Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.189
      1 /*	$NetBSD: pmap.c,v 1.189 2008/11/04 07:21:24 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/user.h>
    202 #include <sys/pool.h>
    203 #include <sys/cdefs.h>
    204 #include <sys/cpu.h>
    205 #include <sys/sysctl.h>
    206 
    207 #include <uvm/uvm.h>
    208 
    209 #include <machine/bus.h>
    210 #include <machine/pmap.h>
    211 #include <machine/pcb.h>
    212 #include <machine/param.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.189 2008/11/04 07:21:24 matt Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 struct pmap     kernel_pmap_store;
    259 
    260 /*
    261  * Which pmap is currently 'live' in the cache
    262  *
    263  * XXXSCW: Fix for SMP ...
    264  */
    265 static pmap_t pmap_recent_user;
    266 
    267 /*
    268  * Pointer to last active lwp, or NULL if it exited.
    269  */
    270 struct lwp *pmap_previous_active_lwp;
    271 
    272 /*
    273  * Pool and cache that pmap structures are allocated from.
    274  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    275  * in pmap_create().
    276  */
    277 static struct pool_cache pmap_cache;
    278 static LIST_HEAD(, pmap) pmap_pmaps;
    279 
    280 /*
    281  * Pool of PV structures
    282  */
    283 static struct pool pmap_pv_pool;
    284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    287 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    288 };
    289 
    290 /*
    291  * Pool and cache of l2_dtable structures.
    292  * We use a cache to avoid clearing the structures when they're
    293  * allocated. (196 bytes)
    294  */
    295 static struct pool_cache pmap_l2dtable_cache;
    296 static vaddr_t pmap_kernel_l2dtable_kva;
    297 
    298 /*
    299  * Pool and cache of L2 page descriptors.
    300  * We use a cache to avoid clearing the descriptor table
    301  * when they're allocated. (1KB)
    302  */
    303 static struct pool_cache pmap_l2ptp_cache;
    304 static vaddr_t pmap_kernel_l2ptp_kva;
    305 static paddr_t pmap_kernel_l2ptp_phys;
    306 
    307 #ifdef PMAPCOUNTERS
    308 #define	PMAP_EVCNT_INITIALIZER(name) \
    309 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    310 
    311 #ifdef PMAP_CACHE_VIPT
    312 static struct evcnt pmap_ev_vac_color_new =
    313    PMAP_EVCNT_INITIALIZER("new page color");
    314 static struct evcnt pmap_ev_vac_color_reuse =
    315    PMAP_EVCNT_INITIALIZER("ok first page color");
    316 static struct evcnt pmap_ev_vac_color_ok =
    317    PMAP_EVCNT_INITIALIZER("ok page color");
    318 static struct evcnt pmap_ev_vac_color_blind =
    319    PMAP_EVCNT_INITIALIZER("blind page color");
    320 static struct evcnt pmap_ev_vac_color_change =
    321    PMAP_EVCNT_INITIALIZER("change page color");
    322 static struct evcnt pmap_ev_vac_color_erase =
    323    PMAP_EVCNT_INITIALIZER("erase page color");
    324 static struct evcnt pmap_ev_vac_color_none =
    325    PMAP_EVCNT_INITIALIZER("no page color");
    326 static struct evcnt pmap_ev_vac_color_restore =
    327    PMAP_EVCNT_INITIALIZER("restore page color");
    328 
    329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    337 #endif
    338 
    339 static struct evcnt pmap_ev_mappings =
    340    PMAP_EVCNT_INITIALIZER("pages mapped");
    341 static struct evcnt pmap_ev_unmappings =
    342    PMAP_EVCNT_INITIALIZER("pages unmapped");
    343 static struct evcnt pmap_ev_remappings =
    344    PMAP_EVCNT_INITIALIZER("pages remapped");
    345 
    346 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    347 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    348 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    349 
    350 static struct evcnt pmap_ev_kernel_mappings =
    351    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    352 static struct evcnt pmap_ev_kernel_unmappings =
    353    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    354 static struct evcnt pmap_ev_kernel_remappings =
    355    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    356 
    357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    359 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    360 
    361 static struct evcnt pmap_ev_kenter_mappings =
    362    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    363 static struct evcnt pmap_ev_kenter_unmappings =
    364    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    365 static struct evcnt pmap_ev_kenter_remappings =
    366    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    367 static struct evcnt pmap_ev_pt_mappings =
    368    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    369 
    370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    373 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    374 
    375 #ifdef PMAP_CACHE_VIPT
    376 static struct evcnt pmap_ev_exec_mappings =
    377    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    378 static struct evcnt pmap_ev_exec_cached =
    379    PMAP_EVCNT_INITIALIZER("exec pages cached");
    380 
    381 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    382 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    383 
    384 static struct evcnt pmap_ev_exec_synced =
    385    PMAP_EVCNT_INITIALIZER("exec pages synced");
    386 static struct evcnt pmap_ev_exec_synced_map =
    387    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    388 static struct evcnt pmap_ev_exec_synced_unmap =
    389    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    390 static struct evcnt pmap_ev_exec_synced_remap =
    391    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    392 static struct evcnt pmap_ev_exec_synced_clearbit =
    393    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    394 static struct evcnt pmap_ev_exec_synced_kremove =
    395    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    396 
    397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    402 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    403 
    404 static struct evcnt pmap_ev_exec_discarded_unmap =
    405    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    406 static struct evcnt pmap_ev_exec_discarded_zero =
    407    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    408 static struct evcnt pmap_ev_exec_discarded_copy =
    409    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    410 static struct evcnt pmap_ev_exec_discarded_page_protect =
    411    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    412 static struct evcnt pmap_ev_exec_discarded_clearbit =
    413    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    414 static struct evcnt pmap_ev_exec_discarded_kremove =
    415    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    416 
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    422 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    423 #endif /* PMAP_CACHE_VIPT */
    424 
    425 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    426 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    427 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    428 
    429 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    430 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    431 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    432 
    433 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    434 #else
    435 #define	PMAPCOUNT(x)	((void)0)
    436 #endif
    437 
    438 /*
    439  * pmap copy/zero page, and mem(5) hook point
    440  */
    441 static pt_entry_t *csrc_pte, *cdst_pte;
    442 static vaddr_t csrcp, cdstp;
    443 vaddr_t memhook;			/* used by mem.c */
    444 kmutex_t memlock;			/* used by mem.c */
    445 extern void *msgbufaddr;
    446 int pmap_kmpages;
    447 /*
    448  * Flag to indicate if pmap_init() has done its thing
    449  */
    450 bool pmap_initialized;
    451 
    452 /*
    453  * Misc. locking data structures
    454  */
    455 
    456 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    457 static struct lock pmap_main_lock;
    458 
    459 #define PMAP_MAP_TO_HEAD_LOCK() \
    460      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    461 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    462      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    463 #define PMAP_HEAD_TO_MAP_LOCK() \
    464      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    465 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    466      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    467 #else
    468 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    469 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    470 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    471 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    472 #endif
    473 
    474 #define	pmap_acquire_pmap_lock(pm)			\
    475 	do {						\
    476 		if ((pm) != pmap_kernel())		\
    477 			mutex_enter(&(pm)->pm_lock);	\
    478 	} while (/*CONSTCOND*/0)
    479 
    480 #define	pmap_release_pmap_lock(pm)			\
    481 	do {						\
    482 		if ((pm) != pmap_kernel())		\
    483 			mutex_exit(&(pm)->pm_lock);	\
    484 	} while (/*CONSTCOND*/0)
    485 
    486 
    487 /*
    488  * Metadata for L1 translation tables.
    489  */
    490 struct l1_ttable {
    491 	/* Entry on the L1 Table list */
    492 	SLIST_ENTRY(l1_ttable) l1_link;
    493 
    494 	/* Entry on the L1 Least Recently Used list */
    495 	TAILQ_ENTRY(l1_ttable) l1_lru;
    496 
    497 	/* Track how many domains are allocated from this L1 */
    498 	volatile u_int l1_domain_use_count;
    499 
    500 	/*
    501 	 * A free-list of domain numbers for this L1.
    502 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    503 	 * is slow on ARM.
    504 	 */
    505 	u_int8_t l1_domain_first;
    506 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    507 
    508 	/* Physical address of this L1 page table */
    509 	paddr_t l1_physaddr;
    510 
    511 	/* KVA of this L1 page table */
    512 	pd_entry_t *l1_kva;
    513 };
    514 
    515 /*
    516  * Convert a virtual address into its L1 table index. That is, the
    517  * index used to locate the L2 descriptor table pointer in an L1 table.
    518  * This is basically used to index l1->l1_kva[].
    519  *
    520  * Each L2 descriptor table represents 1MB of VA space.
    521  */
    522 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    523 
    524 /*
    525  * L1 Page Tables are tracked using a Least Recently Used list.
    526  *  - New L1s are allocated from the HEAD.
    527  *  - Freed L1s are added to the TAIl.
    528  *  - Recently accessed L1s (where an 'access' is some change to one of
    529  *    the userland pmaps which owns this L1) are moved to the TAIL.
    530  */
    531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    532 static struct simplelock l1_lru_lock;
    533 
    534 /*
    535  * A list of all L1 tables
    536  */
    537 static SLIST_HEAD(, l1_ttable) l1_list;
    538 
    539 /*
    540  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    541  *
    542  * This is normally 16MB worth L2 page descriptors for any given pmap.
    543  * Reference counts are maintained for L2 descriptors so they can be
    544  * freed when empty.
    545  */
    546 struct l2_dtable {
    547 	/* The number of L2 page descriptors allocated to this l2_dtable */
    548 	u_int l2_occupancy;
    549 
    550 	/* List of L2 page descriptors */
    551 	struct l2_bucket {
    552 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    553 		paddr_t l2b_phys;	/* Physical address of same */
    554 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    555 		u_short l2b_occupancy;	/* How many active descriptors */
    556 	} l2_bucket[L2_BUCKET_SIZE];
    557 };
    558 
    559 /*
    560  * Given an L1 table index, calculate the corresponding l2_dtable index
    561  * and bucket index within the l2_dtable.
    562  */
    563 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    564 				 (L2_SIZE - 1))
    565 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    566 
    567 /*
    568  * Given a virtual address, this macro returns the
    569  * virtual address required to drop into the next L2 bucket.
    570  */
    571 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    572 
    573 /*
    574  * L2 allocation.
    575  */
    576 #define	pmap_alloc_l2_dtable()		\
    577 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    578 #define	pmap_free_l2_dtable(l2)		\
    579 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    580 #define pmap_alloc_l2_ptp(pap)		\
    581 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    582 	    PR_NOWAIT, (pap)))
    583 
    584 /*
    585  * We try to map the page tables write-through, if possible.  However, not
    586  * all CPUs have a write-through cache mode, so on those we have to sync
    587  * the cache when we frob page tables.
    588  *
    589  * We try to evaluate this at compile time, if possible.  However, it's
    590  * not always possible to do that, hence this run-time var.
    591  */
    592 int	pmap_needs_pte_sync;
    593 
    594 /*
    595  * Real definition of pv_entry.
    596  */
    597 struct pv_entry {
    598 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    599 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    600 	vaddr_t		pv_va;          /* virtual address for mapping */
    601 	u_int		pv_flags;       /* flags */
    602 };
    603 
    604 /*
    605  * Macro to determine if a mapping might be resident in the
    606  * instruction cache and/or TLB
    607  */
    608 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    609 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    610 
    611 /*
    612  * Macro to determine if a mapping might be resident in the
    613  * data cache and/or TLB
    614  */
    615 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    616 
    617 /*
    618  * Local prototypes
    619  */
    620 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    621 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    622 			    pt_entry_t **);
    623 static bool		pmap_is_current(pmap_t);
    624 static bool		pmap_is_cached(pmap_t);
    625 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    626 			    pmap_t, vaddr_t, u_int);
    627 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    628 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    629 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    630 			    u_int, u_int);
    631 
    632 static void		pmap_pinit(pmap_t);
    633 static int		pmap_pmap_ctor(void *, void *, int);
    634 
    635 static void		pmap_alloc_l1(pmap_t);
    636 static void		pmap_free_l1(pmap_t);
    637 static void		pmap_use_l1(pmap_t);
    638 
    639 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    640 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    641 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    642 static int		pmap_l2ptp_ctor(void *, void *, int);
    643 static int		pmap_l2dtable_ctor(void *, void *, int);
    644 
    645 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    646 #ifdef PMAP_CACHE_VIVT
    647 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    648 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    649 #endif
    650 
    651 static void		pmap_clearbit(struct vm_page *, u_int);
    652 #ifdef PMAP_CACHE_VIVT
    653 static int		pmap_clean_page(struct pv_entry *, bool);
    654 #endif
    655 #ifdef PMAP_CACHE_VIPT
    656 static void		pmap_syncicache_page(struct vm_page *);
    657 static void		pmap_flush_page(struct vm_page *, bool);
    658 #endif
    659 static void		pmap_page_remove(struct vm_page *);
    660 
    661 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    662 static vaddr_t		kernel_pt_lookup(paddr_t);
    663 
    664 
    665 /*
    666  * External function prototypes
    667  */
    668 extern void bzero_page(vaddr_t);
    669 extern void bcopy_page(vaddr_t, vaddr_t);
    670 
    671 /*
    672  * Misc variables
    673  */
    674 vaddr_t virtual_avail;
    675 vaddr_t virtual_end;
    676 vaddr_t pmap_curmaxkvaddr;
    677 
    678 vaddr_t avail_start;
    679 vaddr_t avail_end;
    680 
    681 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    682 pv_addr_t kernelpages;
    683 pv_addr_t kernel_l1pt;
    684 pv_addr_t systempage;
    685 
    686 /* Function to set the debug level of the pmap code */
    687 
    688 #ifdef PMAP_DEBUG
    689 void
    690 pmap_debug(int level)
    691 {
    692 	pmap_debug_level = level;
    693 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    694 }
    695 #endif	/* PMAP_DEBUG */
    696 
    697 /*
    698  * A bunch of routines to conditionally flush the caches/TLB depending
    699  * on whether the specified pmap actually needs to be flushed at any
    700  * given time.
    701  */
    702 static inline void
    703 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    704 {
    705 
    706 	if (pm->pm_cstate.cs_tlb_id)
    707 		cpu_tlb_flushID_SE(va);
    708 }
    709 
    710 static inline void
    711 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    712 {
    713 
    714 	if (pm->pm_cstate.cs_tlb_d)
    715 		cpu_tlb_flushD_SE(va);
    716 }
    717 
    718 static inline void
    719 pmap_tlb_flushID(pmap_t pm)
    720 {
    721 
    722 	if (pm->pm_cstate.cs_tlb_id) {
    723 		cpu_tlb_flushID();
    724 		pm->pm_cstate.cs_tlb = 0;
    725 	}
    726 }
    727 
    728 static inline void
    729 pmap_tlb_flushD(pmap_t pm)
    730 {
    731 
    732 	if (pm->pm_cstate.cs_tlb_d) {
    733 		cpu_tlb_flushD();
    734 		pm->pm_cstate.cs_tlb_d = 0;
    735 	}
    736 }
    737 
    738 #ifdef PMAP_CACHE_VIVT
    739 static inline void
    740 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    741 {
    742 	if (pm->pm_cstate.cs_cache_id) {
    743 		cpu_idcache_wbinv_range(va, len);
    744 	}
    745 }
    746 
    747 static inline void
    748 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    749     bool do_inv, bool rd_only)
    750 {
    751 
    752 	if (pm->pm_cstate.cs_cache_d) {
    753 		if (do_inv) {
    754 			if (rd_only)
    755 				cpu_dcache_inv_range(va, len);
    756 			else
    757 				cpu_dcache_wbinv_range(va, len);
    758 		} else
    759 		if (!rd_only)
    760 			cpu_dcache_wb_range(va, len);
    761 	}
    762 }
    763 
    764 static inline void
    765 pmap_idcache_wbinv_all(pmap_t pm)
    766 {
    767 	if (pm->pm_cstate.cs_cache_id) {
    768 		cpu_idcache_wbinv_all();
    769 		pm->pm_cstate.cs_cache = 0;
    770 	}
    771 }
    772 
    773 static inline void
    774 pmap_dcache_wbinv_all(pmap_t pm)
    775 {
    776 	if (pm->pm_cstate.cs_cache_d) {
    777 		cpu_dcache_wbinv_all();
    778 		pm->pm_cstate.cs_cache_d = 0;
    779 	}
    780 }
    781 #endif /* PMAP_CACHE_VIVT */
    782 
    783 static inline bool
    784 pmap_is_current(pmap_t pm)
    785 {
    786 
    787 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    788 		return true;
    789 
    790 	return false;
    791 }
    792 
    793 static inline bool
    794 pmap_is_cached(pmap_t pm)
    795 {
    796 
    797 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    798 	    pmap_recent_user == pm)
    799 		return (true);
    800 
    801 	return false;
    802 }
    803 
    804 /*
    805  * PTE_SYNC_CURRENT:
    806  *
    807  *     Make sure the pte is written out to RAM.
    808  *     We need to do this for one of two cases:
    809  *       - We're dealing with the kernel pmap
    810  *       - There is no pmap active in the cache/tlb.
    811  *       - The specified pmap is 'active' in the cache/tlb.
    812  */
    813 #ifdef PMAP_INCLUDE_PTE_SYNC
    814 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    815 do {					\
    816 	if (PMAP_NEEDS_PTE_SYNC && 	\
    817 	    pmap_is_cached(pm))		\
    818 		PTE_SYNC(ptep);		\
    819 } while (/*CONSTCOND*/0)
    820 #else
    821 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    822 #endif
    823 
    824 /*
    825  * main pv_entry manipulation functions:
    826  *   pmap_enter_pv: enter a mapping onto a vm_page list
    827  *   pmap_remove_pv: remove a mappiing from a vm_page list
    828  *
    829  * NOTE: pmap_enter_pv expects to lock the pvh itself
    830  *       pmap_remove_pv expects te caller to lock the pvh before calling
    831  */
    832 
    833 /*
    834  * pmap_enter_pv: enter a mapping onto a vm_page lst
    835  *
    836  * => caller should hold the proper lock on pmap_main_lock
    837  * => caller should have pmap locked
    838  * => we will gain the lock on the vm_page and allocate the new pv_entry
    839  * => caller should adjust ptp's wire_count before calling
    840  * => caller should not adjust pmap's wire_count
    841  */
    842 static void
    843 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    844     vaddr_t va, u_int flags)
    845 {
    846 	struct pv_entry **pvp;
    847 
    848 	NPDEBUG(PDB_PVDUMP,
    849 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    850 
    851 	pve->pv_pmap = pm;
    852 	pve->pv_va = va;
    853 	pve->pv_flags = flags;
    854 
    855 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    856 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
    857 #ifdef PMAP_CACHE_VIPT
    858 	/*
    859 	 * Insert unmanaged entries, writeable first, at the head of
    860 	 * the pv list.
    861 	 */
    862 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    863 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    864 			pvp = &SLIST_NEXT(*pvp, pv_link);
    865 	} else if ((flags & PVF_WRITE) == 0) {
    866 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    867 			pvp = &SLIST_NEXT(*pvp, pv_link);
    868 	}
    869 #endif
    870 	SLIST_NEXT(pve, pv_link) = *pvp;		/* add to ... */
    871 	*pvp = pve;				/* ... locked list */
    872 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    873 #ifdef PMAP_CACHE_VIPT
    874 	if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    875 		pg->mdpage.pvh_attrs |= PVF_KMOD;
    876 	if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    877 		pg->mdpage.pvh_attrs |= PVF_DIRTY;
    878 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
    879 #endif
    880 	if (pm == pmap_kernel()) {
    881 		PMAPCOUNT(kernel_mappings);
    882 		if (flags & PVF_WRITE)
    883 			pg->mdpage.krw_mappings++;
    884 		else
    885 			pg->mdpage.kro_mappings++;
    886 	} else
    887 	if (flags & PVF_WRITE)
    888 		pg->mdpage.urw_mappings++;
    889 	else
    890 		pg->mdpage.uro_mappings++;
    891 
    892 #ifdef PMAP_CACHE_VIPT
    893 	/*
    894 	 * If this is an exec mapping and its the first exec mapping
    895 	 * for this page, make sure to sync the I-cache.
    896 	 */
    897 	if (PV_IS_EXEC_P(flags)) {
    898 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    899 			pmap_syncicache_page(pg);
    900 			PMAPCOUNT(exec_synced_map);
    901 		}
    902 		PMAPCOUNT(exec_mappings);
    903 	}
    904 #endif
    905 
    906 	PMAPCOUNT(mappings);
    907 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    908 
    909 	if (pve->pv_flags & PVF_WIRED)
    910 		++pm->pm_stats.wired_count;
    911 }
    912 
    913 /*
    914  *
    915  * pmap_find_pv: Find a pv entry
    916  *
    917  * => caller should hold lock on vm_page
    918  */
    919 static inline struct pv_entry *
    920 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    921 {
    922 	struct pv_entry *pv;
    923 
    924 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
    925 		if (pm == pv->pv_pmap && va == pv->pv_va)
    926 			break;
    927 	}
    928 
    929 	return (pv);
    930 }
    931 
    932 /*
    933  * pmap_remove_pv: try to remove a mapping from a pv_list
    934  *
    935  * => caller should hold proper lock on pmap_main_lock
    936  * => pmap should be locked
    937  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    938  * => caller should adjust ptp's wire_count and free PTP if needed
    939  * => caller should NOT adjust pmap's wire_count
    940  * => we return the removed pve
    941  */
    942 static struct pv_entry *
    943 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    944 {
    945 	struct pv_entry *pve, **prevptr;
    946 
    947 	NPDEBUG(PDB_PVDUMP,
    948 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    949 
    950 	prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
    951 	pve = *prevptr;
    952 
    953 	while (pve) {
    954 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    955 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    956 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    957 			if (pve->pv_flags & PVF_WIRED) {
    958 				if (skip_wired)
    959 					return (NULL);
    960 				--pm->pm_stats.wired_count;
    961 			}
    962 			*prevptr = SLIST_NEXT(pve, pv_link);	/* remove it! */
    963 			if (pm == pmap_kernel()) {
    964 				PMAPCOUNT(kernel_unmappings);
    965 				if (pve->pv_flags & PVF_WRITE)
    966 					pg->mdpage.krw_mappings--;
    967 				else
    968 					pg->mdpage.kro_mappings--;
    969 			} else
    970 			if (pve->pv_flags & PVF_WRITE)
    971 				pg->mdpage.urw_mappings--;
    972 			else
    973 				pg->mdpage.uro_mappings--;
    974 
    975 			PMAPCOUNT(unmappings);
    976 #ifdef PMAP_CACHE_VIPT
    977 			if (!(pve->pv_flags & PVF_WRITE))
    978 				break;
    979 			/*
    980 			 * If this page has had an exec mapping, then if
    981 			 * this was the last mapping, discard the contents,
    982 			 * otherwise sync the i-cache for this page.
    983 			 */
    984 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    985 				if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
    986 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
    987 					PMAPCOUNT(exec_discarded_unmap);
    988 				} else {
    989 					pmap_syncicache_page(pg);
    990 					PMAPCOUNT(exec_synced_unmap);
    991 				}
    992 			}
    993 #endif /* PMAP_CACHE_VIPT */
    994 			break;
    995 		}
    996 		prevptr = &SLIST_NEXT(pve, pv_link);	/* previous pointer */
    997 		pve = *prevptr;				/* advance */
    998 	}
    999 
   1000 #ifdef PMAP_CACHE_VIPT
   1001 	/*
   1002 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1003 	 * clear the KMOD attribute from the page.
   1004 	 */
   1005 	if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
   1006 	    || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1007 		pg->mdpage.pvh_attrs &= ~PVF_KMOD;
   1008 
   1009 	/*
   1010 	 * If this was a writeable page and there are no more writeable
   1011 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1012 	 * the contents to memory.
   1013 	 */
   1014 	if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
   1015 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1016 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1017 #endif /* PMAP_CACHE_VIPT */
   1018 
   1019 	return(pve);				/* return removed pve */
   1020 }
   1021 
   1022 /*
   1023  *
   1024  * pmap_modify_pv: Update pv flags
   1025  *
   1026  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1027  * => caller should NOT adjust pmap's wire_count
   1028  * => caller must call pmap_vac_me_harder() if writable status of a page
   1029  *    may have changed.
   1030  * => we return the old flags
   1031  *
   1032  * Modify a physical-virtual mapping in the pv table
   1033  */
   1034 static u_int
   1035 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
   1036     u_int clr_mask, u_int set_mask)
   1037 {
   1038 	struct pv_entry *npv;
   1039 	u_int flags, oflags;
   1040 
   1041 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1042 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1043 
   1044 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1045 		return (0);
   1046 
   1047 	NPDEBUG(PDB_PVDUMP,
   1048 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1049 
   1050 	/*
   1051 	 * There is at least one VA mapping this page.
   1052 	 */
   1053 
   1054 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1055 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1056 #ifdef PMAP_CACHE_VIPT
   1057 		if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1058 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1059 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1060 #endif
   1061 	}
   1062 
   1063 	oflags = npv->pv_flags;
   1064 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1065 
   1066 	if ((flags ^ oflags) & PVF_WIRED) {
   1067 		if (flags & PVF_WIRED)
   1068 			++pm->pm_stats.wired_count;
   1069 		else
   1070 			--pm->pm_stats.wired_count;
   1071 	}
   1072 
   1073 	if ((flags ^ oflags) & PVF_WRITE) {
   1074 		if (pm == pmap_kernel()) {
   1075 			if (flags & PVF_WRITE) {
   1076 				pg->mdpage.krw_mappings++;
   1077 				pg->mdpage.kro_mappings--;
   1078 			} else {
   1079 				pg->mdpage.kro_mappings++;
   1080 				pg->mdpage.krw_mappings--;
   1081 			}
   1082 		} else
   1083 		if (flags & PVF_WRITE) {
   1084 			pg->mdpage.urw_mappings++;
   1085 			pg->mdpage.uro_mappings--;
   1086 		} else {
   1087 			pg->mdpage.uro_mappings++;
   1088 			pg->mdpage.urw_mappings--;
   1089 		}
   1090 	}
   1091 #ifdef PMAP_CACHE_VIPT
   1092 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1093 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1094 	/*
   1095 	 * We have two cases here: the first is from enter_pv (new exec
   1096 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1097 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1098 	 * to do what pmap_remove_pv would do.
   1099 	 */
   1100 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1101 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1102 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1103 		pmap_syncicache_page(pg);
   1104 		PMAPCOUNT(exec_synced_remap);
   1105 	}
   1106 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1107 #endif
   1108 
   1109 	PMAPCOUNT(remappings);
   1110 
   1111 	return (oflags);
   1112 }
   1113 
   1114 /*
   1115  * Allocate an L1 translation table for the specified pmap.
   1116  * This is called at pmap creation time.
   1117  */
   1118 static void
   1119 pmap_alloc_l1(pmap_t pm)
   1120 {
   1121 	struct l1_ttable *l1;
   1122 	u_int8_t domain;
   1123 
   1124 	/*
   1125 	 * Remove the L1 at the head of the LRU list
   1126 	 */
   1127 	simple_lock(&l1_lru_lock);
   1128 	l1 = TAILQ_FIRST(&l1_lru_list);
   1129 	KDASSERT(l1 != NULL);
   1130 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1131 
   1132 	/*
   1133 	 * Pick the first available domain number, and update
   1134 	 * the link to the next number.
   1135 	 */
   1136 	domain = l1->l1_domain_first;
   1137 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1138 
   1139 	/*
   1140 	 * If there are still free domain numbers in this L1,
   1141 	 * put it back on the TAIL of the LRU list.
   1142 	 */
   1143 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1144 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1145 
   1146 	simple_unlock(&l1_lru_lock);
   1147 
   1148 	/*
   1149 	 * Fix up the relevant bits in the pmap structure
   1150 	 */
   1151 	pm->pm_l1 = l1;
   1152 	pm->pm_domain = domain;
   1153 }
   1154 
   1155 /*
   1156  * Free an L1 translation table.
   1157  * This is called at pmap destruction time.
   1158  */
   1159 static void
   1160 pmap_free_l1(pmap_t pm)
   1161 {
   1162 	struct l1_ttable *l1 = pm->pm_l1;
   1163 
   1164 	simple_lock(&l1_lru_lock);
   1165 
   1166 	/*
   1167 	 * If this L1 is currently on the LRU list, remove it.
   1168 	 */
   1169 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1170 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1171 
   1172 	/*
   1173 	 * Free up the domain number which was allocated to the pmap
   1174 	 */
   1175 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1176 	l1->l1_domain_first = pm->pm_domain;
   1177 	l1->l1_domain_use_count--;
   1178 
   1179 	/*
   1180 	 * The L1 now must have at least 1 free domain, so add
   1181 	 * it back to the LRU list. If the use count is zero,
   1182 	 * put it at the head of the list, otherwise it goes
   1183 	 * to the tail.
   1184 	 */
   1185 	if (l1->l1_domain_use_count == 0)
   1186 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1187 	else
   1188 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1189 
   1190 	simple_unlock(&l1_lru_lock);
   1191 }
   1192 
   1193 static inline void
   1194 pmap_use_l1(pmap_t pm)
   1195 {
   1196 	struct l1_ttable *l1;
   1197 
   1198 	/*
   1199 	 * Do nothing if we're in interrupt context.
   1200 	 * Access to an L1 by the kernel pmap must not affect
   1201 	 * the LRU list.
   1202 	 */
   1203 	if (cpu_intr_p() || pm == pmap_kernel())
   1204 		return;
   1205 
   1206 	l1 = pm->pm_l1;
   1207 
   1208 	/*
   1209 	 * If the L1 is not currently on the LRU list, just return
   1210 	 */
   1211 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1212 		return;
   1213 
   1214 	simple_lock(&l1_lru_lock);
   1215 
   1216 	/*
   1217 	 * Check the use count again, now that we've acquired the lock
   1218 	 */
   1219 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1220 		simple_unlock(&l1_lru_lock);
   1221 		return;
   1222 	}
   1223 
   1224 	/*
   1225 	 * Move the L1 to the back of the LRU list
   1226 	 */
   1227 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1228 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1229 
   1230 	simple_unlock(&l1_lru_lock);
   1231 }
   1232 
   1233 /*
   1234  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1235  *
   1236  * Free an L2 descriptor table.
   1237  */
   1238 static inline void
   1239 #ifndef PMAP_INCLUDE_PTE_SYNC
   1240 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1241 #else
   1242 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1243 #endif
   1244 {
   1245 #ifdef PMAP_INCLUDE_PTE_SYNC
   1246 #ifdef PMAP_CACHE_VIVT
   1247 	/*
   1248 	 * Note: With a write-back cache, we may need to sync this
   1249 	 * L2 table before re-using it.
   1250 	 * This is because it may have belonged to a non-current
   1251 	 * pmap, in which case the cache syncs would have been
   1252 	 * skipped for the pages that were being unmapped. If the
   1253 	 * L2 table were then to be immediately re-allocated to
   1254 	 * the *current* pmap, it may well contain stale mappings
   1255 	 * which have not yet been cleared by a cache write-back
   1256 	 * and so would still be visible to the mmu.
   1257 	 */
   1258 	if (need_sync)
   1259 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1260 #endif /* PMAP_CACHE_VIVT */
   1261 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1262 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1263 }
   1264 
   1265 /*
   1266  * Returns a pointer to the L2 bucket associated with the specified pmap
   1267  * and VA, or NULL if no L2 bucket exists for the address.
   1268  */
   1269 static inline struct l2_bucket *
   1270 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1271 {
   1272 	struct l2_dtable *l2;
   1273 	struct l2_bucket *l2b;
   1274 	u_short l1idx;
   1275 
   1276 	l1idx = L1_IDX(va);
   1277 
   1278 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1279 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1280 		return (NULL);
   1281 
   1282 	return (l2b);
   1283 }
   1284 
   1285 /*
   1286  * Returns a pointer to the L2 bucket associated with the specified pmap
   1287  * and VA.
   1288  *
   1289  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1290  * bucket/page table in place.
   1291  *
   1292  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1293  * increment the bucket occupancy counter appropriately *before*
   1294  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1295  * the bucket/page in the meantime.
   1296  */
   1297 static struct l2_bucket *
   1298 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1299 {
   1300 	struct l2_dtable *l2;
   1301 	struct l2_bucket *l2b;
   1302 	u_short l1idx;
   1303 
   1304 	l1idx = L1_IDX(va);
   1305 
   1306 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1307 		/*
   1308 		 * No mapping at this address, as there is
   1309 		 * no entry in the L1 table.
   1310 		 * Need to allocate a new l2_dtable.
   1311 		 */
   1312 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1313 			return (NULL);
   1314 
   1315 		/*
   1316 		 * Link it into the parent pmap
   1317 		 */
   1318 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1319 	}
   1320 
   1321 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1322 
   1323 	/*
   1324 	 * Fetch pointer to the L2 page table associated with the address.
   1325 	 */
   1326 	if (l2b->l2b_kva == NULL) {
   1327 		pt_entry_t *ptep;
   1328 
   1329 		/*
   1330 		 * No L2 page table has been allocated. Chances are, this
   1331 		 * is because we just allocated the l2_dtable, above.
   1332 		 */
   1333 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1334 			/*
   1335 			 * Oops, no more L2 page tables available at this
   1336 			 * time. We may need to deallocate the l2_dtable
   1337 			 * if we allocated a new one above.
   1338 			 */
   1339 			if (l2->l2_occupancy == 0) {
   1340 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1341 				pmap_free_l2_dtable(l2);
   1342 			}
   1343 			return (NULL);
   1344 		}
   1345 
   1346 		l2->l2_occupancy++;
   1347 		l2b->l2b_kva = ptep;
   1348 		l2b->l2b_l1idx = l1idx;
   1349 	}
   1350 
   1351 	return (l2b);
   1352 }
   1353 
   1354 /*
   1355  * One or more mappings in the specified L2 descriptor table have just been
   1356  * invalidated.
   1357  *
   1358  * Garbage collect the metadata and descriptor table itself if necessary.
   1359  *
   1360  * The pmap lock must be acquired when this is called (not necessary
   1361  * for the kernel pmap).
   1362  */
   1363 static void
   1364 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1365 {
   1366 	struct l2_dtable *l2;
   1367 	pd_entry_t *pl1pd, l1pd;
   1368 	pt_entry_t *ptep;
   1369 	u_short l1idx;
   1370 
   1371 	KDASSERT(count <= l2b->l2b_occupancy);
   1372 
   1373 	/*
   1374 	 * Update the bucket's reference count according to how many
   1375 	 * PTEs the caller has just invalidated.
   1376 	 */
   1377 	l2b->l2b_occupancy -= count;
   1378 
   1379 	/*
   1380 	 * Note:
   1381 	 *
   1382 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1383 	 * as that would require checking all Level 1 page tables and
   1384 	 * removing any references to the Level 2 page table. See also the
   1385 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1386 	 *
   1387 	 * We make do with just invalidating the mapping in the L2 table.
   1388 	 *
   1389 	 * This isn't really a big deal in practice and, in fact, leads
   1390 	 * to a performance win over time as we don't need to continually
   1391 	 * alloc/free.
   1392 	 */
   1393 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1394 		return;
   1395 
   1396 	/*
   1397 	 * There are no more valid mappings in this level 2 page table.
   1398 	 * Go ahead and NULL-out the pointer in the bucket, then
   1399 	 * free the page table.
   1400 	 */
   1401 	l1idx = l2b->l2b_l1idx;
   1402 	ptep = l2b->l2b_kva;
   1403 	l2b->l2b_kva = NULL;
   1404 
   1405 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1406 
   1407 	/*
   1408 	 * If the L1 slot matches the pmap's domain
   1409 	 * number, then invalidate it.
   1410 	 */
   1411 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1412 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1413 		*pl1pd = 0;
   1414 		PTE_SYNC(pl1pd);
   1415 	}
   1416 
   1417 	/*
   1418 	 * Release the L2 descriptor table back to the pool cache.
   1419 	 */
   1420 #ifndef PMAP_INCLUDE_PTE_SYNC
   1421 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1422 #else
   1423 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1424 #endif
   1425 
   1426 	/*
   1427 	 * Update the reference count in the associated l2_dtable
   1428 	 */
   1429 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1430 	if (--l2->l2_occupancy > 0)
   1431 		return;
   1432 
   1433 	/*
   1434 	 * There are no more valid mappings in any of the Level 1
   1435 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1436 	 * the pointer in the parent pmap and free the l2_dtable.
   1437 	 */
   1438 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1439 	pmap_free_l2_dtable(l2);
   1440 }
   1441 
   1442 /*
   1443  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1444  * structures.
   1445  */
   1446 static int
   1447 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1448 {
   1449 #ifndef PMAP_INCLUDE_PTE_SYNC
   1450 	struct l2_bucket *l2b;
   1451 	pt_entry_t *ptep, pte;
   1452 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1453 
   1454 	/*
   1455 	 * The mappings for these page tables were initially made using
   1456 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1457 	 * mode will not be right for page table mappings. To avoid
   1458 	 * polluting the pmap_kenter_pa() code with a special case for
   1459 	 * page tables, we simply fix up the cache-mode here if it's not
   1460 	 * correct.
   1461 	 */
   1462 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1463 	KDASSERT(l2b != NULL);
   1464 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1465 	pte = *ptep;
   1466 
   1467 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1468 		/*
   1469 		 * Page tables must have the cache-mode set to Write-Thru.
   1470 		 */
   1471 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1472 		PTE_SYNC(ptep);
   1473 		cpu_tlb_flushD_SE(va);
   1474 		cpu_cpwait();
   1475 	}
   1476 #endif
   1477 
   1478 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1479 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1480 	return (0);
   1481 }
   1482 
   1483 static int
   1484 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1485 {
   1486 
   1487 	memset(v, 0, sizeof(struct l2_dtable));
   1488 	return (0);
   1489 }
   1490 
   1491 static int
   1492 pmap_pmap_ctor(void *arg, void *v, int flags)
   1493 {
   1494 
   1495 	memset(v, 0, sizeof(struct pmap));
   1496 	return (0);
   1497 }
   1498 
   1499 static void
   1500 pmap_pinit(pmap_t pm)
   1501 {
   1502 	struct l2_bucket *l2b;
   1503 
   1504 	if (vector_page < KERNEL_BASE) {
   1505 		/*
   1506 		 * Map the vector page.
   1507 		 */
   1508 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1509 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1510 		pmap_update(pm);
   1511 
   1512 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1513 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1514 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1515 		    L1_C_DOM(pm->pm_domain);
   1516 	} else
   1517 		pm->pm_pl1vec = NULL;
   1518 }
   1519 
   1520 #ifdef PMAP_CACHE_VIVT
   1521 /*
   1522  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1523  * there is more than one mapping and at least one of them is writable.
   1524  * Since we purge the cache on every context switch, we only need to check for
   1525  * other mappings within the same pmap, or kernel_pmap.
   1526  * This function is also called when a page is unmapped, to possibly reenable
   1527  * caching on any remaining mappings.
   1528  *
   1529  * The code implements the following logic, where:
   1530  *
   1531  * KW = # of kernel read/write pages
   1532  * KR = # of kernel read only pages
   1533  * UW = # of user read/write pages
   1534  * UR = # of user read only pages
   1535  *
   1536  * KC = kernel mapping is cacheable
   1537  * UC = user mapping is cacheable
   1538  *
   1539  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1540  *             +---------------------------------------------
   1541  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1542  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1543  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1544  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1545  */
   1546 
   1547 static const int pmap_vac_flags[4][4] = {
   1548 	{-1,		0,		0,		PVF_KNC},
   1549 	{0,		0,		PVF_NC,		PVF_NC},
   1550 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1551 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1552 };
   1553 
   1554 static inline int
   1555 pmap_get_vac_flags(const struct vm_page *pg)
   1556 {
   1557 	int kidx, uidx;
   1558 
   1559 	kidx = 0;
   1560 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1561 		kidx |= 1;
   1562 	if (pg->mdpage.krw_mappings)
   1563 		kidx |= 2;
   1564 
   1565 	uidx = 0;
   1566 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1567 		uidx |= 1;
   1568 	if (pg->mdpage.urw_mappings)
   1569 		uidx |= 2;
   1570 
   1571 	return (pmap_vac_flags[uidx][kidx]);
   1572 }
   1573 
   1574 static inline void
   1575 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1576 {
   1577 	int nattr;
   1578 
   1579 	nattr = pmap_get_vac_flags(pg);
   1580 
   1581 	if (nattr < 0) {
   1582 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1583 		return;
   1584 	}
   1585 
   1586 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1587 		return;
   1588 
   1589 	if (pm == pmap_kernel())
   1590 		pmap_vac_me_kpmap(pg, pm, va);
   1591 	else
   1592 		pmap_vac_me_user(pg, pm, va);
   1593 
   1594 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1595 }
   1596 
   1597 static void
   1598 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1599 {
   1600 	u_int u_cacheable, u_entries;
   1601 	struct pv_entry *pv;
   1602 	pmap_t last_pmap = pm;
   1603 
   1604 	/*
   1605 	 * Pass one, see if there are both kernel and user pmaps for
   1606 	 * this page.  Calculate whether there are user-writable or
   1607 	 * kernel-writable pages.
   1608 	 */
   1609 	u_cacheable = 0;
   1610 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1611 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1612 			u_cacheable++;
   1613 	}
   1614 
   1615 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1616 
   1617 	/*
   1618 	 * We know we have just been updating a kernel entry, so if
   1619 	 * all user pages are already cacheable, then there is nothing
   1620 	 * further to do.
   1621 	 */
   1622 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1623 		return;
   1624 
   1625 	if (u_entries) {
   1626 		/*
   1627 		 * Scan over the list again, for each entry, if it
   1628 		 * might not be set correctly, call pmap_vac_me_user
   1629 		 * to recalculate the settings.
   1630 		 */
   1631 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1632 			/*
   1633 			 * We know kernel mappings will get set
   1634 			 * correctly in other calls.  We also know
   1635 			 * that if the pmap is the same as last_pmap
   1636 			 * then we've just handled this entry.
   1637 			 */
   1638 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1639 				continue;
   1640 
   1641 			/*
   1642 			 * If there are kernel entries and this page
   1643 			 * is writable but non-cacheable, then we can
   1644 			 * skip this entry also.
   1645 			 */
   1646 			if (pg->mdpage.k_mappings &&
   1647 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1648 			    (PVF_NC | PVF_WRITE))
   1649 				continue;
   1650 
   1651 			/*
   1652 			 * Similarly if there are no kernel-writable
   1653 			 * entries and the page is already
   1654 			 * read-only/cacheable.
   1655 			 */
   1656 			if (pg->mdpage.krw_mappings == 0 &&
   1657 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1658 				continue;
   1659 
   1660 			/*
   1661 			 * For some of the remaining cases, we know
   1662 			 * that we must recalculate, but for others we
   1663 			 * can't tell if they are correct or not, so
   1664 			 * we recalculate anyway.
   1665 			 */
   1666 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1667 		}
   1668 
   1669 		if (pg->mdpage.k_mappings == 0)
   1670 			return;
   1671 	}
   1672 
   1673 	pmap_vac_me_user(pg, pm, va);
   1674 }
   1675 
   1676 static void
   1677 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1678 {
   1679 	pmap_t kpmap = pmap_kernel();
   1680 	struct pv_entry *pv, *npv = NULL;
   1681 	struct l2_bucket *l2b;
   1682 	pt_entry_t *ptep, pte;
   1683 	u_int entries = 0;
   1684 	u_int writable = 0;
   1685 	u_int cacheable_entries = 0;
   1686 	u_int kern_cacheable = 0;
   1687 	u_int other_writable = 0;
   1688 
   1689 	/*
   1690 	 * Count mappings and writable mappings in this pmap.
   1691 	 * Include kernel mappings as part of our own.
   1692 	 * Keep a pointer to the first one.
   1693 	 */
   1694 	npv = NULL;
   1695 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1696 		/* Count mappings in the same pmap */
   1697 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1698 			if (entries++ == 0)
   1699 				npv = pv;
   1700 
   1701 			/* Cacheable mappings */
   1702 			if ((pv->pv_flags & PVF_NC) == 0) {
   1703 				cacheable_entries++;
   1704 				if (kpmap == pv->pv_pmap)
   1705 					kern_cacheable++;
   1706 			}
   1707 
   1708 			/* Writable mappings */
   1709 			if (pv->pv_flags & PVF_WRITE)
   1710 				++writable;
   1711 		} else
   1712 		if (pv->pv_flags & PVF_WRITE)
   1713 			other_writable = 1;
   1714 	}
   1715 
   1716 	/*
   1717 	 * Enable or disable caching as necessary.
   1718 	 * Note: the first entry might be part of the kernel pmap,
   1719 	 * so we can't assume this is indicative of the state of the
   1720 	 * other (maybe non-kpmap) entries.
   1721 	 */
   1722 	if ((entries > 1 && writable) ||
   1723 	    (entries > 0 && pm == kpmap && other_writable)) {
   1724 		if (cacheable_entries == 0)
   1725 			return;
   1726 
   1727 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1728 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1729 			    (pv->pv_flags & PVF_NC))
   1730 				continue;
   1731 
   1732 			pv->pv_flags |= PVF_NC;
   1733 
   1734 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1735 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1736 			pte = *ptep & ~L2_S_CACHE_MASK;
   1737 
   1738 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1739 			    l2pte_valid(pte)) {
   1740 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1741 #ifdef PMAP_CACHE_VIVT
   1742 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1743 					    pv->pv_va, PAGE_SIZE);
   1744 #endif
   1745 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1746 					    pv->pv_va);
   1747 				} else
   1748 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1749 #ifdef PMAP_CACHE_VIVT
   1750 					pmap_dcache_wb_range(pv->pv_pmap,
   1751 					    pv->pv_va, PAGE_SIZE, true,
   1752 					    (pv->pv_flags & PVF_WRITE) == 0);
   1753 #endif
   1754 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1755 					    pv->pv_va);
   1756 				}
   1757 			}
   1758 
   1759 			*ptep = pte;
   1760 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1761 		}
   1762 		cpu_cpwait();
   1763 	} else
   1764 	if (entries > cacheable_entries) {
   1765 		/*
   1766 		 * Turn cacheing back on for some pages.  If it is a kernel
   1767 		 * page, only do so if there are no other writable pages.
   1768 		 */
   1769 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1770 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1771 			    (kpmap != pv->pv_pmap || other_writable)))
   1772 				continue;
   1773 
   1774 			pv->pv_flags &= ~PVF_NC;
   1775 
   1776 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1777 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1778 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1779 
   1780 			if (l2pte_valid(pte)) {
   1781 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1782 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1783 					    pv->pv_va);
   1784 				} else
   1785 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1786 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1787 					    pv->pv_va);
   1788 				}
   1789 			}
   1790 
   1791 			*ptep = pte;
   1792 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1793 		}
   1794 	}
   1795 }
   1796 #endif
   1797 
   1798 #ifdef PMAP_CACHE_VIPT
   1799 /*
   1800  * For virtually indexed / physically tagged caches, what we have to worry
   1801  * about is illegal cache aliases.  To prevent this, we must ensure that
   1802  * virtual addresses that map the physical page use the same bits for those
   1803  * bits masked by "arm_cache_prefer_mask" (bits 12+).  If there is a conflict,
   1804  * all mappings of the page must be non-cached.
   1805  */
   1806 #if 0
   1807 static inline vaddr_t
   1808 pmap_check_sets(paddr_t pa)
   1809 {
   1810 	extern int arm_dcache_l2_nsets;
   1811 	int set, way;
   1812 	vaddr_t mask = 0;
   1813 	int v;
   1814 	pa |= 1;
   1815 	for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
   1816 		for (way = 0; way < 4; way++) {
   1817 			v = (way << 30) | (set << 5);
   1818 			asm("mcr	p15, 3, %0, c15, c2, 0" :: "r"(v));
   1819 			asm("mrc	p15, 3, %0, c15, c0, 0" : "=r"(v));
   1820 
   1821 			if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
   1822 				mask |= 1 << (set >> 7);
   1823 			}
   1824 		}
   1825 	}
   1826 	return mask;
   1827 }
   1828 #endif
   1829 static void
   1830 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1831 {
   1832 	struct pv_entry *pv;
   1833 	vaddr_t tst_mask;
   1834 	bool bad_alias;
   1835 	struct l2_bucket *l2b;
   1836 	pt_entry_t *ptep, pte, opte;
   1837 	const u_int
   1838 	    rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
   1839 	    ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
   1840 
   1841 	/* do we need to do anything? */
   1842 	if (arm_cache_prefer_mask == 0)
   1843 		return;
   1844 
   1845 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1846 	    pg, pm, va));
   1847 
   1848 #define popc4(x) \
   1849 	(((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
   1850 #if 0
   1851 	tst_mask = pmap_check_sets(pg->phys_addr);
   1852 	KASSERT(popc4(tst_mask) < 2);
   1853 #endif
   1854 
   1855 	KASSERT(!va || pm);
   1856 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1857 
   1858 	/* Already a conflict? */
   1859 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1860 		/* just an add, things are already non-cached */
   1861 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
   1862 		bad_alias = false;
   1863 		if (va) {
   1864 			PMAPCOUNT(vac_color_none);
   1865 			bad_alias = true;
   1866 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1867 			goto fixup;
   1868 		}
   1869 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1870 		/* the list can't be empty because it would be cachable */
   1871 		if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
   1872 			tst_mask = pg->mdpage.pvh_attrs;
   1873 		} else {
   1874 			KASSERT(pv);
   1875 			tst_mask = pv->pv_va;
   1876 			pv = SLIST_NEXT(pv, pv_link);
   1877 		}
   1878 		/*
   1879 		 * Only check for a bad alias if we have writable mappings.
   1880 		 */
   1881 		tst_mask &= arm_cache_prefer_mask;
   1882 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1883 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1884 				/* if there's a bad alias, stop checking. */
   1885 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1886 					bad_alias = true;
   1887 			}
   1888 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1889 			if (!bad_alias)
   1890 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1891 		} else {
   1892 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1893 		}
   1894 		/* If no conflicting colors, set everything back to cached */
   1895 		if (!bad_alias) {
   1896 #ifdef DEBUG
   1897 			if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1898 			    || ro_mappings < 2) {
   1899 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1900 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1901 			}
   1902 
   1903 #endif
   1904 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1905 			pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
   1906 			/*
   1907 			 * Restore DIRTY bit if page is modified
   1908 			 */
   1909 			if (pg->mdpage.pvh_attrs & PVF_DMOD)
   1910 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1911 			PMAPCOUNT(vac_color_restore);
   1912 		} else {
   1913 			KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1914 			KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1915 		}
   1916 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1917 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1918 	} else if (!va) {
   1919 		KASSERT(pmap_is_page_colored_p(pg));
   1920 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
   1921 		    || (pg->mdpage.pvh_attrs & PVF_DIRTY));
   1922 		if (rw_mappings == 0)
   1923 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1924 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1925 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1926 		return;
   1927 	} else if (!pmap_is_page_colored_p(pg)) {
   1928 		/* not colored so we just use its color */
   1929 		KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1930 		PMAPCOUNT(vac_color_new);
   1931 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1932 		pg->mdpage.pvh_attrs |= PVF_COLORED
   1933 		    | (va & arm_cache_prefer_mask)
   1934 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1935 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1936 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1937 		return;
   1938 	} else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1939 		bad_alias = false;
   1940 		if (rw_mappings > 0) {
   1941 			/*
   1942 			 * We now have writeable mappings and more than one
   1943 			 * readonly mapping, verify the colors don't clash
   1944 			 * and mark the page as writeable.
   1945 			 */
   1946 			if (ro_mappings > 1
   1947 			    && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0
   1948 			    && arm_cache_prefer_mask) {
   1949 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1950 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1951 					/* if there's a bad alias, stop checking. */
   1952 					if (((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0) {
   1953 						bad_alias = true;
   1954 						break;
   1955 					}
   1956 				}
   1957 			}
   1958 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1959 		}
   1960 		/* If no conflicting colors, set everything back to cached */
   1961 		if (!bad_alias) {
   1962 #ifdef DEBUG
   1963 			if (rw_mappings > 0
   1964 			    || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
   1965 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1966 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1967 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1968 			}
   1969 #endif
   1970 			if (SLIST_EMPTY(&pg->mdpage.pvh_list))
   1971 				PMAPCOUNT(vac_color_reuse);
   1972 			else
   1973 				PMAPCOUNT(vac_color_ok);
   1974 
   1975 			/* matching color, just return */
   1976 			KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1977 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1978 			return;
   1979 		}
   1980 		KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1981 		KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1982 
   1983 		/* color conflict.  evict from cache. */
   1984 
   1985 		pmap_flush_page(pg, true);
   1986 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   1987 		pg->mdpage.pvh_attrs |= PVF_NC;
   1988 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1989 		PMAPCOUNT(vac_color_erase);
   1990 	} else if (rw_mappings == 0
   1991 		   && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   1992 		KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
   1993 
   1994 		/*
   1995 		 * If the page has dirty cache lines, clean it.
   1996 		 */
   1997 		if (pg->mdpage.pvh_attrs & PVF_DIRTY)
   1998 			pmap_flush_page(pg, false);
   1999 
   2000 		/*
   2001 		 * If this is the first remapping (we know that there are no
   2002 		 * writeable mappings), then this is a simple color change.
   2003 		 * Otherwise this is a seconary r/o mapping, which means
   2004 		 * we don't have to do anything.
   2005 		 */
   2006 		if (ro_mappings == 1) {
   2007 			KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2008 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2009 			pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2010 			PMAPCOUNT(vac_color_change);
   2011 		} else {
   2012 			PMAPCOUNT(vac_color_blind);
   2013 		}
   2014 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2015 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2016 		return;
   2017 	} else {
   2018 		if (rw_mappings > 0)
   2019 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   2020 
   2021 		/* color conflict.  evict from cache. */
   2022 		pmap_flush_page(pg, true);
   2023 
   2024 		/* the list can't be empty because this was a enter/modify */
   2025 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2026 		if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2027 			KASSERT(pv);
   2028 			/*
   2029 			 * If there's only one mapped page, change color to the
   2030 			 * page's new color and return.  Restore the DIRTY bit
   2031 			 * that was erased by pmap_flush_page.
   2032 			 */
   2033 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2034 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2035 				pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2036 				if (pg->mdpage.pvh_attrs & PVF_DMOD)
   2037 					pg->mdpage.pvh_attrs |= PVF_DIRTY;
   2038 				PMAPCOUNT(vac_color_change);
   2039 				KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2040 				KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2041 				return;
   2042 			}
   2043 		}
   2044 		bad_alias = true;
   2045 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2046 		pg->mdpage.pvh_attrs |= PVF_NC;
   2047 		PMAPCOUNT(vac_color_erase);
   2048 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2049 	}
   2050 
   2051   fixup:
   2052 	KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2053 
   2054 	/*
   2055 	 * Turn cacheing on/off for all pages.
   2056 	 */
   2057 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2058 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2059 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2060 		opte = *ptep;
   2061 		pte = opte & ~L2_S_CACHE_MASK;
   2062 		if (bad_alias) {
   2063 			pv->pv_flags |= PVF_NC;
   2064 		} else {
   2065 			pv->pv_flags &= ~PVF_NC;
   2066 			pte |= pte_l2_s_cache_mode;
   2067 		}
   2068 
   2069 		if (opte == pte)	/* only update is there's a change */
   2070 			continue;
   2071 
   2072 		if (l2pte_valid(pte)) {
   2073 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2074 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2075 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2076 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2077 			}
   2078 		}
   2079 
   2080 		*ptep = pte;
   2081 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2082 	}
   2083 }
   2084 #endif	/* PMAP_CACHE_VIPT */
   2085 
   2086 
   2087 /*
   2088  * Modify pte bits for all ptes corresponding to the given physical address.
   2089  * We use `maskbits' rather than `clearbits' because we're always passing
   2090  * constants and the latter would require an extra inversion at run-time.
   2091  */
   2092 static void
   2093 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2094 {
   2095 	struct l2_bucket *l2b;
   2096 	struct pv_entry *pv;
   2097 	pt_entry_t *ptep, npte, opte;
   2098 	pmap_t pm;
   2099 	vaddr_t va;
   2100 	u_int oflags;
   2101 #ifdef PMAP_CACHE_VIPT
   2102 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   2103 	bool need_syncicache = false;
   2104 	bool did_syncicache = false;
   2105 	bool need_vac_me_harder = false;
   2106 #endif
   2107 
   2108 	NPDEBUG(PDB_BITS,
   2109 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2110 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2111 
   2112 	PMAP_HEAD_TO_MAP_LOCK();
   2113 	simple_lock(&pg->mdpage.pvh_slock);
   2114 
   2115 #ifdef PMAP_CACHE_VIPT
   2116 	/*
   2117 	 * If we might want to sync the I-cache and we've modified it,
   2118 	 * then we know we definitely need to sync or discard it.
   2119 	 */
   2120 	if (want_syncicache)
   2121 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   2122 #endif
   2123 	/*
   2124 	 * Clear saved attributes (modify, reference)
   2125 	 */
   2126 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2127 
   2128 	if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   2129 #ifdef PMAP_CACHE_VIPT
   2130 		if (need_syncicache) {
   2131 			/*
   2132 			 * No one has it mapped, so just discard it.  The next
   2133 			 * exec remapping will cause it to be synced.
   2134 			 */
   2135 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2136 			PMAPCOUNT(exec_discarded_clearbit);
   2137 		}
   2138 #endif
   2139 		simple_unlock(&pg->mdpage.pvh_slock);
   2140 		PMAP_HEAD_TO_MAP_UNLOCK();
   2141 		return;
   2142 	}
   2143 
   2144 	/*
   2145 	 * Loop over all current mappings setting/clearing as appropos
   2146 	 */
   2147 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2148 		va = pv->pv_va;
   2149 		pm = pv->pv_pmap;
   2150 		oflags = pv->pv_flags;
   2151 		/*
   2152 		 * Kernel entries are unmanaged and as such not to be changed.
   2153 		 */
   2154 		if (oflags & PVF_KENTRY)
   2155 			continue;
   2156 		pv->pv_flags &= ~maskbits;
   2157 
   2158 		pmap_acquire_pmap_lock(pm);
   2159 
   2160 		l2b = pmap_get_l2_bucket(pm, va);
   2161 		KDASSERT(l2b != NULL);
   2162 
   2163 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2164 		npte = opte = *ptep;
   2165 
   2166 		NPDEBUG(PDB_BITS,
   2167 		    printf(
   2168 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2169 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2170 
   2171 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2172 #ifdef PMAP_CACHE_VIVT
   2173 			if ((pv->pv_flags & PVF_NC)) {
   2174 				/*
   2175 				 * Entry is not cacheable:
   2176 				 *
   2177 				 * Don't turn caching on again if this is a
   2178 				 * modified emulation. This would be
   2179 				 * inconsitent with the settings created by
   2180 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2181 				 * to re-enable cacheing.
   2182 				 *
   2183 				 * There's no need to call pmap_vac_me_harder()
   2184 				 * here: all pages are losing their write
   2185 				 * permission.
   2186 				 */
   2187 				if (maskbits & PVF_WRITE) {
   2188 					npte |= pte_l2_s_cache_mode;
   2189 					pv->pv_flags &= ~PVF_NC;
   2190 				}
   2191 			} else
   2192 			if (opte & L2_S_PROT_W) {
   2193 				/*
   2194 				 * Entry is writable/cacheable: check if pmap
   2195 				 * is current if it is flush it, otherwise it
   2196 				 * won't be in the cache
   2197 				 */
   2198 				if (PV_BEEN_EXECD(oflags))
   2199 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2200 					    PAGE_SIZE);
   2201 				else
   2202 				if (PV_BEEN_REFD(oflags))
   2203 					pmap_dcache_wb_range(pm, pv->pv_va,
   2204 					    PAGE_SIZE,
   2205 					    (maskbits & PVF_REF) != 0, false);
   2206 			}
   2207 #endif
   2208 
   2209 			/* make the pte read only */
   2210 			npte &= ~L2_S_PROT_W;
   2211 
   2212 			if (maskbits & oflags & PVF_WRITE) {
   2213 				/*
   2214 				 * Keep alias accounting up to date
   2215 				 */
   2216 				if (pv->pv_pmap == pmap_kernel()) {
   2217 					pg->mdpage.krw_mappings--;
   2218 					pg->mdpage.kro_mappings++;
   2219 				} else {
   2220 					pg->mdpage.urw_mappings--;
   2221 					pg->mdpage.uro_mappings++;
   2222 				}
   2223 #ifdef PMAP_CACHE_VIPT
   2224 				if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2225 					pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2226 				if (want_syncicache)
   2227 					need_syncicache = true;
   2228 				need_vac_me_harder = true;
   2229 #endif
   2230 			}
   2231 		}
   2232 
   2233 		if (maskbits & PVF_REF) {
   2234 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2235 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2236 			    l2pte_valid(npte)) {
   2237 #ifdef PMAP_CACHE_VIVT
   2238 				/*
   2239 				 * Check npte here; we may have already
   2240 				 * done the wbinv above, and the validity
   2241 				 * of the PTE is the same for opte and
   2242 				 * npte.
   2243 				 */
   2244 				/* XXXJRT need idcache_inv_range */
   2245 				if (PV_BEEN_EXECD(oflags))
   2246 					pmap_idcache_wbinv_range(pm,
   2247 					    pv->pv_va, PAGE_SIZE);
   2248 				else
   2249 				if (PV_BEEN_REFD(oflags))
   2250 					pmap_dcache_wb_range(pm,
   2251 					    pv->pv_va, PAGE_SIZE,
   2252 					    true, true);
   2253 #endif
   2254 			}
   2255 
   2256 			/*
   2257 			 * Make the PTE invalid so that we will take a
   2258 			 * page fault the next time the mapping is
   2259 			 * referenced.
   2260 			 */
   2261 			npte &= ~L2_TYPE_MASK;
   2262 			npte |= L2_TYPE_INV;
   2263 		}
   2264 
   2265 		if (npte != opte) {
   2266 			*ptep = npte;
   2267 			PTE_SYNC(ptep);
   2268 			/* Flush the TLB entry if a current pmap. */
   2269 			if (PV_BEEN_EXECD(oflags))
   2270 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2271 			else
   2272 			if (PV_BEEN_REFD(oflags))
   2273 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2274 		}
   2275 
   2276 		pmap_release_pmap_lock(pm);
   2277 
   2278 		NPDEBUG(PDB_BITS,
   2279 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2280 		    pm, va, opte, npte));
   2281 	}
   2282 
   2283 #ifdef PMAP_CACHE_VIPT
   2284 	/*
   2285 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2286 	 */
   2287 	if (need_syncicache && !did_syncicache) {
   2288 		pmap_syncicache_page(pg);
   2289 		PMAPCOUNT(exec_synced_clearbit);
   2290 	}
   2291 	/*
   2292 	 * If we are changing this to read-only, we need to call vac_me_harder
   2293 	 * so we can change all the read-only pages to cacheable.  We pretend
   2294 	 * this as a page deletion.
   2295 	 */
   2296 	if (need_vac_me_harder) {
   2297 		if (pg->mdpage.pvh_attrs & PVF_NC)
   2298 			pmap_vac_me_harder(pg, NULL, 0);
   2299 	}
   2300 #endif
   2301 
   2302 	simple_unlock(&pg->mdpage.pvh_slock);
   2303 	PMAP_HEAD_TO_MAP_UNLOCK();
   2304 }
   2305 
   2306 /*
   2307  * pmap_clean_page()
   2308  *
   2309  * This is a local function used to work out the best strategy to clean
   2310  * a single page referenced by its entry in the PV table. It's used by
   2311  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2312  *
   2313  * Its policy is effectively:
   2314  *  o If there are no mappings, we don't bother doing anything with the cache.
   2315  *  o If there is one mapping, we clean just that page.
   2316  *  o If there are multiple mappings, we clean the entire cache.
   2317  *
   2318  * So that some functions can be further optimised, it returns 0 if it didn't
   2319  * clean the entire cache, or 1 if it did.
   2320  *
   2321  * XXX One bug in this routine is that if the pv_entry has a single page
   2322  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2323  * just the 1 page. Since this should not occur in everyday use and if it does
   2324  * it will just result in not the most efficient clean for the page.
   2325  */
   2326 #ifdef PMAP_CACHE_VIVT
   2327 static int
   2328 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2329 {
   2330 	pmap_t pm, pm_to_clean = NULL;
   2331 	struct pv_entry *npv;
   2332 	u_int cache_needs_cleaning = 0;
   2333 	u_int flags = 0;
   2334 	vaddr_t page_to_clean = 0;
   2335 
   2336 	if (pv == NULL) {
   2337 		/* nothing mapped in so nothing to flush */
   2338 		return (0);
   2339 	}
   2340 
   2341 	/*
   2342 	 * Since we flush the cache each time we change to a different
   2343 	 * user vmspace, we only need to flush the page if it is in the
   2344 	 * current pmap.
   2345 	 */
   2346 	pm = curproc->p_vmspace->vm_map.pmap;
   2347 
   2348 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2349 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2350 			flags |= npv->pv_flags;
   2351 			/*
   2352 			 * The page is mapped non-cacheable in
   2353 			 * this map.  No need to flush the cache.
   2354 			 */
   2355 			if (npv->pv_flags & PVF_NC) {
   2356 #ifdef DIAGNOSTIC
   2357 				if (cache_needs_cleaning)
   2358 					panic("pmap_clean_page: "
   2359 					    "cache inconsistency");
   2360 #endif
   2361 				break;
   2362 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2363 				continue;
   2364 			if (cache_needs_cleaning) {
   2365 				page_to_clean = 0;
   2366 				break;
   2367 			} else {
   2368 				page_to_clean = npv->pv_va;
   2369 				pm_to_clean = npv->pv_pmap;
   2370 			}
   2371 			cache_needs_cleaning = 1;
   2372 		}
   2373 	}
   2374 
   2375 	if (page_to_clean) {
   2376 		if (PV_BEEN_EXECD(flags))
   2377 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2378 			    PAGE_SIZE);
   2379 		else
   2380 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2381 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2382 	} else if (cache_needs_cleaning) {
   2383 		if (PV_BEEN_EXECD(flags))
   2384 			pmap_idcache_wbinv_all(pm);
   2385 		else
   2386 			pmap_dcache_wbinv_all(pm);
   2387 		return (1);
   2388 	}
   2389 	return (0);
   2390 }
   2391 #endif
   2392 
   2393 #ifdef PMAP_CACHE_VIPT
   2394 /*
   2395  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2396  * right cache alias to make sure we flush the right stuff.
   2397  */
   2398 void
   2399 pmap_syncicache_page(struct vm_page *pg)
   2400 {
   2401 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2402 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2403 
   2404 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2405 	    pg, pg->mdpage.pvh_attrs));
   2406 	/*
   2407 	 * No need to clean the page if it's non-cached.
   2408 	 */
   2409 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2410 		return;
   2411 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2412 
   2413 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2414 	/*
   2415 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2416 	 */
   2417 	*ptep = L2_S_PROTO |
   2418 	    VM_PAGE_TO_PHYS(pg)
   2419 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2420 	    | pte_l2_s_cache_mode;
   2421 	PTE_SYNC(ptep);
   2422 
   2423 	/*
   2424 	 * Flush it.
   2425 	 */
   2426 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2427 	/*
   2428 	 * Unmap the page.
   2429 	 */
   2430 	*ptep = 0;
   2431 	PTE_SYNC(ptep);
   2432 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2433 
   2434 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2435 	PMAPCOUNT(exec_synced);
   2436 }
   2437 
   2438 void
   2439 pmap_flush_page(struct vm_page *pg, bool flush)
   2440 {
   2441 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2442 	const size_t pte_offset = va_offset >> PGSHIFT;
   2443 	pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2444 	const pt_entry_t oldpte = *ptep;
   2445 #if 0
   2446 	vaddr_t mask;
   2447 #endif
   2448 
   2449 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2450 #if 0
   2451 	mask = pmap_check_sets(pg->phys_addr);
   2452 	KASSERT(popc4(mask) < 2);
   2453 #endif
   2454 
   2455 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2456 	    pg, pg->mdpage.pvh_attrs));
   2457 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2458 	/*
   2459 	 * Set up a PTE with the right coloring to flush existing cache entries.
   2460 	 */
   2461 	*ptep = L2_S_PROTO
   2462 	    | VM_PAGE_TO_PHYS(pg)
   2463 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2464 	    | pte_l2_s_cache_mode;
   2465 	PTE_SYNC(ptep);
   2466 
   2467 	/*
   2468 	 * Flush it.
   2469 	 */
   2470 	if (flush) {
   2471 		cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   2472 		pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2473 	} else {
   2474 		cpu_dcache_wb_range(cdstp + va_offset, PAGE_SIZE);
   2475 		/*
   2476 		 * Mark that the page is no longer dirty.
   2477 		 */
   2478 		if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
   2479 			pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2480 	}
   2481 
   2482 	/*
   2483 	 * Restore the page table entry since we might have interrupted
   2484 	 * pmap_zero_page or pmap_copy_page which was already using this pte.
   2485 	 */
   2486 	*ptep = oldpte;
   2487 	PTE_SYNC(ptep);
   2488 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2489 #if 0
   2490 	mask = pmap_check_sets(pg->phys_addr);
   2491 	KASSERT(mask == 0);
   2492 #endif
   2493 }
   2494 #endif /* PMAP_CACHE_VIPT */
   2495 
   2496 /*
   2497  * Routine:	pmap_page_remove
   2498  * Function:
   2499  *		Removes this physical page from
   2500  *		all physical maps in which it resides.
   2501  *		Reflects back modify bits to the pager.
   2502  */
   2503 static void
   2504 pmap_page_remove(struct vm_page *pg)
   2505 {
   2506 	struct l2_bucket *l2b;
   2507 	struct pv_entry *pv, *npv, **pvp;
   2508 	pmap_t pm, curpm;
   2509 	pt_entry_t *ptep, pte;
   2510 	bool flush;
   2511 	u_int flags;
   2512 
   2513 	NPDEBUG(PDB_FOLLOW,
   2514 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2515 	    VM_PAGE_TO_PHYS(pg)));
   2516 
   2517 	PMAP_HEAD_TO_MAP_LOCK();
   2518 	simple_lock(&pg->mdpage.pvh_slock);
   2519 
   2520 	pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2521 	if (pv == NULL) {
   2522 #ifdef PMAP_CACHE_VIPT
   2523 		/*
   2524 		 * We *know* the page contents are about to be replaced.
   2525 		 * Discard the exec contents
   2526 		 */
   2527 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2528 			PMAPCOUNT(exec_discarded_page_protect);
   2529 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2530 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2531 #endif
   2532 		simple_unlock(&pg->mdpage.pvh_slock);
   2533 		PMAP_HEAD_TO_MAP_UNLOCK();
   2534 		return;
   2535 	}
   2536 #ifdef PMAP_CACHE_VIPT
   2537 	KASSERT(pmap_is_page_colored_p(pg));
   2538 #endif
   2539 
   2540 	/*
   2541 	 * Clear alias counts
   2542 	 */
   2543 #ifdef PMAP_CACHE_VIVT
   2544 	pg->mdpage.k_mappings = 0;
   2545 #endif
   2546 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2547 
   2548 	flush = false;
   2549 	flags = 0;
   2550 	curpm = curproc->p_vmspace->vm_map.pmap;
   2551 
   2552 #ifdef PMAP_CACHE_VIVT
   2553 	pmap_clean_page(pv, false);
   2554 #endif
   2555 
   2556 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
   2557 	while (pv) {
   2558 		pm = pv->pv_pmap;
   2559 		npv = SLIST_NEXT(pv, pv_link);
   2560 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2561 			flush = true;
   2562 
   2563 		if (pm == pmap_kernel()) {
   2564 #ifdef PMAP_CACHE_VIPT
   2565 			/*
   2566 			 * If this was unmanaged mapping, it must be preserved.
   2567 			 * Move it back on the list and advance the end-of-list
   2568 			 * pointer.
   2569 			 */
   2570 			if (pv->pv_flags & PVF_KENTRY) {
   2571 				*pvp = pv;
   2572 				pvp = &SLIST_NEXT(pv, pv_link);
   2573 				pv = npv;
   2574 				continue;
   2575 			}
   2576 			if (pv->pv_flags & PVF_WRITE)
   2577 				pg->mdpage.krw_mappings--;
   2578 			else
   2579 				pg->mdpage.kro_mappings--;
   2580 #endif
   2581 			PMAPCOUNT(kernel_unmappings);
   2582 		}
   2583 		PMAPCOUNT(unmappings);
   2584 
   2585 		pmap_acquire_pmap_lock(pm);
   2586 
   2587 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2588 		KDASSERT(l2b != NULL);
   2589 
   2590 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2591 		pte = *ptep;
   2592 
   2593 		/*
   2594 		 * Update statistics
   2595 		 */
   2596 		--pm->pm_stats.resident_count;
   2597 
   2598 		/* Wired bit */
   2599 		if (pv->pv_flags & PVF_WIRED)
   2600 			--pm->pm_stats.wired_count;
   2601 
   2602 		flags |= pv->pv_flags;
   2603 
   2604 		/*
   2605 		 * Invalidate the PTEs.
   2606 		 */
   2607 		*ptep = 0;
   2608 		PTE_SYNC_CURRENT(pm, ptep);
   2609 		pmap_free_l2_bucket(pm, l2b, 1);
   2610 
   2611 		pool_put(&pmap_pv_pool, pv);
   2612 		pv = npv;
   2613 		/*
   2614 		 * if we reach the end of the list and there are still
   2615 		 * mappings, they might be able to be cached now.
   2616 		 */
   2617 		if (pv == NULL) {
   2618 			*pvp = NULL;
   2619 			if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   2620 				pmap_vac_me_harder(pg, pm, 0);
   2621 		}
   2622 		pmap_release_pmap_lock(pm);
   2623 	}
   2624 #ifdef PMAP_CACHE_VIPT
   2625 	/*
   2626 	 * Its EXEC cache is now gone.
   2627 	 */
   2628 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2629 		PMAPCOUNT(exec_discarded_page_protect);
   2630 	pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2631 	KASSERT(pg->mdpage.urw_mappings == 0);
   2632 	KASSERT(pg->mdpage.uro_mappings == 0);
   2633 	if (pg->mdpage.krw_mappings == 0)
   2634 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2635 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2636 #endif
   2637 	simple_unlock(&pg->mdpage.pvh_slock);
   2638 	PMAP_HEAD_TO_MAP_UNLOCK();
   2639 
   2640 	if (flush) {
   2641 		/*
   2642 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2643 		 * would need a subsequent call to pmap_update() to ensure
   2644 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2645 		 * required to do that (see pmap(9)), so we can't modify
   2646 		 * the current pmap's state.
   2647 		 */
   2648 		if (PV_BEEN_EXECD(flags))
   2649 			cpu_tlb_flushID();
   2650 		else
   2651 			cpu_tlb_flushD();
   2652 	}
   2653 	cpu_cpwait();
   2654 }
   2655 
   2656 /*
   2657  * pmap_t pmap_create(void)
   2658  *
   2659  *      Create a new pmap structure from scratch.
   2660  */
   2661 pmap_t
   2662 pmap_create(void)
   2663 {
   2664 	pmap_t pm;
   2665 
   2666 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2667 
   2668 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2669 	pm->pm_stats.wired_count = 0;
   2670 	pm->pm_stats.resident_count = 1;
   2671 	pm->pm_cstate.cs_all = 0;
   2672 	pmap_alloc_l1(pm);
   2673 
   2674 	/*
   2675 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2676 	 * initialised to zero.
   2677 	 */
   2678 
   2679 	pmap_pinit(pm);
   2680 
   2681 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2682 
   2683 	return (pm);
   2684 }
   2685 
   2686 /*
   2687  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2688  *     int flags)
   2689  *
   2690  *      Insert the given physical page (p) at
   2691  *      the specified virtual address (v) in the
   2692  *      target physical map with the protection requested.
   2693  *
   2694  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2695  *      or lose information.  That is, this routine must actually
   2696  *      insert this page into the given map NOW.
   2697  */
   2698 int
   2699 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2700 {
   2701 	struct l2_bucket *l2b;
   2702 	struct vm_page *pg, *opg;
   2703 	struct pv_entry *pve;
   2704 	pt_entry_t *ptep, npte, opte;
   2705 	u_int nflags;
   2706 	u_int oflags;
   2707 
   2708 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2709 
   2710 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2711 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2712 
   2713 	/*
   2714 	 * Get a pointer to the page.  Later on in this function, we
   2715 	 * test for a managed page by checking pg != NULL.
   2716 	 */
   2717 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2718 
   2719 	nflags = 0;
   2720 	if (prot & VM_PROT_WRITE)
   2721 		nflags |= PVF_WRITE;
   2722 	if (prot & VM_PROT_EXECUTE)
   2723 		nflags |= PVF_EXEC;
   2724 	if (flags & PMAP_WIRED)
   2725 		nflags |= PVF_WIRED;
   2726 
   2727 	PMAP_MAP_TO_HEAD_LOCK();
   2728 	pmap_acquire_pmap_lock(pm);
   2729 
   2730 	/*
   2731 	 * Fetch the L2 bucket which maps this page, allocating one if
   2732 	 * necessary for user pmaps.
   2733 	 */
   2734 	if (pm == pmap_kernel())
   2735 		l2b = pmap_get_l2_bucket(pm, va);
   2736 	else
   2737 		l2b = pmap_alloc_l2_bucket(pm, va);
   2738 	if (l2b == NULL) {
   2739 		if (flags & PMAP_CANFAIL) {
   2740 			pmap_release_pmap_lock(pm);
   2741 			PMAP_MAP_TO_HEAD_UNLOCK();
   2742 			return (ENOMEM);
   2743 		}
   2744 		panic("pmap_enter: failed to allocate L2 bucket");
   2745 	}
   2746 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2747 	opte = *ptep;
   2748 	npte = pa;
   2749 	oflags = 0;
   2750 
   2751 	if (opte) {
   2752 		/*
   2753 		 * There is already a mapping at this address.
   2754 		 * If the physical address is different, lookup the
   2755 		 * vm_page.
   2756 		 */
   2757 		if (l2pte_pa(opte) != pa)
   2758 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2759 		else
   2760 			opg = pg;
   2761 	} else
   2762 		opg = NULL;
   2763 
   2764 	if (pg) {
   2765 		/*
   2766 		 * This is to be a managed mapping.
   2767 		 */
   2768 		if ((flags & VM_PROT_ALL) ||
   2769 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2770 			/*
   2771 			 * - The access type indicates that we don't need
   2772 			 *   to do referenced emulation.
   2773 			 * OR
   2774 			 * - The physical page has already been referenced
   2775 			 *   so no need to re-do referenced emulation here.
   2776 			 */
   2777 			npte |= L2_S_PROTO;
   2778 
   2779 			nflags |= PVF_REF;
   2780 
   2781 			if ((prot & VM_PROT_WRITE) != 0 &&
   2782 			    ((flags & VM_PROT_WRITE) != 0 ||
   2783 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2784 				/*
   2785 				 * This is a writable mapping, and the
   2786 				 * page's mod state indicates it has
   2787 				 * already been modified. Make it
   2788 				 * writable from the outset.
   2789 				 */
   2790 				npte |= L2_S_PROT_W;
   2791 				nflags |= PVF_MOD;
   2792 			}
   2793 		} else {
   2794 			/*
   2795 			 * Need to do page referenced emulation.
   2796 			 */
   2797 			npte |= L2_TYPE_INV;
   2798 		}
   2799 
   2800 		npte |= pte_l2_s_cache_mode;
   2801 
   2802 		if (pg == opg) {
   2803 			/*
   2804 			 * We're changing the attrs of an existing mapping.
   2805 			 */
   2806 			simple_lock(&pg->mdpage.pvh_slock);
   2807 			oflags = pmap_modify_pv(pg, pm, va,
   2808 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2809 			    PVF_MOD | PVF_REF, nflags);
   2810 			simple_unlock(&pg->mdpage.pvh_slock);
   2811 
   2812 #ifdef PMAP_CACHE_VIVT
   2813 			/*
   2814 			 * We may need to flush the cache if we're
   2815 			 * doing rw-ro...
   2816 			 */
   2817 			if (pm->pm_cstate.cs_cache_d &&
   2818 			    (oflags & PVF_NC) == 0 &&
   2819 			    (opte & L2_S_PROT_W) != 0 &&
   2820 			    (prot & VM_PROT_WRITE) == 0)
   2821 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2822 #endif
   2823 		} else {
   2824 			/*
   2825 			 * New mapping, or changing the backing page
   2826 			 * of an existing mapping.
   2827 			 */
   2828 			if (opg) {
   2829 				/*
   2830 				 * Replacing an existing mapping with a new one.
   2831 				 * It is part of our managed memory so we
   2832 				 * must remove it from the PV list
   2833 				 */
   2834 				simple_lock(&opg->mdpage.pvh_slock);
   2835 				pve = pmap_remove_pv(opg, pm, va, 0);
   2836 				pmap_vac_me_harder(opg, pm, 0);
   2837 				simple_unlock(&opg->mdpage.pvh_slock);
   2838 				oflags = pve->pv_flags;
   2839 
   2840 #ifdef PMAP_CACHE_VIVT
   2841 				/*
   2842 				 * If the old mapping was valid (ref/mod
   2843 				 * emulation creates 'invalid' mappings
   2844 				 * initially) then make sure to frob
   2845 				 * the cache.
   2846 				 */
   2847 				if ((oflags & PVF_NC) == 0 &&
   2848 				    l2pte_valid(opte)) {
   2849 					if (PV_BEEN_EXECD(oflags)) {
   2850 						pmap_idcache_wbinv_range(pm, va,
   2851 						    PAGE_SIZE);
   2852 					} else
   2853 					if (PV_BEEN_REFD(oflags)) {
   2854 						pmap_dcache_wb_range(pm, va,
   2855 						    PAGE_SIZE, true,
   2856 						    (oflags & PVF_WRITE) == 0);
   2857 					}
   2858 				}
   2859 #endif
   2860 			} else
   2861 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2862 				if ((flags & PMAP_CANFAIL) == 0)
   2863 					panic("pmap_enter: no pv entries");
   2864 
   2865 				if (pm != pmap_kernel())
   2866 					pmap_free_l2_bucket(pm, l2b, 0);
   2867 				pmap_release_pmap_lock(pm);
   2868 				PMAP_MAP_TO_HEAD_UNLOCK();
   2869 				NPDEBUG(PDB_ENTER,
   2870 				    printf("pmap_enter: ENOMEM\n"));
   2871 				return (ENOMEM);
   2872 			}
   2873 
   2874 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2875 		}
   2876 	} else {
   2877 		/*
   2878 		 * We're mapping an unmanaged page.
   2879 		 * These are always readable, and possibly writable, from
   2880 		 * the get go as we don't need to track ref/mod status.
   2881 		 */
   2882 		npte |= L2_S_PROTO;
   2883 		if (prot & VM_PROT_WRITE)
   2884 			npte |= L2_S_PROT_W;
   2885 
   2886 		/*
   2887 		 * Make sure the vector table is mapped cacheable
   2888 		 */
   2889 		if (pm != pmap_kernel() && va == vector_page)
   2890 			npte |= pte_l2_s_cache_mode;
   2891 
   2892 		if (opg) {
   2893 			/*
   2894 			 * Looks like there's an existing 'managed' mapping
   2895 			 * at this address.
   2896 			 */
   2897 			simple_lock(&opg->mdpage.pvh_slock);
   2898 			pve = pmap_remove_pv(opg, pm, va, 0);
   2899 			pmap_vac_me_harder(opg, pm, 0);
   2900 			simple_unlock(&opg->mdpage.pvh_slock);
   2901 			oflags = pve->pv_flags;
   2902 
   2903 #ifdef PMAP_CACHE_VIVT
   2904 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2905 				if (PV_BEEN_EXECD(oflags))
   2906 					pmap_idcache_wbinv_range(pm, va,
   2907 					    PAGE_SIZE);
   2908 				else
   2909 				if (PV_BEEN_REFD(oflags))
   2910 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2911 					    true, (oflags & PVF_WRITE) == 0);
   2912 			}
   2913 #endif
   2914 			pool_put(&pmap_pv_pool, pve);
   2915 		}
   2916 	}
   2917 
   2918 	/*
   2919 	 * Make sure userland mappings get the right permissions
   2920 	 */
   2921 	if (pm != pmap_kernel() && va != vector_page)
   2922 		npte |= L2_S_PROT_U;
   2923 
   2924 	/*
   2925 	 * Keep the stats up to date
   2926 	 */
   2927 	if (opte == 0) {
   2928 		l2b->l2b_occupancy++;
   2929 		pm->pm_stats.resident_count++;
   2930 	}
   2931 
   2932 	NPDEBUG(PDB_ENTER,
   2933 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2934 
   2935 	/*
   2936 	 * If this is just a wiring change, the two PTEs will be
   2937 	 * identical, so there's no need to update the page table.
   2938 	 */
   2939 	if (npte != opte) {
   2940 		bool is_cached = pmap_is_cached(pm);
   2941 
   2942 		*ptep = npte;
   2943 		if (is_cached) {
   2944 			/*
   2945 			 * We only need to frob the cache/tlb if this pmap
   2946 			 * is current
   2947 			 */
   2948 			PTE_SYNC(ptep);
   2949 			if (va != vector_page && l2pte_valid(npte)) {
   2950 				/*
   2951 				 * This mapping is likely to be accessed as
   2952 				 * soon as we return to userland. Fix up the
   2953 				 * L1 entry to avoid taking another
   2954 				 * page/domain fault.
   2955 				 */
   2956 				pd_entry_t *pl1pd, l1pd;
   2957 
   2958 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   2959 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   2960 				    L1_C_PROTO;
   2961 				if (*pl1pd != l1pd) {
   2962 					*pl1pd = l1pd;
   2963 					PTE_SYNC(pl1pd);
   2964 				}
   2965 			}
   2966 		}
   2967 
   2968 		if (PV_BEEN_EXECD(oflags))
   2969 			pmap_tlb_flushID_SE(pm, va);
   2970 		else
   2971 		if (PV_BEEN_REFD(oflags))
   2972 			pmap_tlb_flushD_SE(pm, va);
   2973 
   2974 		NPDEBUG(PDB_ENTER,
   2975 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   2976 		    is_cached, pm->pm_cstate.cs_all));
   2977 
   2978 		if (pg != NULL) {
   2979 			simple_lock(&pg->mdpage.pvh_slock);
   2980 			pmap_vac_me_harder(pg, pm, va);
   2981 			simple_unlock(&pg->mdpage.pvh_slock);
   2982 		}
   2983 	}
   2984 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   2985 	if (pg) {
   2986 		simple_lock(&pg->mdpage.pvh_slock);
   2987 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2988 		KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
   2989 		simple_unlock(&pg->mdpage.pvh_slock);
   2990 	}
   2991 #endif
   2992 
   2993 	pmap_release_pmap_lock(pm);
   2994 	PMAP_MAP_TO_HEAD_UNLOCK();
   2995 
   2996 	return (0);
   2997 }
   2998 
   2999 /*
   3000  * pmap_remove()
   3001  *
   3002  * pmap_remove is responsible for nuking a number of mappings for a range
   3003  * of virtual address space in the current pmap. To do this efficiently
   3004  * is interesting, because in a number of cases a wide virtual address
   3005  * range may be supplied that contains few actual mappings. So, the
   3006  * optimisations are:
   3007  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3008  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3009  *     maybe do just a partial cache clean. This path of execution is
   3010  *     complicated by the fact that the cache must be flushed _before_
   3011  *     the PTE is nuked, being a VAC :-)
   3012  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3013  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3014  *     already flushed the cache.
   3015  *  4. Maybe later fast-case a single page, but I don't think this is
   3016  *     going to make _that_ much difference overall.
   3017  */
   3018 
   3019 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3020 
   3021 void
   3022 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   3023 {
   3024 	struct l2_bucket *l2b;
   3025 	vaddr_t next_bucket;
   3026 	pt_entry_t *ptep;
   3027 	u_int cleanlist_idx, total, cnt;
   3028 	struct {
   3029 		vaddr_t va;
   3030 		pt_entry_t *ptep;
   3031 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3032 	u_int mappings, is_exec, is_refd;
   3033 
   3034 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3035 	    "eva=%08lx\n", pm, sva, eva));
   3036 
   3037 	/*
   3038 	 * we lock in the pmap => pv_head direction
   3039 	 */
   3040 	PMAP_MAP_TO_HEAD_LOCK();
   3041 	pmap_acquire_pmap_lock(pm);
   3042 
   3043 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3044 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3045 		if (pm->pm_cstate.cs_tlb == 0)
   3046 			pm->pm_remove_all = true;
   3047 	} else
   3048 		cleanlist_idx = 0;
   3049 
   3050 	total = 0;
   3051 
   3052 	while (sva < eva) {
   3053 		/*
   3054 		 * Do one L2 bucket's worth at a time.
   3055 		 */
   3056 		next_bucket = L2_NEXT_BUCKET(sva);
   3057 		if (next_bucket > eva)
   3058 			next_bucket = eva;
   3059 
   3060 		l2b = pmap_get_l2_bucket(pm, sva);
   3061 		if (l2b == NULL) {
   3062 			sva = next_bucket;
   3063 			continue;
   3064 		}
   3065 
   3066 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3067 
   3068 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3069 			struct vm_page *pg;
   3070 			pt_entry_t pte;
   3071 			paddr_t pa;
   3072 
   3073 			pte = *ptep;
   3074 
   3075 			if (pte == 0) {
   3076 				/* Nothing here, move along */
   3077 				continue;
   3078 			}
   3079 
   3080 			pa = l2pte_pa(pte);
   3081 			is_exec = 0;
   3082 			is_refd = 1;
   3083 
   3084 			/*
   3085 			 * Update flags. In a number of circumstances,
   3086 			 * we could cluster a lot of these and do a
   3087 			 * number of sequential pages in one go.
   3088 			 */
   3089 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3090 				struct pv_entry *pve;
   3091 				simple_lock(&pg->mdpage.pvh_slock);
   3092 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   3093 				pmap_vac_me_harder(pg, pm, 0);
   3094 				simple_unlock(&pg->mdpage.pvh_slock);
   3095 				if (pve != NULL) {
   3096 					if (pm->pm_remove_all == false) {
   3097 						is_exec =
   3098 						   PV_BEEN_EXECD(pve->pv_flags);
   3099 						is_refd =
   3100 						   PV_BEEN_REFD(pve->pv_flags);
   3101 					}
   3102 					pool_put(&pmap_pv_pool, pve);
   3103 				} else
   3104 				if (skip_wired) {
   3105 					/* The mapping is wired. Skip it */
   3106 					continue;
   3107 				}
   3108 			} else
   3109 			if (skip_wired) {
   3110 				/* Unmanaged pages are always wired. */
   3111 				continue;
   3112 			}
   3113 
   3114 			mappings++;
   3115 
   3116 			if (!l2pte_valid(pte)) {
   3117 				/*
   3118 				 * Ref/Mod emulation is still active for this
   3119 				 * mapping, therefore it is has not yet been
   3120 				 * accessed. No need to frob the cache/tlb.
   3121 				 */
   3122 				*ptep = 0;
   3123 				PTE_SYNC_CURRENT(pm, ptep);
   3124 				continue;
   3125 			}
   3126 
   3127 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3128 				/* Add to the clean list. */
   3129 				cleanlist[cleanlist_idx].ptep = ptep;
   3130 				cleanlist[cleanlist_idx].va =
   3131 				    sva | (is_exec & 1);
   3132 				cleanlist_idx++;
   3133 			} else
   3134 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3135 				/* Nuke everything if needed. */
   3136 #ifdef PMAP_CACHE_VIVT
   3137 				pmap_idcache_wbinv_all(pm);
   3138 #endif
   3139 				pmap_tlb_flushID(pm);
   3140 
   3141 				/*
   3142 				 * Roll back the previous PTE list,
   3143 				 * and zero out the current PTE.
   3144 				 */
   3145 				for (cnt = 0;
   3146 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3147 					*cleanlist[cnt].ptep = 0;
   3148 					PTE_SYNC(cleanlist[cnt].ptep);
   3149 				}
   3150 				*ptep = 0;
   3151 				PTE_SYNC(ptep);
   3152 				cleanlist_idx++;
   3153 				pm->pm_remove_all = true;
   3154 			} else {
   3155 				*ptep = 0;
   3156 				PTE_SYNC(ptep);
   3157 				if (pm->pm_remove_all == false) {
   3158 					if (is_exec)
   3159 						pmap_tlb_flushID_SE(pm, sva);
   3160 					else
   3161 					if (is_refd)
   3162 						pmap_tlb_flushD_SE(pm, sva);
   3163 				}
   3164 			}
   3165 		}
   3166 
   3167 		/*
   3168 		 * Deal with any left overs
   3169 		 */
   3170 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3171 			total += cleanlist_idx;
   3172 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3173 				if (pm->pm_cstate.cs_all != 0) {
   3174 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3175 					if (cleanlist[cnt].va & 1) {
   3176 #ifdef PMAP_CACHE_VIVT
   3177 						pmap_idcache_wbinv_range(pm,
   3178 						    clva, PAGE_SIZE);
   3179 #endif
   3180 						pmap_tlb_flushID_SE(pm, clva);
   3181 					} else {
   3182 #ifdef PMAP_CACHE_VIVT
   3183 						pmap_dcache_wb_range(pm,
   3184 						    clva, PAGE_SIZE, true,
   3185 						    false);
   3186 #endif
   3187 						pmap_tlb_flushD_SE(pm, clva);
   3188 					}
   3189 				}
   3190 				*cleanlist[cnt].ptep = 0;
   3191 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3192 			}
   3193 
   3194 			/*
   3195 			 * If it looks like we're removing a whole bunch
   3196 			 * of mappings, it's faster to just write-back
   3197 			 * the whole cache now and defer TLB flushes until
   3198 			 * pmap_update() is called.
   3199 			 */
   3200 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3201 				cleanlist_idx = 0;
   3202 			else {
   3203 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3204 #ifdef PMAP_CACHE_VIVT
   3205 				pmap_idcache_wbinv_all(pm);
   3206 #endif
   3207 				pm->pm_remove_all = true;
   3208 			}
   3209 		}
   3210 
   3211 		pmap_free_l2_bucket(pm, l2b, mappings);
   3212 		pm->pm_stats.resident_count -= mappings;
   3213 	}
   3214 
   3215 	pmap_release_pmap_lock(pm);
   3216 	PMAP_MAP_TO_HEAD_UNLOCK();
   3217 }
   3218 
   3219 #ifdef PMAP_CACHE_VIPT
   3220 static struct pv_entry *
   3221 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3222 {
   3223 	struct pv_entry *pv;
   3224 
   3225 	simple_lock(&pg->mdpage.pvh_slock);
   3226 	KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   3227 	KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3228 
   3229 	pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
   3230 	KASSERT(pv);
   3231 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3232 
   3233 	/*
   3234 	 * If we are removing a writeable mapping to a cached exec page,
   3235 	 * if it's the last mapping then clear it execness other sync
   3236 	 * the page to the icache.
   3237 	 */
   3238 	if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3239 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3240 		if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   3241 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3242 			PMAPCOUNT(exec_discarded_kremove);
   3243 		} else {
   3244 			pmap_syncicache_page(pg);
   3245 			PMAPCOUNT(exec_synced_kremove);
   3246 		}
   3247 	}
   3248 	pmap_vac_me_harder(pg, pmap_kernel(), 0);
   3249 	simple_unlock(&pg->mdpage.pvh_slock);
   3250 
   3251 	return pv;
   3252 }
   3253 #endif /* PMAP_CACHE_VIPT */
   3254 
   3255 /*
   3256  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3257  *
   3258  * We assume there is already sufficient KVM space available
   3259  * to do this, as we can't allocate L2 descriptor tables/metadata
   3260  * from here.
   3261  */
   3262 void
   3263 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   3264 {
   3265 	struct l2_bucket *l2b;
   3266 	pt_entry_t *ptep, opte;
   3267 #ifdef PMAP_CACHE_VIVT
   3268 	struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3269 #endif
   3270 #ifdef PMAP_CACHE_VIPT
   3271 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3272 	struct vm_page *opg;
   3273 	struct pv_entry *pv = NULL;
   3274 #endif
   3275 
   3276 	NPDEBUG(PDB_KENTER,
   3277 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3278 	    va, pa, prot));
   3279 
   3280 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3281 	KDASSERT(l2b != NULL);
   3282 
   3283 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3284 	opte = *ptep;
   3285 
   3286 	if (opte == 0) {
   3287 		PMAPCOUNT(kenter_mappings);
   3288 		l2b->l2b_occupancy++;
   3289 	} else {
   3290 		PMAPCOUNT(kenter_remappings);
   3291 #ifdef PMAP_CACHE_VIPT
   3292 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3293 		if (opg) {
   3294 			KASSERT(opg != pg);
   3295 			KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3296 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3297 			simple_lock(&opg->mdpage.pvh_slock);
   3298 			pv = pmap_kremove_pg(opg, va);
   3299 			simple_unlock(&opg->mdpage.pvh_slock);
   3300 		}
   3301 #endif
   3302 		if (l2pte_valid(opte)) {
   3303 #ifdef PMAP_CACHE_VIVT
   3304 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3305 #endif
   3306 			cpu_tlb_flushD_SE(va);
   3307 			cpu_cpwait();
   3308 		}
   3309 	}
   3310 
   3311 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3312 	    pte_l2_s_cache_mode;
   3313 	PTE_SYNC(ptep);
   3314 
   3315 	if (pg) {
   3316 		if (prot & PMAP_KMPAGE) {
   3317 			simple_lock(&pg->mdpage.pvh_slock);
   3318 			KASSERT(pg->mdpage.urw_mappings == 0);
   3319 			KASSERT(pg->mdpage.uro_mappings == 0);
   3320 			KASSERT(pg->mdpage.krw_mappings == 0);
   3321 			KASSERT(pg->mdpage.kro_mappings == 0);
   3322 #ifdef PMAP_CACHE_VIPT
   3323 			KASSERT(pv == NULL);
   3324 			KASSERT((va & PVF_COLORED) == 0);
   3325 			KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
   3326 			/* if there is a color conflict, evict from cache. */
   3327 			if (pmap_is_page_colored_p(pg)
   3328 			    && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
   3329 				PMAPCOUNT(vac_color_change);
   3330 				pmap_flush_page(pg, true);
   3331 			}
   3332 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   3333 			pg->mdpage.pvh_attrs |= PVF_KMPAGE
   3334 			    | PVF_COLORED | PVF_DIRTY
   3335 			    | (va & arm_cache_prefer_mask);
   3336 #endif
   3337 #ifdef PMAP_CACHE_VIVT
   3338 			pg->mdpage.pvh_attrs |= PVF_KMPAGE;
   3339 #endif
   3340 			pmap_kmpages++;
   3341 			simple_unlock(&pg->mdpage.pvh_slock);
   3342 #ifdef PMAP_CACHE_VIPT
   3343 		} else {
   3344 			if (pv == NULL) {
   3345 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3346 				KASSERT(pv != NULL);
   3347 			}
   3348 			pmap_enter_pv(pg, pv, pmap_kernel(), va,
   3349 			    PVF_WIRED | PVF_KENTRY
   3350 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3351 			if ((prot & VM_PROT_WRITE)
   3352 			    && !(pg->mdpage.pvh_attrs & PVF_NC))
   3353 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3354 			KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3355 			simple_lock(&pg->mdpage.pvh_slock);
   3356 			pmap_vac_me_harder(pg, pmap_kernel(), va);
   3357 			simple_unlock(&pg->mdpage.pvh_slock);
   3358 #endif
   3359 		}
   3360 #ifdef PMAP_CACHE_VIPT
   3361 	} else {
   3362 		if (pv != NULL)
   3363 			pool_put(&pmap_pv_pool, pv);
   3364 #endif
   3365 	}
   3366 }
   3367 
   3368 void
   3369 pmap_kremove(vaddr_t va, vsize_t len)
   3370 {
   3371 	struct l2_bucket *l2b;
   3372 	pt_entry_t *ptep, *sptep, opte;
   3373 	vaddr_t next_bucket, eva;
   3374 	u_int mappings;
   3375 	struct vm_page *opg;
   3376 
   3377 	PMAPCOUNT(kenter_unmappings);
   3378 
   3379 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3380 	    va, len));
   3381 
   3382 	eva = va + len;
   3383 
   3384 	while (va < eva) {
   3385 		next_bucket = L2_NEXT_BUCKET(va);
   3386 		if (next_bucket > eva)
   3387 			next_bucket = eva;
   3388 
   3389 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3390 		KDASSERT(l2b != NULL);
   3391 
   3392 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3393 		mappings = 0;
   3394 
   3395 		while (va < next_bucket) {
   3396 			opte = *ptep;
   3397 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3398 			if (opg) {
   3399 				if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
   3400 					simple_lock(&opg->mdpage.pvh_slock);
   3401 					KASSERT(opg->mdpage.urw_mappings == 0);
   3402 					KASSERT(opg->mdpage.uro_mappings == 0);
   3403 					KASSERT(opg->mdpage.krw_mappings == 0);
   3404 					KASSERT(opg->mdpage.kro_mappings == 0);
   3405 					opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
   3406 #ifdef PMAP_CACHE_VIPT
   3407 					opg->mdpage.pvh_attrs &= ~PVF_WRITE;
   3408 #endif
   3409 					pmap_kmpages--;
   3410 					simple_unlock(&opg->mdpage.pvh_slock);
   3411 #ifdef PMAP_CACHE_VIPT
   3412 				} else {
   3413 					pool_put(&pmap_pv_pool,
   3414 					    pmap_kremove_pg(opg, va));
   3415 #endif
   3416 				}
   3417 			}
   3418 			if (l2pte_valid(opte)) {
   3419 #ifdef PMAP_CACHE_VIVT
   3420 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3421 #endif
   3422 				cpu_tlb_flushD_SE(va);
   3423 			}
   3424 			if (opte) {
   3425 				*ptep = 0;
   3426 				mappings++;
   3427 			}
   3428 			va += PAGE_SIZE;
   3429 			ptep++;
   3430 		}
   3431 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3432 		l2b->l2b_occupancy -= mappings;
   3433 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3434 	}
   3435 	cpu_cpwait();
   3436 }
   3437 
   3438 bool
   3439 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3440 {
   3441 	struct l2_dtable *l2;
   3442 	pd_entry_t *pl1pd, l1pd;
   3443 	pt_entry_t *ptep, pte;
   3444 	paddr_t pa;
   3445 	u_int l1idx;
   3446 
   3447 	pmap_acquire_pmap_lock(pm);
   3448 
   3449 	l1idx = L1_IDX(va);
   3450 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3451 	l1pd = *pl1pd;
   3452 
   3453 	if (l1pte_section_p(l1pd)) {
   3454 		/*
   3455 		 * These should only happen for pmap_kernel()
   3456 		 */
   3457 		KDASSERT(pm == pmap_kernel());
   3458 		pmap_release_pmap_lock(pm);
   3459 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3460 	} else {
   3461 		/*
   3462 		 * Note that we can't rely on the validity of the L1
   3463 		 * descriptor as an indication that a mapping exists.
   3464 		 * We have to look it up in the L2 dtable.
   3465 		 */
   3466 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3467 
   3468 		if (l2 == NULL ||
   3469 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3470 			pmap_release_pmap_lock(pm);
   3471 			return false;
   3472 		}
   3473 
   3474 		ptep = &ptep[l2pte_index(va)];
   3475 		pte = *ptep;
   3476 		pmap_release_pmap_lock(pm);
   3477 
   3478 		if (pte == 0)
   3479 			return false;
   3480 
   3481 		switch (pte & L2_TYPE_MASK) {
   3482 		case L2_TYPE_L:
   3483 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3484 			break;
   3485 
   3486 		default:
   3487 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3488 			break;
   3489 		}
   3490 	}
   3491 
   3492 	if (pap != NULL)
   3493 		*pap = pa;
   3494 
   3495 	return true;
   3496 }
   3497 
   3498 void
   3499 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3500 {
   3501 	struct l2_bucket *l2b;
   3502 	pt_entry_t *ptep, pte;
   3503 	vaddr_t next_bucket;
   3504 	u_int flags;
   3505 	u_int clr_mask;
   3506 	int flush;
   3507 
   3508 	NPDEBUG(PDB_PROTECT,
   3509 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3510 	    pm, sva, eva, prot));
   3511 
   3512 	if ((prot & VM_PROT_READ) == 0) {
   3513 		pmap_remove(pm, sva, eva);
   3514 		return;
   3515 	}
   3516 
   3517 	if (prot & VM_PROT_WRITE) {
   3518 		/*
   3519 		 * If this is a read->write transition, just ignore it and let
   3520 		 * uvm_fault() take care of it later.
   3521 		 */
   3522 		return;
   3523 	}
   3524 
   3525 	PMAP_MAP_TO_HEAD_LOCK();
   3526 	pmap_acquire_pmap_lock(pm);
   3527 
   3528 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3529 	flags = 0;
   3530 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3531 
   3532 	while (sva < eva) {
   3533 		next_bucket = L2_NEXT_BUCKET(sva);
   3534 		if (next_bucket > eva)
   3535 			next_bucket = eva;
   3536 
   3537 		l2b = pmap_get_l2_bucket(pm, sva);
   3538 		if (l2b == NULL) {
   3539 			sva = next_bucket;
   3540 			continue;
   3541 		}
   3542 
   3543 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3544 
   3545 		while (sva < next_bucket) {
   3546 			pte = *ptep;
   3547 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3548 				struct vm_page *pg;
   3549 				u_int f;
   3550 
   3551 #ifdef PMAP_CACHE_VIVT
   3552 				/*
   3553 				 * OK, at this point, we know we're doing
   3554 				 * write-protect operation.  If the pmap is
   3555 				 * active, write-back the page.
   3556 				 */
   3557 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3558 				    false, false);
   3559 #endif
   3560 
   3561 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3562 				pte &= ~L2_S_PROT_W;
   3563 				*ptep = pte;
   3564 				PTE_SYNC(ptep);
   3565 
   3566 				if (pg != NULL) {
   3567 					simple_lock(&pg->mdpage.pvh_slock);
   3568 					f = pmap_modify_pv(pg, pm, sva,
   3569 					    clr_mask, 0);
   3570 					pmap_vac_me_harder(pg, pm, sva);
   3571 					simple_unlock(&pg->mdpage.pvh_slock);
   3572 				} else
   3573 					f = PVF_REF | PVF_EXEC;
   3574 
   3575 				if (flush >= 0) {
   3576 					flush++;
   3577 					flags |= f;
   3578 				} else
   3579 				if (PV_BEEN_EXECD(f))
   3580 					pmap_tlb_flushID_SE(pm, sva);
   3581 				else
   3582 				if (PV_BEEN_REFD(f))
   3583 					pmap_tlb_flushD_SE(pm, sva);
   3584 			}
   3585 
   3586 			sva += PAGE_SIZE;
   3587 			ptep++;
   3588 		}
   3589 	}
   3590 
   3591 	pmap_release_pmap_lock(pm);
   3592 	PMAP_MAP_TO_HEAD_UNLOCK();
   3593 
   3594 	if (flush) {
   3595 		if (PV_BEEN_EXECD(flags))
   3596 			pmap_tlb_flushID(pm);
   3597 		else
   3598 		if (PV_BEEN_REFD(flags))
   3599 			pmap_tlb_flushD(pm);
   3600 	}
   3601 }
   3602 
   3603 void
   3604 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3605 {
   3606 	struct l2_bucket *l2b;
   3607 	pt_entry_t *ptep;
   3608 	vaddr_t next_bucket;
   3609 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3610 
   3611 	NPDEBUG(PDB_EXEC,
   3612 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3613 	    pm, sva, eva));
   3614 
   3615 	PMAP_MAP_TO_HEAD_LOCK();
   3616 	pmap_acquire_pmap_lock(pm);
   3617 
   3618 	while (sva < eva) {
   3619 		next_bucket = L2_NEXT_BUCKET(sva);
   3620 		if (next_bucket > eva)
   3621 			next_bucket = eva;
   3622 
   3623 		l2b = pmap_get_l2_bucket(pm, sva);
   3624 		if (l2b == NULL) {
   3625 			sva = next_bucket;
   3626 			continue;
   3627 		}
   3628 
   3629 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3630 		     sva < next_bucket;
   3631 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3632 			if (l2pte_valid(*ptep)) {
   3633 				cpu_icache_sync_range(sva,
   3634 				    min(page_size, eva - sva));
   3635 			}
   3636 		}
   3637 	}
   3638 
   3639 	pmap_release_pmap_lock(pm);
   3640 	PMAP_MAP_TO_HEAD_UNLOCK();
   3641 }
   3642 
   3643 void
   3644 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3645 {
   3646 
   3647 	NPDEBUG(PDB_PROTECT,
   3648 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3649 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3650 
   3651 	switch(prot) {
   3652 		return;
   3653 	case VM_PROT_READ|VM_PROT_WRITE:
   3654 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3655 		pmap_clearbit(pg, PVF_EXEC);
   3656 		break;
   3657 #endif
   3658 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3659 		break;
   3660 
   3661 	case VM_PROT_READ:
   3662 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3663 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3664 		break;
   3665 #endif
   3666 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3667 		pmap_clearbit(pg, PVF_WRITE);
   3668 		break;
   3669 
   3670 	default:
   3671 		pmap_page_remove(pg);
   3672 		break;
   3673 	}
   3674 }
   3675 
   3676 /*
   3677  * pmap_clear_modify:
   3678  *
   3679  *	Clear the "modified" attribute for a page.
   3680  */
   3681 bool
   3682 pmap_clear_modify(struct vm_page *pg)
   3683 {
   3684 	bool rv;
   3685 
   3686 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3687 		rv = true;
   3688 		pmap_clearbit(pg, PVF_MOD);
   3689 	} else
   3690 		rv = false;
   3691 
   3692 	return (rv);
   3693 }
   3694 
   3695 /*
   3696  * pmap_clear_reference:
   3697  *
   3698  *	Clear the "referenced" attribute for a page.
   3699  */
   3700 bool
   3701 pmap_clear_reference(struct vm_page *pg)
   3702 {
   3703 	bool rv;
   3704 
   3705 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3706 		rv = true;
   3707 		pmap_clearbit(pg, PVF_REF);
   3708 	} else
   3709 		rv = false;
   3710 
   3711 	return (rv);
   3712 }
   3713 
   3714 /*
   3715  * pmap_is_modified:
   3716  *
   3717  *	Test if a page has the "modified" attribute.
   3718  */
   3719 /* See <arm/arm32/pmap.h> */
   3720 
   3721 /*
   3722  * pmap_is_referenced:
   3723  *
   3724  *	Test if a page has the "referenced" attribute.
   3725  */
   3726 /* See <arm/arm32/pmap.h> */
   3727 
   3728 int
   3729 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3730 {
   3731 	struct l2_dtable *l2;
   3732 	struct l2_bucket *l2b;
   3733 	pd_entry_t *pl1pd, l1pd;
   3734 	pt_entry_t *ptep, pte;
   3735 	paddr_t pa;
   3736 	u_int l1idx;
   3737 	int rv = 0;
   3738 
   3739 	PMAP_MAP_TO_HEAD_LOCK();
   3740 	pmap_acquire_pmap_lock(pm);
   3741 
   3742 	l1idx = L1_IDX(va);
   3743 
   3744 	/*
   3745 	 * If there is no l2_dtable for this address, then the process
   3746 	 * has no business accessing it.
   3747 	 *
   3748 	 * Note: This will catch userland processes trying to access
   3749 	 * kernel addresses.
   3750 	 */
   3751 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3752 	if (l2 == NULL)
   3753 		goto out;
   3754 
   3755 	/*
   3756 	 * Likewise if there is no L2 descriptor table
   3757 	 */
   3758 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3759 	if (l2b->l2b_kva == NULL)
   3760 		goto out;
   3761 
   3762 	/*
   3763 	 * Check the PTE itself.
   3764 	 */
   3765 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3766 	pte = *ptep;
   3767 	if (pte == 0)
   3768 		goto out;
   3769 
   3770 	/*
   3771 	 * Catch a userland access to the vector page mapped at 0x0
   3772 	 */
   3773 	if (user && (pte & L2_S_PROT_U) == 0)
   3774 		goto out;
   3775 
   3776 	pa = l2pte_pa(pte);
   3777 
   3778 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3779 		/*
   3780 		 * This looks like a good candidate for "page modified"
   3781 		 * emulation...
   3782 		 */
   3783 		struct pv_entry *pv;
   3784 		struct vm_page *pg;
   3785 
   3786 		/* Extract the physical address of the page */
   3787 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3788 			goto out;
   3789 
   3790 		/* Get the current flags for this page. */
   3791 		simple_lock(&pg->mdpage.pvh_slock);
   3792 
   3793 		pv = pmap_find_pv(pg, pm, va);
   3794 		if (pv == NULL) {
   3795 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3796 			goto out;
   3797 		}
   3798 
   3799 		/*
   3800 		 * Do the flags say this page is writable? If not then it
   3801 		 * is a genuine write fault. If yes then the write fault is
   3802 		 * our fault as we did not reflect the write access in the
   3803 		 * PTE. Now we know a write has occurred we can correct this
   3804 		 * and also set the modified bit
   3805 		 */
   3806 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3807 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3808 			goto out;
   3809 		}
   3810 
   3811 		NPDEBUG(PDB_FOLLOW,
   3812 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3813 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3814 
   3815 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3816 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3817 #ifdef PMAP_CACHE_VIPT
   3818 		/*
   3819 		 * If there are cacheable mappings for this page, mark it dirty.
   3820 		 */
   3821 		if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
   3822 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3823 #endif
   3824 		simple_unlock(&pg->mdpage.pvh_slock);
   3825 
   3826 		/*
   3827 		 * Re-enable write permissions for the page.  No need to call
   3828 		 * pmap_vac_me_harder(), since this is just a
   3829 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3830 		 * changing. We've already set the cacheable bits based on
   3831 		 * the assumption that we can write to this page.
   3832 		 */
   3833 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3834 		PTE_SYNC(ptep);
   3835 		rv = 1;
   3836 	} else
   3837 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3838 		/*
   3839 		 * This looks like a good candidate for "page referenced"
   3840 		 * emulation.
   3841 		 */
   3842 		struct pv_entry *pv;
   3843 		struct vm_page *pg;
   3844 
   3845 		/* Extract the physical address of the page */
   3846 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3847 			goto out;
   3848 
   3849 		/* Get the current flags for this page. */
   3850 		simple_lock(&pg->mdpage.pvh_slock);
   3851 
   3852 		pv = pmap_find_pv(pg, pm, va);
   3853 		if (pv == NULL) {
   3854 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3855 			goto out;
   3856 		}
   3857 
   3858 		pg->mdpage.pvh_attrs |= PVF_REF;
   3859 		pv->pv_flags |= PVF_REF;
   3860 		simple_unlock(&pg->mdpage.pvh_slock);
   3861 
   3862 		NPDEBUG(PDB_FOLLOW,
   3863 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3864 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3865 
   3866 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3867 		PTE_SYNC(ptep);
   3868 		rv = 1;
   3869 	}
   3870 
   3871 	/*
   3872 	 * We know there is a valid mapping here, so simply
   3873 	 * fix up the L1 if necessary.
   3874 	 */
   3875 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3876 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3877 	if (*pl1pd != l1pd) {
   3878 		*pl1pd = l1pd;
   3879 		PTE_SYNC(pl1pd);
   3880 		rv = 1;
   3881 	}
   3882 
   3883 #ifdef CPU_SA110
   3884 	/*
   3885 	 * There are bugs in the rev K SA110.  This is a check for one
   3886 	 * of them.
   3887 	 */
   3888 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3889 	    curcpu()->ci_arm_cpurev < 3) {
   3890 		/* Always current pmap */
   3891 		if (l2pte_valid(pte)) {
   3892 			extern int kernel_debug;
   3893 			if (kernel_debug & 1) {
   3894 				struct proc *p = curlwp->l_proc;
   3895 				printf("prefetch_abort: page is already "
   3896 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3897 				printf("prefetch_abort: pc=%08lx proc=%p "
   3898 				    "process=%s\n", va, p, p->p_comm);
   3899 				printf("prefetch_abort: far=%08x fs=%x\n",
   3900 				    cpu_faultaddress(), cpu_faultstatus());
   3901 			}
   3902 #ifdef DDB
   3903 			if (kernel_debug & 2)
   3904 				Debugger();
   3905 #endif
   3906 			rv = 1;
   3907 		}
   3908 	}
   3909 #endif /* CPU_SA110 */
   3910 
   3911 #ifdef DEBUG
   3912 	/*
   3913 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3914 	 * stale TLB entry for the faulting address. This happens when two or
   3915 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3916 	 * a context switch between such processes, we can take domain faults
   3917 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3918 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3919 	 * example.
   3920 	 *
   3921 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3922 	 * entry for a recently entered mapping. In this case, the TLB is
   3923 	 * flushed for the new mapping, but there may still be TLB entries for
   3924 	 * other mappings belonging to other processes in the 1MB range
   3925 	 * covered by the L1 entry.
   3926 	 *
   3927 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3928 	 * value, so the fault must be due to a stale TLB entry.
   3929 	 *
   3930 	 * Since we always need to flush the TLB anyway in the case where we
   3931 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3932 	 * stale TLB entries dynamically.
   3933 	 *
   3934 	 * However, the above condition can ONLY happen if the current L1 is
   3935 	 * being shared. If it happens when the L1 is unshared, it indicates
   3936 	 * that other parts of the pmap are not doing their job WRT managing
   3937 	 * the TLB.
   3938 	 */
   3939 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   3940 		extern int last_fault_code;
   3941 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   3942 		    pm, va, ftype);
   3943 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   3944 		    l2, l2b, ptep, pl1pd);
   3945 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   3946 		    pte, l1pd, last_fault_code);
   3947 #ifdef DDB
   3948 		Debugger();
   3949 #endif
   3950 	}
   3951 #endif
   3952 
   3953 	cpu_tlb_flushID_SE(va);
   3954 	cpu_cpwait();
   3955 
   3956 	rv = 1;
   3957 
   3958 out:
   3959 	pmap_release_pmap_lock(pm);
   3960 	PMAP_MAP_TO_HEAD_UNLOCK();
   3961 
   3962 	return (rv);
   3963 }
   3964 
   3965 /*
   3966  * pmap_collect: free resources held by a pmap
   3967  *
   3968  * => optional function.
   3969  * => called when a process is swapped out to free memory.
   3970  */
   3971 void
   3972 pmap_collect(pmap_t pm)
   3973 {
   3974 
   3975 #ifdef PMAP_CACHE_VIVT
   3976 	pmap_idcache_wbinv_all(pm);
   3977 #endif
   3978 	pm->pm_remove_all = true;
   3979 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   3980 	pmap_update(pm);
   3981 	PMAPCOUNT(collects);
   3982 }
   3983 
   3984 /*
   3985  * Routine:	pmap_procwr
   3986  *
   3987  * Function:
   3988  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3989  *
   3990  */
   3991 void
   3992 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3993 {
   3994 	/* We only need to do anything if it is the current process. */
   3995 	if (p == curproc)
   3996 		cpu_icache_sync_range(va, len);
   3997 }
   3998 
   3999 /*
   4000  * Routine:	pmap_unwire
   4001  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4002  *
   4003  * In/out conditions:
   4004  *		The mapping must already exist in the pmap.
   4005  */
   4006 void
   4007 pmap_unwire(pmap_t pm, vaddr_t va)
   4008 {
   4009 	struct l2_bucket *l2b;
   4010 	pt_entry_t *ptep, pte;
   4011 	struct vm_page *pg;
   4012 	paddr_t pa;
   4013 
   4014 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4015 
   4016 	PMAP_MAP_TO_HEAD_LOCK();
   4017 	pmap_acquire_pmap_lock(pm);
   4018 
   4019 	l2b = pmap_get_l2_bucket(pm, va);
   4020 	KDASSERT(l2b != NULL);
   4021 
   4022 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4023 	pte = *ptep;
   4024 
   4025 	/* Extract the physical address of the page */
   4026 	pa = l2pte_pa(pte);
   4027 
   4028 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4029 		/* Update the wired bit in the pv entry for this page. */
   4030 		simple_lock(&pg->mdpage.pvh_slock);
   4031 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   4032 		simple_unlock(&pg->mdpage.pvh_slock);
   4033 	}
   4034 
   4035 	pmap_release_pmap_lock(pm);
   4036 	PMAP_MAP_TO_HEAD_UNLOCK();
   4037 }
   4038 
   4039 void
   4040 pmap_activate(struct lwp *l)
   4041 {
   4042 	extern int block_userspace_access;
   4043 	pmap_t opm, npm, rpm;
   4044 	uint32_t odacr, ndacr;
   4045 	int oldirqstate;
   4046 
   4047 	/*
   4048 	 * If activating a non-current lwp or the current lwp is
   4049 	 * already active, just return.
   4050 	 */
   4051 	if (l != curlwp ||
   4052 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4053 		return;
   4054 
   4055 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4056 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4057 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4058 
   4059 	/*
   4060 	 * If TTB and DACR are unchanged, short-circuit all the
   4061 	 * TLB/cache management stuff.
   4062 	 */
   4063 	if (pmap_previous_active_lwp != NULL) {
   4064 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4065 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4066 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4067 
   4068 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4069 			goto all_done;
   4070 	} else
   4071 		opm = NULL;
   4072 
   4073 	PMAPCOUNT(activations);
   4074 	block_userspace_access = 1;
   4075 
   4076 	/*
   4077 	 * If switching to a user vmspace which is different to the
   4078 	 * most recent one, and the most recent one is potentially
   4079 	 * live in the cache, we must write-back and invalidate the
   4080 	 * entire cache.
   4081 	 */
   4082 	rpm = pmap_recent_user;
   4083 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4084 	    rpm->pm_cstate.cs_cache) {
   4085 		rpm->pm_cstate.cs_cache = 0;
   4086 #ifdef PMAP_CACHE_VIVT
   4087 		cpu_idcache_wbinv_all();
   4088 #endif
   4089 	}
   4090 
   4091 	/* No interrupts while we frob the TTB/DACR */
   4092 	oldirqstate = disable_interrupts(IF32_bits);
   4093 
   4094 	/*
   4095 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4096 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4097 	 * before switching to it otherwise subsequent interrupts/exceptions
   4098 	 * (including domain faults!) will jump into hyperspace.
   4099 	 */
   4100 	if (npm->pm_pl1vec != NULL) {
   4101 		cpu_tlb_flushID_SE((u_int)vector_page);
   4102 		cpu_cpwait();
   4103 		*npm->pm_pl1vec = npm->pm_l1vec;
   4104 		PTE_SYNC(npm->pm_pl1vec);
   4105 	}
   4106 
   4107 	cpu_domains(ndacr);
   4108 
   4109 	if (npm == pmap_kernel() || npm == rpm) {
   4110 		/*
   4111 		 * Switching to a kernel thread, or back to the
   4112 		 * same user vmspace as before... Simply update
   4113 		 * the TTB (no TLB flush required)
   4114 		 */
   4115 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4116 		    "r"(npm->pm_l1->l1_physaddr));
   4117 		cpu_cpwait();
   4118 	} else {
   4119 		/*
   4120 		 * Otherwise, update TTB and flush TLB
   4121 		 */
   4122 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4123 		if (rpm != NULL)
   4124 			rpm->pm_cstate.cs_tlb = 0;
   4125 	}
   4126 
   4127 	restore_interrupts(oldirqstate);
   4128 
   4129 	block_userspace_access = 0;
   4130 
   4131  all_done:
   4132 	/*
   4133 	 * The new pmap is resident. Make sure it's marked
   4134 	 * as resident in the cache/TLB.
   4135 	 */
   4136 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4137 	if (npm != pmap_kernel())
   4138 		pmap_recent_user = npm;
   4139 
   4140 	/* The old pmap is not longer active */
   4141 	if (opm != NULL)
   4142 		opm->pm_activated = false;
   4143 
   4144 	/* But the new one is */
   4145 	npm->pm_activated = true;
   4146 }
   4147 
   4148 void
   4149 pmap_deactivate(struct lwp *l)
   4150 {
   4151 
   4152 	/*
   4153 	 * If the process is exiting, make sure pmap_activate() does
   4154 	 * a full MMU context-switch and cache flush, which we might
   4155 	 * otherwise skip. See PR port-arm/38950.
   4156 	 */
   4157 	if (l->l_proc->p_sflag & PS_WEXIT)
   4158 		pmap_previous_active_lwp = NULL;
   4159 
   4160 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4161 }
   4162 
   4163 void
   4164 pmap_update(pmap_t pm)
   4165 {
   4166 
   4167 	if (pm->pm_remove_all) {
   4168 		/*
   4169 		 * Finish up the pmap_remove_all() optimisation by flushing
   4170 		 * the TLB.
   4171 		 */
   4172 		pmap_tlb_flushID(pm);
   4173 		pm->pm_remove_all = false;
   4174 	}
   4175 
   4176 	if (pmap_is_current(pm)) {
   4177 		/*
   4178 		 * If we're dealing with a current userland pmap, move its L1
   4179 		 * to the end of the LRU.
   4180 		 */
   4181 		if (pm != pmap_kernel())
   4182 			pmap_use_l1(pm);
   4183 
   4184 		/*
   4185 		 * We can assume we're done with frobbing the cache/tlb for
   4186 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4187 		 * flushes.
   4188 		 */
   4189 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4190 	}
   4191 
   4192 	PMAPCOUNT(updates);
   4193 
   4194 	/*
   4195 	 * make sure TLB/cache operations have completed.
   4196 	 */
   4197 	cpu_cpwait();
   4198 }
   4199 
   4200 void
   4201 pmap_remove_all(pmap_t pm)
   4202 {
   4203 
   4204 	/*
   4205 	 * The vmspace described by this pmap is about to be torn down.
   4206 	 * Until pmap_update() is called, UVM will only make calls
   4207 	 * to pmap_remove(). We can make life much simpler by flushing
   4208 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4209 	 */
   4210 #ifdef PMAP_CACHE_VIVT
   4211 	pmap_idcache_wbinv_all(pm);
   4212 #endif
   4213 	pm->pm_remove_all = true;
   4214 }
   4215 
   4216 /*
   4217  * Retire the given physical map from service.
   4218  * Should only be called if the map contains no valid mappings.
   4219  */
   4220 void
   4221 pmap_destroy(pmap_t pm)
   4222 {
   4223 	u_int count;
   4224 
   4225 	if (pm == NULL)
   4226 		return;
   4227 
   4228 	if (pm->pm_remove_all) {
   4229 		pmap_tlb_flushID(pm);
   4230 		pm->pm_remove_all = false;
   4231 	}
   4232 
   4233 	/*
   4234 	 * Drop reference count
   4235 	 */
   4236 	mutex_enter(&pm->pm_lock);
   4237 	count = --pm->pm_obj.uo_refs;
   4238 	mutex_exit(&pm->pm_lock);
   4239 	if (count > 0) {
   4240 		if (pmap_is_current(pm)) {
   4241 			if (pm != pmap_kernel())
   4242 				pmap_use_l1(pm);
   4243 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4244 		}
   4245 		return;
   4246 	}
   4247 
   4248 	/*
   4249 	 * reference count is zero, free pmap resources and then free pmap.
   4250 	 */
   4251 
   4252 	if (vector_page < KERNEL_BASE) {
   4253 		KDASSERT(!pmap_is_current(pm));
   4254 
   4255 		/* Remove the vector page mapping */
   4256 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4257 		pmap_update(pm);
   4258 	}
   4259 
   4260 	LIST_REMOVE(pm, pm_list);
   4261 
   4262 	pmap_free_l1(pm);
   4263 
   4264 	if (pmap_recent_user == pm)
   4265 		pmap_recent_user = NULL;
   4266 
   4267 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4268 
   4269 	/* return the pmap to the pool */
   4270 	pool_cache_put(&pmap_cache, pm);
   4271 }
   4272 
   4273 
   4274 /*
   4275  * void pmap_reference(pmap_t pm)
   4276  *
   4277  * Add a reference to the specified pmap.
   4278  */
   4279 void
   4280 pmap_reference(pmap_t pm)
   4281 {
   4282 
   4283 	if (pm == NULL)
   4284 		return;
   4285 
   4286 	pmap_use_l1(pm);
   4287 
   4288 	mutex_enter(&pm->pm_lock);
   4289 	pm->pm_obj.uo_refs++;
   4290 	mutex_exit(&pm->pm_lock);
   4291 }
   4292 
   4293 #if ARM_MMU_V6 > 0
   4294 
   4295 static struct evcnt pmap_prefer_nochange_ev =
   4296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4297 static struct evcnt pmap_prefer_change_ev =
   4298     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4299 
   4300 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4301 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4302 
   4303 void
   4304 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4305 {
   4306 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4307 	vaddr_t va = *vap;
   4308 	vaddr_t diff = (hint - va) & mask;
   4309 	if (diff == 0) {
   4310 		pmap_prefer_nochange_ev.ev_count++;
   4311 	} else {
   4312 		pmap_prefer_change_ev.ev_count++;
   4313 		if (__predict_false(td))
   4314 			va -= mask + 1;
   4315 		*vap = va + diff;
   4316 	}
   4317 }
   4318 #endif /* ARM_MMU_V6 */
   4319 
   4320 /*
   4321  * pmap_zero_page()
   4322  *
   4323  * Zero a given physical page by mapping it at a page hook point.
   4324  * In doing the zero page op, the page we zero is mapped cachable, as with
   4325  * StrongARM accesses to non-cached pages are non-burst making writing
   4326  * _any_ bulk data very slow.
   4327  */
   4328 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4329 void
   4330 pmap_zero_page_generic(paddr_t phys)
   4331 {
   4332 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4333 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4334 #endif
   4335 #ifdef PMAP_CACHE_VIPT
   4336 	/* Choose the last page color it had, if any */
   4337 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4338 #else
   4339 	const vsize_t va_offset = 0;
   4340 #endif
   4341 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4342 
   4343 #ifdef DEBUG
   4344 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4345 		panic("pmap_zero_page: page has mappings");
   4346 #endif
   4347 
   4348 	KDASSERT((phys & PGOFSET) == 0);
   4349 
   4350 	/*
   4351 	 * Hook in the page, zero it, and purge the cache for that
   4352 	 * zeroed page. Invalidate the TLB as needed.
   4353 	 */
   4354 	*ptep = L2_S_PROTO | phys |
   4355 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4356 	PTE_SYNC(ptep);
   4357 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4358 	cpu_cpwait();
   4359 	bzero_page(cdstp + va_offset);
   4360 	/*
   4361 	 * Unmap the page.
   4362 	 */
   4363 	*ptep = 0;
   4364 	PTE_SYNC(ptep);
   4365 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4366 #ifdef PMAP_CACHE_VIVT
   4367 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4368 #endif
   4369 #ifdef PMAP_CACHE_VIPT
   4370 	/*
   4371 	 * This page is now cache resident so it now has a page color.
   4372 	 * Any contents have been obliterated so clear the EXEC flag.
   4373 	 */
   4374 	if (!pmap_is_page_colored_p(pg)) {
   4375 		PMAPCOUNT(vac_color_new);
   4376 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4377 	}
   4378 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4379 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4380 		PMAPCOUNT(exec_discarded_zero);
   4381 	}
   4382 	pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4383 #endif
   4384 }
   4385 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4386 
   4387 #if ARM_MMU_XSCALE == 1
   4388 void
   4389 pmap_zero_page_xscale(paddr_t phys)
   4390 {
   4391 #ifdef DEBUG
   4392 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4393 
   4394 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4395 		panic("pmap_zero_page: page has mappings");
   4396 #endif
   4397 
   4398 	KDASSERT((phys & PGOFSET) == 0);
   4399 
   4400 	/*
   4401 	 * Hook in the page, zero it, and purge the cache for that
   4402 	 * zeroed page. Invalidate the TLB as needed.
   4403 	 */
   4404 	*cdst_pte = L2_S_PROTO | phys |
   4405 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4406 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4407 	PTE_SYNC(cdst_pte);
   4408 	cpu_tlb_flushD_SE(cdstp);
   4409 	cpu_cpwait();
   4410 	bzero_page(cdstp);
   4411 	xscale_cache_clean_minidata();
   4412 }
   4413 #endif /* ARM_MMU_XSCALE == 1 */
   4414 
   4415 /* pmap_pageidlezero()
   4416  *
   4417  * The same as above, except that we assume that the page is not
   4418  * mapped.  This means we never have to flush the cache first.  Called
   4419  * from the idle loop.
   4420  */
   4421 bool
   4422 pmap_pageidlezero(paddr_t phys)
   4423 {
   4424 	unsigned int i;
   4425 	int *ptr;
   4426 	bool rv = true;
   4427 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4428 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4429 #endif
   4430 #ifdef PMAP_CACHE_VIPT
   4431 	/* Choose the last page color it had, if any */
   4432 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4433 #else
   4434 	const vsize_t va_offset = 0;
   4435 #endif
   4436 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4437 
   4438 
   4439 #ifdef DEBUG
   4440 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4441 		panic("pmap_pageidlezero: page has mappings");
   4442 #endif
   4443 
   4444 	KDASSERT((phys & PGOFSET) == 0);
   4445 
   4446 	/*
   4447 	 * Hook in the page, zero it, and purge the cache for that
   4448 	 * zeroed page. Invalidate the TLB as needed.
   4449 	 */
   4450 	*ptep = L2_S_PROTO | phys |
   4451 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4452 	PTE_SYNC(ptep);
   4453 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4454 	cpu_cpwait();
   4455 
   4456 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4457 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4458 		if (sched_curcpu_runnable_p() != 0) {
   4459 			/*
   4460 			 * A process has become ready.  Abort now,
   4461 			 * so we don't keep it waiting while we
   4462 			 * do slow memory access to finish this
   4463 			 * page.
   4464 			 */
   4465 			rv = false;
   4466 			break;
   4467 		}
   4468 		*ptr++ = 0;
   4469 	}
   4470 
   4471 #ifdef PMAP_CACHE_VIVT
   4472 	if (rv)
   4473 		/*
   4474 		 * if we aborted we'll rezero this page again later so don't
   4475 		 * purge it unless we finished it
   4476 		 */
   4477 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4478 #elif defined(PMAP_CACHE_VIPT)
   4479 	/*
   4480 	 * This page is now cache resident so it now has a page color.
   4481 	 * Any contents have been obliterated so clear the EXEC flag.
   4482 	 */
   4483 	if (!pmap_is_page_colored_p(pg)) {
   4484 		PMAPCOUNT(vac_color_new);
   4485 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4486 	}
   4487 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4488 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4489 		PMAPCOUNT(exec_discarded_zero);
   4490 	}
   4491 #endif
   4492 	/*
   4493 	 * Unmap the page.
   4494 	 */
   4495 	*ptep = 0;
   4496 	PTE_SYNC(ptep);
   4497 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4498 
   4499 	return (rv);
   4500 }
   4501 
   4502 /*
   4503  * pmap_copy_page()
   4504  *
   4505  * Copy one physical page into another, by mapping the pages into
   4506  * hook points. The same comment regarding cachability as in
   4507  * pmap_zero_page also applies here.
   4508  */
   4509 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4510 void
   4511 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4512 {
   4513 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4514 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4515 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4516 #endif
   4517 #ifdef PMAP_CACHE_VIPT
   4518 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4519 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4520 #else
   4521 	const vsize_t src_va_offset = 0;
   4522 	const vsize_t dst_va_offset = 0;
   4523 #endif
   4524 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4525 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4526 
   4527 #ifdef DEBUG
   4528 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4529 		panic("pmap_copy_page: dst page has mappings");
   4530 #endif
   4531 
   4532 #ifdef PMAP_CACHE_VIPT
   4533 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4534 #endif
   4535 	KDASSERT((src & PGOFSET) == 0);
   4536 	KDASSERT((dst & PGOFSET) == 0);
   4537 
   4538 	/*
   4539 	 * Clean the source page.  Hold the source page's lock for
   4540 	 * the duration of the copy so that no other mappings can
   4541 	 * be created while we have a potentially aliased mapping.
   4542 	 */
   4543 	simple_lock(&src_pg->mdpage.pvh_slock);
   4544 #ifdef PMAP_CACHE_VIVT
   4545 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4546 #endif
   4547 
   4548 	/*
   4549 	 * Map the pages into the page hook points, copy them, and purge
   4550 	 * the cache for the appropriate page. Invalidate the TLB
   4551 	 * as required.
   4552 	 */
   4553 	*src_ptep = L2_S_PROTO
   4554 	    | src
   4555 #ifdef PMAP_CACHE_VIPT
   4556 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4557 #endif
   4558 #ifdef PMAP_CACHE_VIVT
   4559 	    | pte_l2_s_cache_mode
   4560 #endif
   4561 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4562 	*dst_ptep = L2_S_PROTO | dst |
   4563 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4564 	PTE_SYNC(src_ptep);
   4565 	PTE_SYNC(dst_ptep);
   4566 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4567 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4568 	cpu_cpwait();
   4569 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4570 #ifdef PMAP_CACHE_VIVT
   4571 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4572 #endif
   4573 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4574 #ifdef PMAP_CACHE_VIVT
   4575 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4576 #endif
   4577 	/*
   4578 	 * Unmap the pages.
   4579 	 */
   4580 	*src_ptep = 0;
   4581 	*dst_ptep = 0;
   4582 	PTE_SYNC(src_ptep);
   4583 	PTE_SYNC(dst_ptep);
   4584 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4585 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4586 #ifdef PMAP_CACHE_VIPT
   4587 	/*
   4588 	 * Now that the destination page is in the cache, mark it as colored.
   4589 	 * If this was an exec page, discard it.
   4590 	 */
   4591 	if (!pmap_is_page_colored_p(dst_pg)) {
   4592 		PMAPCOUNT(vac_color_new);
   4593 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4594 	}
   4595 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4596 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4597 		PMAPCOUNT(exec_discarded_copy);
   4598 	}
   4599 	dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4600 #endif
   4601 }
   4602 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4603 
   4604 #if ARM_MMU_XSCALE == 1
   4605 void
   4606 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4607 {
   4608 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4609 #ifdef DEBUG
   4610 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4611 
   4612 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4613 		panic("pmap_copy_page: dst page has mappings");
   4614 #endif
   4615 
   4616 	KDASSERT((src & PGOFSET) == 0);
   4617 	KDASSERT((dst & PGOFSET) == 0);
   4618 
   4619 	/*
   4620 	 * Clean the source page.  Hold the source page's lock for
   4621 	 * the duration of the copy so that no other mappings can
   4622 	 * be created while we have a potentially aliased mapping.
   4623 	 */
   4624 	simple_lock(&src_pg->mdpage.pvh_slock);
   4625 #ifdef PMAP_CACHE_VIVT
   4626 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4627 #endif
   4628 
   4629 	/*
   4630 	 * Map the pages into the page hook points, copy them, and purge
   4631 	 * the cache for the appropriate page. Invalidate the TLB
   4632 	 * as required.
   4633 	 */
   4634 	*csrc_pte = L2_S_PROTO | src |
   4635 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4636 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4637 	PTE_SYNC(csrc_pte);
   4638 	*cdst_pte = L2_S_PROTO | dst |
   4639 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4640 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4641 	PTE_SYNC(cdst_pte);
   4642 	cpu_tlb_flushD_SE(csrcp);
   4643 	cpu_tlb_flushD_SE(cdstp);
   4644 	cpu_cpwait();
   4645 	bcopy_page(csrcp, cdstp);
   4646 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4647 	xscale_cache_clean_minidata();
   4648 }
   4649 #endif /* ARM_MMU_XSCALE == 1 */
   4650 
   4651 /*
   4652  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4653  *
   4654  * Return the start and end addresses of the kernel's virtual space.
   4655  * These values are setup in pmap_bootstrap and are updated as pages
   4656  * are allocated.
   4657  */
   4658 void
   4659 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4660 {
   4661 	*start = virtual_avail;
   4662 	*end = virtual_end;
   4663 }
   4664 
   4665 /*
   4666  * Helper function for pmap_grow_l2_bucket()
   4667  */
   4668 static inline int
   4669 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4670 {
   4671 	struct l2_bucket *l2b;
   4672 	pt_entry_t *ptep;
   4673 	paddr_t pa;
   4674 
   4675 	if (uvm.page_init_done == false) {
   4676 #ifdef PMAP_STEAL_MEMORY
   4677 		pv_addr_t pv;
   4678 		pmap_boot_pagealloc(PAGE_SIZE,
   4679 #ifdef PMAP_CACHE_VIPT
   4680 		    arm_cache_prefer_mask,
   4681 		    va & arm_cache_prefer_mask,
   4682 #else
   4683 		    0, 0,
   4684 #endif
   4685 		    &pv);
   4686 		pa = pv.pv_pa;
   4687 #else
   4688 		if (uvm_page_physget(&pa) == false)
   4689 			return (1);
   4690 #endif	/* PMAP_STEAL_MEMORY */
   4691 	} else {
   4692 		struct vm_page *pg;
   4693 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4694 		if (pg == NULL)
   4695 			return (1);
   4696 		pa = VM_PAGE_TO_PHYS(pg);
   4697 #ifdef PMAP_CACHE_VIPT
   4698 		/*
   4699 		 * This new page must not have any mappings.  Enter it via
   4700 		 * pmap_kenter_pa and let that routine do the hard work.
   4701 		 */
   4702 		KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
   4703 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   4704 #endif
   4705 	}
   4706 
   4707 	if (pap)
   4708 		*pap = pa;
   4709 
   4710 	PMAPCOUNT(pt_mappings);
   4711 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4712 	KDASSERT(l2b != NULL);
   4713 
   4714 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4715 	*ptep = L2_S_PROTO | pa | cache_mode |
   4716 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4717 	PTE_SYNC(ptep);
   4718 	memset((void *)va, 0, PAGE_SIZE);
   4719 	return (0);
   4720 }
   4721 
   4722 /*
   4723  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4724  * used by pmap_growkernel().
   4725  */
   4726 static inline struct l2_bucket *
   4727 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4728 {
   4729 	struct l2_dtable *l2;
   4730 	struct l2_bucket *l2b;
   4731 	u_short l1idx;
   4732 	vaddr_t nva;
   4733 
   4734 	l1idx = L1_IDX(va);
   4735 
   4736 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4737 		/*
   4738 		 * No mapping at this address, as there is
   4739 		 * no entry in the L1 table.
   4740 		 * Need to allocate a new l2_dtable.
   4741 		 */
   4742 		nva = pmap_kernel_l2dtable_kva;
   4743 		if ((nva & PGOFSET) == 0) {
   4744 			/*
   4745 			 * Need to allocate a backing page
   4746 			 */
   4747 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4748 				return (NULL);
   4749 		}
   4750 
   4751 		l2 = (struct l2_dtable *)nva;
   4752 		nva += sizeof(struct l2_dtable);
   4753 
   4754 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4755 			/*
   4756 			 * The new l2_dtable straddles a page boundary.
   4757 			 * Map in another page to cover it.
   4758 			 */
   4759 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4760 				return (NULL);
   4761 		}
   4762 
   4763 		pmap_kernel_l2dtable_kva = nva;
   4764 
   4765 		/*
   4766 		 * Link it into the parent pmap
   4767 		 */
   4768 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4769 	}
   4770 
   4771 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4772 
   4773 	/*
   4774 	 * Fetch pointer to the L2 page table associated with the address.
   4775 	 */
   4776 	if (l2b->l2b_kva == NULL) {
   4777 		pt_entry_t *ptep;
   4778 
   4779 		/*
   4780 		 * No L2 page table has been allocated. Chances are, this
   4781 		 * is because we just allocated the l2_dtable, above.
   4782 		 */
   4783 		nva = pmap_kernel_l2ptp_kva;
   4784 		ptep = (pt_entry_t *)nva;
   4785 		if ((nva & PGOFSET) == 0) {
   4786 			/*
   4787 			 * Need to allocate a backing page
   4788 			 */
   4789 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4790 			    &pmap_kernel_l2ptp_phys))
   4791 				return (NULL);
   4792 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4793 		}
   4794 
   4795 		l2->l2_occupancy++;
   4796 		l2b->l2b_kva = ptep;
   4797 		l2b->l2b_l1idx = l1idx;
   4798 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4799 
   4800 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4801 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4802 	}
   4803 
   4804 	return (l2b);
   4805 }
   4806 
   4807 vaddr_t
   4808 pmap_growkernel(vaddr_t maxkvaddr)
   4809 {
   4810 	pmap_t kpm = pmap_kernel();
   4811 	struct l1_ttable *l1;
   4812 	struct l2_bucket *l2b;
   4813 	pd_entry_t *pl1pd;
   4814 	int s;
   4815 
   4816 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4817 		goto out;		/* we are OK */
   4818 
   4819 	NPDEBUG(PDB_GROWKERN,
   4820 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4821 	    pmap_curmaxkvaddr, maxkvaddr));
   4822 
   4823 	KDASSERT(maxkvaddr <= virtual_end);
   4824 
   4825 	/*
   4826 	 * whoops!   we need to add kernel PTPs
   4827 	 */
   4828 
   4829 	s = splhigh();	/* to be safe */
   4830 	mutex_enter(&kpm->pm_lock);
   4831 
   4832 	/* Map 1MB at a time */
   4833 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4834 
   4835 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4836 		KDASSERT(l2b != NULL);
   4837 
   4838 		/* Distribute new L1 entry to all other L1s */
   4839 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4840 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4841 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4842 			    L1_C_PROTO;
   4843 			PTE_SYNC(pl1pd);
   4844 		}
   4845 	}
   4846 
   4847 	/*
   4848 	 * flush out the cache, expensive but growkernel will happen so
   4849 	 * rarely
   4850 	 */
   4851 	cpu_dcache_wbinv_all();
   4852 	cpu_tlb_flushD();
   4853 	cpu_cpwait();
   4854 
   4855 	mutex_exit(&kpm->pm_lock);
   4856 	splx(s);
   4857 
   4858 out:
   4859 	return (pmap_curmaxkvaddr);
   4860 }
   4861 
   4862 /************************ Utility routines ****************************/
   4863 
   4864 /*
   4865  * vector_page_setprot:
   4866  *
   4867  *	Manipulate the protection of the vector page.
   4868  */
   4869 void
   4870 vector_page_setprot(int prot)
   4871 {
   4872 	struct l2_bucket *l2b;
   4873 	pt_entry_t *ptep;
   4874 
   4875 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4876 	KDASSERT(l2b != NULL);
   4877 
   4878 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4879 
   4880 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4881 	PTE_SYNC(ptep);
   4882 	cpu_tlb_flushD_SE(vector_page);
   4883 	cpu_cpwait();
   4884 }
   4885 
   4886 /*
   4887  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4888  * Returns true if the mapping exists, else false.
   4889  *
   4890  * NOTE: This function is only used by a couple of arm-specific modules.
   4891  * It is not safe to take any pmap locks here, since we could be right
   4892  * in the middle of debugging the pmap anyway...
   4893  *
   4894  * It is possible for this routine to return false even though a valid
   4895  * mapping does exist. This is because we don't lock, so the metadata
   4896  * state may be inconsistent.
   4897  *
   4898  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4899  * a "section" mapping.
   4900  */
   4901 bool
   4902 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4903 {
   4904 	struct l2_dtable *l2;
   4905 	pd_entry_t *pl1pd, l1pd;
   4906 	pt_entry_t *ptep;
   4907 	u_short l1idx;
   4908 
   4909 	if (pm->pm_l1 == NULL)
   4910 		return false;
   4911 
   4912 	l1idx = L1_IDX(va);
   4913 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4914 	l1pd = *pl1pd;
   4915 
   4916 	if (l1pte_section_p(l1pd)) {
   4917 		*ptp = NULL;
   4918 		return true;
   4919 	}
   4920 
   4921 	if (pm->pm_l2 == NULL)
   4922 		return false;
   4923 
   4924 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4925 
   4926 	if (l2 == NULL ||
   4927 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4928 		return false;
   4929 	}
   4930 
   4931 	*ptp = &ptep[l2pte_index(va)];
   4932 	return true;
   4933 }
   4934 
   4935 bool
   4936 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4937 {
   4938 	u_short l1idx;
   4939 
   4940 	if (pm->pm_l1 == NULL)
   4941 		return false;
   4942 
   4943 	l1idx = L1_IDX(va);
   4944 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4945 
   4946 	return true;
   4947 }
   4948 
   4949 /************************ Bootstrapping routines ****************************/
   4950 
   4951 static void
   4952 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4953 {
   4954 	int i;
   4955 
   4956 	l1->l1_kva = l1pt;
   4957 	l1->l1_domain_use_count = 0;
   4958 	l1->l1_domain_first = 0;
   4959 
   4960 	for (i = 0; i < PMAP_DOMAINS; i++)
   4961 		l1->l1_domain_free[i] = i + 1;
   4962 
   4963 	/*
   4964 	 * Copy the kernel's L1 entries to each new L1.
   4965 	 */
   4966 	if (pmap_initialized)
   4967 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   4968 
   4969 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   4970 	    &l1->l1_physaddr) == false)
   4971 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   4972 
   4973 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   4974 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   4975 }
   4976 
   4977 /*
   4978  * pmap_bootstrap() is called from the board-specific initarm() routine
   4979  * once the kernel L1/L2 descriptors tables have been set up.
   4980  *
   4981  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   4982  * spread over a number of disparate files/functions.
   4983  *
   4984  * We are passed the following parameters
   4985  *  - kernel_l1pt
   4986  *    This is a pointer to the base of the kernel's L1 translation table.
   4987  *  - vstart
   4988  *    1MB-aligned start of managed kernel virtual memory.
   4989  *  - vend
   4990  *    1MB-aligned end of managed kernel virtual memory.
   4991  *
   4992  * We use the first parameter to build the metadata (struct l1_ttable and
   4993  * struct l2_dtable) necessary to track kernel mappings.
   4994  */
   4995 #define	PMAP_STATIC_L2_SIZE 16
   4996 void
   4997 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   4998 {
   4999 	static struct l1_ttable static_l1;
   5000 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5001 	struct l1_ttable *l1 = &static_l1;
   5002 	struct l2_dtable *l2;
   5003 	struct l2_bucket *l2b;
   5004 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5005 	pmap_t pm = pmap_kernel();
   5006 	pd_entry_t pde;
   5007 	pt_entry_t *ptep;
   5008 	paddr_t pa;
   5009 	vaddr_t va;
   5010 	vsize_t size;
   5011 	int nptes, l1idx, l2idx, l2next = 0;
   5012 
   5013 	/*
   5014 	 * Initialise the kernel pmap object
   5015 	 */
   5016 	pm->pm_l1 = l1;
   5017 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5018 	pm->pm_activated = true;
   5019 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5020 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   5021 
   5022 	/*
   5023 	 * Scan the L1 translation table created by initarm() and create
   5024 	 * the required metadata for all valid mappings found in it.
   5025 	 */
   5026 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5027 		pde = l1pt[l1idx];
   5028 
   5029 		/*
   5030 		 * We're only interested in Coarse mappings.
   5031 		 * pmap_extract() can deal with section mappings without
   5032 		 * recourse to checking L2 metadata.
   5033 		 */
   5034 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5035 			continue;
   5036 
   5037 		/*
   5038 		 * Lookup the KVA of this L2 descriptor table
   5039 		 */
   5040 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5041 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5042 		if (ptep == NULL) {
   5043 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5044 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5045 		}
   5046 
   5047 		/*
   5048 		 * Fetch the associated L2 metadata structure.
   5049 		 * Allocate a new one if necessary.
   5050 		 */
   5051 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5052 			if (l2next == PMAP_STATIC_L2_SIZE)
   5053 				panic("pmap_bootstrap: out of static L2s");
   5054 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5055 		}
   5056 
   5057 		/*
   5058 		 * One more L1 slot tracked...
   5059 		 */
   5060 		l2->l2_occupancy++;
   5061 
   5062 		/*
   5063 		 * Fill in the details of the L2 descriptor in the
   5064 		 * appropriate bucket.
   5065 		 */
   5066 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5067 		l2b->l2b_kva = ptep;
   5068 		l2b->l2b_phys = pa;
   5069 		l2b->l2b_l1idx = l1idx;
   5070 
   5071 		/*
   5072 		 * Establish an initial occupancy count for this descriptor
   5073 		 */
   5074 		for (l2idx = 0;
   5075 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5076 		    l2idx++) {
   5077 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5078 				l2b->l2b_occupancy++;
   5079 			}
   5080 		}
   5081 
   5082 		/*
   5083 		 * Make sure the descriptor itself has the correct cache mode.
   5084 		 * If not, fix it, but whine about the problem. Port-meisters
   5085 		 * should consider this a clue to fix up their initarm()
   5086 		 * function. :)
   5087 		 */
   5088 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5089 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5090 			    "L2 pte @ %p\n", ptep);
   5091 		}
   5092 	}
   5093 
   5094 	/*
   5095 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5096 	 * a page table. Bitch if it is not correctly set.
   5097 	 */
   5098 	for (va = (vaddr_t)l1pt;
   5099 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5100 		if (pmap_set_pt_cache_mode(l1pt, va))
   5101 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5102 			    "primary L1 @ 0x%lx\n", va);
   5103 	}
   5104 
   5105 	cpu_dcache_wbinv_all();
   5106 	cpu_tlb_flushID();
   5107 	cpu_cpwait();
   5108 
   5109 	/*
   5110 	 * now we allocate the "special" VAs which are used for tmp mappings
   5111 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5112 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5113 	 *
   5114 	 * Managed KVM space start from wherever initarm() tells us.
   5115 	 */
   5116 	virtual_avail = vstart;
   5117 	virtual_end = vend;
   5118 
   5119 #ifdef PMAP_CACHE_VIPT
   5120 	/*
   5121 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5122 	 * page so we won't violate cache aliasing rules.
   5123 	 */
   5124 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5125 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5126 #else
   5127 	nptes = 1;
   5128 #endif
   5129 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5130 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5131 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5132 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5133 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5134 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5135 	    (void *)&msgbufaddr, NULL);
   5136 
   5137 	/*
   5138 	 * Allocate a range of kernel virtual address space to be used
   5139 	 * for L2 descriptor tables and metadata allocation in
   5140 	 * pmap_growkernel().
   5141 	 */
   5142 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5143 	pmap_alloc_specials(&virtual_avail,
   5144 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5145 	    &pmap_kernel_l2ptp_kva, NULL);
   5146 
   5147 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5148 	pmap_alloc_specials(&virtual_avail,
   5149 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5150 	    &pmap_kernel_l2dtable_kva, NULL);
   5151 
   5152 	/*
   5153 	 * init the static-global locks and global pmap list.
   5154 	 */
   5155 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5156 
   5157 	/*
   5158 	 * We can now initialise the first L1's metadata.
   5159 	 */
   5160 	SLIST_INIT(&l1_list);
   5161 	TAILQ_INIT(&l1_lru_list);
   5162 	simple_lock_init(&l1_lru_lock);
   5163 	pmap_init_l1(l1, l1pt);
   5164 
   5165 	/* Set up vector page L1 details, if necessary */
   5166 	if (vector_page < KERNEL_BASE) {
   5167 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5168 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5169 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5170 		    L1_C_DOM(pm->pm_domain);
   5171 	} else
   5172 		pm->pm_pl1vec = NULL;
   5173 
   5174 	/*
   5175 	 * Initialize the pmap cache
   5176 	 */
   5177 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5178 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5179 	LIST_INIT(&pmap_pmaps);
   5180 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5181 
   5182 	/*
   5183 	 * Initialize the pv pool.
   5184 	 */
   5185 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5186 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5187 
   5188 	/*
   5189 	 * Initialize the L2 dtable pool and cache.
   5190 	 */
   5191 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5192 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5193 
   5194 	/*
   5195 	 * Initialise the L2 descriptor table pool and cache
   5196 	 */
   5197 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5198 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5199 	    pmap_l2ptp_ctor, NULL, NULL);
   5200 
   5201 	cpu_dcache_wbinv_all();
   5202 }
   5203 
   5204 static int
   5205 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5206 {
   5207 	pd_entry_t *pdep, pde;
   5208 	pt_entry_t *ptep, pte;
   5209 	vaddr_t pa;
   5210 	int rv = 0;
   5211 
   5212 	/*
   5213 	 * Make sure the descriptor itself has the correct cache mode
   5214 	 */
   5215 	pdep = &kl1[L1_IDX(va)];
   5216 	pde = *pdep;
   5217 
   5218 	if (l1pte_section_p(pde)) {
   5219 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5220 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5221 			    pte_l1_s_cache_mode_pt;
   5222 			PTE_SYNC(pdep);
   5223 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5224 			rv = 1;
   5225 		}
   5226 	} else {
   5227 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5228 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5229 		if (ptep == NULL)
   5230 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5231 
   5232 		ptep = &ptep[l2pte_index(va)];
   5233 		pte = *ptep;
   5234 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5235 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5236 			    pte_l2_s_cache_mode_pt;
   5237 			PTE_SYNC(ptep);
   5238 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5239 			rv = 1;
   5240 		}
   5241 	}
   5242 
   5243 	return (rv);
   5244 }
   5245 
   5246 static void
   5247 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5248 {
   5249 	vaddr_t va = *availp;
   5250 	struct l2_bucket *l2b;
   5251 
   5252 	if (ptep) {
   5253 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5254 		if (l2b == NULL)
   5255 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5256 
   5257 		if (ptep)
   5258 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5259 	}
   5260 
   5261 	*vap = va;
   5262 	*availp = va + (PAGE_SIZE * pages);
   5263 }
   5264 
   5265 void
   5266 pmap_init(void)
   5267 {
   5268 	extern int physmem;
   5269 
   5270 	/*
   5271 	 * Set the available memory vars - These do not map to real memory
   5272 	 * addresses and cannot as the physical memory is fragmented.
   5273 	 * They are used by ps for %mem calculations.
   5274 	 * One could argue whether this should be the entire memory or just
   5275 	 * the memory that is useable in a user process.
   5276 	 */
   5277 	avail_start = 0;
   5278 	avail_end = physmem * PAGE_SIZE;
   5279 
   5280 	/*
   5281 	 * Now we need to free enough pv_entry structures to allow us to get
   5282 	 * the kmem_map/kmem_object allocated and inited (done after this
   5283 	 * function is finished).  to do this we allocate one bootstrap page out
   5284 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5285 	 * structures.   we never free this page.
   5286 	 */
   5287 	pool_setlowat(&pmap_pv_pool,
   5288 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5289 
   5290 	pmap_initialized = true;
   5291 
   5292 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5293 }
   5294 
   5295 static vaddr_t last_bootstrap_page = 0;
   5296 static void *free_bootstrap_pages = NULL;
   5297 
   5298 static void *
   5299 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5300 {
   5301 	extern void *pool_page_alloc(struct pool *, int);
   5302 	vaddr_t new_page;
   5303 	void *rv;
   5304 
   5305 	if (pmap_initialized)
   5306 		return (pool_page_alloc(pp, flags));
   5307 
   5308 	if (free_bootstrap_pages) {
   5309 		rv = free_bootstrap_pages;
   5310 		free_bootstrap_pages = *((void **)rv);
   5311 		return (rv);
   5312 	}
   5313 
   5314 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5315 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5316 
   5317 	KASSERT(new_page > last_bootstrap_page);
   5318 	last_bootstrap_page = new_page;
   5319 	return ((void *)new_page);
   5320 }
   5321 
   5322 static void
   5323 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5324 {
   5325 	extern void pool_page_free(struct pool *, void *);
   5326 
   5327 	if ((vaddr_t)v <= last_bootstrap_page) {
   5328 		*((void **)v) = free_bootstrap_pages;
   5329 		free_bootstrap_pages = v;
   5330 		return;
   5331 	}
   5332 
   5333 	if (pmap_initialized) {
   5334 		pool_page_free(pp, v);
   5335 		return;
   5336 	}
   5337 }
   5338 
   5339 /*
   5340  * pmap_postinit()
   5341  *
   5342  * This routine is called after the vm and kmem subsystems have been
   5343  * initialised. This allows the pmap code to perform any initialisation
   5344  * that can only be done one the memory allocation is in place.
   5345  */
   5346 void
   5347 pmap_postinit(void)
   5348 {
   5349 	extern paddr_t physical_start, physical_end;
   5350 	struct l2_bucket *l2b;
   5351 	struct l1_ttable *l1;
   5352 	struct pglist plist;
   5353 	struct vm_page *m;
   5354 	pd_entry_t *pl1pt;
   5355 	pt_entry_t *ptep, pte;
   5356 	vaddr_t va, eva;
   5357 	u_int loop, needed;
   5358 	int error;
   5359 
   5360 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5361 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5362 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5363 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5364 
   5365 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5366 	needed -= 1;
   5367 
   5368 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5369 
   5370 	for (loop = 0; loop < needed; loop++, l1++) {
   5371 		/* Allocate a L1 page table */
   5372 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5373 		if (va == 0)
   5374 			panic("Cannot allocate L1 KVM");
   5375 
   5376 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5377 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5378 		if (error)
   5379 			panic("Cannot allocate L1 physical pages");
   5380 
   5381 		m = TAILQ_FIRST(&plist);
   5382 		eva = va + L1_TABLE_SIZE;
   5383 		pl1pt = (pd_entry_t *)va;
   5384 
   5385 		while (m && va < eva) {
   5386 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5387 
   5388 			pmap_kenter_pa(va, pa,
   5389 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   5390 
   5391 			/*
   5392 			 * Make sure the L1 descriptor table is mapped
   5393 			 * with the cache-mode set to write-through.
   5394 			 */
   5395 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5396 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5397 			pte = *ptep;
   5398 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5399 			*ptep = pte;
   5400 			PTE_SYNC(ptep);
   5401 			cpu_tlb_flushD_SE(va);
   5402 
   5403 			va += PAGE_SIZE;
   5404 			m = TAILQ_NEXT(m, pageq.queue);
   5405 		}
   5406 
   5407 #ifdef DIAGNOSTIC
   5408 		if (m)
   5409 			panic("pmap_alloc_l1pt: pglist not empty");
   5410 #endif	/* DIAGNOSTIC */
   5411 
   5412 		pmap_init_l1(l1, pl1pt);
   5413 	}
   5414 
   5415 #ifdef DEBUG
   5416 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5417 	    needed);
   5418 #endif
   5419 }
   5420 
   5421 /*
   5422  * Note that the following routines are used by board-specific initialisation
   5423  * code to configure the initial kernel page tables.
   5424  *
   5425  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5426  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5427  * behaviour of the old pmap, and provides an easy migration path for
   5428  * initial bring-up of the new pmap on existing ports. Fortunately,
   5429  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5430  * will be deprecated.
   5431  *
   5432  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5433  * tables.
   5434  */
   5435 
   5436 /*
   5437  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5438  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5439  * find them as necessary.
   5440  *
   5441  * Note that the data on this list MUST remain valid after initarm() returns,
   5442  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5443  */
   5444 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5445 
   5446 static vaddr_t
   5447 kernel_pt_lookup(paddr_t pa)
   5448 {
   5449 	pv_addr_t *pv;
   5450 
   5451 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5452 #ifndef ARM32_NEW_VM_LAYOUT
   5453 		if (pv->pv_pa == (pa & ~PGOFSET))
   5454 			return (pv->pv_va | (pa & PGOFSET));
   5455 #else
   5456 		if (pv->pv_pa == pa)
   5457 			return (pv->pv_va);
   5458 #endif
   5459 	}
   5460 	return (0);
   5461 }
   5462 
   5463 /*
   5464  * pmap_map_section:
   5465  *
   5466  *	Create a single section mapping.
   5467  */
   5468 void
   5469 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5470 {
   5471 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5472 	pd_entry_t fl;
   5473 
   5474 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5475 
   5476 	switch (cache) {
   5477 	case PTE_NOCACHE:
   5478 	default:
   5479 		fl = 0;
   5480 		break;
   5481 
   5482 	case PTE_CACHE:
   5483 		fl = pte_l1_s_cache_mode;
   5484 		break;
   5485 
   5486 	case PTE_PAGETABLE:
   5487 		fl = pte_l1_s_cache_mode_pt;
   5488 		break;
   5489 	}
   5490 
   5491 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5492 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5493 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5494 }
   5495 
   5496 /*
   5497  * pmap_map_entry:
   5498  *
   5499  *	Create a single page mapping.
   5500  */
   5501 void
   5502 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5503 {
   5504 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5505 	pt_entry_t fl;
   5506 	pt_entry_t *pte;
   5507 
   5508 	KASSERT(((va | pa) & PGOFSET) == 0);
   5509 
   5510 	switch (cache) {
   5511 	case PTE_NOCACHE:
   5512 	default:
   5513 		fl = 0;
   5514 		break;
   5515 
   5516 	case PTE_CACHE:
   5517 		fl = pte_l2_s_cache_mode;
   5518 		break;
   5519 
   5520 	case PTE_PAGETABLE:
   5521 		fl = pte_l2_s_cache_mode_pt;
   5522 		break;
   5523 	}
   5524 
   5525 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5526 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5527 
   5528 #ifndef ARM32_NEW_VM_LAYOUT
   5529 	pte = (pt_entry_t *)
   5530 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5531 #else
   5532 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5533 #endif
   5534 	if (pte == NULL)
   5535 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5536 
   5537 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5538 #ifndef ARM32_NEW_VM_LAYOUT
   5539 	pte += (va >> PGSHIFT) & 0x3ff;
   5540 #else
   5541 	pte += l2pte_index(va);
   5542 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5543 #endif
   5544 	*pte = fl;
   5545 	PTE_SYNC(pte);
   5546 }
   5547 
   5548 /*
   5549  * pmap_link_l2pt:
   5550  *
   5551  *	Link the L2 page table specified by "l2pv" into the L1
   5552  *	page table at the slot for "va".
   5553  */
   5554 void
   5555 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5556 {
   5557 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5558 	u_int slot = va >> L1_S_SHIFT;
   5559 
   5560 #ifndef ARM32_NEW_VM_LAYOUT
   5561 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5562 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5563 #endif
   5564 
   5565 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5566 
   5567 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5568 #ifdef ARM32_NEW_VM_LAYOUT
   5569 	PTE_SYNC(&pde[slot]);
   5570 #else
   5571 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5572 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5573 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5574 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5575 #endif
   5576 
   5577 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5578 }
   5579 
   5580 /*
   5581  * pmap_map_chunk:
   5582  *
   5583  *	Map a chunk of memory using the most efficient mappings
   5584  *	possible (section, large page, small page) into the
   5585  *	provided L1 and L2 tables at the specified virtual address.
   5586  */
   5587 vsize_t
   5588 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5589     int prot, int cache)
   5590 {
   5591 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5592 	pt_entry_t *pte, f1, f2s, f2l;
   5593 	vsize_t resid;
   5594 	int i;
   5595 
   5596 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5597 
   5598 	if (l1pt == 0)
   5599 		panic("pmap_map_chunk: no L1 table provided");
   5600 
   5601 #ifdef VERBOSE_INIT_ARM
   5602 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5603 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5604 #endif
   5605 
   5606 	switch (cache) {
   5607 	case PTE_NOCACHE:
   5608 	default:
   5609 		f1 = 0;
   5610 		f2l = 0;
   5611 		f2s = 0;
   5612 		break;
   5613 
   5614 	case PTE_CACHE:
   5615 		f1 = pte_l1_s_cache_mode;
   5616 		f2l = pte_l2_l_cache_mode;
   5617 		f2s = pte_l2_s_cache_mode;
   5618 		break;
   5619 
   5620 	case PTE_PAGETABLE:
   5621 		f1 = pte_l1_s_cache_mode_pt;
   5622 		f2l = pte_l2_l_cache_mode_pt;
   5623 		f2s = pte_l2_s_cache_mode_pt;
   5624 		break;
   5625 	}
   5626 
   5627 	size = resid;
   5628 
   5629 	while (resid > 0) {
   5630 		/* See if we can use a section mapping. */
   5631 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5632 #ifdef VERBOSE_INIT_ARM
   5633 			printf("S");
   5634 #endif
   5635 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5636 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5637 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5638 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5639 			va += L1_S_SIZE;
   5640 			pa += L1_S_SIZE;
   5641 			resid -= L1_S_SIZE;
   5642 			continue;
   5643 		}
   5644 
   5645 		/*
   5646 		 * Ok, we're going to use an L2 table.  Make sure
   5647 		 * one is actually in the corresponding L1 slot
   5648 		 * for the current VA.
   5649 		 */
   5650 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5651 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5652 
   5653 #ifndef ARM32_NEW_VM_LAYOUT
   5654 		pte = (pt_entry_t *)
   5655 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5656 #else
   5657 		pte = (pt_entry_t *) kernel_pt_lookup(
   5658 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5659 #endif
   5660 		if (pte == NULL)
   5661 			panic("pmap_map_chunk: can't find L2 table for VA"
   5662 			    "0x%08lx", va);
   5663 
   5664 		/* See if we can use a L2 large page mapping. */
   5665 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5666 #ifdef VERBOSE_INIT_ARM
   5667 			printf("L");
   5668 #endif
   5669 			for (i = 0; i < 16; i++) {
   5670 #ifndef ARM32_NEW_VM_LAYOUT
   5671 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5672 				    L2_L_PROTO | pa |
   5673 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5674 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5675 #else
   5676 				pte[l2pte_index(va) + i] =
   5677 				    L2_L_PROTO | pa |
   5678 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5679 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5680 #endif
   5681 			}
   5682 			va += L2_L_SIZE;
   5683 			pa += L2_L_SIZE;
   5684 			resid -= L2_L_SIZE;
   5685 			continue;
   5686 		}
   5687 
   5688 		/* Use a small page mapping. */
   5689 #ifdef VERBOSE_INIT_ARM
   5690 		printf("P");
   5691 #endif
   5692 #ifndef ARM32_NEW_VM_LAYOUT
   5693 		pte[(va >> PGSHIFT) & 0x3ff] =
   5694 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5695 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5696 #else
   5697 		pte[l2pte_index(va)] =
   5698 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5699 		PTE_SYNC(&pte[l2pte_index(va)]);
   5700 #endif
   5701 		va += PAGE_SIZE;
   5702 		pa += PAGE_SIZE;
   5703 		resid -= PAGE_SIZE;
   5704 	}
   5705 #ifdef VERBOSE_INIT_ARM
   5706 	printf("\n");
   5707 #endif
   5708 	return (size);
   5709 }
   5710 
   5711 /********************** Static device map routines ***************************/
   5712 
   5713 static const struct pmap_devmap *pmap_devmap_table;
   5714 
   5715 /*
   5716  * Register the devmap table.  This is provided in case early console
   5717  * initialization needs to register mappings created by bootstrap code
   5718  * before pmap_devmap_bootstrap() is called.
   5719  */
   5720 void
   5721 pmap_devmap_register(const struct pmap_devmap *table)
   5722 {
   5723 
   5724 	pmap_devmap_table = table;
   5725 }
   5726 
   5727 /*
   5728  * Map all of the static regions in the devmap table, and remember
   5729  * the devmap table so other parts of the kernel can look up entries
   5730  * later.
   5731  */
   5732 void
   5733 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5734 {
   5735 	int i;
   5736 
   5737 	pmap_devmap_table = table;
   5738 
   5739 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5740 #ifdef VERBOSE_INIT_ARM
   5741 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5742 		    pmap_devmap_table[i].pd_pa,
   5743 		    pmap_devmap_table[i].pd_pa +
   5744 			pmap_devmap_table[i].pd_size - 1,
   5745 		    pmap_devmap_table[i].pd_va);
   5746 #endif
   5747 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5748 		    pmap_devmap_table[i].pd_pa,
   5749 		    pmap_devmap_table[i].pd_size,
   5750 		    pmap_devmap_table[i].pd_prot,
   5751 		    pmap_devmap_table[i].pd_cache);
   5752 	}
   5753 }
   5754 
   5755 const struct pmap_devmap *
   5756 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5757 {
   5758 	uint64_t endpa;
   5759 	int i;
   5760 
   5761 	if (pmap_devmap_table == NULL)
   5762 		return (NULL);
   5763 
   5764 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5765 
   5766 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5767 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5768 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5769 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5770 			return (&pmap_devmap_table[i]);
   5771 	}
   5772 
   5773 	return (NULL);
   5774 }
   5775 
   5776 const struct pmap_devmap *
   5777 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5778 {
   5779 	int i;
   5780 
   5781 	if (pmap_devmap_table == NULL)
   5782 		return (NULL);
   5783 
   5784 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5785 		if (va >= pmap_devmap_table[i].pd_va &&
   5786 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5787 				     pmap_devmap_table[i].pd_size - 1)
   5788 			return (&pmap_devmap_table[i]);
   5789 	}
   5790 
   5791 	return (NULL);
   5792 }
   5793 
   5794 /********************** PTE initialization routines **************************/
   5795 
   5796 /*
   5797  * These routines are called when the CPU type is identified to set up
   5798  * the PTE prototypes, cache modes, etc.
   5799  *
   5800  * The variables are always here, just in case LKMs need to reference
   5801  * them (though, they shouldn't).
   5802  */
   5803 
   5804 pt_entry_t	pte_l1_s_cache_mode;
   5805 pt_entry_t	pte_l1_s_cache_mode_pt;
   5806 pt_entry_t	pte_l1_s_cache_mask;
   5807 
   5808 pt_entry_t	pte_l2_l_cache_mode;
   5809 pt_entry_t	pte_l2_l_cache_mode_pt;
   5810 pt_entry_t	pte_l2_l_cache_mask;
   5811 
   5812 pt_entry_t	pte_l2_s_cache_mode;
   5813 pt_entry_t	pte_l2_s_cache_mode_pt;
   5814 pt_entry_t	pte_l2_s_cache_mask;
   5815 
   5816 pt_entry_t	pte_l2_s_prot_u;
   5817 pt_entry_t	pte_l2_s_prot_w;
   5818 pt_entry_t	pte_l2_s_prot_mask;
   5819 
   5820 pt_entry_t	pte_l1_s_proto;
   5821 pt_entry_t	pte_l1_c_proto;
   5822 pt_entry_t	pte_l2_s_proto;
   5823 
   5824 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5825 void		(*pmap_zero_page_func)(paddr_t);
   5826 
   5827 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5828 void
   5829 pmap_pte_init_generic(void)
   5830 {
   5831 
   5832 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5833 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5834 
   5835 	pte_l2_l_cache_mode = L2_B|L2_C;
   5836 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5837 
   5838 	pte_l2_s_cache_mode = L2_B|L2_C;
   5839 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5840 
   5841 	/*
   5842 	 * If we have a write-through cache, set B and C.  If
   5843 	 * we have a write-back cache, then we assume setting
   5844 	 * only C will make those pages write-through.
   5845 	 */
   5846 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5847 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5848 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5849 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5850 	} else {
   5851 #if ARM_MMU_V6 > 1
   5852 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5853 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5854 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5855 #else
   5856 		pte_l1_s_cache_mode_pt = L1_S_C;
   5857 		pte_l2_l_cache_mode_pt = L2_C;
   5858 		pte_l2_s_cache_mode_pt = L2_C;
   5859 #endif
   5860 	}
   5861 
   5862 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5863 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5864 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5865 
   5866 	pte_l1_s_proto = L1_S_PROTO_generic;
   5867 	pte_l1_c_proto = L1_C_PROTO_generic;
   5868 	pte_l2_s_proto = L2_S_PROTO_generic;
   5869 
   5870 	pmap_copy_page_func = pmap_copy_page_generic;
   5871 	pmap_zero_page_func = pmap_zero_page_generic;
   5872 }
   5873 
   5874 #if defined(CPU_ARM8)
   5875 void
   5876 pmap_pte_init_arm8(void)
   5877 {
   5878 
   5879 	/*
   5880 	 * ARM8 is compatible with generic, but we need to use
   5881 	 * the page tables uncached.
   5882 	 */
   5883 	pmap_pte_init_generic();
   5884 
   5885 	pte_l1_s_cache_mode_pt = 0;
   5886 	pte_l2_l_cache_mode_pt = 0;
   5887 	pte_l2_s_cache_mode_pt = 0;
   5888 }
   5889 #endif /* CPU_ARM8 */
   5890 
   5891 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5892 void
   5893 pmap_pte_init_arm9(void)
   5894 {
   5895 
   5896 	/*
   5897 	 * ARM9 is compatible with generic, but we want to use
   5898 	 * write-through caching for now.
   5899 	 */
   5900 	pmap_pte_init_generic();
   5901 
   5902 	pte_l1_s_cache_mode = L1_S_C;
   5903 	pte_l2_l_cache_mode = L2_C;
   5904 	pte_l2_s_cache_mode = L2_C;
   5905 
   5906 	pte_l1_s_cache_mode_pt = L1_S_C;
   5907 	pte_l2_l_cache_mode_pt = L2_C;
   5908 	pte_l2_s_cache_mode_pt = L2_C;
   5909 }
   5910 #endif /* CPU_ARM9 */
   5911 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5912 
   5913 #if defined(CPU_ARM10)
   5914 void
   5915 pmap_pte_init_arm10(void)
   5916 {
   5917 
   5918 	/*
   5919 	 * ARM10 is compatible with generic, but we want to use
   5920 	 * write-through caching for now.
   5921 	 */
   5922 	pmap_pte_init_generic();
   5923 
   5924 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5925 	pte_l2_l_cache_mode = L2_B | L2_C;
   5926 	pte_l2_s_cache_mode = L2_B | L2_C;
   5927 
   5928 	pte_l1_s_cache_mode_pt = L1_S_C;
   5929 	pte_l2_l_cache_mode_pt = L2_C;
   5930 	pte_l2_s_cache_mode_pt = L2_C;
   5931 
   5932 }
   5933 #endif /* CPU_ARM10 */
   5934 
   5935 #if ARM_MMU_SA1 == 1
   5936 void
   5937 pmap_pte_init_sa1(void)
   5938 {
   5939 
   5940 	/*
   5941 	 * The StrongARM SA-1 cache does not have a write-through
   5942 	 * mode.  So, do the generic initialization, then reset
   5943 	 * the page table cache mode to B=1,C=1, and note that
   5944 	 * the PTEs need to be sync'd.
   5945 	 */
   5946 	pmap_pte_init_generic();
   5947 
   5948 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5949 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5950 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5951 
   5952 	pmap_needs_pte_sync = 1;
   5953 }
   5954 #endif /* ARM_MMU_SA1 == 1*/
   5955 
   5956 #if ARM_MMU_XSCALE == 1
   5957 #if (ARM_NMMUS > 1)
   5958 static u_int xscale_use_minidata;
   5959 #endif
   5960 
   5961 void
   5962 pmap_pte_init_xscale(void)
   5963 {
   5964 	uint32_t auxctl;
   5965 	int write_through = 0;
   5966 
   5967 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5968 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   5969 
   5970 	pte_l2_l_cache_mode = L2_B|L2_C;
   5971 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   5972 
   5973 	pte_l2_s_cache_mode = L2_B|L2_C;
   5974 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   5975 
   5976 	pte_l1_s_cache_mode_pt = L1_S_C;
   5977 	pte_l2_l_cache_mode_pt = L2_C;
   5978 	pte_l2_s_cache_mode_pt = L2_C;
   5979 
   5980 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   5981 	/*
   5982 	 * The XScale core has an enhanced mode where writes that
   5983 	 * miss the cache cause a cache line to be allocated.  This
   5984 	 * is significantly faster than the traditional, write-through
   5985 	 * behavior of this case.
   5986 	 */
   5987 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   5988 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   5989 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   5990 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   5991 
   5992 #ifdef XSCALE_CACHE_WRITE_THROUGH
   5993 	/*
   5994 	 * Some versions of the XScale core have various bugs in
   5995 	 * their cache units, the work-around for which is to run
   5996 	 * the cache in write-through mode.  Unfortunately, this
   5997 	 * has a major (negative) impact on performance.  So, we
   5998 	 * go ahead and run fast-and-loose, in the hopes that we
   5999 	 * don't line up the planets in a way that will trip the
   6000 	 * bugs.
   6001 	 *
   6002 	 * However, we give you the option to be slow-but-correct.
   6003 	 */
   6004 	write_through = 1;
   6005 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6006 	/* force write back cache mode */
   6007 	write_through = 0;
   6008 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6009 	/*
   6010 	 * Intel PXA2[15]0 processors are known to have a bug in
   6011 	 * write-back cache on revision 4 and earlier (stepping
   6012 	 * A[01] and B[012]).  Fixed for C0 and later.
   6013 	 */
   6014 	{
   6015 		uint32_t id, type;
   6016 
   6017 		id = cpufunc_id();
   6018 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6019 
   6020 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6021 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6022 				/* write through for stepping A0-1 and B0-2 */
   6023 				write_through = 1;
   6024 			}
   6025 		}
   6026 	}
   6027 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6028 
   6029 	if (write_through) {
   6030 		pte_l1_s_cache_mode = L1_S_C;
   6031 		pte_l2_l_cache_mode = L2_C;
   6032 		pte_l2_s_cache_mode = L2_C;
   6033 	}
   6034 
   6035 #if (ARM_NMMUS > 1)
   6036 	xscale_use_minidata = 1;
   6037 #endif
   6038 
   6039 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6040 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6041 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6042 
   6043 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6044 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6045 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6046 
   6047 	pmap_copy_page_func = pmap_copy_page_xscale;
   6048 	pmap_zero_page_func = pmap_zero_page_xscale;
   6049 
   6050 	/*
   6051 	 * Disable ECC protection of page table access, for now.
   6052 	 */
   6053 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6054 	auxctl &= ~XSCALE_AUXCTL_P;
   6055 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6056 }
   6057 
   6058 /*
   6059  * xscale_setup_minidata:
   6060  *
   6061  *	Set up the mini-data cache clean area.  We require the
   6062  *	caller to allocate the right amount of physically and
   6063  *	virtually contiguous space.
   6064  */
   6065 void
   6066 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6067 {
   6068 	extern vaddr_t xscale_minidata_clean_addr;
   6069 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6070 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6071 	pt_entry_t *pte;
   6072 	vsize_t size;
   6073 	uint32_t auxctl;
   6074 
   6075 	xscale_minidata_clean_addr = va;
   6076 
   6077 	/* Round it to page size. */
   6078 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6079 
   6080 	for (; size != 0;
   6081 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6082 #ifndef ARM32_NEW_VM_LAYOUT
   6083 		pte = (pt_entry_t *)
   6084 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6085 #else
   6086 		pte = (pt_entry_t *) kernel_pt_lookup(
   6087 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6088 #endif
   6089 		if (pte == NULL)
   6090 			panic("xscale_setup_minidata: can't find L2 table for "
   6091 			    "VA 0x%08lx", va);
   6092 #ifndef ARM32_NEW_VM_LAYOUT
   6093 		pte[(va >> PGSHIFT) & 0x3ff] =
   6094 #else
   6095 		pte[l2pte_index(va)] =
   6096 #endif
   6097 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6098 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6099 	}
   6100 
   6101 	/*
   6102 	 * Configure the mini-data cache for write-back with
   6103 	 * read/write-allocate.
   6104 	 *
   6105 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6106 	 * make sure it contains no valid data!  In order to do that,
   6107 	 * we must issue a global data cache invalidate command!
   6108 	 *
   6109 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6110 	 * THIS IS VERY IMPORTANT!
   6111 	 */
   6112 
   6113 	/* Invalidate data and mini-data. */
   6114 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6115 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6116 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6117 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6118 }
   6119 
   6120 /*
   6121  * Change the PTEs for the specified kernel mappings such that they
   6122  * will use the mini data cache instead of the main data cache.
   6123  */
   6124 void
   6125 pmap_uarea(vaddr_t va)
   6126 {
   6127 	struct l2_bucket *l2b;
   6128 	pt_entry_t *ptep, *sptep, pte;
   6129 	vaddr_t next_bucket, eva;
   6130 
   6131 #if (ARM_NMMUS > 1)
   6132 	if (xscale_use_minidata == 0)
   6133 		return;
   6134 #endif
   6135 
   6136 	eva = va + USPACE;
   6137 
   6138 	while (va < eva) {
   6139 		next_bucket = L2_NEXT_BUCKET(va);
   6140 		if (next_bucket > eva)
   6141 			next_bucket = eva;
   6142 
   6143 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6144 		KDASSERT(l2b != NULL);
   6145 
   6146 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6147 
   6148 		while (va < next_bucket) {
   6149 			pte = *ptep;
   6150 			if (!l2pte_minidata(pte)) {
   6151 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6152 				cpu_tlb_flushD_SE(va);
   6153 				*ptep = pte & ~L2_B;
   6154 			}
   6155 			ptep++;
   6156 			va += PAGE_SIZE;
   6157 		}
   6158 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6159 	}
   6160 	cpu_cpwait();
   6161 }
   6162 #endif /* ARM_MMU_XSCALE == 1 */
   6163 
   6164 /*
   6165  * return the PA of the current L1 table, for use when handling a crash dump
   6166  */
   6167 uint32_t pmap_kernel_L1_addr()
   6168 {
   6169 	return pmap_kernel()->pm_l1->l1_physaddr;
   6170 }
   6171 
   6172 #if defined(DDB)
   6173 /*
   6174  * A couple of ddb-callable functions for dumping pmaps
   6175  */
   6176 void pmap_dump_all(void);
   6177 void pmap_dump(pmap_t);
   6178 
   6179 void
   6180 pmap_dump_all(void)
   6181 {
   6182 	pmap_t pm;
   6183 
   6184 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6185 		if (pm == pmap_kernel())
   6186 			continue;
   6187 		pmap_dump(pm);
   6188 		printf("\n");
   6189 	}
   6190 }
   6191 
   6192 static pt_entry_t ncptes[64];
   6193 static void pmap_dump_ncpg(pmap_t);
   6194 
   6195 void
   6196 pmap_dump(pmap_t pm)
   6197 {
   6198 	struct l2_dtable *l2;
   6199 	struct l2_bucket *l2b;
   6200 	pt_entry_t *ptep, pte;
   6201 	vaddr_t l2_va, l2b_va, va;
   6202 	int i, j, k, occ, rows = 0;
   6203 
   6204 	if (pm == pmap_kernel())
   6205 		printf("pmap_kernel (%p): ", pm);
   6206 	else
   6207 		printf("user pmap (%p): ", pm);
   6208 
   6209 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6210 
   6211 	l2_va = 0;
   6212 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6213 		l2 = pm->pm_l2[i];
   6214 
   6215 		if (l2 == NULL || l2->l2_occupancy == 0)
   6216 			continue;
   6217 
   6218 		l2b_va = l2_va;
   6219 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6220 			l2b = &l2->l2_bucket[j];
   6221 
   6222 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6223 				continue;
   6224 
   6225 			ptep = l2b->l2b_kva;
   6226 
   6227 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6228 				;
   6229 
   6230 			k &= ~63;
   6231 			occ = l2b->l2b_occupancy;
   6232 			va = l2b_va + (k * 4096);
   6233 			for (; k < 256; k++, va += 0x1000) {
   6234 				char ch = ' ';
   6235 				if ((k % 64) == 0) {
   6236 					if ((rows % 8) == 0) {
   6237 						printf(
   6238 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6239 					}
   6240 					printf("%08lx: ", va);
   6241 				}
   6242 
   6243 				ncptes[k & 63] = 0;
   6244 				pte = ptep[k];
   6245 				if (pte == 0) {
   6246 					ch = '.';
   6247 				} else {
   6248 					occ--;
   6249 					switch (pte & 0x0c) {
   6250 					case 0x00:
   6251 						ch = 'D'; /* No cache No buff */
   6252 						break;
   6253 					case 0x04:
   6254 						ch = 'B'; /* No cache buff */
   6255 						break;
   6256 					case 0x08:
   6257 						if (pte & 0x40)
   6258 							ch = 'm';
   6259 						else
   6260 						   ch = 'C'; /* Cache No buff */
   6261 						break;
   6262 					case 0x0c:
   6263 						ch = 'F'; /* Cache Buff */
   6264 						break;
   6265 					}
   6266 
   6267 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6268 						ch += 0x20;
   6269 
   6270 					if ((pte & 0xc) == 0)
   6271 						ncptes[k & 63] = pte;
   6272 				}
   6273 
   6274 				if ((k % 64) == 63) {
   6275 					rows++;
   6276 					printf("%c\n", ch);
   6277 					pmap_dump_ncpg(pm);
   6278 					if (occ == 0)
   6279 						break;
   6280 				} else
   6281 					printf("%c", ch);
   6282 			}
   6283 		}
   6284 	}
   6285 }
   6286 
   6287 static void
   6288 pmap_dump_ncpg(pmap_t pm)
   6289 {
   6290 	struct vm_page *pg;
   6291 	struct pv_entry *pv;
   6292 	int i;
   6293 
   6294 	for (i = 0; i < 63; i++) {
   6295 		if (ncptes[i] == 0)
   6296 			continue;
   6297 
   6298 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6299 		if (pg == NULL)
   6300 			continue;
   6301 
   6302 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6303 		    VM_PAGE_TO_PHYS(pg),
   6304 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6305 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6306 
   6307 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   6308 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6309 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6310 			    pv->pv_va, pv->pv_flags);
   6311 		}
   6312 	}
   6313 }
   6314 #endif
   6315 
   6316 #ifdef PMAP_STEAL_MEMORY
   6317 void
   6318 pmap_boot_pageadd(pv_addr_t *newpv)
   6319 {
   6320 	pv_addr_t *pv, *npv;
   6321 
   6322 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6323 		if (newpv->pv_pa < pv->pv_va) {
   6324 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6325 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6326 				newpv->pv_size += pv->pv_size;
   6327 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6328 			}
   6329 			pv = NULL;
   6330 		} else {
   6331 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6332 			     pv = npv) {
   6333 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6334 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6335 				if (newpv->pv_pa > npv->pv_pa)
   6336 					continue;
   6337 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6338 					pv->pv_size += newpv->pv_size;
   6339 					return;
   6340 				}
   6341 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6342 					break;
   6343 				newpv->pv_size += npv->pv_size;
   6344 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6345 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6346 				return;
   6347 			}
   6348 		}
   6349 	}
   6350 
   6351 	if (pv) {
   6352 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6353 	} else {
   6354 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6355 	}
   6356 }
   6357 
   6358 void
   6359 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6360 	pv_addr_t *rpv)
   6361 {
   6362 	pv_addr_t *pv, **pvp;
   6363 	struct vm_physseg *ps;
   6364 	size_t i;
   6365 
   6366 	KASSERT(amount & PGOFSET);
   6367 	KASSERT((mask & PGOFSET) == 0);
   6368 	KASSERT((match & PGOFSET) == 0);
   6369 	KASSERT(amount != 0);
   6370 
   6371 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6372 	     (pv = *pvp) != NULL;
   6373 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6374 		pv_addr_t *newpv;
   6375 		psize_t off;
   6376 		/*
   6377 		 * If this entry is too small to satify the request...
   6378 		 */
   6379 		KASSERT(pv->pv_size > 0);
   6380 		if (pv->pv_size < amount)
   6381 			continue;
   6382 
   6383 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6384 			if (((pv->pv_pa + off) & mask) == match
   6385 			    && off + amount <= pv->pv_size)
   6386 				break;
   6387 		}
   6388 		if (off > mask)
   6389 			continue;
   6390 
   6391 		rpv->pv_va = pv->pv_va + off;
   6392 		rpv->pv_pa = pv->pv_pa + off;
   6393 		rpv->pv_size = amount;
   6394 		pv->pv_size -= amount;
   6395 		if (pv->pv_size == 0) {
   6396 			KASSERT(off == 0);
   6397 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6398 			*pvp = SLIST_NEXT(pv, pv_list);
   6399 		} else if (off == 0) {
   6400 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6401 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6402 			*newpv = *pv;
   6403 			newpv->pv_pa += amount;
   6404 			newpv->pv_va += amount;
   6405 			*pvp = newpv;
   6406 		} else if (off < pv->pv_size) {
   6407 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6408 			*newpv = *pv;
   6409 			newpv->pv_size -= off;
   6410 			newpv->pv_pa += off + amount;
   6411 			newpv->pv_va += off + amount;
   6412 
   6413 			SLIST_NEXT(pv, pv_list) = newpv;
   6414 			pv->pv_size = off;
   6415 		} else {
   6416 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6417 		}
   6418 		memset((void *)rpv->pv_va, 0, amount);
   6419 		return;
   6420 	}
   6421 
   6422 	if (vm_nphysseg == 0)
   6423 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6424 
   6425 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6426 	     (pv = *pvp) != NULL;
   6427 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6428 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6429 			break;
   6430 	}
   6431 	KASSERT(mask == 0);
   6432 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6433 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6434 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6435 			rpv->pv_va = pv->pv_va;
   6436 			rpv->pv_pa = pv->pv_pa;
   6437 			rpv->pv_size = amount;
   6438 			*pvp = NULL;
   6439 			pmap_map_chunk(kernel_l1pt.pv_va,
   6440 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6441 			     ptoa(ps->avail_start),
   6442 			     amount - pv->pv_size,
   6443 			     VM_PROT_READ|VM_PROT_WRITE,
   6444 			     PTE_CACHE);
   6445 			ps->avail_start += atop(amount - pv->pv_size);
   6446 			/*
   6447 			 * If we consumed the entire physseg, remove it.
   6448 			 */
   6449 			if (ps->avail_start == ps->avail_end) {
   6450 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6451 					ps[0] = ps[1];
   6452 			}
   6453 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6454 			return;
   6455 		}
   6456 	}
   6457 
   6458 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6459 }
   6460 
   6461 vaddr_t
   6462 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6463 {
   6464 	pv_addr_t pv;
   6465 
   6466 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6467 
   6468 	return pv.pv_va;
   6469 }
   6470 #endif /* PMAP_STEAL_MEMORY */
   6471 
   6472 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6473 {
   6474 	sysctl_createv(clog, 0, NULL, NULL,
   6475 			CTLFLAG_PERMANENT,
   6476 			CTLTYPE_NODE, "machdep", NULL,
   6477 			NULL, 0, NULL, 0,
   6478 			CTL_MACHDEP, CTL_EOL);
   6479 
   6480 	sysctl_createv(clog, 0, NULL, NULL,
   6481 			CTLFLAG_PERMANENT,
   6482 			CTLTYPE_INT, "kmpages",
   6483 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6484 			NULL, 0, &pmap_kmpages, 0,
   6485 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6486 }
   6487