Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.186
      1 /*	$NetBSD: pmap.c,v 1.186 2008/08/14 14:54:32 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/user.h>
    202 #include <sys/pool.h>
    203 #include <sys/cdefs.h>
    204 #include <sys/cpu.h>
    205 #include <sys/sysctl.h>
    206 
    207 #include <uvm/uvm.h>
    208 
    209 #include <machine/bus.h>
    210 #include <machine/pmap.h>
    211 #include <machine/pcb.h>
    212 #include <machine/param.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.186 2008/08/14 14:54:32 matt Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 struct pmap     kernel_pmap_store;
    259 
    260 /*
    261  * Which pmap is currently 'live' in the cache
    262  *
    263  * XXXSCW: Fix for SMP ...
    264  */
    265 static pmap_t pmap_recent_user;
    266 
    267 /*
    268  * Pointer to last active lwp, or NULL if it exited.
    269  */
    270 struct lwp *pmap_previous_active_lwp;
    271 
    272 /*
    273  * Pool and cache that pmap structures are allocated from.
    274  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    275  * in pmap_create().
    276  */
    277 static struct pool_cache pmap_cache;
    278 static LIST_HEAD(, pmap) pmap_pmaps;
    279 
    280 /*
    281  * Pool of PV structures
    282  */
    283 static struct pool pmap_pv_pool;
    284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    287 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    288 };
    289 
    290 /*
    291  * Pool and cache of l2_dtable structures.
    292  * We use a cache to avoid clearing the structures when they're
    293  * allocated. (196 bytes)
    294  */
    295 static struct pool_cache pmap_l2dtable_cache;
    296 static vaddr_t pmap_kernel_l2dtable_kva;
    297 
    298 /*
    299  * Pool and cache of L2 page descriptors.
    300  * We use a cache to avoid clearing the descriptor table
    301  * when they're allocated. (1KB)
    302  */
    303 static struct pool_cache pmap_l2ptp_cache;
    304 static vaddr_t pmap_kernel_l2ptp_kva;
    305 static paddr_t pmap_kernel_l2ptp_phys;
    306 
    307 #ifdef PMAPCOUNTERS
    308 #define	PMAP_EVCNT_INITIALIZER(name) \
    309 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    310 
    311 #ifdef PMAP_CACHE_VIPT
    312 static struct evcnt pmap_ev_vac_color_new =
    313    PMAP_EVCNT_INITIALIZER("new page color");
    314 static struct evcnt pmap_ev_vac_color_reuse =
    315    PMAP_EVCNT_INITIALIZER("ok first page color");
    316 static struct evcnt pmap_ev_vac_color_ok =
    317    PMAP_EVCNT_INITIALIZER("ok page color");
    318 static struct evcnt pmap_ev_vac_color_blind =
    319    PMAP_EVCNT_INITIALIZER("blind page color");
    320 static struct evcnt pmap_ev_vac_color_change =
    321    PMAP_EVCNT_INITIALIZER("change page color");
    322 static struct evcnt pmap_ev_vac_color_erase =
    323    PMAP_EVCNT_INITIALIZER("erase page color");
    324 static struct evcnt pmap_ev_vac_color_none =
    325    PMAP_EVCNT_INITIALIZER("no page color");
    326 static struct evcnt pmap_ev_vac_color_restore =
    327    PMAP_EVCNT_INITIALIZER("restore page color");
    328 
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    337 #endif
    338 
    339 static struct evcnt pmap_ev_mappings =
    340    PMAP_EVCNT_INITIALIZER("pages mapped");
    341 static struct evcnt pmap_ev_unmappings =
    342    PMAP_EVCNT_INITIALIZER("pages unmapped");
    343 static struct evcnt pmap_ev_remappings =
    344    PMAP_EVCNT_INITIALIZER("pages remapped");
    345 
    346 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    347 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    348 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    349 
    350 static struct evcnt pmap_ev_kernel_mappings =
    351    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    352 static struct evcnt pmap_ev_kernel_unmappings =
    353    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    354 static struct evcnt pmap_ev_kernel_remappings =
    355    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    356 
    357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    359 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    360 
    361 static struct evcnt pmap_ev_kenter_mappings =
    362    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    363 static struct evcnt pmap_ev_kenter_unmappings =
    364    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    365 static struct evcnt pmap_ev_kenter_remappings =
    366    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    367 static struct evcnt pmap_ev_pt_mappings =
    368    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    369 
    370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    373 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    374 
    375 #ifdef PMAP_CACHE_VIPT
    376 static struct evcnt pmap_ev_exec_mappings =
    377    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    378 static struct evcnt pmap_ev_exec_cached =
    379    PMAP_EVCNT_INITIALIZER("exec pages cached");
    380 
    381 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    382 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    383 
    384 static struct evcnt pmap_ev_exec_synced =
    385    PMAP_EVCNT_INITIALIZER("exec pages synced");
    386 static struct evcnt pmap_ev_exec_synced_map =
    387    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    388 static struct evcnt pmap_ev_exec_synced_unmap =
    389    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    390 static struct evcnt pmap_ev_exec_synced_remap =
    391    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    392 static struct evcnt pmap_ev_exec_synced_clearbit =
    393    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    394 static struct evcnt pmap_ev_exec_synced_kremove =
    395    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    396 
    397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    402 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    403 
    404 static struct evcnt pmap_ev_exec_discarded_unmap =
    405    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    406 static struct evcnt pmap_ev_exec_discarded_zero =
    407    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    408 static struct evcnt pmap_ev_exec_discarded_copy =
    409    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    410 static struct evcnt pmap_ev_exec_discarded_page_protect =
    411    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    412 static struct evcnt pmap_ev_exec_discarded_clearbit =
    413    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    414 static struct evcnt pmap_ev_exec_discarded_kremove =
    415    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    416 
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    422 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    423 #endif /* PMAP_CACHE_VIPT */
    424 
    425 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    426 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    427 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    428 
    429 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    430 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    431 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    432 
    433 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    434 #else
    435 #define	PMAPCOUNT(x)	((void)0)
    436 #endif
    437 
    438 /*
    439  * pmap copy/zero page, and mem(5) hook point
    440  */
    441 static pt_entry_t *csrc_pte, *cdst_pte;
    442 static vaddr_t csrcp, cdstp;
    443 vaddr_t memhook;			/* used by mem.c */
    444 extern void *msgbufaddr;
    445 int pmap_kmpages;
    446 /*
    447  * Flag to indicate if pmap_init() has done its thing
    448  */
    449 bool pmap_initialized;
    450 
    451 /*
    452  * Misc. locking data structures
    453  */
    454 
    455 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    456 static struct lock pmap_main_lock;
    457 
    458 #define PMAP_MAP_TO_HEAD_LOCK() \
    459      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    460 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    461      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    462 #define PMAP_HEAD_TO_MAP_LOCK() \
    463      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    464 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    465      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    466 #else
    467 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    468 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    469 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    470 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    471 #endif
    472 
    473 #define	pmap_acquire_pmap_lock(pm)			\
    474 	do {						\
    475 		if ((pm) != pmap_kernel())		\
    476 			mutex_enter(&(pm)->pm_lock);	\
    477 	} while (/*CONSTCOND*/0)
    478 
    479 #define	pmap_release_pmap_lock(pm)			\
    480 	do {						\
    481 		if ((pm) != pmap_kernel())		\
    482 			mutex_exit(&(pm)->pm_lock);	\
    483 	} while (/*CONSTCOND*/0)
    484 
    485 
    486 /*
    487  * Metadata for L1 translation tables.
    488  */
    489 struct l1_ttable {
    490 	/* Entry on the L1 Table list */
    491 	SLIST_ENTRY(l1_ttable) l1_link;
    492 
    493 	/* Entry on the L1 Least Recently Used list */
    494 	TAILQ_ENTRY(l1_ttable) l1_lru;
    495 
    496 	/* Track how many domains are allocated from this L1 */
    497 	volatile u_int l1_domain_use_count;
    498 
    499 	/*
    500 	 * A free-list of domain numbers for this L1.
    501 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    502 	 * is slow on ARM.
    503 	 */
    504 	u_int8_t l1_domain_first;
    505 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    506 
    507 	/* Physical address of this L1 page table */
    508 	paddr_t l1_physaddr;
    509 
    510 	/* KVA of this L1 page table */
    511 	pd_entry_t *l1_kva;
    512 };
    513 
    514 /*
    515  * Convert a virtual address into its L1 table index. That is, the
    516  * index used to locate the L2 descriptor table pointer in an L1 table.
    517  * This is basically used to index l1->l1_kva[].
    518  *
    519  * Each L2 descriptor table represents 1MB of VA space.
    520  */
    521 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    522 
    523 /*
    524  * L1 Page Tables are tracked using a Least Recently Used list.
    525  *  - New L1s are allocated from the HEAD.
    526  *  - Freed L1s are added to the TAIl.
    527  *  - Recently accessed L1s (where an 'access' is some change to one of
    528  *    the userland pmaps which owns this L1) are moved to the TAIL.
    529  */
    530 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    531 static struct simplelock l1_lru_lock;
    532 
    533 /*
    534  * A list of all L1 tables
    535  */
    536 static SLIST_HEAD(, l1_ttable) l1_list;
    537 
    538 /*
    539  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    540  *
    541  * This is normally 16MB worth L2 page descriptors for any given pmap.
    542  * Reference counts are maintained for L2 descriptors so they can be
    543  * freed when empty.
    544  */
    545 struct l2_dtable {
    546 	/* The number of L2 page descriptors allocated to this l2_dtable */
    547 	u_int l2_occupancy;
    548 
    549 	/* List of L2 page descriptors */
    550 	struct l2_bucket {
    551 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    552 		paddr_t l2b_phys;	/* Physical address of same */
    553 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    554 		u_short l2b_occupancy;	/* How many active descriptors */
    555 	} l2_bucket[L2_BUCKET_SIZE];
    556 };
    557 
    558 /*
    559  * Given an L1 table index, calculate the corresponding l2_dtable index
    560  * and bucket index within the l2_dtable.
    561  */
    562 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    563 				 (L2_SIZE - 1))
    564 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    565 
    566 /*
    567  * Given a virtual address, this macro returns the
    568  * virtual address required to drop into the next L2 bucket.
    569  */
    570 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    571 
    572 /*
    573  * L2 allocation.
    574  */
    575 #define	pmap_alloc_l2_dtable()		\
    576 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    577 #define	pmap_free_l2_dtable(l2)		\
    578 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    579 #define pmap_alloc_l2_ptp(pap)		\
    580 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    581 	    PR_NOWAIT, (pap)))
    582 
    583 /*
    584  * We try to map the page tables write-through, if possible.  However, not
    585  * all CPUs have a write-through cache mode, so on those we have to sync
    586  * the cache when we frob page tables.
    587  *
    588  * We try to evaluate this at compile time, if possible.  However, it's
    589  * not always possible to do that, hence this run-time var.
    590  */
    591 int	pmap_needs_pte_sync;
    592 
    593 /*
    594  * Real definition of pv_entry.
    595  */
    596 struct pv_entry {
    597 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    598 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    599 	vaddr_t		pv_va;          /* virtual address for mapping */
    600 	u_int		pv_flags;       /* flags */
    601 };
    602 
    603 /*
    604  * Macro to determine if a mapping might be resident in the
    605  * instruction cache and/or TLB
    606  */
    607 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    608 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    609 
    610 /*
    611  * Macro to determine if a mapping might be resident in the
    612  * data cache and/or TLB
    613  */
    614 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    615 
    616 /*
    617  * Local prototypes
    618  */
    619 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    620 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    621 			    pt_entry_t **);
    622 static bool		pmap_is_current(pmap_t);
    623 static bool		pmap_is_cached(pmap_t);
    624 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    625 			    pmap_t, vaddr_t, u_int);
    626 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    627 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    628 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    629 			    u_int, u_int);
    630 
    631 static void		pmap_pinit(pmap_t);
    632 static int		pmap_pmap_ctor(void *, void *, int);
    633 
    634 static void		pmap_alloc_l1(pmap_t);
    635 static void		pmap_free_l1(pmap_t);
    636 static void		pmap_use_l1(pmap_t);
    637 
    638 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    639 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    640 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    641 static int		pmap_l2ptp_ctor(void *, void *, int);
    642 static int		pmap_l2dtable_ctor(void *, void *, int);
    643 
    644 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    645 #ifdef PMAP_CACHE_VIVT
    646 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    647 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    648 #endif
    649 
    650 static void		pmap_clearbit(struct vm_page *, u_int);
    651 #ifdef PMAP_CACHE_VIVT
    652 static int		pmap_clean_page(struct pv_entry *, bool);
    653 #endif
    654 #ifdef PMAP_CACHE_VIPT
    655 static void		pmap_syncicache_page(struct vm_page *);
    656 static void		pmap_flush_page(struct vm_page *, bool);
    657 #endif
    658 static void		pmap_page_remove(struct vm_page *);
    659 
    660 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    661 static vaddr_t		kernel_pt_lookup(paddr_t);
    662 
    663 
    664 /*
    665  * External function prototypes
    666  */
    667 extern void bzero_page(vaddr_t);
    668 extern void bcopy_page(vaddr_t, vaddr_t);
    669 
    670 /*
    671  * Misc variables
    672  */
    673 vaddr_t virtual_avail;
    674 vaddr_t virtual_end;
    675 vaddr_t pmap_curmaxkvaddr;
    676 
    677 vaddr_t avail_start;
    678 vaddr_t avail_end;
    679 
    680 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    681 pv_addr_t kernelpages;
    682 pv_addr_t kernel_l1pt;
    683 pv_addr_t systempage;
    684 
    685 /* Function to set the debug level of the pmap code */
    686 
    687 #ifdef PMAP_DEBUG
    688 void
    689 pmap_debug(int level)
    690 {
    691 	pmap_debug_level = level;
    692 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    693 }
    694 #endif	/* PMAP_DEBUG */
    695 
    696 /*
    697  * A bunch of routines to conditionally flush the caches/TLB depending
    698  * on whether the specified pmap actually needs to be flushed at any
    699  * given time.
    700  */
    701 static inline void
    702 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    703 {
    704 
    705 	if (pm->pm_cstate.cs_tlb_id)
    706 		cpu_tlb_flushID_SE(va);
    707 }
    708 
    709 static inline void
    710 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    711 {
    712 
    713 	if (pm->pm_cstate.cs_tlb_d)
    714 		cpu_tlb_flushD_SE(va);
    715 }
    716 
    717 static inline void
    718 pmap_tlb_flushID(pmap_t pm)
    719 {
    720 
    721 	if (pm->pm_cstate.cs_tlb_id) {
    722 		cpu_tlb_flushID();
    723 		pm->pm_cstate.cs_tlb = 0;
    724 	}
    725 }
    726 
    727 static inline void
    728 pmap_tlb_flushD(pmap_t pm)
    729 {
    730 
    731 	if (pm->pm_cstate.cs_tlb_d) {
    732 		cpu_tlb_flushD();
    733 		pm->pm_cstate.cs_tlb_d = 0;
    734 	}
    735 }
    736 
    737 #ifdef PMAP_CACHE_VIVT
    738 static inline void
    739 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    740 {
    741 	if (pm->pm_cstate.cs_cache_id) {
    742 		cpu_idcache_wbinv_range(va, len);
    743 	}
    744 }
    745 
    746 static inline void
    747 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    748     bool do_inv, bool rd_only)
    749 {
    750 
    751 	if (pm->pm_cstate.cs_cache_d) {
    752 		if (do_inv) {
    753 			if (rd_only)
    754 				cpu_dcache_inv_range(va, len);
    755 			else
    756 				cpu_dcache_wbinv_range(va, len);
    757 		} else
    758 		if (!rd_only)
    759 			cpu_dcache_wb_range(va, len);
    760 	}
    761 }
    762 
    763 static inline void
    764 pmap_idcache_wbinv_all(pmap_t pm)
    765 {
    766 	if (pm->pm_cstate.cs_cache_id) {
    767 		cpu_idcache_wbinv_all();
    768 		pm->pm_cstate.cs_cache = 0;
    769 	}
    770 }
    771 
    772 static inline void
    773 pmap_dcache_wbinv_all(pmap_t pm)
    774 {
    775 	if (pm->pm_cstate.cs_cache_d) {
    776 		cpu_dcache_wbinv_all();
    777 		pm->pm_cstate.cs_cache_d = 0;
    778 	}
    779 }
    780 #endif /* PMAP_CACHE_VIVT */
    781 
    782 static inline bool
    783 pmap_is_current(pmap_t pm)
    784 {
    785 
    786 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    787 		return true;
    788 
    789 	return false;
    790 }
    791 
    792 static inline bool
    793 pmap_is_cached(pmap_t pm)
    794 {
    795 
    796 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    797 	    pmap_recent_user == pm)
    798 		return (true);
    799 
    800 	return false;
    801 }
    802 
    803 /*
    804  * PTE_SYNC_CURRENT:
    805  *
    806  *     Make sure the pte is written out to RAM.
    807  *     We need to do this for one of two cases:
    808  *       - We're dealing with the kernel pmap
    809  *       - There is no pmap active in the cache/tlb.
    810  *       - The specified pmap is 'active' in the cache/tlb.
    811  */
    812 #ifdef PMAP_INCLUDE_PTE_SYNC
    813 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    814 do {					\
    815 	if (PMAP_NEEDS_PTE_SYNC && 	\
    816 	    pmap_is_cached(pm))		\
    817 		PTE_SYNC(ptep);		\
    818 } while (/*CONSTCOND*/0)
    819 #else
    820 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    821 #endif
    822 
    823 /*
    824  * main pv_entry manipulation functions:
    825  *   pmap_enter_pv: enter a mapping onto a vm_page list
    826  *   pmap_remove_pv: remove a mappiing from a vm_page list
    827  *
    828  * NOTE: pmap_enter_pv expects to lock the pvh itself
    829  *       pmap_remove_pv expects te caller to lock the pvh before calling
    830  */
    831 
    832 /*
    833  * pmap_enter_pv: enter a mapping onto a vm_page lst
    834  *
    835  * => caller should hold the proper lock on pmap_main_lock
    836  * => caller should have pmap locked
    837  * => we will gain the lock on the vm_page and allocate the new pv_entry
    838  * => caller should adjust ptp's wire_count before calling
    839  * => caller should not adjust pmap's wire_count
    840  */
    841 static void
    842 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    843     vaddr_t va, u_int flags)
    844 {
    845 	struct pv_entry **pvp;
    846 
    847 	NPDEBUG(PDB_PVDUMP,
    848 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    849 
    850 	pve->pv_pmap = pm;
    851 	pve->pv_va = va;
    852 	pve->pv_flags = flags;
    853 
    854 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    855 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
    856 #ifdef PMAP_CACHE_VIPT
    857 	/*
    858 	 * Insert unmanaged entries, writeable first, at the head of
    859 	 * the pv list.
    860 	 */
    861 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    862 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    863 			pvp = &SLIST_NEXT(*pvp, pv_link);
    864 	} else if ((flags & PVF_WRITE) == 0) {
    865 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    866 			pvp = &SLIST_NEXT(*pvp, pv_link);
    867 	}
    868 #endif
    869 	SLIST_NEXT(pve, pv_link) = *pvp;		/* add to ... */
    870 	*pvp = pve;				/* ... locked list */
    871 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    872 #ifdef PMAP_CACHE_VIPT
    873 	if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    874 		pg->mdpage.pvh_attrs |= PVF_KMOD;
    875 	if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    876 		pg->mdpage.pvh_attrs |= PVF_DIRTY;
    877 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
    878 #endif
    879 	if (pm == pmap_kernel()) {
    880 		PMAPCOUNT(kernel_mappings);
    881 		if (flags & PVF_WRITE)
    882 			pg->mdpage.krw_mappings++;
    883 		else
    884 			pg->mdpage.kro_mappings++;
    885 	} else
    886 	if (flags & PVF_WRITE)
    887 		pg->mdpage.urw_mappings++;
    888 	else
    889 		pg->mdpage.uro_mappings++;
    890 
    891 #ifdef PMAP_CACHE_VIPT
    892 	/*
    893 	 * If this is an exec mapping and its the first exec mapping
    894 	 * for this page, make sure to sync the I-cache.
    895 	 */
    896 	if (PV_IS_EXEC_P(flags)) {
    897 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    898 			pmap_syncicache_page(pg);
    899 			PMAPCOUNT(exec_synced_map);
    900 		}
    901 		PMAPCOUNT(exec_mappings);
    902 	}
    903 #endif
    904 
    905 	PMAPCOUNT(mappings);
    906 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    907 
    908 	if (pve->pv_flags & PVF_WIRED)
    909 		++pm->pm_stats.wired_count;
    910 }
    911 
    912 /*
    913  *
    914  * pmap_find_pv: Find a pv entry
    915  *
    916  * => caller should hold lock on vm_page
    917  */
    918 static inline struct pv_entry *
    919 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    920 {
    921 	struct pv_entry *pv;
    922 
    923 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
    924 		if (pm == pv->pv_pmap && va == pv->pv_va)
    925 			break;
    926 	}
    927 
    928 	return (pv);
    929 }
    930 
    931 /*
    932  * pmap_remove_pv: try to remove a mapping from a pv_list
    933  *
    934  * => caller should hold proper lock on pmap_main_lock
    935  * => pmap should be locked
    936  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    937  * => caller should adjust ptp's wire_count and free PTP if needed
    938  * => caller should NOT adjust pmap's wire_count
    939  * => we return the removed pve
    940  */
    941 static struct pv_entry *
    942 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    943 {
    944 	struct pv_entry *pve, **prevptr;
    945 
    946 	NPDEBUG(PDB_PVDUMP,
    947 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    948 
    949 	prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
    950 	pve = *prevptr;
    951 
    952 	while (pve) {
    953 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    954 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    955 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    956 			if (pve->pv_flags & PVF_WIRED) {
    957 				if (skip_wired)
    958 					return (NULL);
    959 				--pm->pm_stats.wired_count;
    960 			}
    961 			*prevptr = SLIST_NEXT(pve, pv_link);	/* remove it! */
    962 			if (pm == pmap_kernel()) {
    963 				PMAPCOUNT(kernel_unmappings);
    964 				if (pve->pv_flags & PVF_WRITE)
    965 					pg->mdpage.krw_mappings--;
    966 				else
    967 					pg->mdpage.kro_mappings--;
    968 			} else
    969 			if (pve->pv_flags & PVF_WRITE)
    970 				pg->mdpage.urw_mappings--;
    971 			else
    972 				pg->mdpage.uro_mappings--;
    973 
    974 			PMAPCOUNT(unmappings);
    975 #ifdef PMAP_CACHE_VIPT
    976 			if (!(pve->pv_flags & PVF_WRITE))
    977 				break;
    978 			/*
    979 			 * If this page has had an exec mapping, then if
    980 			 * this was the last mapping, discard the contents,
    981 			 * otherwise sync the i-cache for this page.
    982 			 */
    983 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    984 				if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
    985 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
    986 					PMAPCOUNT(exec_discarded_unmap);
    987 				} else {
    988 					pmap_syncicache_page(pg);
    989 					PMAPCOUNT(exec_synced_unmap);
    990 				}
    991 			}
    992 #endif /* PMAP_CACHE_VIPT */
    993 			break;
    994 		}
    995 		prevptr = &SLIST_NEXT(pve, pv_link);	/* previous pointer */
    996 		pve = *prevptr;				/* advance */
    997 	}
    998 
    999 #ifdef PMAP_CACHE_VIPT
   1000 	/*
   1001 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1002 	 * clear the KMOD attribute from the page.
   1003 	 */
   1004 	if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
   1005 	    || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1006 		pg->mdpage.pvh_attrs &= ~PVF_KMOD;
   1007 
   1008 	/*
   1009 	 * If this was a writeable page and there are no more writeable
   1010 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1011 	 * the contents to memory.
   1012 	 */
   1013 	if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
   1014 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1015 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1016 #endif /* PMAP_CACHE_VIPT */
   1017 
   1018 	return(pve);				/* return removed pve */
   1019 }
   1020 
   1021 /*
   1022  *
   1023  * pmap_modify_pv: Update pv flags
   1024  *
   1025  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1026  * => caller should NOT adjust pmap's wire_count
   1027  * => caller must call pmap_vac_me_harder() if writable status of a page
   1028  *    may have changed.
   1029  * => we return the old flags
   1030  *
   1031  * Modify a physical-virtual mapping in the pv table
   1032  */
   1033 static u_int
   1034 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
   1035     u_int clr_mask, u_int set_mask)
   1036 {
   1037 	struct pv_entry *npv;
   1038 	u_int flags, oflags;
   1039 
   1040 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1041 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1042 
   1043 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1044 		return (0);
   1045 
   1046 	NPDEBUG(PDB_PVDUMP,
   1047 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1048 
   1049 	/*
   1050 	 * There is at least one VA mapping this page.
   1051 	 */
   1052 
   1053 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1054 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1055 #ifdef PMAP_CACHE_VIPT
   1056 		if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1057 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1058 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1059 #endif
   1060 	}
   1061 
   1062 	oflags = npv->pv_flags;
   1063 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1064 
   1065 	if ((flags ^ oflags) & PVF_WIRED) {
   1066 		if (flags & PVF_WIRED)
   1067 			++pm->pm_stats.wired_count;
   1068 		else
   1069 			--pm->pm_stats.wired_count;
   1070 	}
   1071 
   1072 	if ((flags ^ oflags) & PVF_WRITE) {
   1073 		if (pm == pmap_kernel()) {
   1074 			if (flags & PVF_WRITE) {
   1075 				pg->mdpage.krw_mappings++;
   1076 				pg->mdpage.kro_mappings--;
   1077 			} else {
   1078 				pg->mdpage.kro_mappings++;
   1079 				pg->mdpage.krw_mappings--;
   1080 			}
   1081 		} else
   1082 		if (flags & PVF_WRITE) {
   1083 			pg->mdpage.urw_mappings++;
   1084 			pg->mdpage.uro_mappings--;
   1085 		} else {
   1086 			pg->mdpage.uro_mappings++;
   1087 			pg->mdpage.urw_mappings--;
   1088 		}
   1089 	}
   1090 #ifdef PMAP_CACHE_VIPT
   1091 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1092 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1093 	/*
   1094 	 * We have two cases here: the first is from enter_pv (new exec
   1095 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1096 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1097 	 * to do what pmap_remove_pv would do.
   1098 	 */
   1099 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1100 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1101 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1102 		pmap_syncicache_page(pg);
   1103 		PMAPCOUNT(exec_synced_remap);
   1104 	}
   1105 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1106 #endif
   1107 
   1108 	PMAPCOUNT(remappings);
   1109 
   1110 	return (oflags);
   1111 }
   1112 
   1113 /*
   1114  * Allocate an L1 translation table for the specified pmap.
   1115  * This is called at pmap creation time.
   1116  */
   1117 static void
   1118 pmap_alloc_l1(pmap_t pm)
   1119 {
   1120 	struct l1_ttable *l1;
   1121 	u_int8_t domain;
   1122 
   1123 	/*
   1124 	 * Remove the L1 at the head of the LRU list
   1125 	 */
   1126 	simple_lock(&l1_lru_lock);
   1127 	l1 = TAILQ_FIRST(&l1_lru_list);
   1128 	KDASSERT(l1 != NULL);
   1129 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1130 
   1131 	/*
   1132 	 * Pick the first available domain number, and update
   1133 	 * the link to the next number.
   1134 	 */
   1135 	domain = l1->l1_domain_first;
   1136 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1137 
   1138 	/*
   1139 	 * If there are still free domain numbers in this L1,
   1140 	 * put it back on the TAIL of the LRU list.
   1141 	 */
   1142 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1143 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1144 
   1145 	simple_unlock(&l1_lru_lock);
   1146 
   1147 	/*
   1148 	 * Fix up the relevant bits in the pmap structure
   1149 	 */
   1150 	pm->pm_l1 = l1;
   1151 	pm->pm_domain = domain;
   1152 }
   1153 
   1154 /*
   1155  * Free an L1 translation table.
   1156  * This is called at pmap destruction time.
   1157  */
   1158 static void
   1159 pmap_free_l1(pmap_t pm)
   1160 {
   1161 	struct l1_ttable *l1 = pm->pm_l1;
   1162 
   1163 	simple_lock(&l1_lru_lock);
   1164 
   1165 	/*
   1166 	 * If this L1 is currently on the LRU list, remove it.
   1167 	 */
   1168 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1169 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1170 
   1171 	/*
   1172 	 * Free up the domain number which was allocated to the pmap
   1173 	 */
   1174 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1175 	l1->l1_domain_first = pm->pm_domain;
   1176 	l1->l1_domain_use_count--;
   1177 
   1178 	/*
   1179 	 * The L1 now must have at least 1 free domain, so add
   1180 	 * it back to the LRU list. If the use count is zero,
   1181 	 * put it at the head of the list, otherwise it goes
   1182 	 * to the tail.
   1183 	 */
   1184 	if (l1->l1_domain_use_count == 0)
   1185 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1186 	else
   1187 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1188 
   1189 	simple_unlock(&l1_lru_lock);
   1190 }
   1191 
   1192 static inline void
   1193 pmap_use_l1(pmap_t pm)
   1194 {
   1195 	struct l1_ttable *l1;
   1196 
   1197 	/*
   1198 	 * Do nothing if we're in interrupt context.
   1199 	 * Access to an L1 by the kernel pmap must not affect
   1200 	 * the LRU list.
   1201 	 */
   1202 	if (cpu_intr_p() || pm == pmap_kernel())
   1203 		return;
   1204 
   1205 	l1 = pm->pm_l1;
   1206 
   1207 	/*
   1208 	 * If the L1 is not currently on the LRU list, just return
   1209 	 */
   1210 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1211 		return;
   1212 
   1213 	simple_lock(&l1_lru_lock);
   1214 
   1215 	/*
   1216 	 * Check the use count again, now that we've acquired the lock
   1217 	 */
   1218 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1219 		simple_unlock(&l1_lru_lock);
   1220 		return;
   1221 	}
   1222 
   1223 	/*
   1224 	 * Move the L1 to the back of the LRU list
   1225 	 */
   1226 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1227 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1228 
   1229 	simple_unlock(&l1_lru_lock);
   1230 }
   1231 
   1232 /*
   1233  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1234  *
   1235  * Free an L2 descriptor table.
   1236  */
   1237 static inline void
   1238 #ifndef PMAP_INCLUDE_PTE_SYNC
   1239 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1240 #else
   1241 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1242 #endif
   1243 {
   1244 #ifdef PMAP_INCLUDE_PTE_SYNC
   1245 #ifdef PMAP_CACHE_VIVT
   1246 	/*
   1247 	 * Note: With a write-back cache, we may need to sync this
   1248 	 * L2 table before re-using it.
   1249 	 * This is because it may have belonged to a non-current
   1250 	 * pmap, in which case the cache syncs would have been
   1251 	 * skipped for the pages that were being unmapped. If the
   1252 	 * L2 table were then to be immediately re-allocated to
   1253 	 * the *current* pmap, it may well contain stale mappings
   1254 	 * which have not yet been cleared by a cache write-back
   1255 	 * and so would still be visible to the mmu.
   1256 	 */
   1257 	if (need_sync)
   1258 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1259 #endif /* PMAP_CACHE_VIVT */
   1260 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1261 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1262 }
   1263 
   1264 /*
   1265  * Returns a pointer to the L2 bucket associated with the specified pmap
   1266  * and VA, or NULL if no L2 bucket exists for the address.
   1267  */
   1268 static inline struct l2_bucket *
   1269 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1270 {
   1271 	struct l2_dtable *l2;
   1272 	struct l2_bucket *l2b;
   1273 	u_short l1idx;
   1274 
   1275 	l1idx = L1_IDX(va);
   1276 
   1277 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1278 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1279 		return (NULL);
   1280 
   1281 	return (l2b);
   1282 }
   1283 
   1284 /*
   1285  * Returns a pointer to the L2 bucket associated with the specified pmap
   1286  * and VA.
   1287  *
   1288  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1289  * bucket/page table in place.
   1290  *
   1291  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1292  * increment the bucket occupancy counter appropriately *before*
   1293  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1294  * the bucket/page in the meantime.
   1295  */
   1296 static struct l2_bucket *
   1297 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1298 {
   1299 	struct l2_dtable *l2;
   1300 	struct l2_bucket *l2b;
   1301 	u_short l1idx;
   1302 
   1303 	l1idx = L1_IDX(va);
   1304 
   1305 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1306 		/*
   1307 		 * No mapping at this address, as there is
   1308 		 * no entry in the L1 table.
   1309 		 * Need to allocate a new l2_dtable.
   1310 		 */
   1311 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1312 			return (NULL);
   1313 
   1314 		/*
   1315 		 * Link it into the parent pmap
   1316 		 */
   1317 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1318 	}
   1319 
   1320 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1321 
   1322 	/*
   1323 	 * Fetch pointer to the L2 page table associated with the address.
   1324 	 */
   1325 	if (l2b->l2b_kva == NULL) {
   1326 		pt_entry_t *ptep;
   1327 
   1328 		/*
   1329 		 * No L2 page table has been allocated. Chances are, this
   1330 		 * is because we just allocated the l2_dtable, above.
   1331 		 */
   1332 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1333 			/*
   1334 			 * Oops, no more L2 page tables available at this
   1335 			 * time. We may need to deallocate the l2_dtable
   1336 			 * if we allocated a new one above.
   1337 			 */
   1338 			if (l2->l2_occupancy == 0) {
   1339 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1340 				pmap_free_l2_dtable(l2);
   1341 			}
   1342 			return (NULL);
   1343 		}
   1344 
   1345 		l2->l2_occupancy++;
   1346 		l2b->l2b_kva = ptep;
   1347 		l2b->l2b_l1idx = l1idx;
   1348 	}
   1349 
   1350 	return (l2b);
   1351 }
   1352 
   1353 /*
   1354  * One or more mappings in the specified L2 descriptor table have just been
   1355  * invalidated.
   1356  *
   1357  * Garbage collect the metadata and descriptor table itself if necessary.
   1358  *
   1359  * The pmap lock must be acquired when this is called (not necessary
   1360  * for the kernel pmap).
   1361  */
   1362 static void
   1363 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1364 {
   1365 	struct l2_dtable *l2;
   1366 	pd_entry_t *pl1pd, l1pd;
   1367 	pt_entry_t *ptep;
   1368 	u_short l1idx;
   1369 
   1370 	KDASSERT(count <= l2b->l2b_occupancy);
   1371 
   1372 	/*
   1373 	 * Update the bucket's reference count according to how many
   1374 	 * PTEs the caller has just invalidated.
   1375 	 */
   1376 	l2b->l2b_occupancy -= count;
   1377 
   1378 	/*
   1379 	 * Note:
   1380 	 *
   1381 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1382 	 * as that would require checking all Level 1 page tables and
   1383 	 * removing any references to the Level 2 page table. See also the
   1384 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1385 	 *
   1386 	 * We make do with just invalidating the mapping in the L2 table.
   1387 	 *
   1388 	 * This isn't really a big deal in practice and, in fact, leads
   1389 	 * to a performance win over time as we don't need to continually
   1390 	 * alloc/free.
   1391 	 */
   1392 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1393 		return;
   1394 
   1395 	/*
   1396 	 * There are no more valid mappings in this level 2 page table.
   1397 	 * Go ahead and NULL-out the pointer in the bucket, then
   1398 	 * free the page table.
   1399 	 */
   1400 	l1idx = l2b->l2b_l1idx;
   1401 	ptep = l2b->l2b_kva;
   1402 	l2b->l2b_kva = NULL;
   1403 
   1404 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1405 
   1406 	/*
   1407 	 * If the L1 slot matches the pmap's domain
   1408 	 * number, then invalidate it.
   1409 	 */
   1410 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1411 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1412 		*pl1pd = 0;
   1413 		PTE_SYNC(pl1pd);
   1414 	}
   1415 
   1416 	/*
   1417 	 * Release the L2 descriptor table back to the pool cache.
   1418 	 */
   1419 #ifndef PMAP_INCLUDE_PTE_SYNC
   1420 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1421 #else
   1422 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1423 #endif
   1424 
   1425 	/*
   1426 	 * Update the reference count in the associated l2_dtable
   1427 	 */
   1428 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1429 	if (--l2->l2_occupancy > 0)
   1430 		return;
   1431 
   1432 	/*
   1433 	 * There are no more valid mappings in any of the Level 1
   1434 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1435 	 * the pointer in the parent pmap and free the l2_dtable.
   1436 	 */
   1437 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1438 	pmap_free_l2_dtable(l2);
   1439 }
   1440 
   1441 /*
   1442  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1443  * structures.
   1444  */
   1445 static int
   1446 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1447 {
   1448 #ifndef PMAP_INCLUDE_PTE_SYNC
   1449 	struct l2_bucket *l2b;
   1450 	pt_entry_t *ptep, pte;
   1451 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1452 
   1453 	/*
   1454 	 * The mappings for these page tables were initially made using
   1455 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1456 	 * mode will not be right for page table mappings. To avoid
   1457 	 * polluting the pmap_kenter_pa() code with a special case for
   1458 	 * page tables, we simply fix up the cache-mode here if it's not
   1459 	 * correct.
   1460 	 */
   1461 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1462 	KDASSERT(l2b != NULL);
   1463 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1464 	pte = *ptep;
   1465 
   1466 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1467 		/*
   1468 		 * Page tables must have the cache-mode set to Write-Thru.
   1469 		 */
   1470 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1471 		PTE_SYNC(ptep);
   1472 		cpu_tlb_flushD_SE(va);
   1473 		cpu_cpwait();
   1474 	}
   1475 #endif
   1476 
   1477 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1478 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1479 	return (0);
   1480 }
   1481 
   1482 static int
   1483 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1484 {
   1485 
   1486 	memset(v, 0, sizeof(struct l2_dtable));
   1487 	return (0);
   1488 }
   1489 
   1490 static int
   1491 pmap_pmap_ctor(void *arg, void *v, int flags)
   1492 {
   1493 
   1494 	memset(v, 0, sizeof(struct pmap));
   1495 	return (0);
   1496 }
   1497 
   1498 static void
   1499 pmap_pinit(pmap_t pm)
   1500 {
   1501 	struct l2_bucket *l2b;
   1502 
   1503 	if (vector_page < KERNEL_BASE) {
   1504 		/*
   1505 		 * Map the vector page.
   1506 		 */
   1507 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1508 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1509 		pmap_update(pm);
   1510 
   1511 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1512 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1513 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1514 		    L1_C_DOM(pm->pm_domain);
   1515 	} else
   1516 		pm->pm_pl1vec = NULL;
   1517 }
   1518 
   1519 #ifdef PMAP_CACHE_VIVT
   1520 /*
   1521  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1522  * there is more than one mapping and at least one of them is writable.
   1523  * Since we purge the cache on every context switch, we only need to check for
   1524  * other mappings within the same pmap, or kernel_pmap.
   1525  * This function is also called when a page is unmapped, to possibly reenable
   1526  * caching on any remaining mappings.
   1527  *
   1528  * The code implements the following logic, where:
   1529  *
   1530  * KW = # of kernel read/write pages
   1531  * KR = # of kernel read only pages
   1532  * UW = # of user read/write pages
   1533  * UR = # of user read only pages
   1534  *
   1535  * KC = kernel mapping is cacheable
   1536  * UC = user mapping is cacheable
   1537  *
   1538  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1539  *             +---------------------------------------------
   1540  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1541  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1542  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1543  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1544  */
   1545 
   1546 static const int pmap_vac_flags[4][4] = {
   1547 	{-1,		0,		0,		PVF_KNC},
   1548 	{0,		0,		PVF_NC,		PVF_NC},
   1549 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1550 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1551 };
   1552 
   1553 static inline int
   1554 pmap_get_vac_flags(const struct vm_page *pg)
   1555 {
   1556 	int kidx, uidx;
   1557 
   1558 	kidx = 0;
   1559 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1560 		kidx |= 1;
   1561 	if (pg->mdpage.krw_mappings)
   1562 		kidx |= 2;
   1563 
   1564 	uidx = 0;
   1565 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1566 		uidx |= 1;
   1567 	if (pg->mdpage.urw_mappings)
   1568 		uidx |= 2;
   1569 
   1570 	return (pmap_vac_flags[uidx][kidx]);
   1571 }
   1572 
   1573 static inline void
   1574 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1575 {
   1576 	int nattr;
   1577 
   1578 	nattr = pmap_get_vac_flags(pg);
   1579 
   1580 	if (nattr < 0) {
   1581 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1582 		return;
   1583 	}
   1584 
   1585 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1586 		return;
   1587 
   1588 	if (pm == pmap_kernel())
   1589 		pmap_vac_me_kpmap(pg, pm, va);
   1590 	else
   1591 		pmap_vac_me_user(pg, pm, va);
   1592 
   1593 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1594 }
   1595 
   1596 static void
   1597 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1598 {
   1599 	u_int u_cacheable, u_entries;
   1600 	struct pv_entry *pv;
   1601 	pmap_t last_pmap = pm;
   1602 
   1603 	/*
   1604 	 * Pass one, see if there are both kernel and user pmaps for
   1605 	 * this page.  Calculate whether there are user-writable or
   1606 	 * kernel-writable pages.
   1607 	 */
   1608 	u_cacheable = 0;
   1609 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1610 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1611 			u_cacheable++;
   1612 	}
   1613 
   1614 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1615 
   1616 	/*
   1617 	 * We know we have just been updating a kernel entry, so if
   1618 	 * all user pages are already cacheable, then there is nothing
   1619 	 * further to do.
   1620 	 */
   1621 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1622 		return;
   1623 
   1624 	if (u_entries) {
   1625 		/*
   1626 		 * Scan over the list again, for each entry, if it
   1627 		 * might not be set correctly, call pmap_vac_me_user
   1628 		 * to recalculate the settings.
   1629 		 */
   1630 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1631 			/*
   1632 			 * We know kernel mappings will get set
   1633 			 * correctly in other calls.  We also know
   1634 			 * that if the pmap is the same as last_pmap
   1635 			 * then we've just handled this entry.
   1636 			 */
   1637 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1638 				continue;
   1639 
   1640 			/*
   1641 			 * If there are kernel entries and this page
   1642 			 * is writable but non-cacheable, then we can
   1643 			 * skip this entry also.
   1644 			 */
   1645 			if (pg->mdpage.k_mappings &&
   1646 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1647 			    (PVF_NC | PVF_WRITE))
   1648 				continue;
   1649 
   1650 			/*
   1651 			 * Similarly if there are no kernel-writable
   1652 			 * entries and the page is already
   1653 			 * read-only/cacheable.
   1654 			 */
   1655 			if (pg->mdpage.krw_mappings == 0 &&
   1656 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1657 				continue;
   1658 
   1659 			/*
   1660 			 * For some of the remaining cases, we know
   1661 			 * that we must recalculate, but for others we
   1662 			 * can't tell if they are correct or not, so
   1663 			 * we recalculate anyway.
   1664 			 */
   1665 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1666 		}
   1667 
   1668 		if (pg->mdpage.k_mappings == 0)
   1669 			return;
   1670 	}
   1671 
   1672 	pmap_vac_me_user(pg, pm, va);
   1673 }
   1674 
   1675 static void
   1676 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1677 {
   1678 	pmap_t kpmap = pmap_kernel();
   1679 	struct pv_entry *pv, *npv = NULL;
   1680 	struct l2_bucket *l2b;
   1681 	pt_entry_t *ptep, pte;
   1682 	u_int entries = 0;
   1683 	u_int writable = 0;
   1684 	u_int cacheable_entries = 0;
   1685 	u_int kern_cacheable = 0;
   1686 	u_int other_writable = 0;
   1687 
   1688 	/*
   1689 	 * Count mappings and writable mappings in this pmap.
   1690 	 * Include kernel mappings as part of our own.
   1691 	 * Keep a pointer to the first one.
   1692 	 */
   1693 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1694 		/* Count mappings in the same pmap */
   1695 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1696 			if (entries++ == 0)
   1697 				npv = pv;
   1698 
   1699 			/* Cacheable mappings */
   1700 			if ((pv->pv_flags & PVF_NC) == 0) {
   1701 				cacheable_entries++;
   1702 				if (kpmap == pv->pv_pmap)
   1703 					kern_cacheable++;
   1704 			}
   1705 
   1706 			/* Writable mappings */
   1707 			if (pv->pv_flags & PVF_WRITE)
   1708 				++writable;
   1709 		} else
   1710 		if (pv->pv_flags & PVF_WRITE)
   1711 			other_writable = 1;
   1712 	}
   1713 
   1714 	/*
   1715 	 * Enable or disable caching as necessary.
   1716 	 * Note: the first entry might be part of the kernel pmap,
   1717 	 * so we can't assume this is indicative of the state of the
   1718 	 * other (maybe non-kpmap) entries.
   1719 	 */
   1720 	if ((entries > 1 && writable) ||
   1721 	    (entries > 0 && pm == kpmap && other_writable)) {
   1722 		if (cacheable_entries == 0)
   1723 			return;
   1724 
   1725 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1726 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1727 			    (pv->pv_flags & PVF_NC))
   1728 				continue;
   1729 
   1730 			pv->pv_flags |= PVF_NC;
   1731 
   1732 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1733 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1734 			pte = *ptep & ~L2_S_CACHE_MASK;
   1735 
   1736 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1737 			    l2pte_valid(pte)) {
   1738 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1739 #ifdef PMAP_CACHE_VIVT
   1740 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1741 					    pv->pv_va, PAGE_SIZE);
   1742 #endif
   1743 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1744 					    pv->pv_va);
   1745 				} else
   1746 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1747 #ifdef PMAP_CACHE_VIVT
   1748 					pmap_dcache_wb_range(pv->pv_pmap,
   1749 					    pv->pv_va, PAGE_SIZE, true,
   1750 					    (pv->pv_flags & PVF_WRITE) == 0);
   1751 #endif
   1752 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1753 					    pv->pv_va);
   1754 				}
   1755 			}
   1756 
   1757 			*ptep = pte;
   1758 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1759 		}
   1760 		cpu_cpwait();
   1761 	} else
   1762 	if (entries > cacheable_entries) {
   1763 		/*
   1764 		 * Turn cacheing back on for some pages.  If it is a kernel
   1765 		 * page, only do so if there are no other writable pages.
   1766 		 */
   1767 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1768 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1769 			    (kpmap != pv->pv_pmap || other_writable)))
   1770 				continue;
   1771 
   1772 			pv->pv_flags &= ~PVF_NC;
   1773 
   1774 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1775 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1776 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1777 
   1778 			if (l2pte_valid(pte)) {
   1779 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1780 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1781 					    pv->pv_va);
   1782 				} else
   1783 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1784 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1785 					    pv->pv_va);
   1786 				}
   1787 			}
   1788 
   1789 			*ptep = pte;
   1790 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1791 		}
   1792 	}
   1793 }
   1794 #endif
   1795 
   1796 #ifdef PMAP_CACHE_VIPT
   1797 /*
   1798  * For virtually indexed / physically tagged caches, what we have to worry
   1799  * about is illegal cache aliases.  To prevent this, we must ensure that
   1800  * virtual addresses that map the physical page use the same bits for those
   1801  * bits masked by "arm_cache_prefer_mask" (bits 12+).  If there is a conflict,
   1802  * all mappings of the page must be non-cached.
   1803  */
   1804 #if 0
   1805 static inline vaddr_t
   1806 pmap_check_sets(paddr_t pa)
   1807 {
   1808 	extern int arm_dcache_l2_nsets;
   1809 	int set, way;
   1810 	vaddr_t mask = 0;
   1811 	int v;
   1812 	pa |= 1;
   1813 	for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
   1814 		for (way = 0; way < 4; way++) {
   1815 			v = (way << 30) | (set << 5);
   1816 			asm("mcr	p15, 3, %0, c15, c2, 0" :: "r"(v));
   1817 			asm("mrc	p15, 3, %0, c15, c0, 0" : "=r"(v));
   1818 
   1819 			if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
   1820 				mask |= 1 << (set >> 7);
   1821 			}
   1822 		}
   1823 	}
   1824 	return mask;
   1825 }
   1826 #endif
   1827 static void
   1828 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1829 {
   1830 	struct pv_entry *pv;
   1831 	vaddr_t tst_mask;
   1832 	bool bad_alias;
   1833 	struct l2_bucket *l2b;
   1834 	pt_entry_t *ptep, pte, opte;
   1835 	const u_int
   1836 	    rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
   1837 	    ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
   1838 
   1839 	/* do we need to do anything? */
   1840 	if (arm_cache_prefer_mask == 0)
   1841 		return;
   1842 
   1843 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1844 	    pg, pm, va));
   1845 
   1846 #define popc4(x) \
   1847 	(((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
   1848 #if 0
   1849 	tst_mask = pmap_check_sets(pg->phys_addr);
   1850 	KASSERT(popc4(tst_mask) < 2);
   1851 #endif
   1852 
   1853 	KASSERT(!va || pm);
   1854 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1855 
   1856 	/* Already a conflict? */
   1857 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1858 		/* just an add, things are already non-cached */
   1859 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
   1860 		bad_alias = false;
   1861 		if (va) {
   1862 			PMAPCOUNT(vac_color_none);
   1863 			bad_alias = true;
   1864 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1865 			goto fixup;
   1866 		}
   1867 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1868 		/* the list can't be empty because it would be cachable */
   1869 		if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
   1870 			tst_mask = pg->mdpage.pvh_attrs;
   1871 		} else {
   1872 			KASSERT(pv);
   1873 			tst_mask = pv->pv_va;
   1874 			pv = SLIST_NEXT(pv, pv_link);
   1875 		}
   1876 		/*
   1877 		 * Only check for a bad alias if we have writable mappings.
   1878 		 */
   1879 		tst_mask &= arm_cache_prefer_mask;
   1880 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1881 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1882 				/* if there's a bad alias, stop checking. */
   1883 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1884 					bad_alias = true;
   1885 			}
   1886 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1887 			if (!bad_alias)
   1888 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1889 		} else {
   1890 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1891 		}
   1892 		/* If no conflicting colors, set everything back to cached */
   1893 		if (!bad_alias) {
   1894 #ifdef DEBUG
   1895 			if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1896 			    || ro_mappings < 2) {
   1897 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1898 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1899 			}
   1900 
   1901 #endif
   1902 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1903 			pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
   1904 			/*
   1905 			 * Restore DIRTY bit if page is modified
   1906 			 */
   1907 			if (pg->mdpage.pvh_attrs & PVF_DMOD)
   1908 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1909 			PMAPCOUNT(vac_color_restore);
   1910 		} else {
   1911 			KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1912 			KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1913 		}
   1914 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1915 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1916 	} else if (!va) {
   1917 		KASSERT(pmap_is_page_colored_p(pg));
   1918 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
   1919 		    || (pg->mdpage.pvh_attrs & PVF_DIRTY));
   1920 		if (rw_mappings == 0)
   1921 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1922 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1923 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1924 		return;
   1925 	} else if (!pmap_is_page_colored_p(pg)) {
   1926 		/* not colored so we just use its color */
   1927 		KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1928 		PMAPCOUNT(vac_color_new);
   1929 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1930 		pg->mdpage.pvh_attrs |= PVF_COLORED
   1931 		    | (va & arm_cache_prefer_mask)
   1932 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1933 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1934 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1935 		return;
   1936 	} else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1937 		bad_alias = false;
   1938 		if (rw_mappings > 0) {
   1939 			/*
   1940 			 * We now have writeable mappings and more than one
   1941 			 * readonly mapping, verify the colors don't clash
   1942 			 * and mark the page as writeable.
   1943 			 */
   1944 			if (ro_mappings > 1
   1945 			    && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0
   1946 			    && arm_cache_prefer_mask) {
   1947 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1948 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1949 					/* if there's a bad alias, stop checking. */
   1950 					if (((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0) {
   1951 						bad_alias = true;
   1952 						break;
   1953 					}
   1954 				}
   1955 			}
   1956 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1957 		}
   1958 		/* If no conflicting colors, set everything back to cached */
   1959 		if (!bad_alias) {
   1960 #ifdef DEBUG
   1961 			if (rw_mappings > 0
   1962 			    || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
   1963 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1964 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1965 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1966 			}
   1967 #endif
   1968 			if (SLIST_EMPTY(&pg->mdpage.pvh_list))
   1969 				PMAPCOUNT(vac_color_reuse);
   1970 			else
   1971 				PMAPCOUNT(vac_color_ok);
   1972 
   1973 			/* matching color, just return */
   1974 			KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1975 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1976 			return;
   1977 		}
   1978 		KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1979 		KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1980 
   1981 		/* color conflict.  evict from cache. */
   1982 
   1983 		pmap_flush_page(pg, true);
   1984 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1985 		pg->mdpage.pvh_attrs |= PVF_NC;
   1986 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1987 		PMAPCOUNT(vac_color_erase);
   1988 	} else if (rw_mappings == 0
   1989 		   && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   1990 		KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
   1991 
   1992 		/*
   1993 		 * If the page has dirty cache lines, clean it.
   1994 		 */
   1995 		if (pg->mdpage.pvh_attrs & PVF_DIRTY)
   1996 			pmap_flush_page(pg, false);
   1997 
   1998 		/*
   1999 		 * If this is the first remapping (we know that there are no
   2000 		 * writeable mappings), then this is a simple color change.
   2001 		 * Otherwise this is a seconary r/o mapping, which means
   2002 		 * we don't have to do anything.
   2003 		 */
   2004 		if (ro_mappings == 1) {
   2005 			KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2006 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2007 			pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2008 			PMAPCOUNT(vac_color_change);
   2009 		} else {
   2010 			PMAPCOUNT(vac_color_blind);
   2011 		}
   2012 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2013 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2014 		return;
   2015 	} else {
   2016 		if (rw_mappings > 0)
   2017 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   2018 
   2019 		/* color conflict.  evict from cache. */
   2020 		pmap_flush_page(pg, true);
   2021 
   2022 		/* the list can't be empty because this was a enter/modify */
   2023 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2024 		if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2025 			KASSERT(pv);
   2026 			/*
   2027 			 * If there's only one mapped page, change color to the
   2028 			 * page's new color and return.  Restore the DIRTY bit
   2029 			 * that was erased by pmap_flush_page.
   2030 			 */
   2031 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2032 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2033 				pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2034 				if (pg->mdpage.pvh_attrs & PVF_DMOD)
   2035 					pg->mdpage.pvh_attrs |= PVF_DIRTY;
   2036 				PMAPCOUNT(vac_color_change);
   2037 				KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2038 				KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2039 				return;
   2040 			}
   2041 		}
   2042 		bad_alias = true;
   2043 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2044 		pg->mdpage.pvh_attrs |= PVF_NC;
   2045 		PMAPCOUNT(vac_color_erase);
   2046 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2047 	}
   2048 
   2049   fixup:
   2050 	KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2051 
   2052 	/*
   2053 	 * Turn cacheing on/off for all pages.
   2054 	 */
   2055 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2056 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2057 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2058 		opte = *ptep;
   2059 		pte = opte & ~L2_S_CACHE_MASK;
   2060 		if (bad_alias) {
   2061 			pv->pv_flags |= PVF_NC;
   2062 		} else {
   2063 			pv->pv_flags &= ~PVF_NC;
   2064 			pte |= pte_l2_s_cache_mode;
   2065 		}
   2066 
   2067 		if (opte == pte)	/* only update is there's a change */
   2068 			continue;
   2069 
   2070 		if (l2pte_valid(pte)) {
   2071 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2072 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2073 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2074 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2075 			}
   2076 		}
   2077 
   2078 		*ptep = pte;
   2079 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2080 	}
   2081 }
   2082 #endif	/* PMAP_CACHE_VIPT */
   2083 
   2084 
   2085 /*
   2086  * Modify pte bits for all ptes corresponding to the given physical address.
   2087  * We use `maskbits' rather than `clearbits' because we're always passing
   2088  * constants and the latter would require an extra inversion at run-time.
   2089  */
   2090 static void
   2091 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2092 {
   2093 	struct l2_bucket *l2b;
   2094 	struct pv_entry *pv;
   2095 	pt_entry_t *ptep, npte, opte;
   2096 	pmap_t pm;
   2097 	vaddr_t va;
   2098 	u_int oflags;
   2099 #ifdef PMAP_CACHE_VIPT
   2100 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   2101 	bool need_syncicache = false;
   2102 	bool did_syncicache = false;
   2103 	bool need_vac_me_harder = false;
   2104 #endif
   2105 
   2106 	NPDEBUG(PDB_BITS,
   2107 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2108 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2109 
   2110 	PMAP_HEAD_TO_MAP_LOCK();
   2111 	simple_lock(&pg->mdpage.pvh_slock);
   2112 
   2113 #ifdef PMAP_CACHE_VIPT
   2114 	/*
   2115 	 * If we might want to sync the I-cache and we've modified it,
   2116 	 * then we know we definitely need to sync or discard it.
   2117 	 */
   2118 	if (want_syncicache)
   2119 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   2120 #endif
   2121 	/*
   2122 	 * Clear saved attributes (modify, reference)
   2123 	 */
   2124 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2125 
   2126 	if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   2127 #ifdef PMAP_CACHE_VIPT
   2128 		if (need_syncicache) {
   2129 			/*
   2130 			 * No one has it mapped, so just discard it.  The next
   2131 			 * exec remapping will cause it to be synced.
   2132 			 */
   2133 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2134 			PMAPCOUNT(exec_discarded_clearbit);
   2135 		}
   2136 #endif
   2137 		simple_unlock(&pg->mdpage.pvh_slock);
   2138 		PMAP_HEAD_TO_MAP_UNLOCK();
   2139 		return;
   2140 	}
   2141 
   2142 	/*
   2143 	 * Loop over all current mappings setting/clearing as appropos
   2144 	 */
   2145 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2146 		va = pv->pv_va;
   2147 		pm = pv->pv_pmap;
   2148 		oflags = pv->pv_flags;
   2149 		/*
   2150 		 * Kernel entries are unmanaged and as such not to be changed.
   2151 		 */
   2152 		if (oflags & PVF_KENTRY)
   2153 			continue;
   2154 		pv->pv_flags &= ~maskbits;
   2155 
   2156 		pmap_acquire_pmap_lock(pm);
   2157 
   2158 		l2b = pmap_get_l2_bucket(pm, va);
   2159 		KDASSERT(l2b != NULL);
   2160 
   2161 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2162 		npte = opte = *ptep;
   2163 
   2164 		NPDEBUG(PDB_BITS,
   2165 		    printf(
   2166 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2167 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2168 
   2169 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2170 #ifdef PMAP_CACHE_VIVT
   2171 			if ((pv->pv_flags & PVF_NC)) {
   2172 				/*
   2173 				 * Entry is not cacheable:
   2174 				 *
   2175 				 * Don't turn caching on again if this is a
   2176 				 * modified emulation. This would be
   2177 				 * inconsitent with the settings created by
   2178 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2179 				 * to re-enable cacheing.
   2180 				 *
   2181 				 * There's no need to call pmap_vac_me_harder()
   2182 				 * here: all pages are losing their write
   2183 				 * permission.
   2184 				 */
   2185 				if (maskbits & PVF_WRITE) {
   2186 					npte |= pte_l2_s_cache_mode;
   2187 					pv->pv_flags &= ~PVF_NC;
   2188 				}
   2189 			} else
   2190 			if (opte & L2_S_PROT_W) {
   2191 				/*
   2192 				 * Entry is writable/cacheable: check if pmap
   2193 				 * is current if it is flush it, otherwise it
   2194 				 * won't be in the cache
   2195 				 */
   2196 				if (PV_BEEN_EXECD(oflags))
   2197 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2198 					    PAGE_SIZE);
   2199 				else
   2200 				if (PV_BEEN_REFD(oflags))
   2201 					pmap_dcache_wb_range(pm, pv->pv_va,
   2202 					    PAGE_SIZE,
   2203 					    (maskbits & PVF_REF) != 0, false);
   2204 			}
   2205 #endif
   2206 
   2207 			/* make the pte read only */
   2208 			npte &= ~L2_S_PROT_W;
   2209 
   2210 			if (maskbits & oflags & PVF_WRITE) {
   2211 				/*
   2212 				 * Keep alias accounting up to date
   2213 				 */
   2214 				if (pv->pv_pmap == pmap_kernel()) {
   2215 					pg->mdpage.krw_mappings--;
   2216 					pg->mdpage.kro_mappings++;
   2217 				} else {
   2218 					pg->mdpage.urw_mappings--;
   2219 					pg->mdpage.uro_mappings++;
   2220 				}
   2221 #ifdef PMAP_CACHE_VIPT
   2222 				if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2223 					pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2224 				if (want_syncicache)
   2225 					need_syncicache = true;
   2226 				need_vac_me_harder = true;
   2227 #endif
   2228 			}
   2229 		}
   2230 
   2231 		if (maskbits & PVF_REF) {
   2232 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2233 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2234 			    l2pte_valid(npte)) {
   2235 #ifdef PMAP_CACHE_VIVT
   2236 				/*
   2237 				 * Check npte here; we may have already
   2238 				 * done the wbinv above, and the validity
   2239 				 * of the PTE is the same for opte and
   2240 				 * npte.
   2241 				 */
   2242 				/* XXXJRT need idcache_inv_range */
   2243 				if (PV_BEEN_EXECD(oflags))
   2244 					pmap_idcache_wbinv_range(pm,
   2245 					    pv->pv_va, PAGE_SIZE);
   2246 				else
   2247 				if (PV_BEEN_REFD(oflags))
   2248 					pmap_dcache_wb_range(pm,
   2249 					    pv->pv_va, PAGE_SIZE,
   2250 					    true, true);
   2251 #endif
   2252 			}
   2253 
   2254 			/*
   2255 			 * Make the PTE invalid so that we will take a
   2256 			 * page fault the next time the mapping is
   2257 			 * referenced.
   2258 			 */
   2259 			npte &= ~L2_TYPE_MASK;
   2260 			npte |= L2_TYPE_INV;
   2261 		}
   2262 
   2263 		if (npte != opte) {
   2264 			*ptep = npte;
   2265 			PTE_SYNC(ptep);
   2266 			/* Flush the TLB entry if a current pmap. */
   2267 			if (PV_BEEN_EXECD(oflags))
   2268 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2269 			else
   2270 			if (PV_BEEN_REFD(oflags))
   2271 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2272 		}
   2273 
   2274 		pmap_release_pmap_lock(pm);
   2275 
   2276 		NPDEBUG(PDB_BITS,
   2277 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2278 		    pm, va, opte, npte));
   2279 	}
   2280 
   2281 #ifdef PMAP_CACHE_VIPT
   2282 	/*
   2283 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2284 	 */
   2285 	if (need_syncicache && !did_syncicache) {
   2286 		pmap_syncicache_page(pg);
   2287 		PMAPCOUNT(exec_synced_clearbit);
   2288 	}
   2289 	/*
   2290 	 * If we are changing this to read-only, we ned to call vac_me_harder
   2291 	 * so we can change all the read-only pages to cacheable.  We pretend
   2292 	 * this as a page deletion.
   2293 	 */
   2294 	if (need_vac_me_harder) {
   2295 		if (pg->mdpage.pvh_attrs & PVF_NC)
   2296 			pmap_vac_me_harder(pg, NULL, 0);
   2297 	}
   2298 #endif
   2299 
   2300 	simple_unlock(&pg->mdpage.pvh_slock);
   2301 	PMAP_HEAD_TO_MAP_UNLOCK();
   2302 }
   2303 
   2304 /*
   2305  * pmap_clean_page()
   2306  *
   2307  * This is a local function used to work out the best strategy to clean
   2308  * a single page referenced by its entry in the PV table. It's used by
   2309  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2310  *
   2311  * Its policy is effectively:
   2312  *  o If there are no mappings, we don't bother doing anything with the cache.
   2313  *  o If there is one mapping, we clean just that page.
   2314  *  o If there are multiple mappings, we clean the entire cache.
   2315  *
   2316  * So that some functions can be further optimised, it returns 0 if it didn't
   2317  * clean the entire cache, or 1 if it did.
   2318  *
   2319  * XXX One bug in this routine is that if the pv_entry has a single page
   2320  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2321  * just the 1 page. Since this should not occur in everyday use and if it does
   2322  * it will just result in not the most efficient clean for the page.
   2323  */
   2324 #ifdef PMAP_CACHE_VIVT
   2325 static int
   2326 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2327 {
   2328 	pmap_t pm, pm_to_clean = NULL;
   2329 	struct pv_entry *npv;
   2330 	u_int cache_needs_cleaning = 0;
   2331 	u_int flags = 0;
   2332 	vaddr_t page_to_clean = 0;
   2333 
   2334 	if (pv == NULL) {
   2335 		/* nothing mapped in so nothing to flush */
   2336 		return (0);
   2337 	}
   2338 
   2339 	/*
   2340 	 * Since we flush the cache each time we change to a different
   2341 	 * user vmspace, we only need to flush the page if it is in the
   2342 	 * current pmap.
   2343 	 */
   2344 	pm = curproc->p_vmspace->vm_map.pmap;
   2345 
   2346 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2347 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2348 			flags |= npv->pv_flags;
   2349 			/*
   2350 			 * The page is mapped non-cacheable in
   2351 			 * this map.  No need to flush the cache.
   2352 			 */
   2353 			if (npv->pv_flags & PVF_NC) {
   2354 #ifdef DIAGNOSTIC
   2355 				if (cache_needs_cleaning)
   2356 					panic("pmap_clean_page: "
   2357 					    "cache inconsistency");
   2358 #endif
   2359 				break;
   2360 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2361 				continue;
   2362 			if (cache_needs_cleaning) {
   2363 				page_to_clean = 0;
   2364 				break;
   2365 			} else {
   2366 				page_to_clean = npv->pv_va;
   2367 				pm_to_clean = npv->pv_pmap;
   2368 			}
   2369 			cache_needs_cleaning = 1;
   2370 		}
   2371 	}
   2372 
   2373 	if (page_to_clean) {
   2374 		if (PV_BEEN_EXECD(flags))
   2375 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2376 			    PAGE_SIZE);
   2377 		else
   2378 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2379 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2380 	} else if (cache_needs_cleaning) {
   2381 		if (PV_BEEN_EXECD(flags))
   2382 			pmap_idcache_wbinv_all(pm);
   2383 		else
   2384 			pmap_dcache_wbinv_all(pm);
   2385 		return (1);
   2386 	}
   2387 	return (0);
   2388 }
   2389 #endif
   2390 
   2391 #ifdef PMAP_CACHE_VIPT
   2392 /*
   2393  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2394  * right cache alias to make sure we flush the right stuff.
   2395  */
   2396 void
   2397 pmap_syncicache_page(struct vm_page *pg)
   2398 {
   2399 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2400 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2401 
   2402 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2403 	    pg, pg->mdpage.pvh_attrs));
   2404 	/*
   2405 	 * No need to clean the page if it's non-cached.
   2406 	 */
   2407 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2408 		return;
   2409 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2410 
   2411 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2412 	/*
   2413 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2414 	 */
   2415 	*ptep = L2_S_PROTO |
   2416 	    VM_PAGE_TO_PHYS(pg)
   2417 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2418 	    | pte_l2_s_cache_mode;
   2419 	PTE_SYNC(ptep);
   2420 
   2421 	/*
   2422 	 * Flush it.
   2423 	 */
   2424 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2425 	/*
   2426 	 * Unmap the page.
   2427 	 */
   2428 	*ptep = 0;
   2429 	PTE_SYNC(ptep);
   2430 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2431 
   2432 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2433 	PMAPCOUNT(exec_synced);
   2434 }
   2435 
   2436 void
   2437 pmap_flush_page(struct vm_page *pg, bool flush)
   2438 {
   2439 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2440 	const size_t pte_offset = va_offset >> PGSHIFT;
   2441 	pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2442 	const pt_entry_t oldpte = *ptep;
   2443 #if 0
   2444 	vaddr_t mask;
   2445 #endif
   2446 
   2447 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2448 #if 0
   2449 	mask = pmap_check_sets(pg->phys_addr);
   2450 	KASSERT(popc4(mask) < 2);
   2451 #endif
   2452 
   2453 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2454 	    pg, pg->mdpage.pvh_attrs));
   2455 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2456 	/*
   2457 	 * Set up a PTE with the right coloring to flush existing cache entries.
   2458 	 */
   2459 	*ptep = L2_S_PROTO
   2460 	    | VM_PAGE_TO_PHYS(pg)
   2461 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2462 	    | pte_l2_s_cache_mode;
   2463 	PTE_SYNC(ptep);
   2464 
   2465 	/*
   2466 	 * Flush it.
   2467 	 */
   2468 	if (flush) {
   2469 		cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   2470 		pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2471 	} else {
   2472 		cpu_dcache_wb_range(cdstp + va_offset, PAGE_SIZE);
   2473 		/*
   2474 		 * Mark that the page is no longer dirty.
   2475 		 */
   2476 		if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
   2477 			pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2478 	}
   2479 
   2480 	/*
   2481 	 * Restore the page table entry since we might have interrupted
   2482 	 * pmap_zero_page or pmap_copy_page which was already using this pte.
   2483 	 */
   2484 	*ptep = oldpte;
   2485 	PTE_SYNC(ptep);
   2486 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2487 #if 0
   2488 	mask = pmap_check_sets(pg->phys_addr);
   2489 	KASSERT(mask == 0);
   2490 #endif
   2491 }
   2492 #endif /* PMAP_CACHE_VIPT */
   2493 
   2494 /*
   2495  * Routine:	pmap_page_remove
   2496  * Function:
   2497  *		Removes this physical page from
   2498  *		all physical maps in which it resides.
   2499  *		Reflects back modify bits to the pager.
   2500  */
   2501 static void
   2502 pmap_page_remove(struct vm_page *pg)
   2503 {
   2504 	struct l2_bucket *l2b;
   2505 	struct pv_entry *pv, *npv, **pvp;
   2506 	pmap_t pm, curpm;
   2507 	pt_entry_t *ptep, pte;
   2508 	bool flush;
   2509 	u_int flags;
   2510 
   2511 	NPDEBUG(PDB_FOLLOW,
   2512 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2513 	    VM_PAGE_TO_PHYS(pg)));
   2514 
   2515 	PMAP_HEAD_TO_MAP_LOCK();
   2516 	simple_lock(&pg->mdpage.pvh_slock);
   2517 
   2518 	pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2519 	if (pv == NULL) {
   2520 #ifdef PMAP_CACHE_VIPT
   2521 		/*
   2522 		 * We *know* the page contents are about to be replaced.
   2523 		 * Discard the exec contents
   2524 		 */
   2525 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2526 			PMAPCOUNT(exec_discarded_page_protect);
   2527 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2528 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2529 #endif
   2530 		simple_unlock(&pg->mdpage.pvh_slock);
   2531 		PMAP_HEAD_TO_MAP_UNLOCK();
   2532 		return;
   2533 	}
   2534 #ifdef PMAP_CACHE_VIPT
   2535 	KASSERT(pmap_is_page_colored_p(pg));
   2536 #endif
   2537 
   2538 	/*
   2539 	 * Clear alias counts
   2540 	 */
   2541 #ifdef PMAP_CACHE_VIVT
   2542 	pg->mdpage.k_mappings = 0;
   2543 #endif
   2544 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2545 
   2546 	flush = false;
   2547 	flags = 0;
   2548 	curpm = curproc->p_vmspace->vm_map.pmap;
   2549 
   2550 #ifdef PMAP_CACHE_VIVT
   2551 	pmap_clean_page(pv, false);
   2552 #endif
   2553 
   2554 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
   2555 	while (pv) {
   2556 		pm = pv->pv_pmap;
   2557 		npv = SLIST_NEXT(pv, pv_link);
   2558 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2559 			flush = true;
   2560 
   2561 		if (pm == pmap_kernel()) {
   2562 #ifdef PMAP_CACHE_VIPT
   2563 			/*
   2564 			 * If this was unmanaged mapping, it must be preserved.
   2565 			 * Move it back on the list and advance the end-of-list
   2566 			 * pointer.
   2567 			 */
   2568 			if (pv->pv_flags & PVF_KENTRY) {
   2569 				*pvp = pv;
   2570 				pvp = &SLIST_NEXT(pv, pv_link);
   2571 				pv = npv;
   2572 				continue;
   2573 			}
   2574 			if (pv->pv_flags & PVF_WRITE)
   2575 				pg->mdpage.krw_mappings--;
   2576 			else
   2577 				pg->mdpage.kro_mappings--;
   2578 #endif
   2579 			PMAPCOUNT(kernel_unmappings);
   2580 		}
   2581 		PMAPCOUNT(unmappings);
   2582 
   2583 		pmap_acquire_pmap_lock(pm);
   2584 
   2585 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2586 		KDASSERT(l2b != NULL);
   2587 
   2588 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2589 		pte = *ptep;
   2590 
   2591 		/*
   2592 		 * Update statistics
   2593 		 */
   2594 		--pm->pm_stats.resident_count;
   2595 
   2596 		/* Wired bit */
   2597 		if (pv->pv_flags & PVF_WIRED)
   2598 			--pm->pm_stats.wired_count;
   2599 
   2600 		flags |= pv->pv_flags;
   2601 
   2602 		/*
   2603 		 * Invalidate the PTEs.
   2604 		 */
   2605 		*ptep = 0;
   2606 		PTE_SYNC_CURRENT(pm, ptep);
   2607 		pmap_free_l2_bucket(pm, l2b, 1);
   2608 
   2609 		pool_put(&pmap_pv_pool, pv);
   2610 		pv = npv;
   2611 		/*
   2612 		 * if we reach the end of the list and there are still
   2613 		 * mappings, they might be able to be cached now.
   2614 		 */
   2615 		if (pv == NULL) {
   2616 			*pvp = NULL;
   2617 			if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   2618 				pmap_vac_me_harder(pg, pm, 0);
   2619 		}
   2620 		pmap_release_pmap_lock(pm);
   2621 	}
   2622 #ifdef PMAP_CACHE_VIPT
   2623 	/*
   2624 	 * Its EXEC cache is now gone.
   2625 	 */
   2626 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2627 		PMAPCOUNT(exec_discarded_page_protect);
   2628 	pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2629 	KASSERT(pg->mdpage.urw_mappings == 0);
   2630 	KASSERT(pg->mdpage.uro_mappings == 0);
   2631 	if (pg->mdpage.krw_mappings == 0)
   2632 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2633 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2634 #endif
   2635 	simple_unlock(&pg->mdpage.pvh_slock);
   2636 	PMAP_HEAD_TO_MAP_UNLOCK();
   2637 
   2638 	if (flush) {
   2639 		/*
   2640 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2641 		 * would need a subsequent call to pmap_update() to ensure
   2642 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2643 		 * required to do that (see pmap(9)), so we can't modify
   2644 		 * the current pmap's state.
   2645 		 */
   2646 		if (PV_BEEN_EXECD(flags))
   2647 			cpu_tlb_flushID();
   2648 		else
   2649 			cpu_tlb_flushD();
   2650 	}
   2651 	cpu_cpwait();
   2652 }
   2653 
   2654 /*
   2655  * pmap_t pmap_create(void)
   2656  *
   2657  *      Create a new pmap structure from scratch.
   2658  */
   2659 pmap_t
   2660 pmap_create(void)
   2661 {
   2662 	pmap_t pm;
   2663 
   2664 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2665 
   2666 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2667 	pm->pm_stats.wired_count = 0;
   2668 	pm->pm_stats.resident_count = 1;
   2669 	pm->pm_cstate.cs_all = 0;
   2670 	pmap_alloc_l1(pm);
   2671 
   2672 	/*
   2673 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2674 	 * initialised to zero.
   2675 	 */
   2676 
   2677 	pmap_pinit(pm);
   2678 
   2679 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2680 
   2681 	return (pm);
   2682 }
   2683 
   2684 /*
   2685  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2686  *     int flags)
   2687  *
   2688  *      Insert the given physical page (p) at
   2689  *      the specified virtual address (v) in the
   2690  *      target physical map with the protection requested.
   2691  *
   2692  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2693  *      or lose information.  That is, this routine must actually
   2694  *      insert this page into the given map NOW.
   2695  */
   2696 int
   2697 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2698 {
   2699 	struct l2_bucket *l2b;
   2700 	struct vm_page *pg, *opg;
   2701 	struct pv_entry *pve;
   2702 	pt_entry_t *ptep, npte, opte;
   2703 	u_int nflags;
   2704 	u_int oflags;
   2705 
   2706 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2707 
   2708 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2709 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2710 
   2711 	/*
   2712 	 * Get a pointer to the page.  Later on in this function, we
   2713 	 * test for a managed page by checking pg != NULL.
   2714 	 */
   2715 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2716 
   2717 	nflags = 0;
   2718 	if (prot & VM_PROT_WRITE)
   2719 		nflags |= PVF_WRITE;
   2720 	if (prot & VM_PROT_EXECUTE)
   2721 		nflags |= PVF_EXEC;
   2722 	if (flags & PMAP_WIRED)
   2723 		nflags |= PVF_WIRED;
   2724 
   2725 	PMAP_MAP_TO_HEAD_LOCK();
   2726 	pmap_acquire_pmap_lock(pm);
   2727 
   2728 	/*
   2729 	 * Fetch the L2 bucket which maps this page, allocating one if
   2730 	 * necessary for user pmaps.
   2731 	 */
   2732 	if (pm == pmap_kernel())
   2733 		l2b = pmap_get_l2_bucket(pm, va);
   2734 	else
   2735 		l2b = pmap_alloc_l2_bucket(pm, va);
   2736 	if (l2b == NULL) {
   2737 		if (flags & PMAP_CANFAIL) {
   2738 			pmap_release_pmap_lock(pm);
   2739 			PMAP_MAP_TO_HEAD_UNLOCK();
   2740 			return (ENOMEM);
   2741 		}
   2742 		panic("pmap_enter: failed to allocate L2 bucket");
   2743 	}
   2744 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2745 	opte = *ptep;
   2746 	npte = pa;
   2747 	oflags = 0;
   2748 
   2749 	if (opte) {
   2750 		/*
   2751 		 * There is already a mapping at this address.
   2752 		 * If the physical address is different, lookup the
   2753 		 * vm_page.
   2754 		 */
   2755 		if (l2pte_pa(opte) != pa)
   2756 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2757 		else
   2758 			opg = pg;
   2759 	} else
   2760 		opg = NULL;
   2761 
   2762 	if (pg) {
   2763 		/*
   2764 		 * This is to be a managed mapping.
   2765 		 */
   2766 		if ((flags & VM_PROT_ALL) ||
   2767 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2768 			/*
   2769 			 * - The access type indicates that we don't need
   2770 			 *   to do referenced emulation.
   2771 			 * OR
   2772 			 * - The physical page has already been referenced
   2773 			 *   so no need to re-do referenced emulation here.
   2774 			 */
   2775 			npte |= L2_S_PROTO;
   2776 
   2777 			nflags |= PVF_REF;
   2778 
   2779 			if ((prot & VM_PROT_WRITE) != 0 &&
   2780 			    ((flags & VM_PROT_WRITE) != 0 ||
   2781 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2782 				/*
   2783 				 * This is a writable mapping, and the
   2784 				 * page's mod state indicates it has
   2785 				 * already been modified. Make it
   2786 				 * writable from the outset.
   2787 				 */
   2788 				npte |= L2_S_PROT_W;
   2789 				nflags |= PVF_MOD;
   2790 			}
   2791 		} else {
   2792 			/*
   2793 			 * Need to do page referenced emulation.
   2794 			 */
   2795 			npte |= L2_TYPE_INV;
   2796 		}
   2797 
   2798 		npte |= pte_l2_s_cache_mode;
   2799 
   2800 		if (pg == opg) {
   2801 			/*
   2802 			 * We're changing the attrs of an existing mapping.
   2803 			 */
   2804 			simple_lock(&pg->mdpage.pvh_slock);
   2805 			oflags = pmap_modify_pv(pg, pm, va,
   2806 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2807 			    PVF_MOD | PVF_REF, nflags);
   2808 			simple_unlock(&pg->mdpage.pvh_slock);
   2809 
   2810 #ifdef PMAP_CACHE_VIVT
   2811 			/*
   2812 			 * We may need to flush the cache if we're
   2813 			 * doing rw-ro...
   2814 			 */
   2815 			if (pm->pm_cstate.cs_cache_d &&
   2816 			    (oflags & PVF_NC) == 0 &&
   2817 			    (opte & L2_S_PROT_W) != 0 &&
   2818 			    (prot & VM_PROT_WRITE) == 0)
   2819 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2820 #endif
   2821 		} else {
   2822 			/*
   2823 			 * New mapping, or changing the backing page
   2824 			 * of an existing mapping.
   2825 			 */
   2826 			if (opg) {
   2827 				/*
   2828 				 * Replacing an existing mapping with a new one.
   2829 				 * It is part of our managed memory so we
   2830 				 * must remove it from the PV list
   2831 				 */
   2832 				simple_lock(&opg->mdpage.pvh_slock);
   2833 				pve = pmap_remove_pv(opg, pm, va, 0);
   2834 				pmap_vac_me_harder(opg, pm, 0);
   2835 				simple_unlock(&opg->mdpage.pvh_slock);
   2836 				oflags = pve->pv_flags;
   2837 
   2838 #ifdef PMAP_CACHE_VIVT
   2839 				/*
   2840 				 * If the old mapping was valid (ref/mod
   2841 				 * emulation creates 'invalid' mappings
   2842 				 * initially) then make sure to frob
   2843 				 * the cache.
   2844 				 */
   2845 				if ((oflags & PVF_NC) == 0 &&
   2846 				    l2pte_valid(opte)) {
   2847 					if (PV_BEEN_EXECD(oflags)) {
   2848 						pmap_idcache_wbinv_range(pm, va,
   2849 						    PAGE_SIZE);
   2850 					} else
   2851 					if (PV_BEEN_REFD(oflags)) {
   2852 						pmap_dcache_wb_range(pm, va,
   2853 						    PAGE_SIZE, true,
   2854 						    (oflags & PVF_WRITE) == 0);
   2855 					}
   2856 				}
   2857 #endif
   2858 			} else
   2859 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2860 				if ((flags & PMAP_CANFAIL) == 0)
   2861 					panic("pmap_enter: no pv entries");
   2862 
   2863 				if (pm != pmap_kernel())
   2864 					pmap_free_l2_bucket(pm, l2b, 0);
   2865 				pmap_release_pmap_lock(pm);
   2866 				PMAP_MAP_TO_HEAD_UNLOCK();
   2867 				NPDEBUG(PDB_ENTER,
   2868 				    printf("pmap_enter: ENOMEM\n"));
   2869 				return (ENOMEM);
   2870 			}
   2871 
   2872 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2873 		}
   2874 	} else {
   2875 		/*
   2876 		 * We're mapping an unmanaged page.
   2877 		 * These are always readable, and possibly writable, from
   2878 		 * the get go as we don't need to track ref/mod status.
   2879 		 */
   2880 		npte |= L2_S_PROTO;
   2881 		if (prot & VM_PROT_WRITE)
   2882 			npte |= L2_S_PROT_W;
   2883 
   2884 		/*
   2885 		 * Make sure the vector table is mapped cacheable
   2886 		 */
   2887 		if (pm != pmap_kernel() && va == vector_page)
   2888 			npte |= pte_l2_s_cache_mode;
   2889 
   2890 		if (opg) {
   2891 			/*
   2892 			 * Looks like there's an existing 'managed' mapping
   2893 			 * at this address.
   2894 			 */
   2895 			simple_lock(&opg->mdpage.pvh_slock);
   2896 			pve = pmap_remove_pv(opg, pm, va, 0);
   2897 			pmap_vac_me_harder(opg, pm, 0);
   2898 			simple_unlock(&opg->mdpage.pvh_slock);
   2899 			oflags = pve->pv_flags;
   2900 
   2901 #ifdef PMAP_CACHE_VIVT
   2902 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2903 				if (PV_BEEN_EXECD(oflags))
   2904 					pmap_idcache_wbinv_range(pm, va,
   2905 					    PAGE_SIZE);
   2906 				else
   2907 				if (PV_BEEN_REFD(oflags))
   2908 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2909 					    true, (oflags & PVF_WRITE) == 0);
   2910 			}
   2911 #endif
   2912 			pool_put(&pmap_pv_pool, pve);
   2913 		}
   2914 	}
   2915 
   2916 	/*
   2917 	 * Make sure userland mappings get the right permissions
   2918 	 */
   2919 	if (pm != pmap_kernel() && va != vector_page)
   2920 		npte |= L2_S_PROT_U;
   2921 
   2922 	/*
   2923 	 * Keep the stats up to date
   2924 	 */
   2925 	if (opte == 0) {
   2926 		l2b->l2b_occupancy++;
   2927 		pm->pm_stats.resident_count++;
   2928 	}
   2929 
   2930 	NPDEBUG(PDB_ENTER,
   2931 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2932 
   2933 	/*
   2934 	 * If this is just a wiring change, the two PTEs will be
   2935 	 * identical, so there's no need to update the page table.
   2936 	 */
   2937 	if (npte != opte) {
   2938 		bool is_cached = pmap_is_cached(pm);
   2939 
   2940 		*ptep = npte;
   2941 		if (is_cached) {
   2942 			/*
   2943 			 * We only need to frob the cache/tlb if this pmap
   2944 			 * is current
   2945 			 */
   2946 			PTE_SYNC(ptep);
   2947 			if (va != vector_page && l2pte_valid(npte)) {
   2948 				/*
   2949 				 * This mapping is likely to be accessed as
   2950 				 * soon as we return to userland. Fix up the
   2951 				 * L1 entry to avoid taking another
   2952 				 * page/domain fault.
   2953 				 */
   2954 				pd_entry_t *pl1pd, l1pd;
   2955 
   2956 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2957 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2958 				    L1_C_PROTO;
   2959 				if (*pl1pd != l1pd) {
   2960 					*pl1pd = l1pd;
   2961 					PTE_SYNC(pl1pd);
   2962 				}
   2963 			}
   2964 		}
   2965 
   2966 		if (PV_BEEN_EXECD(oflags))
   2967 			pmap_tlb_flushID_SE(pm, va);
   2968 		else
   2969 		if (PV_BEEN_REFD(oflags))
   2970 			pmap_tlb_flushD_SE(pm, va);
   2971 
   2972 		NPDEBUG(PDB_ENTER,
   2973 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2974 		    is_cached, pm->pm_cstate.cs_all));
   2975 
   2976 		if (pg != NULL) {
   2977 			simple_lock(&pg->mdpage.pvh_slock);
   2978 			pmap_vac_me_harder(pg, pm, va);
   2979 			simple_unlock(&pg->mdpage.pvh_slock);
   2980 		}
   2981 	}
   2982 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   2983 	simple_lock(&pg->mdpage.pvh_slock);
   2984 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2985 	KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
   2986 	simple_unlock(&pg->mdpage.pvh_slock);
   2987 #endif
   2988 
   2989 	pmap_release_pmap_lock(pm);
   2990 	PMAP_MAP_TO_HEAD_UNLOCK();
   2991 
   2992 	return (0);
   2993 }
   2994 
   2995 /*
   2996  * pmap_remove()
   2997  *
   2998  * pmap_remove is responsible for nuking a number of mappings for a range
   2999  * of virtual address space in the current pmap. To do this efficiently
   3000  * is interesting, because in a number of cases a wide virtual address
   3001  * range may be supplied that contains few actual mappings. So, the
   3002  * optimisations are:
   3003  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3004  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3005  *     maybe do just a partial cache clean. This path of execution is
   3006  *     complicated by the fact that the cache must be flushed _before_
   3007  *     the PTE is nuked, being a VAC :-)
   3008  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3009  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3010  *     already flushed the cache.
   3011  *  4. Maybe later fast-case a single page, but I don't think this is
   3012  *     going to make _that_ much difference overall.
   3013  */
   3014 
   3015 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3016 
   3017 void
   3018 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   3019 {
   3020 	struct l2_bucket *l2b;
   3021 	vaddr_t next_bucket;
   3022 	pt_entry_t *ptep;
   3023 	u_int cleanlist_idx, total, cnt;
   3024 	struct {
   3025 		vaddr_t va;
   3026 		pt_entry_t *ptep;
   3027 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3028 	u_int mappings, is_exec, is_refd;
   3029 
   3030 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3031 	    "eva=%08lx\n", pm, sva, eva));
   3032 
   3033 	/*
   3034 	 * we lock in the pmap => pv_head direction
   3035 	 */
   3036 	PMAP_MAP_TO_HEAD_LOCK();
   3037 	pmap_acquire_pmap_lock(pm);
   3038 
   3039 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3040 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3041 		if (pm->pm_cstate.cs_tlb == 0)
   3042 			pm->pm_remove_all = true;
   3043 	} else
   3044 		cleanlist_idx = 0;
   3045 
   3046 	total = 0;
   3047 
   3048 	while (sva < eva) {
   3049 		/*
   3050 		 * Do one L2 bucket's worth at a time.
   3051 		 */
   3052 		next_bucket = L2_NEXT_BUCKET(sva);
   3053 		if (next_bucket > eva)
   3054 			next_bucket = eva;
   3055 
   3056 		l2b = pmap_get_l2_bucket(pm, sva);
   3057 		if (l2b == NULL) {
   3058 			sva = next_bucket;
   3059 			continue;
   3060 		}
   3061 
   3062 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3063 
   3064 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3065 			struct vm_page *pg;
   3066 			pt_entry_t pte;
   3067 			paddr_t pa;
   3068 
   3069 			pte = *ptep;
   3070 
   3071 			if (pte == 0) {
   3072 				/* Nothing here, move along */
   3073 				continue;
   3074 			}
   3075 
   3076 			pa = l2pte_pa(pte);
   3077 			is_exec = 0;
   3078 			is_refd = 1;
   3079 
   3080 			/*
   3081 			 * Update flags. In a number of circumstances,
   3082 			 * we could cluster a lot of these and do a
   3083 			 * number of sequential pages in one go.
   3084 			 */
   3085 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3086 				struct pv_entry *pve;
   3087 				simple_lock(&pg->mdpage.pvh_slock);
   3088 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   3089 				pmap_vac_me_harder(pg, pm, 0);
   3090 				simple_unlock(&pg->mdpage.pvh_slock);
   3091 				if (pve != NULL) {
   3092 					if (pm->pm_remove_all == false) {
   3093 						is_exec =
   3094 						   PV_BEEN_EXECD(pve->pv_flags);
   3095 						is_refd =
   3096 						   PV_BEEN_REFD(pve->pv_flags);
   3097 					}
   3098 					pool_put(&pmap_pv_pool, pve);
   3099 				} else
   3100 				if (skip_wired) {
   3101 					/* The mapping is wired. Skip it */
   3102 					continue;
   3103 				}
   3104 			} else
   3105 			if (skip_wired) {
   3106 				/* Unmanaged pages are always wired. */
   3107 				continue;
   3108 			}
   3109 
   3110 			mappings++;
   3111 
   3112 			if (!l2pte_valid(pte)) {
   3113 				/*
   3114 				 * Ref/Mod emulation is still active for this
   3115 				 * mapping, therefore it is has not yet been
   3116 				 * accessed. No need to frob the cache/tlb.
   3117 				 */
   3118 				*ptep = 0;
   3119 				PTE_SYNC_CURRENT(pm, ptep);
   3120 				continue;
   3121 			}
   3122 
   3123 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3124 				/* Add to the clean list. */
   3125 				cleanlist[cleanlist_idx].ptep = ptep;
   3126 				cleanlist[cleanlist_idx].va =
   3127 				    sva | (is_exec & 1);
   3128 				cleanlist_idx++;
   3129 			} else
   3130 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3131 				/* Nuke everything if needed. */
   3132 #ifdef PMAP_CACHE_VIVT
   3133 				pmap_idcache_wbinv_all(pm);
   3134 #endif
   3135 				pmap_tlb_flushID(pm);
   3136 
   3137 				/*
   3138 				 * Roll back the previous PTE list,
   3139 				 * and zero out the current PTE.
   3140 				 */
   3141 				for (cnt = 0;
   3142 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3143 					*cleanlist[cnt].ptep = 0;
   3144 					PTE_SYNC(cleanlist[cnt].ptep);
   3145 				}
   3146 				*ptep = 0;
   3147 				PTE_SYNC(ptep);
   3148 				cleanlist_idx++;
   3149 				pm->pm_remove_all = true;
   3150 			} else {
   3151 				*ptep = 0;
   3152 				PTE_SYNC(ptep);
   3153 				if (pm->pm_remove_all == false) {
   3154 					if (is_exec)
   3155 						pmap_tlb_flushID_SE(pm, sva);
   3156 					else
   3157 					if (is_refd)
   3158 						pmap_tlb_flushD_SE(pm, sva);
   3159 				}
   3160 			}
   3161 		}
   3162 
   3163 		/*
   3164 		 * Deal with any left overs
   3165 		 */
   3166 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3167 			total += cleanlist_idx;
   3168 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3169 				if (pm->pm_cstate.cs_all != 0) {
   3170 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3171 					if (cleanlist[cnt].va & 1) {
   3172 #ifdef PMAP_CACHE_VIVT
   3173 						pmap_idcache_wbinv_range(pm,
   3174 						    clva, PAGE_SIZE);
   3175 #endif
   3176 						pmap_tlb_flushID_SE(pm, clva);
   3177 					} else {
   3178 #ifdef PMAP_CACHE_VIVT
   3179 						pmap_dcache_wb_range(pm,
   3180 						    clva, PAGE_SIZE, true,
   3181 						    false);
   3182 #endif
   3183 						pmap_tlb_flushD_SE(pm, clva);
   3184 					}
   3185 				}
   3186 				*cleanlist[cnt].ptep = 0;
   3187 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3188 			}
   3189 
   3190 			/*
   3191 			 * If it looks like we're removing a whole bunch
   3192 			 * of mappings, it's faster to just write-back
   3193 			 * the whole cache now and defer TLB flushes until
   3194 			 * pmap_update() is called.
   3195 			 */
   3196 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3197 				cleanlist_idx = 0;
   3198 			else {
   3199 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3200 #ifdef PMAP_CACHE_VIVT
   3201 				pmap_idcache_wbinv_all(pm);
   3202 #endif
   3203 				pm->pm_remove_all = true;
   3204 			}
   3205 		}
   3206 
   3207 		pmap_free_l2_bucket(pm, l2b, mappings);
   3208 		pm->pm_stats.resident_count -= mappings;
   3209 	}
   3210 
   3211 	pmap_release_pmap_lock(pm);
   3212 	PMAP_MAP_TO_HEAD_UNLOCK();
   3213 }
   3214 
   3215 #ifdef PMAP_CACHE_VIPT
   3216 static struct pv_entry *
   3217 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3218 {
   3219 	struct pv_entry *pv;
   3220 
   3221 	simple_lock(&pg->mdpage.pvh_slock);
   3222 	KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   3223 	KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3224 
   3225 	pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
   3226 	KASSERT(pv);
   3227 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3228 
   3229 	/*
   3230 	 * If we are removing a writeable mapping to a cached exec page,
   3231 	 * if it's the last mapping then clear it execness other sync
   3232 	 * the page to the icache.
   3233 	 */
   3234 	if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3235 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3236 		if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   3237 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3238 			PMAPCOUNT(exec_discarded_kremove);
   3239 		} else {
   3240 			pmap_syncicache_page(pg);
   3241 			PMAPCOUNT(exec_synced_kremove);
   3242 		}
   3243 	}
   3244 	pmap_vac_me_harder(pg, pmap_kernel(), 0);
   3245 	simple_unlock(&pg->mdpage.pvh_slock);
   3246 
   3247 	return pv;
   3248 }
   3249 #endif /* PMAP_CACHE_VIPT */
   3250 
   3251 /*
   3252  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3253  *
   3254  * We assume there is already sufficient KVM space available
   3255  * to do this, as we can't allocate L2 descriptor tables/metadata
   3256  * from here.
   3257  */
   3258 void
   3259 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   3260 {
   3261 	struct l2_bucket *l2b;
   3262 	pt_entry_t *ptep, opte;
   3263 #ifdef PMAP_CACHE_VIVT
   3264 	struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3265 #endif
   3266 #ifdef PMAP_CACHE_VIPT
   3267 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3268 	struct vm_page *opg;
   3269 	struct pv_entry *pv = NULL;
   3270 #endif
   3271 
   3272 	NPDEBUG(PDB_KENTER,
   3273 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3274 	    va, pa, prot));
   3275 
   3276 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3277 	KDASSERT(l2b != NULL);
   3278 
   3279 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3280 	opte = *ptep;
   3281 
   3282 	if (opte == 0) {
   3283 		PMAPCOUNT(kenter_mappings);
   3284 		l2b->l2b_occupancy++;
   3285 	} else {
   3286 		PMAPCOUNT(kenter_remappings);
   3287 #ifdef PMAP_CACHE_VIPT
   3288 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3289 		if (opg) {
   3290 			KASSERT(opg != pg);
   3291 			KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3292 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3293 			simple_lock(&opg->mdpage.pvh_slock);
   3294 			pv = pmap_kremove_pg(opg, va);
   3295 			simple_unlock(&opg->mdpage.pvh_slock);
   3296 		}
   3297 #endif
   3298 		if (l2pte_valid(opte)) {
   3299 #ifdef PMAP_CACHE_VIVT
   3300 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3301 #endif
   3302 			cpu_tlb_flushD_SE(va);
   3303 			cpu_cpwait();
   3304 		}
   3305 	}
   3306 
   3307 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3308 	    pte_l2_s_cache_mode;
   3309 	PTE_SYNC(ptep);
   3310 
   3311 	if (pg) {
   3312 		if (prot & PMAP_KMPAGE) {
   3313 			simple_lock(&pg->mdpage.pvh_slock);
   3314 			KASSERT(pg->mdpage.urw_mappings == 0);
   3315 			KASSERT(pg->mdpage.uro_mappings == 0);
   3316 			KASSERT(pg->mdpage.krw_mappings == 0);
   3317 			KASSERT(pg->mdpage.kro_mappings == 0);
   3318 #ifdef PMAP_CACHE_VIPT
   3319 			KASSERT(pv == NULL);
   3320 			KASSERT((va & PVF_COLORED) == 0);
   3321 			KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
   3322 			/* if there is a color conflict, evict from cache. */
   3323 			if (pmap_is_page_colored_p(pg)
   3324 			    && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
   3325 				PMAPCOUNT(vac_color_change);
   3326 				pmap_flush_page(pg, true);
   3327 			}
   3328 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   3329 			pg->mdpage.pvh_attrs |= PVF_KMPAGE
   3330 			    | PVF_COLORED | PVF_DIRTY
   3331 			    | (va & arm_cache_prefer_mask);
   3332 #endif
   3333 #ifdef PMAP_CACHE_VIVT
   3334 			pg->mdpage.pvh_attrs |= PVF_KMPAGE;
   3335 #endif
   3336 			pmap_kmpages++;
   3337 			simple_unlock(&pg->mdpage.pvh_slock);
   3338 #ifdef PMAP_CACHE_VIPT
   3339 		} else {
   3340 			if (pv == NULL) {
   3341 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3342 				KASSERT(pv != NULL);
   3343 			}
   3344 			pmap_enter_pv(pg, pv, pmap_kernel(), va,
   3345 			    PVF_WIRED | PVF_KENTRY
   3346 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3347 			if ((prot & VM_PROT_WRITE)
   3348 			    && !(pg->mdpage.pvh_attrs & PVF_NC))
   3349 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3350 			KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3351 			simple_lock(&pg->mdpage.pvh_slock);
   3352 			pmap_vac_me_harder(pg, pmap_kernel(), va);
   3353 			simple_unlock(&pg->mdpage.pvh_slock);
   3354 #endif
   3355 		}
   3356 #ifdef PMAP_CACHE_VIPT
   3357 	} else {
   3358 		if (pv != NULL)
   3359 			pool_put(&pmap_pv_pool, pv);
   3360 #endif
   3361 	}
   3362 }
   3363 
   3364 void
   3365 pmap_kremove(vaddr_t va, vsize_t len)
   3366 {
   3367 	struct l2_bucket *l2b;
   3368 	pt_entry_t *ptep, *sptep, opte;
   3369 	vaddr_t next_bucket, eva;
   3370 	u_int mappings;
   3371 	struct vm_page *opg;
   3372 
   3373 	PMAPCOUNT(kenter_unmappings);
   3374 
   3375 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3376 	    va, len));
   3377 
   3378 	eva = va + len;
   3379 
   3380 	while (va < eva) {
   3381 		next_bucket = L2_NEXT_BUCKET(va);
   3382 		if (next_bucket > eva)
   3383 			next_bucket = eva;
   3384 
   3385 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3386 		KDASSERT(l2b != NULL);
   3387 
   3388 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3389 		mappings = 0;
   3390 
   3391 		while (va < next_bucket) {
   3392 			opte = *ptep;
   3393 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3394 			if (opg) {
   3395 				if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
   3396 					simple_lock(&opg->mdpage.pvh_slock);
   3397 					KASSERT(opg->mdpage.urw_mappings == 0);
   3398 					KASSERT(opg->mdpage.uro_mappings == 0);
   3399 					KASSERT(opg->mdpage.krw_mappings == 0);
   3400 					KASSERT(opg->mdpage.kro_mappings == 0);
   3401 					opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
   3402 #ifdef PMAP_CACHE_VIPT
   3403 					opg->mdpage.pvh_attrs &= ~PVF_WRITE;
   3404 #endif
   3405 					pmap_kmpages--;
   3406 					simple_unlock(&opg->mdpage.pvh_slock);
   3407 #ifdef PMAP_CACHE_VIPT
   3408 				} else {
   3409 					pool_put(&pmap_pv_pool,
   3410 					    pmap_kremove_pg(opg, va));
   3411 #endif
   3412 				}
   3413 			}
   3414 			if (l2pte_valid(opte)) {
   3415 #ifdef PMAP_CACHE_VIVT
   3416 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3417 #endif
   3418 				cpu_tlb_flushD_SE(va);
   3419 			}
   3420 			if (opte) {
   3421 				*ptep = 0;
   3422 				mappings++;
   3423 			}
   3424 			va += PAGE_SIZE;
   3425 			ptep++;
   3426 		}
   3427 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3428 		l2b->l2b_occupancy -= mappings;
   3429 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3430 	}
   3431 	cpu_cpwait();
   3432 }
   3433 
   3434 bool
   3435 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3436 {
   3437 	struct l2_dtable *l2;
   3438 	pd_entry_t *pl1pd, l1pd;
   3439 	pt_entry_t *ptep, pte;
   3440 	paddr_t pa;
   3441 	u_int l1idx;
   3442 
   3443 	pmap_acquire_pmap_lock(pm);
   3444 
   3445 	l1idx = L1_IDX(va);
   3446 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3447 	l1pd = *pl1pd;
   3448 
   3449 	if (l1pte_section_p(l1pd)) {
   3450 		/*
   3451 		 * These should only happen for pmap_kernel()
   3452 		 */
   3453 		KDASSERT(pm == pmap_kernel());
   3454 		pmap_release_pmap_lock(pm);
   3455 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3456 	} else {
   3457 		/*
   3458 		 * Note that we can't rely on the validity of the L1
   3459 		 * descriptor as an indication that a mapping exists.
   3460 		 * We have to look it up in the L2 dtable.
   3461 		 */
   3462 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3463 
   3464 		if (l2 == NULL ||
   3465 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3466 			pmap_release_pmap_lock(pm);
   3467 			return false;
   3468 		}
   3469 
   3470 		ptep = &ptep[l2pte_index(va)];
   3471 		pte = *ptep;
   3472 		pmap_release_pmap_lock(pm);
   3473 
   3474 		if (pte == 0)
   3475 			return false;
   3476 
   3477 		switch (pte & L2_TYPE_MASK) {
   3478 		case L2_TYPE_L:
   3479 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3480 			break;
   3481 
   3482 		default:
   3483 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3484 			break;
   3485 		}
   3486 	}
   3487 
   3488 	if (pap != NULL)
   3489 		*pap = pa;
   3490 
   3491 	return true;
   3492 }
   3493 
   3494 void
   3495 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3496 {
   3497 	struct l2_bucket *l2b;
   3498 	pt_entry_t *ptep, pte;
   3499 	vaddr_t next_bucket;
   3500 	u_int flags;
   3501 	u_int clr_mask;
   3502 	int flush;
   3503 
   3504 	NPDEBUG(PDB_PROTECT,
   3505 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3506 	    pm, sva, eva, prot));
   3507 
   3508 	if ((prot & VM_PROT_READ) == 0) {
   3509 		pmap_remove(pm, sva, eva);
   3510 		return;
   3511 	}
   3512 
   3513 	if (prot & VM_PROT_WRITE) {
   3514 		/*
   3515 		 * If this is a read->write transition, just ignore it and let
   3516 		 * uvm_fault() take care of it later.
   3517 		 */
   3518 		return;
   3519 	}
   3520 
   3521 	PMAP_MAP_TO_HEAD_LOCK();
   3522 	pmap_acquire_pmap_lock(pm);
   3523 
   3524 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3525 	flags = 0;
   3526 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3527 
   3528 	while (sva < eva) {
   3529 		next_bucket = L2_NEXT_BUCKET(sva);
   3530 		if (next_bucket > eva)
   3531 			next_bucket = eva;
   3532 
   3533 		l2b = pmap_get_l2_bucket(pm, sva);
   3534 		if (l2b == NULL) {
   3535 			sva = next_bucket;
   3536 			continue;
   3537 		}
   3538 
   3539 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3540 
   3541 		while (sva < next_bucket) {
   3542 			pte = *ptep;
   3543 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3544 				struct vm_page *pg;
   3545 				u_int f;
   3546 
   3547 #ifdef PMAP_CACHE_VIVT
   3548 				/*
   3549 				 * OK, at this point, we know we're doing
   3550 				 * write-protect operation.  If the pmap is
   3551 				 * active, write-back the page.
   3552 				 */
   3553 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3554 				    false, false);
   3555 #endif
   3556 
   3557 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3558 				pte &= ~L2_S_PROT_W;
   3559 				*ptep = pte;
   3560 				PTE_SYNC(ptep);
   3561 
   3562 				if (pg != NULL) {
   3563 					simple_lock(&pg->mdpage.pvh_slock);
   3564 					f = pmap_modify_pv(pg, pm, sva,
   3565 					    clr_mask, 0);
   3566 					pmap_vac_me_harder(pg, pm, sva);
   3567 					simple_unlock(&pg->mdpage.pvh_slock);
   3568 				} else
   3569 					f = PVF_REF | PVF_EXEC;
   3570 
   3571 				if (flush >= 0) {
   3572 					flush++;
   3573 					flags |= f;
   3574 				} else
   3575 				if (PV_BEEN_EXECD(f))
   3576 					pmap_tlb_flushID_SE(pm, sva);
   3577 				else
   3578 				if (PV_BEEN_REFD(f))
   3579 					pmap_tlb_flushD_SE(pm, sva);
   3580 			}
   3581 
   3582 			sva += PAGE_SIZE;
   3583 			ptep++;
   3584 		}
   3585 	}
   3586 
   3587 	pmap_release_pmap_lock(pm);
   3588 	PMAP_MAP_TO_HEAD_UNLOCK();
   3589 
   3590 	if (flush) {
   3591 		if (PV_BEEN_EXECD(flags))
   3592 			pmap_tlb_flushID(pm);
   3593 		else
   3594 		if (PV_BEEN_REFD(flags))
   3595 			pmap_tlb_flushD(pm);
   3596 	}
   3597 }
   3598 
   3599 void
   3600 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3601 {
   3602 	struct l2_bucket *l2b;
   3603 	pt_entry_t *ptep;
   3604 	vaddr_t next_bucket;
   3605 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3606 
   3607 	NPDEBUG(PDB_EXEC,
   3608 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3609 	    pm, sva, eva));
   3610 
   3611 	PMAP_MAP_TO_HEAD_LOCK();
   3612 	pmap_acquire_pmap_lock(pm);
   3613 
   3614 	while (sva < eva) {
   3615 		next_bucket = L2_NEXT_BUCKET(sva);
   3616 		if (next_bucket > eva)
   3617 			next_bucket = eva;
   3618 
   3619 		l2b = pmap_get_l2_bucket(pm, sva);
   3620 		if (l2b == NULL) {
   3621 			sva = next_bucket;
   3622 			continue;
   3623 		}
   3624 
   3625 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3626 		     sva < next_bucket;
   3627 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3628 			if (l2pte_valid(*ptep)) {
   3629 				cpu_icache_sync_range(sva,
   3630 				    min(page_size, eva - sva));
   3631 			}
   3632 		}
   3633 	}
   3634 
   3635 	pmap_release_pmap_lock(pm);
   3636 	PMAP_MAP_TO_HEAD_UNLOCK();
   3637 }
   3638 
   3639 void
   3640 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3641 {
   3642 
   3643 	NPDEBUG(PDB_PROTECT,
   3644 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3645 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3646 
   3647 	switch(prot) {
   3648 		return;
   3649 	case VM_PROT_READ|VM_PROT_WRITE:
   3650 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3651 		pmap_clearbit(pg, PVF_EXEC);
   3652 		break;
   3653 #endif
   3654 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3655 		break;
   3656 
   3657 	case VM_PROT_READ:
   3658 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3659 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3660 		break;
   3661 #endif
   3662 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3663 		pmap_clearbit(pg, PVF_WRITE);
   3664 		break;
   3665 
   3666 	default:
   3667 		pmap_page_remove(pg);
   3668 		break;
   3669 	}
   3670 }
   3671 
   3672 /*
   3673  * pmap_clear_modify:
   3674  *
   3675  *	Clear the "modified" attribute for a page.
   3676  */
   3677 bool
   3678 pmap_clear_modify(struct vm_page *pg)
   3679 {
   3680 	bool rv;
   3681 
   3682 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3683 		rv = true;
   3684 		pmap_clearbit(pg, PVF_MOD);
   3685 	} else
   3686 		rv = false;
   3687 
   3688 	return (rv);
   3689 }
   3690 
   3691 /*
   3692  * pmap_clear_reference:
   3693  *
   3694  *	Clear the "referenced" attribute for a page.
   3695  */
   3696 bool
   3697 pmap_clear_reference(struct vm_page *pg)
   3698 {
   3699 	bool rv;
   3700 
   3701 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3702 		rv = true;
   3703 		pmap_clearbit(pg, PVF_REF);
   3704 	} else
   3705 		rv = false;
   3706 
   3707 	return (rv);
   3708 }
   3709 
   3710 /*
   3711  * pmap_is_modified:
   3712  *
   3713  *	Test if a page has the "modified" attribute.
   3714  */
   3715 /* See <arm/arm32/pmap.h> */
   3716 
   3717 /*
   3718  * pmap_is_referenced:
   3719  *
   3720  *	Test if a page has the "referenced" attribute.
   3721  */
   3722 /* See <arm/arm32/pmap.h> */
   3723 
   3724 int
   3725 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3726 {
   3727 	struct l2_dtable *l2;
   3728 	struct l2_bucket *l2b;
   3729 	pd_entry_t *pl1pd, l1pd;
   3730 	pt_entry_t *ptep, pte;
   3731 	paddr_t pa;
   3732 	u_int l1idx;
   3733 	int rv = 0;
   3734 
   3735 	PMAP_MAP_TO_HEAD_LOCK();
   3736 	pmap_acquire_pmap_lock(pm);
   3737 
   3738 	l1idx = L1_IDX(va);
   3739 
   3740 	/*
   3741 	 * If there is no l2_dtable for this address, then the process
   3742 	 * has no business accessing it.
   3743 	 *
   3744 	 * Note: This will catch userland processes trying to access
   3745 	 * kernel addresses.
   3746 	 */
   3747 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3748 	if (l2 == NULL)
   3749 		goto out;
   3750 
   3751 	/*
   3752 	 * Likewise if there is no L2 descriptor table
   3753 	 */
   3754 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3755 	if (l2b->l2b_kva == NULL)
   3756 		goto out;
   3757 
   3758 	/*
   3759 	 * Check the PTE itself.
   3760 	 */
   3761 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3762 	pte = *ptep;
   3763 	if (pte == 0)
   3764 		goto out;
   3765 
   3766 	/*
   3767 	 * Catch a userland access to the vector page mapped at 0x0
   3768 	 */
   3769 	if (user && (pte & L2_S_PROT_U) == 0)
   3770 		goto out;
   3771 
   3772 	pa = l2pte_pa(pte);
   3773 
   3774 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3775 		/*
   3776 		 * This looks like a good candidate for "page modified"
   3777 		 * emulation...
   3778 		 */
   3779 		struct pv_entry *pv;
   3780 		struct vm_page *pg;
   3781 
   3782 		/* Extract the physical address of the page */
   3783 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3784 			goto out;
   3785 
   3786 		/* Get the current flags for this page. */
   3787 		simple_lock(&pg->mdpage.pvh_slock);
   3788 
   3789 		pv = pmap_find_pv(pg, pm, va);
   3790 		if (pv == NULL) {
   3791 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3792 			goto out;
   3793 		}
   3794 
   3795 		/*
   3796 		 * Do the flags say this page is writable? If not then it
   3797 		 * is a genuine write fault. If yes then the write fault is
   3798 		 * our fault as we did not reflect the write access in the
   3799 		 * PTE. Now we know a write has occurred we can correct this
   3800 		 * and also set the modified bit
   3801 		 */
   3802 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3803 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3804 			goto out;
   3805 		}
   3806 
   3807 		NPDEBUG(PDB_FOLLOW,
   3808 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3809 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3810 
   3811 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3812 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3813 #ifdef PMAP_CACHE_VIPT
   3814 		/*
   3815 		 * If there are cacheable mappings for this page, mark it dirty.
   3816 		 */
   3817 		if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
   3818 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3819 #endif
   3820 		simple_unlock(&pg->mdpage.pvh_slock);
   3821 
   3822 		/*
   3823 		 * Re-enable write permissions for the page.  No need to call
   3824 		 * pmap_vac_me_harder(), since this is just a
   3825 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3826 		 * changing. We've already set the cacheable bits based on
   3827 		 * the assumption that we can write to this page.
   3828 		 */
   3829 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3830 		PTE_SYNC(ptep);
   3831 		rv = 1;
   3832 	} else
   3833 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3834 		/*
   3835 		 * This looks like a good candidate for "page referenced"
   3836 		 * emulation.
   3837 		 */
   3838 		struct pv_entry *pv;
   3839 		struct vm_page *pg;
   3840 
   3841 		/* Extract the physical address of the page */
   3842 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3843 			goto out;
   3844 
   3845 		/* Get the current flags for this page. */
   3846 		simple_lock(&pg->mdpage.pvh_slock);
   3847 
   3848 		pv = pmap_find_pv(pg, pm, va);
   3849 		if (pv == NULL) {
   3850 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3851 			goto out;
   3852 		}
   3853 
   3854 		pg->mdpage.pvh_attrs |= PVF_REF;
   3855 		pv->pv_flags |= PVF_REF;
   3856 		simple_unlock(&pg->mdpage.pvh_slock);
   3857 
   3858 		NPDEBUG(PDB_FOLLOW,
   3859 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3860 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3861 
   3862 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3863 		PTE_SYNC(ptep);
   3864 		rv = 1;
   3865 	}
   3866 
   3867 	/*
   3868 	 * We know there is a valid mapping here, so simply
   3869 	 * fix up the L1 if necessary.
   3870 	 */
   3871 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3872 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3873 	if (*pl1pd != l1pd) {
   3874 		*pl1pd = l1pd;
   3875 		PTE_SYNC(pl1pd);
   3876 		rv = 1;
   3877 	}
   3878 
   3879 #ifdef CPU_SA110
   3880 	/*
   3881 	 * There are bugs in the rev K SA110.  This is a check for one
   3882 	 * of them.
   3883 	 */
   3884 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3885 	    curcpu()->ci_arm_cpurev < 3) {
   3886 		/* Always current pmap */
   3887 		if (l2pte_valid(pte)) {
   3888 			extern int kernel_debug;
   3889 			if (kernel_debug & 1) {
   3890 				struct proc *p = curlwp->l_proc;
   3891 				printf("prefetch_abort: page is already "
   3892 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3893 				printf("prefetch_abort: pc=%08lx proc=%p "
   3894 				    "process=%s\n", va, p, p->p_comm);
   3895 				printf("prefetch_abort: far=%08x fs=%x\n",
   3896 				    cpu_faultaddress(), cpu_faultstatus());
   3897 			}
   3898 #ifdef DDB
   3899 			if (kernel_debug & 2)
   3900 				Debugger();
   3901 #endif
   3902 			rv = 1;
   3903 		}
   3904 	}
   3905 #endif /* CPU_SA110 */
   3906 
   3907 #ifdef DEBUG
   3908 	/*
   3909 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3910 	 * stale TLB entry for the faulting address. This happens when two or
   3911 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3912 	 * a context switch between such processes, we can take domain faults
   3913 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3914 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3915 	 * example.
   3916 	 *
   3917 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3918 	 * entry for a recently entered mapping. In this case, the TLB is
   3919 	 * flushed for the new mapping, but there may still be TLB entries for
   3920 	 * other mappings belonging to other processes in the 1MB range
   3921 	 * covered by the L1 entry.
   3922 	 *
   3923 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3924 	 * value, so the fault must be due to a stale TLB entry.
   3925 	 *
   3926 	 * Since we always need to flush the TLB anyway in the case where we
   3927 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3928 	 * stale TLB entries dynamically.
   3929 	 *
   3930 	 * However, the above condition can ONLY happen if the current L1 is
   3931 	 * being shared. If it happens when the L1 is unshared, it indicates
   3932 	 * that other parts of the pmap are not doing their job WRT managing
   3933 	 * the TLB.
   3934 	 */
   3935 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   3936 		extern int last_fault_code;
   3937 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   3938 		    pm, va, ftype);
   3939 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   3940 		    l2, l2b, ptep, pl1pd);
   3941 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   3942 		    pte, l1pd, last_fault_code);
   3943 #ifdef DDB
   3944 		Debugger();
   3945 #endif
   3946 	}
   3947 #endif
   3948 
   3949 	cpu_tlb_flushID_SE(va);
   3950 	cpu_cpwait();
   3951 
   3952 	rv = 1;
   3953 
   3954 out:
   3955 	pmap_release_pmap_lock(pm);
   3956 	PMAP_MAP_TO_HEAD_UNLOCK();
   3957 
   3958 	return (rv);
   3959 }
   3960 
   3961 /*
   3962  * pmap_collect: free resources held by a pmap
   3963  *
   3964  * => optional function.
   3965  * => called when a process is swapped out to free memory.
   3966  */
   3967 void
   3968 pmap_collect(pmap_t pm)
   3969 {
   3970 
   3971 #ifdef PMAP_CACHE_VIVT
   3972 	pmap_idcache_wbinv_all(pm);
   3973 #endif
   3974 	pm->pm_remove_all = true;
   3975 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3976 	pmap_update(pm);
   3977 	PMAPCOUNT(collects);
   3978 }
   3979 
   3980 /*
   3981  * Routine:	pmap_procwr
   3982  *
   3983  * Function:
   3984  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3985  *
   3986  */
   3987 void
   3988 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3989 {
   3990 	/* We only need to do anything if it is the current process. */
   3991 	if (p == curproc)
   3992 		cpu_icache_sync_range(va, len);
   3993 }
   3994 
   3995 /*
   3996  * Routine:	pmap_unwire
   3997  * Function:	Clear the wired attribute for a map/virtual-address pair.
   3998  *
   3999  * In/out conditions:
   4000  *		The mapping must already exist in the pmap.
   4001  */
   4002 void
   4003 pmap_unwire(pmap_t pm, vaddr_t va)
   4004 {
   4005 	struct l2_bucket *l2b;
   4006 	pt_entry_t *ptep, pte;
   4007 	struct vm_page *pg;
   4008 	paddr_t pa;
   4009 
   4010 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4011 
   4012 	PMAP_MAP_TO_HEAD_LOCK();
   4013 	pmap_acquire_pmap_lock(pm);
   4014 
   4015 	l2b = pmap_get_l2_bucket(pm, va);
   4016 	KDASSERT(l2b != NULL);
   4017 
   4018 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4019 	pte = *ptep;
   4020 
   4021 	/* Extract the physical address of the page */
   4022 	pa = l2pte_pa(pte);
   4023 
   4024 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4025 		/* Update the wired bit in the pv entry for this page. */
   4026 		simple_lock(&pg->mdpage.pvh_slock);
   4027 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   4028 		simple_unlock(&pg->mdpage.pvh_slock);
   4029 	}
   4030 
   4031 	pmap_release_pmap_lock(pm);
   4032 	PMAP_MAP_TO_HEAD_UNLOCK();
   4033 }
   4034 
   4035 void
   4036 pmap_activate(struct lwp *l)
   4037 {
   4038 	extern int block_userspace_access;
   4039 	pmap_t opm, npm, rpm;
   4040 	uint32_t odacr, ndacr;
   4041 	int oldirqstate;
   4042 
   4043 	/*
   4044 	 * If activating a non-current lwp or the current lwp is
   4045 	 * already active, just return.
   4046 	 */
   4047 	if (l != curlwp ||
   4048 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4049 		return;
   4050 
   4051 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4052 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4053 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4054 
   4055 	/*
   4056 	 * If TTB and DACR are unchanged, short-circuit all the
   4057 	 * TLB/cache management stuff.
   4058 	 */
   4059 	if (pmap_previous_active_lwp != NULL) {
   4060 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4061 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4062 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4063 
   4064 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4065 			goto all_done;
   4066 	} else
   4067 		opm = NULL;
   4068 
   4069 	PMAPCOUNT(activations);
   4070 	block_userspace_access = 1;
   4071 
   4072 	/*
   4073 	 * If switching to a user vmspace which is different to the
   4074 	 * most recent one, and the most recent one is potentially
   4075 	 * live in the cache, we must write-back and invalidate the
   4076 	 * entire cache.
   4077 	 */
   4078 	rpm = pmap_recent_user;
   4079 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4080 	    rpm->pm_cstate.cs_cache) {
   4081 		rpm->pm_cstate.cs_cache = 0;
   4082 #ifdef PMAP_CACHE_VIVT
   4083 		cpu_idcache_wbinv_all();
   4084 #endif
   4085 	}
   4086 
   4087 	/* No interrupts while we frob the TTB/DACR */
   4088 	oldirqstate = disable_interrupts(IF32_bits);
   4089 
   4090 	/*
   4091 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4092 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4093 	 * before switching to it otherwise subsequent interrupts/exceptions
   4094 	 * (including domain faults!) will jump into hyperspace.
   4095 	 */
   4096 	if (npm->pm_pl1vec != NULL) {
   4097 		cpu_tlb_flushID_SE((u_int)vector_page);
   4098 		cpu_cpwait();
   4099 		*npm->pm_pl1vec = npm->pm_l1vec;
   4100 		PTE_SYNC(npm->pm_pl1vec);
   4101 	}
   4102 
   4103 	cpu_domains(ndacr);
   4104 
   4105 	if (npm == pmap_kernel() || npm == rpm) {
   4106 		/*
   4107 		 * Switching to a kernel thread, or back to the
   4108 		 * same user vmspace as before... Simply update
   4109 		 * the TTB (no TLB flush required)
   4110 		 */
   4111 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4112 		    "r"(npm->pm_l1->l1_physaddr));
   4113 		cpu_cpwait();
   4114 	} else {
   4115 		/*
   4116 		 * Otherwise, update TTB and flush TLB
   4117 		 */
   4118 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4119 		if (rpm != NULL)
   4120 			rpm->pm_cstate.cs_tlb = 0;
   4121 	}
   4122 
   4123 	restore_interrupts(oldirqstate);
   4124 
   4125 	block_userspace_access = 0;
   4126 
   4127  all_done:
   4128 	/*
   4129 	 * The new pmap is resident. Make sure it's marked
   4130 	 * as resident in the cache/TLB.
   4131 	 */
   4132 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4133 	if (npm != pmap_kernel())
   4134 		pmap_recent_user = npm;
   4135 
   4136 	/* The old pmap is not longer active */
   4137 	if (opm != NULL)
   4138 		opm->pm_activated = false;
   4139 
   4140 	/* But the new one is */
   4141 	npm->pm_activated = true;
   4142 }
   4143 
   4144 void
   4145 pmap_deactivate(struct lwp *l)
   4146 {
   4147 
   4148 	/*
   4149 	 * If the process is exiting, make sure pmap_activate() does
   4150 	 * a full MMU context-switch and cache flush, which we might
   4151 	 * otherwise skip. See PR port-arm/38950.
   4152 	 */
   4153 	if (l->l_proc->p_sflag & PS_WEXIT)
   4154 		pmap_previous_active_lwp = NULL;
   4155 
   4156 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4157 }
   4158 
   4159 void
   4160 pmap_update(pmap_t pm)
   4161 {
   4162 
   4163 	if (pm->pm_remove_all) {
   4164 		/*
   4165 		 * Finish up the pmap_remove_all() optimisation by flushing
   4166 		 * the TLB.
   4167 		 */
   4168 		pmap_tlb_flushID(pm);
   4169 		pm->pm_remove_all = false;
   4170 	}
   4171 
   4172 	if (pmap_is_current(pm)) {
   4173 		/*
   4174 		 * If we're dealing with a current userland pmap, move its L1
   4175 		 * to the end of the LRU.
   4176 		 */
   4177 		if (pm != pmap_kernel())
   4178 			pmap_use_l1(pm);
   4179 
   4180 		/*
   4181 		 * We can assume we're done with frobbing the cache/tlb for
   4182 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4183 		 * flushes.
   4184 		 */
   4185 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4186 	}
   4187 
   4188 	PMAPCOUNT(updates);
   4189 
   4190 	/*
   4191 	 * make sure TLB/cache operations have completed.
   4192 	 */
   4193 	cpu_cpwait();
   4194 }
   4195 
   4196 void
   4197 pmap_remove_all(pmap_t pm)
   4198 {
   4199 
   4200 	/*
   4201 	 * The vmspace described by this pmap is about to be torn down.
   4202 	 * Until pmap_update() is called, UVM will only make calls
   4203 	 * to pmap_remove(). We can make life much simpler by flushing
   4204 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4205 	 */
   4206 #ifdef PMAP_CACHE_VIVT
   4207 	pmap_idcache_wbinv_all(pm);
   4208 #endif
   4209 	pm->pm_remove_all = true;
   4210 }
   4211 
   4212 /*
   4213  * Retire the given physical map from service.
   4214  * Should only be called if the map contains no valid mappings.
   4215  */
   4216 void
   4217 pmap_destroy(pmap_t pm)
   4218 {
   4219 	u_int count;
   4220 
   4221 	if (pm == NULL)
   4222 		return;
   4223 
   4224 	if (pm->pm_remove_all) {
   4225 		pmap_tlb_flushID(pm);
   4226 		pm->pm_remove_all = false;
   4227 	}
   4228 
   4229 	/*
   4230 	 * Drop reference count
   4231 	 */
   4232 	mutex_enter(&pm->pm_lock);
   4233 	count = --pm->pm_obj.uo_refs;
   4234 	mutex_exit(&pm->pm_lock);
   4235 	if (count > 0) {
   4236 		if (pmap_is_current(pm)) {
   4237 			if (pm != pmap_kernel())
   4238 				pmap_use_l1(pm);
   4239 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4240 		}
   4241 		return;
   4242 	}
   4243 
   4244 	/*
   4245 	 * reference count is zero, free pmap resources and then free pmap.
   4246 	 */
   4247 
   4248 	if (vector_page < KERNEL_BASE) {
   4249 		KDASSERT(!pmap_is_current(pm));
   4250 
   4251 		/* Remove the vector page mapping */
   4252 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4253 		pmap_update(pm);
   4254 	}
   4255 
   4256 	LIST_REMOVE(pm, pm_list);
   4257 
   4258 	pmap_free_l1(pm);
   4259 
   4260 	if (pmap_recent_user == pm)
   4261 		pmap_recent_user = NULL;
   4262 
   4263 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4264 
   4265 	/* return the pmap to the pool */
   4266 	pool_cache_put(&pmap_cache, pm);
   4267 }
   4268 
   4269 
   4270 /*
   4271  * void pmap_reference(pmap_t pm)
   4272  *
   4273  * Add a reference to the specified pmap.
   4274  */
   4275 void
   4276 pmap_reference(pmap_t pm)
   4277 {
   4278 
   4279 	if (pm == NULL)
   4280 		return;
   4281 
   4282 	pmap_use_l1(pm);
   4283 
   4284 	mutex_enter(&pm->pm_lock);
   4285 	pm->pm_obj.uo_refs++;
   4286 	mutex_exit(&pm->pm_lock);
   4287 }
   4288 
   4289 #if ARM_MMU_V6 > 0
   4290 
   4291 static struct evcnt pmap_prefer_nochange_ev =
   4292     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4293 static struct evcnt pmap_prefer_change_ev =
   4294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4295 
   4296 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4297 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4298 
   4299 void
   4300 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4301 {
   4302 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4303 	vaddr_t va = *vap;
   4304 	vaddr_t diff = (hint - va) & mask;
   4305 	if (diff == 0) {
   4306 		pmap_prefer_nochange_ev.ev_count++;
   4307 	} else {
   4308 		pmap_prefer_change_ev.ev_count++;
   4309 		if (__predict_false(td))
   4310 			va -= mask + 1;
   4311 		*vap = va + diff;
   4312 	}
   4313 }
   4314 #endif /* ARM_MMU_V6 */
   4315 
   4316 /*
   4317  * pmap_zero_page()
   4318  *
   4319  * Zero a given physical page by mapping it at a page hook point.
   4320  * In doing the zero page op, the page we zero is mapped cachable, as with
   4321  * StrongARM accesses to non-cached pages are non-burst making writing
   4322  * _any_ bulk data very slow.
   4323  */
   4324 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4325 void
   4326 pmap_zero_page_generic(paddr_t phys)
   4327 {
   4328 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4329 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4330 #endif
   4331 #ifdef PMAP_CACHE_VIPT
   4332 	/* Choose the last page color it had, if any */
   4333 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4334 #else
   4335 	const vsize_t va_offset = 0;
   4336 #endif
   4337 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4338 
   4339 #ifdef DEBUG
   4340 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4341 		panic("pmap_zero_page: page has mappings");
   4342 #endif
   4343 
   4344 	KDASSERT((phys & PGOFSET) == 0);
   4345 
   4346 	/*
   4347 	 * Hook in the page, zero it, and purge the cache for that
   4348 	 * zeroed page. Invalidate the TLB as needed.
   4349 	 */
   4350 	*ptep = L2_S_PROTO | phys |
   4351 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4352 	PTE_SYNC(ptep);
   4353 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4354 	cpu_cpwait();
   4355 	bzero_page(cdstp + va_offset);
   4356 	/*
   4357 	 * Unmap the page.
   4358 	 */
   4359 	*ptep = 0;
   4360 	PTE_SYNC(ptep);
   4361 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4362 #ifdef PMAP_CACHE_VIVT
   4363 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4364 #endif
   4365 #ifdef PMAP_CACHE_VIPT
   4366 	/*
   4367 	 * This page is now cache resident so it now has a page color.
   4368 	 * Any contents have been obliterated so clear the EXEC flag.
   4369 	 */
   4370 	if (!pmap_is_page_colored_p(pg)) {
   4371 		PMAPCOUNT(vac_color_new);
   4372 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4373 	}
   4374 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4375 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4376 		PMAPCOUNT(exec_discarded_zero);
   4377 	}
   4378 	pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4379 #endif
   4380 }
   4381 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4382 
   4383 #if ARM_MMU_XSCALE == 1
   4384 void
   4385 pmap_zero_page_xscale(paddr_t phys)
   4386 {
   4387 #ifdef DEBUG
   4388 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4389 
   4390 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4391 		panic("pmap_zero_page: page has mappings");
   4392 #endif
   4393 
   4394 	KDASSERT((phys & PGOFSET) == 0);
   4395 
   4396 	/*
   4397 	 * Hook in the page, zero it, and purge the cache for that
   4398 	 * zeroed page. Invalidate the TLB as needed.
   4399 	 */
   4400 	*cdst_pte = L2_S_PROTO | phys |
   4401 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4402 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4403 	PTE_SYNC(cdst_pte);
   4404 	cpu_tlb_flushD_SE(cdstp);
   4405 	cpu_cpwait();
   4406 	bzero_page(cdstp);
   4407 	xscale_cache_clean_minidata();
   4408 }
   4409 #endif /* ARM_MMU_XSCALE == 1 */
   4410 
   4411 /* pmap_pageidlezero()
   4412  *
   4413  * The same as above, except that we assume that the page is not
   4414  * mapped.  This means we never have to flush the cache first.  Called
   4415  * from the idle loop.
   4416  */
   4417 bool
   4418 pmap_pageidlezero(paddr_t phys)
   4419 {
   4420 	unsigned int i;
   4421 	int *ptr;
   4422 	bool rv = true;
   4423 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4424 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4425 #endif
   4426 #ifdef PMAP_CACHE_VIPT
   4427 	/* Choose the last page color it had, if any */
   4428 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4429 #else
   4430 	const vsize_t va_offset = 0;
   4431 #endif
   4432 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4433 
   4434 
   4435 #ifdef DEBUG
   4436 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4437 		panic("pmap_pageidlezero: page has mappings");
   4438 #endif
   4439 
   4440 	KDASSERT((phys & PGOFSET) == 0);
   4441 
   4442 	/*
   4443 	 * Hook in the page, zero it, and purge the cache for that
   4444 	 * zeroed page. Invalidate the TLB as needed.
   4445 	 */
   4446 	*ptep = L2_S_PROTO | phys |
   4447 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4448 	PTE_SYNC(ptep);
   4449 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4450 	cpu_cpwait();
   4451 
   4452 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4453 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4454 		if (sched_curcpu_runnable_p() != 0) {
   4455 			/*
   4456 			 * A process has become ready.  Abort now,
   4457 			 * so we don't keep it waiting while we
   4458 			 * do slow memory access to finish this
   4459 			 * page.
   4460 			 */
   4461 			rv = false;
   4462 			break;
   4463 		}
   4464 		*ptr++ = 0;
   4465 	}
   4466 
   4467 #ifdef PMAP_CACHE_VIVT
   4468 	if (rv)
   4469 		/*
   4470 		 * if we aborted we'll rezero this page again later so don't
   4471 		 * purge it unless we finished it
   4472 		 */
   4473 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4474 #elif defined(PMAP_CACHE_VIPT)
   4475 	/*
   4476 	 * This page is now cache resident so it now has a page color.
   4477 	 * Any contents have been obliterated so clear the EXEC flag.
   4478 	 */
   4479 	if (!pmap_is_page_colored_p(pg)) {
   4480 		PMAPCOUNT(vac_color_new);
   4481 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4482 	}
   4483 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4484 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4485 		PMAPCOUNT(exec_discarded_zero);
   4486 	}
   4487 #endif
   4488 	/*
   4489 	 * Unmap the page.
   4490 	 */
   4491 	*ptep = 0;
   4492 	PTE_SYNC(ptep);
   4493 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4494 
   4495 	return (rv);
   4496 }
   4497 
   4498 /*
   4499  * pmap_copy_page()
   4500  *
   4501  * Copy one physical page into another, by mapping the pages into
   4502  * hook points. The same comment regarding cachability as in
   4503  * pmap_zero_page also applies here.
   4504  */
   4505 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4506 void
   4507 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4508 {
   4509 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4510 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4511 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4512 #endif
   4513 #ifdef PMAP_CACHE_VIPT
   4514 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4515 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4516 #else
   4517 	const vsize_t src_va_offset = 0;
   4518 	const vsize_t dst_va_offset = 0;
   4519 #endif
   4520 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4521 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4522 
   4523 #ifdef DEBUG
   4524 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4525 		panic("pmap_copy_page: dst page has mappings");
   4526 #endif
   4527 
   4528 #ifdef PMAP_CACHE_VIPT
   4529 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4530 #endif
   4531 	KDASSERT((src & PGOFSET) == 0);
   4532 	KDASSERT((dst & PGOFSET) == 0);
   4533 
   4534 	/*
   4535 	 * Clean the source page.  Hold the source page's lock for
   4536 	 * the duration of the copy so that no other mappings can
   4537 	 * be created while we have a potentially aliased mapping.
   4538 	 */
   4539 	simple_lock(&src_pg->mdpage.pvh_slock);
   4540 #ifdef PMAP_CACHE_VIVT
   4541 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4542 #endif
   4543 
   4544 	/*
   4545 	 * Map the pages into the page hook points, copy them, and purge
   4546 	 * the cache for the appropriate page. Invalidate the TLB
   4547 	 * as required.
   4548 	 */
   4549 	*src_ptep = L2_S_PROTO
   4550 	    | src
   4551 #ifdef PMAP_CACHE_VIPT
   4552 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4553 #endif
   4554 #ifdef PMAP_CACHE_VIVT
   4555 	    | pte_l2_s_cache_mode
   4556 #endif
   4557 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4558 	*dst_ptep = L2_S_PROTO | dst |
   4559 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4560 	PTE_SYNC(src_ptep);
   4561 	PTE_SYNC(dst_ptep);
   4562 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4563 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4564 	cpu_cpwait();
   4565 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4566 #ifdef PMAP_CACHE_VIVT
   4567 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4568 #endif
   4569 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4570 #ifdef PMAP_CACHE_VIVT
   4571 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4572 #endif
   4573 	/*
   4574 	 * Unmap the pages.
   4575 	 */
   4576 	*src_ptep = 0;
   4577 	*dst_ptep = 0;
   4578 	PTE_SYNC(src_ptep);
   4579 	PTE_SYNC(dst_ptep);
   4580 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4581 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4582 #ifdef PMAP_CACHE_VIPT
   4583 	/*
   4584 	 * Now that the destination page is in the cache, mark it as colored.
   4585 	 * If this was an exec page, discard it.
   4586 	 */
   4587 	if (!pmap_is_page_colored_p(dst_pg)) {
   4588 		PMAPCOUNT(vac_color_new);
   4589 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4590 	}
   4591 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4592 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4593 		PMAPCOUNT(exec_discarded_copy);
   4594 	}
   4595 	dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4596 #endif
   4597 }
   4598 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4599 
   4600 #if ARM_MMU_XSCALE == 1
   4601 void
   4602 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4603 {
   4604 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4605 #ifdef DEBUG
   4606 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4607 
   4608 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4609 		panic("pmap_copy_page: dst page has mappings");
   4610 #endif
   4611 
   4612 	KDASSERT((src & PGOFSET) == 0);
   4613 	KDASSERT((dst & PGOFSET) == 0);
   4614 
   4615 	/*
   4616 	 * Clean the source page.  Hold the source page's lock for
   4617 	 * the duration of the copy so that no other mappings can
   4618 	 * be created while we have a potentially aliased mapping.
   4619 	 */
   4620 	simple_lock(&src_pg->mdpage.pvh_slock);
   4621 #ifdef PMAP_CACHE_VIVT
   4622 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4623 #endif
   4624 
   4625 	/*
   4626 	 * Map the pages into the page hook points, copy them, and purge
   4627 	 * the cache for the appropriate page. Invalidate the TLB
   4628 	 * as required.
   4629 	 */
   4630 	*csrc_pte = L2_S_PROTO | src |
   4631 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4632 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4633 	PTE_SYNC(csrc_pte);
   4634 	*cdst_pte = L2_S_PROTO | dst |
   4635 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4636 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4637 	PTE_SYNC(cdst_pte);
   4638 	cpu_tlb_flushD_SE(csrcp);
   4639 	cpu_tlb_flushD_SE(cdstp);
   4640 	cpu_cpwait();
   4641 	bcopy_page(csrcp, cdstp);
   4642 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4643 	xscale_cache_clean_minidata();
   4644 }
   4645 #endif /* ARM_MMU_XSCALE == 1 */
   4646 
   4647 /*
   4648  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4649  *
   4650  * Return the start and end addresses of the kernel's virtual space.
   4651  * These values are setup in pmap_bootstrap and are updated as pages
   4652  * are allocated.
   4653  */
   4654 void
   4655 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4656 {
   4657 	*start = virtual_avail;
   4658 	*end = virtual_end;
   4659 }
   4660 
   4661 /*
   4662  * Helper function for pmap_grow_l2_bucket()
   4663  */
   4664 static inline int
   4665 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4666 {
   4667 	struct l2_bucket *l2b;
   4668 	pt_entry_t *ptep;
   4669 	paddr_t pa;
   4670 
   4671 	if (uvm.page_init_done == false) {
   4672 #ifdef PMAP_STEAL_MEMORY
   4673 		pv_addr_t pv;
   4674 		pmap_boot_pagealloc(PAGE_SIZE,
   4675 #ifdef PMAP_CACHE_VIPT
   4676 		    arm_cache_prefer_mask,
   4677 		    va & arm_cache_prefer_mask,
   4678 #else
   4679 		    0, 0,
   4680 #endif
   4681 		    &pv);
   4682 		pa = pv.pv_pa;
   4683 #else
   4684 		if (uvm_page_physget(&pa) == false)
   4685 			return (1);
   4686 #endif	/* PMAP_STEAL_MEMORY */
   4687 	} else {
   4688 		struct vm_page *pg;
   4689 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4690 		if (pg == NULL)
   4691 			return (1);
   4692 		pa = VM_PAGE_TO_PHYS(pg);
   4693 #ifdef PMAP_CACHE_VIPT
   4694 		/*
   4695 		 * This new page must not have any mappings.  Enter it via
   4696 		 * pmap_kenter_pa and let that routine do the hard work.
   4697 		 */
   4698 		KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
   4699 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   4700 #endif
   4701 	}
   4702 
   4703 	if (pap)
   4704 		*pap = pa;
   4705 
   4706 	PMAPCOUNT(pt_mappings);
   4707 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4708 	KDASSERT(l2b != NULL);
   4709 
   4710 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4711 	*ptep = L2_S_PROTO | pa | cache_mode |
   4712 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4713 	PTE_SYNC(ptep);
   4714 	memset((void *)va, 0, PAGE_SIZE);
   4715 	return (0);
   4716 }
   4717 
   4718 /*
   4719  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4720  * used by pmap_growkernel().
   4721  */
   4722 static inline struct l2_bucket *
   4723 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4724 {
   4725 	struct l2_dtable *l2;
   4726 	struct l2_bucket *l2b;
   4727 	u_short l1idx;
   4728 	vaddr_t nva;
   4729 
   4730 	l1idx = L1_IDX(va);
   4731 
   4732 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4733 		/*
   4734 		 * No mapping at this address, as there is
   4735 		 * no entry in the L1 table.
   4736 		 * Need to allocate a new l2_dtable.
   4737 		 */
   4738 		nva = pmap_kernel_l2dtable_kva;
   4739 		if ((nva & PGOFSET) == 0) {
   4740 			/*
   4741 			 * Need to allocate a backing page
   4742 			 */
   4743 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4744 				return (NULL);
   4745 		}
   4746 
   4747 		l2 = (struct l2_dtable *)nva;
   4748 		nva += sizeof(struct l2_dtable);
   4749 
   4750 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4751 			/*
   4752 			 * The new l2_dtable straddles a page boundary.
   4753 			 * Map in another page to cover it.
   4754 			 */
   4755 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4756 				return (NULL);
   4757 		}
   4758 
   4759 		pmap_kernel_l2dtable_kva = nva;
   4760 
   4761 		/*
   4762 		 * Link it into the parent pmap
   4763 		 */
   4764 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4765 	}
   4766 
   4767 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4768 
   4769 	/*
   4770 	 * Fetch pointer to the L2 page table associated with the address.
   4771 	 */
   4772 	if (l2b->l2b_kva == NULL) {
   4773 		pt_entry_t *ptep;
   4774 
   4775 		/*
   4776 		 * No L2 page table has been allocated. Chances are, this
   4777 		 * is because we just allocated the l2_dtable, above.
   4778 		 */
   4779 		nva = pmap_kernel_l2ptp_kva;
   4780 		ptep = (pt_entry_t *)nva;
   4781 		if ((nva & PGOFSET) == 0) {
   4782 			/*
   4783 			 * Need to allocate a backing page
   4784 			 */
   4785 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4786 			    &pmap_kernel_l2ptp_phys))
   4787 				return (NULL);
   4788 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4789 		}
   4790 
   4791 		l2->l2_occupancy++;
   4792 		l2b->l2b_kva = ptep;
   4793 		l2b->l2b_l1idx = l1idx;
   4794 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4795 
   4796 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4797 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4798 	}
   4799 
   4800 	return (l2b);
   4801 }
   4802 
   4803 vaddr_t
   4804 pmap_growkernel(vaddr_t maxkvaddr)
   4805 {
   4806 	pmap_t kpm = pmap_kernel();
   4807 	struct l1_ttable *l1;
   4808 	struct l2_bucket *l2b;
   4809 	pd_entry_t *pl1pd;
   4810 	int s;
   4811 
   4812 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4813 		goto out;		/* we are OK */
   4814 
   4815 	NPDEBUG(PDB_GROWKERN,
   4816 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4817 	    pmap_curmaxkvaddr, maxkvaddr));
   4818 
   4819 	KDASSERT(maxkvaddr <= virtual_end);
   4820 
   4821 	/*
   4822 	 * whoops!   we need to add kernel PTPs
   4823 	 */
   4824 
   4825 	s = splhigh();	/* to be safe */
   4826 	mutex_enter(&kpm->pm_lock);
   4827 
   4828 	/* Map 1MB at a time */
   4829 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4830 
   4831 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4832 		KDASSERT(l2b != NULL);
   4833 
   4834 		/* Distribute new L1 entry to all other L1s */
   4835 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4836 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4837 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4838 			    L1_C_PROTO;
   4839 			PTE_SYNC(pl1pd);
   4840 		}
   4841 	}
   4842 
   4843 	/*
   4844 	 * flush out the cache, expensive but growkernel will happen so
   4845 	 * rarely
   4846 	 */
   4847 	cpu_dcache_wbinv_all();
   4848 	cpu_tlb_flushD();
   4849 	cpu_cpwait();
   4850 
   4851 	mutex_exit(&kpm->pm_lock);
   4852 	splx(s);
   4853 
   4854 out:
   4855 	return (pmap_curmaxkvaddr);
   4856 }
   4857 
   4858 /************************ Utility routines ****************************/
   4859 
   4860 /*
   4861  * vector_page_setprot:
   4862  *
   4863  *	Manipulate the protection of the vector page.
   4864  */
   4865 void
   4866 vector_page_setprot(int prot)
   4867 {
   4868 	struct l2_bucket *l2b;
   4869 	pt_entry_t *ptep;
   4870 
   4871 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4872 	KDASSERT(l2b != NULL);
   4873 
   4874 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4875 
   4876 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4877 	PTE_SYNC(ptep);
   4878 	cpu_tlb_flushD_SE(vector_page);
   4879 	cpu_cpwait();
   4880 }
   4881 
   4882 /*
   4883  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4884  * Returns true if the mapping exists, else false.
   4885  *
   4886  * NOTE: This function is only used by a couple of arm-specific modules.
   4887  * It is not safe to take any pmap locks here, since we could be right
   4888  * in the middle of debugging the pmap anyway...
   4889  *
   4890  * It is possible for this routine to return false even though a valid
   4891  * mapping does exist. This is because we don't lock, so the metadata
   4892  * state may be inconsistent.
   4893  *
   4894  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4895  * a "section" mapping.
   4896  */
   4897 bool
   4898 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4899 {
   4900 	struct l2_dtable *l2;
   4901 	pd_entry_t *pl1pd, l1pd;
   4902 	pt_entry_t *ptep;
   4903 	u_short l1idx;
   4904 
   4905 	if (pm->pm_l1 == NULL)
   4906 		return false;
   4907 
   4908 	l1idx = L1_IDX(va);
   4909 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4910 	l1pd = *pl1pd;
   4911 
   4912 	if (l1pte_section_p(l1pd)) {
   4913 		*ptp = NULL;
   4914 		return true;
   4915 	}
   4916 
   4917 	if (pm->pm_l2 == NULL)
   4918 		return false;
   4919 
   4920 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4921 
   4922 	if (l2 == NULL ||
   4923 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4924 		return false;
   4925 	}
   4926 
   4927 	*ptp = &ptep[l2pte_index(va)];
   4928 	return true;
   4929 }
   4930 
   4931 bool
   4932 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4933 {
   4934 	u_short l1idx;
   4935 
   4936 	if (pm->pm_l1 == NULL)
   4937 		return false;
   4938 
   4939 	l1idx = L1_IDX(va);
   4940 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4941 
   4942 	return true;
   4943 }
   4944 
   4945 /************************ Bootstrapping routines ****************************/
   4946 
   4947 static void
   4948 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4949 {
   4950 	int i;
   4951 
   4952 	l1->l1_kva = l1pt;
   4953 	l1->l1_domain_use_count = 0;
   4954 	l1->l1_domain_first = 0;
   4955 
   4956 	for (i = 0; i < PMAP_DOMAINS; i++)
   4957 		l1->l1_domain_free[i] = i + 1;
   4958 
   4959 	/*
   4960 	 * Copy the kernel's L1 entries to each new L1.
   4961 	 */
   4962 	if (pmap_initialized)
   4963 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   4964 
   4965 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   4966 	    &l1->l1_physaddr) == false)
   4967 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   4968 
   4969 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   4970 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   4971 }
   4972 
   4973 /*
   4974  * pmap_bootstrap() is called from the board-specific initarm() routine
   4975  * once the kernel L1/L2 descriptors tables have been set up.
   4976  *
   4977  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   4978  * spread over a number of disparate files/functions.
   4979  *
   4980  * We are passed the following parameters
   4981  *  - kernel_l1pt
   4982  *    This is a pointer to the base of the kernel's L1 translation table.
   4983  *  - vstart
   4984  *    1MB-aligned start of managed kernel virtual memory.
   4985  *  - vend
   4986  *    1MB-aligned end of managed kernel virtual memory.
   4987  *
   4988  * We use the first parameter to build the metadata (struct l1_ttable and
   4989  * struct l2_dtable) necessary to track kernel mappings.
   4990  */
   4991 #define	PMAP_STATIC_L2_SIZE 16
   4992 void
   4993 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   4994 {
   4995 	static struct l1_ttable static_l1;
   4996 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   4997 	struct l1_ttable *l1 = &static_l1;
   4998 	struct l2_dtable *l2;
   4999 	struct l2_bucket *l2b;
   5000 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5001 	pmap_t pm = pmap_kernel();
   5002 	pd_entry_t pde;
   5003 	pt_entry_t *ptep;
   5004 	paddr_t pa;
   5005 	vaddr_t va;
   5006 	vsize_t size;
   5007 	int nptes, l1idx, l2idx, l2next = 0;
   5008 
   5009 	/*
   5010 	 * Initialise the kernel pmap object
   5011 	 */
   5012 	pm->pm_l1 = l1;
   5013 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5014 	pm->pm_activated = true;
   5015 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5016 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   5017 
   5018 	/*
   5019 	 * Scan the L1 translation table created by initarm() and create
   5020 	 * the required metadata for all valid mappings found in it.
   5021 	 */
   5022 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5023 		pde = l1pt[l1idx];
   5024 
   5025 		/*
   5026 		 * We're only interested in Coarse mappings.
   5027 		 * pmap_extract() can deal with section mappings without
   5028 		 * recourse to checking L2 metadata.
   5029 		 */
   5030 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5031 			continue;
   5032 
   5033 		/*
   5034 		 * Lookup the KVA of this L2 descriptor table
   5035 		 */
   5036 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5037 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5038 		if (ptep == NULL) {
   5039 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5040 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5041 		}
   5042 
   5043 		/*
   5044 		 * Fetch the associated L2 metadata structure.
   5045 		 * Allocate a new one if necessary.
   5046 		 */
   5047 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5048 			if (l2next == PMAP_STATIC_L2_SIZE)
   5049 				panic("pmap_bootstrap: out of static L2s");
   5050 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5051 		}
   5052 
   5053 		/*
   5054 		 * One more L1 slot tracked...
   5055 		 */
   5056 		l2->l2_occupancy++;
   5057 
   5058 		/*
   5059 		 * Fill in the details of the L2 descriptor in the
   5060 		 * appropriate bucket.
   5061 		 */
   5062 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5063 		l2b->l2b_kva = ptep;
   5064 		l2b->l2b_phys = pa;
   5065 		l2b->l2b_l1idx = l1idx;
   5066 
   5067 		/*
   5068 		 * Establish an initial occupancy count for this descriptor
   5069 		 */
   5070 		for (l2idx = 0;
   5071 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5072 		    l2idx++) {
   5073 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5074 				l2b->l2b_occupancy++;
   5075 			}
   5076 		}
   5077 
   5078 		/*
   5079 		 * Make sure the descriptor itself has the correct cache mode.
   5080 		 * If not, fix it, but whine about the problem. Port-meisters
   5081 		 * should consider this a clue to fix up their initarm()
   5082 		 * function. :)
   5083 		 */
   5084 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5085 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5086 			    "L2 pte @ %p\n", ptep);
   5087 		}
   5088 	}
   5089 
   5090 	/*
   5091 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5092 	 * a page table. Bitch if it is not correctly set.
   5093 	 */
   5094 	for (va = (vaddr_t)l1pt;
   5095 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5096 		if (pmap_set_pt_cache_mode(l1pt, va))
   5097 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5098 			    "primary L1 @ 0x%lx\n", va);
   5099 	}
   5100 
   5101 	cpu_dcache_wbinv_all();
   5102 	cpu_tlb_flushID();
   5103 	cpu_cpwait();
   5104 
   5105 	/*
   5106 	 * now we allocate the "special" VAs which are used for tmp mappings
   5107 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5108 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5109 	 *
   5110 	 * Managed KVM space start from wherever initarm() tells us.
   5111 	 */
   5112 	virtual_avail = vstart;
   5113 	virtual_end = vend;
   5114 
   5115 #ifdef PMAP_CACHE_VIPT
   5116 	/*
   5117 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5118 	 * page so we won't violate cache aliasing rules.
   5119 	 */
   5120 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5121 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5122 #else
   5123 	nptes = 1;
   5124 #endif
   5125 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5126 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5127 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5128 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5129 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5130 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5131 	    (void *)&msgbufaddr, NULL);
   5132 
   5133 	/*
   5134 	 * Allocate a range of kernel virtual address space to be used
   5135 	 * for L2 descriptor tables and metadata allocation in
   5136 	 * pmap_growkernel().
   5137 	 */
   5138 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5139 	pmap_alloc_specials(&virtual_avail,
   5140 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5141 	    &pmap_kernel_l2ptp_kva, NULL);
   5142 
   5143 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5144 	pmap_alloc_specials(&virtual_avail,
   5145 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5146 	    &pmap_kernel_l2dtable_kva, NULL);
   5147 
   5148 	/*
   5149 	 * init the static-global locks and global pmap list.
   5150 	 */
   5151 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5152 
   5153 	/*
   5154 	 * We can now initialise the first L1's metadata.
   5155 	 */
   5156 	SLIST_INIT(&l1_list);
   5157 	TAILQ_INIT(&l1_lru_list);
   5158 	simple_lock_init(&l1_lru_lock);
   5159 	pmap_init_l1(l1, l1pt);
   5160 
   5161 	/* Set up vector page L1 details, if necessary */
   5162 	if (vector_page < KERNEL_BASE) {
   5163 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5164 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5165 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5166 		    L1_C_DOM(pm->pm_domain);
   5167 	} else
   5168 		pm->pm_pl1vec = NULL;
   5169 
   5170 	/*
   5171 	 * Initialize the pmap cache
   5172 	 */
   5173 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5174 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5175 	LIST_INIT(&pmap_pmaps);
   5176 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5177 
   5178 	/*
   5179 	 * Initialize the pv pool.
   5180 	 */
   5181 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5182 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5183 
   5184 	/*
   5185 	 * Initialize the L2 dtable pool and cache.
   5186 	 */
   5187 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5188 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5189 
   5190 	/*
   5191 	 * Initialise the L2 descriptor table pool and cache
   5192 	 */
   5193 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5194 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5195 	    pmap_l2ptp_ctor, NULL, NULL);
   5196 
   5197 	cpu_dcache_wbinv_all();
   5198 }
   5199 
   5200 static int
   5201 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5202 {
   5203 	pd_entry_t *pdep, pde;
   5204 	pt_entry_t *ptep, pte;
   5205 	vaddr_t pa;
   5206 	int rv = 0;
   5207 
   5208 	/*
   5209 	 * Make sure the descriptor itself has the correct cache mode
   5210 	 */
   5211 	pdep = &kl1[L1_IDX(va)];
   5212 	pde = *pdep;
   5213 
   5214 	if (l1pte_section_p(pde)) {
   5215 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5216 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5217 			    pte_l1_s_cache_mode_pt;
   5218 			PTE_SYNC(pdep);
   5219 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5220 			rv = 1;
   5221 		}
   5222 	} else {
   5223 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5224 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5225 		if (ptep == NULL)
   5226 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5227 
   5228 		ptep = &ptep[l2pte_index(va)];
   5229 		pte = *ptep;
   5230 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5231 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5232 			    pte_l2_s_cache_mode_pt;
   5233 			PTE_SYNC(ptep);
   5234 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5235 			rv = 1;
   5236 		}
   5237 	}
   5238 
   5239 	return (rv);
   5240 }
   5241 
   5242 static void
   5243 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5244 {
   5245 	vaddr_t va = *availp;
   5246 	struct l2_bucket *l2b;
   5247 
   5248 	if (ptep) {
   5249 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5250 		if (l2b == NULL)
   5251 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5252 
   5253 		if (ptep)
   5254 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5255 	}
   5256 
   5257 	*vap = va;
   5258 	*availp = va + (PAGE_SIZE * pages);
   5259 }
   5260 
   5261 void
   5262 pmap_init(void)
   5263 {
   5264 	extern int physmem;
   5265 
   5266 	/*
   5267 	 * Set the available memory vars - These do not map to real memory
   5268 	 * addresses and cannot as the physical memory is fragmented.
   5269 	 * They are used by ps for %mem calculations.
   5270 	 * One could argue whether this should be the entire memory or just
   5271 	 * the memory that is useable in a user process.
   5272 	 */
   5273 	avail_start = 0;
   5274 	avail_end = physmem * PAGE_SIZE;
   5275 
   5276 	/*
   5277 	 * Now we need to free enough pv_entry structures to allow us to get
   5278 	 * the kmem_map/kmem_object allocated and inited (done after this
   5279 	 * function is finished).  to do this we allocate one bootstrap page out
   5280 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5281 	 * structures.   we never free this page.
   5282 	 */
   5283 	pool_setlowat(&pmap_pv_pool,
   5284 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5285 
   5286 	pmap_initialized = true;
   5287 }
   5288 
   5289 static vaddr_t last_bootstrap_page = 0;
   5290 static void *free_bootstrap_pages = NULL;
   5291 
   5292 static void *
   5293 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5294 {
   5295 	extern void *pool_page_alloc(struct pool *, int);
   5296 	vaddr_t new_page;
   5297 	void *rv;
   5298 
   5299 	if (pmap_initialized)
   5300 		return (pool_page_alloc(pp, flags));
   5301 
   5302 	if (free_bootstrap_pages) {
   5303 		rv = free_bootstrap_pages;
   5304 		free_bootstrap_pages = *((void **)rv);
   5305 		return (rv);
   5306 	}
   5307 
   5308 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5309 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5310 
   5311 	KASSERT(new_page > last_bootstrap_page);
   5312 	last_bootstrap_page = new_page;
   5313 	return ((void *)new_page);
   5314 }
   5315 
   5316 static void
   5317 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5318 {
   5319 	extern void pool_page_free(struct pool *, void *);
   5320 
   5321 	if ((vaddr_t)v <= last_bootstrap_page) {
   5322 		*((void **)v) = free_bootstrap_pages;
   5323 		free_bootstrap_pages = v;
   5324 		return;
   5325 	}
   5326 
   5327 	if (pmap_initialized) {
   5328 		pool_page_free(pp, v);
   5329 		return;
   5330 	}
   5331 }
   5332 
   5333 /*
   5334  * pmap_postinit()
   5335  *
   5336  * This routine is called after the vm and kmem subsystems have been
   5337  * initialised. This allows the pmap code to perform any initialisation
   5338  * that can only be done one the memory allocation is in place.
   5339  */
   5340 void
   5341 pmap_postinit(void)
   5342 {
   5343 	extern paddr_t physical_start, physical_end;
   5344 	struct l2_bucket *l2b;
   5345 	struct l1_ttable *l1;
   5346 	struct pglist plist;
   5347 	struct vm_page *m;
   5348 	pd_entry_t *pl1pt;
   5349 	pt_entry_t *ptep, pte;
   5350 	vaddr_t va, eva;
   5351 	u_int loop, needed;
   5352 	int error;
   5353 
   5354 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5355 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5356 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5357 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5358 
   5359 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5360 	needed -= 1;
   5361 
   5362 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5363 
   5364 	for (loop = 0; loop < needed; loop++, l1++) {
   5365 		/* Allocate a L1 page table */
   5366 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5367 		if (va == 0)
   5368 			panic("Cannot allocate L1 KVM");
   5369 
   5370 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5371 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5372 		if (error)
   5373 			panic("Cannot allocate L1 physical pages");
   5374 
   5375 		m = TAILQ_FIRST(&plist);
   5376 		eva = va + L1_TABLE_SIZE;
   5377 		pl1pt = (pd_entry_t *)va;
   5378 
   5379 		while (m && va < eva) {
   5380 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5381 
   5382 			pmap_kenter_pa(va, pa,
   5383 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   5384 
   5385 			/*
   5386 			 * Make sure the L1 descriptor table is mapped
   5387 			 * with the cache-mode set to write-through.
   5388 			 */
   5389 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5390 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5391 			pte = *ptep;
   5392 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5393 			*ptep = pte;
   5394 			PTE_SYNC(ptep);
   5395 			cpu_tlb_flushD_SE(va);
   5396 
   5397 			va += PAGE_SIZE;
   5398 			m = TAILQ_NEXT(m, pageq.queue);
   5399 		}
   5400 
   5401 #ifdef DIAGNOSTIC
   5402 		if (m)
   5403 			panic("pmap_alloc_l1pt: pglist not empty");
   5404 #endif	/* DIAGNOSTIC */
   5405 
   5406 		pmap_init_l1(l1, pl1pt);
   5407 	}
   5408 
   5409 #ifdef DEBUG
   5410 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5411 	    needed);
   5412 #endif
   5413 }
   5414 
   5415 /*
   5416  * Note that the following routines are used by board-specific initialisation
   5417  * code to configure the initial kernel page tables.
   5418  *
   5419  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5420  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5421  * behaviour of the old pmap, and provides an easy migration path for
   5422  * initial bring-up of the new pmap on existing ports. Fortunately,
   5423  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5424  * will be deprecated.
   5425  *
   5426  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5427  * tables.
   5428  */
   5429 
   5430 /*
   5431  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5432  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5433  * find them as necessary.
   5434  *
   5435  * Note that the data on this list MUST remain valid after initarm() returns,
   5436  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5437  */
   5438 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5439 
   5440 static vaddr_t
   5441 kernel_pt_lookup(paddr_t pa)
   5442 {
   5443 	pv_addr_t *pv;
   5444 
   5445 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5446 #ifndef ARM32_NEW_VM_LAYOUT
   5447 		if (pv->pv_pa == (pa & ~PGOFSET))
   5448 			return (pv->pv_va | (pa & PGOFSET));
   5449 #else
   5450 		if (pv->pv_pa == pa)
   5451 			return (pv->pv_va);
   5452 #endif
   5453 	}
   5454 	return (0);
   5455 }
   5456 
   5457 /*
   5458  * pmap_map_section:
   5459  *
   5460  *	Create a single section mapping.
   5461  */
   5462 void
   5463 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5464 {
   5465 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5466 	pd_entry_t fl;
   5467 
   5468 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5469 
   5470 	switch (cache) {
   5471 	case PTE_NOCACHE:
   5472 	default:
   5473 		fl = 0;
   5474 		break;
   5475 
   5476 	case PTE_CACHE:
   5477 		fl = pte_l1_s_cache_mode;
   5478 		break;
   5479 
   5480 	case PTE_PAGETABLE:
   5481 		fl = pte_l1_s_cache_mode_pt;
   5482 		break;
   5483 	}
   5484 
   5485 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5486 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5487 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5488 }
   5489 
   5490 /*
   5491  * pmap_map_entry:
   5492  *
   5493  *	Create a single page mapping.
   5494  */
   5495 void
   5496 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5497 {
   5498 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5499 	pt_entry_t fl;
   5500 	pt_entry_t *pte;
   5501 
   5502 	KASSERT(((va | pa) & PGOFSET) == 0);
   5503 
   5504 	switch (cache) {
   5505 	case PTE_NOCACHE:
   5506 	default:
   5507 		fl = 0;
   5508 		break;
   5509 
   5510 	case PTE_CACHE:
   5511 		fl = pte_l2_s_cache_mode;
   5512 		break;
   5513 
   5514 	case PTE_PAGETABLE:
   5515 		fl = pte_l2_s_cache_mode_pt;
   5516 		break;
   5517 	}
   5518 
   5519 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5520 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5521 
   5522 #ifndef ARM32_NEW_VM_LAYOUT
   5523 	pte = (pt_entry_t *)
   5524 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5525 #else
   5526 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5527 #endif
   5528 	if (pte == NULL)
   5529 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5530 
   5531 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5532 #ifndef ARM32_NEW_VM_LAYOUT
   5533 	pte += (va >> PGSHIFT) & 0x3ff;
   5534 #else
   5535 	pte += l2pte_index(va);
   5536 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5537 #endif
   5538 	*pte = fl;
   5539 	PTE_SYNC(pte);
   5540 }
   5541 
   5542 /*
   5543  * pmap_link_l2pt:
   5544  *
   5545  *	Link the L2 page table specified by "l2pv" into the L1
   5546  *	page table at the slot for "va".
   5547  */
   5548 void
   5549 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5550 {
   5551 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5552 	u_int slot = va >> L1_S_SHIFT;
   5553 
   5554 #ifndef ARM32_NEW_VM_LAYOUT
   5555 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5556 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5557 #endif
   5558 
   5559 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5560 
   5561 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5562 #ifdef ARM32_NEW_VM_LAYOUT
   5563 	PTE_SYNC(&pde[slot]);
   5564 #else
   5565 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5566 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5567 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5568 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5569 #endif
   5570 
   5571 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5572 }
   5573 
   5574 /*
   5575  * pmap_map_chunk:
   5576  *
   5577  *	Map a chunk of memory using the most efficient mappings
   5578  *	possible (section, large page, small page) into the
   5579  *	provided L1 and L2 tables at the specified virtual address.
   5580  */
   5581 vsize_t
   5582 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5583     int prot, int cache)
   5584 {
   5585 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5586 	pt_entry_t *pte, f1, f2s, f2l;
   5587 	vsize_t resid;
   5588 	int i;
   5589 
   5590 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5591 
   5592 	if (l1pt == 0)
   5593 		panic("pmap_map_chunk: no L1 table provided");
   5594 
   5595 #ifdef VERBOSE_INIT_ARM
   5596 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5597 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5598 #endif
   5599 
   5600 	switch (cache) {
   5601 	case PTE_NOCACHE:
   5602 	default:
   5603 		f1 = 0;
   5604 		f2l = 0;
   5605 		f2s = 0;
   5606 		break;
   5607 
   5608 	case PTE_CACHE:
   5609 		f1 = pte_l1_s_cache_mode;
   5610 		f2l = pte_l2_l_cache_mode;
   5611 		f2s = pte_l2_s_cache_mode;
   5612 		break;
   5613 
   5614 	case PTE_PAGETABLE:
   5615 		f1 = pte_l1_s_cache_mode_pt;
   5616 		f2l = pte_l2_l_cache_mode_pt;
   5617 		f2s = pte_l2_s_cache_mode_pt;
   5618 		break;
   5619 	}
   5620 
   5621 	size = resid;
   5622 
   5623 	while (resid > 0) {
   5624 		/* See if we can use a section mapping. */
   5625 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5626 #ifdef VERBOSE_INIT_ARM
   5627 			printf("S");
   5628 #endif
   5629 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5630 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5631 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5632 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5633 			va += L1_S_SIZE;
   5634 			pa += L1_S_SIZE;
   5635 			resid -= L1_S_SIZE;
   5636 			continue;
   5637 		}
   5638 
   5639 		/*
   5640 		 * Ok, we're going to use an L2 table.  Make sure
   5641 		 * one is actually in the corresponding L1 slot
   5642 		 * for the current VA.
   5643 		 */
   5644 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5645 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5646 
   5647 #ifndef ARM32_NEW_VM_LAYOUT
   5648 		pte = (pt_entry_t *)
   5649 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5650 #else
   5651 		pte = (pt_entry_t *) kernel_pt_lookup(
   5652 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5653 #endif
   5654 		if (pte == NULL)
   5655 			panic("pmap_map_chunk: can't find L2 table for VA"
   5656 			    "0x%08lx", va);
   5657 
   5658 		/* See if we can use a L2 large page mapping. */
   5659 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5660 #ifdef VERBOSE_INIT_ARM
   5661 			printf("L");
   5662 #endif
   5663 			for (i = 0; i < 16; i++) {
   5664 #ifndef ARM32_NEW_VM_LAYOUT
   5665 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5666 				    L2_L_PROTO | pa |
   5667 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5668 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5669 #else
   5670 				pte[l2pte_index(va) + i] =
   5671 				    L2_L_PROTO | pa |
   5672 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5673 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5674 #endif
   5675 			}
   5676 			va += L2_L_SIZE;
   5677 			pa += L2_L_SIZE;
   5678 			resid -= L2_L_SIZE;
   5679 			continue;
   5680 		}
   5681 
   5682 		/* Use a small page mapping. */
   5683 #ifdef VERBOSE_INIT_ARM
   5684 		printf("P");
   5685 #endif
   5686 #ifndef ARM32_NEW_VM_LAYOUT
   5687 		pte[(va >> PGSHIFT) & 0x3ff] =
   5688 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5689 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5690 #else
   5691 		pte[l2pte_index(va)] =
   5692 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5693 		PTE_SYNC(&pte[l2pte_index(va)]);
   5694 #endif
   5695 		va += PAGE_SIZE;
   5696 		pa += PAGE_SIZE;
   5697 		resid -= PAGE_SIZE;
   5698 	}
   5699 #ifdef VERBOSE_INIT_ARM
   5700 	printf("\n");
   5701 #endif
   5702 	return (size);
   5703 }
   5704 
   5705 /********************** Static device map routines ***************************/
   5706 
   5707 static const struct pmap_devmap *pmap_devmap_table;
   5708 
   5709 /*
   5710  * Register the devmap table.  This is provided in case early console
   5711  * initialization needs to register mappings created by bootstrap code
   5712  * before pmap_devmap_bootstrap() is called.
   5713  */
   5714 void
   5715 pmap_devmap_register(const struct pmap_devmap *table)
   5716 {
   5717 
   5718 	pmap_devmap_table = table;
   5719 }
   5720 
   5721 /*
   5722  * Map all of the static regions in the devmap table, and remember
   5723  * the devmap table so other parts of the kernel can look up entries
   5724  * later.
   5725  */
   5726 void
   5727 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5728 {
   5729 	int i;
   5730 
   5731 	pmap_devmap_table = table;
   5732 
   5733 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5734 #ifdef VERBOSE_INIT_ARM
   5735 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5736 		    pmap_devmap_table[i].pd_pa,
   5737 		    pmap_devmap_table[i].pd_pa +
   5738 			pmap_devmap_table[i].pd_size - 1,
   5739 		    pmap_devmap_table[i].pd_va);
   5740 #endif
   5741 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5742 		    pmap_devmap_table[i].pd_pa,
   5743 		    pmap_devmap_table[i].pd_size,
   5744 		    pmap_devmap_table[i].pd_prot,
   5745 		    pmap_devmap_table[i].pd_cache);
   5746 	}
   5747 }
   5748 
   5749 const struct pmap_devmap *
   5750 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5751 {
   5752 	uint64_t endpa;
   5753 	int i;
   5754 
   5755 	if (pmap_devmap_table == NULL)
   5756 		return (NULL);
   5757 
   5758 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5759 
   5760 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5761 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5762 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5763 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5764 			return (&pmap_devmap_table[i]);
   5765 	}
   5766 
   5767 	return (NULL);
   5768 }
   5769 
   5770 const struct pmap_devmap *
   5771 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5772 {
   5773 	int i;
   5774 
   5775 	if (pmap_devmap_table == NULL)
   5776 		return (NULL);
   5777 
   5778 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5779 		if (va >= pmap_devmap_table[i].pd_va &&
   5780 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5781 				     pmap_devmap_table[i].pd_size - 1)
   5782 			return (&pmap_devmap_table[i]);
   5783 	}
   5784 
   5785 	return (NULL);
   5786 }
   5787 
   5788 /********************** PTE initialization routines **************************/
   5789 
   5790 /*
   5791  * These routines are called when the CPU type is identified to set up
   5792  * the PTE prototypes, cache modes, etc.
   5793  *
   5794  * The variables are always here, just in case LKMs need to reference
   5795  * them (though, they shouldn't).
   5796  */
   5797 
   5798 pt_entry_t	pte_l1_s_cache_mode;
   5799 pt_entry_t	pte_l1_s_cache_mode_pt;
   5800 pt_entry_t	pte_l1_s_cache_mask;
   5801 
   5802 pt_entry_t	pte_l2_l_cache_mode;
   5803 pt_entry_t	pte_l2_l_cache_mode_pt;
   5804 pt_entry_t	pte_l2_l_cache_mask;
   5805 
   5806 pt_entry_t	pte_l2_s_cache_mode;
   5807 pt_entry_t	pte_l2_s_cache_mode_pt;
   5808 pt_entry_t	pte_l2_s_cache_mask;
   5809 
   5810 pt_entry_t	pte_l2_s_prot_u;
   5811 pt_entry_t	pte_l2_s_prot_w;
   5812 pt_entry_t	pte_l2_s_prot_mask;
   5813 
   5814 pt_entry_t	pte_l1_s_proto;
   5815 pt_entry_t	pte_l1_c_proto;
   5816 pt_entry_t	pte_l2_s_proto;
   5817 
   5818 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5819 void		(*pmap_zero_page_func)(paddr_t);
   5820 
   5821 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5822 void
   5823 pmap_pte_init_generic(void)
   5824 {
   5825 
   5826 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5827 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5828 
   5829 	pte_l2_l_cache_mode = L2_B|L2_C;
   5830 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5831 
   5832 	pte_l2_s_cache_mode = L2_B|L2_C;
   5833 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5834 
   5835 	/*
   5836 	 * If we have a write-through cache, set B and C.  If
   5837 	 * we have a write-back cache, then we assume setting
   5838 	 * only C will make those pages write-through.
   5839 	 */
   5840 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5841 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5842 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5843 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5844 	} else {
   5845 #if ARM_MMU_V6 > 1
   5846 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5847 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5848 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5849 #else
   5850 		pte_l1_s_cache_mode_pt = L1_S_C;
   5851 		pte_l2_l_cache_mode_pt = L2_C;
   5852 		pte_l2_s_cache_mode_pt = L2_C;
   5853 #endif
   5854 	}
   5855 
   5856 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5857 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5858 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5859 
   5860 	pte_l1_s_proto = L1_S_PROTO_generic;
   5861 	pte_l1_c_proto = L1_C_PROTO_generic;
   5862 	pte_l2_s_proto = L2_S_PROTO_generic;
   5863 
   5864 	pmap_copy_page_func = pmap_copy_page_generic;
   5865 	pmap_zero_page_func = pmap_zero_page_generic;
   5866 }
   5867 
   5868 #if defined(CPU_ARM8)
   5869 void
   5870 pmap_pte_init_arm8(void)
   5871 {
   5872 
   5873 	/*
   5874 	 * ARM8 is compatible with generic, but we need to use
   5875 	 * the page tables uncached.
   5876 	 */
   5877 	pmap_pte_init_generic();
   5878 
   5879 	pte_l1_s_cache_mode_pt = 0;
   5880 	pte_l2_l_cache_mode_pt = 0;
   5881 	pte_l2_s_cache_mode_pt = 0;
   5882 }
   5883 #endif /* CPU_ARM8 */
   5884 
   5885 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5886 void
   5887 pmap_pte_init_arm9(void)
   5888 {
   5889 
   5890 	/*
   5891 	 * ARM9 is compatible with generic, but we want to use
   5892 	 * write-through caching for now.
   5893 	 */
   5894 	pmap_pte_init_generic();
   5895 
   5896 	pte_l1_s_cache_mode = L1_S_C;
   5897 	pte_l2_l_cache_mode = L2_C;
   5898 	pte_l2_s_cache_mode = L2_C;
   5899 
   5900 	pte_l1_s_cache_mode_pt = L1_S_C;
   5901 	pte_l2_l_cache_mode_pt = L2_C;
   5902 	pte_l2_s_cache_mode_pt = L2_C;
   5903 }
   5904 #endif /* CPU_ARM9 */
   5905 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5906 
   5907 #if defined(CPU_ARM10)
   5908 void
   5909 pmap_pte_init_arm10(void)
   5910 {
   5911 
   5912 	/*
   5913 	 * ARM10 is compatible with generic, but we want to use
   5914 	 * write-through caching for now.
   5915 	 */
   5916 	pmap_pte_init_generic();
   5917 
   5918 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5919 	pte_l2_l_cache_mode = L2_B | L2_C;
   5920 	pte_l2_s_cache_mode = L2_B | L2_C;
   5921 
   5922 	pte_l1_s_cache_mode_pt = L1_S_C;
   5923 	pte_l2_l_cache_mode_pt = L2_C;
   5924 	pte_l2_s_cache_mode_pt = L2_C;
   5925 
   5926 }
   5927 #endif /* CPU_ARM10 */
   5928 
   5929 #if ARM_MMU_SA1 == 1
   5930 void
   5931 pmap_pte_init_sa1(void)
   5932 {
   5933 
   5934 	/*
   5935 	 * The StrongARM SA-1 cache does not have a write-through
   5936 	 * mode.  So, do the generic initialization, then reset
   5937 	 * the page table cache mode to B=1,C=1, and note that
   5938 	 * the PTEs need to be sync'd.
   5939 	 */
   5940 	pmap_pte_init_generic();
   5941 
   5942 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5943 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5944 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5945 
   5946 	pmap_needs_pte_sync = 1;
   5947 }
   5948 #endif /* ARM_MMU_SA1 == 1*/
   5949 
   5950 #if ARM_MMU_XSCALE == 1
   5951 #if (ARM_NMMUS > 1)
   5952 static u_int xscale_use_minidata;
   5953 #endif
   5954 
   5955 void
   5956 pmap_pte_init_xscale(void)
   5957 {
   5958 	uint32_t auxctl;
   5959 	int write_through = 0;
   5960 
   5961 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5962 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   5963 
   5964 	pte_l2_l_cache_mode = L2_B|L2_C;
   5965 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   5966 
   5967 	pte_l2_s_cache_mode = L2_B|L2_C;
   5968 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   5969 
   5970 	pte_l1_s_cache_mode_pt = L1_S_C;
   5971 	pte_l2_l_cache_mode_pt = L2_C;
   5972 	pte_l2_s_cache_mode_pt = L2_C;
   5973 
   5974 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   5975 	/*
   5976 	 * The XScale core has an enhanced mode where writes that
   5977 	 * miss the cache cause a cache line to be allocated.  This
   5978 	 * is significantly faster than the traditional, write-through
   5979 	 * behavior of this case.
   5980 	 */
   5981 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   5982 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   5983 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   5984 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   5985 
   5986 #ifdef XSCALE_CACHE_WRITE_THROUGH
   5987 	/*
   5988 	 * Some versions of the XScale core have various bugs in
   5989 	 * their cache units, the work-around for which is to run
   5990 	 * the cache in write-through mode.  Unfortunately, this
   5991 	 * has a major (negative) impact on performance.  So, we
   5992 	 * go ahead and run fast-and-loose, in the hopes that we
   5993 	 * don't line up the planets in a way that will trip the
   5994 	 * bugs.
   5995 	 *
   5996 	 * However, we give you the option to be slow-but-correct.
   5997 	 */
   5998 	write_through = 1;
   5999 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6000 	/* force write back cache mode */
   6001 	write_through = 0;
   6002 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6003 	/*
   6004 	 * Intel PXA2[15]0 processors are known to have a bug in
   6005 	 * write-back cache on revision 4 and earlier (stepping
   6006 	 * A[01] and B[012]).  Fixed for C0 and later.
   6007 	 */
   6008 	{
   6009 		uint32_t id, type;
   6010 
   6011 		id = cpufunc_id();
   6012 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6013 
   6014 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6015 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6016 				/* write through for stepping A0-1 and B0-2 */
   6017 				write_through = 1;
   6018 			}
   6019 		}
   6020 	}
   6021 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6022 
   6023 	if (write_through) {
   6024 		pte_l1_s_cache_mode = L1_S_C;
   6025 		pte_l2_l_cache_mode = L2_C;
   6026 		pte_l2_s_cache_mode = L2_C;
   6027 	}
   6028 
   6029 #if (ARM_NMMUS > 1)
   6030 	xscale_use_minidata = 1;
   6031 #endif
   6032 
   6033 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6034 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6035 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6036 
   6037 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6038 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6039 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6040 
   6041 	pmap_copy_page_func = pmap_copy_page_xscale;
   6042 	pmap_zero_page_func = pmap_zero_page_xscale;
   6043 
   6044 	/*
   6045 	 * Disable ECC protection of page table access, for now.
   6046 	 */
   6047 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6048 	auxctl &= ~XSCALE_AUXCTL_P;
   6049 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6050 }
   6051 
   6052 /*
   6053  * xscale_setup_minidata:
   6054  *
   6055  *	Set up the mini-data cache clean area.  We require the
   6056  *	caller to allocate the right amount of physically and
   6057  *	virtually contiguous space.
   6058  */
   6059 void
   6060 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6061 {
   6062 	extern vaddr_t xscale_minidata_clean_addr;
   6063 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6064 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6065 	pt_entry_t *pte;
   6066 	vsize_t size;
   6067 	uint32_t auxctl;
   6068 
   6069 	xscale_minidata_clean_addr = va;
   6070 
   6071 	/* Round it to page size. */
   6072 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6073 
   6074 	for (; size != 0;
   6075 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6076 #ifndef ARM32_NEW_VM_LAYOUT
   6077 		pte = (pt_entry_t *)
   6078 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6079 #else
   6080 		pte = (pt_entry_t *) kernel_pt_lookup(
   6081 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6082 #endif
   6083 		if (pte == NULL)
   6084 			panic("xscale_setup_minidata: can't find L2 table for "
   6085 			    "VA 0x%08lx", va);
   6086 #ifndef ARM32_NEW_VM_LAYOUT
   6087 		pte[(va >> PGSHIFT) & 0x3ff] =
   6088 #else
   6089 		pte[l2pte_index(va)] =
   6090 #endif
   6091 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6092 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6093 	}
   6094 
   6095 	/*
   6096 	 * Configure the mini-data cache for write-back with
   6097 	 * read/write-allocate.
   6098 	 *
   6099 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6100 	 * make sure it contains no valid data!  In order to do that,
   6101 	 * we must issue a global data cache invalidate command!
   6102 	 *
   6103 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6104 	 * THIS IS VERY IMPORTANT!
   6105 	 */
   6106 
   6107 	/* Invalidate data and mini-data. */
   6108 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6109 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6110 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6111 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6112 }
   6113 
   6114 /*
   6115  * Change the PTEs for the specified kernel mappings such that they
   6116  * will use the mini data cache instead of the main data cache.
   6117  */
   6118 void
   6119 pmap_uarea(vaddr_t va)
   6120 {
   6121 	struct l2_bucket *l2b;
   6122 	pt_entry_t *ptep, *sptep, pte;
   6123 	vaddr_t next_bucket, eva;
   6124 
   6125 #if (ARM_NMMUS > 1)
   6126 	if (xscale_use_minidata == 0)
   6127 		return;
   6128 #endif
   6129 
   6130 	eva = va + USPACE;
   6131 
   6132 	while (va < eva) {
   6133 		next_bucket = L2_NEXT_BUCKET(va);
   6134 		if (next_bucket > eva)
   6135 			next_bucket = eva;
   6136 
   6137 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6138 		KDASSERT(l2b != NULL);
   6139 
   6140 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6141 
   6142 		while (va < next_bucket) {
   6143 			pte = *ptep;
   6144 			if (!l2pte_minidata(pte)) {
   6145 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6146 				cpu_tlb_flushD_SE(va);
   6147 				*ptep = pte & ~L2_B;
   6148 			}
   6149 			ptep++;
   6150 			va += PAGE_SIZE;
   6151 		}
   6152 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6153 	}
   6154 	cpu_cpwait();
   6155 }
   6156 #endif /* ARM_MMU_XSCALE == 1 */
   6157 
   6158 /*
   6159  * return the PA of the current L1 table, for use when handling a crash dump
   6160  */
   6161 uint32_t pmap_kernel_L1_addr()
   6162 {
   6163 	return pmap_kernel()->pm_l1->l1_physaddr;
   6164 }
   6165 
   6166 #if defined(DDB)
   6167 /*
   6168  * A couple of ddb-callable functions for dumping pmaps
   6169  */
   6170 void pmap_dump_all(void);
   6171 void pmap_dump(pmap_t);
   6172 
   6173 void
   6174 pmap_dump_all(void)
   6175 {
   6176 	pmap_t pm;
   6177 
   6178 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6179 		if (pm == pmap_kernel())
   6180 			continue;
   6181 		pmap_dump(pm);
   6182 		printf("\n");
   6183 	}
   6184 }
   6185 
   6186 static pt_entry_t ncptes[64];
   6187 static void pmap_dump_ncpg(pmap_t);
   6188 
   6189 void
   6190 pmap_dump(pmap_t pm)
   6191 {
   6192 	struct l2_dtable *l2;
   6193 	struct l2_bucket *l2b;
   6194 	pt_entry_t *ptep, pte;
   6195 	vaddr_t l2_va, l2b_va, va;
   6196 	int i, j, k, occ, rows = 0;
   6197 
   6198 	if (pm == pmap_kernel())
   6199 		printf("pmap_kernel (%p): ", pm);
   6200 	else
   6201 		printf("user pmap (%p): ", pm);
   6202 
   6203 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6204 
   6205 	l2_va = 0;
   6206 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6207 		l2 = pm->pm_l2[i];
   6208 
   6209 		if (l2 == NULL || l2->l2_occupancy == 0)
   6210 			continue;
   6211 
   6212 		l2b_va = l2_va;
   6213 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6214 			l2b = &l2->l2_bucket[j];
   6215 
   6216 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6217 				continue;
   6218 
   6219 			ptep = l2b->l2b_kva;
   6220 
   6221 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6222 				;
   6223 
   6224 			k &= ~63;
   6225 			occ = l2b->l2b_occupancy;
   6226 			va = l2b_va + (k * 4096);
   6227 			for (; k < 256; k++, va += 0x1000) {
   6228 				char ch = ' ';
   6229 				if ((k % 64) == 0) {
   6230 					if ((rows % 8) == 0) {
   6231 						printf(
   6232 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6233 					}
   6234 					printf("%08lx: ", va);
   6235 				}
   6236 
   6237 				ncptes[k & 63] = 0;
   6238 				pte = ptep[k];
   6239 				if (pte == 0) {
   6240 					ch = '.';
   6241 				} else {
   6242 					occ--;
   6243 					switch (pte & 0x0c) {
   6244 					case 0x00:
   6245 						ch = 'D'; /* No cache No buff */
   6246 						break;
   6247 					case 0x04:
   6248 						ch = 'B'; /* No cache buff */
   6249 						break;
   6250 					case 0x08:
   6251 						if (pte & 0x40)
   6252 							ch = 'm';
   6253 						else
   6254 						   ch = 'C'; /* Cache No buff */
   6255 						break;
   6256 					case 0x0c:
   6257 						ch = 'F'; /* Cache Buff */
   6258 						break;
   6259 					}
   6260 
   6261 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6262 						ch += 0x20;
   6263 
   6264 					if ((pte & 0xc) == 0)
   6265 						ncptes[k & 63] = pte;
   6266 				}
   6267 
   6268 				if ((k % 64) == 63) {
   6269 					rows++;
   6270 					printf("%c\n", ch);
   6271 					pmap_dump_ncpg(pm);
   6272 					if (occ == 0)
   6273 						break;
   6274 				} else
   6275 					printf("%c", ch);
   6276 			}
   6277 		}
   6278 	}
   6279 }
   6280 
   6281 static void
   6282 pmap_dump_ncpg(pmap_t pm)
   6283 {
   6284 	struct vm_page *pg;
   6285 	struct pv_entry *pv;
   6286 	int i;
   6287 
   6288 	for (i = 0; i < 63; i++) {
   6289 		if (ncptes[i] == 0)
   6290 			continue;
   6291 
   6292 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6293 		if (pg == NULL)
   6294 			continue;
   6295 
   6296 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6297 		    VM_PAGE_TO_PHYS(pg),
   6298 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6299 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6300 
   6301 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   6302 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6303 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6304 			    pv->pv_va, pv->pv_flags);
   6305 		}
   6306 	}
   6307 }
   6308 #endif
   6309 
   6310 #ifdef PMAP_STEAL_MEMORY
   6311 void
   6312 pmap_boot_pageadd(pv_addr_t *newpv)
   6313 {
   6314 	pv_addr_t *pv, *npv;
   6315 
   6316 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6317 		if (newpv->pv_pa < pv->pv_va) {
   6318 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6319 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6320 				newpv->pv_size += pv->pv_size;
   6321 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6322 			}
   6323 			pv = NULL;
   6324 		} else {
   6325 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6326 			     pv = npv) {
   6327 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6328 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6329 				if (newpv->pv_pa > npv->pv_pa)
   6330 					continue;
   6331 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6332 					pv->pv_size += newpv->pv_size;
   6333 					return;
   6334 				}
   6335 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6336 					break;
   6337 				newpv->pv_size += npv->pv_size;
   6338 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6339 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6340 				return;
   6341 			}
   6342 		}
   6343 	}
   6344 
   6345 	if (pv) {
   6346 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6347 	} else {
   6348 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6349 	}
   6350 }
   6351 
   6352 void
   6353 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6354 	pv_addr_t *rpv)
   6355 {
   6356 	pv_addr_t *pv, **pvp;
   6357 	struct vm_physseg *ps;
   6358 	size_t i;
   6359 
   6360 	KASSERT(amount & PGOFSET);
   6361 	KASSERT((mask & PGOFSET) == 0);
   6362 	KASSERT((match & PGOFSET) == 0);
   6363 	KASSERT(amount != 0);
   6364 
   6365 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6366 	     (pv = *pvp) != NULL;
   6367 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6368 		pv_addr_t *newpv;
   6369 		psize_t off;
   6370 		/*
   6371 		 * If this entry is too small to satify the request...
   6372 		 */
   6373 		KASSERT(pv->pv_size > 0);
   6374 		if (pv->pv_size < amount)
   6375 			continue;
   6376 
   6377 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6378 			if (((pv->pv_pa + off) & mask) == match
   6379 			    && off + amount <= pv->pv_size)
   6380 				break;
   6381 		}
   6382 		if (off > mask)
   6383 			continue;
   6384 
   6385 		rpv->pv_va = pv->pv_va + off;
   6386 		rpv->pv_pa = pv->pv_pa + off;
   6387 		rpv->pv_size = amount;
   6388 		pv->pv_size -= amount;
   6389 		if (pv->pv_size == 0) {
   6390 			KASSERT(off == 0);
   6391 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6392 			*pvp = SLIST_NEXT(pv, pv_list);
   6393 		} else if (off == 0) {
   6394 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6395 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6396 			*newpv = *pv;
   6397 			newpv->pv_pa += amount;
   6398 			newpv->pv_va += amount;
   6399 			*pvp = newpv;
   6400 		} else if (off < pv->pv_size) {
   6401 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6402 			*newpv = *pv;
   6403 			newpv->pv_size -= off;
   6404 			newpv->pv_pa += off + amount;
   6405 			newpv->pv_va += off + amount;
   6406 
   6407 			SLIST_NEXT(pv, pv_list) = newpv;
   6408 			pv->pv_size = off;
   6409 		} else {
   6410 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6411 		}
   6412 		memset((void *)rpv->pv_va, 0, amount);
   6413 		return;
   6414 	}
   6415 
   6416 	if (vm_nphysseg == 0)
   6417 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6418 
   6419 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6420 	     (pv = *pvp) != NULL;
   6421 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6422 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6423 			break;
   6424 	}
   6425 	KASSERT(mask == 0);
   6426 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6427 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6428 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6429 			rpv->pv_va = pv->pv_va;
   6430 			rpv->pv_pa = pv->pv_pa;
   6431 			rpv->pv_size = amount;
   6432 			*pvp = NULL;
   6433 			pmap_map_chunk(kernel_l1pt.pv_va,
   6434 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6435 			     ptoa(ps->avail_start),
   6436 			     amount - pv->pv_size,
   6437 			     VM_PROT_READ|VM_PROT_WRITE,
   6438 			     PTE_CACHE);
   6439 			ps->avail_start += atop(amount - pv->pv_size);
   6440 			/*
   6441 			 * If we consumed the entire physseg, remove it.
   6442 			 */
   6443 			if (ps->avail_start == ps->avail_end) {
   6444 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6445 					ps[0] = ps[1];
   6446 			}
   6447 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6448 			return;
   6449 		}
   6450 	}
   6451 
   6452 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6453 }
   6454 
   6455 vaddr_t
   6456 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6457 {
   6458 	pv_addr_t pv;
   6459 
   6460 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6461 
   6462 	return pv.pv_va;
   6463 }
   6464 #endif /* PMAP_STEAL_MEMORY */
   6465 
   6466 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6467 {
   6468 	sysctl_createv(clog, 0, NULL, NULL,
   6469 			CTLFLAG_PERMANENT,
   6470 			CTLTYPE_NODE, "machdep", NULL,
   6471 			NULL, 0, NULL, 0,
   6472 			CTL_MACHDEP, CTL_EOL);
   6473 
   6474 	sysctl_createv(clog, 0, NULL, NULL,
   6475 			CTLFLAG_PERMANENT,
   6476 			CTLTYPE_INT, "kmpages",
   6477 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6478 			NULL, 0, &pmap_kmpages, 0,
   6479 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6480 }
   6481