Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.169
      1 /*	$NetBSD: pmap.c,v 1.169 2007/11/08 11:10:28 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *        This product includes software developed by the NetBSD
     84  *        Foundation, Inc. and its contributors.
     85  * 4. Neither the name of The NetBSD Foundation nor the names of its
     86  *    contributors may be used to endorse or promote products derived
     87  *    from this software without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     90  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     91  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     92  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     93  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     94  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     95  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     96  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     97  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     98  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     99  * POSSIBILITY OF SUCH DAMAGE.
    100  */
    101 
    102 /*
    103  * Copyright (c) 1994-1998 Mark Brinicombe.
    104  * Copyright (c) 1994 Brini.
    105  * All rights reserved.
    106  *
    107  * This code is derived from software written for Brini by Mark Brinicombe
    108  *
    109  * Redistribution and use in source and binary forms, with or without
    110  * modification, are permitted provided that the following conditions
    111  * are met:
    112  * 1. Redistributions of source code must retain the above copyright
    113  *    notice, this list of conditions and the following disclaimer.
    114  * 2. Redistributions in binary form must reproduce the above copyright
    115  *    notice, this list of conditions and the following disclaimer in the
    116  *    documentation and/or other materials provided with the distribution.
    117  * 3. All advertising materials mentioning features or use of this software
    118  *    must display the following acknowledgement:
    119  *	This product includes software developed by Mark Brinicombe.
    120  * 4. The name of the author may not be used to endorse or promote products
    121  *    derived from this software without specific prior written permission.
    122  *
    123  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    124  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    125  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    126  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    127  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    128  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    129  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    130  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    131  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    132  *
    133  * RiscBSD kernel project
    134  *
    135  * pmap.c
    136  *
    137  * Machine dependant vm stuff
    138  *
    139  * Created      : 20/09/94
    140  */
    141 
    142 /*
    143  * Performance improvements, UVM changes, overhauls and part-rewrites
    144  * were contributed by Neil A. Carson <neil (at) causality.com>.
    145  */
    146 
    147 /*
    148  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    149  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    150  * Systems, Inc.
    151  *
    152  * There are still a few things outstanding at this time:
    153  *
    154  *   - There are some unresolved issues for MP systems:
    155  *
    156  *     o The L1 metadata needs a lock, or more specifically, some places
    157  *       need to acquire an exclusive lock when modifying L1 translation
    158  *       table entries.
    159  *
    160  *     o When one cpu modifies an L1 entry, and that L1 table is also
    161  *       being used by another cpu, then the latter will need to be told
    162  *       that a tlb invalidation may be necessary. (But only if the old
    163  *       domain number in the L1 entry being over-written is currently
    164  *       the active domain on that cpu). I guess there are lots more tlb
    165  *       shootdown issues too...
    166  *
    167  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    168  *       MP systems will lose big-time because of the MMU domain hack.
    169  *       The only way this can be solved (apart from moving the vector
    170  *       page to 0xffff0000) is to reserve the first 1MB of user address
    171  *       space for kernel use only. This would require re-linking all
    172  *       applications so that the text section starts above this 1MB
    173  *       boundary.
    174  *
    175  *     o Tracking which VM space is resident in the cache/tlb has not yet
    176  *       been implemented for MP systems.
    177  *
    178  *     o Finally, there is a pathological condition where two cpus running
    179  *       two separate processes (not lwps) which happen to share an L1
    180  *       can get into a fight over one or more L1 entries. This will result
    181  *       in a significant slow-down if both processes are in tight loops.
    182  */
    183 
    184 /*
    185  * Special compilation symbols
    186  * PMAP_DEBUG		- Build in pmap_debug_level code
    187  */
    188 
    189 /* Include header files */
    190 
    191 #include "opt_cpuoptions.h"
    192 #include "opt_pmap_debug.h"
    193 #include "opt_ddb.h"
    194 #include "opt_lockdebug.h"
    195 #include "opt_multiprocessor.h"
    196 
    197 #include <sys/types.h>
    198 #include <sys/param.h>
    199 #include <sys/kernel.h>
    200 #include <sys/systm.h>
    201 #include <sys/proc.h>
    202 #include <sys/malloc.h>
    203 #include <sys/user.h>
    204 #include <sys/pool.h>
    205 #include <sys/cdefs.h>
    206 
    207 #include <uvm/uvm.h>
    208 
    209 #include <machine/bus.h>
    210 #include <machine/pmap.h>
    211 #include <machine/pcb.h>
    212 #include <machine/param.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.169 2007/11/08 11:10:28 matt Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 
    244 int debugmap = 1;
    245 int pmapdebug = 0;
    246 #define	NPDEBUG(_lev_,_stat_) \
    247 	if (pmapdebug & (_lev_)) \
    248         	((_stat_))
    249 
    250 #else	/* PMAP_DEBUG */
    251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    252 #endif	/* PMAP_DEBUG */
    253 
    254 /*
    255  * pmap_kernel() points here
    256  */
    257 struct pmap     kernel_pmap_store;
    258 
    259 /*
    260  * Which pmap is currently 'live' in the cache
    261  *
    262  * XXXSCW: Fix for SMP ...
    263  */
    264 static pmap_t pmap_recent_user;
    265 
    266 /*
    267  * Pool and cache that pmap structures are allocated from.
    268  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    269  * in pmap_create().
    270  */
    271 static struct pool_cache pmap_cache;
    272 static LIST_HEAD(, pmap) pmap_pmaps;
    273 
    274 /*
    275  * Pool of PV structures
    276  */
    277 static struct pool pmap_pv_pool;
    278 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    279 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    280 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    281 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    282 };
    283 
    284 /*
    285  * Pool and cache of l2_dtable structures.
    286  * We use a cache to avoid clearing the structures when they're
    287  * allocated. (196 bytes)
    288  */
    289 static struct pool_cache pmap_l2dtable_cache;
    290 static vaddr_t pmap_kernel_l2dtable_kva;
    291 
    292 /*
    293  * Pool and cache of L2 page descriptors.
    294  * We use a cache to avoid clearing the descriptor table
    295  * when they're allocated. (1KB)
    296  */
    297 static struct pool_cache pmap_l2ptp_cache;
    298 static vaddr_t pmap_kernel_l2ptp_kva;
    299 static paddr_t pmap_kernel_l2ptp_phys;
    300 
    301 /*
    302  * pmap copy/zero page, and mem(5) hook point
    303  */
    304 static pt_entry_t *csrc_pte, *cdst_pte;
    305 static vaddr_t csrcp, cdstp;
    306 char *memhook;
    307 extern void *msgbufaddr;
    308 
    309 /*
    310  * Flag to indicate if pmap_init() has done its thing
    311  */
    312 bool pmap_initialized;
    313 
    314 /*
    315  * Misc. locking data structures
    316  */
    317 
    318 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    319 static struct lock pmap_main_lock;
    320 
    321 #define PMAP_MAP_TO_HEAD_LOCK() \
    322      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    323 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    324      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    325 #define PMAP_HEAD_TO_MAP_LOCK() \
    326      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    327 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    328      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    329 #else
    330 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    331 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    332 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    333 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    334 #endif
    335 
    336 #define	pmap_acquire_pmap_lock(pm)			\
    337 	do {						\
    338 		if ((pm) != pmap_kernel())		\
    339 			simple_lock(&(pm)->pm_lock);	\
    340 	} while (/*CONSTCOND*/0)
    341 
    342 #define	pmap_release_pmap_lock(pm)			\
    343 	do {						\
    344 		if ((pm) != pmap_kernel())		\
    345 			simple_unlock(&(pm)->pm_lock);	\
    346 	} while (/*CONSTCOND*/0)
    347 
    348 
    349 /*
    350  * Metadata for L1 translation tables.
    351  */
    352 struct l1_ttable {
    353 	/* Entry on the L1 Table list */
    354 	SLIST_ENTRY(l1_ttable) l1_link;
    355 
    356 	/* Entry on the L1 Least Recently Used list */
    357 	TAILQ_ENTRY(l1_ttable) l1_lru;
    358 
    359 	/* Track how many domains are allocated from this L1 */
    360 	volatile u_int l1_domain_use_count;
    361 
    362 	/*
    363 	 * A free-list of domain numbers for this L1.
    364 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    365 	 * is slow on ARM.
    366 	 */
    367 	u_int8_t l1_domain_first;
    368 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    369 
    370 	/* Physical address of this L1 page table */
    371 	paddr_t l1_physaddr;
    372 
    373 	/* KVA of this L1 page table */
    374 	pd_entry_t *l1_kva;
    375 };
    376 
    377 /*
    378  * Convert a virtual address into its L1 table index. That is, the
    379  * index used to locate the L2 descriptor table pointer in an L1 table.
    380  * This is basically used to index l1->l1_kva[].
    381  *
    382  * Each L2 descriptor table represents 1MB of VA space.
    383  */
    384 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    385 
    386 /*
    387  * L1 Page Tables are tracked using a Least Recently Used list.
    388  *  - New L1s are allocated from the HEAD.
    389  *  - Freed L1s are added to the TAIl.
    390  *  - Recently accessed L1s (where an 'access' is some change to one of
    391  *    the userland pmaps which owns this L1) are moved to the TAIL.
    392  */
    393 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    394 static struct simplelock l1_lru_lock;
    395 
    396 /*
    397  * A list of all L1 tables
    398  */
    399 static SLIST_HEAD(, l1_ttable) l1_list;
    400 
    401 /*
    402  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    403  *
    404  * This is normally 16MB worth L2 page descriptors for any given pmap.
    405  * Reference counts are maintained for L2 descriptors so they can be
    406  * freed when empty.
    407  */
    408 struct l2_dtable {
    409 	/* The number of L2 page descriptors allocated to this l2_dtable */
    410 	u_int l2_occupancy;
    411 
    412 	/* List of L2 page descriptors */
    413 	struct l2_bucket {
    414 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    415 		paddr_t l2b_phys;	/* Physical address of same */
    416 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    417 		u_short l2b_occupancy;	/* How many active descriptors */
    418 	} l2_bucket[L2_BUCKET_SIZE];
    419 };
    420 
    421 /*
    422  * Given an L1 table index, calculate the corresponding l2_dtable index
    423  * and bucket index within the l2_dtable.
    424  */
    425 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    426 				 (L2_SIZE - 1))
    427 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    428 
    429 /*
    430  * Given a virtual address, this macro returns the
    431  * virtual address required to drop into the next L2 bucket.
    432  */
    433 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    434 
    435 /*
    436  * L2 allocation.
    437  */
    438 #define	pmap_alloc_l2_dtable()		\
    439 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    440 #define	pmap_free_l2_dtable(l2)		\
    441 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    442 #define pmap_alloc_l2_ptp(pap)		\
    443 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    444 	    PR_NOWAIT, (pap)))
    445 
    446 /*
    447  * We try to map the page tables write-through, if possible.  However, not
    448  * all CPUs have a write-through cache mode, so on those we have to sync
    449  * the cache when we frob page tables.
    450  *
    451  * We try to evaluate this at compile time, if possible.  However, it's
    452  * not always possible to do that, hence this run-time var.
    453  */
    454 int	pmap_needs_pte_sync;
    455 
    456 /*
    457  * Real definition of pv_entry.
    458  */
    459 struct pv_entry {
    460 	struct pv_entry *pv_next;       /* next pv_entry */
    461 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    462 	vaddr_t		pv_va;          /* virtual address for mapping */
    463 	u_int		pv_flags;       /* flags */
    464 };
    465 
    466 /*
    467  * Macro to determine if a mapping might be resident in the
    468  * instruction cache and/or TLB
    469  */
    470 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    471 
    472 /*
    473  * Macro to determine if a mapping might be resident in the
    474  * data cache and/or TLB
    475  */
    476 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    477 
    478 /*
    479  * Local prototypes
    480  */
    481 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    482 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    483 			    pt_entry_t **);
    484 static bool		pmap_is_current(pmap_t);
    485 static bool		pmap_is_cached(pmap_t);
    486 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    487 			    pmap_t, vaddr_t, u_int);
    488 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    489 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    490 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    491 			    u_int, u_int);
    492 
    493 static void		pmap_pinit(pmap_t);
    494 static int		pmap_pmap_ctor(void *, void *, int);
    495 
    496 static void		pmap_alloc_l1(pmap_t);
    497 static void		pmap_free_l1(pmap_t);
    498 static void		pmap_use_l1(pmap_t);
    499 
    500 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    501 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    502 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    503 static int		pmap_l2ptp_ctor(void *, void *, int);
    504 static int		pmap_l2dtable_ctor(void *, void *, int);
    505 
    506 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    507 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    508 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    509 
    510 static void		pmap_clearbit(struct vm_page *, u_int);
    511 static int		pmap_clean_page(struct pv_entry *, bool);
    512 static void		pmap_page_remove(struct vm_page *);
    513 
    514 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    515 static vaddr_t		kernel_pt_lookup(paddr_t);
    516 
    517 void pmap_switch(struct lwp *, struct lwp *);
    518 
    519 
    520 /*
    521  * External function prototypes
    522  */
    523 extern void bzero_page(vaddr_t);
    524 extern void bcopy_page(vaddr_t, vaddr_t);
    525 
    526 /*
    527  * Misc variables
    528  */
    529 vaddr_t virtual_avail;
    530 vaddr_t virtual_end;
    531 vaddr_t pmap_curmaxkvaddr;
    532 
    533 vaddr_t avail_start;
    534 vaddr_t avail_end;
    535 
    536 extern pv_addr_t systempage;
    537 
    538 /* Function to set the debug level of the pmap code */
    539 
    540 #ifdef PMAP_DEBUG
    541 void
    542 pmap_debug(int level)
    543 {
    544 	pmap_debug_level = level;
    545 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    546 }
    547 #endif	/* PMAP_DEBUG */
    548 
    549 /*
    550  * A bunch of routines to conditionally flush the caches/TLB depending
    551  * on whether the specified pmap actually needs to be flushed at any
    552  * given time.
    553  */
    554 static inline void
    555 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    556 {
    557 
    558 	if (pm->pm_cstate.cs_tlb_id)
    559 		cpu_tlb_flushID_SE(va);
    560 }
    561 
    562 static inline void
    563 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    564 {
    565 
    566 	if (pm->pm_cstate.cs_tlb_d)
    567 		cpu_tlb_flushD_SE(va);
    568 }
    569 
    570 static inline void
    571 pmap_tlb_flushID(pmap_t pm)
    572 {
    573 
    574 	if (pm->pm_cstate.cs_tlb_id) {
    575 		cpu_tlb_flushID();
    576 		pm->pm_cstate.cs_tlb = 0;
    577 	}
    578 }
    579 
    580 static inline void
    581 pmap_tlb_flushD(pmap_t pm)
    582 {
    583 
    584 	if (pm->pm_cstate.cs_tlb_d) {
    585 		cpu_tlb_flushD();
    586 		pm->pm_cstate.cs_tlb_d = 0;
    587 	}
    588 }
    589 
    590 static inline void
    591 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    592 {
    593 
    594 	if (pm->pm_cstate.cs_cache_id)
    595 		cpu_idcache_wbinv_range(va, len);
    596 }
    597 
    598 static inline void
    599 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    600     bool do_inv, bool rd_only)
    601 {
    602 
    603 	if (pm->pm_cstate.cs_cache_d) {
    604 		if (do_inv) {
    605 			if (rd_only)
    606 				cpu_dcache_inv_range(va, len);
    607 			else
    608 				cpu_dcache_wbinv_range(va, len);
    609 		} else
    610 		if (!rd_only)
    611 			cpu_dcache_wb_range(va, len);
    612 	}
    613 }
    614 
    615 static inline void
    616 pmap_idcache_wbinv_all(pmap_t pm)
    617 {
    618 
    619 	if (pm->pm_cstate.cs_cache_id) {
    620 		cpu_idcache_wbinv_all();
    621 		pm->pm_cstate.cs_cache = 0;
    622 	}
    623 }
    624 
    625 static inline void
    626 pmap_dcache_wbinv_all(pmap_t pm)
    627 {
    628 
    629 	if (pm->pm_cstate.cs_cache_d) {
    630 		cpu_dcache_wbinv_all();
    631 		pm->pm_cstate.cs_cache_d = 0;
    632 	}
    633 }
    634 
    635 static inline bool
    636 pmap_is_current(pmap_t pm)
    637 {
    638 
    639 	if (pm == pmap_kernel() ||
    640 	    (curproc && curproc->p_vmspace->vm_map.pmap == pm))
    641 		return (true);
    642 
    643 	return (false);
    644 }
    645 
    646 static inline bool
    647 pmap_is_cached(pmap_t pm)
    648 {
    649 
    650 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    651 	    pmap_recent_user == pm)
    652 		return (true);
    653 
    654 	return (false);
    655 }
    656 
    657 /*
    658  * PTE_SYNC_CURRENT:
    659  *
    660  *     Make sure the pte is written out to RAM.
    661  *     We need to do this for one of two cases:
    662  *       - We're dealing with the kernel pmap
    663  *       - There is no pmap active in the cache/tlb.
    664  *       - The specified pmap is 'active' in the cache/tlb.
    665  */
    666 #ifdef PMAP_INCLUDE_PTE_SYNC
    667 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    668 do {					\
    669 	if (PMAP_NEEDS_PTE_SYNC && 	\
    670 	    pmap_is_cached(pm))		\
    671 		PTE_SYNC(ptep);		\
    672 } while (/*CONSTCOND*/0)
    673 #else
    674 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    675 #endif
    676 
    677 /*
    678  * main pv_entry manipulation functions:
    679  *   pmap_enter_pv: enter a mapping onto a vm_page list
    680  *   pmap_remove_pv: remove a mappiing from a vm_page list
    681  *
    682  * NOTE: pmap_enter_pv expects to lock the pvh itself
    683  *       pmap_remove_pv expects te caller to lock the pvh before calling
    684  */
    685 
    686 /*
    687  * pmap_enter_pv: enter a mapping onto a vm_page lst
    688  *
    689  * => caller should hold the proper lock on pmap_main_lock
    690  * => caller should have pmap locked
    691  * => we will gain the lock on the vm_page and allocate the new pv_entry
    692  * => caller should adjust ptp's wire_count before calling
    693  * => caller should not adjust pmap's wire_count
    694  */
    695 static void
    696 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    697     vaddr_t va, u_int flags)
    698 {
    699 
    700 	NPDEBUG(PDB_PVDUMP,
    701 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    702 
    703 	pve->pv_pmap = pm;
    704 	pve->pv_va = va;
    705 	pve->pv_flags = flags;
    706 
    707 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    708 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    709 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    710 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    711 	if (pm == pmap_kernel()) {
    712 		if (flags & PVF_WRITE)
    713 			pg->mdpage.krw_mappings++;
    714 		else
    715 			pg->mdpage.kro_mappings++;
    716 	} else
    717 	if (flags & PVF_WRITE)
    718 		pg->mdpage.urw_mappings++;
    719 	else
    720 		pg->mdpage.uro_mappings++;
    721 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    722 
    723 	if (pve->pv_flags & PVF_WIRED)
    724 		++pm->pm_stats.wired_count;
    725 }
    726 
    727 /*
    728  *
    729  * pmap_find_pv: Find a pv entry
    730  *
    731  * => caller should hold lock on vm_page
    732  */
    733 static inline struct pv_entry *
    734 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    735 {
    736 	struct pv_entry *pv;
    737 
    738 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
    739 		if (pm == pv->pv_pmap && va == pv->pv_va)
    740 			break;
    741 	}
    742 
    743 	return (pv);
    744 }
    745 
    746 /*
    747  * pmap_remove_pv: try to remove a mapping from a pv_list
    748  *
    749  * => caller should hold proper lock on pmap_main_lock
    750  * => pmap should be locked
    751  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    752  * => caller should adjust ptp's wire_count and free PTP if needed
    753  * => caller should NOT adjust pmap's wire_count
    754  * => we return the removed pve
    755  */
    756 static struct pv_entry *
    757 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    758 {
    759 	struct pv_entry *pve, **prevptr;
    760 
    761 	NPDEBUG(PDB_PVDUMP,
    762 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    763 
    764 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    765 	pve = *prevptr;
    766 
    767 	while (pve) {
    768 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    769 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    770 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    771 			if (pve->pv_flags & PVF_WIRED) {
    772 				if (skip_wired)
    773 					return (NULL);
    774 				--pm->pm_stats.wired_count;
    775 			}
    776 			*prevptr = pve->pv_next;		/* remove it! */
    777 			if (pm == pmap_kernel()) {
    778 				if (pve->pv_flags & PVF_WRITE)
    779 					pg->mdpage.krw_mappings--;
    780 				else
    781 					pg->mdpage.kro_mappings--;
    782 			} else
    783 			if (pve->pv_flags & PVF_WRITE)
    784 				pg->mdpage.urw_mappings--;
    785 			else
    786 				pg->mdpage.uro_mappings--;
    787 			break;
    788 		}
    789 		prevptr = &pve->pv_next;		/* previous pointer */
    790 		pve = pve->pv_next;			/* advance */
    791 	}
    792 
    793 	return(pve);				/* return removed pve */
    794 }
    795 
    796 /*
    797  *
    798  * pmap_modify_pv: Update pv flags
    799  *
    800  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    801  * => caller should NOT adjust pmap's wire_count
    802  * => caller must call pmap_vac_me_harder() if writable status of a page
    803  *    may have changed.
    804  * => we return the old flags
    805  *
    806  * Modify a physical-virtual mapping in the pv table
    807  */
    808 static u_int
    809 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
    810     u_int clr_mask, u_int set_mask)
    811 {
    812 	struct pv_entry *npv;
    813 	u_int flags, oflags;
    814 
    815 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
    816 		return (0);
    817 
    818 	NPDEBUG(PDB_PVDUMP,
    819 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
    820 
    821 	/*
    822 	 * There is at least one VA mapping this page.
    823 	 */
    824 
    825 	if (clr_mask & (PVF_REF | PVF_MOD))
    826 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
    827 
    828 	oflags = npv->pv_flags;
    829 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
    830 
    831 	if ((flags ^ oflags) & PVF_WIRED) {
    832 		if (flags & PVF_WIRED)
    833 			++pm->pm_stats.wired_count;
    834 		else
    835 			--pm->pm_stats.wired_count;
    836 	}
    837 
    838 	if ((flags ^ oflags) & PVF_WRITE) {
    839 		if (pm == pmap_kernel()) {
    840 			if (flags & PVF_WRITE) {
    841 				pg->mdpage.krw_mappings++;
    842 				pg->mdpage.kro_mappings--;
    843 			} else {
    844 				pg->mdpage.kro_mappings++;
    845 				pg->mdpage.krw_mappings--;
    846 			}
    847 		} else
    848 		if (flags & PVF_WRITE) {
    849 			pg->mdpage.urw_mappings++;
    850 			pg->mdpage.uro_mappings--;
    851 		} else {
    852 			pg->mdpage.uro_mappings++;
    853 			pg->mdpage.urw_mappings--;
    854 		}
    855 	}
    856 
    857 	return (oflags);
    858 }
    859 
    860 /*
    861  * Allocate an L1 translation table for the specified pmap.
    862  * This is called at pmap creation time.
    863  */
    864 static void
    865 pmap_alloc_l1(pmap_t pm)
    866 {
    867 	struct l1_ttable *l1;
    868 	u_int8_t domain;
    869 
    870 	/*
    871 	 * Remove the L1 at the head of the LRU list
    872 	 */
    873 	simple_lock(&l1_lru_lock);
    874 	l1 = TAILQ_FIRST(&l1_lru_list);
    875 	KDASSERT(l1 != NULL);
    876 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
    877 
    878 	/*
    879 	 * Pick the first available domain number, and update
    880 	 * the link to the next number.
    881 	 */
    882 	domain = l1->l1_domain_first;
    883 	l1->l1_domain_first = l1->l1_domain_free[domain];
    884 
    885 	/*
    886 	 * If there are still free domain numbers in this L1,
    887 	 * put it back on the TAIL of the LRU list.
    888 	 */
    889 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
    890 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
    891 
    892 	simple_unlock(&l1_lru_lock);
    893 
    894 	/*
    895 	 * Fix up the relevant bits in the pmap structure
    896 	 */
    897 	pm->pm_l1 = l1;
    898 	pm->pm_domain = domain;
    899 }
    900 
    901 /*
    902  * Free an L1 translation table.
    903  * This is called at pmap destruction time.
    904  */
    905 static void
    906 pmap_free_l1(pmap_t pm)
    907 {
    908 	struct l1_ttable *l1 = pm->pm_l1;
    909 
    910 	simple_lock(&l1_lru_lock);
    911 
    912 	/*
    913 	 * If this L1 is currently on the LRU list, remove it.
    914 	 */
    915 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
    916 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
    917 
    918 	/*
    919 	 * Free up the domain number which was allocated to the pmap
    920 	 */
    921 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
    922 	l1->l1_domain_first = pm->pm_domain;
    923 	l1->l1_domain_use_count--;
    924 
    925 	/*
    926 	 * The L1 now must have at least 1 free domain, so add
    927 	 * it back to the LRU list. If the use count is zero,
    928 	 * put it at the head of the list, otherwise it goes
    929 	 * to the tail.
    930 	 */
    931 	if (l1->l1_domain_use_count == 0)
    932 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
    933 	else
    934 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
    935 
    936 	simple_unlock(&l1_lru_lock);
    937 }
    938 
    939 static inline void
    940 pmap_use_l1(pmap_t pm)
    941 {
    942 	struct l1_ttable *l1;
    943 
    944 	/*
    945 	 * Do nothing if we're in interrupt context.
    946 	 * Access to an L1 by the kernel pmap must not affect
    947 	 * the LRU list.
    948 	 */
    949 	if (current_intr_depth || pm == pmap_kernel())
    950 		return;
    951 
    952 	l1 = pm->pm_l1;
    953 
    954 	/*
    955 	 * If the L1 is not currently on the LRU list, just return
    956 	 */
    957 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
    958 		return;
    959 
    960 	simple_lock(&l1_lru_lock);
    961 
    962 	/*
    963 	 * Check the use count again, now that we've acquired the lock
    964 	 */
    965 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
    966 		simple_unlock(&l1_lru_lock);
    967 		return;
    968 	}
    969 
    970 	/*
    971 	 * Move the L1 to the back of the LRU list
    972 	 */
    973 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
    974 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
    975 
    976 	simple_unlock(&l1_lru_lock);
    977 }
    978 
    979 /*
    980  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
    981  *
    982  * Free an L2 descriptor table.
    983  */
    984 static inline void
    985 #ifndef PMAP_INCLUDE_PTE_SYNC
    986 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
    987 #else
    988 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
    989 #endif
    990 {
    991 #ifdef PMAP_INCLUDE_PTE_SYNC
    992 	/*
    993 	 * Note: With a write-back cache, we may need to sync this
    994 	 * L2 table before re-using it.
    995 	 * This is because it may have belonged to a non-current
    996 	 * pmap, in which case the cache syncs would have been
    997 	 * skipped when the pages were being unmapped. If the
    998 	 * L2 table were then to be immediately re-allocated to
    999 	 * the *current* pmap, it may well contain stale mappings
   1000 	 * which have not yet been cleared by a cache write-back
   1001 	 * and so would still be visible to the mmu.
   1002 	 */
   1003 	if (need_sync)
   1004 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1005 #endif
   1006 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1007 }
   1008 
   1009 /*
   1010  * Returns a pointer to the L2 bucket associated with the specified pmap
   1011  * and VA, or NULL if no L2 bucket exists for the address.
   1012  */
   1013 static inline struct l2_bucket *
   1014 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1015 {
   1016 	struct l2_dtable *l2;
   1017 	struct l2_bucket *l2b;
   1018 	u_short l1idx;
   1019 
   1020 	l1idx = L1_IDX(va);
   1021 
   1022 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1023 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1024 		return (NULL);
   1025 
   1026 	return (l2b);
   1027 }
   1028 
   1029 /*
   1030  * Returns a pointer to the L2 bucket associated with the specified pmap
   1031  * and VA.
   1032  *
   1033  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1034  * bucket/page table in place.
   1035  *
   1036  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1037  * increment the bucket occupancy counter appropriately *before*
   1038  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1039  * the bucket/page in the meantime.
   1040  */
   1041 static struct l2_bucket *
   1042 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1043 {
   1044 	struct l2_dtable *l2;
   1045 	struct l2_bucket *l2b;
   1046 	u_short l1idx;
   1047 
   1048 	l1idx = L1_IDX(va);
   1049 
   1050 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1051 		/*
   1052 		 * No mapping at this address, as there is
   1053 		 * no entry in the L1 table.
   1054 		 * Need to allocate a new l2_dtable.
   1055 		 */
   1056 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1057 			return (NULL);
   1058 
   1059 		/*
   1060 		 * Link it into the parent pmap
   1061 		 */
   1062 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1063 	}
   1064 
   1065 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1066 
   1067 	/*
   1068 	 * Fetch pointer to the L2 page table associated with the address.
   1069 	 */
   1070 	if (l2b->l2b_kva == NULL) {
   1071 		pt_entry_t *ptep;
   1072 
   1073 		/*
   1074 		 * No L2 page table has been allocated. Chances are, this
   1075 		 * is because we just allocated the l2_dtable, above.
   1076 		 */
   1077 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1078 			/*
   1079 			 * Oops, no more L2 page tables available at this
   1080 			 * time. We may need to deallocate the l2_dtable
   1081 			 * if we allocated a new one above.
   1082 			 */
   1083 			if (l2->l2_occupancy == 0) {
   1084 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1085 				pmap_free_l2_dtable(l2);
   1086 			}
   1087 			return (NULL);
   1088 		}
   1089 
   1090 		l2->l2_occupancy++;
   1091 		l2b->l2b_kva = ptep;
   1092 		l2b->l2b_l1idx = l1idx;
   1093 	}
   1094 
   1095 	return (l2b);
   1096 }
   1097 
   1098 /*
   1099  * One or more mappings in the specified L2 descriptor table have just been
   1100  * invalidated.
   1101  *
   1102  * Garbage collect the metadata and descriptor table itself if necessary.
   1103  *
   1104  * The pmap lock must be acquired when this is called (not necessary
   1105  * for the kernel pmap).
   1106  */
   1107 static void
   1108 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1109 {
   1110 	struct l2_dtable *l2;
   1111 	pd_entry_t *pl1pd, l1pd;
   1112 	pt_entry_t *ptep;
   1113 	u_short l1idx;
   1114 
   1115 	KDASSERT(count <= l2b->l2b_occupancy);
   1116 
   1117 	/*
   1118 	 * Update the bucket's reference count according to how many
   1119 	 * PTEs the caller has just invalidated.
   1120 	 */
   1121 	l2b->l2b_occupancy -= count;
   1122 
   1123 	/*
   1124 	 * Note:
   1125 	 *
   1126 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1127 	 * as that would require checking all Level 1 page tables and
   1128 	 * removing any references to the Level 2 page table. See also the
   1129 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1130 	 *
   1131 	 * We make do with just invalidating the mapping in the L2 table.
   1132 	 *
   1133 	 * This isn't really a big deal in practice and, in fact, leads
   1134 	 * to a performance win over time as we don't need to continually
   1135 	 * alloc/free.
   1136 	 */
   1137 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1138 		return;
   1139 
   1140 	/*
   1141 	 * There are no more valid mappings in this level 2 page table.
   1142 	 * Go ahead and NULL-out the pointer in the bucket, then
   1143 	 * free the page table.
   1144 	 */
   1145 	l1idx = l2b->l2b_l1idx;
   1146 	ptep = l2b->l2b_kva;
   1147 	l2b->l2b_kva = NULL;
   1148 
   1149 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1150 
   1151 	/*
   1152 	 * If the L1 slot matches the pmap's domain
   1153 	 * number, then invalidate it.
   1154 	 */
   1155 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1156 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1157 		*pl1pd = 0;
   1158 		PTE_SYNC(pl1pd);
   1159 	}
   1160 
   1161 	/*
   1162 	 * Release the L2 descriptor table back to the pool cache.
   1163 	 */
   1164 #ifndef PMAP_INCLUDE_PTE_SYNC
   1165 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1166 #else
   1167 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1168 #endif
   1169 
   1170 	/*
   1171 	 * Update the reference count in the associated l2_dtable
   1172 	 */
   1173 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1174 	if (--l2->l2_occupancy > 0)
   1175 		return;
   1176 
   1177 	/*
   1178 	 * There are no more valid mappings in any of the Level 1
   1179 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1180 	 * the pointer in the parent pmap and free the l2_dtable.
   1181 	 */
   1182 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1183 	pmap_free_l2_dtable(l2);
   1184 }
   1185 
   1186 /*
   1187  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1188  * structures.
   1189  */
   1190 static int
   1191 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1192 {
   1193 #ifndef PMAP_INCLUDE_PTE_SYNC
   1194 	struct l2_bucket *l2b;
   1195 	pt_entry_t *ptep, pte;
   1196 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1197 
   1198 	/*
   1199 	 * The mappings for these page tables were initially made using
   1200 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1201 	 * mode will not be right for page table mappings. To avoid
   1202 	 * polluting the pmap_kenter_pa() code with a special case for
   1203 	 * page tables, we simply fix up the cache-mode here if it's not
   1204 	 * correct.
   1205 	 */
   1206 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1207 	KDASSERT(l2b != NULL);
   1208 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1209 	pte = *ptep;
   1210 
   1211 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1212 		/*
   1213 		 * Page tables must have the cache-mode set to Write-Thru.
   1214 		 */
   1215 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1216 		PTE_SYNC(ptep);
   1217 		cpu_tlb_flushD_SE(va);
   1218 		cpu_cpwait();
   1219 	}
   1220 #endif
   1221 
   1222 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1223 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1224 	return (0);
   1225 }
   1226 
   1227 static int
   1228 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1229 {
   1230 
   1231 	memset(v, 0, sizeof(struct l2_dtable));
   1232 	return (0);
   1233 }
   1234 
   1235 static int
   1236 pmap_pmap_ctor(void *arg, void *v, int flags)
   1237 {
   1238 
   1239 	memset(v, 0, sizeof(struct pmap));
   1240 	return (0);
   1241 }
   1242 
   1243 static void
   1244 pmap_pinit(pmap_t pm)
   1245 {
   1246 	struct l2_bucket *l2b;
   1247 
   1248 	if (vector_page < KERNEL_BASE) {
   1249 		/*
   1250 		 * Map the vector page.
   1251 		 */
   1252 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1253 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1254 		pmap_update(pm);
   1255 
   1256 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1257 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1258 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1259 		    L1_C_DOM(pm->pm_domain);
   1260 	} else
   1261 		pm->pm_pl1vec = NULL;
   1262 }
   1263 
   1264 /*
   1265  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1266  * there is more than one mapping and at least one of them is writable.
   1267  * Since we purge the cache on every context switch, we only need to check for
   1268  * other mappings within the same pmap, or kernel_pmap.
   1269  * This function is also called when a page is unmapped, to possibly reenable
   1270  * caching on any remaining mappings.
   1271  *
   1272  * The code implements the following logic, where:
   1273  *
   1274  * KW = # of kernel read/write pages
   1275  * KR = # of kernel read only pages
   1276  * UW = # of user read/write pages
   1277  * UR = # of user read only pages
   1278  *
   1279  * KC = kernel mapping is cacheable
   1280  * UC = user mapping is cacheable
   1281  *
   1282  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1283  *             +---------------------------------------------
   1284  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1285  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1286  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1287  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1288  */
   1289 
   1290 static const int pmap_vac_flags[4][4] = {
   1291 	{-1,		0,		0,		PVF_KNC},
   1292 	{0,		0,		PVF_NC,		PVF_NC},
   1293 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1294 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1295 };
   1296 
   1297 static inline int
   1298 pmap_get_vac_flags(const struct vm_page *pg)
   1299 {
   1300 	int kidx, uidx;
   1301 
   1302 	kidx = 0;
   1303 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1304 		kidx |= 1;
   1305 	if (pg->mdpage.krw_mappings)
   1306 		kidx |= 2;
   1307 
   1308 	uidx = 0;
   1309 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1310 		uidx |= 1;
   1311 	if (pg->mdpage.urw_mappings)
   1312 		uidx |= 2;
   1313 
   1314 	return (pmap_vac_flags[uidx][kidx]);
   1315 }
   1316 
   1317 static inline void
   1318 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1319 {
   1320 	int nattr;
   1321 
   1322 	nattr = pmap_get_vac_flags(pg);
   1323 
   1324 	if (nattr < 0) {
   1325 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1326 		return;
   1327 	}
   1328 
   1329 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1330 		return;
   1331 
   1332 	if (pm == pmap_kernel())
   1333 		pmap_vac_me_kpmap(pg, pm, va);
   1334 	else
   1335 		pmap_vac_me_user(pg, pm, va);
   1336 
   1337 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1338 }
   1339 
   1340 static void
   1341 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1342 {
   1343 	u_int u_cacheable, u_entries;
   1344 	struct pv_entry *pv;
   1345 	pmap_t last_pmap = pm;
   1346 
   1347 	/*
   1348 	 * Pass one, see if there are both kernel and user pmaps for
   1349 	 * this page.  Calculate whether there are user-writable or
   1350 	 * kernel-writable pages.
   1351 	 */
   1352 	u_cacheable = 0;
   1353 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1354 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1355 			u_cacheable++;
   1356 	}
   1357 
   1358 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1359 
   1360 	/*
   1361 	 * We know we have just been updating a kernel entry, so if
   1362 	 * all user pages are already cacheable, then there is nothing
   1363 	 * further to do.
   1364 	 */
   1365 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1366 		return;
   1367 
   1368 	if (u_entries) {
   1369 		/*
   1370 		 * Scan over the list again, for each entry, if it
   1371 		 * might not be set correctly, call pmap_vac_me_user
   1372 		 * to recalculate the settings.
   1373 		 */
   1374 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1375 			/*
   1376 			 * We know kernel mappings will get set
   1377 			 * correctly in other calls.  We also know
   1378 			 * that if the pmap is the same as last_pmap
   1379 			 * then we've just handled this entry.
   1380 			 */
   1381 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1382 				continue;
   1383 
   1384 			/*
   1385 			 * If there are kernel entries and this page
   1386 			 * is writable but non-cacheable, then we can
   1387 			 * skip this entry also.
   1388 			 */
   1389 			if (pg->mdpage.k_mappings &&
   1390 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1391 			    (PVF_NC | PVF_WRITE))
   1392 				continue;
   1393 
   1394 			/*
   1395 			 * Similarly if there are no kernel-writable
   1396 			 * entries and the page is already
   1397 			 * read-only/cacheable.
   1398 			 */
   1399 			if (pg->mdpage.krw_mappings == 0 &&
   1400 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1401 				continue;
   1402 
   1403 			/*
   1404 			 * For some of the remaining cases, we know
   1405 			 * that we must recalculate, but for others we
   1406 			 * can't tell if they are correct or not, so
   1407 			 * we recalculate anyway.
   1408 			 */
   1409 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1410 		}
   1411 
   1412 		if (pg->mdpage.k_mappings == 0)
   1413 			return;
   1414 	}
   1415 
   1416 	pmap_vac_me_user(pg, pm, va);
   1417 }
   1418 
   1419 static void
   1420 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1421 {
   1422 	pmap_t kpmap = pmap_kernel();
   1423 	struct pv_entry *pv, *npv;
   1424 	struct l2_bucket *l2b;
   1425 	pt_entry_t *ptep, pte;
   1426 	u_int entries = 0;
   1427 	u_int writable = 0;
   1428 	u_int cacheable_entries = 0;
   1429 	u_int kern_cacheable = 0;
   1430 	u_int other_writable = 0;
   1431 
   1432 	/*
   1433 	 * Count mappings and writable mappings in this pmap.
   1434 	 * Include kernel mappings as part of our own.
   1435 	 * Keep a pointer to the first one.
   1436 	 */
   1437 	for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1438 		/* Count mappings in the same pmap */
   1439 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1440 			if (entries++ == 0)
   1441 				npv = pv;
   1442 
   1443 			/* Cacheable mappings */
   1444 			if ((pv->pv_flags & PVF_NC) == 0) {
   1445 				cacheable_entries++;
   1446 				if (kpmap == pv->pv_pmap)
   1447 					kern_cacheable++;
   1448 			}
   1449 
   1450 			/* Writable mappings */
   1451 			if (pv->pv_flags & PVF_WRITE)
   1452 				++writable;
   1453 		} else
   1454 		if (pv->pv_flags & PVF_WRITE)
   1455 			other_writable = 1;
   1456 	}
   1457 
   1458 	/*
   1459 	 * Enable or disable caching as necessary.
   1460 	 * Note: the first entry might be part of the kernel pmap,
   1461 	 * so we can't assume this is indicative of the state of the
   1462 	 * other (maybe non-kpmap) entries.
   1463 	 */
   1464 	if ((entries > 1 && writable) ||
   1465 	    (entries > 0 && pm == kpmap && other_writable)) {
   1466 		if (cacheable_entries == 0)
   1467 			return;
   1468 
   1469 		for (pv = npv; pv; pv = pv->pv_next) {
   1470 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1471 			    (pv->pv_flags & PVF_NC))
   1472 				continue;
   1473 
   1474 			pv->pv_flags |= PVF_NC;
   1475 
   1476 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1477 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1478 			pte = *ptep & ~L2_S_CACHE_MASK;
   1479 
   1480 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1481 			    l2pte_valid(pte)) {
   1482 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1483 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1484 					    pv->pv_va, PAGE_SIZE);
   1485 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1486 					    pv->pv_va);
   1487 				} else
   1488 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1489 					pmap_dcache_wb_range(pv->pv_pmap,
   1490 					    pv->pv_va, PAGE_SIZE, true,
   1491 					    (pv->pv_flags & PVF_WRITE) == 0);
   1492 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1493 					    pv->pv_va);
   1494 				}
   1495 			}
   1496 
   1497 			*ptep = pte;
   1498 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1499 		}
   1500 		cpu_cpwait();
   1501 	} else
   1502 	if (entries > cacheable_entries) {
   1503 		/*
   1504 		 * Turn cacheing back on for some pages.  If it is a kernel
   1505 		 * page, only do so if there are no other writable pages.
   1506 		 */
   1507 		for (pv = npv; pv; pv = pv->pv_next) {
   1508 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1509 			    (kpmap != pv->pv_pmap || other_writable)))
   1510 				continue;
   1511 
   1512 			pv->pv_flags &= ~PVF_NC;
   1513 
   1514 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1515 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1516 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1517 
   1518 			if (l2pte_valid(pte)) {
   1519 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1520 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1521 					    pv->pv_va);
   1522 				} else
   1523 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1524 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1525 					    pv->pv_va);
   1526 				}
   1527 			}
   1528 
   1529 			*ptep = pte;
   1530 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1531 		}
   1532 	}
   1533 }
   1534 
   1535 /*
   1536  * Modify pte bits for all ptes corresponding to the given physical address.
   1537  * We use `maskbits' rather than `clearbits' because we're always passing
   1538  * constants and the latter would require an extra inversion at run-time.
   1539  */
   1540 static void
   1541 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   1542 {
   1543 	struct l2_bucket *l2b;
   1544 	struct pv_entry *pv;
   1545 	pt_entry_t *ptep, npte, opte;
   1546 	pmap_t pm;
   1547 	vaddr_t va;
   1548 	u_int oflags;
   1549 
   1550 	NPDEBUG(PDB_BITS,
   1551 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   1552 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   1553 
   1554 	PMAP_HEAD_TO_MAP_LOCK();
   1555 	simple_lock(&pg->mdpage.pvh_slock);
   1556 
   1557 	/*
   1558 	 * Clear saved attributes (modify, reference)
   1559 	 */
   1560 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   1561 
   1562 	if (pg->mdpage.pvh_list == NULL) {
   1563 		simple_unlock(&pg->mdpage.pvh_slock);
   1564 		PMAP_HEAD_TO_MAP_UNLOCK();
   1565 		return;
   1566 	}
   1567 
   1568 	/*
   1569 	 * Loop over all current mappings setting/clearing as appropos
   1570 	 */
   1571 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1572 		va = pv->pv_va;
   1573 		pm = pv->pv_pmap;
   1574 		oflags = pv->pv_flags;
   1575 		pv->pv_flags &= ~maskbits;
   1576 
   1577 		pmap_acquire_pmap_lock(pm);
   1578 
   1579 		l2b = pmap_get_l2_bucket(pm, va);
   1580 		KDASSERT(l2b != NULL);
   1581 
   1582 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   1583 		npte = opte = *ptep;
   1584 
   1585 		NPDEBUG(PDB_BITS,
   1586 		    printf(
   1587 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   1588 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   1589 
   1590 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   1591 			if ((pv->pv_flags & PVF_NC)) {
   1592 				/*
   1593 				 * Entry is not cacheable:
   1594 				 *
   1595 				 * Don't turn caching on again if this is a
   1596 				 * modified emulation. This would be
   1597 				 * inconsitent with the settings created by
   1598 				 * pmap_vac_me_harder(). Otherwise, it's safe
   1599 				 * to re-enable cacheing.
   1600 				 *
   1601 				 * There's no need to call pmap_vac_me_harder()
   1602 				 * here: all pages are losing their write
   1603 				 * permission.
   1604 				 */
   1605 				if (maskbits & PVF_WRITE) {
   1606 					npte |= pte_l2_s_cache_mode;
   1607 					pv->pv_flags &= ~PVF_NC;
   1608 				}
   1609 			} else
   1610 			if (opte & L2_S_PROT_W) {
   1611 				/*
   1612 				 * Entry is writable/cacheable: check if pmap
   1613 				 * is current if it is flush it, otherwise it
   1614 				 * won't be in the cache
   1615 				 */
   1616 				if (PV_BEEN_EXECD(oflags))
   1617 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   1618 					    PAGE_SIZE);
   1619 				else
   1620 				if (PV_BEEN_REFD(oflags))
   1621 					pmap_dcache_wb_range(pm, pv->pv_va,
   1622 					    PAGE_SIZE,
   1623 					    (maskbits & PVF_REF) ? true : false,
   1624 					    false);
   1625 			}
   1626 
   1627 			/* make the pte read only */
   1628 			npte &= ~L2_S_PROT_W;
   1629 
   1630 			if (maskbits & PVF_WRITE) {
   1631 				/*
   1632 				 * Keep alias accounting up to date
   1633 				 */
   1634 				if (pv->pv_pmap == pmap_kernel()) {
   1635 					if (oflags & PVF_WRITE) {
   1636 						pg->mdpage.krw_mappings--;
   1637 						pg->mdpage.kro_mappings++;
   1638 					}
   1639 				} else
   1640 				if (oflags & PVF_WRITE) {
   1641 					pg->mdpage.urw_mappings--;
   1642 					pg->mdpage.uro_mappings++;
   1643 				}
   1644 			}
   1645 		}
   1646 
   1647 		if (maskbits & PVF_REF) {
   1648 			if ((pv->pv_flags & PVF_NC) == 0 &&
   1649 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
   1650 				/*
   1651 				 * Check npte here; we may have already
   1652 				 * done the wbinv above, and the validity
   1653 				 * of the PTE is the same for opte and
   1654 				 * npte.
   1655 				 */
   1656 				if (npte & L2_S_PROT_W) {
   1657 					if (PV_BEEN_EXECD(oflags))
   1658 						pmap_idcache_wbinv_range(pm,
   1659 						    pv->pv_va, PAGE_SIZE);
   1660 					else
   1661 					if (PV_BEEN_REFD(oflags))
   1662 						pmap_dcache_wb_range(pm,
   1663 						    pv->pv_va, PAGE_SIZE,
   1664 						    true, false);
   1665 				} else
   1666 				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
   1667 					/* XXXJRT need idcache_inv_range */
   1668 					if (PV_BEEN_EXECD(oflags))
   1669 						pmap_idcache_wbinv_range(pm,
   1670 						    pv->pv_va, PAGE_SIZE);
   1671 					else
   1672 					if (PV_BEEN_REFD(oflags))
   1673 						pmap_dcache_wb_range(pm,
   1674 						    pv->pv_va, PAGE_SIZE,
   1675 						    true, true);
   1676 				}
   1677 			}
   1678 
   1679 			/*
   1680 			 * Make the PTE invalid so that we will take a
   1681 			 * page fault the next time the mapping is
   1682 			 * referenced.
   1683 			 */
   1684 			npte &= ~L2_TYPE_MASK;
   1685 			npte |= L2_TYPE_INV;
   1686 		}
   1687 
   1688 		if (npte != opte) {
   1689 			*ptep = npte;
   1690 			PTE_SYNC(ptep);
   1691 			/* Flush the TLB entry if a current pmap. */
   1692 			if (PV_BEEN_EXECD(oflags))
   1693 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   1694 			else
   1695 			if (PV_BEEN_REFD(oflags))
   1696 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   1697 		}
   1698 
   1699 		pmap_release_pmap_lock(pm);
   1700 
   1701 		NPDEBUG(PDB_BITS,
   1702 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   1703 		    pm, va, opte, npte));
   1704 	}
   1705 
   1706 	simple_unlock(&pg->mdpage.pvh_slock);
   1707 	PMAP_HEAD_TO_MAP_UNLOCK();
   1708 }
   1709 
   1710 /*
   1711  * pmap_clean_page()
   1712  *
   1713  * This is a local function used to work out the best strategy to clean
   1714  * a single page referenced by its entry in the PV table. It's used by
   1715  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1716  *
   1717  * Its policy is effectively:
   1718  *  o If there are no mappings, we don't bother doing anything with the cache.
   1719  *  o If there is one mapping, we clean just that page.
   1720  *  o If there are multiple mappings, we clean the entire cache.
   1721  *
   1722  * So that some functions can be further optimised, it returns 0 if it didn't
   1723  * clean the entire cache, or 1 if it did.
   1724  *
   1725  * XXX One bug in this routine is that if the pv_entry has a single page
   1726  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1727  * just the 1 page. Since this should not occur in everyday use and if it does
   1728  * it will just result in not the most efficient clean for the page.
   1729  */
   1730 static int
   1731 pmap_clean_page(struct pv_entry *pv, bool is_src)
   1732 {
   1733 	pmap_t pm, pm_to_clean = NULL;
   1734 	struct pv_entry *npv;
   1735 	u_int cache_needs_cleaning = 0;
   1736 	u_int flags = 0;
   1737 	vaddr_t page_to_clean = 0;
   1738 
   1739 	if (pv == NULL) {
   1740 		/* nothing mapped in so nothing to flush */
   1741 		return (0);
   1742 	}
   1743 
   1744 	/*
   1745 	 * Since we flush the cache each time we change to a different
   1746 	 * user vmspace, we only need to flush the page if it is in the
   1747 	 * current pmap.
   1748 	 */
   1749 	if (curproc)
   1750 		pm = curproc->p_vmspace->vm_map.pmap;
   1751 	else
   1752 		pm = pmap_kernel();
   1753 
   1754 	for (npv = pv; npv; npv = npv->pv_next) {
   1755 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   1756 			flags |= npv->pv_flags;
   1757 			/*
   1758 			 * The page is mapped non-cacheable in
   1759 			 * this map.  No need to flush the cache.
   1760 			 */
   1761 			if (npv->pv_flags & PVF_NC) {
   1762 #ifdef DIAGNOSTIC
   1763 				if (cache_needs_cleaning)
   1764 					panic("pmap_clean_page: "
   1765 					    "cache inconsistency");
   1766 #endif
   1767 				break;
   1768 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   1769 				continue;
   1770 			if (cache_needs_cleaning) {
   1771 				page_to_clean = 0;
   1772 				break;
   1773 			} else {
   1774 				page_to_clean = npv->pv_va;
   1775 				pm_to_clean = npv->pv_pmap;
   1776 			}
   1777 			cache_needs_cleaning = 1;
   1778 		}
   1779 	}
   1780 
   1781 	if (page_to_clean) {
   1782 		if (PV_BEEN_EXECD(flags))
   1783 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   1784 			    PAGE_SIZE);
   1785 		else
   1786 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   1787 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   1788 	} else if (cache_needs_cleaning) {
   1789 		if (PV_BEEN_EXECD(flags))
   1790 			pmap_idcache_wbinv_all(pm);
   1791 		else
   1792 			pmap_dcache_wbinv_all(pm);
   1793 		return (1);
   1794 	}
   1795 	return (0);
   1796 }
   1797 
   1798 /*
   1799  * Routine:	pmap_page_remove
   1800  * Function:
   1801  *		Removes this physical page from
   1802  *		all physical maps in which it resides.
   1803  *		Reflects back modify bits to the pager.
   1804  */
   1805 static void
   1806 pmap_page_remove(struct vm_page *pg)
   1807 {
   1808 	struct l2_bucket *l2b;
   1809 	struct pv_entry *pv, *npv;
   1810 	pmap_t pm, curpm;
   1811 	pt_entry_t *ptep, pte;
   1812 	bool flush;
   1813 	u_int flags;
   1814 
   1815 	NPDEBUG(PDB_FOLLOW,
   1816 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   1817 	    VM_PAGE_TO_PHYS(pg)));
   1818 
   1819 	PMAP_HEAD_TO_MAP_LOCK();
   1820 	simple_lock(&pg->mdpage.pvh_slock);
   1821 
   1822 	pv = pg->mdpage.pvh_list;
   1823 	if (pv == NULL) {
   1824 		simple_unlock(&pg->mdpage.pvh_slock);
   1825 		PMAP_HEAD_TO_MAP_UNLOCK();
   1826 		return;
   1827 	}
   1828 
   1829 	/*
   1830 	 * Clear alias counts
   1831 	 */
   1832 	pg->mdpage.k_mappings = 0;
   1833 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   1834 
   1835 	flush = false;
   1836 	flags = 0;
   1837 	if (curproc)
   1838 		curpm = curproc->p_vmspace->vm_map.pmap;
   1839 	else
   1840 		curpm = pmap_kernel();
   1841 
   1842 	pmap_clean_page(pv, false);
   1843 
   1844 	while (pv) {
   1845 		pm = pv->pv_pmap;
   1846 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   1847 			flush = true;
   1848 
   1849 		pmap_acquire_pmap_lock(pm);
   1850 
   1851 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   1852 		KDASSERT(l2b != NULL);
   1853 
   1854 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1855 		pte = *ptep;
   1856 
   1857 		/*
   1858 		 * Update statistics
   1859 		 */
   1860 		--pm->pm_stats.resident_count;
   1861 
   1862 		/* Wired bit */
   1863 		if (pv->pv_flags & PVF_WIRED)
   1864 			--pm->pm_stats.wired_count;
   1865 
   1866 		flags |= pv->pv_flags;
   1867 
   1868 		/*
   1869 		 * Invalidate the PTEs.
   1870 		 */
   1871 		*ptep = 0;
   1872 		PTE_SYNC_CURRENT(pm, ptep);
   1873 		pmap_free_l2_bucket(pm, l2b, 1);
   1874 
   1875 		npv = pv->pv_next;
   1876 		pool_put(&pmap_pv_pool, pv);
   1877 		pv = npv;
   1878 		pmap_release_pmap_lock(pm);
   1879 	}
   1880 	pg->mdpage.pvh_list = NULL;
   1881 	simple_unlock(&pg->mdpage.pvh_slock);
   1882 	PMAP_HEAD_TO_MAP_UNLOCK();
   1883 
   1884 	if (flush) {
   1885 		/*
   1886 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   1887 		 * would need a subsequent call to pmap_update() to ensure
   1888 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   1889 		 * required to do that (see pmap(9)), so we can't modify
   1890 		 * the current pmap's state.
   1891 		 */
   1892 		if (PV_BEEN_EXECD(flags))
   1893 			cpu_tlb_flushID();
   1894 		else
   1895 			cpu_tlb_flushD();
   1896 	}
   1897 	cpu_cpwait();
   1898 }
   1899 
   1900 /*
   1901  * pmap_t pmap_create(void)
   1902  *
   1903  *      Create a new pmap structure from scratch.
   1904  */
   1905 pmap_t
   1906 pmap_create(void)
   1907 {
   1908 	pmap_t pm;
   1909 
   1910 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   1911 
   1912 	simple_lock_init(&pm->pm_lock);
   1913 	pm->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1914 	TAILQ_INIT(&pm->pm_obj.memq);
   1915 	pm->pm_obj.uo_npages = 0;
   1916 	pm->pm_obj.uo_refs = 1;
   1917 	pm->pm_stats.wired_count = 0;
   1918 	pm->pm_stats.resident_count = 1;
   1919 	pm->pm_cstate.cs_all = 0;
   1920 	pmap_alloc_l1(pm);
   1921 
   1922 	/*
   1923 	 * Note: The pool cache ensures that the pm_l2[] array is already
   1924 	 * initialised to zero.
   1925 	 */
   1926 
   1927 	pmap_pinit(pm);
   1928 
   1929 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   1930 
   1931 	return (pm);
   1932 }
   1933 
   1934 /*
   1935  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   1936  *     int flags)
   1937  *
   1938  *      Insert the given physical page (p) at
   1939  *      the specified virtual address (v) in the
   1940  *      target physical map with the protection requested.
   1941  *
   1942  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   1943  *      or lose information.  That is, this routine must actually
   1944  *      insert this page into the given map NOW.
   1945  */
   1946 int
   1947 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1948 {
   1949 	struct l2_bucket *l2b;
   1950 	struct vm_page *pg, *opg;
   1951 	struct pv_entry *pve;
   1952 	pt_entry_t *ptep, npte, opte;
   1953 	u_int nflags;
   1954 	u_int oflags;
   1955 
   1956 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   1957 
   1958 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   1959 	KDASSERT(((va | pa) & PGOFSET) == 0);
   1960 
   1961 	/*
   1962 	 * Get a pointer to the page.  Later on in this function, we
   1963 	 * test for a managed page by checking pg != NULL.
   1964 	 */
   1965 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   1966 
   1967 	nflags = 0;
   1968 	if (prot & VM_PROT_WRITE)
   1969 		nflags |= PVF_WRITE;
   1970 	if (prot & VM_PROT_EXECUTE)
   1971 		nflags |= PVF_EXEC;
   1972 	if (flags & PMAP_WIRED)
   1973 		nflags |= PVF_WIRED;
   1974 
   1975 	PMAP_MAP_TO_HEAD_LOCK();
   1976 	pmap_acquire_pmap_lock(pm);
   1977 
   1978 	/*
   1979 	 * Fetch the L2 bucket which maps this page, allocating one if
   1980 	 * necessary for user pmaps.
   1981 	 */
   1982 	if (pm == pmap_kernel())
   1983 		l2b = pmap_get_l2_bucket(pm, va);
   1984 	else
   1985 		l2b = pmap_alloc_l2_bucket(pm, va);
   1986 	if (l2b == NULL) {
   1987 		if (flags & PMAP_CANFAIL) {
   1988 			pmap_release_pmap_lock(pm);
   1989 			PMAP_MAP_TO_HEAD_UNLOCK();
   1990 			return (ENOMEM);
   1991 		}
   1992 		panic("pmap_enter: failed to allocate L2 bucket");
   1993 	}
   1994 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1995 	opte = *ptep;
   1996 	npte = pa;
   1997 	oflags = 0;
   1998 
   1999 	if (opte) {
   2000 		/*
   2001 		 * There is already a mapping at this address.
   2002 		 * If the physical address is different, lookup the
   2003 		 * vm_page.
   2004 		 */
   2005 		if (l2pte_pa(opte) != pa)
   2006 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2007 		else
   2008 			opg = pg;
   2009 	} else
   2010 		opg = NULL;
   2011 
   2012 	if (pg) {
   2013 		/*
   2014 		 * This is to be a managed mapping.
   2015 		 */
   2016 		if ((flags & VM_PROT_ALL) ||
   2017 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2018 			/*
   2019 			 * - The access type indicates that we don't need
   2020 			 *   to do referenced emulation.
   2021 			 * OR
   2022 			 * - The physical page has already been referenced
   2023 			 *   so no need to re-do referenced emulation here.
   2024 			 */
   2025 			npte |= L2_S_PROTO;
   2026 
   2027 			nflags |= PVF_REF;
   2028 
   2029 			if ((prot & VM_PROT_WRITE) != 0 &&
   2030 			    ((flags & VM_PROT_WRITE) != 0 ||
   2031 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2032 				/*
   2033 				 * This is a writable mapping, and the
   2034 				 * page's mod state indicates it has
   2035 				 * already been modified. Make it
   2036 				 * writable from the outset.
   2037 				 */
   2038 				npte |= L2_S_PROT_W;
   2039 				nflags |= PVF_MOD;
   2040 			}
   2041 		} else {
   2042 			/*
   2043 			 * Need to do page referenced emulation.
   2044 			 */
   2045 			npte |= L2_TYPE_INV;
   2046 		}
   2047 
   2048 		npte |= pte_l2_s_cache_mode;
   2049 
   2050 		if (pg == opg) {
   2051 			/*
   2052 			 * We're changing the attrs of an existing mapping.
   2053 			 */
   2054 			simple_lock(&pg->mdpage.pvh_slock);
   2055 			oflags = pmap_modify_pv(pg, pm, va,
   2056 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2057 			    PVF_MOD | PVF_REF, nflags);
   2058 			simple_unlock(&pg->mdpage.pvh_slock);
   2059 
   2060 			/*
   2061 			 * We may need to flush the cache if we're
   2062 			 * doing rw-ro...
   2063 			 */
   2064 			if (pm->pm_cstate.cs_cache_d &&
   2065 			    (oflags & PVF_NC) == 0 &&
   2066 			    (opte & L2_S_PROT_W) != 0 &&
   2067 			    (prot & VM_PROT_WRITE) == 0)
   2068 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2069 		} else {
   2070 			/*
   2071 			 * New mapping, or changing the backing page
   2072 			 * of an existing mapping.
   2073 			 */
   2074 			if (opg) {
   2075 				/*
   2076 				 * Replacing an existing mapping with a new one.
   2077 				 * It is part of our managed memory so we
   2078 				 * must remove it from the PV list
   2079 				 */
   2080 				simple_lock(&opg->mdpage.pvh_slock);
   2081 				pve = pmap_remove_pv(opg, pm, va, 0);
   2082 				pmap_vac_me_harder(opg, pm, 0);
   2083 				simple_unlock(&opg->mdpage.pvh_slock);
   2084 				oflags = pve->pv_flags;
   2085 
   2086 				/*
   2087 				 * If the old mapping was valid (ref/mod
   2088 				 * emulation creates 'invalid' mappings
   2089 				 * initially) then make sure to frob
   2090 				 * the cache.
   2091 				 */
   2092 				if ((oflags & PVF_NC) == 0 &&
   2093 				    l2pte_valid(opte)) {
   2094 					if (PV_BEEN_EXECD(oflags)) {
   2095 						pmap_idcache_wbinv_range(pm, va,
   2096 						    PAGE_SIZE);
   2097 					} else
   2098 					if (PV_BEEN_REFD(oflags)) {
   2099 						pmap_dcache_wb_range(pm, va,
   2100 						    PAGE_SIZE, true,
   2101 						    (oflags & PVF_WRITE) == 0);
   2102 					}
   2103 				}
   2104 			} else
   2105 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2106 				if ((flags & PMAP_CANFAIL) == 0)
   2107 					panic("pmap_enter: no pv entries");
   2108 
   2109 				if (pm != pmap_kernel())
   2110 					pmap_free_l2_bucket(pm, l2b, 0);
   2111 				pmap_release_pmap_lock(pm);
   2112 				PMAP_MAP_TO_HEAD_UNLOCK();
   2113 				NPDEBUG(PDB_ENTER,
   2114 				    printf("pmap_enter: ENOMEM\n"));
   2115 				return (ENOMEM);
   2116 			}
   2117 
   2118 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2119 		}
   2120 	} else {
   2121 		/*
   2122 		 * We're mapping an unmanaged page.
   2123 		 * These are always readable, and possibly writable, from
   2124 		 * the get go as we don't need to track ref/mod status.
   2125 		 */
   2126 		npte |= L2_S_PROTO;
   2127 		if (prot & VM_PROT_WRITE)
   2128 			npte |= L2_S_PROT_W;
   2129 
   2130 		/*
   2131 		 * Make sure the vector table is mapped cacheable
   2132 		 */
   2133 		if (pm != pmap_kernel() && va == vector_page)
   2134 			npte |= pte_l2_s_cache_mode;
   2135 
   2136 		if (opg) {
   2137 			/*
   2138 			 * Looks like there's an existing 'managed' mapping
   2139 			 * at this address.
   2140 			 */
   2141 			simple_lock(&opg->mdpage.pvh_slock);
   2142 			pve = pmap_remove_pv(opg, pm, va, 0);
   2143 			pmap_vac_me_harder(opg, pm, 0);
   2144 			simple_unlock(&opg->mdpage.pvh_slock);
   2145 			oflags = pve->pv_flags;
   2146 
   2147 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2148 				if (PV_BEEN_EXECD(oflags))
   2149 					pmap_idcache_wbinv_range(pm, va,
   2150 					    PAGE_SIZE);
   2151 				else
   2152 				if (PV_BEEN_REFD(oflags))
   2153 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2154 					    true, (oflags & PVF_WRITE) == 0);
   2155 			}
   2156 			pool_put(&pmap_pv_pool, pve);
   2157 		}
   2158 	}
   2159 
   2160 	/*
   2161 	 * Make sure userland mappings get the right permissions
   2162 	 */
   2163 	if (pm != pmap_kernel() && va != vector_page)
   2164 		npte |= L2_S_PROT_U;
   2165 
   2166 	/*
   2167 	 * Keep the stats up to date
   2168 	 */
   2169 	if (opte == 0) {
   2170 		l2b->l2b_occupancy++;
   2171 		pm->pm_stats.resident_count++;
   2172 	}
   2173 
   2174 	NPDEBUG(PDB_ENTER,
   2175 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2176 
   2177 	/*
   2178 	 * If this is just a wiring change, the two PTEs will be
   2179 	 * identical, so there's no need to update the page table.
   2180 	 */
   2181 	if (npte != opte) {
   2182 		bool is_cached = pmap_is_cached(pm);
   2183 
   2184 		*ptep = npte;
   2185 		if (is_cached) {
   2186 			/*
   2187 			 * We only need to frob the cache/tlb if this pmap
   2188 			 * is current
   2189 			 */
   2190 			PTE_SYNC(ptep);
   2191 			if (va != vector_page && l2pte_valid(npte)) {
   2192 				/*
   2193 				 * This mapping is likely to be accessed as
   2194 				 * soon as we return to userland. Fix up the
   2195 				 * L1 entry to avoid taking another
   2196 				 * page/domain fault.
   2197 				 */
   2198 				pd_entry_t *pl1pd, l1pd;
   2199 
   2200 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2201 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2202 				    L1_C_PROTO;
   2203 				if (*pl1pd != l1pd) {
   2204 					*pl1pd = l1pd;
   2205 					PTE_SYNC(pl1pd);
   2206 				}
   2207 			}
   2208 		}
   2209 
   2210 		if (PV_BEEN_EXECD(oflags))
   2211 			pmap_tlb_flushID_SE(pm, va);
   2212 		else
   2213 		if (PV_BEEN_REFD(oflags))
   2214 			pmap_tlb_flushD_SE(pm, va);
   2215 
   2216 		NPDEBUG(PDB_ENTER,
   2217 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2218 		    is_cached, pm->pm_cstate.cs_all));
   2219 
   2220 		if (pg != NULL) {
   2221 			simple_lock(&pg->mdpage.pvh_slock);
   2222 			pmap_vac_me_harder(pg, pm, va);
   2223 			simple_unlock(&pg->mdpage.pvh_slock);
   2224 		}
   2225 	}
   2226 
   2227 	pmap_release_pmap_lock(pm);
   2228 	PMAP_MAP_TO_HEAD_UNLOCK();
   2229 
   2230 	return (0);
   2231 }
   2232 
   2233 /*
   2234  * pmap_remove()
   2235  *
   2236  * pmap_remove is responsible for nuking a number of mappings for a range
   2237  * of virtual address space in the current pmap. To do this efficiently
   2238  * is interesting, because in a number of cases a wide virtual address
   2239  * range may be supplied that contains few actual mappings. So, the
   2240  * optimisations are:
   2241  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   2242  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2243  *     maybe do just a partial cache clean. This path of execution is
   2244  *     complicated by the fact that the cache must be flushed _before_
   2245  *     the PTE is nuked, being a VAC :-)
   2246  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   2247  *     all invalidations until pmap_update(), since pmap_remove_all() has
   2248  *     already flushed the cache.
   2249  *  4. Maybe later fast-case a single page, but I don't think this is
   2250  *     going to make _that_ much difference overall.
   2251  */
   2252 
   2253 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2254 
   2255 void
   2256 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   2257 {
   2258 	struct l2_bucket *l2b;
   2259 	vaddr_t next_bucket;
   2260 	pt_entry_t *ptep;
   2261 	u_int cleanlist_idx, total, cnt;
   2262 	struct {
   2263 		vaddr_t va;
   2264 		pt_entry_t *pte;
   2265 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2266 	u_int mappings, is_exec, is_refd;
   2267 
   2268 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   2269 	    "eva=%08lx\n", pm, sva, eva));
   2270 
   2271 	/*
   2272 	 * we lock in the pmap => pv_head direction
   2273 	 */
   2274 	PMAP_MAP_TO_HEAD_LOCK();
   2275 	pmap_acquire_pmap_lock(pm);
   2276 
   2277 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   2278 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   2279 		if (pm->pm_cstate.cs_tlb == 0)
   2280 			pm->pm_remove_all = true;
   2281 	} else
   2282 		cleanlist_idx = 0;
   2283 
   2284 	total = 0;
   2285 
   2286 	while (sva < eva) {
   2287 		/*
   2288 		 * Do one L2 bucket's worth at a time.
   2289 		 */
   2290 		next_bucket = L2_NEXT_BUCKET(sva);
   2291 		if (next_bucket > eva)
   2292 			next_bucket = eva;
   2293 
   2294 		l2b = pmap_get_l2_bucket(pm, sva);
   2295 		if (l2b == NULL) {
   2296 			sva = next_bucket;
   2297 			continue;
   2298 		}
   2299 
   2300 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   2301 
   2302 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   2303 			struct vm_page *pg;
   2304 			pt_entry_t pte;
   2305 			paddr_t pa;
   2306 
   2307 			pte = *ptep;
   2308 
   2309 			if (pte == 0) {
   2310 				/* Nothing here, move along */
   2311 				continue;
   2312 			}
   2313 
   2314 			pa = l2pte_pa(pte);
   2315 			is_exec = 0;
   2316 			is_refd = 1;
   2317 
   2318 			/*
   2319 			 * Update flags. In a number of circumstances,
   2320 			 * we could cluster a lot of these and do a
   2321 			 * number of sequential pages in one go.
   2322 			 */
   2323 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2324 				struct pv_entry *pve;
   2325 				simple_lock(&pg->mdpage.pvh_slock);
   2326 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   2327 				pmap_vac_me_harder(pg, pm, 0);
   2328 				simple_unlock(&pg->mdpage.pvh_slock);
   2329 				if (pve != NULL) {
   2330 					if (pm->pm_remove_all == false) {
   2331 						is_exec =
   2332 						   PV_BEEN_EXECD(pve->pv_flags);
   2333 						is_refd =
   2334 						   PV_BEEN_REFD(pve->pv_flags);
   2335 					}
   2336 					pool_put(&pmap_pv_pool, pve);
   2337 				} else
   2338 				if (skip_wired) {
   2339 					/* The mapping is wired. Skip it */
   2340 					continue;
   2341 				}
   2342 			} else
   2343 			if (skip_wired) {
   2344 				/* Unmanaged pages are always wired. */
   2345 				continue;
   2346 			}
   2347 
   2348 			mappings++;
   2349 
   2350 			if (!l2pte_valid(pte)) {
   2351 				/*
   2352 				 * Ref/Mod emulation is still active for this
   2353 				 * mapping, therefore it is has not yet been
   2354 				 * accessed. No need to frob the cache/tlb.
   2355 				 */
   2356 				*ptep = 0;
   2357 				PTE_SYNC_CURRENT(pm, ptep);
   2358 				continue;
   2359 			}
   2360 
   2361 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2362 				/* Add to the clean list. */
   2363 				cleanlist[cleanlist_idx].pte = ptep;
   2364 				cleanlist[cleanlist_idx].va =
   2365 				    sva | (is_exec & 1);
   2366 				cleanlist_idx++;
   2367 			} else
   2368 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2369 				/* Nuke everything if needed. */
   2370 				pmap_idcache_wbinv_all(pm);
   2371 				pmap_tlb_flushID(pm);
   2372 
   2373 				/*
   2374 				 * Roll back the previous PTE list,
   2375 				 * and zero out the current PTE.
   2376 				 */
   2377 				for (cnt = 0;
   2378 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2379 					*cleanlist[cnt].pte = 0;
   2380 				}
   2381 				*ptep = 0;
   2382 				PTE_SYNC(ptep);
   2383 				cleanlist_idx++;
   2384 				pm->pm_remove_all = true;
   2385 			} else {
   2386 				*ptep = 0;
   2387 				PTE_SYNC(ptep);
   2388 				if (pm->pm_remove_all == false) {
   2389 					if (is_exec)
   2390 						pmap_tlb_flushID_SE(pm, sva);
   2391 					else
   2392 					if (is_refd)
   2393 						pmap_tlb_flushD_SE(pm, sva);
   2394 				}
   2395 			}
   2396 		}
   2397 
   2398 		/*
   2399 		 * Deal with any left overs
   2400 		 */
   2401 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2402 			total += cleanlist_idx;
   2403 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2404 				if (pm->pm_cstate.cs_all != 0) {
   2405 					vaddr_t clva = cleanlist[cnt].va & ~1;
   2406 					if (cleanlist[cnt].va & 1) {
   2407 						pmap_idcache_wbinv_range(pm,
   2408 						    clva, PAGE_SIZE);
   2409 						pmap_tlb_flushID_SE(pm, clva);
   2410 					} else {
   2411 						pmap_dcache_wb_range(pm,
   2412 						    clva, PAGE_SIZE, true,
   2413 						    false);
   2414 						pmap_tlb_flushD_SE(pm, clva);
   2415 					}
   2416 				}
   2417 				*cleanlist[cnt].pte = 0;
   2418 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
   2419 			}
   2420 
   2421 			/*
   2422 			 * If it looks like we're removing a whole bunch
   2423 			 * of mappings, it's faster to just write-back
   2424 			 * the whole cache now and defer TLB flushes until
   2425 			 * pmap_update() is called.
   2426 			 */
   2427 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   2428 				cleanlist_idx = 0;
   2429 			else {
   2430 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   2431 				pmap_idcache_wbinv_all(pm);
   2432 				pm->pm_remove_all = true;
   2433 			}
   2434 		}
   2435 
   2436 		pmap_free_l2_bucket(pm, l2b, mappings);
   2437 		pm->pm_stats.resident_count -= mappings;
   2438 	}
   2439 
   2440 	pmap_release_pmap_lock(pm);
   2441 	PMAP_MAP_TO_HEAD_UNLOCK();
   2442 }
   2443 
   2444 /*
   2445  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   2446  *
   2447  * We assume there is already sufficient KVM space available
   2448  * to do this, as we can't allocate L2 descriptor tables/metadata
   2449  * from here.
   2450  */
   2451 void
   2452 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2453 {
   2454 	struct l2_bucket *l2b;
   2455 	pt_entry_t *ptep, opte;
   2456 
   2457 	NPDEBUG(PDB_KENTER,
   2458 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   2459 	    va, pa, prot));
   2460 
   2461 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   2462 	KDASSERT(l2b != NULL);
   2463 
   2464 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2465 	opte = *ptep;
   2466 
   2467 	if (l2pte_valid(opte)) {
   2468 		cpu_dcache_wbinv_range(va, PAGE_SIZE);
   2469 		cpu_tlb_flushD_SE(va);
   2470 		cpu_cpwait();
   2471 	} else
   2472 	if (opte == 0)
   2473 		l2b->l2b_occupancy++;
   2474 
   2475 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   2476 	    pte_l2_s_cache_mode;
   2477 	PTE_SYNC(ptep);
   2478 }
   2479 
   2480 void
   2481 pmap_kremove(vaddr_t va, vsize_t len)
   2482 {
   2483 	struct l2_bucket *l2b;
   2484 	pt_entry_t *ptep, *sptep, opte;
   2485 	vaddr_t next_bucket, eva;
   2486 	u_int mappings;
   2487 
   2488 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   2489 	    va, len));
   2490 
   2491 	eva = va + len;
   2492 
   2493 	while (va < eva) {
   2494 		next_bucket = L2_NEXT_BUCKET(va);
   2495 		if (next_bucket > eva)
   2496 			next_bucket = eva;
   2497 
   2498 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   2499 		KDASSERT(l2b != NULL);
   2500 
   2501 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   2502 		mappings = 0;
   2503 
   2504 		while (va < next_bucket) {
   2505 			opte = *ptep;
   2506 			if (l2pte_valid(opte)) {
   2507 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   2508 				cpu_tlb_flushD_SE(va);
   2509 			}
   2510 			if (opte) {
   2511 				*ptep = 0;
   2512 				mappings++;
   2513 			}
   2514 			va += PAGE_SIZE;
   2515 			ptep++;
   2516 		}
   2517 		KDASSERT(mappings <= l2b->l2b_occupancy);
   2518 		l2b->l2b_occupancy -= mappings;
   2519 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   2520 	}
   2521 	cpu_cpwait();
   2522 }
   2523 
   2524 bool
   2525 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2526 {
   2527 	struct l2_dtable *l2;
   2528 	pd_entry_t *pl1pd, l1pd;
   2529 	pt_entry_t *ptep, pte;
   2530 	paddr_t pa;
   2531 	u_int l1idx;
   2532 
   2533 	pmap_acquire_pmap_lock(pm);
   2534 
   2535 	l1idx = L1_IDX(va);
   2536 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   2537 	l1pd = *pl1pd;
   2538 
   2539 	if (l1pte_section_p(l1pd)) {
   2540 		/*
   2541 		 * These should only happen for pmap_kernel()
   2542 		 */
   2543 		KDASSERT(pm == pmap_kernel());
   2544 		pmap_release_pmap_lock(pm);
   2545 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   2546 	} else {
   2547 		/*
   2548 		 * Note that we can't rely on the validity of the L1
   2549 		 * descriptor as an indication that a mapping exists.
   2550 		 * We have to look it up in the L2 dtable.
   2551 		 */
   2552 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   2553 
   2554 		if (l2 == NULL ||
   2555 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   2556 			pmap_release_pmap_lock(pm);
   2557 			return (false);
   2558 		}
   2559 
   2560 		ptep = &ptep[l2pte_index(va)];
   2561 		pte = *ptep;
   2562 		pmap_release_pmap_lock(pm);
   2563 
   2564 		if (pte == 0)
   2565 			return (false);
   2566 
   2567 		switch (pte & L2_TYPE_MASK) {
   2568 		case L2_TYPE_L:
   2569 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   2570 			break;
   2571 
   2572 		default:
   2573 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   2574 			break;
   2575 		}
   2576 	}
   2577 
   2578 	if (pap != NULL)
   2579 		*pap = pa;
   2580 
   2581 	return (true);
   2582 }
   2583 
   2584 void
   2585 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2586 {
   2587 	struct l2_bucket *l2b;
   2588 	pt_entry_t *ptep, pte;
   2589 	vaddr_t next_bucket;
   2590 	u_int flags;
   2591 	int flush;
   2592 
   2593 	NPDEBUG(PDB_PROTECT,
   2594 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   2595 	    pm, sva, eva, prot));
   2596 
   2597 	if ((prot & VM_PROT_READ) == 0) {
   2598 		pmap_remove(pm, sva, eva);
   2599 		return;
   2600 	}
   2601 
   2602 	if (prot & VM_PROT_WRITE) {
   2603 		/*
   2604 		 * If this is a read->write transition, just ignore it and let
   2605 		 * uvm_fault() take care of it later.
   2606 		 */
   2607 		return;
   2608 	}
   2609 
   2610 	PMAP_MAP_TO_HEAD_LOCK();
   2611 	pmap_acquire_pmap_lock(pm);
   2612 
   2613 	/*
   2614 	 * OK, at this point, we know we're doing write-protect operation.
   2615 	 * If the pmap is active, write-back the range.
   2616 	 */
   2617 	pmap_dcache_wb_range(pm, sva, eva - sva, false, false);
   2618 
   2619 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   2620 	flags = 0;
   2621 
   2622 	while (sva < eva) {
   2623 		next_bucket = L2_NEXT_BUCKET(sva);
   2624 		if (next_bucket > eva)
   2625 			next_bucket = eva;
   2626 
   2627 		l2b = pmap_get_l2_bucket(pm, sva);
   2628 		if (l2b == NULL) {
   2629 			sva = next_bucket;
   2630 			continue;
   2631 		}
   2632 
   2633 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   2634 
   2635 		while (sva < next_bucket) {
   2636 			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
   2637 				struct vm_page *pg;
   2638 				u_int f;
   2639 
   2640 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   2641 				pte &= ~L2_S_PROT_W;
   2642 				*ptep = pte;
   2643 				PTE_SYNC(ptep);
   2644 
   2645 				if (pg != NULL) {
   2646 					simple_lock(&pg->mdpage.pvh_slock);
   2647 					f = pmap_modify_pv(pg, pm, sva,
   2648 					    PVF_WRITE, 0);
   2649 					pmap_vac_me_harder(pg, pm, sva);
   2650 					simple_unlock(&pg->mdpage.pvh_slock);
   2651 				} else
   2652 					f = PVF_REF | PVF_EXEC;
   2653 
   2654 				if (flush >= 0) {
   2655 					flush++;
   2656 					flags |= f;
   2657 				} else
   2658 				if (PV_BEEN_EXECD(f))
   2659 					pmap_tlb_flushID_SE(pm, sva);
   2660 				else
   2661 				if (PV_BEEN_REFD(f))
   2662 					pmap_tlb_flushD_SE(pm, sva);
   2663 			}
   2664 
   2665 			sva += PAGE_SIZE;
   2666 			ptep++;
   2667 		}
   2668 	}
   2669 
   2670 	pmap_release_pmap_lock(pm);
   2671 	PMAP_MAP_TO_HEAD_UNLOCK();
   2672 
   2673 	if (flush) {
   2674 		if (PV_BEEN_EXECD(flags))
   2675 			pmap_tlb_flushID(pm);
   2676 		else
   2677 		if (PV_BEEN_REFD(flags))
   2678 			pmap_tlb_flushD(pm);
   2679 	}
   2680 }
   2681 
   2682 void
   2683 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2684 {
   2685 
   2686 	NPDEBUG(PDB_PROTECT,
   2687 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   2688 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   2689 
   2690 	switch(prot) {
   2691 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2692 	case VM_PROT_READ|VM_PROT_WRITE:
   2693 		return;
   2694 
   2695 	case VM_PROT_READ:
   2696 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2697 		pmap_clearbit(pg, PVF_WRITE);
   2698 		break;
   2699 
   2700 	default:
   2701 		pmap_page_remove(pg);
   2702 		break;
   2703 	}
   2704 }
   2705 
   2706 /*
   2707  * pmap_clear_modify:
   2708  *
   2709  *	Clear the "modified" attribute for a page.
   2710  */
   2711 bool
   2712 pmap_clear_modify(struct vm_page *pg)
   2713 {
   2714 	bool rv;
   2715 
   2716 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   2717 		rv = true;
   2718 		pmap_clearbit(pg, PVF_MOD);
   2719 	} else
   2720 		rv = false;
   2721 
   2722 	return (rv);
   2723 }
   2724 
   2725 /*
   2726  * pmap_clear_reference:
   2727  *
   2728  *	Clear the "referenced" attribute for a page.
   2729  */
   2730 bool
   2731 pmap_clear_reference(struct vm_page *pg)
   2732 {
   2733 	bool rv;
   2734 
   2735 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   2736 		rv = true;
   2737 		pmap_clearbit(pg, PVF_REF);
   2738 	} else
   2739 		rv = false;
   2740 
   2741 	return (rv);
   2742 }
   2743 
   2744 /*
   2745  * pmap_is_modified:
   2746  *
   2747  *	Test if a page has the "modified" attribute.
   2748  */
   2749 /* See <arm/arm32/pmap.h> */
   2750 
   2751 /*
   2752  * pmap_is_referenced:
   2753  *
   2754  *	Test if a page has the "referenced" attribute.
   2755  */
   2756 /* See <arm/arm32/pmap.h> */
   2757 
   2758 int
   2759 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   2760 {
   2761 	struct l2_dtable *l2;
   2762 	struct l2_bucket *l2b;
   2763 	pd_entry_t *pl1pd, l1pd;
   2764 	pt_entry_t *ptep, pte;
   2765 	paddr_t pa;
   2766 	u_int l1idx;
   2767 	int rv = 0;
   2768 
   2769 	PMAP_MAP_TO_HEAD_LOCK();
   2770 	pmap_acquire_pmap_lock(pm);
   2771 
   2772 	l1idx = L1_IDX(va);
   2773 
   2774 	/*
   2775 	 * If there is no l2_dtable for this address, then the process
   2776 	 * has no business accessing it.
   2777 	 *
   2778 	 * Note: This will catch userland processes trying to access
   2779 	 * kernel addresses.
   2780 	 */
   2781 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   2782 	if (l2 == NULL)
   2783 		goto out;
   2784 
   2785 	/*
   2786 	 * Likewise if there is no L2 descriptor table
   2787 	 */
   2788 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   2789 	if (l2b->l2b_kva == NULL)
   2790 		goto out;
   2791 
   2792 	/*
   2793 	 * Check the PTE itself.
   2794 	 */
   2795 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2796 	pte = *ptep;
   2797 	if (pte == 0)
   2798 		goto out;
   2799 
   2800 	/*
   2801 	 * Catch a userland access to the vector page mapped at 0x0
   2802 	 */
   2803 	if (user && (pte & L2_S_PROT_U) == 0)
   2804 		goto out;
   2805 
   2806 	pa = l2pte_pa(pte);
   2807 
   2808 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   2809 		/*
   2810 		 * This looks like a good candidate for "page modified"
   2811 		 * emulation...
   2812 		 */
   2813 		struct pv_entry *pv;
   2814 		struct vm_page *pg;
   2815 
   2816 		/* Extract the physical address of the page */
   2817 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2818 			goto out;
   2819 
   2820 		/* Get the current flags for this page. */
   2821 		simple_lock(&pg->mdpage.pvh_slock);
   2822 
   2823 		pv = pmap_find_pv(pg, pm, va);
   2824 		if (pv == NULL) {
   2825 	    		simple_unlock(&pg->mdpage.pvh_slock);
   2826 			goto out;
   2827 		}
   2828 
   2829 		/*
   2830 		 * Do the flags say this page is writable? If not then it
   2831 		 * is a genuine write fault. If yes then the write fault is
   2832 		 * our fault as we did not reflect the write access in the
   2833 		 * PTE. Now we know a write has occurred we can correct this
   2834 		 * and also set the modified bit
   2835 		 */
   2836 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   2837 		    	simple_unlock(&pg->mdpage.pvh_slock);
   2838 			goto out;
   2839 		}
   2840 
   2841 		NPDEBUG(PDB_FOLLOW,
   2842 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   2843 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   2844 
   2845 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   2846 		pv->pv_flags |= PVF_REF | PVF_MOD;
   2847 		simple_unlock(&pg->mdpage.pvh_slock);
   2848 
   2849 		/*
   2850 		 * Re-enable write permissions for the page.  No need to call
   2851 		 * pmap_vac_me_harder(), since this is just a
   2852 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   2853 		 * changing. We've already set the cacheable bits based on
   2854 		 * the assumption that we can write to this page.
   2855 		 */
   2856 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   2857 		PTE_SYNC(ptep);
   2858 		rv = 1;
   2859 	} else
   2860 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   2861 		/*
   2862 		 * This looks like a good candidate for "page referenced"
   2863 		 * emulation.
   2864 		 */
   2865 		struct pv_entry *pv;
   2866 		struct vm_page *pg;
   2867 
   2868 		/* Extract the physical address of the page */
   2869 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2870 			goto out;
   2871 
   2872 		/* Get the current flags for this page. */
   2873 		simple_lock(&pg->mdpage.pvh_slock);
   2874 
   2875 		pv = pmap_find_pv(pg, pm, va);
   2876 		if (pv == NULL) {
   2877 	    		simple_unlock(&pg->mdpage.pvh_slock);
   2878 			goto out;
   2879 		}
   2880 
   2881 		pg->mdpage.pvh_attrs |= PVF_REF;
   2882 		pv->pv_flags |= PVF_REF;
   2883 		simple_unlock(&pg->mdpage.pvh_slock);
   2884 
   2885 		NPDEBUG(PDB_FOLLOW,
   2886 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   2887 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   2888 
   2889 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   2890 		PTE_SYNC(ptep);
   2891 		rv = 1;
   2892 	}
   2893 
   2894 	/*
   2895 	 * We know there is a valid mapping here, so simply
   2896 	 * fix up the L1 if necessary.
   2897 	 */
   2898 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   2899 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   2900 	if (*pl1pd != l1pd) {
   2901 		*pl1pd = l1pd;
   2902 		PTE_SYNC(pl1pd);
   2903 		rv = 1;
   2904 	}
   2905 
   2906 #ifdef CPU_SA110
   2907 	/*
   2908 	 * There are bugs in the rev K SA110.  This is a check for one
   2909 	 * of them.
   2910 	 */
   2911 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   2912 	    curcpu()->ci_arm_cpurev < 3) {
   2913 		/* Always current pmap */
   2914 		if (l2pte_valid(pte)) {
   2915 			extern int kernel_debug;
   2916 			if (kernel_debug & 1) {
   2917 				struct proc *p = curlwp->l_proc;
   2918 				printf("prefetch_abort: page is already "
   2919 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   2920 				printf("prefetch_abort: pc=%08lx proc=%p "
   2921 				    "process=%s\n", va, p, p->p_comm);
   2922 				printf("prefetch_abort: far=%08x fs=%x\n",
   2923 				    cpu_faultaddress(), cpu_faultstatus());
   2924 			}
   2925 #ifdef DDB
   2926 			if (kernel_debug & 2)
   2927 				Debugger();
   2928 #endif
   2929 			rv = 1;
   2930 		}
   2931 	}
   2932 #endif /* CPU_SA110 */
   2933 
   2934 #ifdef DEBUG
   2935 	/*
   2936 	 * If 'rv == 0' at this point, it generally indicates that there is a
   2937 	 * stale TLB entry for the faulting address. This happens when two or
   2938 	 * more processes are sharing an L1. Since we don't flush the TLB on
   2939 	 * a context switch between such processes, we can take domain faults
   2940 	 * for mappings which exist at the same VA in both processes. EVEN IF
   2941 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   2942 	 * example.
   2943 	 *
   2944 	 * This is extremely likely to happen if pmap_enter() updated the L1
   2945 	 * entry for a recently entered mapping. In this case, the TLB is
   2946 	 * flushed for the new mapping, but there may still be TLB entries for
   2947 	 * other mappings belonging to other processes in the 1MB range
   2948 	 * covered by the L1 entry.
   2949 	 *
   2950 	 * Since 'rv == 0', we know that the L1 already contains the correct
   2951 	 * value, so the fault must be due to a stale TLB entry.
   2952 	 *
   2953 	 * Since we always need to flush the TLB anyway in the case where we
   2954 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   2955 	 * stale TLB entries dynamically.
   2956 	 *
   2957 	 * However, the above condition can ONLY happen if the current L1 is
   2958 	 * being shared. If it happens when the L1 is unshared, it indicates
   2959 	 * that other parts of the pmap are not doing their job WRT managing
   2960 	 * the TLB.
   2961 	 */
   2962 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   2963 		extern int last_fault_code;
   2964 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   2965 		    pm, va, ftype);
   2966 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   2967 		    l2, l2b, ptep, pl1pd);
   2968 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   2969 		    pte, l1pd, last_fault_code);
   2970 #ifdef DDB
   2971 		Debugger();
   2972 #endif
   2973 	}
   2974 #endif
   2975 
   2976 	cpu_tlb_flushID_SE(va);
   2977 	cpu_cpwait();
   2978 
   2979 	rv = 1;
   2980 
   2981 out:
   2982 	pmap_release_pmap_lock(pm);
   2983 	PMAP_MAP_TO_HEAD_UNLOCK();
   2984 
   2985 	return (rv);
   2986 }
   2987 
   2988 /*
   2989  * pmap_collect: free resources held by a pmap
   2990  *
   2991  * => optional function.
   2992  * => called when a process is swapped out to free memory.
   2993  */
   2994 void
   2995 pmap_collect(pmap_t pm)
   2996 {
   2997 
   2998 	pmap_idcache_wbinv_all(pm);
   2999 	pm->pm_remove_all = true;
   3000 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3001 	pmap_update(pm);
   3002 }
   3003 
   3004 /*
   3005  * Routine:	pmap_procwr
   3006  *
   3007  * Function:
   3008  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3009  *
   3010  */
   3011 void
   3012 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3013 {
   3014 	/* We only need to do anything if it is the current process. */
   3015 	if (p == curproc)
   3016 		cpu_icache_sync_range(va, len);
   3017 }
   3018 
   3019 /*
   3020  * Routine:	pmap_unwire
   3021  * Function:	Clear the wired attribute for a map/virtual-address pair.
   3022  *
   3023  * In/out conditions:
   3024  *		The mapping must already exist in the pmap.
   3025  */
   3026 void
   3027 pmap_unwire(pmap_t pm, vaddr_t va)
   3028 {
   3029 	struct l2_bucket *l2b;
   3030 	pt_entry_t *ptep, pte;
   3031 	struct vm_page *pg;
   3032 	paddr_t pa;
   3033 
   3034 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   3035 
   3036 	PMAP_MAP_TO_HEAD_LOCK();
   3037 	pmap_acquire_pmap_lock(pm);
   3038 
   3039 	l2b = pmap_get_l2_bucket(pm, va);
   3040 	KDASSERT(l2b != NULL);
   3041 
   3042 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3043 	pte = *ptep;
   3044 
   3045 	/* Extract the physical address of the page */
   3046 	pa = l2pte_pa(pte);
   3047 
   3048 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3049 		/* Update the wired bit in the pv entry for this page. */
   3050 		simple_lock(&pg->mdpage.pvh_slock);
   3051 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   3052 		simple_unlock(&pg->mdpage.pvh_slock);
   3053 	}
   3054 
   3055 	pmap_release_pmap_lock(pm);
   3056 	PMAP_MAP_TO_HEAD_UNLOCK();
   3057 }
   3058 
   3059 void
   3060 pmap_switch(struct lwp *olwp, struct lwp *nlwp)
   3061 {
   3062 	extern int block_userspace_access;
   3063 	pmap_t opm, npm, rpm;
   3064 	uint32_t odacr, ndacr;
   3065 	int oldirqstate;
   3066 
   3067 	npm = nlwp->l_proc->p_vmspace->vm_map.pmap;
   3068 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   3069 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   3070 
   3071 	/*
   3072 	 * If TTB and DACR are unchanged, short-circuit all the
   3073 	 * TLB/cache management stuff.
   3074 	 */
   3075 	if (olwp != NULL) {
   3076 		opm = olwp->l_proc->p_vmspace->vm_map.pmap;
   3077 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   3078 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   3079 
   3080 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   3081 			goto all_done;
   3082 	} else
   3083 		opm = NULL;
   3084 
   3085 	block_userspace_access = 1;
   3086 
   3087 	/*
   3088 	 * If switching to a user vmspace which is different to the
   3089 	 * most recent one, and the most recent one is potentially
   3090 	 * live in the cache, we must write-back and invalidate the
   3091 	 * entire cache.
   3092 	 */
   3093 	rpm = pmap_recent_user;
   3094 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   3095 	    rpm->pm_cstate.cs_cache) {
   3096 		rpm->pm_cstate.cs_cache = 0;
   3097 		cpu_idcache_wbinv_all();
   3098 	}
   3099 
   3100 	/* No interrupts while we frob the TTB/DACR */
   3101 	oldirqstate = disable_interrupts(I32_bit | F32_bit);
   3102 
   3103 	/*
   3104 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   3105 	 * entry corresponding to 'vector_page' in the incoming L1 table
   3106 	 * before switching to it otherwise subsequent interrupts/exceptions
   3107 	 * (including domain faults!) will jump into hyperspace.
   3108 	 */
   3109 	if (npm->pm_pl1vec != NULL) {
   3110 		cpu_tlb_flushID_SE((u_int)vector_page);
   3111 		cpu_cpwait();
   3112 		*npm->pm_pl1vec = npm->pm_l1vec;
   3113 		PTE_SYNC(npm->pm_pl1vec);
   3114 	}
   3115 
   3116 	cpu_domains(ndacr);
   3117 
   3118 	if (npm == pmap_kernel() || npm == rpm) {
   3119 		/*
   3120 		 * Switching to a kernel thread, or back to the
   3121 		 * same user vmspace as before... Simply update
   3122 		 * the TTB (no TLB flush required)
   3123 		 */
   3124 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   3125 		    "r"(npm->pm_l1->l1_physaddr));
   3126 		cpu_cpwait();
   3127 	} else {
   3128 		/*
   3129 		 * Otherwise, update TTB and flush TLB
   3130 		 */
   3131 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   3132 		if (rpm != NULL)
   3133 			rpm->pm_cstate.cs_tlb = 0;
   3134 	}
   3135 
   3136 	restore_interrupts(oldirqstate);
   3137 
   3138 	block_userspace_access = 0;
   3139 
   3140  all_done:
   3141 	/*
   3142 	 * The new pmap is resident. Make sure it's marked
   3143 	 * as resident in the cache/TLB.
   3144 	 */
   3145 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3146 	if (npm != pmap_kernel())
   3147 		pmap_recent_user = npm;
   3148 
   3149 	/* The old pmap is not longer active */
   3150 	if (opm != NULL)
   3151 		opm->pm_activated = false;
   3152 
   3153 	/* But the new one is */
   3154 	npm->pm_activated = true;
   3155 }
   3156 
   3157 void
   3158 pmap_activate(struct lwp *l)
   3159 {
   3160 
   3161 	if (l == curlwp &&
   3162 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == false)
   3163 		pmap_switch(NULL, l);
   3164 }
   3165 
   3166 void
   3167 pmap_deactivate(struct lwp *l)
   3168 {
   3169 
   3170 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   3171 }
   3172 
   3173 void
   3174 pmap_update(pmap_t pm)
   3175 {
   3176 
   3177 	if (pm->pm_remove_all) {
   3178 		/*
   3179 		 * Finish up the pmap_remove_all() optimisation by flushing
   3180 		 * the TLB.
   3181 		 */
   3182 		pmap_tlb_flushID(pm);
   3183 		pm->pm_remove_all = false;
   3184 	}
   3185 
   3186 	if (pmap_is_current(pm)) {
   3187 		/*
   3188 		 * If we're dealing with a current userland pmap, move its L1
   3189 		 * to the end of the LRU.
   3190 		 */
   3191 		if (pm != pmap_kernel())
   3192 			pmap_use_l1(pm);
   3193 
   3194 		/*
   3195 		 * We can assume we're done with frobbing the cache/tlb for
   3196 		 * now. Make sure any future pmap ops don't skip cache/tlb
   3197 		 * flushes.
   3198 		 */
   3199 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3200 	}
   3201 
   3202 	/*
   3203 	 * make sure TLB/cache operations have completed.
   3204 	 */
   3205 	cpu_cpwait();
   3206 }
   3207 
   3208 void
   3209 pmap_remove_all(pmap_t pm)
   3210 {
   3211 
   3212 	/*
   3213 	 * The vmspace described by this pmap is about to be torn down.
   3214 	 * Until pmap_update() is called, UVM will only make calls
   3215 	 * to pmap_remove(). We can make life much simpler by flushing
   3216 	 * the cache now, and deferring TLB invalidation to pmap_update().
   3217 	 */
   3218 	pmap_idcache_wbinv_all(pm);
   3219 	pm->pm_remove_all = true;
   3220 }
   3221 
   3222 /*
   3223  * Retire the given physical map from service.
   3224  * Should only be called if the map contains no valid mappings.
   3225  */
   3226 void
   3227 pmap_destroy(pmap_t pm)
   3228 {
   3229 	u_int count;
   3230 
   3231 	if (pm == NULL)
   3232 		return;
   3233 
   3234 	if (pm->pm_remove_all) {
   3235 		pmap_tlb_flushID(pm);
   3236 		pm->pm_remove_all = false;
   3237 	}
   3238 
   3239 	/*
   3240 	 * Drop reference count
   3241 	 */
   3242 	simple_lock(&pm->pm_lock);
   3243 	count = --pm->pm_obj.uo_refs;
   3244 	simple_unlock(&pm->pm_lock);
   3245 	if (count > 0) {
   3246 		if (pmap_is_current(pm)) {
   3247 			if (pm != pmap_kernel())
   3248 				pmap_use_l1(pm);
   3249 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3250 		}
   3251 		return;
   3252 	}
   3253 
   3254 	/*
   3255 	 * reference count is zero, free pmap resources and then free pmap.
   3256 	 */
   3257 
   3258 	if (vector_page < KERNEL_BASE) {
   3259 		KDASSERT(!pmap_is_current(pm));
   3260 
   3261 		/* Remove the vector page mapping */
   3262 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   3263 		pmap_update(pm);
   3264 	}
   3265 
   3266 	LIST_REMOVE(pm, pm_list);
   3267 
   3268 	pmap_free_l1(pm);
   3269 
   3270 	if (pmap_recent_user == pm)
   3271 		pmap_recent_user = NULL;
   3272 
   3273 	/* return the pmap to the pool */
   3274 	pool_cache_put(&pmap_cache, pm);
   3275 }
   3276 
   3277 
   3278 /*
   3279  * void pmap_reference(pmap_t pm)
   3280  *
   3281  * Add a reference to the specified pmap.
   3282  */
   3283 void
   3284 pmap_reference(pmap_t pm)
   3285 {
   3286 
   3287 	if (pm == NULL)
   3288 		return;
   3289 
   3290 	pmap_use_l1(pm);
   3291 
   3292 	simple_lock(&pm->pm_lock);
   3293 	pm->pm_obj.uo_refs++;
   3294 	simple_unlock(&pm->pm_lock);
   3295 }
   3296 
   3297 /*
   3298  * pmap_zero_page()
   3299  *
   3300  * Zero a given physical page by mapping it at a page hook point.
   3301  * In doing the zero page op, the page we zero is mapped cachable, as with
   3302  * StrongARM accesses to non-cached pages are non-burst making writing
   3303  * _any_ bulk data very slow.
   3304  */
   3305 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
   3306 void
   3307 pmap_zero_page_generic(paddr_t phys)
   3308 {
   3309 #ifdef DEBUG
   3310 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   3311 
   3312 	if (pg->mdpage.pvh_list != NULL)
   3313 		panic("pmap_zero_page: page has mappings");
   3314 #endif
   3315 
   3316 	KDASSERT((phys & PGOFSET) == 0);
   3317 
   3318 	/*
   3319 	 * Hook in the page, zero it, and purge the cache for that
   3320 	 * zeroed page. Invalidate the TLB as needed.
   3321 	 */
   3322 	*cdst_pte = L2_S_PROTO | phys |
   3323 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   3324 	PTE_SYNC(cdst_pte);
   3325 	cpu_tlb_flushD_SE(cdstp);
   3326 	cpu_cpwait();
   3327 	bzero_page(cdstp);
   3328 	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   3329 }
   3330 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
   3331 
   3332 #if ARM_MMU_XSCALE == 1
   3333 void
   3334 pmap_zero_page_xscale(paddr_t phys)
   3335 {
   3336 #ifdef DEBUG
   3337 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   3338 
   3339 	if (pg->mdpage.pvh_list != NULL)
   3340 		panic("pmap_zero_page: page has mappings");
   3341 #endif
   3342 
   3343 	KDASSERT((phys & PGOFSET) == 0);
   3344 
   3345 	/*
   3346 	 * Hook in the page, zero it, and purge the cache for that
   3347 	 * zeroed page. Invalidate the TLB as needed.
   3348 	 */
   3349 	*cdst_pte = L2_S_PROTO | phys |
   3350 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   3351 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   3352 	PTE_SYNC(cdst_pte);
   3353 	cpu_tlb_flushD_SE(cdstp);
   3354 	cpu_cpwait();
   3355 	bzero_page(cdstp);
   3356 	xscale_cache_clean_minidata();
   3357 }
   3358 #endif /* ARM_MMU_XSCALE == 1 */
   3359 
   3360 /* pmap_pageidlezero()
   3361  *
   3362  * The same as above, except that we assume that the page is not
   3363  * mapped.  This means we never have to flush the cache first.  Called
   3364  * from the idle loop.
   3365  */
   3366 bool
   3367 pmap_pageidlezero(paddr_t phys)
   3368 {
   3369 	unsigned int i;
   3370 	int *ptr;
   3371 	bool rv = true;
   3372 #ifdef DEBUG
   3373 	struct vm_page *pg;
   3374 
   3375 	pg = PHYS_TO_VM_PAGE(phys);
   3376 	if (pg->mdpage.pvh_list != NULL)
   3377 		panic("pmap_pageidlezero: page has mappings");
   3378 #endif
   3379 
   3380 	KDASSERT((phys & PGOFSET) == 0);
   3381 
   3382 	/*
   3383 	 * Hook in the page, zero it, and purge the cache for that
   3384 	 * zeroed page. Invalidate the TLB as needed.
   3385 	 */
   3386 	*cdst_pte = L2_S_PROTO | phys |
   3387 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   3388 	PTE_SYNC(cdst_pte);
   3389 	cpu_tlb_flushD_SE(cdstp);
   3390 	cpu_cpwait();
   3391 
   3392 	for (i = 0, ptr = (int *)cdstp;
   3393 			i < (PAGE_SIZE / sizeof(int)); i++) {
   3394 		if (sched_curcpu_runnable_p()) {
   3395 			/*
   3396 			 * A process has become ready.  Abort now,
   3397 			 * so we don't keep it waiting while we
   3398 			 * do slow memory access to finish this
   3399 			 * page.
   3400 			 */
   3401 			rv = false;
   3402 			break;
   3403 		}
   3404 		*ptr++ = 0;
   3405 	}
   3406 
   3407 	if (rv)
   3408 		/*
   3409 		 * if we aborted we'll rezero this page again later so don't
   3410 		 * purge it unless we finished it
   3411 		 */
   3412 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   3413 
   3414 	return (rv);
   3415 }
   3416 
   3417 /*
   3418  * pmap_copy_page()
   3419  *
   3420  * Copy one physical page into another, by mapping the pages into
   3421  * hook points. The same comment regarding cachability as in
   3422  * pmap_zero_page also applies here.
   3423  */
   3424 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
   3425 void
   3426 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   3427 {
   3428 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   3429 #ifdef DEBUG
   3430 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   3431 
   3432 	if (dst_pg->mdpage.pvh_list != NULL)
   3433 		panic("pmap_copy_page: dst page has mappings");
   3434 #endif
   3435 
   3436 	KDASSERT((src & PGOFSET) == 0);
   3437 	KDASSERT((dst & PGOFSET) == 0);
   3438 
   3439 	/*
   3440 	 * Clean the source page.  Hold the source page's lock for
   3441 	 * the duration of the copy so that no other mappings can
   3442 	 * be created while we have a potentially aliased mapping.
   3443 	 */
   3444 	simple_lock(&src_pg->mdpage.pvh_slock);
   3445 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
   3446 
   3447 	/*
   3448 	 * Map the pages into the page hook points, copy them, and purge
   3449 	 * the cache for the appropriate page. Invalidate the TLB
   3450 	 * as required.
   3451 	 */
   3452 	*csrc_pte = L2_S_PROTO | src |
   3453 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
   3454 	PTE_SYNC(csrc_pte);
   3455 	*cdst_pte = L2_S_PROTO | dst |
   3456 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   3457 	PTE_SYNC(cdst_pte);
   3458 	cpu_tlb_flushD_SE(csrcp);
   3459 	cpu_tlb_flushD_SE(cdstp);
   3460 	cpu_cpwait();
   3461 	bcopy_page(csrcp, cdstp);
   3462 	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
   3463 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   3464 	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   3465 }
   3466 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
   3467 
   3468 #if ARM_MMU_XSCALE == 1
   3469 void
   3470 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   3471 {
   3472 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   3473 #ifdef DEBUG
   3474 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   3475 
   3476 	if (dst_pg->mdpage.pvh_list != NULL)
   3477 		panic("pmap_copy_page: dst page has mappings");
   3478 #endif
   3479 
   3480 	KDASSERT((src & PGOFSET) == 0);
   3481 	KDASSERT((dst & PGOFSET) == 0);
   3482 
   3483 	/*
   3484 	 * Clean the source page.  Hold the source page's lock for
   3485 	 * the duration of the copy so that no other mappings can
   3486 	 * be created while we have a potentially aliased mapping.
   3487 	 */
   3488 	simple_lock(&src_pg->mdpage.pvh_slock);
   3489 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
   3490 
   3491 	/*
   3492 	 * Map the pages into the page hook points, copy them, and purge
   3493 	 * the cache for the appropriate page. Invalidate the TLB
   3494 	 * as required.
   3495 	 */
   3496 	*csrc_pte = L2_S_PROTO | src |
   3497 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   3498 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   3499 	PTE_SYNC(csrc_pte);
   3500 	*cdst_pte = L2_S_PROTO | dst |
   3501 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   3502 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   3503 	PTE_SYNC(cdst_pte);
   3504 	cpu_tlb_flushD_SE(csrcp);
   3505 	cpu_tlb_flushD_SE(cdstp);
   3506 	cpu_cpwait();
   3507 	bcopy_page(csrcp, cdstp);
   3508 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   3509 	xscale_cache_clean_minidata();
   3510 }
   3511 #endif /* ARM_MMU_XSCALE == 1 */
   3512 
   3513 /*
   3514  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   3515  *
   3516  * Return the start and end addresses of the kernel's virtual space.
   3517  * These values are setup in pmap_bootstrap and are updated as pages
   3518  * are allocated.
   3519  */
   3520 void
   3521 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   3522 {
   3523 	*start = virtual_avail;
   3524 	*end = virtual_end;
   3525 }
   3526 
   3527 /*
   3528  * Helper function for pmap_grow_l2_bucket()
   3529  */
   3530 static inline int
   3531 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   3532 {
   3533 	struct l2_bucket *l2b;
   3534 	pt_entry_t *ptep;
   3535 	paddr_t pa;
   3536 
   3537 	if (uvm.page_init_done == false) {
   3538 		if (uvm_page_physget(&pa) == false)
   3539 			return (1);
   3540 	} else {
   3541 		struct vm_page *pg;
   3542 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   3543 		if (pg == NULL)
   3544 			return (1);
   3545 		pa = VM_PAGE_TO_PHYS(pg);
   3546 	}
   3547 
   3548 	if (pap)
   3549 		*pap = pa;
   3550 
   3551 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3552 	KDASSERT(l2b != NULL);
   3553 
   3554 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3555 	*ptep = L2_S_PROTO | pa | cache_mode |
   3556 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   3557 	PTE_SYNC(ptep);
   3558 	memset((void *)va, 0, PAGE_SIZE);
   3559 	return (0);
   3560 }
   3561 
   3562 /*
   3563  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   3564  * used by pmap_growkernel().
   3565  */
   3566 static inline struct l2_bucket *
   3567 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   3568 {
   3569 	struct l2_dtable *l2;
   3570 	struct l2_bucket *l2b;
   3571 	u_short l1idx;
   3572 	vaddr_t nva;
   3573 
   3574 	l1idx = L1_IDX(va);
   3575 
   3576 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   3577 		/*
   3578 		 * No mapping at this address, as there is
   3579 		 * no entry in the L1 table.
   3580 		 * Need to allocate a new l2_dtable.
   3581 		 */
   3582 		nva = pmap_kernel_l2dtable_kva;
   3583 		if ((nva & PGOFSET) == 0) {
   3584 			/*
   3585 			 * Need to allocate a backing page
   3586 			 */
   3587 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   3588 				return (NULL);
   3589 		}
   3590 
   3591 		l2 = (struct l2_dtable *)nva;
   3592 		nva += sizeof(struct l2_dtable);
   3593 
   3594 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   3595 			/*
   3596 			 * The new l2_dtable straddles a page boundary.
   3597 			 * Map in another page to cover it.
   3598 			 */
   3599 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   3600 				return (NULL);
   3601 		}
   3602 
   3603 		pmap_kernel_l2dtable_kva = nva;
   3604 
   3605 		/*
   3606 		 * Link it into the parent pmap
   3607 		 */
   3608 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   3609 	}
   3610 
   3611 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3612 
   3613 	/*
   3614 	 * Fetch pointer to the L2 page table associated with the address.
   3615 	 */
   3616 	if (l2b->l2b_kva == NULL) {
   3617 		pt_entry_t *ptep;
   3618 
   3619 		/*
   3620 		 * No L2 page table has been allocated. Chances are, this
   3621 		 * is because we just allocated the l2_dtable, above.
   3622 		 */
   3623 		nva = pmap_kernel_l2ptp_kva;
   3624 		ptep = (pt_entry_t *)nva;
   3625 		if ((nva & PGOFSET) == 0) {
   3626 			/*
   3627 			 * Need to allocate a backing page
   3628 			 */
   3629 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   3630 			    &pmap_kernel_l2ptp_phys))
   3631 				return (NULL);
   3632 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   3633 		}
   3634 
   3635 		l2->l2_occupancy++;
   3636 		l2b->l2b_kva = ptep;
   3637 		l2b->l2b_l1idx = l1idx;
   3638 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   3639 
   3640 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   3641 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   3642 	}
   3643 
   3644 	return (l2b);
   3645 }
   3646 
   3647 vaddr_t
   3648 pmap_growkernel(vaddr_t maxkvaddr)
   3649 {
   3650 	pmap_t kpm = pmap_kernel();
   3651 	struct l1_ttable *l1;
   3652 	struct l2_bucket *l2b;
   3653 	pd_entry_t *pl1pd;
   3654 	int s;
   3655 
   3656 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3657 		goto out;		/* we are OK */
   3658 
   3659 	NPDEBUG(PDB_GROWKERN,
   3660 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   3661 	    pmap_curmaxkvaddr, maxkvaddr));
   3662 
   3663 	KDASSERT(maxkvaddr <= virtual_end);
   3664 
   3665 	/*
   3666 	 * whoops!   we need to add kernel PTPs
   3667 	 */
   3668 
   3669 	s = splhigh();	/* to be safe */
   3670 	simple_lock(&kpm->pm_lock);
   3671 
   3672 	/* Map 1MB at a time */
   3673 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   3674 
   3675 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   3676 		KDASSERT(l2b != NULL);
   3677 
   3678 		/* Distribute new L1 entry to all other L1s */
   3679 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   3680 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   3681 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   3682 			    L1_C_PROTO;
   3683 			PTE_SYNC(pl1pd);
   3684 		}
   3685 	}
   3686 
   3687 	/*
   3688 	 * flush out the cache, expensive but growkernel will happen so
   3689 	 * rarely
   3690 	 */
   3691 	cpu_dcache_wbinv_all();
   3692 	cpu_tlb_flushD();
   3693 	cpu_cpwait();
   3694 
   3695 	simple_unlock(&kpm->pm_lock);
   3696 	splx(s);
   3697 
   3698 out:
   3699 	return (pmap_curmaxkvaddr);
   3700 }
   3701 
   3702 /************************ Utility routines ****************************/
   3703 
   3704 /*
   3705  * vector_page_setprot:
   3706  *
   3707  *	Manipulate the protection of the vector page.
   3708  */
   3709 void
   3710 vector_page_setprot(int prot)
   3711 {
   3712 	struct l2_bucket *l2b;
   3713 	pt_entry_t *ptep;
   3714 
   3715 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   3716 	KDASSERT(l2b != NULL);
   3717 
   3718 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   3719 
   3720 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   3721 	PTE_SYNC(ptep);
   3722 	cpu_tlb_flushD_SE(vector_page);
   3723 	cpu_cpwait();
   3724 }
   3725 
   3726 /*
   3727  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   3728  * Returns true if the mapping exists, else false.
   3729  *
   3730  * NOTE: This function is only used by a couple of arm-specific modules.
   3731  * It is not safe to take any pmap locks here, since we could be right
   3732  * in the middle of debugging the pmap anyway...
   3733  *
   3734  * It is possible for this routine to return false even though a valid
   3735  * mapping does exist. This is because we don't lock, so the metadata
   3736  * state may be inconsistent.
   3737  *
   3738  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   3739  * a "section" mapping.
   3740  */
   3741 bool
   3742 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   3743 {
   3744 	struct l2_dtable *l2;
   3745 	pd_entry_t *pl1pd, l1pd;
   3746 	pt_entry_t *ptep;
   3747 	u_short l1idx;
   3748 
   3749 	if (pm->pm_l1 == NULL)
   3750 		return (false);
   3751 
   3752 	l1idx = L1_IDX(va);
   3753 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3754 	l1pd = *pl1pd;
   3755 
   3756 	if (l1pte_section_p(l1pd)) {
   3757 		*ptp = NULL;
   3758 		return (true);
   3759 	}
   3760 
   3761 	if (pm->pm_l2 == NULL)
   3762 		return (false);
   3763 
   3764 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3765 
   3766 	if (l2 == NULL ||
   3767 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3768 		return (false);
   3769 	}
   3770 
   3771 	*ptp = &ptep[l2pte_index(va)];
   3772 	return (true);
   3773 }
   3774 
   3775 bool
   3776 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   3777 {
   3778 	u_short l1idx;
   3779 
   3780 	if (pm->pm_l1 == NULL)
   3781 		return (false);
   3782 
   3783 	l1idx = L1_IDX(va);
   3784 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   3785 
   3786 	return (true);
   3787 }
   3788 
   3789 /************************ Bootstrapping routines ****************************/
   3790 
   3791 static void
   3792 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   3793 {
   3794 	int i;
   3795 
   3796 	l1->l1_kva = l1pt;
   3797 	l1->l1_domain_use_count = 0;
   3798 	l1->l1_domain_first = 0;
   3799 
   3800 	for (i = 0; i < PMAP_DOMAINS; i++)
   3801 		l1->l1_domain_free[i] = i + 1;
   3802 
   3803 	/*
   3804 	 * Copy the kernel's L1 entries to each new L1.
   3805 	 */
   3806 	if (pmap_initialized)
   3807 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   3808 
   3809 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   3810 	    &l1->l1_physaddr) == false)
   3811 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   3812 
   3813 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   3814 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   3815 }
   3816 
   3817 /*
   3818  * pmap_bootstrap() is called from the board-specific initarm() routine
   3819  * once the kernel L1/L2 descriptors tables have been set up.
   3820  *
   3821  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   3822  * spread over a number of disparate files/functions.
   3823  *
   3824  * We are passed the following parameters
   3825  *  - kernel_l1pt
   3826  *    This is a pointer to the base of the kernel's L1 translation table.
   3827  *  - vstart
   3828  *    1MB-aligned start of managed kernel virtual memory.
   3829  *  - vend
   3830  *    1MB-aligned end of managed kernel virtual memory.
   3831  *
   3832  * We use the first parameter to build the metadata (struct l1_ttable and
   3833  * struct l2_dtable) necessary to track kernel mappings.
   3834  */
   3835 #define	PMAP_STATIC_L2_SIZE 16
   3836 void
   3837 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
   3838 {
   3839 	static struct l1_ttable static_l1;
   3840 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   3841 	struct l1_ttable *l1 = &static_l1;
   3842 	struct l2_dtable *l2;
   3843 	struct l2_bucket *l2b;
   3844 	pmap_t pm = pmap_kernel();
   3845 	pd_entry_t pde;
   3846 	pt_entry_t *ptep;
   3847 	paddr_t pa;
   3848 	vaddr_t va;
   3849 	vsize_t size;
   3850 	int l1idx, l2idx, l2next = 0;
   3851 
   3852 	/*
   3853 	 * Initialise the kernel pmap object
   3854 	 */
   3855 	pm->pm_l1 = l1;
   3856 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   3857 	pm->pm_activated = true;
   3858 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3859 	simple_lock_init(&pm->pm_lock);
   3860 	pm->pm_obj.pgops = NULL;
   3861 	TAILQ_INIT(&pm->pm_obj.memq);
   3862 	pm->pm_obj.uo_npages = 0;
   3863 	pm->pm_obj.uo_refs = 1;
   3864 
   3865 	/*
   3866 	 * Scan the L1 translation table created by initarm() and create
   3867 	 * the required metadata for all valid mappings found in it.
   3868 	 */
   3869 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   3870 		pde = kernel_l1pt[l1idx];
   3871 
   3872 		/*
   3873 		 * We're only interested in Coarse mappings.
   3874 		 * pmap_extract() can deal with section mappings without
   3875 		 * recourse to checking L2 metadata.
   3876 		 */
   3877 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   3878 			continue;
   3879 
   3880 		/*
   3881 		 * Lookup the KVA of this L2 descriptor table
   3882 		 */
   3883 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   3884 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   3885 		if (ptep == NULL) {
   3886 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   3887 			    (u_int)l1idx << L1_S_SHIFT, pa);
   3888 		}
   3889 
   3890 		/*
   3891 		 * Fetch the associated L2 metadata structure.
   3892 		 * Allocate a new one if necessary.
   3893 		 */
   3894 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   3895 			if (l2next == PMAP_STATIC_L2_SIZE)
   3896 				panic("pmap_bootstrap: out of static L2s");
   3897 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   3898 		}
   3899 
   3900 		/*
   3901 		 * One more L1 slot tracked...
   3902 		 */
   3903 		l2->l2_occupancy++;
   3904 
   3905 		/*
   3906 		 * Fill in the details of the L2 descriptor in the
   3907 		 * appropriate bucket.
   3908 		 */
   3909 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3910 		l2b->l2b_kva = ptep;
   3911 		l2b->l2b_phys = pa;
   3912 		l2b->l2b_l1idx = l1idx;
   3913 
   3914 		/*
   3915 		 * Establish an initial occupancy count for this descriptor
   3916 		 */
   3917 		for (l2idx = 0;
   3918 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   3919 		    l2idx++) {
   3920 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   3921 				l2b->l2b_occupancy++;
   3922 			}
   3923 		}
   3924 
   3925 		/*
   3926 		 * Make sure the descriptor itself has the correct cache mode.
   3927 		 * If not, fix it, but whine about the problem. Port-meisters
   3928 		 * should consider this a clue to fix up their initarm()
   3929 		 * function. :)
   3930 		 */
   3931 		if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
   3932 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   3933 			    "L2 pte @ %p\n", ptep);
   3934 		}
   3935 	}
   3936 
   3937 	/*
   3938 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   3939 	 * a page table. Bitch if it is not correctly set.
   3940 	 */
   3941 	for (va = (vaddr_t)kernel_l1pt;
   3942 	    va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   3943 		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
   3944 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   3945 			    "primary L1 @ 0x%lx\n", va);
   3946 	}
   3947 
   3948 	cpu_dcache_wbinv_all();
   3949 	cpu_tlb_flushID();
   3950 	cpu_cpwait();
   3951 
   3952 	/*
   3953 	 * now we allocate the "special" VAs which are used for tmp mappings
   3954 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   3955 	 * virtual_avail (note that there are no pages mapped at these VAs).
   3956 	 *
   3957 	 * Managed KVM space start from wherever initarm() tells us.
   3958 	 */
   3959 	virtual_avail = vstart;
   3960 	virtual_end = vend;
   3961 
   3962 	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
   3963 	pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
   3964 	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
   3965 	pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
   3966 	pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
   3967 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   3968 	    (void *)&msgbufaddr, NULL);
   3969 
   3970 	/*
   3971 	 * Allocate a range of kernel virtual address space to be used
   3972 	 * for L2 descriptor tables and metadata allocation in
   3973 	 * pmap_growkernel().
   3974 	 */
   3975 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   3976 	pmap_alloc_specials(&virtual_avail,
   3977 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   3978 	    &pmap_kernel_l2ptp_kva, NULL);
   3979 
   3980 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   3981 	pmap_alloc_specials(&virtual_avail,
   3982 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   3983 	    &pmap_kernel_l2dtable_kva, NULL);
   3984 
   3985 	/*
   3986 	 * init the static-global locks and global pmap list.
   3987 	 */
   3988 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   3989 
   3990 	/*
   3991 	 * We can now initialise the first L1's metadata.
   3992 	 */
   3993 	SLIST_INIT(&l1_list);
   3994 	TAILQ_INIT(&l1_lru_list);
   3995 	simple_lock_init(&l1_lru_lock);
   3996 	pmap_init_l1(l1, kernel_l1pt);
   3997 
   3998 	/* Set up vector page L1 details, if necessary */
   3999 	if (vector_page < KERNEL_BASE) {
   4000 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   4001 		l2b = pmap_get_l2_bucket(pm, vector_page);
   4002 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   4003 		    L1_C_DOM(pm->pm_domain);
   4004 	} else
   4005 		pm->pm_pl1vec = NULL;
   4006 
   4007 	/*
   4008 	 * Initialize the pmap cache
   4009 	 */
   4010 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   4011 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   4012 	LIST_INIT(&pmap_pmaps);
   4013 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   4014 
   4015 	/*
   4016 	 * Initialize the pv pool.
   4017 	 */
   4018 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   4019 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   4020 
   4021 	/*
   4022 	 * Initialize the L2 dtable pool and cache.
   4023 	 */
   4024 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   4025 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   4026 
   4027 	/*
   4028 	 * Initialise the L2 descriptor table pool and cache
   4029 	 */
   4030 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   4031 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   4032 	    pmap_l2ptp_ctor, NULL, NULL);
   4033 
   4034 	cpu_dcache_wbinv_all();
   4035 }
   4036 
   4037 static int
   4038 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   4039 {
   4040 	pd_entry_t *pdep, pde;
   4041 	pt_entry_t *ptep, pte;
   4042 	vaddr_t pa;
   4043 	int rv = 0;
   4044 
   4045 	/*
   4046 	 * Make sure the descriptor itself has the correct cache mode
   4047 	 */
   4048 	pdep = &kl1[L1_IDX(va)];
   4049 	pde = *pdep;
   4050 
   4051 	if (l1pte_section_p(pde)) {
   4052 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   4053 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   4054 			    pte_l1_s_cache_mode_pt;
   4055 			PTE_SYNC(pdep);
   4056 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   4057 			rv = 1;
   4058 		}
   4059 	} else {
   4060 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   4061 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   4062 		if (ptep == NULL)
   4063 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   4064 
   4065 		ptep = &ptep[l2pte_index(va)];
   4066 		pte = *ptep;
   4067 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   4068 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   4069 			    pte_l2_s_cache_mode_pt;
   4070 			PTE_SYNC(ptep);
   4071 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   4072 			rv = 1;
   4073 		}
   4074 	}
   4075 
   4076 	return (rv);
   4077 }
   4078 
   4079 static void
   4080 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   4081 {
   4082 	vaddr_t va = *availp;
   4083 	struct l2_bucket *l2b;
   4084 
   4085 	if (ptep) {
   4086 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4087 		if (l2b == NULL)
   4088 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   4089 
   4090 		if (ptep)
   4091 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   4092 	}
   4093 
   4094 	*vap = va;
   4095 	*availp = va + (PAGE_SIZE * pages);
   4096 }
   4097 
   4098 void
   4099 pmap_init(void)
   4100 {
   4101 	extern int physmem;
   4102 
   4103 	/*
   4104 	 * Set the available memory vars - These do not map to real memory
   4105 	 * addresses and cannot as the physical memory is fragmented.
   4106 	 * They are used by ps for %mem calculations.
   4107 	 * One could argue whether this should be the entire memory or just
   4108 	 * the memory that is useable in a user process.
   4109 	 */
   4110 	avail_start = 0;
   4111 	avail_end = physmem * PAGE_SIZE;
   4112 
   4113 	/*
   4114 	 * Now we need to free enough pv_entry structures to allow us to get
   4115 	 * the kmem_map/kmem_object allocated and inited (done after this
   4116 	 * function is finished).  to do this we allocate one bootstrap page out
   4117 	 * of kernel_map and use it to provide an initial pool of pv_entry
   4118 	 * structures.   we never free this page.
   4119 	 */
   4120 	pool_setlowat(&pmap_pv_pool,
   4121 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   4122 
   4123 	pmap_initialized = true;
   4124 }
   4125 
   4126 static vaddr_t last_bootstrap_page = 0;
   4127 static void *free_bootstrap_pages = NULL;
   4128 
   4129 static void *
   4130 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   4131 {
   4132 	extern void *pool_page_alloc(struct pool *, int);
   4133 	vaddr_t new_page;
   4134 	void *rv;
   4135 
   4136 	if (pmap_initialized)
   4137 		return (pool_page_alloc(pp, flags));
   4138 
   4139 	if (free_bootstrap_pages) {
   4140 		rv = free_bootstrap_pages;
   4141 		free_bootstrap_pages = *((void **)rv);
   4142 		return (rv);
   4143 	}
   4144 
   4145 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   4146 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   4147 
   4148 	KASSERT(new_page > last_bootstrap_page);
   4149 	last_bootstrap_page = new_page;
   4150 	return ((void *)new_page);
   4151 }
   4152 
   4153 static void
   4154 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   4155 {
   4156 	extern void pool_page_free(struct pool *, void *);
   4157 
   4158 	if ((vaddr_t)v <= last_bootstrap_page) {
   4159 		*((void **)v) = free_bootstrap_pages;
   4160 		free_bootstrap_pages = v;
   4161 		return;
   4162 	}
   4163 
   4164 	if (pmap_initialized) {
   4165 		pool_page_free(pp, v);
   4166 		return;
   4167 	}
   4168 }
   4169 
   4170 /*
   4171  * pmap_postinit()
   4172  *
   4173  * This routine is called after the vm and kmem subsystems have been
   4174  * initialised. This allows the pmap code to perform any initialisation
   4175  * that can only be done one the memory allocation is in place.
   4176  */
   4177 void
   4178 pmap_postinit(void)
   4179 {
   4180 	extern paddr_t physical_start, physical_end;
   4181 	struct l2_bucket *l2b;
   4182 	struct l1_ttable *l1;
   4183 	struct pglist plist;
   4184 	struct vm_page *m;
   4185 	pd_entry_t *pl1pt;
   4186 	pt_entry_t *ptep, pte;
   4187 	vaddr_t va, eva;
   4188 	u_int loop, needed;
   4189 	int error;
   4190 
   4191 	pool_cache_setlowat(&pmap_l2ptp_cache,
   4192 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   4193 	pool_cache_setlowat(&pmap_l2dtable_cache,
   4194 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   4195 
   4196 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   4197 	needed -= 1;
   4198 
   4199 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   4200 
   4201 	for (loop = 0; loop < needed; loop++, l1++) {
   4202 		/* Allocate a L1 page table */
   4203 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   4204 		if (va == 0)
   4205 			panic("Cannot allocate L1 KVM");
   4206 
   4207 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   4208 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   4209 		if (error)
   4210 			panic("Cannot allocate L1 physical pages");
   4211 
   4212 		m = TAILQ_FIRST(&plist);
   4213 		eva = va + L1_TABLE_SIZE;
   4214 		pl1pt = (pd_entry_t *)va;
   4215 
   4216 		while (m && va < eva) {
   4217 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   4218 
   4219 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   4220 
   4221 			/*
   4222 			 * Make sure the L1 descriptor table is mapped
   4223 			 * with the cache-mode set to write-through.
   4224 			 */
   4225 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4226 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   4227 			pte = *ptep;
   4228 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   4229 			*ptep = pte;
   4230 			PTE_SYNC(ptep);
   4231 			cpu_tlb_flushD_SE(va);
   4232 
   4233 			va += PAGE_SIZE;
   4234 			m = TAILQ_NEXT(m, pageq);
   4235 		}
   4236 
   4237 #ifdef DIAGNOSTIC
   4238 		if (m)
   4239 			panic("pmap_alloc_l1pt: pglist not empty");
   4240 #endif	/* DIAGNOSTIC */
   4241 
   4242 		pmap_init_l1(l1, pl1pt);
   4243 	}
   4244 
   4245 #ifdef DEBUG
   4246 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   4247 	    needed);
   4248 #endif
   4249 }
   4250 
   4251 /*
   4252  * Note that the following routines are used by board-specific initialisation
   4253  * code to configure the initial kernel page tables.
   4254  *
   4255  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   4256  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   4257  * behaviour of the old pmap, and provides an easy migration path for
   4258  * initial bring-up of the new pmap on existing ports. Fortunately,
   4259  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   4260  * will be deprecated.
   4261  *
   4262  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   4263  * tables.
   4264  */
   4265 
   4266 /*
   4267  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   4268  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   4269  * find them as necessary.
   4270  *
   4271  * Note that the data on this list MUST remain valid after initarm() returns,
   4272  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   4273  */
   4274 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   4275 
   4276 static vaddr_t
   4277 kernel_pt_lookup(paddr_t pa)
   4278 {
   4279 	pv_addr_t *pv;
   4280 
   4281 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   4282 #ifndef ARM32_NEW_VM_LAYOUT
   4283 		if (pv->pv_pa == (pa & ~PGOFSET))
   4284 			return (pv->pv_va | (pa & PGOFSET));
   4285 #else
   4286 		if (pv->pv_pa == pa)
   4287 			return (pv->pv_va);
   4288 #endif
   4289 	}
   4290 	return (0);
   4291 }
   4292 
   4293 /*
   4294  * pmap_map_section:
   4295  *
   4296  *	Create a single section mapping.
   4297  */
   4298 void
   4299 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   4300 {
   4301 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   4302 	pd_entry_t fl;
   4303 
   4304 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   4305 
   4306 	switch (cache) {
   4307 	case PTE_NOCACHE:
   4308 	default:
   4309 		fl = 0;
   4310 		break;
   4311 
   4312 	case PTE_CACHE:
   4313 		fl = pte_l1_s_cache_mode;
   4314 		break;
   4315 
   4316 	case PTE_PAGETABLE:
   4317 		fl = pte_l1_s_cache_mode_pt;
   4318 		break;
   4319 	}
   4320 
   4321 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   4322 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   4323 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   4324 }
   4325 
   4326 /*
   4327  * pmap_map_entry:
   4328  *
   4329  *	Create a single page mapping.
   4330  */
   4331 void
   4332 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   4333 {
   4334 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   4335 	pt_entry_t fl;
   4336 	pt_entry_t *pte;
   4337 
   4338 	KASSERT(((va | pa) & PGOFSET) == 0);
   4339 
   4340 	switch (cache) {
   4341 	case PTE_NOCACHE:
   4342 	default:
   4343 		fl = 0;
   4344 		break;
   4345 
   4346 	case PTE_CACHE:
   4347 		fl = pte_l2_s_cache_mode;
   4348 		break;
   4349 
   4350 	case PTE_PAGETABLE:
   4351 		fl = pte_l2_s_cache_mode_pt;
   4352 		break;
   4353 	}
   4354 
   4355 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   4356 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   4357 
   4358 #ifndef ARM32_NEW_VM_LAYOUT
   4359 	pte = (pt_entry_t *)
   4360 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   4361 #else
   4362 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   4363 #endif
   4364 	if (pte == NULL)
   4365 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   4366 
   4367 #ifndef ARM32_NEW_VM_LAYOUT
   4368 	pte[(va >> PGSHIFT) & 0x3ff] =
   4369 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   4370 	PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   4371 #else
   4372 	pte[l2pte_index(va)] =
   4373 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   4374 	PTE_SYNC(&pte[l2pte_index(va)]);
   4375 #endif
   4376 }
   4377 
   4378 /*
   4379  * pmap_link_l2pt:
   4380  *
   4381  *	Link the L2 page table specified by "l2pv" into the L1
   4382  *	page table at the slot for "va".
   4383  */
   4384 void
   4385 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   4386 {
   4387 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   4388 	u_int slot = va >> L1_S_SHIFT;
   4389 
   4390 #ifndef ARM32_NEW_VM_LAYOUT
   4391 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   4392 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   4393 #endif
   4394 
   4395 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   4396 
   4397 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   4398 #ifdef ARM32_NEW_VM_LAYOUT
   4399 	PTE_SYNC(&pde[slot]);
   4400 #else
   4401 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   4402 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   4403 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   4404 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   4405 #endif
   4406 
   4407 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   4408 }
   4409 
   4410 /*
   4411  * pmap_map_chunk:
   4412  *
   4413  *	Map a chunk of memory using the most efficient mappings
   4414  *	possible (section, large page, small page) into the
   4415  *	provided L1 and L2 tables at the specified virtual address.
   4416  */
   4417 vsize_t
   4418 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   4419     int prot, int cache)
   4420 {
   4421 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   4422 	pt_entry_t *pte, f1, f2s, f2l;
   4423 	vsize_t resid;
   4424 	int i;
   4425 
   4426 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   4427 
   4428 	if (l1pt == 0)
   4429 		panic("pmap_map_chunk: no L1 table provided");
   4430 
   4431 #ifdef VERBOSE_INIT_ARM
   4432 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   4433 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   4434 #endif
   4435 
   4436 	switch (cache) {
   4437 	case PTE_NOCACHE:
   4438 	default:
   4439 		f1 = 0;
   4440 		f2l = 0;
   4441 		f2s = 0;
   4442 		break;
   4443 
   4444 	case PTE_CACHE:
   4445 		f1 = pte_l1_s_cache_mode;
   4446 		f2l = pte_l2_l_cache_mode;
   4447 		f2s = pte_l2_s_cache_mode;
   4448 		break;
   4449 
   4450 	case PTE_PAGETABLE:
   4451 		f1 = pte_l1_s_cache_mode_pt;
   4452 		f2l = pte_l2_l_cache_mode_pt;
   4453 		f2s = pte_l2_s_cache_mode_pt;
   4454 		break;
   4455 	}
   4456 
   4457 	size = resid;
   4458 
   4459 	while (resid > 0) {
   4460 		/* See if we can use a section mapping. */
   4461 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   4462 #ifdef VERBOSE_INIT_ARM
   4463 			printf("S");
   4464 #endif
   4465 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   4466 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   4467 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   4468 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   4469 			va += L1_S_SIZE;
   4470 			pa += L1_S_SIZE;
   4471 			resid -= L1_S_SIZE;
   4472 			continue;
   4473 		}
   4474 
   4475 		/*
   4476 		 * Ok, we're going to use an L2 table.  Make sure
   4477 		 * one is actually in the corresponding L1 slot
   4478 		 * for the current VA.
   4479 		 */
   4480 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   4481 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   4482 
   4483 #ifndef ARM32_NEW_VM_LAYOUT
   4484 		pte = (pt_entry_t *)
   4485 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   4486 #else
   4487 		pte = (pt_entry_t *) kernel_pt_lookup(
   4488 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   4489 #endif
   4490 		if (pte == NULL)
   4491 			panic("pmap_map_chunk: can't find L2 table for VA"
   4492 			    "0x%08lx", va);
   4493 
   4494 		/* See if we can use a L2 large page mapping. */
   4495 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   4496 #ifdef VERBOSE_INIT_ARM
   4497 			printf("L");
   4498 #endif
   4499 			for (i = 0; i < 16; i++) {
   4500 #ifndef ARM32_NEW_VM_LAYOUT
   4501 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   4502 				    L2_L_PROTO | pa |
   4503 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   4504 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   4505 #else
   4506 				pte[l2pte_index(va) + i] =
   4507 				    L2_L_PROTO | pa |
   4508 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   4509 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   4510 #endif
   4511 			}
   4512 			va += L2_L_SIZE;
   4513 			pa += L2_L_SIZE;
   4514 			resid -= L2_L_SIZE;
   4515 			continue;
   4516 		}
   4517 
   4518 		/* Use a small page mapping. */
   4519 #ifdef VERBOSE_INIT_ARM
   4520 		printf("P");
   4521 #endif
   4522 #ifndef ARM32_NEW_VM_LAYOUT
   4523 		pte[(va >> PGSHIFT) & 0x3ff] =
   4524 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   4525 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   4526 #else
   4527 		pte[l2pte_index(va)] =
   4528 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   4529 		PTE_SYNC(&pte[l2pte_index(va)]);
   4530 #endif
   4531 		va += PAGE_SIZE;
   4532 		pa += PAGE_SIZE;
   4533 		resid -= PAGE_SIZE;
   4534 	}
   4535 #ifdef VERBOSE_INIT_ARM
   4536 	printf("\n");
   4537 #endif
   4538 	return (size);
   4539 }
   4540 
   4541 /********************** Static device map routines ***************************/
   4542 
   4543 static const struct pmap_devmap *pmap_devmap_table;
   4544 
   4545 /*
   4546  * Register the devmap table.  This is provided in case early console
   4547  * initialization needs to register mappings created by bootstrap code
   4548  * before pmap_devmap_bootstrap() is called.
   4549  */
   4550 void
   4551 pmap_devmap_register(const struct pmap_devmap *table)
   4552 {
   4553 
   4554 	pmap_devmap_table = table;
   4555 }
   4556 
   4557 /*
   4558  * Map all of the static regions in the devmap table, and remember
   4559  * the devmap table so other parts of the kernel can look up entries
   4560  * later.
   4561  */
   4562 void
   4563 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   4564 {
   4565 	int i;
   4566 
   4567 	pmap_devmap_table = table;
   4568 
   4569 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   4570 #ifdef VERBOSE_INIT_ARM
   4571 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   4572 		    pmap_devmap_table[i].pd_pa,
   4573 		    pmap_devmap_table[i].pd_pa +
   4574 			pmap_devmap_table[i].pd_size - 1,
   4575 		    pmap_devmap_table[i].pd_va);
   4576 #endif
   4577 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   4578 		    pmap_devmap_table[i].pd_pa,
   4579 		    pmap_devmap_table[i].pd_size,
   4580 		    pmap_devmap_table[i].pd_prot,
   4581 		    pmap_devmap_table[i].pd_cache);
   4582 	}
   4583 }
   4584 
   4585 const struct pmap_devmap *
   4586 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   4587 {
   4588 	uint64_t endpa;
   4589 	int i;
   4590 
   4591 	if (pmap_devmap_table == NULL)
   4592 		return (NULL);
   4593 
   4594 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   4595 
   4596 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   4597 		if (pa >= pmap_devmap_table[i].pd_pa &&
   4598 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   4599 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   4600 			return (&pmap_devmap_table[i]);
   4601 	}
   4602 
   4603 	return (NULL);
   4604 }
   4605 
   4606 const struct pmap_devmap *
   4607 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   4608 {
   4609 	int i;
   4610 
   4611 	if (pmap_devmap_table == NULL)
   4612 		return (NULL);
   4613 
   4614 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   4615 		if (va >= pmap_devmap_table[i].pd_va &&
   4616 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   4617 				     pmap_devmap_table[i].pd_size - 1)
   4618 			return (&pmap_devmap_table[i]);
   4619 	}
   4620 
   4621 	return (NULL);
   4622 }
   4623 
   4624 /********************** PTE initialization routines **************************/
   4625 
   4626 /*
   4627  * These routines are called when the CPU type is identified to set up
   4628  * the PTE prototypes, cache modes, etc.
   4629  *
   4630  * The variables are always here, just in case LKMs need to reference
   4631  * them (though, they shouldn't).
   4632  */
   4633 
   4634 pt_entry_t	pte_l1_s_cache_mode;
   4635 pt_entry_t	pte_l1_s_cache_mode_pt;
   4636 pt_entry_t	pte_l1_s_cache_mask;
   4637 
   4638 pt_entry_t	pte_l2_l_cache_mode;
   4639 pt_entry_t	pte_l2_l_cache_mode_pt;
   4640 pt_entry_t	pte_l2_l_cache_mask;
   4641 
   4642 pt_entry_t	pte_l2_s_cache_mode;
   4643 pt_entry_t	pte_l2_s_cache_mode_pt;
   4644 pt_entry_t	pte_l2_s_cache_mask;
   4645 
   4646 pt_entry_t	pte_l2_s_prot_u;
   4647 pt_entry_t	pte_l2_s_prot_w;
   4648 pt_entry_t	pte_l2_s_prot_mask;
   4649 
   4650 pt_entry_t	pte_l1_s_proto;
   4651 pt_entry_t	pte_l1_c_proto;
   4652 pt_entry_t	pte_l2_s_proto;
   4653 
   4654 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   4655 void		(*pmap_zero_page_func)(paddr_t);
   4656 
   4657 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
   4658 void
   4659 pmap_pte_init_generic(void)
   4660 {
   4661 
   4662 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   4663 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   4664 
   4665 	pte_l2_l_cache_mode = L2_B|L2_C;
   4666 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   4667 
   4668 	pte_l2_s_cache_mode = L2_B|L2_C;
   4669 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   4670 
   4671 	/*
   4672 	 * If we have a write-through cache, set B and C.  If
   4673 	 * we have a write-back cache, then we assume setting
   4674 	 * only C will make those pages write-through.
   4675 	 */
   4676 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   4677 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   4678 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   4679 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   4680 	} else {
   4681 		pte_l1_s_cache_mode_pt = L1_S_C;
   4682 		pte_l2_l_cache_mode_pt = L2_C;
   4683 		pte_l2_s_cache_mode_pt = L2_C;
   4684 	}
   4685 
   4686 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   4687 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   4688 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   4689 
   4690 	pte_l1_s_proto = L1_S_PROTO_generic;
   4691 	pte_l1_c_proto = L1_C_PROTO_generic;
   4692 	pte_l2_s_proto = L2_S_PROTO_generic;
   4693 
   4694 	pmap_copy_page_func = pmap_copy_page_generic;
   4695 	pmap_zero_page_func = pmap_zero_page_generic;
   4696 }
   4697 
   4698 #if defined(CPU_ARM8)
   4699 void
   4700 pmap_pte_init_arm8(void)
   4701 {
   4702 
   4703 	/*
   4704 	 * ARM8 is compatible with generic, but we need to use
   4705 	 * the page tables uncached.
   4706 	 */
   4707 	pmap_pte_init_generic();
   4708 
   4709 	pte_l1_s_cache_mode_pt = 0;
   4710 	pte_l2_l_cache_mode_pt = 0;
   4711 	pte_l2_s_cache_mode_pt = 0;
   4712 }
   4713 #endif /* CPU_ARM8 */
   4714 
   4715 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   4716 void
   4717 pmap_pte_init_arm9(void)
   4718 {
   4719 
   4720 	/*
   4721 	 * ARM9 is compatible with generic, but we want to use
   4722 	 * write-through caching for now.
   4723 	 */
   4724 	pmap_pte_init_generic();
   4725 
   4726 	pte_l1_s_cache_mode = L1_S_C;
   4727 	pte_l2_l_cache_mode = L2_C;
   4728 	pte_l2_s_cache_mode = L2_C;
   4729 
   4730 	pte_l1_s_cache_mode_pt = L1_S_C;
   4731 	pte_l2_l_cache_mode_pt = L2_C;
   4732 	pte_l2_s_cache_mode_pt = L2_C;
   4733 }
   4734 #endif /* CPU_ARM9 */
   4735 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
   4736 
   4737 #if defined(CPU_ARM10)
   4738 void
   4739 pmap_pte_init_arm10(void)
   4740 {
   4741 
   4742 	/*
   4743 	 * ARM10 is compatible with generic, but we want to use
   4744 	 * write-through caching for now.
   4745 	 */
   4746 	pmap_pte_init_generic();
   4747 
   4748 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   4749 	pte_l2_l_cache_mode = L2_B | L2_C;
   4750 	pte_l2_s_cache_mode = L2_B | L2_C;
   4751 
   4752 	pte_l1_s_cache_mode_pt = L1_S_C;
   4753 	pte_l2_l_cache_mode_pt = L2_C;
   4754 	pte_l2_s_cache_mode_pt = L2_C;
   4755 
   4756 }
   4757 #endif /* CPU_ARM10 */
   4758 
   4759 #if ARM_MMU_SA1 == 1
   4760 void
   4761 pmap_pte_init_sa1(void)
   4762 {
   4763 
   4764 	/*
   4765 	 * The StrongARM SA-1 cache does not have a write-through
   4766 	 * mode.  So, do the generic initialization, then reset
   4767 	 * the page table cache mode to B=1,C=1, and note that
   4768 	 * the PTEs need to be sync'd.
   4769 	 */
   4770 	pmap_pte_init_generic();
   4771 
   4772 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   4773 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   4774 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   4775 
   4776 	pmap_needs_pte_sync = 1;
   4777 }
   4778 #endif /* ARM_MMU_SA1 == 1*/
   4779 
   4780 #if ARM_MMU_XSCALE == 1
   4781 #if (ARM_NMMUS > 1)
   4782 static u_int xscale_use_minidata;
   4783 #endif
   4784 
   4785 void
   4786 pmap_pte_init_xscale(void)
   4787 {
   4788 	uint32_t auxctl;
   4789 	int write_through = 0;
   4790 
   4791 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   4792 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   4793 
   4794 	pte_l2_l_cache_mode = L2_B|L2_C;
   4795 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   4796 
   4797 	pte_l2_s_cache_mode = L2_B|L2_C;
   4798 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   4799 
   4800 	pte_l1_s_cache_mode_pt = L1_S_C;
   4801 	pte_l2_l_cache_mode_pt = L2_C;
   4802 	pte_l2_s_cache_mode_pt = L2_C;
   4803 
   4804 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   4805 	/*
   4806 	 * The XScale core has an enhanced mode where writes that
   4807 	 * miss the cache cause a cache line to be allocated.  This
   4808 	 * is significantly faster than the traditional, write-through
   4809 	 * behavior of this case.
   4810 	 */
   4811 	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
   4812 	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
   4813 	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
   4814 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   4815 
   4816 #ifdef XSCALE_CACHE_WRITE_THROUGH
   4817 	/*
   4818 	 * Some versions of the XScale core have various bugs in
   4819 	 * their cache units, the work-around for which is to run
   4820 	 * the cache in write-through mode.  Unfortunately, this
   4821 	 * has a major (negative) impact on performance.  So, we
   4822 	 * go ahead and run fast-and-loose, in the hopes that we
   4823 	 * don't line up the planets in a way that will trip the
   4824 	 * bugs.
   4825 	 *
   4826 	 * However, we give you the option to be slow-but-correct.
   4827 	 */
   4828 	write_through = 1;
   4829 #elif defined(XSCALE_CACHE_WRITE_BACK)
   4830 	/* force write back cache mode */
   4831 	write_through = 0;
   4832 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   4833 	/*
   4834 	 * Intel PXA2[15]0 processors are known to have a bug in
   4835 	 * write-back cache on revision 4 and earlier (stepping
   4836 	 * A[01] and B[012]).  Fixed for C0 and later.
   4837 	 */
   4838 	{
   4839 		uint32_t id, type;
   4840 
   4841 		id = cpufunc_id();
   4842 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   4843 
   4844 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   4845 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   4846 				/* write through for stepping A0-1 and B0-2 */
   4847 				write_through = 1;
   4848 			}
   4849 		}
   4850 	}
   4851 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   4852 
   4853 	if (write_through) {
   4854 		pte_l1_s_cache_mode = L1_S_C;
   4855 		pte_l2_l_cache_mode = L2_C;
   4856 		pte_l2_s_cache_mode = L2_C;
   4857 	}
   4858 
   4859 #if (ARM_NMMUS > 1)
   4860 	xscale_use_minidata = 1;
   4861 #endif
   4862 
   4863 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   4864 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   4865 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   4866 
   4867 	pte_l1_s_proto = L1_S_PROTO_xscale;
   4868 	pte_l1_c_proto = L1_C_PROTO_xscale;
   4869 	pte_l2_s_proto = L2_S_PROTO_xscale;
   4870 
   4871 	pmap_copy_page_func = pmap_copy_page_xscale;
   4872 	pmap_zero_page_func = pmap_zero_page_xscale;
   4873 
   4874 	/*
   4875 	 * Disable ECC protection of page table access, for now.
   4876 	 */
   4877 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   4878 	auxctl &= ~XSCALE_AUXCTL_P;
   4879 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   4880 }
   4881 
   4882 /*
   4883  * xscale_setup_minidata:
   4884  *
   4885  *	Set up the mini-data cache clean area.  We require the
   4886  *	caller to allocate the right amount of physically and
   4887  *	virtually contiguous space.
   4888  */
   4889 void
   4890 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   4891 {
   4892 	extern vaddr_t xscale_minidata_clean_addr;
   4893 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   4894 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   4895 	pt_entry_t *pte;
   4896 	vsize_t size;
   4897 	uint32_t auxctl;
   4898 
   4899 	xscale_minidata_clean_addr = va;
   4900 
   4901 	/* Round it to page size. */
   4902 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   4903 
   4904 	for (; size != 0;
   4905 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   4906 #ifndef ARM32_NEW_VM_LAYOUT
   4907 		pte = (pt_entry_t *)
   4908 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   4909 #else
   4910 		pte = (pt_entry_t *) kernel_pt_lookup(
   4911 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   4912 #endif
   4913 		if (pte == NULL)
   4914 			panic("xscale_setup_minidata: can't find L2 table for "
   4915 			    "VA 0x%08lx", va);
   4916 #ifndef ARM32_NEW_VM_LAYOUT
   4917 		pte[(va >> PGSHIFT) & 0x3ff] =
   4918 #else
   4919 		pte[l2pte_index(va)] =
   4920 #endif
   4921 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4922 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   4923 	}
   4924 
   4925 	/*
   4926 	 * Configure the mini-data cache for write-back with
   4927 	 * read/write-allocate.
   4928 	 *
   4929 	 * NOTE: In order to reconfigure the mini-data cache, we must
   4930 	 * make sure it contains no valid data!  In order to do that,
   4931 	 * we must issue a global data cache invalidate command!
   4932 	 *
   4933 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   4934 	 * THIS IS VERY IMPORTANT!
   4935 	 */
   4936 
   4937 	/* Invalidate data and mini-data. */
   4938 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   4939 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   4940 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   4941 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   4942 }
   4943 
   4944 /*
   4945  * Change the PTEs for the specified kernel mappings such that they
   4946  * will use the mini data cache instead of the main data cache.
   4947  */
   4948 void
   4949 pmap_uarea(vaddr_t va)
   4950 {
   4951 	struct l2_bucket *l2b;
   4952 	pt_entry_t *ptep, *sptep, pte;
   4953 	vaddr_t next_bucket, eva;
   4954 
   4955 #if (ARM_NMMUS > 1)
   4956 	if (xscale_use_minidata == 0)
   4957 		return;
   4958 #endif
   4959 
   4960 	eva = va + USPACE;
   4961 
   4962 	while (va < eva) {
   4963 		next_bucket = L2_NEXT_BUCKET(va);
   4964 		if (next_bucket > eva)
   4965 			next_bucket = eva;
   4966 
   4967 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4968 		KDASSERT(l2b != NULL);
   4969 
   4970 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   4971 
   4972 		while (va < next_bucket) {
   4973 			pte = *ptep;
   4974 			if (!l2pte_minidata(pte)) {
   4975 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   4976 				cpu_tlb_flushD_SE(va);
   4977 				*ptep = pte & ~L2_B;
   4978 			}
   4979 			ptep++;
   4980 			va += PAGE_SIZE;
   4981 		}
   4982 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   4983 	}
   4984 	cpu_cpwait();
   4985 }
   4986 #endif /* ARM_MMU_XSCALE == 1 */
   4987 
   4988 #if defined(DDB)
   4989 /*
   4990  * A couple of ddb-callable functions for dumping pmaps
   4991  */
   4992 void pmap_dump_all(void);
   4993 void pmap_dump(pmap_t);
   4994 
   4995 void
   4996 pmap_dump_all(void)
   4997 {
   4998 	pmap_t pm;
   4999 
   5000 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   5001 		if (pm == pmap_kernel())
   5002 			continue;
   5003 		pmap_dump(pm);
   5004 		printf("\n");
   5005 	}
   5006 }
   5007 
   5008 static pt_entry_t ncptes[64];
   5009 static void pmap_dump_ncpg(pmap_t);
   5010 
   5011 void
   5012 pmap_dump(pmap_t pm)
   5013 {
   5014 	struct l2_dtable *l2;
   5015 	struct l2_bucket *l2b;
   5016 	pt_entry_t *ptep, pte;
   5017 	vaddr_t l2_va, l2b_va, va;
   5018 	int i, j, k, occ, rows = 0;
   5019 
   5020 	if (pm == pmap_kernel())
   5021 		printf("pmap_kernel (%p): ", pm);
   5022 	else
   5023 		printf("user pmap (%p): ", pm);
   5024 
   5025 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   5026 
   5027 	l2_va = 0;
   5028 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   5029 		l2 = pm->pm_l2[i];
   5030 
   5031 		if (l2 == NULL || l2->l2_occupancy == 0)
   5032 			continue;
   5033 
   5034 		l2b_va = l2_va;
   5035 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   5036 			l2b = &l2->l2_bucket[j];
   5037 
   5038 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   5039 				continue;
   5040 
   5041 			ptep = l2b->l2b_kva;
   5042 
   5043 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   5044 				;
   5045 
   5046 			k &= ~63;
   5047 			occ = l2b->l2b_occupancy;
   5048 			va = l2b_va + (k * 4096);
   5049 			for (; k < 256; k++, va += 0x1000) {
   5050 				char ch = ' ';
   5051 				if ((k % 64) == 0) {
   5052 					if ((rows % 8) == 0) {
   5053 						printf(
   5054 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   5055 					}
   5056 					printf("%08lx: ", va);
   5057 				}
   5058 
   5059 				ncptes[k & 63] = 0;
   5060 				pte = ptep[k];
   5061 				if (pte == 0) {
   5062 					ch = '.';
   5063 				} else {
   5064 					occ--;
   5065 					switch (pte & 0x0c) {
   5066 					case 0x00:
   5067 						ch = 'D'; /* No cache No buff */
   5068 						break;
   5069 					case 0x04:
   5070 						ch = 'B'; /* No cache buff */
   5071 						break;
   5072 					case 0x08:
   5073 						if (pte & 0x40)
   5074 							ch = 'm';
   5075 						else
   5076 						   ch = 'C'; /* Cache No buff */
   5077 						break;
   5078 					case 0x0c:
   5079 						ch = 'F'; /* Cache Buff */
   5080 						break;
   5081 					}
   5082 
   5083 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   5084 						ch += 0x20;
   5085 
   5086 					if ((pte & 0xc) == 0)
   5087 						ncptes[k & 63] = pte;
   5088 				}
   5089 
   5090 				if ((k % 64) == 63) {
   5091 					rows++;
   5092 					printf("%c\n", ch);
   5093 					pmap_dump_ncpg(pm);
   5094 					if (occ == 0)
   5095 						break;
   5096 				} else
   5097 					printf("%c", ch);
   5098 			}
   5099 		}
   5100 	}
   5101 }
   5102 
   5103 static void
   5104 pmap_dump_ncpg(pmap_t pm)
   5105 {
   5106 	struct vm_page *pg;
   5107 	struct pv_entry *pv;
   5108 	int i;
   5109 
   5110 	for (i = 0; i < 63; i++) {
   5111 		if (ncptes[i] == 0)
   5112 			continue;
   5113 
   5114 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   5115 		if (pg == NULL)
   5116 			continue;
   5117 
   5118 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   5119 		    VM_PAGE_TO_PHYS(pg),
   5120 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   5121 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   5122 
   5123 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   5124 			printf("   %c va 0x%08lx, flags 0x%x\n",
   5125 			    (pm == pv->pv_pmap) ? '*' : ' ',
   5126 			    pv->pv_va, pv->pv_flags);
   5127 		}
   5128 	}
   5129 }
   5130 #endif
   5131