pmap.c revision 1.188 1 /* $NetBSD: pmap.c,v 1.188 2008/11/04 07:10:01 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/user.h>
202 #include <sys/pool.h>
203 #include <sys/cdefs.h>
204 #include <sys/cpu.h>
205 #include <sys/sysctl.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.188 2008/11/04 07:10:01 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 struct pmap kernel_pmap_store;
259
260 /*
261 * Which pmap is currently 'live' in the cache
262 *
263 * XXXSCW: Fix for SMP ...
264 */
265 static pmap_t pmap_recent_user;
266
267 /*
268 * Pointer to last active lwp, or NULL if it exited.
269 */
270 struct lwp *pmap_previous_active_lwp;
271
272 /*
273 * Pool and cache that pmap structures are allocated from.
274 * We use a cache to avoid clearing the pm_l2[] array (1KB)
275 * in pmap_create().
276 */
277 static struct pool_cache pmap_cache;
278 static LIST_HEAD(, pmap) pmap_pmaps;
279
280 /*
281 * Pool of PV structures
282 */
283 static struct pool pmap_pv_pool;
284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
287 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
288 };
289
290 /*
291 * Pool and cache of l2_dtable structures.
292 * We use a cache to avoid clearing the structures when they're
293 * allocated. (196 bytes)
294 */
295 static struct pool_cache pmap_l2dtable_cache;
296 static vaddr_t pmap_kernel_l2dtable_kva;
297
298 /*
299 * Pool and cache of L2 page descriptors.
300 * We use a cache to avoid clearing the descriptor table
301 * when they're allocated. (1KB)
302 */
303 static struct pool_cache pmap_l2ptp_cache;
304 static vaddr_t pmap_kernel_l2ptp_kva;
305 static paddr_t pmap_kernel_l2ptp_phys;
306
307 #ifdef PMAPCOUNTERS
308 #define PMAP_EVCNT_INITIALIZER(name) \
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
310
311 #ifdef PMAP_CACHE_VIPT
312 static struct evcnt pmap_ev_vac_color_new =
313 PMAP_EVCNT_INITIALIZER("new page color");
314 static struct evcnt pmap_ev_vac_color_reuse =
315 PMAP_EVCNT_INITIALIZER("ok first page color");
316 static struct evcnt pmap_ev_vac_color_ok =
317 PMAP_EVCNT_INITIALIZER("ok page color");
318 static struct evcnt pmap_ev_vac_color_blind =
319 PMAP_EVCNT_INITIALIZER("blind page color");
320 static struct evcnt pmap_ev_vac_color_change =
321 PMAP_EVCNT_INITIALIZER("change page color");
322 static struct evcnt pmap_ev_vac_color_erase =
323 PMAP_EVCNT_INITIALIZER("erase page color");
324 static struct evcnt pmap_ev_vac_color_none =
325 PMAP_EVCNT_INITIALIZER("no page color");
326 static struct evcnt pmap_ev_vac_color_restore =
327 PMAP_EVCNT_INITIALIZER("restore page color");
328
329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
337 #endif
338
339 static struct evcnt pmap_ev_mappings =
340 PMAP_EVCNT_INITIALIZER("pages mapped");
341 static struct evcnt pmap_ev_unmappings =
342 PMAP_EVCNT_INITIALIZER("pages unmapped");
343 static struct evcnt pmap_ev_remappings =
344 PMAP_EVCNT_INITIALIZER("pages remapped");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
347 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
348 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
349
350 static struct evcnt pmap_ev_kernel_mappings =
351 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
352 static struct evcnt pmap_ev_kernel_unmappings =
353 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
354 static struct evcnt pmap_ev_kernel_remappings =
355 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
356
357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
359 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
360
361 static struct evcnt pmap_ev_kenter_mappings =
362 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
363 static struct evcnt pmap_ev_kenter_unmappings =
364 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
365 static struct evcnt pmap_ev_kenter_remappings =
366 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
367 static struct evcnt pmap_ev_pt_mappings =
368 PMAP_EVCNT_INITIALIZER("page table pages mapped");
369
370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
374
375 #ifdef PMAP_CACHE_VIPT
376 static struct evcnt pmap_ev_exec_mappings =
377 PMAP_EVCNT_INITIALIZER("exec pages mapped");
378 static struct evcnt pmap_ev_exec_cached =
379 PMAP_EVCNT_INITIALIZER("exec pages cached");
380
381 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
382 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
383
384 static struct evcnt pmap_ev_exec_synced =
385 PMAP_EVCNT_INITIALIZER("exec pages synced");
386 static struct evcnt pmap_ev_exec_synced_map =
387 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
388 static struct evcnt pmap_ev_exec_synced_unmap =
389 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
390 static struct evcnt pmap_ev_exec_synced_remap =
391 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
392 static struct evcnt pmap_ev_exec_synced_clearbit =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
394 static struct evcnt pmap_ev_exec_synced_kremove =
395 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
396
397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
402 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
403
404 static struct evcnt pmap_ev_exec_discarded_unmap =
405 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
406 static struct evcnt pmap_ev_exec_discarded_zero =
407 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
408 static struct evcnt pmap_ev_exec_discarded_copy =
409 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
410 static struct evcnt pmap_ev_exec_discarded_page_protect =
411 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
412 static struct evcnt pmap_ev_exec_discarded_clearbit =
413 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
414 static struct evcnt pmap_ev_exec_discarded_kremove =
415 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
416
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
422 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
423 #endif /* PMAP_CACHE_VIPT */
424
425 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
426 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
427 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
428
429 EVCNT_ATTACH_STATIC(pmap_ev_updates);
430 EVCNT_ATTACH_STATIC(pmap_ev_collects);
431 EVCNT_ATTACH_STATIC(pmap_ev_activations);
432
433 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
434 #else
435 #define PMAPCOUNT(x) ((void)0)
436 #endif
437
438 /*
439 * pmap copy/zero page, and mem(5) hook point
440 */
441 static pt_entry_t *csrc_pte, *cdst_pte;
442 static vaddr_t csrcp, cdstp;
443 vaddr_t memhook; /* used by mem.c */
444 extern void *msgbufaddr;
445 int pmap_kmpages;
446 /*
447 * Flag to indicate if pmap_init() has done its thing
448 */
449 bool pmap_initialized;
450
451 /*
452 * Misc. locking data structures
453 */
454
455 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
456 static struct lock pmap_main_lock;
457
458 #define PMAP_MAP_TO_HEAD_LOCK() \
459 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
460 #define PMAP_MAP_TO_HEAD_UNLOCK() \
461 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
462 #define PMAP_HEAD_TO_MAP_LOCK() \
463 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
464 #define PMAP_HEAD_TO_MAP_UNLOCK() \
465 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
466 #else
467 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
468 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
469 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
470 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
471 #endif
472
473 #define pmap_acquire_pmap_lock(pm) \
474 do { \
475 if ((pm) != pmap_kernel()) \
476 mutex_enter(&(pm)->pm_lock); \
477 } while (/*CONSTCOND*/0)
478
479 #define pmap_release_pmap_lock(pm) \
480 do { \
481 if ((pm) != pmap_kernel()) \
482 mutex_exit(&(pm)->pm_lock); \
483 } while (/*CONSTCOND*/0)
484
485
486 /*
487 * Metadata for L1 translation tables.
488 */
489 struct l1_ttable {
490 /* Entry on the L1 Table list */
491 SLIST_ENTRY(l1_ttable) l1_link;
492
493 /* Entry on the L1 Least Recently Used list */
494 TAILQ_ENTRY(l1_ttable) l1_lru;
495
496 /* Track how many domains are allocated from this L1 */
497 volatile u_int l1_domain_use_count;
498
499 /*
500 * A free-list of domain numbers for this L1.
501 * We avoid using ffs() and a bitmap to track domains since ffs()
502 * is slow on ARM.
503 */
504 u_int8_t l1_domain_first;
505 u_int8_t l1_domain_free[PMAP_DOMAINS];
506
507 /* Physical address of this L1 page table */
508 paddr_t l1_physaddr;
509
510 /* KVA of this L1 page table */
511 pd_entry_t *l1_kva;
512 };
513
514 /*
515 * Convert a virtual address into its L1 table index. That is, the
516 * index used to locate the L2 descriptor table pointer in an L1 table.
517 * This is basically used to index l1->l1_kva[].
518 *
519 * Each L2 descriptor table represents 1MB of VA space.
520 */
521 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
522
523 /*
524 * L1 Page Tables are tracked using a Least Recently Used list.
525 * - New L1s are allocated from the HEAD.
526 * - Freed L1s are added to the TAIl.
527 * - Recently accessed L1s (where an 'access' is some change to one of
528 * the userland pmaps which owns this L1) are moved to the TAIL.
529 */
530 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
531 static struct simplelock l1_lru_lock;
532
533 /*
534 * A list of all L1 tables
535 */
536 static SLIST_HEAD(, l1_ttable) l1_list;
537
538 /*
539 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
540 *
541 * This is normally 16MB worth L2 page descriptors for any given pmap.
542 * Reference counts are maintained for L2 descriptors so they can be
543 * freed when empty.
544 */
545 struct l2_dtable {
546 /* The number of L2 page descriptors allocated to this l2_dtable */
547 u_int l2_occupancy;
548
549 /* List of L2 page descriptors */
550 struct l2_bucket {
551 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
552 paddr_t l2b_phys; /* Physical address of same */
553 u_short l2b_l1idx; /* This L2 table's L1 index */
554 u_short l2b_occupancy; /* How many active descriptors */
555 } l2_bucket[L2_BUCKET_SIZE];
556 };
557
558 /*
559 * Given an L1 table index, calculate the corresponding l2_dtable index
560 * and bucket index within the l2_dtable.
561 */
562 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
563 (L2_SIZE - 1))
564 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
565
566 /*
567 * Given a virtual address, this macro returns the
568 * virtual address required to drop into the next L2 bucket.
569 */
570 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
571
572 /*
573 * L2 allocation.
574 */
575 #define pmap_alloc_l2_dtable() \
576 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
577 #define pmap_free_l2_dtable(l2) \
578 pool_cache_put(&pmap_l2dtable_cache, (l2))
579 #define pmap_alloc_l2_ptp(pap) \
580 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
581 PR_NOWAIT, (pap)))
582
583 /*
584 * We try to map the page tables write-through, if possible. However, not
585 * all CPUs have a write-through cache mode, so on those we have to sync
586 * the cache when we frob page tables.
587 *
588 * We try to evaluate this at compile time, if possible. However, it's
589 * not always possible to do that, hence this run-time var.
590 */
591 int pmap_needs_pte_sync;
592
593 /*
594 * Real definition of pv_entry.
595 */
596 struct pv_entry {
597 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
598 pmap_t pv_pmap; /* pmap where mapping lies */
599 vaddr_t pv_va; /* virtual address for mapping */
600 u_int pv_flags; /* flags */
601 };
602
603 /*
604 * Macro to determine if a mapping might be resident in the
605 * instruction cache and/or TLB
606 */
607 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
608 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
609
610 /*
611 * Macro to determine if a mapping might be resident in the
612 * data cache and/or TLB
613 */
614 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
615
616 /*
617 * Local prototypes
618 */
619 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
620 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
621 pt_entry_t **);
622 static bool pmap_is_current(pmap_t);
623 static bool pmap_is_cached(pmap_t);
624 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
625 pmap_t, vaddr_t, u_int);
626 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
627 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
628 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
629 u_int, u_int);
630
631 static void pmap_pinit(pmap_t);
632 static int pmap_pmap_ctor(void *, void *, int);
633
634 static void pmap_alloc_l1(pmap_t);
635 static void pmap_free_l1(pmap_t);
636 static void pmap_use_l1(pmap_t);
637
638 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
639 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
640 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
641 static int pmap_l2ptp_ctor(void *, void *, int);
642 static int pmap_l2dtable_ctor(void *, void *, int);
643
644 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
645 #ifdef PMAP_CACHE_VIVT
646 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
647 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
648 #endif
649
650 static void pmap_clearbit(struct vm_page *, u_int);
651 #ifdef PMAP_CACHE_VIVT
652 static int pmap_clean_page(struct pv_entry *, bool);
653 #endif
654 #ifdef PMAP_CACHE_VIPT
655 static void pmap_syncicache_page(struct vm_page *);
656 static void pmap_flush_page(struct vm_page *, bool);
657 #endif
658 static void pmap_page_remove(struct vm_page *);
659
660 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
661 static vaddr_t kernel_pt_lookup(paddr_t);
662
663
664 /*
665 * External function prototypes
666 */
667 extern void bzero_page(vaddr_t);
668 extern void bcopy_page(vaddr_t, vaddr_t);
669
670 /*
671 * Misc variables
672 */
673 vaddr_t virtual_avail;
674 vaddr_t virtual_end;
675 vaddr_t pmap_curmaxkvaddr;
676
677 vaddr_t avail_start;
678 vaddr_t avail_end;
679
680 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
681 pv_addr_t kernelpages;
682 pv_addr_t kernel_l1pt;
683 pv_addr_t systempage;
684
685 /* Function to set the debug level of the pmap code */
686
687 #ifdef PMAP_DEBUG
688 void
689 pmap_debug(int level)
690 {
691 pmap_debug_level = level;
692 printf("pmap_debug: level=%d\n", pmap_debug_level);
693 }
694 #endif /* PMAP_DEBUG */
695
696 /*
697 * A bunch of routines to conditionally flush the caches/TLB depending
698 * on whether the specified pmap actually needs to be flushed at any
699 * given time.
700 */
701 static inline void
702 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
703 {
704
705 if (pm->pm_cstate.cs_tlb_id)
706 cpu_tlb_flushID_SE(va);
707 }
708
709 static inline void
710 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
711 {
712
713 if (pm->pm_cstate.cs_tlb_d)
714 cpu_tlb_flushD_SE(va);
715 }
716
717 static inline void
718 pmap_tlb_flushID(pmap_t pm)
719 {
720
721 if (pm->pm_cstate.cs_tlb_id) {
722 cpu_tlb_flushID();
723 pm->pm_cstate.cs_tlb = 0;
724 }
725 }
726
727 static inline void
728 pmap_tlb_flushD(pmap_t pm)
729 {
730
731 if (pm->pm_cstate.cs_tlb_d) {
732 cpu_tlb_flushD();
733 pm->pm_cstate.cs_tlb_d = 0;
734 }
735 }
736
737 #ifdef PMAP_CACHE_VIVT
738 static inline void
739 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
740 {
741 if (pm->pm_cstate.cs_cache_id) {
742 cpu_idcache_wbinv_range(va, len);
743 }
744 }
745
746 static inline void
747 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
748 bool do_inv, bool rd_only)
749 {
750
751 if (pm->pm_cstate.cs_cache_d) {
752 if (do_inv) {
753 if (rd_only)
754 cpu_dcache_inv_range(va, len);
755 else
756 cpu_dcache_wbinv_range(va, len);
757 } else
758 if (!rd_only)
759 cpu_dcache_wb_range(va, len);
760 }
761 }
762
763 static inline void
764 pmap_idcache_wbinv_all(pmap_t pm)
765 {
766 if (pm->pm_cstate.cs_cache_id) {
767 cpu_idcache_wbinv_all();
768 pm->pm_cstate.cs_cache = 0;
769 }
770 }
771
772 static inline void
773 pmap_dcache_wbinv_all(pmap_t pm)
774 {
775 if (pm->pm_cstate.cs_cache_d) {
776 cpu_dcache_wbinv_all();
777 pm->pm_cstate.cs_cache_d = 0;
778 }
779 }
780 #endif /* PMAP_CACHE_VIVT */
781
782 static inline bool
783 pmap_is_current(pmap_t pm)
784 {
785
786 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
787 return true;
788
789 return false;
790 }
791
792 static inline bool
793 pmap_is_cached(pmap_t pm)
794 {
795
796 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
797 pmap_recent_user == pm)
798 return (true);
799
800 return false;
801 }
802
803 /*
804 * PTE_SYNC_CURRENT:
805 *
806 * Make sure the pte is written out to RAM.
807 * We need to do this for one of two cases:
808 * - We're dealing with the kernel pmap
809 * - There is no pmap active in the cache/tlb.
810 * - The specified pmap is 'active' in the cache/tlb.
811 */
812 #ifdef PMAP_INCLUDE_PTE_SYNC
813 #define PTE_SYNC_CURRENT(pm, ptep) \
814 do { \
815 if (PMAP_NEEDS_PTE_SYNC && \
816 pmap_is_cached(pm)) \
817 PTE_SYNC(ptep); \
818 } while (/*CONSTCOND*/0)
819 #else
820 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
821 #endif
822
823 /*
824 * main pv_entry manipulation functions:
825 * pmap_enter_pv: enter a mapping onto a vm_page list
826 * pmap_remove_pv: remove a mappiing from a vm_page list
827 *
828 * NOTE: pmap_enter_pv expects to lock the pvh itself
829 * pmap_remove_pv expects te caller to lock the pvh before calling
830 */
831
832 /*
833 * pmap_enter_pv: enter a mapping onto a vm_page lst
834 *
835 * => caller should hold the proper lock on pmap_main_lock
836 * => caller should have pmap locked
837 * => we will gain the lock on the vm_page and allocate the new pv_entry
838 * => caller should adjust ptp's wire_count before calling
839 * => caller should not adjust pmap's wire_count
840 */
841 static void
842 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
843 vaddr_t va, u_int flags)
844 {
845 struct pv_entry **pvp;
846
847 NPDEBUG(PDB_PVDUMP,
848 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
849
850 pve->pv_pmap = pm;
851 pve->pv_va = va;
852 pve->pv_flags = flags;
853
854 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
855 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
856 #ifdef PMAP_CACHE_VIPT
857 /*
858 * Insert unmanaged entries, writeable first, at the head of
859 * the pv list.
860 */
861 if (__predict_true((flags & PVF_KENTRY) == 0)) {
862 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
863 pvp = &SLIST_NEXT(*pvp, pv_link);
864 } else if ((flags & PVF_WRITE) == 0) {
865 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
866 pvp = &SLIST_NEXT(*pvp, pv_link);
867 }
868 #endif
869 SLIST_NEXT(pve, pv_link) = *pvp; /* add to ... */
870 *pvp = pve; /* ... locked list */
871 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
872 #ifdef PMAP_CACHE_VIPT
873 if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
874 pg->mdpage.pvh_attrs |= PVF_KMOD;
875 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
876 pg->mdpage.pvh_attrs |= PVF_DIRTY;
877 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
878 #endif
879 if (pm == pmap_kernel()) {
880 PMAPCOUNT(kernel_mappings);
881 if (flags & PVF_WRITE)
882 pg->mdpage.krw_mappings++;
883 else
884 pg->mdpage.kro_mappings++;
885 } else
886 if (flags & PVF_WRITE)
887 pg->mdpage.urw_mappings++;
888 else
889 pg->mdpage.uro_mappings++;
890
891 #ifdef PMAP_CACHE_VIPT
892 /*
893 * If this is an exec mapping and its the first exec mapping
894 * for this page, make sure to sync the I-cache.
895 */
896 if (PV_IS_EXEC_P(flags)) {
897 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
898 pmap_syncicache_page(pg);
899 PMAPCOUNT(exec_synced_map);
900 }
901 PMAPCOUNT(exec_mappings);
902 }
903 #endif
904
905 PMAPCOUNT(mappings);
906 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
907
908 if (pve->pv_flags & PVF_WIRED)
909 ++pm->pm_stats.wired_count;
910 }
911
912 /*
913 *
914 * pmap_find_pv: Find a pv entry
915 *
916 * => caller should hold lock on vm_page
917 */
918 static inline struct pv_entry *
919 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
920 {
921 struct pv_entry *pv;
922
923 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
924 if (pm == pv->pv_pmap && va == pv->pv_va)
925 break;
926 }
927
928 return (pv);
929 }
930
931 /*
932 * pmap_remove_pv: try to remove a mapping from a pv_list
933 *
934 * => caller should hold proper lock on pmap_main_lock
935 * => pmap should be locked
936 * => caller should hold lock on vm_page [so that attrs can be adjusted]
937 * => caller should adjust ptp's wire_count and free PTP if needed
938 * => caller should NOT adjust pmap's wire_count
939 * => we return the removed pve
940 */
941 static struct pv_entry *
942 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
943 {
944 struct pv_entry *pve, **prevptr;
945
946 NPDEBUG(PDB_PVDUMP,
947 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
948
949 prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
950 pve = *prevptr;
951
952 while (pve) {
953 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
954 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
955 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
956 if (pve->pv_flags & PVF_WIRED) {
957 if (skip_wired)
958 return (NULL);
959 --pm->pm_stats.wired_count;
960 }
961 *prevptr = SLIST_NEXT(pve, pv_link); /* remove it! */
962 if (pm == pmap_kernel()) {
963 PMAPCOUNT(kernel_unmappings);
964 if (pve->pv_flags & PVF_WRITE)
965 pg->mdpage.krw_mappings--;
966 else
967 pg->mdpage.kro_mappings--;
968 } else
969 if (pve->pv_flags & PVF_WRITE)
970 pg->mdpage.urw_mappings--;
971 else
972 pg->mdpage.uro_mappings--;
973
974 PMAPCOUNT(unmappings);
975 #ifdef PMAP_CACHE_VIPT
976 if (!(pve->pv_flags & PVF_WRITE))
977 break;
978 /*
979 * If this page has had an exec mapping, then if
980 * this was the last mapping, discard the contents,
981 * otherwise sync the i-cache for this page.
982 */
983 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
984 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
985 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
986 PMAPCOUNT(exec_discarded_unmap);
987 } else {
988 pmap_syncicache_page(pg);
989 PMAPCOUNT(exec_synced_unmap);
990 }
991 }
992 #endif /* PMAP_CACHE_VIPT */
993 break;
994 }
995 prevptr = &SLIST_NEXT(pve, pv_link); /* previous pointer */
996 pve = *prevptr; /* advance */
997 }
998
999 #ifdef PMAP_CACHE_VIPT
1000 /*
1001 * If we no longer have a WRITEABLE KENTRY at the head of list,
1002 * clear the KMOD attribute from the page.
1003 */
1004 if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
1005 || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1006 pg->mdpage.pvh_attrs &= ~PVF_KMOD;
1007
1008 /*
1009 * If this was a writeable page and there are no more writeable
1010 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1011 * the contents to memory.
1012 */
1013 if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
1014 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1015 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1016 #endif /* PMAP_CACHE_VIPT */
1017
1018 return(pve); /* return removed pve */
1019 }
1020
1021 /*
1022 *
1023 * pmap_modify_pv: Update pv flags
1024 *
1025 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1026 * => caller should NOT adjust pmap's wire_count
1027 * => caller must call pmap_vac_me_harder() if writable status of a page
1028 * may have changed.
1029 * => we return the old flags
1030 *
1031 * Modify a physical-virtual mapping in the pv table
1032 */
1033 static u_int
1034 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
1035 u_int clr_mask, u_int set_mask)
1036 {
1037 struct pv_entry *npv;
1038 u_int flags, oflags;
1039
1040 KASSERT((clr_mask & PVF_KENTRY) == 0);
1041 KASSERT((set_mask & PVF_KENTRY) == 0);
1042
1043 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1044 return (0);
1045
1046 NPDEBUG(PDB_PVDUMP,
1047 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
1048
1049 /*
1050 * There is at least one VA mapping this page.
1051 */
1052
1053 if (clr_mask & (PVF_REF | PVF_MOD)) {
1054 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1055 #ifdef PMAP_CACHE_VIPT
1056 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1057 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1058 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1059 #endif
1060 }
1061
1062 oflags = npv->pv_flags;
1063 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1064
1065 if ((flags ^ oflags) & PVF_WIRED) {
1066 if (flags & PVF_WIRED)
1067 ++pm->pm_stats.wired_count;
1068 else
1069 --pm->pm_stats.wired_count;
1070 }
1071
1072 if ((flags ^ oflags) & PVF_WRITE) {
1073 if (pm == pmap_kernel()) {
1074 if (flags & PVF_WRITE) {
1075 pg->mdpage.krw_mappings++;
1076 pg->mdpage.kro_mappings--;
1077 } else {
1078 pg->mdpage.kro_mappings++;
1079 pg->mdpage.krw_mappings--;
1080 }
1081 } else
1082 if (flags & PVF_WRITE) {
1083 pg->mdpage.urw_mappings++;
1084 pg->mdpage.uro_mappings--;
1085 } else {
1086 pg->mdpage.uro_mappings++;
1087 pg->mdpage.urw_mappings--;
1088 }
1089 }
1090 #ifdef PMAP_CACHE_VIPT
1091 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
1092 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1093 /*
1094 * We have two cases here: the first is from enter_pv (new exec
1095 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1096 * Since in latter, pmap_enter_pv won't do anything, we just have
1097 * to do what pmap_remove_pv would do.
1098 */
1099 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
1100 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
1101 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1102 pmap_syncicache_page(pg);
1103 PMAPCOUNT(exec_synced_remap);
1104 }
1105 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1106 #endif
1107
1108 PMAPCOUNT(remappings);
1109
1110 return (oflags);
1111 }
1112
1113 /*
1114 * Allocate an L1 translation table for the specified pmap.
1115 * This is called at pmap creation time.
1116 */
1117 static void
1118 pmap_alloc_l1(pmap_t pm)
1119 {
1120 struct l1_ttable *l1;
1121 u_int8_t domain;
1122
1123 /*
1124 * Remove the L1 at the head of the LRU list
1125 */
1126 simple_lock(&l1_lru_lock);
1127 l1 = TAILQ_FIRST(&l1_lru_list);
1128 KDASSERT(l1 != NULL);
1129 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1130
1131 /*
1132 * Pick the first available domain number, and update
1133 * the link to the next number.
1134 */
1135 domain = l1->l1_domain_first;
1136 l1->l1_domain_first = l1->l1_domain_free[domain];
1137
1138 /*
1139 * If there are still free domain numbers in this L1,
1140 * put it back on the TAIL of the LRU list.
1141 */
1142 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1143 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1144
1145 simple_unlock(&l1_lru_lock);
1146
1147 /*
1148 * Fix up the relevant bits in the pmap structure
1149 */
1150 pm->pm_l1 = l1;
1151 pm->pm_domain = domain;
1152 }
1153
1154 /*
1155 * Free an L1 translation table.
1156 * This is called at pmap destruction time.
1157 */
1158 static void
1159 pmap_free_l1(pmap_t pm)
1160 {
1161 struct l1_ttable *l1 = pm->pm_l1;
1162
1163 simple_lock(&l1_lru_lock);
1164
1165 /*
1166 * If this L1 is currently on the LRU list, remove it.
1167 */
1168 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1169 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1170
1171 /*
1172 * Free up the domain number which was allocated to the pmap
1173 */
1174 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1175 l1->l1_domain_first = pm->pm_domain;
1176 l1->l1_domain_use_count--;
1177
1178 /*
1179 * The L1 now must have at least 1 free domain, so add
1180 * it back to the LRU list. If the use count is zero,
1181 * put it at the head of the list, otherwise it goes
1182 * to the tail.
1183 */
1184 if (l1->l1_domain_use_count == 0)
1185 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1186 else
1187 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1188
1189 simple_unlock(&l1_lru_lock);
1190 }
1191
1192 static inline void
1193 pmap_use_l1(pmap_t pm)
1194 {
1195 struct l1_ttable *l1;
1196
1197 /*
1198 * Do nothing if we're in interrupt context.
1199 * Access to an L1 by the kernel pmap must not affect
1200 * the LRU list.
1201 */
1202 if (cpu_intr_p() || pm == pmap_kernel())
1203 return;
1204
1205 l1 = pm->pm_l1;
1206
1207 /*
1208 * If the L1 is not currently on the LRU list, just return
1209 */
1210 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1211 return;
1212
1213 simple_lock(&l1_lru_lock);
1214
1215 /*
1216 * Check the use count again, now that we've acquired the lock
1217 */
1218 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1219 simple_unlock(&l1_lru_lock);
1220 return;
1221 }
1222
1223 /*
1224 * Move the L1 to the back of the LRU list
1225 */
1226 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1227 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1228
1229 simple_unlock(&l1_lru_lock);
1230 }
1231
1232 /*
1233 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1234 *
1235 * Free an L2 descriptor table.
1236 */
1237 static inline void
1238 #ifndef PMAP_INCLUDE_PTE_SYNC
1239 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1240 #else
1241 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1242 #endif
1243 {
1244 #ifdef PMAP_INCLUDE_PTE_SYNC
1245 #ifdef PMAP_CACHE_VIVT
1246 /*
1247 * Note: With a write-back cache, we may need to sync this
1248 * L2 table before re-using it.
1249 * This is because it may have belonged to a non-current
1250 * pmap, in which case the cache syncs would have been
1251 * skipped for the pages that were being unmapped. If the
1252 * L2 table were then to be immediately re-allocated to
1253 * the *current* pmap, it may well contain stale mappings
1254 * which have not yet been cleared by a cache write-back
1255 * and so would still be visible to the mmu.
1256 */
1257 if (need_sync)
1258 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1259 #endif /* PMAP_CACHE_VIVT */
1260 #endif /* PMAP_INCLUDE_PTE_SYNC */
1261 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1262 }
1263
1264 /*
1265 * Returns a pointer to the L2 bucket associated with the specified pmap
1266 * and VA, or NULL if no L2 bucket exists for the address.
1267 */
1268 static inline struct l2_bucket *
1269 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1270 {
1271 struct l2_dtable *l2;
1272 struct l2_bucket *l2b;
1273 u_short l1idx;
1274
1275 l1idx = L1_IDX(va);
1276
1277 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1278 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1279 return (NULL);
1280
1281 return (l2b);
1282 }
1283
1284 /*
1285 * Returns a pointer to the L2 bucket associated with the specified pmap
1286 * and VA.
1287 *
1288 * If no L2 bucket exists, perform the necessary allocations to put an L2
1289 * bucket/page table in place.
1290 *
1291 * Note that if a new L2 bucket/page was allocated, the caller *must*
1292 * increment the bucket occupancy counter appropriately *before*
1293 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1294 * the bucket/page in the meantime.
1295 */
1296 static struct l2_bucket *
1297 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1298 {
1299 struct l2_dtable *l2;
1300 struct l2_bucket *l2b;
1301 u_short l1idx;
1302
1303 l1idx = L1_IDX(va);
1304
1305 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1306 /*
1307 * No mapping at this address, as there is
1308 * no entry in the L1 table.
1309 * Need to allocate a new l2_dtable.
1310 */
1311 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1312 return (NULL);
1313
1314 /*
1315 * Link it into the parent pmap
1316 */
1317 pm->pm_l2[L2_IDX(l1idx)] = l2;
1318 }
1319
1320 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1321
1322 /*
1323 * Fetch pointer to the L2 page table associated with the address.
1324 */
1325 if (l2b->l2b_kva == NULL) {
1326 pt_entry_t *ptep;
1327
1328 /*
1329 * No L2 page table has been allocated. Chances are, this
1330 * is because we just allocated the l2_dtable, above.
1331 */
1332 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1333 /*
1334 * Oops, no more L2 page tables available at this
1335 * time. We may need to deallocate the l2_dtable
1336 * if we allocated a new one above.
1337 */
1338 if (l2->l2_occupancy == 0) {
1339 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1340 pmap_free_l2_dtable(l2);
1341 }
1342 return (NULL);
1343 }
1344
1345 l2->l2_occupancy++;
1346 l2b->l2b_kva = ptep;
1347 l2b->l2b_l1idx = l1idx;
1348 }
1349
1350 return (l2b);
1351 }
1352
1353 /*
1354 * One or more mappings in the specified L2 descriptor table have just been
1355 * invalidated.
1356 *
1357 * Garbage collect the metadata and descriptor table itself if necessary.
1358 *
1359 * The pmap lock must be acquired when this is called (not necessary
1360 * for the kernel pmap).
1361 */
1362 static void
1363 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1364 {
1365 struct l2_dtable *l2;
1366 pd_entry_t *pl1pd, l1pd;
1367 pt_entry_t *ptep;
1368 u_short l1idx;
1369
1370 KDASSERT(count <= l2b->l2b_occupancy);
1371
1372 /*
1373 * Update the bucket's reference count according to how many
1374 * PTEs the caller has just invalidated.
1375 */
1376 l2b->l2b_occupancy -= count;
1377
1378 /*
1379 * Note:
1380 *
1381 * Level 2 page tables allocated to the kernel pmap are never freed
1382 * as that would require checking all Level 1 page tables and
1383 * removing any references to the Level 2 page table. See also the
1384 * comment elsewhere about never freeing bootstrap L2 descriptors.
1385 *
1386 * We make do with just invalidating the mapping in the L2 table.
1387 *
1388 * This isn't really a big deal in practice and, in fact, leads
1389 * to a performance win over time as we don't need to continually
1390 * alloc/free.
1391 */
1392 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1393 return;
1394
1395 /*
1396 * There are no more valid mappings in this level 2 page table.
1397 * Go ahead and NULL-out the pointer in the bucket, then
1398 * free the page table.
1399 */
1400 l1idx = l2b->l2b_l1idx;
1401 ptep = l2b->l2b_kva;
1402 l2b->l2b_kva = NULL;
1403
1404 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1405
1406 /*
1407 * If the L1 slot matches the pmap's domain
1408 * number, then invalidate it.
1409 */
1410 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1411 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1412 *pl1pd = 0;
1413 PTE_SYNC(pl1pd);
1414 }
1415
1416 /*
1417 * Release the L2 descriptor table back to the pool cache.
1418 */
1419 #ifndef PMAP_INCLUDE_PTE_SYNC
1420 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1421 #else
1422 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1423 #endif
1424
1425 /*
1426 * Update the reference count in the associated l2_dtable
1427 */
1428 l2 = pm->pm_l2[L2_IDX(l1idx)];
1429 if (--l2->l2_occupancy > 0)
1430 return;
1431
1432 /*
1433 * There are no more valid mappings in any of the Level 1
1434 * slots managed by this l2_dtable. Go ahead and NULL-out
1435 * the pointer in the parent pmap and free the l2_dtable.
1436 */
1437 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1438 pmap_free_l2_dtable(l2);
1439 }
1440
1441 /*
1442 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1443 * structures.
1444 */
1445 static int
1446 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1447 {
1448 #ifndef PMAP_INCLUDE_PTE_SYNC
1449 struct l2_bucket *l2b;
1450 pt_entry_t *ptep, pte;
1451 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1452
1453 /*
1454 * The mappings for these page tables were initially made using
1455 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1456 * mode will not be right for page table mappings. To avoid
1457 * polluting the pmap_kenter_pa() code with a special case for
1458 * page tables, we simply fix up the cache-mode here if it's not
1459 * correct.
1460 */
1461 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1462 KDASSERT(l2b != NULL);
1463 ptep = &l2b->l2b_kva[l2pte_index(va)];
1464 pte = *ptep;
1465
1466 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1467 /*
1468 * Page tables must have the cache-mode set to Write-Thru.
1469 */
1470 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1471 PTE_SYNC(ptep);
1472 cpu_tlb_flushD_SE(va);
1473 cpu_cpwait();
1474 }
1475 #endif
1476
1477 memset(v, 0, L2_TABLE_SIZE_REAL);
1478 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1479 return (0);
1480 }
1481
1482 static int
1483 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1484 {
1485
1486 memset(v, 0, sizeof(struct l2_dtable));
1487 return (0);
1488 }
1489
1490 static int
1491 pmap_pmap_ctor(void *arg, void *v, int flags)
1492 {
1493
1494 memset(v, 0, sizeof(struct pmap));
1495 return (0);
1496 }
1497
1498 static void
1499 pmap_pinit(pmap_t pm)
1500 {
1501 struct l2_bucket *l2b;
1502
1503 if (vector_page < KERNEL_BASE) {
1504 /*
1505 * Map the vector page.
1506 */
1507 pmap_enter(pm, vector_page, systempage.pv_pa,
1508 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1509 pmap_update(pm);
1510
1511 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1512 l2b = pmap_get_l2_bucket(pm, vector_page);
1513 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1514 L1_C_DOM(pm->pm_domain);
1515 } else
1516 pm->pm_pl1vec = NULL;
1517 }
1518
1519 #ifdef PMAP_CACHE_VIVT
1520 /*
1521 * Since we have a virtually indexed cache, we may need to inhibit caching if
1522 * there is more than one mapping and at least one of them is writable.
1523 * Since we purge the cache on every context switch, we only need to check for
1524 * other mappings within the same pmap, or kernel_pmap.
1525 * This function is also called when a page is unmapped, to possibly reenable
1526 * caching on any remaining mappings.
1527 *
1528 * The code implements the following logic, where:
1529 *
1530 * KW = # of kernel read/write pages
1531 * KR = # of kernel read only pages
1532 * UW = # of user read/write pages
1533 * UR = # of user read only pages
1534 *
1535 * KC = kernel mapping is cacheable
1536 * UC = user mapping is cacheable
1537 *
1538 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1539 * +---------------------------------------------
1540 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1541 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1542 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1543 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1544 */
1545
1546 static const int pmap_vac_flags[4][4] = {
1547 {-1, 0, 0, PVF_KNC},
1548 {0, 0, PVF_NC, PVF_NC},
1549 {0, PVF_NC, PVF_NC, PVF_NC},
1550 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1551 };
1552
1553 static inline int
1554 pmap_get_vac_flags(const struct vm_page *pg)
1555 {
1556 int kidx, uidx;
1557
1558 kidx = 0;
1559 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1560 kidx |= 1;
1561 if (pg->mdpage.krw_mappings)
1562 kidx |= 2;
1563
1564 uidx = 0;
1565 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1566 uidx |= 1;
1567 if (pg->mdpage.urw_mappings)
1568 uidx |= 2;
1569
1570 return (pmap_vac_flags[uidx][kidx]);
1571 }
1572
1573 static inline void
1574 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1575 {
1576 int nattr;
1577
1578 nattr = pmap_get_vac_flags(pg);
1579
1580 if (nattr < 0) {
1581 pg->mdpage.pvh_attrs &= ~PVF_NC;
1582 return;
1583 }
1584
1585 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1586 return;
1587
1588 if (pm == pmap_kernel())
1589 pmap_vac_me_kpmap(pg, pm, va);
1590 else
1591 pmap_vac_me_user(pg, pm, va);
1592
1593 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1594 }
1595
1596 static void
1597 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1598 {
1599 u_int u_cacheable, u_entries;
1600 struct pv_entry *pv;
1601 pmap_t last_pmap = pm;
1602
1603 /*
1604 * Pass one, see if there are both kernel and user pmaps for
1605 * this page. Calculate whether there are user-writable or
1606 * kernel-writable pages.
1607 */
1608 u_cacheable = 0;
1609 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1610 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1611 u_cacheable++;
1612 }
1613
1614 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1615
1616 /*
1617 * We know we have just been updating a kernel entry, so if
1618 * all user pages are already cacheable, then there is nothing
1619 * further to do.
1620 */
1621 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1622 return;
1623
1624 if (u_entries) {
1625 /*
1626 * Scan over the list again, for each entry, if it
1627 * might not be set correctly, call pmap_vac_me_user
1628 * to recalculate the settings.
1629 */
1630 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1631 /*
1632 * We know kernel mappings will get set
1633 * correctly in other calls. We also know
1634 * that if the pmap is the same as last_pmap
1635 * then we've just handled this entry.
1636 */
1637 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1638 continue;
1639
1640 /*
1641 * If there are kernel entries and this page
1642 * is writable but non-cacheable, then we can
1643 * skip this entry also.
1644 */
1645 if (pg->mdpage.k_mappings &&
1646 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1647 (PVF_NC | PVF_WRITE))
1648 continue;
1649
1650 /*
1651 * Similarly if there are no kernel-writable
1652 * entries and the page is already
1653 * read-only/cacheable.
1654 */
1655 if (pg->mdpage.krw_mappings == 0 &&
1656 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1657 continue;
1658
1659 /*
1660 * For some of the remaining cases, we know
1661 * that we must recalculate, but for others we
1662 * can't tell if they are correct or not, so
1663 * we recalculate anyway.
1664 */
1665 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1666 }
1667
1668 if (pg->mdpage.k_mappings == 0)
1669 return;
1670 }
1671
1672 pmap_vac_me_user(pg, pm, va);
1673 }
1674
1675 static void
1676 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1677 {
1678 pmap_t kpmap = pmap_kernel();
1679 struct pv_entry *pv, *npv = NULL;
1680 struct l2_bucket *l2b;
1681 pt_entry_t *ptep, pte;
1682 u_int entries = 0;
1683 u_int writable = 0;
1684 u_int cacheable_entries = 0;
1685 u_int kern_cacheable = 0;
1686 u_int other_writable = 0;
1687
1688 /*
1689 * Count mappings and writable mappings in this pmap.
1690 * Include kernel mappings as part of our own.
1691 * Keep a pointer to the first one.
1692 */
1693 npv = NULL;
1694 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1695 /* Count mappings in the same pmap */
1696 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1697 if (entries++ == 0)
1698 npv = pv;
1699
1700 /* Cacheable mappings */
1701 if ((pv->pv_flags & PVF_NC) == 0) {
1702 cacheable_entries++;
1703 if (kpmap == pv->pv_pmap)
1704 kern_cacheable++;
1705 }
1706
1707 /* Writable mappings */
1708 if (pv->pv_flags & PVF_WRITE)
1709 ++writable;
1710 } else
1711 if (pv->pv_flags & PVF_WRITE)
1712 other_writable = 1;
1713 }
1714
1715 /*
1716 * Enable or disable caching as necessary.
1717 * Note: the first entry might be part of the kernel pmap,
1718 * so we can't assume this is indicative of the state of the
1719 * other (maybe non-kpmap) entries.
1720 */
1721 if ((entries > 1 && writable) ||
1722 (entries > 0 && pm == kpmap && other_writable)) {
1723 if (cacheable_entries == 0)
1724 return;
1725
1726 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1727 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1728 (pv->pv_flags & PVF_NC))
1729 continue;
1730
1731 pv->pv_flags |= PVF_NC;
1732
1733 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1734 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1735 pte = *ptep & ~L2_S_CACHE_MASK;
1736
1737 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1738 l2pte_valid(pte)) {
1739 if (PV_BEEN_EXECD(pv->pv_flags)) {
1740 #ifdef PMAP_CACHE_VIVT
1741 pmap_idcache_wbinv_range(pv->pv_pmap,
1742 pv->pv_va, PAGE_SIZE);
1743 #endif
1744 pmap_tlb_flushID_SE(pv->pv_pmap,
1745 pv->pv_va);
1746 } else
1747 if (PV_BEEN_REFD(pv->pv_flags)) {
1748 #ifdef PMAP_CACHE_VIVT
1749 pmap_dcache_wb_range(pv->pv_pmap,
1750 pv->pv_va, PAGE_SIZE, true,
1751 (pv->pv_flags & PVF_WRITE) == 0);
1752 #endif
1753 pmap_tlb_flushD_SE(pv->pv_pmap,
1754 pv->pv_va);
1755 }
1756 }
1757
1758 *ptep = pte;
1759 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1760 }
1761 cpu_cpwait();
1762 } else
1763 if (entries > cacheable_entries) {
1764 /*
1765 * Turn cacheing back on for some pages. If it is a kernel
1766 * page, only do so if there are no other writable pages.
1767 */
1768 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1769 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1770 (kpmap != pv->pv_pmap || other_writable)))
1771 continue;
1772
1773 pv->pv_flags &= ~PVF_NC;
1774
1775 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1776 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1777 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1778
1779 if (l2pte_valid(pte)) {
1780 if (PV_BEEN_EXECD(pv->pv_flags)) {
1781 pmap_tlb_flushID_SE(pv->pv_pmap,
1782 pv->pv_va);
1783 } else
1784 if (PV_BEEN_REFD(pv->pv_flags)) {
1785 pmap_tlb_flushD_SE(pv->pv_pmap,
1786 pv->pv_va);
1787 }
1788 }
1789
1790 *ptep = pte;
1791 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1792 }
1793 }
1794 }
1795 #endif
1796
1797 #ifdef PMAP_CACHE_VIPT
1798 /*
1799 * For virtually indexed / physically tagged caches, what we have to worry
1800 * about is illegal cache aliases. To prevent this, we must ensure that
1801 * virtual addresses that map the physical page use the same bits for those
1802 * bits masked by "arm_cache_prefer_mask" (bits 12+). If there is a conflict,
1803 * all mappings of the page must be non-cached.
1804 */
1805 #if 0
1806 static inline vaddr_t
1807 pmap_check_sets(paddr_t pa)
1808 {
1809 extern int arm_dcache_l2_nsets;
1810 int set, way;
1811 vaddr_t mask = 0;
1812 int v;
1813 pa |= 1;
1814 for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
1815 for (way = 0; way < 4; way++) {
1816 v = (way << 30) | (set << 5);
1817 asm("mcr p15, 3, %0, c15, c2, 0" :: "r"(v));
1818 asm("mrc p15, 3, %0, c15, c0, 0" : "=r"(v));
1819
1820 if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
1821 mask |= 1 << (set >> 7);
1822 }
1823 }
1824 }
1825 return mask;
1826 }
1827 #endif
1828 static void
1829 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1830 {
1831 struct pv_entry *pv;
1832 vaddr_t tst_mask;
1833 bool bad_alias;
1834 struct l2_bucket *l2b;
1835 pt_entry_t *ptep, pte, opte;
1836 const u_int
1837 rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
1838 ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
1839
1840 /* do we need to do anything? */
1841 if (arm_cache_prefer_mask == 0)
1842 return;
1843
1844 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
1845 pg, pm, va));
1846
1847 #define popc4(x) \
1848 (((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
1849 #if 0
1850 tst_mask = pmap_check_sets(pg->phys_addr);
1851 KASSERT(popc4(tst_mask) < 2);
1852 #endif
1853
1854 KASSERT(!va || pm);
1855 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1856
1857 /* Already a conflict? */
1858 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
1859 /* just an add, things are already non-cached */
1860 KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
1861 bad_alias = false;
1862 if (va) {
1863 PMAPCOUNT(vac_color_none);
1864 bad_alias = true;
1865 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1866 goto fixup;
1867 }
1868 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1869 /* the list can't be empty because it would be cachable */
1870 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
1871 tst_mask = pg->mdpage.pvh_attrs;
1872 } else {
1873 KASSERT(pv);
1874 tst_mask = pv->pv_va;
1875 pv = SLIST_NEXT(pv, pv_link);
1876 }
1877 /*
1878 * Only check for a bad alias if we have writable mappings.
1879 */
1880 tst_mask &= arm_cache_prefer_mask;
1881 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1882 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1883 /* if there's a bad alias, stop checking. */
1884 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1885 bad_alias = true;
1886 }
1887 pg->mdpage.pvh_attrs |= PVF_WRITE;
1888 if (!bad_alias)
1889 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1890 } else {
1891 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1892 }
1893 /* If no conflicting colors, set everything back to cached */
1894 if (!bad_alias) {
1895 #ifdef DEBUG
1896 if ((pg->mdpage.pvh_attrs & PVF_WRITE)
1897 || ro_mappings < 2) {
1898 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1899 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1900 }
1901
1902 #endif
1903 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1904 pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
1905 /*
1906 * Restore DIRTY bit if page is modified
1907 */
1908 if (pg->mdpage.pvh_attrs & PVF_DMOD)
1909 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1910 PMAPCOUNT(vac_color_restore);
1911 } else {
1912 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1913 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1914 }
1915 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1916 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1917 } else if (!va) {
1918 KASSERT(pmap_is_page_colored_p(pg));
1919 KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
1920 || (pg->mdpage.pvh_attrs & PVF_DIRTY));
1921 if (rw_mappings == 0)
1922 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1923 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1924 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1925 return;
1926 } else if (!pmap_is_page_colored_p(pg)) {
1927 /* not colored so we just use its color */
1928 KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1929 PMAPCOUNT(vac_color_new);
1930 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1931 pg->mdpage.pvh_attrs |= PVF_COLORED
1932 | (va & arm_cache_prefer_mask)
1933 | (rw_mappings > 0 ? PVF_WRITE : 0);
1934 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1935 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1936 return;
1937 } else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1938 bad_alias = false;
1939 if (rw_mappings > 0) {
1940 /*
1941 * We now have writeable mappings and more than one
1942 * readonly mapping, verify the colors don't clash
1943 * and mark the page as writeable.
1944 */
1945 if (ro_mappings > 1
1946 && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0
1947 && arm_cache_prefer_mask) {
1948 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1949 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1950 /* if there's a bad alias, stop checking. */
1951 if (((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0) {
1952 bad_alias = true;
1953 break;
1954 }
1955 }
1956 }
1957 pg->mdpage.pvh_attrs |= PVF_WRITE;
1958 }
1959 /* If no conflicting colors, set everything back to cached */
1960 if (!bad_alias) {
1961 #ifdef DEBUG
1962 if (rw_mappings > 0
1963 || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
1964 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1965 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1966 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1967 }
1968 #endif
1969 if (SLIST_EMPTY(&pg->mdpage.pvh_list))
1970 PMAPCOUNT(vac_color_reuse);
1971 else
1972 PMAPCOUNT(vac_color_ok);
1973
1974 /* matching color, just return */
1975 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1976 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1977 return;
1978 }
1979 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1980 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1981
1982 /* color conflict. evict from cache. */
1983
1984 pmap_flush_page(pg, true);
1985 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
1986 pg->mdpage.pvh_attrs |= PVF_NC;
1987 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1988 PMAPCOUNT(vac_color_erase);
1989 } else if (rw_mappings == 0
1990 && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
1991 KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
1992
1993 /*
1994 * If the page has dirty cache lines, clean it.
1995 */
1996 if (pg->mdpage.pvh_attrs & PVF_DIRTY)
1997 pmap_flush_page(pg, false);
1998
1999 /*
2000 * If this is the first remapping (we know that there are no
2001 * writeable mappings), then this is a simple color change.
2002 * Otherwise this is a seconary r/o mapping, which means
2003 * we don't have to do anything.
2004 */
2005 if (ro_mappings == 1) {
2006 KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2007 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2008 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2009 PMAPCOUNT(vac_color_change);
2010 } else {
2011 PMAPCOUNT(vac_color_blind);
2012 }
2013 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2014 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2015 return;
2016 } else {
2017 if (rw_mappings > 0)
2018 pg->mdpage.pvh_attrs |= PVF_WRITE;
2019
2020 /* color conflict. evict from cache. */
2021 pmap_flush_page(pg, true);
2022
2023 /* the list can't be empty because this was a enter/modify */
2024 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2025 if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2026 KASSERT(pv);
2027 /*
2028 * If there's only one mapped page, change color to the
2029 * page's new color and return. Restore the DIRTY bit
2030 * that was erased by pmap_flush_page.
2031 */
2032 if (SLIST_NEXT(pv, pv_link) == NULL) {
2033 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2034 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2035 if (pg->mdpage.pvh_attrs & PVF_DMOD)
2036 pg->mdpage.pvh_attrs |= PVF_DIRTY;
2037 PMAPCOUNT(vac_color_change);
2038 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2039 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2040 return;
2041 }
2042 }
2043 bad_alias = true;
2044 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2045 pg->mdpage.pvh_attrs |= PVF_NC;
2046 PMAPCOUNT(vac_color_erase);
2047 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2048 }
2049
2050 fixup:
2051 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2052
2053 /*
2054 * Turn cacheing on/off for all pages.
2055 */
2056 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2057 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2058 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2059 opte = *ptep;
2060 pte = opte & ~L2_S_CACHE_MASK;
2061 if (bad_alias) {
2062 pv->pv_flags |= PVF_NC;
2063 } else {
2064 pv->pv_flags &= ~PVF_NC;
2065 pte |= pte_l2_s_cache_mode;
2066 }
2067
2068 if (opte == pte) /* only update is there's a change */
2069 continue;
2070
2071 if (l2pte_valid(pte)) {
2072 if (PV_BEEN_EXECD(pv->pv_flags)) {
2073 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2074 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2075 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2076 }
2077 }
2078
2079 *ptep = pte;
2080 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2081 }
2082 }
2083 #endif /* PMAP_CACHE_VIPT */
2084
2085
2086 /*
2087 * Modify pte bits for all ptes corresponding to the given physical address.
2088 * We use `maskbits' rather than `clearbits' because we're always passing
2089 * constants and the latter would require an extra inversion at run-time.
2090 */
2091 static void
2092 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2093 {
2094 struct l2_bucket *l2b;
2095 struct pv_entry *pv;
2096 pt_entry_t *ptep, npte, opte;
2097 pmap_t pm;
2098 vaddr_t va;
2099 u_int oflags;
2100 #ifdef PMAP_CACHE_VIPT
2101 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
2102 bool need_syncicache = false;
2103 bool did_syncicache = false;
2104 bool need_vac_me_harder = false;
2105 #endif
2106
2107 NPDEBUG(PDB_BITS,
2108 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2109 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2110
2111 PMAP_HEAD_TO_MAP_LOCK();
2112 simple_lock(&pg->mdpage.pvh_slock);
2113
2114 #ifdef PMAP_CACHE_VIPT
2115 /*
2116 * If we might want to sync the I-cache and we've modified it,
2117 * then we know we definitely need to sync or discard it.
2118 */
2119 if (want_syncicache)
2120 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
2121 #endif
2122 /*
2123 * Clear saved attributes (modify, reference)
2124 */
2125 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2126
2127 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
2128 #ifdef PMAP_CACHE_VIPT
2129 if (need_syncicache) {
2130 /*
2131 * No one has it mapped, so just discard it. The next
2132 * exec remapping will cause it to be synced.
2133 */
2134 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2135 PMAPCOUNT(exec_discarded_clearbit);
2136 }
2137 #endif
2138 simple_unlock(&pg->mdpage.pvh_slock);
2139 PMAP_HEAD_TO_MAP_UNLOCK();
2140 return;
2141 }
2142
2143 /*
2144 * Loop over all current mappings setting/clearing as appropos
2145 */
2146 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2147 va = pv->pv_va;
2148 pm = pv->pv_pmap;
2149 oflags = pv->pv_flags;
2150 /*
2151 * Kernel entries are unmanaged and as such not to be changed.
2152 */
2153 if (oflags & PVF_KENTRY)
2154 continue;
2155 pv->pv_flags &= ~maskbits;
2156
2157 pmap_acquire_pmap_lock(pm);
2158
2159 l2b = pmap_get_l2_bucket(pm, va);
2160 KDASSERT(l2b != NULL);
2161
2162 ptep = &l2b->l2b_kva[l2pte_index(va)];
2163 npte = opte = *ptep;
2164
2165 NPDEBUG(PDB_BITS,
2166 printf(
2167 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2168 pv, pv->pv_pmap, pv->pv_va, oflags));
2169
2170 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2171 #ifdef PMAP_CACHE_VIVT
2172 if ((pv->pv_flags & PVF_NC)) {
2173 /*
2174 * Entry is not cacheable:
2175 *
2176 * Don't turn caching on again if this is a
2177 * modified emulation. This would be
2178 * inconsitent with the settings created by
2179 * pmap_vac_me_harder(). Otherwise, it's safe
2180 * to re-enable cacheing.
2181 *
2182 * There's no need to call pmap_vac_me_harder()
2183 * here: all pages are losing their write
2184 * permission.
2185 */
2186 if (maskbits & PVF_WRITE) {
2187 npte |= pte_l2_s_cache_mode;
2188 pv->pv_flags &= ~PVF_NC;
2189 }
2190 } else
2191 if (opte & L2_S_PROT_W) {
2192 /*
2193 * Entry is writable/cacheable: check if pmap
2194 * is current if it is flush it, otherwise it
2195 * won't be in the cache
2196 */
2197 if (PV_BEEN_EXECD(oflags))
2198 pmap_idcache_wbinv_range(pm, pv->pv_va,
2199 PAGE_SIZE);
2200 else
2201 if (PV_BEEN_REFD(oflags))
2202 pmap_dcache_wb_range(pm, pv->pv_va,
2203 PAGE_SIZE,
2204 (maskbits & PVF_REF) != 0, false);
2205 }
2206 #endif
2207
2208 /* make the pte read only */
2209 npte &= ~L2_S_PROT_W;
2210
2211 if (maskbits & oflags & PVF_WRITE) {
2212 /*
2213 * Keep alias accounting up to date
2214 */
2215 if (pv->pv_pmap == pmap_kernel()) {
2216 pg->mdpage.krw_mappings--;
2217 pg->mdpage.kro_mappings++;
2218 } else {
2219 pg->mdpage.urw_mappings--;
2220 pg->mdpage.uro_mappings++;
2221 }
2222 #ifdef PMAP_CACHE_VIPT
2223 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
2224 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2225 if (want_syncicache)
2226 need_syncicache = true;
2227 need_vac_me_harder = true;
2228 #endif
2229 }
2230 }
2231
2232 if (maskbits & PVF_REF) {
2233 if ((pv->pv_flags & PVF_NC) == 0 &&
2234 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2235 l2pte_valid(npte)) {
2236 #ifdef PMAP_CACHE_VIVT
2237 /*
2238 * Check npte here; we may have already
2239 * done the wbinv above, and the validity
2240 * of the PTE is the same for opte and
2241 * npte.
2242 */
2243 /* XXXJRT need idcache_inv_range */
2244 if (PV_BEEN_EXECD(oflags))
2245 pmap_idcache_wbinv_range(pm,
2246 pv->pv_va, PAGE_SIZE);
2247 else
2248 if (PV_BEEN_REFD(oflags))
2249 pmap_dcache_wb_range(pm,
2250 pv->pv_va, PAGE_SIZE,
2251 true, true);
2252 #endif
2253 }
2254
2255 /*
2256 * Make the PTE invalid so that we will take a
2257 * page fault the next time the mapping is
2258 * referenced.
2259 */
2260 npte &= ~L2_TYPE_MASK;
2261 npte |= L2_TYPE_INV;
2262 }
2263
2264 if (npte != opte) {
2265 *ptep = npte;
2266 PTE_SYNC(ptep);
2267 /* Flush the TLB entry if a current pmap. */
2268 if (PV_BEEN_EXECD(oflags))
2269 pmap_tlb_flushID_SE(pm, pv->pv_va);
2270 else
2271 if (PV_BEEN_REFD(oflags))
2272 pmap_tlb_flushD_SE(pm, pv->pv_va);
2273 }
2274
2275 pmap_release_pmap_lock(pm);
2276
2277 NPDEBUG(PDB_BITS,
2278 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2279 pm, va, opte, npte));
2280 }
2281
2282 #ifdef PMAP_CACHE_VIPT
2283 /*
2284 * If we need to sync the I-cache and we haven't done it yet, do it.
2285 */
2286 if (need_syncicache && !did_syncicache) {
2287 pmap_syncicache_page(pg);
2288 PMAPCOUNT(exec_synced_clearbit);
2289 }
2290 /*
2291 * If we are changing this to read-only, we need to call vac_me_harder
2292 * so we can change all the read-only pages to cacheable. We pretend
2293 * this as a page deletion.
2294 */
2295 if (need_vac_me_harder) {
2296 if (pg->mdpage.pvh_attrs & PVF_NC)
2297 pmap_vac_me_harder(pg, NULL, 0);
2298 }
2299 #endif
2300
2301 simple_unlock(&pg->mdpage.pvh_slock);
2302 PMAP_HEAD_TO_MAP_UNLOCK();
2303 }
2304
2305 /*
2306 * pmap_clean_page()
2307 *
2308 * This is a local function used to work out the best strategy to clean
2309 * a single page referenced by its entry in the PV table. It's used by
2310 * pmap_copy_page, pmap_zero page and maybe some others later on.
2311 *
2312 * Its policy is effectively:
2313 * o If there are no mappings, we don't bother doing anything with the cache.
2314 * o If there is one mapping, we clean just that page.
2315 * o If there are multiple mappings, we clean the entire cache.
2316 *
2317 * So that some functions can be further optimised, it returns 0 if it didn't
2318 * clean the entire cache, or 1 if it did.
2319 *
2320 * XXX One bug in this routine is that if the pv_entry has a single page
2321 * mapped at 0x00000000 a whole cache clean will be performed rather than
2322 * just the 1 page. Since this should not occur in everyday use and if it does
2323 * it will just result in not the most efficient clean for the page.
2324 */
2325 #ifdef PMAP_CACHE_VIVT
2326 static int
2327 pmap_clean_page(struct pv_entry *pv, bool is_src)
2328 {
2329 pmap_t pm, pm_to_clean = NULL;
2330 struct pv_entry *npv;
2331 u_int cache_needs_cleaning = 0;
2332 u_int flags = 0;
2333 vaddr_t page_to_clean = 0;
2334
2335 if (pv == NULL) {
2336 /* nothing mapped in so nothing to flush */
2337 return (0);
2338 }
2339
2340 /*
2341 * Since we flush the cache each time we change to a different
2342 * user vmspace, we only need to flush the page if it is in the
2343 * current pmap.
2344 */
2345 pm = curproc->p_vmspace->vm_map.pmap;
2346
2347 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2348 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
2349 flags |= npv->pv_flags;
2350 /*
2351 * The page is mapped non-cacheable in
2352 * this map. No need to flush the cache.
2353 */
2354 if (npv->pv_flags & PVF_NC) {
2355 #ifdef DIAGNOSTIC
2356 if (cache_needs_cleaning)
2357 panic("pmap_clean_page: "
2358 "cache inconsistency");
2359 #endif
2360 break;
2361 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2362 continue;
2363 if (cache_needs_cleaning) {
2364 page_to_clean = 0;
2365 break;
2366 } else {
2367 page_to_clean = npv->pv_va;
2368 pm_to_clean = npv->pv_pmap;
2369 }
2370 cache_needs_cleaning = 1;
2371 }
2372 }
2373
2374 if (page_to_clean) {
2375 if (PV_BEEN_EXECD(flags))
2376 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2377 PAGE_SIZE);
2378 else
2379 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2380 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2381 } else if (cache_needs_cleaning) {
2382 if (PV_BEEN_EXECD(flags))
2383 pmap_idcache_wbinv_all(pm);
2384 else
2385 pmap_dcache_wbinv_all(pm);
2386 return (1);
2387 }
2388 return (0);
2389 }
2390 #endif
2391
2392 #ifdef PMAP_CACHE_VIPT
2393 /*
2394 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2395 * right cache alias to make sure we flush the right stuff.
2396 */
2397 void
2398 pmap_syncicache_page(struct vm_page *pg)
2399 {
2400 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2401 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2402
2403 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
2404 pg, pg->mdpage.pvh_attrs));
2405 /*
2406 * No need to clean the page if it's non-cached.
2407 */
2408 if (pg->mdpage.pvh_attrs & PVF_NC)
2409 return;
2410 KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
2411
2412 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2413 /*
2414 * Set up a PTE with the right coloring to flush existing cache lines.
2415 */
2416 *ptep = L2_S_PROTO |
2417 VM_PAGE_TO_PHYS(pg)
2418 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2419 | pte_l2_s_cache_mode;
2420 PTE_SYNC(ptep);
2421
2422 /*
2423 * Flush it.
2424 */
2425 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2426 /*
2427 * Unmap the page.
2428 */
2429 *ptep = 0;
2430 PTE_SYNC(ptep);
2431 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2432
2433 pg->mdpage.pvh_attrs |= PVF_EXEC;
2434 PMAPCOUNT(exec_synced);
2435 }
2436
2437 void
2438 pmap_flush_page(struct vm_page *pg, bool flush)
2439 {
2440 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2441 const size_t pte_offset = va_offset >> PGSHIFT;
2442 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2443 const pt_entry_t oldpte = *ptep;
2444 #if 0
2445 vaddr_t mask;
2446 #endif
2447
2448 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
2449 #if 0
2450 mask = pmap_check_sets(pg->phys_addr);
2451 KASSERT(popc4(mask) < 2);
2452 #endif
2453
2454 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
2455 pg, pg->mdpage.pvh_attrs));
2456 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2457 /*
2458 * Set up a PTE with the right coloring to flush existing cache entries.
2459 */
2460 *ptep = L2_S_PROTO
2461 | VM_PAGE_TO_PHYS(pg)
2462 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2463 | pte_l2_s_cache_mode;
2464 PTE_SYNC(ptep);
2465
2466 /*
2467 * Flush it.
2468 */
2469 if (flush) {
2470 cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
2471 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2472 } else {
2473 cpu_dcache_wb_range(cdstp + va_offset, PAGE_SIZE);
2474 /*
2475 * Mark that the page is no longer dirty.
2476 */
2477 if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
2478 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2479 }
2480
2481 /*
2482 * Restore the page table entry since we might have interrupted
2483 * pmap_zero_page or pmap_copy_page which was already using this pte.
2484 */
2485 *ptep = oldpte;
2486 PTE_SYNC(ptep);
2487 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2488 #if 0
2489 mask = pmap_check_sets(pg->phys_addr);
2490 KASSERT(mask == 0);
2491 #endif
2492 }
2493 #endif /* PMAP_CACHE_VIPT */
2494
2495 /*
2496 * Routine: pmap_page_remove
2497 * Function:
2498 * Removes this physical page from
2499 * all physical maps in which it resides.
2500 * Reflects back modify bits to the pager.
2501 */
2502 static void
2503 pmap_page_remove(struct vm_page *pg)
2504 {
2505 struct l2_bucket *l2b;
2506 struct pv_entry *pv, *npv, **pvp;
2507 pmap_t pm, curpm;
2508 pt_entry_t *ptep, pte;
2509 bool flush;
2510 u_int flags;
2511
2512 NPDEBUG(PDB_FOLLOW,
2513 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2514 VM_PAGE_TO_PHYS(pg)));
2515
2516 PMAP_HEAD_TO_MAP_LOCK();
2517 simple_lock(&pg->mdpage.pvh_slock);
2518
2519 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2520 if (pv == NULL) {
2521 #ifdef PMAP_CACHE_VIPT
2522 /*
2523 * We *know* the page contents are about to be replaced.
2524 * Discard the exec contents
2525 */
2526 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2527 PMAPCOUNT(exec_discarded_page_protect);
2528 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2529 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2530 #endif
2531 simple_unlock(&pg->mdpage.pvh_slock);
2532 PMAP_HEAD_TO_MAP_UNLOCK();
2533 return;
2534 }
2535 #ifdef PMAP_CACHE_VIPT
2536 KASSERT(pmap_is_page_colored_p(pg));
2537 #endif
2538
2539 /*
2540 * Clear alias counts
2541 */
2542 #ifdef PMAP_CACHE_VIVT
2543 pg->mdpage.k_mappings = 0;
2544 #endif
2545 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
2546
2547 flush = false;
2548 flags = 0;
2549 curpm = curproc->p_vmspace->vm_map.pmap;
2550
2551 #ifdef PMAP_CACHE_VIVT
2552 pmap_clean_page(pv, false);
2553 #endif
2554
2555 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
2556 while (pv) {
2557 pm = pv->pv_pmap;
2558 npv = SLIST_NEXT(pv, pv_link);
2559 if (flush == false && (pm == curpm || pm == pmap_kernel()))
2560 flush = true;
2561
2562 if (pm == pmap_kernel()) {
2563 #ifdef PMAP_CACHE_VIPT
2564 /*
2565 * If this was unmanaged mapping, it must be preserved.
2566 * Move it back on the list and advance the end-of-list
2567 * pointer.
2568 */
2569 if (pv->pv_flags & PVF_KENTRY) {
2570 *pvp = pv;
2571 pvp = &SLIST_NEXT(pv, pv_link);
2572 pv = npv;
2573 continue;
2574 }
2575 if (pv->pv_flags & PVF_WRITE)
2576 pg->mdpage.krw_mappings--;
2577 else
2578 pg->mdpage.kro_mappings--;
2579 #endif
2580 PMAPCOUNT(kernel_unmappings);
2581 }
2582 PMAPCOUNT(unmappings);
2583
2584 pmap_acquire_pmap_lock(pm);
2585
2586 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2587 KDASSERT(l2b != NULL);
2588
2589 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2590 pte = *ptep;
2591
2592 /*
2593 * Update statistics
2594 */
2595 --pm->pm_stats.resident_count;
2596
2597 /* Wired bit */
2598 if (pv->pv_flags & PVF_WIRED)
2599 --pm->pm_stats.wired_count;
2600
2601 flags |= pv->pv_flags;
2602
2603 /*
2604 * Invalidate the PTEs.
2605 */
2606 *ptep = 0;
2607 PTE_SYNC_CURRENT(pm, ptep);
2608 pmap_free_l2_bucket(pm, l2b, 1);
2609
2610 pool_put(&pmap_pv_pool, pv);
2611 pv = npv;
2612 /*
2613 * if we reach the end of the list and there are still
2614 * mappings, they might be able to be cached now.
2615 */
2616 if (pv == NULL) {
2617 *pvp = NULL;
2618 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
2619 pmap_vac_me_harder(pg, pm, 0);
2620 }
2621 pmap_release_pmap_lock(pm);
2622 }
2623 #ifdef PMAP_CACHE_VIPT
2624 /*
2625 * Its EXEC cache is now gone.
2626 */
2627 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2628 PMAPCOUNT(exec_discarded_page_protect);
2629 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2630 KASSERT(pg->mdpage.urw_mappings == 0);
2631 KASSERT(pg->mdpage.uro_mappings == 0);
2632 if (pg->mdpage.krw_mappings == 0)
2633 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2634 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2635 #endif
2636 simple_unlock(&pg->mdpage.pvh_slock);
2637 PMAP_HEAD_TO_MAP_UNLOCK();
2638
2639 if (flush) {
2640 /*
2641 * Note: We can't use pmap_tlb_flush{I,}D() here since that
2642 * would need a subsequent call to pmap_update() to ensure
2643 * curpm->pm_cstate.cs_all is reset. Our callers are not
2644 * required to do that (see pmap(9)), so we can't modify
2645 * the current pmap's state.
2646 */
2647 if (PV_BEEN_EXECD(flags))
2648 cpu_tlb_flushID();
2649 else
2650 cpu_tlb_flushD();
2651 }
2652 cpu_cpwait();
2653 }
2654
2655 /*
2656 * pmap_t pmap_create(void)
2657 *
2658 * Create a new pmap structure from scratch.
2659 */
2660 pmap_t
2661 pmap_create(void)
2662 {
2663 pmap_t pm;
2664
2665 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2666
2667 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2668 pm->pm_stats.wired_count = 0;
2669 pm->pm_stats.resident_count = 1;
2670 pm->pm_cstate.cs_all = 0;
2671 pmap_alloc_l1(pm);
2672
2673 /*
2674 * Note: The pool cache ensures that the pm_l2[] array is already
2675 * initialised to zero.
2676 */
2677
2678 pmap_pinit(pm);
2679
2680 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2681
2682 return (pm);
2683 }
2684
2685 /*
2686 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2687 * int flags)
2688 *
2689 * Insert the given physical page (p) at
2690 * the specified virtual address (v) in the
2691 * target physical map with the protection requested.
2692 *
2693 * NB: This is the only routine which MAY NOT lazy-evaluate
2694 * or lose information. That is, this routine must actually
2695 * insert this page into the given map NOW.
2696 */
2697 int
2698 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
2699 {
2700 struct l2_bucket *l2b;
2701 struct vm_page *pg, *opg;
2702 struct pv_entry *pve;
2703 pt_entry_t *ptep, npte, opte;
2704 u_int nflags;
2705 u_int oflags;
2706
2707 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2708
2709 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2710 KDASSERT(((va | pa) & PGOFSET) == 0);
2711
2712 /*
2713 * Get a pointer to the page. Later on in this function, we
2714 * test for a managed page by checking pg != NULL.
2715 */
2716 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2717
2718 nflags = 0;
2719 if (prot & VM_PROT_WRITE)
2720 nflags |= PVF_WRITE;
2721 if (prot & VM_PROT_EXECUTE)
2722 nflags |= PVF_EXEC;
2723 if (flags & PMAP_WIRED)
2724 nflags |= PVF_WIRED;
2725
2726 PMAP_MAP_TO_HEAD_LOCK();
2727 pmap_acquire_pmap_lock(pm);
2728
2729 /*
2730 * Fetch the L2 bucket which maps this page, allocating one if
2731 * necessary for user pmaps.
2732 */
2733 if (pm == pmap_kernel())
2734 l2b = pmap_get_l2_bucket(pm, va);
2735 else
2736 l2b = pmap_alloc_l2_bucket(pm, va);
2737 if (l2b == NULL) {
2738 if (flags & PMAP_CANFAIL) {
2739 pmap_release_pmap_lock(pm);
2740 PMAP_MAP_TO_HEAD_UNLOCK();
2741 return (ENOMEM);
2742 }
2743 panic("pmap_enter: failed to allocate L2 bucket");
2744 }
2745 ptep = &l2b->l2b_kva[l2pte_index(va)];
2746 opte = *ptep;
2747 npte = pa;
2748 oflags = 0;
2749
2750 if (opte) {
2751 /*
2752 * There is already a mapping at this address.
2753 * If the physical address is different, lookup the
2754 * vm_page.
2755 */
2756 if (l2pte_pa(opte) != pa)
2757 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2758 else
2759 opg = pg;
2760 } else
2761 opg = NULL;
2762
2763 if (pg) {
2764 /*
2765 * This is to be a managed mapping.
2766 */
2767 if ((flags & VM_PROT_ALL) ||
2768 (pg->mdpage.pvh_attrs & PVF_REF)) {
2769 /*
2770 * - The access type indicates that we don't need
2771 * to do referenced emulation.
2772 * OR
2773 * - The physical page has already been referenced
2774 * so no need to re-do referenced emulation here.
2775 */
2776 npte |= L2_S_PROTO;
2777
2778 nflags |= PVF_REF;
2779
2780 if ((prot & VM_PROT_WRITE) != 0 &&
2781 ((flags & VM_PROT_WRITE) != 0 ||
2782 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2783 /*
2784 * This is a writable mapping, and the
2785 * page's mod state indicates it has
2786 * already been modified. Make it
2787 * writable from the outset.
2788 */
2789 npte |= L2_S_PROT_W;
2790 nflags |= PVF_MOD;
2791 }
2792 } else {
2793 /*
2794 * Need to do page referenced emulation.
2795 */
2796 npte |= L2_TYPE_INV;
2797 }
2798
2799 npte |= pte_l2_s_cache_mode;
2800
2801 if (pg == opg) {
2802 /*
2803 * We're changing the attrs of an existing mapping.
2804 */
2805 simple_lock(&pg->mdpage.pvh_slock);
2806 oflags = pmap_modify_pv(pg, pm, va,
2807 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2808 PVF_MOD | PVF_REF, nflags);
2809 simple_unlock(&pg->mdpage.pvh_slock);
2810
2811 #ifdef PMAP_CACHE_VIVT
2812 /*
2813 * We may need to flush the cache if we're
2814 * doing rw-ro...
2815 */
2816 if (pm->pm_cstate.cs_cache_d &&
2817 (oflags & PVF_NC) == 0 &&
2818 (opte & L2_S_PROT_W) != 0 &&
2819 (prot & VM_PROT_WRITE) == 0)
2820 cpu_dcache_wb_range(va, PAGE_SIZE);
2821 #endif
2822 } else {
2823 /*
2824 * New mapping, or changing the backing page
2825 * of an existing mapping.
2826 */
2827 if (opg) {
2828 /*
2829 * Replacing an existing mapping with a new one.
2830 * It is part of our managed memory so we
2831 * must remove it from the PV list
2832 */
2833 simple_lock(&opg->mdpage.pvh_slock);
2834 pve = pmap_remove_pv(opg, pm, va, 0);
2835 pmap_vac_me_harder(opg, pm, 0);
2836 simple_unlock(&opg->mdpage.pvh_slock);
2837 oflags = pve->pv_flags;
2838
2839 #ifdef PMAP_CACHE_VIVT
2840 /*
2841 * If the old mapping was valid (ref/mod
2842 * emulation creates 'invalid' mappings
2843 * initially) then make sure to frob
2844 * the cache.
2845 */
2846 if ((oflags & PVF_NC) == 0 &&
2847 l2pte_valid(opte)) {
2848 if (PV_BEEN_EXECD(oflags)) {
2849 pmap_idcache_wbinv_range(pm, va,
2850 PAGE_SIZE);
2851 } else
2852 if (PV_BEEN_REFD(oflags)) {
2853 pmap_dcache_wb_range(pm, va,
2854 PAGE_SIZE, true,
2855 (oflags & PVF_WRITE) == 0);
2856 }
2857 }
2858 #endif
2859 } else
2860 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2861 if ((flags & PMAP_CANFAIL) == 0)
2862 panic("pmap_enter: no pv entries");
2863
2864 if (pm != pmap_kernel())
2865 pmap_free_l2_bucket(pm, l2b, 0);
2866 pmap_release_pmap_lock(pm);
2867 PMAP_MAP_TO_HEAD_UNLOCK();
2868 NPDEBUG(PDB_ENTER,
2869 printf("pmap_enter: ENOMEM\n"));
2870 return (ENOMEM);
2871 }
2872
2873 pmap_enter_pv(pg, pve, pm, va, nflags);
2874 }
2875 } else {
2876 /*
2877 * We're mapping an unmanaged page.
2878 * These are always readable, and possibly writable, from
2879 * the get go as we don't need to track ref/mod status.
2880 */
2881 npte |= L2_S_PROTO;
2882 if (prot & VM_PROT_WRITE)
2883 npte |= L2_S_PROT_W;
2884
2885 /*
2886 * Make sure the vector table is mapped cacheable
2887 */
2888 if (pm != pmap_kernel() && va == vector_page)
2889 npte |= pte_l2_s_cache_mode;
2890
2891 if (opg) {
2892 /*
2893 * Looks like there's an existing 'managed' mapping
2894 * at this address.
2895 */
2896 simple_lock(&opg->mdpage.pvh_slock);
2897 pve = pmap_remove_pv(opg, pm, va, 0);
2898 pmap_vac_me_harder(opg, pm, 0);
2899 simple_unlock(&opg->mdpage.pvh_slock);
2900 oflags = pve->pv_flags;
2901
2902 #ifdef PMAP_CACHE_VIVT
2903 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2904 if (PV_BEEN_EXECD(oflags))
2905 pmap_idcache_wbinv_range(pm, va,
2906 PAGE_SIZE);
2907 else
2908 if (PV_BEEN_REFD(oflags))
2909 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2910 true, (oflags & PVF_WRITE) == 0);
2911 }
2912 #endif
2913 pool_put(&pmap_pv_pool, pve);
2914 }
2915 }
2916
2917 /*
2918 * Make sure userland mappings get the right permissions
2919 */
2920 if (pm != pmap_kernel() && va != vector_page)
2921 npte |= L2_S_PROT_U;
2922
2923 /*
2924 * Keep the stats up to date
2925 */
2926 if (opte == 0) {
2927 l2b->l2b_occupancy++;
2928 pm->pm_stats.resident_count++;
2929 }
2930
2931 NPDEBUG(PDB_ENTER,
2932 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2933
2934 /*
2935 * If this is just a wiring change, the two PTEs will be
2936 * identical, so there's no need to update the page table.
2937 */
2938 if (npte != opte) {
2939 bool is_cached = pmap_is_cached(pm);
2940
2941 *ptep = npte;
2942 if (is_cached) {
2943 /*
2944 * We only need to frob the cache/tlb if this pmap
2945 * is current
2946 */
2947 PTE_SYNC(ptep);
2948 if (va != vector_page && l2pte_valid(npte)) {
2949 /*
2950 * This mapping is likely to be accessed as
2951 * soon as we return to userland. Fix up the
2952 * L1 entry to avoid taking another
2953 * page/domain fault.
2954 */
2955 pd_entry_t *pl1pd, l1pd;
2956
2957 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2958 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2959 L1_C_PROTO;
2960 if (*pl1pd != l1pd) {
2961 *pl1pd = l1pd;
2962 PTE_SYNC(pl1pd);
2963 }
2964 }
2965 }
2966
2967 if (PV_BEEN_EXECD(oflags))
2968 pmap_tlb_flushID_SE(pm, va);
2969 else
2970 if (PV_BEEN_REFD(oflags))
2971 pmap_tlb_flushD_SE(pm, va);
2972
2973 NPDEBUG(PDB_ENTER,
2974 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2975 is_cached, pm->pm_cstate.cs_all));
2976
2977 if (pg != NULL) {
2978 simple_lock(&pg->mdpage.pvh_slock);
2979 pmap_vac_me_harder(pg, pm, va);
2980 simple_unlock(&pg->mdpage.pvh_slock);
2981 }
2982 }
2983 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
2984 if (pg) {
2985 simple_lock(&pg->mdpage.pvh_slock);
2986 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2987 KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
2988 simple_unlock(&pg->mdpage.pvh_slock);
2989 }
2990 #endif
2991
2992 pmap_release_pmap_lock(pm);
2993 PMAP_MAP_TO_HEAD_UNLOCK();
2994
2995 return (0);
2996 }
2997
2998 /*
2999 * pmap_remove()
3000 *
3001 * pmap_remove is responsible for nuking a number of mappings for a range
3002 * of virtual address space in the current pmap. To do this efficiently
3003 * is interesting, because in a number of cases a wide virtual address
3004 * range may be supplied that contains few actual mappings. So, the
3005 * optimisations are:
3006 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3007 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3008 * maybe do just a partial cache clean. This path of execution is
3009 * complicated by the fact that the cache must be flushed _before_
3010 * the PTE is nuked, being a VAC :-)
3011 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3012 * all invalidations until pmap_update(), since pmap_remove_all() has
3013 * already flushed the cache.
3014 * 4. Maybe later fast-case a single page, but I don't think this is
3015 * going to make _that_ much difference overall.
3016 */
3017
3018 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3019
3020 void
3021 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
3022 {
3023 struct l2_bucket *l2b;
3024 vaddr_t next_bucket;
3025 pt_entry_t *ptep;
3026 u_int cleanlist_idx, total, cnt;
3027 struct {
3028 vaddr_t va;
3029 pt_entry_t *ptep;
3030 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3031 u_int mappings, is_exec, is_refd;
3032
3033 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3034 "eva=%08lx\n", pm, sva, eva));
3035
3036 /*
3037 * we lock in the pmap => pv_head direction
3038 */
3039 PMAP_MAP_TO_HEAD_LOCK();
3040 pmap_acquire_pmap_lock(pm);
3041
3042 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3043 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3044 if (pm->pm_cstate.cs_tlb == 0)
3045 pm->pm_remove_all = true;
3046 } else
3047 cleanlist_idx = 0;
3048
3049 total = 0;
3050
3051 while (sva < eva) {
3052 /*
3053 * Do one L2 bucket's worth at a time.
3054 */
3055 next_bucket = L2_NEXT_BUCKET(sva);
3056 if (next_bucket > eva)
3057 next_bucket = eva;
3058
3059 l2b = pmap_get_l2_bucket(pm, sva);
3060 if (l2b == NULL) {
3061 sva = next_bucket;
3062 continue;
3063 }
3064
3065 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3066
3067 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3068 struct vm_page *pg;
3069 pt_entry_t pte;
3070 paddr_t pa;
3071
3072 pte = *ptep;
3073
3074 if (pte == 0) {
3075 /* Nothing here, move along */
3076 continue;
3077 }
3078
3079 pa = l2pte_pa(pte);
3080 is_exec = 0;
3081 is_refd = 1;
3082
3083 /*
3084 * Update flags. In a number of circumstances,
3085 * we could cluster a lot of these and do a
3086 * number of sequential pages in one go.
3087 */
3088 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3089 struct pv_entry *pve;
3090 simple_lock(&pg->mdpage.pvh_slock);
3091 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
3092 pmap_vac_me_harder(pg, pm, 0);
3093 simple_unlock(&pg->mdpage.pvh_slock);
3094 if (pve != NULL) {
3095 if (pm->pm_remove_all == false) {
3096 is_exec =
3097 PV_BEEN_EXECD(pve->pv_flags);
3098 is_refd =
3099 PV_BEEN_REFD(pve->pv_flags);
3100 }
3101 pool_put(&pmap_pv_pool, pve);
3102 } else
3103 if (skip_wired) {
3104 /* The mapping is wired. Skip it */
3105 continue;
3106 }
3107 } else
3108 if (skip_wired) {
3109 /* Unmanaged pages are always wired. */
3110 continue;
3111 }
3112
3113 mappings++;
3114
3115 if (!l2pte_valid(pte)) {
3116 /*
3117 * Ref/Mod emulation is still active for this
3118 * mapping, therefore it is has not yet been
3119 * accessed. No need to frob the cache/tlb.
3120 */
3121 *ptep = 0;
3122 PTE_SYNC_CURRENT(pm, ptep);
3123 continue;
3124 }
3125
3126 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3127 /* Add to the clean list. */
3128 cleanlist[cleanlist_idx].ptep = ptep;
3129 cleanlist[cleanlist_idx].va =
3130 sva | (is_exec & 1);
3131 cleanlist_idx++;
3132 } else
3133 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3134 /* Nuke everything if needed. */
3135 #ifdef PMAP_CACHE_VIVT
3136 pmap_idcache_wbinv_all(pm);
3137 #endif
3138 pmap_tlb_flushID(pm);
3139
3140 /*
3141 * Roll back the previous PTE list,
3142 * and zero out the current PTE.
3143 */
3144 for (cnt = 0;
3145 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3146 *cleanlist[cnt].ptep = 0;
3147 PTE_SYNC(cleanlist[cnt].ptep);
3148 }
3149 *ptep = 0;
3150 PTE_SYNC(ptep);
3151 cleanlist_idx++;
3152 pm->pm_remove_all = true;
3153 } else {
3154 *ptep = 0;
3155 PTE_SYNC(ptep);
3156 if (pm->pm_remove_all == false) {
3157 if (is_exec)
3158 pmap_tlb_flushID_SE(pm, sva);
3159 else
3160 if (is_refd)
3161 pmap_tlb_flushD_SE(pm, sva);
3162 }
3163 }
3164 }
3165
3166 /*
3167 * Deal with any left overs
3168 */
3169 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3170 total += cleanlist_idx;
3171 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3172 if (pm->pm_cstate.cs_all != 0) {
3173 vaddr_t clva = cleanlist[cnt].va & ~1;
3174 if (cleanlist[cnt].va & 1) {
3175 #ifdef PMAP_CACHE_VIVT
3176 pmap_idcache_wbinv_range(pm,
3177 clva, PAGE_SIZE);
3178 #endif
3179 pmap_tlb_flushID_SE(pm, clva);
3180 } else {
3181 #ifdef PMAP_CACHE_VIVT
3182 pmap_dcache_wb_range(pm,
3183 clva, PAGE_SIZE, true,
3184 false);
3185 #endif
3186 pmap_tlb_flushD_SE(pm, clva);
3187 }
3188 }
3189 *cleanlist[cnt].ptep = 0;
3190 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3191 }
3192
3193 /*
3194 * If it looks like we're removing a whole bunch
3195 * of mappings, it's faster to just write-back
3196 * the whole cache now and defer TLB flushes until
3197 * pmap_update() is called.
3198 */
3199 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3200 cleanlist_idx = 0;
3201 else {
3202 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3203 #ifdef PMAP_CACHE_VIVT
3204 pmap_idcache_wbinv_all(pm);
3205 #endif
3206 pm->pm_remove_all = true;
3207 }
3208 }
3209
3210 pmap_free_l2_bucket(pm, l2b, mappings);
3211 pm->pm_stats.resident_count -= mappings;
3212 }
3213
3214 pmap_release_pmap_lock(pm);
3215 PMAP_MAP_TO_HEAD_UNLOCK();
3216 }
3217
3218 #ifdef PMAP_CACHE_VIPT
3219 static struct pv_entry *
3220 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3221 {
3222 struct pv_entry *pv;
3223
3224 simple_lock(&pg->mdpage.pvh_slock);
3225 KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
3226 KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3227
3228 pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
3229 KASSERT(pv);
3230 KASSERT(pv->pv_flags & PVF_KENTRY);
3231
3232 /*
3233 * If we are removing a writeable mapping to a cached exec page,
3234 * if it's the last mapping then clear it execness other sync
3235 * the page to the icache.
3236 */
3237 if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3238 && (pv->pv_flags & PVF_WRITE) != 0) {
3239 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
3240 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
3241 PMAPCOUNT(exec_discarded_kremove);
3242 } else {
3243 pmap_syncicache_page(pg);
3244 PMAPCOUNT(exec_synced_kremove);
3245 }
3246 }
3247 pmap_vac_me_harder(pg, pmap_kernel(), 0);
3248 simple_unlock(&pg->mdpage.pvh_slock);
3249
3250 return pv;
3251 }
3252 #endif /* PMAP_CACHE_VIPT */
3253
3254 /*
3255 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3256 *
3257 * We assume there is already sufficient KVM space available
3258 * to do this, as we can't allocate L2 descriptor tables/metadata
3259 * from here.
3260 */
3261 void
3262 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
3263 {
3264 struct l2_bucket *l2b;
3265 pt_entry_t *ptep, opte;
3266 #ifdef PMAP_CACHE_VIVT
3267 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3268 #endif
3269 #ifdef PMAP_CACHE_VIPT
3270 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3271 struct vm_page *opg;
3272 struct pv_entry *pv = NULL;
3273 #endif
3274
3275 NPDEBUG(PDB_KENTER,
3276 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3277 va, pa, prot));
3278
3279 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3280 KDASSERT(l2b != NULL);
3281
3282 ptep = &l2b->l2b_kva[l2pte_index(va)];
3283 opte = *ptep;
3284
3285 if (opte == 0) {
3286 PMAPCOUNT(kenter_mappings);
3287 l2b->l2b_occupancy++;
3288 } else {
3289 PMAPCOUNT(kenter_remappings);
3290 #ifdef PMAP_CACHE_VIPT
3291 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3292 if (opg) {
3293 KASSERT(opg != pg);
3294 KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3295 KASSERT((prot & PMAP_KMPAGE) == 0);
3296 simple_lock(&opg->mdpage.pvh_slock);
3297 pv = pmap_kremove_pg(opg, va);
3298 simple_unlock(&opg->mdpage.pvh_slock);
3299 }
3300 #endif
3301 if (l2pte_valid(opte)) {
3302 #ifdef PMAP_CACHE_VIVT
3303 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3304 #endif
3305 cpu_tlb_flushD_SE(va);
3306 cpu_cpwait();
3307 }
3308 }
3309
3310 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3311 pte_l2_s_cache_mode;
3312 PTE_SYNC(ptep);
3313
3314 if (pg) {
3315 if (prot & PMAP_KMPAGE) {
3316 simple_lock(&pg->mdpage.pvh_slock);
3317 KASSERT(pg->mdpage.urw_mappings == 0);
3318 KASSERT(pg->mdpage.uro_mappings == 0);
3319 KASSERT(pg->mdpage.krw_mappings == 0);
3320 KASSERT(pg->mdpage.kro_mappings == 0);
3321 #ifdef PMAP_CACHE_VIPT
3322 KASSERT(pv == NULL);
3323 KASSERT((va & PVF_COLORED) == 0);
3324 KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
3325 /* if there is a color conflict, evict from cache. */
3326 if (pmap_is_page_colored_p(pg)
3327 && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
3328 PMAPCOUNT(vac_color_change);
3329 pmap_flush_page(pg, true);
3330 }
3331 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
3332 pg->mdpage.pvh_attrs |= PVF_KMPAGE
3333 | PVF_COLORED | PVF_DIRTY
3334 | (va & arm_cache_prefer_mask);
3335 #endif
3336 #ifdef PMAP_CACHE_VIVT
3337 pg->mdpage.pvh_attrs |= PVF_KMPAGE;
3338 #endif
3339 pmap_kmpages++;
3340 simple_unlock(&pg->mdpage.pvh_slock);
3341 #ifdef PMAP_CACHE_VIPT
3342 } else {
3343 if (pv == NULL) {
3344 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3345 KASSERT(pv != NULL);
3346 }
3347 pmap_enter_pv(pg, pv, pmap_kernel(), va,
3348 PVF_WIRED | PVF_KENTRY
3349 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3350 if ((prot & VM_PROT_WRITE)
3351 && !(pg->mdpage.pvh_attrs & PVF_NC))
3352 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3353 KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3354 simple_lock(&pg->mdpage.pvh_slock);
3355 pmap_vac_me_harder(pg, pmap_kernel(), va);
3356 simple_unlock(&pg->mdpage.pvh_slock);
3357 #endif
3358 }
3359 #ifdef PMAP_CACHE_VIPT
3360 } else {
3361 if (pv != NULL)
3362 pool_put(&pmap_pv_pool, pv);
3363 #endif
3364 }
3365 }
3366
3367 void
3368 pmap_kremove(vaddr_t va, vsize_t len)
3369 {
3370 struct l2_bucket *l2b;
3371 pt_entry_t *ptep, *sptep, opte;
3372 vaddr_t next_bucket, eva;
3373 u_int mappings;
3374 struct vm_page *opg;
3375
3376 PMAPCOUNT(kenter_unmappings);
3377
3378 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3379 va, len));
3380
3381 eva = va + len;
3382
3383 while (va < eva) {
3384 next_bucket = L2_NEXT_BUCKET(va);
3385 if (next_bucket > eva)
3386 next_bucket = eva;
3387
3388 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3389 KDASSERT(l2b != NULL);
3390
3391 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3392 mappings = 0;
3393
3394 while (va < next_bucket) {
3395 opte = *ptep;
3396 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3397 if (opg) {
3398 if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
3399 simple_lock(&opg->mdpage.pvh_slock);
3400 KASSERT(opg->mdpage.urw_mappings == 0);
3401 KASSERT(opg->mdpage.uro_mappings == 0);
3402 KASSERT(opg->mdpage.krw_mappings == 0);
3403 KASSERT(opg->mdpage.kro_mappings == 0);
3404 opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
3405 #ifdef PMAP_CACHE_VIPT
3406 opg->mdpage.pvh_attrs &= ~PVF_WRITE;
3407 #endif
3408 pmap_kmpages--;
3409 simple_unlock(&opg->mdpage.pvh_slock);
3410 #ifdef PMAP_CACHE_VIPT
3411 } else {
3412 pool_put(&pmap_pv_pool,
3413 pmap_kremove_pg(opg, va));
3414 #endif
3415 }
3416 }
3417 if (l2pte_valid(opte)) {
3418 #ifdef PMAP_CACHE_VIVT
3419 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3420 #endif
3421 cpu_tlb_flushD_SE(va);
3422 }
3423 if (opte) {
3424 *ptep = 0;
3425 mappings++;
3426 }
3427 va += PAGE_SIZE;
3428 ptep++;
3429 }
3430 KDASSERT(mappings <= l2b->l2b_occupancy);
3431 l2b->l2b_occupancy -= mappings;
3432 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3433 }
3434 cpu_cpwait();
3435 }
3436
3437 bool
3438 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3439 {
3440 struct l2_dtable *l2;
3441 pd_entry_t *pl1pd, l1pd;
3442 pt_entry_t *ptep, pte;
3443 paddr_t pa;
3444 u_int l1idx;
3445
3446 pmap_acquire_pmap_lock(pm);
3447
3448 l1idx = L1_IDX(va);
3449 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3450 l1pd = *pl1pd;
3451
3452 if (l1pte_section_p(l1pd)) {
3453 /*
3454 * These should only happen for pmap_kernel()
3455 */
3456 KDASSERT(pm == pmap_kernel());
3457 pmap_release_pmap_lock(pm);
3458 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3459 } else {
3460 /*
3461 * Note that we can't rely on the validity of the L1
3462 * descriptor as an indication that a mapping exists.
3463 * We have to look it up in the L2 dtable.
3464 */
3465 l2 = pm->pm_l2[L2_IDX(l1idx)];
3466
3467 if (l2 == NULL ||
3468 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3469 pmap_release_pmap_lock(pm);
3470 return false;
3471 }
3472
3473 ptep = &ptep[l2pte_index(va)];
3474 pte = *ptep;
3475 pmap_release_pmap_lock(pm);
3476
3477 if (pte == 0)
3478 return false;
3479
3480 switch (pte & L2_TYPE_MASK) {
3481 case L2_TYPE_L:
3482 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3483 break;
3484
3485 default:
3486 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3487 break;
3488 }
3489 }
3490
3491 if (pap != NULL)
3492 *pap = pa;
3493
3494 return true;
3495 }
3496
3497 void
3498 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3499 {
3500 struct l2_bucket *l2b;
3501 pt_entry_t *ptep, pte;
3502 vaddr_t next_bucket;
3503 u_int flags;
3504 u_int clr_mask;
3505 int flush;
3506
3507 NPDEBUG(PDB_PROTECT,
3508 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3509 pm, sva, eva, prot));
3510
3511 if ((prot & VM_PROT_READ) == 0) {
3512 pmap_remove(pm, sva, eva);
3513 return;
3514 }
3515
3516 if (prot & VM_PROT_WRITE) {
3517 /*
3518 * If this is a read->write transition, just ignore it and let
3519 * uvm_fault() take care of it later.
3520 */
3521 return;
3522 }
3523
3524 PMAP_MAP_TO_HEAD_LOCK();
3525 pmap_acquire_pmap_lock(pm);
3526
3527 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3528 flags = 0;
3529 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3530
3531 while (sva < eva) {
3532 next_bucket = L2_NEXT_BUCKET(sva);
3533 if (next_bucket > eva)
3534 next_bucket = eva;
3535
3536 l2b = pmap_get_l2_bucket(pm, sva);
3537 if (l2b == NULL) {
3538 sva = next_bucket;
3539 continue;
3540 }
3541
3542 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3543
3544 while (sva < next_bucket) {
3545 pte = *ptep;
3546 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3547 struct vm_page *pg;
3548 u_int f;
3549
3550 #ifdef PMAP_CACHE_VIVT
3551 /*
3552 * OK, at this point, we know we're doing
3553 * write-protect operation. If the pmap is
3554 * active, write-back the page.
3555 */
3556 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3557 false, false);
3558 #endif
3559
3560 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3561 pte &= ~L2_S_PROT_W;
3562 *ptep = pte;
3563 PTE_SYNC(ptep);
3564
3565 if (pg != NULL) {
3566 simple_lock(&pg->mdpage.pvh_slock);
3567 f = pmap_modify_pv(pg, pm, sva,
3568 clr_mask, 0);
3569 pmap_vac_me_harder(pg, pm, sva);
3570 simple_unlock(&pg->mdpage.pvh_slock);
3571 } else
3572 f = PVF_REF | PVF_EXEC;
3573
3574 if (flush >= 0) {
3575 flush++;
3576 flags |= f;
3577 } else
3578 if (PV_BEEN_EXECD(f))
3579 pmap_tlb_flushID_SE(pm, sva);
3580 else
3581 if (PV_BEEN_REFD(f))
3582 pmap_tlb_flushD_SE(pm, sva);
3583 }
3584
3585 sva += PAGE_SIZE;
3586 ptep++;
3587 }
3588 }
3589
3590 pmap_release_pmap_lock(pm);
3591 PMAP_MAP_TO_HEAD_UNLOCK();
3592
3593 if (flush) {
3594 if (PV_BEEN_EXECD(flags))
3595 pmap_tlb_flushID(pm);
3596 else
3597 if (PV_BEEN_REFD(flags))
3598 pmap_tlb_flushD(pm);
3599 }
3600 }
3601
3602 void
3603 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3604 {
3605 struct l2_bucket *l2b;
3606 pt_entry_t *ptep;
3607 vaddr_t next_bucket;
3608 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3609
3610 NPDEBUG(PDB_EXEC,
3611 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3612 pm, sva, eva));
3613
3614 PMAP_MAP_TO_HEAD_LOCK();
3615 pmap_acquire_pmap_lock(pm);
3616
3617 while (sva < eva) {
3618 next_bucket = L2_NEXT_BUCKET(sva);
3619 if (next_bucket > eva)
3620 next_bucket = eva;
3621
3622 l2b = pmap_get_l2_bucket(pm, sva);
3623 if (l2b == NULL) {
3624 sva = next_bucket;
3625 continue;
3626 }
3627
3628 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3629 sva < next_bucket;
3630 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3631 if (l2pte_valid(*ptep)) {
3632 cpu_icache_sync_range(sva,
3633 min(page_size, eva - sva));
3634 }
3635 }
3636 }
3637
3638 pmap_release_pmap_lock(pm);
3639 PMAP_MAP_TO_HEAD_UNLOCK();
3640 }
3641
3642 void
3643 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3644 {
3645
3646 NPDEBUG(PDB_PROTECT,
3647 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3648 pg, VM_PAGE_TO_PHYS(pg), prot));
3649
3650 switch(prot) {
3651 return;
3652 case VM_PROT_READ|VM_PROT_WRITE:
3653 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3654 pmap_clearbit(pg, PVF_EXEC);
3655 break;
3656 #endif
3657 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3658 break;
3659
3660 case VM_PROT_READ:
3661 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3662 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3663 break;
3664 #endif
3665 case VM_PROT_READ|VM_PROT_EXECUTE:
3666 pmap_clearbit(pg, PVF_WRITE);
3667 break;
3668
3669 default:
3670 pmap_page_remove(pg);
3671 break;
3672 }
3673 }
3674
3675 /*
3676 * pmap_clear_modify:
3677 *
3678 * Clear the "modified" attribute for a page.
3679 */
3680 bool
3681 pmap_clear_modify(struct vm_page *pg)
3682 {
3683 bool rv;
3684
3685 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3686 rv = true;
3687 pmap_clearbit(pg, PVF_MOD);
3688 } else
3689 rv = false;
3690
3691 return (rv);
3692 }
3693
3694 /*
3695 * pmap_clear_reference:
3696 *
3697 * Clear the "referenced" attribute for a page.
3698 */
3699 bool
3700 pmap_clear_reference(struct vm_page *pg)
3701 {
3702 bool rv;
3703
3704 if (pg->mdpage.pvh_attrs & PVF_REF) {
3705 rv = true;
3706 pmap_clearbit(pg, PVF_REF);
3707 } else
3708 rv = false;
3709
3710 return (rv);
3711 }
3712
3713 /*
3714 * pmap_is_modified:
3715 *
3716 * Test if a page has the "modified" attribute.
3717 */
3718 /* See <arm/arm32/pmap.h> */
3719
3720 /*
3721 * pmap_is_referenced:
3722 *
3723 * Test if a page has the "referenced" attribute.
3724 */
3725 /* See <arm/arm32/pmap.h> */
3726
3727 int
3728 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3729 {
3730 struct l2_dtable *l2;
3731 struct l2_bucket *l2b;
3732 pd_entry_t *pl1pd, l1pd;
3733 pt_entry_t *ptep, pte;
3734 paddr_t pa;
3735 u_int l1idx;
3736 int rv = 0;
3737
3738 PMAP_MAP_TO_HEAD_LOCK();
3739 pmap_acquire_pmap_lock(pm);
3740
3741 l1idx = L1_IDX(va);
3742
3743 /*
3744 * If there is no l2_dtable for this address, then the process
3745 * has no business accessing it.
3746 *
3747 * Note: This will catch userland processes trying to access
3748 * kernel addresses.
3749 */
3750 l2 = pm->pm_l2[L2_IDX(l1idx)];
3751 if (l2 == NULL)
3752 goto out;
3753
3754 /*
3755 * Likewise if there is no L2 descriptor table
3756 */
3757 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3758 if (l2b->l2b_kva == NULL)
3759 goto out;
3760
3761 /*
3762 * Check the PTE itself.
3763 */
3764 ptep = &l2b->l2b_kva[l2pte_index(va)];
3765 pte = *ptep;
3766 if (pte == 0)
3767 goto out;
3768
3769 /*
3770 * Catch a userland access to the vector page mapped at 0x0
3771 */
3772 if (user && (pte & L2_S_PROT_U) == 0)
3773 goto out;
3774
3775 pa = l2pte_pa(pte);
3776
3777 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3778 /*
3779 * This looks like a good candidate for "page modified"
3780 * emulation...
3781 */
3782 struct pv_entry *pv;
3783 struct vm_page *pg;
3784
3785 /* Extract the physical address of the page */
3786 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3787 goto out;
3788
3789 /* Get the current flags for this page. */
3790 simple_lock(&pg->mdpage.pvh_slock);
3791
3792 pv = pmap_find_pv(pg, pm, va);
3793 if (pv == NULL) {
3794 simple_unlock(&pg->mdpage.pvh_slock);
3795 goto out;
3796 }
3797
3798 /*
3799 * Do the flags say this page is writable? If not then it
3800 * is a genuine write fault. If yes then the write fault is
3801 * our fault as we did not reflect the write access in the
3802 * PTE. Now we know a write has occurred we can correct this
3803 * and also set the modified bit
3804 */
3805 if ((pv->pv_flags & PVF_WRITE) == 0) {
3806 simple_unlock(&pg->mdpage.pvh_slock);
3807 goto out;
3808 }
3809
3810 NPDEBUG(PDB_FOLLOW,
3811 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3812 pm, va, VM_PAGE_TO_PHYS(pg)));
3813
3814 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3815 pv->pv_flags |= PVF_REF | PVF_MOD;
3816 #ifdef PMAP_CACHE_VIPT
3817 /*
3818 * If there are cacheable mappings for this page, mark it dirty.
3819 */
3820 if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
3821 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3822 #endif
3823 simple_unlock(&pg->mdpage.pvh_slock);
3824
3825 /*
3826 * Re-enable write permissions for the page. No need to call
3827 * pmap_vac_me_harder(), since this is just a
3828 * modified-emulation fault, and the PVF_WRITE bit isn't
3829 * changing. We've already set the cacheable bits based on
3830 * the assumption that we can write to this page.
3831 */
3832 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3833 PTE_SYNC(ptep);
3834 rv = 1;
3835 } else
3836 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3837 /*
3838 * This looks like a good candidate for "page referenced"
3839 * emulation.
3840 */
3841 struct pv_entry *pv;
3842 struct vm_page *pg;
3843
3844 /* Extract the physical address of the page */
3845 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3846 goto out;
3847
3848 /* Get the current flags for this page. */
3849 simple_lock(&pg->mdpage.pvh_slock);
3850
3851 pv = pmap_find_pv(pg, pm, va);
3852 if (pv == NULL) {
3853 simple_unlock(&pg->mdpage.pvh_slock);
3854 goto out;
3855 }
3856
3857 pg->mdpage.pvh_attrs |= PVF_REF;
3858 pv->pv_flags |= PVF_REF;
3859 simple_unlock(&pg->mdpage.pvh_slock);
3860
3861 NPDEBUG(PDB_FOLLOW,
3862 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3863 pm, va, VM_PAGE_TO_PHYS(pg)));
3864
3865 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3866 PTE_SYNC(ptep);
3867 rv = 1;
3868 }
3869
3870 /*
3871 * We know there is a valid mapping here, so simply
3872 * fix up the L1 if necessary.
3873 */
3874 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3875 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3876 if (*pl1pd != l1pd) {
3877 *pl1pd = l1pd;
3878 PTE_SYNC(pl1pd);
3879 rv = 1;
3880 }
3881
3882 #ifdef CPU_SA110
3883 /*
3884 * There are bugs in the rev K SA110. This is a check for one
3885 * of them.
3886 */
3887 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3888 curcpu()->ci_arm_cpurev < 3) {
3889 /* Always current pmap */
3890 if (l2pte_valid(pte)) {
3891 extern int kernel_debug;
3892 if (kernel_debug & 1) {
3893 struct proc *p = curlwp->l_proc;
3894 printf("prefetch_abort: page is already "
3895 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3896 printf("prefetch_abort: pc=%08lx proc=%p "
3897 "process=%s\n", va, p, p->p_comm);
3898 printf("prefetch_abort: far=%08x fs=%x\n",
3899 cpu_faultaddress(), cpu_faultstatus());
3900 }
3901 #ifdef DDB
3902 if (kernel_debug & 2)
3903 Debugger();
3904 #endif
3905 rv = 1;
3906 }
3907 }
3908 #endif /* CPU_SA110 */
3909
3910 #ifdef DEBUG
3911 /*
3912 * If 'rv == 0' at this point, it generally indicates that there is a
3913 * stale TLB entry for the faulting address. This happens when two or
3914 * more processes are sharing an L1. Since we don't flush the TLB on
3915 * a context switch between such processes, we can take domain faults
3916 * for mappings which exist at the same VA in both processes. EVEN IF
3917 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
3918 * example.
3919 *
3920 * This is extremely likely to happen if pmap_enter() updated the L1
3921 * entry for a recently entered mapping. In this case, the TLB is
3922 * flushed for the new mapping, but there may still be TLB entries for
3923 * other mappings belonging to other processes in the 1MB range
3924 * covered by the L1 entry.
3925 *
3926 * Since 'rv == 0', we know that the L1 already contains the correct
3927 * value, so the fault must be due to a stale TLB entry.
3928 *
3929 * Since we always need to flush the TLB anyway in the case where we
3930 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
3931 * stale TLB entries dynamically.
3932 *
3933 * However, the above condition can ONLY happen if the current L1 is
3934 * being shared. If it happens when the L1 is unshared, it indicates
3935 * that other parts of the pmap are not doing their job WRT managing
3936 * the TLB.
3937 */
3938 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
3939 extern int last_fault_code;
3940 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
3941 pm, va, ftype);
3942 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
3943 l2, l2b, ptep, pl1pd);
3944 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
3945 pte, l1pd, last_fault_code);
3946 #ifdef DDB
3947 Debugger();
3948 #endif
3949 }
3950 #endif
3951
3952 cpu_tlb_flushID_SE(va);
3953 cpu_cpwait();
3954
3955 rv = 1;
3956
3957 out:
3958 pmap_release_pmap_lock(pm);
3959 PMAP_MAP_TO_HEAD_UNLOCK();
3960
3961 return (rv);
3962 }
3963
3964 /*
3965 * pmap_collect: free resources held by a pmap
3966 *
3967 * => optional function.
3968 * => called when a process is swapped out to free memory.
3969 */
3970 void
3971 pmap_collect(pmap_t pm)
3972 {
3973
3974 #ifdef PMAP_CACHE_VIVT
3975 pmap_idcache_wbinv_all(pm);
3976 #endif
3977 pm->pm_remove_all = true;
3978 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
3979 pmap_update(pm);
3980 PMAPCOUNT(collects);
3981 }
3982
3983 /*
3984 * Routine: pmap_procwr
3985 *
3986 * Function:
3987 * Synchronize caches corresponding to [addr, addr+len) in p.
3988 *
3989 */
3990 void
3991 pmap_procwr(struct proc *p, vaddr_t va, int len)
3992 {
3993 /* We only need to do anything if it is the current process. */
3994 if (p == curproc)
3995 cpu_icache_sync_range(va, len);
3996 }
3997
3998 /*
3999 * Routine: pmap_unwire
4000 * Function: Clear the wired attribute for a map/virtual-address pair.
4001 *
4002 * In/out conditions:
4003 * The mapping must already exist in the pmap.
4004 */
4005 void
4006 pmap_unwire(pmap_t pm, vaddr_t va)
4007 {
4008 struct l2_bucket *l2b;
4009 pt_entry_t *ptep, pte;
4010 struct vm_page *pg;
4011 paddr_t pa;
4012
4013 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4014
4015 PMAP_MAP_TO_HEAD_LOCK();
4016 pmap_acquire_pmap_lock(pm);
4017
4018 l2b = pmap_get_l2_bucket(pm, va);
4019 KDASSERT(l2b != NULL);
4020
4021 ptep = &l2b->l2b_kva[l2pte_index(va)];
4022 pte = *ptep;
4023
4024 /* Extract the physical address of the page */
4025 pa = l2pte_pa(pte);
4026
4027 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4028 /* Update the wired bit in the pv entry for this page. */
4029 simple_lock(&pg->mdpage.pvh_slock);
4030 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
4031 simple_unlock(&pg->mdpage.pvh_slock);
4032 }
4033
4034 pmap_release_pmap_lock(pm);
4035 PMAP_MAP_TO_HEAD_UNLOCK();
4036 }
4037
4038 void
4039 pmap_activate(struct lwp *l)
4040 {
4041 extern int block_userspace_access;
4042 pmap_t opm, npm, rpm;
4043 uint32_t odacr, ndacr;
4044 int oldirqstate;
4045
4046 /*
4047 * If activating a non-current lwp or the current lwp is
4048 * already active, just return.
4049 */
4050 if (l != curlwp ||
4051 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4052 return;
4053
4054 npm = l->l_proc->p_vmspace->vm_map.pmap;
4055 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4056 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4057
4058 /*
4059 * If TTB and DACR are unchanged, short-circuit all the
4060 * TLB/cache management stuff.
4061 */
4062 if (pmap_previous_active_lwp != NULL) {
4063 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4064 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4065 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4066
4067 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4068 goto all_done;
4069 } else
4070 opm = NULL;
4071
4072 PMAPCOUNT(activations);
4073 block_userspace_access = 1;
4074
4075 /*
4076 * If switching to a user vmspace which is different to the
4077 * most recent one, and the most recent one is potentially
4078 * live in the cache, we must write-back and invalidate the
4079 * entire cache.
4080 */
4081 rpm = pmap_recent_user;
4082 if (npm != pmap_kernel() && rpm && npm != rpm &&
4083 rpm->pm_cstate.cs_cache) {
4084 rpm->pm_cstate.cs_cache = 0;
4085 #ifdef PMAP_CACHE_VIVT
4086 cpu_idcache_wbinv_all();
4087 #endif
4088 }
4089
4090 /* No interrupts while we frob the TTB/DACR */
4091 oldirqstate = disable_interrupts(IF32_bits);
4092
4093 /*
4094 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4095 * entry corresponding to 'vector_page' in the incoming L1 table
4096 * before switching to it otherwise subsequent interrupts/exceptions
4097 * (including domain faults!) will jump into hyperspace.
4098 */
4099 if (npm->pm_pl1vec != NULL) {
4100 cpu_tlb_flushID_SE((u_int)vector_page);
4101 cpu_cpwait();
4102 *npm->pm_pl1vec = npm->pm_l1vec;
4103 PTE_SYNC(npm->pm_pl1vec);
4104 }
4105
4106 cpu_domains(ndacr);
4107
4108 if (npm == pmap_kernel() || npm == rpm) {
4109 /*
4110 * Switching to a kernel thread, or back to the
4111 * same user vmspace as before... Simply update
4112 * the TTB (no TLB flush required)
4113 */
4114 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4115 "r"(npm->pm_l1->l1_physaddr));
4116 cpu_cpwait();
4117 } else {
4118 /*
4119 * Otherwise, update TTB and flush TLB
4120 */
4121 cpu_context_switch(npm->pm_l1->l1_physaddr);
4122 if (rpm != NULL)
4123 rpm->pm_cstate.cs_tlb = 0;
4124 }
4125
4126 restore_interrupts(oldirqstate);
4127
4128 block_userspace_access = 0;
4129
4130 all_done:
4131 /*
4132 * The new pmap is resident. Make sure it's marked
4133 * as resident in the cache/TLB.
4134 */
4135 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4136 if (npm != pmap_kernel())
4137 pmap_recent_user = npm;
4138
4139 /* The old pmap is not longer active */
4140 if (opm != NULL)
4141 opm->pm_activated = false;
4142
4143 /* But the new one is */
4144 npm->pm_activated = true;
4145 }
4146
4147 void
4148 pmap_deactivate(struct lwp *l)
4149 {
4150
4151 /*
4152 * If the process is exiting, make sure pmap_activate() does
4153 * a full MMU context-switch and cache flush, which we might
4154 * otherwise skip. See PR port-arm/38950.
4155 */
4156 if (l->l_proc->p_sflag & PS_WEXIT)
4157 pmap_previous_active_lwp = NULL;
4158
4159 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4160 }
4161
4162 void
4163 pmap_update(pmap_t pm)
4164 {
4165
4166 if (pm->pm_remove_all) {
4167 /*
4168 * Finish up the pmap_remove_all() optimisation by flushing
4169 * the TLB.
4170 */
4171 pmap_tlb_flushID(pm);
4172 pm->pm_remove_all = false;
4173 }
4174
4175 if (pmap_is_current(pm)) {
4176 /*
4177 * If we're dealing with a current userland pmap, move its L1
4178 * to the end of the LRU.
4179 */
4180 if (pm != pmap_kernel())
4181 pmap_use_l1(pm);
4182
4183 /*
4184 * We can assume we're done with frobbing the cache/tlb for
4185 * now. Make sure any future pmap ops don't skip cache/tlb
4186 * flushes.
4187 */
4188 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4189 }
4190
4191 PMAPCOUNT(updates);
4192
4193 /*
4194 * make sure TLB/cache operations have completed.
4195 */
4196 cpu_cpwait();
4197 }
4198
4199 void
4200 pmap_remove_all(pmap_t pm)
4201 {
4202
4203 /*
4204 * The vmspace described by this pmap is about to be torn down.
4205 * Until pmap_update() is called, UVM will only make calls
4206 * to pmap_remove(). We can make life much simpler by flushing
4207 * the cache now, and deferring TLB invalidation to pmap_update().
4208 */
4209 #ifdef PMAP_CACHE_VIVT
4210 pmap_idcache_wbinv_all(pm);
4211 #endif
4212 pm->pm_remove_all = true;
4213 }
4214
4215 /*
4216 * Retire the given physical map from service.
4217 * Should only be called if the map contains no valid mappings.
4218 */
4219 void
4220 pmap_destroy(pmap_t pm)
4221 {
4222 u_int count;
4223
4224 if (pm == NULL)
4225 return;
4226
4227 if (pm->pm_remove_all) {
4228 pmap_tlb_flushID(pm);
4229 pm->pm_remove_all = false;
4230 }
4231
4232 /*
4233 * Drop reference count
4234 */
4235 mutex_enter(&pm->pm_lock);
4236 count = --pm->pm_obj.uo_refs;
4237 mutex_exit(&pm->pm_lock);
4238 if (count > 0) {
4239 if (pmap_is_current(pm)) {
4240 if (pm != pmap_kernel())
4241 pmap_use_l1(pm);
4242 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4243 }
4244 return;
4245 }
4246
4247 /*
4248 * reference count is zero, free pmap resources and then free pmap.
4249 */
4250
4251 if (vector_page < KERNEL_BASE) {
4252 KDASSERT(!pmap_is_current(pm));
4253
4254 /* Remove the vector page mapping */
4255 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4256 pmap_update(pm);
4257 }
4258
4259 LIST_REMOVE(pm, pm_list);
4260
4261 pmap_free_l1(pm);
4262
4263 if (pmap_recent_user == pm)
4264 pmap_recent_user = NULL;
4265
4266 UVM_OBJ_DESTROY(&pm->pm_obj);
4267
4268 /* return the pmap to the pool */
4269 pool_cache_put(&pmap_cache, pm);
4270 }
4271
4272
4273 /*
4274 * void pmap_reference(pmap_t pm)
4275 *
4276 * Add a reference to the specified pmap.
4277 */
4278 void
4279 pmap_reference(pmap_t pm)
4280 {
4281
4282 if (pm == NULL)
4283 return;
4284
4285 pmap_use_l1(pm);
4286
4287 mutex_enter(&pm->pm_lock);
4288 pm->pm_obj.uo_refs++;
4289 mutex_exit(&pm->pm_lock);
4290 }
4291
4292 #if ARM_MMU_V6 > 0
4293
4294 static struct evcnt pmap_prefer_nochange_ev =
4295 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4296 static struct evcnt pmap_prefer_change_ev =
4297 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4298
4299 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4300 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4301
4302 void
4303 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4304 {
4305 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4306 vaddr_t va = *vap;
4307 vaddr_t diff = (hint - va) & mask;
4308 if (diff == 0) {
4309 pmap_prefer_nochange_ev.ev_count++;
4310 } else {
4311 pmap_prefer_change_ev.ev_count++;
4312 if (__predict_false(td))
4313 va -= mask + 1;
4314 *vap = va + diff;
4315 }
4316 }
4317 #endif /* ARM_MMU_V6 */
4318
4319 /*
4320 * pmap_zero_page()
4321 *
4322 * Zero a given physical page by mapping it at a page hook point.
4323 * In doing the zero page op, the page we zero is mapped cachable, as with
4324 * StrongARM accesses to non-cached pages are non-burst making writing
4325 * _any_ bulk data very slow.
4326 */
4327 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4328 void
4329 pmap_zero_page_generic(paddr_t phys)
4330 {
4331 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4332 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4333 #endif
4334 #ifdef PMAP_CACHE_VIPT
4335 /* Choose the last page color it had, if any */
4336 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4337 #else
4338 const vsize_t va_offset = 0;
4339 #endif
4340 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4341
4342 #ifdef DEBUG
4343 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4344 panic("pmap_zero_page: page has mappings");
4345 #endif
4346
4347 KDASSERT((phys & PGOFSET) == 0);
4348
4349 /*
4350 * Hook in the page, zero it, and purge the cache for that
4351 * zeroed page. Invalidate the TLB as needed.
4352 */
4353 *ptep = L2_S_PROTO | phys |
4354 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4355 PTE_SYNC(ptep);
4356 cpu_tlb_flushD_SE(cdstp + va_offset);
4357 cpu_cpwait();
4358 bzero_page(cdstp + va_offset);
4359 /*
4360 * Unmap the page.
4361 */
4362 *ptep = 0;
4363 PTE_SYNC(ptep);
4364 cpu_tlb_flushD_SE(cdstp + va_offset);
4365 #ifdef PMAP_CACHE_VIVT
4366 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4367 #endif
4368 #ifdef PMAP_CACHE_VIPT
4369 /*
4370 * This page is now cache resident so it now has a page color.
4371 * Any contents have been obliterated so clear the EXEC flag.
4372 */
4373 if (!pmap_is_page_colored_p(pg)) {
4374 PMAPCOUNT(vac_color_new);
4375 pg->mdpage.pvh_attrs |= PVF_COLORED;
4376 }
4377 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4378 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4379 PMAPCOUNT(exec_discarded_zero);
4380 }
4381 pg->mdpage.pvh_attrs |= PVF_DIRTY;
4382 #endif
4383 }
4384 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4385
4386 #if ARM_MMU_XSCALE == 1
4387 void
4388 pmap_zero_page_xscale(paddr_t phys)
4389 {
4390 #ifdef DEBUG
4391 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4392
4393 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4394 panic("pmap_zero_page: page has mappings");
4395 #endif
4396
4397 KDASSERT((phys & PGOFSET) == 0);
4398
4399 /*
4400 * Hook in the page, zero it, and purge the cache for that
4401 * zeroed page. Invalidate the TLB as needed.
4402 */
4403 *cdst_pte = L2_S_PROTO | phys |
4404 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4405 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4406 PTE_SYNC(cdst_pte);
4407 cpu_tlb_flushD_SE(cdstp);
4408 cpu_cpwait();
4409 bzero_page(cdstp);
4410 xscale_cache_clean_minidata();
4411 }
4412 #endif /* ARM_MMU_XSCALE == 1 */
4413
4414 /* pmap_pageidlezero()
4415 *
4416 * The same as above, except that we assume that the page is not
4417 * mapped. This means we never have to flush the cache first. Called
4418 * from the idle loop.
4419 */
4420 bool
4421 pmap_pageidlezero(paddr_t phys)
4422 {
4423 unsigned int i;
4424 int *ptr;
4425 bool rv = true;
4426 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4427 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4428 #endif
4429 #ifdef PMAP_CACHE_VIPT
4430 /* Choose the last page color it had, if any */
4431 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4432 #else
4433 const vsize_t va_offset = 0;
4434 #endif
4435 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4436
4437
4438 #ifdef DEBUG
4439 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4440 panic("pmap_pageidlezero: page has mappings");
4441 #endif
4442
4443 KDASSERT((phys & PGOFSET) == 0);
4444
4445 /*
4446 * Hook in the page, zero it, and purge the cache for that
4447 * zeroed page. Invalidate the TLB as needed.
4448 */
4449 *ptep = L2_S_PROTO | phys |
4450 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4451 PTE_SYNC(ptep);
4452 cpu_tlb_flushD_SE(cdstp + va_offset);
4453 cpu_cpwait();
4454
4455 for (i = 0, ptr = (int *)(cdstp + va_offset);
4456 i < (PAGE_SIZE / sizeof(int)); i++) {
4457 if (sched_curcpu_runnable_p() != 0) {
4458 /*
4459 * A process has become ready. Abort now,
4460 * so we don't keep it waiting while we
4461 * do slow memory access to finish this
4462 * page.
4463 */
4464 rv = false;
4465 break;
4466 }
4467 *ptr++ = 0;
4468 }
4469
4470 #ifdef PMAP_CACHE_VIVT
4471 if (rv)
4472 /*
4473 * if we aborted we'll rezero this page again later so don't
4474 * purge it unless we finished it
4475 */
4476 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4477 #elif defined(PMAP_CACHE_VIPT)
4478 /*
4479 * This page is now cache resident so it now has a page color.
4480 * Any contents have been obliterated so clear the EXEC flag.
4481 */
4482 if (!pmap_is_page_colored_p(pg)) {
4483 PMAPCOUNT(vac_color_new);
4484 pg->mdpage.pvh_attrs |= PVF_COLORED;
4485 }
4486 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4487 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4488 PMAPCOUNT(exec_discarded_zero);
4489 }
4490 #endif
4491 /*
4492 * Unmap the page.
4493 */
4494 *ptep = 0;
4495 PTE_SYNC(ptep);
4496 cpu_tlb_flushD_SE(cdstp + va_offset);
4497
4498 return (rv);
4499 }
4500
4501 /*
4502 * pmap_copy_page()
4503 *
4504 * Copy one physical page into another, by mapping the pages into
4505 * hook points. The same comment regarding cachability as in
4506 * pmap_zero_page also applies here.
4507 */
4508 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4509 void
4510 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4511 {
4512 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4513 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4514 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4515 #endif
4516 #ifdef PMAP_CACHE_VIPT
4517 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4518 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4519 #else
4520 const vsize_t src_va_offset = 0;
4521 const vsize_t dst_va_offset = 0;
4522 #endif
4523 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4524 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4525
4526 #ifdef DEBUG
4527 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4528 panic("pmap_copy_page: dst page has mappings");
4529 #endif
4530
4531 #ifdef PMAP_CACHE_VIPT
4532 KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
4533 #endif
4534 KDASSERT((src & PGOFSET) == 0);
4535 KDASSERT((dst & PGOFSET) == 0);
4536
4537 /*
4538 * Clean the source page. Hold the source page's lock for
4539 * the duration of the copy so that no other mappings can
4540 * be created while we have a potentially aliased mapping.
4541 */
4542 simple_lock(&src_pg->mdpage.pvh_slock);
4543 #ifdef PMAP_CACHE_VIVT
4544 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4545 #endif
4546
4547 /*
4548 * Map the pages into the page hook points, copy them, and purge
4549 * the cache for the appropriate page. Invalidate the TLB
4550 * as required.
4551 */
4552 *src_ptep = L2_S_PROTO
4553 | src
4554 #ifdef PMAP_CACHE_VIPT
4555 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4556 #endif
4557 #ifdef PMAP_CACHE_VIVT
4558 | pte_l2_s_cache_mode
4559 #endif
4560 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4561 *dst_ptep = L2_S_PROTO | dst |
4562 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4563 PTE_SYNC(src_ptep);
4564 PTE_SYNC(dst_ptep);
4565 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4566 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4567 cpu_cpwait();
4568 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4569 #ifdef PMAP_CACHE_VIVT
4570 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4571 #endif
4572 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4573 #ifdef PMAP_CACHE_VIVT
4574 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4575 #endif
4576 /*
4577 * Unmap the pages.
4578 */
4579 *src_ptep = 0;
4580 *dst_ptep = 0;
4581 PTE_SYNC(src_ptep);
4582 PTE_SYNC(dst_ptep);
4583 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4584 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4585 #ifdef PMAP_CACHE_VIPT
4586 /*
4587 * Now that the destination page is in the cache, mark it as colored.
4588 * If this was an exec page, discard it.
4589 */
4590 if (!pmap_is_page_colored_p(dst_pg)) {
4591 PMAPCOUNT(vac_color_new);
4592 dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
4593 }
4594 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
4595 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4596 PMAPCOUNT(exec_discarded_copy);
4597 }
4598 dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
4599 #endif
4600 }
4601 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4602
4603 #if ARM_MMU_XSCALE == 1
4604 void
4605 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4606 {
4607 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4608 #ifdef DEBUG
4609 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4610
4611 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4612 panic("pmap_copy_page: dst page has mappings");
4613 #endif
4614
4615 KDASSERT((src & PGOFSET) == 0);
4616 KDASSERT((dst & PGOFSET) == 0);
4617
4618 /*
4619 * Clean the source page. Hold the source page's lock for
4620 * the duration of the copy so that no other mappings can
4621 * be created while we have a potentially aliased mapping.
4622 */
4623 simple_lock(&src_pg->mdpage.pvh_slock);
4624 #ifdef PMAP_CACHE_VIVT
4625 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4626 #endif
4627
4628 /*
4629 * Map the pages into the page hook points, copy them, and purge
4630 * the cache for the appropriate page. Invalidate the TLB
4631 * as required.
4632 */
4633 *csrc_pte = L2_S_PROTO | src |
4634 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4635 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4636 PTE_SYNC(csrc_pte);
4637 *cdst_pte = L2_S_PROTO | dst |
4638 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4639 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4640 PTE_SYNC(cdst_pte);
4641 cpu_tlb_flushD_SE(csrcp);
4642 cpu_tlb_flushD_SE(cdstp);
4643 cpu_cpwait();
4644 bcopy_page(csrcp, cdstp);
4645 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4646 xscale_cache_clean_minidata();
4647 }
4648 #endif /* ARM_MMU_XSCALE == 1 */
4649
4650 /*
4651 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4652 *
4653 * Return the start and end addresses of the kernel's virtual space.
4654 * These values are setup in pmap_bootstrap and are updated as pages
4655 * are allocated.
4656 */
4657 void
4658 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4659 {
4660 *start = virtual_avail;
4661 *end = virtual_end;
4662 }
4663
4664 /*
4665 * Helper function for pmap_grow_l2_bucket()
4666 */
4667 static inline int
4668 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4669 {
4670 struct l2_bucket *l2b;
4671 pt_entry_t *ptep;
4672 paddr_t pa;
4673
4674 if (uvm.page_init_done == false) {
4675 #ifdef PMAP_STEAL_MEMORY
4676 pv_addr_t pv;
4677 pmap_boot_pagealloc(PAGE_SIZE,
4678 #ifdef PMAP_CACHE_VIPT
4679 arm_cache_prefer_mask,
4680 va & arm_cache_prefer_mask,
4681 #else
4682 0, 0,
4683 #endif
4684 &pv);
4685 pa = pv.pv_pa;
4686 #else
4687 if (uvm_page_physget(&pa) == false)
4688 return (1);
4689 #endif /* PMAP_STEAL_MEMORY */
4690 } else {
4691 struct vm_page *pg;
4692 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4693 if (pg == NULL)
4694 return (1);
4695 pa = VM_PAGE_TO_PHYS(pg);
4696 #ifdef PMAP_CACHE_VIPT
4697 /*
4698 * This new page must not have any mappings. Enter it via
4699 * pmap_kenter_pa and let that routine do the hard work.
4700 */
4701 KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
4702 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
4703 #endif
4704 }
4705
4706 if (pap)
4707 *pap = pa;
4708
4709 PMAPCOUNT(pt_mappings);
4710 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4711 KDASSERT(l2b != NULL);
4712
4713 ptep = &l2b->l2b_kva[l2pte_index(va)];
4714 *ptep = L2_S_PROTO | pa | cache_mode |
4715 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4716 PTE_SYNC(ptep);
4717 memset((void *)va, 0, PAGE_SIZE);
4718 return (0);
4719 }
4720
4721 /*
4722 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4723 * used by pmap_growkernel().
4724 */
4725 static inline struct l2_bucket *
4726 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4727 {
4728 struct l2_dtable *l2;
4729 struct l2_bucket *l2b;
4730 u_short l1idx;
4731 vaddr_t nva;
4732
4733 l1idx = L1_IDX(va);
4734
4735 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4736 /*
4737 * No mapping at this address, as there is
4738 * no entry in the L1 table.
4739 * Need to allocate a new l2_dtable.
4740 */
4741 nva = pmap_kernel_l2dtable_kva;
4742 if ((nva & PGOFSET) == 0) {
4743 /*
4744 * Need to allocate a backing page
4745 */
4746 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4747 return (NULL);
4748 }
4749
4750 l2 = (struct l2_dtable *)nva;
4751 nva += sizeof(struct l2_dtable);
4752
4753 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4754 /*
4755 * The new l2_dtable straddles a page boundary.
4756 * Map in another page to cover it.
4757 */
4758 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4759 return (NULL);
4760 }
4761
4762 pmap_kernel_l2dtable_kva = nva;
4763
4764 /*
4765 * Link it into the parent pmap
4766 */
4767 pm->pm_l2[L2_IDX(l1idx)] = l2;
4768 }
4769
4770 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4771
4772 /*
4773 * Fetch pointer to the L2 page table associated with the address.
4774 */
4775 if (l2b->l2b_kva == NULL) {
4776 pt_entry_t *ptep;
4777
4778 /*
4779 * No L2 page table has been allocated. Chances are, this
4780 * is because we just allocated the l2_dtable, above.
4781 */
4782 nva = pmap_kernel_l2ptp_kva;
4783 ptep = (pt_entry_t *)nva;
4784 if ((nva & PGOFSET) == 0) {
4785 /*
4786 * Need to allocate a backing page
4787 */
4788 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4789 &pmap_kernel_l2ptp_phys))
4790 return (NULL);
4791 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4792 }
4793
4794 l2->l2_occupancy++;
4795 l2b->l2b_kva = ptep;
4796 l2b->l2b_l1idx = l1idx;
4797 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4798
4799 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4800 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4801 }
4802
4803 return (l2b);
4804 }
4805
4806 vaddr_t
4807 pmap_growkernel(vaddr_t maxkvaddr)
4808 {
4809 pmap_t kpm = pmap_kernel();
4810 struct l1_ttable *l1;
4811 struct l2_bucket *l2b;
4812 pd_entry_t *pl1pd;
4813 int s;
4814
4815 if (maxkvaddr <= pmap_curmaxkvaddr)
4816 goto out; /* we are OK */
4817
4818 NPDEBUG(PDB_GROWKERN,
4819 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4820 pmap_curmaxkvaddr, maxkvaddr));
4821
4822 KDASSERT(maxkvaddr <= virtual_end);
4823
4824 /*
4825 * whoops! we need to add kernel PTPs
4826 */
4827
4828 s = splhigh(); /* to be safe */
4829 mutex_enter(&kpm->pm_lock);
4830
4831 /* Map 1MB at a time */
4832 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4833
4834 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4835 KDASSERT(l2b != NULL);
4836
4837 /* Distribute new L1 entry to all other L1s */
4838 SLIST_FOREACH(l1, &l1_list, l1_link) {
4839 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4840 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4841 L1_C_PROTO;
4842 PTE_SYNC(pl1pd);
4843 }
4844 }
4845
4846 /*
4847 * flush out the cache, expensive but growkernel will happen so
4848 * rarely
4849 */
4850 cpu_dcache_wbinv_all();
4851 cpu_tlb_flushD();
4852 cpu_cpwait();
4853
4854 mutex_exit(&kpm->pm_lock);
4855 splx(s);
4856
4857 out:
4858 return (pmap_curmaxkvaddr);
4859 }
4860
4861 /************************ Utility routines ****************************/
4862
4863 /*
4864 * vector_page_setprot:
4865 *
4866 * Manipulate the protection of the vector page.
4867 */
4868 void
4869 vector_page_setprot(int prot)
4870 {
4871 struct l2_bucket *l2b;
4872 pt_entry_t *ptep;
4873
4874 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4875 KDASSERT(l2b != NULL);
4876
4877 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4878
4879 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4880 PTE_SYNC(ptep);
4881 cpu_tlb_flushD_SE(vector_page);
4882 cpu_cpwait();
4883 }
4884
4885 /*
4886 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4887 * Returns true if the mapping exists, else false.
4888 *
4889 * NOTE: This function is only used by a couple of arm-specific modules.
4890 * It is not safe to take any pmap locks here, since we could be right
4891 * in the middle of debugging the pmap anyway...
4892 *
4893 * It is possible for this routine to return false even though a valid
4894 * mapping does exist. This is because we don't lock, so the metadata
4895 * state may be inconsistent.
4896 *
4897 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
4898 * a "section" mapping.
4899 */
4900 bool
4901 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
4902 {
4903 struct l2_dtable *l2;
4904 pd_entry_t *pl1pd, l1pd;
4905 pt_entry_t *ptep;
4906 u_short l1idx;
4907
4908 if (pm->pm_l1 == NULL)
4909 return false;
4910
4911 l1idx = L1_IDX(va);
4912 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
4913 l1pd = *pl1pd;
4914
4915 if (l1pte_section_p(l1pd)) {
4916 *ptp = NULL;
4917 return true;
4918 }
4919
4920 if (pm->pm_l2 == NULL)
4921 return false;
4922
4923 l2 = pm->pm_l2[L2_IDX(l1idx)];
4924
4925 if (l2 == NULL ||
4926 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
4927 return false;
4928 }
4929
4930 *ptp = &ptep[l2pte_index(va)];
4931 return true;
4932 }
4933
4934 bool
4935 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
4936 {
4937 u_short l1idx;
4938
4939 if (pm->pm_l1 == NULL)
4940 return false;
4941
4942 l1idx = L1_IDX(va);
4943 *pdp = &pm->pm_l1->l1_kva[l1idx];
4944
4945 return true;
4946 }
4947
4948 /************************ Bootstrapping routines ****************************/
4949
4950 static void
4951 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
4952 {
4953 int i;
4954
4955 l1->l1_kva = l1pt;
4956 l1->l1_domain_use_count = 0;
4957 l1->l1_domain_first = 0;
4958
4959 for (i = 0; i < PMAP_DOMAINS; i++)
4960 l1->l1_domain_free[i] = i + 1;
4961
4962 /*
4963 * Copy the kernel's L1 entries to each new L1.
4964 */
4965 if (pmap_initialized)
4966 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
4967
4968 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
4969 &l1->l1_physaddr) == false)
4970 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
4971
4972 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
4973 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
4974 }
4975
4976 /*
4977 * pmap_bootstrap() is called from the board-specific initarm() routine
4978 * once the kernel L1/L2 descriptors tables have been set up.
4979 *
4980 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
4981 * spread over a number of disparate files/functions.
4982 *
4983 * We are passed the following parameters
4984 * - kernel_l1pt
4985 * This is a pointer to the base of the kernel's L1 translation table.
4986 * - vstart
4987 * 1MB-aligned start of managed kernel virtual memory.
4988 * - vend
4989 * 1MB-aligned end of managed kernel virtual memory.
4990 *
4991 * We use the first parameter to build the metadata (struct l1_ttable and
4992 * struct l2_dtable) necessary to track kernel mappings.
4993 */
4994 #define PMAP_STATIC_L2_SIZE 16
4995 void
4996 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
4997 {
4998 static struct l1_ttable static_l1;
4999 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5000 struct l1_ttable *l1 = &static_l1;
5001 struct l2_dtable *l2;
5002 struct l2_bucket *l2b;
5003 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5004 pmap_t pm = pmap_kernel();
5005 pd_entry_t pde;
5006 pt_entry_t *ptep;
5007 paddr_t pa;
5008 vaddr_t va;
5009 vsize_t size;
5010 int nptes, l1idx, l2idx, l2next = 0;
5011
5012 /*
5013 * Initialise the kernel pmap object
5014 */
5015 pm->pm_l1 = l1;
5016 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5017 pm->pm_activated = true;
5018 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5019 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5020
5021 /*
5022 * Scan the L1 translation table created by initarm() and create
5023 * the required metadata for all valid mappings found in it.
5024 */
5025 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5026 pde = l1pt[l1idx];
5027
5028 /*
5029 * We're only interested in Coarse mappings.
5030 * pmap_extract() can deal with section mappings without
5031 * recourse to checking L2 metadata.
5032 */
5033 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5034 continue;
5035
5036 /*
5037 * Lookup the KVA of this L2 descriptor table
5038 */
5039 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5040 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5041 if (ptep == NULL) {
5042 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5043 (u_int)l1idx << L1_S_SHIFT, pa);
5044 }
5045
5046 /*
5047 * Fetch the associated L2 metadata structure.
5048 * Allocate a new one if necessary.
5049 */
5050 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5051 if (l2next == PMAP_STATIC_L2_SIZE)
5052 panic("pmap_bootstrap: out of static L2s");
5053 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5054 }
5055
5056 /*
5057 * One more L1 slot tracked...
5058 */
5059 l2->l2_occupancy++;
5060
5061 /*
5062 * Fill in the details of the L2 descriptor in the
5063 * appropriate bucket.
5064 */
5065 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5066 l2b->l2b_kva = ptep;
5067 l2b->l2b_phys = pa;
5068 l2b->l2b_l1idx = l1idx;
5069
5070 /*
5071 * Establish an initial occupancy count for this descriptor
5072 */
5073 for (l2idx = 0;
5074 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5075 l2idx++) {
5076 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5077 l2b->l2b_occupancy++;
5078 }
5079 }
5080
5081 /*
5082 * Make sure the descriptor itself has the correct cache mode.
5083 * If not, fix it, but whine about the problem. Port-meisters
5084 * should consider this a clue to fix up their initarm()
5085 * function. :)
5086 */
5087 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5088 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5089 "L2 pte @ %p\n", ptep);
5090 }
5091 }
5092
5093 /*
5094 * Ensure the primary (kernel) L1 has the correct cache mode for
5095 * a page table. Bitch if it is not correctly set.
5096 */
5097 for (va = (vaddr_t)l1pt;
5098 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5099 if (pmap_set_pt_cache_mode(l1pt, va))
5100 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5101 "primary L1 @ 0x%lx\n", va);
5102 }
5103
5104 cpu_dcache_wbinv_all();
5105 cpu_tlb_flushID();
5106 cpu_cpwait();
5107
5108 /*
5109 * now we allocate the "special" VAs which are used for tmp mappings
5110 * by the pmap (and other modules). we allocate the VAs by advancing
5111 * virtual_avail (note that there are no pages mapped at these VAs).
5112 *
5113 * Managed KVM space start from wherever initarm() tells us.
5114 */
5115 virtual_avail = vstart;
5116 virtual_end = vend;
5117
5118 #ifdef PMAP_CACHE_VIPT
5119 /*
5120 * If we have a VIPT cache, we need one page/pte per possible alias
5121 * page so we won't violate cache aliasing rules.
5122 */
5123 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5124 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5125 #else
5126 nptes = 1;
5127 #endif
5128 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5129 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5130 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5131 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5132 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5133 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5134 (void *)&msgbufaddr, NULL);
5135
5136 /*
5137 * Allocate a range of kernel virtual address space to be used
5138 * for L2 descriptor tables and metadata allocation in
5139 * pmap_growkernel().
5140 */
5141 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5142 pmap_alloc_specials(&virtual_avail,
5143 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5144 &pmap_kernel_l2ptp_kva, NULL);
5145
5146 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5147 pmap_alloc_specials(&virtual_avail,
5148 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5149 &pmap_kernel_l2dtable_kva, NULL);
5150
5151 /*
5152 * init the static-global locks and global pmap list.
5153 */
5154 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5155
5156 /*
5157 * We can now initialise the first L1's metadata.
5158 */
5159 SLIST_INIT(&l1_list);
5160 TAILQ_INIT(&l1_lru_list);
5161 simple_lock_init(&l1_lru_lock);
5162 pmap_init_l1(l1, l1pt);
5163
5164 /* Set up vector page L1 details, if necessary */
5165 if (vector_page < KERNEL_BASE) {
5166 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5167 l2b = pmap_get_l2_bucket(pm, vector_page);
5168 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5169 L1_C_DOM(pm->pm_domain);
5170 } else
5171 pm->pm_pl1vec = NULL;
5172
5173 /*
5174 * Initialize the pmap cache
5175 */
5176 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5177 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5178 LIST_INIT(&pmap_pmaps);
5179 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5180
5181 /*
5182 * Initialize the pv pool.
5183 */
5184 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5185 &pmap_bootstrap_pv_allocator, IPL_NONE);
5186
5187 /*
5188 * Initialize the L2 dtable pool and cache.
5189 */
5190 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5191 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5192
5193 /*
5194 * Initialise the L2 descriptor table pool and cache
5195 */
5196 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5197 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5198 pmap_l2ptp_ctor, NULL, NULL);
5199
5200 cpu_dcache_wbinv_all();
5201 }
5202
5203 static int
5204 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5205 {
5206 pd_entry_t *pdep, pde;
5207 pt_entry_t *ptep, pte;
5208 vaddr_t pa;
5209 int rv = 0;
5210
5211 /*
5212 * Make sure the descriptor itself has the correct cache mode
5213 */
5214 pdep = &kl1[L1_IDX(va)];
5215 pde = *pdep;
5216
5217 if (l1pte_section_p(pde)) {
5218 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5219 *pdep = (pde & ~L1_S_CACHE_MASK) |
5220 pte_l1_s_cache_mode_pt;
5221 PTE_SYNC(pdep);
5222 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5223 rv = 1;
5224 }
5225 } else {
5226 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5227 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5228 if (ptep == NULL)
5229 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5230
5231 ptep = &ptep[l2pte_index(va)];
5232 pte = *ptep;
5233 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5234 *ptep = (pte & ~L2_S_CACHE_MASK) |
5235 pte_l2_s_cache_mode_pt;
5236 PTE_SYNC(ptep);
5237 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5238 rv = 1;
5239 }
5240 }
5241
5242 return (rv);
5243 }
5244
5245 static void
5246 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5247 {
5248 vaddr_t va = *availp;
5249 struct l2_bucket *l2b;
5250
5251 if (ptep) {
5252 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5253 if (l2b == NULL)
5254 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5255
5256 if (ptep)
5257 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5258 }
5259
5260 *vap = va;
5261 *availp = va + (PAGE_SIZE * pages);
5262 }
5263
5264 void
5265 pmap_init(void)
5266 {
5267 extern int physmem;
5268
5269 /*
5270 * Set the available memory vars - These do not map to real memory
5271 * addresses and cannot as the physical memory is fragmented.
5272 * They are used by ps for %mem calculations.
5273 * One could argue whether this should be the entire memory or just
5274 * the memory that is useable in a user process.
5275 */
5276 avail_start = 0;
5277 avail_end = physmem * PAGE_SIZE;
5278
5279 /*
5280 * Now we need to free enough pv_entry structures to allow us to get
5281 * the kmem_map/kmem_object allocated and inited (done after this
5282 * function is finished). to do this we allocate one bootstrap page out
5283 * of kernel_map and use it to provide an initial pool of pv_entry
5284 * structures. we never free this page.
5285 */
5286 pool_setlowat(&pmap_pv_pool,
5287 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5288
5289 pmap_initialized = true;
5290 }
5291
5292 static vaddr_t last_bootstrap_page = 0;
5293 static void *free_bootstrap_pages = NULL;
5294
5295 static void *
5296 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5297 {
5298 extern void *pool_page_alloc(struct pool *, int);
5299 vaddr_t new_page;
5300 void *rv;
5301
5302 if (pmap_initialized)
5303 return (pool_page_alloc(pp, flags));
5304
5305 if (free_bootstrap_pages) {
5306 rv = free_bootstrap_pages;
5307 free_bootstrap_pages = *((void **)rv);
5308 return (rv);
5309 }
5310
5311 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5312 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5313
5314 KASSERT(new_page > last_bootstrap_page);
5315 last_bootstrap_page = new_page;
5316 return ((void *)new_page);
5317 }
5318
5319 static void
5320 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5321 {
5322 extern void pool_page_free(struct pool *, void *);
5323
5324 if ((vaddr_t)v <= last_bootstrap_page) {
5325 *((void **)v) = free_bootstrap_pages;
5326 free_bootstrap_pages = v;
5327 return;
5328 }
5329
5330 if (pmap_initialized) {
5331 pool_page_free(pp, v);
5332 return;
5333 }
5334 }
5335
5336 /*
5337 * pmap_postinit()
5338 *
5339 * This routine is called after the vm and kmem subsystems have been
5340 * initialised. This allows the pmap code to perform any initialisation
5341 * that can only be done one the memory allocation is in place.
5342 */
5343 void
5344 pmap_postinit(void)
5345 {
5346 extern paddr_t physical_start, physical_end;
5347 struct l2_bucket *l2b;
5348 struct l1_ttable *l1;
5349 struct pglist plist;
5350 struct vm_page *m;
5351 pd_entry_t *pl1pt;
5352 pt_entry_t *ptep, pte;
5353 vaddr_t va, eva;
5354 u_int loop, needed;
5355 int error;
5356
5357 pool_cache_setlowat(&pmap_l2ptp_cache,
5358 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5359 pool_cache_setlowat(&pmap_l2dtable_cache,
5360 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5361
5362 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5363 needed -= 1;
5364
5365 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5366
5367 for (loop = 0; loop < needed; loop++, l1++) {
5368 /* Allocate a L1 page table */
5369 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5370 if (va == 0)
5371 panic("Cannot allocate L1 KVM");
5372
5373 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5374 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5375 if (error)
5376 panic("Cannot allocate L1 physical pages");
5377
5378 m = TAILQ_FIRST(&plist);
5379 eva = va + L1_TABLE_SIZE;
5380 pl1pt = (pd_entry_t *)va;
5381
5382 while (m && va < eva) {
5383 paddr_t pa = VM_PAGE_TO_PHYS(m);
5384
5385 pmap_kenter_pa(va, pa,
5386 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
5387
5388 /*
5389 * Make sure the L1 descriptor table is mapped
5390 * with the cache-mode set to write-through.
5391 */
5392 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5393 ptep = &l2b->l2b_kva[l2pte_index(va)];
5394 pte = *ptep;
5395 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5396 *ptep = pte;
5397 PTE_SYNC(ptep);
5398 cpu_tlb_flushD_SE(va);
5399
5400 va += PAGE_SIZE;
5401 m = TAILQ_NEXT(m, pageq.queue);
5402 }
5403
5404 #ifdef DIAGNOSTIC
5405 if (m)
5406 panic("pmap_alloc_l1pt: pglist not empty");
5407 #endif /* DIAGNOSTIC */
5408
5409 pmap_init_l1(l1, pl1pt);
5410 }
5411
5412 #ifdef DEBUG
5413 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5414 needed);
5415 #endif
5416 }
5417
5418 /*
5419 * Note that the following routines are used by board-specific initialisation
5420 * code to configure the initial kernel page tables.
5421 *
5422 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5423 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5424 * behaviour of the old pmap, and provides an easy migration path for
5425 * initial bring-up of the new pmap on existing ports. Fortunately,
5426 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5427 * will be deprecated.
5428 *
5429 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5430 * tables.
5431 */
5432
5433 /*
5434 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5435 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5436 * find them as necessary.
5437 *
5438 * Note that the data on this list MUST remain valid after initarm() returns,
5439 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5440 */
5441 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5442
5443 static vaddr_t
5444 kernel_pt_lookup(paddr_t pa)
5445 {
5446 pv_addr_t *pv;
5447
5448 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5449 #ifndef ARM32_NEW_VM_LAYOUT
5450 if (pv->pv_pa == (pa & ~PGOFSET))
5451 return (pv->pv_va | (pa & PGOFSET));
5452 #else
5453 if (pv->pv_pa == pa)
5454 return (pv->pv_va);
5455 #endif
5456 }
5457 return (0);
5458 }
5459
5460 /*
5461 * pmap_map_section:
5462 *
5463 * Create a single section mapping.
5464 */
5465 void
5466 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5467 {
5468 pd_entry_t *pde = (pd_entry_t *) l1pt;
5469 pd_entry_t fl;
5470
5471 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5472
5473 switch (cache) {
5474 case PTE_NOCACHE:
5475 default:
5476 fl = 0;
5477 break;
5478
5479 case PTE_CACHE:
5480 fl = pte_l1_s_cache_mode;
5481 break;
5482
5483 case PTE_PAGETABLE:
5484 fl = pte_l1_s_cache_mode_pt;
5485 break;
5486 }
5487
5488 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5489 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5490 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5491 }
5492
5493 /*
5494 * pmap_map_entry:
5495 *
5496 * Create a single page mapping.
5497 */
5498 void
5499 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5500 {
5501 pd_entry_t *pde = (pd_entry_t *) l1pt;
5502 pt_entry_t fl;
5503 pt_entry_t *pte;
5504
5505 KASSERT(((va | pa) & PGOFSET) == 0);
5506
5507 switch (cache) {
5508 case PTE_NOCACHE:
5509 default:
5510 fl = 0;
5511 break;
5512
5513 case PTE_CACHE:
5514 fl = pte_l2_s_cache_mode;
5515 break;
5516
5517 case PTE_PAGETABLE:
5518 fl = pte_l2_s_cache_mode_pt;
5519 break;
5520 }
5521
5522 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5523 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5524
5525 #ifndef ARM32_NEW_VM_LAYOUT
5526 pte = (pt_entry_t *)
5527 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5528 #else
5529 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5530 #endif
5531 if (pte == NULL)
5532 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5533
5534 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5535 #ifndef ARM32_NEW_VM_LAYOUT
5536 pte += (va >> PGSHIFT) & 0x3ff;
5537 #else
5538 pte += l2pte_index(va);
5539 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5540 #endif
5541 *pte = fl;
5542 PTE_SYNC(pte);
5543 }
5544
5545 /*
5546 * pmap_link_l2pt:
5547 *
5548 * Link the L2 page table specified by "l2pv" into the L1
5549 * page table at the slot for "va".
5550 */
5551 void
5552 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5553 {
5554 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5555 u_int slot = va >> L1_S_SHIFT;
5556
5557 #ifndef ARM32_NEW_VM_LAYOUT
5558 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5559 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5560 #endif
5561
5562 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5563
5564 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5565 #ifdef ARM32_NEW_VM_LAYOUT
5566 PTE_SYNC(&pde[slot]);
5567 #else
5568 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5569 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5570 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5571 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5572 #endif
5573
5574 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5575 }
5576
5577 /*
5578 * pmap_map_chunk:
5579 *
5580 * Map a chunk of memory using the most efficient mappings
5581 * possible (section, large page, small page) into the
5582 * provided L1 and L2 tables at the specified virtual address.
5583 */
5584 vsize_t
5585 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5586 int prot, int cache)
5587 {
5588 pd_entry_t *pde = (pd_entry_t *) l1pt;
5589 pt_entry_t *pte, f1, f2s, f2l;
5590 vsize_t resid;
5591 int i;
5592
5593 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5594
5595 if (l1pt == 0)
5596 panic("pmap_map_chunk: no L1 table provided");
5597
5598 #ifdef VERBOSE_INIT_ARM
5599 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5600 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5601 #endif
5602
5603 switch (cache) {
5604 case PTE_NOCACHE:
5605 default:
5606 f1 = 0;
5607 f2l = 0;
5608 f2s = 0;
5609 break;
5610
5611 case PTE_CACHE:
5612 f1 = pte_l1_s_cache_mode;
5613 f2l = pte_l2_l_cache_mode;
5614 f2s = pte_l2_s_cache_mode;
5615 break;
5616
5617 case PTE_PAGETABLE:
5618 f1 = pte_l1_s_cache_mode_pt;
5619 f2l = pte_l2_l_cache_mode_pt;
5620 f2s = pte_l2_s_cache_mode_pt;
5621 break;
5622 }
5623
5624 size = resid;
5625
5626 while (resid > 0) {
5627 /* See if we can use a section mapping. */
5628 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5629 #ifdef VERBOSE_INIT_ARM
5630 printf("S");
5631 #endif
5632 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5633 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5634 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5635 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5636 va += L1_S_SIZE;
5637 pa += L1_S_SIZE;
5638 resid -= L1_S_SIZE;
5639 continue;
5640 }
5641
5642 /*
5643 * Ok, we're going to use an L2 table. Make sure
5644 * one is actually in the corresponding L1 slot
5645 * for the current VA.
5646 */
5647 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5648 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5649
5650 #ifndef ARM32_NEW_VM_LAYOUT
5651 pte = (pt_entry_t *)
5652 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5653 #else
5654 pte = (pt_entry_t *) kernel_pt_lookup(
5655 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5656 #endif
5657 if (pte == NULL)
5658 panic("pmap_map_chunk: can't find L2 table for VA"
5659 "0x%08lx", va);
5660
5661 /* See if we can use a L2 large page mapping. */
5662 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5663 #ifdef VERBOSE_INIT_ARM
5664 printf("L");
5665 #endif
5666 for (i = 0; i < 16; i++) {
5667 #ifndef ARM32_NEW_VM_LAYOUT
5668 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5669 L2_L_PROTO | pa |
5670 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5671 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5672 #else
5673 pte[l2pte_index(va) + i] =
5674 L2_L_PROTO | pa |
5675 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5676 PTE_SYNC(&pte[l2pte_index(va) + i]);
5677 #endif
5678 }
5679 va += L2_L_SIZE;
5680 pa += L2_L_SIZE;
5681 resid -= L2_L_SIZE;
5682 continue;
5683 }
5684
5685 /* Use a small page mapping. */
5686 #ifdef VERBOSE_INIT_ARM
5687 printf("P");
5688 #endif
5689 #ifndef ARM32_NEW_VM_LAYOUT
5690 pte[(va >> PGSHIFT) & 0x3ff] =
5691 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5692 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5693 #else
5694 pte[l2pte_index(va)] =
5695 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5696 PTE_SYNC(&pte[l2pte_index(va)]);
5697 #endif
5698 va += PAGE_SIZE;
5699 pa += PAGE_SIZE;
5700 resid -= PAGE_SIZE;
5701 }
5702 #ifdef VERBOSE_INIT_ARM
5703 printf("\n");
5704 #endif
5705 return (size);
5706 }
5707
5708 /********************** Static device map routines ***************************/
5709
5710 static const struct pmap_devmap *pmap_devmap_table;
5711
5712 /*
5713 * Register the devmap table. This is provided in case early console
5714 * initialization needs to register mappings created by bootstrap code
5715 * before pmap_devmap_bootstrap() is called.
5716 */
5717 void
5718 pmap_devmap_register(const struct pmap_devmap *table)
5719 {
5720
5721 pmap_devmap_table = table;
5722 }
5723
5724 /*
5725 * Map all of the static regions in the devmap table, and remember
5726 * the devmap table so other parts of the kernel can look up entries
5727 * later.
5728 */
5729 void
5730 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5731 {
5732 int i;
5733
5734 pmap_devmap_table = table;
5735
5736 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5737 #ifdef VERBOSE_INIT_ARM
5738 printf("devmap: %08lx -> %08lx @ %08lx\n",
5739 pmap_devmap_table[i].pd_pa,
5740 pmap_devmap_table[i].pd_pa +
5741 pmap_devmap_table[i].pd_size - 1,
5742 pmap_devmap_table[i].pd_va);
5743 #endif
5744 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5745 pmap_devmap_table[i].pd_pa,
5746 pmap_devmap_table[i].pd_size,
5747 pmap_devmap_table[i].pd_prot,
5748 pmap_devmap_table[i].pd_cache);
5749 }
5750 }
5751
5752 const struct pmap_devmap *
5753 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5754 {
5755 uint64_t endpa;
5756 int i;
5757
5758 if (pmap_devmap_table == NULL)
5759 return (NULL);
5760
5761 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5762
5763 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5764 if (pa >= pmap_devmap_table[i].pd_pa &&
5765 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5766 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5767 return (&pmap_devmap_table[i]);
5768 }
5769
5770 return (NULL);
5771 }
5772
5773 const struct pmap_devmap *
5774 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5775 {
5776 int i;
5777
5778 if (pmap_devmap_table == NULL)
5779 return (NULL);
5780
5781 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5782 if (va >= pmap_devmap_table[i].pd_va &&
5783 va + size - 1 <= pmap_devmap_table[i].pd_va +
5784 pmap_devmap_table[i].pd_size - 1)
5785 return (&pmap_devmap_table[i]);
5786 }
5787
5788 return (NULL);
5789 }
5790
5791 /********************** PTE initialization routines **************************/
5792
5793 /*
5794 * These routines are called when the CPU type is identified to set up
5795 * the PTE prototypes, cache modes, etc.
5796 *
5797 * The variables are always here, just in case LKMs need to reference
5798 * them (though, they shouldn't).
5799 */
5800
5801 pt_entry_t pte_l1_s_cache_mode;
5802 pt_entry_t pte_l1_s_cache_mode_pt;
5803 pt_entry_t pte_l1_s_cache_mask;
5804
5805 pt_entry_t pte_l2_l_cache_mode;
5806 pt_entry_t pte_l2_l_cache_mode_pt;
5807 pt_entry_t pte_l2_l_cache_mask;
5808
5809 pt_entry_t pte_l2_s_cache_mode;
5810 pt_entry_t pte_l2_s_cache_mode_pt;
5811 pt_entry_t pte_l2_s_cache_mask;
5812
5813 pt_entry_t pte_l2_s_prot_u;
5814 pt_entry_t pte_l2_s_prot_w;
5815 pt_entry_t pte_l2_s_prot_mask;
5816
5817 pt_entry_t pte_l1_s_proto;
5818 pt_entry_t pte_l1_c_proto;
5819 pt_entry_t pte_l2_s_proto;
5820
5821 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5822 void (*pmap_zero_page_func)(paddr_t);
5823
5824 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5825 void
5826 pmap_pte_init_generic(void)
5827 {
5828
5829 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5830 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5831
5832 pte_l2_l_cache_mode = L2_B|L2_C;
5833 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5834
5835 pte_l2_s_cache_mode = L2_B|L2_C;
5836 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5837
5838 /*
5839 * If we have a write-through cache, set B and C. If
5840 * we have a write-back cache, then we assume setting
5841 * only C will make those pages write-through.
5842 */
5843 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5844 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5845 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5846 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5847 } else {
5848 #if ARM_MMU_V6 > 1
5849 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5850 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5851 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5852 #else
5853 pte_l1_s_cache_mode_pt = L1_S_C;
5854 pte_l2_l_cache_mode_pt = L2_C;
5855 pte_l2_s_cache_mode_pt = L2_C;
5856 #endif
5857 }
5858
5859 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5860 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5861 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5862
5863 pte_l1_s_proto = L1_S_PROTO_generic;
5864 pte_l1_c_proto = L1_C_PROTO_generic;
5865 pte_l2_s_proto = L2_S_PROTO_generic;
5866
5867 pmap_copy_page_func = pmap_copy_page_generic;
5868 pmap_zero_page_func = pmap_zero_page_generic;
5869 }
5870
5871 #if defined(CPU_ARM8)
5872 void
5873 pmap_pte_init_arm8(void)
5874 {
5875
5876 /*
5877 * ARM8 is compatible with generic, but we need to use
5878 * the page tables uncached.
5879 */
5880 pmap_pte_init_generic();
5881
5882 pte_l1_s_cache_mode_pt = 0;
5883 pte_l2_l_cache_mode_pt = 0;
5884 pte_l2_s_cache_mode_pt = 0;
5885 }
5886 #endif /* CPU_ARM8 */
5887
5888 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
5889 void
5890 pmap_pte_init_arm9(void)
5891 {
5892
5893 /*
5894 * ARM9 is compatible with generic, but we want to use
5895 * write-through caching for now.
5896 */
5897 pmap_pte_init_generic();
5898
5899 pte_l1_s_cache_mode = L1_S_C;
5900 pte_l2_l_cache_mode = L2_C;
5901 pte_l2_s_cache_mode = L2_C;
5902
5903 pte_l1_s_cache_mode_pt = L1_S_C;
5904 pte_l2_l_cache_mode_pt = L2_C;
5905 pte_l2_s_cache_mode_pt = L2_C;
5906 }
5907 #endif /* CPU_ARM9 */
5908 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5909
5910 #if defined(CPU_ARM10)
5911 void
5912 pmap_pte_init_arm10(void)
5913 {
5914
5915 /*
5916 * ARM10 is compatible with generic, but we want to use
5917 * write-through caching for now.
5918 */
5919 pmap_pte_init_generic();
5920
5921 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
5922 pte_l2_l_cache_mode = L2_B | L2_C;
5923 pte_l2_s_cache_mode = L2_B | L2_C;
5924
5925 pte_l1_s_cache_mode_pt = L1_S_C;
5926 pte_l2_l_cache_mode_pt = L2_C;
5927 pte_l2_s_cache_mode_pt = L2_C;
5928
5929 }
5930 #endif /* CPU_ARM10 */
5931
5932 #if ARM_MMU_SA1 == 1
5933 void
5934 pmap_pte_init_sa1(void)
5935 {
5936
5937 /*
5938 * The StrongARM SA-1 cache does not have a write-through
5939 * mode. So, do the generic initialization, then reset
5940 * the page table cache mode to B=1,C=1, and note that
5941 * the PTEs need to be sync'd.
5942 */
5943 pmap_pte_init_generic();
5944
5945 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5946 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5947 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5948
5949 pmap_needs_pte_sync = 1;
5950 }
5951 #endif /* ARM_MMU_SA1 == 1*/
5952
5953 #if ARM_MMU_XSCALE == 1
5954 #if (ARM_NMMUS > 1)
5955 static u_int xscale_use_minidata;
5956 #endif
5957
5958 void
5959 pmap_pte_init_xscale(void)
5960 {
5961 uint32_t auxctl;
5962 int write_through = 0;
5963
5964 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5965 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
5966
5967 pte_l2_l_cache_mode = L2_B|L2_C;
5968 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
5969
5970 pte_l2_s_cache_mode = L2_B|L2_C;
5971 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
5972
5973 pte_l1_s_cache_mode_pt = L1_S_C;
5974 pte_l2_l_cache_mode_pt = L2_C;
5975 pte_l2_s_cache_mode_pt = L2_C;
5976
5977 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
5978 /*
5979 * The XScale core has an enhanced mode where writes that
5980 * miss the cache cause a cache line to be allocated. This
5981 * is significantly faster than the traditional, write-through
5982 * behavior of this case.
5983 */
5984 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
5985 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
5986 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
5987 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
5988
5989 #ifdef XSCALE_CACHE_WRITE_THROUGH
5990 /*
5991 * Some versions of the XScale core have various bugs in
5992 * their cache units, the work-around for which is to run
5993 * the cache in write-through mode. Unfortunately, this
5994 * has a major (negative) impact on performance. So, we
5995 * go ahead and run fast-and-loose, in the hopes that we
5996 * don't line up the planets in a way that will trip the
5997 * bugs.
5998 *
5999 * However, we give you the option to be slow-but-correct.
6000 */
6001 write_through = 1;
6002 #elif defined(XSCALE_CACHE_WRITE_BACK)
6003 /* force write back cache mode */
6004 write_through = 0;
6005 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6006 /*
6007 * Intel PXA2[15]0 processors are known to have a bug in
6008 * write-back cache on revision 4 and earlier (stepping
6009 * A[01] and B[012]). Fixed for C0 and later.
6010 */
6011 {
6012 uint32_t id, type;
6013
6014 id = cpufunc_id();
6015 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6016
6017 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6018 if ((id & CPU_ID_REVISION_MASK) < 5) {
6019 /* write through for stepping A0-1 and B0-2 */
6020 write_through = 1;
6021 }
6022 }
6023 }
6024 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6025
6026 if (write_through) {
6027 pte_l1_s_cache_mode = L1_S_C;
6028 pte_l2_l_cache_mode = L2_C;
6029 pte_l2_s_cache_mode = L2_C;
6030 }
6031
6032 #if (ARM_NMMUS > 1)
6033 xscale_use_minidata = 1;
6034 #endif
6035
6036 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6037 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6038 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6039
6040 pte_l1_s_proto = L1_S_PROTO_xscale;
6041 pte_l1_c_proto = L1_C_PROTO_xscale;
6042 pte_l2_s_proto = L2_S_PROTO_xscale;
6043
6044 pmap_copy_page_func = pmap_copy_page_xscale;
6045 pmap_zero_page_func = pmap_zero_page_xscale;
6046
6047 /*
6048 * Disable ECC protection of page table access, for now.
6049 */
6050 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6051 auxctl &= ~XSCALE_AUXCTL_P;
6052 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6053 }
6054
6055 /*
6056 * xscale_setup_minidata:
6057 *
6058 * Set up the mini-data cache clean area. We require the
6059 * caller to allocate the right amount of physically and
6060 * virtually contiguous space.
6061 */
6062 void
6063 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6064 {
6065 extern vaddr_t xscale_minidata_clean_addr;
6066 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6067 pd_entry_t *pde = (pd_entry_t *) l1pt;
6068 pt_entry_t *pte;
6069 vsize_t size;
6070 uint32_t auxctl;
6071
6072 xscale_minidata_clean_addr = va;
6073
6074 /* Round it to page size. */
6075 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6076
6077 for (; size != 0;
6078 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6079 #ifndef ARM32_NEW_VM_LAYOUT
6080 pte = (pt_entry_t *)
6081 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6082 #else
6083 pte = (pt_entry_t *) kernel_pt_lookup(
6084 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6085 #endif
6086 if (pte == NULL)
6087 panic("xscale_setup_minidata: can't find L2 table for "
6088 "VA 0x%08lx", va);
6089 #ifndef ARM32_NEW_VM_LAYOUT
6090 pte[(va >> PGSHIFT) & 0x3ff] =
6091 #else
6092 pte[l2pte_index(va)] =
6093 #endif
6094 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6095 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6096 }
6097
6098 /*
6099 * Configure the mini-data cache for write-back with
6100 * read/write-allocate.
6101 *
6102 * NOTE: In order to reconfigure the mini-data cache, we must
6103 * make sure it contains no valid data! In order to do that,
6104 * we must issue a global data cache invalidate command!
6105 *
6106 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6107 * THIS IS VERY IMPORTANT!
6108 */
6109
6110 /* Invalidate data and mini-data. */
6111 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6112 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6113 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6114 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6115 }
6116
6117 /*
6118 * Change the PTEs for the specified kernel mappings such that they
6119 * will use the mini data cache instead of the main data cache.
6120 */
6121 void
6122 pmap_uarea(vaddr_t va)
6123 {
6124 struct l2_bucket *l2b;
6125 pt_entry_t *ptep, *sptep, pte;
6126 vaddr_t next_bucket, eva;
6127
6128 #if (ARM_NMMUS > 1)
6129 if (xscale_use_minidata == 0)
6130 return;
6131 #endif
6132
6133 eva = va + USPACE;
6134
6135 while (va < eva) {
6136 next_bucket = L2_NEXT_BUCKET(va);
6137 if (next_bucket > eva)
6138 next_bucket = eva;
6139
6140 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6141 KDASSERT(l2b != NULL);
6142
6143 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6144
6145 while (va < next_bucket) {
6146 pte = *ptep;
6147 if (!l2pte_minidata(pte)) {
6148 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6149 cpu_tlb_flushD_SE(va);
6150 *ptep = pte & ~L2_B;
6151 }
6152 ptep++;
6153 va += PAGE_SIZE;
6154 }
6155 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6156 }
6157 cpu_cpwait();
6158 }
6159 #endif /* ARM_MMU_XSCALE == 1 */
6160
6161 /*
6162 * return the PA of the current L1 table, for use when handling a crash dump
6163 */
6164 uint32_t pmap_kernel_L1_addr()
6165 {
6166 return pmap_kernel()->pm_l1->l1_physaddr;
6167 }
6168
6169 #if defined(DDB)
6170 /*
6171 * A couple of ddb-callable functions for dumping pmaps
6172 */
6173 void pmap_dump_all(void);
6174 void pmap_dump(pmap_t);
6175
6176 void
6177 pmap_dump_all(void)
6178 {
6179 pmap_t pm;
6180
6181 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6182 if (pm == pmap_kernel())
6183 continue;
6184 pmap_dump(pm);
6185 printf("\n");
6186 }
6187 }
6188
6189 static pt_entry_t ncptes[64];
6190 static void pmap_dump_ncpg(pmap_t);
6191
6192 void
6193 pmap_dump(pmap_t pm)
6194 {
6195 struct l2_dtable *l2;
6196 struct l2_bucket *l2b;
6197 pt_entry_t *ptep, pte;
6198 vaddr_t l2_va, l2b_va, va;
6199 int i, j, k, occ, rows = 0;
6200
6201 if (pm == pmap_kernel())
6202 printf("pmap_kernel (%p): ", pm);
6203 else
6204 printf("user pmap (%p): ", pm);
6205
6206 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6207
6208 l2_va = 0;
6209 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6210 l2 = pm->pm_l2[i];
6211
6212 if (l2 == NULL || l2->l2_occupancy == 0)
6213 continue;
6214
6215 l2b_va = l2_va;
6216 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6217 l2b = &l2->l2_bucket[j];
6218
6219 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6220 continue;
6221
6222 ptep = l2b->l2b_kva;
6223
6224 for (k = 0; k < 256 && ptep[k] == 0; k++)
6225 ;
6226
6227 k &= ~63;
6228 occ = l2b->l2b_occupancy;
6229 va = l2b_va + (k * 4096);
6230 for (; k < 256; k++, va += 0x1000) {
6231 char ch = ' ';
6232 if ((k % 64) == 0) {
6233 if ((rows % 8) == 0) {
6234 printf(
6235 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6236 }
6237 printf("%08lx: ", va);
6238 }
6239
6240 ncptes[k & 63] = 0;
6241 pte = ptep[k];
6242 if (pte == 0) {
6243 ch = '.';
6244 } else {
6245 occ--;
6246 switch (pte & 0x0c) {
6247 case 0x00:
6248 ch = 'D'; /* No cache No buff */
6249 break;
6250 case 0x04:
6251 ch = 'B'; /* No cache buff */
6252 break;
6253 case 0x08:
6254 if (pte & 0x40)
6255 ch = 'm';
6256 else
6257 ch = 'C'; /* Cache No buff */
6258 break;
6259 case 0x0c:
6260 ch = 'F'; /* Cache Buff */
6261 break;
6262 }
6263
6264 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6265 ch += 0x20;
6266
6267 if ((pte & 0xc) == 0)
6268 ncptes[k & 63] = pte;
6269 }
6270
6271 if ((k % 64) == 63) {
6272 rows++;
6273 printf("%c\n", ch);
6274 pmap_dump_ncpg(pm);
6275 if (occ == 0)
6276 break;
6277 } else
6278 printf("%c", ch);
6279 }
6280 }
6281 }
6282 }
6283
6284 static void
6285 pmap_dump_ncpg(pmap_t pm)
6286 {
6287 struct vm_page *pg;
6288 struct pv_entry *pv;
6289 int i;
6290
6291 for (i = 0; i < 63; i++) {
6292 if (ncptes[i] == 0)
6293 continue;
6294
6295 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6296 if (pg == NULL)
6297 continue;
6298
6299 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6300 VM_PAGE_TO_PHYS(pg),
6301 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
6302 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
6303
6304 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
6305 printf(" %c va 0x%08lx, flags 0x%x\n",
6306 (pm == pv->pv_pmap) ? '*' : ' ',
6307 pv->pv_va, pv->pv_flags);
6308 }
6309 }
6310 }
6311 #endif
6312
6313 #ifdef PMAP_STEAL_MEMORY
6314 void
6315 pmap_boot_pageadd(pv_addr_t *newpv)
6316 {
6317 pv_addr_t *pv, *npv;
6318
6319 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6320 if (newpv->pv_pa < pv->pv_va) {
6321 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6322 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6323 newpv->pv_size += pv->pv_size;
6324 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6325 }
6326 pv = NULL;
6327 } else {
6328 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6329 pv = npv) {
6330 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6331 KASSERT(pv->pv_pa < newpv->pv_pa);
6332 if (newpv->pv_pa > npv->pv_pa)
6333 continue;
6334 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6335 pv->pv_size += newpv->pv_size;
6336 return;
6337 }
6338 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6339 break;
6340 newpv->pv_size += npv->pv_size;
6341 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6342 SLIST_REMOVE_AFTER(newpv, pv_list);
6343 return;
6344 }
6345 }
6346 }
6347
6348 if (pv) {
6349 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6350 } else {
6351 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6352 }
6353 }
6354
6355 void
6356 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6357 pv_addr_t *rpv)
6358 {
6359 pv_addr_t *pv, **pvp;
6360 struct vm_physseg *ps;
6361 size_t i;
6362
6363 KASSERT(amount & PGOFSET);
6364 KASSERT((mask & PGOFSET) == 0);
6365 KASSERT((match & PGOFSET) == 0);
6366 KASSERT(amount != 0);
6367
6368 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6369 (pv = *pvp) != NULL;
6370 pvp = &SLIST_NEXT(pv, pv_list)) {
6371 pv_addr_t *newpv;
6372 psize_t off;
6373 /*
6374 * If this entry is too small to satify the request...
6375 */
6376 KASSERT(pv->pv_size > 0);
6377 if (pv->pv_size < amount)
6378 continue;
6379
6380 for (off = 0; off <= mask; off += PAGE_SIZE) {
6381 if (((pv->pv_pa + off) & mask) == match
6382 && off + amount <= pv->pv_size)
6383 break;
6384 }
6385 if (off > mask)
6386 continue;
6387
6388 rpv->pv_va = pv->pv_va + off;
6389 rpv->pv_pa = pv->pv_pa + off;
6390 rpv->pv_size = amount;
6391 pv->pv_size -= amount;
6392 if (pv->pv_size == 0) {
6393 KASSERT(off == 0);
6394 KASSERT((vaddr_t) pv == rpv->pv_va);
6395 *pvp = SLIST_NEXT(pv, pv_list);
6396 } else if (off == 0) {
6397 KASSERT((vaddr_t) pv == rpv->pv_va);
6398 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6399 *newpv = *pv;
6400 newpv->pv_pa += amount;
6401 newpv->pv_va += amount;
6402 *pvp = newpv;
6403 } else if (off < pv->pv_size) {
6404 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6405 *newpv = *pv;
6406 newpv->pv_size -= off;
6407 newpv->pv_pa += off + amount;
6408 newpv->pv_va += off + amount;
6409
6410 SLIST_NEXT(pv, pv_list) = newpv;
6411 pv->pv_size = off;
6412 } else {
6413 KASSERT((vaddr_t) pv != rpv->pv_va);
6414 }
6415 memset((void *)rpv->pv_va, 0, amount);
6416 return;
6417 }
6418
6419 if (vm_nphysseg == 0)
6420 panic("pmap_boot_pagealloc: couldn't allocate memory");
6421
6422 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6423 (pv = *pvp) != NULL;
6424 pvp = &SLIST_NEXT(pv, pv_list)) {
6425 if (SLIST_NEXT(pv, pv_list) == NULL)
6426 break;
6427 }
6428 KASSERT(mask == 0);
6429 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
6430 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6431 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6432 rpv->pv_va = pv->pv_va;
6433 rpv->pv_pa = pv->pv_pa;
6434 rpv->pv_size = amount;
6435 *pvp = NULL;
6436 pmap_map_chunk(kernel_l1pt.pv_va,
6437 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6438 ptoa(ps->avail_start),
6439 amount - pv->pv_size,
6440 VM_PROT_READ|VM_PROT_WRITE,
6441 PTE_CACHE);
6442 ps->avail_start += atop(amount - pv->pv_size);
6443 /*
6444 * If we consumed the entire physseg, remove it.
6445 */
6446 if (ps->avail_start == ps->avail_end) {
6447 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6448 ps[0] = ps[1];
6449 }
6450 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6451 return;
6452 }
6453 }
6454
6455 panic("pmap_boot_pagealloc: couldn't allocate memory");
6456 }
6457
6458 vaddr_t
6459 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6460 {
6461 pv_addr_t pv;
6462
6463 pmap_boot_pagealloc(size, 0, 0, &pv);
6464
6465 return pv.pv_va;
6466 }
6467 #endif /* PMAP_STEAL_MEMORY */
6468
6469 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6470 {
6471 sysctl_createv(clog, 0, NULL, NULL,
6472 CTLFLAG_PERMANENT,
6473 CTLTYPE_NODE, "machdep", NULL,
6474 NULL, 0, NULL, 0,
6475 CTL_MACHDEP, CTL_EOL);
6476
6477 sysctl_createv(clog, 0, NULL, NULL,
6478 CTLFLAG_PERMANENT,
6479 CTLTYPE_INT, "kmpages",
6480 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6481 NULL, 0, &pmap_kmpages, 0,
6482 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6483 }
6484