Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.185
      1 /*	$NetBSD: pmap.c,v 1.185 2008/08/13 06:05:54 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/user.h>
    202 #include <sys/pool.h>
    203 #include <sys/cdefs.h>
    204 #include <sys/cpu.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <machine/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/arm32/katelib.h>
    213 
    214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.185 2008/08/13 06:05:54 matt Exp $");
    215 
    216 #ifdef PMAP_DEBUG
    217 
    218 /* XXX need to get rid of all refs to this */
    219 int pmap_debug_level = 0;
    220 
    221 /*
    222  * for switching to potentially finer grained debugging
    223  */
    224 #define	PDB_FOLLOW	0x0001
    225 #define	PDB_INIT	0x0002
    226 #define	PDB_ENTER	0x0004
    227 #define	PDB_REMOVE	0x0008
    228 #define	PDB_CREATE	0x0010
    229 #define	PDB_PTPAGE	0x0020
    230 #define	PDB_GROWKERN	0x0040
    231 #define	PDB_BITS	0x0080
    232 #define	PDB_COLLECT	0x0100
    233 #define	PDB_PROTECT	0x0200
    234 #define	PDB_MAP_L1	0x0400
    235 #define	PDB_BOOTSTRAP	0x1000
    236 #define	PDB_PARANOIA	0x2000
    237 #define	PDB_WIRING	0x4000
    238 #define	PDB_PVDUMP	0x8000
    239 #define	PDB_VAC		0x10000
    240 #define	PDB_KENTER	0x20000
    241 #define	PDB_KREMOVE	0x40000
    242 #define	PDB_EXEC	0x80000
    243 
    244 int debugmap = 1;
    245 int pmapdebug = 0;
    246 #define	NPDEBUG(_lev_,_stat_) \
    247 	if (pmapdebug & (_lev_)) \
    248         	((_stat_))
    249 
    250 #else	/* PMAP_DEBUG */
    251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    252 #endif	/* PMAP_DEBUG */
    253 
    254 /*
    255  * pmap_kernel() points here
    256  */
    257 struct pmap     kernel_pmap_store;
    258 
    259 /*
    260  * Which pmap is currently 'live' in the cache
    261  *
    262  * XXXSCW: Fix for SMP ...
    263  */
    264 static pmap_t pmap_recent_user;
    265 
    266 /*
    267  * Pointer to last active lwp, or NULL if it exited.
    268  */
    269 struct lwp *pmap_previous_active_lwp;
    270 
    271 /*
    272  * Pool and cache that pmap structures are allocated from.
    273  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    274  * in pmap_create().
    275  */
    276 static struct pool_cache pmap_cache;
    277 static LIST_HEAD(, pmap) pmap_pmaps;
    278 
    279 /*
    280  * Pool of PV structures
    281  */
    282 static struct pool pmap_pv_pool;
    283 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    284 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    285 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    286 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    287 };
    288 
    289 /*
    290  * Pool and cache of l2_dtable structures.
    291  * We use a cache to avoid clearing the structures when they're
    292  * allocated. (196 bytes)
    293  */
    294 static struct pool_cache pmap_l2dtable_cache;
    295 static vaddr_t pmap_kernel_l2dtable_kva;
    296 
    297 /*
    298  * Pool and cache of L2 page descriptors.
    299  * We use a cache to avoid clearing the descriptor table
    300  * when they're allocated. (1KB)
    301  */
    302 static struct pool_cache pmap_l2ptp_cache;
    303 static vaddr_t pmap_kernel_l2ptp_kva;
    304 static paddr_t pmap_kernel_l2ptp_phys;
    305 
    306 #ifdef PMAPCOUNTERS
    307 #define	PMAP_EVCNT_INITIALIZER(name) \
    308 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    309 
    310 #ifdef PMAP_CACHE_VIPT
    311 static struct evcnt pmap_ev_vac_color_new =
    312    PMAP_EVCNT_INITIALIZER("new page color");
    313 static struct evcnt pmap_ev_vac_color_reuse =
    314    PMAP_EVCNT_INITIALIZER("ok first page color");
    315 static struct evcnt pmap_ev_vac_color_ok =
    316    PMAP_EVCNT_INITIALIZER("ok page color");
    317 static struct evcnt pmap_ev_vac_color_blind =
    318    PMAP_EVCNT_INITIALIZER("blind page color");
    319 static struct evcnt pmap_ev_vac_color_change =
    320    PMAP_EVCNT_INITIALIZER("change page color");
    321 static struct evcnt pmap_ev_vac_color_erase =
    322    PMAP_EVCNT_INITIALIZER("erase page color");
    323 static struct evcnt pmap_ev_vac_color_none =
    324    PMAP_EVCNT_INITIALIZER("no page color");
    325 static struct evcnt pmap_ev_vac_color_restore =
    326    PMAP_EVCNT_INITIALIZER("restore page color");
    327 
    328 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    336 #endif
    337 
    338 static struct evcnt pmap_ev_mappings =
    339    PMAP_EVCNT_INITIALIZER("pages mapped");
    340 static struct evcnt pmap_ev_unmappings =
    341    PMAP_EVCNT_INITIALIZER("pages unmapped");
    342 static struct evcnt pmap_ev_remappings =
    343    PMAP_EVCNT_INITIALIZER("pages remapped");
    344 
    345 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    346 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    347 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    348 
    349 static struct evcnt pmap_ev_kernel_mappings =
    350    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    351 static struct evcnt pmap_ev_kernel_unmappings =
    352    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    353 static struct evcnt pmap_ev_kernel_remappings =
    354    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    355 
    356 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    359 
    360 static struct evcnt pmap_ev_kenter_mappings =
    361    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    362 static struct evcnt pmap_ev_kenter_unmappings =
    363    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    364 static struct evcnt pmap_ev_kenter_remappings =
    365    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    366 static struct evcnt pmap_ev_pt_mappings =
    367    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    368 
    369 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    373 
    374 #ifdef PMAP_CACHE_VIPT
    375 static struct evcnt pmap_ev_exec_mappings =
    376    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    377 static struct evcnt pmap_ev_exec_cached =
    378    PMAP_EVCNT_INITIALIZER("exec pages cached");
    379 
    380 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    381 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    382 
    383 static struct evcnt pmap_ev_exec_synced =
    384    PMAP_EVCNT_INITIALIZER("exec pages synced");
    385 static struct evcnt pmap_ev_exec_synced_map =
    386    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    387 static struct evcnt pmap_ev_exec_synced_unmap =
    388    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    389 static struct evcnt pmap_ev_exec_synced_remap =
    390    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    391 static struct evcnt pmap_ev_exec_synced_clearbit =
    392    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    393 static struct evcnt pmap_ev_exec_synced_kremove =
    394    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    395 
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    402 
    403 static struct evcnt pmap_ev_exec_discarded_unmap =
    404    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    405 static struct evcnt pmap_ev_exec_discarded_zero =
    406    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    407 static struct evcnt pmap_ev_exec_discarded_copy =
    408    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    409 static struct evcnt pmap_ev_exec_discarded_page_protect =
    410    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    411 static struct evcnt pmap_ev_exec_discarded_clearbit =
    412    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    413 static struct evcnt pmap_ev_exec_discarded_kremove =
    414    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    415 
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    422 #endif /* PMAP_CACHE_VIPT */
    423 
    424 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    425 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    426 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    427 
    428 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    429 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    430 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    431 
    432 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    433 #else
    434 #define	PMAPCOUNT(x)	((void)0)
    435 #endif
    436 
    437 /*
    438  * pmap copy/zero page, and mem(5) hook point
    439  */
    440 static pt_entry_t *csrc_pte, *cdst_pte;
    441 static vaddr_t csrcp, cdstp;
    442 vaddr_t memhook;			/* used by mem.c */
    443 extern void *msgbufaddr;
    444 
    445 /*
    446  * Flag to indicate if pmap_init() has done its thing
    447  */
    448 bool pmap_initialized;
    449 
    450 /*
    451  * Misc. locking data structures
    452  */
    453 
    454 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    455 static struct lock pmap_main_lock;
    456 
    457 #define PMAP_MAP_TO_HEAD_LOCK() \
    458      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    459 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    460      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    461 #define PMAP_HEAD_TO_MAP_LOCK() \
    462      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    463 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    464      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    465 #else
    466 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    467 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    468 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    469 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    470 #endif
    471 
    472 #define	pmap_acquire_pmap_lock(pm)			\
    473 	do {						\
    474 		if ((pm) != pmap_kernel())		\
    475 			mutex_enter(&(pm)->pm_lock);	\
    476 	} while (/*CONSTCOND*/0)
    477 
    478 #define	pmap_release_pmap_lock(pm)			\
    479 	do {						\
    480 		if ((pm) != pmap_kernel())		\
    481 			mutex_exit(&(pm)->pm_lock);	\
    482 	} while (/*CONSTCOND*/0)
    483 
    484 
    485 /*
    486  * Metadata for L1 translation tables.
    487  */
    488 struct l1_ttable {
    489 	/* Entry on the L1 Table list */
    490 	SLIST_ENTRY(l1_ttable) l1_link;
    491 
    492 	/* Entry on the L1 Least Recently Used list */
    493 	TAILQ_ENTRY(l1_ttable) l1_lru;
    494 
    495 	/* Track how many domains are allocated from this L1 */
    496 	volatile u_int l1_domain_use_count;
    497 
    498 	/*
    499 	 * A free-list of domain numbers for this L1.
    500 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    501 	 * is slow on ARM.
    502 	 */
    503 	u_int8_t l1_domain_first;
    504 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    505 
    506 	/* Physical address of this L1 page table */
    507 	paddr_t l1_physaddr;
    508 
    509 	/* KVA of this L1 page table */
    510 	pd_entry_t *l1_kva;
    511 };
    512 
    513 /*
    514  * Convert a virtual address into its L1 table index. That is, the
    515  * index used to locate the L2 descriptor table pointer in an L1 table.
    516  * This is basically used to index l1->l1_kva[].
    517  *
    518  * Each L2 descriptor table represents 1MB of VA space.
    519  */
    520 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    521 
    522 /*
    523  * L1 Page Tables are tracked using a Least Recently Used list.
    524  *  - New L1s are allocated from the HEAD.
    525  *  - Freed L1s are added to the TAIl.
    526  *  - Recently accessed L1s (where an 'access' is some change to one of
    527  *    the userland pmaps which owns this L1) are moved to the TAIL.
    528  */
    529 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    530 static struct simplelock l1_lru_lock;
    531 
    532 /*
    533  * A list of all L1 tables
    534  */
    535 static SLIST_HEAD(, l1_ttable) l1_list;
    536 
    537 /*
    538  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    539  *
    540  * This is normally 16MB worth L2 page descriptors for any given pmap.
    541  * Reference counts are maintained for L2 descriptors so they can be
    542  * freed when empty.
    543  */
    544 struct l2_dtable {
    545 	/* The number of L2 page descriptors allocated to this l2_dtable */
    546 	u_int l2_occupancy;
    547 
    548 	/* List of L2 page descriptors */
    549 	struct l2_bucket {
    550 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    551 		paddr_t l2b_phys;	/* Physical address of same */
    552 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    553 		u_short l2b_occupancy;	/* How many active descriptors */
    554 	} l2_bucket[L2_BUCKET_SIZE];
    555 };
    556 
    557 /*
    558  * Given an L1 table index, calculate the corresponding l2_dtable index
    559  * and bucket index within the l2_dtable.
    560  */
    561 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    562 				 (L2_SIZE - 1))
    563 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    564 
    565 /*
    566  * Given a virtual address, this macro returns the
    567  * virtual address required to drop into the next L2 bucket.
    568  */
    569 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    570 
    571 /*
    572  * L2 allocation.
    573  */
    574 #define	pmap_alloc_l2_dtable()		\
    575 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    576 #define	pmap_free_l2_dtable(l2)		\
    577 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    578 #define pmap_alloc_l2_ptp(pap)		\
    579 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    580 	    PR_NOWAIT, (pap)))
    581 
    582 /*
    583  * We try to map the page tables write-through, if possible.  However, not
    584  * all CPUs have a write-through cache mode, so on those we have to sync
    585  * the cache when we frob page tables.
    586  *
    587  * We try to evaluate this at compile time, if possible.  However, it's
    588  * not always possible to do that, hence this run-time var.
    589  */
    590 int	pmap_needs_pte_sync;
    591 
    592 /*
    593  * Real definition of pv_entry.
    594  */
    595 struct pv_entry {
    596 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    597 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    598 	vaddr_t		pv_va;          /* virtual address for mapping */
    599 	u_int		pv_flags;       /* flags */
    600 };
    601 
    602 /*
    603  * Macro to determine if a mapping might be resident in the
    604  * instruction cache and/or TLB
    605  */
    606 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    607 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    608 
    609 /*
    610  * Macro to determine if a mapping might be resident in the
    611  * data cache and/or TLB
    612  */
    613 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    614 
    615 /*
    616  * Local prototypes
    617  */
    618 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    619 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    620 			    pt_entry_t **);
    621 static bool		pmap_is_current(pmap_t);
    622 static bool		pmap_is_cached(pmap_t);
    623 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    624 			    pmap_t, vaddr_t, u_int);
    625 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    626 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    627 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    628 			    u_int, u_int);
    629 
    630 static void		pmap_pinit(pmap_t);
    631 static int		pmap_pmap_ctor(void *, void *, int);
    632 
    633 static void		pmap_alloc_l1(pmap_t);
    634 static void		pmap_free_l1(pmap_t);
    635 static void		pmap_use_l1(pmap_t);
    636 
    637 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    638 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    639 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    640 static int		pmap_l2ptp_ctor(void *, void *, int);
    641 static int		pmap_l2dtable_ctor(void *, void *, int);
    642 
    643 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    644 #ifdef PMAP_CACHE_VIVT
    645 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    646 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    647 #endif
    648 
    649 static void		pmap_clearbit(struct vm_page *, u_int);
    650 #ifdef PMAP_CACHE_VIVT
    651 static int		pmap_clean_page(struct pv_entry *, bool);
    652 #endif
    653 #ifdef PMAP_CACHE_VIPT
    654 static void		pmap_syncicache_page(struct vm_page *);
    655 static void		pmap_flush_page(struct vm_page *, bool);
    656 #endif
    657 static void		pmap_page_remove(struct vm_page *);
    658 
    659 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    660 static vaddr_t		kernel_pt_lookup(paddr_t);
    661 
    662 
    663 /*
    664  * External function prototypes
    665  */
    666 extern void bzero_page(vaddr_t);
    667 extern void bcopy_page(vaddr_t, vaddr_t);
    668 
    669 /*
    670  * Misc variables
    671  */
    672 vaddr_t virtual_avail;
    673 vaddr_t virtual_end;
    674 vaddr_t pmap_curmaxkvaddr;
    675 
    676 vaddr_t avail_start;
    677 vaddr_t avail_end;
    678 
    679 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    680 pv_addr_t kernelpages;
    681 pv_addr_t kernel_l1pt;
    682 pv_addr_t systempage;
    683 
    684 /* Function to set the debug level of the pmap code */
    685 
    686 #ifdef PMAP_DEBUG
    687 void
    688 pmap_debug(int level)
    689 {
    690 	pmap_debug_level = level;
    691 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    692 }
    693 #endif	/* PMAP_DEBUG */
    694 
    695 /*
    696  * A bunch of routines to conditionally flush the caches/TLB depending
    697  * on whether the specified pmap actually needs to be flushed at any
    698  * given time.
    699  */
    700 static inline void
    701 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    702 {
    703 
    704 	if (pm->pm_cstate.cs_tlb_id)
    705 		cpu_tlb_flushID_SE(va);
    706 }
    707 
    708 static inline void
    709 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    710 {
    711 
    712 	if (pm->pm_cstate.cs_tlb_d)
    713 		cpu_tlb_flushD_SE(va);
    714 }
    715 
    716 static inline void
    717 pmap_tlb_flushID(pmap_t pm)
    718 {
    719 
    720 	if (pm->pm_cstate.cs_tlb_id) {
    721 		cpu_tlb_flushID();
    722 		pm->pm_cstate.cs_tlb = 0;
    723 	}
    724 }
    725 
    726 static inline void
    727 pmap_tlb_flushD(pmap_t pm)
    728 {
    729 
    730 	if (pm->pm_cstate.cs_tlb_d) {
    731 		cpu_tlb_flushD();
    732 		pm->pm_cstate.cs_tlb_d = 0;
    733 	}
    734 }
    735 
    736 #ifdef PMAP_CACHE_VIVT
    737 static inline void
    738 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    739 {
    740 	if (pm->pm_cstate.cs_cache_id) {
    741 		cpu_idcache_wbinv_range(va, len);
    742 	}
    743 }
    744 
    745 static inline void
    746 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    747     bool do_inv, bool rd_only)
    748 {
    749 
    750 	if (pm->pm_cstate.cs_cache_d) {
    751 		if (do_inv) {
    752 			if (rd_only)
    753 				cpu_dcache_inv_range(va, len);
    754 			else
    755 				cpu_dcache_wbinv_range(va, len);
    756 		} else
    757 		if (!rd_only)
    758 			cpu_dcache_wb_range(va, len);
    759 	}
    760 }
    761 
    762 static inline void
    763 pmap_idcache_wbinv_all(pmap_t pm)
    764 {
    765 	if (pm->pm_cstate.cs_cache_id) {
    766 		cpu_idcache_wbinv_all();
    767 		pm->pm_cstate.cs_cache = 0;
    768 	}
    769 }
    770 
    771 static inline void
    772 pmap_dcache_wbinv_all(pmap_t pm)
    773 {
    774 	if (pm->pm_cstate.cs_cache_d) {
    775 		cpu_dcache_wbinv_all();
    776 		pm->pm_cstate.cs_cache_d = 0;
    777 	}
    778 }
    779 #endif /* PMAP_CACHE_VIVT */
    780 
    781 static inline bool
    782 pmap_is_current(pmap_t pm)
    783 {
    784 
    785 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    786 		return true;
    787 
    788 	return false;
    789 }
    790 
    791 static inline bool
    792 pmap_is_cached(pmap_t pm)
    793 {
    794 
    795 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    796 	    pmap_recent_user == pm)
    797 		return (true);
    798 
    799 	return false;
    800 }
    801 
    802 /*
    803  * PTE_SYNC_CURRENT:
    804  *
    805  *     Make sure the pte is written out to RAM.
    806  *     We need to do this for one of two cases:
    807  *       - We're dealing with the kernel pmap
    808  *       - There is no pmap active in the cache/tlb.
    809  *       - The specified pmap is 'active' in the cache/tlb.
    810  */
    811 #ifdef PMAP_INCLUDE_PTE_SYNC
    812 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    813 do {					\
    814 	if (PMAP_NEEDS_PTE_SYNC && 	\
    815 	    pmap_is_cached(pm))		\
    816 		PTE_SYNC(ptep);		\
    817 } while (/*CONSTCOND*/0)
    818 #else
    819 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    820 #endif
    821 
    822 /*
    823  * main pv_entry manipulation functions:
    824  *   pmap_enter_pv: enter a mapping onto a vm_page list
    825  *   pmap_remove_pv: remove a mappiing from a vm_page list
    826  *
    827  * NOTE: pmap_enter_pv expects to lock the pvh itself
    828  *       pmap_remove_pv expects te caller to lock the pvh before calling
    829  */
    830 
    831 /*
    832  * pmap_enter_pv: enter a mapping onto a vm_page lst
    833  *
    834  * => caller should hold the proper lock on pmap_main_lock
    835  * => caller should have pmap locked
    836  * => we will gain the lock on the vm_page and allocate the new pv_entry
    837  * => caller should adjust ptp's wire_count before calling
    838  * => caller should not adjust pmap's wire_count
    839  */
    840 static void
    841 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    842     vaddr_t va, u_int flags)
    843 {
    844 	struct pv_entry **pvp;
    845 
    846 	NPDEBUG(PDB_PVDUMP,
    847 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    848 
    849 	pve->pv_pmap = pm;
    850 	pve->pv_va = va;
    851 	pve->pv_flags = flags;
    852 
    853 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    854 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
    855 #ifdef PMAP_CACHE_VIPT
    856 	/*
    857 	 * Insert unmanaged entries, writeable first, at the head of
    858 	 * the pv list.
    859 	 */
    860 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    861 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    862 			pvp = &SLIST_NEXT(*pvp, pv_link);
    863 	} else if ((flags & PVF_WRITE) == 0) {
    864 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    865 			pvp = &SLIST_NEXT(*pvp, pv_link);
    866 	}
    867 #endif
    868 	SLIST_NEXT(pve, pv_link) = *pvp;		/* add to ... */
    869 	*pvp = pve;				/* ... locked list */
    870 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    871 #ifdef PMAP_CACHE_VIPT
    872 	if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    873 		pg->mdpage.pvh_attrs |= PVF_KMOD;
    874 	if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    875 		pg->mdpage.pvh_attrs |= PVF_DIRTY;
    876 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
    877 #endif
    878 	if (pm == pmap_kernel()) {
    879 		PMAPCOUNT(kernel_mappings);
    880 		if (flags & PVF_WRITE)
    881 			pg->mdpage.krw_mappings++;
    882 		else
    883 			pg->mdpage.kro_mappings++;
    884 	} else
    885 	if (flags & PVF_WRITE)
    886 		pg->mdpage.urw_mappings++;
    887 	else
    888 		pg->mdpage.uro_mappings++;
    889 
    890 #ifdef PMAP_CACHE_VIPT
    891 	/*
    892 	 * If this is an exec mapping and its the first exec mapping
    893 	 * for this page, make sure to sync the I-cache.
    894 	 */
    895 	if (PV_IS_EXEC_P(flags)) {
    896 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    897 			pmap_syncicache_page(pg);
    898 			PMAPCOUNT(exec_synced_map);
    899 		}
    900 		PMAPCOUNT(exec_mappings);
    901 	}
    902 #endif
    903 
    904 	PMAPCOUNT(mappings);
    905 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    906 
    907 	if (pve->pv_flags & PVF_WIRED)
    908 		++pm->pm_stats.wired_count;
    909 }
    910 
    911 /*
    912  *
    913  * pmap_find_pv: Find a pv entry
    914  *
    915  * => caller should hold lock on vm_page
    916  */
    917 static inline struct pv_entry *
    918 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    919 {
    920 	struct pv_entry *pv;
    921 
    922 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
    923 		if (pm == pv->pv_pmap && va == pv->pv_va)
    924 			break;
    925 	}
    926 
    927 	return (pv);
    928 }
    929 
    930 /*
    931  * pmap_remove_pv: try to remove a mapping from a pv_list
    932  *
    933  * => caller should hold proper lock on pmap_main_lock
    934  * => pmap should be locked
    935  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    936  * => caller should adjust ptp's wire_count and free PTP if needed
    937  * => caller should NOT adjust pmap's wire_count
    938  * => we return the removed pve
    939  */
    940 static struct pv_entry *
    941 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    942 {
    943 	struct pv_entry *pve, **prevptr;
    944 
    945 	NPDEBUG(PDB_PVDUMP,
    946 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    947 
    948 	prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
    949 	pve = *prevptr;
    950 
    951 	while (pve) {
    952 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    953 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    954 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    955 			if (pve->pv_flags & PVF_WIRED) {
    956 				if (skip_wired)
    957 					return (NULL);
    958 				--pm->pm_stats.wired_count;
    959 			}
    960 			*prevptr = SLIST_NEXT(pve, pv_link);	/* remove it! */
    961 			if (pm == pmap_kernel()) {
    962 				PMAPCOUNT(kernel_unmappings);
    963 				if (pve->pv_flags & PVF_WRITE)
    964 					pg->mdpage.krw_mappings--;
    965 				else
    966 					pg->mdpage.kro_mappings--;
    967 			} else
    968 			if (pve->pv_flags & PVF_WRITE)
    969 				pg->mdpage.urw_mappings--;
    970 			else
    971 				pg->mdpage.uro_mappings--;
    972 
    973 			PMAPCOUNT(unmappings);
    974 #ifdef PMAP_CACHE_VIPT
    975 			if (!(pve->pv_flags & PVF_WRITE))
    976 				break;
    977 			/*
    978 			 * If this page has had an exec mapping, then if
    979 			 * this was the last mapping, discard the contents,
    980 			 * otherwise sync the i-cache for this page.
    981 			 */
    982 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    983 				if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
    984 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
    985 					PMAPCOUNT(exec_discarded_unmap);
    986 				} else {
    987 					pmap_syncicache_page(pg);
    988 					PMAPCOUNT(exec_synced_unmap);
    989 				}
    990 			}
    991 #endif /* PMAP_CACHE_VIPT */
    992 			break;
    993 		}
    994 		prevptr = &SLIST_NEXT(pve, pv_link);	/* previous pointer */
    995 		pve = *prevptr;				/* advance */
    996 	}
    997 
    998 #ifdef PMAP_CACHE_VIPT
    999 	/*
   1000 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1001 	 * clear the KMOD attribute from the page.
   1002 	 */
   1003 	if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
   1004 	    || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1005 		pg->mdpage.pvh_attrs &= ~PVF_KMOD;
   1006 
   1007 	/*
   1008 	 * If this was a writeable page and there are no more writeable
   1009 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1010 	 * the contents to memory.
   1011 	 */
   1012 	if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
   1013 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1014 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1015 #endif /* PMAP_CACHE_VIPT */
   1016 
   1017 	return(pve);				/* return removed pve */
   1018 }
   1019 
   1020 /*
   1021  *
   1022  * pmap_modify_pv: Update pv flags
   1023  *
   1024  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1025  * => caller should NOT adjust pmap's wire_count
   1026  * => caller must call pmap_vac_me_harder() if writable status of a page
   1027  *    may have changed.
   1028  * => we return the old flags
   1029  *
   1030  * Modify a physical-virtual mapping in the pv table
   1031  */
   1032 static u_int
   1033 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
   1034     u_int clr_mask, u_int set_mask)
   1035 {
   1036 	struct pv_entry *npv;
   1037 	u_int flags, oflags;
   1038 
   1039 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1040 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1041 
   1042 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1043 		return (0);
   1044 
   1045 	NPDEBUG(PDB_PVDUMP,
   1046 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1047 
   1048 	/*
   1049 	 * There is at least one VA mapping this page.
   1050 	 */
   1051 
   1052 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1053 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1054 #ifdef PMAP_CACHE_VIPT
   1055 		if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1056 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1057 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1058 #endif
   1059 	}
   1060 
   1061 	oflags = npv->pv_flags;
   1062 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1063 
   1064 	if ((flags ^ oflags) & PVF_WIRED) {
   1065 		if (flags & PVF_WIRED)
   1066 			++pm->pm_stats.wired_count;
   1067 		else
   1068 			--pm->pm_stats.wired_count;
   1069 	}
   1070 
   1071 	if ((flags ^ oflags) & PVF_WRITE) {
   1072 		if (pm == pmap_kernel()) {
   1073 			if (flags & PVF_WRITE) {
   1074 				pg->mdpage.krw_mappings++;
   1075 				pg->mdpage.kro_mappings--;
   1076 			} else {
   1077 				pg->mdpage.kro_mappings++;
   1078 				pg->mdpage.krw_mappings--;
   1079 			}
   1080 		} else
   1081 		if (flags & PVF_WRITE) {
   1082 			pg->mdpage.urw_mappings++;
   1083 			pg->mdpage.uro_mappings--;
   1084 		} else {
   1085 			pg->mdpage.uro_mappings++;
   1086 			pg->mdpage.urw_mappings--;
   1087 		}
   1088 	}
   1089 #ifdef PMAP_CACHE_VIPT
   1090 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1091 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1092 	/*
   1093 	 * We have two cases here: the first is from enter_pv (new exec
   1094 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1095 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1096 	 * to do what pmap_remove_pv would do.
   1097 	 */
   1098 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1099 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1100 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1101 		pmap_syncicache_page(pg);
   1102 		PMAPCOUNT(exec_synced_remap);
   1103 	}
   1104 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1105 #endif
   1106 
   1107 	PMAPCOUNT(remappings);
   1108 
   1109 	return (oflags);
   1110 }
   1111 
   1112 /*
   1113  * Allocate an L1 translation table for the specified pmap.
   1114  * This is called at pmap creation time.
   1115  */
   1116 static void
   1117 pmap_alloc_l1(pmap_t pm)
   1118 {
   1119 	struct l1_ttable *l1;
   1120 	u_int8_t domain;
   1121 
   1122 	/*
   1123 	 * Remove the L1 at the head of the LRU list
   1124 	 */
   1125 	simple_lock(&l1_lru_lock);
   1126 	l1 = TAILQ_FIRST(&l1_lru_list);
   1127 	KDASSERT(l1 != NULL);
   1128 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1129 
   1130 	/*
   1131 	 * Pick the first available domain number, and update
   1132 	 * the link to the next number.
   1133 	 */
   1134 	domain = l1->l1_domain_first;
   1135 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1136 
   1137 	/*
   1138 	 * If there are still free domain numbers in this L1,
   1139 	 * put it back on the TAIL of the LRU list.
   1140 	 */
   1141 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1142 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1143 
   1144 	simple_unlock(&l1_lru_lock);
   1145 
   1146 	/*
   1147 	 * Fix up the relevant bits in the pmap structure
   1148 	 */
   1149 	pm->pm_l1 = l1;
   1150 	pm->pm_domain = domain;
   1151 }
   1152 
   1153 /*
   1154  * Free an L1 translation table.
   1155  * This is called at pmap destruction time.
   1156  */
   1157 static void
   1158 pmap_free_l1(pmap_t pm)
   1159 {
   1160 	struct l1_ttable *l1 = pm->pm_l1;
   1161 
   1162 	simple_lock(&l1_lru_lock);
   1163 
   1164 	/*
   1165 	 * If this L1 is currently on the LRU list, remove it.
   1166 	 */
   1167 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1168 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1169 
   1170 	/*
   1171 	 * Free up the domain number which was allocated to the pmap
   1172 	 */
   1173 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1174 	l1->l1_domain_first = pm->pm_domain;
   1175 	l1->l1_domain_use_count--;
   1176 
   1177 	/*
   1178 	 * The L1 now must have at least 1 free domain, so add
   1179 	 * it back to the LRU list. If the use count is zero,
   1180 	 * put it at the head of the list, otherwise it goes
   1181 	 * to the tail.
   1182 	 */
   1183 	if (l1->l1_domain_use_count == 0)
   1184 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1185 	else
   1186 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1187 
   1188 	simple_unlock(&l1_lru_lock);
   1189 }
   1190 
   1191 static inline void
   1192 pmap_use_l1(pmap_t pm)
   1193 {
   1194 	struct l1_ttable *l1;
   1195 
   1196 	/*
   1197 	 * Do nothing if we're in interrupt context.
   1198 	 * Access to an L1 by the kernel pmap must not affect
   1199 	 * the LRU list.
   1200 	 */
   1201 	if (cpu_intr_p() || pm == pmap_kernel())
   1202 		return;
   1203 
   1204 	l1 = pm->pm_l1;
   1205 
   1206 	/*
   1207 	 * If the L1 is not currently on the LRU list, just return
   1208 	 */
   1209 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1210 		return;
   1211 
   1212 	simple_lock(&l1_lru_lock);
   1213 
   1214 	/*
   1215 	 * Check the use count again, now that we've acquired the lock
   1216 	 */
   1217 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1218 		simple_unlock(&l1_lru_lock);
   1219 		return;
   1220 	}
   1221 
   1222 	/*
   1223 	 * Move the L1 to the back of the LRU list
   1224 	 */
   1225 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1226 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1227 
   1228 	simple_unlock(&l1_lru_lock);
   1229 }
   1230 
   1231 /*
   1232  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1233  *
   1234  * Free an L2 descriptor table.
   1235  */
   1236 static inline void
   1237 #ifndef PMAP_INCLUDE_PTE_SYNC
   1238 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1239 #else
   1240 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1241 #endif
   1242 {
   1243 #ifdef PMAP_INCLUDE_PTE_SYNC
   1244 #ifdef PMAP_CACHE_VIVT
   1245 	/*
   1246 	 * Note: With a write-back cache, we may need to sync this
   1247 	 * L2 table before re-using it.
   1248 	 * This is because it may have belonged to a non-current
   1249 	 * pmap, in which case the cache syncs would have been
   1250 	 * skipped for the pages that were being unmapped. If the
   1251 	 * L2 table were then to be immediately re-allocated to
   1252 	 * the *current* pmap, it may well contain stale mappings
   1253 	 * which have not yet been cleared by a cache write-back
   1254 	 * and so would still be visible to the mmu.
   1255 	 */
   1256 	if (need_sync)
   1257 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1258 #endif /* PMAP_CACHE_VIVT */
   1259 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1260 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1261 }
   1262 
   1263 /*
   1264  * Returns a pointer to the L2 bucket associated with the specified pmap
   1265  * and VA, or NULL if no L2 bucket exists for the address.
   1266  */
   1267 static inline struct l2_bucket *
   1268 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1269 {
   1270 	struct l2_dtable *l2;
   1271 	struct l2_bucket *l2b;
   1272 	u_short l1idx;
   1273 
   1274 	l1idx = L1_IDX(va);
   1275 
   1276 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1277 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1278 		return (NULL);
   1279 
   1280 	return (l2b);
   1281 }
   1282 
   1283 /*
   1284  * Returns a pointer to the L2 bucket associated with the specified pmap
   1285  * and VA.
   1286  *
   1287  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1288  * bucket/page table in place.
   1289  *
   1290  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1291  * increment the bucket occupancy counter appropriately *before*
   1292  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1293  * the bucket/page in the meantime.
   1294  */
   1295 static struct l2_bucket *
   1296 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1297 {
   1298 	struct l2_dtable *l2;
   1299 	struct l2_bucket *l2b;
   1300 	u_short l1idx;
   1301 
   1302 	l1idx = L1_IDX(va);
   1303 
   1304 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1305 		/*
   1306 		 * No mapping at this address, as there is
   1307 		 * no entry in the L1 table.
   1308 		 * Need to allocate a new l2_dtable.
   1309 		 */
   1310 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1311 			return (NULL);
   1312 
   1313 		/*
   1314 		 * Link it into the parent pmap
   1315 		 */
   1316 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1317 	}
   1318 
   1319 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1320 
   1321 	/*
   1322 	 * Fetch pointer to the L2 page table associated with the address.
   1323 	 */
   1324 	if (l2b->l2b_kva == NULL) {
   1325 		pt_entry_t *ptep;
   1326 
   1327 		/*
   1328 		 * No L2 page table has been allocated. Chances are, this
   1329 		 * is because we just allocated the l2_dtable, above.
   1330 		 */
   1331 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1332 			/*
   1333 			 * Oops, no more L2 page tables available at this
   1334 			 * time. We may need to deallocate the l2_dtable
   1335 			 * if we allocated a new one above.
   1336 			 */
   1337 			if (l2->l2_occupancy == 0) {
   1338 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1339 				pmap_free_l2_dtable(l2);
   1340 			}
   1341 			return (NULL);
   1342 		}
   1343 
   1344 		l2->l2_occupancy++;
   1345 		l2b->l2b_kva = ptep;
   1346 		l2b->l2b_l1idx = l1idx;
   1347 	}
   1348 
   1349 	return (l2b);
   1350 }
   1351 
   1352 /*
   1353  * One or more mappings in the specified L2 descriptor table have just been
   1354  * invalidated.
   1355  *
   1356  * Garbage collect the metadata and descriptor table itself if necessary.
   1357  *
   1358  * The pmap lock must be acquired when this is called (not necessary
   1359  * for the kernel pmap).
   1360  */
   1361 static void
   1362 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1363 {
   1364 	struct l2_dtable *l2;
   1365 	pd_entry_t *pl1pd, l1pd;
   1366 	pt_entry_t *ptep;
   1367 	u_short l1idx;
   1368 
   1369 	KDASSERT(count <= l2b->l2b_occupancy);
   1370 
   1371 	/*
   1372 	 * Update the bucket's reference count according to how many
   1373 	 * PTEs the caller has just invalidated.
   1374 	 */
   1375 	l2b->l2b_occupancy -= count;
   1376 
   1377 	/*
   1378 	 * Note:
   1379 	 *
   1380 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1381 	 * as that would require checking all Level 1 page tables and
   1382 	 * removing any references to the Level 2 page table. See also the
   1383 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1384 	 *
   1385 	 * We make do with just invalidating the mapping in the L2 table.
   1386 	 *
   1387 	 * This isn't really a big deal in practice and, in fact, leads
   1388 	 * to a performance win over time as we don't need to continually
   1389 	 * alloc/free.
   1390 	 */
   1391 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1392 		return;
   1393 
   1394 	/*
   1395 	 * There are no more valid mappings in this level 2 page table.
   1396 	 * Go ahead and NULL-out the pointer in the bucket, then
   1397 	 * free the page table.
   1398 	 */
   1399 	l1idx = l2b->l2b_l1idx;
   1400 	ptep = l2b->l2b_kva;
   1401 	l2b->l2b_kva = NULL;
   1402 
   1403 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1404 
   1405 	/*
   1406 	 * If the L1 slot matches the pmap's domain
   1407 	 * number, then invalidate it.
   1408 	 */
   1409 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1410 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1411 		*pl1pd = 0;
   1412 		PTE_SYNC(pl1pd);
   1413 	}
   1414 
   1415 	/*
   1416 	 * Release the L2 descriptor table back to the pool cache.
   1417 	 */
   1418 #ifndef PMAP_INCLUDE_PTE_SYNC
   1419 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1420 #else
   1421 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1422 #endif
   1423 
   1424 	/*
   1425 	 * Update the reference count in the associated l2_dtable
   1426 	 */
   1427 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1428 	if (--l2->l2_occupancy > 0)
   1429 		return;
   1430 
   1431 	/*
   1432 	 * There are no more valid mappings in any of the Level 1
   1433 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1434 	 * the pointer in the parent pmap and free the l2_dtable.
   1435 	 */
   1436 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1437 	pmap_free_l2_dtable(l2);
   1438 }
   1439 
   1440 /*
   1441  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1442  * structures.
   1443  */
   1444 static int
   1445 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1446 {
   1447 #ifndef PMAP_INCLUDE_PTE_SYNC
   1448 	struct l2_bucket *l2b;
   1449 	pt_entry_t *ptep, pte;
   1450 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1451 
   1452 	/*
   1453 	 * The mappings for these page tables were initially made using
   1454 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1455 	 * mode will not be right for page table mappings. To avoid
   1456 	 * polluting the pmap_kenter_pa() code with a special case for
   1457 	 * page tables, we simply fix up the cache-mode here if it's not
   1458 	 * correct.
   1459 	 */
   1460 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1461 	KDASSERT(l2b != NULL);
   1462 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1463 	pte = *ptep;
   1464 
   1465 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1466 		/*
   1467 		 * Page tables must have the cache-mode set to Write-Thru.
   1468 		 */
   1469 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1470 		PTE_SYNC(ptep);
   1471 		cpu_tlb_flushD_SE(va);
   1472 		cpu_cpwait();
   1473 	}
   1474 #endif
   1475 
   1476 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1477 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1478 	return (0);
   1479 }
   1480 
   1481 static int
   1482 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1483 {
   1484 
   1485 	memset(v, 0, sizeof(struct l2_dtable));
   1486 	return (0);
   1487 }
   1488 
   1489 static int
   1490 pmap_pmap_ctor(void *arg, void *v, int flags)
   1491 {
   1492 
   1493 	memset(v, 0, sizeof(struct pmap));
   1494 	return (0);
   1495 }
   1496 
   1497 static void
   1498 pmap_pinit(pmap_t pm)
   1499 {
   1500 	struct l2_bucket *l2b;
   1501 
   1502 	if (vector_page < KERNEL_BASE) {
   1503 		/*
   1504 		 * Map the vector page.
   1505 		 */
   1506 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1507 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1508 		pmap_update(pm);
   1509 
   1510 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1511 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1512 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1513 		    L1_C_DOM(pm->pm_domain);
   1514 	} else
   1515 		pm->pm_pl1vec = NULL;
   1516 }
   1517 
   1518 #ifdef PMAP_CACHE_VIVT
   1519 /*
   1520  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1521  * there is more than one mapping and at least one of them is writable.
   1522  * Since we purge the cache on every context switch, we only need to check for
   1523  * other mappings within the same pmap, or kernel_pmap.
   1524  * This function is also called when a page is unmapped, to possibly reenable
   1525  * caching on any remaining mappings.
   1526  *
   1527  * The code implements the following logic, where:
   1528  *
   1529  * KW = # of kernel read/write pages
   1530  * KR = # of kernel read only pages
   1531  * UW = # of user read/write pages
   1532  * UR = # of user read only pages
   1533  *
   1534  * KC = kernel mapping is cacheable
   1535  * UC = user mapping is cacheable
   1536  *
   1537  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1538  *             +---------------------------------------------
   1539  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1540  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1541  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1542  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1543  */
   1544 
   1545 static const int pmap_vac_flags[4][4] = {
   1546 	{-1,		0,		0,		PVF_KNC},
   1547 	{0,		0,		PVF_NC,		PVF_NC},
   1548 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1549 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1550 };
   1551 
   1552 static inline int
   1553 pmap_get_vac_flags(const struct vm_page *pg)
   1554 {
   1555 	int kidx, uidx;
   1556 
   1557 	kidx = 0;
   1558 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1559 		kidx |= 1;
   1560 	if (pg->mdpage.krw_mappings)
   1561 		kidx |= 2;
   1562 
   1563 	uidx = 0;
   1564 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1565 		uidx |= 1;
   1566 	if (pg->mdpage.urw_mappings)
   1567 		uidx |= 2;
   1568 
   1569 	return (pmap_vac_flags[uidx][kidx]);
   1570 }
   1571 
   1572 static inline void
   1573 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1574 {
   1575 	int nattr;
   1576 
   1577 	nattr = pmap_get_vac_flags(pg);
   1578 
   1579 	if (nattr < 0) {
   1580 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1581 		return;
   1582 	}
   1583 
   1584 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1585 		return;
   1586 
   1587 	if (pm == pmap_kernel())
   1588 		pmap_vac_me_kpmap(pg, pm, va);
   1589 	else
   1590 		pmap_vac_me_user(pg, pm, va);
   1591 
   1592 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1593 }
   1594 
   1595 static void
   1596 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1597 {
   1598 	u_int u_cacheable, u_entries;
   1599 	struct pv_entry *pv;
   1600 	pmap_t last_pmap = pm;
   1601 
   1602 	/*
   1603 	 * Pass one, see if there are both kernel and user pmaps for
   1604 	 * this page.  Calculate whether there are user-writable or
   1605 	 * kernel-writable pages.
   1606 	 */
   1607 	u_cacheable = 0;
   1608 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1609 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1610 			u_cacheable++;
   1611 	}
   1612 
   1613 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1614 
   1615 	/*
   1616 	 * We know we have just been updating a kernel entry, so if
   1617 	 * all user pages are already cacheable, then there is nothing
   1618 	 * further to do.
   1619 	 */
   1620 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1621 		return;
   1622 
   1623 	if (u_entries) {
   1624 		/*
   1625 		 * Scan over the list again, for each entry, if it
   1626 		 * might not be set correctly, call pmap_vac_me_user
   1627 		 * to recalculate the settings.
   1628 		 */
   1629 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1630 			/*
   1631 			 * We know kernel mappings will get set
   1632 			 * correctly in other calls.  We also know
   1633 			 * that if the pmap is the same as last_pmap
   1634 			 * then we've just handled this entry.
   1635 			 */
   1636 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1637 				continue;
   1638 
   1639 			/*
   1640 			 * If there are kernel entries and this page
   1641 			 * is writable but non-cacheable, then we can
   1642 			 * skip this entry also.
   1643 			 */
   1644 			if (pg->mdpage.k_mappings &&
   1645 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1646 			    (PVF_NC | PVF_WRITE))
   1647 				continue;
   1648 
   1649 			/*
   1650 			 * Similarly if there are no kernel-writable
   1651 			 * entries and the page is already
   1652 			 * read-only/cacheable.
   1653 			 */
   1654 			if (pg->mdpage.krw_mappings == 0 &&
   1655 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1656 				continue;
   1657 
   1658 			/*
   1659 			 * For some of the remaining cases, we know
   1660 			 * that we must recalculate, but for others we
   1661 			 * can't tell if they are correct or not, so
   1662 			 * we recalculate anyway.
   1663 			 */
   1664 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1665 		}
   1666 
   1667 		if (pg->mdpage.k_mappings == 0)
   1668 			return;
   1669 	}
   1670 
   1671 	pmap_vac_me_user(pg, pm, va);
   1672 }
   1673 
   1674 static void
   1675 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1676 {
   1677 	pmap_t kpmap = pmap_kernel();
   1678 	struct pv_entry *pv, *npv = NULL;
   1679 	struct l2_bucket *l2b;
   1680 	pt_entry_t *ptep, pte;
   1681 	u_int entries = 0;
   1682 	u_int writable = 0;
   1683 	u_int cacheable_entries = 0;
   1684 	u_int kern_cacheable = 0;
   1685 	u_int other_writable = 0;
   1686 
   1687 	/*
   1688 	 * Count mappings and writable mappings in this pmap.
   1689 	 * Include kernel mappings as part of our own.
   1690 	 * Keep a pointer to the first one.
   1691 	 */
   1692 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1693 		/* Count mappings in the same pmap */
   1694 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1695 			if (entries++ == 0)
   1696 				npv = pv;
   1697 
   1698 			/* Cacheable mappings */
   1699 			if ((pv->pv_flags & PVF_NC) == 0) {
   1700 				cacheable_entries++;
   1701 				if (kpmap == pv->pv_pmap)
   1702 					kern_cacheable++;
   1703 			}
   1704 
   1705 			/* Writable mappings */
   1706 			if (pv->pv_flags & PVF_WRITE)
   1707 				++writable;
   1708 		} else
   1709 		if (pv->pv_flags & PVF_WRITE)
   1710 			other_writable = 1;
   1711 	}
   1712 
   1713 	/*
   1714 	 * Enable or disable caching as necessary.
   1715 	 * Note: the first entry might be part of the kernel pmap,
   1716 	 * so we can't assume this is indicative of the state of the
   1717 	 * other (maybe non-kpmap) entries.
   1718 	 */
   1719 	if ((entries > 1 && writable) ||
   1720 	    (entries > 0 && pm == kpmap && other_writable)) {
   1721 		if (cacheable_entries == 0)
   1722 			return;
   1723 
   1724 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1725 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1726 			    (pv->pv_flags & PVF_NC))
   1727 				continue;
   1728 
   1729 			pv->pv_flags |= PVF_NC;
   1730 
   1731 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1732 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1733 			pte = *ptep & ~L2_S_CACHE_MASK;
   1734 
   1735 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1736 			    l2pte_valid(pte)) {
   1737 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1738 #ifdef PMAP_CACHE_VIVT
   1739 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1740 					    pv->pv_va, PAGE_SIZE);
   1741 #endif
   1742 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1743 					    pv->pv_va);
   1744 				} else
   1745 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1746 #ifdef PMAP_CACHE_VIVT
   1747 					pmap_dcache_wb_range(pv->pv_pmap,
   1748 					    pv->pv_va, PAGE_SIZE, true,
   1749 					    (pv->pv_flags & PVF_WRITE) == 0);
   1750 #endif
   1751 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1752 					    pv->pv_va);
   1753 				}
   1754 			}
   1755 
   1756 			*ptep = pte;
   1757 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1758 		}
   1759 		cpu_cpwait();
   1760 	} else
   1761 	if (entries > cacheable_entries) {
   1762 		/*
   1763 		 * Turn cacheing back on for some pages.  If it is a kernel
   1764 		 * page, only do so if there are no other writable pages.
   1765 		 */
   1766 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1767 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1768 			    (kpmap != pv->pv_pmap || other_writable)))
   1769 				continue;
   1770 
   1771 			pv->pv_flags &= ~PVF_NC;
   1772 
   1773 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1774 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1775 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1776 
   1777 			if (l2pte_valid(pte)) {
   1778 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1779 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1780 					    pv->pv_va);
   1781 				} else
   1782 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1783 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1784 					    pv->pv_va);
   1785 				}
   1786 			}
   1787 
   1788 			*ptep = pte;
   1789 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1790 		}
   1791 	}
   1792 }
   1793 #endif
   1794 
   1795 #ifdef PMAP_CACHE_VIPT
   1796 /*
   1797  * For virtually indexed / physically tagged caches, what we have to worry
   1798  * about is illegal cache aliases.  To prevent this, we must ensure that
   1799  * virtual addresses that map the physical page use the same bits for those
   1800  * bits masked by "arm_cache_prefer_mask" (bits 12+).  If there is a conflict,
   1801  * all mappings of the page must be non-cached.
   1802  */
   1803 #if 0
   1804 static inline vaddr_t
   1805 pmap_check_sets(paddr_t pa)
   1806 {
   1807 	extern int arm_dcache_l2_nsets;
   1808 	int set, way;
   1809 	vaddr_t mask = 0;
   1810 	int v;
   1811 	pa |= 1;
   1812 	for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
   1813 		for (way = 0; way < 4; way++) {
   1814 			v = (way << 30) | (set << 5);
   1815 			asm("mcr	p15, 3, %0, c15, c2, 0" :: "r"(v));
   1816 			asm("mrc	p15, 3, %0, c15, c0, 0" : "=r"(v));
   1817 
   1818 			if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
   1819 				mask |= 1 << (set >> 7);
   1820 			}
   1821 		}
   1822 	}
   1823 	return mask;
   1824 }
   1825 #endif
   1826 static void
   1827 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1828 {
   1829 	struct pv_entry *pv;
   1830 	vaddr_t tst_mask;
   1831 	bool bad_alias;
   1832 	struct l2_bucket *l2b;
   1833 	pt_entry_t *ptep, pte, opte;
   1834 	const u_int
   1835 	    rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
   1836 	    ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
   1837 
   1838 	/* do we need to do anything? */
   1839 	if (arm_cache_prefer_mask == 0)
   1840 		return;
   1841 
   1842 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1843 	    pg, pm, va));
   1844 
   1845 #define popc4(x) \
   1846 	(((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
   1847 #if 0
   1848 	tst_mask = pmap_check_sets(pg->phys_addr);
   1849 	KASSERT(popc4(tst_mask) < 2);
   1850 #endif
   1851 
   1852 	KASSERT(!va || pm);
   1853 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1854 
   1855 	/* Already a conflict? */
   1856 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1857 		/* just an add, things are already non-cached */
   1858 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
   1859 		bad_alias = false;
   1860 		if (va) {
   1861 			PMAPCOUNT(vac_color_none);
   1862 			bad_alias = true;
   1863 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1864 			goto fixup;
   1865 		}
   1866 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1867 		/* the list can't be empty because it would be cachable */
   1868 		if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
   1869 			tst_mask = pg->mdpage.pvh_attrs;
   1870 		} else {
   1871 			KASSERT(pv);
   1872 			tst_mask = pv->pv_va;
   1873 			pv = SLIST_NEXT(pv, pv_link);
   1874 		}
   1875 		/*
   1876 		 * Only check for a bad alias if we have writable mappings.
   1877 		 */
   1878 		tst_mask &= arm_cache_prefer_mask;
   1879 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1880 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1881 				/* if there's a bad alias, stop checking. */
   1882 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1883 					bad_alias = true;
   1884 			}
   1885 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1886 			if (!bad_alias)
   1887 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1888 		} else {
   1889 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1890 		}
   1891 		/* If no conflicting colors, set everything back to cached */
   1892 		if (!bad_alias) {
   1893 #ifdef DEBUG
   1894 			if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1895 			    || ro_mappings < 2) {
   1896 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1897 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1898 			}
   1899 
   1900 #endif
   1901 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1902 			pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
   1903 			/*
   1904 			 * Restore DIRTY bit if page is modified
   1905 			 */
   1906 			if (pg->mdpage.pvh_attrs & PVF_DMOD)
   1907 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1908 			PMAPCOUNT(vac_color_restore);
   1909 		} else {
   1910 			KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1911 			KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1912 		}
   1913 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1914 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1915 	} else if (!va) {
   1916 		KASSERT(pmap_is_page_colored_p(pg));
   1917 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
   1918 		    || (pg->mdpage.pvh_attrs & PVF_DIRTY));
   1919 		if (rw_mappings == 0)
   1920 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1921 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1922 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1923 		return;
   1924 	} else if (!pmap_is_page_colored_p(pg)) {
   1925 		/* not colored so we just use its color */
   1926 		KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1927 		PMAPCOUNT(vac_color_new);
   1928 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1929 		pg->mdpage.pvh_attrs |= PVF_COLORED
   1930 		    | (va & arm_cache_prefer_mask)
   1931 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1932 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1933 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1934 		return;
   1935 	} else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1936 		bad_alias = false;
   1937 		if (rw_mappings > 0) {
   1938 			/*
   1939 			 * We now have writeable mappings and more than one
   1940 			 * readonly mapping, verify the colors don't clash
   1941 			 * and mark the page as writeable.
   1942 			 */
   1943 			if (ro_mappings > 1
   1944 			    && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0
   1945 			    && arm_cache_prefer_mask) {
   1946 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1947 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1948 					/* if there's a bad alias, stop checking. */
   1949 					if (((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0) {
   1950 						bad_alias = true;
   1951 						break;
   1952 					}
   1953 				}
   1954 			}
   1955 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1956 		}
   1957 		/* If no conflicting colors, set everything back to cached */
   1958 		if (!bad_alias) {
   1959 #ifdef DEBUG
   1960 			if (rw_mappings > 0
   1961 			    || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
   1962 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1963 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1964 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1965 			}
   1966 #endif
   1967 			if (SLIST_EMPTY(&pg->mdpage.pvh_list))
   1968 				PMAPCOUNT(vac_color_reuse);
   1969 			else
   1970 				PMAPCOUNT(vac_color_ok);
   1971 
   1972 			/* matching color, just return */
   1973 			KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1974 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1975 			return;
   1976 		}
   1977 		KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1978 		KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1979 
   1980 		/* color conflict.  evict from cache. */
   1981 
   1982 		pmap_flush_page(pg, true);
   1983 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1984 		pg->mdpage.pvh_attrs |= PVF_NC;
   1985 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1986 		PMAPCOUNT(vac_color_erase);
   1987 	} else if (rw_mappings == 0
   1988 		   && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   1989 		KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
   1990 
   1991 		/*
   1992 		 * If the page has dirty cache lines, clean it.
   1993 		 */
   1994 		if (pg->mdpage.pvh_attrs & PVF_DIRTY)
   1995 			pmap_flush_page(pg, false);
   1996 
   1997 		/*
   1998 		 * If this is the first remapping (we know that there are no
   1999 		 * writeable mappings), then this is a simple color change.
   2000 		 * Otherwise this is a seconary r/o mapping, which means
   2001 		 * we don't have to do anything.
   2002 		 */
   2003 		if (ro_mappings == 1) {
   2004 			KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2005 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2006 			pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2007 			PMAPCOUNT(vac_color_change);
   2008 		} else {
   2009 			PMAPCOUNT(vac_color_blind);
   2010 		}
   2011 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2012 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2013 		return;
   2014 	} else {
   2015 		if (rw_mappings > 0)
   2016 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   2017 
   2018 		/* color conflict.  evict from cache. */
   2019 		pmap_flush_page(pg, true);
   2020 
   2021 		/* the list can't be empty because this was a enter/modify */
   2022 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2023 		if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2024 			KASSERT(pv);
   2025 			/*
   2026 			 * If there's only one mapped page, change color to the
   2027 			 * page's new color and return.  Restore the DIRTY bit
   2028 			 * that was erased by pmap_flush_page.
   2029 			 */
   2030 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2031 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2032 				pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2033 				if (pg->mdpage.pvh_attrs & PVF_DMOD)
   2034 					pg->mdpage.pvh_attrs |= PVF_DIRTY;
   2035 				PMAPCOUNT(vac_color_change);
   2036 				KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2037 				KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2038 				return;
   2039 			}
   2040 		}
   2041 		bad_alias = true;
   2042 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2043 		pg->mdpage.pvh_attrs |= PVF_NC;
   2044 		PMAPCOUNT(vac_color_erase);
   2045 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2046 	}
   2047 
   2048   fixup:
   2049 	KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2050 
   2051 	/*
   2052 	 * Turn cacheing on/off for all pages.
   2053 	 */
   2054 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2055 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2056 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2057 		opte = *ptep;
   2058 		pte = opte & ~L2_S_CACHE_MASK;
   2059 		if (bad_alias) {
   2060 			pv->pv_flags |= PVF_NC;
   2061 		} else {
   2062 			pv->pv_flags &= ~PVF_NC;
   2063 			pte |= pte_l2_s_cache_mode;
   2064 		}
   2065 
   2066 		if (opte == pte)	/* only update is there's a change */
   2067 			continue;
   2068 
   2069 		if (l2pte_valid(pte)) {
   2070 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2071 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2072 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2073 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2074 			}
   2075 		}
   2076 
   2077 		*ptep = pte;
   2078 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2079 	}
   2080 }
   2081 #endif	/* PMAP_CACHE_VIPT */
   2082 
   2083 
   2084 /*
   2085  * Modify pte bits for all ptes corresponding to the given physical address.
   2086  * We use `maskbits' rather than `clearbits' because we're always passing
   2087  * constants and the latter would require an extra inversion at run-time.
   2088  */
   2089 static void
   2090 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2091 {
   2092 	struct l2_bucket *l2b;
   2093 	struct pv_entry *pv;
   2094 	pt_entry_t *ptep, npte, opte;
   2095 	pmap_t pm;
   2096 	vaddr_t va;
   2097 	u_int oflags;
   2098 #ifdef PMAP_CACHE_VIPT
   2099 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   2100 	bool need_syncicache = false;
   2101 	bool did_syncicache = false;
   2102 	bool need_vac_me_harder = false;
   2103 #endif
   2104 
   2105 	NPDEBUG(PDB_BITS,
   2106 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2107 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2108 
   2109 	PMAP_HEAD_TO_MAP_LOCK();
   2110 	simple_lock(&pg->mdpage.pvh_slock);
   2111 
   2112 #ifdef PMAP_CACHE_VIPT
   2113 	/*
   2114 	 * If we might want to sync the I-cache and we've modified it,
   2115 	 * then we know we definitely need to sync or discard it.
   2116 	 */
   2117 	if (want_syncicache)
   2118 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   2119 #endif
   2120 	/*
   2121 	 * Clear saved attributes (modify, reference)
   2122 	 */
   2123 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2124 
   2125 	if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   2126 #ifdef PMAP_CACHE_VIPT
   2127 		if (need_syncicache) {
   2128 			/*
   2129 			 * No one has it mapped, so just discard it.  The next
   2130 			 * exec remapping will cause it to be synced.
   2131 			 */
   2132 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2133 			PMAPCOUNT(exec_discarded_clearbit);
   2134 		}
   2135 #endif
   2136 		simple_unlock(&pg->mdpage.pvh_slock);
   2137 		PMAP_HEAD_TO_MAP_UNLOCK();
   2138 		return;
   2139 	}
   2140 
   2141 	/*
   2142 	 * Loop over all current mappings setting/clearing as appropos
   2143 	 */
   2144 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2145 		va = pv->pv_va;
   2146 		pm = pv->pv_pmap;
   2147 		oflags = pv->pv_flags;
   2148 		/*
   2149 		 * Kernel entries are unmanaged and as such not to be changed.
   2150 		 */
   2151 		if (oflags & PVF_KENTRY)
   2152 			continue;
   2153 		pv->pv_flags &= ~maskbits;
   2154 
   2155 		pmap_acquire_pmap_lock(pm);
   2156 
   2157 		l2b = pmap_get_l2_bucket(pm, va);
   2158 		KDASSERT(l2b != NULL);
   2159 
   2160 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2161 		npte = opte = *ptep;
   2162 
   2163 		NPDEBUG(PDB_BITS,
   2164 		    printf(
   2165 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2166 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2167 
   2168 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2169 #ifdef PMAP_CACHE_VIVT
   2170 			if ((pv->pv_flags & PVF_NC)) {
   2171 				/*
   2172 				 * Entry is not cacheable:
   2173 				 *
   2174 				 * Don't turn caching on again if this is a
   2175 				 * modified emulation. This would be
   2176 				 * inconsitent with the settings created by
   2177 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2178 				 * to re-enable cacheing.
   2179 				 *
   2180 				 * There's no need to call pmap_vac_me_harder()
   2181 				 * here: all pages are losing their write
   2182 				 * permission.
   2183 				 */
   2184 				if (maskbits & PVF_WRITE) {
   2185 					npte |= pte_l2_s_cache_mode;
   2186 					pv->pv_flags &= ~PVF_NC;
   2187 				}
   2188 			} else
   2189 			if (opte & L2_S_PROT_W) {
   2190 				/*
   2191 				 * Entry is writable/cacheable: check if pmap
   2192 				 * is current if it is flush it, otherwise it
   2193 				 * won't be in the cache
   2194 				 */
   2195 				if (PV_BEEN_EXECD(oflags))
   2196 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2197 					    PAGE_SIZE);
   2198 				else
   2199 				if (PV_BEEN_REFD(oflags))
   2200 					pmap_dcache_wb_range(pm, pv->pv_va,
   2201 					    PAGE_SIZE,
   2202 					    (maskbits & PVF_REF) != 0, false);
   2203 			}
   2204 #endif
   2205 
   2206 			/* make the pte read only */
   2207 			npte &= ~L2_S_PROT_W;
   2208 
   2209 			if (maskbits & oflags & PVF_WRITE) {
   2210 				/*
   2211 				 * Keep alias accounting up to date
   2212 				 */
   2213 				if (pv->pv_pmap == pmap_kernel()) {
   2214 					pg->mdpage.krw_mappings--;
   2215 					pg->mdpage.kro_mappings++;
   2216 				} else {
   2217 					pg->mdpage.urw_mappings--;
   2218 					pg->mdpage.uro_mappings++;
   2219 				}
   2220 #ifdef PMAP_CACHE_VIPT
   2221 				if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2222 					pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2223 				if (want_syncicache)
   2224 					need_syncicache = true;
   2225 				need_vac_me_harder = true;
   2226 #endif
   2227 			}
   2228 		}
   2229 
   2230 		if (maskbits & PVF_REF) {
   2231 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2232 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2233 			    l2pte_valid(npte)) {
   2234 #ifdef PMAP_CACHE_VIVT
   2235 				/*
   2236 				 * Check npte here; we may have already
   2237 				 * done the wbinv above, and the validity
   2238 				 * of the PTE is the same for opte and
   2239 				 * npte.
   2240 				 */
   2241 				/* XXXJRT need idcache_inv_range */
   2242 				if (PV_BEEN_EXECD(oflags))
   2243 					pmap_idcache_wbinv_range(pm,
   2244 					    pv->pv_va, PAGE_SIZE);
   2245 				else
   2246 				if (PV_BEEN_REFD(oflags))
   2247 					pmap_dcache_wb_range(pm,
   2248 					    pv->pv_va, PAGE_SIZE,
   2249 					    true, true);
   2250 #endif
   2251 			}
   2252 
   2253 			/*
   2254 			 * Make the PTE invalid so that we will take a
   2255 			 * page fault the next time the mapping is
   2256 			 * referenced.
   2257 			 */
   2258 			npte &= ~L2_TYPE_MASK;
   2259 			npte |= L2_TYPE_INV;
   2260 		}
   2261 
   2262 		if (npte != opte) {
   2263 			*ptep = npte;
   2264 			PTE_SYNC(ptep);
   2265 			/* Flush the TLB entry if a current pmap. */
   2266 			if (PV_BEEN_EXECD(oflags))
   2267 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2268 			else
   2269 			if (PV_BEEN_REFD(oflags))
   2270 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2271 		}
   2272 
   2273 		pmap_release_pmap_lock(pm);
   2274 
   2275 		NPDEBUG(PDB_BITS,
   2276 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2277 		    pm, va, opte, npte));
   2278 	}
   2279 
   2280 #ifdef PMAP_CACHE_VIPT
   2281 	/*
   2282 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2283 	 */
   2284 	if (need_syncicache && !did_syncicache) {
   2285 		pmap_syncicache_page(pg);
   2286 		PMAPCOUNT(exec_synced_clearbit);
   2287 	}
   2288 	/*
   2289 	 * If we are changing this to read-only, we ned to call vac_me_harder
   2290 	 * so we can change all the read-only pages to cacheable.  We pretend
   2291 	 * this as a page deletion.
   2292 	 */
   2293 	if (need_vac_me_harder) {
   2294 		if (pg->mdpage.pvh_attrs & PVF_NC)
   2295 			pmap_vac_me_harder(pg, NULL, 0);
   2296 	}
   2297 #endif
   2298 
   2299 	simple_unlock(&pg->mdpage.pvh_slock);
   2300 	PMAP_HEAD_TO_MAP_UNLOCK();
   2301 }
   2302 
   2303 /*
   2304  * pmap_clean_page()
   2305  *
   2306  * This is a local function used to work out the best strategy to clean
   2307  * a single page referenced by its entry in the PV table. It's used by
   2308  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2309  *
   2310  * Its policy is effectively:
   2311  *  o If there are no mappings, we don't bother doing anything with the cache.
   2312  *  o If there is one mapping, we clean just that page.
   2313  *  o If there are multiple mappings, we clean the entire cache.
   2314  *
   2315  * So that some functions can be further optimised, it returns 0 if it didn't
   2316  * clean the entire cache, or 1 if it did.
   2317  *
   2318  * XXX One bug in this routine is that if the pv_entry has a single page
   2319  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2320  * just the 1 page. Since this should not occur in everyday use and if it does
   2321  * it will just result in not the most efficient clean for the page.
   2322  */
   2323 #ifdef PMAP_CACHE_VIVT
   2324 static int
   2325 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2326 {
   2327 	pmap_t pm, pm_to_clean = NULL;
   2328 	struct pv_entry *npv;
   2329 	u_int cache_needs_cleaning = 0;
   2330 	u_int flags = 0;
   2331 	vaddr_t page_to_clean = 0;
   2332 
   2333 	if (pv == NULL) {
   2334 		/* nothing mapped in so nothing to flush */
   2335 		return (0);
   2336 	}
   2337 
   2338 	/*
   2339 	 * Since we flush the cache each time we change to a different
   2340 	 * user vmspace, we only need to flush the page if it is in the
   2341 	 * current pmap.
   2342 	 */
   2343 	pm = curproc->p_vmspace->vm_map.pmap;
   2344 
   2345 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2346 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2347 			flags |= npv->pv_flags;
   2348 			/*
   2349 			 * The page is mapped non-cacheable in
   2350 			 * this map.  No need to flush the cache.
   2351 			 */
   2352 			if (npv->pv_flags & PVF_NC) {
   2353 #ifdef DIAGNOSTIC
   2354 				if (cache_needs_cleaning)
   2355 					panic("pmap_clean_page: "
   2356 					    "cache inconsistency");
   2357 #endif
   2358 				break;
   2359 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2360 				continue;
   2361 			if (cache_needs_cleaning) {
   2362 				page_to_clean = 0;
   2363 				break;
   2364 			} else {
   2365 				page_to_clean = npv->pv_va;
   2366 				pm_to_clean = npv->pv_pmap;
   2367 			}
   2368 			cache_needs_cleaning = 1;
   2369 		}
   2370 	}
   2371 
   2372 	if (page_to_clean) {
   2373 		if (PV_BEEN_EXECD(flags))
   2374 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2375 			    PAGE_SIZE);
   2376 		else
   2377 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2378 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2379 	} else if (cache_needs_cleaning) {
   2380 		if (PV_BEEN_EXECD(flags))
   2381 			pmap_idcache_wbinv_all(pm);
   2382 		else
   2383 			pmap_dcache_wbinv_all(pm);
   2384 		return (1);
   2385 	}
   2386 	return (0);
   2387 }
   2388 #endif
   2389 
   2390 #ifdef PMAP_CACHE_VIPT
   2391 /*
   2392  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2393  * right cache alias to make sure we flush the right stuff.
   2394  */
   2395 void
   2396 pmap_syncicache_page(struct vm_page *pg)
   2397 {
   2398 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2399 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2400 
   2401 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2402 	    pg, pg->mdpage.pvh_attrs));
   2403 	/*
   2404 	 * No need to clean the page if it's non-cached.
   2405 	 */
   2406 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2407 		return;
   2408 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2409 
   2410 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2411 	/*
   2412 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2413 	 */
   2414 	*ptep = L2_S_PROTO |
   2415 	    VM_PAGE_TO_PHYS(pg)
   2416 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2417 	    | pte_l2_s_cache_mode;
   2418 	PTE_SYNC(ptep);
   2419 
   2420 	/*
   2421 	 * Flush it.
   2422 	 */
   2423 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2424 	/*
   2425 	 * Unmap the page.
   2426 	 */
   2427 	*ptep = 0;
   2428 	PTE_SYNC(ptep);
   2429 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2430 
   2431 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2432 	PMAPCOUNT(exec_synced);
   2433 }
   2434 
   2435 void
   2436 pmap_flush_page(struct vm_page *pg, bool flush)
   2437 {
   2438 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2439 	const size_t pte_offset = va_offset >> PGSHIFT;
   2440 	pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2441 	const pt_entry_t oldpte = *ptep;
   2442 #if 0
   2443 	vaddr_t mask;
   2444 #endif
   2445 
   2446 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2447 #if 0
   2448 	mask = pmap_check_sets(pg->phys_addr);
   2449 	KASSERT(popc4(mask) < 2);
   2450 #endif
   2451 
   2452 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2453 	    pg, pg->mdpage.pvh_attrs));
   2454 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2455 	/*
   2456 	 * Set up a PTE with the right coloring to flush existing cache entries.
   2457 	 */
   2458 	*ptep = L2_S_PROTO
   2459 	    | VM_PAGE_TO_PHYS(pg)
   2460 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2461 	    | pte_l2_s_cache_mode;
   2462 	PTE_SYNC(ptep);
   2463 
   2464 	/*
   2465 	 * Flush it.
   2466 	 */
   2467 	if (flush) {
   2468 		cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   2469 		pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2470 	} else {
   2471 		cpu_dcache_wb_range(cdstp + va_offset, PAGE_SIZE);
   2472 		/*
   2473 		 * Mark that the page is no longer dirty.
   2474 		 */
   2475 		if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
   2476 			pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2477 	}
   2478 
   2479 	/*
   2480 	 * Restore the page table entry since we might have interrupted
   2481 	 * pmap_zero_page or pmap_copy_page which was already using this pte.
   2482 	 */
   2483 	*ptep = oldpte;
   2484 	PTE_SYNC(ptep);
   2485 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2486 #if 0
   2487 	mask = pmap_check_sets(pg->phys_addr);
   2488 	KASSERT(mask == 0);
   2489 #endif
   2490 }
   2491 #endif /* PMAP_CACHE_VIPT */
   2492 
   2493 /*
   2494  * Routine:	pmap_page_remove
   2495  * Function:
   2496  *		Removes this physical page from
   2497  *		all physical maps in which it resides.
   2498  *		Reflects back modify bits to the pager.
   2499  */
   2500 static void
   2501 pmap_page_remove(struct vm_page *pg)
   2502 {
   2503 	struct l2_bucket *l2b;
   2504 	struct pv_entry *pv, *npv, **pvp;
   2505 	pmap_t pm, curpm;
   2506 	pt_entry_t *ptep, pte;
   2507 	bool flush;
   2508 	u_int flags;
   2509 
   2510 	NPDEBUG(PDB_FOLLOW,
   2511 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2512 	    VM_PAGE_TO_PHYS(pg)));
   2513 
   2514 	PMAP_HEAD_TO_MAP_LOCK();
   2515 	simple_lock(&pg->mdpage.pvh_slock);
   2516 
   2517 	pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2518 	if (pv == NULL) {
   2519 #ifdef PMAP_CACHE_VIPT
   2520 		/*
   2521 		 * We *know* the page contents are about to be replaced.
   2522 		 * Discard the exec contents
   2523 		 */
   2524 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2525 			PMAPCOUNT(exec_discarded_page_protect);
   2526 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2527 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2528 #endif
   2529 		simple_unlock(&pg->mdpage.pvh_slock);
   2530 		PMAP_HEAD_TO_MAP_UNLOCK();
   2531 		return;
   2532 	}
   2533 #ifdef PMAP_CACHE_VIPT
   2534 	KASSERT(pmap_is_page_colored_p(pg));
   2535 #endif
   2536 
   2537 	/*
   2538 	 * Clear alias counts
   2539 	 */
   2540 #ifdef PMAP_CACHE_VIVT
   2541 	pg->mdpage.k_mappings = 0;
   2542 #endif
   2543 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2544 
   2545 	flush = false;
   2546 	flags = 0;
   2547 	curpm = curproc->p_vmspace->vm_map.pmap;
   2548 
   2549 #ifdef PMAP_CACHE_VIVT
   2550 	pmap_clean_page(pv, false);
   2551 #endif
   2552 
   2553 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
   2554 	while (pv) {
   2555 		pm = pv->pv_pmap;
   2556 		npv = SLIST_NEXT(pv, pv_link);
   2557 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2558 			flush = true;
   2559 
   2560 		if (pm == pmap_kernel()) {
   2561 #ifdef PMAP_CACHE_VIPT
   2562 			/*
   2563 			 * If this was unmanaged mapping, it must be preserved.
   2564 			 * Move it back on the list and advance the end-of-list
   2565 			 * pointer.
   2566 			 */
   2567 			if (pv->pv_flags & PVF_KENTRY) {
   2568 				*pvp = pv;
   2569 				pvp = &SLIST_NEXT(pv, pv_link);
   2570 				pv = npv;
   2571 				continue;
   2572 			}
   2573 			if (pv->pv_flags & PVF_WRITE)
   2574 				pg->mdpage.krw_mappings--;
   2575 			else
   2576 				pg->mdpage.kro_mappings--;
   2577 #endif
   2578 			PMAPCOUNT(kernel_unmappings);
   2579 		}
   2580 		PMAPCOUNT(unmappings);
   2581 
   2582 		pmap_acquire_pmap_lock(pm);
   2583 
   2584 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2585 		KDASSERT(l2b != NULL);
   2586 
   2587 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2588 		pte = *ptep;
   2589 
   2590 		/*
   2591 		 * Update statistics
   2592 		 */
   2593 		--pm->pm_stats.resident_count;
   2594 
   2595 		/* Wired bit */
   2596 		if (pv->pv_flags & PVF_WIRED)
   2597 			--pm->pm_stats.wired_count;
   2598 
   2599 		flags |= pv->pv_flags;
   2600 
   2601 		/*
   2602 		 * Invalidate the PTEs.
   2603 		 */
   2604 		*ptep = 0;
   2605 		PTE_SYNC_CURRENT(pm, ptep);
   2606 		pmap_free_l2_bucket(pm, l2b, 1);
   2607 
   2608 		pool_put(&pmap_pv_pool, pv);
   2609 		pv = npv;
   2610 		/*
   2611 		 * if we reach the end of the list and there are still
   2612 		 * mappings, they might be able to be cached now.
   2613 		 */
   2614 		if (pv == NULL) {
   2615 			*pvp = NULL;
   2616 			if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   2617 				pmap_vac_me_harder(pg, pm, 0);
   2618 		}
   2619 		pmap_release_pmap_lock(pm);
   2620 	}
   2621 #ifdef PMAP_CACHE_VIPT
   2622 	/*
   2623 	 * Its EXEC cache is now gone.
   2624 	 */
   2625 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2626 		PMAPCOUNT(exec_discarded_page_protect);
   2627 	pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2628 	KASSERT(pg->mdpage.urw_mappings == 0);
   2629 	KASSERT(pg->mdpage.uro_mappings == 0);
   2630 	if (pg->mdpage.krw_mappings == 0)
   2631 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2632 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2633 #endif
   2634 	simple_unlock(&pg->mdpage.pvh_slock);
   2635 	PMAP_HEAD_TO_MAP_UNLOCK();
   2636 
   2637 	if (flush) {
   2638 		/*
   2639 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2640 		 * would need a subsequent call to pmap_update() to ensure
   2641 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2642 		 * required to do that (see pmap(9)), so we can't modify
   2643 		 * the current pmap's state.
   2644 		 */
   2645 		if (PV_BEEN_EXECD(flags))
   2646 			cpu_tlb_flushID();
   2647 		else
   2648 			cpu_tlb_flushD();
   2649 	}
   2650 	cpu_cpwait();
   2651 }
   2652 
   2653 /*
   2654  * pmap_t pmap_create(void)
   2655  *
   2656  *      Create a new pmap structure from scratch.
   2657  */
   2658 pmap_t
   2659 pmap_create(void)
   2660 {
   2661 	pmap_t pm;
   2662 
   2663 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2664 
   2665 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2666 	pm->pm_stats.wired_count = 0;
   2667 	pm->pm_stats.resident_count = 1;
   2668 	pm->pm_cstate.cs_all = 0;
   2669 	pmap_alloc_l1(pm);
   2670 
   2671 	/*
   2672 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2673 	 * initialised to zero.
   2674 	 */
   2675 
   2676 	pmap_pinit(pm);
   2677 
   2678 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2679 
   2680 	return (pm);
   2681 }
   2682 
   2683 /*
   2684  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2685  *     int flags)
   2686  *
   2687  *      Insert the given physical page (p) at
   2688  *      the specified virtual address (v) in the
   2689  *      target physical map with the protection requested.
   2690  *
   2691  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2692  *      or lose information.  That is, this routine must actually
   2693  *      insert this page into the given map NOW.
   2694  */
   2695 int
   2696 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2697 {
   2698 	struct l2_bucket *l2b;
   2699 	struct vm_page *pg, *opg;
   2700 	struct pv_entry *pve;
   2701 	pt_entry_t *ptep, npte, opte;
   2702 	u_int nflags;
   2703 	u_int oflags;
   2704 
   2705 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2706 
   2707 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2708 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2709 
   2710 	/*
   2711 	 * Get a pointer to the page.  Later on in this function, we
   2712 	 * test for a managed page by checking pg != NULL.
   2713 	 */
   2714 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2715 
   2716 	nflags = 0;
   2717 	if (prot & VM_PROT_WRITE)
   2718 		nflags |= PVF_WRITE;
   2719 	if (prot & VM_PROT_EXECUTE)
   2720 		nflags |= PVF_EXEC;
   2721 	if (flags & PMAP_WIRED)
   2722 		nflags |= PVF_WIRED;
   2723 
   2724 	PMAP_MAP_TO_HEAD_LOCK();
   2725 	pmap_acquire_pmap_lock(pm);
   2726 
   2727 	/*
   2728 	 * Fetch the L2 bucket which maps this page, allocating one if
   2729 	 * necessary for user pmaps.
   2730 	 */
   2731 	if (pm == pmap_kernel())
   2732 		l2b = pmap_get_l2_bucket(pm, va);
   2733 	else
   2734 		l2b = pmap_alloc_l2_bucket(pm, va);
   2735 	if (l2b == NULL) {
   2736 		if (flags & PMAP_CANFAIL) {
   2737 			pmap_release_pmap_lock(pm);
   2738 			PMAP_MAP_TO_HEAD_UNLOCK();
   2739 			return (ENOMEM);
   2740 		}
   2741 		panic("pmap_enter: failed to allocate L2 bucket");
   2742 	}
   2743 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2744 	opte = *ptep;
   2745 	npte = pa;
   2746 	oflags = 0;
   2747 
   2748 	if (opte) {
   2749 		/*
   2750 		 * There is already a mapping at this address.
   2751 		 * If the physical address is different, lookup the
   2752 		 * vm_page.
   2753 		 */
   2754 		if (l2pte_pa(opte) != pa)
   2755 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2756 		else
   2757 			opg = pg;
   2758 	} else
   2759 		opg = NULL;
   2760 
   2761 	if (pg) {
   2762 		/*
   2763 		 * This is to be a managed mapping.
   2764 		 */
   2765 		if ((flags & VM_PROT_ALL) ||
   2766 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2767 			/*
   2768 			 * - The access type indicates that we don't need
   2769 			 *   to do referenced emulation.
   2770 			 * OR
   2771 			 * - The physical page has already been referenced
   2772 			 *   so no need to re-do referenced emulation here.
   2773 			 */
   2774 			npte |= L2_S_PROTO;
   2775 
   2776 			nflags |= PVF_REF;
   2777 
   2778 			if ((prot & VM_PROT_WRITE) != 0 &&
   2779 			    ((flags & VM_PROT_WRITE) != 0 ||
   2780 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2781 				/*
   2782 				 * This is a writable mapping, and the
   2783 				 * page's mod state indicates it has
   2784 				 * already been modified. Make it
   2785 				 * writable from the outset.
   2786 				 */
   2787 				npte |= L2_S_PROT_W;
   2788 				nflags |= PVF_MOD;
   2789 			}
   2790 		} else {
   2791 			/*
   2792 			 * Need to do page referenced emulation.
   2793 			 */
   2794 			npte |= L2_TYPE_INV;
   2795 		}
   2796 
   2797 		npte |= pte_l2_s_cache_mode;
   2798 
   2799 		if (pg == opg) {
   2800 			/*
   2801 			 * We're changing the attrs of an existing mapping.
   2802 			 */
   2803 			simple_lock(&pg->mdpage.pvh_slock);
   2804 			oflags = pmap_modify_pv(pg, pm, va,
   2805 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2806 			    PVF_MOD | PVF_REF, nflags);
   2807 			simple_unlock(&pg->mdpage.pvh_slock);
   2808 
   2809 #ifdef PMAP_CACHE_VIVT
   2810 			/*
   2811 			 * We may need to flush the cache if we're
   2812 			 * doing rw-ro...
   2813 			 */
   2814 			if (pm->pm_cstate.cs_cache_d &&
   2815 			    (oflags & PVF_NC) == 0 &&
   2816 			    (opte & L2_S_PROT_W) != 0 &&
   2817 			    (prot & VM_PROT_WRITE) == 0)
   2818 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2819 #endif
   2820 		} else {
   2821 			/*
   2822 			 * New mapping, or changing the backing page
   2823 			 * of an existing mapping.
   2824 			 */
   2825 			if (opg) {
   2826 				/*
   2827 				 * Replacing an existing mapping with a new one.
   2828 				 * It is part of our managed memory so we
   2829 				 * must remove it from the PV list
   2830 				 */
   2831 				simple_lock(&opg->mdpage.pvh_slock);
   2832 				pve = pmap_remove_pv(opg, pm, va, 0);
   2833 				pmap_vac_me_harder(opg, pm, 0);
   2834 				simple_unlock(&opg->mdpage.pvh_slock);
   2835 				oflags = pve->pv_flags;
   2836 
   2837 #ifdef PMAP_CACHE_VIVT
   2838 				/*
   2839 				 * If the old mapping was valid (ref/mod
   2840 				 * emulation creates 'invalid' mappings
   2841 				 * initially) then make sure to frob
   2842 				 * the cache.
   2843 				 */
   2844 				if ((oflags & PVF_NC) == 0 &&
   2845 				    l2pte_valid(opte)) {
   2846 					if (PV_BEEN_EXECD(oflags)) {
   2847 						pmap_idcache_wbinv_range(pm, va,
   2848 						    PAGE_SIZE);
   2849 					} else
   2850 					if (PV_BEEN_REFD(oflags)) {
   2851 						pmap_dcache_wb_range(pm, va,
   2852 						    PAGE_SIZE, true,
   2853 						    (oflags & PVF_WRITE) == 0);
   2854 					}
   2855 				}
   2856 #endif
   2857 			} else
   2858 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2859 				if ((flags & PMAP_CANFAIL) == 0)
   2860 					panic("pmap_enter: no pv entries");
   2861 
   2862 				if (pm != pmap_kernel())
   2863 					pmap_free_l2_bucket(pm, l2b, 0);
   2864 				pmap_release_pmap_lock(pm);
   2865 				PMAP_MAP_TO_HEAD_UNLOCK();
   2866 				NPDEBUG(PDB_ENTER,
   2867 				    printf("pmap_enter: ENOMEM\n"));
   2868 				return (ENOMEM);
   2869 			}
   2870 
   2871 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2872 		}
   2873 	} else {
   2874 		/*
   2875 		 * We're mapping an unmanaged page.
   2876 		 * These are always readable, and possibly writable, from
   2877 		 * the get go as we don't need to track ref/mod status.
   2878 		 */
   2879 		npte |= L2_S_PROTO;
   2880 		if (prot & VM_PROT_WRITE)
   2881 			npte |= L2_S_PROT_W;
   2882 
   2883 		/*
   2884 		 * Make sure the vector table is mapped cacheable
   2885 		 */
   2886 		if (pm != pmap_kernel() && va == vector_page)
   2887 			npte |= pte_l2_s_cache_mode;
   2888 
   2889 		if (opg) {
   2890 			/*
   2891 			 * Looks like there's an existing 'managed' mapping
   2892 			 * at this address.
   2893 			 */
   2894 			simple_lock(&opg->mdpage.pvh_slock);
   2895 			pve = pmap_remove_pv(opg, pm, va, 0);
   2896 			pmap_vac_me_harder(opg, pm, 0);
   2897 			simple_unlock(&opg->mdpage.pvh_slock);
   2898 			oflags = pve->pv_flags;
   2899 
   2900 #ifdef PMAP_CACHE_VIVT
   2901 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2902 				if (PV_BEEN_EXECD(oflags))
   2903 					pmap_idcache_wbinv_range(pm, va,
   2904 					    PAGE_SIZE);
   2905 				else
   2906 				if (PV_BEEN_REFD(oflags))
   2907 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2908 					    true, (oflags & PVF_WRITE) == 0);
   2909 			}
   2910 #endif
   2911 			pool_put(&pmap_pv_pool, pve);
   2912 		}
   2913 	}
   2914 
   2915 	/*
   2916 	 * Make sure userland mappings get the right permissions
   2917 	 */
   2918 	if (pm != pmap_kernel() && va != vector_page)
   2919 		npte |= L2_S_PROT_U;
   2920 
   2921 	/*
   2922 	 * Keep the stats up to date
   2923 	 */
   2924 	if (opte == 0) {
   2925 		l2b->l2b_occupancy++;
   2926 		pm->pm_stats.resident_count++;
   2927 	}
   2928 
   2929 	NPDEBUG(PDB_ENTER,
   2930 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2931 
   2932 	/*
   2933 	 * If this is just a wiring change, the two PTEs will be
   2934 	 * identical, so there's no need to update the page table.
   2935 	 */
   2936 	if (npte != opte) {
   2937 		bool is_cached = pmap_is_cached(pm);
   2938 
   2939 		*ptep = npte;
   2940 		if (is_cached) {
   2941 			/*
   2942 			 * We only need to frob the cache/tlb if this pmap
   2943 			 * is current
   2944 			 */
   2945 			PTE_SYNC(ptep);
   2946 			if (va != vector_page && l2pte_valid(npte)) {
   2947 				/*
   2948 				 * This mapping is likely to be accessed as
   2949 				 * soon as we return to userland. Fix up the
   2950 				 * L1 entry to avoid taking another
   2951 				 * page/domain fault.
   2952 				 */
   2953 				pd_entry_t *pl1pd, l1pd;
   2954 
   2955 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2956 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2957 				    L1_C_PROTO;
   2958 				if (*pl1pd != l1pd) {
   2959 					*pl1pd = l1pd;
   2960 					PTE_SYNC(pl1pd);
   2961 				}
   2962 			}
   2963 		}
   2964 
   2965 		if (PV_BEEN_EXECD(oflags))
   2966 			pmap_tlb_flushID_SE(pm, va);
   2967 		else
   2968 		if (PV_BEEN_REFD(oflags))
   2969 			pmap_tlb_flushD_SE(pm, va);
   2970 
   2971 		NPDEBUG(PDB_ENTER,
   2972 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2973 		    is_cached, pm->pm_cstate.cs_all));
   2974 
   2975 		if (pg != NULL) {
   2976 			simple_lock(&pg->mdpage.pvh_slock);
   2977 			pmap_vac_me_harder(pg, pm, va);
   2978 			simple_unlock(&pg->mdpage.pvh_slock);
   2979 		}
   2980 	}
   2981 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   2982 	simple_lock(&pg->mdpage.pvh_slock);
   2983 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2984 	KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
   2985 	simple_unlock(&pg->mdpage.pvh_slock);
   2986 #endif
   2987 
   2988 	pmap_release_pmap_lock(pm);
   2989 	PMAP_MAP_TO_HEAD_UNLOCK();
   2990 
   2991 	return (0);
   2992 }
   2993 
   2994 /*
   2995  * pmap_remove()
   2996  *
   2997  * pmap_remove is responsible for nuking a number of mappings for a range
   2998  * of virtual address space in the current pmap. To do this efficiently
   2999  * is interesting, because in a number of cases a wide virtual address
   3000  * range may be supplied that contains few actual mappings. So, the
   3001  * optimisations are:
   3002  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3003  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3004  *     maybe do just a partial cache clean. This path of execution is
   3005  *     complicated by the fact that the cache must be flushed _before_
   3006  *     the PTE is nuked, being a VAC :-)
   3007  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3008  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3009  *     already flushed the cache.
   3010  *  4. Maybe later fast-case a single page, but I don't think this is
   3011  *     going to make _that_ much difference overall.
   3012  */
   3013 
   3014 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3015 
   3016 void
   3017 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   3018 {
   3019 	struct l2_bucket *l2b;
   3020 	vaddr_t next_bucket;
   3021 	pt_entry_t *ptep;
   3022 	u_int cleanlist_idx, total, cnt;
   3023 	struct {
   3024 		vaddr_t va;
   3025 		pt_entry_t *ptep;
   3026 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3027 	u_int mappings, is_exec, is_refd;
   3028 
   3029 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3030 	    "eva=%08lx\n", pm, sva, eva));
   3031 
   3032 	/*
   3033 	 * we lock in the pmap => pv_head direction
   3034 	 */
   3035 	PMAP_MAP_TO_HEAD_LOCK();
   3036 	pmap_acquire_pmap_lock(pm);
   3037 
   3038 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3039 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3040 		if (pm->pm_cstate.cs_tlb == 0)
   3041 			pm->pm_remove_all = true;
   3042 	} else
   3043 		cleanlist_idx = 0;
   3044 
   3045 	total = 0;
   3046 
   3047 	while (sva < eva) {
   3048 		/*
   3049 		 * Do one L2 bucket's worth at a time.
   3050 		 */
   3051 		next_bucket = L2_NEXT_BUCKET(sva);
   3052 		if (next_bucket > eva)
   3053 			next_bucket = eva;
   3054 
   3055 		l2b = pmap_get_l2_bucket(pm, sva);
   3056 		if (l2b == NULL) {
   3057 			sva = next_bucket;
   3058 			continue;
   3059 		}
   3060 
   3061 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3062 
   3063 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3064 			struct vm_page *pg;
   3065 			pt_entry_t pte;
   3066 			paddr_t pa;
   3067 
   3068 			pte = *ptep;
   3069 
   3070 			if (pte == 0) {
   3071 				/* Nothing here, move along */
   3072 				continue;
   3073 			}
   3074 
   3075 			pa = l2pte_pa(pte);
   3076 			is_exec = 0;
   3077 			is_refd = 1;
   3078 
   3079 			/*
   3080 			 * Update flags. In a number of circumstances,
   3081 			 * we could cluster a lot of these and do a
   3082 			 * number of sequential pages in one go.
   3083 			 */
   3084 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3085 				struct pv_entry *pve;
   3086 				simple_lock(&pg->mdpage.pvh_slock);
   3087 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   3088 				pmap_vac_me_harder(pg, pm, 0);
   3089 				simple_unlock(&pg->mdpage.pvh_slock);
   3090 				if (pve != NULL) {
   3091 					if (pm->pm_remove_all == false) {
   3092 						is_exec =
   3093 						   PV_BEEN_EXECD(pve->pv_flags);
   3094 						is_refd =
   3095 						   PV_BEEN_REFD(pve->pv_flags);
   3096 					}
   3097 					pool_put(&pmap_pv_pool, pve);
   3098 				} else
   3099 				if (skip_wired) {
   3100 					/* The mapping is wired. Skip it */
   3101 					continue;
   3102 				}
   3103 			} else
   3104 			if (skip_wired) {
   3105 				/* Unmanaged pages are always wired. */
   3106 				continue;
   3107 			}
   3108 
   3109 			mappings++;
   3110 
   3111 			if (!l2pte_valid(pte)) {
   3112 				/*
   3113 				 * Ref/Mod emulation is still active for this
   3114 				 * mapping, therefore it is has not yet been
   3115 				 * accessed. No need to frob the cache/tlb.
   3116 				 */
   3117 				*ptep = 0;
   3118 				PTE_SYNC_CURRENT(pm, ptep);
   3119 				continue;
   3120 			}
   3121 
   3122 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3123 				/* Add to the clean list. */
   3124 				cleanlist[cleanlist_idx].ptep = ptep;
   3125 				cleanlist[cleanlist_idx].va =
   3126 				    sva | (is_exec & 1);
   3127 				cleanlist_idx++;
   3128 			} else
   3129 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3130 				/* Nuke everything if needed. */
   3131 #ifdef PMAP_CACHE_VIVT
   3132 				pmap_idcache_wbinv_all(pm);
   3133 #endif
   3134 				pmap_tlb_flushID(pm);
   3135 
   3136 				/*
   3137 				 * Roll back the previous PTE list,
   3138 				 * and zero out the current PTE.
   3139 				 */
   3140 				for (cnt = 0;
   3141 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3142 					*cleanlist[cnt].ptep = 0;
   3143 					PTE_SYNC(cleanlist[cnt].ptep);
   3144 				}
   3145 				*ptep = 0;
   3146 				PTE_SYNC(ptep);
   3147 				cleanlist_idx++;
   3148 				pm->pm_remove_all = true;
   3149 			} else {
   3150 				*ptep = 0;
   3151 				PTE_SYNC(ptep);
   3152 				if (pm->pm_remove_all == false) {
   3153 					if (is_exec)
   3154 						pmap_tlb_flushID_SE(pm, sva);
   3155 					else
   3156 					if (is_refd)
   3157 						pmap_tlb_flushD_SE(pm, sva);
   3158 				}
   3159 			}
   3160 		}
   3161 
   3162 		/*
   3163 		 * Deal with any left overs
   3164 		 */
   3165 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3166 			total += cleanlist_idx;
   3167 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3168 				if (pm->pm_cstate.cs_all != 0) {
   3169 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3170 					if (cleanlist[cnt].va & 1) {
   3171 #ifdef PMAP_CACHE_VIVT
   3172 						pmap_idcache_wbinv_range(pm,
   3173 						    clva, PAGE_SIZE);
   3174 #endif
   3175 						pmap_tlb_flushID_SE(pm, clva);
   3176 					} else {
   3177 #ifdef PMAP_CACHE_VIVT
   3178 						pmap_dcache_wb_range(pm,
   3179 						    clva, PAGE_SIZE, true,
   3180 						    false);
   3181 #endif
   3182 						pmap_tlb_flushD_SE(pm, clva);
   3183 					}
   3184 				}
   3185 				*cleanlist[cnt].ptep = 0;
   3186 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3187 			}
   3188 
   3189 			/*
   3190 			 * If it looks like we're removing a whole bunch
   3191 			 * of mappings, it's faster to just write-back
   3192 			 * the whole cache now and defer TLB flushes until
   3193 			 * pmap_update() is called.
   3194 			 */
   3195 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3196 				cleanlist_idx = 0;
   3197 			else {
   3198 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3199 #ifdef PMAP_CACHE_VIVT
   3200 				pmap_idcache_wbinv_all(pm);
   3201 #endif
   3202 				pm->pm_remove_all = true;
   3203 			}
   3204 		}
   3205 
   3206 		pmap_free_l2_bucket(pm, l2b, mappings);
   3207 		pm->pm_stats.resident_count -= mappings;
   3208 	}
   3209 
   3210 	pmap_release_pmap_lock(pm);
   3211 	PMAP_MAP_TO_HEAD_UNLOCK();
   3212 }
   3213 
   3214 #ifdef PMAP_CACHE_VIPT
   3215 static struct pv_entry *
   3216 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3217 {
   3218 	struct pv_entry *pv;
   3219 
   3220 	simple_lock(&pg->mdpage.pvh_slock);
   3221 	KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   3222 	KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3223 
   3224 	pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
   3225 	KASSERT(pv);
   3226 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3227 
   3228 	/*
   3229 	 * If we are removing a writeable mapping to a cached exec page,
   3230 	 * if it's the last mapping then clear it execness other sync
   3231 	 * the page to the icache.
   3232 	 */
   3233 	if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3234 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3235 		if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   3236 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3237 			PMAPCOUNT(exec_discarded_kremove);
   3238 		} else {
   3239 			pmap_syncicache_page(pg);
   3240 			PMAPCOUNT(exec_synced_kremove);
   3241 		}
   3242 	}
   3243 	pmap_vac_me_harder(pg, pmap_kernel(), 0);
   3244 	simple_unlock(&pg->mdpage.pvh_slock);
   3245 
   3246 	return pv;
   3247 }
   3248 #endif /* PMAP_CACHE_VIPT */
   3249 
   3250 /*
   3251  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3252  *
   3253  * We assume there is already sufficient KVM space available
   3254  * to do this, as we can't allocate L2 descriptor tables/metadata
   3255  * from here.
   3256  */
   3257 void
   3258 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   3259 {
   3260 	struct l2_bucket *l2b;
   3261 	pt_entry_t *ptep, opte;
   3262 #ifdef PMAP_CACHE_VIPT
   3263 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3264 	struct vm_page *opg;
   3265 	struct pv_entry *pv = NULL;
   3266 #endif
   3267 
   3268 	NPDEBUG(PDB_KENTER,
   3269 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3270 	    va, pa, prot));
   3271 
   3272 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3273 	KDASSERT(l2b != NULL);
   3274 
   3275 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3276 	opte = *ptep;
   3277 
   3278 	if (opte == 0) {
   3279 		PMAPCOUNT(kenter_mappings);
   3280 		l2b->l2b_occupancy++;
   3281 	} else {
   3282 		PMAPCOUNT(kenter_remappings);
   3283 #ifdef PMAP_CACHE_VIPT
   3284 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3285 		if (opg) {
   3286 			KASSERT(opg != pg);
   3287 			KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3288 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3289 			simple_lock(&opg->mdpage.pvh_slock);
   3290 			pv = pmap_kremove_pg(opg, va);
   3291 			simple_unlock(&opg->mdpage.pvh_slock);
   3292 		}
   3293 #endif
   3294 		if (l2pte_valid(opte)) {
   3295 #ifdef PMAP_CACHE_VIVT
   3296 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3297 #endif
   3298 			cpu_tlb_flushD_SE(va);
   3299 			cpu_cpwait();
   3300 		}
   3301 	}
   3302 
   3303 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3304 	    pte_l2_s_cache_mode;
   3305 	PTE_SYNC(ptep);
   3306 
   3307 #ifdef PMAP_CACHE_VIPT
   3308 	if (pg) {
   3309 		if (prot & PMAP_KMPAGE) {
   3310 			KASSERT(pv == NULL);
   3311 			KASSERT((va & PVF_COLORED) == 0);
   3312 			simple_lock(&pg->mdpage.pvh_slock);
   3313 			KASSERT(pg->mdpage.urw_mappings == 0);
   3314 			KASSERT(pg->mdpage.uro_mappings == 0);
   3315 			KASSERT(pg->mdpage.krw_mappings == 0);
   3316 			KASSERT(pg->mdpage.kro_mappings == 0);
   3317 			KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
   3318 			/* if there is a color conflict, evict from cache. */
   3319 			if (pmap_is_page_colored_p(pg)
   3320 			    && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
   3321 				PMAPCOUNT(vac_color_change);
   3322 				pmap_flush_page(pg, true);
   3323 			}
   3324 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   3325 			pg->mdpage.pvh_attrs |= PVF_KMPAGE
   3326 			    | PVF_COLORED | PVF_DIRTY
   3327 			    | (va & arm_cache_prefer_mask);
   3328 			simple_unlock(&pg->mdpage.pvh_slock);
   3329 		} else {
   3330 			if (pv == NULL) {
   3331 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3332 				KASSERT(pv != NULL);
   3333 			}
   3334 			pmap_enter_pv(pg, pv, pmap_kernel(), va,
   3335 			    PVF_WIRED | PVF_KENTRY
   3336 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3337 			if ((prot & VM_PROT_WRITE)
   3338 			    && !(pg->mdpage.pvh_attrs & PVF_NC))
   3339 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3340 			KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3341 			simple_lock(&pg->mdpage.pvh_slock);
   3342 			pmap_vac_me_harder(pg, pmap_kernel(), va);
   3343 			simple_unlock(&pg->mdpage.pvh_slock);
   3344 		}
   3345 	} else {
   3346 		if (pv != NULL)
   3347 			pool_put(&pmap_pv_pool, pv);
   3348 	}
   3349 #endif
   3350 }
   3351 
   3352 void
   3353 pmap_kremove(vaddr_t va, vsize_t len)
   3354 {
   3355 	struct l2_bucket *l2b;
   3356 	pt_entry_t *ptep, *sptep, opte;
   3357 	vaddr_t next_bucket, eva;
   3358 	u_int mappings;
   3359 #ifdef PMAP_CACHE_VIPT
   3360 	struct vm_page *opg;
   3361 #endif
   3362 
   3363 	PMAPCOUNT(kenter_unmappings);
   3364 
   3365 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3366 	    va, len));
   3367 
   3368 	eva = va + len;
   3369 
   3370 	while (va < eva) {
   3371 		next_bucket = L2_NEXT_BUCKET(va);
   3372 		if (next_bucket > eva)
   3373 			next_bucket = eva;
   3374 
   3375 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3376 		KDASSERT(l2b != NULL);
   3377 
   3378 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3379 		mappings = 0;
   3380 
   3381 		while (va < next_bucket) {
   3382 			opte = *ptep;
   3383 #ifdef PMAP_CACHE_VIPT
   3384 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3385 			if (opg) {
   3386 				if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
   3387 					simple_lock(&opg->mdpage.pvh_slock);
   3388 					KASSERT(opg->mdpage.urw_mappings == 0);
   3389 					KASSERT(opg->mdpage.uro_mappings == 0);
   3390 					KASSERT(opg->mdpage.krw_mappings == 0);
   3391 					KASSERT(opg->mdpage.kro_mappings == 0);
   3392 					opg->mdpage.pvh_attrs &=
   3393 					    ~(PVF_KMPAGE|PVF_WRITE);
   3394 					simple_unlock(&opg->mdpage.pvh_slock);
   3395 				} else {
   3396 					pool_put(&pmap_pv_pool,
   3397 					    pmap_kremove_pg(opg, va));
   3398 				}
   3399 			}
   3400 #endif
   3401 			if (l2pte_valid(opte)) {
   3402 #ifdef PMAP_CACHE_VIVT
   3403 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3404 #endif
   3405 				cpu_tlb_flushD_SE(va);
   3406 			}
   3407 			if (opte) {
   3408 				*ptep = 0;
   3409 				mappings++;
   3410 			}
   3411 			va += PAGE_SIZE;
   3412 			ptep++;
   3413 		}
   3414 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3415 		l2b->l2b_occupancy -= mappings;
   3416 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3417 	}
   3418 	cpu_cpwait();
   3419 }
   3420 
   3421 bool
   3422 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3423 {
   3424 	struct l2_dtable *l2;
   3425 	pd_entry_t *pl1pd, l1pd;
   3426 	pt_entry_t *ptep, pte;
   3427 	paddr_t pa;
   3428 	u_int l1idx;
   3429 
   3430 	pmap_acquire_pmap_lock(pm);
   3431 
   3432 	l1idx = L1_IDX(va);
   3433 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3434 	l1pd = *pl1pd;
   3435 
   3436 	if (l1pte_section_p(l1pd)) {
   3437 		/*
   3438 		 * These should only happen for pmap_kernel()
   3439 		 */
   3440 		KDASSERT(pm == pmap_kernel());
   3441 		pmap_release_pmap_lock(pm);
   3442 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3443 	} else {
   3444 		/*
   3445 		 * Note that we can't rely on the validity of the L1
   3446 		 * descriptor as an indication that a mapping exists.
   3447 		 * We have to look it up in the L2 dtable.
   3448 		 */
   3449 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3450 
   3451 		if (l2 == NULL ||
   3452 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3453 			pmap_release_pmap_lock(pm);
   3454 			return false;
   3455 		}
   3456 
   3457 		ptep = &ptep[l2pte_index(va)];
   3458 		pte = *ptep;
   3459 		pmap_release_pmap_lock(pm);
   3460 
   3461 		if (pte == 0)
   3462 			return false;
   3463 
   3464 		switch (pte & L2_TYPE_MASK) {
   3465 		case L2_TYPE_L:
   3466 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3467 			break;
   3468 
   3469 		default:
   3470 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3471 			break;
   3472 		}
   3473 	}
   3474 
   3475 	if (pap != NULL)
   3476 		*pap = pa;
   3477 
   3478 	return true;
   3479 }
   3480 
   3481 void
   3482 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3483 {
   3484 	struct l2_bucket *l2b;
   3485 	pt_entry_t *ptep, pte;
   3486 	vaddr_t next_bucket;
   3487 	u_int flags;
   3488 	u_int clr_mask;
   3489 	int flush;
   3490 
   3491 	NPDEBUG(PDB_PROTECT,
   3492 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3493 	    pm, sva, eva, prot));
   3494 
   3495 	if ((prot & VM_PROT_READ) == 0) {
   3496 		pmap_remove(pm, sva, eva);
   3497 		return;
   3498 	}
   3499 
   3500 	if (prot & VM_PROT_WRITE) {
   3501 		/*
   3502 		 * If this is a read->write transition, just ignore it and let
   3503 		 * uvm_fault() take care of it later.
   3504 		 */
   3505 		return;
   3506 	}
   3507 
   3508 	PMAP_MAP_TO_HEAD_LOCK();
   3509 	pmap_acquire_pmap_lock(pm);
   3510 
   3511 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3512 	flags = 0;
   3513 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3514 
   3515 	while (sva < eva) {
   3516 		next_bucket = L2_NEXT_BUCKET(sva);
   3517 		if (next_bucket > eva)
   3518 			next_bucket = eva;
   3519 
   3520 		l2b = pmap_get_l2_bucket(pm, sva);
   3521 		if (l2b == NULL) {
   3522 			sva = next_bucket;
   3523 			continue;
   3524 		}
   3525 
   3526 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3527 
   3528 		while (sva < next_bucket) {
   3529 			pte = *ptep;
   3530 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3531 				struct vm_page *pg;
   3532 				u_int f;
   3533 
   3534 #ifdef PMAP_CACHE_VIVT
   3535 				/*
   3536 				 * OK, at this point, we know we're doing
   3537 				 * write-protect operation.  If the pmap is
   3538 				 * active, write-back the page.
   3539 				 */
   3540 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3541 				    false, false);
   3542 #endif
   3543 
   3544 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3545 				pte &= ~L2_S_PROT_W;
   3546 				*ptep = pte;
   3547 				PTE_SYNC(ptep);
   3548 
   3549 				if (pg != NULL) {
   3550 					simple_lock(&pg->mdpage.pvh_slock);
   3551 					f = pmap_modify_pv(pg, pm, sva,
   3552 					    clr_mask, 0);
   3553 					pmap_vac_me_harder(pg, pm, sva);
   3554 					simple_unlock(&pg->mdpage.pvh_slock);
   3555 				} else
   3556 					f = PVF_REF | PVF_EXEC;
   3557 
   3558 				if (flush >= 0) {
   3559 					flush++;
   3560 					flags |= f;
   3561 				} else
   3562 				if (PV_BEEN_EXECD(f))
   3563 					pmap_tlb_flushID_SE(pm, sva);
   3564 				else
   3565 				if (PV_BEEN_REFD(f))
   3566 					pmap_tlb_flushD_SE(pm, sva);
   3567 			}
   3568 
   3569 			sva += PAGE_SIZE;
   3570 			ptep++;
   3571 		}
   3572 	}
   3573 
   3574 	pmap_release_pmap_lock(pm);
   3575 	PMAP_MAP_TO_HEAD_UNLOCK();
   3576 
   3577 	if (flush) {
   3578 		if (PV_BEEN_EXECD(flags))
   3579 			pmap_tlb_flushID(pm);
   3580 		else
   3581 		if (PV_BEEN_REFD(flags))
   3582 			pmap_tlb_flushD(pm);
   3583 	}
   3584 }
   3585 
   3586 void
   3587 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3588 {
   3589 	struct l2_bucket *l2b;
   3590 	pt_entry_t *ptep;
   3591 	vaddr_t next_bucket;
   3592 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3593 
   3594 	NPDEBUG(PDB_EXEC,
   3595 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3596 	    pm, sva, eva));
   3597 
   3598 	PMAP_MAP_TO_HEAD_LOCK();
   3599 	pmap_acquire_pmap_lock(pm);
   3600 
   3601 	while (sva < eva) {
   3602 		next_bucket = L2_NEXT_BUCKET(sva);
   3603 		if (next_bucket > eva)
   3604 			next_bucket = eva;
   3605 
   3606 		l2b = pmap_get_l2_bucket(pm, sva);
   3607 		if (l2b == NULL) {
   3608 			sva = next_bucket;
   3609 			continue;
   3610 		}
   3611 
   3612 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3613 		     sva < next_bucket;
   3614 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3615 			if (l2pte_valid(*ptep)) {
   3616 				cpu_icache_sync_range(sva,
   3617 				    min(page_size, eva - sva));
   3618 			}
   3619 		}
   3620 	}
   3621 
   3622 	pmap_release_pmap_lock(pm);
   3623 	PMAP_MAP_TO_HEAD_UNLOCK();
   3624 }
   3625 
   3626 void
   3627 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3628 {
   3629 
   3630 	NPDEBUG(PDB_PROTECT,
   3631 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3632 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3633 
   3634 	switch(prot) {
   3635 		return;
   3636 	case VM_PROT_READ|VM_PROT_WRITE:
   3637 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3638 		pmap_clearbit(pg, PVF_EXEC);
   3639 		break;
   3640 #endif
   3641 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3642 		break;
   3643 
   3644 	case VM_PROT_READ:
   3645 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3646 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3647 		break;
   3648 #endif
   3649 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3650 		pmap_clearbit(pg, PVF_WRITE);
   3651 		break;
   3652 
   3653 	default:
   3654 		pmap_page_remove(pg);
   3655 		break;
   3656 	}
   3657 }
   3658 
   3659 /*
   3660  * pmap_clear_modify:
   3661  *
   3662  *	Clear the "modified" attribute for a page.
   3663  */
   3664 bool
   3665 pmap_clear_modify(struct vm_page *pg)
   3666 {
   3667 	bool rv;
   3668 
   3669 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3670 		rv = true;
   3671 		pmap_clearbit(pg, PVF_MOD);
   3672 	} else
   3673 		rv = false;
   3674 
   3675 	return (rv);
   3676 }
   3677 
   3678 /*
   3679  * pmap_clear_reference:
   3680  *
   3681  *	Clear the "referenced" attribute for a page.
   3682  */
   3683 bool
   3684 pmap_clear_reference(struct vm_page *pg)
   3685 {
   3686 	bool rv;
   3687 
   3688 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3689 		rv = true;
   3690 		pmap_clearbit(pg, PVF_REF);
   3691 	} else
   3692 		rv = false;
   3693 
   3694 	return (rv);
   3695 }
   3696 
   3697 /*
   3698  * pmap_is_modified:
   3699  *
   3700  *	Test if a page has the "modified" attribute.
   3701  */
   3702 /* See <arm/arm32/pmap.h> */
   3703 
   3704 /*
   3705  * pmap_is_referenced:
   3706  *
   3707  *	Test if a page has the "referenced" attribute.
   3708  */
   3709 /* See <arm/arm32/pmap.h> */
   3710 
   3711 int
   3712 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3713 {
   3714 	struct l2_dtable *l2;
   3715 	struct l2_bucket *l2b;
   3716 	pd_entry_t *pl1pd, l1pd;
   3717 	pt_entry_t *ptep, pte;
   3718 	paddr_t pa;
   3719 	u_int l1idx;
   3720 	int rv = 0;
   3721 
   3722 	PMAP_MAP_TO_HEAD_LOCK();
   3723 	pmap_acquire_pmap_lock(pm);
   3724 
   3725 	l1idx = L1_IDX(va);
   3726 
   3727 	/*
   3728 	 * If there is no l2_dtable for this address, then the process
   3729 	 * has no business accessing it.
   3730 	 *
   3731 	 * Note: This will catch userland processes trying to access
   3732 	 * kernel addresses.
   3733 	 */
   3734 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3735 	if (l2 == NULL)
   3736 		goto out;
   3737 
   3738 	/*
   3739 	 * Likewise if there is no L2 descriptor table
   3740 	 */
   3741 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3742 	if (l2b->l2b_kva == NULL)
   3743 		goto out;
   3744 
   3745 	/*
   3746 	 * Check the PTE itself.
   3747 	 */
   3748 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3749 	pte = *ptep;
   3750 	if (pte == 0)
   3751 		goto out;
   3752 
   3753 	/*
   3754 	 * Catch a userland access to the vector page mapped at 0x0
   3755 	 */
   3756 	if (user && (pte & L2_S_PROT_U) == 0)
   3757 		goto out;
   3758 
   3759 	pa = l2pte_pa(pte);
   3760 
   3761 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3762 		/*
   3763 		 * This looks like a good candidate for "page modified"
   3764 		 * emulation...
   3765 		 */
   3766 		struct pv_entry *pv;
   3767 		struct vm_page *pg;
   3768 
   3769 		/* Extract the physical address of the page */
   3770 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3771 			goto out;
   3772 
   3773 		/* Get the current flags for this page. */
   3774 		simple_lock(&pg->mdpage.pvh_slock);
   3775 
   3776 		pv = pmap_find_pv(pg, pm, va);
   3777 		if (pv == NULL) {
   3778 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3779 			goto out;
   3780 		}
   3781 
   3782 		/*
   3783 		 * Do the flags say this page is writable? If not then it
   3784 		 * is a genuine write fault. If yes then the write fault is
   3785 		 * our fault as we did not reflect the write access in the
   3786 		 * PTE. Now we know a write has occurred we can correct this
   3787 		 * and also set the modified bit
   3788 		 */
   3789 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3790 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3791 			goto out;
   3792 		}
   3793 
   3794 		NPDEBUG(PDB_FOLLOW,
   3795 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3796 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3797 
   3798 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3799 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3800 #ifdef PMAP_CACHE_VIPT
   3801 		/*
   3802 		 * If there are cacheable mappings for this page, mark it dirty.
   3803 		 */
   3804 		if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
   3805 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3806 #endif
   3807 		simple_unlock(&pg->mdpage.pvh_slock);
   3808 
   3809 		/*
   3810 		 * Re-enable write permissions for the page.  No need to call
   3811 		 * pmap_vac_me_harder(), since this is just a
   3812 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3813 		 * changing. We've already set the cacheable bits based on
   3814 		 * the assumption that we can write to this page.
   3815 		 */
   3816 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3817 		PTE_SYNC(ptep);
   3818 		rv = 1;
   3819 	} else
   3820 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3821 		/*
   3822 		 * This looks like a good candidate for "page referenced"
   3823 		 * emulation.
   3824 		 */
   3825 		struct pv_entry *pv;
   3826 		struct vm_page *pg;
   3827 
   3828 		/* Extract the physical address of the page */
   3829 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3830 			goto out;
   3831 
   3832 		/* Get the current flags for this page. */
   3833 		simple_lock(&pg->mdpage.pvh_slock);
   3834 
   3835 		pv = pmap_find_pv(pg, pm, va);
   3836 		if (pv == NULL) {
   3837 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3838 			goto out;
   3839 		}
   3840 
   3841 		pg->mdpage.pvh_attrs |= PVF_REF;
   3842 		pv->pv_flags |= PVF_REF;
   3843 		simple_unlock(&pg->mdpage.pvh_slock);
   3844 
   3845 		NPDEBUG(PDB_FOLLOW,
   3846 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3847 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3848 
   3849 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3850 		PTE_SYNC(ptep);
   3851 		rv = 1;
   3852 	}
   3853 
   3854 	/*
   3855 	 * We know there is a valid mapping here, so simply
   3856 	 * fix up the L1 if necessary.
   3857 	 */
   3858 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3859 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3860 	if (*pl1pd != l1pd) {
   3861 		*pl1pd = l1pd;
   3862 		PTE_SYNC(pl1pd);
   3863 		rv = 1;
   3864 	}
   3865 
   3866 #ifdef CPU_SA110
   3867 	/*
   3868 	 * There are bugs in the rev K SA110.  This is a check for one
   3869 	 * of them.
   3870 	 */
   3871 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3872 	    curcpu()->ci_arm_cpurev < 3) {
   3873 		/* Always current pmap */
   3874 		if (l2pte_valid(pte)) {
   3875 			extern int kernel_debug;
   3876 			if (kernel_debug & 1) {
   3877 				struct proc *p = curlwp->l_proc;
   3878 				printf("prefetch_abort: page is already "
   3879 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3880 				printf("prefetch_abort: pc=%08lx proc=%p "
   3881 				    "process=%s\n", va, p, p->p_comm);
   3882 				printf("prefetch_abort: far=%08x fs=%x\n",
   3883 				    cpu_faultaddress(), cpu_faultstatus());
   3884 			}
   3885 #ifdef DDB
   3886 			if (kernel_debug & 2)
   3887 				Debugger();
   3888 #endif
   3889 			rv = 1;
   3890 		}
   3891 	}
   3892 #endif /* CPU_SA110 */
   3893 
   3894 #ifdef DEBUG
   3895 	/*
   3896 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3897 	 * stale TLB entry for the faulting address. This happens when two or
   3898 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3899 	 * a context switch between such processes, we can take domain faults
   3900 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3901 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3902 	 * example.
   3903 	 *
   3904 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3905 	 * entry for a recently entered mapping. In this case, the TLB is
   3906 	 * flushed for the new mapping, but there may still be TLB entries for
   3907 	 * other mappings belonging to other processes in the 1MB range
   3908 	 * covered by the L1 entry.
   3909 	 *
   3910 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3911 	 * value, so the fault must be due to a stale TLB entry.
   3912 	 *
   3913 	 * Since we always need to flush the TLB anyway in the case where we
   3914 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3915 	 * stale TLB entries dynamically.
   3916 	 *
   3917 	 * However, the above condition can ONLY happen if the current L1 is
   3918 	 * being shared. If it happens when the L1 is unshared, it indicates
   3919 	 * that other parts of the pmap are not doing their job WRT managing
   3920 	 * the TLB.
   3921 	 */
   3922 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   3923 		extern int last_fault_code;
   3924 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   3925 		    pm, va, ftype);
   3926 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   3927 		    l2, l2b, ptep, pl1pd);
   3928 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   3929 		    pte, l1pd, last_fault_code);
   3930 #ifdef DDB
   3931 		Debugger();
   3932 #endif
   3933 	}
   3934 #endif
   3935 
   3936 	cpu_tlb_flushID_SE(va);
   3937 	cpu_cpwait();
   3938 
   3939 	rv = 1;
   3940 
   3941 out:
   3942 	pmap_release_pmap_lock(pm);
   3943 	PMAP_MAP_TO_HEAD_UNLOCK();
   3944 
   3945 	return (rv);
   3946 }
   3947 
   3948 /*
   3949  * pmap_collect: free resources held by a pmap
   3950  *
   3951  * => optional function.
   3952  * => called when a process is swapped out to free memory.
   3953  */
   3954 void
   3955 pmap_collect(pmap_t pm)
   3956 {
   3957 
   3958 #ifdef PMAP_CACHE_VIVT
   3959 	pmap_idcache_wbinv_all(pm);
   3960 #endif
   3961 	pm->pm_remove_all = true;
   3962 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3963 	pmap_update(pm);
   3964 	PMAPCOUNT(collects);
   3965 }
   3966 
   3967 /*
   3968  * Routine:	pmap_procwr
   3969  *
   3970  * Function:
   3971  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3972  *
   3973  */
   3974 void
   3975 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3976 {
   3977 	/* We only need to do anything if it is the current process. */
   3978 	if (p == curproc)
   3979 		cpu_icache_sync_range(va, len);
   3980 }
   3981 
   3982 /*
   3983  * Routine:	pmap_unwire
   3984  * Function:	Clear the wired attribute for a map/virtual-address pair.
   3985  *
   3986  * In/out conditions:
   3987  *		The mapping must already exist in the pmap.
   3988  */
   3989 void
   3990 pmap_unwire(pmap_t pm, vaddr_t va)
   3991 {
   3992 	struct l2_bucket *l2b;
   3993 	pt_entry_t *ptep, pte;
   3994 	struct vm_page *pg;
   3995 	paddr_t pa;
   3996 
   3997 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   3998 
   3999 	PMAP_MAP_TO_HEAD_LOCK();
   4000 	pmap_acquire_pmap_lock(pm);
   4001 
   4002 	l2b = pmap_get_l2_bucket(pm, va);
   4003 	KDASSERT(l2b != NULL);
   4004 
   4005 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4006 	pte = *ptep;
   4007 
   4008 	/* Extract the physical address of the page */
   4009 	pa = l2pte_pa(pte);
   4010 
   4011 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4012 		/* Update the wired bit in the pv entry for this page. */
   4013 		simple_lock(&pg->mdpage.pvh_slock);
   4014 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   4015 		simple_unlock(&pg->mdpage.pvh_slock);
   4016 	}
   4017 
   4018 	pmap_release_pmap_lock(pm);
   4019 	PMAP_MAP_TO_HEAD_UNLOCK();
   4020 }
   4021 
   4022 void
   4023 pmap_activate(struct lwp *l)
   4024 {
   4025 	extern int block_userspace_access;
   4026 	pmap_t opm, npm, rpm;
   4027 	uint32_t odacr, ndacr;
   4028 	int oldirqstate;
   4029 
   4030 	/*
   4031 	 * If activating a non-current lwp or the current lwp is
   4032 	 * already active, just return.
   4033 	 */
   4034 	if (l != curlwp ||
   4035 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4036 		return;
   4037 
   4038 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4039 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4040 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4041 
   4042 	/*
   4043 	 * If TTB and DACR are unchanged, short-circuit all the
   4044 	 * TLB/cache management stuff.
   4045 	 */
   4046 	if (pmap_previous_active_lwp != NULL) {
   4047 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4048 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4049 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4050 
   4051 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4052 			goto all_done;
   4053 	} else
   4054 		opm = NULL;
   4055 
   4056 	PMAPCOUNT(activations);
   4057 	block_userspace_access = 1;
   4058 
   4059 	/*
   4060 	 * If switching to a user vmspace which is different to the
   4061 	 * most recent one, and the most recent one is potentially
   4062 	 * live in the cache, we must write-back and invalidate the
   4063 	 * entire cache.
   4064 	 */
   4065 	rpm = pmap_recent_user;
   4066 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4067 	    rpm->pm_cstate.cs_cache) {
   4068 		rpm->pm_cstate.cs_cache = 0;
   4069 #ifdef PMAP_CACHE_VIVT
   4070 		cpu_idcache_wbinv_all();
   4071 #endif
   4072 	}
   4073 
   4074 	/* No interrupts while we frob the TTB/DACR */
   4075 	oldirqstate = disable_interrupts(IF32_bits);
   4076 
   4077 	/*
   4078 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4079 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4080 	 * before switching to it otherwise subsequent interrupts/exceptions
   4081 	 * (including domain faults!) will jump into hyperspace.
   4082 	 */
   4083 	if (npm->pm_pl1vec != NULL) {
   4084 		cpu_tlb_flushID_SE((u_int)vector_page);
   4085 		cpu_cpwait();
   4086 		*npm->pm_pl1vec = npm->pm_l1vec;
   4087 		PTE_SYNC(npm->pm_pl1vec);
   4088 	}
   4089 
   4090 	cpu_domains(ndacr);
   4091 
   4092 	if (npm == pmap_kernel() || npm == rpm) {
   4093 		/*
   4094 		 * Switching to a kernel thread, or back to the
   4095 		 * same user vmspace as before... Simply update
   4096 		 * the TTB (no TLB flush required)
   4097 		 */
   4098 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4099 		    "r"(npm->pm_l1->l1_physaddr));
   4100 		cpu_cpwait();
   4101 	} else {
   4102 		/*
   4103 		 * Otherwise, update TTB and flush TLB
   4104 		 */
   4105 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4106 		if (rpm != NULL)
   4107 			rpm->pm_cstate.cs_tlb = 0;
   4108 	}
   4109 
   4110 	restore_interrupts(oldirqstate);
   4111 
   4112 	block_userspace_access = 0;
   4113 
   4114  all_done:
   4115 	/*
   4116 	 * The new pmap is resident. Make sure it's marked
   4117 	 * as resident in the cache/TLB.
   4118 	 */
   4119 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4120 	if (npm != pmap_kernel())
   4121 		pmap_recent_user = npm;
   4122 
   4123 	/* The old pmap is not longer active */
   4124 	if (opm != NULL)
   4125 		opm->pm_activated = false;
   4126 
   4127 	/* But the new one is */
   4128 	npm->pm_activated = true;
   4129 }
   4130 
   4131 void
   4132 pmap_deactivate(struct lwp *l)
   4133 {
   4134 
   4135 	/*
   4136 	 * If the process is exiting, make sure pmap_activate() does
   4137 	 * a full MMU context-switch and cache flush, which we might
   4138 	 * otherwise skip. See PR port-arm/38950.
   4139 	 */
   4140 	if (l->l_proc->p_sflag & PS_WEXIT)
   4141 		pmap_previous_active_lwp = NULL;
   4142 
   4143 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4144 }
   4145 
   4146 void
   4147 pmap_update(pmap_t pm)
   4148 {
   4149 
   4150 	if (pm->pm_remove_all) {
   4151 		/*
   4152 		 * Finish up the pmap_remove_all() optimisation by flushing
   4153 		 * the TLB.
   4154 		 */
   4155 		pmap_tlb_flushID(pm);
   4156 		pm->pm_remove_all = false;
   4157 	}
   4158 
   4159 	if (pmap_is_current(pm)) {
   4160 		/*
   4161 		 * If we're dealing with a current userland pmap, move its L1
   4162 		 * to the end of the LRU.
   4163 		 */
   4164 		if (pm != pmap_kernel())
   4165 			pmap_use_l1(pm);
   4166 
   4167 		/*
   4168 		 * We can assume we're done with frobbing the cache/tlb for
   4169 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4170 		 * flushes.
   4171 		 */
   4172 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4173 	}
   4174 
   4175 	PMAPCOUNT(updates);
   4176 
   4177 	/*
   4178 	 * make sure TLB/cache operations have completed.
   4179 	 */
   4180 	cpu_cpwait();
   4181 }
   4182 
   4183 void
   4184 pmap_remove_all(pmap_t pm)
   4185 {
   4186 
   4187 	/*
   4188 	 * The vmspace described by this pmap is about to be torn down.
   4189 	 * Until pmap_update() is called, UVM will only make calls
   4190 	 * to pmap_remove(). We can make life much simpler by flushing
   4191 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4192 	 */
   4193 #ifdef PMAP_CACHE_VIVT
   4194 	pmap_idcache_wbinv_all(pm);
   4195 #endif
   4196 	pm->pm_remove_all = true;
   4197 }
   4198 
   4199 /*
   4200  * Retire the given physical map from service.
   4201  * Should only be called if the map contains no valid mappings.
   4202  */
   4203 void
   4204 pmap_destroy(pmap_t pm)
   4205 {
   4206 	u_int count;
   4207 
   4208 	if (pm == NULL)
   4209 		return;
   4210 
   4211 	if (pm->pm_remove_all) {
   4212 		pmap_tlb_flushID(pm);
   4213 		pm->pm_remove_all = false;
   4214 	}
   4215 
   4216 	/*
   4217 	 * Drop reference count
   4218 	 */
   4219 	mutex_enter(&pm->pm_lock);
   4220 	count = --pm->pm_obj.uo_refs;
   4221 	mutex_exit(&pm->pm_lock);
   4222 	if (count > 0) {
   4223 		if (pmap_is_current(pm)) {
   4224 			if (pm != pmap_kernel())
   4225 				pmap_use_l1(pm);
   4226 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4227 		}
   4228 		return;
   4229 	}
   4230 
   4231 	/*
   4232 	 * reference count is zero, free pmap resources and then free pmap.
   4233 	 */
   4234 
   4235 	if (vector_page < KERNEL_BASE) {
   4236 		KDASSERT(!pmap_is_current(pm));
   4237 
   4238 		/* Remove the vector page mapping */
   4239 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4240 		pmap_update(pm);
   4241 	}
   4242 
   4243 	LIST_REMOVE(pm, pm_list);
   4244 
   4245 	pmap_free_l1(pm);
   4246 
   4247 	if (pmap_recent_user == pm)
   4248 		pmap_recent_user = NULL;
   4249 
   4250 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4251 
   4252 	/* return the pmap to the pool */
   4253 	pool_cache_put(&pmap_cache, pm);
   4254 }
   4255 
   4256 
   4257 /*
   4258  * void pmap_reference(pmap_t pm)
   4259  *
   4260  * Add a reference to the specified pmap.
   4261  */
   4262 void
   4263 pmap_reference(pmap_t pm)
   4264 {
   4265 
   4266 	if (pm == NULL)
   4267 		return;
   4268 
   4269 	pmap_use_l1(pm);
   4270 
   4271 	mutex_enter(&pm->pm_lock);
   4272 	pm->pm_obj.uo_refs++;
   4273 	mutex_exit(&pm->pm_lock);
   4274 }
   4275 
   4276 #if ARM_MMU_V6 > 0
   4277 
   4278 static struct evcnt pmap_prefer_nochange_ev =
   4279     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4280 static struct evcnt pmap_prefer_change_ev =
   4281     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4282 
   4283 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4284 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4285 
   4286 void
   4287 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4288 {
   4289 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4290 	vaddr_t va = *vap;
   4291 	vaddr_t diff = (hint - va) & mask;
   4292 	if (diff == 0) {
   4293 		pmap_prefer_nochange_ev.ev_count++;
   4294 	} else {
   4295 		pmap_prefer_change_ev.ev_count++;
   4296 		if (__predict_false(td))
   4297 			va -= mask + 1;
   4298 		*vap = va + diff;
   4299 	}
   4300 }
   4301 #endif /* ARM_MMU_V6 */
   4302 
   4303 /*
   4304  * pmap_zero_page()
   4305  *
   4306  * Zero a given physical page by mapping it at a page hook point.
   4307  * In doing the zero page op, the page we zero is mapped cachable, as with
   4308  * StrongARM accesses to non-cached pages are non-burst making writing
   4309  * _any_ bulk data very slow.
   4310  */
   4311 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4312 void
   4313 pmap_zero_page_generic(paddr_t phys)
   4314 {
   4315 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4316 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4317 #endif
   4318 #ifdef PMAP_CACHE_VIPT
   4319 	/* Choose the last page color it had, if any */
   4320 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4321 #else
   4322 	const vsize_t va_offset = 0;
   4323 #endif
   4324 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4325 
   4326 #ifdef DEBUG
   4327 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4328 		panic("pmap_zero_page: page has mappings");
   4329 #endif
   4330 
   4331 	KDASSERT((phys & PGOFSET) == 0);
   4332 
   4333 	/*
   4334 	 * Hook in the page, zero it, and purge the cache for that
   4335 	 * zeroed page. Invalidate the TLB as needed.
   4336 	 */
   4337 	*ptep = L2_S_PROTO | phys |
   4338 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4339 	PTE_SYNC(ptep);
   4340 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4341 	cpu_cpwait();
   4342 	bzero_page(cdstp + va_offset);
   4343 	/*
   4344 	 * Unmap the page.
   4345 	 */
   4346 	*ptep = 0;
   4347 	PTE_SYNC(ptep);
   4348 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4349 #ifdef PMAP_CACHE_VIVT
   4350 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4351 #endif
   4352 #ifdef PMAP_CACHE_VIPT
   4353 	/*
   4354 	 * This page is now cache resident so it now has a page color.
   4355 	 * Any contents have been obliterated so clear the EXEC flag.
   4356 	 */
   4357 	if (!pmap_is_page_colored_p(pg)) {
   4358 		PMAPCOUNT(vac_color_new);
   4359 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4360 	}
   4361 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4362 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4363 		PMAPCOUNT(exec_discarded_zero);
   4364 	}
   4365 	pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4366 #endif
   4367 }
   4368 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4369 
   4370 #if ARM_MMU_XSCALE == 1
   4371 void
   4372 pmap_zero_page_xscale(paddr_t phys)
   4373 {
   4374 #ifdef DEBUG
   4375 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4376 
   4377 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4378 		panic("pmap_zero_page: page has mappings");
   4379 #endif
   4380 
   4381 	KDASSERT((phys & PGOFSET) == 0);
   4382 
   4383 	/*
   4384 	 * Hook in the page, zero it, and purge the cache for that
   4385 	 * zeroed page. Invalidate the TLB as needed.
   4386 	 */
   4387 	*cdst_pte = L2_S_PROTO | phys |
   4388 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4389 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4390 	PTE_SYNC(cdst_pte);
   4391 	cpu_tlb_flushD_SE(cdstp);
   4392 	cpu_cpwait();
   4393 	bzero_page(cdstp);
   4394 	xscale_cache_clean_minidata();
   4395 }
   4396 #endif /* ARM_MMU_XSCALE == 1 */
   4397 
   4398 /* pmap_pageidlezero()
   4399  *
   4400  * The same as above, except that we assume that the page is not
   4401  * mapped.  This means we never have to flush the cache first.  Called
   4402  * from the idle loop.
   4403  */
   4404 bool
   4405 pmap_pageidlezero(paddr_t phys)
   4406 {
   4407 	unsigned int i;
   4408 	int *ptr;
   4409 	bool rv = true;
   4410 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4411 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4412 #endif
   4413 #ifdef PMAP_CACHE_VIPT
   4414 	/* Choose the last page color it had, if any */
   4415 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4416 #else
   4417 	const vsize_t va_offset = 0;
   4418 #endif
   4419 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4420 
   4421 
   4422 #ifdef DEBUG
   4423 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4424 		panic("pmap_pageidlezero: page has mappings");
   4425 #endif
   4426 
   4427 	KDASSERT((phys & PGOFSET) == 0);
   4428 
   4429 	/*
   4430 	 * Hook in the page, zero it, and purge the cache for that
   4431 	 * zeroed page. Invalidate the TLB as needed.
   4432 	 */
   4433 	*ptep = L2_S_PROTO | phys |
   4434 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4435 	PTE_SYNC(ptep);
   4436 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4437 	cpu_cpwait();
   4438 
   4439 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4440 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4441 		if (sched_curcpu_runnable_p() != 0) {
   4442 			/*
   4443 			 * A process has become ready.  Abort now,
   4444 			 * so we don't keep it waiting while we
   4445 			 * do slow memory access to finish this
   4446 			 * page.
   4447 			 */
   4448 			rv = false;
   4449 			break;
   4450 		}
   4451 		*ptr++ = 0;
   4452 	}
   4453 
   4454 #ifdef PMAP_CACHE_VIVT
   4455 	if (rv)
   4456 		/*
   4457 		 * if we aborted we'll rezero this page again later so don't
   4458 		 * purge it unless we finished it
   4459 		 */
   4460 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4461 #elif defined(PMAP_CACHE_VIPT)
   4462 	/*
   4463 	 * This page is now cache resident so it now has a page color.
   4464 	 * Any contents have been obliterated so clear the EXEC flag.
   4465 	 */
   4466 	if (!pmap_is_page_colored_p(pg)) {
   4467 		PMAPCOUNT(vac_color_new);
   4468 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4469 	}
   4470 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4471 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4472 		PMAPCOUNT(exec_discarded_zero);
   4473 	}
   4474 #endif
   4475 	/*
   4476 	 * Unmap the page.
   4477 	 */
   4478 	*ptep = 0;
   4479 	PTE_SYNC(ptep);
   4480 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4481 
   4482 	return (rv);
   4483 }
   4484 
   4485 /*
   4486  * pmap_copy_page()
   4487  *
   4488  * Copy one physical page into another, by mapping the pages into
   4489  * hook points. The same comment regarding cachability as in
   4490  * pmap_zero_page also applies here.
   4491  */
   4492 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4493 void
   4494 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4495 {
   4496 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4497 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4498 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4499 #endif
   4500 #ifdef PMAP_CACHE_VIPT
   4501 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4502 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4503 #else
   4504 	const vsize_t src_va_offset = 0;
   4505 	const vsize_t dst_va_offset = 0;
   4506 #endif
   4507 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4508 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4509 
   4510 #ifdef DEBUG
   4511 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4512 		panic("pmap_copy_page: dst page has mappings");
   4513 #endif
   4514 
   4515 #ifdef PMAP_CACHE_VIPT
   4516 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4517 #endif
   4518 	KDASSERT((src & PGOFSET) == 0);
   4519 	KDASSERT((dst & PGOFSET) == 0);
   4520 
   4521 	/*
   4522 	 * Clean the source page.  Hold the source page's lock for
   4523 	 * the duration of the copy so that no other mappings can
   4524 	 * be created while we have a potentially aliased mapping.
   4525 	 */
   4526 	simple_lock(&src_pg->mdpage.pvh_slock);
   4527 #ifdef PMAP_CACHE_VIVT
   4528 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4529 #endif
   4530 
   4531 	/*
   4532 	 * Map the pages into the page hook points, copy them, and purge
   4533 	 * the cache for the appropriate page. Invalidate the TLB
   4534 	 * as required.
   4535 	 */
   4536 	*src_ptep = L2_S_PROTO
   4537 	    | src
   4538 #ifdef PMAP_CACHE_VIPT
   4539 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4540 #endif
   4541 #ifdef PMAP_CACHE_VIVT
   4542 	    | pte_l2_s_cache_mode
   4543 #endif
   4544 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4545 	*dst_ptep = L2_S_PROTO | dst |
   4546 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4547 	PTE_SYNC(src_ptep);
   4548 	PTE_SYNC(dst_ptep);
   4549 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4550 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4551 	cpu_cpwait();
   4552 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4553 #ifdef PMAP_CACHE_VIVT
   4554 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4555 #endif
   4556 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4557 #ifdef PMAP_CACHE_VIVT
   4558 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4559 #endif
   4560 	/*
   4561 	 * Unmap the pages.
   4562 	 */
   4563 	*src_ptep = 0;
   4564 	*dst_ptep = 0;
   4565 	PTE_SYNC(src_ptep);
   4566 	PTE_SYNC(dst_ptep);
   4567 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4568 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4569 #ifdef PMAP_CACHE_VIPT
   4570 	/*
   4571 	 * Now that the destination page is in the cache, mark it as colored.
   4572 	 * If this was an exec page, discard it.
   4573 	 */
   4574 	if (!pmap_is_page_colored_p(dst_pg)) {
   4575 		PMAPCOUNT(vac_color_new);
   4576 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4577 	}
   4578 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4579 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4580 		PMAPCOUNT(exec_discarded_copy);
   4581 	}
   4582 	dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4583 #endif
   4584 }
   4585 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4586 
   4587 #if ARM_MMU_XSCALE == 1
   4588 void
   4589 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4590 {
   4591 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4592 #ifdef DEBUG
   4593 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4594 
   4595 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4596 		panic("pmap_copy_page: dst page has mappings");
   4597 #endif
   4598 
   4599 	KDASSERT((src & PGOFSET) == 0);
   4600 	KDASSERT((dst & PGOFSET) == 0);
   4601 
   4602 	/*
   4603 	 * Clean the source page.  Hold the source page's lock for
   4604 	 * the duration of the copy so that no other mappings can
   4605 	 * be created while we have a potentially aliased mapping.
   4606 	 */
   4607 	simple_lock(&src_pg->mdpage.pvh_slock);
   4608 #ifdef PMAP_CACHE_VIVT
   4609 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4610 #endif
   4611 
   4612 	/*
   4613 	 * Map the pages into the page hook points, copy them, and purge
   4614 	 * the cache for the appropriate page. Invalidate the TLB
   4615 	 * as required.
   4616 	 */
   4617 	*csrc_pte = L2_S_PROTO | src |
   4618 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4619 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4620 	PTE_SYNC(csrc_pte);
   4621 	*cdst_pte = L2_S_PROTO | dst |
   4622 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4623 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4624 	PTE_SYNC(cdst_pte);
   4625 	cpu_tlb_flushD_SE(csrcp);
   4626 	cpu_tlb_flushD_SE(cdstp);
   4627 	cpu_cpwait();
   4628 	bcopy_page(csrcp, cdstp);
   4629 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4630 	xscale_cache_clean_minidata();
   4631 }
   4632 #endif /* ARM_MMU_XSCALE == 1 */
   4633 
   4634 /*
   4635  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4636  *
   4637  * Return the start and end addresses of the kernel's virtual space.
   4638  * These values are setup in pmap_bootstrap and are updated as pages
   4639  * are allocated.
   4640  */
   4641 void
   4642 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4643 {
   4644 	*start = virtual_avail;
   4645 	*end = virtual_end;
   4646 }
   4647 
   4648 /*
   4649  * Helper function for pmap_grow_l2_bucket()
   4650  */
   4651 static inline int
   4652 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4653 {
   4654 	struct l2_bucket *l2b;
   4655 	pt_entry_t *ptep;
   4656 	paddr_t pa;
   4657 
   4658 	if (uvm.page_init_done == false) {
   4659 #ifdef PMAP_STEAL_MEMORY
   4660 		pv_addr_t pv;
   4661 		pmap_boot_pagealloc(PAGE_SIZE,
   4662 #ifdef PMAP_CACHE_VIPT
   4663 		    arm_cache_prefer_mask,
   4664 		    va & arm_cache_prefer_mask,
   4665 #else
   4666 		    0, 0,
   4667 #endif
   4668 		    &pv);
   4669 		pa = pv.pv_pa;
   4670 #else
   4671 		if (uvm_page_physget(&pa) == false)
   4672 			return (1);
   4673 #endif	/* PMAP_STEAL_MEMORY */
   4674 	} else {
   4675 		struct vm_page *pg;
   4676 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4677 		if (pg == NULL)
   4678 			return (1);
   4679 		pa = VM_PAGE_TO_PHYS(pg);
   4680 #ifdef PMAP_CACHE_VIPT
   4681 		/*
   4682 		 * This new page must not have any mappings.  Enter it via
   4683 		 * pmap_kenter_pa and let that routine do the hard work.
   4684 		 */
   4685 		KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
   4686 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   4687 #endif
   4688 	}
   4689 
   4690 	if (pap)
   4691 		*pap = pa;
   4692 
   4693 	PMAPCOUNT(pt_mappings);
   4694 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4695 	KDASSERT(l2b != NULL);
   4696 
   4697 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4698 	*ptep = L2_S_PROTO | pa | cache_mode |
   4699 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4700 	PTE_SYNC(ptep);
   4701 	memset((void *)va, 0, PAGE_SIZE);
   4702 	return (0);
   4703 }
   4704 
   4705 /*
   4706  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4707  * used by pmap_growkernel().
   4708  */
   4709 static inline struct l2_bucket *
   4710 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4711 {
   4712 	struct l2_dtable *l2;
   4713 	struct l2_bucket *l2b;
   4714 	u_short l1idx;
   4715 	vaddr_t nva;
   4716 
   4717 	l1idx = L1_IDX(va);
   4718 
   4719 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4720 		/*
   4721 		 * No mapping at this address, as there is
   4722 		 * no entry in the L1 table.
   4723 		 * Need to allocate a new l2_dtable.
   4724 		 */
   4725 		nva = pmap_kernel_l2dtable_kva;
   4726 		if ((nva & PGOFSET) == 0) {
   4727 			/*
   4728 			 * Need to allocate a backing page
   4729 			 */
   4730 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4731 				return (NULL);
   4732 		}
   4733 
   4734 		l2 = (struct l2_dtable *)nva;
   4735 		nva += sizeof(struct l2_dtable);
   4736 
   4737 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4738 			/*
   4739 			 * The new l2_dtable straddles a page boundary.
   4740 			 * Map in another page to cover it.
   4741 			 */
   4742 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4743 				return (NULL);
   4744 		}
   4745 
   4746 		pmap_kernel_l2dtable_kva = nva;
   4747 
   4748 		/*
   4749 		 * Link it into the parent pmap
   4750 		 */
   4751 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4752 	}
   4753 
   4754 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4755 
   4756 	/*
   4757 	 * Fetch pointer to the L2 page table associated with the address.
   4758 	 */
   4759 	if (l2b->l2b_kva == NULL) {
   4760 		pt_entry_t *ptep;
   4761 
   4762 		/*
   4763 		 * No L2 page table has been allocated. Chances are, this
   4764 		 * is because we just allocated the l2_dtable, above.
   4765 		 */
   4766 		nva = pmap_kernel_l2ptp_kva;
   4767 		ptep = (pt_entry_t *)nva;
   4768 		if ((nva & PGOFSET) == 0) {
   4769 			/*
   4770 			 * Need to allocate a backing page
   4771 			 */
   4772 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4773 			    &pmap_kernel_l2ptp_phys))
   4774 				return (NULL);
   4775 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4776 		}
   4777 
   4778 		l2->l2_occupancy++;
   4779 		l2b->l2b_kva = ptep;
   4780 		l2b->l2b_l1idx = l1idx;
   4781 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4782 
   4783 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4784 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4785 	}
   4786 
   4787 	return (l2b);
   4788 }
   4789 
   4790 vaddr_t
   4791 pmap_growkernel(vaddr_t maxkvaddr)
   4792 {
   4793 	pmap_t kpm = pmap_kernel();
   4794 	struct l1_ttable *l1;
   4795 	struct l2_bucket *l2b;
   4796 	pd_entry_t *pl1pd;
   4797 	int s;
   4798 
   4799 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4800 		goto out;		/* we are OK */
   4801 
   4802 	NPDEBUG(PDB_GROWKERN,
   4803 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4804 	    pmap_curmaxkvaddr, maxkvaddr));
   4805 
   4806 	KDASSERT(maxkvaddr <= virtual_end);
   4807 
   4808 	/*
   4809 	 * whoops!   we need to add kernel PTPs
   4810 	 */
   4811 
   4812 	s = splhigh();	/* to be safe */
   4813 	mutex_enter(&kpm->pm_lock);
   4814 
   4815 	/* Map 1MB at a time */
   4816 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4817 
   4818 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4819 		KDASSERT(l2b != NULL);
   4820 
   4821 		/* Distribute new L1 entry to all other L1s */
   4822 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4823 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4824 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4825 			    L1_C_PROTO;
   4826 			PTE_SYNC(pl1pd);
   4827 		}
   4828 	}
   4829 
   4830 	/*
   4831 	 * flush out the cache, expensive but growkernel will happen so
   4832 	 * rarely
   4833 	 */
   4834 	cpu_dcache_wbinv_all();
   4835 	cpu_tlb_flushD();
   4836 	cpu_cpwait();
   4837 
   4838 	mutex_exit(&kpm->pm_lock);
   4839 	splx(s);
   4840 
   4841 out:
   4842 	return (pmap_curmaxkvaddr);
   4843 }
   4844 
   4845 /************************ Utility routines ****************************/
   4846 
   4847 /*
   4848  * vector_page_setprot:
   4849  *
   4850  *	Manipulate the protection of the vector page.
   4851  */
   4852 void
   4853 vector_page_setprot(int prot)
   4854 {
   4855 	struct l2_bucket *l2b;
   4856 	pt_entry_t *ptep;
   4857 
   4858 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4859 	KDASSERT(l2b != NULL);
   4860 
   4861 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4862 
   4863 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4864 	PTE_SYNC(ptep);
   4865 	cpu_tlb_flushD_SE(vector_page);
   4866 	cpu_cpwait();
   4867 }
   4868 
   4869 /*
   4870  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4871  * Returns true if the mapping exists, else false.
   4872  *
   4873  * NOTE: This function is only used by a couple of arm-specific modules.
   4874  * It is not safe to take any pmap locks here, since we could be right
   4875  * in the middle of debugging the pmap anyway...
   4876  *
   4877  * It is possible for this routine to return false even though a valid
   4878  * mapping does exist. This is because we don't lock, so the metadata
   4879  * state may be inconsistent.
   4880  *
   4881  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4882  * a "section" mapping.
   4883  */
   4884 bool
   4885 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4886 {
   4887 	struct l2_dtable *l2;
   4888 	pd_entry_t *pl1pd, l1pd;
   4889 	pt_entry_t *ptep;
   4890 	u_short l1idx;
   4891 
   4892 	if (pm->pm_l1 == NULL)
   4893 		return false;
   4894 
   4895 	l1idx = L1_IDX(va);
   4896 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4897 	l1pd = *pl1pd;
   4898 
   4899 	if (l1pte_section_p(l1pd)) {
   4900 		*ptp = NULL;
   4901 		return true;
   4902 	}
   4903 
   4904 	if (pm->pm_l2 == NULL)
   4905 		return false;
   4906 
   4907 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4908 
   4909 	if (l2 == NULL ||
   4910 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4911 		return false;
   4912 	}
   4913 
   4914 	*ptp = &ptep[l2pte_index(va)];
   4915 	return true;
   4916 }
   4917 
   4918 bool
   4919 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4920 {
   4921 	u_short l1idx;
   4922 
   4923 	if (pm->pm_l1 == NULL)
   4924 		return false;
   4925 
   4926 	l1idx = L1_IDX(va);
   4927 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4928 
   4929 	return true;
   4930 }
   4931 
   4932 /************************ Bootstrapping routines ****************************/
   4933 
   4934 static void
   4935 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4936 {
   4937 	int i;
   4938 
   4939 	l1->l1_kva = l1pt;
   4940 	l1->l1_domain_use_count = 0;
   4941 	l1->l1_domain_first = 0;
   4942 
   4943 	for (i = 0; i < PMAP_DOMAINS; i++)
   4944 		l1->l1_domain_free[i] = i + 1;
   4945 
   4946 	/*
   4947 	 * Copy the kernel's L1 entries to each new L1.
   4948 	 */
   4949 	if (pmap_initialized)
   4950 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   4951 
   4952 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   4953 	    &l1->l1_physaddr) == false)
   4954 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   4955 
   4956 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   4957 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   4958 }
   4959 
   4960 /*
   4961  * pmap_bootstrap() is called from the board-specific initarm() routine
   4962  * once the kernel L1/L2 descriptors tables have been set up.
   4963  *
   4964  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   4965  * spread over a number of disparate files/functions.
   4966  *
   4967  * We are passed the following parameters
   4968  *  - kernel_l1pt
   4969  *    This is a pointer to the base of the kernel's L1 translation table.
   4970  *  - vstart
   4971  *    1MB-aligned start of managed kernel virtual memory.
   4972  *  - vend
   4973  *    1MB-aligned end of managed kernel virtual memory.
   4974  *
   4975  * We use the first parameter to build the metadata (struct l1_ttable and
   4976  * struct l2_dtable) necessary to track kernel mappings.
   4977  */
   4978 #define	PMAP_STATIC_L2_SIZE 16
   4979 void
   4980 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   4981 {
   4982 	static struct l1_ttable static_l1;
   4983 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   4984 	struct l1_ttable *l1 = &static_l1;
   4985 	struct l2_dtable *l2;
   4986 	struct l2_bucket *l2b;
   4987 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   4988 	pmap_t pm = pmap_kernel();
   4989 	pd_entry_t pde;
   4990 	pt_entry_t *ptep;
   4991 	paddr_t pa;
   4992 	vaddr_t va;
   4993 	vsize_t size;
   4994 	int nptes, l1idx, l2idx, l2next = 0;
   4995 
   4996 	/*
   4997 	 * Initialise the kernel pmap object
   4998 	 */
   4999 	pm->pm_l1 = l1;
   5000 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5001 	pm->pm_activated = true;
   5002 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5003 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   5004 
   5005 	/*
   5006 	 * Scan the L1 translation table created by initarm() and create
   5007 	 * the required metadata for all valid mappings found in it.
   5008 	 */
   5009 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5010 		pde = l1pt[l1idx];
   5011 
   5012 		/*
   5013 		 * We're only interested in Coarse mappings.
   5014 		 * pmap_extract() can deal with section mappings without
   5015 		 * recourse to checking L2 metadata.
   5016 		 */
   5017 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5018 			continue;
   5019 
   5020 		/*
   5021 		 * Lookup the KVA of this L2 descriptor table
   5022 		 */
   5023 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5024 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5025 		if (ptep == NULL) {
   5026 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5027 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5028 		}
   5029 
   5030 		/*
   5031 		 * Fetch the associated L2 metadata structure.
   5032 		 * Allocate a new one if necessary.
   5033 		 */
   5034 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5035 			if (l2next == PMAP_STATIC_L2_SIZE)
   5036 				panic("pmap_bootstrap: out of static L2s");
   5037 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5038 		}
   5039 
   5040 		/*
   5041 		 * One more L1 slot tracked...
   5042 		 */
   5043 		l2->l2_occupancy++;
   5044 
   5045 		/*
   5046 		 * Fill in the details of the L2 descriptor in the
   5047 		 * appropriate bucket.
   5048 		 */
   5049 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5050 		l2b->l2b_kva = ptep;
   5051 		l2b->l2b_phys = pa;
   5052 		l2b->l2b_l1idx = l1idx;
   5053 
   5054 		/*
   5055 		 * Establish an initial occupancy count for this descriptor
   5056 		 */
   5057 		for (l2idx = 0;
   5058 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5059 		    l2idx++) {
   5060 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5061 				l2b->l2b_occupancy++;
   5062 			}
   5063 		}
   5064 
   5065 		/*
   5066 		 * Make sure the descriptor itself has the correct cache mode.
   5067 		 * If not, fix it, but whine about the problem. Port-meisters
   5068 		 * should consider this a clue to fix up their initarm()
   5069 		 * function. :)
   5070 		 */
   5071 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5072 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5073 			    "L2 pte @ %p\n", ptep);
   5074 		}
   5075 	}
   5076 
   5077 	/*
   5078 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5079 	 * a page table. Bitch if it is not correctly set.
   5080 	 */
   5081 	for (va = (vaddr_t)l1pt;
   5082 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5083 		if (pmap_set_pt_cache_mode(l1pt, va))
   5084 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5085 			    "primary L1 @ 0x%lx\n", va);
   5086 	}
   5087 
   5088 	cpu_dcache_wbinv_all();
   5089 	cpu_tlb_flushID();
   5090 	cpu_cpwait();
   5091 
   5092 	/*
   5093 	 * now we allocate the "special" VAs which are used for tmp mappings
   5094 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5095 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5096 	 *
   5097 	 * Managed KVM space start from wherever initarm() tells us.
   5098 	 */
   5099 	virtual_avail = vstart;
   5100 	virtual_end = vend;
   5101 
   5102 #ifdef PMAP_CACHE_VIPT
   5103 	/*
   5104 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5105 	 * page so we won't violate cache aliasing rules.
   5106 	 */
   5107 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5108 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5109 #else
   5110 	nptes = 1;
   5111 #endif
   5112 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5113 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5114 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5115 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5116 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5117 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5118 	    (void *)&msgbufaddr, NULL);
   5119 
   5120 	/*
   5121 	 * Allocate a range of kernel virtual address space to be used
   5122 	 * for L2 descriptor tables and metadata allocation in
   5123 	 * pmap_growkernel().
   5124 	 */
   5125 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5126 	pmap_alloc_specials(&virtual_avail,
   5127 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5128 	    &pmap_kernel_l2ptp_kva, NULL);
   5129 
   5130 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5131 	pmap_alloc_specials(&virtual_avail,
   5132 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5133 	    &pmap_kernel_l2dtable_kva, NULL);
   5134 
   5135 	/*
   5136 	 * init the static-global locks and global pmap list.
   5137 	 */
   5138 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5139 
   5140 	/*
   5141 	 * We can now initialise the first L1's metadata.
   5142 	 */
   5143 	SLIST_INIT(&l1_list);
   5144 	TAILQ_INIT(&l1_lru_list);
   5145 	simple_lock_init(&l1_lru_lock);
   5146 	pmap_init_l1(l1, l1pt);
   5147 
   5148 	/* Set up vector page L1 details, if necessary */
   5149 	if (vector_page < KERNEL_BASE) {
   5150 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5151 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5152 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5153 		    L1_C_DOM(pm->pm_domain);
   5154 	} else
   5155 		pm->pm_pl1vec = NULL;
   5156 
   5157 	/*
   5158 	 * Initialize the pmap cache
   5159 	 */
   5160 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5161 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5162 	LIST_INIT(&pmap_pmaps);
   5163 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5164 
   5165 	/*
   5166 	 * Initialize the pv pool.
   5167 	 */
   5168 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5169 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5170 
   5171 	/*
   5172 	 * Initialize the L2 dtable pool and cache.
   5173 	 */
   5174 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5175 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5176 
   5177 	/*
   5178 	 * Initialise the L2 descriptor table pool and cache
   5179 	 */
   5180 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5181 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5182 	    pmap_l2ptp_ctor, NULL, NULL);
   5183 
   5184 	cpu_dcache_wbinv_all();
   5185 }
   5186 
   5187 static int
   5188 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5189 {
   5190 	pd_entry_t *pdep, pde;
   5191 	pt_entry_t *ptep, pte;
   5192 	vaddr_t pa;
   5193 	int rv = 0;
   5194 
   5195 	/*
   5196 	 * Make sure the descriptor itself has the correct cache mode
   5197 	 */
   5198 	pdep = &kl1[L1_IDX(va)];
   5199 	pde = *pdep;
   5200 
   5201 	if (l1pte_section_p(pde)) {
   5202 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5203 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5204 			    pte_l1_s_cache_mode_pt;
   5205 			PTE_SYNC(pdep);
   5206 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5207 			rv = 1;
   5208 		}
   5209 	} else {
   5210 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5211 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5212 		if (ptep == NULL)
   5213 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5214 
   5215 		ptep = &ptep[l2pte_index(va)];
   5216 		pte = *ptep;
   5217 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5218 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5219 			    pte_l2_s_cache_mode_pt;
   5220 			PTE_SYNC(ptep);
   5221 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5222 			rv = 1;
   5223 		}
   5224 	}
   5225 
   5226 	return (rv);
   5227 }
   5228 
   5229 static void
   5230 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5231 {
   5232 	vaddr_t va = *availp;
   5233 	struct l2_bucket *l2b;
   5234 
   5235 	if (ptep) {
   5236 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5237 		if (l2b == NULL)
   5238 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5239 
   5240 		if (ptep)
   5241 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5242 	}
   5243 
   5244 	*vap = va;
   5245 	*availp = va + (PAGE_SIZE * pages);
   5246 }
   5247 
   5248 void
   5249 pmap_init(void)
   5250 {
   5251 	extern int physmem;
   5252 
   5253 	/*
   5254 	 * Set the available memory vars - These do not map to real memory
   5255 	 * addresses and cannot as the physical memory is fragmented.
   5256 	 * They are used by ps for %mem calculations.
   5257 	 * One could argue whether this should be the entire memory or just
   5258 	 * the memory that is useable in a user process.
   5259 	 */
   5260 	avail_start = 0;
   5261 	avail_end = physmem * PAGE_SIZE;
   5262 
   5263 	/*
   5264 	 * Now we need to free enough pv_entry structures to allow us to get
   5265 	 * the kmem_map/kmem_object allocated and inited (done after this
   5266 	 * function is finished).  to do this we allocate one bootstrap page out
   5267 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5268 	 * structures.   we never free this page.
   5269 	 */
   5270 	pool_setlowat(&pmap_pv_pool,
   5271 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5272 
   5273 	pmap_initialized = true;
   5274 }
   5275 
   5276 static vaddr_t last_bootstrap_page = 0;
   5277 static void *free_bootstrap_pages = NULL;
   5278 
   5279 static void *
   5280 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5281 {
   5282 	extern void *pool_page_alloc(struct pool *, int);
   5283 	vaddr_t new_page;
   5284 	void *rv;
   5285 
   5286 	if (pmap_initialized)
   5287 		return (pool_page_alloc(pp, flags));
   5288 
   5289 	if (free_bootstrap_pages) {
   5290 		rv = free_bootstrap_pages;
   5291 		free_bootstrap_pages = *((void **)rv);
   5292 		return (rv);
   5293 	}
   5294 
   5295 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5296 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5297 
   5298 	KASSERT(new_page > last_bootstrap_page);
   5299 	last_bootstrap_page = new_page;
   5300 	return ((void *)new_page);
   5301 }
   5302 
   5303 static void
   5304 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5305 {
   5306 	extern void pool_page_free(struct pool *, void *);
   5307 
   5308 	if ((vaddr_t)v <= last_bootstrap_page) {
   5309 		*((void **)v) = free_bootstrap_pages;
   5310 		free_bootstrap_pages = v;
   5311 		return;
   5312 	}
   5313 
   5314 	if (pmap_initialized) {
   5315 		pool_page_free(pp, v);
   5316 		return;
   5317 	}
   5318 }
   5319 
   5320 /*
   5321  * pmap_postinit()
   5322  *
   5323  * This routine is called after the vm and kmem subsystems have been
   5324  * initialised. This allows the pmap code to perform any initialisation
   5325  * that can only be done one the memory allocation is in place.
   5326  */
   5327 void
   5328 pmap_postinit(void)
   5329 {
   5330 	extern paddr_t physical_start, physical_end;
   5331 	struct l2_bucket *l2b;
   5332 	struct l1_ttable *l1;
   5333 	struct pglist plist;
   5334 	struct vm_page *m;
   5335 	pd_entry_t *pl1pt;
   5336 	pt_entry_t *ptep, pte;
   5337 	vaddr_t va, eva;
   5338 	u_int loop, needed;
   5339 	int error;
   5340 
   5341 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5342 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5343 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5344 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5345 
   5346 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5347 	needed -= 1;
   5348 
   5349 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5350 
   5351 	for (loop = 0; loop < needed; loop++, l1++) {
   5352 		/* Allocate a L1 page table */
   5353 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5354 		if (va == 0)
   5355 			panic("Cannot allocate L1 KVM");
   5356 
   5357 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5358 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5359 		if (error)
   5360 			panic("Cannot allocate L1 physical pages");
   5361 
   5362 		m = TAILQ_FIRST(&plist);
   5363 		eva = va + L1_TABLE_SIZE;
   5364 		pl1pt = (pd_entry_t *)va;
   5365 
   5366 		while (m && va < eva) {
   5367 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5368 
   5369 			pmap_kenter_pa(va, pa,
   5370 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   5371 
   5372 			/*
   5373 			 * Make sure the L1 descriptor table is mapped
   5374 			 * with the cache-mode set to write-through.
   5375 			 */
   5376 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5377 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5378 			pte = *ptep;
   5379 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5380 			*ptep = pte;
   5381 			PTE_SYNC(ptep);
   5382 			cpu_tlb_flushD_SE(va);
   5383 
   5384 			va += PAGE_SIZE;
   5385 			m = TAILQ_NEXT(m, pageq.queue);
   5386 		}
   5387 
   5388 #ifdef DIAGNOSTIC
   5389 		if (m)
   5390 			panic("pmap_alloc_l1pt: pglist not empty");
   5391 #endif	/* DIAGNOSTIC */
   5392 
   5393 		pmap_init_l1(l1, pl1pt);
   5394 	}
   5395 
   5396 #ifdef DEBUG
   5397 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5398 	    needed);
   5399 #endif
   5400 }
   5401 
   5402 /*
   5403  * Note that the following routines are used by board-specific initialisation
   5404  * code to configure the initial kernel page tables.
   5405  *
   5406  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5407  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5408  * behaviour of the old pmap, and provides an easy migration path for
   5409  * initial bring-up of the new pmap on existing ports. Fortunately,
   5410  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5411  * will be deprecated.
   5412  *
   5413  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5414  * tables.
   5415  */
   5416 
   5417 /*
   5418  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5419  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5420  * find them as necessary.
   5421  *
   5422  * Note that the data on this list MUST remain valid after initarm() returns,
   5423  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5424  */
   5425 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5426 
   5427 static vaddr_t
   5428 kernel_pt_lookup(paddr_t pa)
   5429 {
   5430 	pv_addr_t *pv;
   5431 
   5432 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5433 #ifndef ARM32_NEW_VM_LAYOUT
   5434 		if (pv->pv_pa == (pa & ~PGOFSET))
   5435 			return (pv->pv_va | (pa & PGOFSET));
   5436 #else
   5437 		if (pv->pv_pa == pa)
   5438 			return (pv->pv_va);
   5439 #endif
   5440 	}
   5441 	return (0);
   5442 }
   5443 
   5444 /*
   5445  * pmap_map_section:
   5446  *
   5447  *	Create a single section mapping.
   5448  */
   5449 void
   5450 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5451 {
   5452 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5453 	pd_entry_t fl;
   5454 
   5455 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5456 
   5457 	switch (cache) {
   5458 	case PTE_NOCACHE:
   5459 	default:
   5460 		fl = 0;
   5461 		break;
   5462 
   5463 	case PTE_CACHE:
   5464 		fl = pte_l1_s_cache_mode;
   5465 		break;
   5466 
   5467 	case PTE_PAGETABLE:
   5468 		fl = pte_l1_s_cache_mode_pt;
   5469 		break;
   5470 	}
   5471 
   5472 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5473 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5474 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5475 }
   5476 
   5477 /*
   5478  * pmap_map_entry:
   5479  *
   5480  *	Create a single page mapping.
   5481  */
   5482 void
   5483 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5484 {
   5485 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5486 	pt_entry_t fl;
   5487 	pt_entry_t *pte;
   5488 
   5489 	KASSERT(((va | pa) & PGOFSET) == 0);
   5490 
   5491 	switch (cache) {
   5492 	case PTE_NOCACHE:
   5493 	default:
   5494 		fl = 0;
   5495 		break;
   5496 
   5497 	case PTE_CACHE:
   5498 		fl = pte_l2_s_cache_mode;
   5499 		break;
   5500 
   5501 	case PTE_PAGETABLE:
   5502 		fl = pte_l2_s_cache_mode_pt;
   5503 		break;
   5504 	}
   5505 
   5506 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5507 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5508 
   5509 #ifndef ARM32_NEW_VM_LAYOUT
   5510 	pte = (pt_entry_t *)
   5511 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5512 #else
   5513 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5514 #endif
   5515 	if (pte == NULL)
   5516 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5517 
   5518 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5519 #ifndef ARM32_NEW_VM_LAYOUT
   5520 	pte += (va >> PGSHIFT) & 0x3ff;
   5521 #else
   5522 	pte += l2pte_index(va);
   5523 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5524 #endif
   5525 	*pte = fl;
   5526 	PTE_SYNC(pte);
   5527 }
   5528 
   5529 /*
   5530  * pmap_link_l2pt:
   5531  *
   5532  *	Link the L2 page table specified by "l2pv" into the L1
   5533  *	page table at the slot for "va".
   5534  */
   5535 void
   5536 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5537 {
   5538 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5539 	u_int slot = va >> L1_S_SHIFT;
   5540 
   5541 #ifndef ARM32_NEW_VM_LAYOUT
   5542 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5543 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5544 #endif
   5545 
   5546 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5547 
   5548 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5549 #ifdef ARM32_NEW_VM_LAYOUT
   5550 	PTE_SYNC(&pde[slot]);
   5551 #else
   5552 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5553 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5554 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5555 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5556 #endif
   5557 
   5558 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5559 }
   5560 
   5561 /*
   5562  * pmap_map_chunk:
   5563  *
   5564  *	Map a chunk of memory using the most efficient mappings
   5565  *	possible (section, large page, small page) into the
   5566  *	provided L1 and L2 tables at the specified virtual address.
   5567  */
   5568 vsize_t
   5569 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5570     int prot, int cache)
   5571 {
   5572 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5573 	pt_entry_t *pte, f1, f2s, f2l;
   5574 	vsize_t resid;
   5575 	int i;
   5576 
   5577 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5578 
   5579 	if (l1pt == 0)
   5580 		panic("pmap_map_chunk: no L1 table provided");
   5581 
   5582 #ifdef VERBOSE_INIT_ARM
   5583 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5584 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5585 #endif
   5586 
   5587 	switch (cache) {
   5588 	case PTE_NOCACHE:
   5589 	default:
   5590 		f1 = 0;
   5591 		f2l = 0;
   5592 		f2s = 0;
   5593 		break;
   5594 
   5595 	case PTE_CACHE:
   5596 		f1 = pte_l1_s_cache_mode;
   5597 		f2l = pte_l2_l_cache_mode;
   5598 		f2s = pte_l2_s_cache_mode;
   5599 		break;
   5600 
   5601 	case PTE_PAGETABLE:
   5602 		f1 = pte_l1_s_cache_mode_pt;
   5603 		f2l = pte_l2_l_cache_mode_pt;
   5604 		f2s = pte_l2_s_cache_mode_pt;
   5605 		break;
   5606 	}
   5607 
   5608 	size = resid;
   5609 
   5610 	while (resid > 0) {
   5611 		/* See if we can use a section mapping. */
   5612 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5613 #ifdef VERBOSE_INIT_ARM
   5614 			printf("S");
   5615 #endif
   5616 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5617 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5618 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5619 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5620 			va += L1_S_SIZE;
   5621 			pa += L1_S_SIZE;
   5622 			resid -= L1_S_SIZE;
   5623 			continue;
   5624 		}
   5625 
   5626 		/*
   5627 		 * Ok, we're going to use an L2 table.  Make sure
   5628 		 * one is actually in the corresponding L1 slot
   5629 		 * for the current VA.
   5630 		 */
   5631 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5632 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5633 
   5634 #ifndef ARM32_NEW_VM_LAYOUT
   5635 		pte = (pt_entry_t *)
   5636 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5637 #else
   5638 		pte = (pt_entry_t *) kernel_pt_lookup(
   5639 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5640 #endif
   5641 		if (pte == NULL)
   5642 			panic("pmap_map_chunk: can't find L2 table for VA"
   5643 			    "0x%08lx", va);
   5644 
   5645 		/* See if we can use a L2 large page mapping. */
   5646 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5647 #ifdef VERBOSE_INIT_ARM
   5648 			printf("L");
   5649 #endif
   5650 			for (i = 0; i < 16; i++) {
   5651 #ifndef ARM32_NEW_VM_LAYOUT
   5652 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5653 				    L2_L_PROTO | pa |
   5654 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5655 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5656 #else
   5657 				pte[l2pte_index(va) + i] =
   5658 				    L2_L_PROTO | pa |
   5659 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5660 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5661 #endif
   5662 			}
   5663 			va += L2_L_SIZE;
   5664 			pa += L2_L_SIZE;
   5665 			resid -= L2_L_SIZE;
   5666 			continue;
   5667 		}
   5668 
   5669 		/* Use a small page mapping. */
   5670 #ifdef VERBOSE_INIT_ARM
   5671 		printf("P");
   5672 #endif
   5673 #ifndef ARM32_NEW_VM_LAYOUT
   5674 		pte[(va >> PGSHIFT) & 0x3ff] =
   5675 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5676 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5677 #else
   5678 		pte[l2pte_index(va)] =
   5679 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5680 		PTE_SYNC(&pte[l2pte_index(va)]);
   5681 #endif
   5682 		va += PAGE_SIZE;
   5683 		pa += PAGE_SIZE;
   5684 		resid -= PAGE_SIZE;
   5685 	}
   5686 #ifdef VERBOSE_INIT_ARM
   5687 	printf("\n");
   5688 #endif
   5689 	return (size);
   5690 }
   5691 
   5692 /********************** Static device map routines ***************************/
   5693 
   5694 static const struct pmap_devmap *pmap_devmap_table;
   5695 
   5696 /*
   5697  * Register the devmap table.  This is provided in case early console
   5698  * initialization needs to register mappings created by bootstrap code
   5699  * before pmap_devmap_bootstrap() is called.
   5700  */
   5701 void
   5702 pmap_devmap_register(const struct pmap_devmap *table)
   5703 {
   5704 
   5705 	pmap_devmap_table = table;
   5706 }
   5707 
   5708 /*
   5709  * Map all of the static regions in the devmap table, and remember
   5710  * the devmap table so other parts of the kernel can look up entries
   5711  * later.
   5712  */
   5713 void
   5714 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5715 {
   5716 	int i;
   5717 
   5718 	pmap_devmap_table = table;
   5719 
   5720 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5721 #ifdef VERBOSE_INIT_ARM
   5722 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5723 		    pmap_devmap_table[i].pd_pa,
   5724 		    pmap_devmap_table[i].pd_pa +
   5725 			pmap_devmap_table[i].pd_size - 1,
   5726 		    pmap_devmap_table[i].pd_va);
   5727 #endif
   5728 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5729 		    pmap_devmap_table[i].pd_pa,
   5730 		    pmap_devmap_table[i].pd_size,
   5731 		    pmap_devmap_table[i].pd_prot,
   5732 		    pmap_devmap_table[i].pd_cache);
   5733 	}
   5734 }
   5735 
   5736 const struct pmap_devmap *
   5737 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5738 {
   5739 	uint64_t endpa;
   5740 	int i;
   5741 
   5742 	if (pmap_devmap_table == NULL)
   5743 		return (NULL);
   5744 
   5745 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5746 
   5747 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5748 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5749 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5750 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5751 			return (&pmap_devmap_table[i]);
   5752 	}
   5753 
   5754 	return (NULL);
   5755 }
   5756 
   5757 const struct pmap_devmap *
   5758 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5759 {
   5760 	int i;
   5761 
   5762 	if (pmap_devmap_table == NULL)
   5763 		return (NULL);
   5764 
   5765 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5766 		if (va >= pmap_devmap_table[i].pd_va &&
   5767 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5768 				     pmap_devmap_table[i].pd_size - 1)
   5769 			return (&pmap_devmap_table[i]);
   5770 	}
   5771 
   5772 	return (NULL);
   5773 }
   5774 
   5775 /********************** PTE initialization routines **************************/
   5776 
   5777 /*
   5778  * These routines are called when the CPU type is identified to set up
   5779  * the PTE prototypes, cache modes, etc.
   5780  *
   5781  * The variables are always here, just in case LKMs need to reference
   5782  * them (though, they shouldn't).
   5783  */
   5784 
   5785 pt_entry_t	pte_l1_s_cache_mode;
   5786 pt_entry_t	pte_l1_s_cache_mode_pt;
   5787 pt_entry_t	pte_l1_s_cache_mask;
   5788 
   5789 pt_entry_t	pte_l2_l_cache_mode;
   5790 pt_entry_t	pte_l2_l_cache_mode_pt;
   5791 pt_entry_t	pte_l2_l_cache_mask;
   5792 
   5793 pt_entry_t	pte_l2_s_cache_mode;
   5794 pt_entry_t	pte_l2_s_cache_mode_pt;
   5795 pt_entry_t	pte_l2_s_cache_mask;
   5796 
   5797 pt_entry_t	pte_l2_s_prot_u;
   5798 pt_entry_t	pte_l2_s_prot_w;
   5799 pt_entry_t	pte_l2_s_prot_mask;
   5800 
   5801 pt_entry_t	pte_l1_s_proto;
   5802 pt_entry_t	pte_l1_c_proto;
   5803 pt_entry_t	pte_l2_s_proto;
   5804 
   5805 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5806 void		(*pmap_zero_page_func)(paddr_t);
   5807 
   5808 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5809 void
   5810 pmap_pte_init_generic(void)
   5811 {
   5812 
   5813 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5814 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5815 
   5816 	pte_l2_l_cache_mode = L2_B|L2_C;
   5817 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5818 
   5819 	pte_l2_s_cache_mode = L2_B|L2_C;
   5820 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5821 
   5822 	/*
   5823 	 * If we have a write-through cache, set B and C.  If
   5824 	 * we have a write-back cache, then we assume setting
   5825 	 * only C will make those pages write-through.
   5826 	 */
   5827 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5828 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5829 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5830 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5831 	} else {
   5832 #if ARM_MMU_V6 > 1
   5833 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5834 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5835 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5836 #else
   5837 		pte_l1_s_cache_mode_pt = L1_S_C;
   5838 		pte_l2_l_cache_mode_pt = L2_C;
   5839 		pte_l2_s_cache_mode_pt = L2_C;
   5840 #endif
   5841 	}
   5842 
   5843 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5844 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5845 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5846 
   5847 	pte_l1_s_proto = L1_S_PROTO_generic;
   5848 	pte_l1_c_proto = L1_C_PROTO_generic;
   5849 	pte_l2_s_proto = L2_S_PROTO_generic;
   5850 
   5851 	pmap_copy_page_func = pmap_copy_page_generic;
   5852 	pmap_zero_page_func = pmap_zero_page_generic;
   5853 }
   5854 
   5855 #if defined(CPU_ARM8)
   5856 void
   5857 pmap_pte_init_arm8(void)
   5858 {
   5859 
   5860 	/*
   5861 	 * ARM8 is compatible with generic, but we need to use
   5862 	 * the page tables uncached.
   5863 	 */
   5864 	pmap_pte_init_generic();
   5865 
   5866 	pte_l1_s_cache_mode_pt = 0;
   5867 	pte_l2_l_cache_mode_pt = 0;
   5868 	pte_l2_s_cache_mode_pt = 0;
   5869 }
   5870 #endif /* CPU_ARM8 */
   5871 
   5872 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5873 void
   5874 pmap_pte_init_arm9(void)
   5875 {
   5876 
   5877 	/*
   5878 	 * ARM9 is compatible with generic, but we want to use
   5879 	 * write-through caching for now.
   5880 	 */
   5881 	pmap_pte_init_generic();
   5882 
   5883 	pte_l1_s_cache_mode = L1_S_C;
   5884 	pte_l2_l_cache_mode = L2_C;
   5885 	pte_l2_s_cache_mode = L2_C;
   5886 
   5887 	pte_l1_s_cache_mode_pt = L1_S_C;
   5888 	pte_l2_l_cache_mode_pt = L2_C;
   5889 	pte_l2_s_cache_mode_pt = L2_C;
   5890 }
   5891 #endif /* CPU_ARM9 */
   5892 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5893 
   5894 #if defined(CPU_ARM10)
   5895 void
   5896 pmap_pte_init_arm10(void)
   5897 {
   5898 
   5899 	/*
   5900 	 * ARM10 is compatible with generic, but we want to use
   5901 	 * write-through caching for now.
   5902 	 */
   5903 	pmap_pte_init_generic();
   5904 
   5905 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5906 	pte_l2_l_cache_mode = L2_B | L2_C;
   5907 	pte_l2_s_cache_mode = L2_B | L2_C;
   5908 
   5909 	pte_l1_s_cache_mode_pt = L1_S_C;
   5910 	pte_l2_l_cache_mode_pt = L2_C;
   5911 	pte_l2_s_cache_mode_pt = L2_C;
   5912 
   5913 }
   5914 #endif /* CPU_ARM10 */
   5915 
   5916 #if ARM_MMU_SA1 == 1
   5917 void
   5918 pmap_pte_init_sa1(void)
   5919 {
   5920 
   5921 	/*
   5922 	 * The StrongARM SA-1 cache does not have a write-through
   5923 	 * mode.  So, do the generic initialization, then reset
   5924 	 * the page table cache mode to B=1,C=1, and note that
   5925 	 * the PTEs need to be sync'd.
   5926 	 */
   5927 	pmap_pte_init_generic();
   5928 
   5929 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5930 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5931 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5932 
   5933 	pmap_needs_pte_sync = 1;
   5934 }
   5935 #endif /* ARM_MMU_SA1 == 1*/
   5936 
   5937 #if ARM_MMU_XSCALE == 1
   5938 #if (ARM_NMMUS > 1)
   5939 static u_int xscale_use_minidata;
   5940 #endif
   5941 
   5942 void
   5943 pmap_pte_init_xscale(void)
   5944 {
   5945 	uint32_t auxctl;
   5946 	int write_through = 0;
   5947 
   5948 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5949 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   5950 
   5951 	pte_l2_l_cache_mode = L2_B|L2_C;
   5952 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   5953 
   5954 	pte_l2_s_cache_mode = L2_B|L2_C;
   5955 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   5956 
   5957 	pte_l1_s_cache_mode_pt = L1_S_C;
   5958 	pte_l2_l_cache_mode_pt = L2_C;
   5959 	pte_l2_s_cache_mode_pt = L2_C;
   5960 
   5961 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   5962 	/*
   5963 	 * The XScale core has an enhanced mode where writes that
   5964 	 * miss the cache cause a cache line to be allocated.  This
   5965 	 * is significantly faster than the traditional, write-through
   5966 	 * behavior of this case.
   5967 	 */
   5968 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   5969 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   5970 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   5971 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   5972 
   5973 #ifdef XSCALE_CACHE_WRITE_THROUGH
   5974 	/*
   5975 	 * Some versions of the XScale core have various bugs in
   5976 	 * their cache units, the work-around for which is to run
   5977 	 * the cache in write-through mode.  Unfortunately, this
   5978 	 * has a major (negative) impact on performance.  So, we
   5979 	 * go ahead and run fast-and-loose, in the hopes that we
   5980 	 * don't line up the planets in a way that will trip the
   5981 	 * bugs.
   5982 	 *
   5983 	 * However, we give you the option to be slow-but-correct.
   5984 	 */
   5985 	write_through = 1;
   5986 #elif defined(XSCALE_CACHE_WRITE_BACK)
   5987 	/* force write back cache mode */
   5988 	write_through = 0;
   5989 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   5990 	/*
   5991 	 * Intel PXA2[15]0 processors are known to have a bug in
   5992 	 * write-back cache on revision 4 and earlier (stepping
   5993 	 * A[01] and B[012]).  Fixed for C0 and later.
   5994 	 */
   5995 	{
   5996 		uint32_t id, type;
   5997 
   5998 		id = cpufunc_id();
   5999 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6000 
   6001 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6002 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6003 				/* write through for stepping A0-1 and B0-2 */
   6004 				write_through = 1;
   6005 			}
   6006 		}
   6007 	}
   6008 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6009 
   6010 	if (write_through) {
   6011 		pte_l1_s_cache_mode = L1_S_C;
   6012 		pte_l2_l_cache_mode = L2_C;
   6013 		pte_l2_s_cache_mode = L2_C;
   6014 	}
   6015 
   6016 #if (ARM_NMMUS > 1)
   6017 	xscale_use_minidata = 1;
   6018 #endif
   6019 
   6020 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6021 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6022 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6023 
   6024 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6025 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6026 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6027 
   6028 	pmap_copy_page_func = pmap_copy_page_xscale;
   6029 	pmap_zero_page_func = pmap_zero_page_xscale;
   6030 
   6031 	/*
   6032 	 * Disable ECC protection of page table access, for now.
   6033 	 */
   6034 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6035 	auxctl &= ~XSCALE_AUXCTL_P;
   6036 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6037 }
   6038 
   6039 /*
   6040  * xscale_setup_minidata:
   6041  *
   6042  *	Set up the mini-data cache clean area.  We require the
   6043  *	caller to allocate the right amount of physically and
   6044  *	virtually contiguous space.
   6045  */
   6046 void
   6047 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6048 {
   6049 	extern vaddr_t xscale_minidata_clean_addr;
   6050 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6051 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6052 	pt_entry_t *pte;
   6053 	vsize_t size;
   6054 	uint32_t auxctl;
   6055 
   6056 	xscale_minidata_clean_addr = va;
   6057 
   6058 	/* Round it to page size. */
   6059 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6060 
   6061 	for (; size != 0;
   6062 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6063 #ifndef ARM32_NEW_VM_LAYOUT
   6064 		pte = (pt_entry_t *)
   6065 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6066 #else
   6067 		pte = (pt_entry_t *) kernel_pt_lookup(
   6068 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6069 #endif
   6070 		if (pte == NULL)
   6071 			panic("xscale_setup_minidata: can't find L2 table for "
   6072 			    "VA 0x%08lx", va);
   6073 #ifndef ARM32_NEW_VM_LAYOUT
   6074 		pte[(va >> PGSHIFT) & 0x3ff] =
   6075 #else
   6076 		pte[l2pte_index(va)] =
   6077 #endif
   6078 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6079 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6080 	}
   6081 
   6082 	/*
   6083 	 * Configure the mini-data cache for write-back with
   6084 	 * read/write-allocate.
   6085 	 *
   6086 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6087 	 * make sure it contains no valid data!  In order to do that,
   6088 	 * we must issue a global data cache invalidate command!
   6089 	 *
   6090 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6091 	 * THIS IS VERY IMPORTANT!
   6092 	 */
   6093 
   6094 	/* Invalidate data and mini-data. */
   6095 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6096 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6097 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6098 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6099 }
   6100 
   6101 /*
   6102  * Change the PTEs for the specified kernel mappings such that they
   6103  * will use the mini data cache instead of the main data cache.
   6104  */
   6105 void
   6106 pmap_uarea(vaddr_t va)
   6107 {
   6108 	struct l2_bucket *l2b;
   6109 	pt_entry_t *ptep, *sptep, pte;
   6110 	vaddr_t next_bucket, eva;
   6111 
   6112 #if (ARM_NMMUS > 1)
   6113 	if (xscale_use_minidata == 0)
   6114 		return;
   6115 #endif
   6116 
   6117 	eva = va + USPACE;
   6118 
   6119 	while (va < eva) {
   6120 		next_bucket = L2_NEXT_BUCKET(va);
   6121 		if (next_bucket > eva)
   6122 			next_bucket = eva;
   6123 
   6124 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6125 		KDASSERT(l2b != NULL);
   6126 
   6127 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6128 
   6129 		while (va < next_bucket) {
   6130 			pte = *ptep;
   6131 			if (!l2pte_minidata(pte)) {
   6132 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6133 				cpu_tlb_flushD_SE(va);
   6134 				*ptep = pte & ~L2_B;
   6135 			}
   6136 			ptep++;
   6137 			va += PAGE_SIZE;
   6138 		}
   6139 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6140 	}
   6141 	cpu_cpwait();
   6142 }
   6143 #endif /* ARM_MMU_XSCALE == 1 */
   6144 
   6145 /*
   6146  * return the PA of the current L1 table, for use when handling a crash dump
   6147  */
   6148 uint32_t pmap_kernel_L1_addr()
   6149 {
   6150 	return pmap_kernel()->pm_l1->l1_physaddr;
   6151 }
   6152 
   6153 #if defined(DDB)
   6154 /*
   6155  * A couple of ddb-callable functions for dumping pmaps
   6156  */
   6157 void pmap_dump_all(void);
   6158 void pmap_dump(pmap_t);
   6159 
   6160 void
   6161 pmap_dump_all(void)
   6162 {
   6163 	pmap_t pm;
   6164 
   6165 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6166 		if (pm == pmap_kernel())
   6167 			continue;
   6168 		pmap_dump(pm);
   6169 		printf("\n");
   6170 	}
   6171 }
   6172 
   6173 static pt_entry_t ncptes[64];
   6174 static void pmap_dump_ncpg(pmap_t);
   6175 
   6176 void
   6177 pmap_dump(pmap_t pm)
   6178 {
   6179 	struct l2_dtable *l2;
   6180 	struct l2_bucket *l2b;
   6181 	pt_entry_t *ptep, pte;
   6182 	vaddr_t l2_va, l2b_va, va;
   6183 	int i, j, k, occ, rows = 0;
   6184 
   6185 	if (pm == pmap_kernel())
   6186 		printf("pmap_kernel (%p): ", pm);
   6187 	else
   6188 		printf("user pmap (%p): ", pm);
   6189 
   6190 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6191 
   6192 	l2_va = 0;
   6193 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6194 		l2 = pm->pm_l2[i];
   6195 
   6196 		if (l2 == NULL || l2->l2_occupancy == 0)
   6197 			continue;
   6198 
   6199 		l2b_va = l2_va;
   6200 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6201 			l2b = &l2->l2_bucket[j];
   6202 
   6203 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6204 				continue;
   6205 
   6206 			ptep = l2b->l2b_kva;
   6207 
   6208 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6209 				;
   6210 
   6211 			k &= ~63;
   6212 			occ = l2b->l2b_occupancy;
   6213 			va = l2b_va + (k * 4096);
   6214 			for (; k < 256; k++, va += 0x1000) {
   6215 				char ch = ' ';
   6216 				if ((k % 64) == 0) {
   6217 					if ((rows % 8) == 0) {
   6218 						printf(
   6219 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6220 					}
   6221 					printf("%08lx: ", va);
   6222 				}
   6223 
   6224 				ncptes[k & 63] = 0;
   6225 				pte = ptep[k];
   6226 				if (pte == 0) {
   6227 					ch = '.';
   6228 				} else {
   6229 					occ--;
   6230 					switch (pte & 0x0c) {
   6231 					case 0x00:
   6232 						ch = 'D'; /* No cache No buff */
   6233 						break;
   6234 					case 0x04:
   6235 						ch = 'B'; /* No cache buff */
   6236 						break;
   6237 					case 0x08:
   6238 						if (pte & 0x40)
   6239 							ch = 'm';
   6240 						else
   6241 						   ch = 'C'; /* Cache No buff */
   6242 						break;
   6243 					case 0x0c:
   6244 						ch = 'F'; /* Cache Buff */
   6245 						break;
   6246 					}
   6247 
   6248 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6249 						ch += 0x20;
   6250 
   6251 					if ((pte & 0xc) == 0)
   6252 						ncptes[k & 63] = pte;
   6253 				}
   6254 
   6255 				if ((k % 64) == 63) {
   6256 					rows++;
   6257 					printf("%c\n", ch);
   6258 					pmap_dump_ncpg(pm);
   6259 					if (occ == 0)
   6260 						break;
   6261 				} else
   6262 					printf("%c", ch);
   6263 			}
   6264 		}
   6265 	}
   6266 }
   6267 
   6268 static void
   6269 pmap_dump_ncpg(pmap_t pm)
   6270 {
   6271 	struct vm_page *pg;
   6272 	struct pv_entry *pv;
   6273 	int i;
   6274 
   6275 	for (i = 0; i < 63; i++) {
   6276 		if (ncptes[i] == 0)
   6277 			continue;
   6278 
   6279 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6280 		if (pg == NULL)
   6281 			continue;
   6282 
   6283 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6284 		    VM_PAGE_TO_PHYS(pg),
   6285 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6286 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6287 
   6288 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   6289 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6290 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6291 			    pv->pv_va, pv->pv_flags);
   6292 		}
   6293 	}
   6294 }
   6295 #endif
   6296 
   6297 #ifdef PMAP_STEAL_MEMORY
   6298 void
   6299 pmap_boot_pageadd(pv_addr_t *newpv)
   6300 {
   6301 	pv_addr_t *pv, *npv;
   6302 
   6303 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6304 		if (newpv->pv_pa < pv->pv_va) {
   6305 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6306 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6307 				newpv->pv_size += pv->pv_size;
   6308 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6309 			}
   6310 			pv = NULL;
   6311 		} else {
   6312 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6313 			     pv = npv) {
   6314 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6315 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6316 				if (newpv->pv_pa > npv->pv_pa)
   6317 					continue;
   6318 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6319 					pv->pv_size += newpv->pv_size;
   6320 					return;
   6321 				}
   6322 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6323 					break;
   6324 				newpv->pv_size += npv->pv_size;
   6325 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6326 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6327 				return;
   6328 			}
   6329 		}
   6330 	}
   6331 
   6332 	if (pv) {
   6333 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6334 	} else {
   6335 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6336 	}
   6337 }
   6338 
   6339 void
   6340 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6341 	pv_addr_t *rpv)
   6342 {
   6343 	pv_addr_t *pv, **pvp;
   6344 	struct vm_physseg *ps;
   6345 	size_t i;
   6346 
   6347 	KASSERT(amount & PGOFSET);
   6348 	KASSERT((mask & PGOFSET) == 0);
   6349 	KASSERT((match & PGOFSET) == 0);
   6350 	KASSERT(amount != 0);
   6351 
   6352 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6353 	     (pv = *pvp) != NULL;
   6354 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6355 		pv_addr_t *newpv;
   6356 		psize_t off;
   6357 		/*
   6358 		 * If this entry is too small to satify the request...
   6359 		 */
   6360 		KASSERT(pv->pv_size > 0);
   6361 		if (pv->pv_size < amount)
   6362 			continue;
   6363 
   6364 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6365 			if (((pv->pv_pa + off) & mask) == match
   6366 			    && off + amount <= pv->pv_size)
   6367 				break;
   6368 		}
   6369 		if (off > mask)
   6370 			continue;
   6371 
   6372 		rpv->pv_va = pv->pv_va + off;
   6373 		rpv->pv_pa = pv->pv_pa + off;
   6374 		rpv->pv_size = amount;
   6375 		pv->pv_size -= amount;
   6376 		if (pv->pv_size == 0) {
   6377 			KASSERT(off == 0);
   6378 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6379 			*pvp = SLIST_NEXT(pv, pv_list);
   6380 		} else if (off == 0) {
   6381 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6382 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6383 			*newpv = *pv;
   6384 			newpv->pv_pa += amount;
   6385 			newpv->pv_va += amount;
   6386 			*pvp = newpv;
   6387 		} else if (off < pv->pv_size) {
   6388 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6389 			*newpv = *pv;
   6390 			newpv->pv_size -= off;
   6391 			newpv->pv_pa += off + amount;
   6392 			newpv->pv_va += off + amount;
   6393 
   6394 			SLIST_NEXT(pv, pv_list) = newpv;
   6395 			pv->pv_size = off;
   6396 		} else {
   6397 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6398 		}
   6399 		memset((void *)rpv->pv_va, 0, amount);
   6400 		return;
   6401 	}
   6402 
   6403 	if (vm_nphysseg == 0)
   6404 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6405 
   6406 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6407 	     (pv = *pvp) != NULL;
   6408 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6409 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6410 			break;
   6411 	}
   6412 	KASSERT(mask == 0);
   6413 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6414 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6415 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6416 			rpv->pv_va = pv->pv_va;
   6417 			rpv->pv_pa = pv->pv_pa;
   6418 			rpv->pv_size = amount;
   6419 			*pvp = NULL;
   6420 			pmap_map_chunk(kernel_l1pt.pv_va,
   6421 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6422 			     ptoa(ps->avail_start),
   6423 			     amount - pv->pv_size,
   6424 			     VM_PROT_READ|VM_PROT_WRITE,
   6425 			     PTE_CACHE);
   6426 			ps->avail_start += atop(amount - pv->pv_size);
   6427 			/*
   6428 			 * If we consumed the entire physseg, remove it.
   6429 			 */
   6430 			if (ps->avail_start == ps->avail_end) {
   6431 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6432 					ps[0] = ps[1];
   6433 			}
   6434 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6435 			return;
   6436 		}
   6437 	}
   6438 
   6439 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6440 }
   6441 
   6442 vaddr_t
   6443 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6444 {
   6445 	pv_addr_t pv;
   6446 
   6447 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6448 
   6449 	return pv.pv_va;
   6450 }
   6451 #endif /* PMAP_STEAL_MEMORY */
   6452