Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.183
      1 /*	$NetBSD: pmap.c,v 1.183 2008/08/06 19:13:45 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/user.h>
    202 #include <sys/pool.h>
    203 #include <sys/cdefs.h>
    204 #include <sys/cpu.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <machine/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/arm32/katelib.h>
    213 
    214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.183 2008/08/06 19:13:45 matt Exp $");
    215 
    216 #ifdef PMAP_DEBUG
    217 
    218 /* XXX need to get rid of all refs to this */
    219 int pmap_debug_level = 0;
    220 
    221 /*
    222  * for switching to potentially finer grained debugging
    223  */
    224 #define	PDB_FOLLOW	0x0001
    225 #define	PDB_INIT	0x0002
    226 #define	PDB_ENTER	0x0004
    227 #define	PDB_REMOVE	0x0008
    228 #define	PDB_CREATE	0x0010
    229 #define	PDB_PTPAGE	0x0020
    230 #define	PDB_GROWKERN	0x0040
    231 #define	PDB_BITS	0x0080
    232 #define	PDB_COLLECT	0x0100
    233 #define	PDB_PROTECT	0x0200
    234 #define	PDB_MAP_L1	0x0400
    235 #define	PDB_BOOTSTRAP	0x1000
    236 #define	PDB_PARANOIA	0x2000
    237 #define	PDB_WIRING	0x4000
    238 #define	PDB_PVDUMP	0x8000
    239 #define	PDB_VAC		0x10000
    240 #define	PDB_KENTER	0x20000
    241 #define	PDB_KREMOVE	0x40000
    242 #define	PDB_EXEC	0x80000
    243 
    244 int debugmap = 1;
    245 int pmapdebug = 0;
    246 #define	NPDEBUG(_lev_,_stat_) \
    247 	if (pmapdebug & (_lev_)) \
    248         	((_stat_))
    249 
    250 #else	/* PMAP_DEBUG */
    251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    252 #endif	/* PMAP_DEBUG */
    253 
    254 /*
    255  * pmap_kernel() points here
    256  */
    257 struct pmap     kernel_pmap_store;
    258 
    259 /*
    260  * Which pmap is currently 'live' in the cache
    261  *
    262  * XXXSCW: Fix for SMP ...
    263  */
    264 static pmap_t pmap_recent_user;
    265 
    266 /*
    267  * Pointer to last active lwp, or NULL if it exited.
    268  */
    269 struct lwp *pmap_previous_active_lwp;
    270 
    271 /*
    272  * Pool and cache that pmap structures are allocated from.
    273  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    274  * in pmap_create().
    275  */
    276 static struct pool_cache pmap_cache;
    277 static LIST_HEAD(, pmap) pmap_pmaps;
    278 
    279 /*
    280  * Pool of PV structures
    281  */
    282 static struct pool pmap_pv_pool;
    283 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    284 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    285 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    286 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    287 };
    288 
    289 /*
    290  * Pool and cache of l2_dtable structures.
    291  * We use a cache to avoid clearing the structures when they're
    292  * allocated. (196 bytes)
    293  */
    294 static struct pool_cache pmap_l2dtable_cache;
    295 static vaddr_t pmap_kernel_l2dtable_kva;
    296 
    297 /*
    298  * Pool and cache of L2 page descriptors.
    299  * We use a cache to avoid clearing the descriptor table
    300  * when they're allocated. (1KB)
    301  */
    302 static struct pool_cache pmap_l2ptp_cache;
    303 static vaddr_t pmap_kernel_l2ptp_kva;
    304 static paddr_t pmap_kernel_l2ptp_phys;
    305 
    306 #ifdef PMAPCOUNTERS
    307 #define	PMAP_EVCNT_INITIALIZER(name) \
    308 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    309 
    310 #ifdef PMAP_CACHE_VIPT
    311 static struct evcnt pmap_ev_vac_color_new =
    312    PMAP_EVCNT_INITIALIZER("new page color");
    313 static struct evcnt pmap_ev_vac_color_reuse =
    314    PMAP_EVCNT_INITIALIZER("ok first page color");
    315 static struct evcnt pmap_ev_vac_color_ok =
    316    PMAP_EVCNT_INITIALIZER("ok page color");
    317 static struct evcnt pmap_ev_vac_color_blind =
    318    PMAP_EVCNT_INITIALIZER("blind page color");
    319 static struct evcnt pmap_ev_vac_color_change =
    320    PMAP_EVCNT_INITIALIZER("change page color");
    321 static struct evcnt pmap_ev_vac_color_erase =
    322    PMAP_EVCNT_INITIALIZER("erase page color");
    323 static struct evcnt pmap_ev_vac_color_none =
    324    PMAP_EVCNT_INITIALIZER("no page color");
    325 static struct evcnt pmap_ev_vac_color_restore =
    326    PMAP_EVCNT_INITIALIZER("restore page color");
    327 
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    336 #endif
    337 
    338 static struct evcnt pmap_ev_mappings =
    339    PMAP_EVCNT_INITIALIZER("pages mapped");
    340 static struct evcnt pmap_ev_unmappings =
    341    PMAP_EVCNT_INITIALIZER("pages unmapped");
    342 static struct evcnt pmap_ev_remappings =
    343    PMAP_EVCNT_INITIALIZER("pages remapped");
    344 
    345 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    346 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    347 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    348 
    349 static struct evcnt pmap_ev_kernel_mappings =
    350    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    351 static struct evcnt pmap_ev_kernel_unmappings =
    352    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    353 static struct evcnt pmap_ev_kernel_remappings =
    354    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    355 
    356 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    359 
    360 static struct evcnt pmap_ev_kenter_mappings =
    361    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    362 static struct evcnt pmap_ev_kenter_unmappings =
    363    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    364 static struct evcnt pmap_ev_kenter_remappings =
    365    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    366 static struct evcnt pmap_ev_pt_mappings =
    367    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    368 
    369 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    373 
    374 #ifdef PMAP_CACHE_VIPT
    375 static struct evcnt pmap_ev_exec_mappings =
    376    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    377 static struct evcnt pmap_ev_exec_cached =
    378    PMAP_EVCNT_INITIALIZER("exec pages cached");
    379 
    380 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    381 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    382 
    383 static struct evcnt pmap_ev_exec_synced =
    384    PMAP_EVCNT_INITIALIZER("exec pages synced");
    385 static struct evcnt pmap_ev_exec_synced_map =
    386    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    387 static struct evcnt pmap_ev_exec_synced_unmap =
    388    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    389 static struct evcnt pmap_ev_exec_synced_remap =
    390    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    391 static struct evcnt pmap_ev_exec_synced_clearbit =
    392    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    393 static struct evcnt pmap_ev_exec_synced_kremove =
    394    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    395 
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    402 
    403 static struct evcnt pmap_ev_exec_discarded_unmap =
    404    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    405 static struct evcnt pmap_ev_exec_discarded_zero =
    406    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    407 static struct evcnt pmap_ev_exec_discarded_copy =
    408    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    409 static struct evcnt pmap_ev_exec_discarded_page_protect =
    410    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    411 static struct evcnt pmap_ev_exec_discarded_clearbit =
    412    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    413 static struct evcnt pmap_ev_exec_discarded_kremove =
    414    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    415 
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    422 #endif /* PMAP_CACHE_VIPT */
    423 
    424 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    425 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    426 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    427 
    428 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    429 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    430 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    431 
    432 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    433 #else
    434 #define	PMAPCOUNT(x)	((void)0)
    435 #endif
    436 
    437 /*
    438  * pmap copy/zero page, and mem(5) hook point
    439  */
    440 static pt_entry_t *csrc_pte, *cdst_pte;
    441 static vaddr_t csrcp, cdstp;
    442 vaddr_t memhook;			/* used by mem.c */
    443 extern void *msgbufaddr;
    444 
    445 /*
    446  * Flag to indicate if pmap_init() has done its thing
    447  */
    448 bool pmap_initialized;
    449 
    450 /*
    451  * Misc. locking data structures
    452  */
    453 
    454 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    455 static struct lock pmap_main_lock;
    456 
    457 #define PMAP_MAP_TO_HEAD_LOCK() \
    458      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    459 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    460      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    461 #define PMAP_HEAD_TO_MAP_LOCK() \
    462      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    463 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    464      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    465 #else
    466 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    467 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    468 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    469 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    470 #endif
    471 
    472 #define	pmap_acquire_pmap_lock(pm)			\
    473 	do {						\
    474 		if ((pm) != pmap_kernel())		\
    475 			mutex_enter(&(pm)->pm_lock);	\
    476 	} while (/*CONSTCOND*/0)
    477 
    478 #define	pmap_release_pmap_lock(pm)			\
    479 	do {						\
    480 		if ((pm) != pmap_kernel())		\
    481 			mutex_exit(&(pm)->pm_lock);	\
    482 	} while (/*CONSTCOND*/0)
    483 
    484 
    485 /*
    486  * Metadata for L1 translation tables.
    487  */
    488 struct l1_ttable {
    489 	/* Entry on the L1 Table list */
    490 	SLIST_ENTRY(l1_ttable) l1_link;
    491 
    492 	/* Entry on the L1 Least Recently Used list */
    493 	TAILQ_ENTRY(l1_ttable) l1_lru;
    494 
    495 	/* Track how many domains are allocated from this L1 */
    496 	volatile u_int l1_domain_use_count;
    497 
    498 	/*
    499 	 * A free-list of domain numbers for this L1.
    500 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    501 	 * is slow on ARM.
    502 	 */
    503 	u_int8_t l1_domain_first;
    504 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    505 
    506 	/* Physical address of this L1 page table */
    507 	paddr_t l1_physaddr;
    508 
    509 	/* KVA of this L1 page table */
    510 	pd_entry_t *l1_kva;
    511 };
    512 
    513 /*
    514  * Convert a virtual address into its L1 table index. That is, the
    515  * index used to locate the L2 descriptor table pointer in an L1 table.
    516  * This is basically used to index l1->l1_kva[].
    517  *
    518  * Each L2 descriptor table represents 1MB of VA space.
    519  */
    520 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    521 
    522 /*
    523  * L1 Page Tables are tracked using a Least Recently Used list.
    524  *  - New L1s are allocated from the HEAD.
    525  *  - Freed L1s are added to the TAIl.
    526  *  - Recently accessed L1s (where an 'access' is some change to one of
    527  *    the userland pmaps which owns this L1) are moved to the TAIL.
    528  */
    529 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    530 static struct simplelock l1_lru_lock;
    531 
    532 /*
    533  * A list of all L1 tables
    534  */
    535 static SLIST_HEAD(, l1_ttable) l1_list;
    536 
    537 /*
    538  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    539  *
    540  * This is normally 16MB worth L2 page descriptors for any given pmap.
    541  * Reference counts are maintained for L2 descriptors so they can be
    542  * freed when empty.
    543  */
    544 struct l2_dtable {
    545 	/* The number of L2 page descriptors allocated to this l2_dtable */
    546 	u_int l2_occupancy;
    547 
    548 	/* List of L2 page descriptors */
    549 	struct l2_bucket {
    550 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    551 		paddr_t l2b_phys;	/* Physical address of same */
    552 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    553 		u_short l2b_occupancy;	/* How many active descriptors */
    554 	} l2_bucket[L2_BUCKET_SIZE];
    555 };
    556 
    557 /*
    558  * Given an L1 table index, calculate the corresponding l2_dtable index
    559  * and bucket index within the l2_dtable.
    560  */
    561 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    562 				 (L2_SIZE - 1))
    563 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    564 
    565 /*
    566  * Given a virtual address, this macro returns the
    567  * virtual address required to drop into the next L2 bucket.
    568  */
    569 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    570 
    571 /*
    572  * L2 allocation.
    573  */
    574 #define	pmap_alloc_l2_dtable()		\
    575 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    576 #define	pmap_free_l2_dtable(l2)		\
    577 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    578 #define pmap_alloc_l2_ptp(pap)		\
    579 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    580 	    PR_NOWAIT, (pap)))
    581 
    582 /*
    583  * We try to map the page tables write-through, if possible.  However, not
    584  * all CPUs have a write-through cache mode, so on those we have to sync
    585  * the cache when we frob page tables.
    586  *
    587  * We try to evaluate this at compile time, if possible.  However, it's
    588  * not always possible to do that, hence this run-time var.
    589  */
    590 int	pmap_needs_pte_sync;
    591 
    592 /*
    593  * Real definition of pv_entry.
    594  */
    595 struct pv_entry {
    596 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    597 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    598 	vaddr_t		pv_va;          /* virtual address for mapping */
    599 	u_int		pv_flags;       /* flags */
    600 };
    601 
    602 /*
    603  * Macro to determine if a mapping might be resident in the
    604  * instruction cache and/or TLB
    605  */
    606 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    607 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    608 
    609 /*
    610  * Macro to determine if a mapping might be resident in the
    611  * data cache and/or TLB
    612  */
    613 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    614 
    615 /*
    616  * Local prototypes
    617  */
    618 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    619 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    620 			    pt_entry_t **);
    621 static bool		pmap_is_current(pmap_t);
    622 static bool		pmap_is_cached(pmap_t);
    623 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    624 			    pmap_t, vaddr_t, u_int);
    625 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    626 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    627 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    628 			    u_int, u_int);
    629 
    630 static void		pmap_pinit(pmap_t);
    631 static int		pmap_pmap_ctor(void *, void *, int);
    632 
    633 static void		pmap_alloc_l1(pmap_t);
    634 static void		pmap_free_l1(pmap_t);
    635 static void		pmap_use_l1(pmap_t);
    636 
    637 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    638 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    639 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    640 static int		pmap_l2ptp_ctor(void *, void *, int);
    641 static int		pmap_l2dtable_ctor(void *, void *, int);
    642 
    643 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    644 #ifdef PMAP_CACHE_VIVT
    645 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    646 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    647 #endif
    648 
    649 static void		pmap_clearbit(struct vm_page *, u_int);
    650 #ifdef PMAP_CACHE_VIVT
    651 static int		pmap_clean_page(struct pv_entry *, bool);
    652 #endif
    653 #ifdef PMAP_CACHE_VIPT
    654 static void		pmap_syncicache_page(struct vm_page *);
    655 static void		pmap_flush_page(struct vm_page *, bool);
    656 #endif
    657 static void		pmap_page_remove(struct vm_page *);
    658 
    659 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    660 static vaddr_t		kernel_pt_lookup(paddr_t);
    661 
    662 
    663 /*
    664  * External function prototypes
    665  */
    666 extern void bzero_page(vaddr_t);
    667 extern void bcopy_page(vaddr_t, vaddr_t);
    668 
    669 /*
    670  * Misc variables
    671  */
    672 vaddr_t virtual_avail;
    673 vaddr_t virtual_end;
    674 vaddr_t pmap_curmaxkvaddr;
    675 
    676 vaddr_t avail_start;
    677 vaddr_t avail_end;
    678 
    679 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    680 pv_addr_t kernelpages;
    681 pv_addr_t kernel_l1pt;
    682 pv_addr_t systempage;
    683 
    684 /* Function to set the debug level of the pmap code */
    685 
    686 #ifdef PMAP_DEBUG
    687 void
    688 pmap_debug(int level)
    689 {
    690 	pmap_debug_level = level;
    691 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    692 }
    693 #endif	/* PMAP_DEBUG */
    694 
    695 /*
    696  * A bunch of routines to conditionally flush the caches/TLB depending
    697  * on whether the specified pmap actually needs to be flushed at any
    698  * given time.
    699  */
    700 static inline void
    701 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    702 {
    703 
    704 	if (pm->pm_cstate.cs_tlb_id)
    705 		cpu_tlb_flushID_SE(va);
    706 }
    707 
    708 static inline void
    709 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    710 {
    711 
    712 	if (pm->pm_cstate.cs_tlb_d)
    713 		cpu_tlb_flushD_SE(va);
    714 }
    715 
    716 static inline void
    717 pmap_tlb_flushID(pmap_t pm)
    718 {
    719 
    720 	if (pm->pm_cstate.cs_tlb_id) {
    721 		cpu_tlb_flushID();
    722 		pm->pm_cstate.cs_tlb = 0;
    723 	}
    724 }
    725 
    726 static inline void
    727 pmap_tlb_flushD(pmap_t pm)
    728 {
    729 
    730 	if (pm->pm_cstate.cs_tlb_d) {
    731 		cpu_tlb_flushD();
    732 		pm->pm_cstate.cs_tlb_d = 0;
    733 	}
    734 }
    735 
    736 #ifdef PMAP_CACHE_VIVT
    737 static inline void
    738 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    739 {
    740 	if (pm->pm_cstate.cs_cache_id) {
    741 		cpu_idcache_wbinv_range(va, len);
    742 	}
    743 }
    744 
    745 static inline void
    746 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    747     bool do_inv, bool rd_only)
    748 {
    749 
    750 	if (pm->pm_cstate.cs_cache_d) {
    751 		if (do_inv) {
    752 			if (rd_only)
    753 				cpu_dcache_inv_range(va, len);
    754 			else
    755 				cpu_dcache_wbinv_range(va, len);
    756 		} else
    757 		if (!rd_only)
    758 			cpu_dcache_wb_range(va, len);
    759 	}
    760 }
    761 
    762 static inline void
    763 pmap_idcache_wbinv_all(pmap_t pm)
    764 {
    765 	if (pm->pm_cstate.cs_cache_id) {
    766 		cpu_idcache_wbinv_all();
    767 		pm->pm_cstate.cs_cache = 0;
    768 	}
    769 }
    770 
    771 static inline void
    772 pmap_dcache_wbinv_all(pmap_t pm)
    773 {
    774 	if (pm->pm_cstate.cs_cache_d) {
    775 		cpu_dcache_wbinv_all();
    776 		pm->pm_cstate.cs_cache_d = 0;
    777 	}
    778 }
    779 #endif /* PMAP_CACHE_VIVT */
    780 
    781 static inline bool
    782 pmap_is_current(pmap_t pm)
    783 {
    784 
    785 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    786 		return true;
    787 
    788 	return false;
    789 }
    790 
    791 static inline bool
    792 pmap_is_cached(pmap_t pm)
    793 {
    794 
    795 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    796 	    pmap_recent_user == pm)
    797 		return (true);
    798 
    799 	return false;
    800 }
    801 
    802 /*
    803  * PTE_SYNC_CURRENT:
    804  *
    805  *     Make sure the pte is written out to RAM.
    806  *     We need to do this for one of two cases:
    807  *       - We're dealing with the kernel pmap
    808  *       - There is no pmap active in the cache/tlb.
    809  *       - The specified pmap is 'active' in the cache/tlb.
    810  */
    811 #ifdef PMAP_INCLUDE_PTE_SYNC
    812 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    813 do {					\
    814 	if (PMAP_NEEDS_PTE_SYNC && 	\
    815 	    pmap_is_cached(pm))		\
    816 		PTE_SYNC(ptep);		\
    817 } while (/*CONSTCOND*/0)
    818 #else
    819 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    820 #endif
    821 
    822 /*
    823  * main pv_entry manipulation functions:
    824  *   pmap_enter_pv: enter a mapping onto a vm_page list
    825  *   pmap_remove_pv: remove a mappiing from a vm_page list
    826  *
    827  * NOTE: pmap_enter_pv expects to lock the pvh itself
    828  *       pmap_remove_pv expects te caller to lock the pvh before calling
    829  */
    830 
    831 /*
    832  * pmap_enter_pv: enter a mapping onto a vm_page lst
    833  *
    834  * => caller should hold the proper lock on pmap_main_lock
    835  * => caller should have pmap locked
    836  * => we will gain the lock on the vm_page and allocate the new pv_entry
    837  * => caller should adjust ptp's wire_count before calling
    838  * => caller should not adjust pmap's wire_count
    839  */
    840 static void
    841 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    842     vaddr_t va, u_int flags)
    843 {
    844 	struct pv_entry **pvp;
    845 
    846 	NPDEBUG(PDB_PVDUMP,
    847 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    848 
    849 	pve->pv_pmap = pm;
    850 	pve->pv_va = va;
    851 	pve->pv_flags = flags;
    852 
    853 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    854 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
    855 #ifdef PMAP_CACHE_VIPT
    856 	/*
    857 	 * Insert unmapped entries at the head of the pv list.
    858 	 */
    859 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    860 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    861 			pvp = &SLIST_NEXT(*pvp, pv_link);
    862 	}
    863 #endif
    864 	SLIST_NEXT(pve, pv_link) = *pvp;		/* add to ... */
    865 	*pvp = pve;				/* ... locked list */
    866 #ifdef PMAP_CACHE_VIPT
    867 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD | PVF_KENTRY);
    868 	if ((flags & PVF_MOD) && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
    869 		pg->mdpage.pvh_attrs |= PVF_DIRTY;
    870 	KASSERT((pg->mdpage.pvh_attrs & PVF_MOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
    871 #endif
    872 	if (pm == pmap_kernel()) {
    873 		PMAPCOUNT(kernel_mappings);
    874 		if (flags & PVF_WRITE)
    875 			pg->mdpage.krw_mappings++;
    876 		else
    877 			pg->mdpage.kro_mappings++;
    878 	} else
    879 	if (flags & PVF_WRITE)
    880 		pg->mdpage.urw_mappings++;
    881 	else
    882 		pg->mdpage.uro_mappings++;
    883 
    884 #ifdef PMAP_CACHE_VIPT
    885 	/*
    886 	 * If this is an exec mapping and its the first exec mapping
    887 	 * for this page, make sure to sync the I-cache.
    888 	 */
    889 	if (PV_IS_EXEC_P(flags)) {
    890 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    891 			pmap_syncicache_page(pg);
    892 			PMAPCOUNT(exec_synced_map);
    893 		}
    894 		PMAPCOUNT(exec_mappings);
    895 	}
    896 #endif
    897 
    898 	PMAPCOUNT(mappings);
    899 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    900 
    901 	if (pve->pv_flags & PVF_WIRED)
    902 		++pm->pm_stats.wired_count;
    903 }
    904 
    905 /*
    906  *
    907  * pmap_find_pv: Find a pv entry
    908  *
    909  * => caller should hold lock on vm_page
    910  */
    911 static inline struct pv_entry *
    912 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    913 {
    914 	struct pv_entry *pv;
    915 
    916 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
    917 		if (pm == pv->pv_pmap && va == pv->pv_va)
    918 			break;
    919 	}
    920 
    921 	return (pv);
    922 }
    923 
    924 /*
    925  * pmap_remove_pv: try to remove a mapping from a pv_list
    926  *
    927  * => caller should hold proper lock on pmap_main_lock
    928  * => pmap should be locked
    929  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    930  * => caller should adjust ptp's wire_count and free PTP if needed
    931  * => caller should NOT adjust pmap's wire_count
    932  * => we return the removed pve
    933  */
    934 static struct pv_entry *
    935 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    936 {
    937 	struct pv_entry *pve, **prevptr;
    938 
    939 	NPDEBUG(PDB_PVDUMP,
    940 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    941 
    942 	prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
    943 	pve = *prevptr;
    944 
    945 	while (pve) {
    946 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    947 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    948 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    949 			if (pve->pv_flags & PVF_WIRED) {
    950 				if (skip_wired)
    951 					return (NULL);
    952 				--pm->pm_stats.wired_count;
    953 			}
    954 #ifdef PMAP_CACHE_VIPT
    955 			/*
    956 			 * If we are removing the first pv entry and its
    957 			 * a KENTRY, if the next one isn't also a KENTER,
    958 			 * clear KENTRY from the page attributes.
    959 			 */
    960 			if (SLIST_FIRST(&pg->mdpage.pvh_list) == pve
    961 			    && (pve->pv_flags & PVF_KENTRY)
    962 			    && (SLIST_NEXT(pve, pv_link) == NULL
    963 				|| (SLIST_NEXT(pve, pv_link)->pv_flags & PVF_KENTRY) == 0))
    964 				pg->mdpage.pvh_attrs &= ~PVF_KENTRY;
    965 #endif
    966 			*prevptr = SLIST_NEXT(pve, pv_link);	/* remove it! */
    967 			if (pm == pmap_kernel()) {
    968 				PMAPCOUNT(kernel_unmappings);
    969 				if (pve->pv_flags & PVF_WRITE)
    970 					pg->mdpage.krw_mappings--;
    971 				else
    972 					pg->mdpage.kro_mappings--;
    973 			} else
    974 			if (pve->pv_flags & PVF_WRITE)
    975 				pg->mdpage.urw_mappings--;
    976 			else
    977 				pg->mdpage.uro_mappings--;
    978 
    979 			PMAPCOUNT(unmappings);
    980 #ifdef PMAP_CACHE_VIPT
    981 			if (!(pve->pv_flags & PVF_WRITE))
    982 				break;
    983 			/*
    984 			 * If this page has had an exec mapping, then if
    985 			 * this was the last mapping, discard the contents,
    986 			 * otherwise sync the i-cache for this page.
    987 			 */
    988 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    989 				if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
    990 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
    991 					PMAPCOUNT(exec_discarded_unmap);
    992 				} else {
    993 					pmap_syncicache_page(pg);
    994 					PMAPCOUNT(exec_synced_unmap);
    995 				}
    996 			}
    997 #endif /* PMAP_CACHE_VIPT */
    998 			break;
    999 		}
   1000 		prevptr = &SLIST_NEXT(pve, pv_link);	/* previous pointer */
   1001 		pve = *prevptr;				/* advance */
   1002 	}
   1003 
   1004 #ifdef PMAP_CACHE_VIPT
   1005 	/*
   1006 	 * If this was a writeable page and there are no more writeable
   1007 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1008 	 * the contents to memory.
   1009 	 */
   1010 	if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1011 	    && pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0) {
   1012 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1013 #if 0 /* XYY */
   1014 		if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1015 			pmap_flush_page(pg, false);
   1016 #endif
   1017 	}
   1018 #endif /* PMAP_CACHE_VIPT */
   1019 
   1020 	return(pve);				/* return removed pve */
   1021 }
   1022 
   1023 /*
   1024  *
   1025  * pmap_modify_pv: Update pv flags
   1026  *
   1027  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1028  * => caller should NOT adjust pmap's wire_count
   1029  * => caller must call pmap_vac_me_harder() if writable status of a page
   1030  *    may have changed.
   1031  * => we return the old flags
   1032  *
   1033  * Modify a physical-virtual mapping in the pv table
   1034  */
   1035 static u_int
   1036 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
   1037     u_int clr_mask, u_int set_mask)
   1038 {
   1039 	struct pv_entry *npv;
   1040 	u_int flags, oflags;
   1041 
   1042 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1043 		return (0);
   1044 
   1045 	NPDEBUG(PDB_PVDUMP,
   1046 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1047 
   1048 	/*
   1049 	 * There is at least one VA mapping this page.
   1050 	 */
   1051 
   1052 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1053 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1054 #ifdef PMAP_CACHE_VIPT
   1055 		if ((set_mask & PVF_MOD) && !(pg->mdpage.pvh_attrs & PVF_NC))
   1056 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1057 		KASSERT((pg->mdpage.pvh_attrs & PVF_MOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1058 #endif
   1059 	}
   1060 
   1061 	oflags = npv->pv_flags;
   1062 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1063 
   1064 	if ((flags ^ oflags) & PVF_WIRED) {
   1065 		if (flags & PVF_WIRED)
   1066 			++pm->pm_stats.wired_count;
   1067 		else
   1068 			--pm->pm_stats.wired_count;
   1069 	}
   1070 
   1071 	if ((flags ^ oflags) & PVF_WRITE) {
   1072 		if (pm == pmap_kernel()) {
   1073 			if (flags & PVF_WRITE) {
   1074 				pg->mdpage.krw_mappings++;
   1075 				pg->mdpage.kro_mappings--;
   1076 			} else {
   1077 				pg->mdpage.kro_mappings++;
   1078 				pg->mdpage.krw_mappings--;
   1079 			}
   1080 		} else
   1081 		if (flags & PVF_WRITE) {
   1082 			pg->mdpage.urw_mappings++;
   1083 			pg->mdpage.uro_mappings--;
   1084 		} else {
   1085 			pg->mdpage.uro_mappings++;
   1086 			pg->mdpage.urw_mappings--;
   1087 		}
   1088 	}
   1089 #ifdef PMAP_CACHE_VIPT
   1090 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1091 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1092 	/*
   1093 	 * We have two cases here: the first is from enter_pv (new exec
   1094 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1095 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1096 	 * to do what pmap_remove_pv would do.
   1097 	 */
   1098 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1099 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1100 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1101 		pmap_syncicache_page(pg);
   1102 		PMAPCOUNT(exec_synced_remap);
   1103 	}
   1104 #endif
   1105 
   1106 	PMAPCOUNT(remappings);
   1107 
   1108 	return (oflags);
   1109 }
   1110 
   1111 /*
   1112  * Allocate an L1 translation table for the specified pmap.
   1113  * This is called at pmap creation time.
   1114  */
   1115 static void
   1116 pmap_alloc_l1(pmap_t pm)
   1117 {
   1118 	struct l1_ttable *l1;
   1119 	u_int8_t domain;
   1120 
   1121 	/*
   1122 	 * Remove the L1 at the head of the LRU list
   1123 	 */
   1124 	simple_lock(&l1_lru_lock);
   1125 	l1 = TAILQ_FIRST(&l1_lru_list);
   1126 	KDASSERT(l1 != NULL);
   1127 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1128 
   1129 	/*
   1130 	 * Pick the first available domain number, and update
   1131 	 * the link to the next number.
   1132 	 */
   1133 	domain = l1->l1_domain_first;
   1134 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1135 
   1136 	/*
   1137 	 * If there are still free domain numbers in this L1,
   1138 	 * put it back on the TAIL of the LRU list.
   1139 	 */
   1140 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1141 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1142 
   1143 	simple_unlock(&l1_lru_lock);
   1144 
   1145 	/*
   1146 	 * Fix up the relevant bits in the pmap structure
   1147 	 */
   1148 	pm->pm_l1 = l1;
   1149 	pm->pm_domain = domain;
   1150 }
   1151 
   1152 /*
   1153  * Free an L1 translation table.
   1154  * This is called at pmap destruction time.
   1155  */
   1156 static void
   1157 pmap_free_l1(pmap_t pm)
   1158 {
   1159 	struct l1_ttable *l1 = pm->pm_l1;
   1160 
   1161 	simple_lock(&l1_lru_lock);
   1162 
   1163 	/*
   1164 	 * If this L1 is currently on the LRU list, remove it.
   1165 	 */
   1166 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1167 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1168 
   1169 	/*
   1170 	 * Free up the domain number which was allocated to the pmap
   1171 	 */
   1172 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1173 	l1->l1_domain_first = pm->pm_domain;
   1174 	l1->l1_domain_use_count--;
   1175 
   1176 	/*
   1177 	 * The L1 now must have at least 1 free domain, so add
   1178 	 * it back to the LRU list. If the use count is zero,
   1179 	 * put it at the head of the list, otherwise it goes
   1180 	 * to the tail.
   1181 	 */
   1182 	if (l1->l1_domain_use_count == 0)
   1183 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1184 	else
   1185 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1186 
   1187 	simple_unlock(&l1_lru_lock);
   1188 }
   1189 
   1190 static inline void
   1191 pmap_use_l1(pmap_t pm)
   1192 {
   1193 	struct l1_ttable *l1;
   1194 
   1195 	/*
   1196 	 * Do nothing if we're in interrupt context.
   1197 	 * Access to an L1 by the kernel pmap must not affect
   1198 	 * the LRU list.
   1199 	 */
   1200 	if (cpu_intr_p() || pm == pmap_kernel())
   1201 		return;
   1202 
   1203 	l1 = pm->pm_l1;
   1204 
   1205 	/*
   1206 	 * If the L1 is not currently on the LRU list, just return
   1207 	 */
   1208 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1209 		return;
   1210 
   1211 	simple_lock(&l1_lru_lock);
   1212 
   1213 	/*
   1214 	 * Check the use count again, now that we've acquired the lock
   1215 	 */
   1216 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1217 		simple_unlock(&l1_lru_lock);
   1218 		return;
   1219 	}
   1220 
   1221 	/*
   1222 	 * Move the L1 to the back of the LRU list
   1223 	 */
   1224 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1225 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1226 
   1227 	simple_unlock(&l1_lru_lock);
   1228 }
   1229 
   1230 /*
   1231  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1232  *
   1233  * Free an L2 descriptor table.
   1234  */
   1235 static inline void
   1236 #ifndef PMAP_INCLUDE_PTE_SYNC
   1237 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1238 #else
   1239 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1240 #endif
   1241 {
   1242 #ifdef PMAP_INCLUDE_PTE_SYNC
   1243 #ifdef PMAP_CACHE_VIVT
   1244 	/*
   1245 	 * Note: With a write-back cache, we may need to sync this
   1246 	 * L2 table before re-using it.
   1247 	 * This is because it may have belonged to a non-current
   1248 	 * pmap, in which case the cache syncs would have been
   1249 	 * skipped for the pages that were being unmapped. If the
   1250 	 * L2 table were then to be immediately re-allocated to
   1251 	 * the *current* pmap, it may well contain stale mappings
   1252 	 * which have not yet been cleared by a cache write-back
   1253 	 * and so would still be visible to the mmu.
   1254 	 */
   1255 	if (need_sync)
   1256 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1257 #endif /* PMAP_CACHE_VIVT */
   1258 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1259 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1260 }
   1261 
   1262 /*
   1263  * Returns a pointer to the L2 bucket associated with the specified pmap
   1264  * and VA, or NULL if no L2 bucket exists for the address.
   1265  */
   1266 static inline struct l2_bucket *
   1267 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1268 {
   1269 	struct l2_dtable *l2;
   1270 	struct l2_bucket *l2b;
   1271 	u_short l1idx;
   1272 
   1273 	l1idx = L1_IDX(va);
   1274 
   1275 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1276 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1277 		return (NULL);
   1278 
   1279 	return (l2b);
   1280 }
   1281 
   1282 /*
   1283  * Returns a pointer to the L2 bucket associated with the specified pmap
   1284  * and VA.
   1285  *
   1286  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1287  * bucket/page table in place.
   1288  *
   1289  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1290  * increment the bucket occupancy counter appropriately *before*
   1291  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1292  * the bucket/page in the meantime.
   1293  */
   1294 static struct l2_bucket *
   1295 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1296 {
   1297 	struct l2_dtable *l2;
   1298 	struct l2_bucket *l2b;
   1299 	u_short l1idx;
   1300 
   1301 	l1idx = L1_IDX(va);
   1302 
   1303 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1304 		/*
   1305 		 * No mapping at this address, as there is
   1306 		 * no entry in the L1 table.
   1307 		 * Need to allocate a new l2_dtable.
   1308 		 */
   1309 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1310 			return (NULL);
   1311 
   1312 		/*
   1313 		 * Link it into the parent pmap
   1314 		 */
   1315 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1316 	}
   1317 
   1318 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1319 
   1320 	/*
   1321 	 * Fetch pointer to the L2 page table associated with the address.
   1322 	 */
   1323 	if (l2b->l2b_kva == NULL) {
   1324 		pt_entry_t *ptep;
   1325 
   1326 		/*
   1327 		 * No L2 page table has been allocated. Chances are, this
   1328 		 * is because we just allocated the l2_dtable, above.
   1329 		 */
   1330 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1331 			/*
   1332 			 * Oops, no more L2 page tables available at this
   1333 			 * time. We may need to deallocate the l2_dtable
   1334 			 * if we allocated a new one above.
   1335 			 */
   1336 			if (l2->l2_occupancy == 0) {
   1337 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1338 				pmap_free_l2_dtable(l2);
   1339 			}
   1340 			return (NULL);
   1341 		}
   1342 
   1343 		l2->l2_occupancy++;
   1344 		l2b->l2b_kva = ptep;
   1345 		l2b->l2b_l1idx = l1idx;
   1346 	}
   1347 
   1348 	return (l2b);
   1349 }
   1350 
   1351 /*
   1352  * One or more mappings in the specified L2 descriptor table have just been
   1353  * invalidated.
   1354  *
   1355  * Garbage collect the metadata and descriptor table itself if necessary.
   1356  *
   1357  * The pmap lock must be acquired when this is called (not necessary
   1358  * for the kernel pmap).
   1359  */
   1360 static void
   1361 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1362 {
   1363 	struct l2_dtable *l2;
   1364 	pd_entry_t *pl1pd, l1pd;
   1365 	pt_entry_t *ptep;
   1366 	u_short l1idx;
   1367 
   1368 	KDASSERT(count <= l2b->l2b_occupancy);
   1369 
   1370 	/*
   1371 	 * Update the bucket's reference count according to how many
   1372 	 * PTEs the caller has just invalidated.
   1373 	 */
   1374 	l2b->l2b_occupancy -= count;
   1375 
   1376 	/*
   1377 	 * Note:
   1378 	 *
   1379 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1380 	 * as that would require checking all Level 1 page tables and
   1381 	 * removing any references to the Level 2 page table. See also the
   1382 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1383 	 *
   1384 	 * We make do with just invalidating the mapping in the L2 table.
   1385 	 *
   1386 	 * This isn't really a big deal in practice and, in fact, leads
   1387 	 * to a performance win over time as we don't need to continually
   1388 	 * alloc/free.
   1389 	 */
   1390 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1391 		return;
   1392 
   1393 	/*
   1394 	 * There are no more valid mappings in this level 2 page table.
   1395 	 * Go ahead and NULL-out the pointer in the bucket, then
   1396 	 * free the page table.
   1397 	 */
   1398 	l1idx = l2b->l2b_l1idx;
   1399 	ptep = l2b->l2b_kva;
   1400 	l2b->l2b_kva = NULL;
   1401 
   1402 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1403 
   1404 	/*
   1405 	 * If the L1 slot matches the pmap's domain
   1406 	 * number, then invalidate it.
   1407 	 */
   1408 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1409 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1410 		*pl1pd = 0;
   1411 		PTE_SYNC(pl1pd);
   1412 	}
   1413 
   1414 	/*
   1415 	 * Release the L2 descriptor table back to the pool cache.
   1416 	 */
   1417 #ifndef PMAP_INCLUDE_PTE_SYNC
   1418 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1419 #else
   1420 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1421 #endif
   1422 
   1423 	/*
   1424 	 * Update the reference count in the associated l2_dtable
   1425 	 */
   1426 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1427 	if (--l2->l2_occupancy > 0)
   1428 		return;
   1429 
   1430 	/*
   1431 	 * There are no more valid mappings in any of the Level 1
   1432 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1433 	 * the pointer in the parent pmap and free the l2_dtable.
   1434 	 */
   1435 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1436 	pmap_free_l2_dtable(l2);
   1437 }
   1438 
   1439 /*
   1440  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1441  * structures.
   1442  */
   1443 static int
   1444 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1445 {
   1446 #ifndef PMAP_INCLUDE_PTE_SYNC
   1447 	struct l2_bucket *l2b;
   1448 	pt_entry_t *ptep, pte;
   1449 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1450 
   1451 	/*
   1452 	 * The mappings for these page tables were initially made using
   1453 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1454 	 * mode will not be right for page table mappings. To avoid
   1455 	 * polluting the pmap_kenter_pa() code with a special case for
   1456 	 * page tables, we simply fix up the cache-mode here if it's not
   1457 	 * correct.
   1458 	 */
   1459 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1460 	KDASSERT(l2b != NULL);
   1461 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1462 	pte = *ptep;
   1463 
   1464 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1465 		/*
   1466 		 * Page tables must have the cache-mode set to Write-Thru.
   1467 		 */
   1468 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1469 		PTE_SYNC(ptep);
   1470 		cpu_tlb_flushD_SE(va);
   1471 		cpu_cpwait();
   1472 	}
   1473 #endif
   1474 
   1475 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1476 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1477 	return (0);
   1478 }
   1479 
   1480 static int
   1481 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1482 {
   1483 
   1484 	memset(v, 0, sizeof(struct l2_dtable));
   1485 	return (0);
   1486 }
   1487 
   1488 static int
   1489 pmap_pmap_ctor(void *arg, void *v, int flags)
   1490 {
   1491 
   1492 	memset(v, 0, sizeof(struct pmap));
   1493 	return (0);
   1494 }
   1495 
   1496 static void
   1497 pmap_pinit(pmap_t pm)
   1498 {
   1499 	struct l2_bucket *l2b;
   1500 
   1501 	if (vector_page < KERNEL_BASE) {
   1502 		/*
   1503 		 * Map the vector page.
   1504 		 */
   1505 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1506 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1507 		pmap_update(pm);
   1508 
   1509 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1510 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1511 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1512 		    L1_C_DOM(pm->pm_domain);
   1513 	} else
   1514 		pm->pm_pl1vec = NULL;
   1515 }
   1516 
   1517 #ifdef PMAP_CACHE_VIVT
   1518 /*
   1519  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1520  * there is more than one mapping and at least one of them is writable.
   1521  * Since we purge the cache on every context switch, we only need to check for
   1522  * other mappings within the same pmap, or kernel_pmap.
   1523  * This function is also called when a page is unmapped, to possibly reenable
   1524  * caching on any remaining mappings.
   1525  *
   1526  * The code implements the following logic, where:
   1527  *
   1528  * KW = # of kernel read/write pages
   1529  * KR = # of kernel read only pages
   1530  * UW = # of user read/write pages
   1531  * UR = # of user read only pages
   1532  *
   1533  * KC = kernel mapping is cacheable
   1534  * UC = user mapping is cacheable
   1535  *
   1536  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1537  *             +---------------------------------------------
   1538  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1539  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1540  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1541  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1542  */
   1543 
   1544 static const int pmap_vac_flags[4][4] = {
   1545 	{-1,		0,		0,		PVF_KNC},
   1546 	{0,		0,		PVF_NC,		PVF_NC},
   1547 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1548 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1549 };
   1550 
   1551 static inline int
   1552 pmap_get_vac_flags(const struct vm_page *pg)
   1553 {
   1554 	int kidx, uidx;
   1555 
   1556 	kidx = 0;
   1557 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1558 		kidx |= 1;
   1559 	if (pg->mdpage.krw_mappings)
   1560 		kidx |= 2;
   1561 
   1562 	uidx = 0;
   1563 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1564 		uidx |= 1;
   1565 	if (pg->mdpage.urw_mappings)
   1566 		uidx |= 2;
   1567 
   1568 	return (pmap_vac_flags[uidx][kidx]);
   1569 }
   1570 
   1571 static inline void
   1572 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1573 {
   1574 	int nattr;
   1575 
   1576 	nattr = pmap_get_vac_flags(pg);
   1577 
   1578 	if (nattr < 0) {
   1579 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1580 		return;
   1581 	}
   1582 
   1583 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1584 		return;
   1585 
   1586 	if (pm == pmap_kernel())
   1587 		pmap_vac_me_kpmap(pg, pm, va);
   1588 	else
   1589 		pmap_vac_me_user(pg, pm, va);
   1590 
   1591 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1592 }
   1593 
   1594 static void
   1595 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1596 {
   1597 	u_int u_cacheable, u_entries;
   1598 	struct pv_entry *pv;
   1599 	pmap_t last_pmap = pm;
   1600 
   1601 	/*
   1602 	 * Pass one, see if there are both kernel and user pmaps for
   1603 	 * this page.  Calculate whether there are user-writable or
   1604 	 * kernel-writable pages.
   1605 	 */
   1606 	u_cacheable = 0;
   1607 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1608 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1609 			u_cacheable++;
   1610 	}
   1611 
   1612 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1613 
   1614 	/*
   1615 	 * We know we have just been updating a kernel entry, so if
   1616 	 * all user pages are already cacheable, then there is nothing
   1617 	 * further to do.
   1618 	 */
   1619 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1620 		return;
   1621 
   1622 	if (u_entries) {
   1623 		/*
   1624 		 * Scan over the list again, for each entry, if it
   1625 		 * might not be set correctly, call pmap_vac_me_user
   1626 		 * to recalculate the settings.
   1627 		 */
   1628 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1629 			/*
   1630 			 * We know kernel mappings will get set
   1631 			 * correctly in other calls.  We also know
   1632 			 * that if the pmap is the same as last_pmap
   1633 			 * then we've just handled this entry.
   1634 			 */
   1635 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1636 				continue;
   1637 
   1638 			/*
   1639 			 * If there are kernel entries and this page
   1640 			 * is writable but non-cacheable, then we can
   1641 			 * skip this entry also.
   1642 			 */
   1643 			if (pg->mdpage.k_mappings &&
   1644 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1645 			    (PVF_NC | PVF_WRITE))
   1646 				continue;
   1647 
   1648 			/*
   1649 			 * Similarly if there are no kernel-writable
   1650 			 * entries and the page is already
   1651 			 * read-only/cacheable.
   1652 			 */
   1653 			if (pg->mdpage.krw_mappings == 0 &&
   1654 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1655 				continue;
   1656 
   1657 			/*
   1658 			 * For some of the remaining cases, we know
   1659 			 * that we must recalculate, but for others we
   1660 			 * can't tell if they are correct or not, so
   1661 			 * we recalculate anyway.
   1662 			 */
   1663 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1664 		}
   1665 
   1666 		if (pg->mdpage.k_mappings == 0)
   1667 			return;
   1668 	}
   1669 
   1670 	pmap_vac_me_user(pg, pm, va);
   1671 }
   1672 
   1673 static void
   1674 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1675 {
   1676 	pmap_t kpmap = pmap_kernel();
   1677 	struct pv_entry *pv, *npv;
   1678 	struct l2_bucket *l2b;
   1679 	pt_entry_t *ptep, pte;
   1680 	u_int entries = 0;
   1681 	u_int writable = 0;
   1682 	u_int cacheable_entries = 0;
   1683 	u_int kern_cacheable = 0;
   1684 	u_int other_writable = 0;
   1685 
   1686 	/*
   1687 	 * Count mappings and writable mappings in this pmap.
   1688 	 * Include kernel mappings as part of our own.
   1689 	 * Keep a pointer to the first one.
   1690 	 */
   1691 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1692 		/* Count mappings in the same pmap */
   1693 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1694 			if (entries++ == 0)
   1695 				npv = pv;
   1696 
   1697 			/* Cacheable mappings */
   1698 			if ((pv->pv_flags & PVF_NC) == 0) {
   1699 				cacheable_entries++;
   1700 				if (kpmap == pv->pv_pmap)
   1701 					kern_cacheable++;
   1702 			}
   1703 
   1704 			/* Writable mappings */
   1705 			if (pv->pv_flags & PVF_WRITE)
   1706 				++writable;
   1707 		} else
   1708 		if (pv->pv_flags & PVF_WRITE)
   1709 			other_writable = 1;
   1710 	}
   1711 
   1712 	/*
   1713 	 * Enable or disable caching as necessary.
   1714 	 * Note: the first entry might be part of the kernel pmap,
   1715 	 * so we can't assume this is indicative of the state of the
   1716 	 * other (maybe non-kpmap) entries.
   1717 	 */
   1718 	if ((entries > 1 && writable) ||
   1719 	    (entries > 0 && pm == kpmap && other_writable)) {
   1720 		if (cacheable_entries == 0)
   1721 			return;
   1722 
   1723 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1724 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1725 			    (pv->pv_flags & PVF_NC))
   1726 				continue;
   1727 
   1728 			pv->pv_flags |= PVF_NC;
   1729 
   1730 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1731 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1732 			pte = *ptep & ~L2_S_CACHE_MASK;
   1733 
   1734 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1735 			    l2pte_valid(pte)) {
   1736 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1737 #ifdef PMAP_CACHE_VIVT
   1738 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1739 					    pv->pv_va, PAGE_SIZE);
   1740 #endif
   1741 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1742 					    pv->pv_va);
   1743 				} else
   1744 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1745 #ifdef PMAP_CACHE_VIVT
   1746 					pmap_dcache_wb_range(pv->pv_pmap,
   1747 					    pv->pv_va, PAGE_SIZE, true,
   1748 					    (pv->pv_flags & PVF_WRITE) == 0);
   1749 #endif
   1750 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1751 					    pv->pv_va);
   1752 				}
   1753 			}
   1754 
   1755 			*ptep = pte;
   1756 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1757 		}
   1758 		cpu_cpwait();
   1759 	} else
   1760 	if (entries > cacheable_entries) {
   1761 		/*
   1762 		 * Turn cacheing back on for some pages.  If it is a kernel
   1763 		 * page, only do so if there are no other writable pages.
   1764 		 */
   1765 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1766 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1767 			    (kpmap != pv->pv_pmap || other_writable)))
   1768 				continue;
   1769 
   1770 			pv->pv_flags &= ~PVF_NC;
   1771 
   1772 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1773 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1774 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1775 
   1776 			if (l2pte_valid(pte)) {
   1777 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1778 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1779 					    pv->pv_va);
   1780 				} else
   1781 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1782 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1783 					    pv->pv_va);
   1784 				}
   1785 			}
   1786 
   1787 			*ptep = pte;
   1788 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1789 		}
   1790 	}
   1791 }
   1792 #endif
   1793 
   1794 #ifdef PMAP_CACHE_VIPT
   1795 /*
   1796  * For virtually indexed / physically tagged caches, what we have to worry
   1797  * about is illegal cache aliases.  To prevent this, we must ensure that
   1798  * virtual addresses that map the physical page use the same bits for those
   1799  * bits masked by "arm_cache_prefer_mask" (bits 12+).  If there is a conflict,
   1800  * all mappings of the page must be non-cached.
   1801  */
   1802 #if 0
   1803 static inline vaddr_t
   1804 pmap_check_sets(paddr_t pa)
   1805 {
   1806 	extern int arm_dcache_l2_nsets;
   1807 	int set, way;
   1808 	vaddr_t mask = 0;
   1809 	int v;
   1810 	pa |= 1;
   1811 	for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
   1812 		for (way = 0; way < 4; way++) {
   1813 			v = (way << 30) | (set << 5);
   1814 			asm("mcr	p15, 3, %0, c15, c2, 0" :: "r"(v));
   1815 			asm("mrc	p15, 3, %0, c15, c0, 0" : "=r"(v));
   1816 
   1817 			if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
   1818 				mask |= 1 << (set >> 7);
   1819 			}
   1820 		}
   1821 	}
   1822 	return mask;
   1823 }
   1824 #endif
   1825 static void
   1826 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1827 {
   1828 	struct pv_entry *pv;
   1829 	vaddr_t tst_mask;
   1830 	bool bad_alias;
   1831 	struct l2_bucket *l2b;
   1832 	pt_entry_t *ptep, pte, opte;
   1833 	const u_int
   1834 	    rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
   1835 	    ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
   1836 
   1837 	/* do we need to do anything? */
   1838 	if (arm_cache_prefer_mask == 0)
   1839 		return;
   1840 
   1841 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1842 	    pg, pm, va));
   1843 
   1844 #define popc4(x) \
   1845 	(((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
   1846 #if 0
   1847 	tst_mask = pmap_check_sets(pg->phys_addr);
   1848 	KASSERT(popc4(tst_mask) < 2);
   1849 #endif
   1850 
   1851 	KASSERT(!va || pm);
   1852 
   1853 	/* Already a conflict? */
   1854 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1855 		/* just an add, things are already non-cached */
   1856 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
   1857 		bad_alias = false;
   1858 		if (va) {
   1859 			PMAPCOUNT(vac_color_none);
   1860 			bad_alias = true;
   1861 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1862 			goto fixup;
   1863 		}
   1864 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1865 		/* the list can't be empty because it would be cachable */
   1866 		if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
   1867 			tst_mask = pg->mdpage.pvh_attrs;
   1868 		} else {
   1869 			KASSERT(pv);
   1870 			tst_mask = pv->pv_va;
   1871 			pv = SLIST_NEXT(pv, pv_link);
   1872 		}
   1873 		/*
   1874 		 * Only check for a bad alias if we have writable mappings.
   1875 		 */
   1876 		tst_mask &= arm_cache_prefer_mask;
   1877 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1878 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1879 				/* if there's a bad alias, stop checking. */
   1880 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1881 					bad_alias = true;
   1882 			}
   1883 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1884 			if (!bad_alias)
   1885 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1886 		} else {
   1887 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1888 		}
   1889 		/* If no conflicting colors, set everything back to cached */
   1890 		if (!bad_alias) {
   1891 #ifdef DEBUG
   1892 			if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1893 			    || ro_mappings < 2) {
   1894 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1895 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1896 			}
   1897 
   1898 #endif
   1899 			if (ro_mappings > 1
   1900 			    && (pg->mdpage.pvh_attrs & PVF_DIRTY))
   1901 				pmap_flush_page(pg, false);
   1902 
   1903 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1904 			pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
   1905 			PMAPCOUNT(vac_color_restore);
   1906 		} else {
   1907 			KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1908 			KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1909 		}
   1910 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1911 	} else if (!va) {
   1912 		KASSERT(pmap_is_page_colored_p(pg));
   1913 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
   1914 		    || (pg->mdpage.pvh_attrs & PVF_DIRTY));
   1915 		if (rw_mappings == 0)
   1916 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1917 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1918 		return;
   1919 	} else if (!pmap_is_page_colored_p(pg)) {
   1920 		/* not colored so we just use its color */
   1921 		KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1922 		PMAPCOUNT(vac_color_new);
   1923 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1924 		pg->mdpage.pvh_attrs |= PVF_COLORED
   1925 		    | (va & arm_cache_prefer_mask)
   1926 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1927 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1928 		return;
   1929 	} else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1930 		bad_alias = false;
   1931 		if (rw_mappings > 0) {
   1932 			/*
   1933 			 * We now have writeable mappings and more than one
   1934 			 * readonly mapping, verify the colors don't clash
   1935 			 * and mark the page as writeable.
   1936 			 */
   1937 			if (ro_mappings > 1
   1938 			    && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0
   1939 			    && arm_cache_prefer_mask) {
   1940 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1941 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1942 					/* if there's a bad alias, stop checking. */
   1943 					if (((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0) {
   1944 						bad_alias = true;
   1945 						break;
   1946 					}
   1947 				}
   1948 			}
   1949 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1950 		}
   1951 		/* If no conflicting colors, set everything back to cached */
   1952 		if (!bad_alias) {
   1953 #ifdef DEBUG
   1954 			if (rw_mappings > 0
   1955 			    || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
   1956 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1957 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1958 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1959 			}
   1960 #endif
   1961 			if (SLIST_EMPTY(&pg->mdpage.pvh_list))
   1962 				PMAPCOUNT(vac_color_reuse);
   1963 			else
   1964 				PMAPCOUNT(vac_color_ok);
   1965 
   1966 			/* matching color, just return */
   1967 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1968 			return;
   1969 		}
   1970 		KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1971 		KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1972 
   1973 		/* color conflict.  evict from cache. */
   1974 
   1975 		pmap_flush_page(pg, true);
   1976 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1977 		pg->mdpage.pvh_attrs |= PVF_NC;
   1978 		PMAPCOUNT(vac_color_erase);
   1979 	} else if (rw_mappings == 0
   1980 		   && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   1981 		KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
   1982 
   1983 		/*
   1984 		 * If the page has dirty cache lines, clean it.
   1985 		 */
   1986 		if (pg->mdpage.pvh_attrs & PVF_DIRTY)
   1987 			pmap_flush_page(pg, false);
   1988 
   1989 		/*
   1990 		 * If this is the first remapping (we know that there are no
   1991 		 * writeable mappings), then this is a simple color change.
   1992 		 * Otherwise this is a seconary r/o mapping, which means
   1993 		 * we don't have to do anything.
   1994 		 */
   1995 		if (ro_mappings == 1) {
   1996 			KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   1997 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1998 			pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   1999 			PMAPCOUNT(vac_color_change);
   2000 		} else {
   2001 			PMAPCOUNT(vac_color_blind);
   2002 		}
   2003 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2004 		return;
   2005 	} else {
   2006 		if (rw_mappings > 0)
   2007 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   2008 
   2009 		/* color conflict.  evict from cache. */
   2010 		pmap_flush_page(pg, true);
   2011 
   2012 		/* the list can't be empty because this was a enter/modify */
   2013 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2014 		if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2015 			KASSERT(pv);
   2016 			/*
   2017 			 * If there's only one mapped page, change color to the
   2018 			 * page's new color and return.
   2019 			 */
   2020 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2021 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2022 				pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2023 				PMAPCOUNT(vac_color_change);
   2024 				KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2025 				return;
   2026 			}
   2027 		}
   2028 		bad_alias = true;
   2029 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2030 		pg->mdpage.pvh_attrs |= PVF_NC;
   2031 		PMAPCOUNT(vac_color_erase);
   2032 	}
   2033 
   2034   fixup:
   2035 	KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2036 
   2037 	/*
   2038 	 * Turn cacheing on/off for all pages.
   2039 	 */
   2040 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2041 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2042 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2043 		opte = *ptep;
   2044 		pte = opte & ~L2_S_CACHE_MASK;
   2045 		if (bad_alias) {
   2046 			pv->pv_flags |= PVF_NC;
   2047 		} else {
   2048 			pv->pv_flags &= ~PVF_NC;
   2049 			pte |= pte_l2_s_cache_mode;
   2050 		}
   2051 
   2052 		if (opte == pte)	/* only update is there's a change */
   2053 			continue;
   2054 
   2055 		if (l2pte_valid(pte)) {
   2056 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2057 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2058 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2059 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2060 			}
   2061 		}
   2062 
   2063 		*ptep = pte;
   2064 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2065 	}
   2066 }
   2067 #endif	/* PMAP_CACHE_VIPT */
   2068 
   2069 
   2070 /*
   2071  * Modify pte bits for all ptes corresponding to the given physical address.
   2072  * We use `maskbits' rather than `clearbits' because we're always passing
   2073  * constants and the latter would require an extra inversion at run-time.
   2074  */
   2075 static void
   2076 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2077 {
   2078 	struct l2_bucket *l2b;
   2079 	struct pv_entry *pv;
   2080 	pt_entry_t *ptep, npte, opte;
   2081 	pmap_t pm;
   2082 	vaddr_t va;
   2083 	u_int oflags;
   2084 #ifdef PMAP_CACHE_VIPT
   2085 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   2086 	bool need_syncicache = false;
   2087 	bool did_syncicache = false;
   2088 	bool need_vac_me_harder = false;
   2089 #endif
   2090 
   2091 	NPDEBUG(PDB_BITS,
   2092 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2093 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2094 
   2095 	PMAP_HEAD_TO_MAP_LOCK();
   2096 	simple_lock(&pg->mdpage.pvh_slock);
   2097 
   2098 #ifdef PMAP_CACHE_VIPT
   2099 	/*
   2100 	 * If we might want to sync the I-cache and we've modified it,
   2101 	 * then we know we definitely need to sync or discard it.
   2102 	 */
   2103 	if (want_syncicache)
   2104 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   2105 #endif
   2106 	/*
   2107 	 * Clear saved attributes (modify, reference)
   2108 	 */
   2109 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2110 
   2111 	if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   2112 #ifdef PMAP_CACHE_VIPT
   2113 		if (need_syncicache) {
   2114 			/*
   2115 			 * No one has it mapped, so just discard it.  The next
   2116 			 * exec remapping will cause it to be synced.
   2117 			 */
   2118 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2119 			PMAPCOUNT(exec_discarded_clearbit);
   2120 		}
   2121 #endif
   2122 		simple_unlock(&pg->mdpage.pvh_slock);
   2123 		PMAP_HEAD_TO_MAP_UNLOCK();
   2124 		return;
   2125 	}
   2126 
   2127 	/*
   2128 	 * Loop over all current mappings setting/clearing as appropos
   2129 	 */
   2130 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2131 		va = pv->pv_va;
   2132 		pm = pv->pv_pmap;
   2133 		oflags = pv->pv_flags;
   2134 		pv->pv_flags &= ~maskbits;
   2135 
   2136 		pmap_acquire_pmap_lock(pm);
   2137 
   2138 		l2b = pmap_get_l2_bucket(pm, va);
   2139 		KDASSERT(l2b != NULL);
   2140 
   2141 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2142 		npte = opte = *ptep;
   2143 
   2144 		NPDEBUG(PDB_BITS,
   2145 		    printf(
   2146 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2147 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2148 
   2149 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2150 #ifdef PMAP_CACHE_VIVT
   2151 			if ((pv->pv_flags & PVF_NC)) {
   2152 				/*
   2153 				 * Entry is not cacheable:
   2154 				 *
   2155 				 * Don't turn caching on again if this is a
   2156 				 * modified emulation. This would be
   2157 				 * inconsitent with the settings created by
   2158 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2159 				 * to re-enable cacheing.
   2160 				 *
   2161 				 * There's no need to call pmap_vac_me_harder()
   2162 				 * here: all pages are losing their write
   2163 				 * permission.
   2164 				 */
   2165 				if (maskbits & PVF_WRITE) {
   2166 					npte |= pte_l2_s_cache_mode;
   2167 					pv->pv_flags &= ~PVF_NC;
   2168 				}
   2169 			} else
   2170 			if (opte & L2_S_PROT_W) {
   2171 				/*
   2172 				 * Entry is writable/cacheable: check if pmap
   2173 				 * is current if it is flush it, otherwise it
   2174 				 * won't be in the cache
   2175 				 */
   2176 				if (PV_BEEN_EXECD(oflags))
   2177 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2178 					    PAGE_SIZE);
   2179 				else
   2180 				if (PV_BEEN_REFD(oflags))
   2181 					pmap_dcache_wb_range(pm, pv->pv_va,
   2182 					    PAGE_SIZE,
   2183 					    (maskbits & PVF_REF) != 0, false);
   2184 			}
   2185 #endif
   2186 
   2187 			/* make the pte read only */
   2188 			npte &= ~L2_S_PROT_W;
   2189 
   2190 			if (maskbits & oflags & PVF_WRITE) {
   2191 				/*
   2192 				 * Keep alias accounting up to date
   2193 				 */
   2194 				if (pv->pv_pmap == pmap_kernel()) {
   2195 					pg->mdpage.krw_mappings--;
   2196 					pg->mdpage.kro_mappings++;
   2197 				} else {
   2198 					pg->mdpage.urw_mappings--;
   2199 					pg->mdpage.uro_mappings++;
   2200 				}
   2201 #ifdef PMAP_CACHE_VIPT
   2202 				if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2203 					pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2204 				if (want_syncicache)
   2205 					need_syncicache = true;
   2206 				need_vac_me_harder = true;
   2207 #endif
   2208 			}
   2209 		}
   2210 
   2211 		if (maskbits & PVF_REF) {
   2212 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2213 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2214 			    l2pte_valid(npte)) {
   2215 #ifdef PMAP_CACHE_VIVT
   2216 				/*
   2217 				 * Check npte here; we may have already
   2218 				 * done the wbinv above, and the validity
   2219 				 * of the PTE is the same for opte and
   2220 				 * npte.
   2221 				 */
   2222 				/* XXXJRT need idcache_inv_range */
   2223 				if (PV_BEEN_EXECD(oflags))
   2224 					pmap_idcache_wbinv_range(pm,
   2225 					    pv->pv_va, PAGE_SIZE);
   2226 				else
   2227 				if (PV_BEEN_REFD(oflags))
   2228 					pmap_dcache_wb_range(pm,
   2229 					    pv->pv_va, PAGE_SIZE,
   2230 					    true, true);
   2231 #endif
   2232 			}
   2233 
   2234 			/*
   2235 			 * Make the PTE invalid so that we will take a
   2236 			 * page fault the next time the mapping is
   2237 			 * referenced.
   2238 			 */
   2239 			npte &= ~L2_TYPE_MASK;
   2240 			npte |= L2_TYPE_INV;
   2241 		}
   2242 
   2243 		if (npte != opte) {
   2244 			*ptep = npte;
   2245 			PTE_SYNC(ptep);
   2246 			/* Flush the TLB entry if a current pmap. */
   2247 			if (PV_BEEN_EXECD(oflags))
   2248 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2249 			else
   2250 			if (PV_BEEN_REFD(oflags))
   2251 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2252 		}
   2253 
   2254 		pmap_release_pmap_lock(pm);
   2255 
   2256 		NPDEBUG(PDB_BITS,
   2257 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2258 		    pm, va, opte, npte));
   2259 	}
   2260 
   2261 #ifdef PMAP_CACHE_VIPT
   2262 	/*
   2263 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2264 	 */
   2265 	if (need_syncicache && !did_syncicache) {
   2266 		pmap_syncicache_page(pg);
   2267 		PMAPCOUNT(exec_synced_clearbit);
   2268 	}
   2269 	/*
   2270 	 * If we are changing this to read-only, we ned to call vac_me_harder
   2271 	 * so we can change all the read-only pages to cacheable.  We pretend
   2272 	 * this as a page deletion.
   2273 	 */
   2274 	if (need_vac_me_harder) {
   2275 		if (pg->mdpage.pvh_attrs & PVF_NC)
   2276 			pmap_vac_me_harder(pg, NULL, 0);
   2277 #if 0 /* XYY */
   2278 		else
   2279 			pmap_flush_page(pg, false);
   2280 #endif
   2281 	}
   2282 #endif
   2283 
   2284 	simple_unlock(&pg->mdpage.pvh_slock);
   2285 	PMAP_HEAD_TO_MAP_UNLOCK();
   2286 }
   2287 
   2288 /*
   2289  * pmap_clean_page()
   2290  *
   2291  * This is a local function used to work out the best strategy to clean
   2292  * a single page referenced by its entry in the PV table. It's used by
   2293  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2294  *
   2295  * Its policy is effectively:
   2296  *  o If there are no mappings, we don't bother doing anything with the cache.
   2297  *  o If there is one mapping, we clean just that page.
   2298  *  o If there are multiple mappings, we clean the entire cache.
   2299  *
   2300  * So that some functions can be further optimised, it returns 0 if it didn't
   2301  * clean the entire cache, or 1 if it did.
   2302  *
   2303  * XXX One bug in this routine is that if the pv_entry has a single page
   2304  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2305  * just the 1 page. Since this should not occur in everyday use and if it does
   2306  * it will just result in not the most efficient clean for the page.
   2307  */
   2308 #ifdef PMAP_CACHE_VIVT
   2309 static int
   2310 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2311 {
   2312 	pmap_t pm, pm_to_clean = NULL;
   2313 	struct pv_entry *npv;
   2314 	u_int cache_needs_cleaning = 0;
   2315 	u_int flags = 0;
   2316 	vaddr_t page_to_clean = 0;
   2317 
   2318 	if (pv == NULL) {
   2319 		/* nothing mapped in so nothing to flush */
   2320 		return (0);
   2321 	}
   2322 
   2323 	/*
   2324 	 * Since we flush the cache each time we change to a different
   2325 	 * user vmspace, we only need to flush the page if it is in the
   2326 	 * current pmap.
   2327 	 */
   2328 	pm = curproc->p_vmspace->vm_map.pmap;
   2329 
   2330 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2331 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2332 			flags |= npv->pv_flags;
   2333 			/*
   2334 			 * The page is mapped non-cacheable in
   2335 			 * this map.  No need to flush the cache.
   2336 			 */
   2337 			if (npv->pv_flags & PVF_NC) {
   2338 #ifdef DIAGNOSTIC
   2339 				if (cache_needs_cleaning)
   2340 					panic("pmap_clean_page: "
   2341 					    "cache inconsistency");
   2342 #endif
   2343 				break;
   2344 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2345 				continue;
   2346 			if (cache_needs_cleaning) {
   2347 				page_to_clean = 0;
   2348 				break;
   2349 			} else {
   2350 				page_to_clean = npv->pv_va;
   2351 				pm_to_clean = npv->pv_pmap;
   2352 			}
   2353 			cache_needs_cleaning = 1;
   2354 		}
   2355 	}
   2356 
   2357 	if (page_to_clean) {
   2358 		if (PV_BEEN_EXECD(flags))
   2359 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2360 			    PAGE_SIZE);
   2361 		else
   2362 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2363 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2364 	} else if (cache_needs_cleaning) {
   2365 		if (PV_BEEN_EXECD(flags))
   2366 			pmap_idcache_wbinv_all(pm);
   2367 		else
   2368 			pmap_dcache_wbinv_all(pm);
   2369 		return (1);
   2370 	}
   2371 	return (0);
   2372 }
   2373 #endif
   2374 
   2375 #ifdef PMAP_CACHE_VIPT
   2376 /*
   2377  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2378  * right cache alias to make sure we flush the right stuff.
   2379  */
   2380 void
   2381 pmap_syncicache_page(struct vm_page *pg)
   2382 {
   2383 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2384 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2385 
   2386 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2387 	    pg, pg->mdpage.pvh_attrs));
   2388 	/*
   2389 	 * No need to clean the page if it's non-cached.
   2390 	 */
   2391 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2392 		return;
   2393 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2394 
   2395 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2396 	/*
   2397 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2398 	 */
   2399 	*ptep = L2_S_PROTO |
   2400 	    VM_PAGE_TO_PHYS(pg)
   2401 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2402 	    | pte_l2_s_cache_mode;
   2403 	PTE_SYNC(ptep);
   2404 
   2405 	/*
   2406 	 * Flush it.
   2407 	 */
   2408 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2409 	/*
   2410 	 * Unmap the page.
   2411 	 */
   2412 	*ptep = 0;
   2413 	PTE_SYNC(ptep);
   2414 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2415 
   2416 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2417 	PMAPCOUNT(exec_synced);
   2418 }
   2419 
   2420 void
   2421 pmap_flush_page(struct vm_page *pg, bool flush)
   2422 {
   2423 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2424 	const size_t pte_offset = va_offset >> PGSHIFT;
   2425 	pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2426 	const pt_entry_t oldpte = *ptep;
   2427 #if 0
   2428 	vaddr_t mask;
   2429 #endif
   2430 
   2431 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2432 #if 0
   2433 	mask = pmap_check_sets(pg->phys_addr);
   2434 	KASSERT(popc4(mask) < 2);
   2435 #endif
   2436 
   2437 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2438 	    pg, pg->mdpage.pvh_attrs));
   2439 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2440 	/*
   2441 	 * Set up a PTE with the right coloring to flush existing cache entries.
   2442 	 */
   2443 	*ptep = L2_S_PROTO
   2444 	    | VM_PAGE_TO_PHYS(pg)
   2445 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2446 	    | pte_l2_s_cache_mode;
   2447 	PTE_SYNC(ptep);
   2448 
   2449 	/*
   2450 	 * Flush it.
   2451 	 */
   2452 	if (flush)
   2453 		cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   2454 	else
   2455 		cpu_dcache_wb_range(cdstp + va_offset, PAGE_SIZE);
   2456 
   2457 	/*
   2458 	 * Mark that the page is no longer dirty.
   2459 	 */
   2460 	if ((pg->mdpage.pvh_attrs & PVF_MOD) == 0)
   2461 		pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2462 
   2463 	/*
   2464 	 * Restore the page table entry since we might have interrupted
   2465 	 * pmap_zero_page or pmap_copy_page which was already using this pte.
   2466 	 */
   2467 	*ptep = oldpte;
   2468 	PTE_SYNC(ptep);
   2469 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2470 #if 0
   2471 	mask = pmap_check_sets(pg->phys_addr);
   2472 	KASSERT(mask == 0);
   2473 #endif
   2474 }
   2475 #endif /* PMAP_CACHE_VIPT */
   2476 
   2477 /*
   2478  * Routine:	pmap_page_remove
   2479  * Function:
   2480  *		Removes this physical page from
   2481  *		all physical maps in which it resides.
   2482  *		Reflects back modify bits to the pager.
   2483  */
   2484 static void
   2485 pmap_page_remove(struct vm_page *pg)
   2486 {
   2487 	struct l2_bucket *l2b;
   2488 	struct pv_entry *pv, *npv, **pvp;
   2489 	pmap_t pm, curpm;
   2490 	pt_entry_t *ptep, pte;
   2491 	bool flush;
   2492 	u_int flags;
   2493 
   2494 	NPDEBUG(PDB_FOLLOW,
   2495 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2496 	    VM_PAGE_TO_PHYS(pg)));
   2497 
   2498 	PMAP_HEAD_TO_MAP_LOCK();
   2499 	simple_lock(&pg->mdpage.pvh_slock);
   2500 
   2501 	pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2502 	if (pv == NULL) {
   2503 #ifdef PMAP_CACHE_VIPT
   2504 		/*
   2505 		 * We *know* the page contents are about to be replaced.
   2506 		 * Discard the exec contents
   2507 		 */
   2508 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2509 			PMAPCOUNT(exec_discarded_page_protect);
   2510 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2511 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2512 #if 0 /* XYY */
   2513 		pmap_flush_page(pg, true);	/* wbinv the contents */
   2514 #endif
   2515 #endif
   2516 		simple_unlock(&pg->mdpage.pvh_slock);
   2517 		PMAP_HEAD_TO_MAP_UNLOCK();
   2518 		return;
   2519 	}
   2520 #ifdef PMAP_CACHE_VIPT
   2521 	KASSERT(pmap_is_page_colored_p(pg));
   2522 #endif
   2523 
   2524 	/*
   2525 	 * Clear alias counts
   2526 	 */
   2527 #ifdef PMAP_CACHE_VIVT
   2528 	pg->mdpage.k_mappings = 0;
   2529 #endif
   2530 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2531 
   2532 	flush = false;
   2533 	flags = 0;
   2534 	curpm = curproc->p_vmspace->vm_map.pmap;
   2535 
   2536 #ifdef PMAP_CACHE_VIVT
   2537 	pmap_clean_page(pv, false);
   2538 #endif
   2539 
   2540 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
   2541 	while (pv) {
   2542 		pm = pv->pv_pmap;
   2543 		npv = SLIST_NEXT(pv, pv_link);
   2544 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2545 			flush = true;
   2546 
   2547 		if (pm == pmap_kernel()) {
   2548 #ifdef PMAP_CACHE_VIPT
   2549 			/*
   2550 			 * If this was unmanaged mapping, it must be preserved.
   2551 			 * Move it back on the list and advance the end-of-list
   2552 			 * pointer.
   2553 			 */
   2554 			if (pv->pv_flags & PVF_KENTRY) {
   2555 				*pvp = pv;
   2556 				pvp = &SLIST_NEXT(pv, pv_link);
   2557 				pv = npv;
   2558 				continue;
   2559 			}
   2560 			if (pv->pv_flags & PVF_WRITE)
   2561 				pg->mdpage.krw_mappings--;
   2562 			else
   2563 				pg->mdpage.kro_mappings--;
   2564 #endif
   2565 			PMAPCOUNT(kernel_unmappings);
   2566 		}
   2567 		PMAPCOUNT(unmappings);
   2568 
   2569 		pmap_acquire_pmap_lock(pm);
   2570 
   2571 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2572 		KDASSERT(l2b != NULL);
   2573 
   2574 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2575 		pte = *ptep;
   2576 
   2577 		/*
   2578 		 * Update statistics
   2579 		 */
   2580 		--pm->pm_stats.resident_count;
   2581 
   2582 		/* Wired bit */
   2583 		if (pv->pv_flags & PVF_WIRED)
   2584 			--pm->pm_stats.wired_count;
   2585 
   2586 		flags |= pv->pv_flags;
   2587 
   2588 		/*
   2589 		 * Invalidate the PTEs.
   2590 		 */
   2591 		*ptep = 0;
   2592 		PTE_SYNC_CURRENT(pm, ptep);
   2593 		pmap_free_l2_bucket(pm, l2b, 1);
   2594 
   2595 		pool_put(&pmap_pv_pool, pv);
   2596 		pv = npv;
   2597 		/*
   2598 		 * if we reach the end of the list and there are still
   2599 		 * mappings, they might be able to be cached now.
   2600 		 */
   2601 		if (pv == NULL) {
   2602 			*pvp = NULL;
   2603 			if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   2604 				pmap_vac_me_harder(pg, pm, 0);
   2605 		}
   2606 		pmap_release_pmap_lock(pm);
   2607 	}
   2608 #ifdef PMAP_CACHE_VIPT
   2609 	/*
   2610 	 * Its EXEC cache is now gone.
   2611 	 */
   2612 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2613 		PMAPCOUNT(exec_discarded_page_protect);
   2614 	pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2615 	KASSERT(pg->mdpage.urw_mappings == 0);
   2616 	KASSERT(pg->mdpage.uro_mappings == 0);
   2617 #if 0 /* XYY */
   2618 	if ((pg->mdpage.pvh_attrs & PMAP_KMPAGE) == 0) {
   2619 		if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   2620 			pmap_flush_page(pg, true);	/* wbinv the contents */
   2621 		} else if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   2622 			   && pg->mdpage.krw_mappings == 0) {
   2623 			pmap_flush_page(pg, false);	/* wb the contents */
   2624 		}
   2625 	}
   2626 #endif
   2627 	if (pg->mdpage.krw_mappings == 0)
   2628 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2629 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2630 #endif
   2631 	simple_unlock(&pg->mdpage.pvh_slock);
   2632 	PMAP_HEAD_TO_MAP_UNLOCK();
   2633 
   2634 	if (flush) {
   2635 		/*
   2636 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2637 		 * would need a subsequent call to pmap_update() to ensure
   2638 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2639 		 * required to do that (see pmap(9)), so we can't modify
   2640 		 * the current pmap's state.
   2641 		 */
   2642 		if (PV_BEEN_EXECD(flags))
   2643 			cpu_tlb_flushID();
   2644 		else
   2645 			cpu_tlb_flushD();
   2646 	}
   2647 	cpu_cpwait();
   2648 }
   2649 
   2650 /*
   2651  * pmap_t pmap_create(void)
   2652  *
   2653  *      Create a new pmap structure from scratch.
   2654  */
   2655 pmap_t
   2656 pmap_create(void)
   2657 {
   2658 	pmap_t pm;
   2659 
   2660 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2661 
   2662 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2663 	pm->pm_stats.wired_count = 0;
   2664 	pm->pm_stats.resident_count = 1;
   2665 	pm->pm_cstate.cs_all = 0;
   2666 	pmap_alloc_l1(pm);
   2667 
   2668 	/*
   2669 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2670 	 * initialised to zero.
   2671 	 */
   2672 
   2673 	pmap_pinit(pm);
   2674 
   2675 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2676 
   2677 	return (pm);
   2678 }
   2679 
   2680 /*
   2681  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2682  *     int flags)
   2683  *
   2684  *      Insert the given physical page (p) at
   2685  *      the specified virtual address (v) in the
   2686  *      target physical map with the protection requested.
   2687  *
   2688  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2689  *      or lose information.  That is, this routine must actually
   2690  *      insert this page into the given map NOW.
   2691  */
   2692 int
   2693 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2694 {
   2695 	struct l2_bucket *l2b;
   2696 	struct vm_page *pg, *opg;
   2697 	struct pv_entry *pve;
   2698 	pt_entry_t *ptep, npte, opte;
   2699 	u_int nflags;
   2700 	u_int oflags;
   2701 
   2702 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2703 
   2704 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2705 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2706 
   2707 	/*
   2708 	 * Get a pointer to the page.  Later on in this function, we
   2709 	 * test for a managed page by checking pg != NULL.
   2710 	 */
   2711 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2712 
   2713 	nflags = 0;
   2714 	if (prot & VM_PROT_WRITE)
   2715 		nflags |= PVF_WRITE;
   2716 	if (prot & VM_PROT_EXECUTE)
   2717 		nflags |= PVF_EXEC;
   2718 	if (flags & PMAP_WIRED)
   2719 		nflags |= PVF_WIRED;
   2720 
   2721 	PMAP_MAP_TO_HEAD_LOCK();
   2722 	pmap_acquire_pmap_lock(pm);
   2723 
   2724 	/*
   2725 	 * Fetch the L2 bucket which maps this page, allocating one if
   2726 	 * necessary for user pmaps.
   2727 	 */
   2728 	if (pm == pmap_kernel())
   2729 		l2b = pmap_get_l2_bucket(pm, va);
   2730 	else
   2731 		l2b = pmap_alloc_l2_bucket(pm, va);
   2732 	if (l2b == NULL) {
   2733 		if (flags & PMAP_CANFAIL) {
   2734 			pmap_release_pmap_lock(pm);
   2735 			PMAP_MAP_TO_HEAD_UNLOCK();
   2736 			return (ENOMEM);
   2737 		}
   2738 		panic("pmap_enter: failed to allocate L2 bucket");
   2739 	}
   2740 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2741 	opte = *ptep;
   2742 	npte = pa;
   2743 	oflags = 0;
   2744 
   2745 	if (opte) {
   2746 		/*
   2747 		 * There is already a mapping at this address.
   2748 		 * If the physical address is different, lookup the
   2749 		 * vm_page.
   2750 		 */
   2751 		if (l2pte_pa(opte) != pa)
   2752 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2753 		else
   2754 			opg = pg;
   2755 	} else
   2756 		opg = NULL;
   2757 
   2758 	if (pg) {
   2759 		/*
   2760 		 * This is to be a managed mapping.
   2761 		 */
   2762 		if ((flags & VM_PROT_ALL) ||
   2763 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2764 			/*
   2765 			 * - The access type indicates that we don't need
   2766 			 *   to do referenced emulation.
   2767 			 * OR
   2768 			 * - The physical page has already been referenced
   2769 			 *   so no need to re-do referenced emulation here.
   2770 			 */
   2771 			npte |= L2_S_PROTO;
   2772 
   2773 			nflags |= PVF_REF;
   2774 
   2775 			if ((prot & VM_PROT_WRITE) != 0 &&
   2776 			    ((flags & VM_PROT_WRITE) != 0 ||
   2777 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2778 				/*
   2779 				 * This is a writable mapping, and the
   2780 				 * page's mod state indicates it has
   2781 				 * already been modified. Make it
   2782 				 * writable from the outset.
   2783 				 */
   2784 				npte |= L2_S_PROT_W;
   2785 				nflags |= PVF_MOD;
   2786 			}
   2787 		} else {
   2788 			/*
   2789 			 * Need to do page referenced emulation.
   2790 			 */
   2791 			npte |= L2_TYPE_INV;
   2792 		}
   2793 
   2794 		npte |= pte_l2_s_cache_mode;
   2795 
   2796 		if (pg == opg) {
   2797 			/*
   2798 			 * We're changing the attrs of an existing mapping.
   2799 			 */
   2800 			simple_lock(&pg->mdpage.pvh_slock);
   2801 			oflags = pmap_modify_pv(pg, pm, va,
   2802 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2803 			    PVF_MOD | PVF_REF, nflags);
   2804 			simple_unlock(&pg->mdpage.pvh_slock);
   2805 
   2806 #ifdef PMAP_CACHE_VIVT
   2807 			/*
   2808 			 * We may need to flush the cache if we're
   2809 			 * doing rw-ro...
   2810 			 */
   2811 			if (pm->pm_cstate.cs_cache_d &&
   2812 			    (oflags & PVF_NC) == 0 &&
   2813 			    (opte & L2_S_PROT_W) != 0 &&
   2814 			    (prot & VM_PROT_WRITE) == 0)
   2815 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2816 #endif
   2817 		} else {
   2818 			/*
   2819 			 * New mapping, or changing the backing page
   2820 			 * of an existing mapping.
   2821 			 */
   2822 			if (opg) {
   2823 				/*
   2824 				 * Replacing an existing mapping with a new one.
   2825 				 * It is part of our managed memory so we
   2826 				 * must remove it from the PV list
   2827 				 */
   2828 				simple_lock(&opg->mdpage.pvh_slock);
   2829 				pve = pmap_remove_pv(opg, pm, va, 0);
   2830 				pmap_vac_me_harder(opg, pm, 0);
   2831 				simple_unlock(&opg->mdpage.pvh_slock);
   2832 				oflags = pve->pv_flags;
   2833 
   2834 #ifdef PMAP_CACHE_VIVT
   2835 				/*
   2836 				 * If the old mapping was valid (ref/mod
   2837 				 * emulation creates 'invalid' mappings
   2838 				 * initially) then make sure to frob
   2839 				 * the cache.
   2840 				 */
   2841 				if ((oflags & PVF_NC) == 0 &&
   2842 				    l2pte_valid(opte)) {
   2843 					if (PV_BEEN_EXECD(oflags)) {
   2844 						pmap_idcache_wbinv_range(pm, va,
   2845 						    PAGE_SIZE);
   2846 					} else
   2847 					if (PV_BEEN_REFD(oflags)) {
   2848 						pmap_dcache_wb_range(pm, va,
   2849 						    PAGE_SIZE, true,
   2850 						    (oflags & PVF_WRITE) == 0);
   2851 					}
   2852 				}
   2853 #endif
   2854 			} else
   2855 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2856 				if ((flags & PMAP_CANFAIL) == 0)
   2857 					panic("pmap_enter: no pv entries");
   2858 
   2859 				if (pm != pmap_kernel())
   2860 					pmap_free_l2_bucket(pm, l2b, 0);
   2861 				pmap_release_pmap_lock(pm);
   2862 				PMAP_MAP_TO_HEAD_UNLOCK();
   2863 				NPDEBUG(PDB_ENTER,
   2864 				    printf("pmap_enter: ENOMEM\n"));
   2865 				return (ENOMEM);
   2866 			}
   2867 
   2868 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2869 		}
   2870 	} else {
   2871 		/*
   2872 		 * We're mapping an unmanaged page.
   2873 		 * These are always readable, and possibly writable, from
   2874 		 * the get go as we don't need to track ref/mod status.
   2875 		 */
   2876 		npte |= L2_S_PROTO;
   2877 		if (prot & VM_PROT_WRITE)
   2878 			npte |= L2_S_PROT_W;
   2879 
   2880 		/*
   2881 		 * Make sure the vector table is mapped cacheable
   2882 		 */
   2883 		if (pm != pmap_kernel() && va == vector_page)
   2884 			npte |= pte_l2_s_cache_mode;
   2885 
   2886 		if (opg) {
   2887 			/*
   2888 			 * Looks like there's an existing 'managed' mapping
   2889 			 * at this address.
   2890 			 */
   2891 			simple_lock(&opg->mdpage.pvh_slock);
   2892 			pve = pmap_remove_pv(opg, pm, va, 0);
   2893 			pmap_vac_me_harder(opg, pm, 0);
   2894 			simple_unlock(&opg->mdpage.pvh_slock);
   2895 			oflags = pve->pv_flags;
   2896 
   2897 #ifdef PMAP_CACHE_VIVT
   2898 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2899 				if (PV_BEEN_EXECD(oflags))
   2900 					pmap_idcache_wbinv_range(pm, va,
   2901 					    PAGE_SIZE);
   2902 				else
   2903 				if (PV_BEEN_REFD(oflags))
   2904 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2905 					    true, (oflags & PVF_WRITE) == 0);
   2906 			}
   2907 #endif
   2908 			pool_put(&pmap_pv_pool, pve);
   2909 		}
   2910 	}
   2911 
   2912 	/*
   2913 	 * Make sure userland mappings get the right permissions
   2914 	 */
   2915 	if (pm != pmap_kernel() && va != vector_page)
   2916 		npte |= L2_S_PROT_U;
   2917 
   2918 	/*
   2919 	 * Keep the stats up to date
   2920 	 */
   2921 	if (opte == 0) {
   2922 		l2b->l2b_occupancy++;
   2923 		pm->pm_stats.resident_count++;
   2924 	}
   2925 
   2926 	NPDEBUG(PDB_ENTER,
   2927 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2928 
   2929 	/*
   2930 	 * If this is just a wiring change, the two PTEs will be
   2931 	 * identical, so there's no need to update the page table.
   2932 	 */
   2933 	if (npte != opte) {
   2934 		bool is_cached = pmap_is_cached(pm);
   2935 
   2936 		*ptep = npte;
   2937 		if (is_cached) {
   2938 			/*
   2939 			 * We only need to frob the cache/tlb if this pmap
   2940 			 * is current
   2941 			 */
   2942 			PTE_SYNC(ptep);
   2943 			if (va != vector_page && l2pte_valid(npte)) {
   2944 				/*
   2945 				 * This mapping is likely to be accessed as
   2946 				 * soon as we return to userland. Fix up the
   2947 				 * L1 entry to avoid taking another
   2948 				 * page/domain fault.
   2949 				 */
   2950 				pd_entry_t *pl1pd, l1pd;
   2951 
   2952 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2953 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2954 				    L1_C_PROTO;
   2955 				if (*pl1pd != l1pd) {
   2956 					*pl1pd = l1pd;
   2957 					PTE_SYNC(pl1pd);
   2958 				}
   2959 			}
   2960 		}
   2961 
   2962 		if (PV_BEEN_EXECD(oflags))
   2963 			pmap_tlb_flushID_SE(pm, va);
   2964 		else
   2965 		if (PV_BEEN_REFD(oflags))
   2966 			pmap_tlb_flushD_SE(pm, va);
   2967 
   2968 		NPDEBUG(PDB_ENTER,
   2969 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2970 		    is_cached, pm->pm_cstate.cs_all));
   2971 
   2972 		if (pg != NULL) {
   2973 			simple_lock(&pg->mdpage.pvh_slock);
   2974 			pmap_vac_me_harder(pg, pm, va);
   2975 			simple_unlock(&pg->mdpage.pvh_slock);
   2976 		}
   2977 	}
   2978 #ifdef PMAP_CACHE_VIPT
   2979 	KASSERT((pg->mdpage.pvh_attrs & PVF_MOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2980 	KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
   2981 #endif
   2982 
   2983 	pmap_release_pmap_lock(pm);
   2984 	PMAP_MAP_TO_HEAD_UNLOCK();
   2985 
   2986 	return (0);
   2987 }
   2988 
   2989 /*
   2990  * pmap_remove()
   2991  *
   2992  * pmap_remove is responsible for nuking a number of mappings for a range
   2993  * of virtual address space in the current pmap. To do this efficiently
   2994  * is interesting, because in a number of cases a wide virtual address
   2995  * range may be supplied that contains few actual mappings. So, the
   2996  * optimisations are:
   2997  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   2998  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2999  *     maybe do just a partial cache clean. This path of execution is
   3000  *     complicated by the fact that the cache must be flushed _before_
   3001  *     the PTE is nuked, being a VAC :-)
   3002  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3003  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3004  *     already flushed the cache.
   3005  *  4. Maybe later fast-case a single page, but I don't think this is
   3006  *     going to make _that_ much difference overall.
   3007  */
   3008 
   3009 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3010 
   3011 void
   3012 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   3013 {
   3014 	struct l2_bucket *l2b;
   3015 	vaddr_t next_bucket;
   3016 	pt_entry_t *ptep;
   3017 	u_int cleanlist_idx, total, cnt;
   3018 	struct {
   3019 		vaddr_t va;
   3020 		pt_entry_t *ptep;
   3021 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3022 	u_int mappings, is_exec, is_refd;
   3023 
   3024 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3025 	    "eva=%08lx\n", pm, sva, eva));
   3026 
   3027 	/*
   3028 	 * we lock in the pmap => pv_head direction
   3029 	 */
   3030 	PMAP_MAP_TO_HEAD_LOCK();
   3031 	pmap_acquire_pmap_lock(pm);
   3032 
   3033 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3034 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3035 		if (pm->pm_cstate.cs_tlb == 0)
   3036 			pm->pm_remove_all = true;
   3037 	} else
   3038 		cleanlist_idx = 0;
   3039 
   3040 	total = 0;
   3041 
   3042 	while (sva < eva) {
   3043 		/*
   3044 		 * Do one L2 bucket's worth at a time.
   3045 		 */
   3046 		next_bucket = L2_NEXT_BUCKET(sva);
   3047 		if (next_bucket > eva)
   3048 			next_bucket = eva;
   3049 
   3050 		l2b = pmap_get_l2_bucket(pm, sva);
   3051 		if (l2b == NULL) {
   3052 			sva = next_bucket;
   3053 			continue;
   3054 		}
   3055 
   3056 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3057 
   3058 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3059 			struct vm_page *pg;
   3060 			pt_entry_t pte;
   3061 			paddr_t pa;
   3062 
   3063 			pte = *ptep;
   3064 
   3065 			if (pte == 0) {
   3066 				/* Nothing here, move along */
   3067 				continue;
   3068 			}
   3069 
   3070 			pa = l2pte_pa(pte);
   3071 			is_exec = 0;
   3072 			is_refd = 1;
   3073 
   3074 			/*
   3075 			 * Update flags. In a number of circumstances,
   3076 			 * we could cluster a lot of these and do a
   3077 			 * number of sequential pages in one go.
   3078 			 */
   3079 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3080 				struct pv_entry *pve;
   3081 				simple_lock(&pg->mdpage.pvh_slock);
   3082 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   3083 				pmap_vac_me_harder(pg, pm, 0);
   3084 				simple_unlock(&pg->mdpage.pvh_slock);
   3085 				if (pve != NULL) {
   3086 					if (pm->pm_remove_all == false) {
   3087 						is_exec =
   3088 						   PV_BEEN_EXECD(pve->pv_flags);
   3089 						is_refd =
   3090 						   PV_BEEN_REFD(pve->pv_flags);
   3091 					}
   3092 					pool_put(&pmap_pv_pool, pve);
   3093 				} else
   3094 				if (skip_wired) {
   3095 					/* The mapping is wired. Skip it */
   3096 					continue;
   3097 				}
   3098 			} else
   3099 			if (skip_wired) {
   3100 				/* Unmanaged pages are always wired. */
   3101 				continue;
   3102 			}
   3103 
   3104 			mappings++;
   3105 
   3106 			if (!l2pte_valid(pte)) {
   3107 				/*
   3108 				 * Ref/Mod emulation is still active for this
   3109 				 * mapping, therefore it is has not yet been
   3110 				 * accessed. No need to frob the cache/tlb.
   3111 				 */
   3112 				*ptep = 0;
   3113 				PTE_SYNC_CURRENT(pm, ptep);
   3114 				continue;
   3115 			}
   3116 
   3117 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3118 				/* Add to the clean list. */
   3119 				cleanlist[cleanlist_idx].ptep = ptep;
   3120 				cleanlist[cleanlist_idx].va =
   3121 				    sva | (is_exec & 1);
   3122 				cleanlist_idx++;
   3123 			} else
   3124 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3125 				/* Nuke everything if needed. */
   3126 #ifdef PMAP_CACHE_VIVT
   3127 				pmap_idcache_wbinv_all(pm);
   3128 #endif
   3129 				pmap_tlb_flushID(pm);
   3130 
   3131 				/*
   3132 				 * Roll back the previous PTE list,
   3133 				 * and zero out the current PTE.
   3134 				 */
   3135 				for (cnt = 0;
   3136 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3137 					*cleanlist[cnt].ptep = 0;
   3138 					PTE_SYNC(cleanlist[cnt].ptep);
   3139 				}
   3140 				*ptep = 0;
   3141 				PTE_SYNC(ptep);
   3142 				cleanlist_idx++;
   3143 				pm->pm_remove_all = true;
   3144 			} else {
   3145 				*ptep = 0;
   3146 				PTE_SYNC(ptep);
   3147 				if (pm->pm_remove_all == false) {
   3148 					if (is_exec)
   3149 						pmap_tlb_flushID_SE(pm, sva);
   3150 					else
   3151 					if (is_refd)
   3152 						pmap_tlb_flushD_SE(pm, sva);
   3153 				}
   3154 			}
   3155 		}
   3156 
   3157 		/*
   3158 		 * Deal with any left overs
   3159 		 */
   3160 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3161 			total += cleanlist_idx;
   3162 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3163 				if (pm->pm_cstate.cs_all != 0) {
   3164 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3165 					if (cleanlist[cnt].va & 1) {
   3166 #ifdef PMAP_CACHE_VIVT
   3167 						pmap_idcache_wbinv_range(pm,
   3168 						    clva, PAGE_SIZE);
   3169 #endif
   3170 						pmap_tlb_flushID_SE(pm, clva);
   3171 					} else {
   3172 #ifdef PMAP_CACHE_VIVT
   3173 						pmap_dcache_wb_range(pm,
   3174 						    clva, PAGE_SIZE, true,
   3175 						    false);
   3176 #endif
   3177 						pmap_tlb_flushD_SE(pm, clva);
   3178 					}
   3179 				}
   3180 				*cleanlist[cnt].ptep = 0;
   3181 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3182 			}
   3183 
   3184 			/*
   3185 			 * If it looks like we're removing a whole bunch
   3186 			 * of mappings, it's faster to just write-back
   3187 			 * the whole cache now and defer TLB flushes until
   3188 			 * pmap_update() is called.
   3189 			 */
   3190 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3191 				cleanlist_idx = 0;
   3192 			else {
   3193 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3194 #ifdef PMAP_CACHE_VIVT
   3195 				pmap_idcache_wbinv_all(pm);
   3196 #endif
   3197 				pm->pm_remove_all = true;
   3198 			}
   3199 		}
   3200 
   3201 		pmap_free_l2_bucket(pm, l2b, mappings);
   3202 		pm->pm_stats.resident_count -= mappings;
   3203 	}
   3204 
   3205 	pmap_release_pmap_lock(pm);
   3206 	PMAP_MAP_TO_HEAD_UNLOCK();
   3207 }
   3208 
   3209 #ifdef PMAP_CACHE_VIPT
   3210 static struct pv_entry *
   3211 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3212 {
   3213 	struct pv_entry *pv;
   3214 
   3215 	simple_lock(&pg->mdpage.pvh_slock);
   3216 	KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   3217 	KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3218 
   3219 	pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
   3220 	KASSERT(pv);
   3221 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3222 
   3223 	/*
   3224 	 * If we are removing a writeable mapping to a cached exec page,
   3225 	 * if it's the last mapping then clear it execness other sync
   3226 	 * the page to the icache.
   3227 	 */
   3228 	if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3229 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3230 		if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   3231 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3232 			PMAPCOUNT(exec_discarded_kremove);
   3233 		} else {
   3234 			pmap_syncicache_page(pg);
   3235 			PMAPCOUNT(exec_synced_kremove);
   3236 		}
   3237 	}
   3238 	pmap_vac_me_harder(pg, pmap_kernel(), 0);
   3239 	simple_unlock(&pg->mdpage.pvh_slock);
   3240 
   3241 	return pv;
   3242 }
   3243 #endif /* PMAP_CACHE_VIPT */
   3244 
   3245 /*
   3246  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3247  *
   3248  * We assume there is already sufficient KVM space available
   3249  * to do this, as we can't allocate L2 descriptor tables/metadata
   3250  * from here.
   3251  */
   3252 void
   3253 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   3254 {
   3255 	struct l2_bucket *l2b;
   3256 	pt_entry_t *ptep, opte;
   3257 #ifdef PMAP_CACHE_VIPT
   3258 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3259 	struct vm_page *opg;
   3260 	struct pv_entry *pv = NULL;
   3261 #endif
   3262 
   3263 	NPDEBUG(PDB_KENTER,
   3264 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3265 	    va, pa, prot));
   3266 
   3267 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3268 	KDASSERT(l2b != NULL);
   3269 
   3270 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3271 	opte = *ptep;
   3272 
   3273 	if (opte == 0) {
   3274 		PMAPCOUNT(kenter_mappings);
   3275 		l2b->l2b_occupancy++;
   3276 	} else {
   3277 		PMAPCOUNT(kenter_remappings);
   3278 #ifdef PMAP_CACHE_VIPT
   3279 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3280 		if (opg) {
   3281 			KASSERT(opg != pg);
   3282 			KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3283 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3284 			simple_lock(&opg->mdpage.pvh_slock);
   3285 			pv = pmap_kremove_pg(opg, va);
   3286 			simple_unlock(&opg->mdpage.pvh_slock);
   3287 		}
   3288 #endif
   3289 		if (l2pte_valid(opte)) {
   3290 #ifdef PMAP_CACHE_VIVT
   3291 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3292 #endif
   3293 			cpu_tlb_flushD_SE(va);
   3294 			cpu_cpwait();
   3295 		}
   3296 	}
   3297 
   3298 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3299 	    pte_l2_s_cache_mode;
   3300 	PTE_SYNC(ptep);
   3301 
   3302 #ifdef PMAP_CACHE_VIPT
   3303 	if (pg) {
   3304 		if (prot & PMAP_KMPAGE) {
   3305 			KASSERT(pv == NULL);
   3306 			KASSERT((va & PVF_COLORED) == 0);
   3307 			simple_lock(&pg->mdpage.pvh_slock);
   3308 			KASSERT(pg->mdpage.urw_mappings == 0);
   3309 			KASSERT(pg->mdpage.uro_mappings == 0);
   3310 			KASSERT(pg->mdpage.krw_mappings == 0);
   3311 			KASSERT(pg->mdpage.kro_mappings == 0);
   3312 			KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
   3313 			/* if there is a color conflict, evict from cache. */
   3314 			if (pmap_is_page_colored_p(pg)
   3315 			    && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
   3316 				PMAPCOUNT(vac_color_change);
   3317 				pmap_flush_page(pg, true);
   3318 			}
   3319 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   3320 			pg->mdpage.pvh_attrs |= PVF_KMPAGE
   3321 			    | PVF_COLORED | PVF_DIRTY
   3322 			    | (va & arm_cache_prefer_mask);
   3323 			simple_unlock(&pg->mdpage.pvh_slock);
   3324 		} else {
   3325 			if (pv == NULL) {
   3326 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3327 				KASSERT(pv != NULL);
   3328 			}
   3329 			pmap_enter_pv(pg, pv, pmap_kernel(), va,
   3330 			    PVF_WIRED | PVF_KENTRY
   3331 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3332 			if ((prot & VM_PROT_WRITE)
   3333 			    && !(pg->mdpage.pvh_attrs & PVF_NC))
   3334 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3335 			KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3336 			simple_lock(&pg->mdpage.pvh_slock);
   3337 			pmap_vac_me_harder(pg, pmap_kernel(), va);
   3338 			simple_unlock(&pg->mdpage.pvh_slock);
   3339 		}
   3340 	} else {
   3341 		if (pv != NULL)
   3342 			pool_put(&pmap_pv_pool, pv);
   3343 	}
   3344 #endif
   3345 }
   3346 
   3347 void
   3348 pmap_kremove(vaddr_t va, vsize_t len)
   3349 {
   3350 	struct l2_bucket *l2b;
   3351 	pt_entry_t *ptep, *sptep, opte;
   3352 	vaddr_t next_bucket, eva;
   3353 	u_int mappings;
   3354 #ifdef PMAP_CACHE_VIPT
   3355 	struct vm_page *opg;
   3356 #endif
   3357 
   3358 	PMAPCOUNT(kenter_unmappings);
   3359 
   3360 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3361 	    va, len));
   3362 
   3363 	eva = va + len;
   3364 
   3365 	while (va < eva) {
   3366 		next_bucket = L2_NEXT_BUCKET(va);
   3367 		if (next_bucket > eva)
   3368 			next_bucket = eva;
   3369 
   3370 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3371 		KDASSERT(l2b != NULL);
   3372 
   3373 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3374 		mappings = 0;
   3375 
   3376 		while (va < next_bucket) {
   3377 			opte = *ptep;
   3378 #ifdef PMAP_CACHE_VIPT
   3379 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3380 			if (opg) {
   3381 				if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
   3382 					simple_lock(&opg->mdpage.pvh_slock);
   3383 					KASSERT(opg->mdpage.urw_mappings == 0);
   3384 					KASSERT(opg->mdpage.uro_mappings == 0);
   3385 					KASSERT(opg->mdpage.krw_mappings == 0);
   3386 					KASSERT(opg->mdpage.kro_mappings == 0);
   3387 					opg->mdpage.pvh_attrs &=
   3388 					    ~(PVF_KMPAGE|PVF_WRITE);
   3389 					simple_unlock(&opg->mdpage.pvh_slock);
   3390 				} else {
   3391 					pool_put(&pmap_pv_pool,
   3392 					    pmap_kremove_pg(opg, va));
   3393 				}
   3394 			}
   3395 #endif
   3396 			if (l2pte_valid(opte)) {
   3397 #ifdef PMAP_CACHE_VIVT
   3398 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3399 #endif
   3400 				cpu_tlb_flushD_SE(va);
   3401 			}
   3402 			if (opte) {
   3403 				*ptep = 0;
   3404 				mappings++;
   3405 			}
   3406 			va += PAGE_SIZE;
   3407 			ptep++;
   3408 		}
   3409 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3410 		l2b->l2b_occupancy -= mappings;
   3411 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3412 	}
   3413 	cpu_cpwait();
   3414 }
   3415 
   3416 bool
   3417 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3418 {
   3419 	struct l2_dtable *l2;
   3420 	pd_entry_t *pl1pd, l1pd;
   3421 	pt_entry_t *ptep, pte;
   3422 	paddr_t pa;
   3423 	u_int l1idx;
   3424 
   3425 	pmap_acquire_pmap_lock(pm);
   3426 
   3427 	l1idx = L1_IDX(va);
   3428 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3429 	l1pd = *pl1pd;
   3430 
   3431 	if (l1pte_section_p(l1pd)) {
   3432 		/*
   3433 		 * These should only happen for pmap_kernel()
   3434 		 */
   3435 		KDASSERT(pm == pmap_kernel());
   3436 		pmap_release_pmap_lock(pm);
   3437 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3438 	} else {
   3439 		/*
   3440 		 * Note that we can't rely on the validity of the L1
   3441 		 * descriptor as an indication that a mapping exists.
   3442 		 * We have to look it up in the L2 dtable.
   3443 		 */
   3444 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3445 
   3446 		if (l2 == NULL ||
   3447 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3448 			pmap_release_pmap_lock(pm);
   3449 			return false;
   3450 		}
   3451 
   3452 		ptep = &ptep[l2pte_index(va)];
   3453 		pte = *ptep;
   3454 		pmap_release_pmap_lock(pm);
   3455 
   3456 		if (pte == 0)
   3457 			return false;
   3458 
   3459 		switch (pte & L2_TYPE_MASK) {
   3460 		case L2_TYPE_L:
   3461 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3462 			break;
   3463 
   3464 		default:
   3465 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3466 			break;
   3467 		}
   3468 	}
   3469 
   3470 	if (pap != NULL)
   3471 		*pap = pa;
   3472 
   3473 	return true;
   3474 }
   3475 
   3476 void
   3477 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3478 {
   3479 	struct l2_bucket *l2b;
   3480 	pt_entry_t *ptep, pte;
   3481 	vaddr_t next_bucket;
   3482 	u_int flags;
   3483 	u_int clr_mask;
   3484 	int flush;
   3485 
   3486 	NPDEBUG(PDB_PROTECT,
   3487 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3488 	    pm, sva, eva, prot));
   3489 
   3490 	if ((prot & VM_PROT_READ) == 0) {
   3491 		pmap_remove(pm, sva, eva);
   3492 		return;
   3493 	}
   3494 
   3495 	if (prot & VM_PROT_WRITE) {
   3496 		/*
   3497 		 * If this is a read->write transition, just ignore it and let
   3498 		 * uvm_fault() take care of it later.
   3499 		 */
   3500 		return;
   3501 	}
   3502 
   3503 	PMAP_MAP_TO_HEAD_LOCK();
   3504 	pmap_acquire_pmap_lock(pm);
   3505 
   3506 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3507 	flags = 0;
   3508 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3509 
   3510 	while (sva < eva) {
   3511 		next_bucket = L2_NEXT_BUCKET(sva);
   3512 		if (next_bucket > eva)
   3513 			next_bucket = eva;
   3514 
   3515 		l2b = pmap_get_l2_bucket(pm, sva);
   3516 		if (l2b == NULL) {
   3517 			sva = next_bucket;
   3518 			continue;
   3519 		}
   3520 
   3521 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3522 
   3523 		while (sva < next_bucket) {
   3524 			pte = *ptep;
   3525 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3526 				struct vm_page *pg;
   3527 				u_int f;
   3528 
   3529 #ifdef PMAP_CACHE_VIVT
   3530 				/*
   3531 				 * OK, at this point, we know we're doing
   3532 				 * write-protect operation.  If the pmap is
   3533 				 * active, write-back the page.
   3534 				 */
   3535 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3536 				    false, false);
   3537 #endif
   3538 
   3539 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3540 				pte &= ~L2_S_PROT_W;
   3541 				*ptep = pte;
   3542 				PTE_SYNC(ptep);
   3543 
   3544 				if (pg != NULL) {
   3545 					simple_lock(&pg->mdpage.pvh_slock);
   3546 					f = pmap_modify_pv(pg, pm, sva,
   3547 					    clr_mask, 0);
   3548 					pmap_vac_me_harder(pg, pm, sva);
   3549 					simple_unlock(&pg->mdpage.pvh_slock);
   3550 				} else
   3551 					f = PVF_REF | PVF_EXEC;
   3552 
   3553 				if (flush >= 0) {
   3554 					flush++;
   3555 					flags |= f;
   3556 				} else
   3557 				if (PV_BEEN_EXECD(f))
   3558 					pmap_tlb_flushID_SE(pm, sva);
   3559 				else
   3560 				if (PV_BEEN_REFD(f))
   3561 					pmap_tlb_flushD_SE(pm, sva);
   3562 			}
   3563 
   3564 			sva += PAGE_SIZE;
   3565 			ptep++;
   3566 		}
   3567 	}
   3568 
   3569 	pmap_release_pmap_lock(pm);
   3570 	PMAP_MAP_TO_HEAD_UNLOCK();
   3571 
   3572 	if (flush) {
   3573 		if (PV_BEEN_EXECD(flags))
   3574 			pmap_tlb_flushID(pm);
   3575 		else
   3576 		if (PV_BEEN_REFD(flags))
   3577 			pmap_tlb_flushD(pm);
   3578 	}
   3579 }
   3580 
   3581 void
   3582 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3583 {
   3584 	struct l2_bucket *l2b;
   3585 	pt_entry_t *ptep;
   3586 	vaddr_t next_bucket;
   3587 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3588 
   3589 	NPDEBUG(PDB_EXEC,
   3590 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3591 	    pm, sva, eva));
   3592 
   3593 	PMAP_MAP_TO_HEAD_LOCK();
   3594 	pmap_acquire_pmap_lock(pm);
   3595 
   3596 	while (sva < eva) {
   3597 		next_bucket = L2_NEXT_BUCKET(sva);
   3598 		if (next_bucket > eva)
   3599 			next_bucket = eva;
   3600 
   3601 		l2b = pmap_get_l2_bucket(pm, sva);
   3602 		if (l2b == NULL) {
   3603 			sva = next_bucket;
   3604 			continue;
   3605 		}
   3606 
   3607 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3608 		     sva < next_bucket;
   3609 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3610 			if (l2pte_valid(*ptep)) {
   3611 				cpu_icache_sync_range(sva,
   3612 				    min(page_size, eva - sva));
   3613 			}
   3614 		}
   3615 	}
   3616 
   3617 	pmap_release_pmap_lock(pm);
   3618 	PMAP_MAP_TO_HEAD_UNLOCK();
   3619 }
   3620 
   3621 void
   3622 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3623 {
   3624 
   3625 	NPDEBUG(PDB_PROTECT,
   3626 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3627 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3628 
   3629 	switch(prot) {
   3630 		return;
   3631 	case VM_PROT_READ|VM_PROT_WRITE:
   3632 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3633 		pmap_clearbit(pg, PVF_EXEC);
   3634 		break;
   3635 #endif
   3636 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3637 		break;
   3638 
   3639 	case VM_PROT_READ:
   3640 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3641 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3642 		break;
   3643 #endif
   3644 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3645 		pmap_clearbit(pg, PVF_WRITE);
   3646 		break;
   3647 
   3648 	default:
   3649 		pmap_page_remove(pg);
   3650 		break;
   3651 	}
   3652 }
   3653 
   3654 /*
   3655  * pmap_clear_modify:
   3656  *
   3657  *	Clear the "modified" attribute for a page.
   3658  */
   3659 bool
   3660 pmap_clear_modify(struct vm_page *pg)
   3661 {
   3662 	bool rv;
   3663 
   3664 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3665 		rv = true;
   3666 		pmap_clearbit(pg, PVF_MOD);
   3667 	} else
   3668 		rv = false;
   3669 
   3670 	return (rv);
   3671 }
   3672 
   3673 /*
   3674  * pmap_clear_reference:
   3675  *
   3676  *	Clear the "referenced" attribute for a page.
   3677  */
   3678 bool
   3679 pmap_clear_reference(struct vm_page *pg)
   3680 {
   3681 	bool rv;
   3682 
   3683 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3684 		rv = true;
   3685 		pmap_clearbit(pg, PVF_REF);
   3686 	} else
   3687 		rv = false;
   3688 
   3689 	return (rv);
   3690 }
   3691 
   3692 /*
   3693  * pmap_is_modified:
   3694  *
   3695  *	Test if a page has the "modified" attribute.
   3696  */
   3697 /* See <arm/arm32/pmap.h> */
   3698 
   3699 /*
   3700  * pmap_is_referenced:
   3701  *
   3702  *	Test if a page has the "referenced" attribute.
   3703  */
   3704 /* See <arm/arm32/pmap.h> */
   3705 
   3706 int
   3707 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3708 {
   3709 	struct l2_dtable *l2;
   3710 	struct l2_bucket *l2b;
   3711 	pd_entry_t *pl1pd, l1pd;
   3712 	pt_entry_t *ptep, pte;
   3713 	paddr_t pa;
   3714 	u_int l1idx;
   3715 	int rv = 0;
   3716 
   3717 	PMAP_MAP_TO_HEAD_LOCK();
   3718 	pmap_acquire_pmap_lock(pm);
   3719 
   3720 	l1idx = L1_IDX(va);
   3721 
   3722 	/*
   3723 	 * If there is no l2_dtable for this address, then the process
   3724 	 * has no business accessing it.
   3725 	 *
   3726 	 * Note: This will catch userland processes trying to access
   3727 	 * kernel addresses.
   3728 	 */
   3729 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3730 	if (l2 == NULL)
   3731 		goto out;
   3732 
   3733 	/*
   3734 	 * Likewise if there is no L2 descriptor table
   3735 	 */
   3736 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3737 	if (l2b->l2b_kva == NULL)
   3738 		goto out;
   3739 
   3740 	/*
   3741 	 * Check the PTE itself.
   3742 	 */
   3743 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3744 	pte = *ptep;
   3745 	if (pte == 0)
   3746 		goto out;
   3747 
   3748 	/*
   3749 	 * Catch a userland access to the vector page mapped at 0x0
   3750 	 */
   3751 	if (user && (pte & L2_S_PROT_U) == 0)
   3752 		goto out;
   3753 
   3754 	pa = l2pte_pa(pte);
   3755 
   3756 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3757 		/*
   3758 		 * This looks like a good candidate for "page modified"
   3759 		 * emulation...
   3760 		 */
   3761 		struct pv_entry *pv;
   3762 		struct vm_page *pg;
   3763 
   3764 		/* Extract the physical address of the page */
   3765 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3766 			goto out;
   3767 
   3768 		/* Get the current flags for this page. */
   3769 		simple_lock(&pg->mdpage.pvh_slock);
   3770 
   3771 		pv = pmap_find_pv(pg, pm, va);
   3772 		if (pv == NULL) {
   3773 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3774 			goto out;
   3775 		}
   3776 
   3777 		/*
   3778 		 * Do the flags say this page is writable? If not then it
   3779 		 * is a genuine write fault. If yes then the write fault is
   3780 		 * our fault as we did not reflect the write access in the
   3781 		 * PTE. Now we know a write has occurred we can correct this
   3782 		 * and also set the modified bit
   3783 		 */
   3784 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3785 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3786 			goto out;
   3787 		}
   3788 
   3789 		NPDEBUG(PDB_FOLLOW,
   3790 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3791 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3792 
   3793 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD | PVF_DIRTY;
   3794 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3795 		simple_unlock(&pg->mdpage.pvh_slock);
   3796 
   3797 		/*
   3798 		 * Re-enable write permissions for the page.  No need to call
   3799 		 * pmap_vac_me_harder(), since this is just a
   3800 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3801 		 * changing. We've already set the cacheable bits based on
   3802 		 * the assumption that we can write to this page.
   3803 		 */
   3804 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3805 		PTE_SYNC(ptep);
   3806 		rv = 1;
   3807 	} else
   3808 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3809 		/*
   3810 		 * This looks like a good candidate for "page referenced"
   3811 		 * emulation.
   3812 		 */
   3813 		struct pv_entry *pv;
   3814 		struct vm_page *pg;
   3815 
   3816 		/* Extract the physical address of the page */
   3817 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3818 			goto out;
   3819 
   3820 		/* Get the current flags for this page. */
   3821 		simple_lock(&pg->mdpage.pvh_slock);
   3822 
   3823 		pv = pmap_find_pv(pg, pm, va);
   3824 		if (pv == NULL) {
   3825 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3826 			goto out;
   3827 		}
   3828 
   3829 		pg->mdpage.pvh_attrs |= PVF_REF;
   3830 		pv->pv_flags |= PVF_REF;
   3831 		simple_unlock(&pg->mdpage.pvh_slock);
   3832 
   3833 		NPDEBUG(PDB_FOLLOW,
   3834 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3835 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3836 
   3837 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3838 		PTE_SYNC(ptep);
   3839 		rv = 1;
   3840 	}
   3841 
   3842 	/*
   3843 	 * We know there is a valid mapping here, so simply
   3844 	 * fix up the L1 if necessary.
   3845 	 */
   3846 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3847 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3848 	if (*pl1pd != l1pd) {
   3849 		*pl1pd = l1pd;
   3850 		PTE_SYNC(pl1pd);
   3851 		rv = 1;
   3852 	}
   3853 
   3854 #ifdef CPU_SA110
   3855 	/*
   3856 	 * There are bugs in the rev K SA110.  This is a check for one
   3857 	 * of them.
   3858 	 */
   3859 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3860 	    curcpu()->ci_arm_cpurev < 3) {
   3861 		/* Always current pmap */
   3862 		if (l2pte_valid(pte)) {
   3863 			extern int kernel_debug;
   3864 			if (kernel_debug & 1) {
   3865 				struct proc *p = curlwp->l_proc;
   3866 				printf("prefetch_abort: page is already "
   3867 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3868 				printf("prefetch_abort: pc=%08lx proc=%p "
   3869 				    "process=%s\n", va, p, p->p_comm);
   3870 				printf("prefetch_abort: far=%08x fs=%x\n",
   3871 				    cpu_faultaddress(), cpu_faultstatus());
   3872 			}
   3873 #ifdef DDB
   3874 			if (kernel_debug & 2)
   3875 				Debugger();
   3876 #endif
   3877 			rv = 1;
   3878 		}
   3879 	}
   3880 #endif /* CPU_SA110 */
   3881 
   3882 #ifdef DEBUG
   3883 	/*
   3884 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3885 	 * stale TLB entry for the faulting address. This happens when two or
   3886 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3887 	 * a context switch between such processes, we can take domain faults
   3888 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3889 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3890 	 * example.
   3891 	 *
   3892 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3893 	 * entry for a recently entered mapping. In this case, the TLB is
   3894 	 * flushed for the new mapping, but there may still be TLB entries for
   3895 	 * other mappings belonging to other processes in the 1MB range
   3896 	 * covered by the L1 entry.
   3897 	 *
   3898 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3899 	 * value, so the fault must be due to a stale TLB entry.
   3900 	 *
   3901 	 * Since we always need to flush the TLB anyway in the case where we
   3902 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3903 	 * stale TLB entries dynamically.
   3904 	 *
   3905 	 * However, the above condition can ONLY happen if the current L1 is
   3906 	 * being shared. If it happens when the L1 is unshared, it indicates
   3907 	 * that other parts of the pmap are not doing their job WRT managing
   3908 	 * the TLB.
   3909 	 */
   3910 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   3911 		extern int last_fault_code;
   3912 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   3913 		    pm, va, ftype);
   3914 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   3915 		    l2, l2b, ptep, pl1pd);
   3916 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   3917 		    pte, l1pd, last_fault_code);
   3918 #ifdef DDB
   3919 		Debugger();
   3920 #endif
   3921 	}
   3922 #endif
   3923 
   3924 	cpu_tlb_flushID_SE(va);
   3925 	cpu_cpwait();
   3926 
   3927 	rv = 1;
   3928 
   3929 out:
   3930 	pmap_release_pmap_lock(pm);
   3931 	PMAP_MAP_TO_HEAD_UNLOCK();
   3932 
   3933 	return (rv);
   3934 }
   3935 
   3936 /*
   3937  * pmap_collect: free resources held by a pmap
   3938  *
   3939  * => optional function.
   3940  * => called when a process is swapped out to free memory.
   3941  */
   3942 void
   3943 pmap_collect(pmap_t pm)
   3944 {
   3945 
   3946 #ifdef PMAP_CACHE_VIVT
   3947 	pmap_idcache_wbinv_all(pm);
   3948 #endif
   3949 	pm->pm_remove_all = true;
   3950 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3951 	pmap_update(pm);
   3952 	PMAPCOUNT(collects);
   3953 }
   3954 
   3955 /*
   3956  * Routine:	pmap_procwr
   3957  *
   3958  * Function:
   3959  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3960  *
   3961  */
   3962 void
   3963 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3964 {
   3965 	/* We only need to do anything if it is the current process. */
   3966 	if (p == curproc)
   3967 		cpu_icache_sync_range(va, len);
   3968 }
   3969 
   3970 /*
   3971  * Routine:	pmap_unwire
   3972  * Function:	Clear the wired attribute for a map/virtual-address pair.
   3973  *
   3974  * In/out conditions:
   3975  *		The mapping must already exist in the pmap.
   3976  */
   3977 void
   3978 pmap_unwire(pmap_t pm, vaddr_t va)
   3979 {
   3980 	struct l2_bucket *l2b;
   3981 	pt_entry_t *ptep, pte;
   3982 	struct vm_page *pg;
   3983 	paddr_t pa;
   3984 
   3985 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   3986 
   3987 	PMAP_MAP_TO_HEAD_LOCK();
   3988 	pmap_acquire_pmap_lock(pm);
   3989 
   3990 	l2b = pmap_get_l2_bucket(pm, va);
   3991 	KDASSERT(l2b != NULL);
   3992 
   3993 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3994 	pte = *ptep;
   3995 
   3996 	/* Extract the physical address of the page */
   3997 	pa = l2pte_pa(pte);
   3998 
   3999 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4000 		/* Update the wired bit in the pv entry for this page. */
   4001 		simple_lock(&pg->mdpage.pvh_slock);
   4002 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   4003 		simple_unlock(&pg->mdpage.pvh_slock);
   4004 	}
   4005 
   4006 	pmap_release_pmap_lock(pm);
   4007 	PMAP_MAP_TO_HEAD_UNLOCK();
   4008 }
   4009 
   4010 void
   4011 pmap_activate(struct lwp *l)
   4012 {
   4013 	extern int block_userspace_access;
   4014 	pmap_t opm, npm, rpm;
   4015 	uint32_t odacr, ndacr;
   4016 	int oldirqstate;
   4017 
   4018 	/*
   4019 	 * If activating a non-current lwp or the current lwp is
   4020 	 * already active, just return.
   4021 	 */
   4022 	if (l != curlwp ||
   4023 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4024 		return;
   4025 
   4026 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4027 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4028 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4029 
   4030 	/*
   4031 	 * If TTB and DACR are unchanged, short-circuit all the
   4032 	 * TLB/cache management stuff.
   4033 	 */
   4034 	if (pmap_previous_active_lwp != NULL) {
   4035 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4036 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4037 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4038 
   4039 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4040 			goto all_done;
   4041 	} else
   4042 		opm = NULL;
   4043 
   4044 	PMAPCOUNT(activations);
   4045 	block_userspace_access = 1;
   4046 
   4047 	/*
   4048 	 * If switching to a user vmspace which is different to the
   4049 	 * most recent one, and the most recent one is potentially
   4050 	 * live in the cache, we must write-back and invalidate the
   4051 	 * entire cache.
   4052 	 */
   4053 	rpm = pmap_recent_user;
   4054 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4055 	    rpm->pm_cstate.cs_cache) {
   4056 		rpm->pm_cstate.cs_cache = 0;
   4057 #ifdef PMAP_CACHE_VIVT
   4058 		cpu_idcache_wbinv_all();
   4059 #endif
   4060 	}
   4061 
   4062 	/* No interrupts while we frob the TTB/DACR */
   4063 	oldirqstate = disable_interrupts(IF32_bits);
   4064 
   4065 	/*
   4066 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4067 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4068 	 * before switching to it otherwise subsequent interrupts/exceptions
   4069 	 * (including domain faults!) will jump into hyperspace.
   4070 	 */
   4071 	if (npm->pm_pl1vec != NULL) {
   4072 		cpu_tlb_flushID_SE((u_int)vector_page);
   4073 		cpu_cpwait();
   4074 		*npm->pm_pl1vec = npm->pm_l1vec;
   4075 		PTE_SYNC(npm->pm_pl1vec);
   4076 	}
   4077 
   4078 	cpu_domains(ndacr);
   4079 
   4080 	if (npm == pmap_kernel() || npm == rpm) {
   4081 		/*
   4082 		 * Switching to a kernel thread, or back to the
   4083 		 * same user vmspace as before... Simply update
   4084 		 * the TTB (no TLB flush required)
   4085 		 */
   4086 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4087 		    "r"(npm->pm_l1->l1_physaddr));
   4088 		cpu_cpwait();
   4089 	} else {
   4090 		/*
   4091 		 * Otherwise, update TTB and flush TLB
   4092 		 */
   4093 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4094 		if (rpm != NULL)
   4095 			rpm->pm_cstate.cs_tlb = 0;
   4096 	}
   4097 
   4098 	restore_interrupts(oldirqstate);
   4099 
   4100 	block_userspace_access = 0;
   4101 
   4102  all_done:
   4103 	/*
   4104 	 * The new pmap is resident. Make sure it's marked
   4105 	 * as resident in the cache/TLB.
   4106 	 */
   4107 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4108 	if (npm != pmap_kernel())
   4109 		pmap_recent_user = npm;
   4110 
   4111 	/* The old pmap is not longer active */
   4112 	if (opm != NULL)
   4113 		opm->pm_activated = false;
   4114 
   4115 	/* But the new one is */
   4116 	npm->pm_activated = true;
   4117 }
   4118 
   4119 void
   4120 pmap_deactivate(struct lwp *l)
   4121 {
   4122 
   4123 	/*
   4124 	 * If the process is exiting, make sure pmap_activate() does
   4125 	 * a full MMU context-switch and cache flush, which we might
   4126 	 * otherwise skip. See PR port-arm/38950.
   4127 	 */
   4128 	if (l->l_proc->p_sflag & PS_WEXIT)
   4129 		pmap_previous_active_lwp = NULL;
   4130 
   4131 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4132 }
   4133 
   4134 void
   4135 pmap_update(pmap_t pm)
   4136 {
   4137 
   4138 	if (pm->pm_remove_all) {
   4139 		/*
   4140 		 * Finish up the pmap_remove_all() optimisation by flushing
   4141 		 * the TLB.
   4142 		 */
   4143 		pmap_tlb_flushID(pm);
   4144 		pm->pm_remove_all = false;
   4145 	}
   4146 
   4147 	if (pmap_is_current(pm)) {
   4148 		/*
   4149 		 * If we're dealing with a current userland pmap, move its L1
   4150 		 * to the end of the LRU.
   4151 		 */
   4152 		if (pm != pmap_kernel())
   4153 			pmap_use_l1(pm);
   4154 
   4155 		/*
   4156 		 * We can assume we're done with frobbing the cache/tlb for
   4157 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4158 		 * flushes.
   4159 		 */
   4160 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4161 	}
   4162 
   4163 	PMAPCOUNT(updates);
   4164 
   4165 	/*
   4166 	 * make sure TLB/cache operations have completed.
   4167 	 */
   4168 	cpu_cpwait();
   4169 }
   4170 
   4171 void
   4172 pmap_remove_all(pmap_t pm)
   4173 {
   4174 
   4175 	/*
   4176 	 * The vmspace described by this pmap is about to be torn down.
   4177 	 * Until pmap_update() is called, UVM will only make calls
   4178 	 * to pmap_remove(). We can make life much simpler by flushing
   4179 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4180 	 */
   4181 #ifdef PMAP_CACHE_VIVT
   4182 	pmap_idcache_wbinv_all(pm);
   4183 #endif
   4184 	pm->pm_remove_all = true;
   4185 }
   4186 
   4187 /*
   4188  * Retire the given physical map from service.
   4189  * Should only be called if the map contains no valid mappings.
   4190  */
   4191 void
   4192 pmap_destroy(pmap_t pm)
   4193 {
   4194 	u_int count;
   4195 
   4196 	if (pm == NULL)
   4197 		return;
   4198 
   4199 	if (pm->pm_remove_all) {
   4200 		pmap_tlb_flushID(pm);
   4201 		pm->pm_remove_all = false;
   4202 	}
   4203 
   4204 	/*
   4205 	 * Drop reference count
   4206 	 */
   4207 	mutex_enter(&pm->pm_lock);
   4208 	count = --pm->pm_obj.uo_refs;
   4209 	mutex_exit(&pm->pm_lock);
   4210 	if (count > 0) {
   4211 		if (pmap_is_current(pm)) {
   4212 			if (pm != pmap_kernel())
   4213 				pmap_use_l1(pm);
   4214 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4215 		}
   4216 		return;
   4217 	}
   4218 
   4219 	/*
   4220 	 * reference count is zero, free pmap resources and then free pmap.
   4221 	 */
   4222 
   4223 	if (vector_page < KERNEL_BASE) {
   4224 		KDASSERT(!pmap_is_current(pm));
   4225 
   4226 		/* Remove the vector page mapping */
   4227 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4228 		pmap_update(pm);
   4229 	}
   4230 
   4231 	LIST_REMOVE(pm, pm_list);
   4232 
   4233 	pmap_free_l1(pm);
   4234 
   4235 	if (pmap_recent_user == pm)
   4236 		pmap_recent_user = NULL;
   4237 
   4238 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4239 
   4240 	/* return the pmap to the pool */
   4241 	pool_cache_put(&pmap_cache, pm);
   4242 }
   4243 
   4244 
   4245 /*
   4246  * void pmap_reference(pmap_t pm)
   4247  *
   4248  * Add a reference to the specified pmap.
   4249  */
   4250 void
   4251 pmap_reference(pmap_t pm)
   4252 {
   4253 
   4254 	if (pm == NULL)
   4255 		return;
   4256 
   4257 	pmap_use_l1(pm);
   4258 
   4259 	mutex_enter(&pm->pm_lock);
   4260 	pm->pm_obj.uo_refs++;
   4261 	mutex_exit(&pm->pm_lock);
   4262 }
   4263 
   4264 #if ARM_MMU_V6 > 0
   4265 
   4266 static struct evcnt pmap_prefer_nochange_ev =
   4267     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4268 static struct evcnt pmap_prefer_change_ev =
   4269     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4270 
   4271 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4272 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4273 
   4274 void
   4275 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4276 {
   4277 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4278 	vaddr_t va = *vap;
   4279 	vaddr_t diff = (hint - va) & mask;
   4280 	if (diff == 0) {
   4281 		pmap_prefer_nochange_ev.ev_count++;
   4282 	} else {
   4283 		pmap_prefer_change_ev.ev_count++;
   4284 		if (__predict_false(td))
   4285 			va -= mask + 1;
   4286 		*vap = va + diff;
   4287 	}
   4288 }
   4289 #endif /* ARM_MMU_V6 */
   4290 
   4291 /*
   4292  * pmap_zero_page()
   4293  *
   4294  * Zero a given physical page by mapping it at a page hook point.
   4295  * In doing the zero page op, the page we zero is mapped cachable, as with
   4296  * StrongARM accesses to non-cached pages are non-burst making writing
   4297  * _any_ bulk data very slow.
   4298  */
   4299 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4300 void
   4301 pmap_zero_page_generic(paddr_t phys)
   4302 {
   4303 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4304 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4305 #endif
   4306 #ifdef PMAP_CACHE_VIPT
   4307 	/* Choose the last page color it had, if any */
   4308 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4309 #else
   4310 	const vsize_t va_offset = 0;
   4311 #endif
   4312 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4313 
   4314 #ifdef DEBUG
   4315 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4316 		panic("pmap_zero_page: page has mappings");
   4317 #endif
   4318 
   4319 	KDASSERT((phys & PGOFSET) == 0);
   4320 
   4321 	/*
   4322 	 * Hook in the page, zero it, and purge the cache for that
   4323 	 * zeroed page. Invalidate the TLB as needed.
   4324 	 */
   4325 	*ptep = L2_S_PROTO | phys |
   4326 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4327 	PTE_SYNC(ptep);
   4328 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4329 	cpu_cpwait();
   4330 	bzero_page(cdstp + va_offset);
   4331 	/*
   4332 	 * Unmap the page.
   4333 	 */
   4334 	*ptep = 0;
   4335 	PTE_SYNC(ptep);
   4336 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4337 #ifdef PMAP_CACHE_VIVT
   4338 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4339 #endif
   4340 #ifdef PMAP_CACHE_VIPT
   4341 	/*
   4342 	 * This page is now cache resident so it now has a page color.
   4343 	 * Any contents have been obliterated so clear the EXEC flag.
   4344 	 */
   4345 	if (!pmap_is_page_colored_p(pg)) {
   4346 		PMAPCOUNT(vac_color_new);
   4347 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4348 	}
   4349 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4350 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4351 		PMAPCOUNT(exec_discarded_zero);
   4352 	}
   4353 	pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4354 #endif
   4355 }
   4356 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4357 
   4358 #if ARM_MMU_XSCALE == 1
   4359 void
   4360 pmap_zero_page_xscale(paddr_t phys)
   4361 {
   4362 #ifdef DEBUG
   4363 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4364 
   4365 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4366 		panic("pmap_zero_page: page has mappings");
   4367 #endif
   4368 
   4369 	KDASSERT((phys & PGOFSET) == 0);
   4370 
   4371 	/*
   4372 	 * Hook in the page, zero it, and purge the cache for that
   4373 	 * zeroed page. Invalidate the TLB as needed.
   4374 	 */
   4375 	*cdst_pte = L2_S_PROTO | phys |
   4376 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4377 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4378 	PTE_SYNC(cdst_pte);
   4379 	cpu_tlb_flushD_SE(cdstp);
   4380 	cpu_cpwait();
   4381 	bzero_page(cdstp);
   4382 	xscale_cache_clean_minidata();
   4383 }
   4384 #endif /* ARM_MMU_XSCALE == 1 */
   4385 
   4386 /* pmap_pageidlezero()
   4387  *
   4388  * The same as above, except that we assume that the page is not
   4389  * mapped.  This means we never have to flush the cache first.  Called
   4390  * from the idle loop.
   4391  */
   4392 bool
   4393 pmap_pageidlezero(paddr_t phys)
   4394 {
   4395 	unsigned int i;
   4396 	int *ptr;
   4397 	bool rv = true;
   4398 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4399 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4400 #endif
   4401 #ifdef PMAP_CACHE_VIPT
   4402 	/* Choose the last page color it had, if any */
   4403 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4404 #else
   4405 	const vsize_t va_offset = 0;
   4406 #endif
   4407 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4408 
   4409 
   4410 #ifdef DEBUG
   4411 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4412 		panic("pmap_pageidlezero: page has mappings");
   4413 #endif
   4414 
   4415 	KDASSERT((phys & PGOFSET) == 0);
   4416 
   4417 	/*
   4418 	 * Hook in the page, zero it, and purge the cache for that
   4419 	 * zeroed page. Invalidate the TLB as needed.
   4420 	 */
   4421 	*ptep = L2_S_PROTO | phys |
   4422 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4423 	PTE_SYNC(ptep);
   4424 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4425 	cpu_cpwait();
   4426 
   4427 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4428 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4429 		if (sched_curcpu_runnable_p() != 0) {
   4430 			/*
   4431 			 * A process has become ready.  Abort now,
   4432 			 * so we don't keep it waiting while we
   4433 			 * do slow memory access to finish this
   4434 			 * page.
   4435 			 */
   4436 			rv = false;
   4437 			break;
   4438 		}
   4439 		*ptr++ = 0;
   4440 	}
   4441 
   4442 #ifdef PMAP_CACHE_VIVT
   4443 	if (rv)
   4444 		/*
   4445 		 * if we aborted we'll rezero this page again later so don't
   4446 		 * purge it unless we finished it
   4447 		 */
   4448 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4449 #elif defined(PMAP_CACHE_VIPT)
   4450 	/*
   4451 	 * This page is now cache resident so it now has a page color.
   4452 	 * Any contents have been obliterated so clear the EXEC flag.
   4453 	 */
   4454 	if (!pmap_is_page_colored_p(pg)) {
   4455 		PMAPCOUNT(vac_color_new);
   4456 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4457 	}
   4458 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4459 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4460 		PMAPCOUNT(exec_discarded_zero);
   4461 	}
   4462 #endif
   4463 	/*
   4464 	 * Unmap the page.
   4465 	 */
   4466 	*ptep = 0;
   4467 	PTE_SYNC(ptep);
   4468 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4469 
   4470 	return (rv);
   4471 }
   4472 
   4473 /*
   4474  * pmap_copy_page()
   4475  *
   4476  * Copy one physical page into another, by mapping the pages into
   4477  * hook points. The same comment regarding cachability as in
   4478  * pmap_zero_page also applies here.
   4479  */
   4480 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4481 void
   4482 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4483 {
   4484 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4485 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4486 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4487 #endif
   4488 #ifdef PMAP_CACHE_VIPT
   4489 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4490 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4491 #else
   4492 	const vsize_t src_va_offset = 0;
   4493 	const vsize_t dst_va_offset = 0;
   4494 #endif
   4495 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4496 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4497 
   4498 #ifdef DEBUG
   4499 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4500 		panic("pmap_copy_page: dst page has mappings");
   4501 #endif
   4502 
   4503 #ifdef PMAP_CACHE_VIPT
   4504 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4505 #endif
   4506 	KDASSERT((src & PGOFSET) == 0);
   4507 	KDASSERT((dst & PGOFSET) == 0);
   4508 
   4509 	/*
   4510 	 * Clean the source page.  Hold the source page's lock for
   4511 	 * the duration of the copy so that no other mappings can
   4512 	 * be created while we have a potentially aliased mapping.
   4513 	 */
   4514 	simple_lock(&src_pg->mdpage.pvh_slock);
   4515 #ifdef PMAP_CACHE_VIVT
   4516 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4517 #endif
   4518 
   4519 	/*
   4520 	 * Map the pages into the page hook points, copy them, and purge
   4521 	 * the cache for the appropriate page. Invalidate the TLB
   4522 	 * as required.
   4523 	 */
   4524 	*src_ptep = L2_S_PROTO
   4525 	    | src
   4526 #ifdef PMAP_CACHE_VIPT
   4527 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4528 #endif
   4529 #ifdef PMAP_CACHE_VIVT
   4530 	    | pte_l2_s_cache_mode
   4531 #endif
   4532 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4533 	*dst_ptep = L2_S_PROTO | dst |
   4534 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4535 	PTE_SYNC(src_ptep);
   4536 	PTE_SYNC(dst_ptep);
   4537 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4538 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4539 	cpu_cpwait();
   4540 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4541 #ifdef PMAP_CACHE_VIVT
   4542 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4543 #endif
   4544 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4545 #ifdef PMAP_CACHE_VIVT
   4546 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4547 #endif
   4548 	/*
   4549 	 * Unmap the pages.
   4550 	 */
   4551 	*src_ptep = 0;
   4552 	*dst_ptep = 0;
   4553 	PTE_SYNC(src_ptep);
   4554 	PTE_SYNC(dst_ptep);
   4555 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4556 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4557 #ifdef PMAP_CACHE_VIPT
   4558 	/*
   4559 	 * Now that the destination page is in the cache, mark it as colored.
   4560 	 * If this was an exec page, discard it.
   4561 	 */
   4562 	if (!pmap_is_page_colored_p(dst_pg)) {
   4563 		PMAPCOUNT(vac_color_new);
   4564 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4565 	}
   4566 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4567 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4568 		PMAPCOUNT(exec_discarded_copy);
   4569 	}
   4570 	dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4571 #endif
   4572 }
   4573 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4574 
   4575 #if ARM_MMU_XSCALE == 1
   4576 void
   4577 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4578 {
   4579 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4580 #ifdef DEBUG
   4581 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4582 
   4583 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4584 		panic("pmap_copy_page: dst page has mappings");
   4585 #endif
   4586 
   4587 	KDASSERT((src & PGOFSET) == 0);
   4588 	KDASSERT((dst & PGOFSET) == 0);
   4589 
   4590 	/*
   4591 	 * Clean the source page.  Hold the source page's lock for
   4592 	 * the duration of the copy so that no other mappings can
   4593 	 * be created while we have a potentially aliased mapping.
   4594 	 */
   4595 	simple_lock(&src_pg->mdpage.pvh_slock);
   4596 #ifdef PMAP_CACHE_VIVT
   4597 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4598 #endif
   4599 
   4600 	/*
   4601 	 * Map the pages into the page hook points, copy them, and purge
   4602 	 * the cache for the appropriate page. Invalidate the TLB
   4603 	 * as required.
   4604 	 */
   4605 	*csrc_pte = L2_S_PROTO | src |
   4606 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4607 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4608 	PTE_SYNC(csrc_pte);
   4609 	*cdst_pte = L2_S_PROTO | dst |
   4610 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4611 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4612 	PTE_SYNC(cdst_pte);
   4613 	cpu_tlb_flushD_SE(csrcp);
   4614 	cpu_tlb_flushD_SE(cdstp);
   4615 	cpu_cpwait();
   4616 	bcopy_page(csrcp, cdstp);
   4617 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4618 	xscale_cache_clean_minidata();
   4619 }
   4620 #endif /* ARM_MMU_XSCALE == 1 */
   4621 
   4622 /*
   4623  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4624  *
   4625  * Return the start and end addresses of the kernel's virtual space.
   4626  * These values are setup in pmap_bootstrap and are updated as pages
   4627  * are allocated.
   4628  */
   4629 void
   4630 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4631 {
   4632 	*start = virtual_avail;
   4633 	*end = virtual_end;
   4634 }
   4635 
   4636 /*
   4637  * Helper function for pmap_grow_l2_bucket()
   4638  */
   4639 static inline int
   4640 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4641 {
   4642 	struct l2_bucket *l2b;
   4643 	pt_entry_t *ptep;
   4644 	paddr_t pa;
   4645 
   4646 	if (uvm.page_init_done == false) {
   4647 #ifdef PMAP_STEAL_MEMORY
   4648 		pv_addr_t pv;
   4649 		pmap_boot_pagealloc(PAGE_SIZE,
   4650 #ifdef PMAP_CACHE_VIPT
   4651 		    arm_cache_prefer_mask,
   4652 		    va & arm_cache_prefer_mask,
   4653 #else
   4654 		    0, 0,
   4655 #endif
   4656 		    &pv);
   4657 		pa = pv.pv_pa;
   4658 #else
   4659 		if (uvm_page_physget(&pa) == false)
   4660 			return (1);
   4661 #endif	/* PMAP_STEAL_MEMORY */
   4662 	} else {
   4663 		struct vm_page *pg;
   4664 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4665 		if (pg == NULL)
   4666 			return (1);
   4667 		pa = VM_PAGE_TO_PHYS(pg);
   4668 #ifdef PMAP_CACHE_VIPT
   4669 		/*
   4670 		 * This new page must not have any mappings.  Enter it via
   4671 		 * pmap_kenter_pa and let that routine do the hard work.
   4672 		 */
   4673 		KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
   4674 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   4675 #endif
   4676 	}
   4677 
   4678 	if (pap)
   4679 		*pap = pa;
   4680 
   4681 	PMAPCOUNT(pt_mappings);
   4682 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4683 	KDASSERT(l2b != NULL);
   4684 
   4685 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4686 	*ptep = L2_S_PROTO | pa | cache_mode |
   4687 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4688 	PTE_SYNC(ptep);
   4689 	memset((void *)va, 0, PAGE_SIZE);
   4690 	return (0);
   4691 }
   4692 
   4693 /*
   4694  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4695  * used by pmap_growkernel().
   4696  */
   4697 static inline struct l2_bucket *
   4698 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4699 {
   4700 	struct l2_dtable *l2;
   4701 	struct l2_bucket *l2b;
   4702 	u_short l1idx;
   4703 	vaddr_t nva;
   4704 
   4705 	l1idx = L1_IDX(va);
   4706 
   4707 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4708 		/*
   4709 		 * No mapping at this address, as there is
   4710 		 * no entry in the L1 table.
   4711 		 * Need to allocate a new l2_dtable.
   4712 		 */
   4713 		nva = pmap_kernel_l2dtable_kva;
   4714 		if ((nva & PGOFSET) == 0) {
   4715 			/*
   4716 			 * Need to allocate a backing page
   4717 			 */
   4718 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4719 				return (NULL);
   4720 		}
   4721 
   4722 		l2 = (struct l2_dtable *)nva;
   4723 		nva += sizeof(struct l2_dtable);
   4724 
   4725 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4726 			/*
   4727 			 * The new l2_dtable straddles a page boundary.
   4728 			 * Map in another page to cover it.
   4729 			 */
   4730 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4731 				return (NULL);
   4732 		}
   4733 
   4734 		pmap_kernel_l2dtable_kva = nva;
   4735 
   4736 		/*
   4737 		 * Link it into the parent pmap
   4738 		 */
   4739 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4740 	}
   4741 
   4742 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4743 
   4744 	/*
   4745 	 * Fetch pointer to the L2 page table associated with the address.
   4746 	 */
   4747 	if (l2b->l2b_kva == NULL) {
   4748 		pt_entry_t *ptep;
   4749 
   4750 		/*
   4751 		 * No L2 page table has been allocated. Chances are, this
   4752 		 * is because we just allocated the l2_dtable, above.
   4753 		 */
   4754 		nva = pmap_kernel_l2ptp_kva;
   4755 		ptep = (pt_entry_t *)nva;
   4756 		if ((nva & PGOFSET) == 0) {
   4757 			/*
   4758 			 * Need to allocate a backing page
   4759 			 */
   4760 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4761 			    &pmap_kernel_l2ptp_phys))
   4762 				return (NULL);
   4763 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4764 		}
   4765 
   4766 		l2->l2_occupancy++;
   4767 		l2b->l2b_kva = ptep;
   4768 		l2b->l2b_l1idx = l1idx;
   4769 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4770 
   4771 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4772 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4773 	}
   4774 
   4775 	return (l2b);
   4776 }
   4777 
   4778 vaddr_t
   4779 pmap_growkernel(vaddr_t maxkvaddr)
   4780 {
   4781 	pmap_t kpm = pmap_kernel();
   4782 	struct l1_ttable *l1;
   4783 	struct l2_bucket *l2b;
   4784 	pd_entry_t *pl1pd;
   4785 	int s;
   4786 
   4787 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4788 		goto out;		/* we are OK */
   4789 
   4790 	NPDEBUG(PDB_GROWKERN,
   4791 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4792 	    pmap_curmaxkvaddr, maxkvaddr));
   4793 
   4794 	KDASSERT(maxkvaddr <= virtual_end);
   4795 
   4796 	/*
   4797 	 * whoops!   we need to add kernel PTPs
   4798 	 */
   4799 
   4800 	s = splhigh();	/* to be safe */
   4801 	mutex_enter(&kpm->pm_lock);
   4802 
   4803 	/* Map 1MB at a time */
   4804 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4805 
   4806 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4807 		KDASSERT(l2b != NULL);
   4808 
   4809 		/* Distribute new L1 entry to all other L1s */
   4810 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4811 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4812 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4813 			    L1_C_PROTO;
   4814 			PTE_SYNC(pl1pd);
   4815 		}
   4816 	}
   4817 
   4818 	/*
   4819 	 * flush out the cache, expensive but growkernel will happen so
   4820 	 * rarely
   4821 	 */
   4822 	cpu_dcache_wbinv_all();
   4823 	cpu_tlb_flushD();
   4824 	cpu_cpwait();
   4825 
   4826 	mutex_exit(&kpm->pm_lock);
   4827 	splx(s);
   4828 
   4829 out:
   4830 	return (pmap_curmaxkvaddr);
   4831 }
   4832 
   4833 /************************ Utility routines ****************************/
   4834 
   4835 /*
   4836  * vector_page_setprot:
   4837  *
   4838  *	Manipulate the protection of the vector page.
   4839  */
   4840 void
   4841 vector_page_setprot(int prot)
   4842 {
   4843 	struct l2_bucket *l2b;
   4844 	pt_entry_t *ptep;
   4845 
   4846 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4847 	KDASSERT(l2b != NULL);
   4848 
   4849 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4850 
   4851 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4852 	PTE_SYNC(ptep);
   4853 	cpu_tlb_flushD_SE(vector_page);
   4854 	cpu_cpwait();
   4855 }
   4856 
   4857 /*
   4858  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4859  * Returns true if the mapping exists, else false.
   4860  *
   4861  * NOTE: This function is only used by a couple of arm-specific modules.
   4862  * It is not safe to take any pmap locks here, since we could be right
   4863  * in the middle of debugging the pmap anyway...
   4864  *
   4865  * It is possible for this routine to return false even though a valid
   4866  * mapping does exist. This is because we don't lock, so the metadata
   4867  * state may be inconsistent.
   4868  *
   4869  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4870  * a "section" mapping.
   4871  */
   4872 bool
   4873 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4874 {
   4875 	struct l2_dtable *l2;
   4876 	pd_entry_t *pl1pd, l1pd;
   4877 	pt_entry_t *ptep;
   4878 	u_short l1idx;
   4879 
   4880 	if (pm->pm_l1 == NULL)
   4881 		return false;
   4882 
   4883 	l1idx = L1_IDX(va);
   4884 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4885 	l1pd = *pl1pd;
   4886 
   4887 	if (l1pte_section_p(l1pd)) {
   4888 		*ptp = NULL;
   4889 		return true;
   4890 	}
   4891 
   4892 	if (pm->pm_l2 == NULL)
   4893 		return false;
   4894 
   4895 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4896 
   4897 	if (l2 == NULL ||
   4898 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4899 		return false;
   4900 	}
   4901 
   4902 	*ptp = &ptep[l2pte_index(va)];
   4903 	return true;
   4904 }
   4905 
   4906 bool
   4907 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4908 {
   4909 	u_short l1idx;
   4910 
   4911 	if (pm->pm_l1 == NULL)
   4912 		return false;
   4913 
   4914 	l1idx = L1_IDX(va);
   4915 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4916 
   4917 	return true;
   4918 }
   4919 
   4920 /************************ Bootstrapping routines ****************************/
   4921 
   4922 static void
   4923 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4924 {
   4925 	int i;
   4926 
   4927 	l1->l1_kva = l1pt;
   4928 	l1->l1_domain_use_count = 0;
   4929 	l1->l1_domain_first = 0;
   4930 
   4931 	for (i = 0; i < PMAP_DOMAINS; i++)
   4932 		l1->l1_domain_free[i] = i + 1;
   4933 
   4934 	/*
   4935 	 * Copy the kernel's L1 entries to each new L1.
   4936 	 */
   4937 	if (pmap_initialized)
   4938 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   4939 
   4940 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   4941 	    &l1->l1_physaddr) == false)
   4942 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   4943 
   4944 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   4945 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   4946 }
   4947 
   4948 /*
   4949  * pmap_bootstrap() is called from the board-specific initarm() routine
   4950  * once the kernel L1/L2 descriptors tables have been set up.
   4951  *
   4952  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   4953  * spread over a number of disparate files/functions.
   4954  *
   4955  * We are passed the following parameters
   4956  *  - kernel_l1pt
   4957  *    This is a pointer to the base of the kernel's L1 translation table.
   4958  *  - vstart
   4959  *    1MB-aligned start of managed kernel virtual memory.
   4960  *  - vend
   4961  *    1MB-aligned end of managed kernel virtual memory.
   4962  *
   4963  * We use the first parameter to build the metadata (struct l1_ttable and
   4964  * struct l2_dtable) necessary to track kernel mappings.
   4965  */
   4966 #define	PMAP_STATIC_L2_SIZE 16
   4967 void
   4968 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   4969 {
   4970 	static struct l1_ttable static_l1;
   4971 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   4972 	struct l1_ttable *l1 = &static_l1;
   4973 	struct l2_dtable *l2;
   4974 	struct l2_bucket *l2b;
   4975 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   4976 	pmap_t pm = pmap_kernel();
   4977 	pd_entry_t pde;
   4978 	pt_entry_t *ptep;
   4979 	paddr_t pa;
   4980 	vaddr_t va;
   4981 	vsize_t size;
   4982 	int nptes, l1idx, l2idx, l2next = 0;
   4983 
   4984 	/*
   4985 	 * Initialise the kernel pmap object
   4986 	 */
   4987 	pm->pm_l1 = l1;
   4988 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   4989 	pm->pm_activated = true;
   4990 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4991 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   4992 
   4993 	/*
   4994 	 * Scan the L1 translation table created by initarm() and create
   4995 	 * the required metadata for all valid mappings found in it.
   4996 	 */
   4997 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   4998 		pde = l1pt[l1idx];
   4999 
   5000 		/*
   5001 		 * We're only interested in Coarse mappings.
   5002 		 * pmap_extract() can deal with section mappings without
   5003 		 * recourse to checking L2 metadata.
   5004 		 */
   5005 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5006 			continue;
   5007 
   5008 		/*
   5009 		 * Lookup the KVA of this L2 descriptor table
   5010 		 */
   5011 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5012 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5013 		if (ptep == NULL) {
   5014 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5015 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5016 		}
   5017 
   5018 		/*
   5019 		 * Fetch the associated L2 metadata structure.
   5020 		 * Allocate a new one if necessary.
   5021 		 */
   5022 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5023 			if (l2next == PMAP_STATIC_L2_SIZE)
   5024 				panic("pmap_bootstrap: out of static L2s");
   5025 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5026 		}
   5027 
   5028 		/*
   5029 		 * One more L1 slot tracked...
   5030 		 */
   5031 		l2->l2_occupancy++;
   5032 
   5033 		/*
   5034 		 * Fill in the details of the L2 descriptor in the
   5035 		 * appropriate bucket.
   5036 		 */
   5037 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5038 		l2b->l2b_kva = ptep;
   5039 		l2b->l2b_phys = pa;
   5040 		l2b->l2b_l1idx = l1idx;
   5041 
   5042 		/*
   5043 		 * Establish an initial occupancy count for this descriptor
   5044 		 */
   5045 		for (l2idx = 0;
   5046 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5047 		    l2idx++) {
   5048 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5049 				l2b->l2b_occupancy++;
   5050 			}
   5051 		}
   5052 
   5053 		/*
   5054 		 * Make sure the descriptor itself has the correct cache mode.
   5055 		 * If not, fix it, but whine about the problem. Port-meisters
   5056 		 * should consider this a clue to fix up their initarm()
   5057 		 * function. :)
   5058 		 */
   5059 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5060 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5061 			    "L2 pte @ %p\n", ptep);
   5062 		}
   5063 	}
   5064 
   5065 	/*
   5066 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5067 	 * a page table. Bitch if it is not correctly set.
   5068 	 */
   5069 	for (va = (vaddr_t)l1pt;
   5070 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5071 		if (pmap_set_pt_cache_mode(l1pt, va))
   5072 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5073 			    "primary L1 @ 0x%lx\n", va);
   5074 	}
   5075 
   5076 	cpu_dcache_wbinv_all();
   5077 	cpu_tlb_flushID();
   5078 	cpu_cpwait();
   5079 
   5080 	/*
   5081 	 * now we allocate the "special" VAs which are used for tmp mappings
   5082 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5083 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5084 	 *
   5085 	 * Managed KVM space start from wherever initarm() tells us.
   5086 	 */
   5087 	virtual_avail = vstart;
   5088 	virtual_end = vend;
   5089 
   5090 #ifdef PMAP_CACHE_VIPT
   5091 	/*
   5092 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5093 	 * page so we won't violate cache aliasing rules.
   5094 	 */
   5095 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5096 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5097 #else
   5098 	nptes = 1;
   5099 #endif
   5100 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5101 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5102 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5103 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5104 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5105 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5106 	    (void *)&msgbufaddr, NULL);
   5107 
   5108 	/*
   5109 	 * Allocate a range of kernel virtual address space to be used
   5110 	 * for L2 descriptor tables and metadata allocation in
   5111 	 * pmap_growkernel().
   5112 	 */
   5113 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5114 	pmap_alloc_specials(&virtual_avail,
   5115 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5116 	    &pmap_kernel_l2ptp_kva, NULL);
   5117 
   5118 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5119 	pmap_alloc_specials(&virtual_avail,
   5120 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5121 	    &pmap_kernel_l2dtable_kva, NULL);
   5122 
   5123 	/*
   5124 	 * init the static-global locks and global pmap list.
   5125 	 */
   5126 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5127 
   5128 	/*
   5129 	 * We can now initialise the first L1's metadata.
   5130 	 */
   5131 	SLIST_INIT(&l1_list);
   5132 	TAILQ_INIT(&l1_lru_list);
   5133 	simple_lock_init(&l1_lru_lock);
   5134 	pmap_init_l1(l1, l1pt);
   5135 
   5136 	/* Set up vector page L1 details, if necessary */
   5137 	if (vector_page < KERNEL_BASE) {
   5138 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5139 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5140 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5141 		    L1_C_DOM(pm->pm_domain);
   5142 	} else
   5143 		pm->pm_pl1vec = NULL;
   5144 
   5145 	/*
   5146 	 * Initialize the pmap cache
   5147 	 */
   5148 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5149 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5150 	LIST_INIT(&pmap_pmaps);
   5151 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5152 
   5153 	/*
   5154 	 * Initialize the pv pool.
   5155 	 */
   5156 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5157 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5158 
   5159 	/*
   5160 	 * Initialize the L2 dtable pool and cache.
   5161 	 */
   5162 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5163 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5164 
   5165 	/*
   5166 	 * Initialise the L2 descriptor table pool and cache
   5167 	 */
   5168 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5169 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5170 	    pmap_l2ptp_ctor, NULL, NULL);
   5171 
   5172 	cpu_dcache_wbinv_all();
   5173 }
   5174 
   5175 static int
   5176 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5177 {
   5178 	pd_entry_t *pdep, pde;
   5179 	pt_entry_t *ptep, pte;
   5180 	vaddr_t pa;
   5181 	int rv = 0;
   5182 
   5183 	/*
   5184 	 * Make sure the descriptor itself has the correct cache mode
   5185 	 */
   5186 	pdep = &kl1[L1_IDX(va)];
   5187 	pde = *pdep;
   5188 
   5189 	if (l1pte_section_p(pde)) {
   5190 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5191 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5192 			    pte_l1_s_cache_mode_pt;
   5193 			PTE_SYNC(pdep);
   5194 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5195 			rv = 1;
   5196 		}
   5197 	} else {
   5198 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5199 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5200 		if (ptep == NULL)
   5201 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5202 
   5203 		ptep = &ptep[l2pte_index(va)];
   5204 		pte = *ptep;
   5205 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5206 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5207 			    pte_l2_s_cache_mode_pt;
   5208 			PTE_SYNC(ptep);
   5209 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5210 			rv = 1;
   5211 		}
   5212 	}
   5213 
   5214 	return (rv);
   5215 }
   5216 
   5217 static void
   5218 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5219 {
   5220 	vaddr_t va = *availp;
   5221 	struct l2_bucket *l2b;
   5222 
   5223 	if (ptep) {
   5224 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5225 		if (l2b == NULL)
   5226 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5227 
   5228 		if (ptep)
   5229 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5230 	}
   5231 
   5232 	*vap = va;
   5233 	*availp = va + (PAGE_SIZE * pages);
   5234 }
   5235 
   5236 void
   5237 pmap_init(void)
   5238 {
   5239 	extern int physmem;
   5240 
   5241 	/*
   5242 	 * Set the available memory vars - These do not map to real memory
   5243 	 * addresses and cannot as the physical memory is fragmented.
   5244 	 * They are used by ps for %mem calculations.
   5245 	 * One could argue whether this should be the entire memory or just
   5246 	 * the memory that is useable in a user process.
   5247 	 */
   5248 	avail_start = 0;
   5249 	avail_end = physmem * PAGE_SIZE;
   5250 
   5251 	/*
   5252 	 * Now we need to free enough pv_entry structures to allow us to get
   5253 	 * the kmem_map/kmem_object allocated and inited (done after this
   5254 	 * function is finished).  to do this we allocate one bootstrap page out
   5255 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5256 	 * structures.   we never free this page.
   5257 	 */
   5258 	pool_setlowat(&pmap_pv_pool,
   5259 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5260 
   5261 	pmap_initialized = true;
   5262 }
   5263 
   5264 static vaddr_t last_bootstrap_page = 0;
   5265 static void *free_bootstrap_pages = NULL;
   5266 
   5267 static void *
   5268 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5269 {
   5270 	extern void *pool_page_alloc(struct pool *, int);
   5271 	vaddr_t new_page;
   5272 	void *rv;
   5273 
   5274 	if (pmap_initialized)
   5275 		return (pool_page_alloc(pp, flags));
   5276 
   5277 	if (free_bootstrap_pages) {
   5278 		rv = free_bootstrap_pages;
   5279 		free_bootstrap_pages = *((void **)rv);
   5280 		return (rv);
   5281 	}
   5282 
   5283 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5284 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5285 
   5286 	KASSERT(new_page > last_bootstrap_page);
   5287 	last_bootstrap_page = new_page;
   5288 	return ((void *)new_page);
   5289 }
   5290 
   5291 static void
   5292 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5293 {
   5294 	extern void pool_page_free(struct pool *, void *);
   5295 
   5296 	if ((vaddr_t)v <= last_bootstrap_page) {
   5297 		*((void **)v) = free_bootstrap_pages;
   5298 		free_bootstrap_pages = v;
   5299 		return;
   5300 	}
   5301 
   5302 	if (pmap_initialized) {
   5303 		pool_page_free(pp, v);
   5304 		return;
   5305 	}
   5306 }
   5307 
   5308 /*
   5309  * pmap_postinit()
   5310  *
   5311  * This routine is called after the vm and kmem subsystems have been
   5312  * initialised. This allows the pmap code to perform any initialisation
   5313  * that can only be done one the memory allocation is in place.
   5314  */
   5315 void
   5316 pmap_postinit(void)
   5317 {
   5318 	extern paddr_t physical_start, physical_end;
   5319 	struct l2_bucket *l2b;
   5320 	struct l1_ttable *l1;
   5321 	struct pglist plist;
   5322 	struct vm_page *m;
   5323 	pd_entry_t *pl1pt;
   5324 	pt_entry_t *ptep, pte;
   5325 	vaddr_t va, eva;
   5326 	u_int loop, needed;
   5327 	int error;
   5328 
   5329 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5330 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5331 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5332 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5333 
   5334 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5335 	needed -= 1;
   5336 
   5337 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5338 
   5339 	for (loop = 0; loop < needed; loop++, l1++) {
   5340 		/* Allocate a L1 page table */
   5341 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5342 		if (va == 0)
   5343 			panic("Cannot allocate L1 KVM");
   5344 
   5345 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5346 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5347 		if (error)
   5348 			panic("Cannot allocate L1 physical pages");
   5349 
   5350 		m = TAILQ_FIRST(&plist);
   5351 		eva = va + L1_TABLE_SIZE;
   5352 		pl1pt = (pd_entry_t *)va;
   5353 
   5354 		while (m && va < eva) {
   5355 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5356 
   5357 			pmap_kenter_pa(va, pa,
   5358 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   5359 
   5360 			/*
   5361 			 * Make sure the L1 descriptor table is mapped
   5362 			 * with the cache-mode set to write-through.
   5363 			 */
   5364 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5365 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5366 			pte = *ptep;
   5367 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5368 			*ptep = pte;
   5369 			PTE_SYNC(ptep);
   5370 			cpu_tlb_flushD_SE(va);
   5371 
   5372 			va += PAGE_SIZE;
   5373 			m = TAILQ_NEXT(m, pageq.queue);
   5374 		}
   5375 
   5376 #ifdef DIAGNOSTIC
   5377 		if (m)
   5378 			panic("pmap_alloc_l1pt: pglist not empty");
   5379 #endif	/* DIAGNOSTIC */
   5380 
   5381 		pmap_init_l1(l1, pl1pt);
   5382 	}
   5383 
   5384 #ifdef DEBUG
   5385 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5386 	    needed);
   5387 #endif
   5388 }
   5389 
   5390 /*
   5391  * Note that the following routines are used by board-specific initialisation
   5392  * code to configure the initial kernel page tables.
   5393  *
   5394  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5395  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5396  * behaviour of the old pmap, and provides an easy migration path for
   5397  * initial bring-up of the new pmap on existing ports. Fortunately,
   5398  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5399  * will be deprecated.
   5400  *
   5401  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5402  * tables.
   5403  */
   5404 
   5405 /*
   5406  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5407  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5408  * find them as necessary.
   5409  *
   5410  * Note that the data on this list MUST remain valid after initarm() returns,
   5411  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5412  */
   5413 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5414 
   5415 static vaddr_t
   5416 kernel_pt_lookup(paddr_t pa)
   5417 {
   5418 	pv_addr_t *pv;
   5419 
   5420 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5421 #ifndef ARM32_NEW_VM_LAYOUT
   5422 		if (pv->pv_pa == (pa & ~PGOFSET))
   5423 			return (pv->pv_va | (pa & PGOFSET));
   5424 #else
   5425 		if (pv->pv_pa == pa)
   5426 			return (pv->pv_va);
   5427 #endif
   5428 	}
   5429 	return (0);
   5430 }
   5431 
   5432 /*
   5433  * pmap_map_section:
   5434  *
   5435  *	Create a single section mapping.
   5436  */
   5437 void
   5438 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5439 {
   5440 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5441 	pd_entry_t fl;
   5442 
   5443 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5444 
   5445 	switch (cache) {
   5446 	case PTE_NOCACHE:
   5447 	default:
   5448 		fl = 0;
   5449 		break;
   5450 
   5451 	case PTE_CACHE:
   5452 		fl = pte_l1_s_cache_mode;
   5453 		break;
   5454 
   5455 	case PTE_PAGETABLE:
   5456 		fl = pte_l1_s_cache_mode_pt;
   5457 		break;
   5458 	}
   5459 
   5460 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5461 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5462 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5463 }
   5464 
   5465 /*
   5466  * pmap_map_entry:
   5467  *
   5468  *	Create a single page mapping.
   5469  */
   5470 void
   5471 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5472 {
   5473 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5474 	pt_entry_t fl;
   5475 	pt_entry_t *pte;
   5476 
   5477 	KASSERT(((va | pa) & PGOFSET) == 0);
   5478 
   5479 	switch (cache) {
   5480 	case PTE_NOCACHE:
   5481 	default:
   5482 		fl = 0;
   5483 		break;
   5484 
   5485 	case PTE_CACHE:
   5486 		fl = pte_l2_s_cache_mode;
   5487 		break;
   5488 
   5489 	case PTE_PAGETABLE:
   5490 		fl = pte_l2_s_cache_mode_pt;
   5491 		break;
   5492 	}
   5493 
   5494 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5495 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5496 
   5497 #ifndef ARM32_NEW_VM_LAYOUT
   5498 	pte = (pt_entry_t *)
   5499 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5500 #else
   5501 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5502 #endif
   5503 	if (pte == NULL)
   5504 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5505 
   5506 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5507 #ifndef ARM32_NEW_VM_LAYOUT
   5508 	pte += (va >> PGSHIFT) & 0x3ff;
   5509 #else
   5510 	pte += l2pte_index(va);
   5511 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5512 #endif
   5513 	*pte = fl;
   5514 	PTE_SYNC(pte);
   5515 }
   5516 
   5517 /*
   5518  * pmap_link_l2pt:
   5519  *
   5520  *	Link the L2 page table specified by "l2pv" into the L1
   5521  *	page table at the slot for "va".
   5522  */
   5523 void
   5524 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5525 {
   5526 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5527 	u_int slot = va >> L1_S_SHIFT;
   5528 
   5529 #ifndef ARM32_NEW_VM_LAYOUT
   5530 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5531 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5532 #endif
   5533 
   5534 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5535 
   5536 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5537 #ifdef ARM32_NEW_VM_LAYOUT
   5538 	PTE_SYNC(&pde[slot]);
   5539 #else
   5540 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5541 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5542 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5543 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5544 #endif
   5545 
   5546 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5547 }
   5548 
   5549 /*
   5550  * pmap_map_chunk:
   5551  *
   5552  *	Map a chunk of memory using the most efficient mappings
   5553  *	possible (section, large page, small page) into the
   5554  *	provided L1 and L2 tables at the specified virtual address.
   5555  */
   5556 vsize_t
   5557 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5558     int prot, int cache)
   5559 {
   5560 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5561 	pt_entry_t *pte, f1, f2s, f2l;
   5562 	vsize_t resid;
   5563 	int i;
   5564 
   5565 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5566 
   5567 	if (l1pt == 0)
   5568 		panic("pmap_map_chunk: no L1 table provided");
   5569 
   5570 #ifdef VERBOSE_INIT_ARM
   5571 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5572 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5573 #endif
   5574 
   5575 	switch (cache) {
   5576 	case PTE_NOCACHE:
   5577 	default:
   5578 		f1 = 0;
   5579 		f2l = 0;
   5580 		f2s = 0;
   5581 		break;
   5582 
   5583 	case PTE_CACHE:
   5584 		f1 = pte_l1_s_cache_mode;
   5585 		f2l = pte_l2_l_cache_mode;
   5586 		f2s = pte_l2_s_cache_mode;
   5587 		break;
   5588 
   5589 	case PTE_PAGETABLE:
   5590 		f1 = pte_l1_s_cache_mode_pt;
   5591 		f2l = pte_l2_l_cache_mode_pt;
   5592 		f2s = pte_l2_s_cache_mode_pt;
   5593 		break;
   5594 	}
   5595 
   5596 	size = resid;
   5597 
   5598 	while (resid > 0) {
   5599 		/* See if we can use a section mapping. */
   5600 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5601 #ifdef VERBOSE_INIT_ARM
   5602 			printf("S");
   5603 #endif
   5604 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5605 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5606 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5607 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5608 			va += L1_S_SIZE;
   5609 			pa += L1_S_SIZE;
   5610 			resid -= L1_S_SIZE;
   5611 			continue;
   5612 		}
   5613 
   5614 		/*
   5615 		 * Ok, we're going to use an L2 table.  Make sure
   5616 		 * one is actually in the corresponding L1 slot
   5617 		 * for the current VA.
   5618 		 */
   5619 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5620 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5621 
   5622 #ifndef ARM32_NEW_VM_LAYOUT
   5623 		pte = (pt_entry_t *)
   5624 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5625 #else
   5626 		pte = (pt_entry_t *) kernel_pt_lookup(
   5627 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5628 #endif
   5629 		if (pte == NULL)
   5630 			panic("pmap_map_chunk: can't find L2 table for VA"
   5631 			    "0x%08lx", va);
   5632 
   5633 		/* See if we can use a L2 large page mapping. */
   5634 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5635 #ifdef VERBOSE_INIT_ARM
   5636 			printf("L");
   5637 #endif
   5638 			for (i = 0; i < 16; i++) {
   5639 #ifndef ARM32_NEW_VM_LAYOUT
   5640 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5641 				    L2_L_PROTO | pa |
   5642 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5643 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5644 #else
   5645 				pte[l2pte_index(va) + i] =
   5646 				    L2_L_PROTO | pa |
   5647 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5648 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5649 #endif
   5650 			}
   5651 			va += L2_L_SIZE;
   5652 			pa += L2_L_SIZE;
   5653 			resid -= L2_L_SIZE;
   5654 			continue;
   5655 		}
   5656 
   5657 		/* Use a small page mapping. */
   5658 #ifdef VERBOSE_INIT_ARM
   5659 		printf("P");
   5660 #endif
   5661 #ifndef ARM32_NEW_VM_LAYOUT
   5662 		pte[(va >> PGSHIFT) & 0x3ff] =
   5663 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5664 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5665 #else
   5666 		pte[l2pte_index(va)] =
   5667 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5668 		PTE_SYNC(&pte[l2pte_index(va)]);
   5669 #endif
   5670 		va += PAGE_SIZE;
   5671 		pa += PAGE_SIZE;
   5672 		resid -= PAGE_SIZE;
   5673 	}
   5674 #ifdef VERBOSE_INIT_ARM
   5675 	printf("\n");
   5676 #endif
   5677 	return (size);
   5678 }
   5679 
   5680 /********************** Static device map routines ***************************/
   5681 
   5682 static const struct pmap_devmap *pmap_devmap_table;
   5683 
   5684 /*
   5685  * Register the devmap table.  This is provided in case early console
   5686  * initialization needs to register mappings created by bootstrap code
   5687  * before pmap_devmap_bootstrap() is called.
   5688  */
   5689 void
   5690 pmap_devmap_register(const struct pmap_devmap *table)
   5691 {
   5692 
   5693 	pmap_devmap_table = table;
   5694 }
   5695 
   5696 /*
   5697  * Map all of the static regions in the devmap table, and remember
   5698  * the devmap table so other parts of the kernel can look up entries
   5699  * later.
   5700  */
   5701 void
   5702 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5703 {
   5704 	int i;
   5705 
   5706 	pmap_devmap_table = table;
   5707 
   5708 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5709 #ifdef VERBOSE_INIT_ARM
   5710 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5711 		    pmap_devmap_table[i].pd_pa,
   5712 		    pmap_devmap_table[i].pd_pa +
   5713 			pmap_devmap_table[i].pd_size - 1,
   5714 		    pmap_devmap_table[i].pd_va);
   5715 #endif
   5716 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5717 		    pmap_devmap_table[i].pd_pa,
   5718 		    pmap_devmap_table[i].pd_size,
   5719 		    pmap_devmap_table[i].pd_prot,
   5720 		    pmap_devmap_table[i].pd_cache);
   5721 	}
   5722 }
   5723 
   5724 const struct pmap_devmap *
   5725 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5726 {
   5727 	uint64_t endpa;
   5728 	int i;
   5729 
   5730 	if (pmap_devmap_table == NULL)
   5731 		return (NULL);
   5732 
   5733 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5734 
   5735 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5736 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5737 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5738 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5739 			return (&pmap_devmap_table[i]);
   5740 	}
   5741 
   5742 	return (NULL);
   5743 }
   5744 
   5745 const struct pmap_devmap *
   5746 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5747 {
   5748 	int i;
   5749 
   5750 	if (pmap_devmap_table == NULL)
   5751 		return (NULL);
   5752 
   5753 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5754 		if (va >= pmap_devmap_table[i].pd_va &&
   5755 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5756 				     pmap_devmap_table[i].pd_size - 1)
   5757 			return (&pmap_devmap_table[i]);
   5758 	}
   5759 
   5760 	return (NULL);
   5761 }
   5762 
   5763 /********************** PTE initialization routines **************************/
   5764 
   5765 /*
   5766  * These routines are called when the CPU type is identified to set up
   5767  * the PTE prototypes, cache modes, etc.
   5768  *
   5769  * The variables are always here, just in case LKMs need to reference
   5770  * them (though, they shouldn't).
   5771  */
   5772 
   5773 pt_entry_t	pte_l1_s_cache_mode;
   5774 pt_entry_t	pte_l1_s_cache_mode_pt;
   5775 pt_entry_t	pte_l1_s_cache_mask;
   5776 
   5777 pt_entry_t	pte_l2_l_cache_mode;
   5778 pt_entry_t	pte_l2_l_cache_mode_pt;
   5779 pt_entry_t	pte_l2_l_cache_mask;
   5780 
   5781 pt_entry_t	pte_l2_s_cache_mode;
   5782 pt_entry_t	pte_l2_s_cache_mode_pt;
   5783 pt_entry_t	pte_l2_s_cache_mask;
   5784 
   5785 pt_entry_t	pte_l2_s_prot_u;
   5786 pt_entry_t	pte_l2_s_prot_w;
   5787 pt_entry_t	pte_l2_s_prot_mask;
   5788 
   5789 pt_entry_t	pte_l1_s_proto;
   5790 pt_entry_t	pte_l1_c_proto;
   5791 pt_entry_t	pte_l2_s_proto;
   5792 
   5793 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5794 void		(*pmap_zero_page_func)(paddr_t);
   5795 
   5796 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5797 void
   5798 pmap_pte_init_generic(void)
   5799 {
   5800 
   5801 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5802 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5803 
   5804 	pte_l2_l_cache_mode = L2_B|L2_C;
   5805 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5806 
   5807 	pte_l2_s_cache_mode = L2_B|L2_C;
   5808 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5809 
   5810 	/*
   5811 	 * If we have a write-through cache, set B and C.  If
   5812 	 * we have a write-back cache, then we assume setting
   5813 	 * only C will make those pages write-through.
   5814 	 */
   5815 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5816 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5817 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5818 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5819 	} else {
   5820 #if ARM_MMU_V6 > 1
   5821 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5822 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5823 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5824 #else
   5825 		pte_l1_s_cache_mode_pt = L1_S_C;
   5826 		pte_l2_l_cache_mode_pt = L2_C;
   5827 		pte_l2_s_cache_mode_pt = L2_C;
   5828 #endif
   5829 	}
   5830 
   5831 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5832 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5833 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5834 
   5835 	pte_l1_s_proto = L1_S_PROTO_generic;
   5836 	pte_l1_c_proto = L1_C_PROTO_generic;
   5837 	pte_l2_s_proto = L2_S_PROTO_generic;
   5838 
   5839 	pmap_copy_page_func = pmap_copy_page_generic;
   5840 	pmap_zero_page_func = pmap_zero_page_generic;
   5841 }
   5842 
   5843 #if defined(CPU_ARM8)
   5844 void
   5845 pmap_pte_init_arm8(void)
   5846 {
   5847 
   5848 	/*
   5849 	 * ARM8 is compatible with generic, but we need to use
   5850 	 * the page tables uncached.
   5851 	 */
   5852 	pmap_pte_init_generic();
   5853 
   5854 	pte_l1_s_cache_mode_pt = 0;
   5855 	pte_l2_l_cache_mode_pt = 0;
   5856 	pte_l2_s_cache_mode_pt = 0;
   5857 }
   5858 #endif /* CPU_ARM8 */
   5859 
   5860 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5861 void
   5862 pmap_pte_init_arm9(void)
   5863 {
   5864 
   5865 	/*
   5866 	 * ARM9 is compatible with generic, but we want to use
   5867 	 * write-through caching for now.
   5868 	 */
   5869 	pmap_pte_init_generic();
   5870 
   5871 	pte_l1_s_cache_mode = L1_S_C;
   5872 	pte_l2_l_cache_mode = L2_C;
   5873 	pte_l2_s_cache_mode = L2_C;
   5874 
   5875 	pte_l1_s_cache_mode_pt = L1_S_C;
   5876 	pte_l2_l_cache_mode_pt = L2_C;
   5877 	pte_l2_s_cache_mode_pt = L2_C;
   5878 }
   5879 #endif /* CPU_ARM9 */
   5880 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5881 
   5882 #if defined(CPU_ARM10)
   5883 void
   5884 pmap_pte_init_arm10(void)
   5885 {
   5886 
   5887 	/*
   5888 	 * ARM10 is compatible with generic, but we want to use
   5889 	 * write-through caching for now.
   5890 	 */
   5891 	pmap_pte_init_generic();
   5892 
   5893 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5894 	pte_l2_l_cache_mode = L2_B | L2_C;
   5895 	pte_l2_s_cache_mode = L2_B | L2_C;
   5896 
   5897 	pte_l1_s_cache_mode_pt = L1_S_C;
   5898 	pte_l2_l_cache_mode_pt = L2_C;
   5899 	pte_l2_s_cache_mode_pt = L2_C;
   5900 
   5901 }
   5902 #endif /* CPU_ARM10 */
   5903 
   5904 #if ARM_MMU_SA1 == 1
   5905 void
   5906 pmap_pte_init_sa1(void)
   5907 {
   5908 
   5909 	/*
   5910 	 * The StrongARM SA-1 cache does not have a write-through
   5911 	 * mode.  So, do the generic initialization, then reset
   5912 	 * the page table cache mode to B=1,C=1, and note that
   5913 	 * the PTEs need to be sync'd.
   5914 	 */
   5915 	pmap_pte_init_generic();
   5916 
   5917 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5918 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5919 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5920 
   5921 	pmap_needs_pte_sync = 1;
   5922 }
   5923 #endif /* ARM_MMU_SA1 == 1*/
   5924 
   5925 #if ARM_MMU_XSCALE == 1
   5926 #if (ARM_NMMUS > 1)
   5927 static u_int xscale_use_minidata;
   5928 #endif
   5929 
   5930 void
   5931 pmap_pte_init_xscale(void)
   5932 {
   5933 	uint32_t auxctl;
   5934 	int write_through = 0;
   5935 
   5936 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5937 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   5938 
   5939 	pte_l2_l_cache_mode = L2_B|L2_C;
   5940 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   5941 
   5942 	pte_l2_s_cache_mode = L2_B|L2_C;
   5943 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   5944 
   5945 	pte_l1_s_cache_mode_pt = L1_S_C;
   5946 	pte_l2_l_cache_mode_pt = L2_C;
   5947 	pte_l2_s_cache_mode_pt = L2_C;
   5948 
   5949 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   5950 	/*
   5951 	 * The XScale core has an enhanced mode where writes that
   5952 	 * miss the cache cause a cache line to be allocated.  This
   5953 	 * is significantly faster than the traditional, write-through
   5954 	 * behavior of this case.
   5955 	 */
   5956 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   5957 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   5958 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   5959 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   5960 
   5961 #ifdef XSCALE_CACHE_WRITE_THROUGH
   5962 	/*
   5963 	 * Some versions of the XScale core have various bugs in
   5964 	 * their cache units, the work-around for which is to run
   5965 	 * the cache in write-through mode.  Unfortunately, this
   5966 	 * has a major (negative) impact on performance.  So, we
   5967 	 * go ahead and run fast-and-loose, in the hopes that we
   5968 	 * don't line up the planets in a way that will trip the
   5969 	 * bugs.
   5970 	 *
   5971 	 * However, we give you the option to be slow-but-correct.
   5972 	 */
   5973 	write_through = 1;
   5974 #elif defined(XSCALE_CACHE_WRITE_BACK)
   5975 	/* force write back cache mode */
   5976 	write_through = 0;
   5977 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   5978 	/*
   5979 	 * Intel PXA2[15]0 processors are known to have a bug in
   5980 	 * write-back cache on revision 4 and earlier (stepping
   5981 	 * A[01] and B[012]).  Fixed for C0 and later.
   5982 	 */
   5983 	{
   5984 		uint32_t id, type;
   5985 
   5986 		id = cpufunc_id();
   5987 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   5988 
   5989 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   5990 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   5991 				/* write through for stepping A0-1 and B0-2 */
   5992 				write_through = 1;
   5993 			}
   5994 		}
   5995 	}
   5996 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   5997 
   5998 	if (write_through) {
   5999 		pte_l1_s_cache_mode = L1_S_C;
   6000 		pte_l2_l_cache_mode = L2_C;
   6001 		pte_l2_s_cache_mode = L2_C;
   6002 	}
   6003 
   6004 #if (ARM_NMMUS > 1)
   6005 	xscale_use_minidata = 1;
   6006 #endif
   6007 
   6008 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6009 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6010 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6011 
   6012 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6013 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6014 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6015 
   6016 	pmap_copy_page_func = pmap_copy_page_xscale;
   6017 	pmap_zero_page_func = pmap_zero_page_xscale;
   6018 
   6019 	/*
   6020 	 * Disable ECC protection of page table access, for now.
   6021 	 */
   6022 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6023 	auxctl &= ~XSCALE_AUXCTL_P;
   6024 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6025 }
   6026 
   6027 /*
   6028  * xscale_setup_minidata:
   6029  *
   6030  *	Set up the mini-data cache clean area.  We require the
   6031  *	caller to allocate the right amount of physically and
   6032  *	virtually contiguous space.
   6033  */
   6034 void
   6035 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6036 {
   6037 	extern vaddr_t xscale_minidata_clean_addr;
   6038 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6039 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6040 	pt_entry_t *pte;
   6041 	vsize_t size;
   6042 	uint32_t auxctl;
   6043 
   6044 	xscale_minidata_clean_addr = va;
   6045 
   6046 	/* Round it to page size. */
   6047 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6048 
   6049 	for (; size != 0;
   6050 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6051 #ifndef ARM32_NEW_VM_LAYOUT
   6052 		pte = (pt_entry_t *)
   6053 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6054 #else
   6055 		pte = (pt_entry_t *) kernel_pt_lookup(
   6056 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6057 #endif
   6058 		if (pte == NULL)
   6059 			panic("xscale_setup_minidata: can't find L2 table for "
   6060 			    "VA 0x%08lx", va);
   6061 #ifndef ARM32_NEW_VM_LAYOUT
   6062 		pte[(va >> PGSHIFT) & 0x3ff] =
   6063 #else
   6064 		pte[l2pte_index(va)] =
   6065 #endif
   6066 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6067 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6068 	}
   6069 
   6070 	/*
   6071 	 * Configure the mini-data cache for write-back with
   6072 	 * read/write-allocate.
   6073 	 *
   6074 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6075 	 * make sure it contains no valid data!  In order to do that,
   6076 	 * we must issue a global data cache invalidate command!
   6077 	 *
   6078 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6079 	 * THIS IS VERY IMPORTANT!
   6080 	 */
   6081 
   6082 	/* Invalidate data and mini-data. */
   6083 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6084 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6085 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6086 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6087 }
   6088 
   6089 /*
   6090  * Change the PTEs for the specified kernel mappings such that they
   6091  * will use the mini data cache instead of the main data cache.
   6092  */
   6093 void
   6094 pmap_uarea(vaddr_t va)
   6095 {
   6096 	struct l2_bucket *l2b;
   6097 	pt_entry_t *ptep, *sptep, pte;
   6098 	vaddr_t next_bucket, eva;
   6099 
   6100 #if (ARM_NMMUS > 1)
   6101 	if (xscale_use_minidata == 0)
   6102 		return;
   6103 #endif
   6104 
   6105 	eva = va + USPACE;
   6106 
   6107 	while (va < eva) {
   6108 		next_bucket = L2_NEXT_BUCKET(va);
   6109 		if (next_bucket > eva)
   6110 			next_bucket = eva;
   6111 
   6112 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6113 		KDASSERT(l2b != NULL);
   6114 
   6115 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6116 
   6117 		while (va < next_bucket) {
   6118 			pte = *ptep;
   6119 			if (!l2pte_minidata(pte)) {
   6120 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6121 				cpu_tlb_flushD_SE(va);
   6122 				*ptep = pte & ~L2_B;
   6123 			}
   6124 			ptep++;
   6125 			va += PAGE_SIZE;
   6126 		}
   6127 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6128 	}
   6129 	cpu_cpwait();
   6130 }
   6131 #endif /* ARM_MMU_XSCALE == 1 */
   6132 
   6133 /*
   6134  * return the PA of the current L1 table, for use when handling a crash dump
   6135  */
   6136 uint32_t pmap_kernel_L1_addr()
   6137 {
   6138 	return pmap_kernel()->pm_l1->l1_physaddr;
   6139 }
   6140 
   6141 #if defined(DDB)
   6142 /*
   6143  * A couple of ddb-callable functions for dumping pmaps
   6144  */
   6145 void pmap_dump_all(void);
   6146 void pmap_dump(pmap_t);
   6147 
   6148 void
   6149 pmap_dump_all(void)
   6150 {
   6151 	pmap_t pm;
   6152 
   6153 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6154 		if (pm == pmap_kernel())
   6155 			continue;
   6156 		pmap_dump(pm);
   6157 		printf("\n");
   6158 	}
   6159 }
   6160 
   6161 static pt_entry_t ncptes[64];
   6162 static void pmap_dump_ncpg(pmap_t);
   6163 
   6164 void
   6165 pmap_dump(pmap_t pm)
   6166 {
   6167 	struct l2_dtable *l2;
   6168 	struct l2_bucket *l2b;
   6169 	pt_entry_t *ptep, pte;
   6170 	vaddr_t l2_va, l2b_va, va;
   6171 	int i, j, k, occ, rows = 0;
   6172 
   6173 	if (pm == pmap_kernel())
   6174 		printf("pmap_kernel (%p): ", pm);
   6175 	else
   6176 		printf("user pmap (%p): ", pm);
   6177 
   6178 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6179 
   6180 	l2_va = 0;
   6181 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6182 		l2 = pm->pm_l2[i];
   6183 
   6184 		if (l2 == NULL || l2->l2_occupancy == 0)
   6185 			continue;
   6186 
   6187 		l2b_va = l2_va;
   6188 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6189 			l2b = &l2->l2_bucket[j];
   6190 
   6191 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6192 				continue;
   6193 
   6194 			ptep = l2b->l2b_kva;
   6195 
   6196 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6197 				;
   6198 
   6199 			k &= ~63;
   6200 			occ = l2b->l2b_occupancy;
   6201 			va = l2b_va + (k * 4096);
   6202 			for (; k < 256; k++, va += 0x1000) {
   6203 				char ch = ' ';
   6204 				if ((k % 64) == 0) {
   6205 					if ((rows % 8) == 0) {
   6206 						printf(
   6207 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6208 					}
   6209 					printf("%08lx: ", va);
   6210 				}
   6211 
   6212 				ncptes[k & 63] = 0;
   6213 				pte = ptep[k];
   6214 				if (pte == 0) {
   6215 					ch = '.';
   6216 				} else {
   6217 					occ--;
   6218 					switch (pte & 0x0c) {
   6219 					case 0x00:
   6220 						ch = 'D'; /* No cache No buff */
   6221 						break;
   6222 					case 0x04:
   6223 						ch = 'B'; /* No cache buff */
   6224 						break;
   6225 					case 0x08:
   6226 						if (pte & 0x40)
   6227 							ch = 'm';
   6228 						else
   6229 						   ch = 'C'; /* Cache No buff */
   6230 						break;
   6231 					case 0x0c:
   6232 						ch = 'F'; /* Cache Buff */
   6233 						break;
   6234 					}
   6235 
   6236 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6237 						ch += 0x20;
   6238 
   6239 					if ((pte & 0xc) == 0)
   6240 						ncptes[k & 63] = pte;
   6241 				}
   6242 
   6243 				if ((k % 64) == 63) {
   6244 					rows++;
   6245 					printf("%c\n", ch);
   6246 					pmap_dump_ncpg(pm);
   6247 					if (occ == 0)
   6248 						break;
   6249 				} else
   6250 					printf("%c", ch);
   6251 			}
   6252 		}
   6253 	}
   6254 }
   6255 
   6256 static void
   6257 pmap_dump_ncpg(pmap_t pm)
   6258 {
   6259 	struct vm_page *pg;
   6260 	struct pv_entry *pv;
   6261 	int i;
   6262 
   6263 	for (i = 0; i < 63; i++) {
   6264 		if (ncptes[i] == 0)
   6265 			continue;
   6266 
   6267 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6268 		if (pg == NULL)
   6269 			continue;
   6270 
   6271 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6272 		    VM_PAGE_TO_PHYS(pg),
   6273 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6274 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6275 
   6276 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   6277 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6278 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6279 			    pv->pv_va, pv->pv_flags);
   6280 		}
   6281 	}
   6282 }
   6283 #endif
   6284 
   6285 #ifdef PMAP_STEAL_MEMORY
   6286 void
   6287 pmap_boot_pageadd(pv_addr_t *newpv)
   6288 {
   6289 	pv_addr_t *pv, *npv;
   6290 
   6291 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6292 		if (newpv->pv_pa < pv->pv_va) {
   6293 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6294 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6295 				newpv->pv_size += pv->pv_size;
   6296 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6297 			}
   6298 			pv = NULL;
   6299 		} else {
   6300 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6301 			     pv = npv) {
   6302 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6303 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6304 				if (newpv->pv_pa > npv->pv_pa)
   6305 					continue;
   6306 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6307 					pv->pv_size += newpv->pv_size;
   6308 					return;
   6309 				}
   6310 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6311 					break;
   6312 				newpv->pv_size += npv->pv_size;
   6313 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6314 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6315 				return;
   6316 			}
   6317 		}
   6318 	}
   6319 
   6320 	if (pv) {
   6321 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6322 	} else {
   6323 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6324 	}
   6325 }
   6326 
   6327 void
   6328 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6329 	pv_addr_t *rpv)
   6330 {
   6331 	pv_addr_t *pv, **pvp;
   6332 	struct vm_physseg *ps;
   6333 	size_t i;
   6334 
   6335 	KASSERT(amount & PGOFSET);
   6336 	KASSERT((mask & PGOFSET) == 0);
   6337 	KASSERT((match & PGOFSET) == 0);
   6338 	KASSERT(amount != 0);
   6339 
   6340 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6341 	     (pv = *pvp) != NULL;
   6342 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6343 		pv_addr_t *newpv;
   6344 		psize_t off;
   6345 		/*
   6346 		 * If this entry is too small to satify the request...
   6347 		 */
   6348 		KASSERT(pv->pv_size > 0);
   6349 		if (pv->pv_size < amount)
   6350 			continue;
   6351 
   6352 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6353 			if (((pv->pv_pa + off) & mask) == match
   6354 			    && off + amount <= pv->pv_size)
   6355 				break;
   6356 		}
   6357 		if (off > mask)
   6358 			continue;
   6359 
   6360 		rpv->pv_va = pv->pv_va + off;
   6361 		rpv->pv_pa = pv->pv_pa + off;
   6362 		rpv->pv_size = amount;
   6363 		pv->pv_size -= amount;
   6364 		if (pv->pv_size == 0) {
   6365 			KASSERT(off == 0);
   6366 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6367 			*pvp = SLIST_NEXT(pv, pv_list);
   6368 		} else if (off == 0) {
   6369 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6370 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6371 			*newpv = *pv;
   6372 			newpv->pv_pa += amount;
   6373 			newpv->pv_va += amount;
   6374 			*pvp = newpv;
   6375 		} else if (off < pv->pv_size) {
   6376 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6377 			*newpv = *pv;
   6378 			newpv->pv_size -= off;
   6379 			newpv->pv_pa += off + amount;
   6380 			newpv->pv_va += off + amount;
   6381 
   6382 			SLIST_NEXT(pv, pv_list) = newpv;
   6383 			pv->pv_size = off;
   6384 		} else {
   6385 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6386 		}
   6387 		memset((void *)rpv->pv_va, 0, amount);
   6388 		return;
   6389 	}
   6390 
   6391 	if (vm_nphysseg == 0)
   6392 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6393 
   6394 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6395 	     (pv = *pvp) != NULL;
   6396 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6397 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6398 			break;
   6399 	}
   6400 	KASSERT(mask == 0);
   6401 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6402 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6403 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6404 			rpv->pv_va = pv->pv_va;
   6405 			rpv->pv_pa = pv->pv_pa;
   6406 			rpv->pv_size = amount;
   6407 			*pvp = NULL;
   6408 			pmap_map_chunk(kernel_l1pt.pv_va,
   6409 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6410 			     ptoa(ps->avail_start),
   6411 			     amount - pv->pv_size,
   6412 			     VM_PROT_READ|VM_PROT_WRITE,
   6413 			     PTE_CACHE);
   6414 			ps->avail_start += atop(amount - pv->pv_size);
   6415 			/*
   6416 			 * If we consumed the entire physseg, remove it.
   6417 			 */
   6418 			if (ps->avail_start == ps->avail_end) {
   6419 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6420 					ps[0] = ps[1];
   6421 			}
   6422 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6423 			return;
   6424 		}
   6425 	}
   6426 
   6427 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6428 }
   6429 
   6430 vaddr_t
   6431 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6432 {
   6433 	pv_addr_t pv;
   6434 
   6435 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6436 
   6437 	return pv.pv_va;
   6438 }
   6439 #endif /* PMAP_STEAL_MEMORY */
   6440