pmap.c revision 1.164.12.9 1 /* $NetBSD: pmap.c,v 1.164.12.9 2008/01/09 01:45:12 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * armv6 and VIPT cache support by 3am Software Foundry,
144 * Copyright (c) 2007 Danger Inc
145 */
146
147 /*
148 * Performance improvements, UVM changes, overhauls and part-rewrites
149 * were contributed by Neil A. Carson <neil (at) causality.com>.
150 */
151
152 /*
153 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
154 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
155 * Systems, Inc.
156 *
157 * There are still a few things outstanding at this time:
158 *
159 * - There are some unresolved issues for MP systems:
160 *
161 * o The L1 metadata needs a lock, or more specifically, some places
162 * need to acquire an exclusive lock when modifying L1 translation
163 * table entries.
164 *
165 * o When one cpu modifies an L1 entry, and that L1 table is also
166 * being used by another cpu, then the latter will need to be told
167 * that a tlb invalidation may be necessary. (But only if the old
168 * domain number in the L1 entry being over-written is currently
169 * the active domain on that cpu). I guess there are lots more tlb
170 * shootdown issues too...
171 *
172 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
173 * MP systems will lose big-time because of the MMU domain hack.
174 * The only way this can be solved (apart from moving the vector
175 * page to 0xffff0000) is to reserve the first 1MB of user address
176 * space for kernel use only. This would require re-linking all
177 * applications so that the text section starts above this 1MB
178 * boundary.
179 *
180 * o Tracking which VM space is resident in the cache/tlb has not yet
181 * been implemented for MP systems.
182 *
183 * o Finally, there is a pathological condition where two cpus running
184 * two separate processes (not lwps) which happen to share an L1
185 * can get into a fight over one or more L1 entries. This will result
186 * in a significant slow-down if both processes are in tight loops.
187 */
188
189 /*
190 * Special compilation symbols
191 * PMAP_DEBUG - Build in pmap_debug_level code
192 */
193
194 /* Include header files */
195
196 #include "opt_cpuoptions.h"
197 #include "opt_pmap_debug.h"
198 #include "opt_ddb.h"
199 #include "opt_lockdebug.h"
200 #include "opt_multiprocessor.h"
201
202 #include <sys/param.h>
203 #include <sys/types.h>
204 #include <sys/kernel.h>
205 #include <sys/systm.h>
206 #include <sys/proc.h>
207 #include <sys/malloc.h>
208 #include <sys/user.h>
209 #include <sys/pool.h>
210 #include <sys/cdefs.h>
211 #include <sys/cpu.h>
212
213 #include <uvm/uvm.h>
214
215 #include <machine/bus.h>
216 #include <machine/pmap.h>
217 #include <machine/pcb.h>
218 #include <machine/param.h>
219 #include <arm/arm32/katelib.h>
220
221 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.164.12.9 2008/01/09 01:45:12 matt Exp $");
222
223 #ifdef PMAP_DEBUG
224
225 /* XXX need to get rid of all refs to this */
226 int pmap_debug_level = 0;
227
228 /*
229 * for switching to potentially finer grained debugging
230 */
231 #define PDB_FOLLOW 0x0001
232 #define PDB_INIT 0x0002
233 #define PDB_ENTER 0x0004
234 #define PDB_REMOVE 0x0008
235 #define PDB_CREATE 0x0010
236 #define PDB_PTPAGE 0x0020
237 #define PDB_GROWKERN 0x0040
238 #define PDB_BITS 0x0080
239 #define PDB_COLLECT 0x0100
240 #define PDB_PROTECT 0x0200
241 #define PDB_MAP_L1 0x0400
242 #define PDB_BOOTSTRAP 0x1000
243 #define PDB_PARANOIA 0x2000
244 #define PDB_WIRING 0x4000
245 #define PDB_PVDUMP 0x8000
246 #define PDB_VAC 0x10000
247 #define PDB_KENTER 0x20000
248 #define PDB_KREMOVE 0x40000
249 #define PDB_EXEC 0x80000
250
251 int debugmap = 1;
252 int pmapdebug = 0;
253 #define NPDEBUG(_lev_,_stat_) \
254 if (pmapdebug & (_lev_)) \
255 ((_stat_))
256
257 #else /* PMAP_DEBUG */
258 #define NPDEBUG(_lev_,_stat_) /* Nothing */
259 #endif /* PMAP_DEBUG */
260
261 /*
262 * pmap_kernel() points here
263 */
264 struct pmap kernel_pmap_store;
265
266 /*
267 * Which pmap is currently 'live' in the cache
268 *
269 * XXXSCW: Fix for SMP ...
270 */
271 static pmap_t pmap_recent_user;
272
273 /*
274 * Pool and cache that pmap structures are allocated from.
275 * We use a cache to avoid clearing the pm_l2[] array (1KB)
276 * in pmap_create().
277 */
278 static struct pool_cache pmap_cache;
279 static LIST_HEAD(, pmap) pmap_pmaps;
280
281 /*
282 * Pool of PV structures
283 */
284 static struct pool pmap_pv_pool;
285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
288 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
289 };
290
291 /*
292 * Pool and cache of l2_dtable structures.
293 * We use a cache to avoid clearing the structures when they're
294 * allocated. (196 bytes)
295 */
296 static struct pool_cache pmap_l2dtable_cache;
297 static vaddr_t pmap_kernel_l2dtable_kva;
298
299 /*
300 * Pool and cache of L2 page descriptors.
301 * We use a cache to avoid clearing the descriptor table
302 * when they're allocated. (1KB)
303 */
304 static struct pool_cache pmap_l2ptp_cache;
305 static vaddr_t pmap_kernel_l2ptp_kva;
306 static paddr_t pmap_kernel_l2ptp_phys;
307
308 #ifdef PMAPCOUNT
309 #define PMAP_EVCNT_INITIALIZER(name) \
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
311
312 #ifdef PMAP_CACHE_VIPT
313 static struct evcnt pmap_ev_vac_color_new =
314 PMAP_EVCNT_INITIALIZER("new page color");
315 static struct evcnt pmap_ev_vac_color_reuse =
316 PMAP_EVCNT_INITIALIZER("ok first page color");
317 static struct evcnt pmap_ev_vac_color_ok =
318 PMAP_EVCNT_INITIALIZER("ok page color");
319 static struct evcnt pmap_ev_vac_color_change =
320 PMAP_EVCNT_INITIALIZER("change page color");
321 static struct evcnt pmap_ev_vac_color_erase =
322 PMAP_EVCNT_INITIALIZER("erase page color");
323 static struct evcnt pmap_ev_vac_color_none =
324 PMAP_EVCNT_INITIALIZER("no page color");
325 static struct evcnt pmap_ev_vac_color_restore =
326 PMAP_EVCNT_INITIALIZER("restore page color");
327
328 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
335 #endif
336
337 static struct evcnt pmap_ev_mappings =
338 PMAP_EVCNT_INITIALIZER("pages mapped");
339 static struct evcnt pmap_ev_unmappings =
340 PMAP_EVCNT_INITIALIZER("pages unmapped");
341 static struct evcnt pmap_ev_remappings =
342 PMAP_EVCNT_INITIALIZER("pages remapped");
343
344 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
345 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
346 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
347
348 static struct evcnt pmap_ev_kernel_mappings =
349 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
350 static struct evcnt pmap_ev_kernel_unmappings =
351 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
352 static struct evcnt pmap_ev_kernel_remappings =
353 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
354
355 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
356 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
358
359 static struct evcnt pmap_ev_kenter_mappings =
360 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
361 static struct evcnt pmap_ev_kenter_unmappings =
362 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
363 static struct evcnt pmap_ev_kenter_remappings =
364 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
365 static struct evcnt pmap_ev_pt_mappings =
366 PMAP_EVCNT_INITIALIZER("page table pages mapped");
367
368 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
369 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
371 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
372
373 #ifdef PMAP_CACHE_VIPT
374 static struct evcnt pmap_ev_exec_mappings =
375 PMAP_EVCNT_INITIALIZER("exec pages mapped");
376 static struct evcnt pmap_ev_exec_cached =
377 PMAP_EVCNT_INITIALIZER("exec pages cached");
378
379 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
380 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
381
382 static struct evcnt pmap_ev_exec_synced =
383 PMAP_EVCNT_INITIALIZER("exec pages synced");
384 static struct evcnt pmap_ev_exec_synced_map =
385 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
386 static struct evcnt pmap_ev_exec_synced_unmap =
387 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
388 static struct evcnt pmap_ev_exec_synced_remap =
389 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
390 static struct evcnt pmap_ev_exec_synced_clearbit =
391 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
392 static struct evcnt pmap_ev_exec_synced_kremove =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
394
395 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
396 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
401
402 static struct evcnt pmap_ev_exec_discarded_unmap =
403 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
404 static struct evcnt pmap_ev_exec_discarded_zero =
405 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
406 static struct evcnt pmap_ev_exec_discarded_copy =
407 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
408 static struct evcnt pmap_ev_exec_discarded_page_protect =
409 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
410 static struct evcnt pmap_ev_exec_discarded_clearbit =
411 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
412 static struct evcnt pmap_ev_exec_discarded_kremove =
413 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
414
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
421 #endif /* PMAP_CACHE_VIPT */
422
423 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
424 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
425 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
426
427 EVCNT_ATTACH_STATIC(pmap_ev_updates);
428 EVCNT_ATTACH_STATIC(pmap_ev_collects);
429 EVCNT_ATTACH_STATIC(pmap_ev_activations);
430
431 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
432 #else
433 #define PMAPCOUNT(x) ((void)0)
434 #endif
435
436 /*
437 * pmap copy/zero page, and mem(5) hook point
438 */
439 static pt_entry_t *csrc_pte, *cdst_pte;
440 static vaddr_t csrcp, cdstp;
441 vaddr_t memhook;
442 extern void *msgbufaddr;
443
444 /*
445 * Flag to indicate if pmap_init() has done its thing
446 */
447 bool pmap_initialized;
448
449 /*
450 * Misc. locking data structures
451 */
452
453 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
454 static struct lock pmap_main_lock;
455
456 #define PMAP_MAP_TO_HEAD_LOCK() \
457 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
458 #define PMAP_MAP_TO_HEAD_UNLOCK() \
459 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
460 #define PMAP_HEAD_TO_MAP_LOCK() \
461 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
462 #define PMAP_HEAD_TO_MAP_UNLOCK() \
463 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
464 #else
465 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
466 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
467 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
468 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
469 #endif
470
471 #define pmap_acquire_pmap_lock(pm) \
472 do { \
473 if ((pm) != pmap_kernel()) \
474 simple_lock(&(pm)->pm_lock); \
475 } while (/*CONSTCOND*/0)
476
477 #define pmap_release_pmap_lock(pm) \
478 do { \
479 if ((pm) != pmap_kernel()) \
480 simple_unlock(&(pm)->pm_lock); \
481 } while (/*CONSTCOND*/0)
482
483
484 /*
485 * Metadata for L1 translation tables.
486 */
487 struct l1_ttable {
488 /* Entry on the L1 Table list */
489 SLIST_ENTRY(l1_ttable) l1_link;
490
491 /* Entry on the L1 Least Recently Used list */
492 TAILQ_ENTRY(l1_ttable) l1_lru;
493
494 /* Track how many domains are allocated from this L1 */
495 volatile u_int l1_domain_use_count;
496
497 /*
498 * A free-list of domain numbers for this L1.
499 * We avoid using ffs() and a bitmap to track domains since ffs()
500 * is slow on ARM.
501 */
502 u_int8_t l1_domain_first;
503 u_int8_t l1_domain_free[PMAP_DOMAINS];
504
505 /* Physical address of this L1 page table */
506 paddr_t l1_physaddr;
507
508 /* KVA of this L1 page table */
509 pd_entry_t *l1_kva;
510 };
511
512 /*
513 * Convert a virtual address into its L1 table index. That is, the
514 * index used to locate the L2 descriptor table pointer in an L1 table.
515 * This is basically used to index l1->l1_kva[].
516 *
517 * Each L2 descriptor table represents 1MB of VA space.
518 */
519 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
520
521 /*
522 * L1 Page Tables are tracked using a Least Recently Used list.
523 * - New L1s are allocated from the HEAD.
524 * - Freed L1s are added to the TAIl.
525 * - Recently accessed L1s (where an 'access' is some change to one of
526 * the userland pmaps which owns this L1) are moved to the TAIL.
527 */
528 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
529 static struct simplelock l1_lru_lock;
530
531 /*
532 * A list of all L1 tables
533 */
534 static SLIST_HEAD(, l1_ttable) l1_list;
535
536 /*
537 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
538 *
539 * This is normally 16MB worth L2 page descriptors for any given pmap.
540 * Reference counts are maintained for L2 descriptors so they can be
541 * freed when empty.
542 */
543 struct l2_dtable {
544 /* The number of L2 page descriptors allocated to this l2_dtable */
545 u_int l2_occupancy;
546
547 /* List of L2 page descriptors */
548 struct l2_bucket {
549 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
550 paddr_t l2b_phys; /* Physical address of same */
551 u_short l2b_l1idx; /* This L2 table's L1 index */
552 u_short l2b_occupancy; /* How many active descriptors */
553 } l2_bucket[L2_BUCKET_SIZE];
554 };
555
556 /*
557 * Given an L1 table index, calculate the corresponding l2_dtable index
558 * and bucket index within the l2_dtable.
559 */
560 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
561 (L2_SIZE - 1))
562 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
563
564 /*
565 * Given a virtual address, this macro returns the
566 * virtual address required to drop into the next L2 bucket.
567 */
568 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
569
570 /*
571 * L2 allocation.
572 */
573 #define pmap_alloc_l2_dtable() \
574 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
575 #define pmap_free_l2_dtable(l2) \
576 pool_cache_put(&pmap_l2dtable_cache, (l2))
577 #define pmap_alloc_l2_ptp(pap) \
578 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
579 PR_NOWAIT, (pap)))
580
581 /*
582 * We try to map the page tables write-through, if possible. However, not
583 * all CPUs have a write-through cache mode, so on those we have to sync
584 * the cache when we frob page tables.
585 *
586 * We try to evaluate this at compile time, if possible. However, it's
587 * not always possible to do that, hence this run-time var.
588 */
589 int pmap_needs_pte_sync;
590
591 /*
592 * Real definition of pv_entry.
593 */
594 struct pv_entry {
595 struct pv_entry *pv_next; /* next pv_entry */
596 pmap_t pv_pmap; /* pmap where mapping lies */
597 vaddr_t pv_va; /* virtual address for mapping */
598 u_int pv_flags; /* flags */
599 };
600
601 /*
602 * Macro to determine if a mapping might be resident in the
603 * instruction cache and/or TLB
604 */
605 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
606 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
607
608 /*
609 * Macro to determine if a mapping might be resident in the
610 * data cache and/or TLB
611 */
612 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
613
614 /*
615 * Local prototypes
616 */
617 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
618 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
619 pt_entry_t **);
620 static bool pmap_is_current(pmap_t);
621 static bool pmap_is_cached(pmap_t);
622 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
623 pmap_t, vaddr_t, u_int);
624 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
625 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
626 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
627 u_int, u_int);
628
629 static void pmap_pinit(pmap_t);
630 static int pmap_pmap_ctor(void *, void *, int);
631
632 static void pmap_alloc_l1(pmap_t);
633 static void pmap_free_l1(pmap_t);
634 static void pmap_use_l1(pmap_t);
635
636 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
637 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
638 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
639 static int pmap_l2ptp_ctor(void *, void *, int);
640 static int pmap_l2dtable_ctor(void *, void *, int);
641
642 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
643 #ifdef PMAP_CACHE_VIVT
644 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
645 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
646 #endif
647
648 static void pmap_clearbit(struct vm_page *, u_int);
649 #ifdef PMAP_CACHE_VIVT
650 static int pmap_clean_page(struct pv_entry *, bool);
651 #endif
652 #ifdef PMAP_CACHE_VIPT
653 static void pmap_syncicache_page(struct vm_page *);
654 static void pmap_flush_page(struct vm_page *);
655 #endif
656 static void pmap_page_remove(struct vm_page *);
657
658 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
659 static vaddr_t kernel_pt_lookup(paddr_t);
660
661 void pmap_switch(struct lwp *, struct lwp *);
662
663
664 /*
665 * External function prototypes
666 */
667 extern void bzero_page(vaddr_t);
668 extern void bcopy_page(vaddr_t, vaddr_t);
669
670 /*
671 * Misc variables
672 */
673 vaddr_t virtual_avail;
674 vaddr_t virtual_end;
675 vaddr_t pmap_curmaxkvaddr;
676
677 vaddr_t avail_start;
678 vaddr_t avail_end;
679
680 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
681 pv_addr_t kernelpages;
682 pv_addr_t kernel_l1pt;
683 pv_addr_t systempage;
684
685 /* Function to set the debug level of the pmap code */
686
687 #ifdef PMAP_DEBUG
688 void
689 pmap_debug(int level)
690 {
691 pmap_debug_level = level;
692 printf("pmap_debug: level=%d\n", pmap_debug_level);
693 }
694 #endif /* PMAP_DEBUG */
695
696 /*
697 * A bunch of routines to conditionally flush the caches/TLB depending
698 * on whether the specified pmap actually needs to be flushed at any
699 * given time.
700 */
701 static inline void
702 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
703 {
704
705 if (pm->pm_cstate.cs_tlb_id)
706 cpu_tlb_flushID_SE(va);
707 }
708
709 static inline void
710 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
711 {
712
713 if (pm->pm_cstate.cs_tlb_d)
714 cpu_tlb_flushD_SE(va);
715 }
716
717 static inline void
718 pmap_tlb_flushID(pmap_t pm)
719 {
720
721 if (pm->pm_cstate.cs_tlb_id) {
722 cpu_tlb_flushID();
723 pm->pm_cstate.cs_tlb = 0;
724 }
725 }
726
727 static inline void
728 pmap_tlb_flushD(pmap_t pm)
729 {
730
731 if (pm->pm_cstate.cs_tlb_d) {
732 cpu_tlb_flushD();
733 pm->pm_cstate.cs_tlb_d = 0;
734 }
735 }
736
737 #ifdef PMAP_CACHE_VIVT
738 static inline void
739 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
740 {
741 if (pm->pm_cstate.cs_cache_id) {
742 cpu_idcache_wbinv_range(va, len);
743 }
744 }
745
746 static inline void
747 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
748 bool do_inv, bool rd_only)
749 {
750
751 if (pm->pm_cstate.cs_cache_d) {
752 if (do_inv) {
753 if (rd_only)
754 cpu_dcache_inv_range(va, len);
755 else
756 cpu_dcache_wbinv_range(va, len);
757 } else
758 if (!rd_only)
759 cpu_dcache_wb_range(va, len);
760 }
761 }
762
763 static inline void
764 pmap_idcache_wbinv_all(pmap_t pm)
765 {
766 if (pm->pm_cstate.cs_cache_id) {
767 cpu_idcache_wbinv_all();
768 pm->pm_cstate.cs_cache = 0;
769 }
770 }
771
772 static inline void
773 pmap_dcache_wbinv_all(pmap_t pm)
774 {
775 if (pm->pm_cstate.cs_cache_d) {
776 cpu_dcache_wbinv_all();
777 pm->pm_cstate.cs_cache_d = 0;
778 }
779 }
780 #endif /* PMAP_CACHE_VIVT */
781
782 static inline bool
783 pmap_is_current(pmap_t pm)
784 {
785
786 if (pm == pmap_kernel() ||
787 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
788 return true;
789
790 return false;
791 }
792
793 static inline bool
794 pmap_is_cached(pmap_t pm)
795 {
796
797 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
798 pmap_recent_user == pm)
799 return (true);
800
801 return false;
802 }
803
804 /*
805 * PTE_SYNC_CURRENT:
806 *
807 * Make sure the pte is written out to RAM.
808 * We need to do this for one of two cases:
809 * - We're dealing with the kernel pmap
810 * - There is no pmap active in the cache/tlb.
811 * - The specified pmap is 'active' in the cache/tlb.
812 */
813 #ifdef PMAP_INCLUDE_PTE_SYNC
814 #define PTE_SYNC_CURRENT(pm, ptep) \
815 do { \
816 if (PMAP_NEEDS_PTE_SYNC && \
817 pmap_is_cached(pm)) \
818 PTE_SYNC(ptep); \
819 } while (/*CONSTCOND*/0)
820 #else
821 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
822 #endif
823
824 /*
825 * main pv_entry manipulation functions:
826 * pmap_enter_pv: enter a mapping onto a vm_page list
827 * pmap_remove_pv: remove a mappiing from a vm_page list
828 *
829 * NOTE: pmap_enter_pv expects to lock the pvh itself
830 * pmap_remove_pv expects te caller to lock the pvh before calling
831 */
832
833 /*
834 * pmap_enter_pv: enter a mapping onto a vm_page lst
835 *
836 * => caller should hold the proper lock on pmap_main_lock
837 * => caller should have pmap locked
838 * => we will gain the lock on the vm_page and allocate the new pv_entry
839 * => caller should adjust ptp's wire_count before calling
840 * => caller should not adjust pmap's wire_count
841 */
842 static void
843 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
844 vaddr_t va, u_int flags)
845 {
846
847 NPDEBUG(PDB_PVDUMP,
848 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
849
850 pve->pv_pmap = pm;
851 pve->pv_va = va;
852 pve->pv_flags = flags;
853
854 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
855 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
856 pg->mdpage.pvh_list = pve; /* ... locked list */
857 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
858 if (pm == pmap_kernel()) {
859 PMAPCOUNT(kernel_mappings);
860 if (flags & PVF_WRITE)
861 pg->mdpage.krw_mappings++;
862 else
863 pg->mdpage.kro_mappings++;
864 } else
865 if (flags & PVF_WRITE)
866 pg->mdpage.urw_mappings++;
867 else
868 pg->mdpage.uro_mappings++;
869
870 #ifdef PMAP_CACHE_VIPT
871 /*
872 * If this is an exec mapping and its the first exec mapping
873 * for this page, make sure to sync the I-cache.
874 */
875 if (PV_IS_EXEC_P(flags)) {
876 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
877 pmap_syncicache_page(pg);
878 PMAPCOUNT(exec_synced_map);
879 }
880 PMAPCOUNT(exec_mappings);
881 }
882 #endif
883
884 PMAPCOUNT(mappings);
885 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
886
887 if (pve->pv_flags & PVF_WIRED)
888 ++pm->pm_stats.wired_count;
889 }
890
891 /*
892 *
893 * pmap_find_pv: Find a pv entry
894 *
895 * => caller should hold lock on vm_page
896 */
897 static inline struct pv_entry *
898 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
899 {
900 struct pv_entry *pv;
901
902 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
903 if (pm == pv->pv_pmap && va == pv->pv_va)
904 break;
905 }
906
907 return (pv);
908 }
909
910 /*
911 * pmap_remove_pv: try to remove a mapping from a pv_list
912 *
913 * => caller should hold proper lock on pmap_main_lock
914 * => pmap should be locked
915 * => caller should hold lock on vm_page [so that attrs can be adjusted]
916 * => caller should adjust ptp's wire_count and free PTP if needed
917 * => caller should NOT adjust pmap's wire_count
918 * => we return the removed pve
919 */
920 static struct pv_entry *
921 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
922 {
923 struct pv_entry *pve, **prevptr;
924
925 NPDEBUG(PDB_PVDUMP,
926 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
927
928 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
929 pve = *prevptr;
930
931 while (pve) {
932 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
933 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
934 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
935 if (pve->pv_flags & PVF_WIRED) {
936 if (skip_wired)
937 return (NULL);
938 --pm->pm_stats.wired_count;
939 }
940 *prevptr = pve->pv_next; /* remove it! */
941 if (pm == pmap_kernel()) {
942 PMAPCOUNT(kernel_unmappings);
943 if (pve->pv_flags & PVF_WRITE)
944 pg->mdpage.krw_mappings--;
945 else
946 pg->mdpage.kro_mappings--;
947 } else
948 if (pve->pv_flags & PVF_WRITE)
949 pg->mdpage.urw_mappings--;
950 else
951 pg->mdpage.uro_mappings--;
952
953 PMAPCOUNT(unmappings);
954 #ifdef PMAP_CACHE_VIPT
955 if (!(pve->pv_flags & PVF_WRITE))
956 break;
957 /*
958 * If this page has had an exec mapping, then if
959 * this was the last mapping, discard the contents,
960 * otherwise sync the i-cache for this page.
961 */
962 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
963 if (pg->mdpage.pvh_list == NULL) {
964 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
965 PMAPCOUNT(exec_discarded_unmap);
966 } else {
967 pmap_syncicache_page(pg);
968 PMAPCOUNT(exec_synced_unmap);
969 }
970 }
971 #endif /* PMAP_CACHE_VIPT */
972 break;
973 }
974 prevptr = &pve->pv_next; /* previous pointer */
975 pve = pve->pv_next; /* advance */
976 }
977
978 return(pve); /* return removed pve */
979 }
980
981 /*
982 *
983 * pmap_modify_pv: Update pv flags
984 *
985 * => caller should hold lock on vm_page [so that attrs can be adjusted]
986 * => caller should NOT adjust pmap's wire_count
987 * => caller must call pmap_vac_me_harder() if writable status of a page
988 * may have changed.
989 * => we return the old flags
990 *
991 * Modify a physical-virtual mapping in the pv table
992 */
993 static u_int
994 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
995 u_int clr_mask, u_int set_mask)
996 {
997 struct pv_entry *npv;
998 u_int flags, oflags;
999
1000 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1001 return (0);
1002
1003 NPDEBUG(PDB_PVDUMP,
1004 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
1005
1006 /*
1007 * There is at least one VA mapping this page.
1008 */
1009
1010 if (clr_mask & (PVF_REF | PVF_MOD))
1011 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1012
1013 oflags = npv->pv_flags;
1014 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1015
1016 if ((flags ^ oflags) & PVF_WIRED) {
1017 if (flags & PVF_WIRED)
1018 ++pm->pm_stats.wired_count;
1019 else
1020 --pm->pm_stats.wired_count;
1021 }
1022
1023 if ((flags ^ oflags) & PVF_WRITE) {
1024 if (pm == pmap_kernel()) {
1025 if (flags & PVF_WRITE) {
1026 pg->mdpage.krw_mappings++;
1027 pg->mdpage.kro_mappings--;
1028 } else {
1029 pg->mdpage.kro_mappings++;
1030 pg->mdpage.krw_mappings--;
1031 }
1032 } else
1033 if (flags & PVF_WRITE) {
1034 pg->mdpage.urw_mappings++;
1035 pg->mdpage.uro_mappings--;
1036 } else {
1037 pg->mdpage.uro_mappings++;
1038 pg->mdpage.urw_mappings--;
1039 }
1040 }
1041 #ifdef PMAP_CACHE_VIPT
1042 /*
1043 * We have two cases here: the first is from enter_pv (new exec
1044 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1045 * Since in latter, pmap_enter_pv won't do anything, we just have
1046 * to do what pmap_remove_pv would do.
1047 */
1048 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
1049 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
1050 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1051 pmap_syncicache_page(pg);
1052 PMAPCOUNT(exec_synced_remap);
1053 }
1054 #endif
1055
1056 PMAPCOUNT(remappings);
1057
1058 return (oflags);
1059 }
1060
1061 /*
1062 * Allocate an L1 translation table for the specified pmap.
1063 * This is called at pmap creation time.
1064 */
1065 static void
1066 pmap_alloc_l1(pmap_t pm)
1067 {
1068 struct l1_ttable *l1;
1069 u_int8_t domain;
1070
1071 /*
1072 * Remove the L1 at the head of the LRU list
1073 */
1074 simple_lock(&l1_lru_lock);
1075 l1 = TAILQ_FIRST(&l1_lru_list);
1076 KDASSERT(l1 != NULL);
1077 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1078
1079 /*
1080 * Pick the first available domain number, and update
1081 * the link to the next number.
1082 */
1083 domain = l1->l1_domain_first;
1084 l1->l1_domain_first = l1->l1_domain_free[domain];
1085
1086 /*
1087 * If there are still free domain numbers in this L1,
1088 * put it back on the TAIL of the LRU list.
1089 */
1090 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1091 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1092
1093 simple_unlock(&l1_lru_lock);
1094
1095 /*
1096 * Fix up the relevant bits in the pmap structure
1097 */
1098 pm->pm_l1 = l1;
1099 pm->pm_domain = domain;
1100 }
1101
1102 /*
1103 * Free an L1 translation table.
1104 * This is called at pmap destruction time.
1105 */
1106 static void
1107 pmap_free_l1(pmap_t pm)
1108 {
1109 struct l1_ttable *l1 = pm->pm_l1;
1110
1111 simple_lock(&l1_lru_lock);
1112
1113 /*
1114 * If this L1 is currently on the LRU list, remove it.
1115 */
1116 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1117 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1118
1119 /*
1120 * Free up the domain number which was allocated to the pmap
1121 */
1122 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1123 l1->l1_domain_first = pm->pm_domain;
1124 l1->l1_domain_use_count--;
1125
1126 /*
1127 * The L1 now must have at least 1 free domain, so add
1128 * it back to the LRU list. If the use count is zero,
1129 * put it at the head of the list, otherwise it goes
1130 * to the tail.
1131 */
1132 if (l1->l1_domain_use_count == 0)
1133 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1134 else
1135 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1136
1137 simple_unlock(&l1_lru_lock);
1138 }
1139
1140 static inline void
1141 pmap_use_l1(pmap_t pm)
1142 {
1143 struct l1_ttable *l1;
1144
1145 /*
1146 * Do nothing if we're in interrupt context.
1147 * Access to an L1 by the kernel pmap must not affect
1148 * the LRU list.
1149 */
1150 if (cpu_intr_p() || pm == pmap_kernel())
1151 return;
1152
1153 l1 = pm->pm_l1;
1154
1155 /*
1156 * If the L1 is not currently on the LRU list, just return
1157 */
1158 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1159 return;
1160
1161 simple_lock(&l1_lru_lock);
1162
1163 /*
1164 * Check the use count again, now that we've acquired the lock
1165 */
1166 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1167 simple_unlock(&l1_lru_lock);
1168 return;
1169 }
1170
1171 /*
1172 * Move the L1 to the back of the LRU list
1173 */
1174 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1175 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1176
1177 simple_unlock(&l1_lru_lock);
1178 }
1179
1180 /*
1181 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1182 *
1183 * Free an L2 descriptor table.
1184 */
1185 static inline void
1186 #ifndef PMAP_INCLUDE_PTE_SYNC
1187 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1188 #else
1189 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1190 #endif
1191 {
1192 #ifdef PMAP_INCLUDE_PTE_SYNC
1193 #ifdef PMAP_CACHE_VIVT
1194 /*
1195 * Note: With a write-back cache, we may need to sync this
1196 * L2 table before re-using it.
1197 * This is because it may have belonged to a non-current
1198 * pmap, in which case the cache syncs would have been
1199 * skipped for the pages that were being unmapped. If the
1200 * L2 table were then to be immediately re-allocated to
1201 * the *current* pmap, it may well contain stale mappings
1202 * which have not yet been cleared by a cache write-back
1203 * and so would still be visible to the mmu.
1204 */
1205 if (need_sync)
1206 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1207 #endif /* PMAP_CACHE_VIVT */
1208 #endif /* PMAP_INCLUDE_PTE_SYNC */
1209 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1210 }
1211
1212 /*
1213 * Returns a pointer to the L2 bucket associated with the specified pmap
1214 * and VA, or NULL if no L2 bucket exists for the address.
1215 */
1216 static inline struct l2_bucket *
1217 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1218 {
1219 struct l2_dtable *l2;
1220 struct l2_bucket *l2b;
1221 u_short l1idx;
1222
1223 l1idx = L1_IDX(va);
1224
1225 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1226 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1227 return (NULL);
1228
1229 return (l2b);
1230 }
1231
1232 /*
1233 * Returns a pointer to the L2 bucket associated with the specified pmap
1234 * and VA.
1235 *
1236 * If no L2 bucket exists, perform the necessary allocations to put an L2
1237 * bucket/page table in place.
1238 *
1239 * Note that if a new L2 bucket/page was allocated, the caller *must*
1240 * increment the bucket occupancy counter appropriately *before*
1241 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1242 * the bucket/page in the meantime.
1243 */
1244 static struct l2_bucket *
1245 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1246 {
1247 struct l2_dtable *l2;
1248 struct l2_bucket *l2b;
1249 u_short l1idx;
1250
1251 l1idx = L1_IDX(va);
1252
1253 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1254 /*
1255 * No mapping at this address, as there is
1256 * no entry in the L1 table.
1257 * Need to allocate a new l2_dtable.
1258 */
1259 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1260 return (NULL);
1261
1262 /*
1263 * Link it into the parent pmap
1264 */
1265 pm->pm_l2[L2_IDX(l1idx)] = l2;
1266 }
1267
1268 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1269
1270 /*
1271 * Fetch pointer to the L2 page table associated with the address.
1272 */
1273 if (l2b->l2b_kva == NULL) {
1274 pt_entry_t *ptep;
1275
1276 /*
1277 * No L2 page table has been allocated. Chances are, this
1278 * is because we just allocated the l2_dtable, above.
1279 */
1280 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1281 /*
1282 * Oops, no more L2 page tables available at this
1283 * time. We may need to deallocate the l2_dtable
1284 * if we allocated a new one above.
1285 */
1286 if (l2->l2_occupancy == 0) {
1287 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1288 pmap_free_l2_dtable(l2);
1289 }
1290 return (NULL);
1291 }
1292
1293 l2->l2_occupancy++;
1294 l2b->l2b_kva = ptep;
1295 l2b->l2b_l1idx = l1idx;
1296 }
1297
1298 return (l2b);
1299 }
1300
1301 /*
1302 * One or more mappings in the specified L2 descriptor table have just been
1303 * invalidated.
1304 *
1305 * Garbage collect the metadata and descriptor table itself if necessary.
1306 *
1307 * The pmap lock must be acquired when this is called (not necessary
1308 * for the kernel pmap).
1309 */
1310 static void
1311 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1312 {
1313 struct l2_dtable *l2;
1314 pd_entry_t *pl1pd, l1pd;
1315 pt_entry_t *ptep;
1316 u_short l1idx;
1317
1318 KDASSERT(count <= l2b->l2b_occupancy);
1319
1320 /*
1321 * Update the bucket's reference count according to how many
1322 * PTEs the caller has just invalidated.
1323 */
1324 l2b->l2b_occupancy -= count;
1325
1326 /*
1327 * Note:
1328 *
1329 * Level 2 page tables allocated to the kernel pmap are never freed
1330 * as that would require checking all Level 1 page tables and
1331 * removing any references to the Level 2 page table. See also the
1332 * comment elsewhere about never freeing bootstrap L2 descriptors.
1333 *
1334 * We make do with just invalidating the mapping in the L2 table.
1335 *
1336 * This isn't really a big deal in practice and, in fact, leads
1337 * to a performance win over time as we don't need to continually
1338 * alloc/free.
1339 */
1340 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1341 return;
1342
1343 /*
1344 * There are no more valid mappings in this level 2 page table.
1345 * Go ahead and NULL-out the pointer in the bucket, then
1346 * free the page table.
1347 */
1348 l1idx = l2b->l2b_l1idx;
1349 ptep = l2b->l2b_kva;
1350 l2b->l2b_kva = NULL;
1351
1352 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1353
1354 /*
1355 * If the L1 slot matches the pmap's domain
1356 * number, then invalidate it.
1357 */
1358 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1359 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1360 *pl1pd = 0;
1361 PTE_SYNC(pl1pd);
1362 }
1363
1364 /*
1365 * Release the L2 descriptor table back to the pool cache.
1366 */
1367 #ifndef PMAP_INCLUDE_PTE_SYNC
1368 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1369 #else
1370 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1371 #endif
1372
1373 /*
1374 * Update the reference count in the associated l2_dtable
1375 */
1376 l2 = pm->pm_l2[L2_IDX(l1idx)];
1377 if (--l2->l2_occupancy > 0)
1378 return;
1379
1380 /*
1381 * There are no more valid mappings in any of the Level 1
1382 * slots managed by this l2_dtable. Go ahead and NULL-out
1383 * the pointer in the parent pmap and free the l2_dtable.
1384 */
1385 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1386 pmap_free_l2_dtable(l2);
1387 }
1388
1389 /*
1390 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1391 * structures.
1392 */
1393 static int
1394 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1395 {
1396 #ifndef PMAP_INCLUDE_PTE_SYNC
1397 struct l2_bucket *l2b;
1398 pt_entry_t *ptep, pte;
1399 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1400
1401 /*
1402 * The mappings for these page tables were initially made using
1403 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1404 * mode will not be right for page table mappings. To avoid
1405 * polluting the pmap_kenter_pa() code with a special case for
1406 * page tables, we simply fix up the cache-mode here if it's not
1407 * correct.
1408 */
1409 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1410 KDASSERT(l2b != NULL);
1411 ptep = &l2b->l2b_kva[l2pte_index(va)];
1412 pte = *ptep;
1413
1414 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1415 /*
1416 * Page tables must have the cache-mode set to Write-Thru.
1417 */
1418 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1419 PTE_SYNC(ptep);
1420 cpu_tlb_flushD_SE(va);
1421 cpu_cpwait();
1422 }
1423 #endif
1424
1425 memset(v, 0, L2_TABLE_SIZE_REAL);
1426 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1427 return (0);
1428 }
1429
1430 static int
1431 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1432 {
1433
1434 memset(v, 0, sizeof(struct l2_dtable));
1435 return (0);
1436 }
1437
1438 static int
1439 pmap_pmap_ctor(void *arg, void *v, int flags)
1440 {
1441
1442 memset(v, 0, sizeof(struct pmap));
1443 return (0);
1444 }
1445
1446 static void
1447 pmap_pinit(pmap_t pm)
1448 {
1449 struct l2_bucket *l2b;
1450
1451 if (vector_page < KERNEL_BASE) {
1452 /*
1453 * Map the vector page.
1454 */
1455 pmap_enter(pm, vector_page, systempage.pv_pa,
1456 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1457 pmap_update(pm);
1458
1459 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1460 l2b = pmap_get_l2_bucket(pm, vector_page);
1461 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1462 L1_C_DOM(pm->pm_domain);
1463 } else
1464 pm->pm_pl1vec = NULL;
1465 }
1466
1467 #ifdef PMAP_CACHE_VIVT
1468 /*
1469 * Since we have a virtually indexed cache, we may need to inhibit caching if
1470 * there is more than one mapping and at least one of them is writable.
1471 * Since we purge the cache on every context switch, we only need to check for
1472 * other mappings within the same pmap, or kernel_pmap.
1473 * This function is also called when a page is unmapped, to possibly reenable
1474 * caching on any remaining mappings.
1475 *
1476 * The code implements the following logic, where:
1477 *
1478 * KW = # of kernel read/write pages
1479 * KR = # of kernel read only pages
1480 * UW = # of user read/write pages
1481 * UR = # of user read only pages
1482 *
1483 * KC = kernel mapping is cacheable
1484 * UC = user mapping is cacheable
1485 *
1486 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1487 * +---------------------------------------------
1488 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1489 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1490 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1491 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1492 */
1493
1494 static const int pmap_vac_flags[4][4] = {
1495 {-1, 0, 0, PVF_KNC},
1496 {0, 0, PVF_NC, PVF_NC},
1497 {0, PVF_NC, PVF_NC, PVF_NC},
1498 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1499 };
1500
1501 static inline int
1502 pmap_get_vac_flags(const struct vm_page *pg)
1503 {
1504 int kidx, uidx;
1505
1506 kidx = 0;
1507 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1508 kidx |= 1;
1509 if (pg->mdpage.krw_mappings)
1510 kidx |= 2;
1511
1512 uidx = 0;
1513 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1514 uidx |= 1;
1515 if (pg->mdpage.urw_mappings)
1516 uidx |= 2;
1517
1518 return (pmap_vac_flags[uidx][kidx]);
1519 }
1520
1521 static inline void
1522 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1523 {
1524 int nattr;
1525
1526 nattr = pmap_get_vac_flags(pg);
1527
1528 if (nattr < 0) {
1529 pg->mdpage.pvh_attrs &= ~PVF_NC;
1530 return;
1531 }
1532
1533 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1534 return;
1535
1536 if (pm == pmap_kernel())
1537 pmap_vac_me_kpmap(pg, pm, va);
1538 else
1539 pmap_vac_me_user(pg, pm, va);
1540
1541 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1542 }
1543
1544 static void
1545 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1546 {
1547 u_int u_cacheable, u_entries;
1548 struct pv_entry *pv;
1549 pmap_t last_pmap = pm;
1550
1551 /*
1552 * Pass one, see if there are both kernel and user pmaps for
1553 * this page. Calculate whether there are user-writable or
1554 * kernel-writable pages.
1555 */
1556 u_cacheable = 0;
1557 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1558 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1559 u_cacheable++;
1560 }
1561
1562 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1563
1564 /*
1565 * We know we have just been updating a kernel entry, so if
1566 * all user pages are already cacheable, then there is nothing
1567 * further to do.
1568 */
1569 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1570 return;
1571
1572 if (u_entries) {
1573 /*
1574 * Scan over the list again, for each entry, if it
1575 * might not be set correctly, call pmap_vac_me_user
1576 * to recalculate the settings.
1577 */
1578 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1579 /*
1580 * We know kernel mappings will get set
1581 * correctly in other calls. We also know
1582 * that if the pmap is the same as last_pmap
1583 * then we've just handled this entry.
1584 */
1585 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1586 continue;
1587
1588 /*
1589 * If there are kernel entries and this page
1590 * is writable but non-cacheable, then we can
1591 * skip this entry also.
1592 */
1593 if (pg->mdpage.k_mappings &&
1594 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1595 (PVF_NC | PVF_WRITE))
1596 continue;
1597
1598 /*
1599 * Similarly if there are no kernel-writable
1600 * entries and the page is already
1601 * read-only/cacheable.
1602 */
1603 if (pg->mdpage.krw_mappings == 0 &&
1604 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1605 continue;
1606
1607 /*
1608 * For some of the remaining cases, we know
1609 * that we must recalculate, but for others we
1610 * can't tell if they are correct or not, so
1611 * we recalculate anyway.
1612 */
1613 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1614 }
1615
1616 if (pg->mdpage.k_mappings == 0)
1617 return;
1618 }
1619
1620 pmap_vac_me_user(pg, pm, va);
1621 }
1622
1623 static void
1624 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1625 {
1626 pmap_t kpmap = pmap_kernel();
1627 struct pv_entry *pv, *npv;
1628 struct l2_bucket *l2b;
1629 pt_entry_t *ptep, pte;
1630 u_int entries = 0;
1631 u_int writable = 0;
1632 u_int cacheable_entries = 0;
1633 u_int kern_cacheable = 0;
1634 u_int other_writable = 0;
1635
1636 /*
1637 * Count mappings and writable mappings in this pmap.
1638 * Include kernel mappings as part of our own.
1639 * Keep a pointer to the first one.
1640 */
1641 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1642 /* Count mappings in the same pmap */
1643 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1644 if (entries++ == 0)
1645 npv = pv;
1646
1647 /* Cacheable mappings */
1648 if ((pv->pv_flags & PVF_NC) == 0) {
1649 cacheable_entries++;
1650 if (kpmap == pv->pv_pmap)
1651 kern_cacheable++;
1652 }
1653
1654 /* Writable mappings */
1655 if (pv->pv_flags & PVF_WRITE)
1656 ++writable;
1657 } else
1658 if (pv->pv_flags & PVF_WRITE)
1659 other_writable = 1;
1660 }
1661
1662 /*
1663 * Enable or disable caching as necessary.
1664 * Note: the first entry might be part of the kernel pmap,
1665 * so we can't assume this is indicative of the state of the
1666 * other (maybe non-kpmap) entries.
1667 */
1668 if ((entries > 1 && writable) ||
1669 (entries > 0 && pm == kpmap && other_writable)) {
1670 if (cacheable_entries == 0)
1671 return;
1672
1673 for (pv = npv; pv; pv = pv->pv_next) {
1674 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1675 (pv->pv_flags & PVF_NC))
1676 continue;
1677
1678 pv->pv_flags |= PVF_NC;
1679
1680 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1681 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1682 pte = *ptep & ~L2_S_CACHE_MASK;
1683
1684 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1685 l2pte_valid(pte)) {
1686 if (PV_BEEN_EXECD(pv->pv_flags)) {
1687 #ifdef PMAP_CACHE_VIVT
1688 pmap_idcache_wbinv_range(pv->pv_pmap,
1689 pv->pv_va, PAGE_SIZE);
1690 #endif
1691 pmap_tlb_flushID_SE(pv->pv_pmap,
1692 pv->pv_va);
1693 } else
1694 if (PV_BEEN_REFD(pv->pv_flags)) {
1695 #ifdef PMAP_CACHE_VIVT
1696 pmap_dcache_wb_range(pv->pv_pmap,
1697 pv->pv_va, PAGE_SIZE, true,
1698 (pv->pv_flags & PVF_WRITE) == 0);
1699 #endif
1700 pmap_tlb_flushD_SE(pv->pv_pmap,
1701 pv->pv_va);
1702 }
1703 }
1704
1705 *ptep = pte;
1706 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1707 }
1708 cpu_cpwait();
1709 } else
1710 if (entries > cacheable_entries) {
1711 /*
1712 * Turn cacheing back on for some pages. If it is a kernel
1713 * page, only do so if there are no other writable pages.
1714 */
1715 for (pv = npv; pv; pv = pv->pv_next) {
1716 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1717 (kpmap != pv->pv_pmap || other_writable)))
1718 continue;
1719
1720 pv->pv_flags &= ~PVF_NC;
1721
1722 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1723 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1724 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1725
1726 if (l2pte_valid(pte)) {
1727 if (PV_BEEN_EXECD(pv->pv_flags)) {
1728 pmap_tlb_flushID_SE(pv->pv_pmap,
1729 pv->pv_va);
1730 } else
1731 if (PV_BEEN_REFD(pv->pv_flags)) {
1732 pmap_tlb_flushD_SE(pv->pv_pmap,
1733 pv->pv_va);
1734 }
1735 }
1736
1737 *ptep = pte;
1738 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1739 }
1740 }
1741 }
1742 #endif
1743
1744 #ifdef PMAP_CACHE_VIPT
1745 /*
1746 * For virtually indexed / physically tagged caches, what we have to worry
1747 * about is illegal cache aliases. To prevent this, we must ensure that
1748 * virtual addresses that map the physical page use the same bits for those
1749 * bits masked by "arm_cache_prefer_mask" (bits 12+). If there is a conflict,
1750 * all mappings of the page must be non-cached.
1751 */
1752 #if 0
1753 static inline vaddr_t
1754 pmap_check_sets(paddr_t pa)
1755 {
1756 extern int arm_dcache_l2_nsets;
1757 int set, way;
1758 vaddr_t mask = 0;
1759 int v;
1760 pa |= 1;
1761 for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
1762 for (way = 0; way < 4; way++) {
1763 v = (way << 30) | (set << 5);
1764 asm("mcr p15, 3, %0, c15, c2, 0" :: "r"(v));
1765 asm("mrc p15, 3, %0, c15, c0, 0" : "=r"(v));
1766
1767 if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
1768 mask |= 1 << (set >> 7);
1769 }
1770 }
1771 }
1772 return mask;
1773 }
1774 #endif
1775 static void
1776 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1777 {
1778 struct pv_entry *pv, pv0;
1779 vaddr_t tst_mask;
1780 bool bad_alias;
1781 struct l2_bucket *l2b;
1782 pt_entry_t *ptep, pte, opte;
1783
1784 /* do we need to do anything? */
1785 if (arm_cache_prefer_mask == 0)
1786 return;
1787
1788 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
1789 pg, pm, va));
1790
1791 #define popc4(x) \
1792 (((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
1793 #if 0
1794 tst_mask = pmap_check_sets(pg->phys_addr);
1795 KASSERT(popc4(tst_mask) < 2);
1796 #endif
1797
1798 KASSERT(!va || pm || (pg->mdpage.pvh_attrs & PVF_KENTRY));
1799
1800 /* Already a conflict? */
1801 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
1802 /* just an add, things are already non-cached */
1803 bad_alias = false;
1804 if (va) {
1805 PMAPCOUNT(vac_color_none);
1806 bad_alias = true;
1807 goto fixup;
1808 }
1809 pv = pg->mdpage.pvh_list;
1810 /* the list can't be empty because it would be cachable */
1811 if (pg->mdpage.pvh_attrs & PVF_KENTRY) {
1812 tst_mask = pg->mdpage.pvh_attrs;
1813 } else {
1814 KASSERT(pv);
1815 tst_mask = pv->pv_va;
1816 pv = pv->pv_next;
1817 }
1818 tst_mask &= arm_cache_prefer_mask;
1819 for (; pv && !bad_alias; pv = pv->pv_next) {
1820 /* if there's a bad alias, stop checking. */
1821 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1822 bad_alias = true;
1823 }
1824 /* If no conflicting colors, set everything back to cached */
1825 if (!bad_alias) {
1826 PMAPCOUNT(vac_color_restore);
1827 pg->mdpage.pvh_attrs |= PVF_COLORED;
1828 if (!(pg->mdpage.pvh_attrs & PVF_KENTRY)) {
1829 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1830 pg->mdpage.pvh_attrs |= tst_mask;
1831 }
1832 pg->mdpage.pvh_attrs &= ~PVF_NC;
1833 } else {
1834 KASSERT(pg->mdpage.pvh_list != NULL);
1835 KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY)
1836 || pg->mdpage.pvh_list->pv_next != NULL);
1837 }
1838 } else if (!va) {
1839 KASSERT(pmap_is_page_colored_p(pg));
1840 if (pm == NULL)
1841 pg->mdpage.pvh_attrs &=
1842 (PAGE_SIZE - 1) | arm_cache_prefer_mask;
1843 return;
1844 } else if (!pmap_is_page_colored_p(pg)) {
1845 /* not colored so we just use its color */
1846 PMAPCOUNT(vac_color_new);
1847 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1848 if (pm == NULL)
1849 pg->mdpage.pvh_attrs |= PVF_COLORED | va;
1850 else
1851 pg->mdpage.pvh_attrs |= PVF_COLORED
1852 | (va & arm_cache_prefer_mask);
1853 return;
1854 } else if (!((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask)) {
1855 if (pm == NULL) {
1856 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1857 pg->mdpage.pvh_attrs |= va;
1858 }
1859 if (pg->mdpage.pvh_list)
1860 PMAPCOUNT(vac_color_reuse);
1861 else
1862 PMAPCOUNT(vac_color_ok);
1863 /* matching color, just return */
1864 return;
1865 } else {
1866 /* color conflict. evict from cache. */
1867 pmap_flush_page(pg);
1868
1869 /* the list can't be empty because this was a enter/modify */
1870 pv = pg->mdpage.pvh_list;
1871 KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY) || pv);
1872
1873 /*
1874 * If there's only one mapped page, change color to the
1875 * page's new color and return.
1876 */
1877 if (((pg->mdpage.pvh_attrs & PVF_KENTRY)
1878 ? pv : pv->pv_next) == NULL) {
1879 PMAPCOUNT(vac_color_change);
1880 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1881 if (pm == NULL)
1882 pg->mdpage.pvh_attrs |= va;
1883 else
1884 pg->mdpage.pvh_attrs |=
1885 (va & arm_cache_prefer_mask);
1886 return;
1887 }
1888 bad_alias = true;
1889 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
1890 pg->mdpage.pvh_attrs |= PVF_NC;
1891 PMAPCOUNT(vac_color_erase);
1892 }
1893
1894 fixup:
1895 /*
1896 * If the pmap is NULL, then we got called from pmap_kenter_pa
1897 * and we must save the kenter'ed va. And this changes the
1898 * color to match the kenter'ed page. if this is a remove clear
1899 * saved va bits which retaining the color bits.
1900 */
1901 if (pm == NULL) {
1902 if (va) {
1903 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1);
1904 pg->mdpage.pvh_attrs |= va;
1905 } else {
1906 pg->mdpage.pvh_attrs &=
1907 ((PAGE_SIZE - 1) | arm_cache_prefer_mask);
1908 }
1909 }
1910
1911 pv = pg->mdpage.pvh_list;
1912
1913 /*
1914 * If this page has an kenter'ed mapping, fake up a pv entry.
1915 */
1916 if (__predict_false(pg->mdpage.pvh_attrs & PVF_KENTRY)) {
1917 pv0.pv_pmap = pmap_kernel();
1918 pv0.pv_va = pg->mdpage.pvh_attrs & ~(PAGE_SIZE - 1);
1919 pv0.pv_next = pv;
1920 pv0.pv_flags = PVF_REF;
1921 pv = &pv0;
1922 }
1923
1924 /*
1925 * Turn cacheing on/off for all pages.
1926 */
1927 for (; pv; pv = pv->pv_next) {
1928 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1929 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1930 opte = *ptep;
1931 pte = opte & ~L2_S_CACHE_MASK;
1932 if (bad_alias) {
1933 pv->pv_flags |= PVF_NC;
1934 } else {
1935 pv->pv_flags &= ~PVF_NC;
1936 pte |= pte_l2_s_cache_mode;
1937 }
1938 if (opte == pte) /* only update is there's a change */
1939 continue;
1940
1941 if (l2pte_valid(pte)) {
1942 if (PV_BEEN_EXECD(pv->pv_flags)) {
1943 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1944 } else if (PV_BEEN_REFD(pv->pv_flags)) {
1945 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
1946 }
1947 }
1948
1949 *ptep = pte;
1950 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1951 }
1952 }
1953 #endif /* PMAP_CACHE_VIPT */
1954
1955
1956 /*
1957 * Modify pte bits for all ptes corresponding to the given physical address.
1958 * We use `maskbits' rather than `clearbits' because we're always passing
1959 * constants and the latter would require an extra inversion at run-time.
1960 */
1961 static void
1962 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1963 {
1964 struct l2_bucket *l2b;
1965 struct pv_entry *pv;
1966 pt_entry_t *ptep, npte, opte;
1967 pmap_t pm;
1968 vaddr_t va;
1969 u_int oflags;
1970 #ifdef PMAP_CACHE_VIPT
1971 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
1972 bool need_syncicache = false;
1973 bool did_syncicache = false;
1974 #endif
1975
1976 NPDEBUG(PDB_BITS,
1977 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1978 pg, VM_PAGE_TO_PHYS(pg), maskbits));
1979
1980 PMAP_HEAD_TO_MAP_LOCK();
1981 simple_lock(&pg->mdpage.pvh_slock);
1982
1983 #ifdef PMAP_CACHE_VIPT
1984 /*
1985 * If we might want to sync the I-cache and we've modified it,
1986 * then we know we definitely need to sync or discard it.
1987 */
1988 if (want_syncicache)
1989 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
1990 #endif
1991 /*
1992 * Clear saved attributes (modify, reference)
1993 */
1994 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1995
1996 if (pg->mdpage.pvh_list == NULL) {
1997 #ifdef PMAP_CACHE_VIPT
1998 if (need_syncicache) {
1999 /*
2000 * No one has it mapped, so just discard it. The next
2001 * exec remapping will cause it to be synced.
2002 */
2003 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2004 PMAPCOUNT(exec_discarded_clearbit);
2005 }
2006 #endif
2007 simple_unlock(&pg->mdpage.pvh_slock);
2008 PMAP_HEAD_TO_MAP_UNLOCK();
2009 return;
2010 }
2011
2012 /*
2013 * Loop over all current mappings setting/clearing as appropos
2014 */
2015 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2016 va = pv->pv_va;
2017 pm = pv->pv_pmap;
2018 oflags = pv->pv_flags;
2019 pv->pv_flags &= ~maskbits;
2020
2021 pmap_acquire_pmap_lock(pm);
2022
2023 l2b = pmap_get_l2_bucket(pm, va);
2024 KDASSERT(l2b != NULL);
2025
2026 ptep = &l2b->l2b_kva[l2pte_index(va)];
2027 npte = opte = *ptep;
2028
2029 NPDEBUG(PDB_BITS,
2030 printf(
2031 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2032 pv, pv->pv_pmap, pv->pv_va, oflags));
2033
2034 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2035 #ifdef PMAP_CACHE_VIVT
2036 if ((pv->pv_flags & PVF_NC)) {
2037 /*
2038 * Entry is not cacheable:
2039 *
2040 * Don't turn caching on again if this is a
2041 * modified emulation. This would be
2042 * inconsitent with the settings created by
2043 * pmap_vac_me_harder(). Otherwise, it's safe
2044 * to re-enable cacheing.
2045 *
2046 * There's no need to call pmap_vac_me_harder()
2047 * here: all pages are losing their write
2048 * permission.
2049 */
2050 if (maskbits & PVF_WRITE) {
2051 npte |= pte_l2_s_cache_mode;
2052 pv->pv_flags &= ~PVF_NC;
2053 }
2054 } else
2055 if (opte & L2_S_PROT_W) {
2056 /*
2057 * Entry is writable/cacheable: check if pmap
2058 * is current if it is flush it, otherwise it
2059 * won't be in the cache
2060 */
2061 if (PV_BEEN_EXECD(oflags))
2062 pmap_idcache_wbinv_range(pm, pv->pv_va,
2063 PAGE_SIZE);
2064 else
2065 if (PV_BEEN_REFD(oflags))
2066 pmap_dcache_wb_range(pm, pv->pv_va,
2067 PAGE_SIZE,
2068 (maskbits & PVF_REF) != 0, false);
2069 }
2070 #endif
2071
2072 /* make the pte read only */
2073 npte &= ~L2_S_PROT_W;
2074
2075 if (maskbits & oflags & PVF_WRITE) {
2076 /*
2077 * Keep alias accounting up to date
2078 */
2079 if (pv->pv_pmap == pmap_kernel()) {
2080 pg->mdpage.krw_mappings--;
2081 pg->mdpage.kro_mappings++;
2082 } else {
2083 pg->mdpage.urw_mappings--;
2084 pg->mdpage.uro_mappings++;
2085 }
2086 #ifdef PMAP_CACHE_VIPT
2087 if (want_syncicache)
2088 need_syncicache = true;
2089 #endif
2090 }
2091 }
2092
2093 if (maskbits & PVF_REF) {
2094 #ifdef PMAP_CACHE_VIVT
2095 if ((pv->pv_flags & PVF_NC) == 0 &&
2096 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2097 l2pte_valid(npte)) {
2098 /*
2099 * Check npte here; we may have already
2100 * done the wbinv above, and the validity
2101 * of the PTE is the same for opte and
2102 * npte.
2103 */
2104 /* XXXJRT need idcache_inv_range */
2105 if (PV_BEEN_EXECD(oflags))
2106 pmap_idcache_wbinv_range(pm,
2107 pv->pv_va, PAGE_SIZE);
2108 else
2109 if (PV_BEEN_REFD(oflags))
2110 pmap_dcache_wb_range(pm,
2111 pv->pv_va, PAGE_SIZE,
2112 true, true);
2113 }
2114 #endif
2115
2116 /*
2117 * Make the PTE invalid so that we will take a
2118 * page fault the next time the mapping is
2119 * referenced.
2120 */
2121 npte &= ~L2_TYPE_MASK;
2122 npte |= L2_TYPE_INV;
2123 }
2124
2125 if (npte != opte) {
2126 *ptep = npte;
2127 PTE_SYNC(ptep);
2128 /* Flush the TLB entry if a current pmap. */
2129 if (PV_BEEN_EXECD(oflags))
2130 pmap_tlb_flushID_SE(pm, pv->pv_va);
2131 else
2132 if (PV_BEEN_REFD(oflags))
2133 pmap_tlb_flushD_SE(pm, pv->pv_va);
2134 }
2135
2136 pmap_release_pmap_lock(pm);
2137
2138 NPDEBUG(PDB_BITS,
2139 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2140 pm, va, opte, npte));
2141 }
2142
2143 #ifdef PMAP_CACHE_VIPT
2144 /*
2145 * If we need to sync the I-cache and we haven't done it yet, do it.
2146 */
2147 if (need_syncicache && !did_syncicache) {
2148 pmap_syncicache_page(pg);
2149 PMAPCOUNT(exec_synced_clearbit);
2150 }
2151 #endif
2152
2153 simple_unlock(&pg->mdpage.pvh_slock);
2154 PMAP_HEAD_TO_MAP_UNLOCK();
2155 }
2156
2157 /*
2158 * pmap_clean_page()
2159 *
2160 * This is a local function used to work out the best strategy to clean
2161 * a single page referenced by its entry in the PV table. It's used by
2162 * pmap_copy_page, pmap_zero page and maybe some others later on.
2163 *
2164 * Its policy is effectively:
2165 * o If there are no mappings, we don't bother doing anything with the cache.
2166 * o If there is one mapping, we clean just that page.
2167 * o If there are multiple mappings, we clean the entire cache.
2168 *
2169 * So that some functions can be further optimised, it returns 0 if it didn't
2170 * clean the entire cache, or 1 if it did.
2171 *
2172 * XXX One bug in this routine is that if the pv_entry has a single page
2173 * mapped at 0x00000000 a whole cache clean will be performed rather than
2174 * just the 1 page. Since this should not occur in everyday use and if it does
2175 * it will just result in not the most efficient clean for the page.
2176 */
2177 #ifdef PMAP_CACHE_VIVT
2178 static int
2179 pmap_clean_page(struct pv_entry *pv, bool is_src)
2180 {
2181 pmap_t pm, pm_to_clean = NULL;
2182 struct pv_entry *npv;
2183 u_int cache_needs_cleaning = 0;
2184 u_int flags = 0;
2185 vaddr_t page_to_clean = 0;
2186
2187 if (pv == NULL) {
2188 /* nothing mapped in so nothing to flush */
2189 return (0);
2190 }
2191
2192 /*
2193 * Since we flush the cache each time we change to a different
2194 * user vmspace, we only need to flush the page if it is in the
2195 * current pmap.
2196 */
2197 if (curproc)
2198 pm = curproc->p_vmspace->vm_map.pmap;
2199 else
2200 pm = pmap_kernel();
2201
2202 for (npv = pv; npv; npv = npv->pv_next) {
2203 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
2204 flags |= npv->pv_flags;
2205 /*
2206 * The page is mapped non-cacheable in
2207 * this map. No need to flush the cache.
2208 */
2209 if (npv->pv_flags & PVF_NC) {
2210 #ifdef DIAGNOSTIC
2211 if (cache_needs_cleaning)
2212 panic("pmap_clean_page: "
2213 "cache inconsistency");
2214 #endif
2215 break;
2216 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2217 continue;
2218 if (cache_needs_cleaning) {
2219 page_to_clean = 0;
2220 break;
2221 } else {
2222 page_to_clean = npv->pv_va;
2223 pm_to_clean = npv->pv_pmap;
2224 }
2225 cache_needs_cleaning = 1;
2226 }
2227 }
2228
2229 if (page_to_clean) {
2230 if (PV_BEEN_EXECD(flags))
2231 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2232 PAGE_SIZE);
2233 else
2234 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2235 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2236 } else if (cache_needs_cleaning) {
2237 if (PV_BEEN_EXECD(flags))
2238 pmap_idcache_wbinv_all(pm);
2239 else
2240 pmap_dcache_wbinv_all(pm);
2241 return (1);
2242 }
2243 return (0);
2244 }
2245 #endif
2246
2247 #ifdef PMAP_CACHE_VIPT
2248 /*
2249 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2250 * right cache alias to make sure we flush the right stuff.
2251 */
2252 void
2253 pmap_syncicache_page(struct vm_page *pg)
2254 {
2255 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2256 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2257
2258 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
2259 pg, pg->mdpage.pvh_attrs));
2260 /*
2261 * No need to clean the page if it's non-cached.
2262 */
2263 if (pg->mdpage.pvh_attrs & PVF_NC)
2264 return;
2265 KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
2266
2267 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2268 /*
2269 * Set up a PTE with the right coloring to flush existing cache lines.
2270 */
2271 *ptep = L2_S_PROTO |
2272 VM_PAGE_TO_PHYS(pg)
2273 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2274 | pte_l2_s_cache_mode;
2275 PTE_SYNC(ptep);
2276
2277 /*
2278 * Flush it.
2279 */
2280 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2281 /*
2282 * Unmap the page.
2283 */
2284 *ptep = 0;
2285 PTE_SYNC(ptep);
2286 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2287
2288 pg->mdpage.pvh_attrs |= PVF_EXEC;
2289 PMAPCOUNT(exec_synced);
2290 }
2291
2292 void
2293 pmap_flush_page(struct vm_page *pg)
2294 {
2295 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2296 const size_t pte_offset = va_offset >> PGSHIFT;
2297 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2298 #if 0
2299 vaddr_t mask;
2300 #endif
2301
2302 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
2303 #if 0
2304 mask = pmap_check_sets(pg->phys_addr);
2305 KASSERT(popc4(mask) < 2);
2306 #endif
2307
2308 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
2309 pg, pg->mdpage.pvh_attrs));
2310 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2311 /*
2312 * Set up a PTE with the right coloring to flush existing cache entries.
2313 */
2314 *ptep = L2_S_PROTO
2315 | VM_PAGE_TO_PHYS(pg)
2316 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2317 | pte_l2_s_cache_mode;
2318 PTE_SYNC(ptep);
2319
2320 /*
2321 * Flush it.
2322 */
2323 cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
2324
2325 /*
2326 * Unmap the page.
2327 */
2328 *ptep = 0;
2329 PTE_SYNC(ptep);
2330 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2331 #if 0
2332 mask = pmap_check_sets(pg->phys_addr);
2333 KASSERT(mask == 0);
2334 #endif
2335 }
2336 #endif /* PMAP_CACHE_VIPT */
2337
2338 /*
2339 * Routine: pmap_page_remove
2340 * Function:
2341 * Removes this physical page from
2342 * all physical maps in which it resides.
2343 * Reflects back modify bits to the pager.
2344 */
2345 static void
2346 pmap_page_remove(struct vm_page *pg)
2347 {
2348 struct l2_bucket *l2b;
2349 struct pv_entry *pv, *npv;
2350 pmap_t pm, curpm;
2351 pt_entry_t *ptep, pte;
2352 bool flush;
2353 u_int flags;
2354
2355 NPDEBUG(PDB_FOLLOW,
2356 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2357 VM_PAGE_TO_PHYS(pg)));
2358
2359 PMAP_HEAD_TO_MAP_LOCK();
2360 simple_lock(&pg->mdpage.pvh_slock);
2361
2362 pv = pg->mdpage.pvh_list;
2363 if (pv == NULL) {
2364 #ifdef PMAP_CACHE_VIPT
2365 /*
2366 * We *know* the page contents are about to be replaced.
2367 * Discard the exec contents
2368 */
2369 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2370 PMAPCOUNT(exec_discarded_page_protect);
2371 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2372 #endif
2373 simple_unlock(&pg->mdpage.pvh_slock);
2374 PMAP_HEAD_TO_MAP_UNLOCK();
2375 return;
2376 }
2377 #ifdef PMAP_CACHE_VIPT
2378 KASSERT(pmap_is_page_colored_p(pg));
2379 #endif
2380
2381 /*
2382 * Clear alias counts
2383 */
2384 pg->mdpage.k_mappings = 0;
2385 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
2386
2387 flush = false;
2388 flags = 0;
2389 if (curproc)
2390 curpm = curproc->p_vmspace->vm_map.pmap;
2391 else
2392 curpm = pmap_kernel();
2393
2394 #ifdef PMAP_CACHE_VIVT
2395 pmap_clean_page(pv, false);
2396 #endif
2397
2398 while (pv) {
2399 pm = pv->pv_pmap;
2400 if (flush == false && (pm == curpm || pm == pmap_kernel()))
2401 flush = true;
2402
2403 if (pm == pmap_kernel())
2404 PMAPCOUNT(kernel_unmappings);
2405 PMAPCOUNT(unmappings);
2406
2407 pmap_acquire_pmap_lock(pm);
2408
2409 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2410 KDASSERT(l2b != NULL);
2411
2412 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2413 pte = *ptep;
2414
2415 /*
2416 * Update statistics
2417 */
2418 --pm->pm_stats.resident_count;
2419
2420 /* Wired bit */
2421 if (pv->pv_flags & PVF_WIRED)
2422 --pm->pm_stats.wired_count;
2423
2424 flags |= pv->pv_flags;
2425
2426 /*
2427 * Invalidate the PTEs.
2428 */
2429 *ptep = 0;
2430 PTE_SYNC_CURRENT(pm, ptep);
2431 pmap_free_l2_bucket(pm, l2b, 1);
2432
2433 npv = pv->pv_next;
2434 pool_put(&pmap_pv_pool, pv);
2435 pv = npv;
2436 if (pv == NULL) {
2437 pg->mdpage.pvh_list = NULL;
2438 if (pg->mdpage.pvh_attrs & PVF_KENTRY)
2439 pmap_vac_me_harder(pg, pm, 0);
2440 }
2441 pmap_release_pmap_lock(pm);
2442 }
2443 #ifdef PMAP_CACHE_VIPT
2444 /*
2445 * Since there are now no mappings, there isn't reason to mark it
2446 * as uncached. Its EXEC cache is also gone.
2447 */
2448 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2449 PMAPCOUNT(exec_discarded_page_protect);
2450 pg->mdpage.pvh_attrs &= ~(PVF_NC|PVF_EXEC);
2451 #endif
2452 #ifdef PMAP_CACHE_VIVT
2453 pg->mdpage.pvh_list = NULL;
2454 #endif
2455 simple_unlock(&pg->mdpage.pvh_slock);
2456 PMAP_HEAD_TO_MAP_UNLOCK();
2457
2458 if (flush) {
2459 /*
2460 * Note: We can't use pmap_tlb_flush{I,}D() here since that
2461 * would need a subsequent call to pmap_update() to ensure
2462 * curpm->pm_cstate.cs_all is reset. Our callers are not
2463 * required to do that (see pmap(9)), so we can't modify
2464 * the current pmap's state.
2465 */
2466 if (PV_BEEN_EXECD(flags))
2467 cpu_tlb_flushID();
2468 else
2469 cpu_tlb_flushD();
2470 }
2471 cpu_cpwait();
2472 }
2473
2474 /*
2475 * pmap_t pmap_create(void)
2476 *
2477 * Create a new pmap structure from scratch.
2478 */
2479 pmap_t
2480 pmap_create(void)
2481 {
2482 pmap_t pm;
2483
2484 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2485
2486 simple_lock_init(&pm->pm_lock);
2487 pm->pm_obj.pgops = NULL; /* currently not a mappable object */
2488 TAILQ_INIT(&pm->pm_obj.memq);
2489 pm->pm_obj.uo_npages = 0;
2490 pm->pm_obj.uo_refs = 1;
2491 pm->pm_stats.wired_count = 0;
2492 pm->pm_stats.resident_count = 1;
2493 pm->pm_cstate.cs_all = 0;
2494 pmap_alloc_l1(pm);
2495
2496 /*
2497 * Note: The pool cache ensures that the pm_l2[] array is already
2498 * initialised to zero.
2499 */
2500
2501 pmap_pinit(pm);
2502
2503 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2504
2505 return (pm);
2506 }
2507
2508 /*
2509 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2510 * int flags)
2511 *
2512 * Insert the given physical page (p) at
2513 * the specified virtual address (v) in the
2514 * target physical map with the protection requested.
2515 *
2516 * NB: This is the only routine which MAY NOT lazy-evaluate
2517 * or lose information. That is, this routine must actually
2518 * insert this page into the given map NOW.
2519 */
2520 int
2521 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
2522 {
2523 struct l2_bucket *l2b;
2524 struct vm_page *pg, *opg;
2525 struct pv_entry *pve;
2526 pt_entry_t *ptep, npte, opte;
2527 u_int nflags;
2528 u_int oflags;
2529
2530 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2531
2532 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2533 KDASSERT(((va | pa) & PGOFSET) == 0);
2534
2535 /*
2536 * Get a pointer to the page. Later on in this function, we
2537 * test for a managed page by checking pg != NULL.
2538 */
2539 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2540
2541 nflags = 0;
2542 if (prot & VM_PROT_WRITE)
2543 nflags |= PVF_WRITE;
2544 if (prot & VM_PROT_EXECUTE)
2545 nflags |= PVF_EXEC;
2546 if (flags & PMAP_WIRED)
2547 nflags |= PVF_WIRED;
2548
2549 PMAP_MAP_TO_HEAD_LOCK();
2550 pmap_acquire_pmap_lock(pm);
2551
2552 /*
2553 * Fetch the L2 bucket which maps this page, allocating one if
2554 * necessary for user pmaps.
2555 */
2556 if (pm == pmap_kernel())
2557 l2b = pmap_get_l2_bucket(pm, va);
2558 else
2559 l2b = pmap_alloc_l2_bucket(pm, va);
2560 if (l2b == NULL) {
2561 if (flags & PMAP_CANFAIL) {
2562 pmap_release_pmap_lock(pm);
2563 PMAP_MAP_TO_HEAD_UNLOCK();
2564 return (ENOMEM);
2565 }
2566 panic("pmap_enter: failed to allocate L2 bucket");
2567 }
2568 ptep = &l2b->l2b_kva[l2pte_index(va)];
2569 opte = *ptep;
2570 npte = pa;
2571 oflags = 0;
2572
2573 if (opte) {
2574 /*
2575 * There is already a mapping at this address.
2576 * If the physical address is different, lookup the
2577 * vm_page.
2578 */
2579 if (l2pte_pa(opte) != pa)
2580 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2581 else
2582 opg = pg;
2583 } else
2584 opg = NULL;
2585
2586 if (pg) {
2587 /*
2588 * This is to be a managed mapping.
2589 */
2590 if ((flags & VM_PROT_ALL) ||
2591 (pg->mdpage.pvh_attrs & PVF_REF)) {
2592 /*
2593 * - The access type indicates that we don't need
2594 * to do referenced emulation.
2595 * OR
2596 * - The physical page has already been referenced
2597 * so no need to re-do referenced emulation here.
2598 */
2599 npte |= L2_S_PROTO;
2600
2601 nflags |= PVF_REF;
2602
2603 if ((prot & VM_PROT_WRITE) != 0 &&
2604 ((flags & VM_PROT_WRITE) != 0 ||
2605 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2606 /*
2607 * This is a writable mapping, and the
2608 * page's mod state indicates it has
2609 * already been modified. Make it
2610 * writable from the outset.
2611 */
2612 npte |= L2_S_PROT_W;
2613 nflags |= PVF_MOD;
2614 }
2615 } else {
2616 /*
2617 * Need to do page referenced emulation.
2618 */
2619 npte |= L2_TYPE_INV;
2620 }
2621
2622 npte |= pte_l2_s_cache_mode;
2623
2624 if (pg == opg) {
2625 /*
2626 * We're changing the attrs of an existing mapping.
2627 */
2628 simple_lock(&pg->mdpage.pvh_slock);
2629 oflags = pmap_modify_pv(pg, pm, va,
2630 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2631 PVF_MOD | PVF_REF, nflags);
2632 simple_unlock(&pg->mdpage.pvh_slock);
2633
2634 #ifdef PMAP_CACHE_VIVT
2635 /*
2636 * We may need to flush the cache if we're
2637 * doing rw-ro...
2638 */
2639 if (pm->pm_cstate.cs_cache_d &&
2640 (oflags & PVF_NC) == 0 &&
2641 (opte & L2_S_PROT_W) != 0 &&
2642 (prot & VM_PROT_WRITE) == 0)
2643 cpu_dcache_wb_range(va, PAGE_SIZE);
2644 #endif
2645 } else {
2646 /*
2647 * New mapping, or changing the backing page
2648 * of an existing mapping.
2649 */
2650 if (opg) {
2651 /*
2652 * Replacing an existing mapping with a new one.
2653 * It is part of our managed memory so we
2654 * must remove it from the PV list
2655 */
2656 simple_lock(&opg->mdpage.pvh_slock);
2657 pve = pmap_remove_pv(opg, pm, va, 0);
2658 pmap_vac_me_harder(opg, pm, 0);
2659 simple_unlock(&opg->mdpage.pvh_slock);
2660 oflags = pve->pv_flags;
2661
2662 #ifdef PMAP_CACHE_VIVT
2663 /*
2664 * If the old mapping was valid (ref/mod
2665 * emulation creates 'invalid' mappings
2666 * initially) then make sure to frob
2667 * the cache.
2668 */
2669 if ((oflags & PVF_NC) == 0 &&
2670 l2pte_valid(opte)) {
2671 if (PV_BEEN_EXECD(oflags)) {
2672 pmap_idcache_wbinv_range(pm, va,
2673 PAGE_SIZE);
2674 } else
2675 if (PV_BEEN_REFD(oflags)) {
2676 pmap_dcache_wb_range(pm, va,
2677 PAGE_SIZE, true,
2678 (oflags & PVF_WRITE) == 0);
2679 }
2680 }
2681 #endif
2682 } else
2683 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2684 if ((flags & PMAP_CANFAIL) == 0)
2685 panic("pmap_enter: no pv entries");
2686
2687 if (pm != pmap_kernel())
2688 pmap_free_l2_bucket(pm, l2b, 0);
2689 pmap_release_pmap_lock(pm);
2690 PMAP_MAP_TO_HEAD_UNLOCK();
2691 NPDEBUG(PDB_ENTER,
2692 printf("pmap_enter: ENOMEM\n"));
2693 return (ENOMEM);
2694 }
2695
2696 pmap_enter_pv(pg, pve, pm, va, nflags);
2697 }
2698 } else {
2699 /*
2700 * We're mapping an unmanaged page.
2701 * These are always readable, and possibly writable, from
2702 * the get go as we don't need to track ref/mod status.
2703 */
2704 npte |= L2_S_PROTO;
2705 if (prot & VM_PROT_WRITE)
2706 npte |= L2_S_PROT_W;
2707
2708 /*
2709 * Make sure the vector table is mapped cacheable
2710 */
2711 if (pm != pmap_kernel() && va == vector_page)
2712 npte |= pte_l2_s_cache_mode;
2713
2714 if (opg) {
2715 /*
2716 * Looks like there's an existing 'managed' mapping
2717 * at this address.
2718 */
2719 simple_lock(&opg->mdpage.pvh_slock);
2720 pve = pmap_remove_pv(opg, pm, va, 0);
2721 pmap_vac_me_harder(opg, pm, 0);
2722 simple_unlock(&opg->mdpage.pvh_slock);
2723 oflags = pve->pv_flags;
2724
2725 #ifdef PMAP_CACHE_VIVT
2726 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2727 if (PV_BEEN_EXECD(oflags))
2728 pmap_idcache_wbinv_range(pm, va,
2729 PAGE_SIZE);
2730 else
2731 if (PV_BEEN_REFD(oflags))
2732 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2733 true, (oflags & PVF_WRITE) == 0);
2734 }
2735 #endif
2736 pool_put(&pmap_pv_pool, pve);
2737 }
2738 }
2739
2740 /*
2741 * Make sure userland mappings get the right permissions
2742 */
2743 if (pm != pmap_kernel() && va != vector_page)
2744 npte |= L2_S_PROT_U;
2745
2746 /*
2747 * Keep the stats up to date
2748 */
2749 if (opte == 0) {
2750 l2b->l2b_occupancy++;
2751 pm->pm_stats.resident_count++;
2752 }
2753
2754 NPDEBUG(PDB_ENTER,
2755 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2756
2757 /*
2758 * If this is just a wiring change, the two PTEs will be
2759 * identical, so there's no need to update the page table.
2760 */
2761 if (npte != opte) {
2762 bool is_cached = pmap_is_cached(pm);
2763
2764 *ptep = npte;
2765 if (is_cached) {
2766 /*
2767 * We only need to frob the cache/tlb if this pmap
2768 * is current
2769 */
2770 PTE_SYNC(ptep);
2771 if (va != vector_page && l2pte_valid(npte)) {
2772 /*
2773 * This mapping is likely to be accessed as
2774 * soon as we return to userland. Fix up the
2775 * L1 entry to avoid taking another
2776 * page/domain fault.
2777 */
2778 pd_entry_t *pl1pd, l1pd;
2779
2780 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2781 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2782 L1_C_PROTO;
2783 if (*pl1pd != l1pd) {
2784 *pl1pd = l1pd;
2785 PTE_SYNC(pl1pd);
2786 }
2787 }
2788 }
2789
2790 if (PV_BEEN_EXECD(oflags))
2791 pmap_tlb_flushID_SE(pm, va);
2792 else
2793 if (PV_BEEN_REFD(oflags))
2794 pmap_tlb_flushD_SE(pm, va);
2795
2796 NPDEBUG(PDB_ENTER,
2797 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2798 is_cached, pm->pm_cstate.cs_all));
2799
2800 if (pg != NULL) {
2801 simple_lock(&pg->mdpage.pvh_slock);
2802 pmap_vac_me_harder(pg, pm, va);
2803 simple_unlock(&pg->mdpage.pvh_slock);
2804 }
2805 }
2806
2807 pmap_release_pmap_lock(pm);
2808 PMAP_MAP_TO_HEAD_UNLOCK();
2809
2810 return (0);
2811 }
2812
2813 /*
2814 * pmap_remove()
2815 *
2816 * pmap_remove is responsible for nuking a number of mappings for a range
2817 * of virtual address space in the current pmap. To do this efficiently
2818 * is interesting, because in a number of cases a wide virtual address
2819 * range may be supplied that contains few actual mappings. So, the
2820 * optimisations are:
2821 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2822 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2823 * maybe do just a partial cache clean. This path of execution is
2824 * complicated by the fact that the cache must be flushed _before_
2825 * the PTE is nuked, being a VAC :-)
2826 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2827 * all invalidations until pmap_update(), since pmap_remove_all() has
2828 * already flushed the cache.
2829 * 4. Maybe later fast-case a single page, but I don't think this is
2830 * going to make _that_ much difference overall.
2831 */
2832
2833 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2834
2835 void
2836 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
2837 {
2838 struct l2_bucket *l2b;
2839 vaddr_t next_bucket;
2840 pt_entry_t *ptep;
2841 u_int cleanlist_idx, total, cnt;
2842 struct {
2843 vaddr_t va;
2844 pt_entry_t *ptep;
2845 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2846 u_int mappings, is_exec, is_refd;
2847
2848 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
2849 "eva=%08lx\n", pm, sva, eva));
2850
2851 /*
2852 * we lock in the pmap => pv_head direction
2853 */
2854 PMAP_MAP_TO_HEAD_LOCK();
2855 pmap_acquire_pmap_lock(pm);
2856
2857 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2858 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2859 if (pm->pm_cstate.cs_tlb == 0)
2860 pm->pm_remove_all = true;
2861 } else
2862 cleanlist_idx = 0;
2863
2864 total = 0;
2865
2866 while (sva < eva) {
2867 /*
2868 * Do one L2 bucket's worth at a time.
2869 */
2870 next_bucket = L2_NEXT_BUCKET(sva);
2871 if (next_bucket > eva)
2872 next_bucket = eva;
2873
2874 l2b = pmap_get_l2_bucket(pm, sva);
2875 if (l2b == NULL) {
2876 sva = next_bucket;
2877 continue;
2878 }
2879
2880 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2881
2882 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
2883 struct vm_page *pg;
2884 pt_entry_t pte;
2885 paddr_t pa;
2886
2887 pte = *ptep;
2888
2889 if (pte == 0) {
2890 /* Nothing here, move along */
2891 continue;
2892 }
2893
2894 pa = l2pte_pa(pte);
2895 is_exec = 0;
2896 is_refd = 1;
2897
2898 /*
2899 * Update flags. In a number of circumstances,
2900 * we could cluster a lot of these and do a
2901 * number of sequential pages in one go.
2902 */
2903 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2904 struct pv_entry *pve;
2905 simple_lock(&pg->mdpage.pvh_slock);
2906 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
2907 pmap_vac_me_harder(pg, pm, 0);
2908 simple_unlock(&pg->mdpage.pvh_slock);
2909 if (pve != NULL) {
2910 if (pm->pm_remove_all == false) {
2911 is_exec =
2912 PV_BEEN_EXECD(pve->pv_flags);
2913 is_refd =
2914 PV_BEEN_REFD(pve->pv_flags);
2915 }
2916 pool_put(&pmap_pv_pool, pve);
2917 } else
2918 if (skip_wired) {
2919 /* The mapping is wired. Skip it */
2920 continue;
2921 }
2922 } else
2923 if (skip_wired) {
2924 /* Unmanaged pages are always wired. */
2925 continue;
2926 }
2927
2928 mappings++;
2929
2930 if (!l2pte_valid(pte)) {
2931 /*
2932 * Ref/Mod emulation is still active for this
2933 * mapping, therefore it is has not yet been
2934 * accessed. No need to frob the cache/tlb.
2935 */
2936 *ptep = 0;
2937 PTE_SYNC_CURRENT(pm, ptep);
2938 continue;
2939 }
2940
2941 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2942 /* Add to the clean list. */
2943 cleanlist[cleanlist_idx].ptep = ptep;
2944 cleanlist[cleanlist_idx].va =
2945 sva | (is_exec & 1);
2946 cleanlist_idx++;
2947 } else
2948 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2949 /* Nuke everything if needed. */
2950 #ifdef PMAP_CACHE_VIVT
2951 pmap_idcache_wbinv_all(pm);
2952 #endif
2953 pmap_tlb_flushID(pm);
2954
2955 /*
2956 * Roll back the previous PTE list,
2957 * and zero out the current PTE.
2958 */
2959 for (cnt = 0;
2960 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2961 *cleanlist[cnt].ptep = 0;
2962 }
2963 *ptep = 0;
2964 PTE_SYNC(ptep);
2965 cleanlist_idx++;
2966 pm->pm_remove_all = true;
2967 } else {
2968 *ptep = 0;
2969 PTE_SYNC(ptep);
2970 if (pm->pm_remove_all == false) {
2971 if (is_exec)
2972 pmap_tlb_flushID_SE(pm, sva);
2973 else
2974 if (is_refd)
2975 pmap_tlb_flushD_SE(pm, sva);
2976 }
2977 }
2978 }
2979
2980 /*
2981 * Deal with any left overs
2982 */
2983 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2984 total += cleanlist_idx;
2985 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2986 if (pm->pm_cstate.cs_all != 0) {
2987 vaddr_t clva = cleanlist[cnt].va & ~1;
2988 if (cleanlist[cnt].va & 1) {
2989 #ifdef PMAP_CACHE_VIVT
2990 pmap_idcache_wbinv_range(pm,
2991 clva, PAGE_SIZE);
2992 #endif
2993 pmap_tlb_flushID_SE(pm, clva);
2994 } else {
2995 #ifdef PMAP_CACHE_VIVT
2996 pmap_dcache_wb_range(pm,
2997 clva, PAGE_SIZE, true,
2998 false);
2999 #endif
3000 pmap_tlb_flushD_SE(pm, clva);
3001 }
3002 }
3003 *cleanlist[cnt].ptep = 0;
3004 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3005 }
3006
3007 /*
3008 * If it looks like we're removing a whole bunch
3009 * of mappings, it's faster to just write-back
3010 * the whole cache now and defer TLB flushes until
3011 * pmap_update() is called.
3012 */
3013 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3014 cleanlist_idx = 0;
3015 else {
3016 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3017 #ifdef PMAP_CACHE_VIVT
3018 pmap_idcache_wbinv_all(pm);
3019 #endif
3020 pm->pm_remove_all = true;
3021 }
3022 }
3023
3024 pmap_free_l2_bucket(pm, l2b, mappings);
3025 pm->pm_stats.resident_count -= mappings;
3026 }
3027
3028 pmap_release_pmap_lock(pm);
3029 PMAP_MAP_TO_HEAD_UNLOCK();
3030 }
3031
3032 /*
3033 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3034 *
3035 * We assume there is already sufficient KVM space available
3036 * to do this, as we can't allocate L2 descriptor tables/metadata
3037 * from here.
3038 */
3039 void
3040 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
3041 {
3042 struct l2_bucket *l2b;
3043 pt_entry_t *ptep, opte;
3044 #ifdef PMAP_CACHE_VIPT
3045 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3046 struct vm_page *opg;
3047 #endif
3048
3049
3050 NPDEBUG(PDB_KENTER,
3051 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3052 va, pa, prot));
3053
3054 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3055 KDASSERT(l2b != NULL);
3056
3057 ptep = &l2b->l2b_kva[l2pte_index(va)];
3058 opte = *ptep;
3059
3060 if (opte == 0) {
3061 PMAPCOUNT(kenter_mappings);
3062 l2b->l2b_occupancy++;
3063 } else {
3064 PMAPCOUNT(kenter_remappings);
3065 #ifdef PMAP_CACHE_VIPT
3066 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3067 if (opg) {
3068 KASSERT(opg != pg);
3069 simple_lock(&opg->mdpage.pvh_slock);
3070 KASSERT(opg->mdpage.pvh_attrs & PVF_KENTRY);
3071 if (PV_IS_EXEC_P(opg->mdpage.pvh_attrs)
3072 && !(opg->mdpage.pvh_attrs & PVF_NC)) {
3073 if (opg->mdpage.pvh_list == NULL) {
3074 opg->mdpage.pvh_attrs &= ~PVF_EXEC;
3075 PMAPCOUNT(exec_discarded_kremove);
3076 } else {
3077 pmap_syncicache_page(opg);
3078 PMAPCOUNT(exec_synced_kremove);
3079 }
3080 }
3081 KASSERT(opg->mdpage.pvh_attrs | (PVF_COLORED|PVF_NC));
3082 opg->mdpage.pvh_attrs &= ~PVF_KENTRY;
3083 pmap_vac_me_harder(opg, NULL, 0);
3084 simple_unlock(&opg->mdpage.pvh_slock);
3085 }
3086 #endif
3087 if (l2pte_valid(opte)) {
3088 #ifdef PMAP_CACHE_VIVT
3089 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3090 #endif
3091 cpu_tlb_flushD_SE(va);
3092 cpu_cpwait();
3093 }
3094 }
3095
3096 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3097 pte_l2_s_cache_mode;
3098 PTE_SYNC(ptep);
3099
3100 #ifdef PMAP_CACHE_VIPT
3101 if (pg) {
3102 simple_lock(&pg->mdpage.pvh_slock);
3103 KASSERT((pg->mdpage.pvh_attrs & PVF_KENTRY) == 0);
3104 pg->mdpage.pvh_attrs |= PVF_KENTRY;
3105 pmap_vac_me_harder(pg, NULL, va);
3106 simple_unlock(&pg->mdpage.pvh_slock);
3107 }
3108 #endif
3109 }
3110
3111 void
3112 pmap_kremove(vaddr_t va, vsize_t len)
3113 {
3114 struct l2_bucket *l2b;
3115 pt_entry_t *ptep, *sptep, opte;
3116 vaddr_t next_bucket, eva;
3117 u_int mappings;
3118 #ifdef PMAP_CACHE_VIPT
3119 struct vm_page *opg;
3120 #endif
3121
3122 PMAPCOUNT(kenter_unmappings);
3123
3124 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3125 va, len));
3126
3127 eva = va + len;
3128
3129 while (va < eva) {
3130 next_bucket = L2_NEXT_BUCKET(va);
3131 if (next_bucket > eva)
3132 next_bucket = eva;
3133
3134 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3135 KDASSERT(l2b != NULL);
3136
3137 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3138 mappings = 0;
3139
3140 while (va < next_bucket) {
3141 opte = *ptep;
3142 #ifdef PMAP_CACHE_VIPT
3143 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3144 if (opg) {
3145 simple_lock(&opg->mdpage.pvh_slock);
3146 KASSERT(opg->mdpage.pvh_attrs & PVF_KENTRY);
3147 if (PV_IS_EXEC_P(opg->mdpage.pvh_attrs)
3148 && !(opg->mdpage.pvh_attrs & PVF_NC)) {
3149 if (opg->mdpage.pvh_list == NULL) {
3150 opg->mdpage.pvh_attrs &=
3151 ~PVF_EXEC;
3152 PMAPCOUNT(exec_discarded_kremove);
3153 } else {
3154 pmap_syncicache_page(opg);
3155 PMAPCOUNT(exec_synced_kremove);
3156 }
3157 }
3158 KASSERT(opg->mdpage.pvh_attrs | (PVF_COLORED|PVF_NC));
3159 opg->mdpage.pvh_attrs &= ~PVF_KENTRY;
3160 pmap_vac_me_harder(opg, NULL, 0);
3161 simple_unlock(&opg->mdpage.pvh_slock);
3162 }
3163 #endif
3164 if (l2pte_valid(opte)) {
3165 #ifdef PMAP_CACHE_VIVT
3166 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3167 #endif
3168 cpu_tlb_flushD_SE(va);
3169 }
3170 if (opte) {
3171 *ptep = 0;
3172 mappings++;
3173 }
3174 va += PAGE_SIZE;
3175 ptep++;
3176 }
3177 KDASSERT(mappings <= l2b->l2b_occupancy);
3178 l2b->l2b_occupancy -= mappings;
3179 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3180 }
3181 cpu_cpwait();
3182 }
3183
3184 bool
3185 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3186 {
3187 struct l2_dtable *l2;
3188 pd_entry_t *pl1pd, l1pd;
3189 pt_entry_t *ptep, pte;
3190 paddr_t pa;
3191 u_int l1idx;
3192
3193 pmap_acquire_pmap_lock(pm);
3194
3195 l1idx = L1_IDX(va);
3196 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3197 l1pd = *pl1pd;
3198
3199 if (l1pte_section_p(l1pd)) {
3200 /*
3201 * These should only happen for pmap_kernel()
3202 */
3203 KDASSERT(pm == pmap_kernel());
3204 pmap_release_pmap_lock(pm);
3205 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3206 } else {
3207 /*
3208 * Note that we can't rely on the validity of the L1
3209 * descriptor as an indication that a mapping exists.
3210 * We have to look it up in the L2 dtable.
3211 */
3212 l2 = pm->pm_l2[L2_IDX(l1idx)];
3213
3214 if (l2 == NULL ||
3215 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3216 pmap_release_pmap_lock(pm);
3217 return false;
3218 }
3219
3220 ptep = &ptep[l2pte_index(va)];
3221 pte = *ptep;
3222 pmap_release_pmap_lock(pm);
3223
3224 if (pte == 0)
3225 return false;
3226
3227 switch (pte & L2_TYPE_MASK) {
3228 case L2_TYPE_L:
3229 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3230 break;
3231
3232 default:
3233 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3234 break;
3235 }
3236 }
3237
3238 if (pap != NULL)
3239 *pap = pa;
3240
3241 return true;
3242 }
3243
3244 void
3245 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3246 {
3247 struct l2_bucket *l2b;
3248 pt_entry_t *ptep, pte;
3249 vaddr_t next_bucket;
3250 u_int flags;
3251 u_int clr_mask;
3252 int flush;
3253
3254 NPDEBUG(PDB_PROTECT,
3255 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3256 pm, sva, eva, prot));
3257
3258 if ((prot & VM_PROT_READ) == 0) {
3259 pmap_remove(pm, sva, eva);
3260 return;
3261 }
3262
3263 if (prot & VM_PROT_WRITE) {
3264 /*
3265 * If this is a read->write transition, just ignore it and let
3266 * uvm_fault() take care of it later.
3267 */
3268 return;
3269 }
3270
3271 PMAP_MAP_TO_HEAD_LOCK();
3272 pmap_acquire_pmap_lock(pm);
3273
3274 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3275 flags = 0;
3276 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3277
3278 while (sva < eva) {
3279 next_bucket = L2_NEXT_BUCKET(sva);
3280 if (next_bucket > eva)
3281 next_bucket = eva;
3282
3283 l2b = pmap_get_l2_bucket(pm, sva);
3284 if (l2b == NULL) {
3285 sva = next_bucket;
3286 continue;
3287 }
3288
3289 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3290
3291 while (sva < next_bucket) {
3292 pte = *ptep;
3293 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3294 struct vm_page *pg;
3295 u_int f;
3296
3297 #ifdef PMAP_CACHE_VIVT
3298 /*
3299 * OK, at this point, we know we're doing
3300 * write-protect operation. If the pmap is
3301 * active, write-back the page.
3302 */
3303 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3304 false, false);
3305 #endif
3306
3307 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3308 pte &= ~L2_S_PROT_W;
3309 *ptep = pte;
3310 PTE_SYNC(ptep);
3311
3312 if (pg != NULL) {
3313 simple_lock(&pg->mdpage.pvh_slock);
3314 f = pmap_modify_pv(pg, pm, sva,
3315 clr_mask, 0);
3316 pmap_vac_me_harder(pg, pm, sva);
3317 simple_unlock(&pg->mdpage.pvh_slock);
3318 } else
3319 f = PVF_REF | PVF_EXEC;
3320
3321 if (flush >= 0) {
3322 flush++;
3323 flags |= f;
3324 } else
3325 if (PV_BEEN_EXECD(f))
3326 pmap_tlb_flushID_SE(pm, sva);
3327 else
3328 if (PV_BEEN_REFD(f))
3329 pmap_tlb_flushD_SE(pm, sva);
3330 }
3331
3332 sva += PAGE_SIZE;
3333 ptep++;
3334 }
3335 }
3336
3337 pmap_release_pmap_lock(pm);
3338 PMAP_MAP_TO_HEAD_UNLOCK();
3339
3340 if (flush) {
3341 if (PV_BEEN_EXECD(flags))
3342 pmap_tlb_flushID(pm);
3343 else
3344 if (PV_BEEN_REFD(flags))
3345 pmap_tlb_flushD(pm);
3346 }
3347 }
3348
3349 void
3350 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3351 {
3352 struct l2_bucket *l2b;
3353 pt_entry_t *ptep;
3354 vaddr_t next_bucket;
3355 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3356
3357 NPDEBUG(PDB_EXEC,
3358 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3359 pm, sva, eva));
3360
3361 PMAP_MAP_TO_HEAD_LOCK();
3362 pmap_acquire_pmap_lock(pm);
3363
3364 while (sva < eva) {
3365 next_bucket = L2_NEXT_BUCKET(sva);
3366 if (next_bucket > eva)
3367 next_bucket = eva;
3368
3369 l2b = pmap_get_l2_bucket(pm, sva);
3370 if (l2b == NULL) {
3371 sva = next_bucket;
3372 continue;
3373 }
3374
3375 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3376 sva < next_bucket;
3377 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3378 if (l2pte_valid(*ptep)) {
3379 cpu_icache_sync_range(sva,
3380 min(page_size, eva - sva));
3381 }
3382 }
3383 }
3384
3385 pmap_release_pmap_lock(pm);
3386 PMAP_MAP_TO_HEAD_UNLOCK();
3387 }
3388
3389 void
3390 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3391 {
3392
3393 NPDEBUG(PDB_PROTECT,
3394 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3395 pg, VM_PAGE_TO_PHYS(pg), prot));
3396
3397 switch(prot) {
3398 return;
3399 case VM_PROT_READ|VM_PROT_WRITE:
3400 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3401 pmap_clearbit(pg, PVF_EXEC);
3402 break;
3403 #endif
3404 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3405 break;
3406
3407 case VM_PROT_READ:
3408 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3409 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3410 break;
3411 #endif
3412 case VM_PROT_READ|VM_PROT_EXECUTE:
3413 pmap_clearbit(pg, PVF_WRITE);
3414 break;
3415
3416 default:
3417 pmap_page_remove(pg);
3418 break;
3419 }
3420 }
3421
3422 /*
3423 * pmap_clear_modify:
3424 *
3425 * Clear the "modified" attribute for a page.
3426 */
3427 bool
3428 pmap_clear_modify(struct vm_page *pg)
3429 {
3430 bool rv;
3431
3432 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3433 rv = true;
3434 pmap_clearbit(pg, PVF_MOD);
3435 } else
3436 rv = false;
3437
3438 return (rv);
3439 }
3440
3441 /*
3442 * pmap_clear_reference:
3443 *
3444 * Clear the "referenced" attribute for a page.
3445 */
3446 bool
3447 pmap_clear_reference(struct vm_page *pg)
3448 {
3449 bool rv;
3450
3451 if (pg->mdpage.pvh_attrs & PVF_REF) {
3452 rv = true;
3453 pmap_clearbit(pg, PVF_REF);
3454 } else
3455 rv = false;
3456
3457 return (rv);
3458 }
3459
3460 /*
3461 * pmap_is_modified:
3462 *
3463 * Test if a page has the "modified" attribute.
3464 */
3465 /* See <arm/arm32/pmap.h> */
3466
3467 /*
3468 * pmap_is_referenced:
3469 *
3470 * Test if a page has the "referenced" attribute.
3471 */
3472 /* See <arm/arm32/pmap.h> */
3473
3474 int
3475 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3476 {
3477 struct l2_dtable *l2;
3478 struct l2_bucket *l2b;
3479 pd_entry_t *pl1pd, l1pd;
3480 pt_entry_t *ptep, pte;
3481 paddr_t pa;
3482 u_int l1idx;
3483 int rv = 0;
3484
3485 PMAP_MAP_TO_HEAD_LOCK();
3486 pmap_acquire_pmap_lock(pm);
3487
3488 l1idx = L1_IDX(va);
3489
3490 /*
3491 * If there is no l2_dtable for this address, then the process
3492 * has no business accessing it.
3493 *
3494 * Note: This will catch userland processes trying to access
3495 * kernel addresses.
3496 */
3497 l2 = pm->pm_l2[L2_IDX(l1idx)];
3498 if (l2 == NULL)
3499 goto out;
3500
3501 /*
3502 * Likewise if there is no L2 descriptor table
3503 */
3504 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3505 if (l2b->l2b_kva == NULL)
3506 goto out;
3507
3508 /*
3509 * Check the PTE itself.
3510 */
3511 ptep = &l2b->l2b_kva[l2pte_index(va)];
3512 pte = *ptep;
3513 if (pte == 0)
3514 goto out;
3515
3516 /*
3517 * Catch a userland access to the vector page mapped at 0x0
3518 */
3519 if (user && (pte & L2_S_PROT_U) == 0)
3520 goto out;
3521
3522 pa = l2pte_pa(pte);
3523
3524 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3525 /*
3526 * This looks like a good candidate for "page modified"
3527 * emulation...
3528 */
3529 struct pv_entry *pv;
3530 struct vm_page *pg;
3531
3532 /* Extract the physical address of the page */
3533 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3534 goto out;
3535
3536 /* Get the current flags for this page. */
3537 simple_lock(&pg->mdpage.pvh_slock);
3538
3539 pv = pmap_find_pv(pg, pm, va);
3540 if (pv == NULL) {
3541 simple_unlock(&pg->mdpage.pvh_slock);
3542 goto out;
3543 }
3544
3545 /*
3546 * Do the flags say this page is writable? If not then it
3547 * is a genuine write fault. If yes then the write fault is
3548 * our fault as we did not reflect the write access in the
3549 * PTE. Now we know a write has occurred we can correct this
3550 * and also set the modified bit
3551 */
3552 if ((pv->pv_flags & PVF_WRITE) == 0) {
3553 simple_unlock(&pg->mdpage.pvh_slock);
3554 goto out;
3555 }
3556
3557 NPDEBUG(PDB_FOLLOW,
3558 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3559 pm, va, VM_PAGE_TO_PHYS(pg)));
3560
3561 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3562 pv->pv_flags |= PVF_REF | PVF_MOD;
3563 simple_unlock(&pg->mdpage.pvh_slock);
3564
3565 /*
3566 * Re-enable write permissions for the page. No need to call
3567 * pmap_vac_me_harder(), since this is just a
3568 * modified-emulation fault, and the PVF_WRITE bit isn't
3569 * changing. We've already set the cacheable bits based on
3570 * the assumption that we can write to this page.
3571 */
3572 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3573 PTE_SYNC(ptep);
3574 rv = 1;
3575 } else
3576 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3577 /*
3578 * This looks like a good candidate for "page referenced"
3579 * emulation.
3580 */
3581 struct pv_entry *pv;
3582 struct vm_page *pg;
3583
3584 /* Extract the physical address of the page */
3585 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3586 goto out;
3587
3588 /* Get the current flags for this page. */
3589 simple_lock(&pg->mdpage.pvh_slock);
3590
3591 pv = pmap_find_pv(pg, pm, va);
3592 if (pv == NULL) {
3593 simple_unlock(&pg->mdpage.pvh_slock);
3594 goto out;
3595 }
3596
3597 pg->mdpage.pvh_attrs |= PVF_REF;
3598 pv->pv_flags |= PVF_REF;
3599 simple_unlock(&pg->mdpage.pvh_slock);
3600
3601 NPDEBUG(PDB_FOLLOW,
3602 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3603 pm, va, VM_PAGE_TO_PHYS(pg)));
3604
3605 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3606 PTE_SYNC(ptep);
3607 rv = 1;
3608 }
3609
3610 /*
3611 * We know there is a valid mapping here, so simply
3612 * fix up the L1 if necessary.
3613 */
3614 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3615 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3616 if (*pl1pd != l1pd) {
3617 *pl1pd = l1pd;
3618 PTE_SYNC(pl1pd);
3619 rv = 1;
3620 }
3621
3622 #ifdef CPU_SA110
3623 /*
3624 * There are bugs in the rev K SA110. This is a check for one
3625 * of them.
3626 */
3627 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3628 curcpu()->ci_arm_cpurev < 3) {
3629 /* Always current pmap */
3630 if (l2pte_valid(pte)) {
3631 extern int kernel_debug;
3632 if (kernel_debug & 1) {
3633 struct proc *p = curlwp->l_proc;
3634 printf("prefetch_abort: page is already "
3635 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3636 printf("prefetch_abort: pc=%08lx proc=%p "
3637 "process=%s\n", va, p, p->p_comm);
3638 printf("prefetch_abort: far=%08x fs=%x\n",
3639 cpu_faultaddress(), cpu_faultstatus());
3640 }
3641 #ifdef DDB
3642 if (kernel_debug & 2)
3643 Debugger();
3644 #endif
3645 rv = 1;
3646 }
3647 }
3648 #endif /* CPU_SA110 */
3649
3650 #ifdef DEBUG
3651 /*
3652 * If 'rv == 0' at this point, it generally indicates that there is a
3653 * stale TLB entry for the faulting address. This happens when two or
3654 * more processes are sharing an L1. Since we don't flush the TLB on
3655 * a context switch between such processes, we can take domain faults
3656 * for mappings which exist at the same VA in both processes. EVEN IF
3657 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
3658 * example.
3659 *
3660 * This is extremely likely to happen if pmap_enter() updated the L1
3661 * entry for a recently entered mapping. In this case, the TLB is
3662 * flushed for the new mapping, but there may still be TLB entries for
3663 * other mappings belonging to other processes in the 1MB range
3664 * covered by the L1 entry.
3665 *
3666 * Since 'rv == 0', we know that the L1 already contains the correct
3667 * value, so the fault must be due to a stale TLB entry.
3668 *
3669 * Since we always need to flush the TLB anyway in the case where we
3670 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
3671 * stale TLB entries dynamically.
3672 *
3673 * However, the above condition can ONLY happen if the current L1 is
3674 * being shared. If it happens when the L1 is unshared, it indicates
3675 * that other parts of the pmap are not doing their job WRT managing
3676 * the TLB.
3677 */
3678 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
3679 extern int last_fault_code;
3680 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
3681 pm, va, ftype);
3682 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
3683 l2, l2b, ptep, pl1pd);
3684 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
3685 pte, l1pd, last_fault_code);
3686 #ifdef DDB
3687 Debugger();
3688 #endif
3689 }
3690 #endif
3691
3692 cpu_tlb_flushID_SE(va);
3693 cpu_cpwait();
3694
3695 rv = 1;
3696
3697 out:
3698 pmap_release_pmap_lock(pm);
3699 PMAP_MAP_TO_HEAD_UNLOCK();
3700
3701 return (rv);
3702 }
3703
3704 /*
3705 * pmap_collect: free resources held by a pmap
3706 *
3707 * => optional function.
3708 * => called when a process is swapped out to free memory.
3709 */
3710 void
3711 pmap_collect(pmap_t pm)
3712 {
3713
3714 #ifdef PMAP_CACHE_VIVT
3715 pmap_idcache_wbinv_all(pm);
3716 #endif
3717 pm->pm_remove_all = true;
3718 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
3719 pmap_update(pm);
3720 PMAPCOUNT(collects);
3721 }
3722
3723 /*
3724 * Routine: pmap_procwr
3725 *
3726 * Function:
3727 * Synchronize caches corresponding to [addr, addr+len) in p.
3728 *
3729 */
3730 void
3731 pmap_procwr(struct proc *p, vaddr_t va, int len)
3732 {
3733 /* We only need to do anything if it is the current process. */
3734 if (p == curproc)
3735 cpu_icache_sync_range(va, len);
3736 }
3737
3738 /*
3739 * Routine: pmap_unwire
3740 * Function: Clear the wired attribute for a map/virtual-address pair.
3741 *
3742 * In/out conditions:
3743 * The mapping must already exist in the pmap.
3744 */
3745 void
3746 pmap_unwire(pmap_t pm, vaddr_t va)
3747 {
3748 struct l2_bucket *l2b;
3749 pt_entry_t *ptep, pte;
3750 struct vm_page *pg;
3751 paddr_t pa;
3752
3753 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3754
3755 PMAP_MAP_TO_HEAD_LOCK();
3756 pmap_acquire_pmap_lock(pm);
3757
3758 l2b = pmap_get_l2_bucket(pm, va);
3759 KDASSERT(l2b != NULL);
3760
3761 ptep = &l2b->l2b_kva[l2pte_index(va)];
3762 pte = *ptep;
3763
3764 /* Extract the physical address of the page */
3765 pa = l2pte_pa(pte);
3766
3767 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3768 /* Update the wired bit in the pv entry for this page. */
3769 simple_lock(&pg->mdpage.pvh_slock);
3770 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3771 simple_unlock(&pg->mdpage.pvh_slock);
3772 }
3773
3774 pmap_release_pmap_lock(pm);
3775 PMAP_MAP_TO_HEAD_UNLOCK();
3776 }
3777
3778 void
3779 pmap_switch(struct lwp *olwp, struct lwp *nlwp)
3780 {
3781 extern int block_userspace_access;
3782 pmap_t opm, npm, rpm;
3783 uint32_t odacr, ndacr;
3784 int oldirqstate;
3785
3786 npm = nlwp->l_proc->p_vmspace->vm_map.pmap;
3787 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3788 (DOMAIN_CLIENT << (npm->pm_domain * 2));
3789
3790 /*
3791 * If TTB and DACR are unchanged, short-circuit all the
3792 * TLB/cache management stuff.
3793 */
3794 if (olwp != NULL) {
3795 opm = olwp->l_proc->p_vmspace->vm_map.pmap;
3796 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3797 (DOMAIN_CLIENT << (opm->pm_domain * 2));
3798
3799 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
3800 goto all_done;
3801 } else
3802 opm = NULL;
3803
3804 PMAPCOUNT(activations);
3805 block_userspace_access = 1;
3806
3807 /*
3808 * If switching to a user vmspace which is different to the
3809 * most recent one, and the most recent one is potentially
3810 * live in the cache, we must write-back and invalidate the
3811 * entire cache.
3812 */
3813 rpm = pmap_recent_user;
3814 if (npm != pmap_kernel() && rpm && npm != rpm &&
3815 rpm->pm_cstate.cs_cache) {
3816 rpm->pm_cstate.cs_cache = 0;
3817 #ifdef PMAP_CACHE_VIVT
3818 cpu_idcache_wbinv_all();
3819 #endif
3820 }
3821
3822 /* No interrupts while we frob the TTB/DACR */
3823 oldirqstate = disable_interrupts(I32_bit | F32_bit);
3824
3825 /*
3826 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
3827 * entry corresponding to 'vector_page' in the incoming L1 table
3828 * before switching to it otherwise subsequent interrupts/exceptions
3829 * (including domain faults!) will jump into hyperspace.
3830 */
3831 if (npm->pm_pl1vec != NULL) {
3832 cpu_tlb_flushID_SE((u_int)vector_page);
3833 cpu_cpwait();
3834 *npm->pm_pl1vec = npm->pm_l1vec;
3835 PTE_SYNC(npm->pm_pl1vec);
3836 }
3837
3838 cpu_domains(ndacr);
3839
3840 if (npm == pmap_kernel() || npm == rpm) {
3841 /*
3842 * Switching to a kernel thread, or back to the
3843 * same user vmspace as before... Simply update
3844 * the TTB (no TLB flush required)
3845 */
3846 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
3847 "r"(npm->pm_l1->l1_physaddr));
3848 cpu_cpwait();
3849 } else {
3850 /*
3851 * Otherwise, update TTB and flush TLB
3852 */
3853 cpu_context_switch(npm->pm_l1->l1_physaddr);
3854 if (rpm != NULL)
3855 rpm->pm_cstate.cs_tlb = 0;
3856 }
3857
3858 restore_interrupts(oldirqstate);
3859
3860 block_userspace_access = 0;
3861
3862 all_done:
3863 /*
3864 * The new pmap is resident. Make sure it's marked
3865 * as resident in the cache/TLB.
3866 */
3867 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3868 if (npm != pmap_kernel())
3869 pmap_recent_user = npm;
3870
3871 /* The old pmap is not longer active */
3872 if (opm != NULL)
3873 opm->pm_activated = false;
3874
3875 /* But the new one is */
3876 npm->pm_activated = true;
3877 }
3878
3879 void
3880 pmap_activate(struct lwp *l)
3881 {
3882
3883 if (l == curlwp &&
3884 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == false)
3885 pmap_switch(NULL, l);
3886 }
3887
3888 void
3889 pmap_deactivate(struct lwp *l)
3890 {
3891
3892 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
3893 }
3894
3895 void
3896 pmap_update(pmap_t pm)
3897 {
3898
3899 if (pm->pm_remove_all) {
3900 /*
3901 * Finish up the pmap_remove_all() optimisation by flushing
3902 * the TLB.
3903 */
3904 pmap_tlb_flushID(pm);
3905 pm->pm_remove_all = false;
3906 }
3907
3908 if (pmap_is_current(pm)) {
3909 /*
3910 * If we're dealing with a current userland pmap, move its L1
3911 * to the end of the LRU.
3912 */
3913 if (pm != pmap_kernel())
3914 pmap_use_l1(pm);
3915
3916 /*
3917 * We can assume we're done with frobbing the cache/tlb for
3918 * now. Make sure any future pmap ops don't skip cache/tlb
3919 * flushes.
3920 */
3921 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3922 }
3923
3924 PMAPCOUNT(updates);
3925
3926 /*
3927 * make sure TLB/cache operations have completed.
3928 */
3929 cpu_cpwait();
3930 }
3931
3932 void
3933 pmap_remove_all(pmap_t pm)
3934 {
3935
3936 /*
3937 * The vmspace described by this pmap is about to be torn down.
3938 * Until pmap_update() is called, UVM will only make calls
3939 * to pmap_remove(). We can make life much simpler by flushing
3940 * the cache now, and deferring TLB invalidation to pmap_update().
3941 */
3942 #ifdef PMAP_CACHE_VIVT
3943 pmap_idcache_wbinv_all(pm);
3944 #endif
3945 pm->pm_remove_all = true;
3946 }
3947
3948 /*
3949 * Retire the given physical map from service.
3950 * Should only be called if the map contains no valid mappings.
3951 */
3952 void
3953 pmap_destroy(pmap_t pm)
3954 {
3955 u_int count;
3956
3957 if (pm == NULL)
3958 return;
3959
3960 if (pm->pm_remove_all) {
3961 pmap_tlb_flushID(pm);
3962 pm->pm_remove_all = false;
3963 }
3964
3965 /*
3966 * Drop reference count
3967 */
3968 simple_lock(&pm->pm_lock);
3969 count = --pm->pm_obj.uo_refs;
3970 simple_unlock(&pm->pm_lock);
3971 if (count > 0) {
3972 if (pmap_is_current(pm)) {
3973 if (pm != pmap_kernel())
3974 pmap_use_l1(pm);
3975 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3976 }
3977 return;
3978 }
3979
3980 /*
3981 * reference count is zero, free pmap resources and then free pmap.
3982 */
3983
3984 if (vector_page < KERNEL_BASE) {
3985 KDASSERT(!pmap_is_current(pm));
3986
3987 /* Remove the vector page mapping */
3988 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3989 pmap_update(pm);
3990 }
3991
3992 LIST_REMOVE(pm, pm_list);
3993
3994 pmap_free_l1(pm);
3995
3996 if (pmap_recent_user == pm)
3997 pmap_recent_user = NULL;
3998
3999 /* return the pmap to the pool */
4000 pool_cache_put(&pmap_cache, pm);
4001 }
4002
4003
4004 /*
4005 * void pmap_reference(pmap_t pm)
4006 *
4007 * Add a reference to the specified pmap.
4008 */
4009 void
4010 pmap_reference(pmap_t pm)
4011 {
4012
4013 if (pm == NULL)
4014 return;
4015
4016 pmap_use_l1(pm);
4017
4018 simple_lock(&pm->pm_lock);
4019 pm->pm_obj.uo_refs++;
4020 simple_unlock(&pm->pm_lock);
4021 }
4022
4023 #if ARM_MMU_V6 > 0
4024
4025 static struct evcnt pmap_prefer_nochange_ev =
4026 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4027 static struct evcnt pmap_prefer_change_ev =
4028 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4029
4030 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4031 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4032
4033 void
4034 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4035 {
4036 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4037 vaddr_t va = *vap;
4038 vaddr_t diff = (hint - va) & mask;
4039 if (diff == 0) {
4040 pmap_prefer_nochange_ev.ev_count++;
4041 } else {
4042 pmap_prefer_change_ev.ev_count++;
4043 if (__predict_false(td))
4044 va -= mask + 1;
4045 *vap = va + diff;
4046 }
4047 }
4048 #endif /* ARM_MMU_V6 */
4049
4050 /*
4051 * pmap_zero_page()
4052 *
4053 * Zero a given physical page by mapping it at a page hook point.
4054 * In doing the zero page op, the page we zero is mapped cachable, as with
4055 * StrongARM accesses to non-cached pages are non-burst making writing
4056 * _any_ bulk data very slow.
4057 */
4058 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4059 void
4060 pmap_zero_page_generic(paddr_t phys)
4061 {
4062 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4063 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4064 #endif
4065 #ifdef PMAP_CACHE_VIPT
4066 /* Choose the last page color it had, if any */
4067 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4068 #else
4069 const vsize_t va_offset = 0;
4070 #endif
4071 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4072
4073 #ifdef DEBUG
4074 if (pg->mdpage.pvh_list != NULL)
4075 panic("pmap_zero_page: page has mappings");
4076 #endif
4077
4078 KDASSERT((phys & PGOFSET) == 0);
4079
4080 /*
4081 * Hook in the page, zero it, and purge the cache for that
4082 * zeroed page. Invalidate the TLB as needed.
4083 */
4084 *ptep = L2_S_PROTO | phys |
4085 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4086 PTE_SYNC(ptep);
4087 cpu_tlb_flushD_SE(cdstp + va_offset);
4088 cpu_cpwait();
4089 bzero_page(cdstp + va_offset);
4090 /*
4091 * Unmap the page.
4092 */
4093 *ptep = 0;
4094 PTE_SYNC(ptep);
4095 cpu_tlb_flushD_SE(cdstp + va_offset);
4096 #ifdef PMAP_CACHE_VIVT
4097 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4098 #endif
4099 #ifdef PMAP_CACHE_VIPT
4100 /*
4101 * This page is now cache resident so it now has a page color.
4102 * Any contents have been obliterated so clear the EXEC flag.
4103 */
4104 if (!pmap_is_page_colored_p(pg)) {
4105 PMAPCOUNT(vac_color_new);
4106 pg->mdpage.pvh_attrs |= PVF_COLORED;
4107 }
4108 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4109 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4110 PMAPCOUNT(exec_discarded_zero);
4111 }
4112 #endif
4113 }
4114 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4115
4116 #if ARM_MMU_XSCALE == 1
4117 void
4118 pmap_zero_page_xscale(paddr_t phys)
4119 {
4120 #ifdef DEBUG
4121 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4122
4123 if (pg->mdpage.pvh_list != NULL)
4124 panic("pmap_zero_page: page has mappings");
4125 #endif
4126
4127 KDASSERT((phys & PGOFSET) == 0);
4128
4129 /*
4130 * Hook in the page, zero it, and purge the cache for that
4131 * zeroed page. Invalidate the TLB as needed.
4132 */
4133 *cdst_pte = L2_S_PROTO | phys |
4134 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4135 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4136 PTE_SYNC(cdst_pte);
4137 cpu_tlb_flushD_SE(cdstp);
4138 cpu_cpwait();
4139 bzero_page(cdstp);
4140 xscale_cache_clean_minidata();
4141 }
4142 #endif /* ARM_MMU_XSCALE == 1 */
4143
4144 /* pmap_pageidlezero()
4145 *
4146 * The same as above, except that we assume that the page is not
4147 * mapped. This means we never have to flush the cache first. Called
4148 * from the idle loop.
4149 */
4150 bool
4151 pmap_pageidlezero(paddr_t phys)
4152 {
4153 unsigned int i;
4154 int *ptr;
4155 bool rv = true;
4156 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4157 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4158 #endif
4159 #ifdef PMAP_CACHE_VIPT
4160 /* Choose the last page color it had, if any */
4161 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4162 #else
4163 const vsize_t va_offset = 0;
4164 #endif
4165 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4166
4167
4168 #ifdef DEBUG
4169 if (pg->mdpage.pvh_list != NULL)
4170 panic("pmap_pageidlezero: page has mappings");
4171 #endif
4172
4173 KDASSERT((phys & PGOFSET) == 0);
4174
4175 /*
4176 * Hook in the page, zero it, and purge the cache for that
4177 * zeroed page. Invalidate the TLB as needed.
4178 */
4179 *ptep = L2_S_PROTO | phys |
4180 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4181 PTE_SYNC(ptep);
4182 cpu_tlb_flushD_SE(cdstp + va_offset);
4183 cpu_cpwait();
4184
4185 for (i = 0, ptr = (int *)(cdstp + va_offset);
4186 i < (PAGE_SIZE / sizeof(int)); i++) {
4187 if (sched_curcpu_runnable_p() != 0) {
4188 /*
4189 * A process has become ready. Abort now,
4190 * so we don't keep it waiting while we
4191 * do slow memory access to finish this
4192 * page.
4193 */
4194 rv = false;
4195 break;
4196 }
4197 *ptr++ = 0;
4198 }
4199
4200 #ifdef PMAP_CACHE_VIVT
4201 if (rv)
4202 /*
4203 * if we aborted we'll rezero this page again later so don't
4204 * purge it unless we finished it
4205 */
4206 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4207 #elif defined(PMAP_CACHE_VIPT)
4208 /*
4209 * This page is now cache resident so it now has a page color.
4210 * Any contents have been obliterated so clear the EXEC flag.
4211 */
4212 if (!pmap_is_page_colored_p(pg)) {
4213 PMAPCOUNT(vac_color_new);
4214 pg->mdpage.pvh_attrs |= PVF_COLORED;
4215 }
4216 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4217 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4218 PMAPCOUNT(exec_discarded_zero);
4219 }
4220 #endif
4221 /*
4222 * Unmap the page.
4223 */
4224 *ptep = 0;
4225 PTE_SYNC(ptep);
4226 cpu_tlb_flushD_SE(cdstp + va_offset);
4227
4228 return (rv);
4229 }
4230
4231 /*
4232 * pmap_copy_page()
4233 *
4234 * Copy one physical page into another, by mapping the pages into
4235 * hook points. The same comment regarding cachability as in
4236 * pmap_zero_page also applies here.
4237 */
4238 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4239 void
4240 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4241 {
4242 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4243 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4244 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4245 #endif
4246 #ifdef PMAP_CACHE_VIPT
4247 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4248 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4249 #else
4250 const vsize_t src_va_offset = 0;
4251 const vsize_t dst_va_offset = 0;
4252 #endif
4253 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4254 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4255
4256 #ifdef DEBUG
4257 if (dst_pg->mdpage.pvh_list != NULL)
4258 panic("pmap_copy_page: dst page has mappings");
4259 #endif
4260
4261 #ifdef PMAP_CACHE_VIPT
4262 KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
4263 #endif
4264 KDASSERT((src & PGOFSET) == 0);
4265 KDASSERT((dst & PGOFSET) == 0);
4266
4267 /*
4268 * Clean the source page. Hold the source page's lock for
4269 * the duration of the copy so that no other mappings can
4270 * be created while we have a potentially aliased mapping.
4271 */
4272 simple_lock(&src_pg->mdpage.pvh_slock);
4273 #ifdef PMAP_CACHE_VIVT
4274 (void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
4275 #endif
4276
4277 /*
4278 * Map the pages into the page hook points, copy them, and purge
4279 * the cache for the appropriate page. Invalidate the TLB
4280 * as required.
4281 */
4282 *src_ptep = L2_S_PROTO
4283 | src
4284 #ifdef PMAP_CACHE_VIPT
4285 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4286 #endif
4287 #ifdef PMAP_CACHE_VIVT
4288 | pte_l2_s_cache_mode
4289 #endif
4290 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4291 *dst_ptep = L2_S_PROTO | dst |
4292 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4293 PTE_SYNC(src_ptep);
4294 PTE_SYNC(dst_ptep);
4295 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4296 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4297 cpu_cpwait();
4298 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4299 #ifdef PMAP_CACHE_VIVT
4300 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4301 #endif
4302 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4303 #ifdef PMAP_CACHE_VIVT
4304 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4305 #endif
4306 /*
4307 * Unmap the pages.
4308 */
4309 *src_ptep = 0;
4310 *dst_ptep = 0;
4311 PTE_SYNC(src_ptep);
4312 PTE_SYNC(dst_ptep);
4313 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4314 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4315 #ifdef PMAP_CACHE_VIPT
4316 /*
4317 * Now that the destination page is in the cache, mark it as colored.
4318 * If this was an exec page, discard it.
4319 */
4320 if (!pmap_is_page_colored_p(dst_pg)) {
4321 PMAPCOUNT(vac_color_new);
4322 dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
4323 }
4324 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
4325 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4326 PMAPCOUNT(exec_discarded_copy);
4327 }
4328 #endif
4329 }
4330 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4331
4332 #if ARM_MMU_XSCALE == 1
4333 void
4334 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4335 {
4336 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4337 #ifdef DEBUG
4338 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4339
4340 if (dst_pg->mdpage.pvh_list != NULL)
4341 panic("pmap_copy_page: dst page has mappings");
4342 #endif
4343
4344 KDASSERT((src & PGOFSET) == 0);
4345 KDASSERT((dst & PGOFSET) == 0);
4346
4347 /*
4348 * Clean the source page. Hold the source page's lock for
4349 * the duration of the copy so that no other mappings can
4350 * be created while we have a potentially aliased mapping.
4351 */
4352 simple_lock(&src_pg->mdpage.pvh_slock);
4353 #ifdef PMAP_CACHE_VIVT
4354 (void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
4355 #endif
4356
4357 /*
4358 * Map the pages into the page hook points, copy them, and purge
4359 * the cache for the appropriate page. Invalidate the TLB
4360 * as required.
4361 */
4362 *csrc_pte = L2_S_PROTO | src |
4363 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4364 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4365 PTE_SYNC(csrc_pte);
4366 *cdst_pte = L2_S_PROTO | dst |
4367 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4368 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4369 PTE_SYNC(cdst_pte);
4370 cpu_tlb_flushD_SE(csrcp);
4371 cpu_tlb_flushD_SE(cdstp);
4372 cpu_cpwait();
4373 bcopy_page(csrcp, cdstp);
4374 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4375 xscale_cache_clean_minidata();
4376 }
4377 #endif /* ARM_MMU_XSCALE == 1 */
4378
4379 /*
4380 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4381 *
4382 * Return the start and end addresses of the kernel's virtual space.
4383 * These values are setup in pmap_bootstrap and are updated as pages
4384 * are allocated.
4385 */
4386 void
4387 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4388 {
4389 *start = virtual_avail;
4390 *end = virtual_end;
4391 }
4392
4393 /*
4394 * Helper function for pmap_grow_l2_bucket()
4395 */
4396 static inline int
4397 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4398 {
4399 struct l2_bucket *l2b;
4400 pt_entry_t *ptep;
4401 paddr_t pa;
4402
4403 if (uvm.page_init_done == false) {
4404 #ifdef PMAP_STEAL_MEMORY
4405 pv_addr_t pv;
4406 pmap_boot_pagealloc(PAGE_SIZE,
4407 #ifdef PMAP_CACHE_VIPT
4408 arm_cache_prefer_mask,
4409 va & arm_cache_prefer_mask,
4410 #else
4411 0, 0,
4412 #endif
4413 &pv);
4414 pa = pv.pv_pa;
4415 #else
4416 if (uvm_page_physget(&pa) == false)
4417 return (1);
4418 #endif /* PMAP_STEAL_MEMORY */
4419 } else {
4420 struct vm_page *pg;
4421 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4422 if (pg == NULL)
4423 return (1);
4424 pa = VM_PAGE_TO_PHYS(pg);
4425 #ifdef PMAP_CACHE_VIPT
4426 /*
4427 * This new page must not have any mappings. However, it might
4428 * have previously used and therefore present in the cache. If
4429 * it doesn't have the desired color, we have to flush it from
4430 * the cache. And while we are at it, make sure to clear its
4431 * EXEC status.
4432 */
4433 KASSERT(!(pg->mdpage.pvh_attrs & PVF_KENTRY));
4434 KASSERT(pg->mdpage.pvh_list == NULL);
4435 if (pmap_is_page_colored_p(pg)) {
4436 if ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask) {
4437 pmap_flush_page(pg);
4438 PMAPCOUNT(vac_color_change);
4439 } else {
4440 PMAPCOUNT(vac_color_reuse);
4441 }
4442 } else {
4443 PMAPCOUNT(vac_color_new);
4444 }
4445 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
4446 PMAPCOUNT(exec_discarded_kremove);
4447 /*
4448 * We'll pretend this page was entered by pmap_kenter_pa
4449 */
4450 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_EXEC;
4451 pg->mdpage.pvh_attrs |= va | PVF_KENTRY | PVF_COLORED | PVF_REF | PVF_MOD;
4452 #endif
4453 }
4454
4455 if (pap)
4456 *pap = pa;
4457
4458 PMAPCOUNT(pt_mappings);
4459 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4460 KDASSERT(l2b != NULL);
4461
4462 ptep = &l2b->l2b_kva[l2pte_index(va)];
4463 *ptep = L2_S_PROTO | pa | cache_mode |
4464 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4465 PTE_SYNC(ptep);
4466 memset((void *)va, 0, PAGE_SIZE);
4467 return (0);
4468 }
4469
4470 /*
4471 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4472 * used by pmap_growkernel().
4473 */
4474 static inline struct l2_bucket *
4475 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4476 {
4477 struct l2_dtable *l2;
4478 struct l2_bucket *l2b;
4479 u_short l1idx;
4480 vaddr_t nva;
4481
4482 l1idx = L1_IDX(va);
4483
4484 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4485 /*
4486 * No mapping at this address, as there is
4487 * no entry in the L1 table.
4488 * Need to allocate a new l2_dtable.
4489 */
4490 nva = pmap_kernel_l2dtable_kva;
4491 if ((nva & PGOFSET) == 0) {
4492 /*
4493 * Need to allocate a backing page
4494 */
4495 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4496 return (NULL);
4497 }
4498
4499 l2 = (struct l2_dtable *)nva;
4500 nva += sizeof(struct l2_dtable);
4501
4502 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4503 /*
4504 * The new l2_dtable straddles a page boundary.
4505 * Map in another page to cover it.
4506 */
4507 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4508 return (NULL);
4509 }
4510
4511 pmap_kernel_l2dtable_kva = nva;
4512
4513 /*
4514 * Link it into the parent pmap
4515 */
4516 pm->pm_l2[L2_IDX(l1idx)] = l2;
4517 }
4518
4519 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4520
4521 /*
4522 * Fetch pointer to the L2 page table associated with the address.
4523 */
4524 if (l2b->l2b_kva == NULL) {
4525 pt_entry_t *ptep;
4526
4527 /*
4528 * No L2 page table has been allocated. Chances are, this
4529 * is because we just allocated the l2_dtable, above.
4530 */
4531 nva = pmap_kernel_l2ptp_kva;
4532 ptep = (pt_entry_t *)nva;
4533 if ((nva & PGOFSET) == 0) {
4534 /*
4535 * Need to allocate a backing page
4536 */
4537 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4538 &pmap_kernel_l2ptp_phys))
4539 return (NULL);
4540 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4541 }
4542
4543 l2->l2_occupancy++;
4544 l2b->l2b_kva = ptep;
4545 l2b->l2b_l1idx = l1idx;
4546 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4547
4548 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4549 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4550 }
4551
4552 return (l2b);
4553 }
4554
4555 vaddr_t
4556 pmap_growkernel(vaddr_t maxkvaddr)
4557 {
4558 pmap_t kpm = pmap_kernel();
4559 struct l1_ttable *l1;
4560 struct l2_bucket *l2b;
4561 pd_entry_t *pl1pd;
4562 int s;
4563
4564 if (maxkvaddr <= pmap_curmaxkvaddr)
4565 goto out; /* we are OK */
4566
4567 NPDEBUG(PDB_GROWKERN,
4568 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4569 pmap_curmaxkvaddr, maxkvaddr));
4570
4571 KDASSERT(maxkvaddr <= virtual_end);
4572
4573 /*
4574 * whoops! we need to add kernel PTPs
4575 */
4576
4577 s = splhigh(); /* to be safe */
4578 simple_lock(&kpm->pm_lock);
4579
4580 /* Map 1MB at a time */
4581 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4582
4583 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4584 KDASSERT(l2b != NULL);
4585
4586 /* Distribute new L1 entry to all other L1s */
4587 SLIST_FOREACH(l1, &l1_list, l1_link) {
4588 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4589 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4590 L1_C_PROTO;
4591 PTE_SYNC(pl1pd);
4592 }
4593 }
4594
4595 /*
4596 * flush out the cache, expensive but growkernel will happen so
4597 * rarely
4598 */
4599 cpu_dcache_wbinv_all();
4600 cpu_tlb_flushD();
4601 cpu_cpwait();
4602
4603 simple_unlock(&kpm->pm_lock);
4604 splx(s);
4605
4606 out:
4607 return (pmap_curmaxkvaddr);
4608 }
4609
4610 /************************ Utility routines ****************************/
4611
4612 /*
4613 * vector_page_setprot:
4614 *
4615 * Manipulate the protection of the vector page.
4616 */
4617 void
4618 vector_page_setprot(int prot)
4619 {
4620 struct l2_bucket *l2b;
4621 pt_entry_t *ptep;
4622
4623 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4624 KDASSERT(l2b != NULL);
4625
4626 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4627
4628 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4629 PTE_SYNC(ptep);
4630 cpu_tlb_flushD_SE(vector_page);
4631 cpu_cpwait();
4632 }
4633
4634 /*
4635 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4636 * Returns true if the mapping exists, else false.
4637 *
4638 * NOTE: This function is only used by a couple of arm-specific modules.
4639 * It is not safe to take any pmap locks here, since we could be right
4640 * in the middle of debugging the pmap anyway...
4641 *
4642 * It is possible for this routine to return false even though a valid
4643 * mapping does exist. This is because we don't lock, so the metadata
4644 * state may be inconsistent.
4645 *
4646 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
4647 * a "section" mapping.
4648 */
4649 bool
4650 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
4651 {
4652 struct l2_dtable *l2;
4653 pd_entry_t *pl1pd, l1pd;
4654 pt_entry_t *ptep;
4655 u_short l1idx;
4656
4657 if (pm->pm_l1 == NULL)
4658 return false;
4659
4660 l1idx = L1_IDX(va);
4661 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
4662 l1pd = *pl1pd;
4663
4664 if (l1pte_section_p(l1pd)) {
4665 *ptp = NULL;
4666 return true;
4667 }
4668
4669 if (pm->pm_l2 == NULL)
4670 return false;
4671
4672 l2 = pm->pm_l2[L2_IDX(l1idx)];
4673
4674 if (l2 == NULL ||
4675 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
4676 return false;
4677 }
4678
4679 *ptp = &ptep[l2pte_index(va)];
4680 return true;
4681 }
4682
4683 bool
4684 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
4685 {
4686 u_short l1idx;
4687
4688 if (pm->pm_l1 == NULL)
4689 return false;
4690
4691 l1idx = L1_IDX(va);
4692 *pdp = &pm->pm_l1->l1_kva[l1idx];
4693
4694 return true;
4695 }
4696
4697 /************************ Bootstrapping routines ****************************/
4698
4699 static void
4700 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
4701 {
4702 int i;
4703
4704 l1->l1_kva = l1pt;
4705 l1->l1_domain_use_count = 0;
4706 l1->l1_domain_first = 0;
4707
4708 for (i = 0; i < PMAP_DOMAINS; i++)
4709 l1->l1_domain_free[i] = i + 1;
4710
4711 /*
4712 * Copy the kernel's L1 entries to each new L1.
4713 */
4714 if (pmap_initialized)
4715 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
4716
4717 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
4718 &l1->l1_physaddr) == false)
4719 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
4720
4721 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
4722 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
4723 }
4724
4725 /*
4726 * pmap_bootstrap() is called from the board-specific initarm() routine
4727 * once the kernel L1/L2 descriptors tables have been set up.
4728 *
4729 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
4730 * spread over a number of disparate files/functions.
4731 *
4732 * We are passed the following parameters
4733 * - kernel_l1pt
4734 * This is a pointer to the base of the kernel's L1 translation table.
4735 * - vstart
4736 * 1MB-aligned start of managed kernel virtual memory.
4737 * - vend
4738 * 1MB-aligned end of managed kernel virtual memory.
4739 *
4740 * We use the first parameter to build the metadata (struct l1_ttable and
4741 * struct l2_dtable) necessary to track kernel mappings.
4742 */
4743 #define PMAP_STATIC_L2_SIZE 16
4744 void
4745 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
4746 {
4747 static struct l1_ttable static_l1;
4748 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
4749 struct l1_ttable *l1 = &static_l1;
4750 struct l2_dtable *l2;
4751 struct l2_bucket *l2b;
4752 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
4753 pmap_t pm = pmap_kernel();
4754 pd_entry_t pde;
4755 pt_entry_t *ptep;
4756 paddr_t pa;
4757 vaddr_t va;
4758 vsize_t size;
4759 int nptes, l1idx, l2idx, l2next = 0;
4760
4761 /*
4762 * Initialise the kernel pmap object
4763 */
4764 pm->pm_l1 = l1;
4765 pm->pm_domain = PMAP_DOMAIN_KERNEL;
4766 pm->pm_activated = true;
4767 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4768 simple_lock_init(&pm->pm_lock);
4769 pm->pm_obj.pgops = NULL;
4770 TAILQ_INIT(&pm->pm_obj.memq);
4771 pm->pm_obj.uo_npages = 0;
4772 pm->pm_obj.uo_refs = 1;
4773
4774 /*
4775 * Scan the L1 translation table created by initarm() and create
4776 * the required metadata for all valid mappings found in it.
4777 */
4778 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
4779 pde = l1pt[l1idx];
4780
4781 /*
4782 * We're only interested in Coarse mappings.
4783 * pmap_extract() can deal with section mappings without
4784 * recourse to checking L2 metadata.
4785 */
4786 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
4787 continue;
4788
4789 /*
4790 * Lookup the KVA of this L2 descriptor table
4791 */
4792 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4793 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4794 if (ptep == NULL) {
4795 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
4796 (u_int)l1idx << L1_S_SHIFT, pa);
4797 }
4798
4799 /*
4800 * Fetch the associated L2 metadata structure.
4801 * Allocate a new one if necessary.
4802 */
4803 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4804 if (l2next == PMAP_STATIC_L2_SIZE)
4805 panic("pmap_bootstrap: out of static L2s");
4806 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
4807 }
4808
4809 /*
4810 * One more L1 slot tracked...
4811 */
4812 l2->l2_occupancy++;
4813
4814 /*
4815 * Fill in the details of the L2 descriptor in the
4816 * appropriate bucket.
4817 */
4818 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4819 l2b->l2b_kva = ptep;
4820 l2b->l2b_phys = pa;
4821 l2b->l2b_l1idx = l1idx;
4822
4823 /*
4824 * Establish an initial occupancy count for this descriptor
4825 */
4826 for (l2idx = 0;
4827 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
4828 l2idx++) {
4829 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
4830 l2b->l2b_occupancy++;
4831 }
4832 }
4833
4834 /*
4835 * Make sure the descriptor itself has the correct cache mode.
4836 * If not, fix it, but whine about the problem. Port-meisters
4837 * should consider this a clue to fix up their initarm()
4838 * function. :)
4839 */
4840 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
4841 printf("pmap_bootstrap: WARNING! wrong cache mode for "
4842 "L2 pte @ %p\n", ptep);
4843 }
4844 }
4845
4846 /*
4847 * Ensure the primary (kernel) L1 has the correct cache mode for
4848 * a page table. Bitch if it is not correctly set.
4849 */
4850 for (va = (vaddr_t)l1pt;
4851 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
4852 if (pmap_set_pt_cache_mode(l1pt, va))
4853 printf("pmap_bootstrap: WARNING! wrong cache mode for "
4854 "primary L1 @ 0x%lx\n", va);
4855 }
4856
4857 cpu_dcache_wbinv_all();
4858 cpu_tlb_flushID();
4859 cpu_cpwait();
4860
4861 /*
4862 * now we allocate the "special" VAs which are used for tmp mappings
4863 * by the pmap (and other modules). we allocate the VAs by advancing
4864 * virtual_avail (note that there are no pages mapped at these VAs).
4865 *
4866 * Managed KVM space start from wherever initarm() tells us.
4867 */
4868 virtual_avail = vstart;
4869 virtual_end = vend;
4870
4871 #ifdef PMAP_CACHE_VIPT
4872 /*
4873 * If we have a VIPT cache, we need one page/pte per possible alias
4874 * page so we won't violate cache aliasing rules.
4875 */
4876 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
4877 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
4878 #else
4879 nptes = 1;
4880 #endif
4881 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
4882 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
4883 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
4884 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
4885 pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
4886 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
4887 (void *)&msgbufaddr, NULL);
4888
4889 /*
4890 * Allocate a range of kernel virtual address space to be used
4891 * for L2 descriptor tables and metadata allocation in
4892 * pmap_growkernel().
4893 */
4894 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
4895 pmap_alloc_specials(&virtual_avail,
4896 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
4897 &pmap_kernel_l2ptp_kva, NULL);
4898
4899 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
4900 pmap_alloc_specials(&virtual_avail,
4901 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
4902 &pmap_kernel_l2dtable_kva, NULL);
4903
4904 /*
4905 * init the static-global locks and global pmap list.
4906 */
4907 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
4908
4909 /*
4910 * We can now initialise the first L1's metadata.
4911 */
4912 SLIST_INIT(&l1_list);
4913 TAILQ_INIT(&l1_lru_list);
4914 simple_lock_init(&l1_lru_lock);
4915 pmap_init_l1(l1, l1pt);
4916
4917 /* Set up vector page L1 details, if necessary */
4918 if (vector_page < KERNEL_BASE) {
4919 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
4920 l2b = pmap_get_l2_bucket(pm, vector_page);
4921 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
4922 L1_C_DOM(pm->pm_domain);
4923 } else
4924 pm->pm_pl1vec = NULL;
4925
4926 /*
4927 * Initialize the pmap cache
4928 */
4929 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
4930 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
4931 LIST_INIT(&pmap_pmaps);
4932 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
4933
4934 /*
4935 * Initialize the pv pool.
4936 */
4937 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
4938 &pmap_bootstrap_pv_allocator, IPL_NONE);
4939
4940 /*
4941 * Initialize the L2 dtable pool and cache.
4942 */
4943 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
4944 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
4945
4946 /*
4947 * Initialise the L2 descriptor table pool and cache
4948 */
4949 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
4950 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
4951 pmap_l2ptp_ctor, NULL, NULL);
4952
4953 cpu_dcache_wbinv_all();
4954 }
4955
4956 static int
4957 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
4958 {
4959 pd_entry_t *pdep, pde;
4960 pt_entry_t *ptep, pte;
4961 vaddr_t pa;
4962 int rv = 0;
4963
4964 /*
4965 * Make sure the descriptor itself has the correct cache mode
4966 */
4967 pdep = &kl1[L1_IDX(va)];
4968 pde = *pdep;
4969
4970 if (l1pte_section_p(pde)) {
4971 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4972 *pdep = (pde & ~L1_S_CACHE_MASK) |
4973 pte_l1_s_cache_mode_pt;
4974 PTE_SYNC(pdep);
4975 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4976 rv = 1;
4977 }
4978 } else {
4979 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4980 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4981 if (ptep == NULL)
4982 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4983
4984 ptep = &ptep[l2pte_index(va)];
4985 pte = *ptep;
4986 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4987 *ptep = (pte & ~L2_S_CACHE_MASK) |
4988 pte_l2_s_cache_mode_pt;
4989 PTE_SYNC(ptep);
4990 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4991 rv = 1;
4992 }
4993 }
4994
4995 return (rv);
4996 }
4997
4998 static void
4999 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5000 {
5001 vaddr_t va = *availp;
5002 struct l2_bucket *l2b;
5003
5004 if (ptep) {
5005 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5006 if (l2b == NULL)
5007 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5008
5009 if (ptep)
5010 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5011 }
5012
5013 *vap = va;
5014 *availp = va + (PAGE_SIZE * pages);
5015 }
5016
5017 void
5018 pmap_init(void)
5019 {
5020 extern int physmem;
5021
5022 /*
5023 * Set the available memory vars - These do not map to real memory
5024 * addresses and cannot as the physical memory is fragmented.
5025 * They are used by ps for %mem calculations.
5026 * One could argue whether this should be the entire memory or just
5027 * the memory that is useable in a user process.
5028 */
5029 avail_start = 0;
5030 avail_end = physmem * PAGE_SIZE;
5031
5032 /*
5033 * Now we need to free enough pv_entry structures to allow us to get
5034 * the kmem_map/kmem_object allocated and inited (done after this
5035 * function is finished). to do this we allocate one bootstrap page out
5036 * of kernel_map and use it to provide an initial pool of pv_entry
5037 * structures. we never free this page.
5038 */
5039 pool_setlowat(&pmap_pv_pool,
5040 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5041
5042 pmap_initialized = true;
5043 }
5044
5045 static vaddr_t last_bootstrap_page = 0;
5046 static void *free_bootstrap_pages = NULL;
5047
5048 static void *
5049 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5050 {
5051 extern void *pool_page_alloc(struct pool *, int);
5052 vaddr_t new_page;
5053 void *rv;
5054
5055 if (pmap_initialized)
5056 return (pool_page_alloc(pp, flags));
5057
5058 if (free_bootstrap_pages) {
5059 rv = free_bootstrap_pages;
5060 free_bootstrap_pages = *((void **)rv);
5061 return (rv);
5062 }
5063
5064 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5065 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5066
5067 KASSERT(new_page > last_bootstrap_page);
5068 last_bootstrap_page = new_page;
5069 return ((void *)new_page);
5070 }
5071
5072 static void
5073 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5074 {
5075 extern void pool_page_free(struct pool *, void *);
5076
5077 if ((vaddr_t)v <= last_bootstrap_page) {
5078 *((void **)v) = free_bootstrap_pages;
5079 free_bootstrap_pages = v;
5080 return;
5081 }
5082
5083 if (pmap_initialized) {
5084 pool_page_free(pp, v);
5085 return;
5086 }
5087 }
5088
5089 /*
5090 * pmap_postinit()
5091 *
5092 * This routine is called after the vm and kmem subsystems have been
5093 * initialised. This allows the pmap code to perform any initialisation
5094 * that can only be done one the memory allocation is in place.
5095 */
5096 void
5097 pmap_postinit(void)
5098 {
5099 extern paddr_t physical_start, physical_end;
5100 struct l2_bucket *l2b;
5101 struct l1_ttable *l1;
5102 struct pglist plist;
5103 struct vm_page *m;
5104 pd_entry_t *pl1pt;
5105 pt_entry_t *ptep, pte;
5106 vaddr_t va, eva;
5107 u_int loop, needed;
5108 int error;
5109
5110 pool_cache_setlowat(&pmap_l2ptp_cache,
5111 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5112 pool_cache_setlowat(&pmap_l2dtable_cache,
5113 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5114
5115 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5116 needed -= 1;
5117
5118 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5119
5120 for (loop = 0; loop < needed; loop++, l1++) {
5121 /* Allocate a L1 page table */
5122 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5123 if (va == 0)
5124 panic("Cannot allocate L1 KVM");
5125
5126 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5127 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5128 if (error)
5129 panic("Cannot allocate L1 physical pages");
5130
5131 m = TAILQ_FIRST(&plist);
5132 eva = va + L1_TABLE_SIZE;
5133 pl1pt = (pd_entry_t *)va;
5134
5135 while (m && va < eva) {
5136 paddr_t pa = VM_PAGE_TO_PHYS(m);
5137
5138 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
5139
5140 /*
5141 * Make sure the L1 descriptor table is mapped
5142 * with the cache-mode set to write-through.
5143 */
5144 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5145 ptep = &l2b->l2b_kva[l2pte_index(va)];
5146 pte = *ptep;
5147 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5148 *ptep = pte;
5149 PTE_SYNC(ptep);
5150 cpu_tlb_flushD_SE(va);
5151
5152 va += PAGE_SIZE;
5153 m = TAILQ_NEXT(m, pageq);
5154 }
5155
5156 #ifdef DIAGNOSTIC
5157 if (m)
5158 panic("pmap_alloc_l1pt: pglist not empty");
5159 #endif /* DIAGNOSTIC */
5160
5161 pmap_init_l1(l1, pl1pt);
5162 }
5163
5164 #ifdef DEBUG
5165 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5166 needed);
5167 #endif
5168 }
5169
5170 /*
5171 * Note that the following routines are used by board-specific initialisation
5172 * code to configure the initial kernel page tables.
5173 *
5174 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5175 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5176 * behaviour of the old pmap, and provides an easy migration path for
5177 * initial bring-up of the new pmap on existing ports. Fortunately,
5178 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5179 * will be deprecated.
5180 *
5181 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5182 * tables.
5183 */
5184
5185 /*
5186 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5187 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5188 * find them as necessary.
5189 *
5190 * Note that the data on this list MUST remain valid after initarm() returns,
5191 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5192 */
5193 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5194
5195 static vaddr_t
5196 kernel_pt_lookup(paddr_t pa)
5197 {
5198 pv_addr_t *pv;
5199
5200 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5201 #ifndef ARM32_NEW_VM_LAYOUT
5202 if (pv->pv_pa == (pa & ~PGOFSET))
5203 return (pv->pv_va | (pa & PGOFSET));
5204 #else
5205 if (pv->pv_pa == pa)
5206 return (pv->pv_va);
5207 #endif
5208 }
5209 return (0);
5210 }
5211
5212 /*
5213 * pmap_map_section:
5214 *
5215 * Create a single section mapping.
5216 */
5217 void
5218 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5219 {
5220 pd_entry_t *pde = (pd_entry_t *) l1pt;
5221 pd_entry_t fl;
5222
5223 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5224
5225 switch (cache) {
5226 case PTE_NOCACHE:
5227 default:
5228 fl = 0;
5229 break;
5230
5231 case PTE_CACHE:
5232 fl = pte_l1_s_cache_mode;
5233 break;
5234
5235 case PTE_PAGETABLE:
5236 fl = pte_l1_s_cache_mode_pt;
5237 break;
5238 }
5239
5240 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5241 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5242 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5243 }
5244
5245 /*
5246 * pmap_map_entry:
5247 *
5248 * Create a single page mapping.
5249 */
5250 void
5251 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5252 {
5253 pd_entry_t *pde = (pd_entry_t *) l1pt;
5254 pt_entry_t fl;
5255 pt_entry_t *pte;
5256
5257 KASSERT(((va | pa) & PGOFSET) == 0);
5258
5259 switch (cache) {
5260 case PTE_NOCACHE:
5261 default:
5262 fl = 0;
5263 break;
5264
5265 case PTE_CACHE:
5266 fl = pte_l2_s_cache_mode;
5267 break;
5268
5269 case PTE_PAGETABLE:
5270 fl = pte_l2_s_cache_mode_pt;
5271 break;
5272 }
5273
5274 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5275 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5276
5277 #ifndef ARM32_NEW_VM_LAYOUT
5278 pte = (pt_entry_t *)
5279 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5280 #else
5281 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5282 #endif
5283 if (pte == NULL)
5284 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5285
5286 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5287 #ifndef ARM32_NEW_VM_LAYOUT
5288 pte += (va >> PGSHIFT) & 0x3ff;
5289 #else
5290 pte += l2pte_index(va);
5291 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5292 #endif
5293 *pte = fl;
5294 PTE_SYNC(pte);
5295 }
5296
5297 /*
5298 * pmap_link_l2pt:
5299 *
5300 * Link the L2 page table specified by "l2pv" into the L1
5301 * page table at the slot for "va".
5302 */
5303 void
5304 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5305 {
5306 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5307 u_int slot = va >> L1_S_SHIFT;
5308
5309 #ifndef ARM32_NEW_VM_LAYOUT
5310 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5311 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5312 #endif
5313
5314 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5315
5316 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5317 #ifdef ARM32_NEW_VM_LAYOUT
5318 PTE_SYNC(&pde[slot]);
5319 #else
5320 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5321 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5322 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5323 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5324 #endif
5325
5326 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5327 }
5328
5329 /*
5330 * pmap_map_chunk:
5331 *
5332 * Map a chunk of memory using the most efficient mappings
5333 * possible (section, large page, small page) into the
5334 * provided L1 and L2 tables at the specified virtual address.
5335 */
5336 vsize_t
5337 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5338 int prot, int cache)
5339 {
5340 pd_entry_t *pde = (pd_entry_t *) l1pt;
5341 pt_entry_t *pte, f1, f2s, f2l;
5342 vsize_t resid;
5343 int i;
5344
5345 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5346
5347 if (l1pt == 0)
5348 panic("pmap_map_chunk: no L1 table provided");
5349
5350 #ifdef VERBOSE_INIT_ARM
5351 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5352 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5353 #endif
5354
5355 switch (cache) {
5356 case PTE_NOCACHE:
5357 default:
5358 f1 = 0;
5359 f2l = 0;
5360 f2s = 0;
5361 break;
5362
5363 case PTE_CACHE:
5364 f1 = pte_l1_s_cache_mode;
5365 f2l = pte_l2_l_cache_mode;
5366 f2s = pte_l2_s_cache_mode;
5367 break;
5368
5369 case PTE_PAGETABLE:
5370 f1 = pte_l1_s_cache_mode_pt;
5371 f2l = pte_l2_l_cache_mode_pt;
5372 f2s = pte_l2_s_cache_mode_pt;
5373 break;
5374 }
5375
5376 size = resid;
5377
5378 while (resid > 0) {
5379 /* See if we can use a section mapping. */
5380 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5381 #ifdef VERBOSE_INIT_ARM
5382 printf("S");
5383 #endif
5384 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5385 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5386 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5387 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5388 va += L1_S_SIZE;
5389 pa += L1_S_SIZE;
5390 resid -= L1_S_SIZE;
5391 continue;
5392 }
5393
5394 /*
5395 * Ok, we're going to use an L2 table. Make sure
5396 * one is actually in the corresponding L1 slot
5397 * for the current VA.
5398 */
5399 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5400 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5401
5402 #ifndef ARM32_NEW_VM_LAYOUT
5403 pte = (pt_entry_t *)
5404 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5405 #else
5406 pte = (pt_entry_t *) kernel_pt_lookup(
5407 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5408 #endif
5409 if (pte == NULL)
5410 panic("pmap_map_chunk: can't find L2 table for VA"
5411 "0x%08lx", va);
5412
5413 /* See if we can use a L2 large page mapping. */
5414 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5415 #ifdef VERBOSE_INIT_ARM
5416 printf("L");
5417 #endif
5418 for (i = 0; i < 16; i++) {
5419 #ifndef ARM32_NEW_VM_LAYOUT
5420 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5421 L2_L_PROTO | pa |
5422 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5423 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5424 #else
5425 pte[l2pte_index(va) + i] =
5426 L2_L_PROTO | pa |
5427 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5428 PTE_SYNC(&pte[l2pte_index(va) + i]);
5429 #endif
5430 }
5431 va += L2_L_SIZE;
5432 pa += L2_L_SIZE;
5433 resid -= L2_L_SIZE;
5434 continue;
5435 }
5436
5437 /* Use a small page mapping. */
5438 #ifdef VERBOSE_INIT_ARM
5439 printf("P");
5440 #endif
5441 #ifndef ARM32_NEW_VM_LAYOUT
5442 pte[(va >> PGSHIFT) & 0x3ff] =
5443 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5444 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5445 #else
5446 pte[l2pte_index(va)] =
5447 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5448 PTE_SYNC(&pte[l2pte_index(va)]);
5449 #endif
5450 va += PAGE_SIZE;
5451 pa += PAGE_SIZE;
5452 resid -= PAGE_SIZE;
5453 }
5454 #ifdef VERBOSE_INIT_ARM
5455 printf("\n");
5456 #endif
5457 return (size);
5458 }
5459
5460 /********************** Static device map routines ***************************/
5461
5462 static const struct pmap_devmap *pmap_devmap_table;
5463
5464 /*
5465 * Register the devmap table. This is provided in case early console
5466 * initialization needs to register mappings created by bootstrap code
5467 * before pmap_devmap_bootstrap() is called.
5468 */
5469 void
5470 pmap_devmap_register(const struct pmap_devmap *table)
5471 {
5472
5473 pmap_devmap_table = table;
5474 }
5475
5476 /*
5477 * Map all of the static regions in the devmap table, and remember
5478 * the devmap table so other parts of the kernel can look up entries
5479 * later.
5480 */
5481 void
5482 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5483 {
5484 int i;
5485
5486 pmap_devmap_table = table;
5487
5488 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5489 #ifdef VERBOSE_INIT_ARM
5490 printf("devmap: %08lx -> %08lx @ %08lx\n",
5491 pmap_devmap_table[i].pd_pa,
5492 pmap_devmap_table[i].pd_pa +
5493 pmap_devmap_table[i].pd_size - 1,
5494 pmap_devmap_table[i].pd_va);
5495 #endif
5496 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5497 pmap_devmap_table[i].pd_pa,
5498 pmap_devmap_table[i].pd_size,
5499 pmap_devmap_table[i].pd_prot,
5500 pmap_devmap_table[i].pd_cache);
5501 }
5502 }
5503
5504 const struct pmap_devmap *
5505 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5506 {
5507 uint64_t endpa;
5508 int i;
5509
5510 if (pmap_devmap_table == NULL)
5511 return (NULL);
5512
5513 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5514
5515 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5516 if (pa >= pmap_devmap_table[i].pd_pa &&
5517 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5518 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5519 return (&pmap_devmap_table[i]);
5520 }
5521
5522 return (NULL);
5523 }
5524
5525 const struct pmap_devmap *
5526 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5527 {
5528 int i;
5529
5530 if (pmap_devmap_table == NULL)
5531 return (NULL);
5532
5533 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5534 if (va >= pmap_devmap_table[i].pd_va &&
5535 va + size - 1 <= pmap_devmap_table[i].pd_va +
5536 pmap_devmap_table[i].pd_size - 1)
5537 return (&pmap_devmap_table[i]);
5538 }
5539
5540 return (NULL);
5541 }
5542
5543 /********************** PTE initialization routines **************************/
5544
5545 /*
5546 * These routines are called when the CPU type is identified to set up
5547 * the PTE prototypes, cache modes, etc.
5548 *
5549 * The variables are always here, just in case LKMs need to reference
5550 * them (though, they shouldn't).
5551 */
5552
5553 pt_entry_t pte_l1_s_cache_mode;
5554 pt_entry_t pte_l1_s_cache_mode_pt;
5555 pt_entry_t pte_l1_s_cache_mask;
5556
5557 pt_entry_t pte_l2_l_cache_mode;
5558 pt_entry_t pte_l2_l_cache_mode_pt;
5559 pt_entry_t pte_l2_l_cache_mask;
5560
5561 pt_entry_t pte_l2_s_cache_mode;
5562 pt_entry_t pte_l2_s_cache_mode_pt;
5563 pt_entry_t pte_l2_s_cache_mask;
5564
5565 pt_entry_t pte_l2_s_prot_u;
5566 pt_entry_t pte_l2_s_prot_w;
5567 pt_entry_t pte_l2_s_prot_mask;
5568
5569 pt_entry_t pte_l1_s_proto;
5570 pt_entry_t pte_l1_c_proto;
5571 pt_entry_t pte_l2_s_proto;
5572
5573 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5574 void (*pmap_zero_page_func)(paddr_t);
5575
5576 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5577 void
5578 pmap_pte_init_generic(void)
5579 {
5580
5581 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5582 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5583
5584 pte_l2_l_cache_mode = L2_B|L2_C;
5585 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5586
5587 pte_l2_s_cache_mode = L2_B|L2_C;
5588 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5589
5590 /*
5591 * If we have a write-through cache, set B and C. If
5592 * we have a write-back cache, then we assume setting
5593 * only C will make those pages write-through.
5594 */
5595 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5596 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5597 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5598 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5599 } else {
5600 #if ARM_MMU_V6 > 1
5601 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5602 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5603 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5604 #else
5605 pte_l1_s_cache_mode_pt = L1_S_C;
5606 pte_l2_l_cache_mode_pt = L2_C;
5607 pte_l2_s_cache_mode_pt = L2_C;
5608 #endif
5609 }
5610
5611 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5612 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5613 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5614
5615 pte_l1_s_proto = L1_S_PROTO_generic;
5616 pte_l1_c_proto = L1_C_PROTO_generic;
5617 pte_l2_s_proto = L2_S_PROTO_generic;
5618
5619 pmap_copy_page_func = pmap_copy_page_generic;
5620 pmap_zero_page_func = pmap_zero_page_generic;
5621 }
5622
5623 #if defined(CPU_ARM8)
5624 void
5625 pmap_pte_init_arm8(void)
5626 {
5627
5628 /*
5629 * ARM8 is compatible with generic, but we need to use
5630 * the page tables uncached.
5631 */
5632 pmap_pte_init_generic();
5633
5634 pte_l1_s_cache_mode_pt = 0;
5635 pte_l2_l_cache_mode_pt = 0;
5636 pte_l2_s_cache_mode_pt = 0;
5637 }
5638 #endif /* CPU_ARM8 */
5639
5640 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
5641 void
5642 pmap_pte_init_arm9(void)
5643 {
5644
5645 /*
5646 * ARM9 is compatible with generic, but we want to use
5647 * write-through caching for now.
5648 */
5649 pmap_pte_init_generic();
5650
5651 pte_l1_s_cache_mode = L1_S_C;
5652 pte_l2_l_cache_mode = L2_C;
5653 pte_l2_s_cache_mode = L2_C;
5654
5655 pte_l1_s_cache_mode_pt = L1_S_C;
5656 pte_l2_l_cache_mode_pt = L2_C;
5657 pte_l2_s_cache_mode_pt = L2_C;
5658 }
5659 #endif /* CPU_ARM9 */
5660 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5661
5662 #if defined(CPU_ARM10)
5663 void
5664 pmap_pte_init_arm10(void)
5665 {
5666
5667 /*
5668 * ARM10 is compatible with generic, but we want to use
5669 * write-through caching for now.
5670 */
5671 pmap_pte_init_generic();
5672
5673 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
5674 pte_l2_l_cache_mode = L2_B | L2_C;
5675 pte_l2_s_cache_mode = L2_B | L2_C;
5676
5677 pte_l1_s_cache_mode_pt = L1_S_C;
5678 pte_l2_l_cache_mode_pt = L2_C;
5679 pte_l2_s_cache_mode_pt = L2_C;
5680
5681 }
5682 #endif /* CPU_ARM10 */
5683
5684 #if ARM_MMU_SA1 == 1
5685 void
5686 pmap_pte_init_sa1(void)
5687 {
5688
5689 /*
5690 * The StrongARM SA-1 cache does not have a write-through
5691 * mode. So, do the generic initialization, then reset
5692 * the page table cache mode to B=1,C=1, and note that
5693 * the PTEs need to be sync'd.
5694 */
5695 pmap_pte_init_generic();
5696
5697 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5698 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5699 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5700
5701 pmap_needs_pte_sync = 1;
5702 }
5703 #endif /* ARM_MMU_SA1 == 1*/
5704
5705 #if ARM_MMU_XSCALE == 1
5706 #if (ARM_NMMUS > 1)
5707 static u_int xscale_use_minidata;
5708 #endif
5709
5710 void
5711 pmap_pte_init_xscale(void)
5712 {
5713 uint32_t auxctl;
5714 int write_through = 0;
5715
5716 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5717 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
5718
5719 pte_l2_l_cache_mode = L2_B|L2_C;
5720 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
5721
5722 pte_l2_s_cache_mode = L2_B|L2_C;
5723 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
5724
5725 pte_l1_s_cache_mode_pt = L1_S_C;
5726 pte_l2_l_cache_mode_pt = L2_C;
5727 pte_l2_s_cache_mode_pt = L2_C;
5728
5729 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
5730 /*
5731 * The XScale core has an enhanced mode where writes that
5732 * miss the cache cause a cache line to be allocated. This
5733 * is significantly faster than the traditional, write-through
5734 * behavior of this case.
5735 */
5736 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
5737 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
5738 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
5739 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
5740
5741 #ifdef XSCALE_CACHE_WRITE_THROUGH
5742 /*
5743 * Some versions of the XScale core have various bugs in
5744 * their cache units, the work-around for which is to run
5745 * the cache in write-through mode. Unfortunately, this
5746 * has a major (negative) impact on performance. So, we
5747 * go ahead and run fast-and-loose, in the hopes that we
5748 * don't line up the planets in a way that will trip the
5749 * bugs.
5750 *
5751 * However, we give you the option to be slow-but-correct.
5752 */
5753 write_through = 1;
5754 #elif defined(XSCALE_CACHE_WRITE_BACK)
5755 /* force write back cache mode */
5756 write_through = 0;
5757 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
5758 /*
5759 * Intel PXA2[15]0 processors are known to have a bug in
5760 * write-back cache on revision 4 and earlier (stepping
5761 * A[01] and B[012]). Fixed for C0 and later.
5762 */
5763 {
5764 uint32_t id, type;
5765
5766 id = cpufunc_id();
5767 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
5768
5769 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
5770 if ((id & CPU_ID_REVISION_MASK) < 5) {
5771 /* write through for stepping A0-1 and B0-2 */
5772 write_through = 1;
5773 }
5774 }
5775 }
5776 #endif /* XSCALE_CACHE_WRITE_THROUGH */
5777
5778 if (write_through) {
5779 pte_l1_s_cache_mode = L1_S_C;
5780 pte_l2_l_cache_mode = L2_C;
5781 pte_l2_s_cache_mode = L2_C;
5782 }
5783
5784 #if (ARM_NMMUS > 1)
5785 xscale_use_minidata = 1;
5786 #endif
5787
5788 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
5789 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
5790 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
5791
5792 pte_l1_s_proto = L1_S_PROTO_xscale;
5793 pte_l1_c_proto = L1_C_PROTO_xscale;
5794 pte_l2_s_proto = L2_S_PROTO_xscale;
5795
5796 pmap_copy_page_func = pmap_copy_page_xscale;
5797 pmap_zero_page_func = pmap_zero_page_xscale;
5798
5799 /*
5800 * Disable ECC protection of page table access, for now.
5801 */
5802 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
5803 auxctl &= ~XSCALE_AUXCTL_P;
5804 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
5805 }
5806
5807 /*
5808 * xscale_setup_minidata:
5809 *
5810 * Set up the mini-data cache clean area. We require the
5811 * caller to allocate the right amount of physically and
5812 * virtually contiguous space.
5813 */
5814 void
5815 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
5816 {
5817 extern vaddr_t xscale_minidata_clean_addr;
5818 extern vsize_t xscale_minidata_clean_size; /* already initialized */
5819 pd_entry_t *pde = (pd_entry_t *) l1pt;
5820 pt_entry_t *pte;
5821 vsize_t size;
5822 uint32_t auxctl;
5823
5824 xscale_minidata_clean_addr = va;
5825
5826 /* Round it to page size. */
5827 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
5828
5829 for (; size != 0;
5830 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
5831 #ifndef ARM32_NEW_VM_LAYOUT
5832 pte = (pt_entry_t *)
5833 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5834 #else
5835 pte = (pt_entry_t *) kernel_pt_lookup(
5836 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5837 #endif
5838 if (pte == NULL)
5839 panic("xscale_setup_minidata: can't find L2 table for "
5840 "VA 0x%08lx", va);
5841 #ifndef ARM32_NEW_VM_LAYOUT
5842 pte[(va >> PGSHIFT) & 0x3ff] =
5843 #else
5844 pte[l2pte_index(va)] =
5845 #endif
5846 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
5847 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
5848 }
5849
5850 /*
5851 * Configure the mini-data cache for write-back with
5852 * read/write-allocate.
5853 *
5854 * NOTE: In order to reconfigure the mini-data cache, we must
5855 * make sure it contains no valid data! In order to do that,
5856 * we must issue a global data cache invalidate command!
5857 *
5858 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
5859 * THIS IS VERY IMPORTANT!
5860 */
5861
5862 /* Invalidate data and mini-data. */
5863 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
5864 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
5865 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
5866 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
5867 }
5868
5869 /*
5870 * Change the PTEs for the specified kernel mappings such that they
5871 * will use the mini data cache instead of the main data cache.
5872 */
5873 void
5874 pmap_uarea(vaddr_t va)
5875 {
5876 struct l2_bucket *l2b;
5877 pt_entry_t *ptep, *sptep, pte;
5878 vaddr_t next_bucket, eva;
5879
5880 #if (ARM_NMMUS > 1)
5881 if (xscale_use_minidata == 0)
5882 return;
5883 #endif
5884
5885 eva = va + USPACE;
5886
5887 while (va < eva) {
5888 next_bucket = L2_NEXT_BUCKET(va);
5889 if (next_bucket > eva)
5890 next_bucket = eva;
5891
5892 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5893 KDASSERT(l2b != NULL);
5894
5895 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
5896
5897 while (va < next_bucket) {
5898 pte = *ptep;
5899 if (!l2pte_minidata(pte)) {
5900 cpu_dcache_wbinv_range(va, PAGE_SIZE);
5901 cpu_tlb_flushD_SE(va);
5902 *ptep = pte & ~L2_B;
5903 }
5904 ptep++;
5905 va += PAGE_SIZE;
5906 }
5907 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
5908 }
5909 cpu_cpwait();
5910 }
5911 #endif /* ARM_MMU_XSCALE == 1 */
5912
5913 /*
5914 * return the PA of the current L1 table, for use when handling a crash dump
5915 */
5916 uint32_t pmap_kernel_L1_addr()
5917 {
5918 return pmap_kernel()->pm_l1->l1_physaddr;
5919 }
5920
5921 #if defined(DDB)
5922 /*
5923 * A couple of ddb-callable functions for dumping pmaps
5924 */
5925 void pmap_dump_all(void);
5926 void pmap_dump(pmap_t);
5927
5928 void
5929 pmap_dump_all(void)
5930 {
5931 pmap_t pm;
5932
5933 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
5934 if (pm == pmap_kernel())
5935 continue;
5936 pmap_dump(pm);
5937 printf("\n");
5938 }
5939 }
5940
5941 static pt_entry_t ncptes[64];
5942 static void pmap_dump_ncpg(pmap_t);
5943
5944 void
5945 pmap_dump(pmap_t pm)
5946 {
5947 struct l2_dtable *l2;
5948 struct l2_bucket *l2b;
5949 pt_entry_t *ptep, pte;
5950 vaddr_t l2_va, l2b_va, va;
5951 int i, j, k, occ, rows = 0;
5952
5953 if (pm == pmap_kernel())
5954 printf("pmap_kernel (%p): ", pm);
5955 else
5956 printf("user pmap (%p): ", pm);
5957
5958 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
5959
5960 l2_va = 0;
5961 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
5962 l2 = pm->pm_l2[i];
5963
5964 if (l2 == NULL || l2->l2_occupancy == 0)
5965 continue;
5966
5967 l2b_va = l2_va;
5968 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
5969 l2b = &l2->l2_bucket[j];
5970
5971 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
5972 continue;
5973
5974 ptep = l2b->l2b_kva;
5975
5976 for (k = 0; k < 256 && ptep[k] == 0; k++)
5977 ;
5978
5979 k &= ~63;
5980 occ = l2b->l2b_occupancy;
5981 va = l2b_va + (k * 4096);
5982 for (; k < 256; k++, va += 0x1000) {
5983 char ch = ' ';
5984 if ((k % 64) == 0) {
5985 if ((rows % 8) == 0) {
5986 printf(
5987 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
5988 }
5989 printf("%08lx: ", va);
5990 }
5991
5992 ncptes[k & 63] = 0;
5993 pte = ptep[k];
5994 if (pte == 0) {
5995 ch = '.';
5996 } else {
5997 occ--;
5998 switch (pte & 0x0c) {
5999 case 0x00:
6000 ch = 'D'; /* No cache No buff */
6001 break;
6002 case 0x04:
6003 ch = 'B'; /* No cache buff */
6004 break;
6005 case 0x08:
6006 if (pte & 0x40)
6007 ch = 'm';
6008 else
6009 ch = 'C'; /* Cache No buff */
6010 break;
6011 case 0x0c:
6012 ch = 'F'; /* Cache Buff */
6013 break;
6014 }
6015
6016 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6017 ch += 0x20;
6018
6019 if ((pte & 0xc) == 0)
6020 ncptes[k & 63] = pte;
6021 }
6022
6023 if ((k % 64) == 63) {
6024 rows++;
6025 printf("%c\n", ch);
6026 pmap_dump_ncpg(pm);
6027 if (occ == 0)
6028 break;
6029 } else
6030 printf("%c", ch);
6031 }
6032 }
6033 }
6034 }
6035
6036 static void
6037 pmap_dump_ncpg(pmap_t pm)
6038 {
6039 struct vm_page *pg;
6040 struct pv_entry *pv;
6041 int i;
6042
6043 for (i = 0; i < 63; i++) {
6044 if (ncptes[i] == 0)
6045 continue;
6046
6047 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6048 if (pg == NULL)
6049 continue;
6050
6051 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6052 VM_PAGE_TO_PHYS(pg),
6053 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
6054 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
6055
6056 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
6057 printf(" %c va 0x%08lx, flags 0x%x\n",
6058 (pm == pv->pv_pmap) ? '*' : ' ',
6059 pv->pv_va, pv->pv_flags);
6060 }
6061 }
6062 }
6063 #endif
6064
6065 #ifdef PMAP_STEAL_MEMORY
6066 void
6067 pmap_boot_pageadd(pv_addr_t *newpv)
6068 {
6069 pv_addr_t *pv, *npv;
6070
6071 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6072 if (newpv->pv_pa < pv->pv_va) {
6073 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6074 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6075 newpv->pv_size += pv->pv_size;
6076 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6077 }
6078 pv = NULL;
6079 } else {
6080 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6081 pv = npv) {
6082 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6083 KASSERT(pv->pv_pa < newpv->pv_pa);
6084 if (newpv->pv_pa > npv->pv_pa)
6085 continue;
6086 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6087 pv->pv_size += newpv->pv_size;
6088 return;
6089 }
6090 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6091 break;
6092 newpv->pv_size += npv->pv_size;
6093 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6094 SLIST_REMOVE_AFTER(newpv, pv_list);
6095 return;
6096 }
6097 }
6098 }
6099
6100 if (pv) {
6101 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6102 } else {
6103 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6104 }
6105 }
6106
6107 void
6108 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6109 pv_addr_t *rpv)
6110 {
6111 pv_addr_t *pv, **pvp;
6112 struct vm_physseg *ps;
6113 size_t i;
6114
6115 KASSERT(amount & PGOFSET);
6116 KASSERT((mask & PGOFSET) == 0);
6117 KASSERT((match & PGOFSET) == 0);
6118 KASSERT(amount != 0);
6119
6120 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6121 (pv = *pvp) != NULL;
6122 pvp = &SLIST_NEXT(pv, pv_list)) {
6123 pv_addr_t *newpv;
6124 psize_t off;
6125 /*
6126 * If this entry is too small to satify the request...
6127 */
6128 KASSERT(pv->pv_size > 0);
6129 if (pv->pv_size < amount)
6130 continue;
6131
6132 for (off = 0; off <= mask; off += PAGE_SIZE) {
6133 if (((pv->pv_pa + off) & mask) == match
6134 && off + amount <= pv->pv_size)
6135 break;
6136 }
6137 if (off > mask)
6138 continue;
6139
6140 rpv->pv_va = pv->pv_va + off;
6141 rpv->pv_pa = pv->pv_pa + off;
6142 rpv->pv_size = amount;
6143 pv->pv_size -= amount;
6144 if (pv->pv_size == 0) {
6145 KASSERT(off == 0);
6146 KASSERT((vaddr_t) pv == rpv->pv_va);
6147 *pvp = SLIST_NEXT(pv, pv_list);
6148 } else if (off == 0) {
6149 KASSERT((vaddr_t) pv == rpv->pv_va);
6150 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6151 *newpv = *pv;
6152 newpv->pv_pa += amount;
6153 newpv->pv_va += amount;
6154 *pvp = newpv;
6155 } else if (off < pv->pv_size) {
6156 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6157 *newpv = *pv;
6158 newpv->pv_size -= off;
6159 newpv->pv_pa += off + amount;
6160 newpv->pv_va += off + amount;
6161
6162 SLIST_NEXT(pv, pv_list) = newpv;
6163 pv->pv_size = off;
6164 } else {
6165 KASSERT((vaddr_t) pv != rpv->pv_va);
6166 }
6167 memset((void *)rpv->pv_va, 0, amount);
6168 return;
6169 }
6170
6171 if (vm_nphysseg == 0)
6172 panic("pmap_boot_pagealloc: couldn't allocate memory");
6173
6174 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6175 (pv = *pvp) != NULL;
6176 pvp = &SLIST_NEXT(pv, pv_list)) {
6177 if (SLIST_NEXT(pv, pv_list) == NULL)
6178 break;
6179 }
6180 KASSERT(mask == 0);
6181 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
6182 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6183 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6184 rpv->pv_va = pv->pv_va;
6185 rpv->pv_pa = pv->pv_pa;
6186 rpv->pv_size = amount;
6187 *pvp = NULL;
6188 pmap_map_chunk(kernel_l1pt.pv_va,
6189 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6190 ptoa(ps->avail_start),
6191 amount - pv->pv_size,
6192 VM_PROT_READ|VM_PROT_WRITE,
6193 PTE_CACHE);
6194 ps->avail_start += atop(amount - pv->pv_size);
6195 /*
6196 * If we consumed the entire physseg, remove it.
6197 */
6198 if (ps->avail_start == ps->avail_end) {
6199 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6200 ps[0] = ps[1];
6201 }
6202 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6203 return;
6204 }
6205 }
6206
6207 panic("pmap_boot_pagealloc: couldn't allocate memory");
6208 }
6209
6210 vaddr_t
6211 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6212 {
6213 pv_addr_t pv;
6214
6215 pmap_boot_pagealloc(size, 0, 0, &pv);
6216
6217 return pv.pv_va;
6218 }
6219 #endif /* PMAP_STEAL_MEMORY */
6220