Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.164.12.8
      1 /*	$NetBSD: pmap.c,v 1.164.12.8 2007/11/10 04:16:11 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *        This product includes software developed by the NetBSD
     84  *        Foundation, Inc. and its contributors.
     85  * 4. Neither the name of The NetBSD Foundation nor the names of its
     86  *    contributors may be used to endorse or promote products derived
     87  *    from this software without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     90  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     91  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     92  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     93  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     94  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     95  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     96  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     97  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     98  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     99  * POSSIBILITY OF SUCH DAMAGE.
    100  */
    101 
    102 /*
    103  * Copyright (c) 1994-1998 Mark Brinicombe.
    104  * Copyright (c) 1994 Brini.
    105  * All rights reserved.
    106  *
    107  * This code is derived from software written for Brini by Mark Brinicombe
    108  *
    109  * Redistribution and use in source and binary forms, with or without
    110  * modification, are permitted provided that the following conditions
    111  * are met:
    112  * 1. Redistributions of source code must retain the above copyright
    113  *    notice, this list of conditions and the following disclaimer.
    114  * 2. Redistributions in binary form must reproduce the above copyright
    115  *    notice, this list of conditions and the following disclaimer in the
    116  *    documentation and/or other materials provided with the distribution.
    117  * 3. All advertising materials mentioning features or use of this software
    118  *    must display the following acknowledgement:
    119  *	This product includes software developed by Mark Brinicombe.
    120  * 4. The name of the author may not be used to endorse or promote products
    121  *    derived from this software without specific prior written permission.
    122  *
    123  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    124  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    125  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    126  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    127  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    128  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    129  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    130  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    131  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    132  *
    133  * RiscBSD kernel project
    134  *
    135  * pmap.c
    136  *
    137  * Machine dependant vm stuff
    138  *
    139  * Created      : 20/09/94
    140  */
    141 
    142 /*
    143  * armv6 and VIPT cache support by 3am Software Foundry,
    144  * Copyright (c) 2007 Danger Inc
    145  */
    146 
    147 /*
    148  * Performance improvements, UVM changes, overhauls and part-rewrites
    149  * were contributed by Neil A. Carson <neil (at) causality.com>.
    150  */
    151 
    152 /*
    153  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    154  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    155  * Systems, Inc.
    156  *
    157  * There are still a few things outstanding at this time:
    158  *
    159  *   - There are some unresolved issues for MP systems:
    160  *
    161  *     o The L1 metadata needs a lock, or more specifically, some places
    162  *       need to acquire an exclusive lock when modifying L1 translation
    163  *       table entries.
    164  *
    165  *     o When one cpu modifies an L1 entry, and that L1 table is also
    166  *       being used by another cpu, then the latter will need to be told
    167  *       that a tlb invalidation may be necessary. (But only if the old
    168  *       domain number in the L1 entry being over-written is currently
    169  *       the active domain on that cpu). I guess there are lots more tlb
    170  *       shootdown issues too...
    171  *
    172  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    173  *       MP systems will lose big-time because of the MMU domain hack.
    174  *       The only way this can be solved (apart from moving the vector
    175  *       page to 0xffff0000) is to reserve the first 1MB of user address
    176  *       space for kernel use only. This would require re-linking all
    177  *       applications so that the text section starts above this 1MB
    178  *       boundary.
    179  *
    180  *     o Tracking which VM space is resident in the cache/tlb has not yet
    181  *       been implemented for MP systems.
    182  *
    183  *     o Finally, there is a pathological condition where two cpus running
    184  *       two separate processes (not lwps) which happen to share an L1
    185  *       can get into a fight over one or more L1 entries. This will result
    186  *       in a significant slow-down if both processes are in tight loops.
    187  */
    188 
    189 /*
    190  * Special compilation symbols
    191  * PMAP_DEBUG		- Build in pmap_debug_level code
    192  */
    193 
    194 /* Include header files */
    195 
    196 #include "opt_cpuoptions.h"
    197 #include "opt_pmap_debug.h"
    198 #include "opt_ddb.h"
    199 #include "opt_lockdebug.h"
    200 #include "opt_multiprocessor.h"
    201 
    202 #include <sys/types.h>
    203 #include <sys/param.h>
    204 #include <sys/kernel.h>
    205 #include <sys/systm.h>
    206 #include <sys/proc.h>
    207 #include <sys/malloc.h>
    208 #include <sys/user.h>
    209 #include <sys/pool.h>
    210 #include <sys/cdefs.h>
    211 
    212 #include <uvm/uvm.h>
    213 
    214 #include <machine/bus.h>
    215 #include <machine/pmap.h>
    216 #include <machine/pcb.h>
    217 #include <machine/param.h>
    218 #include <arm/arm32/katelib.h>
    219 
    220 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.164.12.8 2007/11/10 04:16:11 matt Exp $");
    221 
    222 #ifdef PMAP_DEBUG
    223 
    224 /* XXX need to get rid of all refs to this */
    225 int pmap_debug_level = 0;
    226 
    227 /*
    228  * for switching to potentially finer grained debugging
    229  */
    230 #define	PDB_FOLLOW	0x0001
    231 #define	PDB_INIT	0x0002
    232 #define	PDB_ENTER	0x0004
    233 #define	PDB_REMOVE	0x0008
    234 #define	PDB_CREATE	0x0010
    235 #define	PDB_PTPAGE	0x0020
    236 #define	PDB_GROWKERN	0x0040
    237 #define	PDB_BITS	0x0080
    238 #define	PDB_COLLECT	0x0100
    239 #define	PDB_PROTECT	0x0200
    240 #define	PDB_MAP_L1	0x0400
    241 #define	PDB_BOOTSTRAP	0x1000
    242 #define	PDB_PARANOIA	0x2000
    243 #define	PDB_WIRING	0x4000
    244 #define	PDB_PVDUMP	0x8000
    245 #define	PDB_VAC		0x10000
    246 #define	PDB_KENTER	0x20000
    247 #define	PDB_KREMOVE	0x40000
    248 #define	PDB_EXEC	0x80000
    249 
    250 int debugmap = 1;
    251 int pmapdebug = 0;
    252 #define	NPDEBUG(_lev_,_stat_) \
    253 	if (pmapdebug & (_lev_)) \
    254         	((_stat_))
    255 
    256 #else	/* PMAP_DEBUG */
    257 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    258 #endif	/* PMAP_DEBUG */
    259 
    260 /*
    261  * pmap_kernel() points here
    262  */
    263 struct pmap     kernel_pmap_store;
    264 
    265 /*
    266  * Which pmap is currently 'live' in the cache
    267  *
    268  * XXXSCW: Fix for SMP ...
    269  */
    270 static pmap_t pmap_recent_user;
    271 
    272 /*
    273  * Pool and cache that pmap structures are allocated from.
    274  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    275  * in pmap_create().
    276  */
    277 static struct pool_cache pmap_cache;
    278 static LIST_HEAD(, pmap) pmap_pmaps;
    279 
    280 /*
    281  * Pool of PV structures
    282  */
    283 static struct pool pmap_pv_pool;
    284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    287 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    288 };
    289 
    290 /*
    291  * Pool and cache of l2_dtable structures.
    292  * We use a cache to avoid clearing the structures when they're
    293  * allocated. (196 bytes)
    294  */
    295 static struct pool_cache pmap_l2dtable_cache;
    296 static vaddr_t pmap_kernel_l2dtable_kva;
    297 
    298 /*
    299  * Pool and cache of L2 page descriptors.
    300  * We use a cache to avoid clearing the descriptor table
    301  * when they're allocated. (1KB)
    302  */
    303 static struct pool_cache pmap_l2ptp_cache;
    304 static vaddr_t pmap_kernel_l2ptp_kva;
    305 static paddr_t pmap_kernel_l2ptp_phys;
    306 
    307 #ifdef PMAPCOUNT
    308 #define	PMAP_EVCNT_INITIALIZER(name) \
    309 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    310 
    311 #ifdef PMAP_CACHE_VIPT
    312 static struct evcnt pmap_ev_vac_color_new =
    313    PMAP_EVCNT_INITIALIZER("new page color");
    314 static struct evcnt pmap_ev_vac_color_reuse =
    315    PMAP_EVCNT_INITIALIZER("ok first page color");
    316 static struct evcnt pmap_ev_vac_color_ok =
    317    PMAP_EVCNT_INITIALIZER("ok page color");
    318 static struct evcnt pmap_ev_vac_color_change =
    319    PMAP_EVCNT_INITIALIZER("change page color");
    320 static struct evcnt pmap_ev_vac_color_erase =
    321    PMAP_EVCNT_INITIALIZER("erase page color");
    322 static struct evcnt pmap_ev_vac_color_none =
    323    PMAP_EVCNT_INITIALIZER("no page color");
    324 static struct evcnt pmap_ev_vac_color_restore =
    325    PMAP_EVCNT_INITIALIZER("restore page color");
    326 
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    334 #endif
    335 
    336 static struct evcnt pmap_ev_mappings =
    337    PMAP_EVCNT_INITIALIZER("pages mapped");
    338 static struct evcnt pmap_ev_unmappings =
    339    PMAP_EVCNT_INITIALIZER("pages unmapped");
    340 static struct evcnt pmap_ev_remappings =
    341    PMAP_EVCNT_INITIALIZER("pages remapped");
    342 
    343 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    344 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    345 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    346 
    347 static struct evcnt pmap_ev_kernel_mappings =
    348    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    349 static struct evcnt pmap_ev_kernel_unmappings =
    350    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    351 static struct evcnt pmap_ev_kernel_remappings =
    352    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    353 
    354 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    355 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    356 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    357 
    358 static struct evcnt pmap_ev_kenter_mappings =
    359    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    360 static struct evcnt pmap_ev_kenter_unmappings =
    361    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    362 static struct evcnt pmap_ev_kenter_remappings =
    363    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    364 static struct evcnt pmap_ev_pt_mappings =
    365    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    366 
    367 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    368 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    369 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    370 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    371 
    372 #ifdef PMAP_CACHE_VIPT
    373 static struct evcnt pmap_ev_exec_mappings =
    374    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    375 static struct evcnt pmap_ev_exec_cached =
    376    PMAP_EVCNT_INITIALIZER("exec pages cached");
    377 
    378 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    379 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    380 
    381 static struct evcnt pmap_ev_exec_synced =
    382    PMAP_EVCNT_INITIALIZER("exec pages synced");
    383 static struct evcnt pmap_ev_exec_synced_map =
    384    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    385 static struct evcnt pmap_ev_exec_synced_unmap =
    386    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    387 static struct evcnt pmap_ev_exec_synced_remap =
    388    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    389 static struct evcnt pmap_ev_exec_synced_clearbit =
    390    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    391 static struct evcnt pmap_ev_exec_synced_kremove =
    392    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    393 
    394 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    400 
    401 static struct evcnt pmap_ev_exec_discarded_unmap =
    402    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    403 static struct evcnt pmap_ev_exec_discarded_zero =
    404    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    405 static struct evcnt pmap_ev_exec_discarded_copy =
    406    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    407 static struct evcnt pmap_ev_exec_discarded_page_protect =
    408    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    409 static struct evcnt pmap_ev_exec_discarded_clearbit =
    410    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    411 static struct evcnt pmap_ev_exec_discarded_kremove =
    412    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    413 
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    420 #endif /* PMAP_CACHE_VIPT */
    421 
    422 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    423 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    424 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    425 
    426 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    427 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    428 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    429 
    430 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    431 #else
    432 #define	PMAPCOUNT(x)	((void)0)
    433 #endif
    434 
    435 /*
    436  * pmap copy/zero page, and mem(5) hook point
    437  */
    438 static pt_entry_t *csrc_pte, *cdst_pte;
    439 static vaddr_t csrcp, cdstp;
    440 char *memhook;
    441 extern void *msgbufaddr;
    442 
    443 /*
    444  * Flag to indicate if pmap_init() has done its thing
    445  */
    446 bool pmap_initialized;
    447 
    448 /*
    449  * Misc. locking data structures
    450  */
    451 
    452 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    453 static struct lock pmap_main_lock;
    454 
    455 #define PMAP_MAP_TO_HEAD_LOCK() \
    456      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    457 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    458      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    459 #define PMAP_HEAD_TO_MAP_LOCK() \
    460      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    461 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    462      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    463 #else
    464 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    465 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    466 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    467 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    468 #endif
    469 
    470 #define	pmap_acquire_pmap_lock(pm)			\
    471 	do {						\
    472 		if ((pm) != pmap_kernel())		\
    473 			simple_lock(&(pm)->pm_lock);	\
    474 	} while (/*CONSTCOND*/0)
    475 
    476 #define	pmap_release_pmap_lock(pm)			\
    477 	do {						\
    478 		if ((pm) != pmap_kernel())		\
    479 			simple_unlock(&(pm)->pm_lock);	\
    480 	} while (/*CONSTCOND*/0)
    481 
    482 
    483 /*
    484  * Metadata for L1 translation tables.
    485  */
    486 struct l1_ttable {
    487 	/* Entry on the L1 Table list */
    488 	SLIST_ENTRY(l1_ttable) l1_link;
    489 
    490 	/* Entry on the L1 Least Recently Used list */
    491 	TAILQ_ENTRY(l1_ttable) l1_lru;
    492 
    493 	/* Track how many domains are allocated from this L1 */
    494 	volatile u_int l1_domain_use_count;
    495 
    496 	/*
    497 	 * A free-list of domain numbers for this L1.
    498 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    499 	 * is slow on ARM.
    500 	 */
    501 	u_int8_t l1_domain_first;
    502 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    503 
    504 	/* Physical address of this L1 page table */
    505 	paddr_t l1_physaddr;
    506 
    507 	/* KVA of this L1 page table */
    508 	pd_entry_t *l1_kva;
    509 };
    510 
    511 /*
    512  * Convert a virtual address into its L1 table index. That is, the
    513  * index used to locate the L2 descriptor table pointer in an L1 table.
    514  * This is basically used to index l1->l1_kva[].
    515  *
    516  * Each L2 descriptor table represents 1MB of VA space.
    517  */
    518 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    519 
    520 /*
    521  * L1 Page Tables are tracked using a Least Recently Used list.
    522  *  - New L1s are allocated from the HEAD.
    523  *  - Freed L1s are added to the TAIl.
    524  *  - Recently accessed L1s (where an 'access' is some change to one of
    525  *    the userland pmaps which owns this L1) are moved to the TAIL.
    526  */
    527 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    528 static struct simplelock l1_lru_lock;
    529 
    530 /*
    531  * A list of all L1 tables
    532  */
    533 static SLIST_HEAD(, l1_ttable) l1_list;
    534 
    535 /*
    536  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    537  *
    538  * This is normally 16MB worth L2 page descriptors for any given pmap.
    539  * Reference counts are maintained for L2 descriptors so they can be
    540  * freed when empty.
    541  */
    542 struct l2_dtable {
    543 	/* The number of L2 page descriptors allocated to this l2_dtable */
    544 	u_int l2_occupancy;
    545 
    546 	/* List of L2 page descriptors */
    547 	struct l2_bucket {
    548 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    549 		paddr_t l2b_phys;	/* Physical address of same */
    550 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    551 		u_short l2b_occupancy;	/* How many active descriptors */
    552 	} l2_bucket[L2_BUCKET_SIZE];
    553 };
    554 
    555 /*
    556  * Given an L1 table index, calculate the corresponding l2_dtable index
    557  * and bucket index within the l2_dtable.
    558  */
    559 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    560 				 (L2_SIZE - 1))
    561 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    562 
    563 /*
    564  * Given a virtual address, this macro returns the
    565  * virtual address required to drop into the next L2 bucket.
    566  */
    567 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    568 
    569 /*
    570  * L2 allocation.
    571  */
    572 #define	pmap_alloc_l2_dtable()		\
    573 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    574 #define	pmap_free_l2_dtable(l2)		\
    575 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    576 #define pmap_alloc_l2_ptp(pap)		\
    577 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    578 	    PR_NOWAIT, (pap)))
    579 
    580 /*
    581  * We try to map the page tables write-through, if possible.  However, not
    582  * all CPUs have a write-through cache mode, so on those we have to sync
    583  * the cache when we frob page tables.
    584  *
    585  * We try to evaluate this at compile time, if possible.  However, it's
    586  * not always possible to do that, hence this run-time var.
    587  */
    588 int	pmap_needs_pte_sync;
    589 
    590 /*
    591  * Real definition of pv_entry.
    592  */
    593 struct pv_entry {
    594 	struct pv_entry *pv_next;       /* next pv_entry */
    595 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    596 	vaddr_t		pv_va;          /* virtual address for mapping */
    597 	u_int		pv_flags;       /* flags */
    598 };
    599 
    600 /*
    601  * Macro to determine if a mapping might be resident in the
    602  * instruction cache and/or TLB
    603  */
    604 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    605 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    606 
    607 /*
    608  * Macro to determine if a mapping might be resident in the
    609  * data cache and/or TLB
    610  */
    611 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    612 
    613 /*
    614  * Local prototypes
    615  */
    616 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    617 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    618 			    pt_entry_t **);
    619 static bool		pmap_is_current(pmap_t);
    620 static bool		pmap_is_cached(pmap_t);
    621 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    622 			    pmap_t, vaddr_t, u_int);
    623 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    624 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    625 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    626 			    u_int, u_int);
    627 
    628 static void		pmap_pinit(pmap_t);
    629 static int		pmap_pmap_ctor(void *, void *, int);
    630 
    631 static void		pmap_alloc_l1(pmap_t);
    632 static void		pmap_free_l1(pmap_t);
    633 static void		pmap_use_l1(pmap_t);
    634 
    635 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    636 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    637 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    638 static int		pmap_l2ptp_ctor(void *, void *, int);
    639 static int		pmap_l2dtable_ctor(void *, void *, int);
    640 
    641 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    642 #ifdef PMAP_CACHE_VIVT
    643 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    644 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    645 #endif
    646 
    647 static void		pmap_clearbit(struct vm_page *, u_int);
    648 #ifdef PMAP_CACHE_VIVT
    649 static int		pmap_clean_page(struct pv_entry *, bool);
    650 #endif
    651 #ifdef PMAP_CACHE_VIPT
    652 static void		pmap_syncicache_page(struct vm_page *);
    653 static void		pmap_flush_page(struct vm_page *);
    654 #endif
    655 static void		pmap_page_remove(struct vm_page *);
    656 
    657 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    658 static vaddr_t		kernel_pt_lookup(paddr_t);
    659 
    660 void pmap_switch(struct lwp *, struct lwp *);
    661 
    662 
    663 /*
    664  * External function prototypes
    665  */
    666 extern void bzero_page(vaddr_t);
    667 extern void bcopy_page(vaddr_t, vaddr_t);
    668 
    669 /*
    670  * Misc variables
    671  */
    672 vaddr_t virtual_avail;
    673 vaddr_t virtual_end;
    674 vaddr_t pmap_curmaxkvaddr;
    675 
    676 vaddr_t avail_start;
    677 vaddr_t avail_end;
    678 
    679 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    680 pv_addr_t kernelpages;
    681 pv_addr_t kernel_l1pt;
    682 pv_addr_t systempage;
    683 
    684 /* Function to set the debug level of the pmap code */
    685 
    686 #ifdef PMAP_DEBUG
    687 void
    688 pmap_debug(int level)
    689 {
    690 	pmap_debug_level = level;
    691 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    692 }
    693 #endif	/* PMAP_DEBUG */
    694 
    695 /*
    696  * A bunch of routines to conditionally flush the caches/TLB depending
    697  * on whether the specified pmap actually needs to be flushed at any
    698  * given time.
    699  */
    700 static inline void
    701 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    702 {
    703 
    704 	if (pm->pm_cstate.cs_tlb_id)
    705 		cpu_tlb_flushID_SE(va);
    706 }
    707 
    708 static inline void
    709 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    710 {
    711 
    712 	if (pm->pm_cstate.cs_tlb_d)
    713 		cpu_tlb_flushD_SE(va);
    714 }
    715 
    716 static inline void
    717 pmap_tlb_flushID(pmap_t pm)
    718 {
    719 
    720 	if (pm->pm_cstate.cs_tlb_id) {
    721 		cpu_tlb_flushID();
    722 		pm->pm_cstate.cs_tlb = 0;
    723 	}
    724 }
    725 
    726 static inline void
    727 pmap_tlb_flushD(pmap_t pm)
    728 {
    729 
    730 	if (pm->pm_cstate.cs_tlb_d) {
    731 		cpu_tlb_flushD();
    732 		pm->pm_cstate.cs_tlb_d = 0;
    733 	}
    734 }
    735 
    736 #ifdef PMAP_CACHE_VIVT
    737 static inline void
    738 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    739 {
    740 	if (pm->pm_cstate.cs_cache_id) {
    741 		cpu_idcache_wbinv_range(va, len);
    742 	}
    743 }
    744 
    745 static inline void
    746 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    747     bool do_inv, bool rd_only)
    748 {
    749 
    750 	if (pm->pm_cstate.cs_cache_d) {
    751 		if (do_inv) {
    752 			if (rd_only)
    753 				cpu_dcache_inv_range(va, len);
    754 			else
    755 				cpu_dcache_wbinv_range(va, len);
    756 		} else
    757 		if (!rd_only)
    758 			cpu_dcache_wb_range(va, len);
    759 	}
    760 }
    761 
    762 static inline void
    763 pmap_idcache_wbinv_all(pmap_t pm)
    764 {
    765 	if (pm->pm_cstate.cs_cache_id) {
    766 		cpu_idcache_wbinv_all();
    767 		pm->pm_cstate.cs_cache = 0;
    768 	}
    769 }
    770 
    771 static inline void
    772 pmap_dcache_wbinv_all(pmap_t pm)
    773 {
    774 	if (pm->pm_cstate.cs_cache_d) {
    775 		cpu_dcache_wbinv_all();
    776 		pm->pm_cstate.cs_cache_d = 0;
    777 	}
    778 }
    779 #endif /* PMAP_CACHE_VIVT */
    780 
    781 static inline bool
    782 pmap_is_current(pmap_t pm)
    783 {
    784 
    785 	if (pm == pmap_kernel() ||
    786 	    (curproc && curproc->p_vmspace->vm_map.pmap == pm))
    787 		return true;
    788 
    789 	return false;
    790 }
    791 
    792 static inline bool
    793 pmap_is_cached(pmap_t pm)
    794 {
    795 
    796 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    797 	    pmap_recent_user == pm)
    798 		return (true);
    799 
    800 	return false;
    801 }
    802 
    803 /*
    804  * PTE_SYNC_CURRENT:
    805  *
    806  *     Make sure the pte is written out to RAM.
    807  *     We need to do this for one of two cases:
    808  *       - We're dealing with the kernel pmap
    809  *       - There is no pmap active in the cache/tlb.
    810  *       - The specified pmap is 'active' in the cache/tlb.
    811  */
    812 #ifdef PMAP_INCLUDE_PTE_SYNC
    813 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    814 do {					\
    815 	if (PMAP_NEEDS_PTE_SYNC && 	\
    816 	    pmap_is_cached(pm))		\
    817 		PTE_SYNC(ptep);		\
    818 } while (/*CONSTCOND*/0)
    819 #else
    820 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    821 #endif
    822 
    823 /*
    824  * main pv_entry manipulation functions:
    825  *   pmap_enter_pv: enter a mapping onto a vm_page list
    826  *   pmap_remove_pv: remove a mappiing from a vm_page list
    827  *
    828  * NOTE: pmap_enter_pv expects to lock the pvh itself
    829  *       pmap_remove_pv expects te caller to lock the pvh before calling
    830  */
    831 
    832 /*
    833  * pmap_enter_pv: enter a mapping onto a vm_page lst
    834  *
    835  * => caller should hold the proper lock on pmap_main_lock
    836  * => caller should have pmap locked
    837  * => we will gain the lock on the vm_page and allocate the new pv_entry
    838  * => caller should adjust ptp's wire_count before calling
    839  * => caller should not adjust pmap's wire_count
    840  */
    841 static void
    842 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    843     vaddr_t va, u_int flags)
    844 {
    845 
    846 	NPDEBUG(PDB_PVDUMP,
    847 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    848 
    849 	pve->pv_pmap = pm;
    850 	pve->pv_va = va;
    851 	pve->pv_flags = flags;
    852 
    853 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    854 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    855 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    856 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    857 	if (pm == pmap_kernel()) {
    858 		PMAPCOUNT(kernel_mappings);
    859 		if (flags & PVF_WRITE)
    860 			pg->mdpage.krw_mappings++;
    861 		else
    862 			pg->mdpage.kro_mappings++;
    863 	} else
    864 	if (flags & PVF_WRITE)
    865 		pg->mdpage.urw_mappings++;
    866 	else
    867 		pg->mdpage.uro_mappings++;
    868 
    869 #ifdef PMAP_CACHE_VIPT
    870 	/*
    871 	 * If this is an exec mapping and its the first exec mapping
    872 	 * for this page, make sure to sync the I-cache.
    873 	 */
    874 	if (PV_IS_EXEC_P(flags)) {
    875 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    876 			pmap_syncicache_page(pg);
    877 			PMAPCOUNT(exec_synced_map);
    878 		}
    879 		PMAPCOUNT(exec_mappings);
    880 	}
    881 #endif
    882 
    883 	PMAPCOUNT(mappings);
    884 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    885 
    886 	if (pve->pv_flags & PVF_WIRED)
    887 		++pm->pm_stats.wired_count;
    888 }
    889 
    890 /*
    891  *
    892  * pmap_find_pv: Find a pv entry
    893  *
    894  * => caller should hold lock on vm_page
    895  */
    896 static inline struct pv_entry *
    897 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    898 {
    899 	struct pv_entry *pv;
    900 
    901 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
    902 		if (pm == pv->pv_pmap && va == pv->pv_va)
    903 			break;
    904 	}
    905 
    906 	return (pv);
    907 }
    908 
    909 /*
    910  * pmap_remove_pv: try to remove a mapping from a pv_list
    911  *
    912  * => caller should hold proper lock on pmap_main_lock
    913  * => pmap should be locked
    914  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    915  * => caller should adjust ptp's wire_count and free PTP if needed
    916  * => caller should NOT adjust pmap's wire_count
    917  * => we return the removed pve
    918  */
    919 static struct pv_entry *
    920 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    921 {
    922 	struct pv_entry *pve, **prevptr;
    923 
    924 	NPDEBUG(PDB_PVDUMP,
    925 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    926 
    927 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    928 	pve = *prevptr;
    929 
    930 	while (pve) {
    931 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    932 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    933 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    934 			if (pve->pv_flags & PVF_WIRED) {
    935 				if (skip_wired)
    936 					return (NULL);
    937 				--pm->pm_stats.wired_count;
    938 			}
    939 			*prevptr = pve->pv_next;		/* remove it! */
    940 			if (pm == pmap_kernel()) {
    941 				PMAPCOUNT(kernel_unmappings);
    942 				if (pve->pv_flags & PVF_WRITE)
    943 					pg->mdpage.krw_mappings--;
    944 				else
    945 					pg->mdpage.kro_mappings--;
    946 			} else
    947 			if (pve->pv_flags & PVF_WRITE)
    948 				pg->mdpage.urw_mappings--;
    949 			else
    950 				pg->mdpage.uro_mappings--;
    951 
    952 			PMAPCOUNT(unmappings);
    953 #ifdef PMAP_CACHE_VIPT
    954 			if (!(pve->pv_flags & PVF_WRITE))
    955 				break;
    956 			/*
    957 			 * If this page has had an exec mapping, then if
    958 			 * this was the last mapping, discard the contents,
    959 			 * otherwise sync the i-cache for this page.
    960 			 */
    961 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    962 				if (pg->mdpage.pvh_list == NULL) {
    963 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
    964 					PMAPCOUNT(exec_discarded_unmap);
    965 				} else {
    966 					pmap_syncicache_page(pg);
    967 					PMAPCOUNT(exec_synced_unmap);
    968 				}
    969 			}
    970 #endif /* PMAP_CACHE_VIPT */
    971 			break;
    972 		}
    973 		prevptr = &pve->pv_next;		/* previous pointer */
    974 		pve = pve->pv_next;			/* advance */
    975 	}
    976 
    977 	return(pve);				/* return removed pve */
    978 }
    979 
    980 /*
    981  *
    982  * pmap_modify_pv: Update pv flags
    983  *
    984  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    985  * => caller should NOT adjust pmap's wire_count
    986  * => caller must call pmap_vac_me_harder() if writable status of a page
    987  *    may have changed.
    988  * => we return the old flags
    989  *
    990  * Modify a physical-virtual mapping in the pv table
    991  */
    992 static u_int
    993 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
    994     u_int clr_mask, u_int set_mask)
    995 {
    996 	struct pv_entry *npv;
    997 	u_int flags, oflags;
    998 
    999 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1000 		return (0);
   1001 
   1002 	NPDEBUG(PDB_PVDUMP,
   1003 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1004 
   1005 	/*
   1006 	 * There is at least one VA mapping this page.
   1007 	 */
   1008 
   1009 	if (clr_mask & (PVF_REF | PVF_MOD))
   1010 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1011 
   1012 	oflags = npv->pv_flags;
   1013 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1014 
   1015 	if ((flags ^ oflags) & PVF_WIRED) {
   1016 		if (flags & PVF_WIRED)
   1017 			++pm->pm_stats.wired_count;
   1018 		else
   1019 			--pm->pm_stats.wired_count;
   1020 	}
   1021 
   1022 	if ((flags ^ oflags) & PVF_WRITE) {
   1023 		if (pm == pmap_kernel()) {
   1024 			if (flags & PVF_WRITE) {
   1025 				pg->mdpage.krw_mappings++;
   1026 				pg->mdpage.kro_mappings--;
   1027 			} else {
   1028 				pg->mdpage.kro_mappings++;
   1029 				pg->mdpage.krw_mappings--;
   1030 			}
   1031 		} else
   1032 		if (flags & PVF_WRITE) {
   1033 			pg->mdpage.urw_mappings++;
   1034 			pg->mdpage.uro_mappings--;
   1035 		} else {
   1036 			pg->mdpage.uro_mappings++;
   1037 			pg->mdpage.urw_mappings--;
   1038 		}
   1039 	}
   1040 #ifdef PMAP_CACHE_VIPT
   1041 	/*
   1042 	 * We have two cases here: the first is from enter_pv (new exec
   1043 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1044 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1045 	 * to do what pmap_remove_pv would do.
   1046 	 */
   1047 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1048 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1049 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1050 		pmap_syncicache_page(pg);
   1051 		PMAPCOUNT(exec_synced_remap);
   1052 	}
   1053 #endif
   1054 
   1055 	PMAPCOUNT(remappings);
   1056 
   1057 	return (oflags);
   1058 }
   1059 
   1060 /*
   1061  * Allocate an L1 translation table for the specified pmap.
   1062  * This is called at pmap creation time.
   1063  */
   1064 static void
   1065 pmap_alloc_l1(pmap_t pm)
   1066 {
   1067 	struct l1_ttable *l1;
   1068 	u_int8_t domain;
   1069 
   1070 	/*
   1071 	 * Remove the L1 at the head of the LRU list
   1072 	 */
   1073 	simple_lock(&l1_lru_lock);
   1074 	l1 = TAILQ_FIRST(&l1_lru_list);
   1075 	KDASSERT(l1 != NULL);
   1076 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1077 
   1078 	/*
   1079 	 * Pick the first available domain number, and update
   1080 	 * the link to the next number.
   1081 	 */
   1082 	domain = l1->l1_domain_first;
   1083 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1084 
   1085 	/*
   1086 	 * If there are still free domain numbers in this L1,
   1087 	 * put it back on the TAIL of the LRU list.
   1088 	 */
   1089 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1090 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1091 
   1092 	simple_unlock(&l1_lru_lock);
   1093 
   1094 	/*
   1095 	 * Fix up the relevant bits in the pmap structure
   1096 	 */
   1097 	pm->pm_l1 = l1;
   1098 	pm->pm_domain = domain;
   1099 }
   1100 
   1101 /*
   1102  * Free an L1 translation table.
   1103  * This is called at pmap destruction time.
   1104  */
   1105 static void
   1106 pmap_free_l1(pmap_t pm)
   1107 {
   1108 	struct l1_ttable *l1 = pm->pm_l1;
   1109 
   1110 	simple_lock(&l1_lru_lock);
   1111 
   1112 	/*
   1113 	 * If this L1 is currently on the LRU list, remove it.
   1114 	 */
   1115 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1116 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1117 
   1118 	/*
   1119 	 * Free up the domain number which was allocated to the pmap
   1120 	 */
   1121 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1122 	l1->l1_domain_first = pm->pm_domain;
   1123 	l1->l1_domain_use_count--;
   1124 
   1125 	/*
   1126 	 * The L1 now must have at least 1 free domain, so add
   1127 	 * it back to the LRU list. If the use count is zero,
   1128 	 * put it at the head of the list, otherwise it goes
   1129 	 * to the tail.
   1130 	 */
   1131 	if (l1->l1_domain_use_count == 0)
   1132 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1133 	else
   1134 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1135 
   1136 	simple_unlock(&l1_lru_lock);
   1137 }
   1138 
   1139 static inline void
   1140 pmap_use_l1(pmap_t pm)
   1141 {
   1142 	struct l1_ttable *l1;
   1143 
   1144 	/*
   1145 	 * Do nothing if we're in interrupt context.
   1146 	 * Access to an L1 by the kernel pmap must not affect
   1147 	 * the LRU list.
   1148 	 */
   1149 	if (curcpu()->ci_intr_depth || pm == pmap_kernel())
   1150 		return;
   1151 
   1152 	l1 = pm->pm_l1;
   1153 
   1154 	/*
   1155 	 * If the L1 is not currently on the LRU list, just return
   1156 	 */
   1157 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1158 		return;
   1159 
   1160 	simple_lock(&l1_lru_lock);
   1161 
   1162 	/*
   1163 	 * Check the use count again, now that we've acquired the lock
   1164 	 */
   1165 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1166 		simple_unlock(&l1_lru_lock);
   1167 		return;
   1168 	}
   1169 
   1170 	/*
   1171 	 * Move the L1 to the back of the LRU list
   1172 	 */
   1173 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1174 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1175 
   1176 	simple_unlock(&l1_lru_lock);
   1177 }
   1178 
   1179 /*
   1180  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1181  *
   1182  * Free an L2 descriptor table.
   1183  */
   1184 static inline void
   1185 #ifndef PMAP_INCLUDE_PTE_SYNC
   1186 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1187 #else
   1188 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1189 #endif
   1190 {
   1191 #ifdef PMAP_INCLUDE_PTE_SYNC
   1192 #ifdef PMAP_CACHE_VIVT
   1193 	/*
   1194 	 * Note: With a write-back cache, we may need to sync this
   1195 	 * L2 table before re-using it.
   1196 	 * This is because it may have belonged to a non-current
   1197 	 * pmap, in which case the cache syncs would have been
   1198 	 * skipped for the pages that were being unmapped. If the
   1199 	 * L2 table were then to be immediately re-allocated to
   1200 	 * the *current* pmap, it may well contain stale mappings
   1201 	 * which have not yet been cleared by a cache write-back
   1202 	 * and so would still be visible to the mmu.
   1203 	 */
   1204 	if (need_sync)
   1205 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1206 #endif /* PMAP_CACHE_VIVT */
   1207 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1208 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1209 }
   1210 
   1211 /*
   1212  * Returns a pointer to the L2 bucket associated with the specified pmap
   1213  * and VA, or NULL if no L2 bucket exists for the address.
   1214  */
   1215 static inline struct l2_bucket *
   1216 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1217 {
   1218 	struct l2_dtable *l2;
   1219 	struct l2_bucket *l2b;
   1220 	u_short l1idx;
   1221 
   1222 	l1idx = L1_IDX(va);
   1223 
   1224 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1225 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1226 		return (NULL);
   1227 
   1228 	return (l2b);
   1229 }
   1230 
   1231 /*
   1232  * Returns a pointer to the L2 bucket associated with the specified pmap
   1233  * and VA.
   1234  *
   1235  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1236  * bucket/page table in place.
   1237  *
   1238  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1239  * increment the bucket occupancy counter appropriately *before*
   1240  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1241  * the bucket/page in the meantime.
   1242  */
   1243 static struct l2_bucket *
   1244 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1245 {
   1246 	struct l2_dtable *l2;
   1247 	struct l2_bucket *l2b;
   1248 	u_short l1idx;
   1249 
   1250 	l1idx = L1_IDX(va);
   1251 
   1252 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1253 		/*
   1254 		 * No mapping at this address, as there is
   1255 		 * no entry in the L1 table.
   1256 		 * Need to allocate a new l2_dtable.
   1257 		 */
   1258 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1259 			return (NULL);
   1260 
   1261 		/*
   1262 		 * Link it into the parent pmap
   1263 		 */
   1264 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1265 	}
   1266 
   1267 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1268 
   1269 	/*
   1270 	 * Fetch pointer to the L2 page table associated with the address.
   1271 	 */
   1272 	if (l2b->l2b_kva == NULL) {
   1273 		pt_entry_t *ptep;
   1274 
   1275 		/*
   1276 		 * No L2 page table has been allocated. Chances are, this
   1277 		 * is because we just allocated the l2_dtable, above.
   1278 		 */
   1279 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1280 			/*
   1281 			 * Oops, no more L2 page tables available at this
   1282 			 * time. We may need to deallocate the l2_dtable
   1283 			 * if we allocated a new one above.
   1284 			 */
   1285 			if (l2->l2_occupancy == 0) {
   1286 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1287 				pmap_free_l2_dtable(l2);
   1288 			}
   1289 			return (NULL);
   1290 		}
   1291 
   1292 		l2->l2_occupancy++;
   1293 		l2b->l2b_kva = ptep;
   1294 		l2b->l2b_l1idx = l1idx;
   1295 	}
   1296 
   1297 	return (l2b);
   1298 }
   1299 
   1300 /*
   1301  * One or more mappings in the specified L2 descriptor table have just been
   1302  * invalidated.
   1303  *
   1304  * Garbage collect the metadata and descriptor table itself if necessary.
   1305  *
   1306  * The pmap lock must be acquired when this is called (not necessary
   1307  * for the kernel pmap).
   1308  */
   1309 static void
   1310 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1311 {
   1312 	struct l2_dtable *l2;
   1313 	pd_entry_t *pl1pd, l1pd;
   1314 	pt_entry_t *ptep;
   1315 	u_short l1idx;
   1316 
   1317 	KDASSERT(count <= l2b->l2b_occupancy);
   1318 
   1319 	/*
   1320 	 * Update the bucket's reference count according to how many
   1321 	 * PTEs the caller has just invalidated.
   1322 	 */
   1323 	l2b->l2b_occupancy -= count;
   1324 
   1325 	/*
   1326 	 * Note:
   1327 	 *
   1328 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1329 	 * as that would require checking all Level 1 page tables and
   1330 	 * removing any references to the Level 2 page table. See also the
   1331 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1332 	 *
   1333 	 * We make do with just invalidating the mapping in the L2 table.
   1334 	 *
   1335 	 * This isn't really a big deal in practice and, in fact, leads
   1336 	 * to a performance win over time as we don't need to continually
   1337 	 * alloc/free.
   1338 	 */
   1339 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1340 		return;
   1341 
   1342 	/*
   1343 	 * There are no more valid mappings in this level 2 page table.
   1344 	 * Go ahead and NULL-out the pointer in the bucket, then
   1345 	 * free the page table.
   1346 	 */
   1347 	l1idx = l2b->l2b_l1idx;
   1348 	ptep = l2b->l2b_kva;
   1349 	l2b->l2b_kva = NULL;
   1350 
   1351 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1352 
   1353 	/*
   1354 	 * If the L1 slot matches the pmap's domain
   1355 	 * number, then invalidate it.
   1356 	 */
   1357 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1358 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1359 		*pl1pd = 0;
   1360 		PTE_SYNC(pl1pd);
   1361 	}
   1362 
   1363 	/*
   1364 	 * Release the L2 descriptor table back to the pool cache.
   1365 	 */
   1366 #ifndef PMAP_INCLUDE_PTE_SYNC
   1367 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1368 #else
   1369 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1370 #endif
   1371 
   1372 	/*
   1373 	 * Update the reference count in the associated l2_dtable
   1374 	 */
   1375 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1376 	if (--l2->l2_occupancy > 0)
   1377 		return;
   1378 
   1379 	/*
   1380 	 * There are no more valid mappings in any of the Level 1
   1381 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1382 	 * the pointer in the parent pmap and free the l2_dtable.
   1383 	 */
   1384 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1385 	pmap_free_l2_dtable(l2);
   1386 }
   1387 
   1388 /*
   1389  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1390  * structures.
   1391  */
   1392 static int
   1393 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1394 {
   1395 #ifndef PMAP_INCLUDE_PTE_SYNC
   1396 	struct l2_bucket *l2b;
   1397 	pt_entry_t *ptep, pte;
   1398 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1399 
   1400 	/*
   1401 	 * The mappings for these page tables were initially made using
   1402 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1403 	 * mode will not be right for page table mappings. To avoid
   1404 	 * polluting the pmap_kenter_pa() code with a special case for
   1405 	 * page tables, we simply fix up the cache-mode here if it's not
   1406 	 * correct.
   1407 	 */
   1408 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1409 	KDASSERT(l2b != NULL);
   1410 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1411 	pte = *ptep;
   1412 
   1413 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1414 		/*
   1415 		 * Page tables must have the cache-mode set to Write-Thru.
   1416 		 */
   1417 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1418 		PTE_SYNC(ptep);
   1419 		cpu_tlb_flushD_SE(va);
   1420 		cpu_cpwait();
   1421 	}
   1422 #endif
   1423 
   1424 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1425 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1426 	return (0);
   1427 }
   1428 
   1429 static int
   1430 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1431 {
   1432 
   1433 	memset(v, 0, sizeof(struct l2_dtable));
   1434 	return (0);
   1435 }
   1436 
   1437 static int
   1438 pmap_pmap_ctor(void *arg, void *v, int flags)
   1439 {
   1440 
   1441 	memset(v, 0, sizeof(struct pmap));
   1442 	return (0);
   1443 }
   1444 
   1445 static void
   1446 pmap_pinit(pmap_t pm)
   1447 {
   1448 	struct l2_bucket *l2b;
   1449 
   1450 	if (vector_page < KERNEL_BASE) {
   1451 		/*
   1452 		 * Map the vector page.
   1453 		 */
   1454 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1455 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1456 		pmap_update(pm);
   1457 
   1458 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1459 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1460 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1461 		    L1_C_DOM(pm->pm_domain);
   1462 	} else
   1463 		pm->pm_pl1vec = NULL;
   1464 }
   1465 
   1466 #ifdef PMAP_CACHE_VIVT
   1467 /*
   1468  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1469  * there is more than one mapping and at least one of them is writable.
   1470  * Since we purge the cache on every context switch, we only need to check for
   1471  * other mappings within the same pmap, or kernel_pmap.
   1472  * This function is also called when a page is unmapped, to possibly reenable
   1473  * caching on any remaining mappings.
   1474  *
   1475  * The code implements the following logic, where:
   1476  *
   1477  * KW = # of kernel read/write pages
   1478  * KR = # of kernel read only pages
   1479  * UW = # of user read/write pages
   1480  * UR = # of user read only pages
   1481  *
   1482  * KC = kernel mapping is cacheable
   1483  * UC = user mapping is cacheable
   1484  *
   1485  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1486  *             +---------------------------------------------
   1487  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1488  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1489  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1490  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1491  */
   1492 
   1493 static const int pmap_vac_flags[4][4] = {
   1494 	{-1,		0,		0,		PVF_KNC},
   1495 	{0,		0,		PVF_NC,		PVF_NC},
   1496 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1497 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1498 };
   1499 
   1500 static inline int
   1501 pmap_get_vac_flags(const struct vm_page *pg)
   1502 {
   1503 	int kidx, uidx;
   1504 
   1505 	kidx = 0;
   1506 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1507 		kidx |= 1;
   1508 	if (pg->mdpage.krw_mappings)
   1509 		kidx |= 2;
   1510 
   1511 	uidx = 0;
   1512 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1513 		uidx |= 1;
   1514 	if (pg->mdpage.urw_mappings)
   1515 		uidx |= 2;
   1516 
   1517 	return (pmap_vac_flags[uidx][kidx]);
   1518 }
   1519 
   1520 static inline void
   1521 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1522 {
   1523 	int nattr;
   1524 
   1525 	nattr = pmap_get_vac_flags(pg);
   1526 
   1527 	if (nattr < 0) {
   1528 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1529 		return;
   1530 	}
   1531 
   1532 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1533 		return;
   1534 
   1535 	if (pm == pmap_kernel())
   1536 		pmap_vac_me_kpmap(pg, pm, va);
   1537 	else
   1538 		pmap_vac_me_user(pg, pm, va);
   1539 
   1540 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1541 }
   1542 
   1543 static void
   1544 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1545 {
   1546 	u_int u_cacheable, u_entries;
   1547 	struct pv_entry *pv;
   1548 	pmap_t last_pmap = pm;
   1549 
   1550 	/*
   1551 	 * Pass one, see if there are both kernel and user pmaps for
   1552 	 * this page.  Calculate whether there are user-writable or
   1553 	 * kernel-writable pages.
   1554 	 */
   1555 	u_cacheable = 0;
   1556 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1557 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1558 			u_cacheable++;
   1559 	}
   1560 
   1561 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1562 
   1563 	/*
   1564 	 * We know we have just been updating a kernel entry, so if
   1565 	 * all user pages are already cacheable, then there is nothing
   1566 	 * further to do.
   1567 	 */
   1568 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1569 		return;
   1570 
   1571 	if (u_entries) {
   1572 		/*
   1573 		 * Scan over the list again, for each entry, if it
   1574 		 * might not be set correctly, call pmap_vac_me_user
   1575 		 * to recalculate the settings.
   1576 		 */
   1577 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1578 			/*
   1579 			 * We know kernel mappings will get set
   1580 			 * correctly in other calls.  We also know
   1581 			 * that if the pmap is the same as last_pmap
   1582 			 * then we've just handled this entry.
   1583 			 */
   1584 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1585 				continue;
   1586 
   1587 			/*
   1588 			 * If there are kernel entries and this page
   1589 			 * is writable but non-cacheable, then we can
   1590 			 * skip this entry also.
   1591 			 */
   1592 			if (pg->mdpage.k_mappings &&
   1593 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1594 			    (PVF_NC | PVF_WRITE))
   1595 				continue;
   1596 
   1597 			/*
   1598 			 * Similarly if there are no kernel-writable
   1599 			 * entries and the page is already
   1600 			 * read-only/cacheable.
   1601 			 */
   1602 			if (pg->mdpage.krw_mappings == 0 &&
   1603 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1604 				continue;
   1605 
   1606 			/*
   1607 			 * For some of the remaining cases, we know
   1608 			 * that we must recalculate, but for others we
   1609 			 * can't tell if they are correct or not, so
   1610 			 * we recalculate anyway.
   1611 			 */
   1612 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1613 		}
   1614 
   1615 		if (pg->mdpage.k_mappings == 0)
   1616 			return;
   1617 	}
   1618 
   1619 	pmap_vac_me_user(pg, pm, va);
   1620 }
   1621 
   1622 static void
   1623 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1624 {
   1625 	pmap_t kpmap = pmap_kernel();
   1626 	struct pv_entry *pv, *npv;
   1627 	struct l2_bucket *l2b;
   1628 	pt_entry_t *ptep, pte;
   1629 	u_int entries = 0;
   1630 	u_int writable = 0;
   1631 	u_int cacheable_entries = 0;
   1632 	u_int kern_cacheable = 0;
   1633 	u_int other_writable = 0;
   1634 
   1635 	/*
   1636 	 * Count mappings and writable mappings in this pmap.
   1637 	 * Include kernel mappings as part of our own.
   1638 	 * Keep a pointer to the first one.
   1639 	 */
   1640 	for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1641 		/* Count mappings in the same pmap */
   1642 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1643 			if (entries++ == 0)
   1644 				npv = pv;
   1645 
   1646 			/* Cacheable mappings */
   1647 			if ((pv->pv_flags & PVF_NC) == 0) {
   1648 				cacheable_entries++;
   1649 				if (kpmap == pv->pv_pmap)
   1650 					kern_cacheable++;
   1651 			}
   1652 
   1653 			/* Writable mappings */
   1654 			if (pv->pv_flags & PVF_WRITE)
   1655 				++writable;
   1656 		} else
   1657 		if (pv->pv_flags & PVF_WRITE)
   1658 			other_writable = 1;
   1659 	}
   1660 
   1661 	/*
   1662 	 * Enable or disable caching as necessary.
   1663 	 * Note: the first entry might be part of the kernel pmap,
   1664 	 * so we can't assume this is indicative of the state of the
   1665 	 * other (maybe non-kpmap) entries.
   1666 	 */
   1667 	if ((entries > 1 && writable) ||
   1668 	    (entries > 0 && pm == kpmap && other_writable)) {
   1669 		if (cacheable_entries == 0)
   1670 			return;
   1671 
   1672 		for (pv = npv; pv; pv = pv->pv_next) {
   1673 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1674 			    (pv->pv_flags & PVF_NC))
   1675 				continue;
   1676 
   1677 			pv->pv_flags |= PVF_NC;
   1678 
   1679 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1680 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1681 			pte = *ptep & ~L2_S_CACHE_MASK;
   1682 
   1683 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1684 			    l2pte_valid(pte)) {
   1685 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1686 #ifdef PMAP_CACHE_VIVT
   1687 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1688 					    pv->pv_va, PAGE_SIZE);
   1689 #endif
   1690 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1691 					    pv->pv_va);
   1692 				} else
   1693 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1694 #ifdef PMAP_CACHE_VIVT
   1695 					pmap_dcache_wb_range(pv->pv_pmap,
   1696 					    pv->pv_va, PAGE_SIZE, true,
   1697 					    (pv->pv_flags & PVF_WRITE) == 0);
   1698 #endif
   1699 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1700 					    pv->pv_va);
   1701 				}
   1702 			}
   1703 
   1704 			*ptep = pte;
   1705 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1706 		}
   1707 		cpu_cpwait();
   1708 	} else
   1709 	if (entries > cacheable_entries) {
   1710 		/*
   1711 		 * Turn cacheing back on for some pages.  If it is a kernel
   1712 		 * page, only do so if there are no other writable pages.
   1713 		 */
   1714 		for (pv = npv; pv; pv = pv->pv_next) {
   1715 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1716 			    (kpmap != pv->pv_pmap || other_writable)))
   1717 				continue;
   1718 
   1719 			pv->pv_flags &= ~PVF_NC;
   1720 
   1721 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1722 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1723 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1724 
   1725 			if (l2pte_valid(pte)) {
   1726 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1727 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1728 					    pv->pv_va);
   1729 				} else
   1730 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1731 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1732 					    pv->pv_va);
   1733 				}
   1734 			}
   1735 
   1736 			*ptep = pte;
   1737 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1738 		}
   1739 	}
   1740 }
   1741 #endif
   1742 
   1743 #ifdef PMAP_CACHE_VIPT
   1744 /*
   1745  * For virtually indexed / physically tagged caches, what we have to worry
   1746  * about is illegal cache aliases.  To prevent this, we must ensure that
   1747  * virtual addresses that map the physical page use the same bits for those
   1748  * bits masked by "arm_cache_prefer_mask" (bits 12+).  If there is a conflict,
   1749  * all mappings of the page must be non-cached.
   1750  */
   1751 #if 0
   1752 static inline vaddr_t
   1753 pmap_check_sets(paddr_t pa)
   1754 {
   1755 	extern int arm_dcache_l2_nsets;
   1756 	int set, way;
   1757 	vaddr_t mask = 0;
   1758 	int v;
   1759 	pa |= 1;
   1760 	for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
   1761 		for (way = 0; way < 4; way++) {
   1762 			v = (way << 30) | (set << 5);
   1763 			asm("mcr	p15, 3, %0, c15, c2, 0" :: "r"(v));
   1764 			asm("mrc	p15, 3, %0, c15, c0, 0" : "=r"(v));
   1765 
   1766 			if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
   1767 				mask |= 1 << (set >> 7);
   1768 			}
   1769 		}
   1770 	}
   1771 	return mask;
   1772 }
   1773 #endif
   1774 static void
   1775 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1776 {
   1777 	struct pv_entry *pv, pv0;
   1778 	vaddr_t tst_mask;
   1779 	bool bad_alias;
   1780 	struct l2_bucket *l2b;
   1781 	pt_entry_t *ptep, pte, opte;
   1782 
   1783 	/* do we need to do anything? */
   1784 	if (arm_cache_prefer_mask == 0)
   1785 		return;
   1786 
   1787 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1788 	    pg, pm, va));
   1789 
   1790 #define popc4(x) \
   1791 	(((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
   1792 #if 0
   1793 	tst_mask = pmap_check_sets(pg->phys_addr);
   1794 	KASSERT(popc4(tst_mask) < 2);
   1795 #endif
   1796 
   1797 	KASSERT(!va || pm || (pg->mdpage.pvh_attrs & PVF_KENTRY));
   1798 
   1799 	/* Already a conflict? */
   1800 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1801 		/* just an add, things are already non-cached */
   1802 		bad_alias = false;
   1803 		if (va) {
   1804 			PMAPCOUNT(vac_color_none);
   1805 			bad_alias = true;
   1806 			goto fixup;
   1807 		}
   1808 		pv = pg->mdpage.pvh_list;
   1809 		/* the list can't be empty because it would be cachable */
   1810 		if (pg->mdpage.pvh_attrs & PVF_KENTRY) {
   1811 			tst_mask = pg->mdpage.pvh_attrs;
   1812 		} else {
   1813 			KASSERT(pv);
   1814 			tst_mask = pv->pv_va;
   1815 			pv = pv->pv_next;
   1816 		}
   1817 		tst_mask &= arm_cache_prefer_mask;
   1818 		for (; pv && !bad_alias; pv = pv->pv_next) {
   1819 			/* if there's a bad alias, stop checking. */
   1820 			if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1821 				bad_alias = true;
   1822 		}
   1823 		/* If no conflicting colors, set everything back to cached */
   1824 		if (!bad_alias) {
   1825 			PMAPCOUNT(vac_color_restore);
   1826 			pg->mdpage.pvh_attrs |= PVF_COLORED;
   1827 			if (!(pg->mdpage.pvh_attrs & PVF_KENTRY)) {
   1828 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1829 				pg->mdpage.pvh_attrs |= tst_mask;
   1830 			}
   1831 			pg->mdpage.pvh_attrs &= ~PVF_NC;
   1832 		} else {
   1833 			KASSERT(pg->mdpage.pvh_list != NULL);
   1834 			KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY)
   1835 			     || pg->mdpage.pvh_list->pv_next != NULL);
   1836 		}
   1837 	} else if (!va) {
   1838 		KASSERT(pmap_is_page_colored_p(pg));
   1839 		if (pm == NULL)
   1840 			pg->mdpage.pvh_attrs &=
   1841 			    (PAGE_SIZE - 1) | arm_cache_prefer_mask;
   1842 		return;
   1843 	} else if (!pmap_is_page_colored_p(pg)) {
   1844 		/* not colored so we just use its color */
   1845 		PMAPCOUNT(vac_color_new);
   1846 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1847 		if (pm == NULL)
   1848 			pg->mdpage.pvh_attrs |= PVF_COLORED | va;
   1849 		else
   1850 			pg->mdpage.pvh_attrs |= PVF_COLORED
   1851 			    | (va & arm_cache_prefer_mask);
   1852 		return;
   1853 	} else if (!((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask)) {
   1854 		if (pm == NULL) {
   1855 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1856 			pg->mdpage.pvh_attrs |= va;
   1857 		}
   1858 		if (pg->mdpage.pvh_list)
   1859 			PMAPCOUNT(vac_color_reuse);
   1860 		else
   1861 			PMAPCOUNT(vac_color_ok);
   1862 		/* matching color, just return */
   1863 		return;
   1864 	} else {
   1865 		/* color conflict.  evict from cache. */
   1866 		pmap_flush_page(pg);
   1867 
   1868 		/* the list can't be empty because this was a enter/modify */
   1869 		pv = pg->mdpage.pvh_list;
   1870 		KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY) || pv);
   1871 
   1872 		/*
   1873 		 * If there's only one mapped page, change color to the
   1874 		 * page's new color and return.
   1875 		 */
   1876 		if (((pg->mdpage.pvh_attrs & PVF_KENTRY)
   1877 		    ? pv : pv->pv_next) == NULL) {
   1878 			PMAPCOUNT(vac_color_change);
   1879 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1880 			if (pm == NULL)
   1881 				pg->mdpage.pvh_attrs |= va;
   1882 			else
   1883 				pg->mdpage.pvh_attrs |=
   1884 				    (va & arm_cache_prefer_mask);
   1885 			return;
   1886 		}
   1887 		bad_alias = true;
   1888 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1889 		pg->mdpage.pvh_attrs |= PVF_NC;
   1890 		PMAPCOUNT(vac_color_erase);
   1891 	}
   1892 
   1893   fixup:
   1894 	/*
   1895 	 * If the pmap is NULL, then we got called from pmap_kenter_pa
   1896 	 * and we must save the kenter'ed va.  And this changes the
   1897 	 * color to match the kenter'ed page.  if this is a remove clear
   1898 	 * saved va bits which retaining the color bits.
   1899 	 */
   1900 	if (pm == NULL) {
   1901 		if (va) {
   1902 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1);
   1903 			pg->mdpage.pvh_attrs |= va;
   1904 		} else {
   1905 			pg->mdpage.pvh_attrs &=
   1906 			    ((PAGE_SIZE - 1) | arm_cache_prefer_mask);
   1907 		}
   1908 	}
   1909 
   1910 	pv = pg->mdpage.pvh_list;
   1911 
   1912 	/*
   1913 	 * If this page has an kenter'ed mapping, fake up a pv entry.
   1914 	 */
   1915 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_KENTRY)) {
   1916 		pv0.pv_pmap = pmap_kernel();
   1917 		pv0.pv_va = pg->mdpage.pvh_attrs & ~(PAGE_SIZE - 1);
   1918 		pv0.pv_next = pv;
   1919 		pv0.pv_flags = PVF_REF;
   1920 		pv = &pv0;
   1921 	}
   1922 
   1923 	/*
   1924 	 * Turn cacheing on/off for all pages.
   1925 	 */
   1926 	for (; pv; pv = pv->pv_next) {
   1927 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1928 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1929 		opte = *ptep;
   1930 		pte = opte & ~L2_S_CACHE_MASK;
   1931 		if (bad_alias) {
   1932 			pv->pv_flags |= PVF_NC;
   1933 		} else {
   1934 			pv->pv_flags &= ~PVF_NC;
   1935 			pte |= pte_l2_s_cache_mode;
   1936 		}
   1937 		if (opte == pte)	/* only update is there's a change */
   1938 			continue;
   1939 
   1940 		if (l2pte_valid(pte)) {
   1941 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   1942 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   1943 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   1944 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   1945 			}
   1946 		}
   1947 
   1948 		*ptep = pte;
   1949 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1950 	}
   1951 }
   1952 #endif	/* PMAP_CACHE_VIPT */
   1953 
   1954 
   1955 /*
   1956  * Modify pte bits for all ptes corresponding to the given physical address.
   1957  * We use `maskbits' rather than `clearbits' because we're always passing
   1958  * constants and the latter would require an extra inversion at run-time.
   1959  */
   1960 static void
   1961 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   1962 {
   1963 	struct l2_bucket *l2b;
   1964 	struct pv_entry *pv;
   1965 	pt_entry_t *ptep, npte, opte;
   1966 	pmap_t pm;
   1967 	vaddr_t va;
   1968 	u_int oflags;
   1969 #ifdef PMAP_CACHE_VIPT
   1970 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   1971 	bool need_syncicache = false;
   1972 	bool did_syncicache = false;
   1973 #endif
   1974 
   1975 	NPDEBUG(PDB_BITS,
   1976 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   1977 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   1978 
   1979 	PMAP_HEAD_TO_MAP_LOCK();
   1980 	simple_lock(&pg->mdpage.pvh_slock);
   1981 
   1982 #ifdef PMAP_CACHE_VIPT
   1983 	/*
   1984 	 * If we might want to sync the I-cache and we've modified it,
   1985 	 * then we know we definitely need to sync or discard it.
   1986 	 */
   1987 	if (want_syncicache)
   1988 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   1989 #endif
   1990 	/*
   1991 	 * Clear saved attributes (modify, reference)
   1992 	 */
   1993 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   1994 
   1995 	if (pg->mdpage.pvh_list == NULL) {
   1996 #ifdef PMAP_CACHE_VIPT
   1997 		if (need_syncicache) {
   1998 			/*
   1999 			 * No one has it mapped, so just discard it.  The next
   2000 			 * exec remapping will cause it to be synced.
   2001 			 */
   2002 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2003 			PMAPCOUNT(exec_discarded_clearbit);
   2004 		}
   2005 #endif
   2006 		simple_unlock(&pg->mdpage.pvh_slock);
   2007 		PMAP_HEAD_TO_MAP_UNLOCK();
   2008 		return;
   2009 	}
   2010 
   2011 	/*
   2012 	 * Loop over all current mappings setting/clearing as appropos
   2013 	 */
   2014 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2015 		va = pv->pv_va;
   2016 		pm = pv->pv_pmap;
   2017 		oflags = pv->pv_flags;
   2018 		pv->pv_flags &= ~maskbits;
   2019 
   2020 		pmap_acquire_pmap_lock(pm);
   2021 
   2022 		l2b = pmap_get_l2_bucket(pm, va);
   2023 		KDASSERT(l2b != NULL);
   2024 
   2025 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2026 		npte = opte = *ptep;
   2027 
   2028 		NPDEBUG(PDB_BITS,
   2029 		    printf(
   2030 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2031 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2032 
   2033 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2034 #ifdef PMAP_CACHE_VIVT
   2035 			if ((pv->pv_flags & PVF_NC)) {
   2036 				/*
   2037 				 * Entry is not cacheable:
   2038 				 *
   2039 				 * Don't turn caching on again if this is a
   2040 				 * modified emulation. This would be
   2041 				 * inconsitent with the settings created by
   2042 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2043 				 * to re-enable cacheing.
   2044 				 *
   2045 				 * There's no need to call pmap_vac_me_harder()
   2046 				 * here: all pages are losing their write
   2047 				 * permission.
   2048 				 */
   2049 				if (maskbits & PVF_WRITE) {
   2050 					npte |= pte_l2_s_cache_mode;
   2051 					pv->pv_flags &= ~PVF_NC;
   2052 				}
   2053 			} else
   2054 			if (opte & L2_S_PROT_W) {
   2055 				/*
   2056 				 * Entry is writable/cacheable: check if pmap
   2057 				 * is current if it is flush it, otherwise it
   2058 				 * won't be in the cache
   2059 				 */
   2060 				if (PV_BEEN_EXECD(oflags))
   2061 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2062 					    PAGE_SIZE);
   2063 				else
   2064 				if (PV_BEEN_REFD(oflags))
   2065 					pmap_dcache_wb_range(pm, pv->pv_va,
   2066 					    PAGE_SIZE,
   2067 					    (maskbits & PVF_REF) != 0, false);
   2068 			}
   2069 #endif
   2070 
   2071 			/* make the pte read only */
   2072 			npte &= ~L2_S_PROT_W;
   2073 
   2074 			if (maskbits & oflags & PVF_WRITE) {
   2075 				/*
   2076 				 * Keep alias accounting up to date
   2077 				 */
   2078 				if (pv->pv_pmap == pmap_kernel()) {
   2079 					pg->mdpage.krw_mappings--;
   2080 					pg->mdpage.kro_mappings++;
   2081 				} else {
   2082 					pg->mdpage.urw_mappings--;
   2083 					pg->mdpage.uro_mappings++;
   2084 				}
   2085 #ifdef PMAP_CACHE_VIPT
   2086 				if (want_syncicache)
   2087 					need_syncicache = true;
   2088 #endif
   2089 			}
   2090 		}
   2091 
   2092 		if (maskbits & PVF_REF) {
   2093 #ifdef PMAP_CACHE_VIVT
   2094 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2095 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2096 			    l2pte_valid(npte)) {
   2097 				/*
   2098 				 * Check npte here; we may have already
   2099 				 * done the wbinv above, and the validity
   2100 				 * of the PTE is the same for opte and
   2101 				 * npte.
   2102 				 */
   2103 				/* XXXJRT need idcache_inv_range */
   2104 				if (PV_BEEN_EXECD(oflags))
   2105 					pmap_idcache_wbinv_range(pm,
   2106 					    pv->pv_va, PAGE_SIZE);
   2107 				else
   2108 				if (PV_BEEN_REFD(oflags))
   2109 					pmap_dcache_wb_range(pm,
   2110 					    pv->pv_va, PAGE_SIZE,
   2111 					    true, true);
   2112 			}
   2113 #endif
   2114 
   2115 			/*
   2116 			 * Make the PTE invalid so that we will take a
   2117 			 * page fault the next time the mapping is
   2118 			 * referenced.
   2119 			 */
   2120 			npte &= ~L2_TYPE_MASK;
   2121 			npte |= L2_TYPE_INV;
   2122 		}
   2123 
   2124 		if (npte != opte) {
   2125 			*ptep = npte;
   2126 			PTE_SYNC(ptep);
   2127 			/* Flush the TLB entry if a current pmap. */
   2128 			if (PV_BEEN_EXECD(oflags))
   2129 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2130 			else
   2131 			if (PV_BEEN_REFD(oflags))
   2132 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2133 		}
   2134 
   2135 		pmap_release_pmap_lock(pm);
   2136 
   2137 		NPDEBUG(PDB_BITS,
   2138 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2139 		    pm, va, opte, npte));
   2140 	}
   2141 
   2142 #ifdef PMAP_CACHE_VIPT
   2143 	/*
   2144 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2145 	 */
   2146 	if (need_syncicache && !did_syncicache) {
   2147 		pmap_syncicache_page(pg);
   2148 		PMAPCOUNT(exec_synced_clearbit);
   2149 	}
   2150 #endif
   2151 
   2152 	simple_unlock(&pg->mdpage.pvh_slock);
   2153 	PMAP_HEAD_TO_MAP_UNLOCK();
   2154 }
   2155 
   2156 /*
   2157  * pmap_clean_page()
   2158  *
   2159  * This is a local function used to work out the best strategy to clean
   2160  * a single page referenced by its entry in the PV table. It's used by
   2161  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2162  *
   2163  * Its policy is effectively:
   2164  *  o If there are no mappings, we don't bother doing anything with the cache.
   2165  *  o If there is one mapping, we clean just that page.
   2166  *  o If there are multiple mappings, we clean the entire cache.
   2167  *
   2168  * So that some functions can be further optimised, it returns 0 if it didn't
   2169  * clean the entire cache, or 1 if it did.
   2170  *
   2171  * XXX One bug in this routine is that if the pv_entry has a single page
   2172  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2173  * just the 1 page. Since this should not occur in everyday use and if it does
   2174  * it will just result in not the most efficient clean for the page.
   2175  */
   2176 #ifdef PMAP_CACHE_VIVT
   2177 static int
   2178 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2179 {
   2180 	pmap_t pm, pm_to_clean = NULL;
   2181 	struct pv_entry *npv;
   2182 	u_int cache_needs_cleaning = 0;
   2183 	u_int flags = 0;
   2184 	vaddr_t page_to_clean = 0;
   2185 
   2186 	if (pv == NULL) {
   2187 		/* nothing mapped in so nothing to flush */
   2188 		return (0);
   2189 	}
   2190 
   2191 	/*
   2192 	 * Since we flush the cache each time we change to a different
   2193 	 * user vmspace, we only need to flush the page if it is in the
   2194 	 * current pmap.
   2195 	 */
   2196 	if (curproc)
   2197 		pm = curproc->p_vmspace->vm_map.pmap;
   2198 	else
   2199 		pm = pmap_kernel();
   2200 
   2201 	for (npv = pv; npv; npv = npv->pv_next) {
   2202 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2203 			flags |= npv->pv_flags;
   2204 			/*
   2205 			 * The page is mapped non-cacheable in
   2206 			 * this map.  No need to flush the cache.
   2207 			 */
   2208 			if (npv->pv_flags & PVF_NC) {
   2209 #ifdef DIAGNOSTIC
   2210 				if (cache_needs_cleaning)
   2211 					panic("pmap_clean_page: "
   2212 					    "cache inconsistency");
   2213 #endif
   2214 				break;
   2215 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2216 				continue;
   2217 			if (cache_needs_cleaning) {
   2218 				page_to_clean = 0;
   2219 				break;
   2220 			} else {
   2221 				page_to_clean = npv->pv_va;
   2222 				pm_to_clean = npv->pv_pmap;
   2223 			}
   2224 			cache_needs_cleaning = 1;
   2225 		}
   2226 	}
   2227 
   2228 	if (page_to_clean) {
   2229 		if (PV_BEEN_EXECD(flags))
   2230 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2231 			    PAGE_SIZE);
   2232 		else
   2233 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2234 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2235 	} else if (cache_needs_cleaning) {
   2236 		if (PV_BEEN_EXECD(flags))
   2237 			pmap_idcache_wbinv_all(pm);
   2238 		else
   2239 			pmap_dcache_wbinv_all(pm);
   2240 		return (1);
   2241 	}
   2242 	return (0);
   2243 }
   2244 #endif
   2245 
   2246 #ifdef PMAP_CACHE_VIPT
   2247 /*
   2248  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2249  * right cache alias to make sure we flush the right stuff.
   2250  */
   2251 void
   2252 pmap_syncicache_page(struct vm_page *pg)
   2253 {
   2254 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2255 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2256 
   2257 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2258 	    pg, pg->mdpage.pvh_attrs));
   2259 	/*
   2260 	 * No need to clean the page if it's non-cached.
   2261 	 */
   2262 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2263 		return;
   2264 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2265 
   2266 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2267 	/*
   2268 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2269 	 */
   2270 	*ptep = L2_S_PROTO |
   2271 	    VM_PAGE_TO_PHYS(pg)
   2272 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2273 	    | pte_l2_s_cache_mode;
   2274 	PTE_SYNC(ptep);
   2275 
   2276 	/*
   2277 	 * Flush it.
   2278 	 */
   2279 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2280 	/*
   2281 	 * Unmap the page.
   2282 	 */
   2283 	*ptep = 0;
   2284 	PTE_SYNC(ptep);
   2285 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2286 
   2287 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2288 	PMAPCOUNT(exec_synced);
   2289 }
   2290 
   2291 void
   2292 pmap_flush_page(struct vm_page *pg)
   2293 {
   2294 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2295 	const size_t pte_offset = va_offset >> PGSHIFT;
   2296 	pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2297 #if 0
   2298 	vaddr_t mask;
   2299 #endif
   2300 
   2301 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2302 #if 0
   2303 	mask = pmap_check_sets(pg->phys_addr);
   2304 	KASSERT(popc4(mask) < 2);
   2305 #endif
   2306 
   2307 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2308 	    pg, pg->mdpage.pvh_attrs));
   2309 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2310 	/*
   2311 	 * Set up a PTE with the right coloring to flush existing cache entries.
   2312 	 */
   2313 	*ptep = L2_S_PROTO
   2314 	    | VM_PAGE_TO_PHYS(pg)
   2315 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2316 	    | pte_l2_s_cache_mode;
   2317 	PTE_SYNC(ptep);
   2318 
   2319 	/*
   2320 	 * Flush it.
   2321 	 */
   2322 	cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   2323 
   2324 	/*
   2325 	 * Unmap the page.
   2326 	 */
   2327 	*ptep = 0;
   2328 	PTE_SYNC(ptep);
   2329 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2330 #if 0
   2331 	mask = pmap_check_sets(pg->phys_addr);
   2332 	KASSERT(mask == 0);
   2333 #endif
   2334 }
   2335 #endif /* PMAP_CACHE_VIPT */
   2336 
   2337 /*
   2338  * Routine:	pmap_page_remove
   2339  * Function:
   2340  *		Removes this physical page from
   2341  *		all physical maps in which it resides.
   2342  *		Reflects back modify bits to the pager.
   2343  */
   2344 static void
   2345 pmap_page_remove(struct vm_page *pg)
   2346 {
   2347 	struct l2_bucket *l2b;
   2348 	struct pv_entry *pv, *npv;
   2349 	pmap_t pm, curpm;
   2350 	pt_entry_t *ptep, pte;
   2351 	bool flush;
   2352 	u_int flags;
   2353 
   2354 	NPDEBUG(PDB_FOLLOW,
   2355 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2356 	    VM_PAGE_TO_PHYS(pg)));
   2357 
   2358 	PMAP_HEAD_TO_MAP_LOCK();
   2359 	simple_lock(&pg->mdpage.pvh_slock);
   2360 
   2361 	pv = pg->mdpage.pvh_list;
   2362 	if (pv == NULL) {
   2363 #ifdef PMAP_CACHE_VIPT
   2364 		/*
   2365 		 * We *know* the page contents are about to be replaced.
   2366 		 * Discard the exec contents
   2367 		 */
   2368 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2369 			PMAPCOUNT(exec_discarded_page_protect);
   2370 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2371 #endif
   2372 		simple_unlock(&pg->mdpage.pvh_slock);
   2373 		PMAP_HEAD_TO_MAP_UNLOCK();
   2374 		return;
   2375 	}
   2376 #ifdef PMAP_CACHE_VIPT
   2377 	KASSERT(pmap_is_page_colored_p(pg));
   2378 #endif
   2379 
   2380 	/*
   2381 	 * Clear alias counts
   2382 	 */
   2383 	pg->mdpage.k_mappings = 0;
   2384 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2385 
   2386 	flush = false;
   2387 	flags = 0;
   2388 	if (curproc)
   2389 		curpm = curproc->p_vmspace->vm_map.pmap;
   2390 	else
   2391 		curpm = pmap_kernel();
   2392 
   2393 #ifdef PMAP_CACHE_VIVT
   2394 	pmap_clean_page(pv, false);
   2395 #endif
   2396 
   2397 	while (pv) {
   2398 		pm = pv->pv_pmap;
   2399 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2400 			flush = true;
   2401 
   2402 		if (pm == pmap_kernel())
   2403 			PMAPCOUNT(kernel_unmappings);
   2404 		PMAPCOUNT(unmappings);
   2405 
   2406 		pmap_acquire_pmap_lock(pm);
   2407 
   2408 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2409 		KDASSERT(l2b != NULL);
   2410 
   2411 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2412 		pte = *ptep;
   2413 
   2414 		/*
   2415 		 * Update statistics
   2416 		 */
   2417 		--pm->pm_stats.resident_count;
   2418 
   2419 		/* Wired bit */
   2420 		if (pv->pv_flags & PVF_WIRED)
   2421 			--pm->pm_stats.wired_count;
   2422 
   2423 		flags |= pv->pv_flags;
   2424 
   2425 		/*
   2426 		 * Invalidate the PTEs.
   2427 		 */
   2428 		*ptep = 0;
   2429 		PTE_SYNC_CURRENT(pm, ptep);
   2430 		pmap_free_l2_bucket(pm, l2b, 1);
   2431 
   2432 		npv = pv->pv_next;
   2433 		pool_put(&pmap_pv_pool, pv);
   2434 		pv = npv;
   2435 		if (pv == NULL) {
   2436 			pg->mdpage.pvh_list = NULL;
   2437 			if (pg->mdpage.pvh_attrs & PVF_KENTRY)
   2438 				pmap_vac_me_harder(pg, pm, 0);
   2439 		}
   2440 		pmap_release_pmap_lock(pm);
   2441 	}
   2442 #ifdef PMAP_CACHE_VIPT
   2443 	/*
   2444 	 * Since there are now no mappings, there isn't reason to mark it
   2445 	 * as uncached.  Its EXEC cache is also gone.
   2446 	 */
   2447 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2448 		PMAPCOUNT(exec_discarded_page_protect);
   2449 	pg->mdpage.pvh_attrs &= ~(PVF_NC|PVF_EXEC);
   2450 #endif
   2451 #ifdef PMAP_CACHE_VIVT
   2452 	pg->mdpage.pvh_list = NULL;
   2453 #endif
   2454 	simple_unlock(&pg->mdpage.pvh_slock);
   2455 	PMAP_HEAD_TO_MAP_UNLOCK();
   2456 
   2457 	if (flush) {
   2458 		/*
   2459 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2460 		 * would need a subsequent call to pmap_update() to ensure
   2461 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2462 		 * required to do that (see pmap(9)), so we can't modify
   2463 		 * the current pmap's state.
   2464 		 */
   2465 		if (PV_BEEN_EXECD(flags))
   2466 			cpu_tlb_flushID();
   2467 		else
   2468 			cpu_tlb_flushD();
   2469 	}
   2470 	cpu_cpwait();
   2471 }
   2472 
   2473 /*
   2474  * pmap_t pmap_create(void)
   2475  *
   2476  *      Create a new pmap structure from scratch.
   2477  */
   2478 pmap_t
   2479 pmap_create(void)
   2480 {
   2481 	pmap_t pm;
   2482 
   2483 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2484 
   2485 	simple_lock_init(&pm->pm_lock);
   2486 	pm->pm_obj.pgops = NULL;	/* currently not a mappable object */
   2487 	TAILQ_INIT(&pm->pm_obj.memq);
   2488 	pm->pm_obj.uo_npages = 0;
   2489 	pm->pm_obj.uo_refs = 1;
   2490 	pm->pm_stats.wired_count = 0;
   2491 	pm->pm_stats.resident_count = 1;
   2492 	pm->pm_cstate.cs_all = 0;
   2493 	pmap_alloc_l1(pm);
   2494 
   2495 	/*
   2496 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2497 	 * initialised to zero.
   2498 	 */
   2499 
   2500 	pmap_pinit(pm);
   2501 
   2502 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2503 
   2504 	return (pm);
   2505 }
   2506 
   2507 /*
   2508  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2509  *     int flags)
   2510  *
   2511  *      Insert the given physical page (p) at
   2512  *      the specified virtual address (v) in the
   2513  *      target physical map with the protection requested.
   2514  *
   2515  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2516  *      or lose information.  That is, this routine must actually
   2517  *      insert this page into the given map NOW.
   2518  */
   2519 int
   2520 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2521 {
   2522 	struct l2_bucket *l2b;
   2523 	struct vm_page *pg, *opg;
   2524 	struct pv_entry *pve;
   2525 	pt_entry_t *ptep, npte, opte;
   2526 	u_int nflags;
   2527 	u_int oflags;
   2528 
   2529 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2530 
   2531 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2532 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2533 
   2534 	/*
   2535 	 * Get a pointer to the page.  Later on in this function, we
   2536 	 * test for a managed page by checking pg != NULL.
   2537 	 */
   2538 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2539 
   2540 	nflags = 0;
   2541 	if (prot & VM_PROT_WRITE)
   2542 		nflags |= PVF_WRITE;
   2543 	if (prot & VM_PROT_EXECUTE)
   2544 		nflags |= PVF_EXEC;
   2545 	if (flags & PMAP_WIRED)
   2546 		nflags |= PVF_WIRED;
   2547 
   2548 	PMAP_MAP_TO_HEAD_LOCK();
   2549 	pmap_acquire_pmap_lock(pm);
   2550 
   2551 	/*
   2552 	 * Fetch the L2 bucket which maps this page, allocating one if
   2553 	 * necessary for user pmaps.
   2554 	 */
   2555 	if (pm == pmap_kernel())
   2556 		l2b = pmap_get_l2_bucket(pm, va);
   2557 	else
   2558 		l2b = pmap_alloc_l2_bucket(pm, va);
   2559 	if (l2b == NULL) {
   2560 		if (flags & PMAP_CANFAIL) {
   2561 			pmap_release_pmap_lock(pm);
   2562 			PMAP_MAP_TO_HEAD_UNLOCK();
   2563 			return (ENOMEM);
   2564 		}
   2565 		panic("pmap_enter: failed to allocate L2 bucket");
   2566 	}
   2567 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2568 	opte = *ptep;
   2569 	npte = pa;
   2570 	oflags = 0;
   2571 
   2572 	if (opte) {
   2573 		/*
   2574 		 * There is already a mapping at this address.
   2575 		 * If the physical address is different, lookup the
   2576 		 * vm_page.
   2577 		 */
   2578 		if (l2pte_pa(opte) != pa)
   2579 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2580 		else
   2581 			opg = pg;
   2582 	} else
   2583 		opg = NULL;
   2584 
   2585 	if (pg) {
   2586 		/*
   2587 		 * This is to be a managed mapping.
   2588 		 */
   2589 		if ((flags & VM_PROT_ALL) ||
   2590 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2591 			/*
   2592 			 * - The access type indicates that we don't need
   2593 			 *   to do referenced emulation.
   2594 			 * OR
   2595 			 * - The physical page has already been referenced
   2596 			 *   so no need to re-do referenced emulation here.
   2597 			 */
   2598 			npte |= L2_S_PROTO;
   2599 
   2600 			nflags |= PVF_REF;
   2601 
   2602 			if ((prot & VM_PROT_WRITE) != 0 &&
   2603 			    ((flags & VM_PROT_WRITE) != 0 ||
   2604 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2605 				/*
   2606 				 * This is a writable mapping, and the
   2607 				 * page's mod state indicates it has
   2608 				 * already been modified. Make it
   2609 				 * writable from the outset.
   2610 				 */
   2611 				npte |= L2_S_PROT_W;
   2612 				nflags |= PVF_MOD;
   2613 			}
   2614 		} else {
   2615 			/*
   2616 			 * Need to do page referenced emulation.
   2617 			 */
   2618 			npte |= L2_TYPE_INV;
   2619 		}
   2620 
   2621 		npte |= pte_l2_s_cache_mode;
   2622 
   2623 		if (pg == opg) {
   2624 			/*
   2625 			 * We're changing the attrs of an existing mapping.
   2626 			 */
   2627 			simple_lock(&pg->mdpage.pvh_slock);
   2628 			oflags = pmap_modify_pv(pg, pm, va,
   2629 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2630 			    PVF_MOD | PVF_REF, nflags);
   2631 			simple_unlock(&pg->mdpage.pvh_slock);
   2632 
   2633 #ifdef PMAP_CACHE_VIVT
   2634 			/*
   2635 			 * We may need to flush the cache if we're
   2636 			 * doing rw-ro...
   2637 			 */
   2638 			if (pm->pm_cstate.cs_cache_d &&
   2639 			    (oflags & PVF_NC) == 0 &&
   2640 			    (opte & L2_S_PROT_W) != 0 &&
   2641 			    (prot & VM_PROT_WRITE) == 0)
   2642 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2643 #endif
   2644 		} else {
   2645 			/*
   2646 			 * New mapping, or changing the backing page
   2647 			 * of an existing mapping.
   2648 			 */
   2649 			if (opg) {
   2650 				/*
   2651 				 * Replacing an existing mapping with a new one.
   2652 				 * It is part of our managed memory so we
   2653 				 * must remove it from the PV list
   2654 				 */
   2655 				simple_lock(&opg->mdpage.pvh_slock);
   2656 				pve = pmap_remove_pv(opg, pm, va, 0);
   2657 				pmap_vac_me_harder(opg, pm, 0);
   2658 				simple_unlock(&opg->mdpage.pvh_slock);
   2659 				oflags = pve->pv_flags;
   2660 
   2661 #ifdef PMAP_CACHE_VIVT
   2662 				/*
   2663 				 * If the old mapping was valid (ref/mod
   2664 				 * emulation creates 'invalid' mappings
   2665 				 * initially) then make sure to frob
   2666 				 * the cache.
   2667 				 */
   2668 				if ((oflags & PVF_NC) == 0 &&
   2669 				    l2pte_valid(opte)) {
   2670 					if (PV_BEEN_EXECD(oflags)) {
   2671 						pmap_idcache_wbinv_range(pm, va,
   2672 						    PAGE_SIZE);
   2673 					} else
   2674 					if (PV_BEEN_REFD(oflags)) {
   2675 						pmap_dcache_wb_range(pm, va,
   2676 						    PAGE_SIZE, true,
   2677 						    (oflags & PVF_WRITE) == 0);
   2678 					}
   2679 				}
   2680 #endif
   2681 			} else
   2682 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2683 				if ((flags & PMAP_CANFAIL) == 0)
   2684 					panic("pmap_enter: no pv entries");
   2685 
   2686 				if (pm != pmap_kernel())
   2687 					pmap_free_l2_bucket(pm, l2b, 0);
   2688 				pmap_release_pmap_lock(pm);
   2689 				PMAP_MAP_TO_HEAD_UNLOCK();
   2690 				NPDEBUG(PDB_ENTER,
   2691 				    printf("pmap_enter: ENOMEM\n"));
   2692 				return (ENOMEM);
   2693 			}
   2694 
   2695 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2696 		}
   2697 	} else {
   2698 		/*
   2699 		 * We're mapping an unmanaged page.
   2700 		 * These are always readable, and possibly writable, from
   2701 		 * the get go as we don't need to track ref/mod status.
   2702 		 */
   2703 		npte |= L2_S_PROTO;
   2704 		if (prot & VM_PROT_WRITE)
   2705 			npte |= L2_S_PROT_W;
   2706 
   2707 		/*
   2708 		 * Make sure the vector table is mapped cacheable
   2709 		 */
   2710 		if (pm != pmap_kernel() && va == vector_page)
   2711 			npte |= pte_l2_s_cache_mode;
   2712 
   2713 		if (opg) {
   2714 			/*
   2715 			 * Looks like there's an existing 'managed' mapping
   2716 			 * at this address.
   2717 			 */
   2718 			simple_lock(&opg->mdpage.pvh_slock);
   2719 			pve = pmap_remove_pv(opg, pm, va, 0);
   2720 			pmap_vac_me_harder(opg, pm, 0);
   2721 			simple_unlock(&opg->mdpage.pvh_slock);
   2722 			oflags = pve->pv_flags;
   2723 
   2724 #ifdef PMAP_CACHE_VIVT
   2725 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2726 				if (PV_BEEN_EXECD(oflags))
   2727 					pmap_idcache_wbinv_range(pm, va,
   2728 					    PAGE_SIZE);
   2729 				else
   2730 				if (PV_BEEN_REFD(oflags))
   2731 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2732 					    true, (oflags & PVF_WRITE) == 0);
   2733 			}
   2734 #endif
   2735 			pool_put(&pmap_pv_pool, pve);
   2736 		}
   2737 	}
   2738 
   2739 	/*
   2740 	 * Make sure userland mappings get the right permissions
   2741 	 */
   2742 	if (pm != pmap_kernel() && va != vector_page)
   2743 		npte |= L2_S_PROT_U;
   2744 
   2745 	/*
   2746 	 * Keep the stats up to date
   2747 	 */
   2748 	if (opte == 0) {
   2749 		l2b->l2b_occupancy++;
   2750 		pm->pm_stats.resident_count++;
   2751 	}
   2752 
   2753 	NPDEBUG(PDB_ENTER,
   2754 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2755 
   2756 	/*
   2757 	 * If this is just a wiring change, the two PTEs will be
   2758 	 * identical, so there's no need to update the page table.
   2759 	 */
   2760 	if (npte != opte) {
   2761 		bool is_cached = pmap_is_cached(pm);
   2762 
   2763 		*ptep = npte;
   2764 		if (is_cached) {
   2765 			/*
   2766 			 * We only need to frob the cache/tlb if this pmap
   2767 			 * is current
   2768 			 */
   2769 			PTE_SYNC(ptep);
   2770 			if (va != vector_page && l2pte_valid(npte)) {
   2771 				/*
   2772 				 * This mapping is likely to be accessed as
   2773 				 * soon as we return to userland. Fix up the
   2774 				 * L1 entry to avoid taking another
   2775 				 * page/domain fault.
   2776 				 */
   2777 				pd_entry_t *pl1pd, l1pd;
   2778 
   2779 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2780 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2781 				    L1_C_PROTO;
   2782 				if (*pl1pd != l1pd) {
   2783 					*pl1pd = l1pd;
   2784 					PTE_SYNC(pl1pd);
   2785 				}
   2786 			}
   2787 		}
   2788 
   2789 		if (PV_BEEN_EXECD(oflags))
   2790 			pmap_tlb_flushID_SE(pm, va);
   2791 		else
   2792 		if (PV_BEEN_REFD(oflags))
   2793 			pmap_tlb_flushD_SE(pm, va);
   2794 
   2795 		NPDEBUG(PDB_ENTER,
   2796 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2797 		    is_cached, pm->pm_cstate.cs_all));
   2798 
   2799 		if (pg != NULL) {
   2800 			simple_lock(&pg->mdpage.pvh_slock);
   2801 			pmap_vac_me_harder(pg, pm, va);
   2802 			simple_unlock(&pg->mdpage.pvh_slock);
   2803 		}
   2804 	}
   2805 
   2806 	pmap_release_pmap_lock(pm);
   2807 	PMAP_MAP_TO_HEAD_UNLOCK();
   2808 
   2809 	return (0);
   2810 }
   2811 
   2812 /*
   2813  * pmap_remove()
   2814  *
   2815  * pmap_remove is responsible for nuking a number of mappings for a range
   2816  * of virtual address space in the current pmap. To do this efficiently
   2817  * is interesting, because in a number of cases a wide virtual address
   2818  * range may be supplied that contains few actual mappings. So, the
   2819  * optimisations are:
   2820  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   2821  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2822  *     maybe do just a partial cache clean. This path of execution is
   2823  *     complicated by the fact that the cache must be flushed _before_
   2824  *     the PTE is nuked, being a VAC :-)
   2825  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   2826  *     all invalidations until pmap_update(), since pmap_remove_all() has
   2827  *     already flushed the cache.
   2828  *  4. Maybe later fast-case a single page, but I don't think this is
   2829  *     going to make _that_ much difference overall.
   2830  */
   2831 
   2832 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2833 
   2834 void
   2835 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   2836 {
   2837 	struct l2_bucket *l2b;
   2838 	vaddr_t next_bucket;
   2839 	pt_entry_t *ptep;
   2840 	u_int cleanlist_idx, total, cnt;
   2841 	struct {
   2842 		vaddr_t va;
   2843 		pt_entry_t *ptep;
   2844 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2845 	u_int mappings, is_exec, is_refd;
   2846 
   2847 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   2848 	    "eva=%08lx\n", pm, sva, eva));
   2849 
   2850 	/*
   2851 	 * we lock in the pmap => pv_head direction
   2852 	 */
   2853 	PMAP_MAP_TO_HEAD_LOCK();
   2854 	pmap_acquire_pmap_lock(pm);
   2855 
   2856 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   2857 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   2858 		if (pm->pm_cstate.cs_tlb == 0)
   2859 			pm->pm_remove_all = true;
   2860 	} else
   2861 		cleanlist_idx = 0;
   2862 
   2863 	total = 0;
   2864 
   2865 	while (sva < eva) {
   2866 		/*
   2867 		 * Do one L2 bucket's worth at a time.
   2868 		 */
   2869 		next_bucket = L2_NEXT_BUCKET(sva);
   2870 		if (next_bucket > eva)
   2871 			next_bucket = eva;
   2872 
   2873 		l2b = pmap_get_l2_bucket(pm, sva);
   2874 		if (l2b == NULL) {
   2875 			sva = next_bucket;
   2876 			continue;
   2877 		}
   2878 
   2879 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   2880 
   2881 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   2882 			struct vm_page *pg;
   2883 			pt_entry_t pte;
   2884 			paddr_t pa;
   2885 
   2886 			pte = *ptep;
   2887 
   2888 			if (pte == 0) {
   2889 				/* Nothing here, move along */
   2890 				continue;
   2891 			}
   2892 
   2893 			pa = l2pte_pa(pte);
   2894 			is_exec = 0;
   2895 			is_refd = 1;
   2896 
   2897 			/*
   2898 			 * Update flags. In a number of circumstances,
   2899 			 * we could cluster a lot of these and do a
   2900 			 * number of sequential pages in one go.
   2901 			 */
   2902 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2903 				struct pv_entry *pve;
   2904 				simple_lock(&pg->mdpage.pvh_slock);
   2905 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   2906 				pmap_vac_me_harder(pg, pm, 0);
   2907 				simple_unlock(&pg->mdpage.pvh_slock);
   2908 				if (pve != NULL) {
   2909 					if (pm->pm_remove_all == false) {
   2910 						is_exec =
   2911 						   PV_BEEN_EXECD(pve->pv_flags);
   2912 						is_refd =
   2913 						   PV_BEEN_REFD(pve->pv_flags);
   2914 					}
   2915 					pool_put(&pmap_pv_pool, pve);
   2916 				} else
   2917 				if (skip_wired) {
   2918 					/* The mapping is wired. Skip it */
   2919 					continue;
   2920 				}
   2921 			} else
   2922 			if (skip_wired) {
   2923 				/* Unmanaged pages are always wired. */
   2924 				continue;
   2925 			}
   2926 
   2927 			mappings++;
   2928 
   2929 			if (!l2pte_valid(pte)) {
   2930 				/*
   2931 				 * Ref/Mod emulation is still active for this
   2932 				 * mapping, therefore it is has not yet been
   2933 				 * accessed. No need to frob the cache/tlb.
   2934 				 */
   2935 				*ptep = 0;
   2936 				PTE_SYNC_CURRENT(pm, ptep);
   2937 				continue;
   2938 			}
   2939 
   2940 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2941 				/* Add to the clean list. */
   2942 				cleanlist[cleanlist_idx].ptep = ptep;
   2943 				cleanlist[cleanlist_idx].va =
   2944 				    sva | (is_exec & 1);
   2945 				cleanlist_idx++;
   2946 			} else
   2947 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2948 				/* Nuke everything if needed. */
   2949 #ifdef PMAP_CACHE_VIVT
   2950 				pmap_idcache_wbinv_all(pm);
   2951 #endif
   2952 				pmap_tlb_flushID(pm);
   2953 
   2954 				/*
   2955 				 * Roll back the previous PTE list,
   2956 				 * and zero out the current PTE.
   2957 				 */
   2958 				for (cnt = 0;
   2959 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2960 					*cleanlist[cnt].ptep = 0;
   2961 				}
   2962 				*ptep = 0;
   2963 				PTE_SYNC(ptep);
   2964 				cleanlist_idx++;
   2965 				pm->pm_remove_all = true;
   2966 			} else {
   2967 				*ptep = 0;
   2968 				PTE_SYNC(ptep);
   2969 				if (pm->pm_remove_all == false) {
   2970 					if (is_exec)
   2971 						pmap_tlb_flushID_SE(pm, sva);
   2972 					else
   2973 					if (is_refd)
   2974 						pmap_tlb_flushD_SE(pm, sva);
   2975 				}
   2976 			}
   2977 		}
   2978 
   2979 		/*
   2980 		 * Deal with any left overs
   2981 		 */
   2982 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2983 			total += cleanlist_idx;
   2984 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2985 				if (pm->pm_cstate.cs_all != 0) {
   2986 					vaddr_t clva = cleanlist[cnt].va & ~1;
   2987 					if (cleanlist[cnt].va & 1) {
   2988 #ifdef PMAP_CACHE_VIVT
   2989 						pmap_idcache_wbinv_range(pm,
   2990 						    clva, PAGE_SIZE);
   2991 #endif
   2992 						pmap_tlb_flushID_SE(pm, clva);
   2993 					} else {
   2994 #ifdef PMAP_CACHE_VIVT
   2995 						pmap_dcache_wb_range(pm,
   2996 						    clva, PAGE_SIZE, true,
   2997 						    false);
   2998 #endif
   2999 						pmap_tlb_flushD_SE(pm, clva);
   3000 					}
   3001 				}
   3002 				*cleanlist[cnt].ptep = 0;
   3003 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3004 			}
   3005 
   3006 			/*
   3007 			 * If it looks like we're removing a whole bunch
   3008 			 * of mappings, it's faster to just write-back
   3009 			 * the whole cache now and defer TLB flushes until
   3010 			 * pmap_update() is called.
   3011 			 */
   3012 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3013 				cleanlist_idx = 0;
   3014 			else {
   3015 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3016 #ifdef PMAP_CACHE_VIVT
   3017 				pmap_idcache_wbinv_all(pm);
   3018 #endif
   3019 				pm->pm_remove_all = true;
   3020 			}
   3021 		}
   3022 
   3023 		pmap_free_l2_bucket(pm, l2b, mappings);
   3024 		pm->pm_stats.resident_count -= mappings;
   3025 	}
   3026 
   3027 	pmap_release_pmap_lock(pm);
   3028 	PMAP_MAP_TO_HEAD_UNLOCK();
   3029 }
   3030 
   3031 /*
   3032  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3033  *
   3034  * We assume there is already sufficient KVM space available
   3035  * to do this, as we can't allocate L2 descriptor tables/metadata
   3036  * from here.
   3037  */
   3038 void
   3039 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   3040 {
   3041 	struct l2_bucket *l2b;
   3042 	pt_entry_t *ptep, opte;
   3043 #ifdef PMAP_CACHE_VIPT
   3044 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3045 	struct vm_page *opg;
   3046 #endif
   3047 
   3048 
   3049 	NPDEBUG(PDB_KENTER,
   3050 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3051 	    va, pa, prot));
   3052 
   3053 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3054 	KDASSERT(l2b != NULL);
   3055 
   3056 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3057 	opte = *ptep;
   3058 
   3059 	if (opte == 0) {
   3060 		PMAPCOUNT(kenter_mappings);
   3061 		l2b->l2b_occupancy++;
   3062 	} else {
   3063 		PMAPCOUNT(kenter_remappings);
   3064 #ifdef PMAP_CACHE_VIPT
   3065 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3066 		if (opg) {
   3067 			KASSERT(opg != pg);
   3068 			simple_lock(&opg->mdpage.pvh_slock);
   3069 			KASSERT(opg->mdpage.pvh_attrs & PVF_KENTRY);
   3070 			if (PV_IS_EXEC_P(opg->mdpage.pvh_attrs)
   3071 			    && !(opg->mdpage.pvh_attrs & PVF_NC)) {
   3072 				if (opg->mdpage.pvh_list == NULL) {
   3073 					opg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3074 					PMAPCOUNT(exec_discarded_kremove);
   3075 				} else {
   3076 					pmap_syncicache_page(opg);
   3077 					PMAPCOUNT(exec_synced_kremove);
   3078 				}
   3079 			}
   3080 			KASSERT(opg->mdpage.pvh_attrs | (PVF_COLORED|PVF_NC));
   3081 			opg->mdpage.pvh_attrs &= ~PVF_KENTRY;
   3082 			pmap_vac_me_harder(opg, NULL, 0);
   3083 			simple_unlock(&opg->mdpage.pvh_slock);
   3084 		}
   3085 #endif
   3086 		if (l2pte_valid(opte)) {
   3087 #ifdef PMAP_CACHE_VIVT
   3088 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3089 #endif
   3090 			cpu_tlb_flushD_SE(va);
   3091 			cpu_cpwait();
   3092 		}
   3093 	}
   3094 
   3095 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3096 	    pte_l2_s_cache_mode;
   3097 	PTE_SYNC(ptep);
   3098 
   3099 #ifdef PMAP_CACHE_VIPT
   3100 	if (pg) {
   3101 		simple_lock(&pg->mdpage.pvh_slock);
   3102 		KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY) == 0);
   3103 		pg->mdpage.pvh_attrs |= PVF_KENTRY;
   3104 		pmap_vac_me_harder(pg, NULL, va);
   3105 		simple_unlock(&pg->mdpage.pvh_slock);
   3106 	}
   3107 #endif
   3108 }
   3109 
   3110 void
   3111 pmap_kremove(vaddr_t va, vsize_t len)
   3112 {
   3113 	struct l2_bucket *l2b;
   3114 	pt_entry_t *ptep, *sptep, opte;
   3115 	vaddr_t next_bucket, eva;
   3116 	u_int mappings;
   3117 #ifdef PMAP_CACHE_VIPT
   3118 	struct vm_page *opg;
   3119 #endif
   3120 
   3121 	PMAPCOUNT(kenter_unmappings);
   3122 
   3123 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3124 	    va, len));
   3125 
   3126 	eva = va + len;
   3127 
   3128 	while (va < eva) {
   3129 		next_bucket = L2_NEXT_BUCKET(va);
   3130 		if (next_bucket > eva)
   3131 			next_bucket = eva;
   3132 
   3133 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3134 		KDASSERT(l2b != NULL);
   3135 
   3136 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3137 		mappings = 0;
   3138 
   3139 		while (va < next_bucket) {
   3140 			opte = *ptep;
   3141 #ifdef PMAP_CACHE_VIPT
   3142 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3143 			if (opg) {
   3144 				simple_lock(&opg->mdpage.pvh_slock);
   3145 				KASSERT(opg->mdpage.pvh_attrs & PVF_KENTRY);
   3146 				if (PV_IS_EXEC_P(opg->mdpage.pvh_attrs)
   3147 				    && !(opg->mdpage.pvh_attrs & PVF_NC)) {
   3148 					if (opg->mdpage.pvh_list == NULL) {
   3149 						opg->mdpage.pvh_attrs &=
   3150 						    ~PVF_EXEC;
   3151 						PMAPCOUNT(exec_discarded_kremove);
   3152 					} else {
   3153 						pmap_syncicache_page(opg);
   3154 						PMAPCOUNT(exec_synced_kremove);
   3155 					}
   3156 				}
   3157 				KASSERT(opg->mdpage.pvh_attrs | (PVF_COLORED|PVF_NC));
   3158 				opg->mdpage.pvh_attrs &= ~PVF_KENTRY;
   3159 				pmap_vac_me_harder(opg, NULL, 0);
   3160 				simple_unlock(&opg->mdpage.pvh_slock);
   3161 			}
   3162 #endif
   3163 			if (l2pte_valid(opte)) {
   3164 #ifdef PMAP_CACHE_VIVT
   3165 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3166 #endif
   3167 				cpu_tlb_flushD_SE(va);
   3168 			}
   3169 			if (opte) {
   3170 				*ptep = 0;
   3171 				mappings++;
   3172 			}
   3173 			va += PAGE_SIZE;
   3174 			ptep++;
   3175 		}
   3176 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3177 		l2b->l2b_occupancy -= mappings;
   3178 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3179 	}
   3180 	cpu_cpwait();
   3181 }
   3182 
   3183 bool
   3184 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3185 {
   3186 	struct l2_dtable *l2;
   3187 	pd_entry_t *pl1pd, l1pd;
   3188 	pt_entry_t *ptep, pte;
   3189 	paddr_t pa;
   3190 	u_int l1idx;
   3191 
   3192 	pmap_acquire_pmap_lock(pm);
   3193 
   3194 	l1idx = L1_IDX(va);
   3195 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3196 	l1pd = *pl1pd;
   3197 
   3198 	if (l1pte_section_p(l1pd)) {
   3199 		/*
   3200 		 * These should only happen for pmap_kernel()
   3201 		 */
   3202 		KDASSERT(pm == pmap_kernel());
   3203 		pmap_release_pmap_lock(pm);
   3204 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3205 	} else {
   3206 		/*
   3207 		 * Note that we can't rely on the validity of the L1
   3208 		 * descriptor as an indication that a mapping exists.
   3209 		 * We have to look it up in the L2 dtable.
   3210 		 */
   3211 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3212 
   3213 		if (l2 == NULL ||
   3214 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3215 			pmap_release_pmap_lock(pm);
   3216 			return false;
   3217 		}
   3218 
   3219 		ptep = &ptep[l2pte_index(va)];
   3220 		pte = *ptep;
   3221 		pmap_release_pmap_lock(pm);
   3222 
   3223 		if (pte == 0)
   3224 			return false;
   3225 
   3226 		switch (pte & L2_TYPE_MASK) {
   3227 		case L2_TYPE_L:
   3228 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3229 			break;
   3230 
   3231 		default:
   3232 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3233 			break;
   3234 		}
   3235 	}
   3236 
   3237 	if (pap != NULL)
   3238 		*pap = pa;
   3239 
   3240 	return true;
   3241 }
   3242 
   3243 void
   3244 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3245 {
   3246 	struct l2_bucket *l2b;
   3247 	pt_entry_t *ptep, pte;
   3248 	vaddr_t next_bucket;
   3249 	u_int flags;
   3250 	u_int clr_mask;
   3251 	int flush;
   3252 
   3253 	NPDEBUG(PDB_PROTECT,
   3254 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3255 	    pm, sva, eva, prot));
   3256 
   3257 	if ((prot & VM_PROT_READ) == 0) {
   3258 		pmap_remove(pm, sva, eva);
   3259 		return;
   3260 	}
   3261 
   3262 	if (prot & VM_PROT_WRITE) {
   3263 		/*
   3264 		 * If this is a read->write transition, just ignore it and let
   3265 		 * uvm_fault() take care of it later.
   3266 		 */
   3267 		return;
   3268 	}
   3269 
   3270 	PMAP_MAP_TO_HEAD_LOCK();
   3271 	pmap_acquire_pmap_lock(pm);
   3272 
   3273 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3274 	flags = 0;
   3275 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3276 
   3277 	while (sva < eva) {
   3278 		next_bucket = L2_NEXT_BUCKET(sva);
   3279 		if (next_bucket > eva)
   3280 			next_bucket = eva;
   3281 
   3282 		l2b = pmap_get_l2_bucket(pm, sva);
   3283 		if (l2b == NULL) {
   3284 			sva = next_bucket;
   3285 			continue;
   3286 		}
   3287 
   3288 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3289 
   3290 		while (sva < next_bucket) {
   3291 			pte = *ptep;
   3292 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3293 				struct vm_page *pg;
   3294 				u_int f;
   3295 
   3296 #ifdef PMAP_CACHE_VIVT
   3297 				/*
   3298 				 * OK, at this point, we know we're doing
   3299 				 * write-protect operation.  If the pmap is
   3300 				 * active, write-back the page.
   3301 				 */
   3302 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3303 				    false, false);
   3304 #endif
   3305 
   3306 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3307 				pte &= ~L2_S_PROT_W;
   3308 				*ptep = pte;
   3309 				PTE_SYNC(ptep);
   3310 
   3311 				if (pg != NULL) {
   3312 					simple_lock(&pg->mdpage.pvh_slock);
   3313 					f = pmap_modify_pv(pg, pm, sva,
   3314 					    clr_mask, 0);
   3315 					pmap_vac_me_harder(pg, pm, sva);
   3316 					simple_unlock(&pg->mdpage.pvh_slock);
   3317 				} else
   3318 					f = PVF_REF | PVF_EXEC;
   3319 
   3320 				if (flush >= 0) {
   3321 					flush++;
   3322 					flags |= f;
   3323 				} else
   3324 				if (PV_BEEN_EXECD(f))
   3325 					pmap_tlb_flushID_SE(pm, sva);
   3326 				else
   3327 				if (PV_BEEN_REFD(f))
   3328 					pmap_tlb_flushD_SE(pm, sva);
   3329 			}
   3330 
   3331 			sva += PAGE_SIZE;
   3332 			ptep++;
   3333 		}
   3334 	}
   3335 
   3336 	pmap_release_pmap_lock(pm);
   3337 	PMAP_MAP_TO_HEAD_UNLOCK();
   3338 
   3339 	if (flush) {
   3340 		if (PV_BEEN_EXECD(flags))
   3341 			pmap_tlb_flushID(pm);
   3342 		else
   3343 		if (PV_BEEN_REFD(flags))
   3344 			pmap_tlb_flushD(pm);
   3345 	}
   3346 }
   3347 
   3348 void
   3349 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3350 {
   3351 	struct l2_bucket *l2b;
   3352 	pt_entry_t *ptep;
   3353 	vaddr_t next_bucket;
   3354 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3355 
   3356 	NPDEBUG(PDB_EXEC,
   3357 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3358 	    pm, sva, eva));
   3359 
   3360 	PMAP_MAP_TO_HEAD_LOCK();
   3361 	pmap_acquire_pmap_lock(pm);
   3362 
   3363 	while (sva < eva) {
   3364 		next_bucket = L2_NEXT_BUCKET(sva);
   3365 		if (next_bucket > eva)
   3366 			next_bucket = eva;
   3367 
   3368 		l2b = pmap_get_l2_bucket(pm, sva);
   3369 		if (l2b == NULL) {
   3370 			sva = next_bucket;
   3371 			continue;
   3372 		}
   3373 
   3374 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3375 		     sva < next_bucket;
   3376 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3377 			if (l2pte_valid(*ptep)) {
   3378 				cpu_icache_sync_range(sva,
   3379 				    min(page_size, eva - sva));
   3380 			}
   3381 		}
   3382 	}
   3383 
   3384 	pmap_release_pmap_lock(pm);
   3385 	PMAP_MAP_TO_HEAD_UNLOCK();
   3386 }
   3387 
   3388 void
   3389 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3390 {
   3391 
   3392 	NPDEBUG(PDB_PROTECT,
   3393 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3394 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3395 
   3396 	switch(prot) {
   3397 		return;
   3398 	case VM_PROT_READ|VM_PROT_WRITE:
   3399 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3400 		pmap_clearbit(pg, PVF_EXEC);
   3401 		break;
   3402 #endif
   3403 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3404 		break;
   3405 
   3406 	case VM_PROT_READ:
   3407 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3408 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3409 		break;
   3410 #endif
   3411 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3412 		pmap_clearbit(pg, PVF_WRITE);
   3413 		break;
   3414 
   3415 	default:
   3416 		pmap_page_remove(pg);
   3417 		break;
   3418 	}
   3419 }
   3420 
   3421 /*
   3422  * pmap_clear_modify:
   3423  *
   3424  *	Clear the "modified" attribute for a page.
   3425  */
   3426 bool
   3427 pmap_clear_modify(struct vm_page *pg)
   3428 {
   3429 	bool rv;
   3430 
   3431 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3432 		rv = true;
   3433 		pmap_clearbit(pg, PVF_MOD);
   3434 	} else
   3435 		rv = false;
   3436 
   3437 	return (rv);
   3438 }
   3439 
   3440 /*
   3441  * pmap_clear_reference:
   3442  *
   3443  *	Clear the "referenced" attribute for a page.
   3444  */
   3445 bool
   3446 pmap_clear_reference(struct vm_page *pg)
   3447 {
   3448 	bool rv;
   3449 
   3450 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3451 		rv = true;
   3452 		pmap_clearbit(pg, PVF_REF);
   3453 	} else
   3454 		rv = false;
   3455 
   3456 	return (rv);
   3457 }
   3458 
   3459 /*
   3460  * pmap_is_modified:
   3461  *
   3462  *	Test if a page has the "modified" attribute.
   3463  */
   3464 /* See <arm/arm32/pmap.h> */
   3465 
   3466 /*
   3467  * pmap_is_referenced:
   3468  *
   3469  *	Test if a page has the "referenced" attribute.
   3470  */
   3471 /* See <arm/arm32/pmap.h> */
   3472 
   3473 int
   3474 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3475 {
   3476 	struct l2_dtable *l2;
   3477 	struct l2_bucket *l2b;
   3478 	pd_entry_t *pl1pd, l1pd;
   3479 	pt_entry_t *ptep, pte;
   3480 	paddr_t pa;
   3481 	u_int l1idx;
   3482 	int rv = 0;
   3483 
   3484 	PMAP_MAP_TO_HEAD_LOCK();
   3485 	pmap_acquire_pmap_lock(pm);
   3486 
   3487 	l1idx = L1_IDX(va);
   3488 
   3489 	/*
   3490 	 * If there is no l2_dtable for this address, then the process
   3491 	 * has no business accessing it.
   3492 	 *
   3493 	 * Note: This will catch userland processes trying to access
   3494 	 * kernel addresses.
   3495 	 */
   3496 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3497 	if (l2 == NULL)
   3498 		goto out;
   3499 
   3500 	/*
   3501 	 * Likewise if there is no L2 descriptor table
   3502 	 */
   3503 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3504 	if (l2b->l2b_kva == NULL)
   3505 		goto out;
   3506 
   3507 	/*
   3508 	 * Check the PTE itself.
   3509 	 */
   3510 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3511 	pte = *ptep;
   3512 	if (pte == 0)
   3513 		goto out;
   3514 
   3515 	/*
   3516 	 * Catch a userland access to the vector page mapped at 0x0
   3517 	 */
   3518 	if (user && (pte & L2_S_PROT_U) == 0)
   3519 		goto out;
   3520 
   3521 	pa = l2pte_pa(pte);
   3522 
   3523 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3524 		/*
   3525 		 * This looks like a good candidate for "page modified"
   3526 		 * emulation...
   3527 		 */
   3528 		struct pv_entry *pv;
   3529 		struct vm_page *pg;
   3530 
   3531 		/* Extract the physical address of the page */
   3532 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3533 			goto out;
   3534 
   3535 		/* Get the current flags for this page. */
   3536 		simple_lock(&pg->mdpage.pvh_slock);
   3537 
   3538 		pv = pmap_find_pv(pg, pm, va);
   3539 		if (pv == NULL) {
   3540 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3541 			goto out;
   3542 		}
   3543 
   3544 		/*
   3545 		 * Do the flags say this page is writable? If not then it
   3546 		 * is a genuine write fault. If yes then the write fault is
   3547 		 * our fault as we did not reflect the write access in the
   3548 		 * PTE. Now we know a write has occurred we can correct this
   3549 		 * and also set the modified bit
   3550 		 */
   3551 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3552 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3553 			goto out;
   3554 		}
   3555 
   3556 		NPDEBUG(PDB_FOLLOW,
   3557 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3558 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3559 
   3560 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3561 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3562 		simple_unlock(&pg->mdpage.pvh_slock);
   3563 
   3564 		/*
   3565 		 * Re-enable write permissions for the page.  No need to call
   3566 		 * pmap_vac_me_harder(), since this is just a
   3567 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3568 		 * changing. We've already set the cacheable bits based on
   3569 		 * the assumption that we can write to this page.
   3570 		 */
   3571 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3572 		PTE_SYNC(ptep);
   3573 		rv = 1;
   3574 	} else
   3575 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3576 		/*
   3577 		 * This looks like a good candidate for "page referenced"
   3578 		 * emulation.
   3579 		 */
   3580 		struct pv_entry *pv;
   3581 		struct vm_page *pg;
   3582 
   3583 		/* Extract the physical address of the page */
   3584 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3585 			goto out;
   3586 
   3587 		/* Get the current flags for this page. */
   3588 		simple_lock(&pg->mdpage.pvh_slock);
   3589 
   3590 		pv = pmap_find_pv(pg, pm, va);
   3591 		if (pv == NULL) {
   3592 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3593 			goto out;
   3594 		}
   3595 
   3596 		pg->mdpage.pvh_attrs |= PVF_REF;
   3597 		pv->pv_flags |= PVF_REF;
   3598 		simple_unlock(&pg->mdpage.pvh_slock);
   3599 
   3600 		NPDEBUG(PDB_FOLLOW,
   3601 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3602 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3603 
   3604 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3605 		PTE_SYNC(ptep);
   3606 		rv = 1;
   3607 	}
   3608 
   3609 	/*
   3610 	 * We know there is a valid mapping here, so simply
   3611 	 * fix up the L1 if necessary.
   3612 	 */
   3613 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3614 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3615 	if (*pl1pd != l1pd) {
   3616 		*pl1pd = l1pd;
   3617 		PTE_SYNC(pl1pd);
   3618 		rv = 1;
   3619 	}
   3620 
   3621 #ifdef CPU_SA110
   3622 	/*
   3623 	 * There are bugs in the rev K SA110.  This is a check for one
   3624 	 * of them.
   3625 	 */
   3626 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3627 	    curcpu()->ci_arm_cpurev < 3) {
   3628 		/* Always current pmap */
   3629 		if (l2pte_valid(pte)) {
   3630 			extern int kernel_debug;
   3631 			if (kernel_debug & 1) {
   3632 				struct proc *p = curlwp->l_proc;
   3633 				printf("prefetch_abort: page is already "
   3634 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3635 				printf("prefetch_abort: pc=%08lx proc=%p "
   3636 				    "process=%s\n", va, p, p->p_comm);
   3637 				printf("prefetch_abort: far=%08x fs=%x\n",
   3638 				    cpu_faultaddress(), cpu_faultstatus());
   3639 			}
   3640 #ifdef DDB
   3641 			if (kernel_debug & 2)
   3642 				Debugger();
   3643 #endif
   3644 			rv = 1;
   3645 		}
   3646 	}
   3647 #endif /* CPU_SA110 */
   3648 
   3649 #ifdef DEBUG
   3650 	/*
   3651 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3652 	 * stale TLB entry for the faulting address. This happens when two or
   3653 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3654 	 * a context switch between such processes, we can take domain faults
   3655 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3656 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3657 	 * example.
   3658 	 *
   3659 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3660 	 * entry for a recently entered mapping. In this case, the TLB is
   3661 	 * flushed for the new mapping, but there may still be TLB entries for
   3662 	 * other mappings belonging to other processes in the 1MB range
   3663 	 * covered by the L1 entry.
   3664 	 *
   3665 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3666 	 * value, so the fault must be due to a stale TLB entry.
   3667 	 *
   3668 	 * Since we always need to flush the TLB anyway in the case where we
   3669 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3670 	 * stale TLB entries dynamically.
   3671 	 *
   3672 	 * However, the above condition can ONLY happen if the current L1 is
   3673 	 * being shared. If it happens when the L1 is unshared, it indicates
   3674 	 * that other parts of the pmap are not doing their job WRT managing
   3675 	 * the TLB.
   3676 	 */
   3677 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   3678 		extern int last_fault_code;
   3679 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   3680 		    pm, va, ftype);
   3681 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   3682 		    l2, l2b, ptep, pl1pd);
   3683 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   3684 		    pte, l1pd, last_fault_code);
   3685 #ifdef DDB
   3686 		Debugger();
   3687 #endif
   3688 	}
   3689 #endif
   3690 
   3691 	cpu_tlb_flushID_SE(va);
   3692 	cpu_cpwait();
   3693 
   3694 	rv = 1;
   3695 
   3696 out:
   3697 	pmap_release_pmap_lock(pm);
   3698 	PMAP_MAP_TO_HEAD_UNLOCK();
   3699 
   3700 	return (rv);
   3701 }
   3702 
   3703 /*
   3704  * pmap_collect: free resources held by a pmap
   3705  *
   3706  * => optional function.
   3707  * => called when a process is swapped out to free memory.
   3708  */
   3709 void
   3710 pmap_collect(pmap_t pm)
   3711 {
   3712 
   3713 #ifdef PMAP_CACHE_VIVT
   3714 	pmap_idcache_wbinv_all(pm);
   3715 #endif
   3716 	pm->pm_remove_all = true;
   3717 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3718 	pmap_update(pm);
   3719 	PMAPCOUNT(collects);
   3720 }
   3721 
   3722 /*
   3723  * Routine:	pmap_procwr
   3724  *
   3725  * Function:
   3726  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3727  *
   3728  */
   3729 void
   3730 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3731 {
   3732 	/* We only need to do anything if it is the current process. */
   3733 	if (p == curproc)
   3734 		cpu_icache_sync_range(va, len);
   3735 }
   3736 
   3737 /*
   3738  * Routine:	pmap_unwire
   3739  * Function:	Clear the wired attribute for a map/virtual-address pair.
   3740  *
   3741  * In/out conditions:
   3742  *		The mapping must already exist in the pmap.
   3743  */
   3744 void
   3745 pmap_unwire(pmap_t pm, vaddr_t va)
   3746 {
   3747 	struct l2_bucket *l2b;
   3748 	pt_entry_t *ptep, pte;
   3749 	struct vm_page *pg;
   3750 	paddr_t pa;
   3751 
   3752 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   3753 
   3754 	PMAP_MAP_TO_HEAD_LOCK();
   3755 	pmap_acquire_pmap_lock(pm);
   3756 
   3757 	l2b = pmap_get_l2_bucket(pm, va);
   3758 	KDASSERT(l2b != NULL);
   3759 
   3760 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3761 	pte = *ptep;
   3762 
   3763 	/* Extract the physical address of the page */
   3764 	pa = l2pte_pa(pte);
   3765 
   3766 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3767 		/* Update the wired bit in the pv entry for this page. */
   3768 		simple_lock(&pg->mdpage.pvh_slock);
   3769 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   3770 		simple_unlock(&pg->mdpage.pvh_slock);
   3771 	}
   3772 
   3773 	pmap_release_pmap_lock(pm);
   3774 	PMAP_MAP_TO_HEAD_UNLOCK();
   3775 }
   3776 
   3777 void
   3778 pmap_switch(struct lwp *olwp, struct lwp *nlwp)
   3779 {
   3780 	extern int block_userspace_access;
   3781 	pmap_t opm, npm, rpm;
   3782 	uint32_t odacr, ndacr;
   3783 	int oldirqstate;
   3784 
   3785 	npm = nlwp->l_proc->p_vmspace->vm_map.pmap;
   3786 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   3787 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   3788 
   3789 	/*
   3790 	 * If TTB and DACR are unchanged, short-circuit all the
   3791 	 * TLB/cache management stuff.
   3792 	 */
   3793 	if (olwp != NULL) {
   3794 		opm = olwp->l_proc->p_vmspace->vm_map.pmap;
   3795 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   3796 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   3797 
   3798 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   3799 			goto all_done;
   3800 	} else
   3801 		opm = NULL;
   3802 
   3803 	PMAPCOUNT(activations);
   3804 	block_userspace_access = 1;
   3805 
   3806 	/*
   3807 	 * If switching to a user vmspace which is different to the
   3808 	 * most recent one, and the most recent one is potentially
   3809 	 * live in the cache, we must write-back and invalidate the
   3810 	 * entire cache.
   3811 	 */
   3812 	rpm = pmap_recent_user;
   3813 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   3814 	    rpm->pm_cstate.cs_cache) {
   3815 		rpm->pm_cstate.cs_cache = 0;
   3816 #ifdef PMAP_CACHE_VIVT
   3817 		cpu_idcache_wbinv_all();
   3818 #endif
   3819 	}
   3820 
   3821 	/* No interrupts while we frob the TTB/DACR */
   3822 	oldirqstate = disable_interrupts(I32_bit | F32_bit);
   3823 
   3824 	/*
   3825 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   3826 	 * entry corresponding to 'vector_page' in the incoming L1 table
   3827 	 * before switching to it otherwise subsequent interrupts/exceptions
   3828 	 * (including domain faults!) will jump into hyperspace.
   3829 	 */
   3830 	if (npm->pm_pl1vec != NULL) {
   3831 		cpu_tlb_flushID_SE((u_int)vector_page);
   3832 		cpu_cpwait();
   3833 		*npm->pm_pl1vec = npm->pm_l1vec;
   3834 		PTE_SYNC(npm->pm_pl1vec);
   3835 	}
   3836 
   3837 	cpu_domains(ndacr);
   3838 
   3839 	if (npm == pmap_kernel() || npm == rpm) {
   3840 		/*
   3841 		 * Switching to a kernel thread, or back to the
   3842 		 * same user vmspace as before... Simply update
   3843 		 * the TTB (no TLB flush required)
   3844 		 */
   3845 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   3846 		    "r"(npm->pm_l1->l1_physaddr));
   3847 		cpu_cpwait();
   3848 	} else {
   3849 		/*
   3850 		 * Otherwise, update TTB and flush TLB
   3851 		 */
   3852 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   3853 		if (rpm != NULL)
   3854 			rpm->pm_cstate.cs_tlb = 0;
   3855 	}
   3856 
   3857 	restore_interrupts(oldirqstate);
   3858 
   3859 	block_userspace_access = 0;
   3860 
   3861  all_done:
   3862 	/*
   3863 	 * The new pmap is resident. Make sure it's marked
   3864 	 * as resident in the cache/TLB.
   3865 	 */
   3866 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3867 	if (npm != pmap_kernel())
   3868 		pmap_recent_user = npm;
   3869 
   3870 	/* The old pmap is not longer active */
   3871 	if (opm != NULL)
   3872 		opm->pm_activated = false;
   3873 
   3874 	/* But the new one is */
   3875 	npm->pm_activated = true;
   3876 }
   3877 
   3878 void
   3879 pmap_activate(struct lwp *l)
   3880 {
   3881 
   3882 	if (l == curlwp &&
   3883 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == false)
   3884 		pmap_switch(NULL, l);
   3885 }
   3886 
   3887 void
   3888 pmap_deactivate(struct lwp *l)
   3889 {
   3890 
   3891 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   3892 }
   3893 
   3894 void
   3895 pmap_update(pmap_t pm)
   3896 {
   3897 
   3898 	if (pm->pm_remove_all) {
   3899 		/*
   3900 		 * Finish up the pmap_remove_all() optimisation by flushing
   3901 		 * the TLB.
   3902 		 */
   3903 		pmap_tlb_flushID(pm);
   3904 		pm->pm_remove_all = false;
   3905 	}
   3906 
   3907 	if (pmap_is_current(pm)) {
   3908 		/*
   3909 		 * If we're dealing with a current userland pmap, move its L1
   3910 		 * to the end of the LRU.
   3911 		 */
   3912 		if (pm != pmap_kernel())
   3913 			pmap_use_l1(pm);
   3914 
   3915 		/*
   3916 		 * We can assume we're done with frobbing the cache/tlb for
   3917 		 * now. Make sure any future pmap ops don't skip cache/tlb
   3918 		 * flushes.
   3919 		 */
   3920 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3921 	}
   3922 
   3923 	PMAPCOUNT(updates);
   3924 
   3925 	/*
   3926 	 * make sure TLB/cache operations have completed.
   3927 	 */
   3928 	cpu_cpwait();
   3929 }
   3930 
   3931 void
   3932 pmap_remove_all(pmap_t pm)
   3933 {
   3934 
   3935 	/*
   3936 	 * The vmspace described by this pmap is about to be torn down.
   3937 	 * Until pmap_update() is called, UVM will only make calls
   3938 	 * to pmap_remove(). We can make life much simpler by flushing
   3939 	 * the cache now, and deferring TLB invalidation to pmap_update().
   3940 	 */
   3941 #ifdef PMAP_CACHE_VIVT
   3942 	pmap_idcache_wbinv_all(pm);
   3943 #endif
   3944 	pm->pm_remove_all = true;
   3945 }
   3946 
   3947 /*
   3948  * Retire the given physical map from service.
   3949  * Should only be called if the map contains no valid mappings.
   3950  */
   3951 void
   3952 pmap_destroy(pmap_t pm)
   3953 {
   3954 	u_int count;
   3955 
   3956 	if (pm == NULL)
   3957 		return;
   3958 
   3959 	if (pm->pm_remove_all) {
   3960 		pmap_tlb_flushID(pm);
   3961 		pm->pm_remove_all = false;
   3962 	}
   3963 
   3964 	/*
   3965 	 * Drop reference count
   3966 	 */
   3967 	simple_lock(&pm->pm_lock);
   3968 	count = --pm->pm_obj.uo_refs;
   3969 	simple_unlock(&pm->pm_lock);
   3970 	if (count > 0) {
   3971 		if (pmap_is_current(pm)) {
   3972 			if (pm != pmap_kernel())
   3973 				pmap_use_l1(pm);
   3974 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3975 		}
   3976 		return;
   3977 	}
   3978 
   3979 	/*
   3980 	 * reference count is zero, free pmap resources and then free pmap.
   3981 	 */
   3982 
   3983 	if (vector_page < KERNEL_BASE) {
   3984 		KDASSERT(!pmap_is_current(pm));
   3985 
   3986 		/* Remove the vector page mapping */
   3987 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   3988 		pmap_update(pm);
   3989 	}
   3990 
   3991 	LIST_REMOVE(pm, pm_list);
   3992 
   3993 	pmap_free_l1(pm);
   3994 
   3995 	if (pmap_recent_user == pm)
   3996 		pmap_recent_user = NULL;
   3997 
   3998 	/* return the pmap to the pool */
   3999 	pool_cache_put(&pmap_cache, pm);
   4000 }
   4001 
   4002 
   4003 /*
   4004  * void pmap_reference(pmap_t pm)
   4005  *
   4006  * Add a reference to the specified pmap.
   4007  */
   4008 void
   4009 pmap_reference(pmap_t pm)
   4010 {
   4011 
   4012 	if (pm == NULL)
   4013 		return;
   4014 
   4015 	pmap_use_l1(pm);
   4016 
   4017 	simple_lock(&pm->pm_lock);
   4018 	pm->pm_obj.uo_refs++;
   4019 	simple_unlock(&pm->pm_lock);
   4020 }
   4021 
   4022 #if ARM_MMU_V6 > 0
   4023 
   4024 static struct evcnt pmap_prefer_nochange_ev =
   4025     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4026 static struct evcnt pmap_prefer_change_ev =
   4027     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4028 
   4029 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4030 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4031 
   4032 void
   4033 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4034 {
   4035 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4036 	vaddr_t va = *vap;
   4037 	vaddr_t diff = (hint - va) & mask;
   4038 	if (diff == 0) {
   4039 		pmap_prefer_nochange_ev.ev_count++;
   4040 	} else {
   4041 		pmap_prefer_change_ev.ev_count++;
   4042 		if (__predict_false(td))
   4043 			va -= mask + 1;
   4044 		*vap = va + diff;
   4045 	}
   4046 }
   4047 #endif /* ARM_MMU_V6 */
   4048 
   4049 /*
   4050  * pmap_zero_page()
   4051  *
   4052  * Zero a given physical page by mapping it at a page hook point.
   4053  * In doing the zero page op, the page we zero is mapped cachable, as with
   4054  * StrongARM accesses to non-cached pages are non-burst making writing
   4055  * _any_ bulk data very slow.
   4056  */
   4057 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4058 void
   4059 pmap_zero_page_generic(paddr_t phys)
   4060 {
   4061 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4062 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4063 #endif
   4064 #ifdef PMAP_CACHE_VIPT
   4065 	/* Choose the last page color it had, if any */
   4066 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4067 #else
   4068 	const vsize_t va_offset = 0;
   4069 #endif
   4070 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4071 
   4072 #ifdef DEBUG
   4073 	if (pg->mdpage.pvh_list != NULL)
   4074 		panic("pmap_zero_page: page has mappings");
   4075 #endif
   4076 
   4077 	KDASSERT((phys & PGOFSET) == 0);
   4078 
   4079 	/*
   4080 	 * Hook in the page, zero it, and purge the cache for that
   4081 	 * zeroed page. Invalidate the TLB as needed.
   4082 	 */
   4083 	*ptep = L2_S_PROTO | phys |
   4084 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4085 	PTE_SYNC(ptep);
   4086 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4087 	cpu_cpwait();
   4088 	bzero_page(cdstp + va_offset);
   4089 	/*
   4090 	 * Unmap the page.
   4091 	 */
   4092 	*ptep = 0;
   4093 	PTE_SYNC(ptep);
   4094 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4095 #ifdef PMAP_CACHE_VIVT
   4096 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4097 #endif
   4098 #ifdef PMAP_CACHE_VIPT
   4099 	/*
   4100 	 * This page is now cache resident so it now has a page color.
   4101 	 * Any contents have been obliterated so clear the EXEC flag.
   4102 	 */
   4103 	if (!pmap_is_page_colored_p(pg)) {
   4104 		PMAPCOUNT(vac_color_new);
   4105 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4106 	}
   4107 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4108 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4109 		PMAPCOUNT(exec_discarded_zero);
   4110 	}
   4111 #endif
   4112 }
   4113 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4114 
   4115 #if ARM_MMU_XSCALE == 1
   4116 void
   4117 pmap_zero_page_xscale(paddr_t phys)
   4118 {
   4119 #ifdef DEBUG
   4120 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4121 
   4122 	if (pg->mdpage.pvh_list != NULL)
   4123 		panic("pmap_zero_page: page has mappings");
   4124 #endif
   4125 
   4126 	KDASSERT((phys & PGOFSET) == 0);
   4127 
   4128 	/*
   4129 	 * Hook in the page, zero it, and purge the cache for that
   4130 	 * zeroed page. Invalidate the TLB as needed.
   4131 	 */
   4132 	*cdst_pte = L2_S_PROTO | phys |
   4133 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4134 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4135 	PTE_SYNC(cdst_pte);
   4136 	cpu_tlb_flushD_SE(cdstp);
   4137 	cpu_cpwait();
   4138 	bzero_page(cdstp);
   4139 	xscale_cache_clean_minidata();
   4140 }
   4141 #endif /* ARM_MMU_XSCALE == 1 */
   4142 
   4143 /* pmap_pageidlezero()
   4144  *
   4145  * The same as above, except that we assume that the page is not
   4146  * mapped.  This means we never have to flush the cache first.  Called
   4147  * from the idle loop.
   4148  */
   4149 bool
   4150 pmap_pageidlezero(paddr_t phys)
   4151 {
   4152 	unsigned int i;
   4153 	int *ptr;
   4154 	bool rv = true;
   4155 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4156 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4157 #endif
   4158 #ifdef PMAP_CACHE_VIPT
   4159 	/* Choose the last page color it had, if any */
   4160 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4161 #else
   4162 	const vsize_t va_offset = 0;
   4163 #endif
   4164 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4165 
   4166 
   4167 #ifdef DEBUG
   4168 	if (pg->mdpage.pvh_list != NULL)
   4169 		panic("pmap_pageidlezero: page has mappings");
   4170 #endif
   4171 
   4172 	KDASSERT((phys & PGOFSET) == 0);
   4173 
   4174 	/*
   4175 	 * Hook in the page, zero it, and purge the cache for that
   4176 	 * zeroed page. Invalidate the TLB as needed.
   4177 	 */
   4178 	*ptep = L2_S_PROTO | phys |
   4179 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4180 	PTE_SYNC(ptep);
   4181 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4182 	cpu_cpwait();
   4183 
   4184 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4185 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4186 		if (sched_curcpu_runnable_p() != 0) {
   4187 			/*
   4188 			 * A process has become ready.  Abort now,
   4189 			 * so we don't keep it waiting while we
   4190 			 * do slow memory access to finish this
   4191 			 * page.
   4192 			 */
   4193 			rv = false;
   4194 			break;
   4195 		}
   4196 		*ptr++ = 0;
   4197 	}
   4198 
   4199 #ifdef PMAP_CACHE_VIVT
   4200 	if (rv)
   4201 		/*
   4202 		 * if we aborted we'll rezero this page again later so don't
   4203 		 * purge it unless we finished it
   4204 		 */
   4205 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4206 #elif defined(PMAP_CACHE_VIPT)
   4207 	/*
   4208 	 * This page is now cache resident so it now has a page color.
   4209 	 * Any contents have been obliterated so clear the EXEC flag.
   4210 	 */
   4211 	if (!pmap_is_page_colored_p(pg)) {
   4212 		PMAPCOUNT(vac_color_new);
   4213 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4214 	}
   4215 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4216 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4217 		PMAPCOUNT(exec_discarded_zero);
   4218 	}
   4219 #endif
   4220 	/*
   4221 	 * Unmap the page.
   4222 	 */
   4223 	*ptep = 0;
   4224 	PTE_SYNC(ptep);
   4225 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4226 
   4227 	return (rv);
   4228 }
   4229 
   4230 /*
   4231  * pmap_copy_page()
   4232  *
   4233  * Copy one physical page into another, by mapping the pages into
   4234  * hook points. The same comment regarding cachability as in
   4235  * pmap_zero_page also applies here.
   4236  */
   4237 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4238 void
   4239 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4240 {
   4241 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4242 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4243 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4244 #endif
   4245 #ifdef PMAP_CACHE_VIPT
   4246 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4247 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4248 #else
   4249 	const vsize_t src_va_offset = 0;
   4250 	const vsize_t dst_va_offset = 0;
   4251 #endif
   4252 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4253 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4254 
   4255 #ifdef DEBUG
   4256 	if (dst_pg->mdpage.pvh_list != NULL)
   4257 		panic("pmap_copy_page: dst page has mappings");
   4258 #endif
   4259 
   4260 #ifdef PMAP_CACHE_VIPT
   4261 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4262 #endif
   4263 	KDASSERT((src & PGOFSET) == 0);
   4264 	KDASSERT((dst & PGOFSET) == 0);
   4265 
   4266 	/*
   4267 	 * Clean the source page.  Hold the source page's lock for
   4268 	 * the duration of the copy so that no other mappings can
   4269 	 * be created while we have a potentially aliased mapping.
   4270 	 */
   4271 	simple_lock(&src_pg->mdpage.pvh_slock);
   4272 #ifdef PMAP_CACHE_VIVT
   4273 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
   4274 #endif
   4275 
   4276 	/*
   4277 	 * Map the pages into the page hook points, copy them, and purge
   4278 	 * the cache for the appropriate page. Invalidate the TLB
   4279 	 * as required.
   4280 	 */
   4281 	*src_ptep = L2_S_PROTO
   4282 	    | src
   4283 #ifdef PMAP_CACHE_VIPT
   4284 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4285 #endif
   4286 #ifdef PMAP_CACHE_VIVT
   4287 	    | pte_l2_s_cache_mode
   4288 #endif
   4289 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4290 	*dst_ptep = L2_S_PROTO | dst |
   4291 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4292 	PTE_SYNC(src_ptep);
   4293 	PTE_SYNC(dst_ptep);
   4294 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4295 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4296 	cpu_cpwait();
   4297 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4298 #ifdef PMAP_CACHE_VIVT
   4299 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4300 #endif
   4301 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4302 #ifdef PMAP_CACHE_VIVT
   4303 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4304 #endif
   4305 	/*
   4306 	 * Unmap the pages.
   4307 	 */
   4308 	*src_ptep = 0;
   4309 	*dst_ptep = 0;
   4310 	PTE_SYNC(src_ptep);
   4311 	PTE_SYNC(dst_ptep);
   4312 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4313 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4314 #ifdef PMAP_CACHE_VIPT
   4315 	/*
   4316 	 * Now that the destination page is in the cache, mark it as colored.
   4317 	 * If this was an exec page, discard it.
   4318 	 */
   4319 	if (!pmap_is_page_colored_p(dst_pg)) {
   4320 		PMAPCOUNT(vac_color_new);
   4321 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4322 	}
   4323 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4324 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4325 		PMAPCOUNT(exec_discarded_copy);
   4326 	}
   4327 #endif
   4328 }
   4329 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4330 
   4331 #if ARM_MMU_XSCALE == 1
   4332 void
   4333 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4334 {
   4335 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4336 #ifdef DEBUG
   4337 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4338 
   4339 	if (dst_pg->mdpage.pvh_list != NULL)
   4340 		panic("pmap_copy_page: dst page has mappings");
   4341 #endif
   4342 
   4343 	KDASSERT((src & PGOFSET) == 0);
   4344 	KDASSERT((dst & PGOFSET) == 0);
   4345 
   4346 	/*
   4347 	 * Clean the source page.  Hold the source page's lock for
   4348 	 * the duration of the copy so that no other mappings can
   4349 	 * be created while we have a potentially aliased mapping.
   4350 	 */
   4351 	simple_lock(&src_pg->mdpage.pvh_slock);
   4352 #ifdef PMAP_CACHE_VIVT
   4353 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
   4354 #endif
   4355 
   4356 	/*
   4357 	 * Map the pages into the page hook points, copy them, and purge
   4358 	 * the cache for the appropriate page. Invalidate the TLB
   4359 	 * as required.
   4360 	 */
   4361 	*csrc_pte = L2_S_PROTO | src |
   4362 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4363 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4364 	PTE_SYNC(csrc_pte);
   4365 	*cdst_pte = L2_S_PROTO | dst |
   4366 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4367 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4368 	PTE_SYNC(cdst_pte);
   4369 	cpu_tlb_flushD_SE(csrcp);
   4370 	cpu_tlb_flushD_SE(cdstp);
   4371 	cpu_cpwait();
   4372 	bcopy_page(csrcp, cdstp);
   4373 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4374 	xscale_cache_clean_minidata();
   4375 }
   4376 #endif /* ARM_MMU_XSCALE == 1 */
   4377 
   4378 /*
   4379  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4380  *
   4381  * Return the start and end addresses of the kernel's virtual space.
   4382  * These values are setup in pmap_bootstrap and are updated as pages
   4383  * are allocated.
   4384  */
   4385 void
   4386 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4387 {
   4388 	*start = virtual_avail;
   4389 	*end = virtual_end;
   4390 }
   4391 
   4392 /*
   4393  * Helper function for pmap_grow_l2_bucket()
   4394  */
   4395 static inline int
   4396 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4397 {
   4398 	struct l2_bucket *l2b;
   4399 	pt_entry_t *ptep;
   4400 	paddr_t pa;
   4401 
   4402 	if (uvm.page_init_done == false) {
   4403 #ifdef PMAP_STEAL_MEMORY
   4404 		pv_addr_t pv;
   4405 		pmap_boot_pagealloc(PAGE_SIZE,
   4406 #ifdef PMAP_CACHE_VIPT
   4407 		    arm_cache_prefer_mask,
   4408 		    va & arm_cache_prefer_mask,
   4409 #else
   4410 		    0, 0,
   4411 #endif
   4412 		    &pv);
   4413 		pa = pv.pv_pa;
   4414 #else
   4415 		if (uvm_page_physget(&pa) == false)
   4416 			return (1);
   4417 #endif	/* PMAP_STEAL_MEMORY */
   4418 	} else {
   4419 		struct vm_page *pg;
   4420 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4421 		if (pg == NULL)
   4422 			return (1);
   4423 		pa = VM_PAGE_TO_PHYS(pg);
   4424 #ifdef PMAP_CACHE_VIPT
   4425 		/*
   4426 		 * This new page must not have any mappings.  However, it might
   4427 		 * have previously used and therefore present in the cache.  If
   4428 		 * it doesn't have the desired color, we have to flush it from
   4429 		 * the cache.  And while we are at it, make sure to clear its
   4430 		 * EXEC status.
   4431 		 */
   4432 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_KENTRY));
   4433 		KASSERT(pg->mdpage.pvh_list == NULL);
   4434 		if (pmap_is_page_colored_p(pg)) {
   4435 			if ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask) {
   4436 				pmap_flush_page(pg);
   4437 				PMAPCOUNT(vac_color_change);
   4438 			} else {
   4439 				PMAPCOUNT(vac_color_reuse);
   4440 			}
   4441 		} else {
   4442 			PMAPCOUNT(vac_color_new);
   4443 		}
   4444 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   4445 			PMAPCOUNT(exec_discarded_kremove);
   4446 		/*
   4447 		 * We'll pretend this page was entered by pmap_kenter_pa
   4448 		 */
   4449 		pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_EXEC;
   4450 		pg->mdpage.pvh_attrs |= va | PVF_KENTRY | PVF_COLORED | PVF_REF | PVF_MOD;
   4451 #endif
   4452 	}
   4453 
   4454 	if (pap)
   4455 		*pap = pa;
   4456 
   4457 	PMAPCOUNT(pt_mappings);
   4458 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4459 	KDASSERT(l2b != NULL);
   4460 
   4461 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4462 	*ptep = L2_S_PROTO | pa | cache_mode |
   4463 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4464 	PTE_SYNC(ptep);
   4465 	memset((void *)va, 0, PAGE_SIZE);
   4466 	return (0);
   4467 }
   4468 
   4469 /*
   4470  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4471  * used by pmap_growkernel().
   4472  */
   4473 static inline struct l2_bucket *
   4474 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4475 {
   4476 	struct l2_dtable *l2;
   4477 	struct l2_bucket *l2b;
   4478 	u_short l1idx;
   4479 	vaddr_t nva;
   4480 
   4481 	l1idx = L1_IDX(va);
   4482 
   4483 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4484 		/*
   4485 		 * No mapping at this address, as there is
   4486 		 * no entry in the L1 table.
   4487 		 * Need to allocate a new l2_dtable.
   4488 		 */
   4489 		nva = pmap_kernel_l2dtable_kva;
   4490 		if ((nva & PGOFSET) == 0) {
   4491 			/*
   4492 			 * Need to allocate a backing page
   4493 			 */
   4494 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4495 				return (NULL);
   4496 		}
   4497 
   4498 		l2 = (struct l2_dtable *)nva;
   4499 		nva += sizeof(struct l2_dtable);
   4500 
   4501 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4502 			/*
   4503 			 * The new l2_dtable straddles a page boundary.
   4504 			 * Map in another page to cover it.
   4505 			 */
   4506 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4507 				return (NULL);
   4508 		}
   4509 
   4510 		pmap_kernel_l2dtable_kva = nva;
   4511 
   4512 		/*
   4513 		 * Link it into the parent pmap
   4514 		 */
   4515 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4516 	}
   4517 
   4518 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4519 
   4520 	/*
   4521 	 * Fetch pointer to the L2 page table associated with the address.
   4522 	 */
   4523 	if (l2b->l2b_kva == NULL) {
   4524 		pt_entry_t *ptep;
   4525 
   4526 		/*
   4527 		 * No L2 page table has been allocated. Chances are, this
   4528 		 * is because we just allocated the l2_dtable, above.
   4529 		 */
   4530 		nva = pmap_kernel_l2ptp_kva;
   4531 		ptep = (pt_entry_t *)nva;
   4532 		if ((nva & PGOFSET) == 0) {
   4533 			/*
   4534 			 * Need to allocate a backing page
   4535 			 */
   4536 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4537 			    &pmap_kernel_l2ptp_phys))
   4538 				return (NULL);
   4539 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4540 		}
   4541 
   4542 		l2->l2_occupancy++;
   4543 		l2b->l2b_kva = ptep;
   4544 		l2b->l2b_l1idx = l1idx;
   4545 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4546 
   4547 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4548 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4549 	}
   4550 
   4551 	return (l2b);
   4552 }
   4553 
   4554 vaddr_t
   4555 pmap_growkernel(vaddr_t maxkvaddr)
   4556 {
   4557 	pmap_t kpm = pmap_kernel();
   4558 	struct l1_ttable *l1;
   4559 	struct l2_bucket *l2b;
   4560 	pd_entry_t *pl1pd;
   4561 	int s;
   4562 
   4563 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4564 		goto out;		/* we are OK */
   4565 
   4566 	NPDEBUG(PDB_GROWKERN,
   4567 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4568 	    pmap_curmaxkvaddr, maxkvaddr));
   4569 
   4570 	KDASSERT(maxkvaddr <= virtual_end);
   4571 
   4572 	/*
   4573 	 * whoops!   we need to add kernel PTPs
   4574 	 */
   4575 
   4576 	s = splhigh();	/* to be safe */
   4577 	simple_lock(&kpm->pm_lock);
   4578 
   4579 	/* Map 1MB at a time */
   4580 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4581 
   4582 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4583 		KDASSERT(l2b != NULL);
   4584 
   4585 		/* Distribute new L1 entry to all other L1s */
   4586 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4587 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4588 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4589 			    L1_C_PROTO;
   4590 			PTE_SYNC(pl1pd);
   4591 		}
   4592 	}
   4593 
   4594 	/*
   4595 	 * flush out the cache, expensive but growkernel will happen so
   4596 	 * rarely
   4597 	 */
   4598 	cpu_dcache_wbinv_all();
   4599 	cpu_tlb_flushD();
   4600 	cpu_cpwait();
   4601 
   4602 	simple_unlock(&kpm->pm_lock);
   4603 	splx(s);
   4604 
   4605 out:
   4606 	return (pmap_curmaxkvaddr);
   4607 }
   4608 
   4609 /************************ Utility routines ****************************/
   4610 
   4611 /*
   4612  * vector_page_setprot:
   4613  *
   4614  *	Manipulate the protection of the vector page.
   4615  */
   4616 void
   4617 vector_page_setprot(int prot)
   4618 {
   4619 	struct l2_bucket *l2b;
   4620 	pt_entry_t *ptep;
   4621 
   4622 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4623 	KDASSERT(l2b != NULL);
   4624 
   4625 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4626 
   4627 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4628 	PTE_SYNC(ptep);
   4629 	cpu_tlb_flushD_SE(vector_page);
   4630 	cpu_cpwait();
   4631 }
   4632 
   4633 /*
   4634  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4635  * Returns true if the mapping exists, else false.
   4636  *
   4637  * NOTE: This function is only used by a couple of arm-specific modules.
   4638  * It is not safe to take any pmap locks here, since we could be right
   4639  * in the middle of debugging the pmap anyway...
   4640  *
   4641  * It is possible for this routine to return false even though a valid
   4642  * mapping does exist. This is because we don't lock, so the metadata
   4643  * state may be inconsistent.
   4644  *
   4645  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4646  * a "section" mapping.
   4647  */
   4648 bool
   4649 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4650 {
   4651 	struct l2_dtable *l2;
   4652 	pd_entry_t *pl1pd, l1pd;
   4653 	pt_entry_t *ptep;
   4654 	u_short l1idx;
   4655 
   4656 	if (pm->pm_l1 == NULL)
   4657 		return false;
   4658 
   4659 	l1idx = L1_IDX(va);
   4660 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4661 	l1pd = *pl1pd;
   4662 
   4663 	if (l1pte_section_p(l1pd)) {
   4664 		*ptp = NULL;
   4665 		return true;
   4666 	}
   4667 
   4668 	if (pm->pm_l2 == NULL)
   4669 		return false;
   4670 
   4671 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4672 
   4673 	if (l2 == NULL ||
   4674 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4675 		return false;
   4676 	}
   4677 
   4678 	*ptp = &ptep[l2pte_index(va)];
   4679 	return true;
   4680 }
   4681 
   4682 bool
   4683 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4684 {
   4685 	u_short l1idx;
   4686 
   4687 	if (pm->pm_l1 == NULL)
   4688 		return false;
   4689 
   4690 	l1idx = L1_IDX(va);
   4691 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4692 
   4693 	return true;
   4694 }
   4695 
   4696 /************************ Bootstrapping routines ****************************/
   4697 
   4698 static void
   4699 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4700 {
   4701 	int i;
   4702 
   4703 	l1->l1_kva = l1pt;
   4704 	l1->l1_domain_use_count = 0;
   4705 	l1->l1_domain_first = 0;
   4706 
   4707 	for (i = 0; i < PMAP_DOMAINS; i++)
   4708 		l1->l1_domain_free[i] = i + 1;
   4709 
   4710 	/*
   4711 	 * Copy the kernel's L1 entries to each new L1.
   4712 	 */
   4713 	if (pmap_initialized)
   4714 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   4715 
   4716 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   4717 	    &l1->l1_physaddr) == false)
   4718 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   4719 
   4720 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   4721 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   4722 }
   4723 
   4724 /*
   4725  * pmap_bootstrap() is called from the board-specific initarm() routine
   4726  * once the kernel L1/L2 descriptors tables have been set up.
   4727  *
   4728  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   4729  * spread over a number of disparate files/functions.
   4730  *
   4731  * We are passed the following parameters
   4732  *  - kernel_l1pt
   4733  *    This is a pointer to the base of the kernel's L1 translation table.
   4734  *  - vstart
   4735  *    1MB-aligned start of managed kernel virtual memory.
   4736  *  - vend
   4737  *    1MB-aligned end of managed kernel virtual memory.
   4738  *
   4739  * We use the first parameter to build the metadata (struct l1_ttable and
   4740  * struct l2_dtable) necessary to track kernel mappings.
   4741  */
   4742 #define	PMAP_STATIC_L2_SIZE 16
   4743 void
   4744 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   4745 {
   4746 	static struct l1_ttable static_l1;
   4747 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   4748 	struct l1_ttable *l1 = &static_l1;
   4749 	struct l2_dtable *l2;
   4750 	struct l2_bucket *l2b;
   4751 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   4752 	pmap_t pm = pmap_kernel();
   4753 	pd_entry_t pde;
   4754 	pt_entry_t *ptep;
   4755 	paddr_t pa;
   4756 	vaddr_t va;
   4757 	vsize_t size;
   4758 	int nptes, l1idx, l2idx, l2next = 0;
   4759 
   4760 	/*
   4761 	 * Initialise the kernel pmap object
   4762 	 */
   4763 	pm->pm_l1 = l1;
   4764 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   4765 	pm->pm_activated = true;
   4766 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4767 	simple_lock_init(&pm->pm_lock);
   4768 	pm->pm_obj.pgops = NULL;
   4769 	TAILQ_INIT(&pm->pm_obj.memq);
   4770 	pm->pm_obj.uo_npages = 0;
   4771 	pm->pm_obj.uo_refs = 1;
   4772 
   4773 	/*
   4774 	 * Scan the L1 translation table created by initarm() and create
   4775 	 * the required metadata for all valid mappings found in it.
   4776 	 */
   4777 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   4778 		pde = l1pt[l1idx];
   4779 
   4780 		/*
   4781 		 * We're only interested in Coarse mappings.
   4782 		 * pmap_extract() can deal with section mappings without
   4783 		 * recourse to checking L2 metadata.
   4784 		 */
   4785 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   4786 			continue;
   4787 
   4788 		/*
   4789 		 * Lookup the KVA of this L2 descriptor table
   4790 		 */
   4791 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   4792 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   4793 		if (ptep == NULL) {
   4794 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   4795 			    (u_int)l1idx << L1_S_SHIFT, pa);
   4796 		}
   4797 
   4798 		/*
   4799 		 * Fetch the associated L2 metadata structure.
   4800 		 * Allocate a new one if necessary.
   4801 		 */
   4802 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4803 			if (l2next == PMAP_STATIC_L2_SIZE)
   4804 				panic("pmap_bootstrap: out of static L2s");
   4805 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   4806 		}
   4807 
   4808 		/*
   4809 		 * One more L1 slot tracked...
   4810 		 */
   4811 		l2->l2_occupancy++;
   4812 
   4813 		/*
   4814 		 * Fill in the details of the L2 descriptor in the
   4815 		 * appropriate bucket.
   4816 		 */
   4817 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4818 		l2b->l2b_kva = ptep;
   4819 		l2b->l2b_phys = pa;
   4820 		l2b->l2b_l1idx = l1idx;
   4821 
   4822 		/*
   4823 		 * Establish an initial occupancy count for this descriptor
   4824 		 */
   4825 		for (l2idx = 0;
   4826 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   4827 		    l2idx++) {
   4828 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   4829 				l2b->l2b_occupancy++;
   4830 			}
   4831 		}
   4832 
   4833 		/*
   4834 		 * Make sure the descriptor itself has the correct cache mode.
   4835 		 * If not, fix it, but whine about the problem. Port-meisters
   4836 		 * should consider this a clue to fix up their initarm()
   4837 		 * function. :)
   4838 		 */
   4839 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   4840 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   4841 			    "L2 pte @ %p\n", ptep);
   4842 		}
   4843 	}
   4844 
   4845 	/*
   4846 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   4847 	 * a page table. Bitch if it is not correctly set.
   4848 	 */
   4849 	for (va = (vaddr_t)l1pt;
   4850 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   4851 		if (pmap_set_pt_cache_mode(l1pt, va))
   4852 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   4853 			    "primary L1 @ 0x%lx\n", va);
   4854 	}
   4855 
   4856 	cpu_dcache_wbinv_all();
   4857 	cpu_tlb_flushID();
   4858 	cpu_cpwait();
   4859 
   4860 	/*
   4861 	 * now we allocate the "special" VAs which are used for tmp mappings
   4862 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   4863 	 * virtual_avail (note that there are no pages mapped at these VAs).
   4864 	 *
   4865 	 * Managed KVM space start from wherever initarm() tells us.
   4866 	 */
   4867 	virtual_avail = vstart;
   4868 	virtual_end = vend;
   4869 
   4870 #ifdef PMAP_CACHE_VIPT
   4871 	/*
   4872 	 * If we have a VIPT cache, we need one page/pte per possible alias
   4873 	 * page so we won't violate cache aliasing rules.
   4874 	 */
   4875 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   4876 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   4877 #else
   4878 	nptes = 1;
   4879 #endif
   4880 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   4881 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   4882 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   4883 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   4884 	pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
   4885 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   4886 	    (void *)&msgbufaddr, NULL);
   4887 
   4888 	/*
   4889 	 * Allocate a range of kernel virtual address space to be used
   4890 	 * for L2 descriptor tables and metadata allocation in
   4891 	 * pmap_growkernel().
   4892 	 */
   4893 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   4894 	pmap_alloc_specials(&virtual_avail,
   4895 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   4896 	    &pmap_kernel_l2ptp_kva, NULL);
   4897 
   4898 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   4899 	pmap_alloc_specials(&virtual_avail,
   4900 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   4901 	    &pmap_kernel_l2dtable_kva, NULL);
   4902 
   4903 	/*
   4904 	 * init the static-global locks and global pmap list.
   4905 	 */
   4906 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   4907 
   4908 	/*
   4909 	 * We can now initialise the first L1's metadata.
   4910 	 */
   4911 	SLIST_INIT(&l1_list);
   4912 	TAILQ_INIT(&l1_lru_list);
   4913 	simple_lock_init(&l1_lru_lock);
   4914 	pmap_init_l1(l1, l1pt);
   4915 
   4916 	/* Set up vector page L1 details, if necessary */
   4917 	if (vector_page < KERNEL_BASE) {
   4918 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   4919 		l2b = pmap_get_l2_bucket(pm, vector_page);
   4920 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   4921 		    L1_C_DOM(pm->pm_domain);
   4922 	} else
   4923 		pm->pm_pl1vec = NULL;
   4924 
   4925 	/*
   4926 	 * Initialize the pmap cache
   4927 	 */
   4928 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   4929 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   4930 	LIST_INIT(&pmap_pmaps);
   4931 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   4932 
   4933 	/*
   4934 	 * Initialize the pv pool.
   4935 	 */
   4936 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   4937 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   4938 
   4939 	/*
   4940 	 * Initialize the L2 dtable pool and cache.
   4941 	 */
   4942 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   4943 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   4944 
   4945 	/*
   4946 	 * Initialise the L2 descriptor table pool and cache
   4947 	 */
   4948 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   4949 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   4950 	    pmap_l2ptp_ctor, NULL, NULL);
   4951 
   4952 	cpu_dcache_wbinv_all();
   4953 }
   4954 
   4955 static int
   4956 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   4957 {
   4958 	pd_entry_t *pdep, pde;
   4959 	pt_entry_t *ptep, pte;
   4960 	vaddr_t pa;
   4961 	int rv = 0;
   4962 
   4963 	/*
   4964 	 * Make sure the descriptor itself has the correct cache mode
   4965 	 */
   4966 	pdep = &kl1[L1_IDX(va)];
   4967 	pde = *pdep;
   4968 
   4969 	if (l1pte_section_p(pde)) {
   4970 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   4971 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   4972 			    pte_l1_s_cache_mode_pt;
   4973 			PTE_SYNC(pdep);
   4974 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   4975 			rv = 1;
   4976 		}
   4977 	} else {
   4978 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   4979 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   4980 		if (ptep == NULL)
   4981 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   4982 
   4983 		ptep = &ptep[l2pte_index(va)];
   4984 		pte = *ptep;
   4985 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   4986 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   4987 			    pte_l2_s_cache_mode_pt;
   4988 			PTE_SYNC(ptep);
   4989 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   4990 			rv = 1;
   4991 		}
   4992 	}
   4993 
   4994 	return (rv);
   4995 }
   4996 
   4997 static void
   4998 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   4999 {
   5000 	vaddr_t va = *availp;
   5001 	struct l2_bucket *l2b;
   5002 
   5003 	if (ptep) {
   5004 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5005 		if (l2b == NULL)
   5006 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5007 
   5008 		if (ptep)
   5009 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5010 	}
   5011 
   5012 	*vap = va;
   5013 	*availp = va + (PAGE_SIZE * pages);
   5014 }
   5015 
   5016 void
   5017 pmap_init(void)
   5018 {
   5019 	extern int physmem;
   5020 
   5021 	/*
   5022 	 * Set the available memory vars - These do not map to real memory
   5023 	 * addresses and cannot as the physical memory is fragmented.
   5024 	 * They are used by ps for %mem calculations.
   5025 	 * One could argue whether this should be the entire memory or just
   5026 	 * the memory that is useable in a user process.
   5027 	 */
   5028 	avail_start = 0;
   5029 	avail_end = physmem * PAGE_SIZE;
   5030 
   5031 	/*
   5032 	 * Now we need to free enough pv_entry structures to allow us to get
   5033 	 * the kmem_map/kmem_object allocated and inited (done after this
   5034 	 * function is finished).  to do this we allocate one bootstrap page out
   5035 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5036 	 * structures.   we never free this page.
   5037 	 */
   5038 	pool_setlowat(&pmap_pv_pool,
   5039 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5040 
   5041 	pmap_initialized = true;
   5042 }
   5043 
   5044 static vaddr_t last_bootstrap_page = 0;
   5045 static void *free_bootstrap_pages = NULL;
   5046 
   5047 static void *
   5048 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5049 {
   5050 	extern void *pool_page_alloc(struct pool *, int);
   5051 	vaddr_t new_page;
   5052 	void *rv;
   5053 
   5054 	if (pmap_initialized)
   5055 		return (pool_page_alloc(pp, flags));
   5056 
   5057 	if (free_bootstrap_pages) {
   5058 		rv = free_bootstrap_pages;
   5059 		free_bootstrap_pages = *((void **)rv);
   5060 		return (rv);
   5061 	}
   5062 
   5063 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5064 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5065 
   5066 	KASSERT(new_page > last_bootstrap_page);
   5067 	last_bootstrap_page = new_page;
   5068 	return ((void *)new_page);
   5069 }
   5070 
   5071 static void
   5072 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5073 {
   5074 	extern void pool_page_free(struct pool *, void *);
   5075 
   5076 	if ((vaddr_t)v <= last_bootstrap_page) {
   5077 		*((void **)v) = free_bootstrap_pages;
   5078 		free_bootstrap_pages = v;
   5079 		return;
   5080 	}
   5081 
   5082 	if (pmap_initialized) {
   5083 		pool_page_free(pp, v);
   5084 		return;
   5085 	}
   5086 }
   5087 
   5088 /*
   5089  * pmap_postinit()
   5090  *
   5091  * This routine is called after the vm and kmem subsystems have been
   5092  * initialised. This allows the pmap code to perform any initialisation
   5093  * that can only be done one the memory allocation is in place.
   5094  */
   5095 void
   5096 pmap_postinit(void)
   5097 {
   5098 	extern paddr_t physical_start, physical_end;
   5099 	struct l2_bucket *l2b;
   5100 	struct l1_ttable *l1;
   5101 	struct pglist plist;
   5102 	struct vm_page *m;
   5103 	pd_entry_t *pl1pt;
   5104 	pt_entry_t *ptep, pte;
   5105 	vaddr_t va, eva;
   5106 	u_int loop, needed;
   5107 	int error;
   5108 
   5109 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5110 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5111 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5112 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5113 
   5114 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5115 	needed -= 1;
   5116 
   5117 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5118 
   5119 	for (loop = 0; loop < needed; loop++, l1++) {
   5120 		/* Allocate a L1 page table */
   5121 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5122 		if (va == 0)
   5123 			panic("Cannot allocate L1 KVM");
   5124 
   5125 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5126 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5127 		if (error)
   5128 			panic("Cannot allocate L1 physical pages");
   5129 
   5130 		m = TAILQ_FIRST(&plist);
   5131 		eva = va + L1_TABLE_SIZE;
   5132 		pl1pt = (pd_entry_t *)va;
   5133 
   5134 		while (m && va < eva) {
   5135 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5136 
   5137 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   5138 
   5139 			/*
   5140 			 * Make sure the L1 descriptor table is mapped
   5141 			 * with the cache-mode set to write-through.
   5142 			 */
   5143 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5144 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5145 			pte = *ptep;
   5146 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5147 			*ptep = pte;
   5148 			PTE_SYNC(ptep);
   5149 			cpu_tlb_flushD_SE(va);
   5150 
   5151 			va += PAGE_SIZE;
   5152 			m = TAILQ_NEXT(m, pageq);
   5153 		}
   5154 
   5155 #ifdef DIAGNOSTIC
   5156 		if (m)
   5157 			panic("pmap_alloc_l1pt: pglist not empty");
   5158 #endif	/* DIAGNOSTIC */
   5159 
   5160 		pmap_init_l1(l1, pl1pt);
   5161 	}
   5162 
   5163 #ifdef DEBUG
   5164 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5165 	    needed);
   5166 #endif
   5167 }
   5168 
   5169 /*
   5170  * Note that the following routines are used by board-specific initialisation
   5171  * code to configure the initial kernel page tables.
   5172  *
   5173  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5174  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5175  * behaviour of the old pmap, and provides an easy migration path for
   5176  * initial bring-up of the new pmap on existing ports. Fortunately,
   5177  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5178  * will be deprecated.
   5179  *
   5180  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5181  * tables.
   5182  */
   5183 
   5184 /*
   5185  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5186  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5187  * find them as necessary.
   5188  *
   5189  * Note that the data on this list MUST remain valid after initarm() returns,
   5190  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5191  */
   5192 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5193 
   5194 static vaddr_t
   5195 kernel_pt_lookup(paddr_t pa)
   5196 {
   5197 	pv_addr_t *pv;
   5198 
   5199 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5200 #ifndef ARM32_NEW_VM_LAYOUT
   5201 		if (pv->pv_pa == (pa & ~PGOFSET))
   5202 			return (pv->pv_va | (pa & PGOFSET));
   5203 #else
   5204 		if (pv->pv_pa == pa)
   5205 			return (pv->pv_va);
   5206 #endif
   5207 	}
   5208 	return (0);
   5209 }
   5210 
   5211 /*
   5212  * pmap_map_section:
   5213  *
   5214  *	Create a single section mapping.
   5215  */
   5216 void
   5217 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5218 {
   5219 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5220 	pd_entry_t fl;
   5221 
   5222 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5223 
   5224 	switch (cache) {
   5225 	case PTE_NOCACHE:
   5226 	default:
   5227 		fl = 0;
   5228 		break;
   5229 
   5230 	case PTE_CACHE:
   5231 		fl = pte_l1_s_cache_mode;
   5232 		break;
   5233 
   5234 	case PTE_PAGETABLE:
   5235 		fl = pte_l1_s_cache_mode_pt;
   5236 		break;
   5237 	}
   5238 
   5239 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5240 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5241 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5242 }
   5243 
   5244 /*
   5245  * pmap_map_entry:
   5246  *
   5247  *	Create a single page mapping.
   5248  */
   5249 void
   5250 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5251 {
   5252 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5253 	pt_entry_t fl;
   5254 	pt_entry_t *pte;
   5255 
   5256 	KASSERT(((va | pa) & PGOFSET) == 0);
   5257 
   5258 	switch (cache) {
   5259 	case PTE_NOCACHE:
   5260 	default:
   5261 		fl = 0;
   5262 		break;
   5263 
   5264 	case PTE_CACHE:
   5265 		fl = pte_l2_s_cache_mode;
   5266 		break;
   5267 
   5268 	case PTE_PAGETABLE:
   5269 		fl = pte_l2_s_cache_mode_pt;
   5270 		break;
   5271 	}
   5272 
   5273 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5274 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5275 
   5276 #ifndef ARM32_NEW_VM_LAYOUT
   5277 	pte = (pt_entry_t *)
   5278 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5279 #else
   5280 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5281 #endif
   5282 	if (pte == NULL)
   5283 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5284 
   5285 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5286 #ifndef ARM32_NEW_VM_LAYOUT
   5287 	pte += (va >> PGSHIFT) & 0x3ff;
   5288 #else
   5289 	pte += l2pte_index(va);
   5290 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5291 #endif
   5292 	*pte = fl;
   5293 	PTE_SYNC(pte);
   5294 }
   5295 
   5296 /*
   5297  * pmap_link_l2pt:
   5298  *
   5299  *	Link the L2 page table specified by "l2pv" into the L1
   5300  *	page table at the slot for "va".
   5301  */
   5302 void
   5303 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5304 {
   5305 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5306 	u_int slot = va >> L1_S_SHIFT;
   5307 
   5308 #ifndef ARM32_NEW_VM_LAYOUT
   5309 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5310 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5311 #endif
   5312 
   5313 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5314 
   5315 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5316 #ifdef ARM32_NEW_VM_LAYOUT
   5317 	PTE_SYNC(&pde[slot]);
   5318 #else
   5319 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5320 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5321 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5322 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5323 #endif
   5324 
   5325 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5326 }
   5327 
   5328 /*
   5329  * pmap_map_chunk:
   5330  *
   5331  *	Map a chunk of memory using the most efficient mappings
   5332  *	possible (section, large page, small page) into the
   5333  *	provided L1 and L2 tables at the specified virtual address.
   5334  */
   5335 vsize_t
   5336 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5337     int prot, int cache)
   5338 {
   5339 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5340 	pt_entry_t *pte, f1, f2s, f2l;
   5341 	vsize_t resid;
   5342 	int i;
   5343 
   5344 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5345 
   5346 	if (l1pt == 0)
   5347 		panic("pmap_map_chunk: no L1 table provided");
   5348 
   5349 #ifdef VERBOSE_INIT_ARM
   5350 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5351 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5352 #endif
   5353 
   5354 	switch (cache) {
   5355 	case PTE_NOCACHE:
   5356 	default:
   5357 		f1 = 0;
   5358 		f2l = 0;
   5359 		f2s = 0;
   5360 		break;
   5361 
   5362 	case PTE_CACHE:
   5363 		f1 = pte_l1_s_cache_mode;
   5364 		f2l = pte_l2_l_cache_mode;
   5365 		f2s = pte_l2_s_cache_mode;
   5366 		break;
   5367 
   5368 	case PTE_PAGETABLE:
   5369 		f1 = pte_l1_s_cache_mode_pt;
   5370 		f2l = pte_l2_l_cache_mode_pt;
   5371 		f2s = pte_l2_s_cache_mode_pt;
   5372 		break;
   5373 	}
   5374 
   5375 	size = resid;
   5376 
   5377 	while (resid > 0) {
   5378 		/* See if we can use a section mapping. */
   5379 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5380 #ifdef VERBOSE_INIT_ARM
   5381 			printf("S");
   5382 #endif
   5383 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5384 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5385 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5386 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5387 			va += L1_S_SIZE;
   5388 			pa += L1_S_SIZE;
   5389 			resid -= L1_S_SIZE;
   5390 			continue;
   5391 		}
   5392 
   5393 		/*
   5394 		 * Ok, we're going to use an L2 table.  Make sure
   5395 		 * one is actually in the corresponding L1 slot
   5396 		 * for the current VA.
   5397 		 */
   5398 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5399 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5400 
   5401 #ifndef ARM32_NEW_VM_LAYOUT
   5402 		pte = (pt_entry_t *)
   5403 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5404 #else
   5405 		pte = (pt_entry_t *) kernel_pt_lookup(
   5406 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5407 #endif
   5408 		if (pte == NULL)
   5409 			panic("pmap_map_chunk: can't find L2 table for VA"
   5410 			    "0x%08lx", va);
   5411 
   5412 		/* See if we can use a L2 large page mapping. */
   5413 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5414 #ifdef VERBOSE_INIT_ARM
   5415 			printf("L");
   5416 #endif
   5417 			for (i = 0; i < 16; i++) {
   5418 #ifndef ARM32_NEW_VM_LAYOUT
   5419 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5420 				    L2_L_PROTO | pa |
   5421 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5422 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5423 #else
   5424 				pte[l2pte_index(va) + i] =
   5425 				    L2_L_PROTO | pa |
   5426 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5427 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5428 #endif
   5429 			}
   5430 			va += L2_L_SIZE;
   5431 			pa += L2_L_SIZE;
   5432 			resid -= L2_L_SIZE;
   5433 			continue;
   5434 		}
   5435 
   5436 		/* Use a small page mapping. */
   5437 #ifdef VERBOSE_INIT_ARM
   5438 		printf("P");
   5439 #endif
   5440 #ifndef ARM32_NEW_VM_LAYOUT
   5441 		pte[(va >> PGSHIFT) & 0x3ff] =
   5442 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5443 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5444 #else
   5445 		pte[l2pte_index(va)] =
   5446 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5447 		PTE_SYNC(&pte[l2pte_index(va)]);
   5448 #endif
   5449 		va += PAGE_SIZE;
   5450 		pa += PAGE_SIZE;
   5451 		resid -= PAGE_SIZE;
   5452 	}
   5453 #ifdef VERBOSE_INIT_ARM
   5454 	printf("\n");
   5455 #endif
   5456 	return (size);
   5457 }
   5458 
   5459 /********************** Static device map routines ***************************/
   5460 
   5461 static const struct pmap_devmap *pmap_devmap_table;
   5462 
   5463 /*
   5464  * Register the devmap table.  This is provided in case early console
   5465  * initialization needs to register mappings created by bootstrap code
   5466  * before pmap_devmap_bootstrap() is called.
   5467  */
   5468 void
   5469 pmap_devmap_register(const struct pmap_devmap *table)
   5470 {
   5471 
   5472 	pmap_devmap_table = table;
   5473 }
   5474 
   5475 /*
   5476  * Map all of the static regions in the devmap table, and remember
   5477  * the devmap table so other parts of the kernel can look up entries
   5478  * later.
   5479  */
   5480 void
   5481 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5482 {
   5483 	int i;
   5484 
   5485 	pmap_devmap_table = table;
   5486 
   5487 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5488 #ifdef VERBOSE_INIT_ARM
   5489 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5490 		    pmap_devmap_table[i].pd_pa,
   5491 		    pmap_devmap_table[i].pd_pa +
   5492 			pmap_devmap_table[i].pd_size - 1,
   5493 		    pmap_devmap_table[i].pd_va);
   5494 #endif
   5495 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5496 		    pmap_devmap_table[i].pd_pa,
   5497 		    pmap_devmap_table[i].pd_size,
   5498 		    pmap_devmap_table[i].pd_prot,
   5499 		    pmap_devmap_table[i].pd_cache);
   5500 	}
   5501 }
   5502 
   5503 const struct pmap_devmap *
   5504 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5505 {
   5506 	uint64_t endpa;
   5507 	int i;
   5508 
   5509 	if (pmap_devmap_table == NULL)
   5510 		return (NULL);
   5511 
   5512 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5513 
   5514 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5515 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5516 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5517 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5518 			return (&pmap_devmap_table[i]);
   5519 	}
   5520 
   5521 	return (NULL);
   5522 }
   5523 
   5524 const struct pmap_devmap *
   5525 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5526 {
   5527 	int i;
   5528 
   5529 	if (pmap_devmap_table == NULL)
   5530 		return (NULL);
   5531 
   5532 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5533 		if (va >= pmap_devmap_table[i].pd_va &&
   5534 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5535 				     pmap_devmap_table[i].pd_size - 1)
   5536 			return (&pmap_devmap_table[i]);
   5537 	}
   5538 
   5539 	return (NULL);
   5540 }
   5541 
   5542 /********************** PTE initialization routines **************************/
   5543 
   5544 /*
   5545  * These routines are called when the CPU type is identified to set up
   5546  * the PTE prototypes, cache modes, etc.
   5547  *
   5548  * The variables are always here, just in case LKMs need to reference
   5549  * them (though, they shouldn't).
   5550  */
   5551 
   5552 pt_entry_t	pte_l1_s_cache_mode;
   5553 pt_entry_t	pte_l1_s_cache_mode_pt;
   5554 pt_entry_t	pte_l1_s_cache_mask;
   5555 
   5556 pt_entry_t	pte_l2_l_cache_mode;
   5557 pt_entry_t	pte_l2_l_cache_mode_pt;
   5558 pt_entry_t	pte_l2_l_cache_mask;
   5559 
   5560 pt_entry_t	pte_l2_s_cache_mode;
   5561 pt_entry_t	pte_l2_s_cache_mode_pt;
   5562 pt_entry_t	pte_l2_s_cache_mask;
   5563 
   5564 pt_entry_t	pte_l2_s_prot_u;
   5565 pt_entry_t	pte_l2_s_prot_w;
   5566 pt_entry_t	pte_l2_s_prot_mask;
   5567 
   5568 pt_entry_t	pte_l1_s_proto;
   5569 pt_entry_t	pte_l1_c_proto;
   5570 pt_entry_t	pte_l2_s_proto;
   5571 
   5572 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5573 void		(*pmap_zero_page_func)(paddr_t);
   5574 
   5575 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5576 void
   5577 pmap_pte_init_generic(void)
   5578 {
   5579 
   5580 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5581 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5582 
   5583 	pte_l2_l_cache_mode = L2_B|L2_C;
   5584 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5585 
   5586 	pte_l2_s_cache_mode = L2_B|L2_C;
   5587 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5588 
   5589 	/*
   5590 	 * If we have a write-through cache, set B and C.  If
   5591 	 * we have a write-back cache, then we assume setting
   5592 	 * only C will make those pages write-through.
   5593 	 */
   5594 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5595 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5596 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5597 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5598 	} else {
   5599 #if ARM_MMU_V6 > 1
   5600 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5601 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5602 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5603 #else
   5604 		pte_l1_s_cache_mode_pt = L1_S_C;
   5605 		pte_l2_l_cache_mode_pt = L2_C;
   5606 		pte_l2_s_cache_mode_pt = L2_C;
   5607 #endif
   5608 	}
   5609 
   5610 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5611 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5612 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5613 
   5614 	pte_l1_s_proto = L1_S_PROTO_generic;
   5615 	pte_l1_c_proto = L1_C_PROTO_generic;
   5616 	pte_l2_s_proto = L2_S_PROTO_generic;
   5617 
   5618 	pmap_copy_page_func = pmap_copy_page_generic;
   5619 	pmap_zero_page_func = pmap_zero_page_generic;
   5620 }
   5621 
   5622 #if defined(CPU_ARM8)
   5623 void
   5624 pmap_pte_init_arm8(void)
   5625 {
   5626 
   5627 	/*
   5628 	 * ARM8 is compatible with generic, but we need to use
   5629 	 * the page tables uncached.
   5630 	 */
   5631 	pmap_pte_init_generic();
   5632 
   5633 	pte_l1_s_cache_mode_pt = 0;
   5634 	pte_l2_l_cache_mode_pt = 0;
   5635 	pte_l2_s_cache_mode_pt = 0;
   5636 }
   5637 #endif /* CPU_ARM8 */
   5638 
   5639 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5640 void
   5641 pmap_pte_init_arm9(void)
   5642 {
   5643 
   5644 	/*
   5645 	 * ARM9 is compatible with generic, but we want to use
   5646 	 * write-through caching for now.
   5647 	 */
   5648 	pmap_pte_init_generic();
   5649 
   5650 	pte_l1_s_cache_mode = L1_S_C;
   5651 	pte_l2_l_cache_mode = L2_C;
   5652 	pte_l2_s_cache_mode = L2_C;
   5653 
   5654 	pte_l1_s_cache_mode_pt = L1_S_C;
   5655 	pte_l2_l_cache_mode_pt = L2_C;
   5656 	pte_l2_s_cache_mode_pt = L2_C;
   5657 }
   5658 #endif /* CPU_ARM9 */
   5659 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5660 
   5661 #if defined(CPU_ARM10)
   5662 void
   5663 pmap_pte_init_arm10(void)
   5664 {
   5665 
   5666 	/*
   5667 	 * ARM10 is compatible with generic, but we want to use
   5668 	 * write-through caching for now.
   5669 	 */
   5670 	pmap_pte_init_generic();
   5671 
   5672 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5673 	pte_l2_l_cache_mode = L2_B | L2_C;
   5674 	pte_l2_s_cache_mode = L2_B | L2_C;
   5675 
   5676 	pte_l1_s_cache_mode_pt = L1_S_C;
   5677 	pte_l2_l_cache_mode_pt = L2_C;
   5678 	pte_l2_s_cache_mode_pt = L2_C;
   5679 
   5680 }
   5681 #endif /* CPU_ARM10 */
   5682 
   5683 #if ARM_MMU_SA1 == 1
   5684 void
   5685 pmap_pte_init_sa1(void)
   5686 {
   5687 
   5688 	/*
   5689 	 * The StrongARM SA-1 cache does not have a write-through
   5690 	 * mode.  So, do the generic initialization, then reset
   5691 	 * the page table cache mode to B=1,C=1, and note that
   5692 	 * the PTEs need to be sync'd.
   5693 	 */
   5694 	pmap_pte_init_generic();
   5695 
   5696 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5697 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5698 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5699 
   5700 	pmap_needs_pte_sync = 1;
   5701 }
   5702 #endif /* ARM_MMU_SA1 == 1*/
   5703 
   5704 #if ARM_MMU_XSCALE == 1
   5705 #if (ARM_NMMUS > 1)
   5706 static u_int xscale_use_minidata;
   5707 #endif
   5708 
   5709 void
   5710 pmap_pte_init_xscale(void)
   5711 {
   5712 	uint32_t auxctl;
   5713 	int write_through = 0;
   5714 
   5715 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5716 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   5717 
   5718 	pte_l2_l_cache_mode = L2_B|L2_C;
   5719 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   5720 
   5721 	pte_l2_s_cache_mode = L2_B|L2_C;
   5722 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   5723 
   5724 	pte_l1_s_cache_mode_pt = L1_S_C;
   5725 	pte_l2_l_cache_mode_pt = L2_C;
   5726 	pte_l2_s_cache_mode_pt = L2_C;
   5727 
   5728 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   5729 	/*
   5730 	 * The XScale core has an enhanced mode where writes that
   5731 	 * miss the cache cause a cache line to be allocated.  This
   5732 	 * is significantly faster than the traditional, write-through
   5733 	 * behavior of this case.
   5734 	 */
   5735 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   5736 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   5737 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   5738 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   5739 
   5740 #ifdef XSCALE_CACHE_WRITE_THROUGH
   5741 	/*
   5742 	 * Some versions of the XScale core have various bugs in
   5743 	 * their cache units, the work-around for which is to run
   5744 	 * the cache in write-through mode.  Unfortunately, this
   5745 	 * has a major (negative) impact on performance.  So, we
   5746 	 * go ahead and run fast-and-loose, in the hopes that we
   5747 	 * don't line up the planets in a way that will trip the
   5748 	 * bugs.
   5749 	 *
   5750 	 * However, we give you the option to be slow-but-correct.
   5751 	 */
   5752 	write_through = 1;
   5753 #elif defined(XSCALE_CACHE_WRITE_BACK)
   5754 	/* force write back cache mode */
   5755 	write_through = 0;
   5756 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   5757 	/*
   5758 	 * Intel PXA2[15]0 processors are known to have a bug in
   5759 	 * write-back cache on revision 4 and earlier (stepping
   5760 	 * A[01] and B[012]).  Fixed for C0 and later.
   5761 	 */
   5762 	{
   5763 		uint32_t id, type;
   5764 
   5765 		id = cpufunc_id();
   5766 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   5767 
   5768 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   5769 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   5770 				/* write through for stepping A0-1 and B0-2 */
   5771 				write_through = 1;
   5772 			}
   5773 		}
   5774 	}
   5775 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   5776 
   5777 	if (write_through) {
   5778 		pte_l1_s_cache_mode = L1_S_C;
   5779 		pte_l2_l_cache_mode = L2_C;
   5780 		pte_l2_s_cache_mode = L2_C;
   5781 	}
   5782 
   5783 #if (ARM_NMMUS > 1)
   5784 	xscale_use_minidata = 1;
   5785 #endif
   5786 
   5787 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   5788 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   5789 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   5790 
   5791 	pte_l1_s_proto = L1_S_PROTO_xscale;
   5792 	pte_l1_c_proto = L1_C_PROTO_xscale;
   5793 	pte_l2_s_proto = L2_S_PROTO_xscale;
   5794 
   5795 	pmap_copy_page_func = pmap_copy_page_xscale;
   5796 	pmap_zero_page_func = pmap_zero_page_xscale;
   5797 
   5798 	/*
   5799 	 * Disable ECC protection of page table access, for now.
   5800 	 */
   5801 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   5802 	auxctl &= ~XSCALE_AUXCTL_P;
   5803 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   5804 }
   5805 
   5806 /*
   5807  * xscale_setup_minidata:
   5808  *
   5809  *	Set up the mini-data cache clean area.  We require the
   5810  *	caller to allocate the right amount of physically and
   5811  *	virtually contiguous space.
   5812  */
   5813 void
   5814 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   5815 {
   5816 	extern vaddr_t xscale_minidata_clean_addr;
   5817 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   5818 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5819 	pt_entry_t *pte;
   5820 	vsize_t size;
   5821 	uint32_t auxctl;
   5822 
   5823 	xscale_minidata_clean_addr = va;
   5824 
   5825 	/* Round it to page size. */
   5826 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   5827 
   5828 	for (; size != 0;
   5829 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   5830 #ifndef ARM32_NEW_VM_LAYOUT
   5831 		pte = (pt_entry_t *)
   5832 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5833 #else
   5834 		pte = (pt_entry_t *) kernel_pt_lookup(
   5835 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5836 #endif
   5837 		if (pte == NULL)
   5838 			panic("xscale_setup_minidata: can't find L2 table for "
   5839 			    "VA 0x%08lx", va);
   5840 #ifndef ARM32_NEW_VM_LAYOUT
   5841 		pte[(va >> PGSHIFT) & 0x3ff] =
   5842 #else
   5843 		pte[l2pte_index(va)] =
   5844 #endif
   5845 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   5846 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   5847 	}
   5848 
   5849 	/*
   5850 	 * Configure the mini-data cache for write-back with
   5851 	 * read/write-allocate.
   5852 	 *
   5853 	 * NOTE: In order to reconfigure the mini-data cache, we must
   5854 	 * make sure it contains no valid data!  In order to do that,
   5855 	 * we must issue a global data cache invalidate command!
   5856 	 *
   5857 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   5858 	 * THIS IS VERY IMPORTANT!
   5859 	 */
   5860 
   5861 	/* Invalidate data and mini-data. */
   5862 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   5863 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   5864 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   5865 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   5866 }
   5867 
   5868 /*
   5869  * Change the PTEs for the specified kernel mappings such that they
   5870  * will use the mini data cache instead of the main data cache.
   5871  */
   5872 void
   5873 pmap_uarea(vaddr_t va)
   5874 {
   5875 	struct l2_bucket *l2b;
   5876 	pt_entry_t *ptep, *sptep, pte;
   5877 	vaddr_t next_bucket, eva;
   5878 
   5879 #if (ARM_NMMUS > 1)
   5880 	if (xscale_use_minidata == 0)
   5881 		return;
   5882 #endif
   5883 
   5884 	eva = va + USPACE;
   5885 
   5886 	while (va < eva) {
   5887 		next_bucket = L2_NEXT_BUCKET(va);
   5888 		if (next_bucket > eva)
   5889 			next_bucket = eva;
   5890 
   5891 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5892 		KDASSERT(l2b != NULL);
   5893 
   5894 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   5895 
   5896 		while (va < next_bucket) {
   5897 			pte = *ptep;
   5898 			if (!l2pte_minidata(pte)) {
   5899 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   5900 				cpu_tlb_flushD_SE(va);
   5901 				*ptep = pte & ~L2_B;
   5902 			}
   5903 			ptep++;
   5904 			va += PAGE_SIZE;
   5905 		}
   5906 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   5907 	}
   5908 	cpu_cpwait();
   5909 }
   5910 #endif /* ARM_MMU_XSCALE == 1 */
   5911 
   5912 #if defined(DDB)
   5913 /*
   5914  * A couple of ddb-callable functions for dumping pmaps
   5915  */
   5916 void pmap_dump_all(void);
   5917 void pmap_dump(pmap_t);
   5918 
   5919 void
   5920 pmap_dump_all(void)
   5921 {
   5922 	pmap_t pm;
   5923 
   5924 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   5925 		if (pm == pmap_kernel())
   5926 			continue;
   5927 		pmap_dump(pm);
   5928 		printf("\n");
   5929 	}
   5930 }
   5931 
   5932 static pt_entry_t ncptes[64];
   5933 static void pmap_dump_ncpg(pmap_t);
   5934 
   5935 void
   5936 pmap_dump(pmap_t pm)
   5937 {
   5938 	struct l2_dtable *l2;
   5939 	struct l2_bucket *l2b;
   5940 	pt_entry_t *ptep, pte;
   5941 	vaddr_t l2_va, l2b_va, va;
   5942 	int i, j, k, occ, rows = 0;
   5943 
   5944 	if (pm == pmap_kernel())
   5945 		printf("pmap_kernel (%p): ", pm);
   5946 	else
   5947 		printf("user pmap (%p): ", pm);
   5948 
   5949 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   5950 
   5951 	l2_va = 0;
   5952 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   5953 		l2 = pm->pm_l2[i];
   5954 
   5955 		if (l2 == NULL || l2->l2_occupancy == 0)
   5956 			continue;
   5957 
   5958 		l2b_va = l2_va;
   5959 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   5960 			l2b = &l2->l2_bucket[j];
   5961 
   5962 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   5963 				continue;
   5964 
   5965 			ptep = l2b->l2b_kva;
   5966 
   5967 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   5968 				;
   5969 
   5970 			k &= ~63;
   5971 			occ = l2b->l2b_occupancy;
   5972 			va = l2b_va + (k * 4096);
   5973 			for (; k < 256; k++, va += 0x1000) {
   5974 				char ch = ' ';
   5975 				if ((k % 64) == 0) {
   5976 					if ((rows % 8) == 0) {
   5977 						printf(
   5978 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   5979 					}
   5980 					printf("%08lx: ", va);
   5981 				}
   5982 
   5983 				ncptes[k & 63] = 0;
   5984 				pte = ptep[k];
   5985 				if (pte == 0) {
   5986 					ch = '.';
   5987 				} else {
   5988 					occ--;
   5989 					switch (pte & 0x0c) {
   5990 					case 0x00:
   5991 						ch = 'D'; /* No cache No buff */
   5992 						break;
   5993 					case 0x04:
   5994 						ch = 'B'; /* No cache buff */
   5995 						break;
   5996 					case 0x08:
   5997 						if (pte & 0x40)
   5998 							ch = 'm';
   5999 						else
   6000 						   ch = 'C'; /* Cache No buff */
   6001 						break;
   6002 					case 0x0c:
   6003 						ch = 'F'; /* Cache Buff */
   6004 						break;
   6005 					}
   6006 
   6007 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6008 						ch += 0x20;
   6009 
   6010 					if ((pte & 0xc) == 0)
   6011 						ncptes[k & 63] = pte;
   6012 				}
   6013 
   6014 				if ((k % 64) == 63) {
   6015 					rows++;
   6016 					printf("%c\n", ch);
   6017 					pmap_dump_ncpg(pm);
   6018 					if (occ == 0)
   6019 						break;
   6020 				} else
   6021 					printf("%c", ch);
   6022 			}
   6023 		}
   6024 	}
   6025 }
   6026 
   6027 static void
   6028 pmap_dump_ncpg(pmap_t pm)
   6029 {
   6030 	struct vm_page *pg;
   6031 	struct pv_entry *pv;
   6032 	int i;
   6033 
   6034 	for (i = 0; i < 63; i++) {
   6035 		if (ncptes[i] == 0)
   6036 			continue;
   6037 
   6038 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6039 		if (pg == NULL)
   6040 			continue;
   6041 
   6042 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6043 		    VM_PAGE_TO_PHYS(pg),
   6044 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6045 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6046 
   6047 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   6048 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6049 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6050 			    pv->pv_va, pv->pv_flags);
   6051 		}
   6052 	}
   6053 }
   6054 #endif
   6055 
   6056 #ifdef PMAP_STEAL_MEMORY
   6057 void
   6058 pmap_boot_pageadd(pv_addr_t *newpv)
   6059 {
   6060 	pv_addr_t *pv, *npv;
   6061 
   6062 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6063 		if (newpv->pv_pa < pv->pv_va) {
   6064 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6065 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6066 				newpv->pv_size += pv->pv_size;
   6067 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6068 			}
   6069 			pv = NULL;
   6070 		} else {
   6071 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6072 			     pv = npv) {
   6073 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6074 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6075 				if (newpv->pv_pa > npv->pv_pa)
   6076 					continue;
   6077 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6078 					pv->pv_size += newpv->pv_size;
   6079 					return;
   6080 				}
   6081 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6082 					break;
   6083 				newpv->pv_size += npv->pv_size;
   6084 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6085 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6086 				return;
   6087 			}
   6088 		}
   6089 	}
   6090 
   6091 	if (pv) {
   6092 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6093 	} else {
   6094 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6095 	}
   6096 }
   6097 
   6098 void
   6099 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6100 	pv_addr_t *rpv)
   6101 {
   6102 	pv_addr_t *pv, **pvp;
   6103 	struct vm_physseg *ps;
   6104 	size_t i;
   6105 
   6106 	KASSERT(amount & PGOFSET);
   6107 	KASSERT((mask & PGOFSET) == 0);
   6108 	KASSERT((match & PGOFSET) == 0);
   6109 	KASSERT(amount != 0);
   6110 
   6111 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6112 	     (pv = *pvp) != NULL;
   6113 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6114 		pv_addr_t *newpv;
   6115 		psize_t off;
   6116 		/*
   6117 		 * If this entry is too small to satify the request...
   6118 		 */
   6119 		KASSERT(pv->pv_size > 0);
   6120 		if (pv->pv_size < amount)
   6121 			continue;
   6122 
   6123 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6124 			if (((pv->pv_pa + off) & mask) == match
   6125 			    && off + amount <= pv->pv_size)
   6126 				break;
   6127 		}
   6128 		if (off > mask)
   6129 			continue;
   6130 
   6131 		rpv->pv_va = pv->pv_va + off;
   6132 		rpv->pv_pa = pv->pv_pa + off;
   6133 		rpv->pv_size = amount;
   6134 		pv->pv_size -= amount;
   6135 		if (pv->pv_size == 0) {
   6136 			KASSERT(off == 0);
   6137 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6138 			*pvp = SLIST_NEXT(pv, pv_list);
   6139 		} else if (off == 0) {
   6140 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6141 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6142 			*newpv = *pv;
   6143 			newpv->pv_pa += amount;
   6144 			newpv->pv_va += amount;
   6145 			*pvp = newpv;
   6146 		} else if (off < pv->pv_size) {
   6147 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6148 			*newpv = *pv;
   6149 			newpv->pv_size -= off;
   6150 			newpv->pv_pa += off + amount;
   6151 			newpv->pv_va += off + amount;
   6152 
   6153 			SLIST_NEXT(pv, pv_list) = newpv;
   6154 			pv->pv_size = off;
   6155 		} else {
   6156 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6157 		}
   6158 		memset((void *)rpv->pv_va, 0, amount);
   6159 		return;
   6160 	}
   6161 
   6162 	if (vm_nphysseg == 0)
   6163 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6164 
   6165 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6166 	     (pv = *pvp) != NULL;
   6167 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6168 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6169 			break;
   6170 	}
   6171 	KASSERT(mask == 0);
   6172 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6173 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6174 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6175 			rpv->pv_va = pv->pv_va;
   6176 			rpv->pv_pa = pv->pv_pa;
   6177 			rpv->pv_size = amount;
   6178 			*pvp = NULL;
   6179 			pmap_map_chunk(kernel_l1pt.pv_va,
   6180 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6181 			     ptoa(ps->avail_start),
   6182 			     amount - pv->pv_size,
   6183 			     VM_PROT_READ|VM_PROT_WRITE,
   6184 			     PTE_CACHE);
   6185 			ps->avail_start += atop(amount - pv->pv_size);
   6186 			/*
   6187 			 * If we consumed the entire physseg, remove it.
   6188 			 */
   6189 			if (ps->avail_start == ps->avail_end) {
   6190 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6191 					ps[0] = ps[1];
   6192 			}
   6193 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6194 			return;
   6195 		}
   6196 	}
   6197 
   6198 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6199 }
   6200 
   6201 vaddr_t
   6202 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6203 {
   6204 	pv_addr_t pv;
   6205 
   6206 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6207 
   6208 	return pv.pv_va;
   6209 }
   6210 #endif /* PMAP_STEAL_MEMORY */
   6211