Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.182
      1 /*	$NetBSD: pmap.c,v 1.182 2008/07/16 00:19:57 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/user.h>
    202 #include <sys/pool.h>
    203 #include <sys/cdefs.h>
    204 #include <sys/cpu.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <machine/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/arm32/katelib.h>
    213 
    214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.182 2008/07/16 00:19:57 matt Exp $");
    215 
    216 #ifdef PMAP_DEBUG
    217 
    218 /* XXX need to get rid of all refs to this */
    219 int pmap_debug_level = 0;
    220 
    221 /*
    222  * for switching to potentially finer grained debugging
    223  */
    224 #define	PDB_FOLLOW	0x0001
    225 #define	PDB_INIT	0x0002
    226 #define	PDB_ENTER	0x0004
    227 #define	PDB_REMOVE	0x0008
    228 #define	PDB_CREATE	0x0010
    229 #define	PDB_PTPAGE	0x0020
    230 #define	PDB_GROWKERN	0x0040
    231 #define	PDB_BITS	0x0080
    232 #define	PDB_COLLECT	0x0100
    233 #define	PDB_PROTECT	0x0200
    234 #define	PDB_MAP_L1	0x0400
    235 #define	PDB_BOOTSTRAP	0x1000
    236 #define	PDB_PARANOIA	0x2000
    237 #define	PDB_WIRING	0x4000
    238 #define	PDB_PVDUMP	0x8000
    239 #define	PDB_VAC		0x10000
    240 #define	PDB_KENTER	0x20000
    241 #define	PDB_KREMOVE	0x40000
    242 #define	PDB_EXEC	0x80000
    243 
    244 int debugmap = 1;
    245 int pmapdebug = 0;
    246 #define	NPDEBUG(_lev_,_stat_) \
    247 	if (pmapdebug & (_lev_)) \
    248         	((_stat_))
    249 
    250 #else	/* PMAP_DEBUG */
    251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    252 #endif	/* PMAP_DEBUG */
    253 
    254 /*
    255  * pmap_kernel() points here
    256  */
    257 struct pmap     kernel_pmap_store;
    258 
    259 /*
    260  * Which pmap is currently 'live' in the cache
    261  *
    262  * XXXSCW: Fix for SMP ...
    263  */
    264 static pmap_t pmap_recent_user;
    265 
    266 /*
    267  * Pointer to last active lwp, or NULL if it exited.
    268  */
    269 struct lwp *pmap_previous_active_lwp;
    270 
    271 /*
    272  * Pool and cache that pmap structures are allocated from.
    273  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    274  * in pmap_create().
    275  */
    276 static struct pool_cache pmap_cache;
    277 static LIST_HEAD(, pmap) pmap_pmaps;
    278 
    279 /*
    280  * Pool of PV structures
    281  */
    282 static struct pool pmap_pv_pool;
    283 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    284 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    285 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    286 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    287 };
    288 
    289 /*
    290  * Pool and cache of l2_dtable structures.
    291  * We use a cache to avoid clearing the structures when they're
    292  * allocated. (196 bytes)
    293  */
    294 static struct pool_cache pmap_l2dtable_cache;
    295 static vaddr_t pmap_kernel_l2dtable_kva;
    296 
    297 /*
    298  * Pool and cache of L2 page descriptors.
    299  * We use a cache to avoid clearing the descriptor table
    300  * when they're allocated. (1KB)
    301  */
    302 static struct pool_cache pmap_l2ptp_cache;
    303 static vaddr_t pmap_kernel_l2ptp_kva;
    304 static paddr_t pmap_kernel_l2ptp_phys;
    305 
    306 #ifdef PMAPCOUNT
    307 #define	PMAP_EVCNT_INITIALIZER(name) \
    308 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    309 
    310 #ifdef PMAP_CACHE_VIPT
    311 static struct evcnt pmap_ev_vac_color_new =
    312    PMAP_EVCNT_INITIALIZER("new page color");
    313 static struct evcnt pmap_ev_vac_color_reuse =
    314    PMAP_EVCNT_INITIALIZER("ok first page color");
    315 static struct evcnt pmap_ev_vac_color_ok =
    316    PMAP_EVCNT_INITIALIZER("ok page color");
    317 static struct evcnt pmap_ev_vac_color_blind =
    318    PMAP_EVCNT_INITIALIZER("blind page color");
    319 static struct evcnt pmap_ev_vac_color_change =
    320    PMAP_EVCNT_INITIALIZER("change page color");
    321 static struct evcnt pmap_ev_vac_color_erase =
    322    PMAP_EVCNT_INITIALIZER("erase page color");
    323 static struct evcnt pmap_ev_vac_color_none =
    324    PMAP_EVCNT_INITIALIZER("no page color");
    325 static struct evcnt pmap_ev_vac_color_restore =
    326    PMAP_EVCNT_INITIALIZER("restore page color");
    327 
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    336 #endif
    337 
    338 static struct evcnt pmap_ev_mappings =
    339    PMAP_EVCNT_INITIALIZER("pages mapped");
    340 static struct evcnt pmap_ev_unmappings =
    341    PMAP_EVCNT_INITIALIZER("pages unmapped");
    342 static struct evcnt pmap_ev_remappings =
    343    PMAP_EVCNT_INITIALIZER("pages remapped");
    344 
    345 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    346 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    347 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    348 
    349 static struct evcnt pmap_ev_kernel_mappings =
    350    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    351 static struct evcnt pmap_ev_kernel_unmappings =
    352    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    353 static struct evcnt pmap_ev_kernel_remappings =
    354    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    355 
    356 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    359 
    360 static struct evcnt pmap_ev_kenter_mappings =
    361    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    362 static struct evcnt pmap_ev_kenter_unmappings =
    363    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    364 static struct evcnt pmap_ev_kenter_remappings =
    365    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    366 static struct evcnt pmap_ev_pt_mappings =
    367    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    368 
    369 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    373 
    374 #ifdef PMAP_CACHE_VIPT
    375 static struct evcnt pmap_ev_exec_mappings =
    376    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    377 static struct evcnt pmap_ev_exec_cached =
    378    PMAP_EVCNT_INITIALIZER("exec pages cached");
    379 
    380 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    381 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    382 
    383 static struct evcnt pmap_ev_exec_synced =
    384    PMAP_EVCNT_INITIALIZER("exec pages synced");
    385 static struct evcnt pmap_ev_exec_synced_map =
    386    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    387 static struct evcnt pmap_ev_exec_synced_unmap =
    388    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    389 static struct evcnt pmap_ev_exec_synced_remap =
    390    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    391 static struct evcnt pmap_ev_exec_synced_clearbit =
    392    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    393 static struct evcnt pmap_ev_exec_synced_kremove =
    394    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    395 
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    402 
    403 static struct evcnt pmap_ev_exec_discarded_unmap =
    404    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    405 static struct evcnt pmap_ev_exec_discarded_zero =
    406    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    407 static struct evcnt pmap_ev_exec_discarded_copy =
    408    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    409 static struct evcnt pmap_ev_exec_discarded_page_protect =
    410    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    411 static struct evcnt pmap_ev_exec_discarded_clearbit =
    412    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    413 static struct evcnt pmap_ev_exec_discarded_kremove =
    414    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    415 
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    422 #endif /* PMAP_CACHE_VIPT */
    423 
    424 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    425 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    426 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    427 
    428 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    429 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    430 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    431 
    432 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    433 #else
    434 #define	PMAPCOUNT(x)	((void)0)
    435 #endif
    436 
    437 /*
    438  * pmap copy/zero page, and mem(5) hook point
    439  */
    440 static pt_entry_t *csrc_pte, *cdst_pte;
    441 static vaddr_t csrcp, cdstp;
    442 vaddr_t memhook;
    443 extern void *msgbufaddr;
    444 
    445 /*
    446  * Flag to indicate if pmap_init() has done its thing
    447  */
    448 bool pmap_initialized;
    449 
    450 /*
    451  * Misc. locking data structures
    452  */
    453 
    454 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    455 static struct lock pmap_main_lock;
    456 
    457 #define PMAP_MAP_TO_HEAD_LOCK() \
    458      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    459 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    460      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    461 #define PMAP_HEAD_TO_MAP_LOCK() \
    462      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    463 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    464      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    465 #else
    466 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    467 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    468 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    469 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    470 #endif
    471 
    472 #define	pmap_acquire_pmap_lock(pm)			\
    473 	do {						\
    474 		if ((pm) != pmap_kernel())		\
    475 			mutex_enter(&(pm)->pm_lock);	\
    476 	} while (/*CONSTCOND*/0)
    477 
    478 #define	pmap_release_pmap_lock(pm)			\
    479 	do {						\
    480 		if ((pm) != pmap_kernel())		\
    481 			mutex_exit(&(pm)->pm_lock);	\
    482 	} while (/*CONSTCOND*/0)
    483 
    484 
    485 /*
    486  * Metadata for L1 translation tables.
    487  */
    488 struct l1_ttable {
    489 	/* Entry on the L1 Table list */
    490 	SLIST_ENTRY(l1_ttable) l1_link;
    491 
    492 	/* Entry on the L1 Least Recently Used list */
    493 	TAILQ_ENTRY(l1_ttable) l1_lru;
    494 
    495 	/* Track how many domains are allocated from this L1 */
    496 	volatile u_int l1_domain_use_count;
    497 
    498 	/*
    499 	 * A free-list of domain numbers for this L1.
    500 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    501 	 * is slow on ARM.
    502 	 */
    503 	u_int8_t l1_domain_first;
    504 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    505 
    506 	/* Physical address of this L1 page table */
    507 	paddr_t l1_physaddr;
    508 
    509 	/* KVA of this L1 page table */
    510 	pd_entry_t *l1_kva;
    511 };
    512 
    513 /*
    514  * Convert a virtual address into its L1 table index. That is, the
    515  * index used to locate the L2 descriptor table pointer in an L1 table.
    516  * This is basically used to index l1->l1_kva[].
    517  *
    518  * Each L2 descriptor table represents 1MB of VA space.
    519  */
    520 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    521 
    522 /*
    523  * L1 Page Tables are tracked using a Least Recently Used list.
    524  *  - New L1s are allocated from the HEAD.
    525  *  - Freed L1s are added to the TAIl.
    526  *  - Recently accessed L1s (where an 'access' is some change to one of
    527  *    the userland pmaps which owns this L1) are moved to the TAIL.
    528  */
    529 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    530 static struct simplelock l1_lru_lock;
    531 
    532 /*
    533  * A list of all L1 tables
    534  */
    535 static SLIST_HEAD(, l1_ttable) l1_list;
    536 
    537 /*
    538  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    539  *
    540  * This is normally 16MB worth L2 page descriptors for any given pmap.
    541  * Reference counts are maintained for L2 descriptors so they can be
    542  * freed when empty.
    543  */
    544 struct l2_dtable {
    545 	/* The number of L2 page descriptors allocated to this l2_dtable */
    546 	u_int l2_occupancy;
    547 
    548 	/* List of L2 page descriptors */
    549 	struct l2_bucket {
    550 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    551 		paddr_t l2b_phys;	/* Physical address of same */
    552 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    553 		u_short l2b_occupancy;	/* How many active descriptors */
    554 	} l2_bucket[L2_BUCKET_SIZE];
    555 };
    556 
    557 /*
    558  * Given an L1 table index, calculate the corresponding l2_dtable index
    559  * and bucket index within the l2_dtable.
    560  */
    561 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    562 				 (L2_SIZE - 1))
    563 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    564 
    565 /*
    566  * Given a virtual address, this macro returns the
    567  * virtual address required to drop into the next L2 bucket.
    568  */
    569 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    570 
    571 /*
    572  * L2 allocation.
    573  */
    574 #define	pmap_alloc_l2_dtable()		\
    575 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    576 #define	pmap_free_l2_dtable(l2)		\
    577 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    578 #define pmap_alloc_l2_ptp(pap)		\
    579 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    580 	    PR_NOWAIT, (pap)))
    581 
    582 /*
    583  * We try to map the page tables write-through, if possible.  However, not
    584  * all CPUs have a write-through cache mode, so on those we have to sync
    585  * the cache when we frob page tables.
    586  *
    587  * We try to evaluate this at compile time, if possible.  However, it's
    588  * not always possible to do that, hence this run-time var.
    589  */
    590 int	pmap_needs_pte_sync;
    591 
    592 /*
    593  * Real definition of pv_entry.
    594  */
    595 struct pv_entry {
    596 	struct pv_entry *pv_next;       /* next pv_entry */
    597 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    598 	vaddr_t		pv_va;          /* virtual address for mapping */
    599 	u_int		pv_flags;       /* flags */
    600 };
    601 
    602 /*
    603  * Macro to determine if a mapping might be resident in the
    604  * instruction cache and/or TLB
    605  */
    606 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    607 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    608 
    609 /*
    610  * Macro to determine if a mapping might be resident in the
    611  * data cache and/or TLB
    612  */
    613 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    614 
    615 /*
    616  * Local prototypes
    617  */
    618 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    619 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    620 			    pt_entry_t **);
    621 static bool		pmap_is_current(pmap_t);
    622 static bool		pmap_is_cached(pmap_t);
    623 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    624 			    pmap_t, vaddr_t, u_int);
    625 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    626 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    627 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    628 			    u_int, u_int);
    629 
    630 static void		pmap_pinit(pmap_t);
    631 static int		pmap_pmap_ctor(void *, void *, int);
    632 
    633 static void		pmap_alloc_l1(pmap_t);
    634 static void		pmap_free_l1(pmap_t);
    635 static void		pmap_use_l1(pmap_t);
    636 
    637 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    638 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    639 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    640 static int		pmap_l2ptp_ctor(void *, void *, int);
    641 static int		pmap_l2dtable_ctor(void *, void *, int);
    642 
    643 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    644 #ifdef PMAP_CACHE_VIVT
    645 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    646 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    647 #endif
    648 
    649 static void		pmap_clearbit(struct vm_page *, u_int);
    650 #ifdef PMAP_CACHE_VIVT
    651 static int		pmap_clean_page(struct pv_entry *, bool);
    652 #endif
    653 #ifdef PMAP_CACHE_VIPT
    654 static void		pmap_syncicache_page(struct vm_page *);
    655 static void		pmap_flush_page(struct vm_page *);
    656 #endif
    657 static void		pmap_page_remove(struct vm_page *);
    658 
    659 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    660 static vaddr_t		kernel_pt_lookup(paddr_t);
    661 
    662 
    663 /*
    664  * External function prototypes
    665  */
    666 extern void bzero_page(vaddr_t);
    667 extern void bcopy_page(vaddr_t, vaddr_t);
    668 
    669 /*
    670  * Misc variables
    671  */
    672 vaddr_t virtual_avail;
    673 vaddr_t virtual_end;
    674 vaddr_t pmap_curmaxkvaddr;
    675 
    676 vaddr_t avail_start;
    677 vaddr_t avail_end;
    678 
    679 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    680 pv_addr_t kernelpages;
    681 pv_addr_t kernel_l1pt;
    682 pv_addr_t systempage;
    683 
    684 /* Function to set the debug level of the pmap code */
    685 
    686 #ifdef PMAP_DEBUG
    687 void
    688 pmap_debug(int level)
    689 {
    690 	pmap_debug_level = level;
    691 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    692 }
    693 #endif	/* PMAP_DEBUG */
    694 
    695 /*
    696  * A bunch of routines to conditionally flush the caches/TLB depending
    697  * on whether the specified pmap actually needs to be flushed at any
    698  * given time.
    699  */
    700 static inline void
    701 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    702 {
    703 
    704 	if (pm->pm_cstate.cs_tlb_id)
    705 		cpu_tlb_flushID_SE(va);
    706 }
    707 
    708 static inline void
    709 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    710 {
    711 
    712 	if (pm->pm_cstate.cs_tlb_d)
    713 		cpu_tlb_flushD_SE(va);
    714 }
    715 
    716 static inline void
    717 pmap_tlb_flushID(pmap_t pm)
    718 {
    719 
    720 	if (pm->pm_cstate.cs_tlb_id) {
    721 		cpu_tlb_flushID();
    722 		pm->pm_cstate.cs_tlb = 0;
    723 	}
    724 }
    725 
    726 static inline void
    727 pmap_tlb_flushD(pmap_t pm)
    728 {
    729 
    730 	if (pm->pm_cstate.cs_tlb_d) {
    731 		cpu_tlb_flushD();
    732 		pm->pm_cstate.cs_tlb_d = 0;
    733 	}
    734 }
    735 
    736 #ifdef PMAP_CACHE_VIVT
    737 static inline void
    738 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    739 {
    740 	if (pm->pm_cstate.cs_cache_id) {
    741 		cpu_idcache_wbinv_range(va, len);
    742 	}
    743 }
    744 
    745 static inline void
    746 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    747     bool do_inv, bool rd_only)
    748 {
    749 
    750 	if (pm->pm_cstate.cs_cache_d) {
    751 		if (do_inv) {
    752 			if (rd_only)
    753 				cpu_dcache_inv_range(va, len);
    754 			else
    755 				cpu_dcache_wbinv_range(va, len);
    756 		} else
    757 		if (!rd_only)
    758 			cpu_dcache_wb_range(va, len);
    759 	}
    760 }
    761 
    762 static inline void
    763 pmap_idcache_wbinv_all(pmap_t pm)
    764 {
    765 	if (pm->pm_cstate.cs_cache_id) {
    766 		cpu_idcache_wbinv_all();
    767 		pm->pm_cstate.cs_cache = 0;
    768 	}
    769 }
    770 
    771 static inline void
    772 pmap_dcache_wbinv_all(pmap_t pm)
    773 {
    774 	if (pm->pm_cstate.cs_cache_d) {
    775 		cpu_dcache_wbinv_all();
    776 		pm->pm_cstate.cs_cache_d = 0;
    777 	}
    778 }
    779 #endif /* PMAP_CACHE_VIVT */
    780 
    781 static inline bool
    782 pmap_is_current(pmap_t pm)
    783 {
    784 
    785 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    786 		return true;
    787 
    788 	return false;
    789 }
    790 
    791 static inline bool
    792 pmap_is_cached(pmap_t pm)
    793 {
    794 
    795 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    796 	    pmap_recent_user == pm)
    797 		return (true);
    798 
    799 	return false;
    800 }
    801 
    802 /*
    803  * PTE_SYNC_CURRENT:
    804  *
    805  *     Make sure the pte is written out to RAM.
    806  *     We need to do this for one of two cases:
    807  *       - We're dealing with the kernel pmap
    808  *       - There is no pmap active in the cache/tlb.
    809  *       - The specified pmap is 'active' in the cache/tlb.
    810  */
    811 #ifdef PMAP_INCLUDE_PTE_SYNC
    812 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    813 do {					\
    814 	if (PMAP_NEEDS_PTE_SYNC && 	\
    815 	    pmap_is_cached(pm))		\
    816 		PTE_SYNC(ptep);		\
    817 } while (/*CONSTCOND*/0)
    818 #else
    819 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    820 #endif
    821 
    822 /*
    823  * main pv_entry manipulation functions:
    824  *   pmap_enter_pv: enter a mapping onto a vm_page list
    825  *   pmap_remove_pv: remove a mappiing from a vm_page list
    826  *
    827  * NOTE: pmap_enter_pv expects to lock the pvh itself
    828  *       pmap_remove_pv expects te caller to lock the pvh before calling
    829  */
    830 
    831 /*
    832  * pmap_enter_pv: enter a mapping onto a vm_page lst
    833  *
    834  * => caller should hold the proper lock on pmap_main_lock
    835  * => caller should have pmap locked
    836  * => we will gain the lock on the vm_page and allocate the new pv_entry
    837  * => caller should adjust ptp's wire_count before calling
    838  * => caller should not adjust pmap's wire_count
    839  */
    840 static void
    841 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    842     vaddr_t va, u_int flags)
    843 {
    844 	struct pv_entry **pvp;
    845 
    846 	NPDEBUG(PDB_PVDUMP,
    847 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    848 
    849 	pve->pv_pmap = pm;
    850 	pve->pv_va = va;
    851 	pve->pv_flags = flags;
    852 
    853 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    854 	pvp = &pg->mdpage.pvh_list;
    855 #ifdef PMAP_CACHE_VIPT
    856 	/*
    857 	 * Insert unmapped entries at the head of the pv list.
    858 	 */
    859 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    860 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    861 			pvp = &(*pvp)->pv_next;
    862 	}
    863 #endif
    864 	pve->pv_next = *pvp;			/* add to ... */
    865 	*pvp = pve;				/* ... locked list */
    866 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD | PVF_KENTRY);
    867 	if (pm == pmap_kernel()) {
    868 		PMAPCOUNT(kernel_mappings);
    869 		if (flags & PVF_WRITE)
    870 			pg->mdpage.krw_mappings++;
    871 		else
    872 			pg->mdpage.kro_mappings++;
    873 	} else
    874 	if (flags & PVF_WRITE)
    875 		pg->mdpage.urw_mappings++;
    876 	else
    877 		pg->mdpage.uro_mappings++;
    878 
    879 #ifdef PMAP_CACHE_VIPT
    880 	/*
    881 	 * If this is an exec mapping and its the first exec mapping
    882 	 * for this page, make sure to sync the I-cache.
    883 	 */
    884 	if (PV_IS_EXEC_P(flags)) {
    885 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    886 			pmap_syncicache_page(pg);
    887 			PMAPCOUNT(exec_synced_map);
    888 		}
    889 		PMAPCOUNT(exec_mappings);
    890 	}
    891 #endif
    892 
    893 	PMAPCOUNT(mappings);
    894 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    895 
    896 	if (pve->pv_flags & PVF_WIRED)
    897 		++pm->pm_stats.wired_count;
    898 }
    899 
    900 /*
    901  *
    902  * pmap_find_pv: Find a pv entry
    903  *
    904  * => caller should hold lock on vm_page
    905  */
    906 static inline struct pv_entry *
    907 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    908 {
    909 	struct pv_entry *pv;
    910 
    911 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
    912 		if (pm == pv->pv_pmap && va == pv->pv_va)
    913 			break;
    914 	}
    915 
    916 	return (pv);
    917 }
    918 
    919 /*
    920  * pmap_remove_pv: try to remove a mapping from a pv_list
    921  *
    922  * => caller should hold proper lock on pmap_main_lock
    923  * => pmap should be locked
    924  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    925  * => caller should adjust ptp's wire_count and free PTP if needed
    926  * => caller should NOT adjust pmap's wire_count
    927  * => we return the removed pve
    928  */
    929 static struct pv_entry *
    930 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    931 {
    932 	struct pv_entry *pve, **prevptr;
    933 
    934 	NPDEBUG(PDB_PVDUMP,
    935 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    936 
    937 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    938 	pve = *prevptr;
    939 
    940 	while (pve) {
    941 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    942 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    943 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    944 			if (pve->pv_flags & PVF_WIRED) {
    945 				if (skip_wired)
    946 					return (NULL);
    947 				--pm->pm_stats.wired_count;
    948 			}
    949 #ifdef PMAP_CACHE_VIPT
    950 			/*
    951 			 * If we are removing the first pv entry and its
    952 			 * a KENTRY, if the next one isn't also a KENTER,
    953 			 * clear KENTRY from the page attributes.
    954 			 */
    955 			if (pg->mdpage.pvh_list == pve
    956 			    && (pve->pv_flags & PVF_KENTRY)
    957 			    && (pve->pv_next == NULL
    958 				|| (pve->pv_next->pv_flags & PVF_KENTRY) == 0))
    959 				pg->mdpage.pvh_attrs &= ~PVF_KENTRY;
    960 #endif
    961 			*prevptr = pve->pv_next;		/* remove it! */
    962 			if (pm == pmap_kernel()) {
    963 				PMAPCOUNT(kernel_unmappings);
    964 				if (pve->pv_flags & PVF_WRITE)
    965 					pg->mdpage.krw_mappings--;
    966 				else
    967 					pg->mdpage.kro_mappings--;
    968 			} else
    969 			if (pve->pv_flags & PVF_WRITE)
    970 				pg->mdpage.urw_mappings--;
    971 			else
    972 				pg->mdpage.uro_mappings--;
    973 
    974 			PMAPCOUNT(unmappings);
    975 #ifdef PMAP_CACHE_VIPT
    976 			if (!(pve->pv_flags & PVF_WRITE))
    977 				break;
    978 			/*
    979 			 * If this page has had an exec mapping, then if
    980 			 * this was the last mapping, discard the contents,
    981 			 * otherwise sync the i-cache for this page.
    982 			 */
    983 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    984 				if (pg->mdpage.pvh_list == NULL) {
    985 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
    986 					PMAPCOUNT(exec_discarded_unmap);
    987 				} else {
    988 					pmap_syncicache_page(pg);
    989 					PMAPCOUNT(exec_synced_unmap);
    990 				}
    991 			}
    992 #endif /* PMAP_CACHE_VIPT */
    993 			break;
    994 		}
    995 		prevptr = &pve->pv_next;		/* previous pointer */
    996 		pve = pve->pv_next;			/* advance */
    997 	}
    998 
    999 #ifdef PMAP_CACHE_VIPT
   1000 	/*
   1001 	 * If this was a writeable page and there are no more writeable
   1002 	 * mappings (ignoring KMPAGE), clear the WRITE flag.
   1003 	 */
   1004 	if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1005 	    && pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
   1006 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1007 #endif /* PMAP_CACHE_VIPT */
   1008 
   1009 	return(pve);				/* return removed pve */
   1010 }
   1011 
   1012 /*
   1013  *
   1014  * pmap_modify_pv: Update pv flags
   1015  *
   1016  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1017  * => caller should NOT adjust pmap's wire_count
   1018  * => caller must call pmap_vac_me_harder() if writable status of a page
   1019  *    may have changed.
   1020  * => we return the old flags
   1021  *
   1022  * Modify a physical-virtual mapping in the pv table
   1023  */
   1024 static u_int
   1025 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
   1026     u_int clr_mask, u_int set_mask)
   1027 {
   1028 	struct pv_entry *npv;
   1029 	u_int flags, oflags;
   1030 
   1031 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1032 		return (0);
   1033 
   1034 	NPDEBUG(PDB_PVDUMP,
   1035 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1036 
   1037 	/*
   1038 	 * There is at least one VA mapping this page.
   1039 	 */
   1040 
   1041 	if (clr_mask & (PVF_REF | PVF_MOD))
   1042 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1043 
   1044 	oflags = npv->pv_flags;
   1045 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1046 
   1047 	if ((flags ^ oflags) & PVF_WIRED) {
   1048 		if (flags & PVF_WIRED)
   1049 			++pm->pm_stats.wired_count;
   1050 		else
   1051 			--pm->pm_stats.wired_count;
   1052 	}
   1053 
   1054 	if ((flags ^ oflags) & PVF_WRITE) {
   1055 		if (pm == pmap_kernel()) {
   1056 			if (flags & PVF_WRITE) {
   1057 				pg->mdpage.krw_mappings++;
   1058 				pg->mdpage.kro_mappings--;
   1059 			} else {
   1060 				pg->mdpage.kro_mappings++;
   1061 				pg->mdpage.krw_mappings--;
   1062 			}
   1063 		} else
   1064 		if (flags & PVF_WRITE) {
   1065 			pg->mdpage.urw_mappings++;
   1066 			pg->mdpage.uro_mappings--;
   1067 		} else {
   1068 			pg->mdpage.uro_mappings++;
   1069 			pg->mdpage.urw_mappings--;
   1070 		}
   1071 	}
   1072 #ifdef PMAP_CACHE_VIPT
   1073 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1074 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1075 	/*
   1076 	 * We have two cases here: the first is from enter_pv (new exec
   1077 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1078 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1079 	 * to do what pmap_remove_pv would do.
   1080 	 */
   1081 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1082 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1083 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1084 		pmap_syncicache_page(pg);
   1085 		PMAPCOUNT(exec_synced_remap);
   1086 	}
   1087 #endif
   1088 
   1089 	PMAPCOUNT(remappings);
   1090 
   1091 	return (oflags);
   1092 }
   1093 
   1094 /*
   1095  * Allocate an L1 translation table for the specified pmap.
   1096  * This is called at pmap creation time.
   1097  */
   1098 static void
   1099 pmap_alloc_l1(pmap_t pm)
   1100 {
   1101 	struct l1_ttable *l1;
   1102 	u_int8_t domain;
   1103 
   1104 	/*
   1105 	 * Remove the L1 at the head of the LRU list
   1106 	 */
   1107 	simple_lock(&l1_lru_lock);
   1108 	l1 = TAILQ_FIRST(&l1_lru_list);
   1109 	KDASSERT(l1 != NULL);
   1110 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1111 
   1112 	/*
   1113 	 * Pick the first available domain number, and update
   1114 	 * the link to the next number.
   1115 	 */
   1116 	domain = l1->l1_domain_first;
   1117 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1118 
   1119 	/*
   1120 	 * If there are still free domain numbers in this L1,
   1121 	 * put it back on the TAIL of the LRU list.
   1122 	 */
   1123 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1124 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1125 
   1126 	simple_unlock(&l1_lru_lock);
   1127 
   1128 	/*
   1129 	 * Fix up the relevant bits in the pmap structure
   1130 	 */
   1131 	pm->pm_l1 = l1;
   1132 	pm->pm_domain = domain;
   1133 }
   1134 
   1135 /*
   1136  * Free an L1 translation table.
   1137  * This is called at pmap destruction time.
   1138  */
   1139 static void
   1140 pmap_free_l1(pmap_t pm)
   1141 {
   1142 	struct l1_ttable *l1 = pm->pm_l1;
   1143 
   1144 	simple_lock(&l1_lru_lock);
   1145 
   1146 	/*
   1147 	 * If this L1 is currently on the LRU list, remove it.
   1148 	 */
   1149 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1150 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1151 
   1152 	/*
   1153 	 * Free up the domain number which was allocated to the pmap
   1154 	 */
   1155 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1156 	l1->l1_domain_first = pm->pm_domain;
   1157 	l1->l1_domain_use_count--;
   1158 
   1159 	/*
   1160 	 * The L1 now must have at least 1 free domain, so add
   1161 	 * it back to the LRU list. If the use count is zero,
   1162 	 * put it at the head of the list, otherwise it goes
   1163 	 * to the tail.
   1164 	 */
   1165 	if (l1->l1_domain_use_count == 0)
   1166 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1167 	else
   1168 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1169 
   1170 	simple_unlock(&l1_lru_lock);
   1171 }
   1172 
   1173 static inline void
   1174 pmap_use_l1(pmap_t pm)
   1175 {
   1176 	struct l1_ttable *l1;
   1177 
   1178 	/*
   1179 	 * Do nothing if we're in interrupt context.
   1180 	 * Access to an L1 by the kernel pmap must not affect
   1181 	 * the LRU list.
   1182 	 */
   1183 	if (cpu_intr_p() || pm == pmap_kernel())
   1184 		return;
   1185 
   1186 	l1 = pm->pm_l1;
   1187 
   1188 	/*
   1189 	 * If the L1 is not currently on the LRU list, just return
   1190 	 */
   1191 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1192 		return;
   1193 
   1194 	simple_lock(&l1_lru_lock);
   1195 
   1196 	/*
   1197 	 * Check the use count again, now that we've acquired the lock
   1198 	 */
   1199 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1200 		simple_unlock(&l1_lru_lock);
   1201 		return;
   1202 	}
   1203 
   1204 	/*
   1205 	 * Move the L1 to the back of the LRU list
   1206 	 */
   1207 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1208 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1209 
   1210 	simple_unlock(&l1_lru_lock);
   1211 }
   1212 
   1213 /*
   1214  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1215  *
   1216  * Free an L2 descriptor table.
   1217  */
   1218 static inline void
   1219 #ifndef PMAP_INCLUDE_PTE_SYNC
   1220 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1221 #else
   1222 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1223 #endif
   1224 {
   1225 #ifdef PMAP_INCLUDE_PTE_SYNC
   1226 #ifdef PMAP_CACHE_VIVT
   1227 	/*
   1228 	 * Note: With a write-back cache, we may need to sync this
   1229 	 * L2 table before re-using it.
   1230 	 * This is because it may have belonged to a non-current
   1231 	 * pmap, in which case the cache syncs would have been
   1232 	 * skipped for the pages that were being unmapped. If the
   1233 	 * L2 table were then to be immediately re-allocated to
   1234 	 * the *current* pmap, it may well contain stale mappings
   1235 	 * which have not yet been cleared by a cache write-back
   1236 	 * and so would still be visible to the mmu.
   1237 	 */
   1238 	if (need_sync)
   1239 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1240 #endif /* PMAP_CACHE_VIVT */
   1241 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1242 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1243 }
   1244 
   1245 /*
   1246  * Returns a pointer to the L2 bucket associated with the specified pmap
   1247  * and VA, or NULL if no L2 bucket exists for the address.
   1248  */
   1249 static inline struct l2_bucket *
   1250 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1251 {
   1252 	struct l2_dtable *l2;
   1253 	struct l2_bucket *l2b;
   1254 	u_short l1idx;
   1255 
   1256 	l1idx = L1_IDX(va);
   1257 
   1258 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1259 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1260 		return (NULL);
   1261 
   1262 	return (l2b);
   1263 }
   1264 
   1265 /*
   1266  * Returns a pointer to the L2 bucket associated with the specified pmap
   1267  * and VA.
   1268  *
   1269  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1270  * bucket/page table in place.
   1271  *
   1272  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1273  * increment the bucket occupancy counter appropriately *before*
   1274  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1275  * the bucket/page in the meantime.
   1276  */
   1277 static struct l2_bucket *
   1278 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1279 {
   1280 	struct l2_dtable *l2;
   1281 	struct l2_bucket *l2b;
   1282 	u_short l1idx;
   1283 
   1284 	l1idx = L1_IDX(va);
   1285 
   1286 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1287 		/*
   1288 		 * No mapping at this address, as there is
   1289 		 * no entry in the L1 table.
   1290 		 * Need to allocate a new l2_dtable.
   1291 		 */
   1292 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1293 			return (NULL);
   1294 
   1295 		/*
   1296 		 * Link it into the parent pmap
   1297 		 */
   1298 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1299 	}
   1300 
   1301 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1302 
   1303 	/*
   1304 	 * Fetch pointer to the L2 page table associated with the address.
   1305 	 */
   1306 	if (l2b->l2b_kva == NULL) {
   1307 		pt_entry_t *ptep;
   1308 
   1309 		/*
   1310 		 * No L2 page table has been allocated. Chances are, this
   1311 		 * is because we just allocated the l2_dtable, above.
   1312 		 */
   1313 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1314 			/*
   1315 			 * Oops, no more L2 page tables available at this
   1316 			 * time. We may need to deallocate the l2_dtable
   1317 			 * if we allocated a new one above.
   1318 			 */
   1319 			if (l2->l2_occupancy == 0) {
   1320 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1321 				pmap_free_l2_dtable(l2);
   1322 			}
   1323 			return (NULL);
   1324 		}
   1325 
   1326 		l2->l2_occupancy++;
   1327 		l2b->l2b_kva = ptep;
   1328 		l2b->l2b_l1idx = l1idx;
   1329 	}
   1330 
   1331 	return (l2b);
   1332 }
   1333 
   1334 /*
   1335  * One or more mappings in the specified L2 descriptor table have just been
   1336  * invalidated.
   1337  *
   1338  * Garbage collect the metadata and descriptor table itself if necessary.
   1339  *
   1340  * The pmap lock must be acquired when this is called (not necessary
   1341  * for the kernel pmap).
   1342  */
   1343 static void
   1344 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1345 {
   1346 	struct l2_dtable *l2;
   1347 	pd_entry_t *pl1pd, l1pd;
   1348 	pt_entry_t *ptep;
   1349 	u_short l1idx;
   1350 
   1351 	KDASSERT(count <= l2b->l2b_occupancy);
   1352 
   1353 	/*
   1354 	 * Update the bucket's reference count according to how many
   1355 	 * PTEs the caller has just invalidated.
   1356 	 */
   1357 	l2b->l2b_occupancy -= count;
   1358 
   1359 	/*
   1360 	 * Note:
   1361 	 *
   1362 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1363 	 * as that would require checking all Level 1 page tables and
   1364 	 * removing any references to the Level 2 page table. See also the
   1365 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1366 	 *
   1367 	 * We make do with just invalidating the mapping in the L2 table.
   1368 	 *
   1369 	 * This isn't really a big deal in practice and, in fact, leads
   1370 	 * to a performance win over time as we don't need to continually
   1371 	 * alloc/free.
   1372 	 */
   1373 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1374 		return;
   1375 
   1376 	/*
   1377 	 * There are no more valid mappings in this level 2 page table.
   1378 	 * Go ahead and NULL-out the pointer in the bucket, then
   1379 	 * free the page table.
   1380 	 */
   1381 	l1idx = l2b->l2b_l1idx;
   1382 	ptep = l2b->l2b_kva;
   1383 	l2b->l2b_kva = NULL;
   1384 
   1385 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1386 
   1387 	/*
   1388 	 * If the L1 slot matches the pmap's domain
   1389 	 * number, then invalidate it.
   1390 	 */
   1391 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1392 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1393 		*pl1pd = 0;
   1394 		PTE_SYNC(pl1pd);
   1395 	}
   1396 
   1397 	/*
   1398 	 * Release the L2 descriptor table back to the pool cache.
   1399 	 */
   1400 #ifndef PMAP_INCLUDE_PTE_SYNC
   1401 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1402 #else
   1403 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1404 #endif
   1405 
   1406 	/*
   1407 	 * Update the reference count in the associated l2_dtable
   1408 	 */
   1409 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1410 	if (--l2->l2_occupancy > 0)
   1411 		return;
   1412 
   1413 	/*
   1414 	 * There are no more valid mappings in any of the Level 1
   1415 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1416 	 * the pointer in the parent pmap and free the l2_dtable.
   1417 	 */
   1418 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1419 	pmap_free_l2_dtable(l2);
   1420 }
   1421 
   1422 /*
   1423  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1424  * structures.
   1425  */
   1426 static int
   1427 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1428 {
   1429 #ifndef PMAP_INCLUDE_PTE_SYNC
   1430 	struct l2_bucket *l2b;
   1431 	pt_entry_t *ptep, pte;
   1432 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1433 
   1434 	/*
   1435 	 * The mappings for these page tables were initially made using
   1436 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1437 	 * mode will not be right for page table mappings. To avoid
   1438 	 * polluting the pmap_kenter_pa() code with a special case for
   1439 	 * page tables, we simply fix up the cache-mode here if it's not
   1440 	 * correct.
   1441 	 */
   1442 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1443 	KDASSERT(l2b != NULL);
   1444 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1445 	pte = *ptep;
   1446 
   1447 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1448 		/*
   1449 		 * Page tables must have the cache-mode set to Write-Thru.
   1450 		 */
   1451 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1452 		PTE_SYNC(ptep);
   1453 		cpu_tlb_flushD_SE(va);
   1454 		cpu_cpwait();
   1455 	}
   1456 #endif
   1457 
   1458 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1459 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1460 	return (0);
   1461 }
   1462 
   1463 static int
   1464 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1465 {
   1466 
   1467 	memset(v, 0, sizeof(struct l2_dtable));
   1468 	return (0);
   1469 }
   1470 
   1471 static int
   1472 pmap_pmap_ctor(void *arg, void *v, int flags)
   1473 {
   1474 
   1475 	memset(v, 0, sizeof(struct pmap));
   1476 	return (0);
   1477 }
   1478 
   1479 static void
   1480 pmap_pinit(pmap_t pm)
   1481 {
   1482 	struct l2_bucket *l2b;
   1483 
   1484 	if (vector_page < KERNEL_BASE) {
   1485 		/*
   1486 		 * Map the vector page.
   1487 		 */
   1488 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1489 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1490 		pmap_update(pm);
   1491 
   1492 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1493 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1494 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1495 		    L1_C_DOM(pm->pm_domain);
   1496 	} else
   1497 		pm->pm_pl1vec = NULL;
   1498 }
   1499 
   1500 #ifdef PMAP_CACHE_VIVT
   1501 /*
   1502  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1503  * there is more than one mapping and at least one of them is writable.
   1504  * Since we purge the cache on every context switch, we only need to check for
   1505  * other mappings within the same pmap, or kernel_pmap.
   1506  * This function is also called when a page is unmapped, to possibly reenable
   1507  * caching on any remaining mappings.
   1508  *
   1509  * The code implements the following logic, where:
   1510  *
   1511  * KW = # of kernel read/write pages
   1512  * KR = # of kernel read only pages
   1513  * UW = # of user read/write pages
   1514  * UR = # of user read only pages
   1515  *
   1516  * KC = kernel mapping is cacheable
   1517  * UC = user mapping is cacheable
   1518  *
   1519  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1520  *             +---------------------------------------------
   1521  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1522  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1523  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1524  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1525  */
   1526 
   1527 static const int pmap_vac_flags[4][4] = {
   1528 	{-1,		0,		0,		PVF_KNC},
   1529 	{0,		0,		PVF_NC,		PVF_NC},
   1530 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1531 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1532 };
   1533 
   1534 static inline int
   1535 pmap_get_vac_flags(const struct vm_page *pg)
   1536 {
   1537 	int kidx, uidx;
   1538 
   1539 	kidx = 0;
   1540 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1541 		kidx |= 1;
   1542 	if (pg->mdpage.krw_mappings)
   1543 		kidx |= 2;
   1544 
   1545 	uidx = 0;
   1546 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1547 		uidx |= 1;
   1548 	if (pg->mdpage.urw_mappings)
   1549 		uidx |= 2;
   1550 
   1551 	return (pmap_vac_flags[uidx][kidx]);
   1552 }
   1553 
   1554 static inline void
   1555 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1556 {
   1557 	int nattr;
   1558 
   1559 	nattr = pmap_get_vac_flags(pg);
   1560 
   1561 	if (nattr < 0) {
   1562 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1563 		return;
   1564 	}
   1565 
   1566 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1567 		return;
   1568 
   1569 	if (pm == pmap_kernel())
   1570 		pmap_vac_me_kpmap(pg, pm, va);
   1571 	else
   1572 		pmap_vac_me_user(pg, pm, va);
   1573 
   1574 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1575 }
   1576 
   1577 static void
   1578 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1579 {
   1580 	u_int u_cacheable, u_entries;
   1581 	struct pv_entry *pv;
   1582 	pmap_t last_pmap = pm;
   1583 
   1584 	/*
   1585 	 * Pass one, see if there are both kernel and user pmaps for
   1586 	 * this page.  Calculate whether there are user-writable or
   1587 	 * kernel-writable pages.
   1588 	 */
   1589 	u_cacheable = 0;
   1590 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1591 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1592 			u_cacheable++;
   1593 	}
   1594 
   1595 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1596 
   1597 	/*
   1598 	 * We know we have just been updating a kernel entry, so if
   1599 	 * all user pages are already cacheable, then there is nothing
   1600 	 * further to do.
   1601 	 */
   1602 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1603 		return;
   1604 
   1605 	if (u_entries) {
   1606 		/*
   1607 		 * Scan over the list again, for each entry, if it
   1608 		 * might not be set correctly, call pmap_vac_me_user
   1609 		 * to recalculate the settings.
   1610 		 */
   1611 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1612 			/*
   1613 			 * We know kernel mappings will get set
   1614 			 * correctly in other calls.  We also know
   1615 			 * that if the pmap is the same as last_pmap
   1616 			 * then we've just handled this entry.
   1617 			 */
   1618 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1619 				continue;
   1620 
   1621 			/*
   1622 			 * If there are kernel entries and this page
   1623 			 * is writable but non-cacheable, then we can
   1624 			 * skip this entry also.
   1625 			 */
   1626 			if (pg->mdpage.k_mappings &&
   1627 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1628 			    (PVF_NC | PVF_WRITE))
   1629 				continue;
   1630 
   1631 			/*
   1632 			 * Similarly if there are no kernel-writable
   1633 			 * entries and the page is already
   1634 			 * read-only/cacheable.
   1635 			 */
   1636 			if (pg->mdpage.krw_mappings == 0 &&
   1637 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1638 				continue;
   1639 
   1640 			/*
   1641 			 * For some of the remaining cases, we know
   1642 			 * that we must recalculate, but for others we
   1643 			 * can't tell if they are correct or not, so
   1644 			 * we recalculate anyway.
   1645 			 */
   1646 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1647 		}
   1648 
   1649 		if (pg->mdpage.k_mappings == 0)
   1650 			return;
   1651 	}
   1652 
   1653 	pmap_vac_me_user(pg, pm, va);
   1654 }
   1655 
   1656 static void
   1657 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1658 {
   1659 	pmap_t kpmap = pmap_kernel();
   1660 	struct pv_entry *pv, *npv;
   1661 	struct l2_bucket *l2b;
   1662 	pt_entry_t *ptep, pte;
   1663 	u_int entries = 0;
   1664 	u_int writable = 0;
   1665 	u_int cacheable_entries = 0;
   1666 	u_int kern_cacheable = 0;
   1667 	u_int other_writable = 0;
   1668 
   1669 	/*
   1670 	 * Count mappings and writable mappings in this pmap.
   1671 	 * Include kernel mappings as part of our own.
   1672 	 * Keep a pointer to the first one.
   1673 	 */
   1674 	for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1675 		/* Count mappings in the same pmap */
   1676 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1677 			if (entries++ == 0)
   1678 				npv = pv;
   1679 
   1680 			/* Cacheable mappings */
   1681 			if ((pv->pv_flags & PVF_NC) == 0) {
   1682 				cacheable_entries++;
   1683 				if (kpmap == pv->pv_pmap)
   1684 					kern_cacheable++;
   1685 			}
   1686 
   1687 			/* Writable mappings */
   1688 			if (pv->pv_flags & PVF_WRITE)
   1689 				++writable;
   1690 		} else
   1691 		if (pv->pv_flags & PVF_WRITE)
   1692 			other_writable = 1;
   1693 	}
   1694 
   1695 	/*
   1696 	 * Enable or disable caching as necessary.
   1697 	 * Note: the first entry might be part of the kernel pmap,
   1698 	 * so we can't assume this is indicative of the state of the
   1699 	 * other (maybe non-kpmap) entries.
   1700 	 */
   1701 	if ((entries > 1 && writable) ||
   1702 	    (entries > 0 && pm == kpmap && other_writable)) {
   1703 		if (cacheable_entries == 0)
   1704 			return;
   1705 
   1706 		for (pv = npv; pv; pv = pv->pv_next) {
   1707 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1708 			    (pv->pv_flags & PVF_NC))
   1709 				continue;
   1710 
   1711 			pv->pv_flags |= PVF_NC;
   1712 
   1713 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1714 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1715 			pte = *ptep & ~L2_S_CACHE_MASK;
   1716 
   1717 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1718 			    l2pte_valid(pte)) {
   1719 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1720 #ifdef PMAP_CACHE_VIVT
   1721 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1722 					    pv->pv_va, PAGE_SIZE);
   1723 #endif
   1724 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1725 					    pv->pv_va);
   1726 				} else
   1727 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1728 #ifdef PMAP_CACHE_VIVT
   1729 					pmap_dcache_wb_range(pv->pv_pmap,
   1730 					    pv->pv_va, PAGE_SIZE, true,
   1731 					    (pv->pv_flags & PVF_WRITE) == 0);
   1732 #endif
   1733 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1734 					    pv->pv_va);
   1735 				}
   1736 			}
   1737 
   1738 			*ptep = pte;
   1739 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1740 		}
   1741 		cpu_cpwait();
   1742 	} else
   1743 	if (entries > cacheable_entries) {
   1744 		/*
   1745 		 * Turn cacheing back on for some pages.  If it is a kernel
   1746 		 * page, only do so if there are no other writable pages.
   1747 		 */
   1748 		for (pv = npv; pv; pv = pv->pv_next) {
   1749 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1750 			    (kpmap != pv->pv_pmap || other_writable)))
   1751 				continue;
   1752 
   1753 			pv->pv_flags &= ~PVF_NC;
   1754 
   1755 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1756 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1757 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1758 
   1759 			if (l2pte_valid(pte)) {
   1760 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1761 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1762 					    pv->pv_va);
   1763 				} else
   1764 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1765 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1766 					    pv->pv_va);
   1767 				}
   1768 			}
   1769 
   1770 			*ptep = pte;
   1771 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1772 		}
   1773 	}
   1774 }
   1775 #endif
   1776 
   1777 #ifdef PMAP_CACHE_VIPT
   1778 /*
   1779  * For virtually indexed / physically tagged caches, what we have to worry
   1780  * about is illegal cache aliases.  To prevent this, we must ensure that
   1781  * virtual addresses that map the physical page use the same bits for those
   1782  * bits masked by "arm_cache_prefer_mask" (bits 12+).  If there is a conflict,
   1783  * all mappings of the page must be non-cached.
   1784  */
   1785 #if 0
   1786 static inline vaddr_t
   1787 pmap_check_sets(paddr_t pa)
   1788 {
   1789 	extern int arm_dcache_l2_nsets;
   1790 	int set, way;
   1791 	vaddr_t mask = 0;
   1792 	int v;
   1793 	pa |= 1;
   1794 	for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
   1795 		for (way = 0; way < 4; way++) {
   1796 			v = (way << 30) | (set << 5);
   1797 			asm("mcr	p15, 3, %0, c15, c2, 0" :: "r"(v));
   1798 			asm("mrc	p15, 3, %0, c15, c0, 0" : "=r"(v));
   1799 
   1800 			if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
   1801 				mask |= 1 << (set >> 7);
   1802 			}
   1803 		}
   1804 	}
   1805 	return mask;
   1806 }
   1807 #endif
   1808 static void
   1809 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1810 {
   1811 	struct pv_entry *pv;
   1812 	vaddr_t tst_mask;
   1813 	bool bad_alias;
   1814 	struct l2_bucket *l2b;
   1815 	pt_entry_t *ptep, pte, opte;
   1816 
   1817 	/* do we need to do anything? */
   1818 	if (arm_cache_prefer_mask == 0)
   1819 		return;
   1820 
   1821 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1822 	    pg, pm, va));
   1823 
   1824 #define popc4(x) \
   1825 	(((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
   1826 #if 0
   1827 	tst_mask = pmap_check_sets(pg->phys_addr);
   1828 	KASSERT(popc4(tst_mask) < 2);
   1829 #endif
   1830 
   1831 	KASSERT(!va || pm);
   1832 
   1833 	/* Already a conflict? */
   1834 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1835 		/* just an add, things are already non-cached */
   1836 		bad_alias = false;
   1837 		if (va) {
   1838 			PMAPCOUNT(vac_color_none);
   1839 			bad_alias = true;
   1840 			KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1841 			goto fixup;
   1842 		}
   1843 		pv = pg->mdpage.pvh_list;
   1844 		/* the list can't be empty because it would be cachable */
   1845 		if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
   1846 			tst_mask = pg->mdpage.pvh_attrs;
   1847 		} else {
   1848 			KASSERT(pv);
   1849 			tst_mask = pv->pv_va;
   1850 			pv = pv->pv_next;
   1851 		}
   1852 		/*
   1853 		 * Only check for a bad alias if we have writable mappings.
   1854 		 */
   1855 		if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings > 0) {
   1856 			tst_mask &= arm_cache_prefer_mask;
   1857 			for (; pv && !bad_alias; pv = pv->pv_next) {
   1858 				/* if there's a bad alias, stop checking. */
   1859 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1860 					bad_alias = true;
   1861 			}
   1862 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1863 		}
   1864 		/* If no conflicting colors, set everything back to cached */
   1865 		if (!bad_alias) {
   1866 			PMAPCOUNT(vac_color_restore);
   1867 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1868 			pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
   1869 		} else {
   1870 			KASSERT(pg->mdpage.pvh_list != NULL);
   1871 			KASSERT(pg->mdpage.pvh_list->pv_next != NULL);
   1872 		}
   1873 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1874 	} else if (!va) {
   1875 		KASSERT(pmap_is_page_colored_p(pg));
   1876 		pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) | arm_cache_prefer_mask;
   1877 		if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1878 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1879 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1880 		return;
   1881 	} else if (!pmap_is_page_colored_p(pg)) {
   1882 		/* not colored so we just use its color */
   1883 		PMAPCOUNT(vac_color_new);
   1884 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1885 		pg->mdpage.pvh_attrs |= PVF_COLORED
   1886 		    | (va & arm_cache_prefer_mask);
   1887 		if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings > 0)
   1888 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1889 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1890 		return;
   1891 	} else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1892 		bad_alias = false;
   1893 		if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings > 0) {
   1894 			/*
   1895 			 * We now have writeable mappings and more than one
   1896 			 * readonly mapping, verify the colors don't clash
   1897 			 * and mark the page as writeable.
   1898 			 */
   1899 			if (pg->mdpage.uro_mappings + pg->mdpage.kro_mappings > 1
   1900 			    && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0) {
   1901 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1902 				for (pv = pg->mdpage.pvh_list;
   1903 				     pv && !bad_alias;
   1904 				     pv = pv->pv_next) {
   1905 					/* if there's a bad alias, stop checking. */
   1906 					if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1907 						bad_alias = true;
   1908 				}
   1909 			}
   1910 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1911 		}
   1912 		/* If no conflicting colors, set everything back to cached */
   1913 		if (!bad_alias) {
   1914 			if (pg->mdpage.pvh_list)
   1915 				PMAPCOUNT(vac_color_reuse);
   1916 			else
   1917 				PMAPCOUNT(vac_color_ok);
   1918 			/* matching color, just return */
   1919 			KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1920 			return;
   1921 		}
   1922 		KASSERT(pg->mdpage.pvh_list != NULL);
   1923 		KASSERT(pg->mdpage.pvh_list->pv_next != NULL);
   1924 
   1925 		/* color conflict.  evict from cache. */
   1926 
   1927 		pmap_flush_page(pg);
   1928 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1929 		pg->mdpage.pvh_attrs |= PVF_NC;
   1930 	} else if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0
   1931 		   && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   1932 		KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
   1933 		/*
   1934 		 * If all the mappings are read-only, don't do anything.
   1935 		 */
   1936 		PMAPCOUNT(vac_color_blind);
   1937 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1938 		return;
   1939 	} else {
   1940 		if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings > 0)
   1941 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1942 
   1943 		/* color conflict.  evict from cache. */
   1944 		pmap_flush_page(pg);
   1945 
   1946 		/* the list can't be empty because this was a enter/modify */
   1947 		pv = pg->mdpage.pvh_list;
   1948 		KASSERT(pv);
   1949 
   1950 		/*
   1951 		 * If there's only one mapped page, change color to the
   1952 		 * page's new color and return.
   1953 		 */
   1954 		if (pv->pv_next == NULL) {
   1955 			PMAPCOUNT(vac_color_change);
   1956 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1957 			pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   1958 			KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1959 			return;
   1960 		}
   1961 		bad_alias = true;
   1962 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1963 		pg->mdpage.pvh_attrs |= PVF_NC;
   1964 		PMAPCOUNT(vac_color_erase);
   1965 	}
   1966 
   1967   fixup:
   1968 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1969 
   1970 	/*
   1971 	 * Turn cacheing on/off for all pages.
   1972 	 */
   1973 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1974 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1975 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1976 		opte = *ptep;
   1977 		pte = opte & ~L2_S_CACHE_MASK;
   1978 		if (bad_alias) {
   1979 			pv->pv_flags |= PVF_NC;
   1980 		} else {
   1981 			pv->pv_flags &= ~PVF_NC;
   1982 			pte |= pte_l2_s_cache_mode;
   1983 		}
   1984 		if (opte == pte)	/* only update is there's a change */
   1985 			continue;
   1986 
   1987 		if (l2pte_valid(pte)) {
   1988 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   1989 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   1990 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   1991 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   1992 			}
   1993 		}
   1994 
   1995 		*ptep = pte;
   1996 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1997 	}
   1998 }
   1999 #endif	/* PMAP_CACHE_VIPT */
   2000 
   2001 
   2002 /*
   2003  * Modify pte bits for all ptes corresponding to the given physical address.
   2004  * We use `maskbits' rather than `clearbits' because we're always passing
   2005  * constants and the latter would require an extra inversion at run-time.
   2006  */
   2007 static void
   2008 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2009 {
   2010 	struct l2_bucket *l2b;
   2011 	struct pv_entry *pv;
   2012 	pt_entry_t *ptep, npte, opte;
   2013 	pmap_t pm;
   2014 	vaddr_t va;
   2015 	u_int oflags;
   2016 #ifdef PMAP_CACHE_VIPT
   2017 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   2018 	bool need_syncicache = false;
   2019 	bool did_syncicache = false;
   2020 #endif
   2021 
   2022 	NPDEBUG(PDB_BITS,
   2023 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2024 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2025 
   2026 	PMAP_HEAD_TO_MAP_LOCK();
   2027 	simple_lock(&pg->mdpage.pvh_slock);
   2028 
   2029 #ifdef PMAP_CACHE_VIPT
   2030 	/*
   2031 	 * If we might want to sync the I-cache and we've modified it,
   2032 	 * then we know we definitely need to sync or discard it.
   2033 	 */
   2034 	if (want_syncicache)
   2035 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   2036 #endif
   2037 	/*
   2038 	 * Clear saved attributes (modify, reference)
   2039 	 */
   2040 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2041 
   2042 	if (pg->mdpage.pvh_list == NULL) {
   2043 #ifdef PMAP_CACHE_VIPT
   2044 		if (need_syncicache) {
   2045 			/*
   2046 			 * No one has it mapped, so just discard it.  The next
   2047 			 * exec remapping will cause it to be synced.
   2048 			 */
   2049 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2050 			PMAPCOUNT(exec_discarded_clearbit);
   2051 		}
   2052 #endif
   2053 		simple_unlock(&pg->mdpage.pvh_slock);
   2054 		PMAP_HEAD_TO_MAP_UNLOCK();
   2055 		return;
   2056 	}
   2057 
   2058 	/*
   2059 	 * Loop over all current mappings setting/clearing as appropos
   2060 	 */
   2061 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2062 		va = pv->pv_va;
   2063 		pm = pv->pv_pmap;
   2064 		oflags = pv->pv_flags;
   2065 		pv->pv_flags &= ~maskbits;
   2066 
   2067 		pmap_acquire_pmap_lock(pm);
   2068 
   2069 		l2b = pmap_get_l2_bucket(pm, va);
   2070 		KDASSERT(l2b != NULL);
   2071 
   2072 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2073 		npte = opte = *ptep;
   2074 
   2075 		NPDEBUG(PDB_BITS,
   2076 		    printf(
   2077 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2078 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2079 
   2080 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2081 #ifdef PMAP_CACHE_VIVT
   2082 			if ((pv->pv_flags & PVF_NC)) {
   2083 				/*
   2084 				 * Entry is not cacheable:
   2085 				 *
   2086 				 * Don't turn caching on again if this is a
   2087 				 * modified emulation. This would be
   2088 				 * inconsitent with the settings created by
   2089 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2090 				 * to re-enable cacheing.
   2091 				 *
   2092 				 * There's no need to call pmap_vac_me_harder()
   2093 				 * here: all pages are losing their write
   2094 				 * permission.
   2095 				 */
   2096 				if (maskbits & PVF_WRITE) {
   2097 					npte |= pte_l2_s_cache_mode;
   2098 					pv->pv_flags &= ~PVF_NC;
   2099 				}
   2100 			} else
   2101 			if (opte & L2_S_PROT_W) {
   2102 				/*
   2103 				 * Entry is writable/cacheable: check if pmap
   2104 				 * is current if it is flush it, otherwise it
   2105 				 * won't be in the cache
   2106 				 */
   2107 				if (PV_BEEN_EXECD(oflags))
   2108 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2109 					    PAGE_SIZE);
   2110 				else
   2111 				if (PV_BEEN_REFD(oflags))
   2112 					pmap_dcache_wb_range(pm, pv->pv_va,
   2113 					    PAGE_SIZE,
   2114 					    (maskbits & PVF_REF) != 0, false);
   2115 			}
   2116 #endif
   2117 
   2118 			/* make the pte read only */
   2119 			npte &= ~L2_S_PROT_W;
   2120 
   2121 			if (maskbits & oflags & PVF_WRITE) {
   2122 				/*
   2123 				 * Keep alias accounting up to date
   2124 				 */
   2125 				if (pv->pv_pmap == pmap_kernel()) {
   2126 					pg->mdpage.krw_mappings--;
   2127 					pg->mdpage.kro_mappings++;
   2128 				} else {
   2129 					pg->mdpage.urw_mappings--;
   2130 					pg->mdpage.uro_mappings++;
   2131 				}
   2132 #ifdef PMAP_CACHE_VIPT
   2133 				if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2134 					pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2135 				if (want_syncicache)
   2136 					need_syncicache = true;
   2137 #endif
   2138 			}
   2139 		}
   2140 
   2141 		if (maskbits & PVF_REF) {
   2142 #ifdef PMAP_CACHE_VIVT
   2143 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2144 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2145 			    l2pte_valid(npte)) {
   2146 				/*
   2147 				 * Check npte here; we may have already
   2148 				 * done the wbinv above, and the validity
   2149 				 * of the PTE is the same for opte and
   2150 				 * npte.
   2151 				 */
   2152 				/* XXXJRT need idcache_inv_range */
   2153 				if (PV_BEEN_EXECD(oflags))
   2154 					pmap_idcache_wbinv_range(pm,
   2155 					    pv->pv_va, PAGE_SIZE);
   2156 				else
   2157 				if (PV_BEEN_REFD(oflags))
   2158 					pmap_dcache_wb_range(pm,
   2159 					    pv->pv_va, PAGE_SIZE,
   2160 					    true, true);
   2161 			}
   2162 #endif
   2163 
   2164 			/*
   2165 			 * Make the PTE invalid so that we will take a
   2166 			 * page fault the next time the mapping is
   2167 			 * referenced.
   2168 			 */
   2169 			npte &= ~L2_TYPE_MASK;
   2170 			npte |= L2_TYPE_INV;
   2171 		}
   2172 
   2173 		if (npte != opte) {
   2174 			*ptep = npte;
   2175 			PTE_SYNC(ptep);
   2176 			/* Flush the TLB entry if a current pmap. */
   2177 			if (PV_BEEN_EXECD(oflags))
   2178 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2179 			else
   2180 			if (PV_BEEN_REFD(oflags))
   2181 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2182 		}
   2183 
   2184 		pmap_release_pmap_lock(pm);
   2185 
   2186 		NPDEBUG(PDB_BITS,
   2187 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2188 		    pm, va, opte, npte));
   2189 	}
   2190 
   2191 #ifdef PMAP_CACHE_VIPT
   2192 	/*
   2193 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2194 	 */
   2195 	if (need_syncicache && !did_syncicache) {
   2196 		pmap_syncicache_page(pg);
   2197 		PMAPCOUNT(exec_synced_clearbit);
   2198 	}
   2199 #endif
   2200 
   2201 	simple_unlock(&pg->mdpage.pvh_slock);
   2202 	PMAP_HEAD_TO_MAP_UNLOCK();
   2203 }
   2204 
   2205 /*
   2206  * pmap_clean_page()
   2207  *
   2208  * This is a local function used to work out the best strategy to clean
   2209  * a single page referenced by its entry in the PV table. It's used by
   2210  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2211  *
   2212  * Its policy is effectively:
   2213  *  o If there are no mappings, we don't bother doing anything with the cache.
   2214  *  o If there is one mapping, we clean just that page.
   2215  *  o If there are multiple mappings, we clean the entire cache.
   2216  *
   2217  * So that some functions can be further optimised, it returns 0 if it didn't
   2218  * clean the entire cache, or 1 if it did.
   2219  *
   2220  * XXX One bug in this routine is that if the pv_entry has a single page
   2221  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2222  * just the 1 page. Since this should not occur in everyday use and if it does
   2223  * it will just result in not the most efficient clean for the page.
   2224  */
   2225 #ifdef PMAP_CACHE_VIVT
   2226 static int
   2227 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2228 {
   2229 	pmap_t pm, pm_to_clean = NULL;
   2230 	struct pv_entry *npv;
   2231 	u_int cache_needs_cleaning = 0;
   2232 	u_int flags = 0;
   2233 	vaddr_t page_to_clean = 0;
   2234 
   2235 	if (pv == NULL) {
   2236 		/* nothing mapped in so nothing to flush */
   2237 		return (0);
   2238 	}
   2239 
   2240 	/*
   2241 	 * Since we flush the cache each time we change to a different
   2242 	 * user vmspace, we only need to flush the page if it is in the
   2243 	 * current pmap.
   2244 	 */
   2245 	pm = curproc->p_vmspace->vm_map.pmap;
   2246 
   2247 	for (npv = pv; npv; npv = npv->pv_next) {
   2248 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2249 			flags |= npv->pv_flags;
   2250 			/*
   2251 			 * The page is mapped non-cacheable in
   2252 			 * this map.  No need to flush the cache.
   2253 			 */
   2254 			if (npv->pv_flags & PVF_NC) {
   2255 #ifdef DIAGNOSTIC
   2256 				if (cache_needs_cleaning)
   2257 					panic("pmap_clean_page: "
   2258 					    "cache inconsistency");
   2259 #endif
   2260 				break;
   2261 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2262 				continue;
   2263 			if (cache_needs_cleaning) {
   2264 				page_to_clean = 0;
   2265 				break;
   2266 			} else {
   2267 				page_to_clean = npv->pv_va;
   2268 				pm_to_clean = npv->pv_pmap;
   2269 			}
   2270 			cache_needs_cleaning = 1;
   2271 		}
   2272 	}
   2273 
   2274 	if (page_to_clean) {
   2275 		if (PV_BEEN_EXECD(flags))
   2276 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2277 			    PAGE_SIZE);
   2278 		else
   2279 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2280 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2281 	} else if (cache_needs_cleaning) {
   2282 		if (PV_BEEN_EXECD(flags))
   2283 			pmap_idcache_wbinv_all(pm);
   2284 		else
   2285 			pmap_dcache_wbinv_all(pm);
   2286 		return (1);
   2287 	}
   2288 	return (0);
   2289 }
   2290 #endif
   2291 
   2292 #ifdef PMAP_CACHE_VIPT
   2293 /*
   2294  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2295  * right cache alias to make sure we flush the right stuff.
   2296  */
   2297 void
   2298 pmap_syncicache_page(struct vm_page *pg)
   2299 {
   2300 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2301 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2302 
   2303 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2304 	    pg, pg->mdpage.pvh_attrs));
   2305 	/*
   2306 	 * No need to clean the page if it's non-cached.
   2307 	 */
   2308 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2309 		return;
   2310 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2311 
   2312 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2313 	/*
   2314 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2315 	 */
   2316 	*ptep = L2_S_PROTO |
   2317 	    VM_PAGE_TO_PHYS(pg)
   2318 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2319 	    | pte_l2_s_cache_mode;
   2320 	PTE_SYNC(ptep);
   2321 
   2322 	/*
   2323 	 * Flush it.
   2324 	 */
   2325 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2326 	/*
   2327 	 * Unmap the page.
   2328 	 */
   2329 	*ptep = 0;
   2330 	PTE_SYNC(ptep);
   2331 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2332 
   2333 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2334 	PMAPCOUNT(exec_synced);
   2335 }
   2336 
   2337 void
   2338 pmap_flush_page(struct vm_page *pg)
   2339 {
   2340 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2341 	const size_t pte_offset = va_offset >> PGSHIFT;
   2342 	pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2343 	const pt_entry_t oldpte = *ptep;
   2344 #if 0
   2345 	vaddr_t mask;
   2346 #endif
   2347 
   2348 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2349 #if 0
   2350 	mask = pmap_check_sets(pg->phys_addr);
   2351 	KASSERT(popc4(mask) < 2);
   2352 #endif
   2353 
   2354 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2355 	    pg, pg->mdpage.pvh_attrs));
   2356 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2357 	/*
   2358 	 * Set up a PTE with the right coloring to flush existing cache entries.
   2359 	 */
   2360 	*ptep = L2_S_PROTO
   2361 	    | VM_PAGE_TO_PHYS(pg)
   2362 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2363 	    | pte_l2_s_cache_mode;
   2364 	PTE_SYNC(ptep);
   2365 
   2366 	/*
   2367 	 * Flush it.
   2368 	 */
   2369 	cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   2370 
   2371 	/*
   2372 	 * Restore the page table entry since we might have interrupted
   2373 	 * pmap_zero_page or pmap_copy_page which was already using this pte.
   2374 	 */
   2375 	*ptep = oldpte;
   2376 	PTE_SYNC(ptep);
   2377 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2378 #if 0
   2379 	mask = pmap_check_sets(pg->phys_addr);
   2380 	KASSERT(mask == 0);
   2381 #endif
   2382 }
   2383 #endif /* PMAP_CACHE_VIPT */
   2384 
   2385 /*
   2386  * Routine:	pmap_page_remove
   2387  * Function:
   2388  *		Removes this physical page from
   2389  *		all physical maps in which it resides.
   2390  *		Reflects back modify bits to the pager.
   2391  */
   2392 static void
   2393 pmap_page_remove(struct vm_page *pg)
   2394 {
   2395 	struct l2_bucket *l2b;
   2396 	struct pv_entry *pv, *npv, **pvp;
   2397 	pmap_t pm, curpm;
   2398 	pt_entry_t *ptep, pte;
   2399 	bool flush;
   2400 	u_int flags;
   2401 
   2402 	NPDEBUG(PDB_FOLLOW,
   2403 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2404 	    VM_PAGE_TO_PHYS(pg)));
   2405 
   2406 	PMAP_HEAD_TO_MAP_LOCK();
   2407 	simple_lock(&pg->mdpage.pvh_slock);
   2408 
   2409 	pv = pg->mdpage.pvh_list;
   2410 	if (pv == NULL) {
   2411 #ifdef PMAP_CACHE_VIPT
   2412 		/*
   2413 		 * We *know* the page contents are about to be replaced.
   2414 		 * Discard the exec contents
   2415 		 */
   2416 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2417 			PMAPCOUNT(exec_discarded_page_protect);
   2418 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2419 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2420 #endif
   2421 		simple_unlock(&pg->mdpage.pvh_slock);
   2422 		PMAP_HEAD_TO_MAP_UNLOCK();
   2423 		return;
   2424 	}
   2425 #ifdef PMAP_CACHE_VIPT
   2426 	KASSERT(pmap_is_page_colored_p(pg));
   2427 #endif
   2428 
   2429 	/*
   2430 	 * Clear alias counts
   2431 	 */
   2432 #ifdef PMAP_CACHE_VIVT
   2433 	pg->mdpage.k_mappings = 0;
   2434 #endif
   2435 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2436 
   2437 	flush = false;
   2438 	flags = 0;
   2439 	curpm = curproc->p_vmspace->vm_map.pmap;
   2440 
   2441 #ifdef PMAP_CACHE_VIVT
   2442 	pmap_clean_page(pv, false);
   2443 #endif
   2444 
   2445 	pvp = &pg->mdpage.pvh_list;
   2446 	while (pv) {
   2447 		pm = pv->pv_pmap;
   2448 		npv = pv->pv_next;
   2449 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2450 			flush = true;
   2451 
   2452 		if (pm == pmap_kernel()) {
   2453 #ifdef PMAP_CACHE_VIPT
   2454 			/*
   2455 			 * If this was unmanaged mapping, it must be preserved.
   2456 			 * Move it back on the list and advance the end-of-list
   2457 			 * pointer.
   2458 			 */
   2459 			if (pv->pv_flags & PVF_KENTRY) {
   2460 				*pvp = pv;
   2461 				pvp = &pv->pv_next;
   2462 				pv = npv;
   2463 				continue;
   2464 			}
   2465 			if (pv->pv_flags & PVF_WRITE)
   2466 				pg->mdpage.krw_mappings--;
   2467 			else
   2468 				pg->mdpage.kro_mappings--;
   2469 #endif
   2470 			PMAPCOUNT(kernel_unmappings);
   2471 		}
   2472 		PMAPCOUNT(unmappings);
   2473 
   2474 		pmap_acquire_pmap_lock(pm);
   2475 
   2476 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2477 		KDASSERT(l2b != NULL);
   2478 
   2479 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2480 		pte = *ptep;
   2481 
   2482 		/*
   2483 		 * Update statistics
   2484 		 */
   2485 		--pm->pm_stats.resident_count;
   2486 
   2487 		/* Wired bit */
   2488 		if (pv->pv_flags & PVF_WIRED)
   2489 			--pm->pm_stats.wired_count;
   2490 
   2491 		flags |= pv->pv_flags;
   2492 
   2493 		/*
   2494 		 * Invalidate the PTEs.
   2495 		 */
   2496 		*ptep = 0;
   2497 		PTE_SYNC_CURRENT(pm, ptep);
   2498 		pmap_free_l2_bucket(pm, l2b, 1);
   2499 
   2500 		pool_put(&pmap_pv_pool, pv);
   2501 		pv = npv;
   2502 		/*
   2503 		 * if we reach the end of the list and there are still
   2504 		 * mappings, they might be able to be cached now.
   2505 		 */
   2506 		if (pv == NULL) {
   2507 			*pvp = NULL;
   2508 			if (pg->mdpage.pvh_list != NULL)
   2509 				pmap_vac_me_harder(pg, pm, 0);
   2510 		}
   2511 		pmap_release_pmap_lock(pm);
   2512 	}
   2513 #ifdef PMAP_CACHE_VIPT
   2514 	/*
   2515 	 * Its EXEC cache is now gone.
   2516 	 */
   2517 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2518 		PMAPCOUNT(exec_discarded_page_protect);
   2519 	pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2520 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2521 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2522 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2523 #endif
   2524 	simple_unlock(&pg->mdpage.pvh_slock);
   2525 	PMAP_HEAD_TO_MAP_UNLOCK();
   2526 
   2527 	if (flush) {
   2528 		/*
   2529 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2530 		 * would need a subsequent call to pmap_update() to ensure
   2531 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2532 		 * required to do that (see pmap(9)), so we can't modify
   2533 		 * the current pmap's state.
   2534 		 */
   2535 		if (PV_BEEN_EXECD(flags))
   2536 			cpu_tlb_flushID();
   2537 		else
   2538 			cpu_tlb_flushD();
   2539 	}
   2540 	cpu_cpwait();
   2541 }
   2542 
   2543 /*
   2544  * pmap_t pmap_create(void)
   2545  *
   2546  *      Create a new pmap structure from scratch.
   2547  */
   2548 pmap_t
   2549 pmap_create(void)
   2550 {
   2551 	pmap_t pm;
   2552 
   2553 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2554 
   2555 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2556 	pm->pm_stats.wired_count = 0;
   2557 	pm->pm_stats.resident_count = 1;
   2558 	pm->pm_cstate.cs_all = 0;
   2559 	pmap_alloc_l1(pm);
   2560 
   2561 	/*
   2562 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2563 	 * initialised to zero.
   2564 	 */
   2565 
   2566 	pmap_pinit(pm);
   2567 
   2568 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2569 
   2570 	return (pm);
   2571 }
   2572 
   2573 /*
   2574  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2575  *     int flags)
   2576  *
   2577  *      Insert the given physical page (p) at
   2578  *      the specified virtual address (v) in the
   2579  *      target physical map with the protection requested.
   2580  *
   2581  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2582  *      or lose information.  That is, this routine must actually
   2583  *      insert this page into the given map NOW.
   2584  */
   2585 int
   2586 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2587 {
   2588 	struct l2_bucket *l2b;
   2589 	struct vm_page *pg, *opg;
   2590 	struct pv_entry *pve;
   2591 	pt_entry_t *ptep, npte, opte;
   2592 	u_int nflags;
   2593 	u_int oflags;
   2594 
   2595 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2596 
   2597 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2598 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2599 
   2600 	/*
   2601 	 * Get a pointer to the page.  Later on in this function, we
   2602 	 * test for a managed page by checking pg != NULL.
   2603 	 */
   2604 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2605 
   2606 	nflags = 0;
   2607 	if (prot & VM_PROT_WRITE)
   2608 		nflags |= PVF_WRITE;
   2609 	if (prot & VM_PROT_EXECUTE)
   2610 		nflags |= PVF_EXEC;
   2611 	if (flags & PMAP_WIRED)
   2612 		nflags |= PVF_WIRED;
   2613 
   2614 	PMAP_MAP_TO_HEAD_LOCK();
   2615 	pmap_acquire_pmap_lock(pm);
   2616 
   2617 	/*
   2618 	 * Fetch the L2 bucket which maps this page, allocating one if
   2619 	 * necessary for user pmaps.
   2620 	 */
   2621 	if (pm == pmap_kernel())
   2622 		l2b = pmap_get_l2_bucket(pm, va);
   2623 	else
   2624 		l2b = pmap_alloc_l2_bucket(pm, va);
   2625 	if (l2b == NULL) {
   2626 		if (flags & PMAP_CANFAIL) {
   2627 			pmap_release_pmap_lock(pm);
   2628 			PMAP_MAP_TO_HEAD_UNLOCK();
   2629 			return (ENOMEM);
   2630 		}
   2631 		panic("pmap_enter: failed to allocate L2 bucket");
   2632 	}
   2633 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2634 	opte = *ptep;
   2635 	npte = pa;
   2636 	oflags = 0;
   2637 
   2638 	if (opte) {
   2639 		/*
   2640 		 * There is already a mapping at this address.
   2641 		 * If the physical address is different, lookup the
   2642 		 * vm_page.
   2643 		 */
   2644 		if (l2pte_pa(opte) != pa)
   2645 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2646 		else
   2647 			opg = pg;
   2648 	} else
   2649 		opg = NULL;
   2650 
   2651 	if (pg) {
   2652 		/*
   2653 		 * This is to be a managed mapping.
   2654 		 */
   2655 		if ((flags & VM_PROT_ALL) ||
   2656 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2657 			/*
   2658 			 * - The access type indicates that we don't need
   2659 			 *   to do referenced emulation.
   2660 			 * OR
   2661 			 * - The physical page has already been referenced
   2662 			 *   so no need to re-do referenced emulation here.
   2663 			 */
   2664 			npte |= L2_S_PROTO;
   2665 
   2666 			nflags |= PVF_REF;
   2667 
   2668 			if ((prot & VM_PROT_WRITE) != 0 &&
   2669 			    ((flags & VM_PROT_WRITE) != 0 ||
   2670 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2671 				/*
   2672 				 * This is a writable mapping, and the
   2673 				 * page's mod state indicates it has
   2674 				 * already been modified. Make it
   2675 				 * writable from the outset.
   2676 				 */
   2677 				npte |= L2_S_PROT_W;
   2678 				nflags |= PVF_MOD;
   2679 			}
   2680 		} else {
   2681 			/*
   2682 			 * Need to do page referenced emulation.
   2683 			 */
   2684 			npte |= L2_TYPE_INV;
   2685 		}
   2686 
   2687 		npte |= pte_l2_s_cache_mode;
   2688 
   2689 		if (pg == opg) {
   2690 			/*
   2691 			 * We're changing the attrs of an existing mapping.
   2692 			 */
   2693 			simple_lock(&pg->mdpage.pvh_slock);
   2694 			oflags = pmap_modify_pv(pg, pm, va,
   2695 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2696 			    PVF_MOD | PVF_REF, nflags);
   2697 			simple_unlock(&pg->mdpage.pvh_slock);
   2698 
   2699 #ifdef PMAP_CACHE_VIVT
   2700 			/*
   2701 			 * We may need to flush the cache if we're
   2702 			 * doing rw-ro...
   2703 			 */
   2704 			if (pm->pm_cstate.cs_cache_d &&
   2705 			    (oflags & PVF_NC) == 0 &&
   2706 			    (opte & L2_S_PROT_W) != 0 &&
   2707 			    (prot & VM_PROT_WRITE) == 0)
   2708 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2709 #endif
   2710 		} else {
   2711 			/*
   2712 			 * New mapping, or changing the backing page
   2713 			 * of an existing mapping.
   2714 			 */
   2715 			if (opg) {
   2716 				/*
   2717 				 * Replacing an existing mapping with a new one.
   2718 				 * It is part of our managed memory so we
   2719 				 * must remove it from the PV list
   2720 				 */
   2721 				simple_lock(&opg->mdpage.pvh_slock);
   2722 				pve = pmap_remove_pv(opg, pm, va, 0);
   2723 				pmap_vac_me_harder(opg, pm, 0);
   2724 				simple_unlock(&opg->mdpage.pvh_slock);
   2725 				oflags = pve->pv_flags;
   2726 
   2727 #ifdef PMAP_CACHE_VIVT
   2728 				/*
   2729 				 * If the old mapping was valid (ref/mod
   2730 				 * emulation creates 'invalid' mappings
   2731 				 * initially) then make sure to frob
   2732 				 * the cache.
   2733 				 */
   2734 				if ((oflags & PVF_NC) == 0 &&
   2735 				    l2pte_valid(opte)) {
   2736 					if (PV_BEEN_EXECD(oflags)) {
   2737 						pmap_idcache_wbinv_range(pm, va,
   2738 						    PAGE_SIZE);
   2739 					} else
   2740 					if (PV_BEEN_REFD(oflags)) {
   2741 						pmap_dcache_wb_range(pm, va,
   2742 						    PAGE_SIZE, true,
   2743 						    (oflags & PVF_WRITE) == 0);
   2744 					}
   2745 				}
   2746 #endif
   2747 			} else
   2748 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2749 				if ((flags & PMAP_CANFAIL) == 0)
   2750 					panic("pmap_enter: no pv entries");
   2751 
   2752 				if (pm != pmap_kernel())
   2753 					pmap_free_l2_bucket(pm, l2b, 0);
   2754 				pmap_release_pmap_lock(pm);
   2755 				PMAP_MAP_TO_HEAD_UNLOCK();
   2756 				NPDEBUG(PDB_ENTER,
   2757 				    printf("pmap_enter: ENOMEM\n"));
   2758 				return (ENOMEM);
   2759 			}
   2760 
   2761 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2762 		}
   2763 	} else {
   2764 		/*
   2765 		 * We're mapping an unmanaged page.
   2766 		 * These are always readable, and possibly writable, from
   2767 		 * the get go as we don't need to track ref/mod status.
   2768 		 */
   2769 		npte |= L2_S_PROTO;
   2770 		if (prot & VM_PROT_WRITE)
   2771 			npte |= L2_S_PROT_W;
   2772 
   2773 		/*
   2774 		 * Make sure the vector table is mapped cacheable
   2775 		 */
   2776 		if (pm != pmap_kernel() && va == vector_page)
   2777 			npte |= pte_l2_s_cache_mode;
   2778 
   2779 		if (opg) {
   2780 			/*
   2781 			 * Looks like there's an existing 'managed' mapping
   2782 			 * at this address.
   2783 			 */
   2784 			simple_lock(&opg->mdpage.pvh_slock);
   2785 			pve = pmap_remove_pv(opg, pm, va, 0);
   2786 			pmap_vac_me_harder(opg, pm, 0);
   2787 			simple_unlock(&opg->mdpage.pvh_slock);
   2788 			oflags = pve->pv_flags;
   2789 
   2790 #ifdef PMAP_CACHE_VIVT
   2791 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2792 				if (PV_BEEN_EXECD(oflags))
   2793 					pmap_idcache_wbinv_range(pm, va,
   2794 					    PAGE_SIZE);
   2795 				else
   2796 				if (PV_BEEN_REFD(oflags))
   2797 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2798 					    true, (oflags & PVF_WRITE) == 0);
   2799 			}
   2800 #endif
   2801 			pool_put(&pmap_pv_pool, pve);
   2802 		}
   2803 	}
   2804 
   2805 	/*
   2806 	 * Make sure userland mappings get the right permissions
   2807 	 */
   2808 	if (pm != pmap_kernel() && va != vector_page)
   2809 		npte |= L2_S_PROT_U;
   2810 
   2811 	/*
   2812 	 * Keep the stats up to date
   2813 	 */
   2814 	if (opte == 0) {
   2815 		l2b->l2b_occupancy++;
   2816 		pm->pm_stats.resident_count++;
   2817 	}
   2818 
   2819 	NPDEBUG(PDB_ENTER,
   2820 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2821 
   2822 	/*
   2823 	 * If this is just a wiring change, the two PTEs will be
   2824 	 * identical, so there's no need to update the page table.
   2825 	 */
   2826 	if (npte != opte) {
   2827 		bool is_cached = pmap_is_cached(pm);
   2828 
   2829 		*ptep = npte;
   2830 		if (is_cached) {
   2831 			/*
   2832 			 * We only need to frob the cache/tlb if this pmap
   2833 			 * is current
   2834 			 */
   2835 			PTE_SYNC(ptep);
   2836 			if (va != vector_page && l2pte_valid(npte)) {
   2837 				/*
   2838 				 * This mapping is likely to be accessed as
   2839 				 * soon as we return to userland. Fix up the
   2840 				 * L1 entry to avoid taking another
   2841 				 * page/domain fault.
   2842 				 */
   2843 				pd_entry_t *pl1pd, l1pd;
   2844 
   2845 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2846 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2847 				    L1_C_PROTO;
   2848 				if (*pl1pd != l1pd) {
   2849 					*pl1pd = l1pd;
   2850 					PTE_SYNC(pl1pd);
   2851 				}
   2852 			}
   2853 		}
   2854 
   2855 		if (PV_BEEN_EXECD(oflags))
   2856 			pmap_tlb_flushID_SE(pm, va);
   2857 		else
   2858 		if (PV_BEEN_REFD(oflags))
   2859 			pmap_tlb_flushD_SE(pm, va);
   2860 
   2861 		NPDEBUG(PDB_ENTER,
   2862 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2863 		    is_cached, pm->pm_cstate.cs_all));
   2864 
   2865 		if (pg != NULL) {
   2866 			simple_lock(&pg->mdpage.pvh_slock);
   2867 			pmap_vac_me_harder(pg, pm, va);
   2868 			simple_unlock(&pg->mdpage.pvh_slock);
   2869 		}
   2870 	}
   2871 
   2872 	pmap_release_pmap_lock(pm);
   2873 	PMAP_MAP_TO_HEAD_UNLOCK();
   2874 
   2875 	return (0);
   2876 }
   2877 
   2878 /*
   2879  * pmap_remove()
   2880  *
   2881  * pmap_remove is responsible for nuking a number of mappings for a range
   2882  * of virtual address space in the current pmap. To do this efficiently
   2883  * is interesting, because in a number of cases a wide virtual address
   2884  * range may be supplied that contains few actual mappings. So, the
   2885  * optimisations are:
   2886  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   2887  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2888  *     maybe do just a partial cache clean. This path of execution is
   2889  *     complicated by the fact that the cache must be flushed _before_
   2890  *     the PTE is nuked, being a VAC :-)
   2891  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   2892  *     all invalidations until pmap_update(), since pmap_remove_all() has
   2893  *     already flushed the cache.
   2894  *  4. Maybe later fast-case a single page, but I don't think this is
   2895  *     going to make _that_ much difference overall.
   2896  */
   2897 
   2898 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2899 
   2900 void
   2901 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   2902 {
   2903 	struct l2_bucket *l2b;
   2904 	vaddr_t next_bucket;
   2905 	pt_entry_t *ptep;
   2906 	u_int cleanlist_idx, total, cnt;
   2907 	struct {
   2908 		vaddr_t va;
   2909 		pt_entry_t *ptep;
   2910 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2911 	u_int mappings, is_exec, is_refd;
   2912 
   2913 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   2914 	    "eva=%08lx\n", pm, sva, eva));
   2915 
   2916 	/*
   2917 	 * we lock in the pmap => pv_head direction
   2918 	 */
   2919 	PMAP_MAP_TO_HEAD_LOCK();
   2920 	pmap_acquire_pmap_lock(pm);
   2921 
   2922 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   2923 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   2924 		if (pm->pm_cstate.cs_tlb == 0)
   2925 			pm->pm_remove_all = true;
   2926 	} else
   2927 		cleanlist_idx = 0;
   2928 
   2929 	total = 0;
   2930 
   2931 	while (sva < eva) {
   2932 		/*
   2933 		 * Do one L2 bucket's worth at a time.
   2934 		 */
   2935 		next_bucket = L2_NEXT_BUCKET(sva);
   2936 		if (next_bucket > eva)
   2937 			next_bucket = eva;
   2938 
   2939 		l2b = pmap_get_l2_bucket(pm, sva);
   2940 		if (l2b == NULL) {
   2941 			sva = next_bucket;
   2942 			continue;
   2943 		}
   2944 
   2945 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   2946 
   2947 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   2948 			struct vm_page *pg;
   2949 			pt_entry_t pte;
   2950 			paddr_t pa;
   2951 
   2952 			pte = *ptep;
   2953 
   2954 			if (pte == 0) {
   2955 				/* Nothing here, move along */
   2956 				continue;
   2957 			}
   2958 
   2959 			pa = l2pte_pa(pte);
   2960 			is_exec = 0;
   2961 			is_refd = 1;
   2962 
   2963 			/*
   2964 			 * Update flags. In a number of circumstances,
   2965 			 * we could cluster a lot of these and do a
   2966 			 * number of sequential pages in one go.
   2967 			 */
   2968 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2969 				struct pv_entry *pve;
   2970 				simple_lock(&pg->mdpage.pvh_slock);
   2971 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   2972 				pmap_vac_me_harder(pg, pm, 0);
   2973 				simple_unlock(&pg->mdpage.pvh_slock);
   2974 				if (pve != NULL) {
   2975 					if (pm->pm_remove_all == false) {
   2976 						is_exec =
   2977 						   PV_BEEN_EXECD(pve->pv_flags);
   2978 						is_refd =
   2979 						   PV_BEEN_REFD(pve->pv_flags);
   2980 					}
   2981 					pool_put(&pmap_pv_pool, pve);
   2982 				} else
   2983 				if (skip_wired) {
   2984 					/* The mapping is wired. Skip it */
   2985 					continue;
   2986 				}
   2987 			} else
   2988 			if (skip_wired) {
   2989 				/* Unmanaged pages are always wired. */
   2990 				continue;
   2991 			}
   2992 
   2993 			mappings++;
   2994 
   2995 			if (!l2pte_valid(pte)) {
   2996 				/*
   2997 				 * Ref/Mod emulation is still active for this
   2998 				 * mapping, therefore it is has not yet been
   2999 				 * accessed. No need to frob the cache/tlb.
   3000 				 */
   3001 				*ptep = 0;
   3002 				PTE_SYNC_CURRENT(pm, ptep);
   3003 				continue;
   3004 			}
   3005 
   3006 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3007 				/* Add to the clean list. */
   3008 				cleanlist[cleanlist_idx].ptep = ptep;
   3009 				cleanlist[cleanlist_idx].va =
   3010 				    sva | (is_exec & 1);
   3011 				cleanlist_idx++;
   3012 			} else
   3013 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3014 				/* Nuke everything if needed. */
   3015 #ifdef PMAP_CACHE_VIVT
   3016 				pmap_idcache_wbinv_all(pm);
   3017 #endif
   3018 				pmap_tlb_flushID(pm);
   3019 
   3020 				/*
   3021 				 * Roll back the previous PTE list,
   3022 				 * and zero out the current PTE.
   3023 				 */
   3024 				for (cnt = 0;
   3025 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3026 					*cleanlist[cnt].ptep = 0;
   3027 					PTE_SYNC(cleanlist[cnt].ptep);
   3028 				}
   3029 				*ptep = 0;
   3030 				PTE_SYNC(ptep);
   3031 				cleanlist_idx++;
   3032 				pm->pm_remove_all = true;
   3033 			} else {
   3034 				*ptep = 0;
   3035 				PTE_SYNC(ptep);
   3036 				if (pm->pm_remove_all == false) {
   3037 					if (is_exec)
   3038 						pmap_tlb_flushID_SE(pm, sva);
   3039 					else
   3040 					if (is_refd)
   3041 						pmap_tlb_flushD_SE(pm, sva);
   3042 				}
   3043 			}
   3044 		}
   3045 
   3046 		/*
   3047 		 * Deal with any left overs
   3048 		 */
   3049 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3050 			total += cleanlist_idx;
   3051 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3052 				if (pm->pm_cstate.cs_all != 0) {
   3053 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3054 					if (cleanlist[cnt].va & 1) {
   3055 #ifdef PMAP_CACHE_VIVT
   3056 						pmap_idcache_wbinv_range(pm,
   3057 						    clva, PAGE_SIZE);
   3058 #endif
   3059 						pmap_tlb_flushID_SE(pm, clva);
   3060 					} else {
   3061 #ifdef PMAP_CACHE_VIVT
   3062 						pmap_dcache_wb_range(pm,
   3063 						    clva, PAGE_SIZE, true,
   3064 						    false);
   3065 #endif
   3066 						pmap_tlb_flushD_SE(pm, clva);
   3067 					}
   3068 				}
   3069 				*cleanlist[cnt].ptep = 0;
   3070 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3071 			}
   3072 
   3073 			/*
   3074 			 * If it looks like we're removing a whole bunch
   3075 			 * of mappings, it's faster to just write-back
   3076 			 * the whole cache now and defer TLB flushes until
   3077 			 * pmap_update() is called.
   3078 			 */
   3079 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3080 				cleanlist_idx = 0;
   3081 			else {
   3082 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3083 #ifdef PMAP_CACHE_VIVT
   3084 				pmap_idcache_wbinv_all(pm);
   3085 #endif
   3086 				pm->pm_remove_all = true;
   3087 			}
   3088 		}
   3089 
   3090 		pmap_free_l2_bucket(pm, l2b, mappings);
   3091 		pm->pm_stats.resident_count -= mappings;
   3092 	}
   3093 
   3094 	pmap_release_pmap_lock(pm);
   3095 	PMAP_MAP_TO_HEAD_UNLOCK();
   3096 }
   3097 
   3098 #ifdef PMAP_CACHE_VIPT
   3099 static struct pv_entry *
   3100 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3101 {
   3102 	struct pv_entry *pv;
   3103 
   3104 	simple_lock(&pg->mdpage.pvh_slock);
   3105 	KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   3106 	KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3107 
   3108 	pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
   3109 	KASSERT(pv);
   3110 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3111 
   3112 	/*
   3113 	 * If we are removing a writeable mapping to a cached exec page,
   3114 	 * if it's the last mapping then clear it execness other sync
   3115 	 * the page to the icache.
   3116 	 */
   3117 	if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3118 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3119 		if (pg->mdpage.pvh_list == NULL) {
   3120 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3121 			PMAPCOUNT(exec_discarded_kremove);
   3122 		} else {
   3123 			pmap_syncicache_page(pg);
   3124 			PMAPCOUNT(exec_synced_kremove);
   3125 		}
   3126 	}
   3127 	pmap_vac_me_harder(pg, pmap_kernel(), 0);
   3128 	simple_unlock(&pg->mdpage.pvh_slock);
   3129 
   3130 	return pv;
   3131 }
   3132 #endif /* PMAP_CACHE_VIPT */
   3133 
   3134 /*
   3135  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3136  *
   3137  * We assume there is already sufficient KVM space available
   3138  * to do this, as we can't allocate L2 descriptor tables/metadata
   3139  * from here.
   3140  */
   3141 void
   3142 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   3143 {
   3144 	struct l2_bucket *l2b;
   3145 	pt_entry_t *ptep, opte;
   3146 #ifdef PMAP_CACHE_VIPT
   3147 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3148 	struct vm_page *opg;
   3149 	struct pv_entry *pv = NULL;
   3150 #endif
   3151 
   3152 	NPDEBUG(PDB_KENTER,
   3153 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3154 	    va, pa, prot));
   3155 
   3156 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3157 	KDASSERT(l2b != NULL);
   3158 
   3159 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3160 	opte = *ptep;
   3161 
   3162 	if (opte == 0) {
   3163 		PMAPCOUNT(kenter_mappings);
   3164 		l2b->l2b_occupancy++;
   3165 	} else {
   3166 		PMAPCOUNT(kenter_remappings);
   3167 #ifdef PMAP_CACHE_VIPT
   3168 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3169 		if (opg) {
   3170 			KASSERT(opg != pg);
   3171 			KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3172 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3173 			simple_lock(&opg->mdpage.pvh_slock);
   3174 			pv = pmap_kremove_pg(opg, va);
   3175 			simple_unlock(&opg->mdpage.pvh_slock);
   3176 		}
   3177 #endif
   3178 		if (l2pte_valid(opte)) {
   3179 #ifdef PMAP_CACHE_VIVT
   3180 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3181 #endif
   3182 			cpu_tlb_flushD_SE(va);
   3183 			cpu_cpwait();
   3184 		}
   3185 	}
   3186 
   3187 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3188 	    pte_l2_s_cache_mode;
   3189 	PTE_SYNC(ptep);
   3190 
   3191 #ifdef PMAP_CACHE_VIPT
   3192 	if (pg) {
   3193 		if (prot & PMAP_KMPAGE) {
   3194 			KASSERT(pv == NULL);
   3195 			KASSERT((va & PVF_COLORED) == 0);
   3196 			simple_lock(&pg->mdpage.pvh_slock);
   3197 			KASSERT(pg->mdpage.urw_mappings == 0);
   3198 			KASSERT(pg->mdpage.uro_mappings == 0);
   3199 			KASSERT(pg->mdpage.krw_mappings == 0);
   3200 			KASSERT(pg->mdpage.kro_mappings == 0);
   3201 			KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
   3202 			/* if there is a color conflict, evict from cache. */
   3203 			if (pmap_is_page_colored_p(pg)
   3204 			    && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask))
   3205 				pmap_flush_page(pg);
   3206 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   3207 			pg->mdpage.pvh_attrs |= PVF_KMPAGE
   3208 				| PVF_COLORED
   3209 				| (va & arm_cache_prefer_mask);
   3210 			simple_unlock(&pg->mdpage.pvh_slock);
   3211 		} else {
   3212 			if (pv == NULL) {
   3213 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3214 				KASSERT(pv != NULL);
   3215 			}
   3216 			pmap_enter_pv(pg, pv, pmap_kernel(), va,
   3217 			    PVF_WIRED | PVF_KENTRY
   3218 				| (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3219 			simple_lock(&pg->mdpage.pvh_slock);
   3220 			pmap_vac_me_harder(pg, pmap_kernel(), va);
   3221 			simple_unlock(&pg->mdpage.pvh_slock);
   3222 		}
   3223 	} else {
   3224 		if (pv != NULL)
   3225 			pool_put(&pmap_pv_pool, pv);
   3226 	}
   3227 #endif
   3228 }
   3229 
   3230 void
   3231 pmap_kremove(vaddr_t va, vsize_t len)
   3232 {
   3233 	struct l2_bucket *l2b;
   3234 	pt_entry_t *ptep, *sptep, opte;
   3235 	vaddr_t next_bucket, eva;
   3236 	u_int mappings;
   3237 #ifdef PMAP_CACHE_VIPT
   3238 	struct vm_page *opg;
   3239 #endif
   3240 
   3241 	PMAPCOUNT(kenter_unmappings);
   3242 
   3243 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3244 	    va, len));
   3245 
   3246 	eva = va + len;
   3247 
   3248 	while (va < eva) {
   3249 		next_bucket = L2_NEXT_BUCKET(va);
   3250 		if (next_bucket > eva)
   3251 			next_bucket = eva;
   3252 
   3253 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3254 		KDASSERT(l2b != NULL);
   3255 
   3256 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3257 		mappings = 0;
   3258 
   3259 		while (va < next_bucket) {
   3260 			opte = *ptep;
   3261 #ifdef PMAP_CACHE_VIPT
   3262 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3263 			if (opg) {
   3264 				if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
   3265 					simple_lock(&opg->mdpage.pvh_slock);
   3266 					KASSERT(opg->mdpage.urw_mappings == 0);
   3267 					KASSERT(opg->mdpage.uro_mappings == 0);
   3268 					KASSERT(opg->mdpage.krw_mappings == 0);
   3269 					KASSERT(opg->mdpage.kro_mappings == 0);
   3270 					opg->mdpage.pvh_attrs &=
   3271 					    ~(PVF_KMPAGE|PVF_WRITE);
   3272 					simple_unlock(&opg->mdpage.pvh_slock);
   3273 				} else {
   3274 					pool_put(&pmap_pv_pool,
   3275 					    pmap_kremove_pg(opg, va));
   3276 				}
   3277 			}
   3278 #endif
   3279 			if (l2pte_valid(opte)) {
   3280 #ifdef PMAP_CACHE_VIVT
   3281 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3282 #endif
   3283 				cpu_tlb_flushD_SE(va);
   3284 			}
   3285 			if (opte) {
   3286 				*ptep = 0;
   3287 				mappings++;
   3288 			}
   3289 			va += PAGE_SIZE;
   3290 			ptep++;
   3291 		}
   3292 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3293 		l2b->l2b_occupancy -= mappings;
   3294 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3295 	}
   3296 	cpu_cpwait();
   3297 }
   3298 
   3299 bool
   3300 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3301 {
   3302 	struct l2_dtable *l2;
   3303 	pd_entry_t *pl1pd, l1pd;
   3304 	pt_entry_t *ptep, pte;
   3305 	paddr_t pa;
   3306 	u_int l1idx;
   3307 
   3308 	pmap_acquire_pmap_lock(pm);
   3309 
   3310 	l1idx = L1_IDX(va);
   3311 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3312 	l1pd = *pl1pd;
   3313 
   3314 	if (l1pte_section_p(l1pd)) {
   3315 		/*
   3316 		 * These should only happen for pmap_kernel()
   3317 		 */
   3318 		KDASSERT(pm == pmap_kernel());
   3319 		pmap_release_pmap_lock(pm);
   3320 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3321 	} else {
   3322 		/*
   3323 		 * Note that we can't rely on the validity of the L1
   3324 		 * descriptor as an indication that a mapping exists.
   3325 		 * We have to look it up in the L2 dtable.
   3326 		 */
   3327 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3328 
   3329 		if (l2 == NULL ||
   3330 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3331 			pmap_release_pmap_lock(pm);
   3332 			return false;
   3333 		}
   3334 
   3335 		ptep = &ptep[l2pte_index(va)];
   3336 		pte = *ptep;
   3337 		pmap_release_pmap_lock(pm);
   3338 
   3339 		if (pte == 0)
   3340 			return false;
   3341 
   3342 		switch (pte & L2_TYPE_MASK) {
   3343 		case L2_TYPE_L:
   3344 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3345 			break;
   3346 
   3347 		default:
   3348 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3349 			break;
   3350 		}
   3351 	}
   3352 
   3353 	if (pap != NULL)
   3354 		*pap = pa;
   3355 
   3356 	return true;
   3357 }
   3358 
   3359 void
   3360 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3361 {
   3362 	struct l2_bucket *l2b;
   3363 	pt_entry_t *ptep, pte;
   3364 	vaddr_t next_bucket;
   3365 	u_int flags;
   3366 	u_int clr_mask;
   3367 	int flush;
   3368 
   3369 	NPDEBUG(PDB_PROTECT,
   3370 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3371 	    pm, sva, eva, prot));
   3372 
   3373 	if ((prot & VM_PROT_READ) == 0) {
   3374 		pmap_remove(pm, sva, eva);
   3375 		return;
   3376 	}
   3377 
   3378 	if (prot & VM_PROT_WRITE) {
   3379 		/*
   3380 		 * If this is a read->write transition, just ignore it and let
   3381 		 * uvm_fault() take care of it later.
   3382 		 */
   3383 		return;
   3384 	}
   3385 
   3386 	PMAP_MAP_TO_HEAD_LOCK();
   3387 	pmap_acquire_pmap_lock(pm);
   3388 
   3389 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3390 	flags = 0;
   3391 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3392 
   3393 	while (sva < eva) {
   3394 		next_bucket = L2_NEXT_BUCKET(sva);
   3395 		if (next_bucket > eva)
   3396 			next_bucket = eva;
   3397 
   3398 		l2b = pmap_get_l2_bucket(pm, sva);
   3399 		if (l2b == NULL) {
   3400 			sva = next_bucket;
   3401 			continue;
   3402 		}
   3403 
   3404 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3405 
   3406 		while (sva < next_bucket) {
   3407 			pte = *ptep;
   3408 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3409 				struct vm_page *pg;
   3410 				u_int f;
   3411 
   3412 #ifdef PMAP_CACHE_VIVT
   3413 				/*
   3414 				 * OK, at this point, we know we're doing
   3415 				 * write-protect operation.  If the pmap is
   3416 				 * active, write-back the page.
   3417 				 */
   3418 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3419 				    false, false);
   3420 #endif
   3421 
   3422 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3423 				pte &= ~L2_S_PROT_W;
   3424 				*ptep = pte;
   3425 				PTE_SYNC(ptep);
   3426 
   3427 				if (pg != NULL) {
   3428 					simple_lock(&pg->mdpage.pvh_slock);
   3429 					f = pmap_modify_pv(pg, pm, sva,
   3430 					    clr_mask, 0);
   3431 					pmap_vac_me_harder(pg, pm, sva);
   3432 					simple_unlock(&pg->mdpage.pvh_slock);
   3433 				} else
   3434 					f = PVF_REF | PVF_EXEC;
   3435 
   3436 				if (flush >= 0) {
   3437 					flush++;
   3438 					flags |= f;
   3439 				} else
   3440 				if (PV_BEEN_EXECD(f))
   3441 					pmap_tlb_flushID_SE(pm, sva);
   3442 				else
   3443 				if (PV_BEEN_REFD(f))
   3444 					pmap_tlb_flushD_SE(pm, sva);
   3445 			}
   3446 
   3447 			sva += PAGE_SIZE;
   3448 			ptep++;
   3449 		}
   3450 	}
   3451 
   3452 	pmap_release_pmap_lock(pm);
   3453 	PMAP_MAP_TO_HEAD_UNLOCK();
   3454 
   3455 	if (flush) {
   3456 		if (PV_BEEN_EXECD(flags))
   3457 			pmap_tlb_flushID(pm);
   3458 		else
   3459 		if (PV_BEEN_REFD(flags))
   3460 			pmap_tlb_flushD(pm);
   3461 	}
   3462 }
   3463 
   3464 void
   3465 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3466 {
   3467 	struct l2_bucket *l2b;
   3468 	pt_entry_t *ptep;
   3469 	vaddr_t next_bucket;
   3470 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3471 
   3472 	NPDEBUG(PDB_EXEC,
   3473 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3474 	    pm, sva, eva));
   3475 
   3476 	PMAP_MAP_TO_HEAD_LOCK();
   3477 	pmap_acquire_pmap_lock(pm);
   3478 
   3479 	while (sva < eva) {
   3480 		next_bucket = L2_NEXT_BUCKET(sva);
   3481 		if (next_bucket > eva)
   3482 			next_bucket = eva;
   3483 
   3484 		l2b = pmap_get_l2_bucket(pm, sva);
   3485 		if (l2b == NULL) {
   3486 			sva = next_bucket;
   3487 			continue;
   3488 		}
   3489 
   3490 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3491 		     sva < next_bucket;
   3492 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3493 			if (l2pte_valid(*ptep)) {
   3494 				cpu_icache_sync_range(sva,
   3495 				    min(page_size, eva - sva));
   3496 			}
   3497 		}
   3498 	}
   3499 
   3500 	pmap_release_pmap_lock(pm);
   3501 	PMAP_MAP_TO_HEAD_UNLOCK();
   3502 }
   3503 
   3504 void
   3505 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3506 {
   3507 
   3508 	NPDEBUG(PDB_PROTECT,
   3509 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3510 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3511 
   3512 	switch(prot) {
   3513 		return;
   3514 	case VM_PROT_READ|VM_PROT_WRITE:
   3515 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3516 		pmap_clearbit(pg, PVF_EXEC);
   3517 		break;
   3518 #endif
   3519 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3520 		break;
   3521 
   3522 	case VM_PROT_READ:
   3523 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3524 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3525 		break;
   3526 #endif
   3527 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3528 		pmap_clearbit(pg, PVF_WRITE);
   3529 		break;
   3530 
   3531 	default:
   3532 		pmap_page_remove(pg);
   3533 		break;
   3534 	}
   3535 }
   3536 
   3537 /*
   3538  * pmap_clear_modify:
   3539  *
   3540  *	Clear the "modified" attribute for a page.
   3541  */
   3542 bool
   3543 pmap_clear_modify(struct vm_page *pg)
   3544 {
   3545 	bool rv;
   3546 
   3547 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3548 		rv = true;
   3549 		pmap_clearbit(pg, PVF_MOD);
   3550 	} else
   3551 		rv = false;
   3552 
   3553 	return (rv);
   3554 }
   3555 
   3556 /*
   3557  * pmap_clear_reference:
   3558  *
   3559  *	Clear the "referenced" attribute for a page.
   3560  */
   3561 bool
   3562 pmap_clear_reference(struct vm_page *pg)
   3563 {
   3564 	bool rv;
   3565 
   3566 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3567 		rv = true;
   3568 		pmap_clearbit(pg, PVF_REF);
   3569 	} else
   3570 		rv = false;
   3571 
   3572 	return (rv);
   3573 }
   3574 
   3575 /*
   3576  * pmap_is_modified:
   3577  *
   3578  *	Test if a page has the "modified" attribute.
   3579  */
   3580 /* See <arm/arm32/pmap.h> */
   3581 
   3582 /*
   3583  * pmap_is_referenced:
   3584  *
   3585  *	Test if a page has the "referenced" attribute.
   3586  */
   3587 /* See <arm/arm32/pmap.h> */
   3588 
   3589 int
   3590 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3591 {
   3592 	struct l2_dtable *l2;
   3593 	struct l2_bucket *l2b;
   3594 	pd_entry_t *pl1pd, l1pd;
   3595 	pt_entry_t *ptep, pte;
   3596 	paddr_t pa;
   3597 	u_int l1idx;
   3598 	int rv = 0;
   3599 
   3600 	PMAP_MAP_TO_HEAD_LOCK();
   3601 	pmap_acquire_pmap_lock(pm);
   3602 
   3603 	l1idx = L1_IDX(va);
   3604 
   3605 	/*
   3606 	 * If there is no l2_dtable for this address, then the process
   3607 	 * has no business accessing it.
   3608 	 *
   3609 	 * Note: This will catch userland processes trying to access
   3610 	 * kernel addresses.
   3611 	 */
   3612 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3613 	if (l2 == NULL)
   3614 		goto out;
   3615 
   3616 	/*
   3617 	 * Likewise if there is no L2 descriptor table
   3618 	 */
   3619 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3620 	if (l2b->l2b_kva == NULL)
   3621 		goto out;
   3622 
   3623 	/*
   3624 	 * Check the PTE itself.
   3625 	 */
   3626 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3627 	pte = *ptep;
   3628 	if (pte == 0)
   3629 		goto out;
   3630 
   3631 	/*
   3632 	 * Catch a userland access to the vector page mapped at 0x0
   3633 	 */
   3634 	if (user && (pte & L2_S_PROT_U) == 0)
   3635 		goto out;
   3636 
   3637 	pa = l2pte_pa(pte);
   3638 
   3639 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3640 		/*
   3641 		 * This looks like a good candidate for "page modified"
   3642 		 * emulation...
   3643 		 */
   3644 		struct pv_entry *pv;
   3645 		struct vm_page *pg;
   3646 
   3647 		/* Extract the physical address of the page */
   3648 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3649 			goto out;
   3650 
   3651 		/* Get the current flags for this page. */
   3652 		simple_lock(&pg->mdpage.pvh_slock);
   3653 
   3654 		pv = pmap_find_pv(pg, pm, va);
   3655 		if (pv == NULL) {
   3656 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3657 			goto out;
   3658 		}
   3659 
   3660 		/*
   3661 		 * Do the flags say this page is writable? If not then it
   3662 		 * is a genuine write fault. If yes then the write fault is
   3663 		 * our fault as we did not reflect the write access in the
   3664 		 * PTE. Now we know a write has occurred we can correct this
   3665 		 * and also set the modified bit
   3666 		 */
   3667 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3668 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3669 			goto out;
   3670 		}
   3671 
   3672 		NPDEBUG(PDB_FOLLOW,
   3673 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3674 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3675 
   3676 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3677 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3678 		simple_unlock(&pg->mdpage.pvh_slock);
   3679 
   3680 		/*
   3681 		 * Re-enable write permissions for the page.  No need to call
   3682 		 * pmap_vac_me_harder(), since this is just a
   3683 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3684 		 * changing. We've already set the cacheable bits based on
   3685 		 * the assumption that we can write to this page.
   3686 		 */
   3687 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3688 		PTE_SYNC(ptep);
   3689 		rv = 1;
   3690 	} else
   3691 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3692 		/*
   3693 		 * This looks like a good candidate for "page referenced"
   3694 		 * emulation.
   3695 		 */
   3696 		struct pv_entry *pv;
   3697 		struct vm_page *pg;
   3698 
   3699 		/* Extract the physical address of the page */
   3700 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3701 			goto out;
   3702 
   3703 		/* Get the current flags for this page. */
   3704 		simple_lock(&pg->mdpage.pvh_slock);
   3705 
   3706 		pv = pmap_find_pv(pg, pm, va);
   3707 		if (pv == NULL) {
   3708 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3709 			goto out;
   3710 		}
   3711 
   3712 		pg->mdpage.pvh_attrs |= PVF_REF;
   3713 		pv->pv_flags |= PVF_REF;
   3714 		simple_unlock(&pg->mdpage.pvh_slock);
   3715 
   3716 		NPDEBUG(PDB_FOLLOW,
   3717 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3718 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3719 
   3720 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3721 		PTE_SYNC(ptep);
   3722 		rv = 1;
   3723 	}
   3724 
   3725 	/*
   3726 	 * We know there is a valid mapping here, so simply
   3727 	 * fix up the L1 if necessary.
   3728 	 */
   3729 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3730 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3731 	if (*pl1pd != l1pd) {
   3732 		*pl1pd = l1pd;
   3733 		PTE_SYNC(pl1pd);
   3734 		rv = 1;
   3735 	}
   3736 
   3737 #ifdef CPU_SA110
   3738 	/*
   3739 	 * There are bugs in the rev K SA110.  This is a check for one
   3740 	 * of them.
   3741 	 */
   3742 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3743 	    curcpu()->ci_arm_cpurev < 3) {
   3744 		/* Always current pmap */
   3745 		if (l2pte_valid(pte)) {
   3746 			extern int kernel_debug;
   3747 			if (kernel_debug & 1) {
   3748 				struct proc *p = curlwp->l_proc;
   3749 				printf("prefetch_abort: page is already "
   3750 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3751 				printf("prefetch_abort: pc=%08lx proc=%p "
   3752 				    "process=%s\n", va, p, p->p_comm);
   3753 				printf("prefetch_abort: far=%08x fs=%x\n",
   3754 				    cpu_faultaddress(), cpu_faultstatus());
   3755 			}
   3756 #ifdef DDB
   3757 			if (kernel_debug & 2)
   3758 				Debugger();
   3759 #endif
   3760 			rv = 1;
   3761 		}
   3762 	}
   3763 #endif /* CPU_SA110 */
   3764 
   3765 #ifdef DEBUG
   3766 	/*
   3767 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3768 	 * stale TLB entry for the faulting address. This happens when two or
   3769 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3770 	 * a context switch between such processes, we can take domain faults
   3771 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3772 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3773 	 * example.
   3774 	 *
   3775 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3776 	 * entry for a recently entered mapping. In this case, the TLB is
   3777 	 * flushed for the new mapping, but there may still be TLB entries for
   3778 	 * other mappings belonging to other processes in the 1MB range
   3779 	 * covered by the L1 entry.
   3780 	 *
   3781 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3782 	 * value, so the fault must be due to a stale TLB entry.
   3783 	 *
   3784 	 * Since we always need to flush the TLB anyway in the case where we
   3785 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3786 	 * stale TLB entries dynamically.
   3787 	 *
   3788 	 * However, the above condition can ONLY happen if the current L1 is
   3789 	 * being shared. If it happens when the L1 is unshared, it indicates
   3790 	 * that other parts of the pmap are not doing their job WRT managing
   3791 	 * the TLB.
   3792 	 */
   3793 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   3794 		extern int last_fault_code;
   3795 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   3796 		    pm, va, ftype);
   3797 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   3798 		    l2, l2b, ptep, pl1pd);
   3799 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   3800 		    pte, l1pd, last_fault_code);
   3801 #ifdef DDB
   3802 		Debugger();
   3803 #endif
   3804 	}
   3805 #endif
   3806 
   3807 	cpu_tlb_flushID_SE(va);
   3808 	cpu_cpwait();
   3809 
   3810 	rv = 1;
   3811 
   3812 out:
   3813 	pmap_release_pmap_lock(pm);
   3814 	PMAP_MAP_TO_HEAD_UNLOCK();
   3815 
   3816 	return (rv);
   3817 }
   3818 
   3819 /*
   3820  * pmap_collect: free resources held by a pmap
   3821  *
   3822  * => optional function.
   3823  * => called when a process is swapped out to free memory.
   3824  */
   3825 void
   3826 pmap_collect(pmap_t pm)
   3827 {
   3828 
   3829 #ifdef PMAP_CACHE_VIVT
   3830 	pmap_idcache_wbinv_all(pm);
   3831 #endif
   3832 	pm->pm_remove_all = true;
   3833 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3834 	pmap_update(pm);
   3835 	PMAPCOUNT(collects);
   3836 }
   3837 
   3838 /*
   3839  * Routine:	pmap_procwr
   3840  *
   3841  * Function:
   3842  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3843  *
   3844  */
   3845 void
   3846 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3847 {
   3848 	/* We only need to do anything if it is the current process. */
   3849 	if (p == curproc)
   3850 		cpu_icache_sync_range(va, len);
   3851 }
   3852 
   3853 /*
   3854  * Routine:	pmap_unwire
   3855  * Function:	Clear the wired attribute for a map/virtual-address pair.
   3856  *
   3857  * In/out conditions:
   3858  *		The mapping must already exist in the pmap.
   3859  */
   3860 void
   3861 pmap_unwire(pmap_t pm, vaddr_t va)
   3862 {
   3863 	struct l2_bucket *l2b;
   3864 	pt_entry_t *ptep, pte;
   3865 	struct vm_page *pg;
   3866 	paddr_t pa;
   3867 
   3868 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   3869 
   3870 	PMAP_MAP_TO_HEAD_LOCK();
   3871 	pmap_acquire_pmap_lock(pm);
   3872 
   3873 	l2b = pmap_get_l2_bucket(pm, va);
   3874 	KDASSERT(l2b != NULL);
   3875 
   3876 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3877 	pte = *ptep;
   3878 
   3879 	/* Extract the physical address of the page */
   3880 	pa = l2pte_pa(pte);
   3881 
   3882 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3883 		/* Update the wired bit in the pv entry for this page. */
   3884 		simple_lock(&pg->mdpage.pvh_slock);
   3885 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   3886 		simple_unlock(&pg->mdpage.pvh_slock);
   3887 	}
   3888 
   3889 	pmap_release_pmap_lock(pm);
   3890 	PMAP_MAP_TO_HEAD_UNLOCK();
   3891 }
   3892 
   3893 void
   3894 pmap_activate(struct lwp *l)
   3895 {
   3896 	extern int block_userspace_access;
   3897 	pmap_t opm, npm, rpm;
   3898 	uint32_t odacr, ndacr;
   3899 	int oldirqstate;
   3900 
   3901 	/*
   3902 	 * If activating a non-current lwp or the current lwp is
   3903 	 * already active, just return.
   3904 	 */
   3905 	if (l != curlwp ||
   3906 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   3907 		return;
   3908 
   3909 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   3910 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   3911 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   3912 
   3913 	/*
   3914 	 * If TTB and DACR are unchanged, short-circuit all the
   3915 	 * TLB/cache management stuff.
   3916 	 */
   3917 	if (pmap_previous_active_lwp != NULL) {
   3918 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   3919 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   3920 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   3921 
   3922 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   3923 			goto all_done;
   3924 	} else
   3925 		opm = NULL;
   3926 
   3927 	PMAPCOUNT(activations);
   3928 	block_userspace_access = 1;
   3929 
   3930 	/*
   3931 	 * If switching to a user vmspace which is different to the
   3932 	 * most recent one, and the most recent one is potentially
   3933 	 * live in the cache, we must write-back and invalidate the
   3934 	 * entire cache.
   3935 	 */
   3936 	rpm = pmap_recent_user;
   3937 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   3938 	    rpm->pm_cstate.cs_cache) {
   3939 		rpm->pm_cstate.cs_cache = 0;
   3940 #ifdef PMAP_CACHE_VIVT
   3941 		cpu_idcache_wbinv_all();
   3942 #endif
   3943 	}
   3944 
   3945 	/* No interrupts while we frob the TTB/DACR */
   3946 	oldirqstate = disable_interrupts(I32_bit | F32_bit);
   3947 
   3948 	/*
   3949 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   3950 	 * entry corresponding to 'vector_page' in the incoming L1 table
   3951 	 * before switching to it otherwise subsequent interrupts/exceptions
   3952 	 * (including domain faults!) will jump into hyperspace.
   3953 	 */
   3954 	if (npm->pm_pl1vec != NULL) {
   3955 		cpu_tlb_flushID_SE((u_int)vector_page);
   3956 		cpu_cpwait();
   3957 		*npm->pm_pl1vec = npm->pm_l1vec;
   3958 		PTE_SYNC(npm->pm_pl1vec);
   3959 	}
   3960 
   3961 	cpu_domains(ndacr);
   3962 
   3963 	if (npm == pmap_kernel() || npm == rpm) {
   3964 		/*
   3965 		 * Switching to a kernel thread, or back to the
   3966 		 * same user vmspace as before... Simply update
   3967 		 * the TTB (no TLB flush required)
   3968 		 */
   3969 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   3970 		    "r"(npm->pm_l1->l1_physaddr));
   3971 		cpu_cpwait();
   3972 	} else {
   3973 		/*
   3974 		 * Otherwise, update TTB and flush TLB
   3975 		 */
   3976 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   3977 		if (rpm != NULL)
   3978 			rpm->pm_cstate.cs_tlb = 0;
   3979 	}
   3980 
   3981 	restore_interrupts(oldirqstate);
   3982 
   3983 	block_userspace_access = 0;
   3984 
   3985  all_done:
   3986 	/*
   3987 	 * The new pmap is resident. Make sure it's marked
   3988 	 * as resident in the cache/TLB.
   3989 	 */
   3990 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   3991 	if (npm != pmap_kernel())
   3992 		pmap_recent_user = npm;
   3993 
   3994 	/* The old pmap is not longer active */
   3995 	if (opm != NULL)
   3996 		opm->pm_activated = false;
   3997 
   3998 	/* But the new one is */
   3999 	npm->pm_activated = true;
   4000 }
   4001 
   4002 void
   4003 pmap_deactivate(struct lwp *l)
   4004 {
   4005 
   4006 	/*
   4007 	 * If the process is exiting, make sure pmap_activate() does
   4008 	 * a full MMU context-switch and cache flush, which we might
   4009 	 * otherwise skip. See PR port-arm/38950.
   4010 	 */
   4011 	if (l->l_proc->p_sflag & PS_WEXIT)
   4012 		pmap_previous_active_lwp = NULL;
   4013 
   4014 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4015 }
   4016 
   4017 void
   4018 pmap_update(pmap_t pm)
   4019 {
   4020 
   4021 	if (pm->pm_remove_all) {
   4022 		/*
   4023 		 * Finish up the pmap_remove_all() optimisation by flushing
   4024 		 * the TLB.
   4025 		 */
   4026 		pmap_tlb_flushID(pm);
   4027 		pm->pm_remove_all = false;
   4028 	}
   4029 
   4030 	if (pmap_is_current(pm)) {
   4031 		/*
   4032 		 * If we're dealing with a current userland pmap, move its L1
   4033 		 * to the end of the LRU.
   4034 		 */
   4035 		if (pm != pmap_kernel())
   4036 			pmap_use_l1(pm);
   4037 
   4038 		/*
   4039 		 * We can assume we're done with frobbing the cache/tlb for
   4040 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4041 		 * flushes.
   4042 		 */
   4043 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4044 	}
   4045 
   4046 	PMAPCOUNT(updates);
   4047 
   4048 	/*
   4049 	 * make sure TLB/cache operations have completed.
   4050 	 */
   4051 	cpu_cpwait();
   4052 }
   4053 
   4054 void
   4055 pmap_remove_all(pmap_t pm)
   4056 {
   4057 
   4058 	/*
   4059 	 * The vmspace described by this pmap is about to be torn down.
   4060 	 * Until pmap_update() is called, UVM will only make calls
   4061 	 * to pmap_remove(). We can make life much simpler by flushing
   4062 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4063 	 */
   4064 #ifdef PMAP_CACHE_VIVT
   4065 	pmap_idcache_wbinv_all(pm);
   4066 #endif
   4067 	pm->pm_remove_all = true;
   4068 }
   4069 
   4070 /*
   4071  * Retire the given physical map from service.
   4072  * Should only be called if the map contains no valid mappings.
   4073  */
   4074 void
   4075 pmap_destroy(pmap_t pm)
   4076 {
   4077 	u_int count;
   4078 
   4079 	if (pm == NULL)
   4080 		return;
   4081 
   4082 	if (pm->pm_remove_all) {
   4083 		pmap_tlb_flushID(pm);
   4084 		pm->pm_remove_all = false;
   4085 	}
   4086 
   4087 	/*
   4088 	 * Drop reference count
   4089 	 */
   4090 	mutex_enter(&pm->pm_lock);
   4091 	count = --pm->pm_obj.uo_refs;
   4092 	mutex_exit(&pm->pm_lock);
   4093 	if (count > 0) {
   4094 		if (pmap_is_current(pm)) {
   4095 			if (pm != pmap_kernel())
   4096 				pmap_use_l1(pm);
   4097 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4098 		}
   4099 		return;
   4100 	}
   4101 
   4102 	/*
   4103 	 * reference count is zero, free pmap resources and then free pmap.
   4104 	 */
   4105 
   4106 	if (vector_page < KERNEL_BASE) {
   4107 		KDASSERT(!pmap_is_current(pm));
   4108 
   4109 		/* Remove the vector page mapping */
   4110 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4111 		pmap_update(pm);
   4112 	}
   4113 
   4114 	LIST_REMOVE(pm, pm_list);
   4115 
   4116 	pmap_free_l1(pm);
   4117 
   4118 	if (pmap_recent_user == pm)
   4119 		pmap_recent_user = NULL;
   4120 
   4121 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4122 
   4123 	/* return the pmap to the pool */
   4124 	pool_cache_put(&pmap_cache, pm);
   4125 }
   4126 
   4127 
   4128 /*
   4129  * void pmap_reference(pmap_t pm)
   4130  *
   4131  * Add a reference to the specified pmap.
   4132  */
   4133 void
   4134 pmap_reference(pmap_t pm)
   4135 {
   4136 
   4137 	if (pm == NULL)
   4138 		return;
   4139 
   4140 	pmap_use_l1(pm);
   4141 
   4142 	mutex_enter(&pm->pm_lock);
   4143 	pm->pm_obj.uo_refs++;
   4144 	mutex_exit(&pm->pm_lock);
   4145 }
   4146 
   4147 #if ARM_MMU_V6 > 0
   4148 
   4149 static struct evcnt pmap_prefer_nochange_ev =
   4150     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4151 static struct evcnt pmap_prefer_change_ev =
   4152     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4153 
   4154 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4155 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4156 
   4157 void
   4158 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4159 {
   4160 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4161 	vaddr_t va = *vap;
   4162 	vaddr_t diff = (hint - va) & mask;
   4163 	if (diff == 0) {
   4164 		pmap_prefer_nochange_ev.ev_count++;
   4165 	} else {
   4166 		pmap_prefer_change_ev.ev_count++;
   4167 		if (__predict_false(td))
   4168 			va -= mask + 1;
   4169 		*vap = va + diff;
   4170 	}
   4171 }
   4172 #endif /* ARM_MMU_V6 */
   4173 
   4174 /*
   4175  * pmap_zero_page()
   4176  *
   4177  * Zero a given physical page by mapping it at a page hook point.
   4178  * In doing the zero page op, the page we zero is mapped cachable, as with
   4179  * StrongARM accesses to non-cached pages are non-burst making writing
   4180  * _any_ bulk data very slow.
   4181  */
   4182 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4183 void
   4184 pmap_zero_page_generic(paddr_t phys)
   4185 {
   4186 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4187 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4188 #endif
   4189 #ifdef PMAP_CACHE_VIPT
   4190 	/* Choose the last page color it had, if any */
   4191 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4192 #else
   4193 	const vsize_t va_offset = 0;
   4194 #endif
   4195 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4196 
   4197 #ifdef DEBUG
   4198 	if (pg->mdpage.pvh_list != NULL)
   4199 		panic("pmap_zero_page: page has mappings");
   4200 #endif
   4201 
   4202 	KDASSERT((phys & PGOFSET) == 0);
   4203 
   4204 	/*
   4205 	 * Hook in the page, zero it, and purge the cache for that
   4206 	 * zeroed page. Invalidate the TLB as needed.
   4207 	 */
   4208 	*ptep = L2_S_PROTO | phys |
   4209 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4210 	PTE_SYNC(ptep);
   4211 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4212 	cpu_cpwait();
   4213 	bzero_page(cdstp + va_offset);
   4214 	/*
   4215 	 * Unmap the page.
   4216 	 */
   4217 	*ptep = 0;
   4218 	PTE_SYNC(ptep);
   4219 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4220 #ifdef PMAP_CACHE_VIVT
   4221 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4222 #endif
   4223 #ifdef PMAP_CACHE_VIPT
   4224 	/*
   4225 	 * This page is now cache resident so it now has a page color.
   4226 	 * Any contents have been obliterated so clear the EXEC flag.
   4227 	 */
   4228 	if (!pmap_is_page_colored_p(pg)) {
   4229 		PMAPCOUNT(vac_color_new);
   4230 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4231 	}
   4232 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4233 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4234 		PMAPCOUNT(exec_discarded_zero);
   4235 	}
   4236 #endif
   4237 }
   4238 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4239 
   4240 #if ARM_MMU_XSCALE == 1
   4241 void
   4242 pmap_zero_page_xscale(paddr_t phys)
   4243 {
   4244 #ifdef DEBUG
   4245 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4246 
   4247 	if (pg->mdpage.pvh_list != NULL)
   4248 		panic("pmap_zero_page: page has mappings");
   4249 #endif
   4250 
   4251 	KDASSERT((phys & PGOFSET) == 0);
   4252 
   4253 	/*
   4254 	 * Hook in the page, zero it, and purge the cache for that
   4255 	 * zeroed page. Invalidate the TLB as needed.
   4256 	 */
   4257 	*cdst_pte = L2_S_PROTO | phys |
   4258 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4259 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4260 	PTE_SYNC(cdst_pte);
   4261 	cpu_tlb_flushD_SE(cdstp);
   4262 	cpu_cpwait();
   4263 	bzero_page(cdstp);
   4264 	xscale_cache_clean_minidata();
   4265 }
   4266 #endif /* ARM_MMU_XSCALE == 1 */
   4267 
   4268 /* pmap_pageidlezero()
   4269  *
   4270  * The same as above, except that we assume that the page is not
   4271  * mapped.  This means we never have to flush the cache first.  Called
   4272  * from the idle loop.
   4273  */
   4274 bool
   4275 pmap_pageidlezero(paddr_t phys)
   4276 {
   4277 	unsigned int i;
   4278 	int *ptr;
   4279 	bool rv = true;
   4280 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4281 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4282 #endif
   4283 #ifdef PMAP_CACHE_VIPT
   4284 	/* Choose the last page color it had, if any */
   4285 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4286 #else
   4287 	const vsize_t va_offset = 0;
   4288 #endif
   4289 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4290 
   4291 
   4292 #ifdef DEBUG
   4293 	if (pg->mdpage.pvh_list != NULL)
   4294 		panic("pmap_pageidlezero: page has mappings");
   4295 #endif
   4296 
   4297 	KDASSERT((phys & PGOFSET) == 0);
   4298 
   4299 	/*
   4300 	 * Hook in the page, zero it, and purge the cache for that
   4301 	 * zeroed page. Invalidate the TLB as needed.
   4302 	 */
   4303 	*ptep = L2_S_PROTO | phys |
   4304 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4305 	PTE_SYNC(ptep);
   4306 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4307 	cpu_cpwait();
   4308 
   4309 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4310 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4311 		if (sched_curcpu_runnable_p() != 0) {
   4312 			/*
   4313 			 * A process has become ready.  Abort now,
   4314 			 * so we don't keep it waiting while we
   4315 			 * do slow memory access to finish this
   4316 			 * page.
   4317 			 */
   4318 			rv = false;
   4319 			break;
   4320 		}
   4321 		*ptr++ = 0;
   4322 	}
   4323 
   4324 #ifdef PMAP_CACHE_VIVT
   4325 	if (rv)
   4326 		/*
   4327 		 * if we aborted we'll rezero this page again later so don't
   4328 		 * purge it unless we finished it
   4329 		 */
   4330 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4331 #elif defined(PMAP_CACHE_VIPT)
   4332 	/*
   4333 	 * This page is now cache resident so it now has a page color.
   4334 	 * Any contents have been obliterated so clear the EXEC flag.
   4335 	 */
   4336 	if (!pmap_is_page_colored_p(pg)) {
   4337 		PMAPCOUNT(vac_color_new);
   4338 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4339 	}
   4340 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4341 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4342 		PMAPCOUNT(exec_discarded_zero);
   4343 	}
   4344 #endif
   4345 	/*
   4346 	 * Unmap the page.
   4347 	 */
   4348 	*ptep = 0;
   4349 	PTE_SYNC(ptep);
   4350 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4351 
   4352 	return (rv);
   4353 }
   4354 
   4355 /*
   4356  * pmap_copy_page()
   4357  *
   4358  * Copy one physical page into another, by mapping the pages into
   4359  * hook points. The same comment regarding cachability as in
   4360  * pmap_zero_page also applies here.
   4361  */
   4362 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4363 void
   4364 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4365 {
   4366 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4367 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4368 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4369 #endif
   4370 #ifdef PMAP_CACHE_VIPT
   4371 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4372 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4373 #else
   4374 	const vsize_t src_va_offset = 0;
   4375 	const vsize_t dst_va_offset = 0;
   4376 #endif
   4377 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4378 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4379 
   4380 #ifdef DEBUG
   4381 	if (dst_pg->mdpage.pvh_list != NULL)
   4382 		panic("pmap_copy_page: dst page has mappings");
   4383 #endif
   4384 
   4385 #ifdef PMAP_CACHE_VIPT
   4386 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4387 #endif
   4388 	KDASSERT((src & PGOFSET) == 0);
   4389 	KDASSERT((dst & PGOFSET) == 0);
   4390 
   4391 	/*
   4392 	 * Clean the source page.  Hold the source page's lock for
   4393 	 * the duration of the copy so that no other mappings can
   4394 	 * be created while we have a potentially aliased mapping.
   4395 	 */
   4396 	simple_lock(&src_pg->mdpage.pvh_slock);
   4397 #ifdef PMAP_CACHE_VIVT
   4398 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
   4399 #endif
   4400 
   4401 	/*
   4402 	 * Map the pages into the page hook points, copy them, and purge
   4403 	 * the cache for the appropriate page. Invalidate the TLB
   4404 	 * as required.
   4405 	 */
   4406 	*src_ptep = L2_S_PROTO
   4407 	    | src
   4408 #ifdef PMAP_CACHE_VIPT
   4409 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4410 #endif
   4411 #ifdef PMAP_CACHE_VIVT
   4412 	    | pte_l2_s_cache_mode
   4413 #endif
   4414 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4415 	*dst_ptep = L2_S_PROTO | dst |
   4416 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4417 	PTE_SYNC(src_ptep);
   4418 	PTE_SYNC(dst_ptep);
   4419 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4420 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4421 	cpu_cpwait();
   4422 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4423 #ifdef PMAP_CACHE_VIVT
   4424 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4425 #endif
   4426 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4427 #ifdef PMAP_CACHE_VIVT
   4428 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4429 #endif
   4430 	/*
   4431 	 * Unmap the pages.
   4432 	 */
   4433 	*src_ptep = 0;
   4434 	*dst_ptep = 0;
   4435 	PTE_SYNC(src_ptep);
   4436 	PTE_SYNC(dst_ptep);
   4437 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4438 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4439 #ifdef PMAP_CACHE_VIPT
   4440 	/*
   4441 	 * Now that the destination page is in the cache, mark it as colored.
   4442 	 * If this was an exec page, discard it.
   4443 	 */
   4444 	if (!pmap_is_page_colored_p(dst_pg)) {
   4445 		PMAPCOUNT(vac_color_new);
   4446 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4447 	}
   4448 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4449 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4450 		PMAPCOUNT(exec_discarded_copy);
   4451 	}
   4452 #endif
   4453 }
   4454 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4455 
   4456 #if ARM_MMU_XSCALE == 1
   4457 void
   4458 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4459 {
   4460 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4461 #ifdef DEBUG
   4462 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4463 
   4464 	if (dst_pg->mdpage.pvh_list != NULL)
   4465 		panic("pmap_copy_page: dst page has mappings");
   4466 #endif
   4467 
   4468 	KDASSERT((src & PGOFSET) == 0);
   4469 	KDASSERT((dst & PGOFSET) == 0);
   4470 
   4471 	/*
   4472 	 * Clean the source page.  Hold the source page's lock for
   4473 	 * the duration of the copy so that no other mappings can
   4474 	 * be created while we have a potentially aliased mapping.
   4475 	 */
   4476 	simple_lock(&src_pg->mdpage.pvh_slock);
   4477 #ifdef PMAP_CACHE_VIVT
   4478 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, true);
   4479 #endif
   4480 
   4481 	/*
   4482 	 * Map the pages into the page hook points, copy them, and purge
   4483 	 * the cache for the appropriate page. Invalidate the TLB
   4484 	 * as required.
   4485 	 */
   4486 	*csrc_pte = L2_S_PROTO | src |
   4487 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4488 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4489 	PTE_SYNC(csrc_pte);
   4490 	*cdst_pte = L2_S_PROTO | dst |
   4491 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4492 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4493 	PTE_SYNC(cdst_pte);
   4494 	cpu_tlb_flushD_SE(csrcp);
   4495 	cpu_tlb_flushD_SE(cdstp);
   4496 	cpu_cpwait();
   4497 	bcopy_page(csrcp, cdstp);
   4498 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4499 	xscale_cache_clean_minidata();
   4500 }
   4501 #endif /* ARM_MMU_XSCALE == 1 */
   4502 
   4503 /*
   4504  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4505  *
   4506  * Return the start and end addresses of the kernel's virtual space.
   4507  * These values are setup in pmap_bootstrap and are updated as pages
   4508  * are allocated.
   4509  */
   4510 void
   4511 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4512 {
   4513 	*start = virtual_avail;
   4514 	*end = virtual_end;
   4515 }
   4516 
   4517 /*
   4518  * Helper function for pmap_grow_l2_bucket()
   4519  */
   4520 static inline int
   4521 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4522 {
   4523 	struct l2_bucket *l2b;
   4524 	pt_entry_t *ptep;
   4525 	paddr_t pa;
   4526 
   4527 	if (uvm.page_init_done == false) {
   4528 #ifdef PMAP_STEAL_MEMORY
   4529 		pv_addr_t pv;
   4530 		pmap_boot_pagealloc(PAGE_SIZE,
   4531 #ifdef PMAP_CACHE_VIPT
   4532 		    arm_cache_prefer_mask,
   4533 		    va & arm_cache_prefer_mask,
   4534 #else
   4535 		    0, 0,
   4536 #endif
   4537 		    &pv);
   4538 		pa = pv.pv_pa;
   4539 #else
   4540 		if (uvm_page_physget(&pa) == false)
   4541 			return (1);
   4542 #endif	/* PMAP_STEAL_MEMORY */
   4543 	} else {
   4544 		struct vm_page *pg;
   4545 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4546 		if (pg == NULL)
   4547 			return (1);
   4548 		pa = VM_PAGE_TO_PHYS(pg);
   4549 #ifdef PMAP_CACHE_VIPT
   4550 		/*
   4551 		 * This new page must not have any mappings.  Enter it via
   4552 		 * pmap_kenter_pa and let that routine do the hard work.
   4553 		 */
   4554 		KASSERT(pg->mdpage.pvh_list == NULL);
   4555 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   4556 #endif
   4557 	}
   4558 
   4559 	if (pap)
   4560 		*pap = pa;
   4561 
   4562 	PMAPCOUNT(pt_mappings);
   4563 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4564 	KDASSERT(l2b != NULL);
   4565 
   4566 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4567 	*ptep = L2_S_PROTO | pa | cache_mode |
   4568 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4569 	PTE_SYNC(ptep);
   4570 	memset((void *)va, 0, PAGE_SIZE);
   4571 	return (0);
   4572 }
   4573 
   4574 /*
   4575  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4576  * used by pmap_growkernel().
   4577  */
   4578 static inline struct l2_bucket *
   4579 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4580 {
   4581 	struct l2_dtable *l2;
   4582 	struct l2_bucket *l2b;
   4583 	u_short l1idx;
   4584 	vaddr_t nva;
   4585 
   4586 	l1idx = L1_IDX(va);
   4587 
   4588 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4589 		/*
   4590 		 * No mapping at this address, as there is
   4591 		 * no entry in the L1 table.
   4592 		 * Need to allocate a new l2_dtable.
   4593 		 */
   4594 		nva = pmap_kernel_l2dtable_kva;
   4595 		if ((nva & PGOFSET) == 0) {
   4596 			/*
   4597 			 * Need to allocate a backing page
   4598 			 */
   4599 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4600 				return (NULL);
   4601 		}
   4602 
   4603 		l2 = (struct l2_dtable *)nva;
   4604 		nva += sizeof(struct l2_dtable);
   4605 
   4606 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4607 			/*
   4608 			 * The new l2_dtable straddles a page boundary.
   4609 			 * Map in another page to cover it.
   4610 			 */
   4611 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4612 				return (NULL);
   4613 		}
   4614 
   4615 		pmap_kernel_l2dtable_kva = nva;
   4616 
   4617 		/*
   4618 		 * Link it into the parent pmap
   4619 		 */
   4620 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4621 	}
   4622 
   4623 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4624 
   4625 	/*
   4626 	 * Fetch pointer to the L2 page table associated with the address.
   4627 	 */
   4628 	if (l2b->l2b_kva == NULL) {
   4629 		pt_entry_t *ptep;
   4630 
   4631 		/*
   4632 		 * No L2 page table has been allocated. Chances are, this
   4633 		 * is because we just allocated the l2_dtable, above.
   4634 		 */
   4635 		nva = pmap_kernel_l2ptp_kva;
   4636 		ptep = (pt_entry_t *)nva;
   4637 		if ((nva & PGOFSET) == 0) {
   4638 			/*
   4639 			 * Need to allocate a backing page
   4640 			 */
   4641 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4642 			    &pmap_kernel_l2ptp_phys))
   4643 				return (NULL);
   4644 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4645 		}
   4646 
   4647 		l2->l2_occupancy++;
   4648 		l2b->l2b_kva = ptep;
   4649 		l2b->l2b_l1idx = l1idx;
   4650 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4651 
   4652 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4653 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4654 	}
   4655 
   4656 	return (l2b);
   4657 }
   4658 
   4659 vaddr_t
   4660 pmap_growkernel(vaddr_t maxkvaddr)
   4661 {
   4662 	pmap_t kpm = pmap_kernel();
   4663 	struct l1_ttable *l1;
   4664 	struct l2_bucket *l2b;
   4665 	pd_entry_t *pl1pd;
   4666 	int s;
   4667 
   4668 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4669 		goto out;		/* we are OK */
   4670 
   4671 	NPDEBUG(PDB_GROWKERN,
   4672 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4673 	    pmap_curmaxkvaddr, maxkvaddr));
   4674 
   4675 	KDASSERT(maxkvaddr <= virtual_end);
   4676 
   4677 	/*
   4678 	 * whoops!   we need to add kernel PTPs
   4679 	 */
   4680 
   4681 	s = splhigh();	/* to be safe */
   4682 	mutex_enter(&kpm->pm_lock);
   4683 
   4684 	/* Map 1MB at a time */
   4685 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4686 
   4687 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4688 		KDASSERT(l2b != NULL);
   4689 
   4690 		/* Distribute new L1 entry to all other L1s */
   4691 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4692 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4693 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4694 			    L1_C_PROTO;
   4695 			PTE_SYNC(pl1pd);
   4696 		}
   4697 	}
   4698 
   4699 	/*
   4700 	 * flush out the cache, expensive but growkernel will happen so
   4701 	 * rarely
   4702 	 */
   4703 	cpu_dcache_wbinv_all();
   4704 	cpu_tlb_flushD();
   4705 	cpu_cpwait();
   4706 
   4707 	mutex_exit(&kpm->pm_lock);
   4708 	splx(s);
   4709 
   4710 out:
   4711 	return (pmap_curmaxkvaddr);
   4712 }
   4713 
   4714 /************************ Utility routines ****************************/
   4715 
   4716 /*
   4717  * vector_page_setprot:
   4718  *
   4719  *	Manipulate the protection of the vector page.
   4720  */
   4721 void
   4722 vector_page_setprot(int prot)
   4723 {
   4724 	struct l2_bucket *l2b;
   4725 	pt_entry_t *ptep;
   4726 
   4727 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4728 	KDASSERT(l2b != NULL);
   4729 
   4730 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4731 
   4732 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4733 	PTE_SYNC(ptep);
   4734 	cpu_tlb_flushD_SE(vector_page);
   4735 	cpu_cpwait();
   4736 }
   4737 
   4738 /*
   4739  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4740  * Returns true if the mapping exists, else false.
   4741  *
   4742  * NOTE: This function is only used by a couple of arm-specific modules.
   4743  * It is not safe to take any pmap locks here, since we could be right
   4744  * in the middle of debugging the pmap anyway...
   4745  *
   4746  * It is possible for this routine to return false even though a valid
   4747  * mapping does exist. This is because we don't lock, so the metadata
   4748  * state may be inconsistent.
   4749  *
   4750  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4751  * a "section" mapping.
   4752  */
   4753 bool
   4754 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4755 {
   4756 	struct l2_dtable *l2;
   4757 	pd_entry_t *pl1pd, l1pd;
   4758 	pt_entry_t *ptep;
   4759 	u_short l1idx;
   4760 
   4761 	if (pm->pm_l1 == NULL)
   4762 		return false;
   4763 
   4764 	l1idx = L1_IDX(va);
   4765 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4766 	l1pd = *pl1pd;
   4767 
   4768 	if (l1pte_section_p(l1pd)) {
   4769 		*ptp = NULL;
   4770 		return true;
   4771 	}
   4772 
   4773 	if (pm->pm_l2 == NULL)
   4774 		return false;
   4775 
   4776 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4777 
   4778 	if (l2 == NULL ||
   4779 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4780 		return false;
   4781 	}
   4782 
   4783 	*ptp = &ptep[l2pte_index(va)];
   4784 	return true;
   4785 }
   4786 
   4787 bool
   4788 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4789 {
   4790 	u_short l1idx;
   4791 
   4792 	if (pm->pm_l1 == NULL)
   4793 		return false;
   4794 
   4795 	l1idx = L1_IDX(va);
   4796 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4797 
   4798 	return true;
   4799 }
   4800 
   4801 /************************ Bootstrapping routines ****************************/
   4802 
   4803 static void
   4804 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4805 {
   4806 	int i;
   4807 
   4808 	l1->l1_kva = l1pt;
   4809 	l1->l1_domain_use_count = 0;
   4810 	l1->l1_domain_first = 0;
   4811 
   4812 	for (i = 0; i < PMAP_DOMAINS; i++)
   4813 		l1->l1_domain_free[i] = i + 1;
   4814 
   4815 	/*
   4816 	 * Copy the kernel's L1 entries to each new L1.
   4817 	 */
   4818 	if (pmap_initialized)
   4819 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   4820 
   4821 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   4822 	    &l1->l1_physaddr) == false)
   4823 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   4824 
   4825 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   4826 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   4827 }
   4828 
   4829 /*
   4830  * pmap_bootstrap() is called from the board-specific initarm() routine
   4831  * once the kernel L1/L2 descriptors tables have been set up.
   4832  *
   4833  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   4834  * spread over a number of disparate files/functions.
   4835  *
   4836  * We are passed the following parameters
   4837  *  - kernel_l1pt
   4838  *    This is a pointer to the base of the kernel's L1 translation table.
   4839  *  - vstart
   4840  *    1MB-aligned start of managed kernel virtual memory.
   4841  *  - vend
   4842  *    1MB-aligned end of managed kernel virtual memory.
   4843  *
   4844  * We use the first parameter to build the metadata (struct l1_ttable and
   4845  * struct l2_dtable) necessary to track kernel mappings.
   4846  */
   4847 #define	PMAP_STATIC_L2_SIZE 16
   4848 void
   4849 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   4850 {
   4851 	static struct l1_ttable static_l1;
   4852 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   4853 	struct l1_ttable *l1 = &static_l1;
   4854 	struct l2_dtable *l2;
   4855 	struct l2_bucket *l2b;
   4856 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   4857 	pmap_t pm = pmap_kernel();
   4858 	pd_entry_t pde;
   4859 	pt_entry_t *ptep;
   4860 	paddr_t pa;
   4861 	vaddr_t va;
   4862 	vsize_t size;
   4863 	int nptes, l1idx, l2idx, l2next = 0;
   4864 
   4865 	/*
   4866 	 * Initialise the kernel pmap object
   4867 	 */
   4868 	pm->pm_l1 = l1;
   4869 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   4870 	pm->pm_activated = true;
   4871 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4872 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   4873 
   4874 	/*
   4875 	 * Scan the L1 translation table created by initarm() and create
   4876 	 * the required metadata for all valid mappings found in it.
   4877 	 */
   4878 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   4879 		pde = l1pt[l1idx];
   4880 
   4881 		/*
   4882 		 * We're only interested in Coarse mappings.
   4883 		 * pmap_extract() can deal with section mappings without
   4884 		 * recourse to checking L2 metadata.
   4885 		 */
   4886 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   4887 			continue;
   4888 
   4889 		/*
   4890 		 * Lookup the KVA of this L2 descriptor table
   4891 		 */
   4892 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   4893 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   4894 		if (ptep == NULL) {
   4895 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   4896 			    (u_int)l1idx << L1_S_SHIFT, pa);
   4897 		}
   4898 
   4899 		/*
   4900 		 * Fetch the associated L2 metadata structure.
   4901 		 * Allocate a new one if necessary.
   4902 		 */
   4903 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4904 			if (l2next == PMAP_STATIC_L2_SIZE)
   4905 				panic("pmap_bootstrap: out of static L2s");
   4906 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   4907 		}
   4908 
   4909 		/*
   4910 		 * One more L1 slot tracked...
   4911 		 */
   4912 		l2->l2_occupancy++;
   4913 
   4914 		/*
   4915 		 * Fill in the details of the L2 descriptor in the
   4916 		 * appropriate bucket.
   4917 		 */
   4918 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4919 		l2b->l2b_kva = ptep;
   4920 		l2b->l2b_phys = pa;
   4921 		l2b->l2b_l1idx = l1idx;
   4922 
   4923 		/*
   4924 		 * Establish an initial occupancy count for this descriptor
   4925 		 */
   4926 		for (l2idx = 0;
   4927 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   4928 		    l2idx++) {
   4929 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   4930 				l2b->l2b_occupancy++;
   4931 			}
   4932 		}
   4933 
   4934 		/*
   4935 		 * Make sure the descriptor itself has the correct cache mode.
   4936 		 * If not, fix it, but whine about the problem. Port-meisters
   4937 		 * should consider this a clue to fix up their initarm()
   4938 		 * function. :)
   4939 		 */
   4940 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   4941 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   4942 			    "L2 pte @ %p\n", ptep);
   4943 		}
   4944 	}
   4945 
   4946 	/*
   4947 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   4948 	 * a page table. Bitch if it is not correctly set.
   4949 	 */
   4950 	for (va = (vaddr_t)l1pt;
   4951 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   4952 		if (pmap_set_pt_cache_mode(l1pt, va))
   4953 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   4954 			    "primary L1 @ 0x%lx\n", va);
   4955 	}
   4956 
   4957 	cpu_dcache_wbinv_all();
   4958 	cpu_tlb_flushID();
   4959 	cpu_cpwait();
   4960 
   4961 	/*
   4962 	 * now we allocate the "special" VAs which are used for tmp mappings
   4963 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   4964 	 * virtual_avail (note that there are no pages mapped at these VAs).
   4965 	 *
   4966 	 * Managed KVM space start from wherever initarm() tells us.
   4967 	 */
   4968 	virtual_avail = vstart;
   4969 	virtual_end = vend;
   4970 
   4971 #ifdef PMAP_CACHE_VIPT
   4972 	/*
   4973 	 * If we have a VIPT cache, we need one page/pte per possible alias
   4974 	 * page so we won't violate cache aliasing rules.
   4975 	 */
   4976 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   4977 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   4978 #else
   4979 	nptes = 1;
   4980 #endif
   4981 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   4982 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   4983 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   4984 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   4985 	pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
   4986 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   4987 	    (void *)&msgbufaddr, NULL);
   4988 
   4989 	/*
   4990 	 * Allocate a range of kernel virtual address space to be used
   4991 	 * for L2 descriptor tables and metadata allocation in
   4992 	 * pmap_growkernel().
   4993 	 */
   4994 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   4995 	pmap_alloc_specials(&virtual_avail,
   4996 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   4997 	    &pmap_kernel_l2ptp_kva, NULL);
   4998 
   4999 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5000 	pmap_alloc_specials(&virtual_avail,
   5001 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5002 	    &pmap_kernel_l2dtable_kva, NULL);
   5003 
   5004 	/*
   5005 	 * init the static-global locks and global pmap list.
   5006 	 */
   5007 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5008 
   5009 	/*
   5010 	 * We can now initialise the first L1's metadata.
   5011 	 */
   5012 	SLIST_INIT(&l1_list);
   5013 	TAILQ_INIT(&l1_lru_list);
   5014 	simple_lock_init(&l1_lru_lock);
   5015 	pmap_init_l1(l1, l1pt);
   5016 
   5017 	/* Set up vector page L1 details, if necessary */
   5018 	if (vector_page < KERNEL_BASE) {
   5019 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5020 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5021 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5022 		    L1_C_DOM(pm->pm_domain);
   5023 	} else
   5024 		pm->pm_pl1vec = NULL;
   5025 
   5026 	/*
   5027 	 * Initialize the pmap cache
   5028 	 */
   5029 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5030 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5031 	LIST_INIT(&pmap_pmaps);
   5032 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5033 
   5034 	/*
   5035 	 * Initialize the pv pool.
   5036 	 */
   5037 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5038 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5039 
   5040 	/*
   5041 	 * Initialize the L2 dtable pool and cache.
   5042 	 */
   5043 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5044 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5045 
   5046 	/*
   5047 	 * Initialise the L2 descriptor table pool and cache
   5048 	 */
   5049 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5050 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5051 	    pmap_l2ptp_ctor, NULL, NULL);
   5052 
   5053 	cpu_dcache_wbinv_all();
   5054 }
   5055 
   5056 static int
   5057 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5058 {
   5059 	pd_entry_t *pdep, pde;
   5060 	pt_entry_t *ptep, pte;
   5061 	vaddr_t pa;
   5062 	int rv = 0;
   5063 
   5064 	/*
   5065 	 * Make sure the descriptor itself has the correct cache mode
   5066 	 */
   5067 	pdep = &kl1[L1_IDX(va)];
   5068 	pde = *pdep;
   5069 
   5070 	if (l1pte_section_p(pde)) {
   5071 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5072 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5073 			    pte_l1_s_cache_mode_pt;
   5074 			PTE_SYNC(pdep);
   5075 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5076 			rv = 1;
   5077 		}
   5078 	} else {
   5079 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5080 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5081 		if (ptep == NULL)
   5082 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5083 
   5084 		ptep = &ptep[l2pte_index(va)];
   5085 		pte = *ptep;
   5086 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5087 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5088 			    pte_l2_s_cache_mode_pt;
   5089 			PTE_SYNC(ptep);
   5090 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5091 			rv = 1;
   5092 		}
   5093 	}
   5094 
   5095 	return (rv);
   5096 }
   5097 
   5098 static void
   5099 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5100 {
   5101 	vaddr_t va = *availp;
   5102 	struct l2_bucket *l2b;
   5103 
   5104 	if (ptep) {
   5105 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5106 		if (l2b == NULL)
   5107 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5108 
   5109 		if (ptep)
   5110 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5111 	}
   5112 
   5113 	*vap = va;
   5114 	*availp = va + (PAGE_SIZE * pages);
   5115 }
   5116 
   5117 void
   5118 pmap_init(void)
   5119 {
   5120 	extern int physmem;
   5121 
   5122 	/*
   5123 	 * Set the available memory vars - These do not map to real memory
   5124 	 * addresses and cannot as the physical memory is fragmented.
   5125 	 * They are used by ps for %mem calculations.
   5126 	 * One could argue whether this should be the entire memory or just
   5127 	 * the memory that is useable in a user process.
   5128 	 */
   5129 	avail_start = 0;
   5130 	avail_end = physmem * PAGE_SIZE;
   5131 
   5132 	/*
   5133 	 * Now we need to free enough pv_entry structures to allow us to get
   5134 	 * the kmem_map/kmem_object allocated and inited (done after this
   5135 	 * function is finished).  to do this we allocate one bootstrap page out
   5136 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5137 	 * structures.   we never free this page.
   5138 	 */
   5139 	pool_setlowat(&pmap_pv_pool,
   5140 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5141 
   5142 	pmap_initialized = true;
   5143 }
   5144 
   5145 static vaddr_t last_bootstrap_page = 0;
   5146 static void *free_bootstrap_pages = NULL;
   5147 
   5148 static void *
   5149 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5150 {
   5151 	extern void *pool_page_alloc(struct pool *, int);
   5152 	vaddr_t new_page;
   5153 	void *rv;
   5154 
   5155 	if (pmap_initialized)
   5156 		return (pool_page_alloc(pp, flags));
   5157 
   5158 	if (free_bootstrap_pages) {
   5159 		rv = free_bootstrap_pages;
   5160 		free_bootstrap_pages = *((void **)rv);
   5161 		return (rv);
   5162 	}
   5163 
   5164 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5165 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5166 
   5167 	KASSERT(new_page > last_bootstrap_page);
   5168 	last_bootstrap_page = new_page;
   5169 	return ((void *)new_page);
   5170 }
   5171 
   5172 static void
   5173 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5174 {
   5175 	extern void pool_page_free(struct pool *, void *);
   5176 
   5177 	if ((vaddr_t)v <= last_bootstrap_page) {
   5178 		*((void **)v) = free_bootstrap_pages;
   5179 		free_bootstrap_pages = v;
   5180 		return;
   5181 	}
   5182 
   5183 	if (pmap_initialized) {
   5184 		pool_page_free(pp, v);
   5185 		return;
   5186 	}
   5187 }
   5188 
   5189 /*
   5190  * pmap_postinit()
   5191  *
   5192  * This routine is called after the vm and kmem subsystems have been
   5193  * initialised. This allows the pmap code to perform any initialisation
   5194  * that can only be done one the memory allocation is in place.
   5195  */
   5196 void
   5197 pmap_postinit(void)
   5198 {
   5199 	extern paddr_t physical_start, physical_end;
   5200 	struct l2_bucket *l2b;
   5201 	struct l1_ttable *l1;
   5202 	struct pglist plist;
   5203 	struct vm_page *m;
   5204 	pd_entry_t *pl1pt;
   5205 	pt_entry_t *ptep, pte;
   5206 	vaddr_t va, eva;
   5207 	u_int loop, needed;
   5208 	int error;
   5209 
   5210 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5211 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5212 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5213 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5214 
   5215 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5216 	needed -= 1;
   5217 
   5218 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5219 
   5220 	for (loop = 0; loop < needed; loop++, l1++) {
   5221 		/* Allocate a L1 page table */
   5222 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5223 		if (va == 0)
   5224 			panic("Cannot allocate L1 KVM");
   5225 
   5226 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5227 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5228 		if (error)
   5229 			panic("Cannot allocate L1 physical pages");
   5230 
   5231 		m = TAILQ_FIRST(&plist);
   5232 		eva = va + L1_TABLE_SIZE;
   5233 		pl1pt = (pd_entry_t *)va;
   5234 
   5235 		while (m && va < eva) {
   5236 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5237 
   5238 			pmap_kenter_pa(va, pa,
   5239 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   5240 
   5241 			/*
   5242 			 * Make sure the L1 descriptor table is mapped
   5243 			 * with the cache-mode set to write-through.
   5244 			 */
   5245 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5246 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5247 			pte = *ptep;
   5248 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5249 			*ptep = pte;
   5250 			PTE_SYNC(ptep);
   5251 			cpu_tlb_flushD_SE(va);
   5252 
   5253 			va += PAGE_SIZE;
   5254 			m = TAILQ_NEXT(m, pageq.queue);
   5255 		}
   5256 
   5257 #ifdef DIAGNOSTIC
   5258 		if (m)
   5259 			panic("pmap_alloc_l1pt: pglist not empty");
   5260 #endif	/* DIAGNOSTIC */
   5261 
   5262 		pmap_init_l1(l1, pl1pt);
   5263 	}
   5264 
   5265 #ifdef DEBUG
   5266 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5267 	    needed);
   5268 #endif
   5269 }
   5270 
   5271 /*
   5272  * Note that the following routines are used by board-specific initialisation
   5273  * code to configure the initial kernel page tables.
   5274  *
   5275  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5276  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5277  * behaviour of the old pmap, and provides an easy migration path for
   5278  * initial bring-up of the new pmap on existing ports. Fortunately,
   5279  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5280  * will be deprecated.
   5281  *
   5282  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5283  * tables.
   5284  */
   5285 
   5286 /*
   5287  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5288  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5289  * find them as necessary.
   5290  *
   5291  * Note that the data on this list MUST remain valid after initarm() returns,
   5292  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5293  */
   5294 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5295 
   5296 static vaddr_t
   5297 kernel_pt_lookup(paddr_t pa)
   5298 {
   5299 	pv_addr_t *pv;
   5300 
   5301 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5302 #ifndef ARM32_NEW_VM_LAYOUT
   5303 		if (pv->pv_pa == (pa & ~PGOFSET))
   5304 			return (pv->pv_va | (pa & PGOFSET));
   5305 #else
   5306 		if (pv->pv_pa == pa)
   5307 			return (pv->pv_va);
   5308 #endif
   5309 	}
   5310 	return (0);
   5311 }
   5312 
   5313 /*
   5314  * pmap_map_section:
   5315  *
   5316  *	Create a single section mapping.
   5317  */
   5318 void
   5319 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5320 {
   5321 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5322 	pd_entry_t fl;
   5323 
   5324 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5325 
   5326 	switch (cache) {
   5327 	case PTE_NOCACHE:
   5328 	default:
   5329 		fl = 0;
   5330 		break;
   5331 
   5332 	case PTE_CACHE:
   5333 		fl = pte_l1_s_cache_mode;
   5334 		break;
   5335 
   5336 	case PTE_PAGETABLE:
   5337 		fl = pte_l1_s_cache_mode_pt;
   5338 		break;
   5339 	}
   5340 
   5341 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5342 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5343 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5344 }
   5345 
   5346 /*
   5347  * pmap_map_entry:
   5348  *
   5349  *	Create a single page mapping.
   5350  */
   5351 void
   5352 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5353 {
   5354 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5355 	pt_entry_t fl;
   5356 	pt_entry_t *pte;
   5357 
   5358 	KASSERT(((va | pa) & PGOFSET) == 0);
   5359 
   5360 	switch (cache) {
   5361 	case PTE_NOCACHE:
   5362 	default:
   5363 		fl = 0;
   5364 		break;
   5365 
   5366 	case PTE_CACHE:
   5367 		fl = pte_l2_s_cache_mode;
   5368 		break;
   5369 
   5370 	case PTE_PAGETABLE:
   5371 		fl = pte_l2_s_cache_mode_pt;
   5372 		break;
   5373 	}
   5374 
   5375 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5376 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5377 
   5378 #ifndef ARM32_NEW_VM_LAYOUT
   5379 	pte = (pt_entry_t *)
   5380 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5381 #else
   5382 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5383 #endif
   5384 	if (pte == NULL)
   5385 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5386 
   5387 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5388 #ifndef ARM32_NEW_VM_LAYOUT
   5389 	pte += (va >> PGSHIFT) & 0x3ff;
   5390 #else
   5391 	pte += l2pte_index(va);
   5392 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5393 #endif
   5394 	*pte = fl;
   5395 	PTE_SYNC(pte);
   5396 }
   5397 
   5398 /*
   5399  * pmap_link_l2pt:
   5400  *
   5401  *	Link the L2 page table specified by "l2pv" into the L1
   5402  *	page table at the slot for "va".
   5403  */
   5404 void
   5405 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5406 {
   5407 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5408 	u_int slot = va >> L1_S_SHIFT;
   5409 
   5410 #ifndef ARM32_NEW_VM_LAYOUT
   5411 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5412 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5413 #endif
   5414 
   5415 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5416 
   5417 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5418 #ifdef ARM32_NEW_VM_LAYOUT
   5419 	PTE_SYNC(&pde[slot]);
   5420 #else
   5421 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5422 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5423 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5424 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5425 #endif
   5426 
   5427 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5428 }
   5429 
   5430 /*
   5431  * pmap_map_chunk:
   5432  *
   5433  *	Map a chunk of memory using the most efficient mappings
   5434  *	possible (section, large page, small page) into the
   5435  *	provided L1 and L2 tables at the specified virtual address.
   5436  */
   5437 vsize_t
   5438 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5439     int prot, int cache)
   5440 {
   5441 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5442 	pt_entry_t *pte, f1, f2s, f2l;
   5443 	vsize_t resid;
   5444 	int i;
   5445 
   5446 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5447 
   5448 	if (l1pt == 0)
   5449 		panic("pmap_map_chunk: no L1 table provided");
   5450 
   5451 #ifdef VERBOSE_INIT_ARM
   5452 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5453 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5454 #endif
   5455 
   5456 	switch (cache) {
   5457 	case PTE_NOCACHE:
   5458 	default:
   5459 		f1 = 0;
   5460 		f2l = 0;
   5461 		f2s = 0;
   5462 		break;
   5463 
   5464 	case PTE_CACHE:
   5465 		f1 = pte_l1_s_cache_mode;
   5466 		f2l = pte_l2_l_cache_mode;
   5467 		f2s = pte_l2_s_cache_mode;
   5468 		break;
   5469 
   5470 	case PTE_PAGETABLE:
   5471 		f1 = pte_l1_s_cache_mode_pt;
   5472 		f2l = pte_l2_l_cache_mode_pt;
   5473 		f2s = pte_l2_s_cache_mode_pt;
   5474 		break;
   5475 	}
   5476 
   5477 	size = resid;
   5478 
   5479 	while (resid > 0) {
   5480 		/* See if we can use a section mapping. */
   5481 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5482 #ifdef VERBOSE_INIT_ARM
   5483 			printf("S");
   5484 #endif
   5485 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5486 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5487 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5488 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5489 			va += L1_S_SIZE;
   5490 			pa += L1_S_SIZE;
   5491 			resid -= L1_S_SIZE;
   5492 			continue;
   5493 		}
   5494 
   5495 		/*
   5496 		 * Ok, we're going to use an L2 table.  Make sure
   5497 		 * one is actually in the corresponding L1 slot
   5498 		 * for the current VA.
   5499 		 */
   5500 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5501 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5502 
   5503 #ifndef ARM32_NEW_VM_LAYOUT
   5504 		pte = (pt_entry_t *)
   5505 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5506 #else
   5507 		pte = (pt_entry_t *) kernel_pt_lookup(
   5508 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5509 #endif
   5510 		if (pte == NULL)
   5511 			panic("pmap_map_chunk: can't find L2 table for VA"
   5512 			    "0x%08lx", va);
   5513 
   5514 		/* See if we can use a L2 large page mapping. */
   5515 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5516 #ifdef VERBOSE_INIT_ARM
   5517 			printf("L");
   5518 #endif
   5519 			for (i = 0; i < 16; i++) {
   5520 #ifndef ARM32_NEW_VM_LAYOUT
   5521 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5522 				    L2_L_PROTO | pa |
   5523 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5524 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5525 #else
   5526 				pte[l2pte_index(va) + i] =
   5527 				    L2_L_PROTO | pa |
   5528 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5529 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5530 #endif
   5531 			}
   5532 			va += L2_L_SIZE;
   5533 			pa += L2_L_SIZE;
   5534 			resid -= L2_L_SIZE;
   5535 			continue;
   5536 		}
   5537 
   5538 		/* Use a small page mapping. */
   5539 #ifdef VERBOSE_INIT_ARM
   5540 		printf("P");
   5541 #endif
   5542 #ifndef ARM32_NEW_VM_LAYOUT
   5543 		pte[(va >> PGSHIFT) & 0x3ff] =
   5544 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5545 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5546 #else
   5547 		pte[l2pte_index(va)] =
   5548 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5549 		PTE_SYNC(&pte[l2pte_index(va)]);
   5550 #endif
   5551 		va += PAGE_SIZE;
   5552 		pa += PAGE_SIZE;
   5553 		resid -= PAGE_SIZE;
   5554 	}
   5555 #ifdef VERBOSE_INIT_ARM
   5556 	printf("\n");
   5557 #endif
   5558 	return (size);
   5559 }
   5560 
   5561 /********************** Static device map routines ***************************/
   5562 
   5563 static const struct pmap_devmap *pmap_devmap_table;
   5564 
   5565 /*
   5566  * Register the devmap table.  This is provided in case early console
   5567  * initialization needs to register mappings created by bootstrap code
   5568  * before pmap_devmap_bootstrap() is called.
   5569  */
   5570 void
   5571 pmap_devmap_register(const struct pmap_devmap *table)
   5572 {
   5573 
   5574 	pmap_devmap_table = table;
   5575 }
   5576 
   5577 /*
   5578  * Map all of the static regions in the devmap table, and remember
   5579  * the devmap table so other parts of the kernel can look up entries
   5580  * later.
   5581  */
   5582 void
   5583 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5584 {
   5585 	int i;
   5586 
   5587 	pmap_devmap_table = table;
   5588 
   5589 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5590 #ifdef VERBOSE_INIT_ARM
   5591 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5592 		    pmap_devmap_table[i].pd_pa,
   5593 		    pmap_devmap_table[i].pd_pa +
   5594 			pmap_devmap_table[i].pd_size - 1,
   5595 		    pmap_devmap_table[i].pd_va);
   5596 #endif
   5597 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5598 		    pmap_devmap_table[i].pd_pa,
   5599 		    pmap_devmap_table[i].pd_size,
   5600 		    pmap_devmap_table[i].pd_prot,
   5601 		    pmap_devmap_table[i].pd_cache);
   5602 	}
   5603 }
   5604 
   5605 const struct pmap_devmap *
   5606 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5607 {
   5608 	uint64_t endpa;
   5609 	int i;
   5610 
   5611 	if (pmap_devmap_table == NULL)
   5612 		return (NULL);
   5613 
   5614 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5615 
   5616 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5617 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5618 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5619 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5620 			return (&pmap_devmap_table[i]);
   5621 	}
   5622 
   5623 	return (NULL);
   5624 }
   5625 
   5626 const struct pmap_devmap *
   5627 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5628 {
   5629 	int i;
   5630 
   5631 	if (pmap_devmap_table == NULL)
   5632 		return (NULL);
   5633 
   5634 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5635 		if (va >= pmap_devmap_table[i].pd_va &&
   5636 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5637 				     pmap_devmap_table[i].pd_size - 1)
   5638 			return (&pmap_devmap_table[i]);
   5639 	}
   5640 
   5641 	return (NULL);
   5642 }
   5643 
   5644 /********************** PTE initialization routines **************************/
   5645 
   5646 /*
   5647  * These routines are called when the CPU type is identified to set up
   5648  * the PTE prototypes, cache modes, etc.
   5649  *
   5650  * The variables are always here, just in case LKMs need to reference
   5651  * them (though, they shouldn't).
   5652  */
   5653 
   5654 pt_entry_t	pte_l1_s_cache_mode;
   5655 pt_entry_t	pte_l1_s_cache_mode_pt;
   5656 pt_entry_t	pte_l1_s_cache_mask;
   5657 
   5658 pt_entry_t	pte_l2_l_cache_mode;
   5659 pt_entry_t	pte_l2_l_cache_mode_pt;
   5660 pt_entry_t	pte_l2_l_cache_mask;
   5661 
   5662 pt_entry_t	pte_l2_s_cache_mode;
   5663 pt_entry_t	pte_l2_s_cache_mode_pt;
   5664 pt_entry_t	pte_l2_s_cache_mask;
   5665 
   5666 pt_entry_t	pte_l2_s_prot_u;
   5667 pt_entry_t	pte_l2_s_prot_w;
   5668 pt_entry_t	pte_l2_s_prot_mask;
   5669 
   5670 pt_entry_t	pte_l1_s_proto;
   5671 pt_entry_t	pte_l1_c_proto;
   5672 pt_entry_t	pte_l2_s_proto;
   5673 
   5674 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5675 void		(*pmap_zero_page_func)(paddr_t);
   5676 
   5677 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5678 void
   5679 pmap_pte_init_generic(void)
   5680 {
   5681 
   5682 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5683 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5684 
   5685 	pte_l2_l_cache_mode = L2_B|L2_C;
   5686 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5687 
   5688 	pte_l2_s_cache_mode = L2_B|L2_C;
   5689 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5690 
   5691 	/*
   5692 	 * If we have a write-through cache, set B and C.  If
   5693 	 * we have a write-back cache, then we assume setting
   5694 	 * only C will make those pages write-through.
   5695 	 */
   5696 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5697 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5698 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5699 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5700 	} else {
   5701 #if ARM_MMU_V6 > 1
   5702 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5703 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5704 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5705 #else
   5706 		pte_l1_s_cache_mode_pt = L1_S_C;
   5707 		pte_l2_l_cache_mode_pt = L2_C;
   5708 		pte_l2_s_cache_mode_pt = L2_C;
   5709 #endif
   5710 	}
   5711 
   5712 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5713 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5714 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5715 
   5716 	pte_l1_s_proto = L1_S_PROTO_generic;
   5717 	pte_l1_c_proto = L1_C_PROTO_generic;
   5718 	pte_l2_s_proto = L2_S_PROTO_generic;
   5719 
   5720 	pmap_copy_page_func = pmap_copy_page_generic;
   5721 	pmap_zero_page_func = pmap_zero_page_generic;
   5722 }
   5723 
   5724 #if defined(CPU_ARM8)
   5725 void
   5726 pmap_pte_init_arm8(void)
   5727 {
   5728 
   5729 	/*
   5730 	 * ARM8 is compatible with generic, but we need to use
   5731 	 * the page tables uncached.
   5732 	 */
   5733 	pmap_pte_init_generic();
   5734 
   5735 	pte_l1_s_cache_mode_pt = 0;
   5736 	pte_l2_l_cache_mode_pt = 0;
   5737 	pte_l2_s_cache_mode_pt = 0;
   5738 }
   5739 #endif /* CPU_ARM8 */
   5740 
   5741 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5742 void
   5743 pmap_pte_init_arm9(void)
   5744 {
   5745 
   5746 	/*
   5747 	 * ARM9 is compatible with generic, but we want to use
   5748 	 * write-through caching for now.
   5749 	 */
   5750 	pmap_pte_init_generic();
   5751 
   5752 	pte_l1_s_cache_mode = L1_S_C;
   5753 	pte_l2_l_cache_mode = L2_C;
   5754 	pte_l2_s_cache_mode = L2_C;
   5755 
   5756 	pte_l1_s_cache_mode_pt = L1_S_C;
   5757 	pte_l2_l_cache_mode_pt = L2_C;
   5758 	pte_l2_s_cache_mode_pt = L2_C;
   5759 }
   5760 #endif /* CPU_ARM9 */
   5761 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5762 
   5763 #if defined(CPU_ARM10)
   5764 void
   5765 pmap_pte_init_arm10(void)
   5766 {
   5767 
   5768 	/*
   5769 	 * ARM10 is compatible with generic, but we want to use
   5770 	 * write-through caching for now.
   5771 	 */
   5772 	pmap_pte_init_generic();
   5773 
   5774 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5775 	pte_l2_l_cache_mode = L2_B | L2_C;
   5776 	pte_l2_s_cache_mode = L2_B | L2_C;
   5777 
   5778 	pte_l1_s_cache_mode_pt = L1_S_C;
   5779 	pte_l2_l_cache_mode_pt = L2_C;
   5780 	pte_l2_s_cache_mode_pt = L2_C;
   5781 
   5782 }
   5783 #endif /* CPU_ARM10 */
   5784 
   5785 #if ARM_MMU_SA1 == 1
   5786 void
   5787 pmap_pte_init_sa1(void)
   5788 {
   5789 
   5790 	/*
   5791 	 * The StrongARM SA-1 cache does not have a write-through
   5792 	 * mode.  So, do the generic initialization, then reset
   5793 	 * the page table cache mode to B=1,C=1, and note that
   5794 	 * the PTEs need to be sync'd.
   5795 	 */
   5796 	pmap_pte_init_generic();
   5797 
   5798 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5799 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5800 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5801 
   5802 	pmap_needs_pte_sync = 1;
   5803 }
   5804 #endif /* ARM_MMU_SA1 == 1*/
   5805 
   5806 #if ARM_MMU_XSCALE == 1
   5807 #if (ARM_NMMUS > 1)
   5808 static u_int xscale_use_minidata;
   5809 #endif
   5810 
   5811 void
   5812 pmap_pte_init_xscale(void)
   5813 {
   5814 	uint32_t auxctl;
   5815 	int write_through = 0;
   5816 
   5817 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5818 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   5819 
   5820 	pte_l2_l_cache_mode = L2_B|L2_C;
   5821 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   5822 
   5823 	pte_l2_s_cache_mode = L2_B|L2_C;
   5824 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   5825 
   5826 	pte_l1_s_cache_mode_pt = L1_S_C;
   5827 	pte_l2_l_cache_mode_pt = L2_C;
   5828 	pte_l2_s_cache_mode_pt = L2_C;
   5829 
   5830 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   5831 	/*
   5832 	 * The XScale core has an enhanced mode where writes that
   5833 	 * miss the cache cause a cache line to be allocated.  This
   5834 	 * is significantly faster than the traditional, write-through
   5835 	 * behavior of this case.
   5836 	 */
   5837 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   5838 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   5839 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   5840 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   5841 
   5842 #ifdef XSCALE_CACHE_WRITE_THROUGH
   5843 	/*
   5844 	 * Some versions of the XScale core have various bugs in
   5845 	 * their cache units, the work-around for which is to run
   5846 	 * the cache in write-through mode.  Unfortunately, this
   5847 	 * has a major (negative) impact on performance.  So, we
   5848 	 * go ahead and run fast-and-loose, in the hopes that we
   5849 	 * don't line up the planets in a way that will trip the
   5850 	 * bugs.
   5851 	 *
   5852 	 * However, we give you the option to be slow-but-correct.
   5853 	 */
   5854 	write_through = 1;
   5855 #elif defined(XSCALE_CACHE_WRITE_BACK)
   5856 	/* force write back cache mode */
   5857 	write_through = 0;
   5858 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   5859 	/*
   5860 	 * Intel PXA2[15]0 processors are known to have a bug in
   5861 	 * write-back cache on revision 4 and earlier (stepping
   5862 	 * A[01] and B[012]).  Fixed for C0 and later.
   5863 	 */
   5864 	{
   5865 		uint32_t id, type;
   5866 
   5867 		id = cpufunc_id();
   5868 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   5869 
   5870 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   5871 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   5872 				/* write through for stepping A0-1 and B0-2 */
   5873 				write_through = 1;
   5874 			}
   5875 		}
   5876 	}
   5877 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   5878 
   5879 	if (write_through) {
   5880 		pte_l1_s_cache_mode = L1_S_C;
   5881 		pte_l2_l_cache_mode = L2_C;
   5882 		pte_l2_s_cache_mode = L2_C;
   5883 	}
   5884 
   5885 #if (ARM_NMMUS > 1)
   5886 	xscale_use_minidata = 1;
   5887 #endif
   5888 
   5889 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   5890 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   5891 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   5892 
   5893 	pte_l1_s_proto = L1_S_PROTO_xscale;
   5894 	pte_l1_c_proto = L1_C_PROTO_xscale;
   5895 	pte_l2_s_proto = L2_S_PROTO_xscale;
   5896 
   5897 	pmap_copy_page_func = pmap_copy_page_xscale;
   5898 	pmap_zero_page_func = pmap_zero_page_xscale;
   5899 
   5900 	/*
   5901 	 * Disable ECC protection of page table access, for now.
   5902 	 */
   5903 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   5904 	auxctl &= ~XSCALE_AUXCTL_P;
   5905 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   5906 }
   5907 
   5908 /*
   5909  * xscale_setup_minidata:
   5910  *
   5911  *	Set up the mini-data cache clean area.  We require the
   5912  *	caller to allocate the right amount of physically and
   5913  *	virtually contiguous space.
   5914  */
   5915 void
   5916 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   5917 {
   5918 	extern vaddr_t xscale_minidata_clean_addr;
   5919 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   5920 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5921 	pt_entry_t *pte;
   5922 	vsize_t size;
   5923 	uint32_t auxctl;
   5924 
   5925 	xscale_minidata_clean_addr = va;
   5926 
   5927 	/* Round it to page size. */
   5928 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   5929 
   5930 	for (; size != 0;
   5931 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   5932 #ifndef ARM32_NEW_VM_LAYOUT
   5933 		pte = (pt_entry_t *)
   5934 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5935 #else
   5936 		pte = (pt_entry_t *) kernel_pt_lookup(
   5937 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5938 #endif
   5939 		if (pte == NULL)
   5940 			panic("xscale_setup_minidata: can't find L2 table for "
   5941 			    "VA 0x%08lx", va);
   5942 #ifndef ARM32_NEW_VM_LAYOUT
   5943 		pte[(va >> PGSHIFT) & 0x3ff] =
   5944 #else
   5945 		pte[l2pte_index(va)] =
   5946 #endif
   5947 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   5948 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   5949 	}
   5950 
   5951 	/*
   5952 	 * Configure the mini-data cache for write-back with
   5953 	 * read/write-allocate.
   5954 	 *
   5955 	 * NOTE: In order to reconfigure the mini-data cache, we must
   5956 	 * make sure it contains no valid data!  In order to do that,
   5957 	 * we must issue a global data cache invalidate command!
   5958 	 *
   5959 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   5960 	 * THIS IS VERY IMPORTANT!
   5961 	 */
   5962 
   5963 	/* Invalidate data and mini-data. */
   5964 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   5965 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   5966 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   5967 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   5968 }
   5969 
   5970 /*
   5971  * Change the PTEs for the specified kernel mappings such that they
   5972  * will use the mini data cache instead of the main data cache.
   5973  */
   5974 void
   5975 pmap_uarea(vaddr_t va)
   5976 {
   5977 	struct l2_bucket *l2b;
   5978 	pt_entry_t *ptep, *sptep, pte;
   5979 	vaddr_t next_bucket, eva;
   5980 
   5981 #if (ARM_NMMUS > 1)
   5982 	if (xscale_use_minidata == 0)
   5983 		return;
   5984 #endif
   5985 
   5986 	eva = va + USPACE;
   5987 
   5988 	while (va < eva) {
   5989 		next_bucket = L2_NEXT_BUCKET(va);
   5990 		if (next_bucket > eva)
   5991 			next_bucket = eva;
   5992 
   5993 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5994 		KDASSERT(l2b != NULL);
   5995 
   5996 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   5997 
   5998 		while (va < next_bucket) {
   5999 			pte = *ptep;
   6000 			if (!l2pte_minidata(pte)) {
   6001 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6002 				cpu_tlb_flushD_SE(va);
   6003 				*ptep = pte & ~L2_B;
   6004 			}
   6005 			ptep++;
   6006 			va += PAGE_SIZE;
   6007 		}
   6008 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6009 	}
   6010 	cpu_cpwait();
   6011 }
   6012 #endif /* ARM_MMU_XSCALE == 1 */
   6013 
   6014 /*
   6015  * return the PA of the current L1 table, for use when handling a crash dump
   6016  */
   6017 uint32_t pmap_kernel_L1_addr()
   6018 {
   6019 	return pmap_kernel()->pm_l1->l1_physaddr;
   6020 }
   6021 
   6022 #if defined(DDB)
   6023 /*
   6024  * A couple of ddb-callable functions for dumping pmaps
   6025  */
   6026 void pmap_dump_all(void);
   6027 void pmap_dump(pmap_t);
   6028 
   6029 void
   6030 pmap_dump_all(void)
   6031 {
   6032 	pmap_t pm;
   6033 
   6034 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6035 		if (pm == pmap_kernel())
   6036 			continue;
   6037 		pmap_dump(pm);
   6038 		printf("\n");
   6039 	}
   6040 }
   6041 
   6042 static pt_entry_t ncptes[64];
   6043 static void pmap_dump_ncpg(pmap_t);
   6044 
   6045 void
   6046 pmap_dump(pmap_t pm)
   6047 {
   6048 	struct l2_dtable *l2;
   6049 	struct l2_bucket *l2b;
   6050 	pt_entry_t *ptep, pte;
   6051 	vaddr_t l2_va, l2b_va, va;
   6052 	int i, j, k, occ, rows = 0;
   6053 
   6054 	if (pm == pmap_kernel())
   6055 		printf("pmap_kernel (%p): ", pm);
   6056 	else
   6057 		printf("user pmap (%p): ", pm);
   6058 
   6059 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6060 
   6061 	l2_va = 0;
   6062 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6063 		l2 = pm->pm_l2[i];
   6064 
   6065 		if (l2 == NULL || l2->l2_occupancy == 0)
   6066 			continue;
   6067 
   6068 		l2b_va = l2_va;
   6069 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6070 			l2b = &l2->l2_bucket[j];
   6071 
   6072 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6073 				continue;
   6074 
   6075 			ptep = l2b->l2b_kva;
   6076 
   6077 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6078 				;
   6079 
   6080 			k &= ~63;
   6081 			occ = l2b->l2b_occupancy;
   6082 			va = l2b_va + (k * 4096);
   6083 			for (; k < 256; k++, va += 0x1000) {
   6084 				char ch = ' ';
   6085 				if ((k % 64) == 0) {
   6086 					if ((rows % 8) == 0) {
   6087 						printf(
   6088 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6089 					}
   6090 					printf("%08lx: ", va);
   6091 				}
   6092 
   6093 				ncptes[k & 63] = 0;
   6094 				pte = ptep[k];
   6095 				if (pte == 0) {
   6096 					ch = '.';
   6097 				} else {
   6098 					occ--;
   6099 					switch (pte & 0x0c) {
   6100 					case 0x00:
   6101 						ch = 'D'; /* No cache No buff */
   6102 						break;
   6103 					case 0x04:
   6104 						ch = 'B'; /* No cache buff */
   6105 						break;
   6106 					case 0x08:
   6107 						if (pte & 0x40)
   6108 							ch = 'm';
   6109 						else
   6110 						   ch = 'C'; /* Cache No buff */
   6111 						break;
   6112 					case 0x0c:
   6113 						ch = 'F'; /* Cache Buff */
   6114 						break;
   6115 					}
   6116 
   6117 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6118 						ch += 0x20;
   6119 
   6120 					if ((pte & 0xc) == 0)
   6121 						ncptes[k & 63] = pte;
   6122 				}
   6123 
   6124 				if ((k % 64) == 63) {
   6125 					rows++;
   6126 					printf("%c\n", ch);
   6127 					pmap_dump_ncpg(pm);
   6128 					if (occ == 0)
   6129 						break;
   6130 				} else
   6131 					printf("%c", ch);
   6132 			}
   6133 		}
   6134 	}
   6135 }
   6136 
   6137 static void
   6138 pmap_dump_ncpg(pmap_t pm)
   6139 {
   6140 	struct vm_page *pg;
   6141 	struct pv_entry *pv;
   6142 	int i;
   6143 
   6144 	for (i = 0; i < 63; i++) {
   6145 		if (ncptes[i] == 0)
   6146 			continue;
   6147 
   6148 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6149 		if (pg == NULL)
   6150 			continue;
   6151 
   6152 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6153 		    VM_PAGE_TO_PHYS(pg),
   6154 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6155 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6156 
   6157 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   6158 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6159 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6160 			    pv->pv_va, pv->pv_flags);
   6161 		}
   6162 	}
   6163 }
   6164 #endif
   6165 
   6166 #ifdef PMAP_STEAL_MEMORY
   6167 void
   6168 pmap_boot_pageadd(pv_addr_t *newpv)
   6169 {
   6170 	pv_addr_t *pv, *npv;
   6171 
   6172 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6173 		if (newpv->pv_pa < pv->pv_va) {
   6174 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6175 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6176 				newpv->pv_size += pv->pv_size;
   6177 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6178 			}
   6179 			pv = NULL;
   6180 		} else {
   6181 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6182 			     pv = npv) {
   6183 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6184 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6185 				if (newpv->pv_pa > npv->pv_pa)
   6186 					continue;
   6187 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6188 					pv->pv_size += newpv->pv_size;
   6189 					return;
   6190 				}
   6191 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6192 					break;
   6193 				newpv->pv_size += npv->pv_size;
   6194 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6195 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6196 				return;
   6197 			}
   6198 		}
   6199 	}
   6200 
   6201 	if (pv) {
   6202 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6203 	} else {
   6204 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6205 	}
   6206 }
   6207 
   6208 void
   6209 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6210 	pv_addr_t *rpv)
   6211 {
   6212 	pv_addr_t *pv, **pvp;
   6213 	struct vm_physseg *ps;
   6214 	size_t i;
   6215 
   6216 	KASSERT(amount & PGOFSET);
   6217 	KASSERT((mask & PGOFSET) == 0);
   6218 	KASSERT((match & PGOFSET) == 0);
   6219 	KASSERT(amount != 0);
   6220 
   6221 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6222 	     (pv = *pvp) != NULL;
   6223 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6224 		pv_addr_t *newpv;
   6225 		psize_t off;
   6226 		/*
   6227 		 * If this entry is too small to satify the request...
   6228 		 */
   6229 		KASSERT(pv->pv_size > 0);
   6230 		if (pv->pv_size < amount)
   6231 			continue;
   6232 
   6233 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6234 			if (((pv->pv_pa + off) & mask) == match
   6235 			    && off + amount <= pv->pv_size)
   6236 				break;
   6237 		}
   6238 		if (off > mask)
   6239 			continue;
   6240 
   6241 		rpv->pv_va = pv->pv_va + off;
   6242 		rpv->pv_pa = pv->pv_pa + off;
   6243 		rpv->pv_size = amount;
   6244 		pv->pv_size -= amount;
   6245 		if (pv->pv_size == 0) {
   6246 			KASSERT(off == 0);
   6247 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6248 			*pvp = SLIST_NEXT(pv, pv_list);
   6249 		} else if (off == 0) {
   6250 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6251 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6252 			*newpv = *pv;
   6253 			newpv->pv_pa += amount;
   6254 			newpv->pv_va += amount;
   6255 			*pvp = newpv;
   6256 		} else if (off < pv->pv_size) {
   6257 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6258 			*newpv = *pv;
   6259 			newpv->pv_size -= off;
   6260 			newpv->pv_pa += off + amount;
   6261 			newpv->pv_va += off + amount;
   6262 
   6263 			SLIST_NEXT(pv, pv_list) = newpv;
   6264 			pv->pv_size = off;
   6265 		} else {
   6266 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6267 		}
   6268 		memset((void *)rpv->pv_va, 0, amount);
   6269 		return;
   6270 	}
   6271 
   6272 	if (vm_nphysseg == 0)
   6273 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6274 
   6275 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6276 	     (pv = *pvp) != NULL;
   6277 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6278 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6279 			break;
   6280 	}
   6281 	KASSERT(mask == 0);
   6282 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6283 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6284 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6285 			rpv->pv_va = pv->pv_va;
   6286 			rpv->pv_pa = pv->pv_pa;
   6287 			rpv->pv_size = amount;
   6288 			*pvp = NULL;
   6289 			pmap_map_chunk(kernel_l1pt.pv_va,
   6290 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6291 			     ptoa(ps->avail_start),
   6292 			     amount - pv->pv_size,
   6293 			     VM_PROT_READ|VM_PROT_WRITE,
   6294 			     PTE_CACHE);
   6295 			ps->avail_start += atop(amount - pv->pv_size);
   6296 			/*
   6297 			 * If we consumed the entire physseg, remove it.
   6298 			 */
   6299 			if (ps->avail_start == ps->avail_end) {
   6300 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6301 					ps[0] = ps[1];
   6302 			}
   6303 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6304 			return;
   6305 		}
   6306 	}
   6307 
   6308 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6309 }
   6310 
   6311 vaddr_t
   6312 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6313 {
   6314 	pv_addr_t pv;
   6315 
   6316 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6317 
   6318 	return pv.pv_va;
   6319 }
   6320 #endif /* PMAP_STEAL_MEMORY */
   6321