pmap.c revision 1.19 1 /* $NetBSD: pmap.c,v 1.19 2001/09/10 21:19:35 chris Exp $ */
2
3 /*
4 * Copyright (c) 2001 Richard Earnshaw
5 * Copyright (c) 2001 Christopher Gilbert
6 * All rights reserved.
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the company nor the name of the author may be used to
14 * endorse or promote products derived from this software without specific
15 * prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*-
31 * Copyright (c) 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1994-1998 Mark Brinicombe.
68 * Copyright (c) 1994 Brini.
69 * All rights reserved.
70 *
71 * This code is derived from software written for Brini by Mark Brinicombe
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by Mark Brinicombe.
84 * 4. The name of the author may not be used to endorse or promote products
85 * derived from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
88 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
89 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
90 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
91 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
92 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
93 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
94 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
95 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
96 *
97 * RiscBSD kernel project
98 *
99 * pmap.c
100 *
101 * Machine dependant vm stuff
102 *
103 * Created : 20/09/94
104 */
105
106 /*
107 * Performance improvements, UVM changes, overhauls and part-rewrites
108 * were contributed by Neil A. Carson <neil (at) causality.com>.
109 */
110
111 /*
112 * The dram block info is currently referenced from the bootconfig.
113 * This should be placed in a separate structure.
114 */
115
116 /*
117 * Special compilation symbols
118 * PMAP_DEBUG - Build in pmap_debug_level code
119 */
120
121 /* Include header files */
122
123 #include "opt_pmap_debug.h"
124 #include "opt_ddb.h"
125
126 #include <sys/types.h>
127 #include <sys/param.h>
128 #include <sys/kernel.h>
129 #include <sys/systm.h>
130 #include <sys/proc.h>
131 #include <sys/malloc.h>
132 #include <sys/user.h>
133 #include <sys/pool.h>
134 #include <sys/cdefs.h>
135
136 #include <uvm/uvm.h>
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/pmap.h>
141 #include <machine/pcb.h>
142 #include <machine/param.h>
143 #include <machine/katelib.h>
144
145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.19 2001/09/10 21:19:35 chris Exp $");
146 #ifdef PMAP_DEBUG
147 #define PDEBUG(_lev_,_stat_) \
148 if (pmap_debug_level >= (_lev_)) \
149 ((_stat_))
150 int pmap_debug_level = -2;
151
152 /*
153 * for switching to potentially finer grained debugging
154 */
155 #define PDB_FOLLOW 0x0001
156 #define PDB_INIT 0x0002
157 #define PDB_ENTER 0x0004
158 #define PDB_REMOVE 0x0008
159 #define PDB_CREATE 0x0010
160 #define PDB_PTPAGE 0x0020
161 #define PDB_ASN 0x0040
162 #define PDB_BITS 0x0080
163 #define PDB_COLLECT 0x0100
164 #define PDB_PROTECT 0x0200
165 #define PDB_BOOTSTRAP 0x1000
166 #define PDB_PARANOIA 0x2000
167 #define PDB_WIRING 0x4000
168 #define PDB_PVDUMP 0x8000
169
170 int debugmap = 0;
171 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
172 #define NPDEBUG(_lev_,_stat_) \
173 if (pmapdebug & (_lev_)) \
174 ((_stat_))
175
176 #else /* PMAP_DEBUG */
177 #define PDEBUG(_lev_,_stat_) /* Nothing */
178 #define PDEBUG(_lev_,_stat_) /* Nothing */
179 #endif /* PMAP_DEBUG */
180
181 struct pmap kernel_pmap_store;
182
183 /*
184 * pool that pmap structures are allocated from
185 */
186
187 struct pool pmap_pmap_pool;
188
189 pagehook_t page_hook0;
190 pagehook_t page_hook1;
191 char *memhook;
192 pt_entry_t msgbufpte;
193 extern caddr_t msgbufaddr;
194
195 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
196 /*
197 * locking data structures
198 */
199
200 static struct lock pmap_main_lock;
201 static struct simplelock pvalloc_lock;
202 #ifdef LOCKDEBUG
203 #define PMAP_MAP_TO_HEAD_LOCK() \
204 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
205 #define PMAP_MAP_TO_HEAD_UNLOCK() \
206 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
207
208 #define PMAP_HEAD_TO_MAP_LOCK() \
209 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
210 #define PMAP_HEAD_TO_MAP_UNLOCK() \
211 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
212 #else
213 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
214 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
215 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
216 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
217 #endif /* LOCKDEBUG */
218
219 /*
220 * pv_page management structures: locked by pvalloc_lock
221 */
222
223 TAILQ_HEAD(pv_pagelist, pv_page);
224 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
225 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
226 static int pv_nfpvents; /* # of free pv entries */
227 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
228 static vaddr_t pv_cachedva; /* cached VA for later use */
229
230 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
231 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
232 /* high water mark */
233
234 /*
235 * local prototypes
236 */
237
238 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
239 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
240 #define ALLOCPV_NEED 0 /* need PV now */
241 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
242 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
243 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
244 static void pmap_enter_pv __P((struct pv_head *,
245 struct pv_entry *, struct pmap *,
246 vaddr_t, struct vm_page *, int));
247 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
248 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
249 static void pmap_free_pv_doit __P((struct pv_entry *));
250 static void pmap_free_pvpage __P((void));
251 static boolean_t pmap_is_curpmap __P((struct pmap *));
252 static struct pv_entry *pmap_remove_pv __P((struct pv_head *, struct pmap *,
253 vaddr_t));
254 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
255 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
256
257 vsize_t npages;
258
259 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
260 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
261
262 extern paddr_t physical_start;
263 extern paddr_t physical_freestart;
264 extern paddr_t physical_end;
265 extern paddr_t physical_freeend;
266 extern unsigned int free_pages;
267 extern int max_processes;
268
269 vaddr_t virtual_start;
270 vaddr_t virtual_end;
271
272 vaddr_t avail_start;
273 vaddr_t avail_end;
274
275 extern pv_addr_t systempage;
276
277 #define ALLOC_PAGE_HOOK(x, s) \
278 x.va = virtual_start; \
279 x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
280 virtual_start += s;
281
282 /* Variables used by the L1 page table queue code */
283 SIMPLEQ_HEAD(l1pt_queue, l1pt);
284 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
285 int l1pt_static_queue_count; /* items in the static l1 queue */
286 int l1pt_static_create_count; /* static l1 items created */
287 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
288 int l1pt_queue_count; /* items in the l1 queue */
289 int l1pt_create_count; /* stat - L1's create count */
290 int l1pt_reuse_count; /* stat - L1's reused count */
291
292 /* Local function prototypes (not used outside this file) */
293 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
294 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
295 paddr_t pa, unsigned int flags));
296 void pmap_copy_on_write __P((paddr_t pa));
297 void pmap_pinit __P((struct pmap *));
298 void pmap_freepagedir __P((struct pmap *));
299
300 /* Other function prototypes */
301 extern void bzero_page __P((vaddr_t));
302 extern void bcopy_page __P((vaddr_t, vaddr_t));
303
304 struct l1pt *pmap_alloc_l1pt __P((void));
305 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
306 vaddr_t l2pa, boolean_t));
307
308 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
309 static void pmap_unmap_ptes __P((struct pmap *));
310
311 void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
312 pt_entry_t *, boolean_t));
313
314 /*
315 * real definition of pv_entry.
316 */
317
318 struct pv_entry {
319 struct pv_entry *pv_next; /* next pv_entry */
320 struct pmap *pv_pmap; /* pmap where mapping lies */
321 vaddr_t pv_va; /* virtual address for mapping */
322 int pv_flags; /* flags */
323 struct vm_page *pv_ptp; /* vm_page for the ptp */
324 };
325
326 /*
327 * pv_entrys are dynamically allocated in chunks from a single page.
328 * we keep track of how many pv_entrys are in use for each page and
329 * we can free pv_entry pages if needed. there is one lock for the
330 * entire allocation system.
331 */
332
333 struct pv_page_info {
334 TAILQ_ENTRY(pv_page) pvpi_list;
335 struct pv_entry *pvpi_pvfree;
336 int pvpi_nfree;
337 };
338
339 /*
340 * number of pv_entry's in a pv_page
341 * (note: won't work on systems where NPBG isn't a constant)
342 */
343
344 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
345 sizeof(struct pv_entry))
346
347 /*
348 * a pv_page: where pv_entrys are allocated from
349 */
350
351 struct pv_page {
352 struct pv_page_info pvinfo;
353 struct pv_entry pvents[PVE_PER_PVPAGE];
354 };
355
356 #ifdef MYCROFT_HACK
357 int mycroft_hack = 0;
358 #endif
359
360 /* Function to set the debug level of the pmap code */
361
362 #ifdef PMAP_DEBUG
363 void
364 pmap_debug(level)
365 int level;
366 {
367 pmap_debug_level = level;
368 printf("pmap_debug: level=%d\n", pmap_debug_level);
369 }
370 #endif /* PMAP_DEBUG */
371
372 __inline boolean_t
373 pmap_is_curpmap(struct pmap *pmap)
374 {
375 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
376 || (pmap == pmap_kernel()))
377 return (TRUE);
378 return (FALSE);
379 }
380 #include "isadma.h"
381
382 #if NISADMA > 0
383 /*
384 * Used to protect memory for ISA DMA bounce buffers. If, when loading
385 * pages into the system, memory intersects with any of these ranges,
386 * the intersecting memory will be loaded into a lower-priority free list.
387 */
388 bus_dma_segment_t *pmap_isa_dma_ranges;
389 int pmap_isa_dma_nranges;
390
391 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
392 paddr_t *, psize_t *));
393
394 /*
395 * Check if a memory range intersects with an ISA DMA range, and
396 * return the page-rounded intersection if it does. The intersection
397 * will be placed on a lower-priority free list.
398 */
399 boolean_t
400 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
401 paddr_t pa;
402 psize_t size;
403 paddr_t *pap;
404 psize_t *sizep;
405 {
406 bus_dma_segment_t *ds;
407 int i;
408
409 if (pmap_isa_dma_ranges == NULL)
410 return (FALSE);
411
412 for (i = 0, ds = pmap_isa_dma_ranges;
413 i < pmap_isa_dma_nranges; i++, ds++) {
414 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
415 /*
416 * Beginning of region intersects with this range.
417 */
418 *pap = trunc_page(pa);
419 *sizep = round_page(min(pa + size,
420 ds->ds_addr + ds->ds_len) - pa);
421 return (TRUE);
422 }
423 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
424 /*
425 * End of region intersects with this range.
426 */
427 *pap = trunc_page(ds->ds_addr);
428 *sizep = round_page(min((pa + size) - ds->ds_addr,
429 ds->ds_len));
430 return (TRUE);
431 }
432 }
433
434 /*
435 * No intersection found.
436 */
437 return (FALSE);
438 }
439 #endif /* NISADMA > 0 */
440
441 /*
442 * p v _ e n t r y f u n c t i o n s
443 */
444
445 /*
446 * pv_entry allocation functions:
447 * the main pv_entry allocation functions are:
448 * pmap_alloc_pv: allocate a pv_entry structure
449 * pmap_free_pv: free one pv_entry
450 * pmap_free_pvs: free a list of pv_entrys
451 *
452 * the rest are helper functions
453 */
454
455 /*
456 * pmap_alloc_pv: inline function to allocate a pv_entry structure
457 * => we lock pvalloc_lock
458 * => if we fail, we call out to pmap_alloc_pvpage
459 * => 3 modes:
460 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
461 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
462 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
463 * one now
464 *
465 * "try" is for optional functions like pmap_copy().
466 */
467
468 __inline static struct pv_entry *
469 pmap_alloc_pv(pmap, mode)
470 struct pmap *pmap;
471 int mode;
472 {
473 struct pv_page *pvpage;
474 struct pv_entry *pv;
475
476 simple_lock(&pvalloc_lock);
477
478 if (pv_freepages.tqh_first != NULL) {
479 pvpage = pv_freepages.tqh_first;
480 pvpage->pvinfo.pvpi_nfree--;
481 if (pvpage->pvinfo.pvpi_nfree == 0) {
482 /* nothing left in this one? */
483 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
484 }
485 pv = pvpage->pvinfo.pvpi_pvfree;
486 #ifdef DIAGNOSTIC
487 if (pv == NULL)
488 panic("pmap_alloc_pv: pvpi_nfree off");
489 #endif
490 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
491 pv_nfpvents--; /* took one from pool */
492 } else {
493 pv = NULL; /* need more of them */
494 }
495
496 /*
497 * if below low water mark or we didn't get a pv_entry we try and
498 * create more pv_entrys ...
499 */
500
501 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
502 if (pv == NULL)
503 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
504 mode : ALLOCPV_NEED);
505 else
506 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
507 }
508
509 simple_unlock(&pvalloc_lock);
510 return(pv);
511 }
512
513 /*
514 * pmap_alloc_pvpage: maybe allocate a new pvpage
515 *
516 * if need_entry is false: try and allocate a new pv_page
517 * if need_entry is true: try and allocate a new pv_page and return a
518 * new pv_entry from it. if we are unable to allocate a pv_page
519 * we make a last ditch effort to steal a pv_page from some other
520 * mapping. if that fails, we panic...
521 *
522 * => we assume that the caller holds pvalloc_lock
523 */
524
525 static struct pv_entry *
526 pmap_alloc_pvpage(pmap, mode)
527 struct pmap *pmap;
528 int mode;
529 {
530 struct vm_page *pg;
531 struct pv_page *pvpage;
532 struct pv_entry *pv;
533 int s;
534
535 /*
536 * if we need_entry and we've got unused pv_pages, allocate from there
537 */
538
539 if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
540
541 /* move it to pv_freepages list */
542 pvpage = pv_unusedpgs.tqh_first;
543 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
544 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
545
546 /* allocate a pv_entry */
547 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
548 pv = pvpage->pvinfo.pvpi_pvfree;
549 #ifdef DIAGNOSTIC
550 if (pv == NULL)
551 panic("pmap_alloc_pvpage: pvpi_nfree off");
552 #endif
553 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
554
555 pv_nfpvents--; /* took one from pool */
556 return(pv);
557 }
558
559 /*
560 * see if we've got a cached unmapped VA that we can map a page in.
561 * if not, try to allocate one.
562 */
563
564 s = splvm(); /* must protect kmem_map/kmem_object with splvm! */
565 if (pv_cachedva == 0) {
566 pv_cachedva = uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object,
567 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
568 if (pv_cachedva == 0) {
569 splx(s);
570 return (NULL);
571 }
572 }
573
574 /*
575 * we have a VA, now let's try and allocate a page in the object
576 * note: we are still holding splvm to protect kmem_object
577 */
578
579 if (!simple_lock_try(&uvmexp.kmem_object->vmobjlock)) {
580 splx(s);
581 return (NULL);
582 }
583
584 pg = uvm_pagealloc(uvmexp.kmem_object, pv_cachedva -
585 vm_map_min(kernel_map),
586 NULL, UVM_PGA_USERESERVE);
587 if (pg)
588 pg->flags &= ~PG_BUSY; /* never busy */
589
590 simple_unlock(&uvmexp.kmem_object->vmobjlock);
591 splx(s);
592 /* splvm now dropped */
593
594 if (pg == NULL)
595 return (NULL);
596
597 /*
598 * add a mapping for our new pv_page and free its entrys (save one!)
599 *
600 * NOTE: If we are allocating a PV page for the kernel pmap, the
601 * pmap is already locked! (...but entering the mapping is safe...)
602 */
603
604 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
605 pmap_update(pmap_kernel());
606 pvpage = (struct pv_page *) pv_cachedva;
607 pv_cachedva = 0;
608 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
609 }
610
611 /*
612 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
613 *
614 * => caller must hold pvalloc_lock
615 * => if need_entry is true, we allocate and return one pv_entry
616 */
617
618 static struct pv_entry *
619 pmap_add_pvpage(pvp, need_entry)
620 struct pv_page *pvp;
621 boolean_t need_entry;
622 {
623 int tofree, lcv;
624
625 /* do we need to return one? */
626 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
627
628 pvp->pvinfo.pvpi_pvfree = NULL;
629 pvp->pvinfo.pvpi_nfree = tofree;
630 for (lcv = 0 ; lcv < tofree ; lcv++) {
631 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
632 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
633 }
634 if (need_entry)
635 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
636 else
637 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
638 pv_nfpvents += tofree;
639 return((need_entry) ? &pvp->pvents[lcv] : NULL);
640 }
641
642 /*
643 * pmap_free_pv_doit: actually free a pv_entry
644 *
645 * => do not call this directly! instead use either
646 * 1. pmap_free_pv ==> free a single pv_entry
647 * 2. pmap_free_pvs => free a list of pv_entrys
648 * => we must be holding pvalloc_lock
649 */
650
651 __inline static void
652 pmap_free_pv_doit(pv)
653 struct pv_entry *pv;
654 {
655 struct pv_page *pvp;
656
657 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
658 pv_nfpvents++;
659 pvp->pvinfo.pvpi_nfree++;
660
661 /* nfree == 1 => fully allocated page just became partly allocated */
662 if (pvp->pvinfo.pvpi_nfree == 1) {
663 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
664 }
665
666 /* free it */
667 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
668 pvp->pvinfo.pvpi_pvfree = pv;
669
670 /*
671 * are all pv_page's pv_entry's free? move it to unused queue.
672 */
673
674 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
675 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
676 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
677 }
678 }
679
680 /*
681 * pmap_free_pv: free a single pv_entry
682 *
683 * => we gain the pvalloc_lock
684 */
685
686 __inline static void
687 pmap_free_pv(pmap, pv)
688 struct pmap *pmap;
689 struct pv_entry *pv;
690 {
691 simple_lock(&pvalloc_lock);
692 pmap_free_pv_doit(pv);
693
694 /*
695 * Can't free the PV page if the PV entries were associated with
696 * the kernel pmap; the pmap is already locked.
697 */
698 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
699 pmap != pmap_kernel())
700 pmap_free_pvpage();
701
702 simple_unlock(&pvalloc_lock);
703 }
704
705 /*
706 * pmap_free_pvs: free a list of pv_entrys
707 *
708 * => we gain the pvalloc_lock
709 */
710
711 __inline static void
712 pmap_free_pvs(pmap, pvs)
713 struct pmap *pmap;
714 struct pv_entry *pvs;
715 {
716 struct pv_entry *nextpv;
717
718 simple_lock(&pvalloc_lock);
719
720 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
721 nextpv = pvs->pv_next;
722 pmap_free_pv_doit(pvs);
723 }
724
725 /*
726 * Can't free the PV page if the PV entries were associated with
727 * the kernel pmap; the pmap is already locked.
728 */
729 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
730 pmap != pmap_kernel())
731 pmap_free_pvpage();
732
733 simple_unlock(&pvalloc_lock);
734 }
735
736
737 /*
738 * pmap_free_pvpage: try and free an unused pv_page structure
739 *
740 * => assume caller is holding the pvalloc_lock and that
741 * there is a page on the pv_unusedpgs list
742 * => if we can't get a lock on the kmem_map we try again later
743 * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
744 * that if we can lock the kmem_map then we are not already
745 * holding kmem_object's lock.
746 */
747
748 static void
749 pmap_free_pvpage()
750 {
751 int s;
752 struct vm_map *map;
753 struct vm_map_entry *dead_entries;
754 struct pv_page *pvp;
755
756 s = splvm(); /* protect kmem_map */
757
758 pvp = pv_unusedpgs.tqh_first;
759
760 /*
761 * note: watch out for pv_initpage which is allocated out of
762 * kernel_map rather than kmem_map.
763 */
764 if (pvp == pv_initpage)
765 map = kernel_map;
766 else
767 map = kmem_map;
768
769 if (vm_map_lock_try(map)) {
770
771 /* remove pvp from pv_unusedpgs */
772 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
773
774 /* unmap the page */
775 dead_entries = NULL;
776 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
777 &dead_entries);
778 vm_map_unlock(map);
779
780 if (dead_entries != NULL)
781 uvm_unmap_detach(dead_entries, 0);
782
783 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
784 }
785
786 if (pvp == pv_initpage)
787 /* no more initpage, we've freed it */
788 pv_initpage = NULL;
789
790 splx(s);
791 }
792
793 /*
794 * main pv_entry manipulation functions:
795 * pmap_enter_pv: enter a mapping onto a pv_head list
796 * pmap_remove_pv: remove a mappiing from a pv_head list
797 *
798 * NOTE: pmap_enter_pv expects to lock the pvh itself
799 * pmap_remove_pv expects te caller to lock the pvh before calling
800 */
801
802 /*
803 * pmap_enter_pv: enter a mapping onto a pv_head lst
804 *
805 * => caller should hold the proper lock on pmap_main_lock
806 * => caller should have pmap locked
807 * => we will gain the lock on the pv_head and allocate the new pv_entry
808 * => caller should adjust ptp's wire_count before calling
809 * => caller should not adjust pmap's wire_count
810 */
811
812 __inline static void
813 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
814 struct pv_head *pvh;
815 struct pv_entry *pve; /* preallocated pve for us to use */
816 struct pmap *pmap;
817 vaddr_t va;
818 struct vm_page *ptp; /* PTP in pmap that maps this VA */
819 int flags;
820 {
821 pve->pv_pmap = pmap;
822 pve->pv_va = va;
823 pve->pv_ptp = ptp; /* NULL for kernel pmap */
824 pve->pv_flags = flags;
825 simple_lock(&pvh->pvh_lock); /* lock pv_head */
826 pve->pv_next = pvh->pvh_list; /* add to ... */
827 pvh->pvh_list = pve; /* ... locked list */
828 simple_unlock(&pvh->pvh_lock); /* unlock, done! */
829 if (pve->pv_flags & PT_W)
830 ++pmap->pm_stats.wired_count;
831 }
832
833 /*
834 * pmap_remove_pv: try to remove a mapping from a pv_list
835 *
836 * => caller should hold proper lock on pmap_main_lock
837 * => pmap should be locked
838 * => caller should hold lock on pv_head [so that attrs can be adjusted]
839 * => caller should adjust ptp's wire_count and free PTP if needed
840 * => caller should NOT adjust pmap's wire_count
841 * => we return the removed pve
842 */
843
844 __inline static struct pv_entry *
845 pmap_remove_pv(pvh, pmap, va)
846 struct pv_head *pvh;
847 struct pmap *pmap;
848 vaddr_t va;
849 {
850 struct pv_entry *pve, **prevptr;
851
852 prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
853 pve = *prevptr;
854 while (pve) {
855 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
856 *prevptr = pve->pv_next; /* remove it! */
857 if (pve->pv_flags & PT_W)
858 --pmap->pm_stats.wired_count;
859 break;
860 }
861 prevptr = &pve->pv_next; /* previous pointer */
862 pve = pve->pv_next; /* advance */
863 }
864 return(pve); /* return removed pve */
865 }
866
867 /*
868 *
869 * pmap_modify_pv: Update pv flags
870 *
871 * => caller should hold lock on pv_head [so that attrs can be adjusted]
872 * => caller should NOT adjust pmap's wire_count
873 * => we return the old flags
874 *
875 * Modify a physical-virtual mapping in the pv table
876 */
877
878 /*__inline */ u_int
879 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
880 struct pmap *pmap;
881 vaddr_t va;
882 struct pv_head *pvh;
883 u_int bic_mask;
884 u_int eor_mask;
885 {
886 struct pv_entry *npv;
887 u_int flags, oflags;
888
889 /*
890 * There is at least one VA mapping this page.
891 */
892
893 for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
894 if (pmap == npv->pv_pmap && va == npv->pv_va) {
895 oflags = npv->pv_flags;
896 npv->pv_flags = flags =
897 ((oflags & ~bic_mask) ^ eor_mask);
898 if ((flags ^ oflags) & PT_W) {
899 if (flags & PT_W)
900 ++pmap->pm_stats.wired_count;
901 else
902 --pmap->pm_stats.wired_count;
903 }
904 return (oflags);
905 }
906 }
907 return (0);
908 }
909
910
911 /*
912 * Map the specified level 2 pagetable into the level 1 page table for
913 * the given pmap to cover a chunk of virtual address space starting from the
914 * address specified.
915 */
916 static /*__inline*/ void
917 pmap_map_in_l1(pmap, va, l2pa, selfref)
918 struct pmap *pmap;
919 vaddr_t va, l2pa;
920 boolean_t selfref;
921 {
922 vaddr_t ptva;
923
924 /* Calculate the index into the L1 page table. */
925 ptva = (va >> PDSHIFT) & ~3;
926
927 PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
928 pmap->pm_pdir, L1_PTE(l2pa), ptva));
929
930 /* Map page table into the L1. */
931 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
932 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
933 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
934 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
935
936 PDEBUG(0, printf("pt self reference %lx in %lx\n",
937 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
938
939 /* Map the page table into the page table area. */
940 if (selfref) {
941 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
942 L2_PTE_NC_NB(l2pa, AP_KRW);
943 }
944 /* XXX should be a purge */
945 /* cpu_tlb_flushD();*/
946 }
947
948 #if 0
949 static /*__inline*/ void
950 pmap_unmap_in_l1(pmap, va)
951 struct pmap *pmap;
952 vaddr_t va;
953 {
954 vaddr_t ptva;
955
956 /* Calculate the index into the L1 page table. */
957 ptva = (va >> PDSHIFT) & ~3;
958
959 /* Unmap page table from the L1. */
960 pmap->pm_pdir[ptva + 0] = 0;
961 pmap->pm_pdir[ptva + 1] = 0;
962 pmap->pm_pdir[ptva + 2] = 0;
963 pmap->pm_pdir[ptva + 3] = 0;
964
965 /* Unmap the page table from the page table area. */
966 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
967
968 /* XXX should be a purge */
969 /* cpu_tlb_flushD();*/
970 }
971 #endif
972
973
974 /*
975 * Used to map a range of physical addresses into kernel
976 * virtual address space.
977 *
978 * For now, VM is already on, we only need to map the
979 * specified memory.
980 */
981 vaddr_t
982 pmap_map(va, spa, epa, prot)
983 vaddr_t va, spa, epa;
984 int prot;
985 {
986 while (spa < epa) {
987 pmap_enter(pmap_kernel(), va, spa, prot, 0);
988 va += NBPG;
989 spa += NBPG;
990 }
991 pmap_update(pmap_kernel());
992 return(va);
993 }
994
995
996 /*
997 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
998 *
999 * bootstrap the pmap system. This is called from initarm and allows
1000 * the pmap system to initailise any structures it requires.
1001 *
1002 * Currently this sets up the kernel_pmap that is statically allocated
1003 * and also allocated virtual addresses for certain page hooks.
1004 * Currently the only one page hook is allocated that is used
1005 * to zero physical pages of memory.
1006 * It also initialises the start and end address of the kernel data space.
1007 */
1008 extern paddr_t physical_freestart;
1009 extern paddr_t physical_freeend;
1010
1011 char *boot_head;
1012
1013 void
1014 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1015 pd_entry_t *kernel_l1pt;
1016 pv_addr_t kernel_ptpt;
1017 {
1018 int loop;
1019 paddr_t start, end;
1020 #if NISADMA > 0
1021 paddr_t istart;
1022 psize_t isize;
1023 #endif
1024
1025 pmap_kernel()->pm_pdir = kernel_l1pt;
1026 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1027 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1028 simple_lock_init(&pmap_kernel()->pm_lock);
1029 pmap_kernel()->pm_obj.pgops = NULL;
1030 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1031 pmap_kernel()->pm_obj.uo_npages = 0;
1032 pmap_kernel()->pm_obj.uo_refs = 1;
1033
1034 /*
1035 * Initialize PAGE_SIZE-dependent variables.
1036 */
1037 uvm_setpagesize();
1038
1039 npages = 0;
1040 loop = 0;
1041 while (loop < bootconfig.dramblocks) {
1042 start = (paddr_t)bootconfig.dram[loop].address;
1043 end = start + (bootconfig.dram[loop].pages * NBPG);
1044 if (start < physical_freestart)
1045 start = physical_freestart;
1046 if (end > physical_freeend)
1047 end = physical_freeend;
1048 #if 0
1049 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1050 #endif
1051 #if NISADMA > 0
1052 if (pmap_isa_dma_range_intersect(start, end - start,
1053 &istart, &isize)) {
1054 /*
1055 * Place the pages that intersect with the
1056 * ISA DMA range onto the ISA DMA free list.
1057 */
1058 #if 0
1059 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1060 istart + isize - 1);
1061 #endif
1062 uvm_page_physload(atop(istart),
1063 atop(istart + isize), atop(istart),
1064 atop(istart + isize), VM_FREELIST_ISADMA);
1065 npages += atop(istart + isize) - atop(istart);
1066
1067 /*
1068 * Load the pieces that come before
1069 * the intersection into the default
1070 * free list.
1071 */
1072 if (start < istart) {
1073 #if 0
1074 printf(" BEFORE 0x%lx -> 0x%lx\n",
1075 start, istart - 1);
1076 #endif
1077 uvm_page_physload(atop(start),
1078 atop(istart), atop(start),
1079 atop(istart), VM_FREELIST_DEFAULT);
1080 npages += atop(istart) - atop(start);
1081 }
1082
1083 /*
1084 * Load the pieces that come after
1085 * the intersection into the default
1086 * free list.
1087 */
1088 if ((istart + isize) < end) {
1089 #if 0
1090 printf(" AFTER 0x%lx -> 0x%lx\n",
1091 (istart + isize), end - 1);
1092 #endif
1093 uvm_page_physload(atop(istart + isize),
1094 atop(end), atop(istart + isize),
1095 atop(end), VM_FREELIST_DEFAULT);
1096 npages += atop(end) - atop(istart + isize);
1097 }
1098 } else {
1099 uvm_page_physload(atop(start), atop(end),
1100 atop(start), atop(end), VM_FREELIST_DEFAULT);
1101 npages += atop(end) - atop(start);
1102 }
1103 #else /* NISADMA > 0 */
1104 uvm_page_physload(atop(start), atop(end),
1105 atop(start), atop(end), VM_FREELIST_DEFAULT);
1106 npages += atop(end) - atop(start);
1107 #endif /* NISADMA > 0 */
1108 ++loop;
1109 }
1110
1111 #ifdef MYCROFT_HACK
1112 printf("npages = %ld\n", npages);
1113 #endif
1114
1115 virtual_start = KERNEL_VM_BASE;
1116 virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
1117
1118 ALLOC_PAGE_HOOK(page_hook0, NBPG);
1119 ALLOC_PAGE_HOOK(page_hook1, NBPG);
1120
1121 /*
1122 * The mem special device needs a virtual hook but we don't
1123 * need a pte
1124 */
1125 memhook = (char *)virtual_start;
1126 virtual_start += NBPG;
1127
1128 msgbufaddr = (caddr_t)virtual_start;
1129 msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
1130 virtual_start += round_page(MSGBUFSIZE);
1131
1132 /*
1133 * init the static-global locks and global lists.
1134 */
1135 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1136 simple_lock_init(&pvalloc_lock);
1137 TAILQ_INIT(&pv_freepages);
1138 TAILQ_INIT(&pv_unusedpgs);
1139
1140 /*
1141 * compute the number of pages we have and then allocate RAM
1142 * for each pages' pv_head and saved attributes.
1143 */
1144 {
1145 int npages, lcv;
1146 vsize_t s;
1147
1148 npages = 0;
1149 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
1150 npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
1151 s = (vsize_t) (sizeof(struct pv_head) * npages +
1152 sizeof(char) * npages);
1153 s = round_page(s); /* round up */
1154 boot_head = (char *)uvm_pageboot_alloc(s);
1155 bzero((char *)boot_head, s);
1156 if (boot_head == 0)
1157 panic("pmap_init: unable to allocate pv_heads");
1158 }
1159
1160 /*
1161 * initialize the pmap pool.
1162 */
1163
1164 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1165 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1166
1167 cpu_cache_cleanD();
1168 }
1169
1170 /*
1171 * void pmap_init(void)
1172 *
1173 * Initialize the pmap module.
1174 * Called by vm_init() in vm/vm_init.c in order to initialise
1175 * any structures that the pmap system needs to map virtual memory.
1176 */
1177
1178 extern int physmem;
1179
1180 void
1181 pmap_init()
1182 {
1183 int lcv, i;
1184
1185 #ifdef MYCROFT_HACK
1186 printf("physmem = %d\n", physmem);
1187 #endif
1188
1189 /*
1190 * Set the available memory vars - These do not map to real memory
1191 * addresses and cannot as the physical memory is fragmented.
1192 * They are used by ps for %mem calculations.
1193 * One could argue whether this should be the entire memory or just
1194 * the memory that is useable in a user process.
1195 */
1196 avail_start = 0;
1197 avail_end = physmem * NBPG;
1198
1199 /* allocate pv_head stuff first */
1200 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1201 vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
1202 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
1203 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1204 for (i = 0;
1205 i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
1206 simple_lock_init(
1207 &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
1208 }
1209 }
1210
1211 /* now allocate attrs */
1212 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1213 vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
1214 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
1215 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1216 }
1217
1218 /*
1219 * now we need to free enough pv_entry structures to allow us to get
1220 * the kmem_map/kmem_object allocated and inited (done after this
1221 * function is finished). to do this we allocate one bootstrap page out
1222 * of kernel_map and use it to provide an initial pool of pv_entry
1223 * structures. we never free this page.
1224 */
1225
1226 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1227 if (pv_initpage == NULL)
1228 panic("pmap_init: pv_initpage");
1229 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1230 pv_nfpvents = 0;
1231 (void) pmap_add_pvpage(pv_initpage, FALSE);
1232
1233 #ifdef MYCROFT_HACK
1234 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1235 printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
1236 lcv,
1237 vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
1238 vm_physmem[lcv].start, vm_physmem[lcv].end);
1239 }
1240 #endif
1241 pmap_initialized = TRUE;
1242
1243 /* Initialise our L1 page table queues and counters */
1244 SIMPLEQ_INIT(&l1pt_static_queue);
1245 l1pt_static_queue_count = 0;
1246 l1pt_static_create_count = 0;
1247 SIMPLEQ_INIT(&l1pt_queue);
1248 l1pt_queue_count = 0;
1249 l1pt_create_count = 0;
1250 l1pt_reuse_count = 0;
1251 }
1252
1253 /*
1254 * pmap_postinit()
1255 *
1256 * This routine is called after the vm and kmem subsystems have been
1257 * initialised. This allows the pmap code to perform any initialisation
1258 * that can only be done one the memory allocation is in place.
1259 */
1260
1261 void
1262 pmap_postinit()
1263 {
1264 int loop;
1265 struct l1pt *pt;
1266
1267 #ifdef PMAP_STATIC_L1S
1268 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1269 #else /* PMAP_STATIC_L1S */
1270 for (loop = 0; loop < max_processes; ++loop) {
1271 #endif /* PMAP_STATIC_L1S */
1272 /* Allocate a L1 page table */
1273 pt = pmap_alloc_l1pt();
1274 if (!pt)
1275 panic("Cannot allocate static L1 page tables\n");
1276
1277 /* Clean it */
1278 bzero((void *)pt->pt_va, PD_SIZE);
1279 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1280 /* Add the page table to the queue */
1281 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1282 ++l1pt_static_queue_count;
1283 ++l1pt_static_create_count;
1284 }
1285 }
1286
1287
1288 /*
1289 * Create and return a physical map.
1290 *
1291 * If the size specified for the map is zero, the map is an actual physical
1292 * map, and may be referenced by the hardware.
1293 *
1294 * If the size specified is non-zero, the map will be used in software only,
1295 * and is bounded by that size.
1296 */
1297
1298 pmap_t
1299 pmap_create()
1300 {
1301 struct pmap *pmap;
1302
1303 /*
1304 * Fetch pmap entry from the pool
1305 */
1306
1307 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1308 /* XXX is this really needed! */
1309 memset(pmap, 0, sizeof(*pmap));
1310
1311 simple_lock_init(&pmap->pm_obj.vmobjlock);
1312 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1313 TAILQ_INIT(&pmap->pm_obj.memq);
1314 pmap->pm_obj.uo_npages = 0;
1315 pmap->pm_obj.uo_refs = 1;
1316 pmap->pm_stats.wired_count = 0;
1317 pmap->pm_stats.resident_count = 1;
1318
1319 /* Now init the machine part of the pmap */
1320 pmap_pinit(pmap);
1321 return(pmap);
1322 }
1323
1324 /*
1325 * pmap_alloc_l1pt()
1326 *
1327 * This routine allocates physical and virtual memory for a L1 page table
1328 * and wires it.
1329 * A l1pt structure is returned to describe the allocated page table.
1330 *
1331 * This routine is allowed to fail if the required memory cannot be allocated.
1332 * In this case NULL is returned.
1333 */
1334
1335 struct l1pt *
1336 pmap_alloc_l1pt(void)
1337 {
1338 paddr_t pa;
1339 vaddr_t va;
1340 struct l1pt *pt;
1341 int error;
1342 struct vm_page *m;
1343 pt_entry_t *ptes;
1344
1345 /* Allocate virtual address space for the L1 page table */
1346 va = uvm_km_valloc(kernel_map, PD_SIZE);
1347 if (va == 0) {
1348 #ifdef DIAGNOSTIC
1349 printf("pmap: Cannot allocate pageable memory for L1\n");
1350 #endif /* DIAGNOSTIC */
1351 return(NULL);
1352 }
1353
1354 /* Allocate memory for the l1pt structure */
1355 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1356
1357 /*
1358 * Allocate pages from the VM system.
1359 */
1360 TAILQ_INIT(&pt->pt_plist);
1361 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1362 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1363 if (error) {
1364 #ifdef DIAGNOSTIC
1365 printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
1366 error);
1367 #endif /* DIAGNOSTIC */
1368 /* Release the resources we already have claimed */
1369 free(pt, M_VMPMAP);
1370 uvm_km_free(kernel_map, va, PD_SIZE);
1371 return(NULL);
1372 }
1373
1374 /* Map our physical pages into our virtual space */
1375 pt->pt_va = va;
1376 m = pt->pt_plist.tqh_first;
1377 ptes = pmap_map_ptes(pmap_kernel());
1378 while (m && va < (pt->pt_va + PD_SIZE)) {
1379 pa = VM_PAGE_TO_PHYS(m);
1380
1381 pmap_enter(pmap_kernel(), va, pa,
1382 VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
1383
1384 /* Revoke cacheability and bufferability */
1385 /* XXX should be done better than this */
1386 ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1387
1388 va += NBPG;
1389 m = m->pageq.tqe_next;
1390 }
1391 pmap_unmap_ptes(pmap_kernel());
1392 pmap_update(pmap_kernel());
1393
1394 #ifdef DIAGNOSTIC
1395 if (m)
1396 panic("pmap_alloc_l1pt: pglist not empty\n");
1397 #endif /* DIAGNOSTIC */
1398
1399 pt->pt_flags = 0;
1400 return(pt);
1401 }
1402
1403 /*
1404 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1405 */
1406 void
1407 pmap_free_l1pt(pt)
1408 struct l1pt *pt;
1409 {
1410 /* Separate the physical memory for the virtual space */
1411 pmap_remove(pmap_kernel(), pt->pt_va, pt->pt_va + PD_SIZE);
1412 pmap_update(pmap_kernel());
1413
1414 /* Return the physical memory */
1415 uvm_pglistfree(&pt->pt_plist);
1416
1417 /* Free the virtual space */
1418 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1419
1420 /* Free the l1pt structure */
1421 free(pt, M_VMPMAP);
1422 }
1423
1424 /*
1425 * Allocate a page directory.
1426 * This routine will either allocate a new page directory from the pool
1427 * of L1 page tables currently held by the kernel or it will allocate
1428 * a new one via pmap_alloc_l1pt().
1429 * It will then initialise the l1 page table for use.
1430 */
1431 int
1432 pmap_allocpagedir(pmap)
1433 struct pmap *pmap;
1434 {
1435 paddr_t pa;
1436 struct l1pt *pt;
1437 pt_entry_t *pte;
1438
1439 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1440
1441 /* Do we have any spare L1's lying around ? */
1442 if (l1pt_static_queue_count) {
1443 --l1pt_static_queue_count;
1444 pt = l1pt_static_queue.sqh_first;
1445 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1446 } else if (l1pt_queue_count) {
1447 --l1pt_queue_count;
1448 pt = l1pt_queue.sqh_first;
1449 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1450 ++l1pt_reuse_count;
1451 } else {
1452 pt = pmap_alloc_l1pt();
1453 if (!pt)
1454 return(ENOMEM);
1455 ++l1pt_create_count;
1456 }
1457
1458 /* Store the pointer to the l1 descriptor in the pmap. */
1459 pmap->pm_l1pt = pt;
1460
1461 /* Get the physical address of the start of the l1 */
1462 pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1463
1464 /* Store the virtual address of the l1 in the pmap. */
1465 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1466
1467 /* Clean the L1 if it is dirty */
1468 if (!(pt->pt_flags & PTFLAG_CLEAN))
1469 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1470
1471 /* Do we already have the kernel mappings ? */
1472 if (!(pt->pt_flags & PTFLAG_KPT)) {
1473 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1474
1475 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1476 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1477 KERNEL_PD_SIZE);
1478 pt->pt_flags |= PTFLAG_KPT;
1479 }
1480
1481 /* Allocate a page table to map all the page tables for this pmap */
1482
1483 #ifdef DIAGNOSTIC
1484 if (pmap->pm_vptpt) {
1485 /* XXX What if we have one already ? */
1486 panic("pmap_allocpagedir: have pt already\n");
1487 }
1488 #endif /* DIAGNOSTIC */
1489 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1490 if (pmap->pm_vptpt == 0) {
1491 pmap_freepagedir(pmap);
1492 return(ENOMEM);
1493 }
1494
1495 (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1496 pmap->pm_pptpt &= PG_FRAME;
1497 /* Revoke cacheability and bufferability */
1498 /* XXX should be done better than this */
1499 pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1500 *pte = *pte & ~(PT_C | PT_B);
1501
1502 /* Wire in this page table */
1503 pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
1504
1505 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1506
1507 /*
1508 * Map the kernel page tables for 0xf0000000 +
1509 * into the page table used to map the
1510 * pmap's page tables
1511 */
1512 bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1513 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1514 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1515 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1516 (KERNEL_PD_SIZE >> 2));
1517
1518 return(0);
1519 }
1520
1521
1522 /*
1523 * Initialize a preallocated and zeroed pmap structure,
1524 * such as one in a vmspace structure.
1525 */
1526
1527 void
1528 pmap_pinit(pmap)
1529 struct pmap *pmap;
1530 {
1531 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1532
1533 /* Keep looping until we succeed in allocating a page directory */
1534 while (pmap_allocpagedir(pmap) != 0) {
1535 /*
1536 * Ok we failed to allocate a suitable block of memory for an
1537 * L1 page table. This means that either:
1538 * 1. 16KB of virtual address space could not be allocated
1539 * 2. 16KB of physically contiguous memory on a 16KB boundary
1540 * could not be allocated.
1541 *
1542 * Since we cannot fail we will sleep for a while and try
1543 * again.
1544 */
1545 (void) ltsleep(&lbolt, PVM, "l1ptwait", hz >> 3, NULL);
1546 }
1547
1548 /* Map zero page for the pmap. This will also map the L2 for it */
1549 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1550 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1551 pmap_update(pmap);
1552 }
1553
1554
1555 void
1556 pmap_freepagedir(pmap)
1557 struct pmap *pmap;
1558 {
1559 /* Free the memory used for the page table mapping */
1560 if (pmap->pm_vptpt != 0)
1561 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1562
1563 /* junk the L1 page table */
1564 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1565 /* Add the page table to the queue */
1566 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1567 ++l1pt_static_queue_count;
1568 } else if (l1pt_queue_count < 8) {
1569 /* Add the page table to the queue */
1570 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1571 ++l1pt_queue_count;
1572 } else
1573 pmap_free_l1pt(pmap->pm_l1pt);
1574 }
1575
1576
1577 /*
1578 * Retire the given physical map from service.
1579 * Should only be called if the map contains no valid mappings.
1580 */
1581
1582 void
1583 pmap_destroy(pmap)
1584 struct pmap *pmap;
1585 {
1586 struct vm_page *page;
1587 int count;
1588
1589 if (pmap == NULL)
1590 return;
1591
1592 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1593
1594 /*
1595 * Drop reference count
1596 */
1597 simple_lock(&pmap->pm_obj.vmobjlock);
1598 count = --pmap->pm_obj.uo_refs;
1599 simple_unlock(&pmap->pm_obj.vmobjlock);
1600 if (count > 0) {
1601 return;
1602 }
1603
1604 /*
1605 * reference count is zero, free pmap resources and then free pmap.
1606 */
1607
1608 /* Remove the zero page mapping */
1609 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1610 pmap_update(pmap);
1611
1612 /*
1613 * Free any page tables still mapped
1614 * This is only temporay until pmap_enter can count the number
1615 * of mappings made in a page table. Then pmap_remove() can
1616 * reduce the count and free the pagetable when the count
1617 * reaches zero. Note that entries in this list should match the
1618 * contents of the ptpt, however this is faster than walking a 1024
1619 * entries looking for pt's
1620 * taken from i386 pmap.c
1621 */
1622 while (pmap->pm_obj.memq.tqh_first != NULL) {
1623 page = pmap->pm_obj.memq.tqh_first;
1624 #ifdef DIAGNOSTIC
1625 if (page->flags & PG_BUSY)
1626 panic("pmap_release: busy page table page");
1627 #endif
1628 /* pmap_page_protect? currently no need for it. */
1629
1630 page->wire_count = 0;
1631 uvm_pagefree(page);
1632 }
1633
1634 /* Free the page dir */
1635 pmap_freepagedir(pmap);
1636
1637 /* return the pmap to the pool */
1638 pool_put(&pmap_pmap_pool, pmap);
1639 }
1640
1641
1642 /*
1643 * void pmap_reference(struct pmap *pmap)
1644 *
1645 * Add a reference to the specified pmap.
1646 */
1647
1648 void
1649 pmap_reference(pmap)
1650 struct pmap *pmap;
1651 {
1652 if (pmap == NULL)
1653 return;
1654
1655 simple_lock(&pmap->pm_lock);
1656 pmap->pm_obj.uo_refs++;
1657 simple_unlock(&pmap->pm_lock);
1658 }
1659
1660 /*
1661 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1662 *
1663 * Return the start and end addresses of the kernel's virtual space.
1664 * These values are setup in pmap_bootstrap and are updated as pages
1665 * are allocated.
1666 */
1667
1668 void
1669 pmap_virtual_space(start, end)
1670 vaddr_t *start;
1671 vaddr_t *end;
1672 {
1673 *start = virtual_start;
1674 *end = virtual_end;
1675 }
1676
1677
1678 /*
1679 * Activate the address space for the specified process. If the process
1680 * is the current process, load the new MMU context.
1681 */
1682 void
1683 pmap_activate(p)
1684 struct proc *p;
1685 {
1686 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1687 struct pcb *pcb = &p->p_addr->u_pcb;
1688
1689 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1690 (paddr_t *)&pcb->pcb_pagedir);
1691
1692 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1693 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1694
1695 if (p == curproc) {
1696 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1697 setttb((u_int)pcb->pcb_pagedir);
1698 }
1699 #if 0
1700 pmap->pm_pdchanged = FALSE;
1701 #endif
1702 }
1703
1704
1705 /*
1706 * Deactivate the address space of the specified process.
1707 */
1708 void
1709 pmap_deactivate(p)
1710 struct proc *p;
1711 {
1712 }
1713
1714
1715 /*
1716 * pmap_clean_page()
1717 *
1718 * This is a local function used to work out the best strategy to clean
1719 * a single page referenced by its entry in the PV table. It's used by
1720 * pmap_copy_page, pmap_zero page and maybe some others later on.
1721 *
1722 * Its policy is effectively:
1723 * o If there are no mappings, we don't bother doing anything with the cache.
1724 * o If there is one mapping, we clean just that page.
1725 * o If there are multiple mappings, we clean the entire cache.
1726 *
1727 * So that some functions can be further optimised, it returns 0 if it didn't
1728 * clean the entire cache, or 1 if it did.
1729 *
1730 * XXX One bug in this routine is that if the pv_entry has a single page
1731 * mapped at 0x00000000 a whole cache clean will be performed rather than
1732 * just the 1 page. Since this should not occur in everyday use and if it does
1733 * it will just result in not the most efficient clean for the page.
1734 */
1735 static int
1736 pmap_clean_page(pv, is_src)
1737 struct pv_entry *pv;
1738 boolean_t is_src;
1739 {
1740 struct pmap *pmap;
1741 struct pv_entry *npv;
1742 int cache_needs_cleaning = 0;
1743 vaddr_t page_to_clean = 0;
1744
1745 if (pv == NULL)
1746 /* nothing mapped in so nothing to flush */
1747 return (0);
1748
1749 /* Since we flush the cache each time we change curproc, we
1750 * only need to flush the page if it is in the current pmap.
1751 */
1752 if (curproc)
1753 pmap = curproc->p_vmspace->vm_map.pmap;
1754 else
1755 pmap = pmap_kernel();
1756
1757 for (npv = pv; npv; npv = npv->pv_next) {
1758 if (npv->pv_pmap == pmap) {
1759 /* The page is mapped non-cacheable in
1760 * this map. No need to flush the cache.
1761 */
1762 if (npv->pv_flags & PT_NC) {
1763 #ifdef DIAGNOSTIC
1764 if (cache_needs_cleaning)
1765 panic("pmap_clean_page: "
1766 "cache inconsistency");
1767 #endif
1768 break;
1769 }
1770 #if 0
1771 /* This doesn't work, because pmap_protect
1772 doesn't flush changes on pages that it
1773 has write-protected. */
1774 /* If the page is not writeable and this
1775 is the source, then there is no need
1776 to flush it from the cache. */
1777 else if (is_src && ! (npv->pv_flags & PT_Wr))
1778 continue;
1779 #endif
1780 if (cache_needs_cleaning){
1781 page_to_clean = 0;
1782 break;
1783 }
1784 else
1785 page_to_clean = npv->pv_va;
1786 cache_needs_cleaning = 1;
1787 }
1788 }
1789
1790 if (page_to_clean)
1791 cpu_cache_purgeID_rng(page_to_clean, NBPG);
1792 else if (cache_needs_cleaning) {
1793 cpu_cache_purgeID();
1794 return (1);
1795 }
1796 return (0);
1797 }
1798
1799 /*
1800 * pmap_find_pv()
1801 *
1802 * This is a local function that finds a PV head for a given physical page.
1803 * This is a common op, and this function removes loads of ifdefs in the code.
1804 */
1805 static __inline struct pv_head *
1806 pmap_find_pvh(phys)
1807 paddr_t phys;
1808 {
1809 int bank, off;
1810 struct pv_head *pvh;
1811
1812 #ifdef DIAGNOSTIC
1813 if (!pmap_initialized)
1814 panic("pmap_find_pv: !pmap_initialized");
1815 #endif
1816
1817 if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1818 panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1819 pvh = &vm_physmem[bank].pmseg.pvhead[off];
1820 return (pvh);
1821 }
1822
1823 /*
1824 * pmap_zero_page()
1825 *
1826 * Zero a given physical page by mapping it at a page hook point.
1827 * In doing the zero page op, the page we zero is mapped cachable, as with
1828 * StrongARM accesses to non-cached pages are non-burst making writing
1829 * _any_ bulk data very slow.
1830 */
1831 void
1832 pmap_zero_page(phys)
1833 paddr_t phys;
1834 {
1835 struct pv_head *pvh;
1836
1837 /* Get an entry for this page, and clean it it. */
1838 PMAP_HEAD_TO_MAP_LOCK();
1839 pvh = pmap_find_pvh(phys);
1840 simple_lock(&pvh->pvh_lock);
1841 pmap_clean_page(pvh->pvh_list, FALSE);
1842 simple_unlock(&pvh->pvh_lock);
1843 PMAP_HEAD_TO_MAP_UNLOCK();
1844
1845 /*
1846 * Hook in the page, zero it, and purge the cache for that
1847 * zeroed page. Invalidate the TLB as needed.
1848 */
1849 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1850 cpu_tlb_flushD_SE(page_hook0.va);
1851 bzero_page(page_hook0.va);
1852 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1853 }
1854
1855 /* pmap_pageidlezero()
1856 *
1857 * The same as above, except that we assume that the page is not
1858 * mapped. This means we never have to flush the cache first. Called
1859 * from the idle loop.
1860 */
1861 boolean_t
1862 pmap_pageidlezero(phys)
1863 paddr_t phys;
1864 {
1865 int i, *ptr;
1866 boolean_t rv = TRUE;
1867
1868 #ifdef DIAGNOSTIC
1869 struct pv_head *pvh;
1870
1871 pvh = pmap_find_pvh(phys);
1872 if (pvh->pvh_list != NULL)
1873 panic("pmap_pageidlezero: zeroing mapped page\n");
1874 #endif
1875
1876 /*
1877 * Hook in the page, zero it, and purge the cache for that
1878 * zeroed page. Invalidate the TLB as needed.
1879 */
1880 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1881 cpu_tlb_flushD_SE(page_hook0.va);
1882
1883 for (i = 0, ptr = (int *)page_hook0.va;
1884 i < (NBPG / sizeof(int)); i++) {
1885 if (sched_whichqs != 0) {
1886 /*
1887 * A process has become ready. Abort now,
1888 * so we don't keep it waiting while we
1889 * do slow memory access to finish this
1890 * page.
1891 */
1892 rv = FALSE;
1893 break;
1894 }
1895 *ptr++ = 0;
1896 }
1897
1898 if (rv)
1899 /*
1900 * if we aborted we'll rezero this page again later so don't
1901 * purge it unless we finished it
1902 */
1903 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1904 return (rv);
1905 }
1906
1907 /*
1908 * pmap_copy_page()
1909 *
1910 * Copy one physical page into another, by mapping the pages into
1911 * hook points. The same comment regarding cachability as in
1912 * pmap_zero_page also applies here.
1913 */
1914 void
1915 pmap_copy_page(src, dest)
1916 paddr_t src;
1917 paddr_t dest;
1918 {
1919 struct pv_head *src_pvh, *dest_pvh;
1920
1921 PMAP_HEAD_TO_MAP_LOCK();
1922 /* Get PV entries for the pages, and clean them if needed. */
1923 src_pvh = pmap_find_pvh(src);
1924 simple_lock(&src_pvh->pvh_lock);
1925 dest_pvh = pmap_find_pvh(dest);
1926 simple_lock(&dest_pvh->pvh_lock);
1927 if (!pmap_clean_page(src_pvh->pvh_list, TRUE))
1928 pmap_clean_page(dest_pvh->pvh_list, FALSE);
1929
1930 simple_unlock(&dest_pvh->pvh_lock);
1931 simple_unlock(&src_pvh->pvh_lock);
1932 PMAP_HEAD_TO_MAP_UNLOCK();
1933
1934 /*
1935 * Map the pages into the page hook points, copy them, and purge
1936 * the cache for the appropriate page. Invalidate the TLB
1937 * as required.
1938 */
1939 *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1940 *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1941 cpu_tlb_flushD_SE(page_hook0.va);
1942 cpu_tlb_flushD_SE(page_hook1.va);
1943 bcopy_page(page_hook0.va, page_hook1.va);
1944 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1945 cpu_cache_purgeD_rng(page_hook1.va, NBPG);
1946 }
1947
1948 /*
1949 * int pmap_next_phys_page(paddr_t *addr)
1950 *
1951 * Allocate another physical page returning true or false depending
1952 * on whether a page could be allocated.
1953 */
1954
1955 paddr_t
1956 pmap_next_phys_page(addr)
1957 paddr_t addr;
1958
1959 {
1960 int loop;
1961
1962 if (addr < bootconfig.dram[0].address)
1963 return(bootconfig.dram[0].address);
1964
1965 loop = 0;
1966
1967 while (bootconfig.dram[loop].address != 0
1968 && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
1969 ++loop;
1970
1971 if (bootconfig.dram[loop].address == 0)
1972 return(0);
1973
1974 addr += NBPG;
1975
1976 if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
1977 if (bootconfig.dram[loop + 1].address == 0)
1978 return(0);
1979 addr = bootconfig.dram[loop + 1].address;
1980 }
1981
1982 return(addr);
1983 }
1984
1985 #if 0
1986 void
1987 pmap_pte_addref(pmap, va)
1988 struct pmap *pmap;
1989 vaddr_t va;
1990 {
1991 pd_entry_t *pde;
1992 paddr_t pa;
1993 struct vm_page *m;
1994
1995 if (pmap == pmap_kernel())
1996 return;
1997
1998 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1999 pa = pmap_pte_pa(pde);
2000 m = PHYS_TO_VM_PAGE(pa);
2001 ++m->wire_count;
2002 #ifdef MYCROFT_HACK
2003 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2004 pmap, va, pde, pa, m, m->wire_count);
2005 #endif
2006 }
2007
2008 void
2009 pmap_pte_delref(pmap, va)
2010 struct pmap *pmap;
2011 vaddr_t va;
2012 {
2013 pd_entry_t *pde;
2014 paddr_t pa;
2015 struct vm_page *m;
2016
2017 if (pmap == pmap_kernel())
2018 return;
2019
2020 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2021 pa = pmap_pte_pa(pde);
2022 m = PHYS_TO_VM_PAGE(pa);
2023 --m->wire_count;
2024 #ifdef MYCROFT_HACK
2025 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2026 pmap, va, pde, pa, m, m->wire_count);
2027 #endif
2028 if (m->wire_count == 0) {
2029 #ifdef MYCROFT_HACK
2030 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2031 pmap, va, pde, pa, m);
2032 #endif
2033 pmap_unmap_in_l1(pmap, va);
2034 uvm_pagefree(m);
2035 --pmap->pm_stats.resident_count;
2036 }
2037 }
2038 #else
2039 #define pmap_pte_addref(pmap, va)
2040 #define pmap_pte_delref(pmap, va)
2041 #endif
2042
2043 /*
2044 * Since we have a virtually indexed cache, we may need to inhibit caching if
2045 * there is more than one mapping and at least one of them is writable.
2046 * Since we purge the cache on every context switch, we only need to check for
2047 * other mappings within the same pmap, or kernel_pmap.
2048 * This function is also called when a page is unmapped, to possibly reenable
2049 * caching on any remaining mappings.
2050 *
2051 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2052 */
2053 void
2054 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2055 boolean_t clear_cache)
2056 {
2057 struct pv_entry *pv, *npv;
2058 pt_entry_t *pte;
2059 int entries = 0;
2060 int writeable = 0;
2061 int cacheable_entries = 0;
2062
2063 pv = pvh->pvh_list;
2064 KASSERT(ptes != NULL);
2065
2066 /*
2067 * Count mappings and writable mappings in this pmap.
2068 * Keep a pointer to the first one.
2069 */
2070 for (npv = pv; npv; npv = npv->pv_next) {
2071 /* Count mappings in the same pmap */
2072 if (pmap == npv->pv_pmap) {
2073 if (entries++ == 0)
2074 pv = npv;
2075 /* Cacheable mappings */
2076 if ((npv->pv_flags & PT_NC) == 0)
2077 cacheable_entries++;
2078 /* Writeable mappings */
2079 if (npv->pv_flags & PT_Wr)
2080 ++writeable;
2081 }
2082 }
2083
2084 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2085 "writeable %d cacheable %d %s\n", pmap, entries, writeable,
2086 cacheable_entries, clear_cache ? "clean" : "no clean"));
2087
2088 /*
2089 * Enable or disable caching as necessary.
2090 * We do a quick check of the first PTE to avoid walking the list if
2091 * we're already in the right state.
2092 */
2093 if (entries > 1 && writeable) {
2094 if (cacheable_entries == 0)
2095 return;
2096 if (pv->pv_flags & PT_NC) {
2097 #ifdef DIAGNOSTIC
2098 /* We have cacheable entries, but the first one
2099 isn't among them. Something is wrong. */
2100 if (cacheable_entries)
2101 panic("pmap_vac_me_harder: "
2102 "cacheable inconsistent");
2103 #endif
2104 return;
2105 }
2106 pte = &ptes[arm_byte_to_page(pv->pv_va)];
2107 *pte &= ~(PT_C | PT_B);
2108 pv->pv_flags |= PT_NC;
2109 if (clear_cache && cacheable_entries < 4) {
2110 cpu_cache_purgeID_rng(pv->pv_va, NBPG);
2111 cpu_tlb_flushID_SE(pv->pv_va);
2112 }
2113 for (npv = pv->pv_next; npv; npv = npv->pv_next) {
2114 if (pmap == npv->pv_pmap &&
2115 (npv->pv_flags & PT_NC) == 0) {
2116 ptes[arm_byte_to_page(npv->pv_va)] &=
2117 ~(PT_C | PT_B);
2118 npv->pv_flags |= PT_NC;
2119 if (clear_cache && cacheable_entries < 4) {
2120 cpu_cache_purgeID_rng(npv->pv_va,
2121 NBPG);
2122 cpu_tlb_flushID_SE(npv->pv_va);
2123 }
2124 }
2125 }
2126 if (clear_cache && cacheable_entries >= 4) {
2127 cpu_cache_purgeID();
2128 cpu_tlb_flushID();
2129 }
2130 } else if (entries > 0) {
2131 if ((pv->pv_flags & PT_NC) == 0)
2132 return;
2133 pte = &ptes[arm_byte_to_page(pv->pv_va)];
2134 *pte |= (PT_C | PT_B);
2135 pv->pv_flags &= ~PT_NC;
2136 for (npv = pv->pv_next; npv; npv = npv->pv_next) {
2137 if (pmap == npv->pv_pmap &&
2138 (npv->pv_flags & PT_NC)) {
2139 ptes[arm_byte_to_page(npv->pv_va)] |=
2140 (PT_C | PT_B);
2141 npv->pv_flags &= ~PT_NC;
2142 }
2143 }
2144 }
2145 }
2146
2147 /*
2148 * pmap_remove()
2149 *
2150 * pmap_remove is responsible for nuking a number of mappings for a range
2151 * of virtual address space in the current pmap. To do this efficiently
2152 * is interesting, because in a number of cases a wide virtual address
2153 * range may be supplied that contains few actual mappings. So, the
2154 * optimisations are:
2155 * 1. Try and skip over hunks of address space for which an L1 entry
2156 * does not exist.
2157 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2158 * maybe do just a partial cache clean. This path of execution is
2159 * complicated by the fact that the cache must be flushed _before_
2160 * the PTE is nuked, being a VAC :-)
2161 * 3. Maybe later fast-case a single page, but I don't think this is
2162 * going to make _that_ much difference overall.
2163 */
2164
2165 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2166
2167 void
2168 pmap_remove(pmap, sva, eva)
2169 struct pmap *pmap;
2170 vaddr_t sva;
2171 vaddr_t eva;
2172 {
2173 int cleanlist_idx = 0;
2174 struct pagelist {
2175 vaddr_t va;
2176 pt_entry_t *pte;
2177 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2178 pt_entry_t *pte = 0, *ptes;
2179 paddr_t pa;
2180 int pmap_active;
2181 struct pv_head *pvh;
2182
2183 /* Exit quick if there is no pmap */
2184 if (!pmap)
2185 return;
2186
2187 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2188
2189 sva &= PG_FRAME;
2190 eva &= PG_FRAME;
2191
2192 /*
2193 * we lock in the pmap => pv_head direction
2194 */
2195 PMAP_MAP_TO_HEAD_LOCK();
2196
2197 ptes = pmap_map_ptes(pmap);
2198 /* Get a page table pointer */
2199 while (sva < eva) {
2200 if (pmap_pde_v(pmap_pde(pmap, sva)))
2201 break;
2202 sva = (sva & PD_MASK) + NBPD;
2203 }
2204
2205 pte = &ptes[arm_byte_to_page(sva)];
2206 /* Note if the pmap is active thus require cache and tlb cleans */
2207 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2208 || (pmap == pmap_kernel()))
2209 pmap_active = 1;
2210 else
2211 pmap_active = 0;
2212
2213 /* Now loop along */
2214 while (sva < eva) {
2215 /* Check if we can move to the next PDE (l1 chunk) */
2216 if (!(sva & PT_MASK))
2217 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
2218 sva += NBPD;
2219 pte += arm_byte_to_page(NBPD);
2220 continue;
2221 }
2222
2223 /* We've found a valid PTE, so this page of PTEs has to go. */
2224 if (pmap_pte_v(pte)) {
2225 int bank, off;
2226
2227 /* Update statistics */
2228 --pmap->pm_stats.resident_count;
2229
2230 /*
2231 * Add this page to our cache remove list, if we can.
2232 * If, however the cache remove list is totally full,
2233 * then do a complete cache invalidation taking note
2234 * to backtrack the PTE table beforehand, and ignore
2235 * the lists in future because there's no longer any
2236 * point in bothering with them (we've paid the
2237 * penalty, so will carry on unhindered). Otherwise,
2238 * when we fall out, we just clean the list.
2239 */
2240 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2241 pa = pmap_pte_pa(pte);
2242
2243 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2244 /* Add to the clean list. */
2245 cleanlist[cleanlist_idx].pte = pte;
2246 cleanlist[cleanlist_idx].va = sva;
2247 cleanlist_idx++;
2248 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2249 int cnt;
2250
2251 /* Nuke everything if needed. */
2252 if (pmap_active) {
2253 cpu_cache_purgeID();
2254 cpu_tlb_flushID();
2255 }
2256
2257 /*
2258 * Roll back the previous PTE list,
2259 * and zero out the current PTE.
2260 */
2261 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2262 *cleanlist[cnt].pte = 0;
2263 pmap_pte_delref(pmap, cleanlist[cnt].va);
2264 }
2265 *pte = 0;
2266 pmap_pte_delref(pmap, sva);
2267 cleanlist_idx++;
2268 } else {
2269 /*
2270 * We've already nuked the cache and
2271 * TLB, so just carry on regardless,
2272 * and we won't need to do it again
2273 */
2274 *pte = 0;
2275 pmap_pte_delref(pmap, sva);
2276 }
2277
2278 /*
2279 * Update flags. In a number of circumstances,
2280 * we could cluster a lot of these and do a
2281 * number of sequential pages in one go.
2282 */
2283 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2284 struct pv_entry *pve;
2285 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2286 simple_lock(&pvh->pvh_lock);
2287 pve = pmap_remove_pv(pvh, pmap, sva);
2288 pmap_free_pv(pmap, pve);
2289 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2290 simple_unlock(&pvh->pvh_lock);
2291 }
2292 }
2293 sva += NBPG;
2294 pte++;
2295 }
2296
2297 pmap_unmap_ptes(pmap);
2298 /*
2299 * Now, if we've fallen through down to here, chances are that there
2300 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2301 */
2302 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2303 u_int cnt;
2304
2305 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2306 if (pmap_active) {
2307 cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
2308 *cleanlist[cnt].pte = 0;
2309 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2310 } else
2311 *cleanlist[cnt].pte = 0;
2312 pmap_pte_delref(pmap, cleanlist[cnt].va);
2313 }
2314 }
2315 PMAP_MAP_TO_HEAD_UNLOCK();
2316 }
2317
2318 /*
2319 * Routine: pmap_remove_all
2320 * Function:
2321 * Removes this physical page from
2322 * all physical maps in which it resides.
2323 * Reflects back modify bits to the pager.
2324 */
2325
2326 void
2327 pmap_remove_all(pa)
2328 paddr_t pa;
2329 {
2330 struct pv_entry *pv, *npv;
2331 struct pv_head *pvh;
2332 struct pmap *pmap;
2333 pt_entry_t *pte, *ptes;
2334
2335 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
2336
2337 /* set pv_head => pmap locking */
2338 PMAP_HEAD_TO_MAP_LOCK();
2339
2340 pvh = pmap_find_pvh(pa);
2341 simple_lock(&pvh->pvh_lock);
2342
2343 pv = pvh->pvh_list;
2344 if (pv == NULL)
2345 {
2346 PDEBUG(0, printf("free page\n"));
2347 simple_unlock(&pvh->pvh_lock);
2348 PMAP_HEAD_TO_MAP_UNLOCK();
2349 return;
2350 }
2351 pmap_clean_page(pv, FALSE);
2352
2353 while (pv) {
2354 pmap = pv->pv_pmap;
2355 ptes = pmap_map_ptes(pmap);
2356 pte = &ptes[arm_byte_to_page(pv->pv_va)];
2357
2358 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2359 pv->pv_va, pv->pv_flags));
2360 #ifdef DEBUG
2361 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
2362 || pmap_pte_pa(pte) != pa)
2363 panic("pmap_remove_all: bad mapping");
2364 #endif /* DEBUG */
2365
2366 /*
2367 * Update statistics
2368 */
2369 --pmap->pm_stats.resident_count;
2370
2371 /* Wired bit */
2372 if (pv->pv_flags & PT_W)
2373 --pmap->pm_stats.wired_count;
2374
2375 /*
2376 * Invalidate the PTEs.
2377 * XXX: should cluster them up and invalidate as many
2378 * as possible at once.
2379 */
2380
2381 #ifdef needednotdone
2382 reduce wiring count on page table pages as references drop
2383 #endif
2384
2385 *pte = 0;
2386 pmap_pte_delref(pmap, pv->pv_va);
2387
2388 npv = pv->pv_next;
2389 pmap_free_pv(pmap, pv);
2390 pv = npv;
2391 pmap_unmap_ptes(pmap);
2392 }
2393 pvh->pvh_list = NULL;
2394 simple_unlock(&pvh->pvh_lock);
2395 PMAP_HEAD_TO_MAP_UNLOCK();
2396
2397 PDEBUG(0, printf("done\n"));
2398 cpu_tlb_flushID();
2399 }
2400
2401
2402 /*
2403 * Set the physical protection on the specified range of this map as requested.
2404 */
2405
2406 void
2407 pmap_protect(pmap, sva, eva, prot)
2408 struct pmap *pmap;
2409 vaddr_t sva;
2410 vaddr_t eva;
2411 vm_prot_t prot;
2412 {
2413 pt_entry_t *pte = NULL, *ptes;
2414 int armprot;
2415 int flush = 0;
2416 paddr_t pa;
2417 int bank, off;
2418 struct pv_head *pvh;
2419
2420 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2421 pmap, sva, eva, prot));
2422
2423 if (~prot & VM_PROT_READ) {
2424 /* Just remove the mappings. */
2425 pmap_remove(pmap, sva, eva);
2426 return;
2427 }
2428 if (prot & VM_PROT_WRITE) {
2429 /*
2430 * If this is a read->write transition, just ignore it and let
2431 * uvm_fault() take care of it later.
2432 */
2433 return;
2434 }
2435
2436 sva &= PG_FRAME;
2437 eva &= PG_FRAME;
2438
2439 /* Need to lock map->head */
2440 PMAP_MAP_TO_HEAD_LOCK();
2441
2442 ptes = pmap_map_ptes(pmap);
2443 /*
2444 * We need to acquire a pointer to a page table page before entering
2445 * the following loop.
2446 */
2447 while (sva < eva) {
2448 if (pmap_pde_v(pmap_pde(pmap, sva)))
2449 break;
2450 sva = (sva & PD_MASK) + NBPD;
2451 }
2452
2453 pte = &ptes[arm_byte_to_page(sva)];
2454
2455 while (sva < eva) {
2456 /* only check once in a while */
2457 if ((sva & PT_MASK) == 0) {
2458 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
2459 /* We can race ahead here, to the next pde. */
2460 sva += NBPD;
2461 pte += arm_byte_to_page(NBPD);
2462 continue;
2463 }
2464 }
2465
2466 if (!pmap_pte_v(pte))
2467 goto next;
2468
2469 flush = 1;
2470
2471 armprot = 0;
2472 if (sva < VM_MAXUSER_ADDRESS)
2473 armprot |= PT_AP(AP_U);
2474 else if (sva < VM_MAX_ADDRESS)
2475 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2476 *pte = (*pte & 0xfffff00f) | armprot;
2477
2478 pa = pmap_pte_pa(pte);
2479
2480 /* Get the physical page index */
2481
2482 /* Clear write flag */
2483 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2484 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2485 simple_lock(&pvh->pvh_lock);
2486 (void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
2487 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2488 simple_unlock(&pvh->pvh_lock);
2489 }
2490
2491 next:
2492 sva += NBPG;
2493 pte++;
2494 }
2495 pmap_unmap_ptes(pmap);
2496 PMAP_MAP_TO_HEAD_UNLOCK();
2497 if (flush)
2498 cpu_tlb_flushID();
2499 }
2500
2501 /*
2502 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2503 * int flags)
2504 *
2505 * Insert the given physical page (p) at
2506 * the specified virtual address (v) in the
2507 * target physical map with the protection requested.
2508 *
2509 * If specified, the page will be wired down, meaning
2510 * that the related pte can not be reclaimed.
2511 *
2512 * NB: This is the only routine which MAY NOT lazy-evaluate
2513 * or lose information. That is, this routine must actually
2514 * insert this page into the given map NOW.
2515 */
2516
2517 int
2518 pmap_enter(pmap, va, pa, prot, flags)
2519 struct pmap *pmap;
2520 vaddr_t va;
2521 paddr_t pa;
2522 vm_prot_t prot;
2523 int flags;
2524 {
2525 pt_entry_t *pte, *ptes;
2526 u_int npte;
2527 int bank, off;
2528 paddr_t opa;
2529 int nflags;
2530 boolean_t wired = (flags & PMAP_WIRED) != 0;
2531 struct pv_entry *pve;
2532 struct pv_head *pvh;
2533 int error;
2534
2535 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2536 va, pa, pmap, prot, wired));
2537
2538 #ifdef DIAGNOSTIC
2539 /* Valid address ? */
2540 if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2541 panic("pmap_enter: too big");
2542 if (pmap != pmap_kernel() && va != 0) {
2543 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2544 panic("pmap_enter: kernel page in user map");
2545 } else {
2546 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2547 panic("pmap_enter: user page in kernel map");
2548 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2549 panic("pmap_enter: entering PT page");
2550 }
2551 #endif
2552 /* get lock */
2553 PMAP_MAP_TO_HEAD_LOCK();
2554 /*
2555 * Get a pointer to the pte for this virtual address. If the
2556 * pte pointer is NULL then we are missing the L2 page table
2557 * so we need to create one.
2558 */
2559 pte = pmap_pte(pmap, va);
2560 if (!pte) {
2561 struct vm_page *ptp;
2562
2563 /* if failure is allowed then don't try too hard */
2564 ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
2565 if (ptp == NULL) {
2566 if (flags & PMAP_CANFAIL) {
2567 error = ENOMEM;
2568 goto out;
2569 }
2570 panic("pmap_enter: get ptp failed");
2571 }
2572
2573 pte = pmap_pte(pmap, va);
2574 #ifdef DIAGNOSTIC
2575 if (!pte)
2576 panic("pmap_enter: no pte");
2577 #endif
2578 }
2579
2580 nflags = 0;
2581 if (prot & VM_PROT_WRITE)
2582 nflags |= PT_Wr;
2583 if (wired)
2584 nflags |= PT_W;
2585
2586 /* More debugging info */
2587 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2588 *pte));
2589
2590 /* Is the pte valid ? If so then this page is already mapped */
2591 if (pmap_pte_v(pte)) {
2592 /* Get the physical address of the current page mapped */
2593 opa = pmap_pte_pa(pte);
2594
2595 #ifdef MYCROFT_HACK
2596 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2597 #endif
2598
2599 /* Are we mapping the same page ? */
2600 if (opa == pa) {
2601 /* All we must be doing is changing the protection */
2602 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2603 va, pa));
2604
2605 /* Has the wiring changed ? */
2606 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2607 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2608 simple_lock(&pvh->pvh_lock);
2609 (void) pmap_modify_pv(pmap, va, pvh,
2610 PT_Wr | PT_W, nflags);
2611 simple_unlock(&pvh->pvh_lock);
2612 } else {
2613 pvh = NULL;
2614 }
2615 } else {
2616 /* We are replacing the page with a new one. */
2617 cpu_cache_purgeID_rng(va, NBPG);
2618
2619 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2620 va, pa, opa));
2621
2622 /*
2623 * If it is part of our managed memory then we
2624 * must remove it from the PV list
2625 */
2626 if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2627 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2628 simple_lock(&pvh->pvh_lock);
2629 pve = pmap_remove_pv(pvh, pmap, va);
2630 simple_unlock(&pvh->pvh_lock);
2631 } else {
2632 pve = NULL;
2633 }
2634
2635 goto enter;
2636 }
2637 } else {
2638 opa = 0;
2639 pve = NULL;
2640 pmap_pte_addref(pmap, va);
2641
2642 /* pte is not valid so we must be hooking in a new page */
2643 ++pmap->pm_stats.resident_count;
2644
2645 enter:
2646 /*
2647 * Enter on the PV list if part of our managed memory
2648 */
2649 bank = vm_physseg_find(atop(pa), &off);
2650
2651 if (pmap_initialized && (bank != -1)) {
2652 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2653 if (pve == NULL) {
2654 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2655 if (pve == NULL) {
2656 if (flags & PMAP_CANFAIL) {
2657 error = ENOMEM;
2658 goto out;
2659 }
2660 panic("pmap_enter: no pv entries available");
2661 }
2662 }
2663 /* enter_pv locks pvh when adding */
2664 pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
2665 } else {
2666 pvh = NULL;
2667 if (pve != NULL)
2668 pmap_free_pv(pmap, pve);
2669 }
2670 }
2671
2672 #ifdef MYCROFT_HACK
2673 if (mycroft_hack)
2674 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2675 #endif
2676
2677 /* Construct the pte, giving the correct access. */
2678 npte = (pa & PG_FRAME);
2679
2680 /* VA 0 is magic. */
2681 if (pmap != pmap_kernel() && va != 0)
2682 npte |= PT_AP(AP_U);
2683
2684 if (pmap_initialized && bank != -1) {
2685 #ifdef DIAGNOSTIC
2686 if ((flags & VM_PROT_ALL) & ~prot)
2687 panic("pmap_enter: access_type exceeds prot");
2688 #endif
2689 npte |= PT_C | PT_B;
2690 if (flags & VM_PROT_WRITE) {
2691 npte |= L2_SPAGE | PT_AP(AP_W);
2692 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2693 } else if (flags & VM_PROT_ALL) {
2694 npte |= L2_SPAGE;
2695 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2696 } else
2697 npte |= L2_INVAL;
2698 } else {
2699 if (prot & VM_PROT_WRITE)
2700 npte |= L2_SPAGE | PT_AP(AP_W);
2701 else if (prot & VM_PROT_ALL)
2702 npte |= L2_SPAGE;
2703 else
2704 npte |= L2_INVAL;
2705 }
2706
2707 #ifdef MYCROFT_HACK
2708 if (mycroft_hack)
2709 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2710 #endif
2711
2712 *pte = npte;
2713
2714 if (pmap_initialized && bank != -1)
2715 {
2716 boolean_t pmap_active = FALSE;
2717 /* XXX this will change once the whole of pmap_enter uses
2718 * map_ptes
2719 */
2720 ptes = pmap_map_ptes(pmap);
2721 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2722 || (pmap == pmap_kernel()))
2723 pmap_active = TRUE;
2724 simple_lock(&pvh->pvh_lock);
2725 pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
2726 simple_unlock(&pvh->pvh_lock);
2727 pmap_unmap_ptes(pmap);
2728 }
2729
2730 /* Better flush the TLB ... */
2731 cpu_tlb_flushID_SE(va);
2732 error = 0;
2733 out:
2734 PMAP_MAP_TO_HEAD_UNLOCK();
2735 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2736
2737 return error;
2738 }
2739
2740 void
2741 pmap_kenter_pa(va, pa, prot)
2742 vaddr_t va;
2743 paddr_t pa;
2744 vm_prot_t prot;
2745 {
2746 struct pmap *pmap = pmap_kernel();
2747 pt_entry_t *pte;
2748 struct vm_page *pg;
2749
2750 if (!pmap_pde_v(pmap_pde(pmap, va))) {
2751
2752 /*
2753 * For the kernel pmaps it would be better to ensure
2754 * that they are always present, and to grow the
2755 * kernel as required.
2756 */
2757
2758 /* Allocate a page table */
2759 pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
2760 UVM_PGA_USERESERVE | UVM_PGA_ZERO);
2761 if (pg == NULL) {
2762 panic("pmap_kenter_pa: no free pages");
2763 }
2764 pg->flags &= ~PG_BUSY; /* never busy */
2765
2766 /* Wire this page table into the L1. */
2767 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
2768 }
2769 pte = vtopte(va);
2770 KASSERT(!pmap_pte_v(pte));
2771 *pte = L2_PTE(pa, AP_KRW);
2772 }
2773
2774 void
2775 pmap_kremove(va, len)
2776 vaddr_t va;
2777 vsize_t len;
2778 {
2779 pt_entry_t *pte;
2780
2781 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2782
2783 /*
2784 * We assume that we will only be called with small
2785 * regions of memory.
2786 */
2787
2788 KASSERT(pmap_pde_v(pmap_pde(pmap_kernel(), va)));
2789 pte = vtopte(va);
2790 cpu_cache_purgeID_rng(va, PAGE_SIZE);
2791 *pte = 0;
2792 cpu_tlb_flushID_SE(va);
2793 }
2794 }
2795
2796 /*
2797 * pmap_page_protect:
2798 *
2799 * Lower the permission for all mappings to a given page.
2800 */
2801
2802 void
2803 pmap_page_protect(pg, prot)
2804 struct vm_page *pg;
2805 vm_prot_t prot;
2806 {
2807 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2808
2809 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2810
2811 switch(prot) {
2812 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2813 case VM_PROT_READ|VM_PROT_WRITE:
2814 return;
2815
2816 case VM_PROT_READ:
2817 case VM_PROT_READ|VM_PROT_EXECUTE:
2818 pmap_copy_on_write(pa);
2819 break;
2820
2821 default:
2822 pmap_remove_all(pa);
2823 break;
2824 }
2825 }
2826
2827
2828 /*
2829 * Routine: pmap_unwire
2830 * Function: Clear the wired attribute for a map/virtual-address
2831 * pair.
2832 * In/out conditions:
2833 * The mapping must already exist in the pmap.
2834 */
2835
2836 void
2837 pmap_unwire(pmap, va)
2838 struct pmap *pmap;
2839 vaddr_t va;
2840 {
2841 pt_entry_t *pte;
2842 paddr_t pa;
2843 int bank, off;
2844 struct pv_head *pvh;
2845
2846 /*
2847 * Make sure pmap is valid. -dct
2848 */
2849 if (pmap == NULL)
2850 return;
2851
2852 /* Get the pte */
2853 pte = pmap_pte(pmap, va);
2854 if (!pte)
2855 return;
2856
2857 /* Extract the physical address of the page */
2858 pa = pmap_pte_pa(pte);
2859
2860 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2861 return;
2862 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2863 simple_lock(&pvh->pvh_lock);
2864 /* Update the wired bit in the pv entry for this page. */
2865 (void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
2866 simple_unlock(&pvh->pvh_lock);
2867 }
2868
2869 /*
2870 * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
2871 *
2872 * Return the pointer to a page table entry corresponding to the supplied
2873 * virtual address.
2874 *
2875 * The page directory is first checked to make sure that a page table
2876 * for the address in question exists and if it does a pointer to the
2877 * entry is returned.
2878 *
2879 * The way this works is that that the kernel page tables are mapped
2880 * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
2881 * This allows page tables to be located quickly.
2882 */
2883 pt_entry_t *
2884 pmap_pte(pmap, va)
2885 struct pmap *pmap;
2886 vaddr_t va;
2887 {
2888 pt_entry_t *ptp;
2889 pt_entry_t *result;
2890
2891 /* The pmap must be valid */
2892 if (!pmap)
2893 return(NULL);
2894
2895 /* Return the address of the pte */
2896 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
2897 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
2898
2899 /* Do we have a valid pde ? If not we don't have a page table */
2900 if (!pmap_pde_v(pmap_pde(pmap, va))) {
2901 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
2902 pmap_pde(pmap, va)));
2903 return(NULL);
2904 }
2905
2906 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
2907 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2908 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2909 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
2910
2911 /*
2912 * If the pmap is the kernel pmap or the pmap is the active one
2913 * then we can just return a pointer to entry relative to
2914 * PROCESS_PAGE_TBLS_BASE.
2915 * Otherwise we need to map the page tables to an alternative
2916 * address and reference them there.
2917 */
2918 if (pmap == pmap_kernel() || pmap->pm_pptpt
2919 == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2920 + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
2921 ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2922 ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
2923 } else {
2924 struct proc *p = curproc;
2925
2926 /* If we don't have a valid curproc use proc0 */
2927 /* Perhaps we should just use kernel_pmap instead */
2928 if (p == NULL)
2929 p = &proc0;
2930 #ifdef DIAGNOSTIC
2931 /*
2932 * The pmap should always be valid for the process so
2933 * panic if it is not.
2934 */
2935 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
2936 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
2937 va, p, p->p_vmspace);
2938 console_debugger();
2939 }
2940 /*
2941 * The pmap for the current process should be mapped. If it
2942 * is not then we have a problem.
2943 */
2944 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
2945 (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2946 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2947 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2948 printf("pmap pagetable = P%08lx current = P%08x ",
2949 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2950 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2951 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
2952 PG_FRAME));
2953 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
2954 panic("pmap_pte: current and pmap mismatch\n");
2955 }
2956 #endif
2957
2958 ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
2959 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
2960 pmap->pm_pptpt, FALSE);
2961 cpu_tlb_flushD();
2962 }
2963 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
2964 ((va >> (PGSHIFT-2)) & ~3)));
2965 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
2966 return(result);
2967 }
2968
2969 /*
2970 * Routine: pmap_extract
2971 * Function:
2972 * Extract the physical page address associated
2973 * with the given map/virtual_address pair.
2974 */
2975 boolean_t
2976 pmap_extract(pmap, va, pap)
2977 struct pmap *pmap;
2978 vaddr_t va;
2979 paddr_t *pap;
2980 {
2981 pt_entry_t *pte, *ptes;
2982 paddr_t pa;
2983
2984 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2985
2986 /*
2987 * Get the pte for this virtual address.
2988 */
2989 ptes = pmap_map_ptes(pmap);
2990 pte = &ptes[arm_byte_to_page(va)];
2991
2992 /*
2993 * If there is no pte then there is no page table etc.
2994 * Is the pte valid ? If not then no paged is actually mapped here
2995 */
2996 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
2997 pmap_unmap_ptes(pmap);
2998 return (FALSE);
2999 }
3000
3001 /* Return the physical address depending on the PTE type */
3002 /* XXX What about L1 section mappings ? */
3003 if ((*(pte) & L2_MASK) == L2_LPAGE) {
3004 /* Extract the physical address from the pte */
3005 pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
3006
3007 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
3008 (pa | (va & (L2_LPAGE_SIZE - 1)))));
3009
3010 if (pap != NULL)
3011 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
3012 } else {
3013 /* Extract the physical address from the pte */
3014 pa = pmap_pte_pa(pte);
3015
3016 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
3017 (pa | (va & ~PG_FRAME))));
3018
3019 if (pap != NULL)
3020 *pap = pa | (va & ~PG_FRAME);
3021 }
3022 pmap_unmap_ptes(pmap);
3023 return (TRUE);
3024 }
3025
3026
3027 /*
3028 * Copy the range specified by src_addr/len from the source map to the
3029 * range dst_addr/len in the destination map.
3030 *
3031 * This routine is only advisory and need not do anything.
3032 */
3033
3034 void
3035 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
3036 struct pmap *dst_pmap;
3037 struct pmap *src_pmap;
3038 vaddr_t dst_addr;
3039 vsize_t len;
3040 vaddr_t src_addr;
3041 {
3042 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
3043 dst_pmap, src_pmap, dst_addr, len, src_addr));
3044 }
3045
3046 #if defined(PMAP_DEBUG)
3047 void
3048 pmap_dump_pvlist(phys, m)
3049 vaddr_t phys;
3050 char *m;
3051 {
3052 struct pv_head *pvh;
3053 struct pv_entry *pv;
3054 int bank, off;
3055
3056 if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
3057 printf("INVALID PA\n");
3058 return;
3059 }
3060 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3061 simple_lock(&pvh->pvh_lock);
3062 printf("%s %08lx:", m, phys);
3063 if (pvh->pvh_list == NULL) {
3064 printf(" no mappings\n");
3065 return;
3066 }
3067
3068 for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
3069 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3070 pv->pv_va, pv->pv_flags);
3071
3072 printf("\n");
3073 simple_unlock(&pvh->pvh_lock);
3074 }
3075
3076 #endif /* PMAP_DEBUG */
3077
3078 boolean_t
3079 pmap_testbit(pa, setbits)
3080 paddr_t pa;
3081 int setbits;
3082 {
3083 int bank, off;
3084
3085 PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
3086
3087 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3088 return(FALSE);
3089
3090 /*
3091 * Check saved info only
3092 */
3093 if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
3094 PDEBUG(0, printf("pmap_attributes = %02x\n",
3095 vm_physmem[bank].pmseg.attrs[off]));
3096 return(TRUE);
3097 }
3098
3099 return(FALSE);
3100 }
3101
3102 static pt_entry_t *
3103 pmap_map_ptes(struct pmap *pmap)
3104 {
3105 struct proc *p;
3106
3107 /* the kernel's pmap is always accessible */
3108 if (pmap == pmap_kernel()) {
3109 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
3110 }
3111
3112 if (pmap_is_curpmap(pmap)) {
3113 simple_lock(&pmap->pm_obj.vmobjlock);
3114 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3115 }
3116
3117 p = curproc;
3118
3119 if (p == NULL)
3120 p = &proc0;
3121
3122 /* need to lock both curpmap and pmap: use ordered locking */
3123 if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3124 simple_lock(&pmap->pm_obj.vmobjlock);
3125 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3126 } else {
3127 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3128 simple_lock(&pmap->pm_obj.vmobjlock);
3129 }
3130
3131 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3132 pmap->pm_pptpt, FALSE);
3133 cpu_tlb_flushD();
3134 return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3135 }
3136
3137 /*
3138 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3139 */
3140
3141 static void
3142 pmap_unmap_ptes(pmap)
3143 struct pmap *pmap;
3144 {
3145 if (pmap == pmap_kernel()) {
3146 return;
3147 }
3148 if (pmap_is_curpmap(pmap)) {
3149 simple_unlock(&pmap->pm_obj.vmobjlock);
3150 } else {
3151 simple_unlock(&pmap->pm_obj.vmobjlock);
3152 simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3153 }
3154 }
3155
3156 /*
3157 * Modify pte bits for all ptes corresponding to the given physical address.
3158 * We use `maskbits' rather than `clearbits' because we're always passing
3159 * constants and the latter would require an extra inversion at run-time.
3160 */
3161
3162 void
3163 pmap_clearbit(pa, maskbits)
3164 paddr_t pa;
3165 int maskbits;
3166 {
3167 struct pv_entry *pv;
3168 struct pv_head *pvh;
3169 pt_entry_t *pte;
3170 vaddr_t va;
3171 int bank, off;
3172
3173 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3174 pa, maskbits));
3175 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3176 return;
3177 PMAP_HEAD_TO_MAP_LOCK();
3178 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3179 simple_lock(&pvh->pvh_lock);
3180
3181 /*
3182 * Clear saved attributes (modify, reference)
3183 */
3184 vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
3185
3186 if (pvh->pvh_list == NULL) {
3187 simple_unlock(&pvh->pvh_lock);
3188 PMAP_HEAD_TO_MAP_UNLOCK();
3189 return;
3190 }
3191
3192 /*
3193 * Loop over all current mappings setting/clearing as appropos
3194 */
3195 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
3196 va = pv->pv_va;
3197
3198 /*
3199 * XXX don't write protect pager mappings
3200 */
3201 if (va >= uvm.pager_sva && va < uvm.pager_eva) {
3202 printf("pmap_clearbit: found page VA on pv_list\n");
3203 continue;
3204 }
3205
3206 pv->pv_flags &= ~maskbits;
3207 pte = pmap_pte(pv->pv_pmap, va);
3208 KASSERT(pte != NULL);
3209 if (maskbits & (PT_Wr|PT_M))
3210 *pte &= ~PT_AP(AP_W);
3211 if (maskbits & PT_H)
3212 *pte = (*pte & ~L2_MASK) | L2_INVAL;
3213 }
3214 simple_unlock(&pvh->pvh_lock);
3215 PMAP_HEAD_TO_MAP_UNLOCK();
3216 cpu_tlb_flushID();
3217
3218 }
3219
3220
3221 boolean_t
3222 pmap_clear_modify(pg)
3223 struct vm_page *pg;
3224 {
3225 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3226 boolean_t rv;
3227
3228 PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
3229 rv = pmap_testbit(pa, PT_M);
3230 pmap_clearbit(pa, PT_M);
3231 return rv;
3232 }
3233
3234
3235 boolean_t
3236 pmap_clear_reference(pg)
3237 struct vm_page *pg;
3238 {
3239 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3240 boolean_t rv;
3241
3242 PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
3243 rv = pmap_testbit(pa, PT_H);
3244 pmap_clearbit(pa, PT_H);
3245 return rv;
3246 }
3247
3248
3249 void
3250 pmap_copy_on_write(pa)
3251 paddr_t pa;
3252 {
3253 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
3254 pmap_clearbit(pa, PT_Wr);
3255 }
3256
3257
3258 boolean_t
3259 pmap_is_modified(pg)
3260 struct vm_page *pg;
3261 {
3262 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3263 boolean_t result;
3264
3265 result = pmap_testbit(pa, PT_M);
3266 PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
3267 return (result);
3268 }
3269
3270
3271 boolean_t
3272 pmap_is_referenced(pg)
3273 struct vm_page *pg;
3274 {
3275 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3276 boolean_t result;
3277
3278 result = pmap_testbit(pa, PT_H);
3279 PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
3280 return (result);
3281 }
3282
3283
3284 int
3285 pmap_modified_emulation(pmap, va)
3286 struct pmap *pmap;
3287 vaddr_t va;
3288 {
3289 pt_entry_t *pte;
3290 paddr_t pa;
3291 int bank, off;
3292 struct pv_head *pvh;
3293 u_int flags;
3294
3295 PDEBUG(2, printf("pmap_modified_emulation\n"));
3296
3297 /* Get the pte */
3298 pte = pmap_pte(pmap, va);
3299 if (!pte) {
3300 PDEBUG(2, printf("no pte\n"));
3301 return(0);
3302 }
3303
3304 PDEBUG(1, printf("*pte=%08x\n", *pte));
3305
3306 /* Check for a zero pte */
3307 if (*pte == 0)
3308 return(0);
3309
3310 /* This can happen if user code tries to access kernel memory. */
3311 if ((*pte & PT_AP(AP_W)) != 0)
3312 return (0);
3313
3314 /* Extract the physical address of the page */
3315 pa = pmap_pte_pa(pte);
3316 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3317 return(0);
3318
3319 PMAP_HEAD_TO_MAP_LOCK();
3320 /* Get the current flags for this page. */
3321 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3322 /* XXX: needed if we hold head->map lock? */
3323 simple_lock(&pvh->pvh_lock);
3324
3325 flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
3326 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3327
3328 /*
3329 * Do the flags say this page is writable ? If not then it is a
3330 * genuine write fault. If yes then the write fault is our fault
3331 * as we did not reflect the write access in the PTE. Now we know
3332 * a write has occurred we can correct this and also set the
3333 * modified bit
3334 */
3335 if (~flags & PT_Wr) {
3336 simple_unlock(&pvh->pvh_lock);
3337 PMAP_HEAD_TO_MAP_UNLOCK();
3338 return(0);
3339 }
3340
3341 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
3342 va, pte, *pte));
3343 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
3344 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3345 PDEBUG(0, printf("->(%08x)\n", *pte));
3346
3347 simple_unlock(&pvh->pvh_lock);
3348 PMAP_HEAD_TO_MAP_UNLOCK();
3349 /* Return, indicating the problem has been dealt with */
3350 cpu_tlb_flushID_SE(va);
3351 return(1);
3352 }
3353
3354
3355 int
3356 pmap_handled_emulation(pmap, va)
3357 struct pmap *pmap;
3358 vaddr_t va;
3359 {
3360 pt_entry_t *pte;
3361 paddr_t pa;
3362 int bank, off;
3363
3364 PDEBUG(2, printf("pmap_handled_emulation\n"));
3365
3366 /* Get the pte */
3367 pte = pmap_pte(pmap, va);
3368 if (!pte) {
3369 PDEBUG(2, printf("no pte\n"));
3370 return(0);
3371 }
3372
3373 PDEBUG(1, printf("*pte=%08x\n", *pte));
3374
3375 /* Check for a zero pte */
3376 if (*pte == 0)
3377 return(0);
3378
3379 /* This can happen if user code tries to access kernel memory. */
3380 if ((*pte & L2_MASK) != L2_INVAL)
3381 return (0);
3382
3383 /* Extract the physical address of the page */
3384 pa = pmap_pte_pa(pte);
3385 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3386 return(0);
3387
3388 /*
3389 * Ok we just enable the pte and mark the attibs as handled
3390 */
3391 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
3392 va, pte, *pte));
3393 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
3394 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
3395 PDEBUG(0, printf("->(%08x)\n", *pte));
3396
3397 /* Return, indicating the problem has been dealt with */
3398 cpu_tlb_flushID_SE(va);
3399 return(1);
3400 }
3401
3402
3403
3404
3405 /*
3406 * pmap_collect: free resources held by a pmap
3407 *
3408 * => optional function.
3409 * => called when a process is swapped out to free memory.
3410 */
3411
3412 void
3413 pmap_collect(pmap)
3414 struct pmap *pmap;
3415 {
3416 }
3417
3418 /*
3419 * Routine: pmap_procwr
3420 *
3421 * Function:
3422 * Synchronize caches corresponding to [addr, addr+len) in p.
3423 *
3424 */
3425 void
3426 pmap_procwr(p, va, len)
3427 struct proc *p;
3428 vaddr_t va;
3429 int len;
3430 {
3431 /* We only need to do anything if it is the current process. */
3432 if (p == curproc)
3433 cpu_cache_syncI_rng(va, len);
3434 }
3435 /*
3436 * PTP functions
3437 */
3438
3439 /*
3440 * pmap_steal_ptp: Steal a PTP from somewhere else.
3441 *
3442 * This is just a placeholder, for now we never steal.
3443 */
3444
3445 static struct vm_page *
3446 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
3447 {
3448 return (NULL);
3449 }
3450
3451 /*
3452 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3453 *
3454 * => pmap should NOT be pmap_kernel()
3455 * => pmap should be locked
3456 */
3457
3458 static struct vm_page *
3459 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3460 {
3461 struct vm_page *ptp;
3462
3463 if (pmap_pde_v(pmap_pde(pmap, va))) {
3464
3465 /* valid... check hint (saves us a PA->PG lookup) */
3466 #if 0
3467 if (pmap->pm_ptphint &&
3468 ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3469 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3470 return (pmap->pm_ptphint);
3471 #endif
3472 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3473 #ifdef DIAGNOSTIC
3474 if (ptp == NULL)
3475 panic("pmap_get_ptp: unmanaged user PTP");
3476 #endif
3477 // pmap->pm_ptphint = ptp;
3478 return(ptp);
3479 }
3480
3481 /* allocate a new PTP (updates ptphint) */
3482 return(pmap_alloc_ptp(pmap, va, just_try));
3483 }
3484
3485 /*
3486 * pmap_alloc_ptp: allocate a PTP for a PMAP
3487 *
3488 * => pmap should already be locked by caller
3489 * => we use the ptp's wire_count to count the number of active mappings
3490 * in the PTP (we start it at one to prevent any chance this PTP
3491 * will ever leak onto the active/inactive queues)
3492 */
3493
3494 /*__inline */ static struct vm_page *
3495 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3496 {
3497 struct vm_page *ptp;
3498
3499 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3500 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3501 if (ptp == NULL) {
3502 if (just_try)
3503 return (NULL);
3504
3505 ptp = pmap_steal_ptp(pmap, va);
3506
3507 if (ptp == NULL)
3508 return (NULL);
3509 /* Stole a page, zero it. */
3510 pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
3511 }
3512
3513 /* got one! */
3514 ptp->flags &= ~PG_BUSY; /* never busy */
3515 ptp->wire_count = 1; /* no mappings yet */
3516 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3517 pmap->pm_stats.resident_count++; /* count PTP as resident */
3518 // pmap->pm_ptphint = ptp;
3519 return (ptp);
3520 }
3521
3522 /* End of pmap.c */
3523