pmap.c revision 1.173 1 /* $NetBSD: pmap.c,v 1.173 2008/04/20 15:42:19 scw Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the NetBSD
84 * Foundation, Inc. and its contributors.
85 * 4. Neither the name of The NetBSD Foundation nor the names of its
86 * contributors may be used to endorse or promote products derived
87 * from this software without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
90 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
91 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
92 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
93 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
94 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
95 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
96 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
97 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
98 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
99 * POSSIBILITY OF SUCH DAMAGE.
100 */
101
102 /*
103 * Copyright (c) 1994-1998 Mark Brinicombe.
104 * Copyright (c) 1994 Brini.
105 * All rights reserved.
106 *
107 * This code is derived from software written for Brini by Mark Brinicombe
108 *
109 * Redistribution and use in source and binary forms, with or without
110 * modification, are permitted provided that the following conditions
111 * are met:
112 * 1. Redistributions of source code must retain the above copyright
113 * notice, this list of conditions and the following disclaimer.
114 * 2. Redistributions in binary form must reproduce the above copyright
115 * notice, this list of conditions and the following disclaimer in the
116 * documentation and/or other materials provided with the distribution.
117 * 3. All advertising materials mentioning features or use of this software
118 * must display the following acknowledgement:
119 * This product includes software developed by Mark Brinicombe.
120 * 4. The name of the author may not be used to endorse or promote products
121 * derived from this software without specific prior written permission.
122 *
123 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
124 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
125 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
126 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
127 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
128 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
129 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
130 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
131 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
132 *
133 * RiscBSD kernel project
134 *
135 * pmap.c
136 *
137 * Machine dependant vm stuff
138 *
139 * Created : 20/09/94
140 */
141
142 /*
143 * Performance improvements, UVM changes, overhauls and part-rewrites
144 * were contributed by Neil A. Carson <neil (at) causality.com>.
145 */
146
147 /*
148 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
149 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
150 * Systems, Inc.
151 *
152 * There are still a few things outstanding at this time:
153 *
154 * - There are some unresolved issues for MP systems:
155 *
156 * o The L1 metadata needs a lock, or more specifically, some places
157 * need to acquire an exclusive lock when modifying L1 translation
158 * table entries.
159 *
160 * o When one cpu modifies an L1 entry, and that L1 table is also
161 * being used by another cpu, then the latter will need to be told
162 * that a tlb invalidation may be necessary. (But only if the old
163 * domain number in the L1 entry being over-written is currently
164 * the active domain on that cpu). I guess there are lots more tlb
165 * shootdown issues too...
166 *
167 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
168 * MP systems will lose big-time because of the MMU domain hack.
169 * The only way this can be solved (apart from moving the vector
170 * page to 0xffff0000) is to reserve the first 1MB of user address
171 * space for kernel use only. This would require re-linking all
172 * applications so that the text section starts above this 1MB
173 * boundary.
174 *
175 * o Tracking which VM space is resident in the cache/tlb has not yet
176 * been implemented for MP systems.
177 *
178 * o Finally, there is a pathological condition where two cpus running
179 * two separate processes (not lwps) which happen to share an L1
180 * can get into a fight over one or more L1 entries. This will result
181 * in a significant slow-down if both processes are in tight loops.
182 */
183
184 /*
185 * Special compilation symbols
186 * PMAP_DEBUG - Build in pmap_debug_level code
187 */
188
189 /* Include header files */
190
191 #include "opt_cpuoptions.h"
192 #include "opt_pmap_debug.h"
193 #include "opt_ddb.h"
194 #include "opt_lockdebug.h"
195 #include "opt_multiprocessor.h"
196
197 #include <sys/param.h>
198 #include <sys/types.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/user.h>
204 #include <sys/pool.h>
205 #include <sys/cdefs.h>
206 #include <sys/cpu.h>
207
208 #include <uvm/uvm.h>
209
210 #include <machine/bus.h>
211 #include <machine/pmap.h>
212 #include <machine/pcb.h>
213 #include <machine/param.h>
214 #include <arm/arm32/katelib.h>
215
216 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.173 2008/04/20 15:42:19 scw Exp $");
217
218 #ifdef PMAP_DEBUG
219
220 /* XXX need to get rid of all refs to this */
221 int pmap_debug_level = 0;
222
223 /*
224 * for switching to potentially finer grained debugging
225 */
226 #define PDB_FOLLOW 0x0001
227 #define PDB_INIT 0x0002
228 #define PDB_ENTER 0x0004
229 #define PDB_REMOVE 0x0008
230 #define PDB_CREATE 0x0010
231 #define PDB_PTPAGE 0x0020
232 #define PDB_GROWKERN 0x0040
233 #define PDB_BITS 0x0080
234 #define PDB_COLLECT 0x0100
235 #define PDB_PROTECT 0x0200
236 #define PDB_MAP_L1 0x0400
237 #define PDB_BOOTSTRAP 0x1000
238 #define PDB_PARANOIA 0x2000
239 #define PDB_WIRING 0x4000
240 #define PDB_PVDUMP 0x8000
241 #define PDB_VAC 0x10000
242 #define PDB_KENTER 0x20000
243 #define PDB_KREMOVE 0x40000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 struct pmap kernel_pmap_store;
259
260 /*
261 * Which pmap is currently 'live' in the cache
262 *
263 * XXXSCW: Fix for SMP ...
264 */
265 static pmap_t pmap_recent_user;
266
267 /*
268 * Pointer to last active lwp, or NULL if it exited.
269 */
270 struct lwp *pmap_previous_active_lwp;
271
272 /*
273 * Pool and cache that pmap structures are allocated from.
274 * We use a cache to avoid clearing the pm_l2[] array (1KB)
275 * in pmap_create().
276 */
277 static struct pool_cache pmap_cache;
278 static LIST_HEAD(, pmap) pmap_pmaps;
279
280 /*
281 * Pool of PV structures
282 */
283 static struct pool pmap_pv_pool;
284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
287 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
288 };
289
290 /*
291 * Pool and cache of l2_dtable structures.
292 * We use a cache to avoid clearing the structures when they're
293 * allocated. (196 bytes)
294 */
295 static struct pool_cache pmap_l2dtable_cache;
296 static vaddr_t pmap_kernel_l2dtable_kva;
297
298 /*
299 * Pool and cache of L2 page descriptors.
300 * We use a cache to avoid clearing the descriptor table
301 * when they're allocated. (1KB)
302 */
303 static struct pool_cache pmap_l2ptp_cache;
304 static vaddr_t pmap_kernel_l2ptp_kva;
305 static paddr_t pmap_kernel_l2ptp_phys;
306
307 /*
308 * pmap copy/zero page, and mem(5) hook point
309 */
310 static pt_entry_t *csrc_pte, *cdst_pte;
311 static vaddr_t csrcp, cdstp;
312 vaddr_t memhook;
313 extern void *msgbufaddr;
314
315 /*
316 * Flag to indicate if pmap_init() has done its thing
317 */
318 bool pmap_initialized;
319
320 /*
321 * Misc. locking data structures
322 */
323
324 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
325 static struct lock pmap_main_lock;
326
327 #define PMAP_MAP_TO_HEAD_LOCK() \
328 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
329 #define PMAP_MAP_TO_HEAD_UNLOCK() \
330 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
331 #define PMAP_HEAD_TO_MAP_LOCK() \
332 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
333 #define PMAP_HEAD_TO_MAP_UNLOCK() \
334 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
335 #else
336 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
337 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
338 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
339 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
340 #endif
341
342 #define pmap_acquire_pmap_lock(pm) \
343 do { \
344 if ((pm) != pmap_kernel()) \
345 mutex_enter(&(pm)->pm_lock); \
346 } while (/*CONSTCOND*/0)
347
348 #define pmap_release_pmap_lock(pm) \
349 do { \
350 if ((pm) != pmap_kernel()) \
351 mutex_exit(&(pm)->pm_lock); \
352 } while (/*CONSTCOND*/0)
353
354
355 /*
356 * Metadata for L1 translation tables.
357 */
358 struct l1_ttable {
359 /* Entry on the L1 Table list */
360 SLIST_ENTRY(l1_ttable) l1_link;
361
362 /* Entry on the L1 Least Recently Used list */
363 TAILQ_ENTRY(l1_ttable) l1_lru;
364
365 /* Track how many domains are allocated from this L1 */
366 volatile u_int l1_domain_use_count;
367
368 /*
369 * A free-list of domain numbers for this L1.
370 * We avoid using ffs() and a bitmap to track domains since ffs()
371 * is slow on ARM.
372 */
373 u_int8_t l1_domain_first;
374 u_int8_t l1_domain_free[PMAP_DOMAINS];
375
376 /* Physical address of this L1 page table */
377 paddr_t l1_physaddr;
378
379 /* KVA of this L1 page table */
380 pd_entry_t *l1_kva;
381 };
382
383 /*
384 * Convert a virtual address into its L1 table index. That is, the
385 * index used to locate the L2 descriptor table pointer in an L1 table.
386 * This is basically used to index l1->l1_kva[].
387 *
388 * Each L2 descriptor table represents 1MB of VA space.
389 */
390 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
391
392 /*
393 * L1 Page Tables are tracked using a Least Recently Used list.
394 * - New L1s are allocated from the HEAD.
395 * - Freed L1s are added to the TAIl.
396 * - Recently accessed L1s (where an 'access' is some change to one of
397 * the userland pmaps which owns this L1) are moved to the TAIL.
398 */
399 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
400 static struct simplelock l1_lru_lock;
401
402 /*
403 * A list of all L1 tables
404 */
405 static SLIST_HEAD(, l1_ttable) l1_list;
406
407 /*
408 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
409 *
410 * This is normally 16MB worth L2 page descriptors for any given pmap.
411 * Reference counts are maintained for L2 descriptors so they can be
412 * freed when empty.
413 */
414 struct l2_dtable {
415 /* The number of L2 page descriptors allocated to this l2_dtable */
416 u_int l2_occupancy;
417
418 /* List of L2 page descriptors */
419 struct l2_bucket {
420 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
421 paddr_t l2b_phys; /* Physical address of same */
422 u_short l2b_l1idx; /* This L2 table's L1 index */
423 u_short l2b_occupancy; /* How many active descriptors */
424 } l2_bucket[L2_BUCKET_SIZE];
425 };
426
427 /*
428 * Given an L1 table index, calculate the corresponding l2_dtable index
429 * and bucket index within the l2_dtable.
430 */
431 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
432 (L2_SIZE - 1))
433 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
434
435 /*
436 * Given a virtual address, this macro returns the
437 * virtual address required to drop into the next L2 bucket.
438 */
439 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
440
441 /*
442 * L2 allocation.
443 */
444 #define pmap_alloc_l2_dtable() \
445 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
446 #define pmap_free_l2_dtable(l2) \
447 pool_cache_put(&pmap_l2dtable_cache, (l2))
448 #define pmap_alloc_l2_ptp(pap) \
449 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
450 PR_NOWAIT, (pap)))
451
452 /*
453 * We try to map the page tables write-through, if possible. However, not
454 * all CPUs have a write-through cache mode, so on those we have to sync
455 * the cache when we frob page tables.
456 *
457 * We try to evaluate this at compile time, if possible. However, it's
458 * not always possible to do that, hence this run-time var.
459 */
460 int pmap_needs_pte_sync;
461
462 /*
463 * Real definition of pv_entry.
464 */
465 struct pv_entry {
466 struct pv_entry *pv_next; /* next pv_entry */
467 pmap_t pv_pmap; /* pmap where mapping lies */
468 vaddr_t pv_va; /* virtual address for mapping */
469 u_int pv_flags; /* flags */
470 };
471
472 /*
473 * Macro to determine if a mapping might be resident in the
474 * instruction cache and/or TLB
475 */
476 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
477
478 /*
479 * Macro to determine if a mapping might be resident in the
480 * data cache and/or TLB
481 */
482 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
483
484 /*
485 * Local prototypes
486 */
487 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
488 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
489 pt_entry_t **);
490 static bool pmap_is_current(pmap_t);
491 static bool pmap_is_cached(pmap_t);
492 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
493 pmap_t, vaddr_t, u_int);
494 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
495 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
496 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
497 u_int, u_int);
498
499 static void pmap_pinit(pmap_t);
500 static int pmap_pmap_ctor(void *, void *, int);
501
502 static void pmap_alloc_l1(pmap_t);
503 static void pmap_free_l1(pmap_t);
504 static void pmap_use_l1(pmap_t);
505
506 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
507 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
508 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
509 static int pmap_l2ptp_ctor(void *, void *, int);
510 static int pmap_l2dtable_ctor(void *, void *, int);
511
512 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
513 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
514 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
515
516 static void pmap_clearbit(struct vm_page *, u_int);
517 static int pmap_clean_page(struct pv_entry *, bool);
518 static void pmap_page_remove(struct vm_page *);
519
520 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
521 static vaddr_t kernel_pt_lookup(paddr_t);
522
523
524 /*
525 * External function prototypes
526 */
527 extern void bzero_page(vaddr_t);
528 extern void bcopy_page(vaddr_t, vaddr_t);
529
530 /*
531 * Misc variables
532 */
533 vaddr_t virtual_avail;
534 vaddr_t virtual_end;
535 vaddr_t pmap_curmaxkvaddr;
536
537 vaddr_t avail_start;
538 vaddr_t avail_end;
539
540 extern pv_addr_t systempage;
541
542 /* Function to set the debug level of the pmap code */
543
544 #ifdef PMAP_DEBUG
545 void
546 pmap_debug(int level)
547 {
548 pmap_debug_level = level;
549 printf("pmap_debug: level=%d\n", pmap_debug_level);
550 }
551 #endif /* PMAP_DEBUG */
552
553 /*
554 * A bunch of routines to conditionally flush the caches/TLB depending
555 * on whether the specified pmap actually needs to be flushed at any
556 * given time.
557 */
558 static inline void
559 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
560 {
561
562 if (pm->pm_cstate.cs_tlb_id)
563 cpu_tlb_flushID_SE(va);
564 }
565
566 static inline void
567 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
568 {
569
570 if (pm->pm_cstate.cs_tlb_d)
571 cpu_tlb_flushD_SE(va);
572 }
573
574 static inline void
575 pmap_tlb_flushID(pmap_t pm)
576 {
577
578 if (pm->pm_cstate.cs_tlb_id) {
579 cpu_tlb_flushID();
580 pm->pm_cstate.cs_tlb = 0;
581 }
582 }
583
584 static inline void
585 pmap_tlb_flushD(pmap_t pm)
586 {
587
588 if (pm->pm_cstate.cs_tlb_d) {
589 cpu_tlb_flushD();
590 pm->pm_cstate.cs_tlb_d = 0;
591 }
592 }
593
594 static inline void
595 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
596 {
597
598 if (pm->pm_cstate.cs_cache_id)
599 cpu_idcache_wbinv_range(va, len);
600 }
601
602 static inline void
603 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
604 bool do_inv, bool rd_only)
605 {
606
607 if (pm->pm_cstate.cs_cache_d) {
608 if (do_inv) {
609 if (rd_only)
610 cpu_dcache_inv_range(va, len);
611 else
612 cpu_dcache_wbinv_range(va, len);
613 } else
614 if (!rd_only)
615 cpu_dcache_wb_range(va, len);
616 }
617 }
618
619 static inline void
620 pmap_idcache_wbinv_all(pmap_t pm)
621 {
622
623 if (pm->pm_cstate.cs_cache_id) {
624 cpu_idcache_wbinv_all();
625 pm->pm_cstate.cs_cache = 0;
626 }
627 }
628
629 static inline void
630 pmap_dcache_wbinv_all(pmap_t pm)
631 {
632
633 if (pm->pm_cstate.cs_cache_d) {
634 cpu_dcache_wbinv_all();
635 pm->pm_cstate.cs_cache_d = 0;
636 }
637 }
638
639 static inline bool
640 pmap_is_current(pmap_t pm)
641 {
642
643 if (pm == pmap_kernel() ||
644 (curproc && curproc->p_vmspace->vm_map.pmap == pm))
645 return (true);
646
647 return (false);
648 }
649
650 static inline bool
651 pmap_is_cached(pmap_t pm)
652 {
653
654 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
655 pmap_recent_user == pm)
656 return (true);
657
658 return (false);
659 }
660
661 /*
662 * PTE_SYNC_CURRENT:
663 *
664 * Make sure the pte is written out to RAM.
665 * We need to do this for one of two cases:
666 * - We're dealing with the kernel pmap
667 * - There is no pmap active in the cache/tlb.
668 * - The specified pmap is 'active' in the cache/tlb.
669 */
670 #ifdef PMAP_INCLUDE_PTE_SYNC
671 #define PTE_SYNC_CURRENT(pm, ptep) \
672 do { \
673 if (PMAP_NEEDS_PTE_SYNC && \
674 pmap_is_cached(pm)) \
675 PTE_SYNC(ptep); \
676 } while (/*CONSTCOND*/0)
677 #else
678 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
679 #endif
680
681 /*
682 * main pv_entry manipulation functions:
683 * pmap_enter_pv: enter a mapping onto a vm_page list
684 * pmap_remove_pv: remove a mappiing from a vm_page list
685 *
686 * NOTE: pmap_enter_pv expects to lock the pvh itself
687 * pmap_remove_pv expects te caller to lock the pvh before calling
688 */
689
690 /*
691 * pmap_enter_pv: enter a mapping onto a vm_page lst
692 *
693 * => caller should hold the proper lock on pmap_main_lock
694 * => caller should have pmap locked
695 * => we will gain the lock on the vm_page and allocate the new pv_entry
696 * => caller should adjust ptp's wire_count before calling
697 * => caller should not adjust pmap's wire_count
698 */
699 static void
700 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
701 vaddr_t va, u_int flags)
702 {
703
704 NPDEBUG(PDB_PVDUMP,
705 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
706
707 pve->pv_pmap = pm;
708 pve->pv_va = va;
709 pve->pv_flags = flags;
710
711 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
712 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
713 pg->mdpage.pvh_list = pve; /* ... locked list */
714 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
715 if (pm == pmap_kernel()) {
716 if (flags & PVF_WRITE)
717 pg->mdpage.krw_mappings++;
718 else
719 pg->mdpage.kro_mappings++;
720 } else
721 if (flags & PVF_WRITE)
722 pg->mdpage.urw_mappings++;
723 else
724 pg->mdpage.uro_mappings++;
725 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
726
727 if (pve->pv_flags & PVF_WIRED)
728 ++pm->pm_stats.wired_count;
729 }
730
731 /*
732 *
733 * pmap_find_pv: Find a pv entry
734 *
735 * => caller should hold lock on vm_page
736 */
737 static inline struct pv_entry *
738 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
739 {
740 struct pv_entry *pv;
741
742 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
743 if (pm == pv->pv_pmap && va == pv->pv_va)
744 break;
745 }
746
747 return (pv);
748 }
749
750 /*
751 * pmap_remove_pv: try to remove a mapping from a pv_list
752 *
753 * => caller should hold proper lock on pmap_main_lock
754 * => pmap should be locked
755 * => caller should hold lock on vm_page [so that attrs can be adjusted]
756 * => caller should adjust ptp's wire_count and free PTP if needed
757 * => caller should NOT adjust pmap's wire_count
758 * => we return the removed pve
759 */
760 static struct pv_entry *
761 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
762 {
763 struct pv_entry *pve, **prevptr;
764
765 NPDEBUG(PDB_PVDUMP,
766 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
767
768 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
769 pve = *prevptr;
770
771 while (pve) {
772 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
773 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
774 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
775 if (pve->pv_flags & PVF_WIRED) {
776 if (skip_wired)
777 return (NULL);
778 --pm->pm_stats.wired_count;
779 }
780 *prevptr = pve->pv_next; /* remove it! */
781 if (pm == pmap_kernel()) {
782 if (pve->pv_flags & PVF_WRITE)
783 pg->mdpage.krw_mappings--;
784 else
785 pg->mdpage.kro_mappings--;
786 } else
787 if (pve->pv_flags & PVF_WRITE)
788 pg->mdpage.urw_mappings--;
789 else
790 pg->mdpage.uro_mappings--;
791 break;
792 }
793 prevptr = &pve->pv_next; /* previous pointer */
794 pve = pve->pv_next; /* advance */
795 }
796
797 return(pve); /* return removed pve */
798 }
799
800 /*
801 *
802 * pmap_modify_pv: Update pv flags
803 *
804 * => caller should hold lock on vm_page [so that attrs can be adjusted]
805 * => caller should NOT adjust pmap's wire_count
806 * => caller must call pmap_vac_me_harder() if writable status of a page
807 * may have changed.
808 * => we return the old flags
809 *
810 * Modify a physical-virtual mapping in the pv table
811 */
812 static u_int
813 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
814 u_int clr_mask, u_int set_mask)
815 {
816 struct pv_entry *npv;
817 u_int flags, oflags;
818
819 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
820 return (0);
821
822 NPDEBUG(PDB_PVDUMP,
823 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
824
825 /*
826 * There is at least one VA mapping this page.
827 */
828
829 if (clr_mask & (PVF_REF | PVF_MOD))
830 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
831
832 oflags = npv->pv_flags;
833 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
834
835 if ((flags ^ oflags) & PVF_WIRED) {
836 if (flags & PVF_WIRED)
837 ++pm->pm_stats.wired_count;
838 else
839 --pm->pm_stats.wired_count;
840 }
841
842 if ((flags ^ oflags) & PVF_WRITE) {
843 if (pm == pmap_kernel()) {
844 if (flags & PVF_WRITE) {
845 pg->mdpage.krw_mappings++;
846 pg->mdpage.kro_mappings--;
847 } else {
848 pg->mdpage.kro_mappings++;
849 pg->mdpage.krw_mappings--;
850 }
851 } else
852 if (flags & PVF_WRITE) {
853 pg->mdpage.urw_mappings++;
854 pg->mdpage.uro_mappings--;
855 } else {
856 pg->mdpage.uro_mappings++;
857 pg->mdpage.urw_mappings--;
858 }
859 }
860
861 return (oflags);
862 }
863
864 /*
865 * Allocate an L1 translation table for the specified pmap.
866 * This is called at pmap creation time.
867 */
868 static void
869 pmap_alloc_l1(pmap_t pm)
870 {
871 struct l1_ttable *l1;
872 u_int8_t domain;
873
874 /*
875 * Remove the L1 at the head of the LRU list
876 */
877 simple_lock(&l1_lru_lock);
878 l1 = TAILQ_FIRST(&l1_lru_list);
879 KDASSERT(l1 != NULL);
880 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
881
882 /*
883 * Pick the first available domain number, and update
884 * the link to the next number.
885 */
886 domain = l1->l1_domain_first;
887 l1->l1_domain_first = l1->l1_domain_free[domain];
888
889 /*
890 * If there are still free domain numbers in this L1,
891 * put it back on the TAIL of the LRU list.
892 */
893 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
894 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
895
896 simple_unlock(&l1_lru_lock);
897
898 /*
899 * Fix up the relevant bits in the pmap structure
900 */
901 pm->pm_l1 = l1;
902 pm->pm_domain = domain;
903 }
904
905 /*
906 * Free an L1 translation table.
907 * This is called at pmap destruction time.
908 */
909 static void
910 pmap_free_l1(pmap_t pm)
911 {
912 struct l1_ttable *l1 = pm->pm_l1;
913
914 simple_lock(&l1_lru_lock);
915
916 /*
917 * If this L1 is currently on the LRU list, remove it.
918 */
919 if (l1->l1_domain_use_count < PMAP_DOMAINS)
920 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
921
922 /*
923 * Free up the domain number which was allocated to the pmap
924 */
925 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
926 l1->l1_domain_first = pm->pm_domain;
927 l1->l1_domain_use_count--;
928
929 /*
930 * The L1 now must have at least 1 free domain, so add
931 * it back to the LRU list. If the use count is zero,
932 * put it at the head of the list, otherwise it goes
933 * to the tail.
934 */
935 if (l1->l1_domain_use_count == 0)
936 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
937 else
938 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
939
940 simple_unlock(&l1_lru_lock);
941 }
942
943 static inline void
944 pmap_use_l1(pmap_t pm)
945 {
946 struct l1_ttable *l1;
947
948 /*
949 * Do nothing if we're in interrupt context.
950 * Access to an L1 by the kernel pmap must not affect
951 * the LRU list.
952 */
953 if (cpu_intr_p() || pm == pmap_kernel())
954 return;
955
956 l1 = pm->pm_l1;
957
958 /*
959 * If the L1 is not currently on the LRU list, just return
960 */
961 if (l1->l1_domain_use_count == PMAP_DOMAINS)
962 return;
963
964 simple_lock(&l1_lru_lock);
965
966 /*
967 * Check the use count again, now that we've acquired the lock
968 */
969 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
970 simple_unlock(&l1_lru_lock);
971 return;
972 }
973
974 /*
975 * Move the L1 to the back of the LRU list
976 */
977 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
978 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
979
980 simple_unlock(&l1_lru_lock);
981 }
982
983 /*
984 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
985 *
986 * Free an L2 descriptor table.
987 */
988 static inline void
989 #ifndef PMAP_INCLUDE_PTE_SYNC
990 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
991 #else
992 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
993 #endif
994 {
995 #ifdef PMAP_INCLUDE_PTE_SYNC
996 /*
997 * Note: With a write-back cache, we may need to sync this
998 * L2 table before re-using it.
999 * This is because it may have belonged to a non-current
1000 * pmap, in which case the cache syncs would have been
1001 * skipped when the pages were being unmapped. If the
1002 * L2 table were then to be immediately re-allocated to
1003 * the *current* pmap, it may well contain stale mappings
1004 * which have not yet been cleared by a cache write-back
1005 * and so would still be visible to the mmu.
1006 */
1007 if (need_sync)
1008 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1009 #endif
1010 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1011 }
1012
1013 /*
1014 * Returns a pointer to the L2 bucket associated with the specified pmap
1015 * and VA, or NULL if no L2 bucket exists for the address.
1016 */
1017 static inline struct l2_bucket *
1018 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1019 {
1020 struct l2_dtable *l2;
1021 struct l2_bucket *l2b;
1022 u_short l1idx;
1023
1024 l1idx = L1_IDX(va);
1025
1026 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1027 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1028 return (NULL);
1029
1030 return (l2b);
1031 }
1032
1033 /*
1034 * Returns a pointer to the L2 bucket associated with the specified pmap
1035 * and VA.
1036 *
1037 * If no L2 bucket exists, perform the necessary allocations to put an L2
1038 * bucket/page table in place.
1039 *
1040 * Note that if a new L2 bucket/page was allocated, the caller *must*
1041 * increment the bucket occupancy counter appropriately *before*
1042 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1043 * the bucket/page in the meantime.
1044 */
1045 static struct l2_bucket *
1046 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1047 {
1048 struct l2_dtable *l2;
1049 struct l2_bucket *l2b;
1050 u_short l1idx;
1051
1052 l1idx = L1_IDX(va);
1053
1054 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1055 /*
1056 * No mapping at this address, as there is
1057 * no entry in the L1 table.
1058 * Need to allocate a new l2_dtable.
1059 */
1060 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1061 return (NULL);
1062
1063 /*
1064 * Link it into the parent pmap
1065 */
1066 pm->pm_l2[L2_IDX(l1idx)] = l2;
1067 }
1068
1069 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1070
1071 /*
1072 * Fetch pointer to the L2 page table associated with the address.
1073 */
1074 if (l2b->l2b_kva == NULL) {
1075 pt_entry_t *ptep;
1076
1077 /*
1078 * No L2 page table has been allocated. Chances are, this
1079 * is because we just allocated the l2_dtable, above.
1080 */
1081 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1082 /*
1083 * Oops, no more L2 page tables available at this
1084 * time. We may need to deallocate the l2_dtable
1085 * if we allocated a new one above.
1086 */
1087 if (l2->l2_occupancy == 0) {
1088 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1089 pmap_free_l2_dtable(l2);
1090 }
1091 return (NULL);
1092 }
1093
1094 l2->l2_occupancy++;
1095 l2b->l2b_kva = ptep;
1096 l2b->l2b_l1idx = l1idx;
1097 }
1098
1099 return (l2b);
1100 }
1101
1102 /*
1103 * One or more mappings in the specified L2 descriptor table have just been
1104 * invalidated.
1105 *
1106 * Garbage collect the metadata and descriptor table itself if necessary.
1107 *
1108 * The pmap lock must be acquired when this is called (not necessary
1109 * for the kernel pmap).
1110 */
1111 static void
1112 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1113 {
1114 struct l2_dtable *l2;
1115 pd_entry_t *pl1pd, l1pd;
1116 pt_entry_t *ptep;
1117 u_short l1idx;
1118
1119 KDASSERT(count <= l2b->l2b_occupancy);
1120
1121 /*
1122 * Update the bucket's reference count according to how many
1123 * PTEs the caller has just invalidated.
1124 */
1125 l2b->l2b_occupancy -= count;
1126
1127 /*
1128 * Note:
1129 *
1130 * Level 2 page tables allocated to the kernel pmap are never freed
1131 * as that would require checking all Level 1 page tables and
1132 * removing any references to the Level 2 page table. See also the
1133 * comment elsewhere about never freeing bootstrap L2 descriptors.
1134 *
1135 * We make do with just invalidating the mapping in the L2 table.
1136 *
1137 * This isn't really a big deal in practice and, in fact, leads
1138 * to a performance win over time as we don't need to continually
1139 * alloc/free.
1140 */
1141 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1142 return;
1143
1144 /*
1145 * There are no more valid mappings in this level 2 page table.
1146 * Go ahead and NULL-out the pointer in the bucket, then
1147 * free the page table.
1148 */
1149 l1idx = l2b->l2b_l1idx;
1150 ptep = l2b->l2b_kva;
1151 l2b->l2b_kva = NULL;
1152
1153 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1154
1155 /*
1156 * If the L1 slot matches the pmap's domain
1157 * number, then invalidate it.
1158 */
1159 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1160 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1161 *pl1pd = 0;
1162 PTE_SYNC(pl1pd);
1163 }
1164
1165 /*
1166 * Release the L2 descriptor table back to the pool cache.
1167 */
1168 #ifndef PMAP_INCLUDE_PTE_SYNC
1169 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1170 #else
1171 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1172 #endif
1173
1174 /*
1175 * Update the reference count in the associated l2_dtable
1176 */
1177 l2 = pm->pm_l2[L2_IDX(l1idx)];
1178 if (--l2->l2_occupancy > 0)
1179 return;
1180
1181 /*
1182 * There are no more valid mappings in any of the Level 1
1183 * slots managed by this l2_dtable. Go ahead and NULL-out
1184 * the pointer in the parent pmap and free the l2_dtable.
1185 */
1186 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1187 pmap_free_l2_dtable(l2);
1188 }
1189
1190 /*
1191 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1192 * structures.
1193 */
1194 static int
1195 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1196 {
1197 #ifndef PMAP_INCLUDE_PTE_SYNC
1198 struct l2_bucket *l2b;
1199 pt_entry_t *ptep, pte;
1200 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1201
1202 /*
1203 * The mappings for these page tables were initially made using
1204 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1205 * mode will not be right for page table mappings. To avoid
1206 * polluting the pmap_kenter_pa() code with a special case for
1207 * page tables, we simply fix up the cache-mode here if it's not
1208 * correct.
1209 */
1210 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1211 KDASSERT(l2b != NULL);
1212 ptep = &l2b->l2b_kva[l2pte_index(va)];
1213 pte = *ptep;
1214
1215 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1216 /*
1217 * Page tables must have the cache-mode set to Write-Thru.
1218 */
1219 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1220 PTE_SYNC(ptep);
1221 cpu_tlb_flushD_SE(va);
1222 cpu_cpwait();
1223 }
1224 #endif
1225
1226 memset(v, 0, L2_TABLE_SIZE_REAL);
1227 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1228 return (0);
1229 }
1230
1231 static int
1232 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1233 {
1234
1235 memset(v, 0, sizeof(struct l2_dtable));
1236 return (0);
1237 }
1238
1239 static int
1240 pmap_pmap_ctor(void *arg, void *v, int flags)
1241 {
1242
1243 memset(v, 0, sizeof(struct pmap));
1244 return (0);
1245 }
1246
1247 static void
1248 pmap_pinit(pmap_t pm)
1249 {
1250 struct l2_bucket *l2b;
1251
1252 if (vector_page < KERNEL_BASE) {
1253 /*
1254 * Map the vector page.
1255 */
1256 pmap_enter(pm, vector_page, systempage.pv_pa,
1257 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1258 pmap_update(pm);
1259
1260 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1261 l2b = pmap_get_l2_bucket(pm, vector_page);
1262 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1263 L1_C_DOM(pm->pm_domain);
1264 } else
1265 pm->pm_pl1vec = NULL;
1266 }
1267
1268 /*
1269 * Since we have a virtually indexed cache, we may need to inhibit caching if
1270 * there is more than one mapping and at least one of them is writable.
1271 * Since we purge the cache on every context switch, we only need to check for
1272 * other mappings within the same pmap, or kernel_pmap.
1273 * This function is also called when a page is unmapped, to possibly reenable
1274 * caching on any remaining mappings.
1275 *
1276 * The code implements the following logic, where:
1277 *
1278 * KW = # of kernel read/write pages
1279 * KR = # of kernel read only pages
1280 * UW = # of user read/write pages
1281 * UR = # of user read only pages
1282 *
1283 * KC = kernel mapping is cacheable
1284 * UC = user mapping is cacheable
1285 *
1286 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1287 * +---------------------------------------------
1288 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1289 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1290 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1291 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1292 */
1293
1294 static const int pmap_vac_flags[4][4] = {
1295 {-1, 0, 0, PVF_KNC},
1296 {0, 0, PVF_NC, PVF_NC},
1297 {0, PVF_NC, PVF_NC, PVF_NC},
1298 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1299 };
1300
1301 static inline int
1302 pmap_get_vac_flags(const struct vm_page *pg)
1303 {
1304 int kidx, uidx;
1305
1306 kidx = 0;
1307 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1308 kidx |= 1;
1309 if (pg->mdpage.krw_mappings)
1310 kidx |= 2;
1311
1312 uidx = 0;
1313 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1314 uidx |= 1;
1315 if (pg->mdpage.urw_mappings)
1316 uidx |= 2;
1317
1318 return (pmap_vac_flags[uidx][kidx]);
1319 }
1320
1321 static inline void
1322 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1323 {
1324 int nattr;
1325
1326 nattr = pmap_get_vac_flags(pg);
1327
1328 if (nattr < 0) {
1329 pg->mdpage.pvh_attrs &= ~PVF_NC;
1330 return;
1331 }
1332
1333 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1334 return;
1335
1336 if (pm == pmap_kernel())
1337 pmap_vac_me_kpmap(pg, pm, va);
1338 else
1339 pmap_vac_me_user(pg, pm, va);
1340
1341 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1342 }
1343
1344 static void
1345 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1346 {
1347 u_int u_cacheable, u_entries;
1348 struct pv_entry *pv;
1349 pmap_t last_pmap = pm;
1350
1351 /*
1352 * Pass one, see if there are both kernel and user pmaps for
1353 * this page. Calculate whether there are user-writable or
1354 * kernel-writable pages.
1355 */
1356 u_cacheable = 0;
1357 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1358 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1359 u_cacheable++;
1360 }
1361
1362 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1363
1364 /*
1365 * We know we have just been updating a kernel entry, so if
1366 * all user pages are already cacheable, then there is nothing
1367 * further to do.
1368 */
1369 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1370 return;
1371
1372 if (u_entries) {
1373 /*
1374 * Scan over the list again, for each entry, if it
1375 * might not be set correctly, call pmap_vac_me_user
1376 * to recalculate the settings.
1377 */
1378 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1379 /*
1380 * We know kernel mappings will get set
1381 * correctly in other calls. We also know
1382 * that if the pmap is the same as last_pmap
1383 * then we've just handled this entry.
1384 */
1385 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1386 continue;
1387
1388 /*
1389 * If there are kernel entries and this page
1390 * is writable but non-cacheable, then we can
1391 * skip this entry also.
1392 */
1393 if (pg->mdpage.k_mappings &&
1394 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1395 (PVF_NC | PVF_WRITE))
1396 continue;
1397
1398 /*
1399 * Similarly if there are no kernel-writable
1400 * entries and the page is already
1401 * read-only/cacheable.
1402 */
1403 if (pg->mdpage.krw_mappings == 0 &&
1404 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1405 continue;
1406
1407 /*
1408 * For some of the remaining cases, we know
1409 * that we must recalculate, but for others we
1410 * can't tell if they are correct or not, so
1411 * we recalculate anyway.
1412 */
1413 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1414 }
1415
1416 if (pg->mdpage.k_mappings == 0)
1417 return;
1418 }
1419
1420 pmap_vac_me_user(pg, pm, va);
1421 }
1422
1423 static void
1424 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1425 {
1426 pmap_t kpmap = pmap_kernel();
1427 struct pv_entry *pv, *npv;
1428 struct l2_bucket *l2b;
1429 pt_entry_t *ptep, pte;
1430 u_int entries = 0;
1431 u_int writable = 0;
1432 u_int cacheable_entries = 0;
1433 u_int kern_cacheable = 0;
1434 u_int other_writable = 0;
1435
1436 /*
1437 * Count mappings and writable mappings in this pmap.
1438 * Include kernel mappings as part of our own.
1439 * Keep a pointer to the first one.
1440 */
1441 for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1442 /* Count mappings in the same pmap */
1443 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1444 if (entries++ == 0)
1445 npv = pv;
1446
1447 /* Cacheable mappings */
1448 if ((pv->pv_flags & PVF_NC) == 0) {
1449 cacheable_entries++;
1450 if (kpmap == pv->pv_pmap)
1451 kern_cacheable++;
1452 }
1453
1454 /* Writable mappings */
1455 if (pv->pv_flags & PVF_WRITE)
1456 ++writable;
1457 } else
1458 if (pv->pv_flags & PVF_WRITE)
1459 other_writable = 1;
1460 }
1461
1462 /*
1463 * Enable or disable caching as necessary.
1464 * Note: the first entry might be part of the kernel pmap,
1465 * so we can't assume this is indicative of the state of the
1466 * other (maybe non-kpmap) entries.
1467 */
1468 if ((entries > 1 && writable) ||
1469 (entries > 0 && pm == kpmap && other_writable)) {
1470 if (cacheable_entries == 0)
1471 return;
1472
1473 for (pv = npv; pv; pv = pv->pv_next) {
1474 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1475 (pv->pv_flags & PVF_NC))
1476 continue;
1477
1478 pv->pv_flags |= PVF_NC;
1479
1480 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1481 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1482 pte = *ptep & ~L2_S_CACHE_MASK;
1483
1484 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1485 l2pte_valid(pte)) {
1486 if (PV_BEEN_EXECD(pv->pv_flags)) {
1487 pmap_idcache_wbinv_range(pv->pv_pmap,
1488 pv->pv_va, PAGE_SIZE);
1489 pmap_tlb_flushID_SE(pv->pv_pmap,
1490 pv->pv_va);
1491 } else
1492 if (PV_BEEN_REFD(pv->pv_flags)) {
1493 pmap_dcache_wb_range(pv->pv_pmap,
1494 pv->pv_va, PAGE_SIZE, true,
1495 (pv->pv_flags & PVF_WRITE) == 0);
1496 pmap_tlb_flushD_SE(pv->pv_pmap,
1497 pv->pv_va);
1498 }
1499 }
1500
1501 *ptep = pte;
1502 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1503 }
1504 cpu_cpwait();
1505 } else
1506 if (entries > cacheable_entries) {
1507 /*
1508 * Turn cacheing back on for some pages. If it is a kernel
1509 * page, only do so if there are no other writable pages.
1510 */
1511 for (pv = npv; pv; pv = pv->pv_next) {
1512 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1513 (kpmap != pv->pv_pmap || other_writable)))
1514 continue;
1515
1516 pv->pv_flags &= ~PVF_NC;
1517
1518 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1519 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1520 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1521
1522 if (l2pte_valid(pte)) {
1523 if (PV_BEEN_EXECD(pv->pv_flags)) {
1524 pmap_tlb_flushID_SE(pv->pv_pmap,
1525 pv->pv_va);
1526 } else
1527 if (PV_BEEN_REFD(pv->pv_flags)) {
1528 pmap_tlb_flushD_SE(pv->pv_pmap,
1529 pv->pv_va);
1530 }
1531 }
1532
1533 *ptep = pte;
1534 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1535 }
1536 }
1537 }
1538
1539 /*
1540 * Modify pte bits for all ptes corresponding to the given physical address.
1541 * We use `maskbits' rather than `clearbits' because we're always passing
1542 * constants and the latter would require an extra inversion at run-time.
1543 */
1544 static void
1545 pmap_clearbit(struct vm_page *pg, u_int maskbits)
1546 {
1547 struct l2_bucket *l2b;
1548 struct pv_entry *pv;
1549 pt_entry_t *ptep, npte, opte;
1550 pmap_t pm;
1551 vaddr_t va;
1552 u_int oflags;
1553
1554 NPDEBUG(PDB_BITS,
1555 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
1556 pg, VM_PAGE_TO_PHYS(pg), maskbits));
1557
1558 PMAP_HEAD_TO_MAP_LOCK();
1559 simple_lock(&pg->mdpage.pvh_slock);
1560
1561 /*
1562 * Clear saved attributes (modify, reference)
1563 */
1564 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1565
1566 if (pg->mdpage.pvh_list == NULL) {
1567 simple_unlock(&pg->mdpage.pvh_slock);
1568 PMAP_HEAD_TO_MAP_UNLOCK();
1569 return;
1570 }
1571
1572 /*
1573 * Loop over all current mappings setting/clearing as appropos
1574 */
1575 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1576 va = pv->pv_va;
1577 pm = pv->pv_pmap;
1578 oflags = pv->pv_flags;
1579 pv->pv_flags &= ~maskbits;
1580
1581 pmap_acquire_pmap_lock(pm);
1582
1583 l2b = pmap_get_l2_bucket(pm, va);
1584 KDASSERT(l2b != NULL);
1585
1586 ptep = &l2b->l2b_kva[l2pte_index(va)];
1587 npte = opte = *ptep;
1588
1589 NPDEBUG(PDB_BITS,
1590 printf(
1591 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
1592 pv, pv->pv_pmap, pv->pv_va, oflags));
1593
1594 if (maskbits & (PVF_WRITE|PVF_MOD)) {
1595 if ((pv->pv_flags & PVF_NC)) {
1596 /*
1597 * Entry is not cacheable:
1598 *
1599 * Don't turn caching on again if this is a
1600 * modified emulation. This would be
1601 * inconsitent with the settings created by
1602 * pmap_vac_me_harder(). Otherwise, it's safe
1603 * to re-enable cacheing.
1604 *
1605 * There's no need to call pmap_vac_me_harder()
1606 * here: all pages are losing their write
1607 * permission.
1608 */
1609 if (maskbits & PVF_WRITE) {
1610 npte |= pte_l2_s_cache_mode;
1611 pv->pv_flags &= ~PVF_NC;
1612 }
1613 } else
1614 if (opte & L2_S_PROT_W) {
1615 /*
1616 * Entry is writable/cacheable: check if pmap
1617 * is current if it is flush it, otherwise it
1618 * won't be in the cache
1619 */
1620 if (PV_BEEN_EXECD(oflags))
1621 pmap_idcache_wbinv_range(pm, pv->pv_va,
1622 PAGE_SIZE);
1623 else
1624 if (PV_BEEN_REFD(oflags))
1625 pmap_dcache_wb_range(pm, pv->pv_va,
1626 PAGE_SIZE,
1627 (maskbits & PVF_REF) ? true : false,
1628 false);
1629 }
1630
1631 /* make the pte read only */
1632 npte &= ~L2_S_PROT_W;
1633
1634 if (maskbits & PVF_WRITE) {
1635 /*
1636 * Keep alias accounting up to date
1637 */
1638 if (pv->pv_pmap == pmap_kernel()) {
1639 if (oflags & PVF_WRITE) {
1640 pg->mdpage.krw_mappings--;
1641 pg->mdpage.kro_mappings++;
1642 }
1643 } else
1644 if (oflags & PVF_WRITE) {
1645 pg->mdpage.urw_mappings--;
1646 pg->mdpage.uro_mappings++;
1647 }
1648 }
1649 }
1650
1651 if (maskbits & PVF_REF) {
1652 if ((pv->pv_flags & PVF_NC) == 0 &&
1653 (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1654 /*
1655 * Check npte here; we may have already
1656 * done the wbinv above, and the validity
1657 * of the PTE is the same for opte and
1658 * npte.
1659 */
1660 if (npte & L2_S_PROT_W) {
1661 if (PV_BEEN_EXECD(oflags))
1662 pmap_idcache_wbinv_range(pm,
1663 pv->pv_va, PAGE_SIZE);
1664 else
1665 if (PV_BEEN_REFD(oflags))
1666 pmap_dcache_wb_range(pm,
1667 pv->pv_va, PAGE_SIZE,
1668 true, false);
1669 } else
1670 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1671 /* XXXJRT need idcache_inv_range */
1672 if (PV_BEEN_EXECD(oflags))
1673 pmap_idcache_wbinv_range(pm,
1674 pv->pv_va, PAGE_SIZE);
1675 else
1676 if (PV_BEEN_REFD(oflags))
1677 pmap_dcache_wb_range(pm,
1678 pv->pv_va, PAGE_SIZE,
1679 true, true);
1680 }
1681 }
1682
1683 /*
1684 * Make the PTE invalid so that we will take a
1685 * page fault the next time the mapping is
1686 * referenced.
1687 */
1688 npte &= ~L2_TYPE_MASK;
1689 npte |= L2_TYPE_INV;
1690 }
1691
1692 if (npte != opte) {
1693 *ptep = npte;
1694 PTE_SYNC(ptep);
1695 /* Flush the TLB entry if a current pmap. */
1696 if (PV_BEEN_EXECD(oflags))
1697 pmap_tlb_flushID_SE(pm, pv->pv_va);
1698 else
1699 if (PV_BEEN_REFD(oflags))
1700 pmap_tlb_flushD_SE(pm, pv->pv_va);
1701 }
1702
1703 pmap_release_pmap_lock(pm);
1704
1705 NPDEBUG(PDB_BITS,
1706 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
1707 pm, va, opte, npte));
1708 }
1709
1710 simple_unlock(&pg->mdpage.pvh_slock);
1711 PMAP_HEAD_TO_MAP_UNLOCK();
1712 }
1713
1714 /*
1715 * pmap_clean_page()
1716 *
1717 * This is a local function used to work out the best strategy to clean
1718 * a single page referenced by its entry in the PV table. It's used by
1719 * pmap_copy_page, pmap_zero page and maybe some others later on.
1720 *
1721 * Its policy is effectively:
1722 * o If there are no mappings, we don't bother doing anything with the cache.
1723 * o If there is one mapping, we clean just that page.
1724 * o If there are multiple mappings, we clean the entire cache.
1725 *
1726 * So that some functions can be further optimised, it returns 0 if it didn't
1727 * clean the entire cache, or 1 if it did.
1728 *
1729 * XXX One bug in this routine is that if the pv_entry has a single page
1730 * mapped at 0x00000000 a whole cache clean will be performed rather than
1731 * just the 1 page. Since this should not occur in everyday use and if it does
1732 * it will just result in not the most efficient clean for the page.
1733 */
1734 static int
1735 pmap_clean_page(struct pv_entry *pv, bool is_src)
1736 {
1737 pmap_t pm, pm_to_clean = NULL;
1738 struct pv_entry *npv;
1739 u_int cache_needs_cleaning = 0;
1740 u_int flags = 0;
1741 vaddr_t page_to_clean = 0;
1742
1743 if (pv == NULL) {
1744 /* nothing mapped in so nothing to flush */
1745 return (0);
1746 }
1747
1748 /*
1749 * Since we flush the cache each time we change to a different
1750 * user vmspace, we only need to flush the page if it is in the
1751 * current pmap.
1752 */
1753 if (curproc)
1754 pm = curproc->p_vmspace->vm_map.pmap;
1755 else
1756 pm = pmap_kernel();
1757
1758 for (npv = pv; npv; npv = npv->pv_next) {
1759 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
1760 flags |= npv->pv_flags;
1761 /*
1762 * The page is mapped non-cacheable in
1763 * this map. No need to flush the cache.
1764 */
1765 if (npv->pv_flags & PVF_NC) {
1766 #ifdef DIAGNOSTIC
1767 if (cache_needs_cleaning)
1768 panic("pmap_clean_page: "
1769 "cache inconsistency");
1770 #endif
1771 break;
1772 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1773 continue;
1774 if (cache_needs_cleaning) {
1775 page_to_clean = 0;
1776 break;
1777 } else {
1778 page_to_clean = npv->pv_va;
1779 pm_to_clean = npv->pv_pmap;
1780 }
1781 cache_needs_cleaning = 1;
1782 }
1783 }
1784
1785 if (page_to_clean) {
1786 if (PV_BEEN_EXECD(flags))
1787 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
1788 PAGE_SIZE);
1789 else
1790 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
1791 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
1792 } else if (cache_needs_cleaning) {
1793 if (PV_BEEN_EXECD(flags))
1794 pmap_idcache_wbinv_all(pm);
1795 else
1796 pmap_dcache_wbinv_all(pm);
1797 return (1);
1798 }
1799 return (0);
1800 }
1801
1802 /*
1803 * Routine: pmap_page_remove
1804 * Function:
1805 * Removes this physical page from
1806 * all physical maps in which it resides.
1807 * Reflects back modify bits to the pager.
1808 */
1809 static void
1810 pmap_page_remove(struct vm_page *pg)
1811 {
1812 struct l2_bucket *l2b;
1813 struct pv_entry *pv, *npv;
1814 pmap_t pm, curpm;
1815 pt_entry_t *ptep, pte;
1816 bool flush;
1817 u_int flags;
1818
1819 NPDEBUG(PDB_FOLLOW,
1820 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
1821 VM_PAGE_TO_PHYS(pg)));
1822
1823 PMAP_HEAD_TO_MAP_LOCK();
1824 simple_lock(&pg->mdpage.pvh_slock);
1825
1826 pv = pg->mdpage.pvh_list;
1827 if (pv == NULL) {
1828 simple_unlock(&pg->mdpage.pvh_slock);
1829 PMAP_HEAD_TO_MAP_UNLOCK();
1830 return;
1831 }
1832
1833 /*
1834 * Clear alias counts
1835 */
1836 pg->mdpage.k_mappings = 0;
1837 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
1838
1839 flush = false;
1840 flags = 0;
1841 if (curproc)
1842 curpm = curproc->p_vmspace->vm_map.pmap;
1843 else
1844 curpm = pmap_kernel();
1845
1846 pmap_clean_page(pv, false);
1847
1848 while (pv) {
1849 pm = pv->pv_pmap;
1850 if (flush == false && (pm == curpm || pm == pmap_kernel()))
1851 flush = true;
1852
1853 pmap_acquire_pmap_lock(pm);
1854
1855 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
1856 KDASSERT(l2b != NULL);
1857
1858 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1859 pte = *ptep;
1860
1861 /*
1862 * Update statistics
1863 */
1864 --pm->pm_stats.resident_count;
1865
1866 /* Wired bit */
1867 if (pv->pv_flags & PVF_WIRED)
1868 --pm->pm_stats.wired_count;
1869
1870 flags |= pv->pv_flags;
1871
1872 /*
1873 * Invalidate the PTEs.
1874 */
1875 *ptep = 0;
1876 PTE_SYNC_CURRENT(pm, ptep);
1877 pmap_free_l2_bucket(pm, l2b, 1);
1878
1879 npv = pv->pv_next;
1880 pool_put(&pmap_pv_pool, pv);
1881 pv = npv;
1882 pmap_release_pmap_lock(pm);
1883 }
1884 pg->mdpage.pvh_list = NULL;
1885 simple_unlock(&pg->mdpage.pvh_slock);
1886 PMAP_HEAD_TO_MAP_UNLOCK();
1887
1888 if (flush) {
1889 /*
1890 * Note: We can't use pmap_tlb_flush{I,}D() here since that
1891 * would need a subsequent call to pmap_update() to ensure
1892 * curpm->pm_cstate.cs_all is reset. Our callers are not
1893 * required to do that (see pmap(9)), so we can't modify
1894 * the current pmap's state.
1895 */
1896 if (PV_BEEN_EXECD(flags))
1897 cpu_tlb_flushID();
1898 else
1899 cpu_tlb_flushD();
1900 }
1901 cpu_cpwait();
1902 }
1903
1904 /*
1905 * pmap_t pmap_create(void)
1906 *
1907 * Create a new pmap structure from scratch.
1908 */
1909 pmap_t
1910 pmap_create(void)
1911 {
1912 pmap_t pm;
1913
1914 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
1915
1916 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
1917 pm->pm_stats.wired_count = 0;
1918 pm->pm_stats.resident_count = 1;
1919 pm->pm_cstate.cs_all = 0;
1920 pmap_alloc_l1(pm);
1921
1922 /*
1923 * Note: The pool cache ensures that the pm_l2[] array is already
1924 * initialised to zero.
1925 */
1926
1927 pmap_pinit(pm);
1928
1929 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
1930
1931 return (pm);
1932 }
1933
1934 /*
1935 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1936 * int flags)
1937 *
1938 * Insert the given physical page (p) at
1939 * the specified virtual address (v) in the
1940 * target physical map with the protection requested.
1941 *
1942 * NB: This is the only routine which MAY NOT lazy-evaluate
1943 * or lose information. That is, this routine must actually
1944 * insert this page into the given map NOW.
1945 */
1946 int
1947 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1948 {
1949 struct l2_bucket *l2b;
1950 struct vm_page *pg, *opg;
1951 struct pv_entry *pve;
1952 pt_entry_t *ptep, npte, opte;
1953 u_int nflags;
1954 u_int oflags;
1955
1956 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
1957
1958 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
1959 KDASSERT(((va | pa) & PGOFSET) == 0);
1960
1961 /*
1962 * Get a pointer to the page. Later on in this function, we
1963 * test for a managed page by checking pg != NULL.
1964 */
1965 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
1966
1967 nflags = 0;
1968 if (prot & VM_PROT_WRITE)
1969 nflags |= PVF_WRITE;
1970 if (prot & VM_PROT_EXECUTE)
1971 nflags |= PVF_EXEC;
1972 if (flags & PMAP_WIRED)
1973 nflags |= PVF_WIRED;
1974
1975 PMAP_MAP_TO_HEAD_LOCK();
1976 pmap_acquire_pmap_lock(pm);
1977
1978 /*
1979 * Fetch the L2 bucket which maps this page, allocating one if
1980 * necessary for user pmaps.
1981 */
1982 if (pm == pmap_kernel())
1983 l2b = pmap_get_l2_bucket(pm, va);
1984 else
1985 l2b = pmap_alloc_l2_bucket(pm, va);
1986 if (l2b == NULL) {
1987 if (flags & PMAP_CANFAIL) {
1988 pmap_release_pmap_lock(pm);
1989 PMAP_MAP_TO_HEAD_UNLOCK();
1990 return (ENOMEM);
1991 }
1992 panic("pmap_enter: failed to allocate L2 bucket");
1993 }
1994 ptep = &l2b->l2b_kva[l2pte_index(va)];
1995 opte = *ptep;
1996 npte = pa;
1997 oflags = 0;
1998
1999 if (opte) {
2000 /*
2001 * There is already a mapping at this address.
2002 * If the physical address is different, lookup the
2003 * vm_page.
2004 */
2005 if (l2pte_pa(opte) != pa)
2006 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2007 else
2008 opg = pg;
2009 } else
2010 opg = NULL;
2011
2012 if (pg) {
2013 /*
2014 * This is to be a managed mapping.
2015 */
2016 if ((flags & VM_PROT_ALL) ||
2017 (pg->mdpage.pvh_attrs & PVF_REF)) {
2018 /*
2019 * - The access type indicates that we don't need
2020 * to do referenced emulation.
2021 * OR
2022 * - The physical page has already been referenced
2023 * so no need to re-do referenced emulation here.
2024 */
2025 npte |= L2_S_PROTO;
2026
2027 nflags |= PVF_REF;
2028
2029 if ((prot & VM_PROT_WRITE) != 0 &&
2030 ((flags & VM_PROT_WRITE) != 0 ||
2031 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2032 /*
2033 * This is a writable mapping, and the
2034 * page's mod state indicates it has
2035 * already been modified. Make it
2036 * writable from the outset.
2037 */
2038 npte |= L2_S_PROT_W;
2039 nflags |= PVF_MOD;
2040 }
2041 } else {
2042 /*
2043 * Need to do page referenced emulation.
2044 */
2045 npte |= L2_TYPE_INV;
2046 }
2047
2048 npte |= pte_l2_s_cache_mode;
2049
2050 if (pg == opg) {
2051 /*
2052 * We're changing the attrs of an existing mapping.
2053 */
2054 simple_lock(&pg->mdpage.pvh_slock);
2055 oflags = pmap_modify_pv(pg, pm, va,
2056 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2057 PVF_MOD | PVF_REF, nflags);
2058 simple_unlock(&pg->mdpage.pvh_slock);
2059
2060 /*
2061 * We may need to flush the cache if we're
2062 * doing rw-ro...
2063 */
2064 if (pm->pm_cstate.cs_cache_d &&
2065 (oflags & PVF_NC) == 0 &&
2066 (opte & L2_S_PROT_W) != 0 &&
2067 (prot & VM_PROT_WRITE) == 0)
2068 cpu_dcache_wb_range(va, PAGE_SIZE);
2069 } else {
2070 /*
2071 * New mapping, or changing the backing page
2072 * of an existing mapping.
2073 */
2074 if (opg) {
2075 /*
2076 * Replacing an existing mapping with a new one.
2077 * It is part of our managed memory so we
2078 * must remove it from the PV list
2079 */
2080 simple_lock(&opg->mdpage.pvh_slock);
2081 pve = pmap_remove_pv(opg, pm, va, 0);
2082 pmap_vac_me_harder(opg, pm, 0);
2083 simple_unlock(&opg->mdpage.pvh_slock);
2084 oflags = pve->pv_flags;
2085
2086 /*
2087 * If the old mapping was valid (ref/mod
2088 * emulation creates 'invalid' mappings
2089 * initially) then make sure to frob
2090 * the cache.
2091 */
2092 if ((oflags & PVF_NC) == 0 &&
2093 l2pte_valid(opte)) {
2094 if (PV_BEEN_EXECD(oflags)) {
2095 pmap_idcache_wbinv_range(pm, va,
2096 PAGE_SIZE);
2097 } else
2098 if (PV_BEEN_REFD(oflags)) {
2099 pmap_dcache_wb_range(pm, va,
2100 PAGE_SIZE, true,
2101 (oflags & PVF_WRITE) == 0);
2102 }
2103 }
2104 } else
2105 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2106 if ((flags & PMAP_CANFAIL) == 0)
2107 panic("pmap_enter: no pv entries");
2108
2109 if (pm != pmap_kernel())
2110 pmap_free_l2_bucket(pm, l2b, 0);
2111 pmap_release_pmap_lock(pm);
2112 PMAP_MAP_TO_HEAD_UNLOCK();
2113 NPDEBUG(PDB_ENTER,
2114 printf("pmap_enter: ENOMEM\n"));
2115 return (ENOMEM);
2116 }
2117
2118 pmap_enter_pv(pg, pve, pm, va, nflags);
2119 }
2120 } else {
2121 /*
2122 * We're mapping an unmanaged page.
2123 * These are always readable, and possibly writable, from
2124 * the get go as we don't need to track ref/mod status.
2125 */
2126 npte |= L2_S_PROTO;
2127 if (prot & VM_PROT_WRITE)
2128 npte |= L2_S_PROT_W;
2129
2130 /*
2131 * Make sure the vector table is mapped cacheable
2132 */
2133 if (pm != pmap_kernel() && va == vector_page)
2134 npte |= pte_l2_s_cache_mode;
2135
2136 if (opg) {
2137 /*
2138 * Looks like there's an existing 'managed' mapping
2139 * at this address.
2140 */
2141 simple_lock(&opg->mdpage.pvh_slock);
2142 pve = pmap_remove_pv(opg, pm, va, 0);
2143 pmap_vac_me_harder(opg, pm, 0);
2144 simple_unlock(&opg->mdpage.pvh_slock);
2145 oflags = pve->pv_flags;
2146
2147 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2148 if (PV_BEEN_EXECD(oflags))
2149 pmap_idcache_wbinv_range(pm, va,
2150 PAGE_SIZE);
2151 else
2152 if (PV_BEEN_REFD(oflags))
2153 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2154 true, (oflags & PVF_WRITE) == 0);
2155 }
2156 pool_put(&pmap_pv_pool, pve);
2157 }
2158 }
2159
2160 /*
2161 * Make sure userland mappings get the right permissions
2162 */
2163 if (pm != pmap_kernel() && va != vector_page)
2164 npte |= L2_S_PROT_U;
2165
2166 /*
2167 * Keep the stats up to date
2168 */
2169 if (opte == 0) {
2170 l2b->l2b_occupancy++;
2171 pm->pm_stats.resident_count++;
2172 }
2173
2174 NPDEBUG(PDB_ENTER,
2175 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2176
2177 /*
2178 * If this is just a wiring change, the two PTEs will be
2179 * identical, so there's no need to update the page table.
2180 */
2181 if (npte != opte) {
2182 bool is_cached = pmap_is_cached(pm);
2183
2184 *ptep = npte;
2185 if (is_cached) {
2186 /*
2187 * We only need to frob the cache/tlb if this pmap
2188 * is current
2189 */
2190 PTE_SYNC(ptep);
2191 if (va != vector_page && l2pte_valid(npte)) {
2192 /*
2193 * This mapping is likely to be accessed as
2194 * soon as we return to userland. Fix up the
2195 * L1 entry to avoid taking another
2196 * page/domain fault.
2197 */
2198 pd_entry_t *pl1pd, l1pd;
2199
2200 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2201 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2202 L1_C_PROTO;
2203 if (*pl1pd != l1pd) {
2204 *pl1pd = l1pd;
2205 PTE_SYNC(pl1pd);
2206 }
2207 }
2208 }
2209
2210 if (PV_BEEN_EXECD(oflags))
2211 pmap_tlb_flushID_SE(pm, va);
2212 else
2213 if (PV_BEEN_REFD(oflags))
2214 pmap_tlb_flushD_SE(pm, va);
2215
2216 NPDEBUG(PDB_ENTER,
2217 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2218 is_cached, pm->pm_cstate.cs_all));
2219
2220 if (pg != NULL) {
2221 simple_lock(&pg->mdpage.pvh_slock);
2222 pmap_vac_me_harder(pg, pm, va);
2223 simple_unlock(&pg->mdpage.pvh_slock);
2224 }
2225 }
2226
2227 pmap_release_pmap_lock(pm);
2228 PMAP_MAP_TO_HEAD_UNLOCK();
2229
2230 return (0);
2231 }
2232
2233 /*
2234 * pmap_remove()
2235 *
2236 * pmap_remove is responsible for nuking a number of mappings for a range
2237 * of virtual address space in the current pmap. To do this efficiently
2238 * is interesting, because in a number of cases a wide virtual address
2239 * range may be supplied that contains few actual mappings. So, the
2240 * optimisations are:
2241 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
2242 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2243 * maybe do just a partial cache clean. This path of execution is
2244 * complicated by the fact that the cache must be flushed _before_
2245 * the PTE is nuked, being a VAC :-)
2246 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
2247 * all invalidations until pmap_update(), since pmap_remove_all() has
2248 * already flushed the cache.
2249 * 4. Maybe later fast-case a single page, but I don't think this is
2250 * going to make _that_ much difference overall.
2251 */
2252
2253 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2254
2255 void
2256 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
2257 {
2258 struct l2_bucket *l2b;
2259 vaddr_t next_bucket;
2260 pt_entry_t *ptep;
2261 u_int cleanlist_idx, total, cnt;
2262 struct {
2263 vaddr_t va;
2264 pt_entry_t *pte;
2265 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2266 u_int mappings, is_exec, is_refd;
2267
2268 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
2269 "eva=%08lx\n", pm, sva, eva));
2270
2271 /*
2272 * we lock in the pmap => pv_head direction
2273 */
2274 PMAP_MAP_TO_HEAD_LOCK();
2275 pmap_acquire_pmap_lock(pm);
2276
2277 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
2278 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2279 if (pm->pm_cstate.cs_tlb == 0)
2280 pm->pm_remove_all = true;
2281 } else
2282 cleanlist_idx = 0;
2283
2284 total = 0;
2285
2286 while (sva < eva) {
2287 /*
2288 * Do one L2 bucket's worth at a time.
2289 */
2290 next_bucket = L2_NEXT_BUCKET(sva);
2291 if (next_bucket > eva)
2292 next_bucket = eva;
2293
2294 l2b = pmap_get_l2_bucket(pm, sva);
2295 if (l2b == NULL) {
2296 sva = next_bucket;
2297 continue;
2298 }
2299
2300 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2301
2302 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
2303 struct vm_page *pg;
2304 pt_entry_t pte;
2305 paddr_t pa;
2306
2307 pte = *ptep;
2308
2309 if (pte == 0) {
2310 /* Nothing here, move along */
2311 continue;
2312 }
2313
2314 pa = l2pte_pa(pte);
2315 is_exec = 0;
2316 is_refd = 1;
2317
2318 /*
2319 * Update flags. In a number of circumstances,
2320 * we could cluster a lot of these and do a
2321 * number of sequential pages in one go.
2322 */
2323 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2324 struct pv_entry *pve;
2325 simple_lock(&pg->mdpage.pvh_slock);
2326 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
2327 pmap_vac_me_harder(pg, pm, 0);
2328 simple_unlock(&pg->mdpage.pvh_slock);
2329 if (pve != NULL) {
2330 if (pm->pm_remove_all == false) {
2331 is_exec =
2332 PV_BEEN_EXECD(pve->pv_flags);
2333 is_refd =
2334 PV_BEEN_REFD(pve->pv_flags);
2335 }
2336 pool_put(&pmap_pv_pool, pve);
2337 } else
2338 if (skip_wired) {
2339 /* The mapping is wired. Skip it */
2340 continue;
2341 }
2342 } else
2343 if (skip_wired) {
2344 /* Unmanaged pages are always wired. */
2345 continue;
2346 }
2347
2348 mappings++;
2349
2350 if (!l2pte_valid(pte)) {
2351 /*
2352 * Ref/Mod emulation is still active for this
2353 * mapping, therefore it is has not yet been
2354 * accessed. No need to frob the cache/tlb.
2355 */
2356 *ptep = 0;
2357 PTE_SYNC_CURRENT(pm, ptep);
2358 continue;
2359 }
2360
2361 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2362 /* Add to the clean list. */
2363 cleanlist[cleanlist_idx].pte = ptep;
2364 cleanlist[cleanlist_idx].va =
2365 sva | (is_exec & 1);
2366 cleanlist_idx++;
2367 } else
2368 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2369 /* Nuke everything if needed. */
2370 pmap_idcache_wbinv_all(pm);
2371 pmap_tlb_flushID(pm);
2372
2373 /*
2374 * Roll back the previous PTE list,
2375 * and zero out the current PTE.
2376 */
2377 for (cnt = 0;
2378 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2379 *cleanlist[cnt].pte = 0;
2380 }
2381 *ptep = 0;
2382 PTE_SYNC(ptep);
2383 cleanlist_idx++;
2384 pm->pm_remove_all = true;
2385 } else {
2386 *ptep = 0;
2387 PTE_SYNC(ptep);
2388 if (pm->pm_remove_all == false) {
2389 if (is_exec)
2390 pmap_tlb_flushID_SE(pm, sva);
2391 else
2392 if (is_refd)
2393 pmap_tlb_flushD_SE(pm, sva);
2394 }
2395 }
2396 }
2397
2398 /*
2399 * Deal with any left overs
2400 */
2401 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2402 total += cleanlist_idx;
2403 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2404 if (pm->pm_cstate.cs_all != 0) {
2405 vaddr_t clva = cleanlist[cnt].va & ~1;
2406 if (cleanlist[cnt].va & 1) {
2407 pmap_idcache_wbinv_range(pm,
2408 clva, PAGE_SIZE);
2409 pmap_tlb_flushID_SE(pm, clva);
2410 } else {
2411 pmap_dcache_wb_range(pm,
2412 clva, PAGE_SIZE, true,
2413 false);
2414 pmap_tlb_flushD_SE(pm, clva);
2415 }
2416 }
2417 *cleanlist[cnt].pte = 0;
2418 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
2419 }
2420
2421 /*
2422 * If it looks like we're removing a whole bunch
2423 * of mappings, it's faster to just write-back
2424 * the whole cache now and defer TLB flushes until
2425 * pmap_update() is called.
2426 */
2427 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
2428 cleanlist_idx = 0;
2429 else {
2430 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
2431 pmap_idcache_wbinv_all(pm);
2432 pm->pm_remove_all = true;
2433 }
2434 }
2435
2436 pmap_free_l2_bucket(pm, l2b, mappings);
2437 pm->pm_stats.resident_count -= mappings;
2438 }
2439
2440 pmap_release_pmap_lock(pm);
2441 PMAP_MAP_TO_HEAD_UNLOCK();
2442 }
2443
2444 /*
2445 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
2446 *
2447 * We assume there is already sufficient KVM space available
2448 * to do this, as we can't allocate L2 descriptor tables/metadata
2449 * from here.
2450 */
2451 void
2452 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2453 {
2454 struct l2_bucket *l2b;
2455 pt_entry_t *ptep, opte;
2456
2457 NPDEBUG(PDB_KENTER,
2458 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
2459 va, pa, prot));
2460
2461 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2462 KDASSERT(l2b != NULL);
2463
2464 ptep = &l2b->l2b_kva[l2pte_index(va)];
2465 opte = *ptep;
2466
2467 if (l2pte_valid(opte)) {
2468 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2469 cpu_tlb_flushD_SE(va);
2470 cpu_cpwait();
2471 } else
2472 if (opte == 0)
2473 l2b->l2b_occupancy++;
2474
2475 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
2476 pte_l2_s_cache_mode;
2477 PTE_SYNC(ptep);
2478 }
2479
2480 void
2481 pmap_kremove(vaddr_t va, vsize_t len)
2482 {
2483 struct l2_bucket *l2b;
2484 pt_entry_t *ptep, *sptep, opte;
2485 vaddr_t next_bucket, eva;
2486 u_int mappings;
2487
2488 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
2489 va, len));
2490
2491 eva = va + len;
2492
2493 while (va < eva) {
2494 next_bucket = L2_NEXT_BUCKET(va);
2495 if (next_bucket > eva)
2496 next_bucket = eva;
2497
2498 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2499 KDASSERT(l2b != NULL);
2500
2501 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
2502 mappings = 0;
2503
2504 while (va < next_bucket) {
2505 opte = *ptep;
2506 if (l2pte_valid(opte)) {
2507 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2508 cpu_tlb_flushD_SE(va);
2509 }
2510 if (opte) {
2511 *ptep = 0;
2512 mappings++;
2513 }
2514 va += PAGE_SIZE;
2515 ptep++;
2516 }
2517 KDASSERT(mappings <= l2b->l2b_occupancy);
2518 l2b->l2b_occupancy -= mappings;
2519 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
2520 }
2521 cpu_cpwait();
2522 }
2523
2524 bool
2525 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2526 {
2527 struct l2_dtable *l2;
2528 pd_entry_t *pl1pd, l1pd;
2529 pt_entry_t *ptep, pte;
2530 paddr_t pa;
2531 u_int l1idx;
2532
2533 pmap_acquire_pmap_lock(pm);
2534
2535 l1idx = L1_IDX(va);
2536 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2537 l1pd = *pl1pd;
2538
2539 if (l1pte_section_p(l1pd)) {
2540 /*
2541 * These should only happen for pmap_kernel()
2542 */
2543 KDASSERT(pm == pmap_kernel());
2544 pmap_release_pmap_lock(pm);
2545 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
2546 } else {
2547 /*
2548 * Note that we can't rely on the validity of the L1
2549 * descriptor as an indication that a mapping exists.
2550 * We have to look it up in the L2 dtable.
2551 */
2552 l2 = pm->pm_l2[L2_IDX(l1idx)];
2553
2554 if (l2 == NULL ||
2555 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
2556 pmap_release_pmap_lock(pm);
2557 return (false);
2558 }
2559
2560 ptep = &ptep[l2pte_index(va)];
2561 pte = *ptep;
2562 pmap_release_pmap_lock(pm);
2563
2564 if (pte == 0)
2565 return (false);
2566
2567 switch (pte & L2_TYPE_MASK) {
2568 case L2_TYPE_L:
2569 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2570 break;
2571
2572 default:
2573 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2574 break;
2575 }
2576 }
2577
2578 if (pap != NULL)
2579 *pap = pa;
2580
2581 return (true);
2582 }
2583
2584 void
2585 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2586 {
2587 struct l2_bucket *l2b;
2588 pt_entry_t *ptep, pte;
2589 vaddr_t next_bucket;
2590 u_int flags;
2591 int flush;
2592
2593 NPDEBUG(PDB_PROTECT,
2594 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
2595 pm, sva, eva, prot));
2596
2597 if ((prot & VM_PROT_READ) == 0) {
2598 pmap_remove(pm, sva, eva);
2599 return;
2600 }
2601
2602 if (prot & VM_PROT_WRITE) {
2603 /*
2604 * If this is a read->write transition, just ignore it and let
2605 * uvm_fault() take care of it later.
2606 */
2607 return;
2608 }
2609
2610 PMAP_MAP_TO_HEAD_LOCK();
2611 pmap_acquire_pmap_lock(pm);
2612
2613 /*
2614 * OK, at this point, we know we're doing write-protect operation.
2615 * If the pmap is active, write-back the range.
2616 */
2617 pmap_dcache_wb_range(pm, sva, eva - sva, false, false);
2618
2619 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
2620 flags = 0;
2621
2622 while (sva < eva) {
2623 next_bucket = L2_NEXT_BUCKET(sva);
2624 if (next_bucket > eva)
2625 next_bucket = eva;
2626
2627 l2b = pmap_get_l2_bucket(pm, sva);
2628 if (l2b == NULL) {
2629 sva = next_bucket;
2630 continue;
2631 }
2632
2633 ptep = &l2b->l2b_kva[l2pte_index(sva)];
2634
2635 while (sva < next_bucket) {
2636 if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
2637 struct vm_page *pg;
2638 u_int f;
2639
2640 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
2641 pte &= ~L2_S_PROT_W;
2642 *ptep = pte;
2643 PTE_SYNC(ptep);
2644
2645 if (pg != NULL) {
2646 simple_lock(&pg->mdpage.pvh_slock);
2647 f = pmap_modify_pv(pg, pm, sva,
2648 PVF_WRITE, 0);
2649 pmap_vac_me_harder(pg, pm, sva);
2650 simple_unlock(&pg->mdpage.pvh_slock);
2651 } else
2652 f = PVF_REF | PVF_EXEC;
2653
2654 if (flush >= 0) {
2655 flush++;
2656 flags |= f;
2657 } else
2658 if (PV_BEEN_EXECD(f))
2659 pmap_tlb_flushID_SE(pm, sva);
2660 else
2661 if (PV_BEEN_REFD(f))
2662 pmap_tlb_flushD_SE(pm, sva);
2663 }
2664
2665 sva += PAGE_SIZE;
2666 ptep++;
2667 }
2668 }
2669
2670 pmap_release_pmap_lock(pm);
2671 PMAP_MAP_TO_HEAD_UNLOCK();
2672
2673 if (flush) {
2674 if (PV_BEEN_EXECD(flags))
2675 pmap_tlb_flushID(pm);
2676 else
2677 if (PV_BEEN_REFD(flags))
2678 pmap_tlb_flushD(pm);
2679 }
2680 }
2681
2682 void
2683 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2684 {
2685
2686 NPDEBUG(PDB_PROTECT,
2687 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
2688 pg, VM_PAGE_TO_PHYS(pg), prot));
2689
2690 switch(prot) {
2691 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2692 case VM_PROT_READ|VM_PROT_WRITE:
2693 return;
2694
2695 case VM_PROT_READ:
2696 case VM_PROT_READ|VM_PROT_EXECUTE:
2697 pmap_clearbit(pg, PVF_WRITE);
2698 break;
2699
2700 default:
2701 pmap_page_remove(pg);
2702 break;
2703 }
2704 }
2705
2706 /*
2707 * pmap_clear_modify:
2708 *
2709 * Clear the "modified" attribute for a page.
2710 */
2711 bool
2712 pmap_clear_modify(struct vm_page *pg)
2713 {
2714 bool rv;
2715
2716 if (pg->mdpage.pvh_attrs & PVF_MOD) {
2717 rv = true;
2718 pmap_clearbit(pg, PVF_MOD);
2719 } else
2720 rv = false;
2721
2722 return (rv);
2723 }
2724
2725 /*
2726 * pmap_clear_reference:
2727 *
2728 * Clear the "referenced" attribute for a page.
2729 */
2730 bool
2731 pmap_clear_reference(struct vm_page *pg)
2732 {
2733 bool rv;
2734
2735 if (pg->mdpage.pvh_attrs & PVF_REF) {
2736 rv = true;
2737 pmap_clearbit(pg, PVF_REF);
2738 } else
2739 rv = false;
2740
2741 return (rv);
2742 }
2743
2744 /*
2745 * pmap_is_modified:
2746 *
2747 * Test if a page has the "modified" attribute.
2748 */
2749 /* See <arm/arm32/pmap.h> */
2750
2751 /*
2752 * pmap_is_referenced:
2753 *
2754 * Test if a page has the "referenced" attribute.
2755 */
2756 /* See <arm/arm32/pmap.h> */
2757
2758 int
2759 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
2760 {
2761 struct l2_dtable *l2;
2762 struct l2_bucket *l2b;
2763 pd_entry_t *pl1pd, l1pd;
2764 pt_entry_t *ptep, pte;
2765 paddr_t pa;
2766 u_int l1idx;
2767 int rv = 0;
2768
2769 PMAP_MAP_TO_HEAD_LOCK();
2770 pmap_acquire_pmap_lock(pm);
2771
2772 l1idx = L1_IDX(va);
2773
2774 /*
2775 * If there is no l2_dtable for this address, then the process
2776 * has no business accessing it.
2777 *
2778 * Note: This will catch userland processes trying to access
2779 * kernel addresses.
2780 */
2781 l2 = pm->pm_l2[L2_IDX(l1idx)];
2782 if (l2 == NULL)
2783 goto out;
2784
2785 /*
2786 * Likewise if there is no L2 descriptor table
2787 */
2788 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2789 if (l2b->l2b_kva == NULL)
2790 goto out;
2791
2792 /*
2793 * Check the PTE itself.
2794 */
2795 ptep = &l2b->l2b_kva[l2pte_index(va)];
2796 pte = *ptep;
2797 if (pte == 0)
2798 goto out;
2799
2800 /*
2801 * Catch a userland access to the vector page mapped at 0x0
2802 */
2803 if (user && (pte & L2_S_PROT_U) == 0)
2804 goto out;
2805
2806 pa = l2pte_pa(pte);
2807
2808 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
2809 /*
2810 * This looks like a good candidate for "page modified"
2811 * emulation...
2812 */
2813 struct pv_entry *pv;
2814 struct vm_page *pg;
2815
2816 /* Extract the physical address of the page */
2817 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2818 goto out;
2819
2820 /* Get the current flags for this page. */
2821 simple_lock(&pg->mdpage.pvh_slock);
2822
2823 pv = pmap_find_pv(pg, pm, va);
2824 if (pv == NULL) {
2825 simple_unlock(&pg->mdpage.pvh_slock);
2826 goto out;
2827 }
2828
2829 /*
2830 * Do the flags say this page is writable? If not then it
2831 * is a genuine write fault. If yes then the write fault is
2832 * our fault as we did not reflect the write access in the
2833 * PTE. Now we know a write has occurred we can correct this
2834 * and also set the modified bit
2835 */
2836 if ((pv->pv_flags & PVF_WRITE) == 0) {
2837 simple_unlock(&pg->mdpage.pvh_slock);
2838 goto out;
2839 }
2840
2841 NPDEBUG(PDB_FOLLOW,
2842 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2843 pm, va, VM_PAGE_TO_PHYS(pg)));
2844
2845 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2846 pv->pv_flags |= PVF_REF | PVF_MOD;
2847 simple_unlock(&pg->mdpage.pvh_slock);
2848
2849 /*
2850 * Re-enable write permissions for the page. No need to call
2851 * pmap_vac_me_harder(), since this is just a
2852 * modified-emulation fault, and the PVF_WRITE bit isn't
2853 * changing. We've already set the cacheable bits based on
2854 * the assumption that we can write to this page.
2855 */
2856 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
2857 PTE_SYNC(ptep);
2858 rv = 1;
2859 } else
2860 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
2861 /*
2862 * This looks like a good candidate for "page referenced"
2863 * emulation.
2864 */
2865 struct pv_entry *pv;
2866 struct vm_page *pg;
2867
2868 /* Extract the physical address of the page */
2869 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2870 goto out;
2871
2872 /* Get the current flags for this page. */
2873 simple_lock(&pg->mdpage.pvh_slock);
2874
2875 pv = pmap_find_pv(pg, pm, va);
2876 if (pv == NULL) {
2877 simple_unlock(&pg->mdpage.pvh_slock);
2878 goto out;
2879 }
2880
2881 pg->mdpage.pvh_attrs |= PVF_REF;
2882 pv->pv_flags |= PVF_REF;
2883 simple_unlock(&pg->mdpage.pvh_slock);
2884
2885 NPDEBUG(PDB_FOLLOW,
2886 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
2887 pm, va, VM_PAGE_TO_PHYS(pg)));
2888
2889 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
2890 PTE_SYNC(ptep);
2891 rv = 1;
2892 }
2893
2894 /*
2895 * We know there is a valid mapping here, so simply
2896 * fix up the L1 if necessary.
2897 */
2898 pl1pd = &pm->pm_l1->l1_kva[l1idx];
2899 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
2900 if (*pl1pd != l1pd) {
2901 *pl1pd = l1pd;
2902 PTE_SYNC(pl1pd);
2903 rv = 1;
2904 }
2905
2906 #ifdef CPU_SA110
2907 /*
2908 * There are bugs in the rev K SA110. This is a check for one
2909 * of them.
2910 */
2911 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
2912 curcpu()->ci_arm_cpurev < 3) {
2913 /* Always current pmap */
2914 if (l2pte_valid(pte)) {
2915 extern int kernel_debug;
2916 if (kernel_debug & 1) {
2917 struct proc *p = curlwp->l_proc;
2918 printf("prefetch_abort: page is already "
2919 "mapped - pte=%p *pte=%08x\n", ptep, pte);
2920 printf("prefetch_abort: pc=%08lx proc=%p "
2921 "process=%s\n", va, p, p->p_comm);
2922 printf("prefetch_abort: far=%08x fs=%x\n",
2923 cpu_faultaddress(), cpu_faultstatus());
2924 }
2925 #ifdef DDB
2926 if (kernel_debug & 2)
2927 Debugger();
2928 #endif
2929 rv = 1;
2930 }
2931 }
2932 #endif /* CPU_SA110 */
2933
2934 #ifdef DEBUG
2935 /*
2936 * If 'rv == 0' at this point, it generally indicates that there is a
2937 * stale TLB entry for the faulting address. This happens when two or
2938 * more processes are sharing an L1. Since we don't flush the TLB on
2939 * a context switch between such processes, we can take domain faults
2940 * for mappings which exist at the same VA in both processes. EVEN IF
2941 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2942 * example.
2943 *
2944 * This is extremely likely to happen if pmap_enter() updated the L1
2945 * entry for a recently entered mapping. In this case, the TLB is
2946 * flushed for the new mapping, but there may still be TLB entries for
2947 * other mappings belonging to other processes in the 1MB range
2948 * covered by the L1 entry.
2949 *
2950 * Since 'rv == 0', we know that the L1 already contains the correct
2951 * value, so the fault must be due to a stale TLB entry.
2952 *
2953 * Since we always need to flush the TLB anyway in the case where we
2954 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2955 * stale TLB entries dynamically.
2956 *
2957 * However, the above condition can ONLY happen if the current L1 is
2958 * being shared. If it happens when the L1 is unshared, it indicates
2959 * that other parts of the pmap are not doing their job WRT managing
2960 * the TLB.
2961 */
2962 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2963 extern int last_fault_code;
2964 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2965 pm, va, ftype);
2966 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2967 l2, l2b, ptep, pl1pd);
2968 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2969 pte, l1pd, last_fault_code);
2970 #ifdef DDB
2971 Debugger();
2972 #endif
2973 }
2974 #endif
2975
2976 cpu_tlb_flushID_SE(va);
2977 cpu_cpwait();
2978
2979 rv = 1;
2980
2981 out:
2982 pmap_release_pmap_lock(pm);
2983 PMAP_MAP_TO_HEAD_UNLOCK();
2984
2985 return (rv);
2986 }
2987
2988 /*
2989 * pmap_collect: free resources held by a pmap
2990 *
2991 * => optional function.
2992 * => called when a process is swapped out to free memory.
2993 */
2994 void
2995 pmap_collect(pmap_t pm)
2996 {
2997
2998 pmap_idcache_wbinv_all(pm);
2999 pm->pm_remove_all = true;
3000 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
3001 pmap_update(pm);
3002 }
3003
3004 /*
3005 * Routine: pmap_procwr
3006 *
3007 * Function:
3008 * Synchronize caches corresponding to [addr, addr+len) in p.
3009 *
3010 */
3011 void
3012 pmap_procwr(struct proc *p, vaddr_t va, int len)
3013 {
3014 /* We only need to do anything if it is the current process. */
3015 if (p == curproc)
3016 cpu_icache_sync_range(va, len);
3017 }
3018
3019 /*
3020 * Routine: pmap_unwire
3021 * Function: Clear the wired attribute for a map/virtual-address pair.
3022 *
3023 * In/out conditions:
3024 * The mapping must already exist in the pmap.
3025 */
3026 void
3027 pmap_unwire(pmap_t pm, vaddr_t va)
3028 {
3029 struct l2_bucket *l2b;
3030 pt_entry_t *ptep, pte;
3031 struct vm_page *pg;
3032 paddr_t pa;
3033
3034 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
3035
3036 PMAP_MAP_TO_HEAD_LOCK();
3037 pmap_acquire_pmap_lock(pm);
3038
3039 l2b = pmap_get_l2_bucket(pm, va);
3040 KDASSERT(l2b != NULL);
3041
3042 ptep = &l2b->l2b_kva[l2pte_index(va)];
3043 pte = *ptep;
3044
3045 /* Extract the physical address of the page */
3046 pa = l2pte_pa(pte);
3047
3048 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3049 /* Update the wired bit in the pv entry for this page. */
3050 simple_lock(&pg->mdpage.pvh_slock);
3051 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
3052 simple_unlock(&pg->mdpage.pvh_slock);
3053 }
3054
3055 pmap_release_pmap_lock(pm);
3056 PMAP_MAP_TO_HEAD_UNLOCK();
3057 }
3058
3059 void
3060 pmap_activate(struct lwp *l)
3061 {
3062 extern int block_userspace_access;
3063 pmap_t opm, npm, rpm;
3064 uint32_t odacr, ndacr;
3065 int oldirqstate;
3066
3067 /*
3068 * If activating a non-current lwp or the current lwp is
3069 * already active, just return.
3070 */
3071 if (l != curlwp ||
3072 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
3073 return;
3074
3075 npm = l->l_proc->p_vmspace->vm_map.pmap;
3076 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3077 (DOMAIN_CLIENT << (npm->pm_domain * 2));
3078
3079 /*
3080 * If TTB and DACR are unchanged, short-circuit all the
3081 * TLB/cache management stuff.
3082 */
3083 if (pmap_previous_active_lwp != NULL) {
3084 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
3085 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
3086 (DOMAIN_CLIENT << (opm->pm_domain * 2));
3087
3088 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
3089 goto all_done;
3090 } else
3091 opm = NULL;
3092
3093 block_userspace_access = 1;
3094
3095 /*
3096 * If switching to a user vmspace which is different to the
3097 * most recent one, and the most recent one is potentially
3098 * live in the cache, we must write-back and invalidate the
3099 * entire cache.
3100 */
3101 rpm = pmap_recent_user;
3102 if (npm != pmap_kernel() && rpm && npm != rpm &&
3103 rpm->pm_cstate.cs_cache) {
3104 rpm->pm_cstate.cs_cache = 0;
3105 cpu_idcache_wbinv_all();
3106 }
3107
3108 /* No interrupts while we frob the TTB/DACR */
3109 oldirqstate = disable_interrupts(I32_bit | F32_bit);
3110
3111 /*
3112 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
3113 * entry corresponding to 'vector_page' in the incoming L1 table
3114 * before switching to it otherwise subsequent interrupts/exceptions
3115 * (including domain faults!) will jump into hyperspace.
3116 */
3117 if (npm->pm_pl1vec != NULL) {
3118 cpu_tlb_flushID_SE((u_int)vector_page);
3119 cpu_cpwait();
3120 *npm->pm_pl1vec = npm->pm_l1vec;
3121 PTE_SYNC(npm->pm_pl1vec);
3122 }
3123
3124 cpu_domains(ndacr);
3125
3126 if (npm == pmap_kernel() || npm == rpm) {
3127 /*
3128 * Switching to a kernel thread, or back to the
3129 * same user vmspace as before... Simply update
3130 * the TTB (no TLB flush required)
3131 */
3132 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
3133 "r"(npm->pm_l1->l1_physaddr));
3134 cpu_cpwait();
3135 } else {
3136 /*
3137 * Otherwise, update TTB and flush TLB
3138 */
3139 cpu_context_switch(npm->pm_l1->l1_physaddr);
3140 if (rpm != NULL)
3141 rpm->pm_cstate.cs_tlb = 0;
3142 }
3143
3144 restore_interrupts(oldirqstate);
3145
3146 block_userspace_access = 0;
3147
3148 all_done:
3149 /*
3150 * The new pmap is resident. Make sure it's marked
3151 * as resident in the cache/TLB.
3152 */
3153 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3154 if (npm != pmap_kernel())
3155 pmap_recent_user = npm;
3156
3157 /* The old pmap is not longer active */
3158 if (opm != NULL)
3159 opm->pm_activated = false;
3160
3161 /* But the new one is */
3162 npm->pm_activated = true;
3163 }
3164
3165 void
3166 pmap_deactivate(struct lwp *l)
3167 {
3168
3169 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
3170 }
3171
3172 void
3173 pmap_update(pmap_t pm)
3174 {
3175
3176 if (pm->pm_remove_all) {
3177 /*
3178 * Finish up the pmap_remove_all() optimisation by flushing
3179 * the TLB.
3180 */
3181 pmap_tlb_flushID(pm);
3182 pm->pm_remove_all = false;
3183 }
3184
3185 if (pmap_is_current(pm)) {
3186 /*
3187 * If we're dealing with a current userland pmap, move its L1
3188 * to the end of the LRU.
3189 */
3190 if (pm != pmap_kernel())
3191 pmap_use_l1(pm);
3192
3193 /*
3194 * We can assume we're done with frobbing the cache/tlb for
3195 * now. Make sure any future pmap ops don't skip cache/tlb
3196 * flushes.
3197 */
3198 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3199 }
3200
3201 /*
3202 * make sure TLB/cache operations have completed.
3203 */
3204 cpu_cpwait();
3205 }
3206
3207 void
3208 pmap_remove_all(pmap_t pm)
3209 {
3210
3211 /*
3212 * The vmspace described by this pmap is about to be torn down.
3213 * Until pmap_update() is called, UVM will only make calls
3214 * to pmap_remove(). We can make life much simpler by flushing
3215 * the cache now, and deferring TLB invalidation to pmap_update().
3216 */
3217 pmap_idcache_wbinv_all(pm);
3218 pm->pm_remove_all = true;
3219 }
3220
3221 /*
3222 * Retire the given physical map from service.
3223 * Should only be called if the map contains no valid mappings.
3224 */
3225 void
3226 pmap_destroy(pmap_t pm)
3227 {
3228 u_int count;
3229
3230 if (pm == NULL)
3231 return;
3232
3233 if (pm->pm_remove_all) {
3234 pmap_tlb_flushID(pm);
3235 pm->pm_remove_all = false;
3236 }
3237
3238 /*
3239 * Drop reference count
3240 */
3241 mutex_enter(&pm->pm_lock);
3242 count = --pm->pm_obj.uo_refs;
3243 mutex_exit(&pm->pm_lock);
3244 if (count > 0) {
3245 if (pmap_is_current(pm)) {
3246 if (pm != pmap_kernel())
3247 pmap_use_l1(pm);
3248 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3249 }
3250 return;
3251 }
3252
3253 /*
3254 * reference count is zero, free pmap resources and then free pmap.
3255 */
3256
3257 if (vector_page < KERNEL_BASE) {
3258 KDASSERT(!pmap_is_current(pm));
3259
3260 /* Remove the vector page mapping */
3261 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
3262 pmap_update(pm);
3263 }
3264
3265 LIST_REMOVE(pm, pm_list);
3266
3267 pmap_free_l1(pm);
3268
3269 if (pmap_recent_user == pm)
3270 pmap_recent_user = NULL;
3271
3272 UVM_OBJ_DESTROY(&pm->pm_obj);
3273
3274 /* return the pmap to the pool */
3275 pool_cache_put(&pmap_cache, pm);
3276 }
3277
3278
3279 /*
3280 * void pmap_reference(pmap_t pm)
3281 *
3282 * Add a reference to the specified pmap.
3283 */
3284 void
3285 pmap_reference(pmap_t pm)
3286 {
3287
3288 if (pm == NULL)
3289 return;
3290
3291 pmap_use_l1(pm);
3292
3293 mutex_enter(&pm->pm_lock);
3294 pm->pm_obj.uo_refs++;
3295 mutex_exit(&pm->pm_lock);
3296 }
3297
3298 /*
3299 * pmap_zero_page()
3300 *
3301 * Zero a given physical page by mapping it at a page hook point.
3302 * In doing the zero page op, the page we zero is mapped cachable, as with
3303 * StrongARM accesses to non-cached pages are non-burst making writing
3304 * _any_ bulk data very slow.
3305 */
3306 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3307 void
3308 pmap_zero_page_generic(paddr_t phys)
3309 {
3310 #ifdef DEBUG
3311 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3312
3313 if (pg->mdpage.pvh_list != NULL)
3314 panic("pmap_zero_page: page has mappings");
3315 #endif
3316
3317 KDASSERT((phys & PGOFSET) == 0);
3318
3319 /*
3320 * Hook in the page, zero it, and purge the cache for that
3321 * zeroed page. Invalidate the TLB as needed.
3322 */
3323 *cdst_pte = L2_S_PROTO | phys |
3324 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3325 PTE_SYNC(cdst_pte);
3326 cpu_tlb_flushD_SE(cdstp);
3327 cpu_cpwait();
3328 bzero_page(cdstp);
3329 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3330 }
3331 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3332
3333 #if ARM_MMU_XSCALE == 1
3334 void
3335 pmap_zero_page_xscale(paddr_t phys)
3336 {
3337 #ifdef DEBUG
3338 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
3339
3340 if (pg->mdpage.pvh_list != NULL)
3341 panic("pmap_zero_page: page has mappings");
3342 #endif
3343
3344 KDASSERT((phys & PGOFSET) == 0);
3345
3346 /*
3347 * Hook in the page, zero it, and purge the cache for that
3348 * zeroed page. Invalidate the TLB as needed.
3349 */
3350 *cdst_pte = L2_S_PROTO | phys |
3351 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3352 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3353 PTE_SYNC(cdst_pte);
3354 cpu_tlb_flushD_SE(cdstp);
3355 cpu_cpwait();
3356 bzero_page(cdstp);
3357 xscale_cache_clean_minidata();
3358 }
3359 #endif /* ARM_MMU_XSCALE == 1 */
3360
3361 /* pmap_pageidlezero()
3362 *
3363 * The same as above, except that we assume that the page is not
3364 * mapped. This means we never have to flush the cache first. Called
3365 * from the idle loop.
3366 */
3367 bool
3368 pmap_pageidlezero(paddr_t phys)
3369 {
3370 unsigned int i;
3371 int *ptr;
3372 bool rv = true;
3373 #ifdef DEBUG
3374 struct vm_page *pg;
3375
3376 pg = PHYS_TO_VM_PAGE(phys);
3377 if (pg->mdpage.pvh_list != NULL)
3378 panic("pmap_pageidlezero: page has mappings");
3379 #endif
3380
3381 KDASSERT((phys & PGOFSET) == 0);
3382
3383 /*
3384 * Hook in the page, zero it, and purge the cache for that
3385 * zeroed page. Invalidate the TLB as needed.
3386 */
3387 *cdst_pte = L2_S_PROTO | phys |
3388 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3389 PTE_SYNC(cdst_pte);
3390 cpu_tlb_flushD_SE(cdstp);
3391 cpu_cpwait();
3392
3393 for (i = 0, ptr = (int *)cdstp;
3394 i < (PAGE_SIZE / sizeof(int)); i++) {
3395 if (sched_curcpu_runnable_p()) {
3396 /*
3397 * A process has become ready. Abort now,
3398 * so we don't keep it waiting while we
3399 * do slow memory access to finish this
3400 * page.
3401 */
3402 rv = false;
3403 break;
3404 }
3405 *ptr++ = 0;
3406 }
3407
3408 if (rv)
3409 /*
3410 * if we aborted we'll rezero this page again later so don't
3411 * purge it unless we finished it
3412 */
3413 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3414
3415 return (rv);
3416 }
3417
3418 /*
3419 * pmap_copy_page()
3420 *
3421 * Copy one physical page into another, by mapping the pages into
3422 * hook points. The same comment regarding cachability as in
3423 * pmap_zero_page also applies here.
3424 */
3425 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
3426 void
3427 pmap_copy_page_generic(paddr_t src, paddr_t dst)
3428 {
3429 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3430 #ifdef DEBUG
3431 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3432
3433 if (dst_pg->mdpage.pvh_list != NULL)
3434 panic("pmap_copy_page: dst page has mappings");
3435 #endif
3436
3437 KDASSERT((src & PGOFSET) == 0);
3438 KDASSERT((dst & PGOFSET) == 0);
3439
3440 /*
3441 * Clean the source page. Hold the source page's lock for
3442 * the duration of the copy so that no other mappings can
3443 * be created while we have a potentially aliased mapping.
3444 */
3445 simple_lock(&src_pg->mdpage.pvh_slock);
3446 (void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
3447
3448 /*
3449 * Map the pages into the page hook points, copy them, and purge
3450 * the cache for the appropriate page. Invalidate the TLB
3451 * as required.
3452 */
3453 *csrc_pte = L2_S_PROTO | src |
3454 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
3455 PTE_SYNC(csrc_pte);
3456 *cdst_pte = L2_S_PROTO | dst |
3457 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
3458 PTE_SYNC(cdst_pte);
3459 cpu_tlb_flushD_SE(csrcp);
3460 cpu_tlb_flushD_SE(cdstp);
3461 cpu_cpwait();
3462 bcopy_page(csrcp, cdstp);
3463 cpu_dcache_inv_range(csrcp, PAGE_SIZE);
3464 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3465 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
3466 }
3467 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
3468
3469 #if ARM_MMU_XSCALE == 1
3470 void
3471 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
3472 {
3473 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
3474 #ifdef DEBUG
3475 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
3476
3477 if (dst_pg->mdpage.pvh_list != NULL)
3478 panic("pmap_copy_page: dst page has mappings");
3479 #endif
3480
3481 KDASSERT((src & PGOFSET) == 0);
3482 KDASSERT((dst & PGOFSET) == 0);
3483
3484 /*
3485 * Clean the source page. Hold the source page's lock for
3486 * the duration of the copy so that no other mappings can
3487 * be created while we have a potentially aliased mapping.
3488 */
3489 simple_lock(&src_pg->mdpage.pvh_slock);
3490 (void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
3491
3492 /*
3493 * Map the pages into the page hook points, copy them, and purge
3494 * the cache for the appropriate page. Invalidate the TLB
3495 * as required.
3496 */
3497 *csrc_pte = L2_S_PROTO | src |
3498 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3499 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3500 PTE_SYNC(csrc_pte);
3501 *cdst_pte = L2_S_PROTO | dst |
3502 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3503 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
3504 PTE_SYNC(cdst_pte);
3505 cpu_tlb_flushD_SE(csrcp);
3506 cpu_tlb_flushD_SE(cdstp);
3507 cpu_cpwait();
3508 bcopy_page(csrcp, cdstp);
3509 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
3510 xscale_cache_clean_minidata();
3511 }
3512 #endif /* ARM_MMU_XSCALE == 1 */
3513
3514 /*
3515 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3516 *
3517 * Return the start and end addresses of the kernel's virtual space.
3518 * These values are setup in pmap_bootstrap and are updated as pages
3519 * are allocated.
3520 */
3521 void
3522 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
3523 {
3524 *start = virtual_avail;
3525 *end = virtual_end;
3526 }
3527
3528 /*
3529 * Helper function for pmap_grow_l2_bucket()
3530 */
3531 static inline int
3532 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
3533 {
3534 struct l2_bucket *l2b;
3535 pt_entry_t *ptep;
3536 paddr_t pa;
3537
3538 if (uvm.page_init_done == false) {
3539 if (uvm_page_physget(&pa) == false)
3540 return (1);
3541 } else {
3542 struct vm_page *pg;
3543 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
3544 if (pg == NULL)
3545 return (1);
3546 pa = VM_PAGE_TO_PHYS(pg);
3547 }
3548
3549 if (pap)
3550 *pap = pa;
3551
3552 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3553 KDASSERT(l2b != NULL);
3554
3555 ptep = &l2b->l2b_kva[l2pte_index(va)];
3556 *ptep = L2_S_PROTO | pa | cache_mode |
3557 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
3558 PTE_SYNC(ptep);
3559 memset((void *)va, 0, PAGE_SIZE);
3560 return (0);
3561 }
3562
3563 /*
3564 * This is the same as pmap_alloc_l2_bucket(), except that it is only
3565 * used by pmap_growkernel().
3566 */
3567 static inline struct l2_bucket *
3568 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
3569 {
3570 struct l2_dtable *l2;
3571 struct l2_bucket *l2b;
3572 u_short l1idx;
3573 vaddr_t nva;
3574
3575 l1idx = L1_IDX(va);
3576
3577 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3578 /*
3579 * No mapping at this address, as there is
3580 * no entry in the L1 table.
3581 * Need to allocate a new l2_dtable.
3582 */
3583 nva = pmap_kernel_l2dtable_kva;
3584 if ((nva & PGOFSET) == 0) {
3585 /*
3586 * Need to allocate a backing page
3587 */
3588 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3589 return (NULL);
3590 }
3591
3592 l2 = (struct l2_dtable *)nva;
3593 nva += sizeof(struct l2_dtable);
3594
3595 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
3596 /*
3597 * The new l2_dtable straddles a page boundary.
3598 * Map in another page to cover it.
3599 */
3600 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
3601 return (NULL);
3602 }
3603
3604 pmap_kernel_l2dtable_kva = nva;
3605
3606 /*
3607 * Link it into the parent pmap
3608 */
3609 pm->pm_l2[L2_IDX(l1idx)] = l2;
3610 }
3611
3612 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3613
3614 /*
3615 * Fetch pointer to the L2 page table associated with the address.
3616 */
3617 if (l2b->l2b_kva == NULL) {
3618 pt_entry_t *ptep;
3619
3620 /*
3621 * No L2 page table has been allocated. Chances are, this
3622 * is because we just allocated the l2_dtable, above.
3623 */
3624 nva = pmap_kernel_l2ptp_kva;
3625 ptep = (pt_entry_t *)nva;
3626 if ((nva & PGOFSET) == 0) {
3627 /*
3628 * Need to allocate a backing page
3629 */
3630 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
3631 &pmap_kernel_l2ptp_phys))
3632 return (NULL);
3633 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
3634 }
3635
3636 l2->l2_occupancy++;
3637 l2b->l2b_kva = ptep;
3638 l2b->l2b_l1idx = l1idx;
3639 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
3640
3641 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
3642 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
3643 }
3644
3645 return (l2b);
3646 }
3647
3648 vaddr_t
3649 pmap_growkernel(vaddr_t maxkvaddr)
3650 {
3651 pmap_t kpm = pmap_kernel();
3652 struct l1_ttable *l1;
3653 struct l2_bucket *l2b;
3654 pd_entry_t *pl1pd;
3655 int s;
3656
3657 if (maxkvaddr <= pmap_curmaxkvaddr)
3658 goto out; /* we are OK */
3659
3660 NPDEBUG(PDB_GROWKERN,
3661 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
3662 pmap_curmaxkvaddr, maxkvaddr));
3663
3664 KDASSERT(maxkvaddr <= virtual_end);
3665
3666 /*
3667 * whoops! we need to add kernel PTPs
3668 */
3669
3670 s = splhigh(); /* to be safe */
3671 mutex_enter(&kpm->pm_lock);
3672
3673 /* Map 1MB at a time */
3674 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
3675
3676 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
3677 KDASSERT(l2b != NULL);
3678
3679 /* Distribute new L1 entry to all other L1s */
3680 SLIST_FOREACH(l1, &l1_list, l1_link) {
3681 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
3682 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
3683 L1_C_PROTO;
3684 PTE_SYNC(pl1pd);
3685 }
3686 }
3687
3688 /*
3689 * flush out the cache, expensive but growkernel will happen so
3690 * rarely
3691 */
3692 cpu_dcache_wbinv_all();
3693 cpu_tlb_flushD();
3694 cpu_cpwait();
3695
3696 mutex_exit(&kpm->pm_lock);
3697 splx(s);
3698
3699 out:
3700 return (pmap_curmaxkvaddr);
3701 }
3702
3703 /************************ Utility routines ****************************/
3704
3705 /*
3706 * vector_page_setprot:
3707 *
3708 * Manipulate the protection of the vector page.
3709 */
3710 void
3711 vector_page_setprot(int prot)
3712 {
3713 struct l2_bucket *l2b;
3714 pt_entry_t *ptep;
3715
3716 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
3717 KDASSERT(l2b != NULL);
3718
3719 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
3720
3721 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3722 PTE_SYNC(ptep);
3723 cpu_tlb_flushD_SE(vector_page);
3724 cpu_cpwait();
3725 }
3726
3727 /*
3728 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3729 * Returns true if the mapping exists, else false.
3730 *
3731 * NOTE: This function is only used by a couple of arm-specific modules.
3732 * It is not safe to take any pmap locks here, since we could be right
3733 * in the middle of debugging the pmap anyway...
3734 *
3735 * It is possible for this routine to return false even though a valid
3736 * mapping does exist. This is because we don't lock, so the metadata
3737 * state may be inconsistent.
3738 *
3739 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3740 * a "section" mapping.
3741 */
3742 bool
3743 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3744 {
3745 struct l2_dtable *l2;
3746 pd_entry_t *pl1pd, l1pd;
3747 pt_entry_t *ptep;
3748 u_short l1idx;
3749
3750 if (pm->pm_l1 == NULL)
3751 return (false);
3752
3753 l1idx = L1_IDX(va);
3754 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3755 l1pd = *pl1pd;
3756
3757 if (l1pte_section_p(l1pd)) {
3758 *ptp = NULL;
3759 return (true);
3760 }
3761
3762 if (pm->pm_l2 == NULL)
3763 return (false);
3764
3765 l2 = pm->pm_l2[L2_IDX(l1idx)];
3766
3767 if (l2 == NULL ||
3768 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3769 return (false);
3770 }
3771
3772 *ptp = &ptep[l2pte_index(va)];
3773 return (true);
3774 }
3775
3776 bool
3777 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
3778 {
3779 u_short l1idx;
3780
3781 if (pm->pm_l1 == NULL)
3782 return (false);
3783
3784 l1idx = L1_IDX(va);
3785 *pdp = &pm->pm_l1->l1_kva[l1idx];
3786
3787 return (true);
3788 }
3789
3790 /************************ Bootstrapping routines ****************************/
3791
3792 static void
3793 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
3794 {
3795 int i;
3796
3797 l1->l1_kva = l1pt;
3798 l1->l1_domain_use_count = 0;
3799 l1->l1_domain_first = 0;
3800
3801 for (i = 0; i < PMAP_DOMAINS; i++)
3802 l1->l1_domain_free[i] = i + 1;
3803
3804 /*
3805 * Copy the kernel's L1 entries to each new L1.
3806 */
3807 if (pmap_initialized)
3808 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
3809
3810 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
3811 &l1->l1_physaddr) == false)
3812 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
3813
3814 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
3815 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
3816 }
3817
3818 /*
3819 * pmap_bootstrap() is called from the board-specific initarm() routine
3820 * once the kernel L1/L2 descriptors tables have been set up.
3821 *
3822 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
3823 * spread over a number of disparate files/functions.
3824 *
3825 * We are passed the following parameters
3826 * - kernel_l1pt
3827 * This is a pointer to the base of the kernel's L1 translation table.
3828 * - vstart
3829 * 1MB-aligned start of managed kernel virtual memory.
3830 * - vend
3831 * 1MB-aligned end of managed kernel virtual memory.
3832 *
3833 * We use the first parameter to build the metadata (struct l1_ttable and
3834 * struct l2_dtable) necessary to track kernel mappings.
3835 */
3836 #define PMAP_STATIC_L2_SIZE 16
3837 void
3838 pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
3839 {
3840 static struct l1_ttable static_l1;
3841 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
3842 struct l1_ttable *l1 = &static_l1;
3843 struct l2_dtable *l2;
3844 struct l2_bucket *l2b;
3845 pmap_t pm = pmap_kernel();
3846 pd_entry_t pde;
3847 pt_entry_t *ptep;
3848 paddr_t pa;
3849 vaddr_t va;
3850 vsize_t size;
3851 int l1idx, l2idx, l2next = 0;
3852
3853 /*
3854 * Initialise the kernel pmap object
3855 */
3856 pm->pm_l1 = l1;
3857 pm->pm_domain = PMAP_DOMAIN_KERNEL;
3858 pm->pm_activated = true;
3859 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
3860 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
3861
3862 /*
3863 * Scan the L1 translation table created by initarm() and create
3864 * the required metadata for all valid mappings found in it.
3865 */
3866 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
3867 pde = kernel_l1pt[l1idx];
3868
3869 /*
3870 * We're only interested in Coarse mappings.
3871 * pmap_extract() can deal with section mappings without
3872 * recourse to checking L2 metadata.
3873 */
3874 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
3875 continue;
3876
3877 /*
3878 * Lookup the KVA of this L2 descriptor table
3879 */
3880 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
3881 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
3882 if (ptep == NULL) {
3883 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
3884 (u_int)l1idx << L1_S_SHIFT, pa);
3885 }
3886
3887 /*
3888 * Fetch the associated L2 metadata structure.
3889 * Allocate a new one if necessary.
3890 */
3891 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
3892 if (l2next == PMAP_STATIC_L2_SIZE)
3893 panic("pmap_bootstrap: out of static L2s");
3894 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
3895 }
3896
3897 /*
3898 * One more L1 slot tracked...
3899 */
3900 l2->l2_occupancy++;
3901
3902 /*
3903 * Fill in the details of the L2 descriptor in the
3904 * appropriate bucket.
3905 */
3906 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3907 l2b->l2b_kva = ptep;
3908 l2b->l2b_phys = pa;
3909 l2b->l2b_l1idx = l1idx;
3910
3911 /*
3912 * Establish an initial occupancy count for this descriptor
3913 */
3914 for (l2idx = 0;
3915 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
3916 l2idx++) {
3917 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
3918 l2b->l2b_occupancy++;
3919 }
3920 }
3921
3922 /*
3923 * Make sure the descriptor itself has the correct cache mode.
3924 * If not, fix it, but whine about the problem. Port-meisters
3925 * should consider this a clue to fix up their initarm()
3926 * function. :)
3927 */
3928 if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
3929 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3930 "L2 pte @ %p\n", ptep);
3931 }
3932 }
3933
3934 /*
3935 * Ensure the primary (kernel) L1 has the correct cache mode for
3936 * a page table. Bitch if it is not correctly set.
3937 */
3938 for (va = (vaddr_t)kernel_l1pt;
3939 va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
3940 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
3941 printf("pmap_bootstrap: WARNING! wrong cache mode for "
3942 "primary L1 @ 0x%lx\n", va);
3943 }
3944
3945 cpu_dcache_wbinv_all();
3946 cpu_tlb_flushID();
3947 cpu_cpwait();
3948
3949 /*
3950 * now we allocate the "special" VAs which are used for tmp mappings
3951 * by the pmap (and other modules). we allocate the VAs by advancing
3952 * virtual_avail (note that there are no pages mapped at these VAs).
3953 *
3954 * Managed KVM space start from wherever initarm() tells us.
3955 */
3956 virtual_avail = vstart;
3957 virtual_end = vend;
3958
3959 pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
3960 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
3961 pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
3962 pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
3963 pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
3964 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
3965 (void *)&msgbufaddr, NULL);
3966
3967 /*
3968 * Allocate a range of kernel virtual address space to be used
3969 * for L2 descriptor tables and metadata allocation in
3970 * pmap_growkernel().
3971 */
3972 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
3973 pmap_alloc_specials(&virtual_avail,
3974 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
3975 &pmap_kernel_l2ptp_kva, NULL);
3976
3977 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
3978 pmap_alloc_specials(&virtual_avail,
3979 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
3980 &pmap_kernel_l2dtable_kva, NULL);
3981
3982 /*
3983 * init the static-global locks and global pmap list.
3984 */
3985 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
3986
3987 /*
3988 * We can now initialise the first L1's metadata.
3989 */
3990 SLIST_INIT(&l1_list);
3991 TAILQ_INIT(&l1_lru_list);
3992 simple_lock_init(&l1_lru_lock);
3993 pmap_init_l1(l1, kernel_l1pt);
3994
3995 /* Set up vector page L1 details, if necessary */
3996 if (vector_page < KERNEL_BASE) {
3997 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
3998 l2b = pmap_get_l2_bucket(pm, vector_page);
3999 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
4000 L1_C_DOM(pm->pm_domain);
4001 } else
4002 pm->pm_pl1vec = NULL;
4003
4004 /*
4005 * Initialize the pmap cache
4006 */
4007 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
4008 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
4009 LIST_INIT(&pmap_pmaps);
4010 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
4011
4012 /*
4013 * Initialize the pv pool.
4014 */
4015 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
4016 &pmap_bootstrap_pv_allocator, IPL_NONE);
4017
4018 /*
4019 * Initialize the L2 dtable pool and cache.
4020 */
4021 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
4022 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
4023
4024 /*
4025 * Initialise the L2 descriptor table pool and cache
4026 */
4027 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
4028 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
4029 pmap_l2ptp_ctor, NULL, NULL);
4030
4031 cpu_dcache_wbinv_all();
4032 }
4033
4034 static int
4035 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
4036 {
4037 pd_entry_t *pdep, pde;
4038 pt_entry_t *ptep, pte;
4039 vaddr_t pa;
4040 int rv = 0;
4041
4042 /*
4043 * Make sure the descriptor itself has the correct cache mode
4044 */
4045 pdep = &kl1[L1_IDX(va)];
4046 pde = *pdep;
4047
4048 if (l1pte_section_p(pde)) {
4049 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
4050 *pdep = (pde & ~L1_S_CACHE_MASK) |
4051 pte_l1_s_cache_mode_pt;
4052 PTE_SYNC(pdep);
4053 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
4054 rv = 1;
4055 }
4056 } else {
4057 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
4058 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
4059 if (ptep == NULL)
4060 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
4061
4062 ptep = &ptep[l2pte_index(va)];
4063 pte = *ptep;
4064 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
4065 *ptep = (pte & ~L2_S_CACHE_MASK) |
4066 pte_l2_s_cache_mode_pt;
4067 PTE_SYNC(ptep);
4068 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
4069 rv = 1;
4070 }
4071 }
4072
4073 return (rv);
4074 }
4075
4076 static void
4077 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
4078 {
4079 vaddr_t va = *availp;
4080 struct l2_bucket *l2b;
4081
4082 if (ptep) {
4083 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4084 if (l2b == NULL)
4085 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
4086
4087 if (ptep)
4088 *ptep = &l2b->l2b_kva[l2pte_index(va)];
4089 }
4090
4091 *vap = va;
4092 *availp = va + (PAGE_SIZE * pages);
4093 }
4094
4095 void
4096 pmap_init(void)
4097 {
4098 extern int physmem;
4099
4100 /*
4101 * Set the available memory vars - These do not map to real memory
4102 * addresses and cannot as the physical memory is fragmented.
4103 * They are used by ps for %mem calculations.
4104 * One could argue whether this should be the entire memory or just
4105 * the memory that is useable in a user process.
4106 */
4107 avail_start = 0;
4108 avail_end = physmem * PAGE_SIZE;
4109
4110 /*
4111 * Now we need to free enough pv_entry structures to allow us to get
4112 * the kmem_map/kmem_object allocated and inited (done after this
4113 * function is finished). to do this we allocate one bootstrap page out
4114 * of kernel_map and use it to provide an initial pool of pv_entry
4115 * structures. we never free this page.
4116 */
4117 pool_setlowat(&pmap_pv_pool,
4118 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
4119
4120 pmap_initialized = true;
4121 }
4122
4123 static vaddr_t last_bootstrap_page = 0;
4124 static void *free_bootstrap_pages = NULL;
4125
4126 static void *
4127 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
4128 {
4129 extern void *pool_page_alloc(struct pool *, int);
4130 vaddr_t new_page;
4131 void *rv;
4132
4133 if (pmap_initialized)
4134 return (pool_page_alloc(pp, flags));
4135
4136 if (free_bootstrap_pages) {
4137 rv = free_bootstrap_pages;
4138 free_bootstrap_pages = *((void **)rv);
4139 return (rv);
4140 }
4141
4142 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
4143 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
4144
4145 KASSERT(new_page > last_bootstrap_page);
4146 last_bootstrap_page = new_page;
4147 return ((void *)new_page);
4148 }
4149
4150 static void
4151 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
4152 {
4153 extern void pool_page_free(struct pool *, void *);
4154
4155 if ((vaddr_t)v <= last_bootstrap_page) {
4156 *((void **)v) = free_bootstrap_pages;
4157 free_bootstrap_pages = v;
4158 return;
4159 }
4160
4161 if (pmap_initialized) {
4162 pool_page_free(pp, v);
4163 return;
4164 }
4165 }
4166
4167 /*
4168 * pmap_postinit()
4169 *
4170 * This routine is called after the vm and kmem subsystems have been
4171 * initialised. This allows the pmap code to perform any initialisation
4172 * that can only be done one the memory allocation is in place.
4173 */
4174 void
4175 pmap_postinit(void)
4176 {
4177 extern paddr_t physical_start, physical_end;
4178 struct l2_bucket *l2b;
4179 struct l1_ttable *l1;
4180 struct pglist plist;
4181 struct vm_page *m;
4182 pd_entry_t *pl1pt;
4183 pt_entry_t *ptep, pte;
4184 vaddr_t va, eva;
4185 u_int loop, needed;
4186 int error;
4187
4188 pool_cache_setlowat(&pmap_l2ptp_cache,
4189 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
4190 pool_cache_setlowat(&pmap_l2dtable_cache,
4191 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
4192
4193 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
4194 needed -= 1;
4195
4196 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
4197
4198 for (loop = 0; loop < needed; loop++, l1++) {
4199 /* Allocate a L1 page table */
4200 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
4201 if (va == 0)
4202 panic("Cannot allocate L1 KVM");
4203
4204 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
4205 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
4206 if (error)
4207 panic("Cannot allocate L1 physical pages");
4208
4209 m = TAILQ_FIRST(&plist);
4210 eva = va + L1_TABLE_SIZE;
4211 pl1pt = (pd_entry_t *)va;
4212
4213 while (m && va < eva) {
4214 paddr_t pa = VM_PAGE_TO_PHYS(m);
4215
4216 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
4217
4218 /*
4219 * Make sure the L1 descriptor table is mapped
4220 * with the cache-mode set to write-through.
4221 */
4222 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4223 ptep = &l2b->l2b_kva[l2pte_index(va)];
4224 pte = *ptep;
4225 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
4226 *ptep = pte;
4227 PTE_SYNC(ptep);
4228 cpu_tlb_flushD_SE(va);
4229
4230 va += PAGE_SIZE;
4231 m = TAILQ_NEXT(m, pageq);
4232 }
4233
4234 #ifdef DIAGNOSTIC
4235 if (m)
4236 panic("pmap_alloc_l1pt: pglist not empty");
4237 #endif /* DIAGNOSTIC */
4238
4239 pmap_init_l1(l1, pl1pt);
4240 }
4241
4242 #ifdef DEBUG
4243 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
4244 needed);
4245 #endif
4246 }
4247
4248 /*
4249 * Note that the following routines are used by board-specific initialisation
4250 * code to configure the initial kernel page tables.
4251 *
4252 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
4253 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
4254 * behaviour of the old pmap, and provides an easy migration path for
4255 * initial bring-up of the new pmap on existing ports. Fortunately,
4256 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
4257 * will be deprecated.
4258 *
4259 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
4260 * tables.
4261 */
4262
4263 /*
4264 * This list exists for the benefit of pmap_map_chunk(). It keeps track
4265 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
4266 * find them as necessary.
4267 *
4268 * Note that the data on this list MUST remain valid after initarm() returns,
4269 * as pmap_bootstrap() uses it to contruct L2 table metadata.
4270 */
4271 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
4272
4273 static vaddr_t
4274 kernel_pt_lookup(paddr_t pa)
4275 {
4276 pv_addr_t *pv;
4277
4278 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
4279 #ifndef ARM32_NEW_VM_LAYOUT
4280 if (pv->pv_pa == (pa & ~PGOFSET))
4281 return (pv->pv_va | (pa & PGOFSET));
4282 #else
4283 if (pv->pv_pa == pa)
4284 return (pv->pv_va);
4285 #endif
4286 }
4287 return (0);
4288 }
4289
4290 /*
4291 * pmap_map_section:
4292 *
4293 * Create a single section mapping.
4294 */
4295 void
4296 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4297 {
4298 pd_entry_t *pde = (pd_entry_t *) l1pt;
4299 pd_entry_t fl;
4300
4301 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
4302
4303 switch (cache) {
4304 case PTE_NOCACHE:
4305 default:
4306 fl = 0;
4307 break;
4308
4309 case PTE_CACHE:
4310 fl = pte_l1_s_cache_mode;
4311 break;
4312
4313 case PTE_PAGETABLE:
4314 fl = pte_l1_s_cache_mode_pt;
4315 break;
4316 }
4317
4318 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4319 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4320 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4321 }
4322
4323 /*
4324 * pmap_map_entry:
4325 *
4326 * Create a single page mapping.
4327 */
4328 void
4329 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
4330 {
4331 pd_entry_t *pde = (pd_entry_t *) l1pt;
4332 pt_entry_t fl;
4333 pt_entry_t *pte;
4334
4335 KASSERT(((va | pa) & PGOFSET) == 0);
4336
4337 switch (cache) {
4338 case PTE_NOCACHE:
4339 default:
4340 fl = 0;
4341 break;
4342
4343 case PTE_CACHE:
4344 fl = pte_l2_s_cache_mode;
4345 break;
4346
4347 case PTE_PAGETABLE:
4348 fl = pte_l2_s_cache_mode_pt;
4349 break;
4350 }
4351
4352 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4353 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
4354
4355 #ifndef ARM32_NEW_VM_LAYOUT
4356 pte = (pt_entry_t *)
4357 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4358 #else
4359 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4360 #endif
4361 if (pte == NULL)
4362 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
4363
4364 #ifndef ARM32_NEW_VM_LAYOUT
4365 pte[(va >> PGSHIFT) & 0x3ff] =
4366 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4367 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4368 #else
4369 pte[l2pte_index(va)] =
4370 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4371 PTE_SYNC(&pte[l2pte_index(va)]);
4372 #endif
4373 }
4374
4375 /*
4376 * pmap_link_l2pt:
4377 *
4378 * Link the L2 page table specified by "l2pv" into the L1
4379 * page table at the slot for "va".
4380 */
4381 void
4382 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
4383 {
4384 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4385 u_int slot = va >> L1_S_SHIFT;
4386
4387 #ifndef ARM32_NEW_VM_LAYOUT
4388 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
4389 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
4390 #endif
4391
4392 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4393
4394 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4395 #ifdef ARM32_NEW_VM_LAYOUT
4396 PTE_SYNC(&pde[slot]);
4397 #else
4398 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
4399 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
4400 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
4401 PTE_SYNC_RANGE(&pde[slot + 0], 4);
4402 #endif
4403
4404 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4405 }
4406
4407 /*
4408 * pmap_map_chunk:
4409 *
4410 * Map a chunk of memory using the most efficient mappings
4411 * possible (section, large page, small page) into the
4412 * provided L1 and L2 tables at the specified virtual address.
4413 */
4414 vsize_t
4415 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
4416 int prot, int cache)
4417 {
4418 pd_entry_t *pde = (pd_entry_t *) l1pt;
4419 pt_entry_t *pte, f1, f2s, f2l;
4420 vsize_t resid;
4421 int i;
4422
4423 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4424
4425 if (l1pt == 0)
4426 panic("pmap_map_chunk: no L1 table provided");
4427
4428 #ifdef VERBOSE_INIT_ARM
4429 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
4430 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4431 #endif
4432
4433 switch (cache) {
4434 case PTE_NOCACHE:
4435 default:
4436 f1 = 0;
4437 f2l = 0;
4438 f2s = 0;
4439 break;
4440
4441 case PTE_CACHE:
4442 f1 = pte_l1_s_cache_mode;
4443 f2l = pte_l2_l_cache_mode;
4444 f2s = pte_l2_s_cache_mode;
4445 break;
4446
4447 case PTE_PAGETABLE:
4448 f1 = pte_l1_s_cache_mode_pt;
4449 f2l = pte_l2_l_cache_mode_pt;
4450 f2s = pte_l2_s_cache_mode_pt;
4451 break;
4452 }
4453
4454 size = resid;
4455
4456 while (resid > 0) {
4457 /* See if we can use a section mapping. */
4458 if (L1_S_MAPPABLE_P(va, pa, resid)) {
4459 #ifdef VERBOSE_INIT_ARM
4460 printf("S");
4461 #endif
4462 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4463 L1_S_PROT(PTE_KERNEL, prot) | f1 |
4464 L1_S_DOM(PMAP_DOMAIN_KERNEL);
4465 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4466 va += L1_S_SIZE;
4467 pa += L1_S_SIZE;
4468 resid -= L1_S_SIZE;
4469 continue;
4470 }
4471
4472 /*
4473 * Ok, we're going to use an L2 table. Make sure
4474 * one is actually in the corresponding L1 slot
4475 * for the current VA.
4476 */
4477 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4478 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
4479
4480 #ifndef ARM32_NEW_VM_LAYOUT
4481 pte = (pt_entry_t *)
4482 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4483 #else
4484 pte = (pt_entry_t *) kernel_pt_lookup(
4485 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4486 #endif
4487 if (pte == NULL)
4488 panic("pmap_map_chunk: can't find L2 table for VA"
4489 "0x%08lx", va);
4490
4491 /* See if we can use a L2 large page mapping. */
4492 if (L2_L_MAPPABLE_P(va, pa, resid)) {
4493 #ifdef VERBOSE_INIT_ARM
4494 printf("L");
4495 #endif
4496 for (i = 0; i < 16; i++) {
4497 #ifndef ARM32_NEW_VM_LAYOUT
4498 pte[((va >> PGSHIFT) & 0x3f0) + i] =
4499 L2_L_PROTO | pa |
4500 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4501 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
4502 #else
4503 pte[l2pte_index(va) + i] =
4504 L2_L_PROTO | pa |
4505 L2_L_PROT(PTE_KERNEL, prot) | f2l;
4506 PTE_SYNC(&pte[l2pte_index(va) + i]);
4507 #endif
4508 }
4509 va += L2_L_SIZE;
4510 pa += L2_L_SIZE;
4511 resid -= L2_L_SIZE;
4512 continue;
4513 }
4514
4515 /* Use a small page mapping. */
4516 #ifdef VERBOSE_INIT_ARM
4517 printf("P");
4518 #endif
4519 #ifndef ARM32_NEW_VM_LAYOUT
4520 pte[(va >> PGSHIFT) & 0x3ff] =
4521 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4522 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
4523 #else
4524 pte[l2pte_index(va)] =
4525 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4526 PTE_SYNC(&pte[l2pte_index(va)]);
4527 #endif
4528 va += PAGE_SIZE;
4529 pa += PAGE_SIZE;
4530 resid -= PAGE_SIZE;
4531 }
4532 #ifdef VERBOSE_INIT_ARM
4533 printf("\n");
4534 #endif
4535 return (size);
4536 }
4537
4538 /********************** Static device map routines ***************************/
4539
4540 static const struct pmap_devmap *pmap_devmap_table;
4541
4542 /*
4543 * Register the devmap table. This is provided in case early console
4544 * initialization needs to register mappings created by bootstrap code
4545 * before pmap_devmap_bootstrap() is called.
4546 */
4547 void
4548 pmap_devmap_register(const struct pmap_devmap *table)
4549 {
4550
4551 pmap_devmap_table = table;
4552 }
4553
4554 /*
4555 * Map all of the static regions in the devmap table, and remember
4556 * the devmap table so other parts of the kernel can look up entries
4557 * later.
4558 */
4559 void
4560 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
4561 {
4562 int i;
4563
4564 pmap_devmap_table = table;
4565
4566 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4567 #ifdef VERBOSE_INIT_ARM
4568 printf("devmap: %08lx -> %08lx @ %08lx\n",
4569 pmap_devmap_table[i].pd_pa,
4570 pmap_devmap_table[i].pd_pa +
4571 pmap_devmap_table[i].pd_size - 1,
4572 pmap_devmap_table[i].pd_va);
4573 #endif
4574 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
4575 pmap_devmap_table[i].pd_pa,
4576 pmap_devmap_table[i].pd_size,
4577 pmap_devmap_table[i].pd_prot,
4578 pmap_devmap_table[i].pd_cache);
4579 }
4580 }
4581
4582 const struct pmap_devmap *
4583 pmap_devmap_find_pa(paddr_t pa, psize_t size)
4584 {
4585 uint64_t endpa;
4586 int i;
4587
4588 if (pmap_devmap_table == NULL)
4589 return (NULL);
4590
4591 endpa = (uint64_t)pa + (uint64_t)(size - 1);
4592
4593 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4594 if (pa >= pmap_devmap_table[i].pd_pa &&
4595 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
4596 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
4597 return (&pmap_devmap_table[i]);
4598 }
4599
4600 return (NULL);
4601 }
4602
4603 const struct pmap_devmap *
4604 pmap_devmap_find_va(vaddr_t va, vsize_t size)
4605 {
4606 int i;
4607
4608 if (pmap_devmap_table == NULL)
4609 return (NULL);
4610
4611 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
4612 if (va >= pmap_devmap_table[i].pd_va &&
4613 va + size - 1 <= pmap_devmap_table[i].pd_va +
4614 pmap_devmap_table[i].pd_size - 1)
4615 return (&pmap_devmap_table[i]);
4616 }
4617
4618 return (NULL);
4619 }
4620
4621 /********************** PTE initialization routines **************************/
4622
4623 /*
4624 * These routines are called when the CPU type is identified to set up
4625 * the PTE prototypes, cache modes, etc.
4626 *
4627 * The variables are always here, just in case LKMs need to reference
4628 * them (though, they shouldn't).
4629 */
4630
4631 pt_entry_t pte_l1_s_cache_mode;
4632 pt_entry_t pte_l1_s_cache_mode_pt;
4633 pt_entry_t pte_l1_s_cache_mask;
4634
4635 pt_entry_t pte_l2_l_cache_mode;
4636 pt_entry_t pte_l2_l_cache_mode_pt;
4637 pt_entry_t pte_l2_l_cache_mask;
4638
4639 pt_entry_t pte_l2_s_cache_mode;
4640 pt_entry_t pte_l2_s_cache_mode_pt;
4641 pt_entry_t pte_l2_s_cache_mask;
4642
4643 pt_entry_t pte_l2_s_prot_u;
4644 pt_entry_t pte_l2_s_prot_w;
4645 pt_entry_t pte_l2_s_prot_mask;
4646
4647 pt_entry_t pte_l1_s_proto;
4648 pt_entry_t pte_l1_c_proto;
4649 pt_entry_t pte_l2_s_proto;
4650
4651 void (*pmap_copy_page_func)(paddr_t, paddr_t);
4652 void (*pmap_zero_page_func)(paddr_t);
4653
4654 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
4655 void
4656 pmap_pte_init_generic(void)
4657 {
4658
4659 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4660 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
4661
4662 pte_l2_l_cache_mode = L2_B|L2_C;
4663 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
4664
4665 pte_l2_s_cache_mode = L2_B|L2_C;
4666 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
4667
4668 /*
4669 * If we have a write-through cache, set B and C. If
4670 * we have a write-back cache, then we assume setting
4671 * only C will make those pages write-through.
4672 */
4673 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
4674 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4675 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4676 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4677 } else {
4678 pte_l1_s_cache_mode_pt = L1_S_C;
4679 pte_l2_l_cache_mode_pt = L2_C;
4680 pte_l2_s_cache_mode_pt = L2_C;
4681 }
4682
4683 pte_l2_s_prot_u = L2_S_PROT_U_generic;
4684 pte_l2_s_prot_w = L2_S_PROT_W_generic;
4685 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
4686
4687 pte_l1_s_proto = L1_S_PROTO_generic;
4688 pte_l1_c_proto = L1_C_PROTO_generic;
4689 pte_l2_s_proto = L2_S_PROTO_generic;
4690
4691 pmap_copy_page_func = pmap_copy_page_generic;
4692 pmap_zero_page_func = pmap_zero_page_generic;
4693 }
4694
4695 #if defined(CPU_ARM8)
4696 void
4697 pmap_pte_init_arm8(void)
4698 {
4699
4700 /*
4701 * ARM8 is compatible with generic, but we need to use
4702 * the page tables uncached.
4703 */
4704 pmap_pte_init_generic();
4705
4706 pte_l1_s_cache_mode_pt = 0;
4707 pte_l2_l_cache_mode_pt = 0;
4708 pte_l2_s_cache_mode_pt = 0;
4709 }
4710 #endif /* CPU_ARM8 */
4711
4712 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
4713 void
4714 pmap_pte_init_arm9(void)
4715 {
4716
4717 /*
4718 * ARM9 is compatible with generic, but we want to use
4719 * write-through caching for now.
4720 */
4721 pmap_pte_init_generic();
4722
4723 pte_l1_s_cache_mode = L1_S_C;
4724 pte_l2_l_cache_mode = L2_C;
4725 pte_l2_s_cache_mode = L2_C;
4726
4727 pte_l1_s_cache_mode_pt = L1_S_C;
4728 pte_l2_l_cache_mode_pt = L2_C;
4729 pte_l2_s_cache_mode_pt = L2_C;
4730 }
4731 #endif /* CPU_ARM9 */
4732 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4733
4734 #if defined(CPU_ARM10)
4735 void
4736 pmap_pte_init_arm10(void)
4737 {
4738
4739 /*
4740 * ARM10 is compatible with generic, but we want to use
4741 * write-through caching for now.
4742 */
4743 pmap_pte_init_generic();
4744
4745 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
4746 pte_l2_l_cache_mode = L2_B | L2_C;
4747 pte_l2_s_cache_mode = L2_B | L2_C;
4748
4749 pte_l1_s_cache_mode_pt = L1_S_C;
4750 pte_l2_l_cache_mode_pt = L2_C;
4751 pte_l2_s_cache_mode_pt = L2_C;
4752
4753 }
4754 #endif /* CPU_ARM10 */
4755
4756 #if ARM_MMU_SA1 == 1
4757 void
4758 pmap_pte_init_sa1(void)
4759 {
4760
4761 /*
4762 * The StrongARM SA-1 cache does not have a write-through
4763 * mode. So, do the generic initialization, then reset
4764 * the page table cache mode to B=1,C=1, and note that
4765 * the PTEs need to be sync'd.
4766 */
4767 pmap_pte_init_generic();
4768
4769 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
4770 pte_l2_l_cache_mode_pt = L2_B|L2_C;
4771 pte_l2_s_cache_mode_pt = L2_B|L2_C;
4772
4773 pmap_needs_pte_sync = 1;
4774 }
4775 #endif /* ARM_MMU_SA1 == 1*/
4776
4777 #if ARM_MMU_XSCALE == 1
4778 #if (ARM_NMMUS > 1)
4779 static u_int xscale_use_minidata;
4780 #endif
4781
4782 void
4783 pmap_pte_init_xscale(void)
4784 {
4785 uint32_t auxctl;
4786 int write_through = 0;
4787
4788 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4789 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4790
4791 pte_l2_l_cache_mode = L2_B|L2_C;
4792 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4793
4794 pte_l2_s_cache_mode = L2_B|L2_C;
4795 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4796
4797 pte_l1_s_cache_mode_pt = L1_S_C;
4798 pte_l2_l_cache_mode_pt = L2_C;
4799 pte_l2_s_cache_mode_pt = L2_C;
4800
4801 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
4802 /*
4803 * The XScale core has an enhanced mode where writes that
4804 * miss the cache cause a cache line to be allocated. This
4805 * is significantly faster than the traditional, write-through
4806 * behavior of this case.
4807 */
4808 pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
4809 pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
4810 pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
4811 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
4812
4813 #ifdef XSCALE_CACHE_WRITE_THROUGH
4814 /*
4815 * Some versions of the XScale core have various bugs in
4816 * their cache units, the work-around for which is to run
4817 * the cache in write-through mode. Unfortunately, this
4818 * has a major (negative) impact on performance. So, we
4819 * go ahead and run fast-and-loose, in the hopes that we
4820 * don't line up the planets in a way that will trip the
4821 * bugs.
4822 *
4823 * However, we give you the option to be slow-but-correct.
4824 */
4825 write_through = 1;
4826 #elif defined(XSCALE_CACHE_WRITE_BACK)
4827 /* force write back cache mode */
4828 write_through = 0;
4829 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
4830 /*
4831 * Intel PXA2[15]0 processors are known to have a bug in
4832 * write-back cache on revision 4 and earlier (stepping
4833 * A[01] and B[012]). Fixed for C0 and later.
4834 */
4835 {
4836 uint32_t id, type;
4837
4838 id = cpufunc_id();
4839 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
4840
4841 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
4842 if ((id & CPU_ID_REVISION_MASK) < 5) {
4843 /* write through for stepping A0-1 and B0-2 */
4844 write_through = 1;
4845 }
4846 }
4847 }
4848 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4849
4850 if (write_through) {
4851 pte_l1_s_cache_mode = L1_S_C;
4852 pte_l2_l_cache_mode = L2_C;
4853 pte_l2_s_cache_mode = L2_C;
4854 }
4855
4856 #if (ARM_NMMUS > 1)
4857 xscale_use_minidata = 1;
4858 #endif
4859
4860 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4861 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4862 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4863
4864 pte_l1_s_proto = L1_S_PROTO_xscale;
4865 pte_l1_c_proto = L1_C_PROTO_xscale;
4866 pte_l2_s_proto = L2_S_PROTO_xscale;
4867
4868 pmap_copy_page_func = pmap_copy_page_xscale;
4869 pmap_zero_page_func = pmap_zero_page_xscale;
4870
4871 /*
4872 * Disable ECC protection of page table access, for now.
4873 */
4874 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4875 auxctl &= ~XSCALE_AUXCTL_P;
4876 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4877 }
4878
4879 /*
4880 * xscale_setup_minidata:
4881 *
4882 * Set up the mini-data cache clean area. We require the
4883 * caller to allocate the right amount of physically and
4884 * virtually contiguous space.
4885 */
4886 void
4887 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4888 {
4889 extern vaddr_t xscale_minidata_clean_addr;
4890 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4891 pd_entry_t *pde = (pd_entry_t *) l1pt;
4892 pt_entry_t *pte;
4893 vsize_t size;
4894 uint32_t auxctl;
4895
4896 xscale_minidata_clean_addr = va;
4897
4898 /* Round it to page size. */
4899 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4900
4901 for (; size != 0;
4902 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4903 #ifndef ARM32_NEW_VM_LAYOUT
4904 pte = (pt_entry_t *)
4905 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4906 #else
4907 pte = (pt_entry_t *) kernel_pt_lookup(
4908 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4909 #endif
4910 if (pte == NULL)
4911 panic("xscale_setup_minidata: can't find L2 table for "
4912 "VA 0x%08lx", va);
4913 #ifndef ARM32_NEW_VM_LAYOUT
4914 pte[(va >> PGSHIFT) & 0x3ff] =
4915 #else
4916 pte[l2pte_index(va)] =
4917 #endif
4918 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4919 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4920 }
4921
4922 /*
4923 * Configure the mini-data cache for write-back with
4924 * read/write-allocate.
4925 *
4926 * NOTE: In order to reconfigure the mini-data cache, we must
4927 * make sure it contains no valid data! In order to do that,
4928 * we must issue a global data cache invalidate command!
4929 *
4930 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4931 * THIS IS VERY IMPORTANT!
4932 */
4933
4934 /* Invalidate data and mini-data. */
4935 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
4936 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
4937 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4938 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
4939 }
4940
4941 /*
4942 * Change the PTEs for the specified kernel mappings such that they
4943 * will use the mini data cache instead of the main data cache.
4944 */
4945 void
4946 pmap_uarea(vaddr_t va)
4947 {
4948 struct l2_bucket *l2b;
4949 pt_entry_t *ptep, *sptep, pte;
4950 vaddr_t next_bucket, eva;
4951
4952 #if (ARM_NMMUS > 1)
4953 if (xscale_use_minidata == 0)
4954 return;
4955 #endif
4956
4957 eva = va + USPACE;
4958
4959 while (va < eva) {
4960 next_bucket = L2_NEXT_BUCKET(va);
4961 if (next_bucket > eva)
4962 next_bucket = eva;
4963
4964 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4965 KDASSERT(l2b != NULL);
4966
4967 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4968
4969 while (va < next_bucket) {
4970 pte = *ptep;
4971 if (!l2pte_minidata(pte)) {
4972 cpu_dcache_wbinv_range(va, PAGE_SIZE);
4973 cpu_tlb_flushD_SE(va);
4974 *ptep = pte & ~L2_B;
4975 }
4976 ptep++;
4977 va += PAGE_SIZE;
4978 }
4979 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4980 }
4981 cpu_cpwait();
4982 }
4983 #endif /* ARM_MMU_XSCALE == 1 */
4984
4985 /*
4986 * return the PA of the current L1 table, for use when handling a crash dump
4987 */
4988 uint32_t pmap_kernel_L1_addr()
4989 {
4990 return pmap_kernel()->pm_l1->l1_physaddr;
4991 }
4992
4993 #if defined(DDB)
4994 /*
4995 * A couple of ddb-callable functions for dumping pmaps
4996 */
4997 void pmap_dump_all(void);
4998 void pmap_dump(pmap_t);
4999
5000 void
5001 pmap_dump_all(void)
5002 {
5003 pmap_t pm;
5004
5005 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
5006 if (pm == pmap_kernel())
5007 continue;
5008 pmap_dump(pm);
5009 printf("\n");
5010 }
5011 }
5012
5013 static pt_entry_t ncptes[64];
5014 static void pmap_dump_ncpg(pmap_t);
5015
5016 void
5017 pmap_dump(pmap_t pm)
5018 {
5019 struct l2_dtable *l2;
5020 struct l2_bucket *l2b;
5021 pt_entry_t *ptep, pte;
5022 vaddr_t l2_va, l2b_va, va;
5023 int i, j, k, occ, rows = 0;
5024
5025 if (pm == pmap_kernel())
5026 printf("pmap_kernel (%p): ", pm);
5027 else
5028 printf("user pmap (%p): ", pm);
5029
5030 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
5031
5032 l2_va = 0;
5033 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
5034 l2 = pm->pm_l2[i];
5035
5036 if (l2 == NULL || l2->l2_occupancy == 0)
5037 continue;
5038
5039 l2b_va = l2_va;
5040 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
5041 l2b = &l2->l2_bucket[j];
5042
5043 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
5044 continue;
5045
5046 ptep = l2b->l2b_kva;
5047
5048 for (k = 0; k < 256 && ptep[k] == 0; k++)
5049 ;
5050
5051 k &= ~63;
5052 occ = l2b->l2b_occupancy;
5053 va = l2b_va + (k * 4096);
5054 for (; k < 256; k++, va += 0x1000) {
5055 char ch = ' ';
5056 if ((k % 64) == 0) {
5057 if ((rows % 8) == 0) {
5058 printf(
5059 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
5060 }
5061 printf("%08lx: ", va);
5062 }
5063
5064 ncptes[k & 63] = 0;
5065 pte = ptep[k];
5066 if (pte == 0) {
5067 ch = '.';
5068 } else {
5069 occ--;
5070 switch (pte & 0x0c) {
5071 case 0x00:
5072 ch = 'D'; /* No cache No buff */
5073 break;
5074 case 0x04:
5075 ch = 'B'; /* No cache buff */
5076 break;
5077 case 0x08:
5078 if (pte & 0x40)
5079 ch = 'm';
5080 else
5081 ch = 'C'; /* Cache No buff */
5082 break;
5083 case 0x0c:
5084 ch = 'F'; /* Cache Buff */
5085 break;
5086 }
5087
5088 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
5089 ch += 0x20;
5090
5091 if ((pte & 0xc) == 0)
5092 ncptes[k & 63] = pte;
5093 }
5094
5095 if ((k % 64) == 63) {
5096 rows++;
5097 printf("%c\n", ch);
5098 pmap_dump_ncpg(pm);
5099 if (occ == 0)
5100 break;
5101 } else
5102 printf("%c", ch);
5103 }
5104 }
5105 }
5106 }
5107
5108 static void
5109 pmap_dump_ncpg(pmap_t pm)
5110 {
5111 struct vm_page *pg;
5112 struct pv_entry *pv;
5113 int i;
5114
5115 for (i = 0; i < 63; i++) {
5116 if (ncptes[i] == 0)
5117 continue;
5118
5119 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
5120 if (pg == NULL)
5121 continue;
5122
5123 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
5124 VM_PAGE_TO_PHYS(pg),
5125 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
5126 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
5127
5128 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
5129 printf(" %c va 0x%08lx, flags 0x%x\n",
5130 (pm == pv->pv_pmap) ? '*' : ' ',
5131 pv->pv_va, pv->pv_flags);
5132 }
5133 }
5134 }
5135 #endif
5136