   1074  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1075  */
   1076 void
   1077 pmap_free_l1pt(pt)
   1078 	struct l1pt *pt;
   1079 {
   1080 	/* Separate the physical memory for the virtual space */
   1081 	pmap_remove(pmap_kernel(), pt->pt_va, pt->pt_va + PD_SIZE);
   1082 	pmap_update();
   1083 
   1084 	/* Return the physical memory */
   1085 	uvm_pglistfree(&pt->pt_plist);
   1086 
   1087 	/* Free the virtual space */
   1088 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1089 
   1090 	/* Free the l1pt structure */
   1091 	free(pt, M_VMPMAP);
   1092 }
   1093 
   1094 /*
   1095  * Allocate a page directory.
   1096  * This routine will either allocate a new page directory from the pool
   1097  * of L1 page tables currently held by the kernel or it will allocate
   1098  * a new one via pmap_alloc_l1pt().
   1099  * It will then initialise the l1 page table for use.
   1100  */
   1101 int
   1102 pmap_allocpagedir(pmap)
   1103 	struct pmap *pmap;
   1104 {
   1105 	paddr_t pa;
   1106 	struct l1pt *pt;
   1107 	pt_entry_t *pte;
   1108 
   1109 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1110 
   1111 	/* Do we have any spare L1's lying around ? */
   1112 	if (l1pt_static_queue_count) {
   1113 		--l1pt_static_queue_count;
   1114 		pt = l1pt_static_queue.sqh_first;
   1115 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1116 	} else if (l1pt_queue_count) {
   1117 		--l1pt_queue_count;
   1118 		pt = l1pt_queue.sqh_first;
   1119 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1120 		++l1pt_reuse_count;
   1121 	} else {
   1122 		pt = pmap_alloc_l1pt();
   1123 		if (!pt)
   1124 			return(ENOMEM);
   1125 		++l1pt_create_count;
   1126 	}
   1127 
   1128 	/* Store the pointer to the l1 descriptor in the pmap. */
   1129 	pmap->pm_l1pt = pt;
   1130 
   1131 	/* Get the physical address of the start of the l1 */
   1132 	pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
   1133 
   1134 	/* Store the virtual address of the l1 in the pmap. */
   1135 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1136 
   1137 	/* Clean the L1 if it is dirty */
   1138 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1139 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1140 
   1141 	/* Do we already have the kernel mappings ? */
   1142 	if (!(pt->pt_flags & PTFLAG_KPT)) {
   1143 		/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1144 
   1145 		bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1146 		    (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1147 		    KERNEL_PD_SIZE);
   1148 		pt->pt_flags |= PTFLAG_KPT;
   1149 	}
   1150 
   1151 	/* Allocate a page table to map all the page tables for this pmap */
   1152 
   1153 #ifdef DIAGNOSTIC
   1154 	if (pmap->pm_vptpt) {
   1155 		/* XXX What if we have one already ? */
   1156 		panic("pmap_allocpagedir: have pt already\n");
   1157 	}
   1158 #endif	/* DIAGNOSTIC */
   1159 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1160 	if (pmap->pm_vptpt == 0) {
   1161 		pmap_freepagedir(pmap);
   1162 		return(ENOMEM);
   1163 	}
   1164 
   1165 	(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
   1166 	pmap->pm_pptpt &= PG_FRAME;
   1167 	/* Revoke cacheability and bufferability */
   1168 	/* XXX should be done better than this */
   1169 	pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
   1170 	*pte = *pte & ~(PT_C | PT_B);
   1171 
   1172 	/* Wire in this page table */
   1173 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt);
   1174 
   1175 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1176 
   1177 	/*
   1178 	 * Map the kernel page tables for 0xf0000000 +
   1179 	 * into the page table used to map the
   1180 	 * pmap's page tables
   1181 	 */
   1182 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1183 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1184 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1185 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1186 	    (KERNEL_PD_SIZE >> 2));
   1187 
   1188 	return(0);
   1189 }
   1190 
   1191 
   1192 /*
   1193  * Initialize a preallocated and zeroed pmap structure,
   1194  * such as one in a vmspace structure.
   1195  */
   1196 
   1197 static int pmap_pagedir_ident;	/* tsleep() ident */
   1198 
   1199 void
   1200 pmap_pinit(pmap)
   1201 	struct pmap *pmap;
   1202 {
   1203 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1204 
   1205 	/* Keep looping until we succeed in allocating a page directory */
   1206 	while (pmap_allocpagedir(pmap) != 0) {
   1207 		/*
   1208 		 * Ok we failed to allocate a suitable block of memory for an
   1209 		 * L1 page table. This means that either:
   1210 		 * 1. 16KB of virtual address space could not be allocated
   1211 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1212 		 *    could not be allocated.
   1213 		 *
   1214 		 * Since we cannot fail we will sleep for a while and try
   1215 		 * again. Although we will be wakened when another page table
   1216 		 * is freed other memory releasing and swapping may occur
   1217 		 * that will mean we can succeed so we will keep trying
   1218 		 * regularly just in case.
   1219 		 */
   1220 
   1221 		if (tsleep((caddr_t)&pmap_pagedir_ident, PZERO,
   1222 		   "l1ptwait", 1000) == EWOULDBLOCK)
   1223 			printf("pmap: Cannot allocate L1 page table, sleeping ...\n");
   1224 	}
   1225 
   1226 	/* Map zero page for the pmap. This will also map the L2 for it */
   1227 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1228 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1229 	pmap_update();
   1230 }
   1231 
   1232 
   1233 void
   1234 pmap_freepagedir(pmap)
   1235 	struct pmap *pmap;
   1236 {
   1237 	/* Free the memory used for the page table mapping */
   1238 	if (pmap->pm_vptpt != 0)
   1239 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1240 
   1241 	/* junk the L1 page table */
   1242 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1243 		/* Add the page table to the queue */
   1244 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1245 		++l1pt_static_queue_count;
   1246 		/* Wake up any sleeping processes waiting for a l1 page table */
   1247 		wakeup((caddr_t)&pmap_pagedir_ident);
   1248 	} else if (l1pt_queue_count < 8) {
   1249 		/* Add the page table to the queue */
   1250 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1251 		++l1pt_queue_count;
   1252 		/* Wake up any sleeping processes waiting for a l1 page table */
   1253 		wakeup((caddr_t)&pmap_pagedir_ident);
   1254 	} else
   1255 		pmap_free_l1pt(pmap->pm_l1pt);
   1256 }
   1257 
   1258 
   1259 /*
   1260  * Retire the given physical map from service.
   1261  * Should only be called if the map contains no valid mappings.
   1262  */
   1263 
   1264 void
   1265 pmap_destroy(pmap)
   1266 	struct pmap *pmap;
   1267 {
   1268 	int count;
   1269 
   1270 	if (pmap == NULL)
   1271 		return;
   1272 
   1273 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1274 	simple_lock(&pmap->pm_lock);
   1275 	count = --pmap->pm_obj.uo_refs;
   1276 	simple_unlock(&pmap->pm_lock);
   1277 	if (count == 0) {
   1278 		pmap_release(pmap);
   1279 		pool_put(&pmap_pmap_pool, pmap);
   1280 	}
   1281 }
   1282 
   1283 
   1284 /*
   1285  * Release any resources held by the given physical map.
   1286  * Called when a pmap initialized by pmap_pinit is being released.
   1287  * Should only be called if the map contains no valid mappings.
   1288  */
   1289 
   1290 void
   1291 pmap_release(pmap)
   1292 	struct pmap *pmap;
   1293 {
   1294 	struct vm_page *page;
   1295 
   1296 	PDEBUG(0, printf("pmap_release(%p)\n", pmap));
   1297 
   1298 	/* Remove the zero page mapping */
   1299 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1300 	pmap_update();
   1301 
   1302 	/*
   1303 	 * Free any page tables still mapped
   1304 	 * This is only temporay until pmap_enter can count the number
   1305 	 * of mappings made in a page table. Then pmap_remove() can
   1306 	 * reduce the count and free the pagetable when the count
   1307 	 * reaches zero.  Note that entries in this list should match the
   1308 	 * contents of the ptpt, however this is faster than walking a 1024
   1309 	 * entries looking for pt's
   1310 	 * taken from i386 pmap.c
   1311 	 */
   1312 	while (pmap->pm_obj.memq.tqh_first != NULL) {
   1313 		page = pmap->pm_obj.memq.tqh_first;
   1314 #ifdef DIAGNOSTIC
   1315 		if (page->flags & PG_BUSY)
   1316 			panic("pmap_release: busy page table page");
   1317 #endif
   1318 		/* pmap_page_protect?  currently no need for it. */
   1319 
   1320 		page->wire_count = 0;
   1321 		uvm_pagefree(page);
   1322 	}
   1323 
   1324 	/* Free the page dir */
   1325 	pmap_freepagedir(pmap);
   1326 }
   1327 
   1328 
   1329 /*
   1330  * void pmap_reference(struct pmap *pmap)
   1331  *
   1332  * Add a reference to the specified pmap.
   1333  */
   1334 
   1335 void
   1336 pmap_reference(pmap)
   1337 	struct pmap *pmap;
   1338 {
   1339 	if (pmap == NULL)
   1340 		return;
   1341 
   1342 	simple_lock(&pmap->pm_lock);
   1343 	pmap->pm_obj.uo_refs++;
   1344 	simple_unlock(&pmap->pm_lock);
   1345 }
   1346 
   1347 /*
   1348  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1349  *
   1350  * Return the start and end addresses of the kernel's virtual space.
   1351  * These values are setup in pmap_bootstrap and are updated as pages
   1352  * are allocated.
   1353  */
   1354 
   1355 void
   1356 pmap_virtual_space(start, end)
   1357 	vaddr_t *start;
   1358 	vaddr_t *end;
   1359 {
   1360 	*start = virtual_start;
   1361 	*end = virtual_end;
   1362 }
   1363 
   1364 
   1365 /*
   1366  * Activate the address space for the specified process.  If the process
   1367  * is the current process, load the new MMU context.
   1368  */
   1369 void
   1370 pmap_activate(p)
   1371 	struct proc *p;
   1372 {
   1373 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1374 	struct pcb *pcb = &p->p_addr->u_pcb;
   1375 
   1376 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1377 	    (paddr_t *)&pcb->pcb_pagedir);
   1378 
   1379 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1380 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1381 
   1382 	if (p == curproc) {
   1383 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1384 		setttb((u_int)pcb->pcb_pagedir);
   1385 	}
   1386 #if 0
   1387 	pmap->pm_pdchanged = FALSE;
   1388 #endif
   1389 }
   1390 
   1391 
   1392 /*
   1393  * Deactivate the address space of the specified process.
   1394  */
   1395 void
   1396 pmap_deactivate(p)
   1397 	struct proc *p;
   1398 {
   1399 }
   1400 
   1401 
   1402 /*
   1403  * pmap_clean_page()
   1404  *
   1405  * This is a local function used to work out the best strategy to clean
   1406  * a single page referenced by its entry in the PV table. It's used by
   1407  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1408  *
   1409  * Its policy is effectively:
   1410  *  o If there are no mappings, we don't bother doing anything with the cache.
   1411  *  o If there is one mapping, we clean just that page.
   1412  *  o If there are multiple mappings, we clean the entire cache.
   1413  *
   1414  * So that some functions can be further optimised, it returns 0 if it didn't
   1415  * clean the entire cache, or 1 if it did.
   1416  *
   1417  * XXX One bug in this routine is that if the pv_entry has a single page
   1418  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1419  * just the 1 page. Since this should not occur in everyday use and if it does
   1420  * it will just result in not the most efficient clean for the page.
   1421  */
   1422 static int
   1423 pmap_clean_page(pv)
   1424 	struct pv_entry *pv;
   1425 {
   1426 	int s;
   1427 	int cache_needs_cleaning = 0;
   1428 	vaddr_t page_to_clean = 0;
   1429 
   1430 	/* Go to splvm() so we get exclusive lock for a mo */
   1431 	s = splvm();
   1432 	if (pv->pv_pmap) {
   1433 		cache_needs_cleaning = 1;
   1434 		if (!pv->pv_next)
   1435 			page_to_clean = pv->pv_va;
   1436 	}
   1437 	splx(s);
   1438 
   1439 	/* Do cache ops outside the splvm. */
   1440 	if (page_to_clean)
   1441 		cpu_cache_purgeID_rng(page_to_clean, NBPG);
   1442 	else if (cache_needs_cleaning) {
   1443 		cpu_cache_purgeID();
   1444 		return (1);
   1445 	}
   1446 	return (0);
   1447 }
   1448 
   1449 /*
   1450  * pmap_find_pv()
   1451  *
   1452  * This is a local function that finds a PV entry for a given physical page.
   1453  * This is a common op, and this function removes loads of ifdefs in the code.
   1454  */
   1455 static __inline struct pv_entry *
   1456 pmap_find_pv(phys)
   1457 	paddr_t phys;
   1458 {
   1459 	int bank, off;
   1460 	struct pv_entry *pv;
   1461 
   1462 #ifdef DIAGNOSTIC
   1463 	if (!pmap_initialized)
   1464 		panic("pmap_find_pv: !pmap_initialized");
   1465 #endif
   1466 
   1467 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
   1468 		panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
   1469 	pv = &vm_physmem[bank].pmseg.pvent[off];
   1470 	return (pv);
   1471 }
   1472 
   1473 /*
   1474  * pmap_zero_page()
   1475  *
   1476  * Zero a given physical page by mapping it at a page hook point.
   1477  * In doing the zero page op, the page we zero is mapped cachable, as with
   1478  * StrongARM accesses to non-cached pages are non-burst making writing
   1479  * _any_ bulk data very slow.
   1480  */
   1481 void
   1482 pmap_zero_page(phys)
   1483 	paddr_t phys;
   1484 {
   1485 	struct pv_entry *pv;
   1486 
   1487 	/* Get an entry for this page, and clean it it. */
   1488 	pv = pmap_find_pv(phys);
   1489 	pmap_clean_page(pv);
   1490 
   1491 	/*
   1492 	 * Hook in the page, zero it, and purge the cache for that
   1493 	 * zeroed page. Invalidate the TLB as needed.
   1494 	 */
   1495 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1496 	cpu_tlb_flushD_SE(page_hook0.va);
   1497 	bzero_page(page_hook0.va);
   1498 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1499 }
   1500 
   1501 /*
   1502  * pmap_copy_page()
   1503  *
   1504  * Copy one physical page into another, by mapping the pages into
   1505  * hook points. The same comment regarding cachability as in
   1506  * pmap_zero_page also applies here.
   1507  */
   1508 void
   1509 pmap_copy_page(src, dest)
   1510 	paddr_t src;
   1511 	paddr_t dest;
   1512 {
   1513 	struct pv_entry *src_pv, *dest_pv;
   1514 
   1515 	/* Get PV entries for the pages, and clean them if needed. */
   1516 	src_pv = pmap_find_pv(src);
   1517 	dest_pv = pmap_find_pv(dest);
   1518 	if (!pmap_clean_page(src_pv))
   1519 		pmap_clean_page(dest_pv);
   1520 
   1521 	/*
   1522 	 * Map the pages into the page hook points, copy them, and purge
   1523 	 * the cache for the appropriate page. Invalidate the TLB
   1524 	 * as required.
   1525 	 */
   1526 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1527 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1528 	cpu_tlb_flushD_SE(page_hook0.va);
   1529 	cpu_tlb_flushD_SE(page_hook1.va);
   1530 	bcopy_page(page_hook0.va, page_hook1.va);
   1531 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1532 	cpu_cache_purgeD_rng(page_hook1.va, NBPG);
   1533 }
   1534 
   1535 /*
   1536  * int pmap_next_phys_page(paddr_t *addr)
   1537  *
   1538  * Allocate another physical page returning true or false depending
   1539  * on whether a page could be allocated.
   1540  */
   1541 
   1542 paddr_t
   1543 pmap_next_phys_page(addr)
   1544 	paddr_t addr;
   1545 
   1546 {
   1547 	int loop;
   1548 
   1549 	if (addr < bootconfig.dram[0].address)
   1550 		return(bootconfig.dram[0].address);
   1551 
   1552 	loop = 0;
   1553 
   1554 	while (bootconfig.dram[loop].address != 0
   1555 	    && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
   1556 		++loop;
   1557 
   1558 	if (bootconfig.dram[loop].address == 0)
   1559 		return(0);
   1560 
   1561 	addr += NBPG;
   1562 
   1563 	if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
   1564 		if (bootconfig.dram[loop + 1].address == 0)
   1565 			return(0);
   1566 		addr = bootconfig.dram[loop + 1].address;
   1567 	}
   1568 
   1569 	return(addr);
   1570 }
   1571 
   1572 #if 0
   1573 void
   1574 pmap_pte_addref(pmap, va)
   1575 	struct pmap *pmap;
   1576 	vaddr_t va;
   1577 {
   1578 	pd_entry_t *pde;
   1579 	paddr_t pa;
   1580 	struct vm_page *m;
   1581 
   1582 	if (pmap == pmap_kernel())
   1583 		return;
   1584 
   1585 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1586 	pa = pmap_pte_pa(pde);
   1587 	m = PHYS_TO_VM_PAGE(pa);
   1588 	++m->wire_count;
   1589 #ifdef MYCROFT_HACK
   1590 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1591 	    pmap, va, pde, pa, m, m->wire_count);
   1592 #endif
   1593 }
   1594 
   1595 void
   1596 pmap_pte_delref(pmap, va)
   1597 	struct pmap *pmap;
   1598 	vaddr_t va;
   1599 {
   1600 	pd_entry_t *pde;
   1601 	paddr_t pa;
   1602 	struct vm_page *m;
   1603 
   1604 	if (pmap == pmap_kernel())
   1605 		return;
   1606 
   1607 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1608 	pa = pmap_pte_pa(pde);
   1609 	m = PHYS_TO_VM_PAGE(pa);
   1610 	--m->wire_count;
   1611 #ifdef MYCROFT_HACK
   1612 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1613 	    pmap, va, pde, pa, m, m->wire_count);
   1614 #endif
   1615 	if (m->wire_count == 0) {
   1616 #ifdef MYCROFT_HACK
   1617 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1618 		    pmap, va, pde, pa, m);
   1619 #endif
   1620 		pmap_unmap_in_l1(pmap, va);
   1621 		uvm_pagefree(m);
   1622 		--pmap->pm_stats.resident_count;
   1623 	}
   1624 }
   1625 #else
   1626 #define	pmap_pte_addref(pmap, va)
   1627 #define	pmap_pte_delref(pmap, va)
   1628 #endif
   1629 
   1630 /*
   1631  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1632  * there is more than one mapping and at least one of them is writable.
   1633  * Since we purge the cache on every context switch, we only need to check for
   1634  * other mappings within the same pmap, or kernel_pmap.
   1635  * This function is also called when a page is unmapped, to possibly reenable
   1636  * caching on any remaining mappings.
   1637  *
   1638  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   1639  */
   1640 void
   1641 pmap_vac_me_harder(struct pmap *pmap, struct pv_entry *pv, pt_entry_t *ptes,
   1642 	boolean_t clear_cache)
   1643 {
   1644 	struct pv_entry *npv;
   1645 	pt_entry_t *pte;
   1646 	int entries = 0;
   1647 	int writeable = 0;
   1648 	int cacheable_entries = 0;
   1649 
   1650 	if (pv->pv_pmap == NULL)
   1651 		return;
   1652 	KASSERT(ptes != NULL);
   1653 
   1654 	/*
   1655 	 * Count mappings and writable mappings in this pmap.
   1656 	 * Keep a pointer to the first one.
   1657 	 */
   1658 	for (npv = pv; npv; npv = npv->pv_next) {
   1659 		/* Count mappings in the same pmap */
   1660 		if (pmap == npv->pv_pmap) {
   1661 			if (entries++ == 0)
   1662 				pv = npv;
   1663 			/* Cacheable mappings */
   1664 			if ((npv->pv_flags & PT_NC) == 0)
   1665 				cacheable_entries++;
   1666 			/* Writeable mappings */
   1667 			if (npv->pv_flags & PT_Wr)
   1668 				++writeable;
   1669 		}
   1670 	}
   1671 
   1672 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   1673 		"writeable %d cacheable %d %s\n", pmap, entries, writeable,
   1674 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   1675 
   1676 	/*
   1677 	 * Enable or disable caching as necessary.
   1678 	 * We do a quick check of the first PTE to avoid walking the list if
   1679 	 * we're already in the right state.
   1680 	 */
   1681 	if (entries > 1 && writeable) {
   1682 		if (cacheable_entries == 0)
   1683 		    return;
   1684 		if (pv->pv_flags & PT_NC) {
   1685 #ifdef DIAGNOSTIC
   1686     			/* We have cacheable entries, but the first one
   1687  			isn't among them. Something is wrong.  */
   1688     			if (cacheable_entries)
   1689 				panic("pmap_vac_me_harder: "
   1690 	    				"cacheable inconsistent");
   1691 #endif
   1692 			return;
   1693 		}
   1694 		pte =  &ptes[arm_byte_to_page(pv->pv_va)];
   1695 		*pte &= ~(PT_C | PT_B);
   1696 		pv->pv_flags |= PT_NC;
   1697 		if (clear_cache && cacheable_entries < 4) {
   1698 			cpu_cache_purgeID_rng(pv->pv_va, NBPG);
   1699 			cpu_tlb_flushID_SE(pv->pv_va);
   1700 		}
   1701 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   1702 			if (pmap == npv->pv_pmap &&
   1703 			    (npv->pv_flags & PT_NC) == 0) {
   1704 				ptes[arm_byte_to_page(npv->pv_va)] &=
   1705 				    ~(PT_C | PT_B);
   1706  				npv->pv_flags |= PT_NC;
   1707 				if (clear_cache && cacheable_entries < 4) {
   1708 					cpu_cache_purgeID_rng(npv->pv_va,
   1709 					    NBPG);
   1710 					cpu_tlb_flushID_SE(npv->pv_va);
   1711 				}
   1712 			}
   1713 		}
   1714 		if (clear_cache && cacheable_entries >= 4) {
   1715 			cpu_cache_purgeID();
   1716 			cpu_tlb_flushID();
   1717 		}
   1718 	} else if (entries > 0) {
   1719 		if ((pv->pv_flags & PT_NC) == 0)
   1720 			return;
   1721 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   1722 		*pte |= (PT_C | PT_B);
   1723 		pv->pv_flags &= ~PT_NC;
   1724 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   1725 			if (pmap == npv->pv_pmap &&
   1726 				(npv->pv_flags & PT_NC)) {
   1727 				ptes[arm_byte_to_page(npv->pv_va)] |=
   1728 				    (PT_C | PT_B);
   1729 				npv->pv_flags &= ~PT_NC;
   1730 			}
   1731 		}
   1732 	}
   1733 }
   1734 
   1735 /*
   1736  * pmap_remove()
   1737  *
   1738  * pmap_remove is responsible for nuking a number of mappings for a range
   1739  * of virtual address space in the current pmap. To do this efficiently
   1740  * is interesting, because in a number of cases a wide virtual address
   1741  * range may be supplied that contains few actual mappings. So, the
   1742  * optimisations are:
   1743  *  1. Try and skip over hunks of address space for which an L1 entry
   1744  *     does not exist.
   1745  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   1746  *     maybe do just a partial cache clean. This path of execution is
   1747  *     complicated by the fact that the cache must be flushed _before_
   1748  *     the PTE is nuked, being a VAC :-)
   1749  *  3. Maybe later fast-case a single page, but I don't think this is
   1750  *     going to make _that_ much difference overall.
   1751  */
   1752 
   1753 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   1754 
   1755 void
   1756 pmap_remove(pmap, sva, eva)
   1757 	struct pmap *pmap;
   1758 	vaddr_t sva;
   1759 	vaddr_t eva;
   1760 {
   1761 	int cleanlist_idx = 0;
   1762 	struct pagelist {
   1763 		vaddr_t va;
   1764 		pt_entry_t *pte;
   1765 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   1766 	pt_entry_t *pte = 0, *ptes;
   1767 	paddr_t pa;
   1768 	int pmap_active;
   1769 	struct pv_entry *pv;
   1770 
   1771 	/* Exit quick if there is no pmap */
   1772 	if (!pmap)
   1773 		return;
   1774 
   1775 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   1776 
   1777 	sva &= PG_FRAME;
   1778 	eva &= PG_FRAME;
   1779 
   1780 	ptes = pmap_map_ptes(pmap);
   1781 	/* Get a page table pointer */
   1782 	while (sva < eva) {
   1783 		if (pmap_pde_v(pmap_pde(pmap, sva)))
   1784 			break;
   1785 		sva = (sva & PD_MASK) + NBPD;
   1786 	}
   1787 
   1788 	pte = &ptes[arm_byte_to_page(sva)];
   1789 	/* Note if the pmap is active thus require cache and tlb cleans */
   1790 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   1791 	    || (pmap == pmap_kernel()))
   1792 		pmap_active = 1;
   1793 	else
   1794 		pmap_active = 0;
   1795 
   1796 	/* Now loop along */
   1797 	while (sva < eva) {
   1798 		/* Check if we can move to the next PDE (l1 chunk) */
   1799 		if (!(sva & PT_MASK))
   1800 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   1801 				sva += NBPD;
   1802 				pte += arm_byte_to_page(NBPD);
   1803 				continue;
   1804 			}
   1805 
   1806 		/* We've found a valid PTE, so this page of PTEs has to go. */
   1807 		if (pmap_pte_v(pte)) {
   1808 			int bank, off;
   1809 
   1810 			/* Update statistics */
   1811 			--pmap->pm_stats.resident_count;
   1812 
   1813 			/*
   1814 			 * Add this page to our cache remove list, if we can.
   1815 			 * If, however the cache remove list is totally full,
   1816 			 * then do a complete cache invalidation taking note
   1817 			 * to backtrack the PTE table beforehand, and ignore
   1818 			 * the lists in future because there's no longer any
   1819 			 * point in bothering with them (we've paid the
   1820 			 * penalty, so will carry on unhindered). Otherwise,
   1821 			 * when we fall out, we just clean the list.
   1822 			 */
   1823 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   1824 			pa = pmap_pte_pa(pte);
   1825 
   1826 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1827 				/* Add to the clean list. */
   1828 				cleanlist[cleanlist_idx].pte = pte;
   1829 				cleanlist[cleanlist_idx].va = sva;
   1830 				cleanlist_idx++;
   1831 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1832 				int cnt;
   1833 
   1834 				/* Nuke everything if needed. */
   1835 				if (pmap_active) {
   1836 					cpu_cache_purgeID();
   1837 					cpu_tlb_flushID();
   1838 				}
   1839 
   1840 				/*
   1841 				 * Roll back the previous PTE list,
   1842 				 * and zero out the current PTE.
   1843 				 */
   1844 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   1845 					*cleanlist[cnt].pte = 0;
   1846 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   1847 				}
   1848 				*pte = 0;
   1849 				pmap_pte_delref(pmap, sva);
   1850 				cleanlist_idx++;
   1851 			} else {
   1852 				/*
   1853 				 * We've already nuked the cache and
   1854 				 * TLB, so just carry on regardless,
   1855 				 * and we won't need to do it again
   1856 				 */
   1857 				*pte = 0;
   1858 				pmap_pte_delref(pmap, sva);
   1859 			}
   1860 
   1861 			/*
   1862 			 * Update flags. In a number of circumstances,
   1863 			 * we could cluster a lot of these and do a
   1864 			 * number of sequential pages in one go.
   1865 			 */
   1866 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   1867 				pv = &vm_physmem[bank].pmseg.pvent[off];
   1868 				pmap_remove_pv(pmap, sva, pv);
   1869 				pmap_vac_me_harder(pmap, pv, ptes, FALSE);
   1870 			}
   1871 		}
   1872 		sva += NBPG;
   1873 		pte++;
   1874 	}
   1875 
   1876 	pmap_unmap_ptes(pmap);
   1877 	/*
   1878 	 * Now, if we've fallen through down to here, chances are that there
   1879 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   1880 	 */
   1881 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1882 		u_int cnt;
   1883 
   1884 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   1885 			if (pmap_active) {
   1886 				cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
   1887 				*cleanlist[cnt].pte = 0;
   1888 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   1889 			} else
   1890 				*cleanlist[cnt].pte = 0;
   1891 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   1892 		}
   1893 	}
   1894 }
   1895 
   1896 /*
   1897  * Routine:	pmap_remove_all
   1898  * Function:
   1899  *		Removes this physical page from
   1900  *		all physical maps in which it resides.
   1901  *		Reflects back modify bits to the pager.
   1902  */
   1903 
   1904 void
   1905 pmap_remove_all(pa)
   1906 	paddr_t pa;
   1907 {
   1908 	struct pv_entry *ph, *pv, *npv;
   1909 	struct pmap *pmap;
   1910 	pt_entry_t *pte, *ptes;
   1911 	int s;
   1912 
   1913 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
   1914 
   1915 	pv = ph = pmap_find_pv(pa);
   1916 	pmap_clean_page(pv);
   1917 
   1918 	s = splvm();
   1919 
   1920 	if (ph->pv_pmap == NULL) {
   1921 		PDEBUG(0, printf("free page\n"));
   1922 		splx(s);
   1923 		return;
   1924 	}
   1925 
   1926 
   1927 
   1928 	while (pv) {
   1929 		pmap = pv->pv_pmap;
   1930 		ptes = pmap_map_ptes(pmap);
   1931 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   1932 
   1933 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   1934 		    pv->pv_va, pv->pv_flags));
   1935 #ifdef DEBUG
   1936 		if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
   1937 			    || pmap_pte_pa(pte) != pa)
   1938 			panic("pmap_remove_all: bad mapping");
   1939 #endif	/* DEBUG */
   1940 
   1941 		/*
   1942 		 * Update statistics
   1943 		 */
   1944 		--pmap->pm_stats.resident_count;
   1945 
   1946 		/* Wired bit */
   1947 		if (pv->pv_flags & PT_W)
   1948 			--pmap->pm_stats.wired_count;
   1949 
   1950 		/*
   1951 		 * Invalidate the PTEs.
   1952 		 * XXX: should cluster them up and invalidate as many
   1953 		 * as possible at once.
   1954 		 */
   1955 
   1956 #ifdef needednotdone
   1957 reduce wiring count on page table pages as references drop
   1958 #endif
   1959 
   1960 		*pte = 0;
   1961 		pmap_pte_delref(pmap, pv->pv_va);
   1962 
   1963 		npv = pv->pv_next;
   1964 		if (pv == ph)
   1965 			ph->pv_pmap = NULL;
   1966 		else
   1967 			pmap_free_pv(pv);
   1968 		pv = npv;
   1969 		pmap_unmap_ptes(pmap);
   1970 	}
   1971 
   1972 	splx(s);
   1973 
   1974 	PDEBUG(0, printf("done\n"));
   1975 	cpu_tlb_flushID();
   1976 }
   1977 
   1978 
   1979 /*
   1980  * Set the physical protection on the specified range of this map as requested.
   1981  */
   1982 
   1983 void
   1984 pmap_protect(pmap, sva, eva, prot)
   1985 	struct pmap *pmap;
   1986 	vaddr_t sva;
   1987 	vaddr_t eva;
   1988 	vm_prot_t prot;
   1989 {
   1990 	pt_entry_t *pte = NULL, *ptes;
   1991 	int armprot;
   1992 	int flush = 0;
   1993 	paddr_t pa;
   1994 	int bank, off;
   1995 	struct pv_entry *pv;
   1996 
   1997 	/*
   1998 	 * Make sure pmap is valid. -dct
   1999 	 */
   2000 	if (pmap == NULL)
   2001 		return;
   2002 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2003 	    pmap, sva, eva, prot));
   2004 
   2005 	if (~prot & VM_PROT_READ) {
   2006 		/* Just remove the mappings. */
   2007 		pmap_remove(pmap, sva, eva);
   2008 		return;
   2009 	}
   2010 	if (prot & VM_PROT_WRITE) {
   2011 		/*
   2012 		 * If this is a read->write transition, just ignore it and let
   2013 		 * uvm_fault() take care of it later.
   2014 		 */
   2015 		return;
   2016 	}
   2017 
   2018 	sva &= PG_FRAME;
   2019 	eva &= PG_FRAME;
   2020 
   2021 	ptes = pmap_map_ptes(pmap);
   2022 	/*
   2023 	 * We need to acquire a pointer to a page table page before entering
   2024 	 * the following loop.
   2025 	 */
   2026 	while (sva < eva) {
   2027 		if (pmap_pde_v(pmap_pde(pmap, sva)))
   2028 			break;
   2029 		sva = (sva & PD_MASK) + NBPD;
   2030 	}
   2031 
   2032 	pte = &ptes[arm_byte_to_page(sva)];
   2033 
   2034 	while (sva < eva) {
   2035 		/* only check once in a while */
   2036 		if ((sva & PT_MASK) == 0) {
   2037 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   2038 				/* We can race ahead here, to the next pde. */
   2039 				sva += NBPD;
   2040 				pte += arm_byte_to_page(NBPD);
   2041 				continue;
   2042 			}
   2043 		}
   2044 
   2045 		if (!pmap_pte_v(pte))
   2046 			goto next;
   2047 
   2048 		flush = 1;
   2049 
   2050 		armprot = 0;
   2051 		if (sva < VM_MAXUSER_ADDRESS)
   2052 			armprot |= PT_AP(AP_U);
   2053 		else if (sva < VM_MAX_ADDRESS)
   2054 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2055 		*pte = (*pte & 0xfffff00f) | armprot;
   2056 
   2057 		pa = pmap_pte_pa(pte);
   2058 
   2059 		/* Get the physical page index */
   2060 
   2061 		/* Clear write flag */
   2062 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2063 			pv = &vm_physmem[bank].pmseg.pvent[off];
   2064 			(void) pmap_modify_pv(pmap, sva, pv, PT_Wr, 0);
   2065 			pmap_vac_me_harder(pmap, pv, ptes, FALSE);
   2066 		}
   2067 
   2068 next:
   2069 		sva += NBPG;
   2070 		pte++;
   2071 	}
   2072 	pmap_unmap_ptes(pmap);
   2073 	if (flush)
   2074 		cpu_tlb_flushID();
   2075 }
   2076 
   2077 /*
   2078  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2079  * int flags)
   2080  *
   2081  *      Insert the given physical page (p) at
   2082  *      the specified virtual address (v) in the
   2083  *      target physical map with the protection requested.
   2084  *
   2085  *      If specified, the page will be wired down, meaning
   2086  *      that the related pte can not be reclaimed.
   2087  *
   2088  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2089  *      or lose information.  That is, this routine must actually
   2090  *      insert this page into the given map NOW.
   2091  */
   2092 
   2093 int
   2094 pmap_enter(pmap, va, pa, prot, flags)
   2095 	struct pmap *pmap;
   2096 	vaddr_t va;
   2097 	paddr_t pa;
   2098 	vm_prot_t prot;
   2099 	int flags;
   2100 {
   2101 	pt_entry_t *pte, *ptes;
   2102 	u_int npte;
   2103 	int bank, off;
   2104 	struct pv_entry *pv = NULL;
   2105 	paddr_t opa;
   2106 	int nflags;
   2107 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2108 
   2109 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2110 	    va, pa, pmap, prot, wired));
   2111 
   2112 #ifdef DIAGNOSTIC
   2113 	/* Valid address ? */
   2114 	if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
   2115 		panic("pmap_enter: too big");
   2116 	if (pmap != pmap_kernel() && va != 0) {
   2117 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2118 			panic("pmap_enter: kernel page in user map");
   2119 	} else {
   2120 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2121 			panic("pmap_enter: user page in kernel map");
   2122 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2123 			panic("pmap_enter: entering PT page");
   2124 	}
   2125 #endif
   2126 
   2127 	/*
   2128 	 * Get a pointer to the pte for this virtual address. If the
   2129 	 * pte pointer is NULL then we are missing the L2 page table
   2130 	 * so we need to create one.
   2131 	 */
   2132 	pte = pmap_pte(pmap, va);
   2133 	if (!pte) {
   2134 		paddr_t l2pa;
   2135 		struct vm_page *m;
   2136 
   2137 		/* Allocate a page table */
   2138 		for (;;) {
   2139 			m = uvm_pagealloc(&(pmap->pm_obj), 0, NULL,
   2140 				UVM_PGA_USERESERVE);
   2141 			if (m != NULL)
   2142 				break;
   2143 
   2144 			/*
   2145 			 * No page available.  If we're the kernel
   2146 			 * pmap, we die, since we might not have
   2147 			 * a valid thread context.  For user pmaps,
   2148 			 * we assume that we _do_ have a valid thread
   2149 			 * context, so we wait here for the pagedaemon
   2150 			 * to free up some pages.
   2151 			 *
   2152 			 * XXX THE VM CODE IS PROBABLY HOLDING LOCKS
   2153 			 * XXX RIGHT NOW, BUT ONLY ON OUR PARENT VM_MAP
   2154 			 * XXX SO THIS IS PROBABLY SAFE.  In any case,
   2155 			 * XXX other pmap modules claim it is safe to
   2156 			 * XXX sleep here if it's a user pmap.
   2157 			 */
   2158 			if (pmap == pmap_kernel())
   2159 				panic("pmap_enter: no free pages");
   2160 			else
   2161 				uvm_wait("pmap_enter");
   2162 		}
   2163 
   2164 		/* Wire this page table into the L1. */
   2165 		l2pa = VM_PAGE_TO_PHYS(m);
   2166 		pmap_zero_page(l2pa);
   2167 		pmap_map_in_l1(pmap, va, l2pa);
   2168 		++pmap->pm_stats.resident_count;
   2169 		m->flags &= ~PG_BUSY;	/* never busy */
   2170 		m->wire_count = 1;	/* no mappings yet */
   2171 
   2172 		pte = pmap_pte(pmap, va);
   2173 #ifdef DIAGNOSTIC
   2174 		if (!pte)
   2175 			panic("pmap_enter: no pte");
   2176 #endif
   2177 	}
   2178 
   2179 	nflags = 0;
   2180 	if (prot & VM_PROT_WRITE)
   2181 		nflags |= PT_Wr;
   2182 	if (wired)
   2183 		nflags |= PT_W;
   2184 
   2185 	/* More debugging info */
   2186 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2187 	    *pte));
   2188 
   2189 	/* Is the pte valid ? If so then this page is already mapped */
   2190 	if (pmap_pte_v(pte)) {
   2191 		/* Get the physical address of the current page mapped */
   2192 		opa = pmap_pte_pa(pte);
   2193 
   2194 #ifdef MYCROFT_HACK
   2195 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2196 #endif
   2197 
   2198 		/* Are we mapping the same page ? */
   2199 		if (opa == pa) {
   2200 			/* All we must be doing is changing the protection */
   2201 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2202 			    va, pa));
   2203 
   2204 			/* Has the wiring changed ? */
   2205 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2206 				pv = &vm_physmem[bank].pmseg.pvent[off];
   2207 				(void) pmap_modify_pv(pmap, va, pv,
   2208 				    PT_Wr | PT_W, nflags);
   2209  			}
   2210 		} else {
   2211 			/* We are replacing the page with a new one. */
   2212 			cpu_cache_purgeID_rng(va, NBPG);
   2213 
   2214 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2215 			    va, pa, opa));
   2216 
   2217 			/*
   2218 			 * If it is part of our managed memory then we
   2219 			 * must remove it from the PV list
   2220 			 */
   2221 			if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
   2222 				pv = &vm_physmem[bank].pmseg.pvent[off];
   2223 				pmap_remove_pv(pmap, va, pv);
   2224 			}
   2225 
   2226 			goto enter;
   2227 		}
   2228 	} else {
   2229 		opa = 0;
   2230 		pmap_pte_addref(pmap, va);
   2231 
   2232 		/* pte is not valid so we must be hooking in a new page */
   2233 		++pmap->pm_stats.resident_count;
   2234 
   2235 	enter:
   2236 		/*
   2237 		 * Enter on the PV list if part of our managed memory
   2238 		 */
   2239 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2240 			pv = &vm_physmem[bank].pmseg.pvent[off];
   2241 			pmap_enter_pv(pmap, va, pv, nflags);
   2242 		}
   2243 	}
   2244 
   2245 #ifdef MYCROFT_HACK
   2246 	if (mycroft_hack)
   2247 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2248 #endif
   2249 
   2250 	/* Construct the pte, giving the correct access. */
   2251 	npte = (pa & PG_FRAME);
   2252 
   2253 	/* VA 0 is magic. */
   2254 	if (pmap != pmap_kernel() && va != 0)
   2255 		npte |= PT_AP(AP_U);
   2256 
   2257 	if (bank != -1) {
   2258 #ifdef DIAGNOSTIC
   2259 		if ((flags & VM_PROT_ALL) & ~prot)
   2260 			panic("pmap_enter: access_type exceeds prot");
   2261 #endif
   2262 		npte |= PT_C | PT_B;
   2263 		if (flags & VM_PROT_WRITE) {
   2264 			npte |= L2_SPAGE | PT_AP(AP_W);
   2265 			vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2266 		} else if (flags & VM_PROT_ALL) {
   2267 			npte |= L2_SPAGE;
   2268 			vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2269 		} else
   2270 			npte |= L2_INVAL;
   2271 	} else {
   2272 		if (prot & VM_PROT_WRITE)
   2273 			npte |= L2_SPAGE | PT_AP(AP_W);
   2274 		else if (prot & VM_PROT_ALL)
   2275 			npte |= L2_SPAGE;
   2276 		else
   2277 			npte |= L2_INVAL;
   2278 	}
   2279 
   2280 #ifdef MYCROFT_HACK
   2281 	if (mycroft_hack)
   2282 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2283 #endif
   2284 
   2285 	*pte = npte;
   2286 
   2287 	if (bank != -1)
   2288 	{
   2289 		boolean_t pmap_active = FALSE;
   2290 		/* XXX this will change once the whole of pmap_enter uses
   2291 		 * map_ptes
   2292 		 */
   2293 		ptes = pmap_map_ptes(pmap);
   2294 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2295 		    || (pmap == pmap_kernel()))
   2296 			pmap_active = TRUE;
   2297  		pmap_vac_me_harder(pmap, pv, ptes, pmap_active);
   2298 		pmap_unmap_ptes(pmap);
   2299 	}
   2300 
   2301 	/* Better flush the TLB ... */
   2302 	cpu_tlb_flushID_SE(va);
   2303 
   2304 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2305 
   2306 	return 0;
   2307 }
   2308 
   2309 void
   2310 pmap_kenter_pa(va, pa, prot)
   2311 	vaddr_t va;
   2312 	paddr_t pa;
   2313 	vm_prot_t prot;
   2314 {
   2315 	struct pmap *pmap = pmap_kernel();
   2316 	pt_entry_t *pte;
   2317 	struct vm_page *pg;
   2318 
   2319 	if (!pmap_pde_v(pmap_pde(pmap, va))) {
   2320 
   2321 		/*
   2322 		 * For the kernel pmaps it would be better to ensure
   2323 		 * that they are always present, and to grow the
   2324 		 * kernel as required.
   2325 		 */
   2326 
   2327 		/* Allocate a page table */
   2328 		pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
   2329 		    UVM_PGA_USERESERVE | UVM_PGA_ZERO);
   2330 		if (pg == NULL) {
   2331 			panic("pmap_kenter_pa: no free pages");
   2332 		}
   2333 		pg->flags &= ~PG_BUSY;	/* never busy */
   2334 
   2335 		/* Wire this page table into the L1. */
   2336 		pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg));
   2337 	}
   2338 	pte = vtopte(va);
   2339 	KASSERT(!pmap_pte_v(pte));
   2340 	*pte = L2_PTE(pa, AP_KRW);
   2341 }
   2342 
   2343 void
   2344 pmap_kremove(va, len)
   2345 	vaddr_t va;
   2346 	vsize_t len;
   2347 {
   2348 	pt_entry_t *pte;
   2349 
   2350 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2351 
   2352 		/*
   2353 		 * We assume that we will only be called with small
   2354 		 * regions of memory.
   2355 		 */
   2356 
   2357 		KASSERT(pmap_pde_v(pmap_pde(pmap_kernel(), va)));
   2358 		pte = vtopte(va);
   2359 		cpu_cache_purgeID_rng(va, PAGE_SIZE);
   2360 		*pte = 0;
   2361 		cpu_tlb_flushID_SE(va);
   2362 	}
   2363 }
   2364 
   2365 /*
   2366  * pmap_page_protect:
   2367  *
   2368  * Lower the permission for all mappings to a given page.
   2369  */
   2370 
   2371 void
   2372 pmap_page_protect(pg, prot)
   2373 	struct vm_page *pg;
   2374 	vm_prot_t prot;
   2375 {
   2376 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2377 
   2378 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
   2379 
   2380 	switch(prot) {
   2381 	case VM_PROT_READ:
   2382 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2383 		pmap_copy_on_write(pa);
   2384 		break;
   2385 
   2386 	case VM_PROT_ALL:
   2387 		break;
   2388 
   2389 	default:
   2390 		pmap_remove_all(pa);
   2391 		break;
   2392 	}
   2393 }
   2394 
   2395 
   2396 /*
   2397  * Routine:	pmap_unwire
   2398  * Function:	Clear the wired attribute for a map/virtual-address
   2399  *		pair.
   2400  * In/out conditions:
   2401  *		The mapping must already exist in the pmap.
   2402  */
   2403 
   2404 void
   2405 pmap_unwire(pmap, va)
   2406 	struct pmap *pmap;
   2407 	vaddr_t va;
   2408 {
   2409 	pt_entry_t *pte;
   2410 	paddr_t pa;
   2411 	int bank, off;
   2412 	struct pv_entry *pv;
   2413 
   2414 	/*
   2415 	 * Make sure pmap is valid. -dct
   2416 	 */
   2417 	if (pmap == NULL)
   2418 		return;
   2419 
   2420 	/* Get the pte */
   2421 	pte = pmap_pte(pmap, va);
   2422 	if (!pte)
   2423 		return;
   2424 
   2425 	/* Extract the physical address of the page */
   2426 	pa = pmap_pte_pa(pte);
   2427 
   2428 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2429 		return;
   2430 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2431 	/* Update the wired bit in the pv entry for this page. */
   2432 	(void) pmap_modify_pv(pmap, va, pv, PT_W, 0);
   2433 }
   2434 
   2435 /*
   2436  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   2437  *
   2438  * Return the pointer to a page table entry corresponding to the supplied
   2439  * virtual address.
   2440  *
   2441  * The page directory is first checked to make sure that a page table
   2442  * for the address in question exists and if it does a pointer to the
   2443  * entry is returned.
   2444  *
   2445  * The way this works is that that the kernel page tables are mapped
   2446  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   2447  * This allows page tables to be located quickly.
   2448  */
   2449 pt_entry_t *
   2450 pmap_pte(pmap, va)
   2451 	struct pmap *pmap;
   2452 	vaddr_t va;
   2453 {
   2454 	pt_entry_t *ptp;
   2455 	pt_entry_t *result;
   2456 
   2457 	/* The pmap must be valid */
   2458 	if (!pmap)
   2459 		return(NULL);
   2460 
   2461 	/* Return the address of the pte */
   2462 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2463 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2464 
   2465 	/* Do we have a valid pde ? If not we don't have a page table */
   2466 	if (!pmap_pde_v(pmap_pde(pmap, va))) {
   2467 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2468 		    pmap_pde(pmap, va)));
   2469 		return(NULL);
   2470 	}
   2471 
   2472 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2473 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2474 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2475 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   2476 
   2477 	/*
   2478 	 * If the pmap is the kernel pmap or the pmap is the active one
   2479 	 * then we can just return a pointer to entry relative to
   2480 	 * PROCESS_PAGE_TBLS_BASE.
   2481 	 * Otherwise we need to map the page tables to an alternative
   2482 	 * address and reference them there.
   2483 	 */
   2484 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   2485 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2486 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   2487 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2488 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   2489 	} else {
   2490 		struct proc *p = curproc;
   2491 
   2492 		/* If we don't have a valid curproc use proc0 */
   2493 		/* Perhaps we should just use kernel_pmap instead */
   2494 		if (p == NULL)
   2495 			p = &proc0;
   2496 #ifdef DIAGNOSTIC
   2497 		/*
   2498 		 * The pmap should always be valid for the process so
   2499 		 * panic if it is not.
   2500 		 */
   2501 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2502 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2503 			    va, p, p->p_vmspace);
   2504 			console_debugger();
   2505 		}
   2506 		/*
   2507 		 * The pmap for the current process should be mapped. If it
   2508 		 * is not then we have a problem.
   2509 		 */
   2510 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   2511 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2512 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2513 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2514 			printf("pmap pagetable = P%08lx current = P%08x ",
   2515 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2516 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2517 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   2518 			    PG_FRAME));
   2519 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   2520 			panic("pmap_pte: current and pmap mismatch\n");
   2521 		}
   2522 #endif
   2523 
   2524 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   2525 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   2526 		    pmap->pm_pptpt);
   2527 		cpu_tlb_flushD();
   2528 	}
   2529 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   2530 	    ((va >> (PGSHIFT-2)) & ~3)));
   2531 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   2532 	return(result);
   2533 }
   2534 
   2535 /*
   2536  * Routine:  pmap_extract
   2537  * Function:
   2538  *           Extract the physical page address associated
   2539  *           with the given map/virtual_address pair.
   2540  */
   2541 boolean_t
   2542 pmap_extract(pmap, va, pap)
   2543 	struct pmap *pmap;
   2544 	vaddr_t va;
   2545 	paddr_t *pap;
   2546 {
   2547 	pt_entry_t *pte, *ptes;
   2548 	paddr_t pa;
   2549 
   2550 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   2551 
   2552 	/*
   2553 	 * Get the pte for this virtual address.
   2554 	 */
   2555 	ptes = pmap_map_ptes(pmap);
   2556 	pte = &ptes[arm_byte_to_page(va)];
   2557 
   2558 	/*
   2559 	 * If there is no pte then there is no page table etc.
   2560 	 * Is the pte valid ? If not then no paged is actually mapped here
   2561 	 */
   2562 	if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
   2563 	    pmap_unmap_ptes(pmap);
   2564     	    return (FALSE);
   2565 	}
   2566 
   2567 	/* Return the physical address depending on the PTE type */
   2568 	/* XXX What about L1 section mappings ? */
   2569 	if ((*(pte) & L2_MASK) == L2_LPAGE) {
   2570 		/* Extract the physical address from the pte */
   2571 		pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
   2572 
   2573 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   2574 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   2575 
   2576 		if (pap != NULL)
   2577 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   2578 	} else {
   2579 		/* Extract the physical address from the pte */
   2580 		pa = pmap_pte_pa(pte);
   2581 
   2582 		PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   2583 		    (pa | (va & ~PG_FRAME))));
   2584 
   2585 		if (pap != NULL)
   2586 			*pap = pa | (va & ~PG_FRAME);
   2587 	}
   2588 	pmap_unmap_ptes(pmap);
   2589 	return (TRUE);
   2590 }
   2591 
   2592 
   2593 /*
   2594  * Copy the range specified by src_addr/len from the source map to the
   2595  * range dst_addr/len in the destination map.
   2596  *
   2597  * This routine is only advisory and need not do anything.
   2598  */
   2599 
   2600 void
   2601 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   2602 	struct pmap *dst_pmap;
   2603 	struct pmap *src_pmap;
   2604 	vaddr_t dst_addr;
   2605 	vsize_t len;
   2606 	vaddr_t src_addr;
   2607 {
   2608 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   2609 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   2610 }
   2611 
   2612 #if defined(PMAP_DEBUG)
   2613 void
   2614 pmap_dump_pvlist(phys, m)
   2615 	vaddr_t phys;
   2616 	char *m;
   2617 {
   2618 	struct pv_entry *pv;
   2619 	int bank, off;
   2620 
   2621 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
   2622 		printf("INVALID PA\n");
   2623 		return;
   2624 	}
   2625 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2626 	printf("%s %08lx:", m, phys);
   2627 	if (pv->pv_pmap == NULL) {
   2628 		printf(" no mappings\n");
   2629 		return;
   2630 	}
   2631 
   2632 	for (; pv; pv = pv->pv_next)
   2633 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   2634 		    pv->pv_va, pv->pv_flags);
   2635 
   2636 	printf("\n");
   2637 }
   2638 
   2639 #endif	/* PMAP_DEBUG */
   2640 
   2641 boolean_t
   2642 pmap_testbit(pa, setbits)
   2643 	paddr_t pa;
   2644 	int setbits;
   2645 {
   2646 	int bank, off;
   2647 
   2648 	PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
   2649 
   2650 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2651 		return(FALSE);
   2652 
   2653 	/*
   2654 	 * Check saved info only
   2655 	 */
   2656 	if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
   2657 		PDEBUG(0, printf("pmap_attributes = %02x\n",
   2658 		    vm_physmem[bank].pmseg.attrs[off]));
   2659 		return(TRUE);
   2660 	}
   2661 
   2662 	return(FALSE);
   2663 }
   2664 
   2665 static pt_entry_t *
   2666 pmap_map_ptes(struct pmap *pmap)
   2667 {
   2668     struct proc *p;
   2669 
   2670     /* the kernel's pmap is always accessible */
   2671     if (pmap == pmap_kernel()) {
   2672 	return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
   2673     }
   2674 
   2675     if (curproc &&
   2676 	    curproc->p_vmspace->vm_map.pmap == pmap)
   2677 	return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   2678 
   2679     p = curproc;
   2680 
   2681     if (p == NULL)
   2682 	p = &proc0;
   2683 
   2684     pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   2685 	    pmap->pm_pptpt);
   2686     cpu_tlb_flushD();
   2687     return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   2688 }
   2689 
   2690 /*
   2691  * Modify pte bits for all ptes corresponding to the given physical address.
   2692  * We use `maskbits' rather than `clearbits' because we're always passing
   2693  * constants and the latter would require an extra inversion at run-time.
   2694  */
   2695 
   2696 void
   2697 pmap_clearbit(pa, maskbits)
   2698 	paddr_t pa;
   2699 	int maskbits;
   2700 {
   2701 	struct pv_entry *pv;
   2702 	pt_entry_t *pte;
   2703 	vaddr_t va;
   2704 	int bank, off;
   2705 	int s;
   2706 
   2707 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   2708 	    pa, maskbits));
   2709 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2710 		return;
   2711 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2712 	s = splvm();
   2713 
   2714 	/*
   2715 	 * Clear saved attributes (modify, reference)
   2716 	 */
   2717 	vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
   2718 
   2719 	if (pv->pv_pmap == NULL) {
   2720 		splx(s);
   2721 		return;
   2722 	}
   2723 
   2724 	/*
   2725 	 * Loop over all current mappings setting/clearing as appropos
   2726 	 */
   2727 	for (; pv; pv = pv->pv_next) {
   2728 		va = pv->pv_va;
   2729 
   2730 		/*
   2731 		 * XXX don't write protect pager mappings
   2732 		 */
   2733 		if (va >= uvm.pager_sva && va < uvm.pager_eva) {
   2734 			printf("pmap_clearbit: found page VA on pv_list\n");
   2735 			continue;
   2736 		}
   2737 
   2738 		pv->pv_flags &= ~maskbits;
   2739 		pte = pmap_pte(pv->pv_pmap, va);
   2740 		if (maskbits & (PT_Wr|PT_M))
   2741 			*pte = *pte & ~PT_AP(AP_W);
   2742 		if (maskbits & PT_H)
   2743 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   2744 	}
   2745 	cpu_tlb_flushID();
   2746 
   2747 	splx(s);
   2748 }
   2749 
   2750 
   2751 boolean_t
   2752 pmap_clear_modify(pg)
   2753 	struct vm_page *pg;
   2754 {
   2755 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2756 	boolean_t rv;
   2757 
   2758 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
   2759 	rv = pmap_testbit(pa, PT_M);
   2760 	pmap_clearbit(pa, PT_M);
   2761 	return rv;
   2762 }
   2763 
   2764 
   2765 boolean_t
   2766 pmap_clear_reference(pg)
   2767 	struct vm_page *pg;
   2768 {
   2769 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2770 	boolean_t rv;
   2771 
   2772 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
   2773 	rv = pmap_testbit(pa, PT_H);
   2774 	pmap_clearbit(pa, PT_H);
   2775 	return rv;
   2776 }
   2777 
   2778 
   2779 void
   2780 pmap_copy_on_write(pa)
   2781 	paddr_t pa;
   2782 {
   2783 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
   2784 	pmap_clearbit(pa, PT_Wr);
   2785 }
   2786 
   2787 
   2788 boolean_t
   2789 pmap_is_modified(pg)
   2790 	struct vm_page *pg;
   2791 {
   2792 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2793 	boolean_t result;
   2794 
   2795 	result = pmap_testbit(pa, PT_M);
   2796 	PDEBUG(0, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
   2797 	return (result);
   2798 }
   2799 
   2800 
   2801 boolean_t
   2802 pmap_is_referenced(pg)
   2803 	struct vm_page *pg;
   2804 {
   2805 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2806 	boolean_t result;
   2807 
   2808 	result = pmap_testbit(pa, PT_H);
   2809 	PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
   2810 	return (result);
   2811 }
   2812 
   2813 
   2814 int
   2815 pmap_modified_emulation(pmap, va)
   2816 	struct pmap *pmap;
   2817 	vaddr_t va;
   2818 {
   2819 	pt_entry_t *pte;
   2820 	paddr_t pa;
   2821 	int bank, off;
   2822 	struct pv_entry *pv;
   2823 	u_int flags;
   2824 
   2825 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   2826 
   2827 	/* Get the pte */
   2828 	pte = pmap_pte(pmap, va);
   2829 	if (!pte) {
   2830 		PDEBUG(2, printf("no pte\n"));
   2831 		return(0);
   2832 	}
   2833 
   2834 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   2835 
   2836 	/* Check for a zero pte */
   2837 	if (*pte == 0)
   2838 		return(0);
   2839 
   2840 	/* This can happen if user code tries to access kernel memory. */
   2841 	if ((*pte & PT_AP(AP_W)) != 0)
   2842 		return (0);
   2843 
   2844 	/* Extract the physical address of the page */
   2845 	pa = pmap_pte_pa(pte);
   2846 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2847 		return(0);
   2848 
   2849 	/* Get the current flags for this page. */
   2850 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2851 	flags = pmap_modify_pv(pmap, va, pv, 0, 0);
   2852 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   2853 
   2854 	/*
   2855 	 * Do the flags say this page is writable ? If not then it is a
   2856 	 * genuine write fault. If yes then the write fault is our fault
   2857 	 * as we did not reflect the write access in the PTE. Now we know
   2858 	 * a write has occurred we can correct this and also set the
   2859 	 * modified bit
   2860 	 */
   2861 	if (~flags & PT_Wr)
   2862 		return(0);
   2863 
   2864 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   2865 	    va, pte, *pte));
   2866 	vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2867 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   2868 	PDEBUG(0, printf("->(%08x)\n", *pte));
   2869 
   2870 	/* Return, indicating the problem has been dealt with */
   2871 	cpu_tlb_flushID_SE(va);
   2872 	return(1);
   2873 }
   2874 
   2875 
   2876 int
   2877 pmap_handled_emulation(pmap, va)
   2878 	struct pmap *pmap;
   2879 	vaddr_t va;
   2880 {
   2881 	pt_entry_t *pte;
   2882 	paddr_t pa;
   2883 	int bank, off;
   2884 
   2885 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   2886 
   2887 	/* Get the pte */
   2888 	pte = pmap_pte(pmap, va);
   2889 	if (!pte) {
   2890 		PDEBUG(2, printf("no pte\n"));
   2891 		return(0);
   2892 	}
   2893 
   2894 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   2895 
   2896 	/* Check for a zero pte */
   2897 	if (*pte == 0)
   2898 		return(0);
   2899 
   2900 	/* This can happen if user code tries to access kernel memory. */
   2901 	if ((*pte & L2_MASK) != L2_INVAL)
   2902 		return (0);
   2903 
   2904 	/* Extract the physical address of the page */
   2905 	pa = pmap_pte_pa(pte);
   2906 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2907 		return(0);
   2908 
   2909 	/*
   2910 	 * Ok we just enable the pte and mark the attibs as handled
   2911 	 */
   2912 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   2913 	    va, pte, *pte));
   2914 	vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2915 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   2916 	PDEBUG(0, printf("->(%08x)\n", *pte));
   2917 
   2918 	/* Return, indicating the problem has been dealt with */
   2919 	cpu_tlb_flushID_SE(va);
   2920 	return(1);
   2921 }
   2922 
   2923 /*
   2924  * pmap_collect: free resources held by a pmap
   2925  *
   2926  * => optional function.
   2927  * => called when a process is swapped out to free memory.
   2928  */
   2929 
   2930 void
   2931 pmap_collect(pmap)
   2932 	struct pmap *pmap;
   2933 {
   2934 }
   2935 
   2936 /*
   2937  * Routine:	pmap_procwr
   2938  *
   2939  * Function:
   2940  *	Synchronize caches corresponding to [addr, addr+len) in p.
   2941  *
   2942  */
   2943 void
   2944 pmap_procwr(p, va, len)
   2945 	struct proc	*p;
   2946 	vaddr_t		va;
   2947 	int		len;
   2948 {
   2949 	/* We only need to do anything if it is the current process. */
   2950 	if (p == curproc)
   2951 		cpu_cache_syncI_rng(va, len);
   2952 }
   2953 
   2954 /* End of pmap.c */
   2955