pmap.c revision 1.172 1 /* $NetBSD: pmap.c,v 1.172 2008/03/29 15:52:09 chris Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * Performance improvements, UVM changes, overhauls and part-rewrites
144 * were contributed by Neil A. Carson <neil (at) causality.com>.
145 */
146
147 /*
148 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150 * Systems, Inc.
151 *
152 * There are still a few things outstanding at this time:
153 *
154 * - There are some unresolved issues for MP systems:
155 *
156 * o The L1 metadata needs a lock, or more specifically, some places
157 * need to acquire an exclusive lock when modifying L1 translation
158 * table entries.
159 *
160 * o When one cpu modifies an L1 entry, and that L1 table is also
161 * being used by another cpu, then the latter will need to be told
162 * that a tlb invalidation may be necessary. (But only if the old
163 * domain number in the L1 entry being over-written is currently
164 * the active domain on that cpu). I guess there are lots more tlb
165 * shootdown issues too...
166 *
167 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168 * MP systems will lose big-time because of the MMU domain hack.
169 * The only way this can be solved (apart from moving the vector
170 * page to 0xffff0000) is to reserve the first 1MB of user address
171 * space for kernel use only. This would require re-linking all
172 * applications so that the text section starts above this 1MB
173 * boundary.
174 *
175 * o Tracking which VM space is resident in the cache/tlb has not yet
176 * been implemented for MP systems.
177 *
178 * o Finally, there is a pathological condition where two cpus running
179 * two separate processes (not lwps) which happen to share an L1
180 * can get into a fight over one or more L1 entries. This will result
181 * in a significant slow-down if both processes are in tight loops.
182 */
183
184 /*
185 * Special compilation symbols
186 * PMAP_DEBUG - Build in pmap_debug_level code
187 */
188
189 /* Include header files */
190
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194 #include "opt_lockdebug.h"
195 #include "opt_multiprocessor.h"
196
197 #include <sys/param.h>
198 #include <sys/types.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/user.h>
204 #include <sys/pool.h>
205 #include <sys/cdefs.h>
206 #include <sys/cpu.h>
207
208 #include <uvm/uvm.h>
209
210 #include <machine/bus.h>
211 #include <machine/pmap.h>
212 #include <machine/pcb.h>
213 #include <machine/param.h>
214 #include <arm/arm32/katelib.h>
215
216 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.172 2008/03/29 15:52:09 chris Exp $");
217
218 #ifdef PMAP_DEBUG
219
220 /* XXX need to get rid of all refs to this */
221 int pmap_debug_level = 0;
222
223 /*
224 * for switching to potentially finer grained debugging
225 */
226 #define PDB_FOLLOW 0x0001
227 #define PDB_INIT 0x0002
228 #define PDB_ENTER 0x0004
229 #define PDB_REMOVE 0x0008
230 #define PDB_CREATE 0x0010
231 #define PDB_PTPAGE 0x0020
232 #define PDB_GROWKERN 0x0040
233 #define PDB_BITS 0x0080
234 #define PDB_COLLECT 0x0100
235 #define PDB_PROTECT 0x0200
236 #define PDB_MAP_L1 0x0400
237 #define PDB_BOOTSTRAP 0x1000
238 #define PDB_PARANOIA 0x2000
239 #define PDB_WIRING 0x4000
240 #define PDB_PVDUMP 0x8000
241 #define PDB_VAC 0x10000
242 #define PDB_KENTER 0x20000
243 #define PDB_KREMOVE 0x40000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 struct pmap kernel_pmap_store;
259
260 /*
261 * Which pmap is currently 'live' in the cache
262 *
263 * XXXSCW: Fix for SMP ...
264 */
265 static pmap_t pmap_recent_user;
266
267 /*
268 * Pool and cache that pmap structures are allocated from.
269 * We use a cache to avoid clearing the pm_l2[] array (1KB)
270 * in pmap_create().
271 */
272 static struct pool_cache pmap_cache;
273 static LIST_HEAD(, pmap) pmap_pmaps;
274
275 /*
276 * Pool of PV structures
277 */
278 static struct pool pmap_pv_pool;
279 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
280 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
281 static struct pool_allocator pmap_bootstrap_pv_allocator = {
282 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
283 };
284
285 /*
286 * Pool and cache of l2_dtable structures.
287 * We use a cache to avoid clearing the structures when they're
288 * allocated. (196 bytes)
289 */
290 static struct pool_cache pmap_l2dtable_cache;
291 static vaddr_t pmap_kernel_l2dtable_kva;
292
293 /*
294 * Pool and cache of L2 page descriptors.
295 * We use a cache to avoid clearing the descriptor table
296 * when they're allocated. (1KB)
297 */
298 static struct pool_cache pmap_l2ptp_cache;
299 static vaddr_t pmap_kernel_l2ptp_kva;
300 static paddr_t pmap_kernel_l2ptp_phys;
301
302 /*
303 * pmap copy/zero page, and mem(5) hook point
304 */
305 static pt_entry_t *csrc_pte, *cdst_pte;
306 static vaddr_t csrcp, cdstp;
307 vaddr_t memhook;
308 extern void *msgbufaddr;
309
310 /*
311 * Flag to indicate if pmap_init() has done its thing
312 */
313 bool pmap_initialized;
314
315 /*
316 * Misc. locking data structures
317 */
318
319 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
320 static struct lock pmap_main_lock;
321
322 #define PMAP_MAP_TO_HEAD_LOCK() \
323 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
324 #define PMAP_MAP_TO_HEAD_UNLOCK() \
325 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
326 #define PMAP_HEAD_TO_MAP_LOCK() \
327 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
328 #define PMAP_HEAD_TO_MAP_UNLOCK() \
329 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
330 #else
331 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
332 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
333 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
334 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
335 #endif
336
337 #define pmap_acquire_pmap_lock(pm) \
338 do { \
339 if ((pm) != pmap_kernel()) \
340 mutex_enter(&(pm)->pm_lock); \
341 } while (/*CONSTCOND*/0)
342
343 #define pmap_release_pmap_lock(pm) \
344 do { \
345 if ((pm) != pmap_kernel()) \
346 mutex_exit(&(pm)->pm_lock); \
347 } while (/*CONSTCOND*/0)
348
349
350 /*
351 * Metadata for L1 translation tables.
352 */
353 struct l1_ttable {
354 /* Entry on the L1 Table list */
355 SLIST_ENTRY(l1_ttable) l1_link;
356
357 /* Entry on the L1 Least Recently Used list */
358 TAILQ_ENTRY(l1_ttable) l1_lru;
359
360 /* Track how many domains are allocated from this L1 */
361 volatile u_int l1_domain_use_count;
362
363 /*
364 * A free-list of domain numbers for this L1.
365 * We avoid using ffs() and a bitmap to track domains since ffs()
366 * is slow on ARM.
367 */
368 u_int8_t l1_domain_first;
369 u_int8_t l1_domain_free[PMAP_DOMAINS];
370
371 /* Physical address of this L1 page table */
372 paddr_t l1_physaddr;
373
374 /* KVA of this L1 page table */
375 pd_entry_t *l1_kva;
376 };
377
378 /*
379 * Convert a virtual address into its L1 table index. That is, the
380 * index used to locate the L2 descriptor table pointer in an L1 table.
381 * This is basically used to index l1->l1_kva[].
382 *
383 * Each L2 descriptor table represents 1MB of VA space.
384 */
385 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
386
387 /*
388 * L1 Page Tables are tracked using a Least Recently Used list.
389 * - New L1s are allocated from the HEAD.
390 * - Freed L1s are added to the TAIl.
391 * - Recently accessed L1s (where an 'access' is some change to one of
392 * the userland pmaps which owns this L1) are moved to the TAIL.
393 */
394 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
395 static struct simplelock l1_lru_lock;
396
397 /*
398 * A list of all L1 tables
399 */
400 static SLIST_HEAD(, l1_ttable) l1_list;
401
402 /*
403 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
404 *
405 * This is normally 16MB worth L2 page descriptors for any given pmap.
406 * Reference counts are maintained for L2 descriptors so they can be
407 * freed when empty.
408 */
409 struct l2_dtable {
410 /* The number of L2 page descriptors allocated to this l2_dtable */
411 u_int l2_occupancy;
412
413 /* List of L2 page descriptors */
414 struct l2_bucket {
415 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
416 paddr_t l2b_phys; /* Physical address of same */
417 u_short l2b_l1idx; /* This L2 table's L1 index */
418 u_short l2b_occupancy; /* How many active descriptors */
419 } l2_bucket[L2_BUCKET_SIZE];
420 };
421
422 /*
423 * Given an L1 table index, calculate the corresponding l2_dtable index
424 * and bucket index within the l2_dtable.
425 */
426 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
427 (L2_SIZE - 1))
428 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
429
430 /*
431 * Given a virtual address, this macro returns the
432 * virtual address required to drop into the next L2 bucket.
433 */
434 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
435
436 /*
437 * L2 allocation.
438 */
439 #define pmap_alloc_l2_dtable() \
440 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
441 #define pmap_free_l2_dtable(l2) \
442 pool_cache_put(&pmap_l2dtable_cache, (l2))
443 #define pmap_alloc_l2_ptp(pap) \
444 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
445 PR_NOWAIT, (pap)))
446
447 /*
448 * We try to map the page tables write-through, if possible. However, not
449 * all CPUs have a write-through cache mode, so on those we have to sync
450 * the cache when we frob page tables.
451 *
452 * We try to evaluate this at compile time, if possible. However, it's
453 * not always possible to do that, hence this run-time var.
454 */
455 int pmap_needs_pte_sync;
456
457 /*
458 * Real definition of pv_entry.
459 */
460 struct pv_entry {
461 struct pv_entry *pv_next; /* next pv_entry */
462 pmap_t pv_pmap; /* pmap where mapping lies */
463 vaddr_t pv_va; /* virtual address for mapping */
464 u_int pv_flags; /* flags */
465 };
466
467 /*
468 * Macro to determine if a mapping might be resident in the
469 * instruction cache and/or TLB
470 */
471 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
472
473 /*
474 * Macro to determine if a mapping might be resident in the
475 * data cache and/or TLB
476 */
477 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
478
479 /*
480 * Local prototypes
481 */
482 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
483 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
484 pt_entry_t **);
485 static bool pmap_is_current(pmap_t);
486 static bool pmap_is_cached(pmap_t);
487 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
488 pmap_t, vaddr_t, u_int);
489 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
490 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
491 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
492 u_int, u_int);
493
494 static void pmap_pinit(pmap_t);
495 static int pmap_pmap_ctor(void *, void *, int);
496
497 static void pmap_alloc_l1(pmap_t);
498 static void pmap_free_l1(pmap_t);
499 static void pmap_use_l1(pmap_t);
500
501 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
502 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
503 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
504 static int pmap_l2ptp_ctor(void *, void *, int);
505 static int pmap_l2dtable_ctor(void *, void *, int);
506
507 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
508 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
509 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
510
511 static void pmap_clearbit(struct vm_page *, u_int);
512 static int pmap_clean_page(struct pv_entry *, bool);
513 static void pmap_page_remove(struct vm_page *);
514
515 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
516 static vaddr_t kernel_pt_lookup(paddr_t);
517
518 void pmap_switch(struct lwp *, struct lwp *);
519
520
521 /*
522 * External function prototypes
523 */
524 extern void bzero_page(vaddr_t);
525 extern void bcopy_page(vaddr_t, vaddr_t);
526
527 /*
528 * Misc variables
529 */
530 vaddr_t virtual_avail;
531 vaddr_t virtual_end;
532 vaddr_t pmap_curmaxkvaddr;
533
534 vaddr_t avail_start;
535 vaddr_t avail_end;
536
537 extern pv_addr_t systempage;
538
539 /* Function to set the debug level of the pmap code */
540
541 #ifdef PMAP_DEBUG
542 void
543 pmap_debug(int level)
544 {
545 pmap_debug_level = level;
546 printf("pmap_debug: level=%d\n", pmap_debug_level);
547 }
548 #endif /* PMAP_DEBUG */
549
550 /*
551 * A bunch of routines to conditionally flush the caches/TLB depending
552 * on whether the specified pmap actually needs to be flushed at any
553 * given time.
554 */
555 static inline void
556 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
557 {
558
559 if (pm->pm_cstate.cs_tlb_id)
560 cpu_tlb_flushID_SE(va);
561 }
562
563 static inline void
564 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
565 {
566
567 if (pm->pm_cstate.cs_tlb_d)
568 cpu_tlb_flushD_SE(va);
569 }
570
571 static inline void
572 pmap_tlb_flushID(pmap_t pm)
573 {
574
575 if (pm->pm_cstate.cs_tlb_id) {
576 cpu_tlb_flushID();
577 pm->pm_cstate.cs_tlb = 0;
578 }
579 }
580
581 static inline void
582 pmap_tlb_flushD(pmap_t pm)
583 {
584
585 if (pm->pm_cstate.cs_tlb_d) {
586 cpu_tlb_flushD();
587 pm->pm_cstate.cs_tlb_d = 0;
588 }
589 }
590
591 static inline void
592 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
593 {
594
595 if (pm->pm_cstate.cs_cache_id)
596 cpu_idcache_wbinv_range(va, len);
597 }
598
599 static inline void
600 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
601 bool do_inv, bool rd_only)
602 {
603
604 if (pm->pm_cstate.cs_cache_d) {
605 if (do_inv) {
606 if (rd_only)
607 cpu_dcache_inv_range(va, len);
608 else
609 cpu_dcache_wbinv_range(va, len);
610 } else
611 if (!rd_only)
612 cpu_dcache_wb_range(va, len);
613 }
614 }
615
616 static inline void
617 pmap_idcache_wbinv_all(pmap_t pm)
618 {
619
620 if (pm->pm_cstate.cs_cache_id) {
621 cpu_idcache_wbinv_all();
622 pm->pm_cstate.cs_cache = 0;
623 }
624 }
625
626 static inline void
627 pmap_dcache_wbinv_all(pmap_t pm)
628 {
629
630 if (pm->pm_cstate.cs_cache_d) {
631 cpu_dcache_wbinv_all();
632 pm->pm_cstate.cs_cache_d = 0;
633 }
634 }
635
636 static inline bool
637 pmap_is_current(pmap_t pm)
638 {
639
640 if (pm == pmap_kernel() ||
641 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
642 return (true);
643
644 return (false);
645 }
646
647 static inline bool
648 pmap_is_cached(pmap_t pm)
649 {
650
651 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
652 pmap_recent_user == pm)
653 return (true);
654
655 return (false);
656 }
657
658 /*
659 * PTE_SYNC_CURRENT:
660 *
661 * Make sure the pte is written out to RAM.
662 * We need to do this for one of two cases:
663 * - We're dealing with the kernel pmap
664 * - There is no pmap active in the cache/tlb.
665 * - The specified pmap is 'active' in the cache/tlb.
666 */
667 #ifdef PMAP_INCLUDE_PTE_SYNC
668 #define PTE_SYNC_CURRENT(pm, ptep) \
669 do { \
670 if (PMAP_NEEDS_PTE_SYNC && \
671 pmap_is_cached(pm)) \
672 PTE_SYNC(ptep); \
673 } while (/*CONSTCOND*/0)
674 #else
675 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
676 #endif
677
678 /*
679 * main pv_entry manipulation functions:
680 * pmap_enter_pv: enter a mapping onto a vm_page list
681 * pmap_remove_pv: remove a mappiing from a vm_page list
682 *
683 * NOTE: pmap_enter_pv expects to lock the pvh itself
684 * pmap_remove_pv expects te caller to lock the pvh before calling
685 */
686
687 /*
688 * pmap_enter_pv: enter a mapping onto a vm_page lst
689 *
690 * => caller should hold the proper lock on pmap_main_lock
691 * => caller should have pmap locked
692 * => we will gain the lock on the vm_page and allocate the new pv_entry
693 * => caller should adjust ptp's wire_count before calling
694 * => caller should not adjust pmap's wire_count
695 */
696 static void
697 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
698 vaddr_t va, u_int flags)
699 {
700
701 NPDEBUG(PDB_PVDUMP,
702 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
703
704 pve->pv_pmap = pm;
705 pve->pv_va = va;
706 pve->pv_flags = flags;
707
708 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
709 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
710 pg->mdpage.pvh_list = pve; /* ... locked list */
711 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
712 if (pm == pmap_kernel()) {
713 if (flags & PVF_WRITE)
714 pg->mdpage.krw_mappings++;
715 else
716 pg->mdpage.kro_mappings++;
717 } else
718 if (flags & PVF_WRITE)
719 pg->mdpage.urw_mappings++;
720 else
721 pg->mdpage.uro_mappings++;
722 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
723
724 if (pve->pv_flags & PVF_WIRED)
725 ++pm->pm_stats.wired_count;
726 }
727
728 /*
729 *
730 * pmap_find_pv: Find a pv entry
731 *
732 * => caller should hold lock on vm_page
733 */
734 static inline struct pv_entry *
735 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
736 {
737 struct pv_entry *pv;
738
739 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
740 if (pm == pv->pv_pmap && va == pv->pv_va)
741 break;
742 }
743
744 return (pv);
745 }
746
747 /*
748 * pmap_remove_pv: try to remove a mapping from a pv_list
749 *
750 * => caller should hold proper lock on pmap_main_lock
751 * => pmap should be locked
752 * => caller should hold lock on vm_page [so that attrs can be adjusted]
753 * => caller should adjust ptp's wire_count and free PTP if needed
754 * => caller should NOT adjust pmap's wire_count
755 * => we return the removed pve
756 */
757 static struct pv_entry *
758 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
759 {
760 struct pv_entry *pve, **prevptr;
761
762 NPDEBUG(PDB_PVDUMP,
763 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
764
765 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
766 pve = *prevptr;
767
768 while (pve) {
769 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
770 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
771 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
772 if (pve->pv_flags & PVF_WIRED) {
773 if (skip_wired)
774 return (NULL);
775 --pm->pm_stats.wired_count;
776 }
777 *prevptr = pve->pv_next; /* remove it! */
778 if (pm == pmap_kernel()) {
779 if (pve->pv_flags & PVF_WRITE)
780 pg->mdpage.krw_mappings--;
781 else
782 pg->mdpage.kro_mappings--;
783 } else
784 if (pve->pv_flags & PVF_WRITE)
785 pg->mdpage.urw_mappings--;
786 else
787 pg->mdpage.uro_mappings--;
788 break;
789 }
790 prevptr = &pve->pv_next; /* previous pointer */
791 pve = pve->pv_next; /* advance */
792 }
793
794 return(pve); /* return removed pve */
795 }
796
797 /*
798 *
799 * pmap_modify_pv: Update pv flags
800 *
801 * => caller should hold lock on vm_page [so that attrs can be adjusted]
802 * => caller should NOT adjust pmap's wire_count
803 * => caller must call pmap_vac_me_harder() if writable status of a page
804 * may have changed.
805 * => we return the old flags
806 *
807 * Modify a physical-virtual mapping in the pv table
808 */
809 static u_int
810 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
811 u_int clr_mask, u_int set_mask)
812 {
813 struct pv_entry *npv;
814 u_int flags, oflags;
815
816 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
817 return (0);
818
819 NPDEBUG(PDB_PVDUMP,
820 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
821
822 /*
823 * There is at least one VA mapping this page.
824 */
825
826 if (clr_mask & (PVF_REF | PVF_MOD))
827 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
828
829 oflags = npv->pv_flags;
830 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
831
832 if ((flags ^ oflags) & PVF_WIRED) {
833 if (flags & PVF_WIRED)
834 ++pm->pm_stats.wired_count;
835 else
836 --pm->pm_stats.wired_count;
837 }
838
839 if ((flags ^ oflags) & PVF_WRITE) {
840 if (pm == pmap_kernel()) {
841 if (flags & PVF_WRITE) {
842 pg->mdpage.krw_mappings++;
843 pg->mdpage.kro_mappings--;
844 } else {
845 pg->mdpage.kro_mappings++;
846 pg->mdpage.krw_mappings--;
847 }
848 } else
849 if (flags & PVF_WRITE) {
850 pg->mdpage.urw_mappings++;
851 pg->mdpage.uro_mappings--;
852 } else {
853 pg->mdpage.uro_mappings++;
854 pg->mdpage.urw_mappings--;
855 }
856 }
857
858 return (oflags);
859 }
860
861 /*
862 * Allocate an L1 translation table for the specified pmap.
863 * This is called at pmap creation time.
864 */
865 static void
866 pmap_alloc_l1(pmap_t pm)
867 {
868 struct l1_ttable *l1;
869 u_int8_t domain;
870
871 /*
872 * Remove the L1 at the head of the LRU list
873 */
874 simple_lock(&l1_lru_lock);
875 l1 = TAILQ_FIRST(&l1_lru_list);
876 KDASSERT(l1 != NULL);
877 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
878
879 /*
880 * Pick the first available domain number, and update
881 * the link to the next number.
882 */
883 domain = l1->l1_domain_first;
884 l1->l1_domain_first = l1->l1_domain_free[domain];
885
886 /*
887 * If there are still free domain numbers in this L1,
888 * put it back on the TAIL of the LRU list.
889 */
890 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
891 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
892
893 simple_unlock(&l1_lru_lock);
894
895 /*
896 * Fix up the relevant bits in the pmap structure
897 */
898 pm->pm_l1 = l1;
899 pm->pm_domain = domain;
900 }
901
902 /*
903 * Free an L1 translation table.
904 * This is called at pmap destruction time.
905 */
906 static void
907 pmap_free_l1(pmap_t pm)
908 {
909 struct l1_ttable *l1 = pm->pm_l1;
910
911 simple_lock(&l1_lru_lock);
912
913 /*
914 * If this L1 is currently on the LRU list, remove it.
915 */
916 if (l1->l1_domain_use_count < PMAP_DOMAINS)
917 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
918
919 /*
920 * Free up the domain number which was allocated to the pmap
921 */
922 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
923 l1->l1_domain_first = pm->pm_domain;
924 l1->l1_domain_use_count--;
925
926 /*
927 * The L1 now must have at least 1 free domain, so add
928 * it back to the LRU list. If the use count is zero,
929 * put it at the head of the list, otherwise it goes
930 * to the tail.
931 */
932 if (l1->l1_domain_use_count == 0)
933 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
934 else
935 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
936
937 simple_unlock(&l1_lru_lock);
938 }
939
940 static inline void
941 pmap_use_l1(pmap_t pm)
942 {
943 struct l1_ttable *l1;
944
945 /*
946 * Do nothing if we're in interrupt context.
947 * Access to an L1 by the kernel pmap must not affect
948 * the LRU list.
949 */
950 if (cpu_intr_p() || pm == pmap_kernel())
951 return;
952
953 l1 = pm->pm_l1;
954
955 /*
956 * If the L1 is not currently on the LRU list, just return
957 */
958 if (l1->l1_domain_use_count == PMAP_DOMAINS)
959 return;
960
961 simple_lock(&l1_lru_lock);
962
963 /*
964 * Check the use count again, now that we've acquired the lock
965 */
966 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
967 simple_unlock(&l1_lru_lock);
968 return;
969 }
970
971 /*
972 * Move the L1 to the back of the LRU list
973 */
974 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
975 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
976
977 simple_unlock(&l1_lru_lock);
978 }
979
980 /*
981 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
982 *
983 * Free an L2 descriptor table.
984 */
985 static inline void
986 #ifndef PMAP_INCLUDE_PTE_SYNC
987 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
988 #else
989 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
990 #endif
991 {
992 #ifdef PMAP_INCLUDE_PTE_SYNC
993 /*
994 * Note: With a write-back cache, we may need to sync this
995 * L2 table before re-using it.
996 * This is because it may have belonged to a non-current
997 * pmap, in which case the cache syncs would have been
998 * skipped when the pages were being unmapped. If the
999 * L2 table were then to be immediately re-allocated to
1000 * the *current* pmap, it may well contain stale mappings
1001 * which have not yet been cleared by a cache write-back
1002 * and so would still be visible to the mmu.
1003 */
1004 if (need_sync)
1005 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1006 #endif
1007 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1008 }
1009
1010 /*
1011 * Returns a pointer to the L2 bucket associated with the specified pmap
1012 * and VA, or NULL if no L2 bucket exists for the address.
1013 */
1014 static inline struct l2_bucket *
1015 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1016 {
1017 struct l2_dtable *l2;
1018 struct l2_bucket *l2b;
1019 u_short l1idx;
1020
1021 l1idx = L1_IDX(va);
1022
1023 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1024 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1025 return (NULL);
1026
1027 return (l2b);
1028 }
1029
1030 /*
1031 * Returns a pointer to the L2 bucket associated with the specified pmap
1032 * and VA.
1033 *
1034 * If no L2 bucket exists, perform the necessary allocations to put an L2
1035 * bucket/page table in place.
1036 *
1037 * Note that if a new L2 bucket/page was allocated, the caller *must*
1038 * increment the bucket occupancy counter appropriately *before*
1039 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1040 * the bucket/page in the meantime.
1041 */
1042 static struct l2_bucket *
1043 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1044 {
1045 struct l2_dtable *l2;
1046 struct l2_bucket *l2b;
1047 u_short l1idx;
1048
1049 l1idx = L1_IDX(va);
1050
1051 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1052 /*
1053 * No mapping at this address, as there is
1054 * no entry in the L1 table.
1055 * Need to allocate a new l2_dtable.
1056 */
1057 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1058 return (NULL);
1059
1060 /*
1061 * Link it into the parent pmap
1062 */
1063 pm->pm_l2[L2_IDX(l1idx)] = l2;
1064 }
1065
1066 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1067
1068 /*
1069 * Fetch pointer to the L2 page table associated with the address.
1070 */
1071 if (l2b->l2b_kva == NULL) {
1072 pt_entry_t *ptep;
1073
1074 /*
1075 * No L2 page table has been allocated. Chances are, this
1076 * is because we just allocated the l2_dtable, above.
1077 */
1078 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1079 /*
1080 * Oops, no more L2 page tables available at this
1081 * time. We may need to deallocate the l2_dtable
1082 * if we allocated a new one above.
1083 */
1084 if (l2->l2_occupancy == 0) {
1085 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1086 pmap_free_l2_dtable(l2);
1087 }
1088 return (NULL);
1089 }
1090
1091 l2->l2_occupancy++;
1092 l2b->l2b_kva = ptep;
1093 l2b->l2b_l1idx = l1idx;
1094 }
1095
1096 return (l2b);
1097 }
1098
1099 /*
1100 * One or more mappings in the specified L2 descriptor table have just been
1101 * invalidated.
1102 *
1103 * Garbage collect the metadata and descriptor table itself if necessary.
1104 *
1105 * The pmap lock must be acquired when this is called (not necessary
1106 * for the kernel pmap).
1107 */
1108 static void
1109 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1110 {
1111 struct l2_dtable *l2;
1112 pd_entry_t *pl1pd, l1pd;
1113 pt_entry_t *ptep;
1114 u_short l1idx;
1115
1116 KDASSERT(count <= l2b->l2b_occupancy);
1117
1118 /*
1119 * Update the bucket's reference count according to how many
1120 * PTEs the caller has just invalidated.
1121 */
1122 l2b->l2b_occupancy -= count;
1123
1124 /*
1125 * Note:
1126 *
1127 * Level 2 page tables allocated to the kernel pmap are never freed
1128 * as that would require checking all Level 1 page tables and
1129 * removing any references to the Level 2 page table. See also the
1130 * comment elsewhere about never freeing bootstrap L2 descriptors.
1131 *
1132 * We make do with just invalidating the mapping in the L2 table.
1133 *
1134 * This isn't really a big deal in practice and, in fact, leads
1135 * to a performance win over time as we don't need to continually
1136 * alloc/free.
1137 */
1138 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1139 return;
1140
1141 /*
1142 * There are no more valid mappings in this level 2 page table.
1143 * Go ahead and NULL-out the pointer in the bucket, then
1144 * free the page table.
1145 */
1146 l1idx = l2b->l2b_l1idx;
1147 ptep = l2b->l2b_kva;
1148 l2b->l2b_kva = NULL;
1149
1150 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1151
1152 /*
1153 * If the L1 slot matches the pmap's domain
1154 * number, then invalidate it.
1155 */
1156 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1157 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1158 *pl1pd = 0;
1159 PTE_SYNC(pl1pd);
1160 }
1161
1162 /*
1163 * Release the L2 descriptor table back to the pool cache.
1164 */
1165 #ifndef PMAP_INCLUDE_PTE_SYNC
1166 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1167 #else
1168 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1169 #endif
1170
1171 /*
1172 * Update the reference count in the associated l2_dtable
1173 */
1174 l2 = pm->pm_l2[L2_IDX(l1idx)];
1175 if (--l2->l2_occupancy > 0)
1176 return;
1177
1178 /*
1179 * There are no more valid mappings in any of the Level 1
1180 * slots managed by this l2_dtable. Go ahead and NULL-out
1181 * the pointer in the parent pmap and free the l2_dtable.
1182 */
1183 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1184 pmap_free_l2_dtable(l2);
1185 }
1186
1187 /*
1188 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1189 * structures.
1190 */
1191 static int
1192 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1193 {
1194 #ifndef PMAP_INCLUDE_PTE_SYNC
1195 struct l2_bucket *l2b;
1196 pt_entry_t *ptep, pte;
1197 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1198
1199 /*
1200 * The mappings for these page tables were initially made using
1201 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1202 * mode will not be right for page table mappings. To avoid
1203 * polluting the pmap_kenter_pa() code with a special case for
1204 * page tables, we simply fix up the cache-mode here if it's not
1205 * correct.
1206 */
1207 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1208 KDASSERT(l2b != NULL);
1209 ptep = &l2b->l2b_kva[l2pte_index(va)];
1210 pte = *ptep;
1211
1212 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1213 /*
1214 * Page tables must have the cache-mode set to Write-Thru.
1215 */
1216 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1217 PTE_SYNC(ptep);
1218 cpu_tlb_flushD_SE(va);
1219 cpu_cpwait();
1220 }
1221 #endif
1222
1223 memset(v, 0, L2_TABLE_SIZE_REAL);
1224 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1225 return (0);
1226 }
1227
1228 static int
1229 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1230 {
1231
1232 memset(v, 0, sizeof(struct l2_dtable));
1233 return (0);
1234 }
1235
1236 static int
1237 pmap_pmap_ctor(void *arg, void *v, int flags)
1238 {
1239
1240 memset(v, 0, sizeof(struct pmap));
1241 return (0);
1242 }
1243
1244 static void
1245 pmap_pinit(pmap_t pm)
1246 {
1247 struct l2_bucket *l2b;
1248
1249 if (vector_page < KERNEL_BASE) {
1250 /*
1251 * Map the vector page.
1252 */
1253 pmap_enter(pm, vector_page, systempage.pv_pa,
1254 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1255 pmap_update(pm);
1256
1257 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1258 l2b = pmap_get_l2_bucket(pm, vector_page);
1259 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1260 L1_C_DOM(pm->pm_domain);
1261 } else
1262 pm->pm_pl1vec = NULL;
1263 }
1264
1265 /*
1266 * Since we have a virtually indexed cache, we may need to inhibit caching if
1267 * there is more than one mapping and at least one of them is writable.
1268 * Since we purge the cache on every context switch, we only need to check for
1269 * other mappings within the same pmap, or kernel_pmap.
1270 * This function is also called when a page is unmapped, to possibly reenable
1271 * caching on any remaining mappings.
1272 *
1273 * The code implements the following logic, where:
1274 *
1275 * KW = # of kernel read/write pages
1276 * KR = # of kernel read only pages
1277 * UW = # of user read/write pages
1278 * UR = # of user read only pages
1279 *
1280 * KC = kernel mapping is cacheable
1281 * UC = user mapping is cacheable
1282 *
1283 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1284 * +---------------------------------------------
1285 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1286 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1287 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1288 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1289 */
1290
1291 static const int pmap_vac_flags[4][4] = {
1292 {-1, 0, 0, PVF_KNC},
1293 {0, 0, PVF_NC, PVF_NC},
1294 {0, PVF_NC, PVF_NC, PVF_NC},
1295 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1296 };
1297
1298 static inline int
1299 pmap_get_vac_flags(const struct vm_page *pg)
1300 {
1301 int kidx, uidx;
1302
1303 kidx = 0;
1304 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1305 kidx |= 1;
1306 if (pg->mdpage.krw_mappings)
1307 kidx |= 2;
1308
1309 uidx = 0;
1310 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1311 uidx |= 1;
1312 if (pg->mdpage.urw_mappings)
1313 uidx |= 2;
1314
1315 return (pmap_vac_flags[uidx][kidx]);
1316 }
1317
1318 static inline void
1319 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1320 {
1321 int nattr;
1322
1323 nattr = pmap_get_vac_flags(pg);
1324
1325 if (nattr < 0) {
1326 pg->mdpage.pvh_attrs &= ~PVF_NC;
1327 return;
1328 }
1329
1330 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1331 return;
1332
1333 if (pm == pmap_kernel())
1334 pmap_vac_me_kpmap(pg, pm, va);
1335 else
1336 pmap_vac_me_user(pg, pm, va);
1337
1338 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1339 }
1340
1341 static void
1342 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1343 {
1344 u_int u_cacheable, u_entries;
1345 struct pv_entry *pv;
1346 pmap_t last_pmap = pm;
1347
1348 /*
1349 * Pass one, see if there are both kernel and user pmaps for
1350 * this page. Calculate whether there are user-writable or
1351 * kernel-writable pages.
1352 */
1353 u_cacheable = 0;
1354 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1355 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1356 u_cacheable++;
1357 }
1358
1359 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1360
1361 /*
1362 * We know we have just been updating a kernel entry, so if
1363 * all user pages are already cacheable, then there is nothing
1364 * further to do.
1365 */
1366 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1367 return;
1368
1369 if (u_entries) {
1370 /*
1371 * Scan over the list again, for each entry, if it
1372 * might not be set correctly, call pmap_vac_me_user
1373 * to recalculate the settings.
1374 */
1375 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1376 /*
1377 * We know kernel mappings will get set
1378 * correctly in other calls. We also know
1379 * that if the pmap is the same as last_pmap
1380 * then we've just handled this entry.
1381 */
1382 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1383 continue;
1384
1385 /*
1386 * If there are kernel entries and this page
1387 * is writable but non-cacheable, then we can
1388 * skip this entry also.
1389 */
1390 if (pg->mdpage.k_mappings &&
1391 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1392 (PVF_NC | PVF_WRITE))
1393 continue;
1394
1395 /*
1396 * Similarly if there are no kernel-writable
1397 * entries and the page is already
1398 * read-only/cacheable.
1399 */
1400 if (pg->mdpage.krw_mappings == 0 &&
1401 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1402 continue;
1403
1404 /*
1405 * For some of the remaining cases, we know
1406 * that we must recalculate, but for others we
1407 * can't tell if they are correct or not, so
1408 * we recalculate anyway.
1409 */
1410 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1411 }
1412
1413 if (pg->mdpage.k_mappings == 0)
1414 return;
1415 }
1416
1417 pmap_vac_me_user(pg, pm, va);
1418 }
1419
1420 static void
1421 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1422 {
1423 pmap_t kpmap = pmap_kernel();
1424 struct pv_entry *pv, *npv;
1425 struct l2_bucket *l2b;
1426 pt_entry_t *ptep, pte;
1427 u_int entries = 0;
1428 u_int writable = 0;
1429 u_int cacheable_entries = 0;
1430 u_int kern_cacheable = 0;
1431 u_int other_writable = 0;
1432
1433 /*
1434 * Count mappings and writable mappings in this pmap.
1435 * Include kernel mappings as part of our own.
1436 * Keep a pointer to the first one.
1437 */
1438 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1439 /* Count mappings in the same pmap */
1440 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1441 if (entries++ == 0)
1442 npv = pv;
1443
1444 /* Cacheable mappings */
1445 if ((pv->pv_flags & PVF_NC) == 0) {
1446 cacheable_entries++;
1447 if (kpmap == pv->pv_pmap)
1448 kern_cacheable++;
1449 }
1450
1451 /* Writable mappings */
1452 if (pv->pv_flags & PVF_WRITE)
1453 ++writable;
1454 } else
1455 if (pv->pv_flags & PVF_WRITE)
1456 other_writable = 1;
1457 }
1458
1459 /*
1460 * Enable or disable caching as necessary.
1461 * Note: the first entry might be part of the kernel pmap,
1462 * so we can't assume this is indicative of the state of the
1463 * other (maybe non-kpmap) entries.
1464 */
1465 if ((entries > 1 && writable) ||
1466 (entries > 0 && pm == kpmap && other_writable)) {
1467 if (cacheable_entries == 0)
1468 return;
1469
1470 for (pv = npv; pv; pv = pv->pv_next) {
1471 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1472 (pv->pv_flags & PVF_NC))
1473 continue;
1474
1475 pv->pv_flags |= PVF_NC;
1476
1477 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1478 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1479 pte = *ptep & ~L2_S_CACHE_MASK;
1480
1481 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1482 l2pte_valid(pte)) {
1483 if (PV_BEEN_EXECD(pv->pv_flags)) {
1484 pmap_idcache_wbinv_range(pv->pv_pmap,
1485 pv->pv_va, PAGE_SIZE);
1486 pmap_tlb_flushID_SE(pv->pv_pmap,
1487 pv->pv_va);
1488 } else
1489 if (PV_BEEN_REFD(pv->pv_flags)) {
1490 pmap_dcache_wb_range(pv->pv_pmap,
1491 pv->pv_va, PAGE_SIZE, true,
1492 (pv->pv_flags & PVF_WRITE) == 0);
1493 pmap_tlb_flushD_SE(pv->pv_pmap,
1494 pv->pv_va);
1495 }
1496 }
1497
1498 *ptep = pte;
1499 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1500 }
1501 cpu_cpwait();
1502 } else
1503 if (entries > cacheable_entries) {
1504 /*
1505 * Turn cacheing back on for some pages. If it is a kernel
1506 * page, only do so if there are no other writable pages.
1507 */
1508 for (pv = npv; pv; pv = pv->pv_next) {
1509 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1510 (kpmap != pv->pv_pmap || other_writable)))
1511 continue;
1512
1513 pv->pv_flags &= ~PVF_NC;
1514
1515 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1516 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1517 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1518
1519 if (l2pte_valid(pte)) {
1520 if (PV_BEEN_EXECD(pv->pv_flags)) {
1521 pmap_tlb_flushID_SE(pv->pv_pmap,
1522 pv->pv_va);
1523 } else
1524 if (PV_BEEN_REFD(pv->pv_flags)) {
1525 pmap_tlb_flushD_SE(pv->pv_pmap,
1526 pv->pv_va);
1527 }
1528 }
1529
1530 *ptep = pte;
1531 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1532 }
1533 }
1534 }
1535
1536 /*
1537 * Modify pte bits for all ptes corresponding to the given physical address.
1538 * We use `maskbits' rather than `clearbits' because we're always passing
1539 * constants and the latter would require an extra inversion at run-time.
1540 */
1541 static void
1542 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1543 {
1544 struct l2_bucket *l2b;
1545 struct pv_entry *pv;
1546 pt_entry_t *ptep, npte, opte;
1547 pmap_t pm;
1548 vaddr_t va;
1549 u_int oflags;
1550
1551 NPDEBUG(PDB_BITS,
1552 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1553 pg, VM_PAGE_TO_PHYS(pg), maskbits));
1554
1555 PMAP_HEAD_TO_MAP_LOCK();
1556 simple_lock(&pg->mdpage.pvh_slock);
1557
1558 /*
1559 * Clear saved attributes (modify, reference)
1560 */
1561 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1562
1563 if (pg->mdpage.pvh_list == NULL) {
1564 simple_unlock(&pg->mdpage.pvh_slock);
1565 PMAP_HEAD_TO_MAP_UNLOCK();
1566 return;
1567 }
1568
1569 /*
1570 * Loop over all current mappings setting/clearing as appropos
1571 */
1572 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1573 va = pv->pv_va;
1574 pm = pv->pv_pmap;
1575 oflags = pv->pv_flags;
1576 pv->pv_flags &= ~maskbits;
1577
1578 pmap_acquire_pmap_lock(pm);
1579
1580 l2b = pmap_get_l2_bucket(pm, va);
1581 KDASSERT(l2b != NULL);
1582
1583 ptep = &l2b->l2b_kva[l2pte_index(va)];
1584 npte = opte = *ptep;
1585
1586 NPDEBUG(PDB_BITS,
1587 printf(
1588 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1589 pv, pv->pv_pmap, pv->pv_va, oflags));
1590
1591 if (maskbits & (PVF_WRITE|PVF_MOD)) {
1592 if ((pv->pv_flags & PVF_NC)) {
1593 /*
1594 * Entry is not cacheable:
1595 *
1596 * Don't turn caching on again if this is a
1597 * modified emulation. This would be
1598 * inconsitent with the settings created by
1599 * pmap_vac_me_harder(). Otherwise, it's safe
1600 * to re-enable cacheing.
1601 *
1602 * There's no need to call pmap_vac_me_harder()
1603 * here: all pages are losing their write
1604 * permission.
1605 */
1606 if (maskbits & PVF_WRITE) {
1607 npte |= pte_l2_s_cache_mode;
1608 pv->pv_flags &= ~PVF_NC;
1609 }
1610 } else
1611 if (opte & L2_S_PROT_W) {
1612 /*
1613 * Entry is writable/cacheable: check if pmap
1614 * is current if it is flush it, otherwise it
1615 * won't be in the cache
1616 */
1617 if (PV_BEEN_EXECD(oflags))
1618 pmap_idcache_wbinv_range(pm, pv->pv_va,
1619 PAGE_SIZE);
1620 else
1621 if (PV_BEEN_REFD(oflags))
1622 pmap_dcache_wb_range(pm, pv->pv_va,
1623 PAGE_SIZE,
1624 (maskbits & PVF_REF) ? true : false,
1625 false);
1626 }
1627
1628 /* make the pte read only */
1629 npte &= ~L2_S_PROT_W;
1630
1631 if (maskbits & PVF_WRITE) {
1632 /*
1633 * Keep alias accounting up to date
1634 */
1635 if (pv->pv_pmap == pmap_kernel()) {
1636 if (oflags & PVF_WRITE) {
1637 pg->mdpage.krw_mappings--;
1638 pg->mdpage.kro_mappings++;
1639 }
1640 } else
1641 if (oflags & PVF_WRITE) {
1642 pg->mdpage.urw_mappings--;
1643 pg->mdpage.uro_mappings++;
1644 }
1645 }
1646 }
1647
1648 if (maskbits & PVF_REF) {
1649 if ((pv->pv_flags & PVF_NC) == 0 &&
1650 (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1651 /*
1652 * Check npte here; we may have already
1653 * done the wbinv above, and the validity
1654 * of the PTE is the same for opte and
1655 * npte.
1656 */
1657 if (npte & L2_S_PROT_W) {
1658 if (PV_BEEN_EXECD(oflags))
1659 pmap_idcache_wbinv_range(pm,
1660 pv->pv_va, PAGE_SIZE);
1661 else
1662 if (PV_BEEN_REFD(oflags))
1663 pmap_dcache_wb_range(pm,
1664 pv->pv_va, PAGE_SIZE,
1665 true, false);
1666 } else
1667 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1668 /* XXXJRT need idcache_inv_range */
1669 if (PV_BEEN_EXECD(oflags))
1670 pmap_idcache_wbinv_range(pm,
1671 pv->pv_va, PAGE_SIZE);
1672 else
1673 if (PV_BEEN_REFD(oflags))
1674 pmap_dcache_wb_range(pm,
1675 pv->pv_va, PAGE_SIZE,
1676 true, true);
1677 }
1678 }
1679
1680 /*
1681 * Make the PTE invalid so that we will take a
1682 * page fault the next time the mapping is
1683 * referenced.
1684 */
1685 npte &= ~L2_TYPE_MASK;
1686 npte |= L2_TYPE_INV;
1687 }
1688
1689 if (npte != opte) {
1690 *ptep = npte;
1691 PTE_SYNC(ptep);
1692 /* Flush the TLB entry if a current pmap. */
1693 if (PV_BEEN_EXECD(oflags))
1694 pmap_tlb_flushID_SE(pm, pv->pv_va);
1695 else
1696 if (PV_BEEN_REFD(oflags))
1697 pmap_tlb_flushD_SE(pm, pv->pv_va);
1698 }
1699
1700 pmap_release_pmap_lock(pm);
1701
1702 NPDEBUG(PDB_BITS,
1703 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1704 pm, va, opte, npte));
1705 }
1706
1707 simple_unlock(&pg->mdpage.pvh_slock);
1708 PMAP_HEAD_TO_MAP_UNLOCK();
1709 }
1710
1711 /*
1712 * pmap_clean_page()
1713 *
1714 * This is a local function used to work out the best strategy to clean
1715 * a single page referenced by its entry in the PV table. It's used by
1716 * pmap_copy_page, pmap_zero page and maybe some others later on.
1717 *
1718 * Its policy is effectively:
1719 * o If there are no mappings, we don't bother doing anything with the cache.
1720 * o If there is one mapping, we clean just that page.
1721 * o If there are multiple mappings, we clean the entire cache.
1722 *
1723 * So that some functions can be further optimised, it returns 0 if it didn't
1724 * clean the entire cache, or 1 if it did.
1725 *
1726 * XXX One bug in this routine is that if the pv_entry has a single page
1727 * mapped at 0x00000000 a whole cache clean will be performed rather than
1728 * just the 1 page. Since this should not occur in everyday use and if it does
1729 * it will just result in not the most efficient clean for the page.
1730 */
1731 static int
1732 pmap_clean_page(struct pv_entry *pv, bool is_src)
1733 {
1734 pmap_t pm, pm_to_clean = NULL;
1735 struct pv_entry *npv;
1736 u_int cache_needs_cleaning = 0;
1737 u_int flags = 0;
1738 vaddr_t page_to_clean = 0;
1739
1740 if (pv == NULL) {
1741 /* nothing mapped in so nothing to flush */
1742 return (0);
1743 }
1744
1745 /*
1746 * Since we flush the cache each time we change to a different
1747 * user vmspace, we only need to flush the page if it is in the
1748 * current pmap.
1749 */
1750 if (curproc)
1751 pm = curproc->p_vmspace->vm_map.pmap;
1752 else
1753 pm = pmap_kernel();
1754
1755 for (npv = pv; npv; npv = npv->pv_next) {
1756 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1757 flags |= npv->pv_flags;
1758 /*
1759 * The page is mapped non-cacheable in
1760 * this map. No need to flush the cache.
1761 */
1762 if (npv->pv_flags & PVF_NC) {
1763 #ifdef DIAGNOSTIC
1764 if (cache_needs_cleaning)
1765 panic("pmap_clean_page: "
1766 "cache inconsistency");
1767 #endif
1768 break;
1769 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1770 continue;
1771 if (cache_needs_cleaning) {
1772 page_to_clean = 0;
1773 break;
1774 } else {
1775 page_to_clean = npv->pv_va;
1776 pm_to_clean = npv->pv_pmap;
1777 }
1778 cache_needs_cleaning = 1;
1779 }
1780 }
1781
1782 if (page_to_clean) {
1783 if (PV_BEEN_EXECD(flags))
1784 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1785 PAGE_SIZE);
1786 else
1787 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1788 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1789 } else if (cache_needs_cleaning) {
1790 if (PV_BEEN_EXECD(flags))
1791 pmap_idcache_wbinv_all(pm);
1792 else
1793 pmap_dcache_wbinv_all(pm);
1794 return (1);
1795 }
1796 return (0);
1797 }
1798
1799 /*
1800 * Routine: pmap_page_remove
1801 * Function:
1802 * Removes this physical page from
1803 * all physical maps in which it resides.
1804 * Reflects back modify bits to the pager.
1805 */
1806 static void
1807 pmap_page_remove(struct vm_page *pg)
1808 {
1809 struct l2_bucket *l2b;
1810 struct pv_entry *pv, *npv;
1811 pmap_t pm, curpm;
1812 pt_entry_t *ptep, pte;
1813 bool flush;
1814 u_int flags;
1815
1816 NPDEBUG(PDB_FOLLOW,
1817 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
1818 VM_PAGE_TO_PHYS(pg)));
1819
1820 PMAP_HEAD_TO_MAP_LOCK();
1821 simple_lock(&pg->mdpage.pvh_slock);
1822
1823 pv = pg->mdpage.pvh_list;
1824 if (pv == NULL) {
1825 simple_unlock(&pg->mdpage.pvh_slock);
1826 PMAP_HEAD_TO_MAP_UNLOCK();
1827 return;
1828 }
1829
1830 /*
1831 * Clear alias counts
1832 */
1833 pg->mdpage.k_mappings = 0;
1834 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1835
1836 flush = false;
1837 flags = 0;
1838 if (curproc)
1839 curpm = curproc->p_vmspace->vm_map.pmap;
1840 else
1841 curpm = pmap_kernel();
1842
1843 pmap_clean_page(pv, false);
1844
1845 while (pv) {
1846 pm = pv->pv_pmap;
1847 if (flush == false && (pm == curpm || pm == pmap_kernel()))
1848 flush = true;
1849
1850 pmap_acquire_pmap_lock(pm);
1851
1852 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1853 KDASSERT(l2b != NULL);
1854
1855 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1856 pte = *ptep;
1857
1858 /*
1859 * Update statistics
1860 */
1861 --pm->pm_stats.resident_count;
1862
1863 /* Wired bit */
1864 if (pv->pv_flags & PVF_WIRED)
1865 --pm->pm_stats.wired_count;
1866
1867 flags |= pv->pv_flags;
1868
1869 /*
1870 * Invalidate the PTEs.
1871 */
1872 *ptep = 0;
1873 PTE_SYNC_CURRENT(pm, ptep);
1874 pmap_free_l2_bucket(pm, l2b, 1);
1875
1876 npv = pv->pv_next;
1877 pool_put(&pmap_pv_pool, pv);
1878 pv = npv;
1879 pmap_release_pmap_lock(pm);
1880 }
1881 pg->mdpage.pvh_list = NULL;
1882 simple_unlock(&pg->mdpage.pvh_slock);
1883 PMAP_HEAD_TO_MAP_UNLOCK();
1884
1885 if (flush) {
1886 /*
1887 * Note: We can't use pmap_tlb_flush{I,}D() here since that
1888 * would need a subsequent call to pmap_update() to ensure
1889 * curpm->pm_cstate.cs_all is reset. Our callers are not
1890 * required to do that (see pmap(9)), so we can't modify
1891 * the current pmap's state.
1892 */
1893 if (PV_BEEN_EXECD(flags))
1894 cpu_tlb_flushID();
1895 else
1896 cpu_tlb_flushD();
1897 }
1898 cpu_cpwait();
1899 }
1900
1901 /*
1902 * pmap_t pmap_create(void)
1903 *
1904 * Create a new pmap structure from scratch.
1905 */
1906 pmap_t
1907 pmap_create(void)
1908 {
1909 pmap_t pm;
1910
1911 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
1912
1913 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
1914 pm->pm_stats.wired_count = 0;
1915 pm->pm_stats.resident_count = 1;
1916 pm->pm_cstate.cs_all = 0;
1917 pmap_alloc_l1(pm);
1918
1919 /*
1920 * Note: The pool cache ensures that the pm_l2[] array is already
1921 * initialised to zero.
1922 */
1923
1924 pmap_pinit(pm);
1925
1926 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1927
1928 return (pm);
1929 }
1930
1931 /*
1932 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1933 * int flags)
1934 *
1935 * Insert the given physical page (p) at
1936 * the specified virtual address (v) in the
1937 * target physical map with the protection requested.
1938 *
1939 * NB: This is the only routine which MAY NOT lazy-evaluate
1940 * or lose information. That is, this routine must actually
1941 * insert this page into the given map NOW.
1942 */
1943 int
1944 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1945 {
1946 struct l2_bucket *l2b;
1947 struct vm_page *pg, *opg;
1948 struct pv_entry *pve;
1949 pt_entry_t *ptep, npte, opte;
1950 u_int nflags;
1951 u_int oflags;
1952
1953 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1954
1955 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1956 KDASSERT(((va | pa) & PGOFSET) == 0);
1957
1958 /*
1959 * Get a pointer to the page. Later on in this function, we
1960 * test for a managed page by checking pg != NULL.
1961 */
1962 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1963
1964 nflags = 0;
1965 if (prot & VM_PROT_WRITE)
1966 nflags |= PVF_WRITE;
1967 if (prot & VM_PROT_EXECUTE)
1968 nflags |= PVF_EXEC;
1969 if (flags & PMAP_WIRED)
1970 nflags |= PVF_WIRED;
1971
1972 PMAP_MAP_TO_HEAD_LOCK();
1973 pmap_acquire_pmap_lock(pm);
1974
1975 /*
1976 * Fetch the L2 bucket which maps this page, allocating one if
1977 * necessary for user pmaps.
1978 */
1979 if (pm == pmap_kernel())
1980 l2b = pmap_get_l2_bucket(pm, va);
1981 else
1982 l2b = pmap_alloc_l2_bucket(pm, va);
1983 if (l2b == NULL) {
1984 if (flags & PMAP_CANFAIL) {
1985 pmap_release_pmap_lock(pm);
1986 PMAP_MAP_TO_HEAD_UNLOCK();
1987 return (ENOMEM);
1988 }
1989 panic("pmap_enter: failed to allocate L2 bucket");
1990 }
1991 ptep = &l2b->l2b_kva[l2pte_index(va)];
1992 opte = *ptep;
1993 npte = pa;
1994 oflags = 0;
1995
1996 if (opte) {
1997 /*
1998 * There is already a mapping at this address.
1999 * If the physical address is different, lookup the
2000 * vm_page.
2001 */
2002 if (l2pte_pa(opte) != pa)
2003 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2004 else
2005 opg = pg;
2006 } else
2007 opg = NULL;
2008
2009 if (pg) {
2010 /*
2011 * This is to be a managed mapping.
2012 */
2013 if ((flags & VM_PROT_ALL) ||
2014 (pg->mdpage.pvh_attrs & PVF_REF)) {
2015 /*
2016 * - The access type indicates that we don't need
2017 * to do referenced emulation.
2018 * OR
2019 * - The physical page has already been referenced
2020 * so no need to re-do referenced emulation here.
2021 */
2022 npte |= L2_S_PROTO;
2023
2024 nflags |= PVF_REF;
2025
2026 if ((prot & VM_PROT_WRITE) != 0 &&
2027 ((flags & VM_PROT_WRITE) != 0 ||
2028 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2029 /*
2030 * This is a writable mapping, and the
2031 * page's mod state indicates it has
2032 * already been modified. Make it
2033 * writable from the outset.
2034 */
2035 npte |= L2_S_PROT_W;
2036 nflags |= PVF_MOD;
2037 }
2038 } else {
2039 /*
2040 * Need to do page referenced emulation.
2041 */
2042 npte |= L2_TYPE_INV;
2043 }
2044
2045 npte |= pte_l2_s_cache_mode;
2046
2047 if (pg == opg) {
2048 /*
2049 * We're changing the attrs of an existing mapping.
2050 */
2051 simple_lock(&pg->mdpage.pvh_slock);
2052 oflags = pmap_modify_pv(pg, pm, va,
2053 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2054 PVF_MOD | PVF_REF, nflags);
2055 simple_unlock(&pg->mdpage.pvh_slock);
2056
2057 /*
2058 * We may need to flush the cache if we're
2059 * doing rw-ro...
2060 */
2061 if (pm->pm_cstate.cs_cache_d &&
2062 (oflags & PVF_NC) == 0 &&
2063 (opte & L2_S_PROT_W) != 0 &&
2064 (prot & VM_PROT_WRITE) == 0)
2065 cpu_dcache_wb_range(va, PAGE_SIZE);
2066 } else {
2067 /*
2068 * New mapping, or changing the backing page
2069 * of an existing mapping.
2070 */
2071 if (opg) {
2072 /*
2073 * Replacing an existing mapping with a new one.
2074 * It is part of our managed memory so we
2075 * must remove it from the PV list
2076 */
2077 simple_lock(&opg->mdpage.pvh_slock);
2078 pve = pmap_remove_pv(opg, pm, va, 0);
2079 pmap_vac_me_harder(opg, pm, 0);
2080 simple_unlock(&opg->mdpage.pvh_slock);
2081 oflags = pve->pv_flags;
2082
2083 /*
2084 * If the old mapping was valid (ref/mod
2085 * emulation creates 'invalid' mappings
2086 * initially) then make sure to frob
2087 * the cache.
2088 */
2089 if ((oflags & PVF_NC) == 0 &&
2090 l2pte_valid(opte)) {
2091 if (PV_BEEN_EXECD(oflags)) {
2092 pmap_idcache_wbinv_range(pm, va,
2093 PAGE_SIZE);
2094 } else
2095 if (PV_BEEN_REFD(oflags)) {
2096 pmap_dcache_wb_range(pm, va,
2097 PAGE_SIZE, true,
2098 (oflags & PVF_WRITE) == 0);
2099 }
2100 }
2101 } else
2102 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2103 if ((flags & PMAP_CANFAIL) == 0)
2104 panic("pmap_enter: no pv entries");
2105
2106 if (pm != pmap_kernel())
2107 pmap_free_l2_bucket(pm, l2b, 0);
2108 pmap_release_pmap_lock(pm);
2109 PMAP_MAP_TO_HEAD_UNLOCK();
2110 NPDEBUG(PDB_ENTER,
2111 printf("pmap_enter: ENOMEM\n"));
2112 return (ENOMEM);
2113 }
2114
2115 pmap_enter_pv(pg, pve, pm, va, nflags);
2116 }
2117 } else {
2118 /*
2119 * We're mapping an unmanaged page.
2120 * These are always readable, and possibly writable, from
2121 * the get go as we don't need to track ref/mod status.
2122 */
2123 npte |= L2_S_PROTO;
2124 if (prot & VM_PROT_WRITE)
2125 npte |= L2_S_PROT_W;
2126
2127 /*
2128 * Make sure the vector table is mapped cacheable
2129 */
2130 if (pm != pmap_kernel() && va == vector_page)
2131 npte |= pte_l2_s_cache_mode;
2132
2133 if (opg) {
2134 /*
2135 * Looks like there's an existing 'managed' mapping
2136 * at this address.
2137 */
2138 simple_lock(&opg->mdpage.pvh_slock);
2139 pve = pmap_remove_pv(opg, pm, va, 0);
2140 pmap_vac_me_harder(opg, pm, 0);
2141 simple_unlock(&opg->mdpage.pvh_slock);
2142 oflags = pve->pv_flags;
2143
2144 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2145 if (PV_BEEN_EXECD(oflags))
2146 pmap_idcache_wbinv_range(pm, va,
2147 PAGE_SIZE);
2148 else
2149 if (PV_BEEN_REFD(oflags))
2150 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2151 true, (oflags & PVF_WRITE) == 0);
2152 }
2153 pool_put(&pmap_pv_pool, pve);
2154 }
2155 }
2156
2157 /*
2158 * Make sure userland mappings get the right permissions
2159 */
2160 if (pm != pmap_kernel() && va != vector_page)
2161 npte |= L2_S_PROT_U;
2162
2163 /*
2164 * Keep the stats up to date
2165 */
2166 if (opte == 0) {
2167 l2b->l2b_occupancy++;
2168 pm->pm_stats.resident_count++;
2169 }
2170
2171 NPDEBUG(PDB_ENTER,
2172 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2173
2174 /*
2175 * If this is just a wiring change, the two PTEs will be
2176 * identical, so there's no need to update the page table.
2177 */
2178 if (npte != opte) {
2179 bool is_cached = pmap_is_cached(pm);
2180
2181 *ptep = npte;
2182 if (is_cached) {
2183 /*
2184 * We only need to frob the cache/tlb if this pmap
2185 * is current
2186 */
2187 PTE_SYNC(ptep);
2188 if (va != vector_page && l2pte_valid(npte)) {
2189 /*
2190 * This mapping is likely to be accessed as
2191 * soon as we return to userland. Fix up the
2192 * L1 entry to avoid taking another
2193 * page/domain fault.
2194 */
2195 pd_entry_t *pl1pd, l1pd;
2196
2197 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2198 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2199 L1_C_PROTO;
2200 if (*pl1pd != l1pd) {
2201 *pl1pd = l1pd;
2202 PTE_SYNC(pl1pd);
2203 }
2204 }
2205 }
2206
2207 if (PV_BEEN_EXECD(oflags))
2208 pmap_tlb_flushID_SE(pm, va);
2209 else
2210 if (PV_BEEN_REFD(oflags))
2211 pmap_tlb_flushD_SE(pm, va);
2212
2213 NPDEBUG(PDB_ENTER,
2214 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2215 is_cached, pm->pm_cstate.cs_all));
2216
2217 if (pg != NULL) {
2218 simple_lock(&pg->mdpage.pvh_slock);
2219 pmap_vac_me_harder(pg, pm, va);
2220 simple_unlock(&pg->mdpage.pvh_slock);
2221 }
2222 }
2223
2224 pmap_release_pmap_lock(pm);
2225 PMAP_MAP_TO_HEAD_UNLOCK();
2226
2227 return (0);
2228 }
2229
2230 /*
2231 * pmap_remove()
2232 *
2233 * pmap_remove is responsible for nuking a number of mappings for a range
2234 * of virtual address space in the current pmap. To do this efficiently
2235 * is interesting, because in a number of cases a wide virtual address
2236 * range may be supplied that contains few actual mappings. So, the
2237 * optimisations are:
2238 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2239 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2240 * maybe do just a partial cache clean. This path of execution is
2241 * complicated by the fact that the cache must be flushed _before_
2242 * the PTE is nuked, being a VAC :-)
2243 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2244 * all invalidations until pmap_update(), since pmap_remove_all() has
2245 * already flushed the cache.
2246 * 4. Maybe later fast-case a single page, but I don't think this is
2247 * going to make _that_ much difference overall.
2248 */
2249
2250 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2251
2252 void
2253 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
2254 {
2255 struct l2_bucket *l2b;
2256 vaddr_t next_bucket;
2257 pt_entry_t *ptep;
2258 u_int cleanlist_idx, total, cnt;
2259 struct {
2260 vaddr_t va;
2261 pt_entry_t *pte;
2262 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2263 u_int mappings, is_exec, is_refd;
2264
2265 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
2266 "eva=%08lx\n", pm, sva, eva));
2267
2268 /*
2269 * we lock in the pmap => pv_head direction
2270 */
2271 PMAP_MAP_TO_HEAD_LOCK();
2272 pmap_acquire_pmap_lock(pm);
2273
2274 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2275 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2276 if (pm->pm_cstate.cs_tlb == 0)
2277 pm->pm_remove_all = true;
2278 } else
2279 cleanlist_idx = 0;
2280
2281 total = 0;
2282
2283 while (sva < eva) {
2284 /*
2285 * Do one L2 bucket's worth at a time.
2286 */
2287 next_bucket = L2_NEXT_BUCKET(sva);
2288 if (next_bucket > eva)
2289 next_bucket = eva;
2290
2291 l2b = pmap_get_l2_bucket(pm, sva);
2292 if (l2b == NULL) {
2293 sva = next_bucket;
2294 continue;
2295 }
2296
2297 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2298
2299 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
2300 struct vm_page *pg;
2301 pt_entry_t pte;
2302 paddr_t pa;
2303
2304 pte = *ptep;
2305
2306 if (pte == 0) {
2307 /* Nothing here, move along */
2308 continue;
2309 }
2310
2311 pa = l2pte_pa(pte);
2312 is_exec = 0;
2313 is_refd = 1;
2314
2315 /*
2316 * Update flags. In a number of circumstances,
2317 * we could cluster a lot of these and do a
2318 * number of sequential pages in one go.
2319 */
2320 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2321 struct pv_entry *pve;
2322 simple_lock(&pg->mdpage.pvh_slock);
2323 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
2324 pmap_vac_me_harder(pg, pm, 0);
2325 simple_unlock(&pg->mdpage.pvh_slock);
2326 if (pve != NULL) {
2327 if (pm->pm_remove_all == false) {
2328 is_exec =
2329 PV_BEEN_EXECD(pve->pv_flags);
2330 is_refd =
2331 PV_BEEN_REFD(pve->pv_flags);
2332 }
2333 pool_put(&pmap_pv_pool, pve);
2334 } else
2335 if (skip_wired) {
2336 /* The mapping is wired. Skip it */
2337 continue;
2338 }
2339 } else
2340 if (skip_wired) {
2341 /* Unmanaged pages are always wired. */
2342 continue;
2343 }
2344
2345 mappings++;
2346
2347 if (!l2pte_valid(pte)) {
2348 /*
2349 * Ref/Mod emulation is still active for this
2350 * mapping, therefore it is has not yet been
2351 * accessed. No need to frob the cache/tlb.
2352 */
2353 *ptep = 0;
2354 PTE_SYNC_CURRENT(pm, ptep);
2355 continue;
2356 }
2357
2358 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2359 /* Add to the clean list. */
2360 cleanlist[cleanlist_idx].pte = ptep;
2361 cleanlist[cleanlist_idx].va =
2362 sva | (is_exec & 1);
2363 cleanlist_idx++;
2364 } else
2365 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2366 /* Nuke everything if needed. */
2367 pmap_idcache_wbinv_all(pm);
2368 pmap_tlb_flushID(pm);
2369
2370 /*
2371 * Roll back the previous PTE list,
2372 * and zero out the current PTE.
2373 */
2374 for (cnt = 0;
2375 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2376 *cleanlist[cnt].pte = 0;
2377 }
2378 *ptep = 0;
2379 PTE_SYNC(ptep);
2380 cleanlist_idx++;
2381 pm->pm_remove_all = true;
2382 } else {
2383 *ptep = 0;
2384 PTE_SYNC(ptep);
2385 if (pm->pm_remove_all == false) {
2386 if (is_exec)
2387 pmap_tlb_flushID_SE(pm, sva);
2388 else
2389 if (is_refd)
2390 pmap_tlb_flushD_SE(pm, sva);
2391 }
2392 }
2393 }
2394
2395 /*
2396 * Deal with any left overs
2397 */
2398 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2399 total += cleanlist_idx;
2400 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2401 if (pm->pm_cstate.cs_all != 0) {
2402 vaddr_t clva = cleanlist[cnt].va & ~1;
2403 if (cleanlist[cnt].va & 1) {
2404 pmap_idcache_wbinv_range(pm,
2405 clva, PAGE_SIZE);
2406 pmap_tlb_flushID_SE(pm, clva);
2407 } else {
2408 pmap_dcache_wb_range(pm,
2409 clva, PAGE_SIZE, true,
2410 false);
2411 pmap_tlb_flushD_SE(pm, clva);
2412 }
2413 }
2414 *cleanlist[cnt].pte = 0;
2415 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2416 }
2417
2418 /*
2419 * If it looks like we're removing a whole bunch
2420 * of mappings, it's faster to just write-back
2421 * the whole cache now and defer TLB flushes until
2422 * pmap_update() is called.
2423 */
2424 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2425 cleanlist_idx = 0;
2426 else {
2427 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2428 pmap_idcache_wbinv_all(pm);
2429 pm->pm_remove_all = true;
2430 }
2431 }
2432
2433 pmap_free_l2_bucket(pm, l2b, mappings);
2434 pm->pm_stats.resident_count -= mappings;
2435 }
2436
2437 pmap_release_pmap_lock(pm);
2438 PMAP_MAP_TO_HEAD_UNLOCK();
2439 }
2440
2441 /*
2442 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2443 *
2444 * We assume there is already sufficient KVM space available
2445 * to do this, as we can't allocate L2 descriptor tables/metadata
2446 * from here.
2447 */
2448 void
2449 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2450 {
2451 struct l2_bucket *l2b;
2452 pt_entry_t *ptep, opte;
2453
2454 NPDEBUG(PDB_KENTER,
2455 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2456 va, pa, prot));
2457
2458 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2459 KDASSERT(l2b != NULL);
2460
2461 ptep = &l2b->l2b_kva[l2pte_index(va)];
2462 opte = *ptep;
2463
2464 if (l2pte_valid(opte)) {
2465 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2466 cpu_tlb_flushD_SE(va);
2467 cpu_cpwait();
2468 } else
2469 if (opte == 0)
2470 l2b->l2b_occupancy++;
2471
2472 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2473 pte_l2_s_cache_mode;
2474 PTE_SYNC(ptep);
2475 }
2476
2477 void
2478 pmap_kremove(vaddr_t va, vsize_t len)
2479 {
2480 struct l2_bucket *l2b;
2481 pt_entry_t *ptep, *sptep, opte;
2482 vaddr_t next_bucket, eva;
2483 u_int mappings;
2484
2485 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2486 va, len));
2487
2488 eva = va + len;
2489
2490 while (va < eva) {
2491 next_bucket = L2_NEXT_BUCKET(va);
2492 if (next_bucket > eva)
2493 next_bucket = eva;
2494
2495 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2496 KDASSERT(l2b != NULL);
2497
2498 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2499 mappings = 0;
2500
2501 while (va < next_bucket) {
2502 opte = *ptep;
2503 if (l2pte_valid(opte)) {
2504 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2505 cpu_tlb_flushD_SE(va);
2506 }
2507 if (opte) {
2508 *ptep = 0;
2509 mappings++;
2510 }
2511 va += PAGE_SIZE;
2512 ptep++;
2513 }
2514 KDASSERT(mappings <= l2b->l2b_occupancy);
2515 l2b->l2b_occupancy -= mappings;
2516 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2517 }
2518 cpu_cpwait();
2519 }
2520
2521 bool
2522 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2523 {
2524 struct l2_dtable *l2;
2525 pd_entry_t *pl1pd, l1pd;
2526 pt_entry_t *ptep, pte;
2527 paddr_t pa;
2528 u_int l1idx;
2529
2530 pmap_acquire_pmap_lock(pm);
2531
2532 l1idx = L1_IDX(va);
2533 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2534 l1pd = *pl1pd;
2535
2536 if (l1pte_section_p(l1pd)) {
2537 /*
2538 * These should only happen for pmap_kernel()
2539 */
2540 KDASSERT(pm == pmap_kernel());
2541 pmap_release_pmap_lock(pm);
2542 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2543 } else {
2544 /*
2545 * Note that we can't rely on the validity of the L1
2546 * descriptor as an indication that a mapping exists.
2547 * We have to look it up in the L2 dtable.
2548 */
2549 l2 = pm->pm_l2[L2_IDX(l1idx)];
2550
2551 if (l2 == NULL ||
2552 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2553 pmap_release_pmap_lock(pm);
2554 return (false);
2555 }
2556
2557 ptep = &ptep[l2pte_index(va)];
2558 pte = *ptep;
2559 pmap_release_pmap_lock(pm);
2560
2561 if (pte == 0)
2562 return (false);
2563
2564 switch (pte & L2_TYPE_MASK) {
2565 case L2_TYPE_L:
2566 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2567 break;
2568
2569 default:
2570 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2571 break;
2572 }
2573 }
2574
2575 if (pap != NULL)
2576 *pap = pa;
2577
2578 return (true);
2579 }
2580
2581 void
2582 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2583 {
2584 struct l2_bucket *l2b;
2585 pt_entry_t *ptep, pte;
2586 vaddr_t next_bucket;
2587 u_int flags;
2588 int flush;
2589
2590 NPDEBUG(PDB_PROTECT,
2591 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2592 pm, sva, eva, prot));
2593
2594 if ((prot & VM_PROT_READ) == 0) {
2595 pmap_remove(pm, sva, eva);
2596 return;
2597 }
2598
2599 if (prot & VM_PROT_WRITE) {
2600 /*
2601 * If this is a read->write transition, just ignore it and let
2602 * uvm_fault() take care of it later.
2603 */
2604 return;
2605 }
2606
2607 PMAP_MAP_TO_HEAD_LOCK();
2608 pmap_acquire_pmap_lock(pm);
2609
2610 /*
2611 * OK, at this point, we know we're doing write-protect operation.
2612 * If the pmap is active, write-back the range.
2613 */
2614 pmap_dcache_wb_range(pm, sva, eva - sva, false, false);
2615
2616 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2617 flags = 0;
2618
2619 while (sva < eva) {
2620 next_bucket = L2_NEXT_BUCKET(sva);
2621 if (next_bucket > eva)
2622 next_bucket = eva;
2623
2624 l2b = pmap_get_l2_bucket(pm, sva);
2625 if (l2b == NULL) {
2626 sva = next_bucket;
2627 continue;
2628 }
2629
2630 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2631
2632 while (sva < next_bucket) {
2633 if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2634 struct vm_page *pg;
2635 u_int f;
2636
2637 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2638 pte &= ~L2_S_PROT_W;
2639 *ptep = pte;
2640 PTE_SYNC(ptep);
2641
2642 if (pg != NULL) {
2643 simple_lock(&pg->mdpage.pvh_slock);
2644 f = pmap_modify_pv(pg, pm, sva,
2645 PVF_WRITE, 0);
2646 pmap_vac_me_harder(pg, pm, sva);
2647 simple_unlock(&pg->mdpage.pvh_slock);
2648 } else
2649 f = PVF_REF | PVF_EXEC;
2650
2651 if (flush >= 0) {
2652 flush++;
2653 flags |= f;
2654 } else
2655 if (PV_BEEN_EXECD(f))
2656 pmap_tlb_flushID_SE(pm, sva);
2657 else
2658 if (PV_BEEN_REFD(f))
2659 pmap_tlb_flushD_SE(pm, sva);
2660 }
2661
2662 sva += PAGE_SIZE;
2663 ptep++;
2664 }
2665 }
2666
2667 pmap_release_pmap_lock(pm);
2668 PMAP_MAP_TO_HEAD_UNLOCK();
2669
2670 if (flush) {
2671 if (PV_BEEN_EXECD(flags))
2672 pmap_tlb_flushID(pm);
2673 else
2674 if (PV_BEEN_REFD(flags))
2675 pmap_tlb_flushD(pm);
2676 }
2677 }
2678
2679 void
2680 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2681 {
2682
2683 NPDEBUG(PDB_PROTECT,
2684 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2685 pg, VM_PAGE_TO_PHYS(pg), prot));
2686
2687 switch(prot) {
2688 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2689 case VM_PROT_READ|VM_PROT_WRITE:
2690 return;
2691
2692 case VM_PROT_READ:
2693 case VM_PROT_READ|VM_PROT_EXECUTE:
2694 pmap_clearbit(pg, PVF_WRITE);
2695 break;
2696
2697 default:
2698 pmap_page_remove(pg);
2699 break;
2700 }
2701 }
2702
2703 /*
2704 * pmap_clear_modify:
2705 *
2706 * Clear the "modified" attribute for a page.
2707 */
2708 bool
2709 pmap_clear_modify(struct vm_page *pg)
2710 {
2711 bool rv;
2712
2713 if (pg->mdpage.pvh_attrs & PVF_MOD) {
2714 rv = true;
2715 pmap_clearbit(pg, PVF_MOD);
2716 } else
2717 rv = false;
2718
2719 return (rv);
2720 }
2721
2722 /*
2723 * pmap_clear_reference:
2724 *
2725 * Clear the "referenced" attribute for a page.
2726 */
2727 bool
2728 pmap_clear_reference(struct vm_page *pg)
2729 {
2730 bool rv;
2731
2732 if (pg->mdpage.pvh_attrs & PVF_REF) {
2733 rv = true;
2734 pmap_clearbit(pg, PVF_REF);
2735 } else
2736 rv = false;
2737
2738 return (rv);
2739 }
2740
2741 /*
2742 * pmap_is_modified:
2743 *
2744 * Test if a page has the "modified" attribute.
2745 */
2746 /* See <arm/arm32/pmap.h> */
2747
2748 /*
2749 * pmap_is_referenced:
2750 *
2751 * Test if a page has the "referenced" attribute.
2752 */
2753 /* See <arm/arm32/pmap.h> */
2754
2755 int
2756 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2757 {
2758 struct l2_dtable *l2;
2759 struct l2_bucket *l2b;
2760 pd_entry_t *pl1pd, l1pd;
2761 pt_entry_t *ptep, pte;
2762 paddr_t pa;
2763 u_int l1idx;
2764 int rv = 0;
2765
2766 PMAP_MAP_TO_HEAD_LOCK();
2767 pmap_acquire_pmap_lock(pm);
2768
2769 l1idx = L1_IDX(va);
2770
2771 /*
2772 * If there is no l2_dtable for this address, then the process
2773 * has no business accessing it.
2774 *
2775 * Note: This will catch userland processes trying to access
2776 * kernel addresses.
2777 */
2778 l2 = pm->pm_l2[L2_IDX(l1idx)];
2779 if (l2 == NULL)
2780 goto out;
2781
2782 /*
2783 * Likewise if there is no L2 descriptor table
2784 */
2785 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2786 if (l2b->l2b_kva == NULL)
2787 goto out;
2788
2789 /*
2790 * Check the PTE itself.
2791 */
2792 ptep = &l2b->l2b_kva[l2pte_index(va)];
2793 pte = *ptep;
2794 if (pte == 0)
2795 goto out;
2796
2797 /*
2798 * Catch a userland access to the vector page mapped at 0x0
2799 */
2800 if (user && (pte & L2_S_PROT_U) == 0)
2801 goto out;
2802
2803 pa = l2pte_pa(pte);
2804
2805 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2806 /*
2807 * This looks like a good candidate for "page modified"
2808 * emulation...
2809 */
2810 struct pv_entry *pv;
2811 struct vm_page *pg;
2812
2813 /* Extract the physical address of the page */
2814 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2815 goto out;
2816
2817 /* Get the current flags for this page. */
2818 simple_lock(&pg->mdpage.pvh_slock);
2819
2820 pv = pmap_find_pv(pg, pm, va);
2821 if (pv == NULL) {
2822 simple_unlock(&pg->mdpage.pvh_slock);
2823 goto out;
2824 }
2825
2826 /*
2827 * Do the flags say this page is writable? If not then it
2828 * is a genuine write fault. If yes then the write fault is
2829 * our fault as we did not reflect the write access in the
2830 * PTE. Now we know a write has occurred we can correct this
2831 * and also set the modified bit
2832 */
2833 if ((pv->pv_flags & PVF_WRITE) == 0) {
2834 simple_unlock(&pg->mdpage.pvh_slock);
2835 goto out;
2836 }
2837
2838 NPDEBUG(PDB_FOLLOW,
2839 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2840 pm, va, VM_PAGE_TO_PHYS(pg)));
2841
2842 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2843 pv->pv_flags |= PVF_REF | PVF_MOD;
2844 simple_unlock(&pg->mdpage.pvh_slock);
2845
2846 /*
2847 * Re-enable write permissions for the page. No need to call
2848 * pmap_vac_me_harder(), since this is just a
2849 * modified-emulation fault, and the PVF_WRITE bit isn't
2850 * changing. We've already set the cacheable bits based on
2851 * the assumption that we can write to this page.
2852 */
2853 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2854 PTE_SYNC(ptep);
2855 rv = 1;
2856 } else
2857 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2858 /*
2859 * This looks like a good candidate for "page referenced"
2860 * emulation.
2861 */
2862 struct pv_entry *pv;
2863 struct vm_page *pg;
2864
2865 /* Extract the physical address of the page */
2866 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2867 goto out;
2868
2869 /* Get the current flags for this page. */
2870 simple_lock(&pg->mdpage.pvh_slock);
2871
2872 pv = pmap_find_pv(pg, pm, va);
2873 if (pv == NULL) {
2874 simple_unlock(&pg->mdpage.pvh_slock);
2875 goto out;
2876 }
2877
2878 pg->mdpage.pvh_attrs |= PVF_REF;
2879 pv->pv_flags |= PVF_REF;
2880 simple_unlock(&pg->mdpage.pvh_slock);
2881
2882 NPDEBUG(PDB_FOLLOW,
2883 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2884 pm, va, VM_PAGE_TO_PHYS(pg)));
2885
2886 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2887 PTE_SYNC(ptep);
2888 rv = 1;
2889 }
2890
2891 /*
2892 * We know there is a valid mapping here, so simply
2893 * fix up the L1 if necessary.
2894 */
2895 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2896 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2897 if (*pl1pd != l1pd) {
2898 *pl1pd = l1pd;
2899 PTE_SYNC(pl1pd);
2900 rv = 1;
2901 }
2902
2903 #ifdef CPU_SA110
2904 /*
2905 * There are bugs in the rev K SA110. This is a check for one
2906 * of them.
2907 */
2908 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2909 curcpu()->ci_arm_cpurev < 3) {
2910 /* Always current pmap */
2911 if (l2pte_valid(pte)) {
2912 extern int kernel_debug;
2913 if (kernel_debug & 1) {
2914 struct proc *p = curlwp->l_proc;
2915 printf("prefetch_abort: page is already "
2916 "mapped - pte=%p *pte=%08x\n", ptep, pte);
2917 printf("prefetch_abort: pc=%08lx proc=%p "
2918 "process=%s\n", va, p, p->p_comm);
2919 printf("prefetch_abort: far=%08x fs=%x\n",
2920 cpu_faultaddress(), cpu_faultstatus());
2921 }
2922 #ifdef DDB
2923 if (kernel_debug & 2)
2924 Debugger();
2925 #endif
2926 rv = 1;
2927 }
2928 }
2929 #endif /* CPU_SA110 */
2930
2931 #ifdef DEBUG
2932 /*
2933 * If 'rv == 0' at this point, it generally indicates that there is a
2934 * stale TLB entry for the faulting address. This happens when two or
2935 * more processes are sharing an L1. Since we don't flush the TLB on
2936 * a context switch between such processes, we can take domain faults
2937 * for mappings which exist at the same VA in both processes. EVEN IF
2938 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2939 * example.
2940 *
2941 * This is extremely likely to happen if pmap_enter() updated the L1
2942 * entry for a recently entered mapping. In this case, the TLB is
2943 * flushed for the new mapping, but there may still be TLB entries for
2944 * other mappings belonging to other processes in the 1MB range
2945 * covered by the L1 entry.
2946 *
2947 * Since 'rv == 0', we know that the L1 already contains the correct
2948 * value, so the fault must be due to a stale TLB entry.
2949 *
2950 * Since we always need to flush the TLB anyway in the case where we
2951 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2952 * stale TLB entries dynamically.
2953 *
2954 * However, the above condition can ONLY happen if the current L1 is
2955 * being shared. If it happens when the L1 is unshared, it indicates
2956 * that other parts of the pmap are not doing their job WRT managing
2957 * the TLB.
2958 */
2959 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2960 extern int last_fault_code;
2961 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2962 pm, va, ftype);
2963 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2964 l2, l2b, ptep, pl1pd);
2965 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2966 pte, l1pd, last_fault_code);
2967 #ifdef DDB
2968 Debugger();
2969 #endif
2970 }
2971 #endif
2972
2973 cpu_tlb_flushID_SE(va);
2974 cpu_cpwait();
2975
2976 rv = 1;
2977
2978 out:
2979 pmap_release_pmap_lock(pm);
2980 PMAP_MAP_TO_HEAD_UNLOCK();
2981
2982 return (rv);
2983 }
2984
2985 /*
2986 * pmap_collect: free resources held by a pmap
2987 *
2988 * => optional function.
2989 * => called when a process is swapped out to free memory.
2990 */
2991 void
2992 pmap_collect(pmap_t pm)
2993 {
2994
2995 pmap_idcache_wbinv_all(pm);
2996 pm->pm_remove_all = true;
2997 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
2998 pmap_update(pm);
2999 }
3000
3001 /*
3002 * Routine: pmap_procwr
3003 *
3004 * Function:
3005 * Synchronize caches corresponding to [addr, addr+len) in p.
3006 *
3007 */
3008 void
3009 pmap_procwr(struct proc *p, vaddr_t va, int len)
3010 {
3011 /* We only need to do anything if it is the current process. */
3012 if (p == curproc)
3013 cpu_icache_sync_range(va, len);
3014 }
3015
3016 /*
3017 * Routine: pmap_unwire
3018 * Function: Clear the wired attribute for a map/virtual-address pair.
3019 *
3020 * In/out conditions:
3021 * The mapping must already exist in the pmap.
3022 */
3023 void
3024 pmap_unwire(pmap_t pm, vaddr_t va)
3025 {
3026 struct l2_bucket *l2b;
3027 pt_entry_t *ptep, pte;
3028 struct vm_page *pg;
3029 paddr_t pa;
3030
3031 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3032
3033 PMAP_MAP_TO_HEAD_LOCK();
3034 pmap_acquire_pmap_lock(pm);
3035
3036 l2b = pmap_get_l2_bucket(pm, va);
3037 KDASSERT(l2b != NULL);
3038
3039 ptep = &l2b->l2b_kva[l2pte_index(va)];
3040 pte = *ptep;
3041
3042 /* Extract the physical address of the page */
3043 pa = l2pte_pa(pte);
3044
3045 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3046 /* Update the wired bit in the pv entry for this page. */
3047 simple_lock(&pg->mdpage.pvh_slock);
3048 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3049 simple_unlock(&pg->mdpage.pvh_slock);
3050 }
3051
3052 pmap_release_pmap_lock(pm);
3053 PMAP_MAP_TO_HEAD_UNLOCK();
3054 }
3055
3056 void
3057 pmap_switch(struct lwp *olwp, struct lwp *nlwp)
3058 {
3059 extern int block_userspace_access;
3060 pmap_t opm, npm, rpm;
3061 uint32_t odacr, ndacr;
3062 int oldirqstate;
3063
3064 npm = nlwp->l_proc->p_vmspace->vm_map.pmap;
3065 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3066 (DOMAIN_CLIENT << (npm->pm_domain * 2));
3067
3068 /*
3069 * If TTB and DACR are unchanged, short-circuit all the
3070 * TLB/cache management stuff.
3071 */
3072 if (olwp != NULL) {
3073 opm = olwp->l_proc->p_vmspace->vm_map.pmap;
3074 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3075 (DOMAIN_CLIENT << (opm->pm_domain * 2));
3076
3077 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
3078 goto all_done;
3079 } else
3080 opm = NULL;
3081
3082 block_userspace_access = 1;
3083
3084 /*
3085 * If switching to a user vmspace which is different to the
3086 * most recent one, and the most recent one is potentially
3087 * live in the cache, we must write-back and invalidate the
3088 * entire cache.
3089 */
3090 rpm = pmap_recent_user;
3091 if (npm != pmap_kernel() && rpm && npm != rpm &&
3092 rpm->pm_cstate.cs_cache) {
3093 rpm->pm_cstate.cs_cache = 0;
3094 cpu_idcache_wbinv_all();
3095 }
3096
3097 /* No interrupts while we frob the TTB/DACR */
3098 oldirqstate = disable_interrupts(I32_bit | F32_bit);
3099
3100 /*
3101 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
3102 * entry corresponding to 'vector_page' in the incoming L1 table
3103 * before switching to it otherwise subsequent interrupts/exceptions
3104 * (including domain faults!) will jump into hyperspace.
3105 */
3106 if (npm->pm_pl1vec != NULL) {
3107 cpu_tlb_flushID_SE((u_int)vector_page);
3108 cpu_cpwait();
3109 *npm->pm_pl1vec = npm->pm_l1vec;
3110 PTE_SYNC(npm->pm_pl1vec);
3111 }
3112
3113 cpu_domains(ndacr);
3114
3115 if (npm == pmap_kernel() || npm == rpm) {
3116 /*
3117 * Switching to a kernel thread, or back to the
3118 * same user vmspace as before... Simply update
3119 * the TTB (no TLB flush required)
3120 */
3121 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
3122 "r"(npm->pm_l1->l1_physaddr));
3123 cpu_cpwait();
3124 } else {
3125 /*
3126 * Otherwise, update TTB and flush TLB
3127 */
3128 cpu_context_switch(npm->pm_l1->l1_physaddr);
3129 if (rpm != NULL)
3130 rpm->pm_cstate.cs_tlb = 0;
3131 }
3132
3133 restore_interrupts(oldirqstate);
3134
3135 block_userspace_access = 0;
3136
3137 all_done:
3138 /*
3139 * The new pmap is resident. Make sure it's marked
3140 * as resident in the cache/TLB.
3141 */
3142 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3143 if (npm != pmap_kernel())
3144 pmap_recent_user = npm;
3145
3146 /* The old pmap is not longer active */
3147 if (opm != NULL)
3148 opm->pm_activated = false;
3149
3150 /* But the new one is */
3151 npm->pm_activated = true;
3152 }
3153
3154 void
3155 pmap_activate(struct lwp *l)
3156 {
3157
3158 if (l == curlwp &&
3159 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == false)
3160 pmap_switch(NULL, l);
3161 }
3162
3163 void
3164 pmap_deactivate(struct lwp *l)
3165 {
3166
3167 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
3168 }
3169
3170 void
3171 pmap_update(pmap_t pm)
3172 {
3173
3174 if (pm->pm_remove_all) {
3175 /*
3176 * Finish up the pmap_remove_all() optimisation by flushing
3177 * the TLB.
3178 */
3179 pmap_tlb_flushID(pm);
3180 pm->pm_remove_all = false;
3181 }
3182
3183 if (pmap_is_current(pm)) {
3184 /*
3185 * If we're dealing with a current userland pmap, move its L1
3186 * to the end of the LRU.
3187 */
3188 if (pm != pmap_kernel())
3189 pmap_use_l1(pm);
3190
3191 /*
3192 * We can assume we're done with frobbing the cache/tlb for
3193 * now. Make sure any future pmap ops don't skip cache/tlb
3194 * flushes.
3195 */
3196 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3197 }
3198
3199 /*
3200 * make sure TLB/cache operations have completed.
3201 */
3202 cpu_cpwait();
3203 }
3204
3205 void
3206 pmap_remove_all(pmap_t pm)
3207 {
3208
3209 /*
3210 * The vmspace described by this pmap is about to be torn down.
3211 * Until pmap_update() is called, UVM will only make calls
3212 * to pmap_remove(). We can make life much simpler by flushing
3213 * the cache now, and deferring TLB invalidation to pmap_update().
3214 */
3215 pmap_idcache_wbinv_all(pm);
3216 pm->pm_remove_all = true;
3217 }
3218
3219 /*
3220 * Retire the given physical map from service.
3221 * Should only be called if the map contains no valid mappings.
3222 */
3223 void
3224 pmap_destroy(pmap_t pm)
3225 {
3226 u_int count;
3227
3228 if (pm == NULL)
3229 return;
3230
3231 if (pm->pm_remove_all) {
3232 pmap_tlb_flushID(pm);
3233 pm->pm_remove_all = false;
3234 }
3235
3236 /*
3237 * Drop reference count
3238 */
3239 mutex_enter(&pm->pm_lock);
3240 count = --pm->pm_obj.uo_refs;
3241 mutex_exit(&pm->pm_lock);
3242 if (count > 0) {
3243 if (pmap_is_current(pm)) {
3244 if (pm != pmap_kernel())
3245 pmap_use_l1(pm);
3246 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3247 }
3248 return;
3249 }
3250
3251 /*
3252 * reference count is zero, free pmap resources and then free pmap.
3253 */
3254
3255 if (vector_page < KERNEL_BASE) {
3256 KDASSERT(!pmap_is_current(pm));
3257
3258 /* Remove the vector page mapping */
3259 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3260 pmap_update(pm);
3261 }
3262
3263 LIST_REMOVE(pm, pm_list);
3264
3265 pmap_free_l1(pm);
3266
3267 if (pmap_recent_user == pm)
3268 pmap_recent_user = NULL;
3269
3270 UVM_OBJ_DESTROY(&pm->pm_obj);
3271
3272 /* return the pmap to the pool */
3273 pool_cache_put(&pmap_cache, pm);
3274 }
3275
3276
3277 /*
3278 * void pmap_reference(pmap_t pm)
3279 *
3280 * Add a reference to the specified pmap.
3281 */
3282 void
3283 pmap_reference(pmap_t pm)
3284 {
3285
3286 if (pm == NULL)
3287 return;
3288
3289 pmap_use_l1(pm);
3290
3291 mutex_enter(&pm->pm_lock);
3292 pm->pm_obj.uo_refs++;
3293 mutex_exit(&pm->pm_lock);
3294 }
3295
3296 /*
3297 * pmap_zero_page()
3298 *
3299 * Zero a given physical page by mapping it at a page hook point.
3300 * In doing the zero page op, the page we zero is mapped cachable, as with
3301 * StrongARM accesses to non-cached pages are non-burst making writing
3302 * _any_ bulk data very slow.
3303 */
3304 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3305 void
3306 pmap_zero_page_generic(paddr_t phys)
3307 {
3308 #ifdef DEBUG
3309 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3310
3311 if (pg->mdpage.pvh_list != NULL)
3312 panic("pmap_zero_page: page has mappings");
3313 #endif
3314
3315 KDASSERT((phys & PGOFSET) == 0);
3316
3317 /*
3318 * Hook in the page, zero it, and purge the cache for that
3319 * zeroed page. Invalidate the TLB as needed.
3320 */
3321 *cdst_pte = L2_S_PROTO | phys |
3322 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3323 PTE_SYNC(cdst_pte);
3324 cpu_tlb_flushD_SE(cdstp);
3325 cpu_cpwait();
3326 bzero_page(cdstp);
3327 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3328 }
3329 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3330
3331 #if ARM_MMU_XSCALE == 1
3332 void
3333 pmap_zero_page_xscale(paddr_t phys)
3334 {
3335 #ifdef DEBUG
3336 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3337
3338 if (pg->mdpage.pvh_list != NULL)
3339 panic("pmap_zero_page: page has mappings");
3340 #endif
3341
3342 KDASSERT((phys & PGOFSET) == 0);
3343
3344 /*
3345 * Hook in the page, zero it, and purge the cache for that
3346 * zeroed page. Invalidate the TLB as needed.
3347 */
3348 *cdst_pte = L2_S_PROTO | phys |
3349 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3350 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3351 PTE_SYNC(cdst_pte);
3352 cpu_tlb_flushD_SE(cdstp);
3353 cpu_cpwait();
3354 bzero_page(cdstp);
3355 xscale_cache_clean_minidata();
3356 }
3357 #endif /* ARM_MMU_XSCALE == 1 */
3358
3359 /* pmap_pageidlezero()
3360 *
3361 * The same as above, except that we assume that the page is not
3362 * mapped. This means we never have to flush the cache first. Called
3363 * from the idle loop.
3364 */
3365 bool
3366 pmap_pageidlezero(paddr_t phys)
3367 {
3368 unsigned int i;
3369 int *ptr;
3370 bool rv = true;
3371 #ifdef DEBUG
3372 struct vm_page *pg;
3373
3374 pg = PHYS_TO_VM_PAGE(phys);
3375 if (pg->mdpage.pvh_list != NULL)
3376 panic("pmap_pageidlezero: page has mappings");
3377 #endif
3378
3379 KDASSERT((phys & PGOFSET) == 0);
3380
3381 /*
3382 * Hook in the page, zero it, and purge the cache for that
3383 * zeroed page. Invalidate the TLB as needed.
3384 */
3385 *cdst_pte = L2_S_PROTO | phys |
3386 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3387 PTE_SYNC(cdst_pte);
3388 cpu_tlb_flushD_SE(cdstp);
3389 cpu_cpwait();
3390
3391 for (i = 0, ptr = (int *)cdstp;
3392 i < (PAGE_SIZE / sizeof(int)); i++) {
3393 if (sched_curcpu_runnable_p()) {
3394 /*
3395 * A process has become ready. Abort now,
3396 * so we don't keep it waiting while we
3397 * do slow memory access to finish this
3398 * page.
3399 */
3400 rv = false;
3401 break;
3402 }
3403 *ptr++ = 0;
3404 }
3405
3406 if (rv)
3407 /*
3408 * if we aborted we'll rezero this page again later so don't
3409 * purge it unless we finished it
3410 */
3411 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3412
3413 return (rv);
3414 }
3415
3416 /*
3417 * pmap_copy_page()
3418 *
3419 * Copy one physical page into another, by mapping the pages into
3420 * hook points. The same comment regarding cachability as in
3421 * pmap_zero_page also applies here.
3422 */
3423 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3424 void
3425 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3426 {
3427 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3428 #ifdef DEBUG
3429 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3430
3431 if (dst_pg->mdpage.pvh_list != NULL)
3432 panic("pmap_copy_page: dst page has mappings");
3433 #endif
3434
3435 KDASSERT((src & PGOFSET) == 0);
3436 KDASSERT((dst & PGOFSET) == 0);
3437
3438 /*
3439 * Clean the source page. Hold the source page's lock for
3440 * the duration of the copy so that no other mappings can
3441 * be created while we have a potentially aliased mapping.
3442 */
3443 simple_lock(&src_pg->mdpage.pvh_slock);
3444 (void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
3445
3446 /*
3447 * Map the pages into the page hook points, copy them, and purge
3448 * the cache for the appropriate page. Invalidate the TLB
3449 * as required.
3450 */
3451 *csrc_pte = L2_S_PROTO | src |
3452 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3453 PTE_SYNC(csrc_pte);
3454 *cdst_pte = L2_S_PROTO | dst |
3455 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3456 PTE_SYNC(cdst_pte);
3457 cpu_tlb_flushD_SE(csrcp);
3458 cpu_tlb_flushD_SE(cdstp);
3459 cpu_cpwait();
3460 bcopy_page(csrcp, cdstp);
3461 cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3462 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3463 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3464 }
3465 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3466
3467 #if ARM_MMU_XSCALE == 1
3468 void
3469 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3470 {
3471 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3472 #ifdef DEBUG
3473 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3474
3475 if (dst_pg->mdpage.pvh_list != NULL)
3476 panic("pmap_copy_page: dst page has mappings");
3477 #endif
3478
3479 KDASSERT((src & PGOFSET) == 0);
3480 KDASSERT((dst & PGOFSET) == 0);
3481
3482 /*
3483 * Clean the source page. Hold the source page's lock for
3484 * the duration of the copy so that no other mappings can
3485 * be created while we have a potentially aliased mapping.
3486 */
3487 simple_lock(&src_pg->mdpage.pvh_slock);
3488 (void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
3489
3490 /*
3491 * Map the pages into the page hook points, copy them, and purge
3492 * the cache for the appropriate page. Invalidate the TLB
3493 * as required.
3494 */
3495 *csrc_pte = L2_S_PROTO | src |
3496 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3497 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3498 PTE_SYNC(csrc_pte);
3499 *cdst_pte = L2_S_PROTO | dst |
3500 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3501 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3502 PTE_SYNC(cdst_pte);
3503 cpu_tlb_flushD_SE(csrcp);
3504 cpu_tlb_flushD_SE(cdstp);
3505 cpu_cpwait();
3506 bcopy_page(csrcp, cdstp);
3507 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3508 xscale_cache_clean_minidata();
3509 }
3510 #endif /* ARM_MMU_XSCALE == 1 */
3511
3512 /*
3513 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3514 *
3515 * Return the start and end addresses of the kernel's virtual space.
3516 * These values are setup in pmap_bootstrap and are updated as pages
3517 * are allocated.
3518 */
3519 void
3520 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3521 {
3522 *start = virtual_avail;
3523 *end = virtual_end;
3524 }
3525
3526 /*
3527 * Helper function for pmap_grow_l2_bucket()
3528 */
3529 static inline int
3530 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3531 {
3532 struct l2_bucket *l2b;
3533 pt_entry_t *ptep;
3534 paddr_t pa;
3535
3536 if (uvm.page_init_done == false) {
3537 if (uvm_page_physget(&pa) == false)
3538 return (1);
3539 } else {
3540 struct vm_page *pg;
3541 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3542 if (pg == NULL)
3543 return (1);
3544 pa = VM_PAGE_TO_PHYS(pg);
3545 }
3546
3547 if (pap)
3548 *pap = pa;
3549
3550 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3551 KDASSERT(l2b != NULL);
3552
3553 ptep = &l2b->l2b_kva[l2pte_index(va)];
3554 *ptep = L2_S_PROTO | pa | cache_mode |
3555 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3556 PTE_SYNC(ptep);
3557 memset((void *)va, 0, PAGE_SIZE);
3558 return (0);
3559 }
3560
3561 /*
3562 * This is the same as pmap_alloc_l2_bucket(), except that it is only
3563 * used by pmap_growkernel().
3564 */
3565 static inline struct l2_bucket *
3566 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3567 {
3568 struct l2_dtable *l2;
3569 struct l2_bucket *l2b;
3570 u_short l1idx;
3571 vaddr_t nva;
3572
3573 l1idx = L1_IDX(va);
3574
3575 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3576 /*
3577 * No mapping at this address, as there is
3578 * no entry in the L1 table.
3579 * Need to allocate a new l2_dtable.
3580 */
3581 nva = pmap_kernel_l2dtable_kva;
3582 if ((nva & PGOFSET) == 0) {
3583 /*
3584 * Need to allocate a backing page
3585 */
3586 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3587 return (NULL);
3588 }
3589
3590 l2 = (struct l2_dtable *)nva;
3591 nva += sizeof(struct l2_dtable);
3592
3593 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3594 /*
3595 * The new l2_dtable straddles a page boundary.
3596 * Map in another page to cover it.
3597 */
3598 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3599 return (NULL);
3600 }
3601
3602 pmap_kernel_l2dtable_kva = nva;
3603
3604 /*
3605 * Link it into the parent pmap
3606 */
3607 pm->pm_l2[L2_IDX(l1idx)] = l2;
3608 }
3609
3610 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3611
3612 /*
3613 * Fetch pointer to the L2 page table associated with the address.
3614 */
3615 if (l2b->l2b_kva == NULL) {
3616 pt_entry_t *ptep;
3617
3618 /*
3619 * No L2 page table has been allocated. Chances are, this
3620 * is because we just allocated the l2_dtable, above.
3621 */
3622 nva = pmap_kernel_l2ptp_kva;
3623 ptep = (pt_entry_t *)nva;
3624 if ((nva & PGOFSET) == 0) {
3625 /*
3626 * Need to allocate a backing page
3627 */
3628 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3629 &pmap_kernel_l2ptp_phys))
3630 return (NULL);
3631 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3632 }
3633
3634 l2->l2_occupancy++;
3635 l2b->l2b_kva = ptep;
3636 l2b->l2b_l1idx = l1idx;
3637 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3638
3639 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3640 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3641 }
3642
3643 return (l2b);
3644 }
3645
3646 vaddr_t
3647 pmap_growkernel(vaddr_t maxkvaddr)
3648 {
3649 pmap_t kpm = pmap_kernel();
3650 struct l1_ttable *l1;
3651 struct l2_bucket *l2b;
3652 pd_entry_t *pl1pd;
3653 int s;
3654
3655 if (maxkvaddr <= pmap_curmaxkvaddr)
3656 goto out; /* we are OK */
3657
3658 NPDEBUG(PDB_GROWKERN,
3659 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3660 pmap_curmaxkvaddr, maxkvaddr));
3661
3662 KDASSERT(maxkvaddr <= virtual_end);
3663
3664 /*
3665 * whoops! we need to add kernel PTPs
3666 */
3667
3668 s = splhigh(); /* to be safe */
3669 mutex_enter(&kpm->pm_lock);
3670
3671 /* Map 1MB at a time */
3672 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3673
3674 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3675 KDASSERT(l2b != NULL);
3676
3677 /* Distribute new L1 entry to all other L1s */
3678 SLIST_FOREACH(l1, &l1_list, l1_link) {
3679 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3680 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3681 L1_C_PROTO;
3682 PTE_SYNC(pl1pd);
3683 }
3684 }
3685
3686 /*
3687 * flush out the cache, expensive but growkernel will happen so
3688 * rarely
3689 */
3690 cpu_dcache_wbinv_all();
3691 cpu_tlb_flushD();
3692 cpu_cpwait();
3693
3694 mutex_exit(&kpm->pm_lock);
3695 splx(s);
3696
3697 out:
3698 return (pmap_curmaxkvaddr);
3699 }
3700
3701 /************************ Utility routines ****************************/
3702
3703 /*
3704 * vector_page_setprot:
3705 *
3706 * Manipulate the protection of the vector page.
3707 */
3708 void
3709 vector_page_setprot(int prot)
3710 {
3711 struct l2_bucket *l2b;
3712 pt_entry_t *ptep;
3713
3714 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3715 KDASSERT(l2b != NULL);
3716
3717 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3718
3719 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3720 PTE_SYNC(ptep);
3721 cpu_tlb_flushD_SE(vector_page);
3722 cpu_cpwait();
3723 }
3724
3725 /*
3726 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3727 * Returns true if the mapping exists, else false.
3728 *
3729 * NOTE: This function is only used by a couple of arm-specific modules.
3730 * It is not safe to take any pmap locks here, since we could be right
3731 * in the middle of debugging the pmap anyway...
3732 *
3733 * It is possible for this routine to return false even though a valid
3734 * mapping does exist. This is because we don't lock, so the metadata
3735 * state may be inconsistent.
3736 *
3737 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3738 * a "section" mapping.
3739 */
3740 bool
3741 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3742 {
3743 struct l2_dtable *l2;
3744 pd_entry_t *pl1pd, l1pd;
3745 pt_entry_t *ptep;
3746 u_short l1idx;
3747
3748 if (pm->pm_l1 == NULL)
3749 return (false);
3750
3751 l1idx = L1_IDX(va);
3752 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3753 l1pd = *pl1pd;
3754
3755 if (l1pte_section_p(l1pd)) {
3756 *ptp = NULL;
3757 return (true);
3758 }
3759
3760 if (pm->pm_l2 == NULL)
3761 return (false);
3762
3763 l2 = pm->pm_l2[L2_IDX(l1idx)];
3764
3765 if (l2 == NULL ||
3766 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3767 return (false);
3768 }
3769
3770 *ptp = &ptep[l2pte_index(va)];
3771 return (true);
3772 }
3773
3774 bool
3775 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3776 {
3777 u_short l1idx;
3778
3779 if (pm->pm_l1 == NULL)
3780 return (false);
3781
3782 l1idx = L1_IDX(va);
3783 *pdp = &pm->pm_l1->l1_kva[l1idx];
3784
3785 return (true);
3786 }
3787
3788 /************************ Bootstrapping routines ****************************/
3789
3790 static void
3791 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3792 {
3793 int i;
3794
3795 l1->l1_kva = l1pt;
3796 l1->l1_domain_use_count = 0;
3797 l1->l1_domain_first = 0;
3798
3799 for (i = 0; i < PMAP_DOMAINS; i++)
3800 l1->l1_domain_free[i] = i + 1;
3801
3802 /*
3803 * Copy the kernel's L1 entries to each new L1.
3804 */
3805 if (pmap_initialized)
3806 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3807
3808 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3809 &l1->l1_physaddr) == false)
3810 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3811
3812 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3813 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3814 }
3815
3816 /*
3817 * pmap_bootstrap() is called from the board-specific initarm() routine
3818 * once the kernel L1/L2 descriptors tables have been set up.
3819 *
3820 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3821 * spread over a number of disparate files/functions.
3822 *
3823 * We are passed the following parameters
3824 * - kernel_l1pt
3825 * This is a pointer to the base of the kernel's L1 translation table.
3826 * - vstart
3827 * 1MB-aligned start of managed kernel virtual memory.
3828 * - vend
3829 * 1MB-aligned end of managed kernel virtual memory.
3830 *
3831 * We use the first parameter to build the metadata (struct l1_ttable and
3832 * struct l2_dtable) necessary to track kernel mappings.
3833 */
3834 #define PMAP_STATIC_L2_SIZE 16
3835 void
3836 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3837 {
3838 static struct l1_ttable static_l1;
3839 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3840 struct l1_ttable *l1 = &static_l1;
3841 struct l2_dtable *l2;
3842 struct l2_bucket *l2b;
3843 pmap_t pm = pmap_kernel();
3844 pd_entry_t pde;
3845 pt_entry_t *ptep;
3846 paddr_t pa;
3847 vaddr_t va;
3848 vsize_t size;
3849 int l1idx, l2idx, l2next = 0;
3850
3851 /*
3852 * Initialise the kernel pmap object
3853 */
3854 pm->pm_l1 = l1;
3855 pm->pm_domain = PMAP_DOMAIN_KERNEL;
3856 pm->pm_activated = true;
3857 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3858 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
3859
3860 /*
3861 * Scan the L1 translation table created by initarm() and create
3862 * the required metadata for all valid mappings found in it.
3863 */
3864 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3865 pde = kernel_l1pt[l1idx];
3866
3867 /*
3868 * We're only interested in Coarse mappings.
3869 * pmap_extract() can deal with section mappings without
3870 * recourse to checking L2 metadata.
3871 */
3872 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3873 continue;
3874
3875 /*
3876 * Lookup the KVA of this L2 descriptor table
3877 */
3878 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3879 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3880 if (ptep == NULL) {
3881 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3882 (u_int)l1idx << L1_S_SHIFT, pa);
3883 }
3884
3885 /*
3886 * Fetch the associated L2 metadata structure.
3887 * Allocate a new one if necessary.
3888 */
3889 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3890 if (l2next == PMAP_STATIC_L2_SIZE)
3891 panic("pmap_bootstrap: out of static L2s");
3892 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3893 }
3894
3895 /*
3896 * One more L1 slot tracked...
3897 */
3898 l2->l2_occupancy++;
3899
3900 /*
3901 * Fill in the details of the L2 descriptor in the
3902 * appropriate bucket.
3903 */
3904 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3905 l2b->l2b_kva = ptep;
3906 l2b->l2b_phys = pa;
3907 l2b->l2b_l1idx = l1idx;
3908
3909 /*
3910 * Establish an initial occupancy count for this descriptor
3911 */
3912 for (l2idx = 0;
3913 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3914 l2idx++) {
3915 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3916 l2b->l2b_occupancy++;
3917 }
3918 }
3919
3920 /*
3921 * Make sure the descriptor itself has the correct cache mode.
3922 * If not, fix it, but whine about the problem. Port-meisters
3923 * should consider this a clue to fix up their initarm()
3924 * function. :)
3925 */
3926 if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3927 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3928 "L2 pte @ %p\n", ptep);
3929 }
3930 }
3931
3932 /*
3933 * Ensure the primary (kernel) L1 has the correct cache mode for
3934 * a page table. Bitch if it is not correctly set.
3935 */
3936 for (va = (vaddr_t)kernel_l1pt;
3937 va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3938 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3939 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3940 "primary L1 @ 0x%lx\n", va);
3941 }
3942
3943 cpu_dcache_wbinv_all();
3944 cpu_tlb_flushID();
3945 cpu_cpwait();
3946
3947 /*
3948 * now we allocate the "special" VAs which are used for tmp mappings
3949 * by the pmap (and other modules). we allocate the VAs by advancing
3950 * virtual_avail (note that there are no pages mapped at these VAs).
3951 *
3952 * Managed KVM space start from wherever initarm() tells us.
3953 */
3954 virtual_avail = vstart;
3955 virtual_end = vend;
3956
3957 pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3958 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3959 pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3960 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3961 pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
3962 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3963 (void *)&msgbufaddr, NULL);
3964
3965 /*
3966 * Allocate a range of kernel virtual address space to be used
3967 * for L2 descriptor tables and metadata allocation in
3968 * pmap_growkernel().
3969 */
3970 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3971 pmap_alloc_specials(&virtual_avail,
3972 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3973 &pmap_kernel_l2ptp_kva, NULL);
3974
3975 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3976 pmap_alloc_specials(&virtual_avail,
3977 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3978 &pmap_kernel_l2dtable_kva, NULL);
3979
3980 /*
3981 * init the static-global locks and global pmap list.
3982 */
3983 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
3984
3985 /*
3986 * We can now initialise the first L1's metadata.
3987 */
3988 SLIST_INIT(&l1_list);
3989 TAILQ_INIT(&l1_lru_list);
3990 simple_lock_init(&l1_lru_lock);
3991 pmap_init_l1(l1, kernel_l1pt);
3992
3993 /* Set up vector page L1 details, if necessary */
3994 if (vector_page < KERNEL_BASE) {
3995 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3996 l2b = pmap_get_l2_bucket(pm, vector_page);
3997 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
3998 L1_C_DOM(pm->pm_domain);
3999 } else
4000 pm->pm_pl1vec = NULL;
4001
4002 /*
4003 * Initialize the pmap cache
4004 */
4005 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
4006 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
4007 LIST_INIT(&pmap_pmaps);
4008 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
4009
4010 /*
4011 * Initialize the pv pool.
4012 */
4013 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
4014 &pmap_bootstrap_pv_allocator, IPL_NONE);
4015
4016 /*
4017 * Initialize the L2 dtable pool and cache.
4018 */
4019 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
4020 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
4021
4022 /*
4023 * Initialise the L2 descriptor table pool and cache
4024 */
4025 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
4026 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
4027 pmap_l2ptp_ctor, NULL, NULL);
4028
4029 cpu_dcache_wbinv_all();
4030 }
4031
4032 static int
4033 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
4034 {
4035 pd_entry_t *pdep, pde;
4036 pt_entry_t *ptep, pte;
4037 vaddr_t pa;
4038 int rv = 0;
4039
4040 /*
4041 * Make sure the descriptor itself has the correct cache mode
4042 */
4043 pdep = &kl1[L1_IDX(va)];
4044 pde = *pdep;
4045
4046 if (l1pte_section_p(pde)) {
4047 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4048 *pdep = (pde & ~L1_S_CACHE_MASK) |
4049 pte_l1_s_cache_mode_pt;
4050 PTE_SYNC(pdep);
4051 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4052 rv = 1;
4053 }
4054 } else {
4055 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4056 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4057 if (ptep == NULL)
4058 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4059
4060 ptep = &ptep[l2pte_index(va)];
4061 pte = *ptep;
4062 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4063 *ptep = (pte & ~L2_S_CACHE_MASK) |
4064 pte_l2_s_cache_mode_pt;
4065 PTE_SYNC(ptep);
4066 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4067 rv = 1;
4068 }
4069 }
4070
4071 return (rv);
4072 }
4073
4074 static void
4075 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4076 {
4077 vaddr_t va = *availp;
4078 struct l2_bucket *l2b;
4079
4080 if (ptep) {
4081 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4082 if (l2b == NULL)
4083 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4084
4085 if (ptep)
4086 *ptep = &l2b->l2b_kva[l2pte_index(va)];
4087 }
4088
4089 *vap = va;
4090 *availp = va + (PAGE_SIZE * pages);
4091 }
4092
4093 void
4094 pmap_init(void)
4095 {
4096 extern int physmem;
4097
4098 /*
4099 * Set the available memory vars - These do not map to real memory
4100 * addresses and cannot as the physical memory is fragmented.
4101 * They are used by ps for %mem calculations.
4102 * One could argue whether this should be the entire memory or just
4103 * the memory that is useable in a user process.
4104 */
4105 avail_start = 0;
4106 avail_end = physmem * PAGE_SIZE;
4107
4108 /*
4109 * Now we need to free enough pv_entry structures to allow us to get
4110 * the kmem_map/kmem_object allocated and inited (done after this
4111 * function is finished). to do this we allocate one bootstrap page out
4112 * of kernel_map and use it to provide an initial pool of pv_entry
4113 * structures. we never free this page.
4114 */
4115 pool_setlowat(&pmap_pv_pool,
4116 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4117
4118 pmap_initialized = true;
4119 }
4120
4121 static vaddr_t last_bootstrap_page = 0;
4122 static void *free_bootstrap_pages = NULL;
4123
4124 static void *
4125 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4126 {
4127 extern void *pool_page_alloc(struct pool *, int);
4128 vaddr_t new_page;
4129 void *rv;
4130
4131 if (pmap_initialized)
4132 return (pool_page_alloc(pp, flags));
4133
4134 if (free_bootstrap_pages) {
4135 rv = free_bootstrap_pages;
4136 free_bootstrap_pages = *((void **)rv);
4137 return (rv);
4138 }
4139
4140 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
4141 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
4142
4143 KASSERT(new_page > last_bootstrap_page);
4144 last_bootstrap_page = new_page;
4145 return ((void *)new_page);
4146 }
4147
4148 static void
4149 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4150 {
4151 extern void pool_page_free(struct pool *, void *);
4152
4153 if ((vaddr_t)v <= last_bootstrap_page) {
4154 *((void **)v) = free_bootstrap_pages;
4155 free_bootstrap_pages = v;
4156 return;
4157 }
4158
4159 if (pmap_initialized) {
4160 pool_page_free(pp, v);
4161 return;
4162 }
4163 }
4164
4165 /*
4166 * pmap_postinit()
4167 *
4168 * This routine is called after the vm and kmem subsystems have been
4169 * initialised. This allows the pmap code to perform any initialisation
4170 * that can only be done one the memory allocation is in place.
4171 */
4172 void
4173 pmap_postinit(void)
4174 {
4175 extern paddr_t physical_start, physical_end;
4176 struct l2_bucket *l2b;
4177 struct l1_ttable *l1;
4178 struct pglist plist;
4179 struct vm_page *m;
4180 pd_entry_t *pl1pt;
4181 pt_entry_t *ptep, pte;
4182 vaddr_t va, eva;
4183 u_int loop, needed;
4184 int error;
4185
4186 pool_cache_setlowat(&pmap_l2ptp_cache,
4187 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4188 pool_cache_setlowat(&pmap_l2dtable_cache,
4189 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4190
4191 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4192 needed -= 1;
4193
4194 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4195
4196 for (loop = 0; loop < needed; loop++, l1++) {
4197 /* Allocate a L1 page table */
4198 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
4199 if (va == 0)
4200 panic("Cannot allocate L1 KVM");
4201
4202 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4203 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4204 if (error)
4205 panic("Cannot allocate L1 physical pages");
4206
4207 m = TAILQ_FIRST(&plist);
4208 eva = va + L1_TABLE_SIZE;
4209 pl1pt = (pd_entry_t *)va;
4210
4211 while (m && va < eva) {
4212 paddr_t pa = VM_PAGE_TO_PHYS(m);
4213
4214 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4215
4216 /*
4217 * Make sure the L1 descriptor table is mapped
4218 * with the cache-mode set to write-through.
4219 */
4220 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4221 ptep = &l2b->l2b_kva[l2pte_index(va)];
4222 pte = *ptep;
4223 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4224 *ptep = pte;
4225 PTE_SYNC(ptep);
4226 cpu_tlb_flushD_SE(va);
4227
4228 va += PAGE_SIZE;
4229 m = TAILQ_NEXT(m, pageq);
4230 }
4231
4232 #ifdef DIAGNOSTIC
4233 if (m)
4234 panic("pmap_alloc_l1pt: pglist not empty");
4235 #endif /* DIAGNOSTIC */
4236
4237 pmap_init_l1(l1, pl1pt);
4238 }
4239
4240 #ifdef DEBUG
4241 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4242 needed);
4243 #endif
4244 }
4245
4246 /*
4247 * Note that the following routines are used by board-specific initialisation
4248 * code to configure the initial kernel page tables.
4249 *
4250 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4251 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4252 * behaviour of the old pmap, and provides an easy migration path for
4253 * initial bring-up of the new pmap on existing ports. Fortunately,
4254 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4255 * will be deprecated.
4256 *
4257 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4258 * tables.
4259 */
4260
4261 /*
4262 * This list exists for the benefit of pmap_map_chunk(). It keeps track
4263 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4264 * find them as necessary.
4265 *
4266 * Note that the data on this list MUST remain valid after initarm() returns,
4267 * as pmap_bootstrap() uses it to contruct L2 table metadata.
4268 */
4269 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4270
4271 static vaddr_t
4272 kernel_pt_lookup(paddr_t pa)
4273 {
4274 pv_addr_t *pv;
4275
4276 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4277 #ifndef ARM32_NEW_VM_LAYOUT
4278 if (pv->pv_pa == (pa & ~PGOFSET))
4279 return (pv->pv_va | (pa & PGOFSET));
4280 #else
4281 if (pv->pv_pa == pa)
4282 return (pv->pv_va);
4283 #endif
4284 }
4285 return (0);
4286 }
4287
4288 /*
4289 * pmap_map_section:
4290 *
4291 * Create a single section mapping.
4292 */
4293 void
4294 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4295 {
4296 pd_entry_t *pde = (pd_entry_t *) l1pt;
4297 pd_entry_t fl;
4298
4299 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4300
4301 switch (cache) {
4302 case PTE_NOCACHE:
4303 default:
4304 fl = 0;
4305 break;
4306
4307 case PTE_CACHE:
4308 fl = pte_l1_s_cache_mode;
4309 break;
4310
4311 case PTE_PAGETABLE:
4312 fl = pte_l1_s_cache_mode_pt;
4313 break;
4314 }
4315
4316 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4317 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4318 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4319 }
4320
4321 /*
4322 * pmap_map_entry:
4323 *
4324 * Create a single page mapping.
4325 */
4326 void
4327 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4328 {
4329 pd_entry_t *pde = (pd_entry_t *) l1pt;
4330 pt_entry_t fl;
4331 pt_entry_t *pte;
4332
4333 KASSERT(((va | pa) & PGOFSET) == 0);
4334
4335 switch (cache) {
4336 case PTE_NOCACHE:
4337 default:
4338 fl = 0;
4339 break;
4340
4341 case PTE_CACHE:
4342 fl = pte_l2_s_cache_mode;
4343 break;
4344
4345 case PTE_PAGETABLE:
4346 fl = pte_l2_s_cache_mode_pt;
4347 break;
4348 }
4349
4350 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4351 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4352
4353 #ifndef ARM32_NEW_VM_LAYOUT
4354 pte = (pt_entry_t *)
4355 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4356 #else
4357 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4358 #endif
4359 if (pte == NULL)
4360 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4361
4362 #ifndef ARM32_NEW_VM_LAYOUT
4363 pte[(va >> PGSHIFT) & 0x3ff] =
4364 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4365 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4366 #else
4367 pte[l2pte_index(va)] =
4368 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4369 PTE_SYNC(&pte[l2pte_index(va)]);
4370 #endif
4371 }
4372
4373 /*
4374 * pmap_link_l2pt:
4375 *
4376 * Link the L2 page table specified by "l2pv" into the L1
4377 * page table at the slot for "va".
4378 */
4379 void
4380 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4381 {
4382 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4383 u_int slot = va >> L1_S_SHIFT;
4384
4385 #ifndef ARM32_NEW_VM_LAYOUT
4386 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4387 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4388 #endif
4389
4390 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4391
4392 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4393 #ifdef ARM32_NEW_VM_LAYOUT
4394 PTE_SYNC(&pde[slot]);
4395 #else
4396 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4397 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4398 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4399 PTE_SYNC_RANGE(&pde[slot + 0], 4);
4400 #endif
4401
4402 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4403 }
4404
4405 /*
4406 * pmap_map_chunk:
4407 *
4408 * Map a chunk of memory using the most efficient mappings
4409 * possible (section, large page, small page) into the
4410 * provided L1 and L2 tables at the specified virtual address.
4411 */
4412 vsize_t
4413 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4414 int prot, int cache)
4415 {
4416 pd_entry_t *pde = (pd_entry_t *) l1pt;
4417 pt_entry_t *pte, f1, f2s, f2l;
4418 vsize_t resid;
4419 int i;
4420
4421 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4422
4423 if (l1pt == 0)
4424 panic("pmap_map_chunk: no L1 table provided");
4425
4426 #ifdef VERBOSE_INIT_ARM
4427 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4428 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4429 #endif
4430
4431 switch (cache) {
4432 case PTE_NOCACHE:
4433 default:
4434 f1 = 0;
4435 f2l = 0;
4436 f2s = 0;
4437 break;
4438
4439 case PTE_CACHE:
4440 f1 = pte_l1_s_cache_mode;
4441 f2l = pte_l2_l_cache_mode;
4442 f2s = pte_l2_s_cache_mode;
4443 break;
4444
4445 case PTE_PAGETABLE:
4446 f1 = pte_l1_s_cache_mode_pt;
4447 f2l = pte_l2_l_cache_mode_pt;
4448 f2s = pte_l2_s_cache_mode_pt;
4449 break;
4450 }
4451
4452 size = resid;
4453
4454 while (resid > 0) {
4455 /* See if we can use a section mapping. */
4456 if (L1_S_MAPPABLE_P(va, pa, resid)) {
4457 #ifdef VERBOSE_INIT_ARM
4458 printf("S");
4459 #endif
4460 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4461 L1_S_PROT(PTE_KERNEL, prot) | f1 |
4462 L1_S_DOM(PMAP_DOMAIN_KERNEL);
4463 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4464 va += L1_S_SIZE;
4465 pa += L1_S_SIZE;
4466 resid -= L1_S_SIZE;
4467 continue;
4468 }
4469
4470 /*
4471 * Ok, we're going to use an L2 table. Make sure
4472 * one is actually in the corresponding L1 slot
4473 * for the current VA.
4474 */
4475 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4476 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4477
4478 #ifndef ARM32_NEW_VM_LAYOUT
4479 pte = (pt_entry_t *)
4480 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4481 #else
4482 pte = (pt_entry_t *) kernel_pt_lookup(
4483 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4484 #endif
4485 if (pte == NULL)
4486 panic("pmap_map_chunk: can't find L2 table for VA"
4487 "0x%08lx", va);
4488
4489 /* See if we can use a L2 large page mapping. */
4490 if (L2_L_MAPPABLE_P(va, pa, resid)) {
4491 #ifdef VERBOSE_INIT_ARM
4492 printf("L");
4493 #endif
4494 for (i = 0; i < 16; i++) {
4495 #ifndef ARM32_NEW_VM_LAYOUT
4496 pte[((va >> PGSHIFT) & 0x3f0) + i] =
4497 L2_L_PROTO | pa |
4498 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4499 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4500 #else
4501 pte[l2pte_index(va) + i] =
4502 L2_L_PROTO | pa |
4503 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4504 PTE_SYNC(&pte[l2pte_index(va) + i]);
4505 #endif
4506 }
4507 va += L2_L_SIZE;
4508 pa += L2_L_SIZE;
4509 resid -= L2_L_SIZE;
4510 continue;
4511 }
4512
4513 /* Use a small page mapping. */
4514 #ifdef VERBOSE_INIT_ARM
4515 printf("P");
4516 #endif
4517 #ifndef ARM32_NEW_VM_LAYOUT
4518 pte[(va >> PGSHIFT) & 0x3ff] =
4519 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4520 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4521 #else
4522 pte[l2pte_index(va)] =
4523 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4524 PTE_SYNC(&pte[l2pte_index(va)]);
4525 #endif
4526 va += PAGE_SIZE;
4527 pa += PAGE_SIZE;
4528 resid -= PAGE_SIZE;
4529 }
4530 #ifdef VERBOSE_INIT_ARM
4531 printf("\n");
4532 #endif
4533 return (size);
4534 }
4535
4536 /********************** Static device map routines ***************************/
4537
4538 static const struct pmap_devmap *pmap_devmap_table;
4539
4540 /*
4541 * Register the devmap table. This is provided in case early console
4542 * initialization needs to register mappings created by bootstrap code
4543 * before pmap_devmap_bootstrap() is called.
4544 */
4545 void
4546 pmap_devmap_register(const struct pmap_devmap *table)
4547 {
4548
4549 pmap_devmap_table = table;
4550 }
4551
4552 /*
4553 * Map all of the static regions in the devmap table, and remember
4554 * the devmap table so other parts of the kernel can look up entries
4555 * later.
4556 */
4557 void
4558 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4559 {
4560 int i;
4561
4562 pmap_devmap_table = table;
4563
4564 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4565 #ifdef VERBOSE_INIT_ARM
4566 printf("devmap: %08lx -> %08lx @ %08lx\n",
4567 pmap_devmap_table[i].pd_pa,
4568 pmap_devmap_table[i].pd_pa +
4569 pmap_devmap_table[i].pd_size - 1,
4570 pmap_devmap_table[i].pd_va);
4571 #endif
4572 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4573 pmap_devmap_table[i].pd_pa,
4574 pmap_devmap_table[i].pd_size,
4575 pmap_devmap_table[i].pd_prot,
4576 pmap_devmap_table[i].pd_cache);
4577 }
4578 }
4579
4580 const struct pmap_devmap *
4581 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4582 {
4583 uint64_t endpa;
4584 int i;
4585
4586 if (pmap_devmap_table == NULL)
4587 return (NULL);
4588
4589 endpa = (uint64_t)pa + (uint64_t)(size - 1);
4590
4591 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4592 if (pa >= pmap_devmap_table[i].pd_pa &&
4593 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
4594 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
4595 return (&pmap_devmap_table[i]);
4596 }
4597
4598 return (NULL);
4599 }
4600
4601 const struct pmap_devmap *
4602 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4603 {
4604 int i;
4605
4606 if (pmap_devmap_table == NULL)
4607 return (NULL);
4608
4609 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4610 if (va >= pmap_devmap_table[i].pd_va &&
4611 va + size - 1 <= pmap_devmap_table[i].pd_va +
4612 pmap_devmap_table[i].pd_size - 1)
4613 return (&pmap_devmap_table[i]);
4614 }
4615
4616 return (NULL);
4617 }
4618
4619 /********************** PTE initialization routines **************************/
4620
4621 /*
4622 * These routines are called when the CPU type is identified to set up
4623 * the PTE prototypes, cache modes, etc.
4624 *
4625 * The variables are always here, just in case LKMs need to reference
4626 * them (though, they shouldn't).
4627 */
4628
4629 pt_entry_t pte_l1_s_cache_mode;
4630 pt_entry_t pte_l1_s_cache_mode_pt;
4631 pt_entry_t pte_l1_s_cache_mask;
4632
4633 pt_entry_t pte_l2_l_cache_mode;
4634 pt_entry_t pte_l2_l_cache_mode_pt;
4635 pt_entry_t pte_l2_l_cache_mask;
4636
4637 pt_entry_t pte_l2_s_cache_mode;
4638 pt_entry_t pte_l2_s_cache_mode_pt;
4639 pt_entry_t pte_l2_s_cache_mask;
4640
4641 pt_entry_t pte_l2_s_prot_u;
4642 pt_entry_t pte_l2_s_prot_w;
4643 pt_entry_t pte_l2_s_prot_mask;
4644
4645 pt_entry_t pte_l1_s_proto;
4646 pt_entry_t pte_l1_c_proto;
4647 pt_entry_t pte_l2_s_proto;
4648
4649 void (*pmap_copy_page_func)(paddr_t, paddr_t);
4650 void (*pmap_zero_page_func)(paddr_t);
4651
4652 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4653 void
4654 pmap_pte_init_generic(void)
4655 {
4656
4657 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4658 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4659
4660 pte_l2_l_cache_mode = L2_B|L2_C;
4661 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4662
4663 pte_l2_s_cache_mode = L2_B|L2_C;
4664 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4665
4666 /*
4667 * If we have a write-through cache, set B and C. If
4668 * we have a write-back cache, then we assume setting
4669 * only C will make those pages write-through.
4670 */
4671 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4672 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4673 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4674 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4675 } else {
4676 pte_l1_s_cache_mode_pt = L1_S_C;
4677 pte_l2_l_cache_mode_pt = L2_C;
4678 pte_l2_s_cache_mode_pt = L2_C;
4679 }
4680
4681 pte_l2_s_prot_u = L2_S_PROT_U_generic;
4682 pte_l2_s_prot_w = L2_S_PROT_W_generic;
4683 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4684
4685 pte_l1_s_proto = L1_S_PROTO_generic;
4686 pte_l1_c_proto = L1_C_PROTO_generic;
4687 pte_l2_s_proto = L2_S_PROTO_generic;
4688
4689 pmap_copy_page_func = pmap_copy_page_generic;
4690 pmap_zero_page_func = pmap_zero_page_generic;
4691 }
4692
4693 #if defined(CPU_ARM8)
4694 void
4695 pmap_pte_init_arm8(void)
4696 {
4697
4698 /*
4699 * ARM8 is compatible with generic, but we need to use
4700 * the page tables uncached.
4701 */
4702 pmap_pte_init_generic();
4703
4704 pte_l1_s_cache_mode_pt = 0;
4705 pte_l2_l_cache_mode_pt = 0;
4706 pte_l2_s_cache_mode_pt = 0;
4707 }
4708 #endif /* CPU_ARM8 */
4709
4710 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
4711 void
4712 pmap_pte_init_arm9(void)
4713 {
4714
4715 /*
4716 * ARM9 is compatible with generic, but we want to use
4717 * write-through caching for now.
4718 */
4719 pmap_pte_init_generic();
4720
4721 pte_l1_s_cache_mode = L1_S_C;
4722 pte_l2_l_cache_mode = L2_C;
4723 pte_l2_s_cache_mode = L2_C;
4724
4725 pte_l1_s_cache_mode_pt = L1_S_C;
4726 pte_l2_l_cache_mode_pt = L2_C;
4727 pte_l2_s_cache_mode_pt = L2_C;
4728 }
4729 #endif /* CPU_ARM9 */
4730 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4731
4732 #if defined(CPU_ARM10)
4733 void
4734 pmap_pte_init_arm10(void)
4735 {
4736
4737 /*
4738 * ARM10 is compatible with generic, but we want to use
4739 * write-through caching for now.
4740 */
4741 pmap_pte_init_generic();
4742
4743 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
4744 pte_l2_l_cache_mode = L2_B | L2_C;
4745 pte_l2_s_cache_mode = L2_B | L2_C;
4746
4747 pte_l1_s_cache_mode_pt = L1_S_C;
4748 pte_l2_l_cache_mode_pt = L2_C;
4749 pte_l2_s_cache_mode_pt = L2_C;
4750
4751 }
4752 #endif /* CPU_ARM10 */
4753
4754 #if ARM_MMU_SA1 == 1
4755 void
4756 pmap_pte_init_sa1(void)
4757 {
4758
4759 /*
4760 * The StrongARM SA-1 cache does not have a write-through
4761 * mode. So, do the generic initialization, then reset
4762 * the page table cache mode to B=1,C=1, and note that
4763 * the PTEs need to be sync'd.
4764 */
4765 pmap_pte_init_generic();
4766
4767 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4768 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4769 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4770
4771 pmap_needs_pte_sync = 1;
4772 }
4773 #endif /* ARM_MMU_SA1 == 1*/
4774
4775 #if ARM_MMU_XSCALE == 1
4776 #if (ARM_NMMUS > 1)
4777 static u_int xscale_use_minidata;
4778 #endif
4779
4780 void
4781 pmap_pte_init_xscale(void)
4782 {
4783 uint32_t auxctl;
4784 int write_through = 0;
4785
4786 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4787 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4788
4789 pte_l2_l_cache_mode = L2_B|L2_C;
4790 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4791
4792 pte_l2_s_cache_mode = L2_B|L2_C;
4793 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4794
4795 pte_l1_s_cache_mode_pt = L1_S_C;
4796 pte_l2_l_cache_mode_pt = L2_C;
4797 pte_l2_s_cache_mode_pt = L2_C;
4798
4799 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4800 /*
4801 * The XScale core has an enhanced mode where writes that
4802 * miss the cache cause a cache line to be allocated. This
4803 * is significantly faster than the traditional, write-through
4804 * behavior of this case.
4805 */
4806 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4807 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4808 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4809 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4810
4811 #ifdef XSCALE_CACHE_WRITE_THROUGH
4812 /*
4813 * Some versions of the XScale core have various bugs in
4814 * their cache units, the work-around for which is to run
4815 * the cache in write-through mode. Unfortunately, this
4816 * has a major (negative) impact on performance. So, we
4817 * go ahead and run fast-and-loose, in the hopes that we
4818 * don't line up the planets in a way that will trip the
4819 * bugs.
4820 *
4821 * However, we give you the option to be slow-but-correct.
4822 */
4823 write_through = 1;
4824 #elif defined(XSCALE_CACHE_WRITE_BACK)
4825 /* force write back cache mode */
4826 write_through = 0;
4827 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
4828 /*
4829 * Intel PXA2[15]0 processors are known to have a bug in
4830 * write-back cache on revision 4 and earlier (stepping
4831 * A[01] and B[012]). Fixed for C0 and later.
4832 */
4833 {
4834 uint32_t id, type;
4835
4836 id = cpufunc_id();
4837 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4838
4839 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4840 if ((id & CPU_ID_REVISION_MASK) < 5) {
4841 /* write through for stepping A0-1 and B0-2 */
4842 write_through = 1;
4843 }
4844 }
4845 }
4846 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4847
4848 if (write_through) {
4849 pte_l1_s_cache_mode = L1_S_C;
4850 pte_l2_l_cache_mode = L2_C;
4851 pte_l2_s_cache_mode = L2_C;
4852 }
4853
4854 #if (ARM_NMMUS > 1)
4855 xscale_use_minidata = 1;
4856 #endif
4857
4858 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4859 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4860 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4861
4862 pte_l1_s_proto = L1_S_PROTO_xscale;
4863 pte_l1_c_proto = L1_C_PROTO_xscale;
4864 pte_l2_s_proto = L2_S_PROTO_xscale;
4865
4866 pmap_copy_page_func = pmap_copy_page_xscale;
4867 pmap_zero_page_func = pmap_zero_page_xscale;
4868
4869 /*
4870 * Disable ECC protection of page table access, for now.
4871 */
4872 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4873 auxctl &= ~XSCALE_AUXCTL_P;
4874 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4875 }
4876
4877 /*
4878 * xscale_setup_minidata:
4879 *
4880 * Set up the mini-data cache clean area. We require the
4881 * caller to allocate the right amount of physically and
4882 * virtually contiguous space.
4883 */
4884 void
4885 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4886 {
4887 extern vaddr_t xscale_minidata_clean_addr;
4888 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4889 pd_entry_t *pde = (pd_entry_t *) l1pt;
4890 pt_entry_t *pte;
4891 vsize_t size;
4892 uint32_t auxctl;
4893
4894 xscale_minidata_clean_addr = va;
4895
4896 /* Round it to page size. */
4897 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4898
4899 for (; size != 0;
4900 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4901 #ifndef ARM32_NEW_VM_LAYOUT
4902 pte = (pt_entry_t *)
4903 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4904 #else
4905 pte = (pt_entry_t *) kernel_pt_lookup(
4906 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4907 #endif
4908 if (pte == NULL)
4909 panic("xscale_setup_minidata: can't find L2 table for "
4910 "VA 0x%08lx", va);
4911 #ifndef ARM32_NEW_VM_LAYOUT
4912 pte[(va >> PGSHIFT) & 0x3ff] =
4913 #else
4914 pte[l2pte_index(va)] =
4915 #endif
4916 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4917 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4918 }
4919
4920 /*
4921 * Configure the mini-data cache for write-back with
4922 * read/write-allocate.
4923 *
4924 * NOTE: In order to reconfigure the mini-data cache, we must
4925 * make sure it contains no valid data! In order to do that,
4926 * we must issue a global data cache invalidate command!
4927 *
4928 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4929 * THIS IS VERY IMPORTANT!
4930 */
4931
4932 /* Invalidate data and mini-data. */
4933 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
4934 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4935 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4936 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4937 }
4938
4939 /*
4940 * Change the PTEs for the specified kernel mappings such that they
4941 * will use the mini data cache instead of the main data cache.
4942 */
4943 void
4944 pmap_uarea(vaddr_t va)
4945 {
4946 struct l2_bucket *l2b;
4947 pt_entry_t *ptep, *sptep, pte;
4948 vaddr_t next_bucket, eva;
4949
4950 #if (ARM_NMMUS > 1)
4951 if (xscale_use_minidata == 0)
4952 return;
4953 #endif
4954
4955 eva = va + USPACE;
4956
4957 while (va < eva) {
4958 next_bucket = L2_NEXT_BUCKET(va);
4959 if (next_bucket > eva)
4960 next_bucket = eva;
4961
4962 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4963 KDASSERT(l2b != NULL);
4964
4965 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4966
4967 while (va < next_bucket) {
4968 pte = *ptep;
4969 if (!l2pte_minidata(pte)) {
4970 cpu_dcache_wbinv_range(va, PAGE_SIZE);
4971 cpu_tlb_flushD_SE(va);
4972 *ptep = pte & ~L2_B;
4973 }
4974 ptep++;
4975 va += PAGE_SIZE;
4976 }
4977 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4978 }
4979 cpu_cpwait();
4980 }
4981 #endif /* ARM_MMU_XSCALE == 1 */
4982
4983 /*
4984 * return the PA of the current L1 table, for use when handling a crash dump
4985 */
4986 uint32_t pmap_kernel_L1_addr()
4987 {
4988 return pmap_kernel()->pm_l1->l1_physaddr;
4989 }
4990
4991 #if defined(DDB)
4992 /*
4993 * A couple of ddb-callable functions for dumping pmaps
4994 */
4995 void pmap_dump_all(void);
4996 void pmap_dump(pmap_t);
4997
4998 void
4999 pmap_dump_all(void)
5000 {
5001 pmap_t pm;
5002
5003 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
5004 if (pm == pmap_kernel())
5005 continue;
5006 pmap_dump(pm);
5007 printf("\n");
5008 }
5009 }
5010
5011 static pt_entry_t ncptes[64];
5012 static void pmap_dump_ncpg(pmap_t);
5013
5014 void
5015 pmap_dump(pmap_t pm)
5016 {
5017 struct l2_dtable *l2;
5018 struct l2_bucket *l2b;
5019 pt_entry_t *ptep, pte;
5020 vaddr_t l2_va, l2b_va, va;
5021 int i, j, k, occ, rows = 0;
5022
5023 if (pm == pmap_kernel())
5024 printf("pmap_kernel (%p): ", pm);
5025 else
5026 printf("user pmap (%p): ", pm);
5027
5028 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
5029
5030 l2_va = 0;
5031 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
5032 l2 = pm->pm_l2[i];
5033
5034 if (l2 == NULL || l2->l2_occupancy == 0)
5035 continue;
5036
5037 l2b_va = l2_va;
5038 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
5039 l2b = &l2->l2_bucket[j];
5040
5041 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
5042 continue;
5043
5044 ptep = l2b->l2b_kva;
5045
5046 for (k = 0; k < 256 && ptep[k] == 0; k++)
5047 ;
5048
5049 k &= ~63;
5050 occ = l2b->l2b_occupancy;
5051 va = l2b_va + (k * 4096);
5052 for (; k < 256; k++, va += 0x1000) {
5053 char ch = ' ';
5054 if ((k % 64) == 0) {
5055 if ((rows % 8) == 0) {
5056 printf(
5057 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
5058 }
5059 printf("%08lx: ", va);
5060 }
5061
5062 ncptes[k & 63] = 0;
5063 pte = ptep[k];
5064 if (pte == 0) {
5065 ch = '.';
5066 } else {
5067 occ--;
5068 switch (pte & 0x0c) {
5069 case 0x00:
5070 ch = 'D'; /* No cache No buff */
5071 break;
5072 case 0x04:
5073 ch = 'B'; /* No cache buff */
5074 break;
5075 case 0x08:
5076 if (pte & 0x40)
5077 ch = 'm';
5078 else
5079 ch = 'C'; /* Cache No buff */
5080 break;
5081 case 0x0c:
5082 ch = 'F'; /* Cache Buff */
5083 break;
5084 }
5085
5086 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
5087 ch += 0x20;
5088
5089 if ((pte & 0xc) == 0)
5090 ncptes[k & 63] = pte;
5091 }
5092
5093 if ((k % 64) == 63) {
5094 rows++;
5095 printf("%c\n", ch);
5096 pmap_dump_ncpg(pm);
5097 if (occ == 0)
5098 break;
5099 } else
5100 printf("%c", ch);
5101 }
5102 }
5103 }
5104 }
5105
5106 static void
5107 pmap_dump_ncpg(pmap_t pm)
5108 {
5109 struct vm_page *pg;
5110 struct pv_entry *pv;
5111 int i;
5112
5113 for (i = 0; i < 63; i++) {
5114 if (ncptes[i] == 0)
5115 continue;
5116
5117 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5118 if (pg == NULL)
5119 continue;
5120
5121 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5122 VM_PAGE_TO_PHYS(pg),
5123 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5124 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5125
5126 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5127 printf(" %c va 0x%08lx, flags 0x%x\n",
5128 (pm == pv->pv_pmap) ? '*' : ' ',
5129 pv->pv_va, pv->pv_flags);
5130 }
5131 }
5132 }
5133 #endif
5134