pmap.c revision 1.191 1 /* $NetBSD: pmap.c,v 1.191 2008/11/19 06:24:04 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/user.h>
202 #include <sys/pool.h>
203 #include <sys/cdefs.h>
204 #include <sys/cpu.h>
205 #include <sys/sysctl.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.191 2008/11/19 06:24:04 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 struct pmap kernel_pmap_store;
259
260 /*
261 * Which pmap is currently 'live' in the cache
262 *
263 * XXXSCW: Fix for SMP ...
264 */
265 static pmap_t pmap_recent_user;
266
267 /*
268 * Pointer to last active lwp, or NULL if it exited.
269 */
270 struct lwp *pmap_previous_active_lwp;
271
272 /*
273 * Pool and cache that pmap structures are allocated from.
274 * We use a cache to avoid clearing the pm_l2[] array (1KB)
275 * in pmap_create().
276 */
277 static struct pool_cache pmap_cache;
278 static LIST_HEAD(, pmap) pmap_pmaps;
279
280 /*
281 * Pool of PV structures
282 */
283 static struct pool pmap_pv_pool;
284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
287 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
288 };
289
290 /*
291 * Pool and cache of l2_dtable structures.
292 * We use a cache to avoid clearing the structures when they're
293 * allocated. (196 bytes)
294 */
295 static struct pool_cache pmap_l2dtable_cache;
296 static vaddr_t pmap_kernel_l2dtable_kva;
297
298 /*
299 * Pool and cache of L2 page descriptors.
300 * We use a cache to avoid clearing the descriptor table
301 * when they're allocated. (1KB)
302 */
303 static struct pool_cache pmap_l2ptp_cache;
304 static vaddr_t pmap_kernel_l2ptp_kva;
305 static paddr_t pmap_kernel_l2ptp_phys;
306
307 #ifdef PMAPCOUNTERS
308 #define PMAP_EVCNT_INITIALIZER(name) \
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
310
311 #ifdef PMAP_CACHE_VIPT
312 static struct evcnt pmap_ev_vac_color_new =
313 PMAP_EVCNT_INITIALIZER("new page color");
314 static struct evcnt pmap_ev_vac_color_reuse =
315 PMAP_EVCNT_INITIALIZER("ok first page color");
316 static struct evcnt pmap_ev_vac_color_ok =
317 PMAP_EVCNT_INITIALIZER("ok page color");
318 static struct evcnt pmap_ev_vac_color_blind =
319 PMAP_EVCNT_INITIALIZER("blind page color");
320 static struct evcnt pmap_ev_vac_color_change =
321 PMAP_EVCNT_INITIALIZER("change page color");
322 static struct evcnt pmap_ev_vac_color_erase =
323 PMAP_EVCNT_INITIALIZER("erase page color");
324 static struct evcnt pmap_ev_vac_color_none =
325 PMAP_EVCNT_INITIALIZER("no page color");
326 static struct evcnt pmap_ev_vac_color_restore =
327 PMAP_EVCNT_INITIALIZER("restore page color");
328
329 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
337 #endif
338
339 static struct evcnt pmap_ev_mappings =
340 PMAP_EVCNT_INITIALIZER("pages mapped");
341 static struct evcnt pmap_ev_unmappings =
342 PMAP_EVCNT_INITIALIZER("pages unmapped");
343 static struct evcnt pmap_ev_remappings =
344 PMAP_EVCNT_INITIALIZER("pages remapped");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
347 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
348 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
349
350 static struct evcnt pmap_ev_kernel_mappings =
351 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
352 static struct evcnt pmap_ev_kernel_unmappings =
353 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
354 static struct evcnt pmap_ev_kernel_remappings =
355 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
356
357 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
359 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
360
361 static struct evcnt pmap_ev_kenter_mappings =
362 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
363 static struct evcnt pmap_ev_kenter_unmappings =
364 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
365 static struct evcnt pmap_ev_kenter_remappings =
366 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
367 static struct evcnt pmap_ev_pt_mappings =
368 PMAP_EVCNT_INITIALIZER("page table pages mapped");
369
370 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
374
375 #ifdef PMAP_CACHE_VIPT
376 static struct evcnt pmap_ev_exec_mappings =
377 PMAP_EVCNT_INITIALIZER("exec pages mapped");
378 static struct evcnt pmap_ev_exec_cached =
379 PMAP_EVCNT_INITIALIZER("exec pages cached");
380
381 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
382 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
383
384 static struct evcnt pmap_ev_exec_synced =
385 PMAP_EVCNT_INITIALIZER("exec pages synced");
386 static struct evcnt pmap_ev_exec_synced_map =
387 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
388 static struct evcnt pmap_ev_exec_synced_unmap =
389 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
390 static struct evcnt pmap_ev_exec_synced_remap =
391 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
392 static struct evcnt pmap_ev_exec_synced_clearbit =
393 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
394 static struct evcnt pmap_ev_exec_synced_kremove =
395 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
396
397 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
402 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
403
404 static struct evcnt pmap_ev_exec_discarded_unmap =
405 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
406 static struct evcnt pmap_ev_exec_discarded_zero =
407 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
408 static struct evcnt pmap_ev_exec_discarded_copy =
409 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
410 static struct evcnt pmap_ev_exec_discarded_page_protect =
411 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
412 static struct evcnt pmap_ev_exec_discarded_clearbit =
413 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
414 static struct evcnt pmap_ev_exec_discarded_kremove =
415 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
416
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
422 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
423 #endif /* PMAP_CACHE_VIPT */
424
425 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
426 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
427 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
428
429 EVCNT_ATTACH_STATIC(pmap_ev_updates);
430 EVCNT_ATTACH_STATIC(pmap_ev_collects);
431 EVCNT_ATTACH_STATIC(pmap_ev_activations);
432
433 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
434 #else
435 #define PMAPCOUNT(x) ((void)0)
436 #endif
437
438 /*
439 * pmap copy/zero page, and mem(5) hook point
440 */
441 static pt_entry_t *csrc_pte, *cdst_pte;
442 static vaddr_t csrcp, cdstp;
443 vaddr_t memhook; /* used by mem.c */
444 kmutex_t memlock; /* used by mem.c */
445 void *zeropage; /* used by mem.c */
446 extern void *msgbufaddr;
447 int pmap_kmpages;
448 /*
449 * Flag to indicate if pmap_init() has done its thing
450 */
451 bool pmap_initialized;
452
453 /*
454 * Misc. locking data structures
455 */
456
457 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
458 static struct lock pmap_main_lock;
459
460 #define PMAP_MAP_TO_HEAD_LOCK() \
461 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
462 #define PMAP_MAP_TO_HEAD_UNLOCK() \
463 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
464 #define PMAP_HEAD_TO_MAP_LOCK() \
465 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
466 #define PMAP_HEAD_TO_MAP_UNLOCK() \
467 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
468 #else
469 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
470 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
471 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
472 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
473 #endif
474
475 #define pmap_acquire_pmap_lock(pm) \
476 do { \
477 if ((pm) != pmap_kernel()) \
478 mutex_enter(&(pm)->pm_lock); \
479 } while (/*CONSTCOND*/0)
480
481 #define pmap_release_pmap_lock(pm) \
482 do { \
483 if ((pm) != pmap_kernel()) \
484 mutex_exit(&(pm)->pm_lock); \
485 } while (/*CONSTCOND*/0)
486
487
488 /*
489 * Metadata for L1 translation tables.
490 */
491 struct l1_ttable {
492 /* Entry on the L1 Table list */
493 SLIST_ENTRY(l1_ttable) l1_link;
494
495 /* Entry on the L1 Least Recently Used list */
496 TAILQ_ENTRY(l1_ttable) l1_lru;
497
498 /* Track how many domains are allocated from this L1 */
499 volatile u_int l1_domain_use_count;
500
501 /*
502 * A free-list of domain numbers for this L1.
503 * We avoid using ffs() and a bitmap to track domains since ffs()
504 * is slow on ARM.
505 */
506 u_int8_t l1_domain_first;
507 u_int8_t l1_domain_free[PMAP_DOMAINS];
508
509 /* Physical address of this L1 page table */
510 paddr_t l1_physaddr;
511
512 /* KVA of this L1 page table */
513 pd_entry_t *l1_kva;
514 };
515
516 /*
517 * Convert a virtual address into its L1 table index. That is, the
518 * index used to locate the L2 descriptor table pointer in an L1 table.
519 * This is basically used to index l1->l1_kva[].
520 *
521 * Each L2 descriptor table represents 1MB of VA space.
522 */
523 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
524
525 /*
526 * L1 Page Tables are tracked using a Least Recently Used list.
527 * - New L1s are allocated from the HEAD.
528 * - Freed L1s are added to the TAIl.
529 * - Recently accessed L1s (where an 'access' is some change to one of
530 * the userland pmaps which owns this L1) are moved to the TAIL.
531 */
532 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
533 static struct simplelock l1_lru_lock;
534
535 /*
536 * A list of all L1 tables
537 */
538 static SLIST_HEAD(, l1_ttable) l1_list;
539
540 /*
541 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
542 *
543 * This is normally 16MB worth L2 page descriptors for any given pmap.
544 * Reference counts are maintained for L2 descriptors so they can be
545 * freed when empty.
546 */
547 struct l2_dtable {
548 /* The number of L2 page descriptors allocated to this l2_dtable */
549 u_int l2_occupancy;
550
551 /* List of L2 page descriptors */
552 struct l2_bucket {
553 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
554 paddr_t l2b_phys; /* Physical address of same */
555 u_short l2b_l1idx; /* This L2 table's L1 index */
556 u_short l2b_occupancy; /* How many active descriptors */
557 } l2_bucket[L2_BUCKET_SIZE];
558 };
559
560 /*
561 * Given an L1 table index, calculate the corresponding l2_dtable index
562 * and bucket index within the l2_dtable.
563 */
564 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
565 (L2_SIZE - 1))
566 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
567
568 /*
569 * Given a virtual address, this macro returns the
570 * virtual address required to drop into the next L2 bucket.
571 */
572 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
573
574 /*
575 * L2 allocation.
576 */
577 #define pmap_alloc_l2_dtable() \
578 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
579 #define pmap_free_l2_dtable(l2) \
580 pool_cache_put(&pmap_l2dtable_cache, (l2))
581 #define pmap_alloc_l2_ptp(pap) \
582 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
583 PR_NOWAIT, (pap)))
584
585 /*
586 * We try to map the page tables write-through, if possible. However, not
587 * all CPUs have a write-through cache mode, so on those we have to sync
588 * the cache when we frob page tables.
589 *
590 * We try to evaluate this at compile time, if possible. However, it's
591 * not always possible to do that, hence this run-time var.
592 */
593 int pmap_needs_pte_sync;
594
595 /*
596 * Real definition of pv_entry.
597 */
598 struct pv_entry {
599 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
600 pmap_t pv_pmap; /* pmap where mapping lies */
601 vaddr_t pv_va; /* virtual address for mapping */
602 u_int pv_flags; /* flags */
603 };
604
605 /*
606 * Macro to determine if a mapping might be resident in the
607 * instruction cache and/or TLB
608 */
609 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
610 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
611
612 /*
613 * Macro to determine if a mapping might be resident in the
614 * data cache and/or TLB
615 */
616 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
617
618 /*
619 * Local prototypes
620 */
621 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
622 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
623 pt_entry_t **);
624 static bool pmap_is_current(pmap_t);
625 static bool pmap_is_cached(pmap_t);
626 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
627 pmap_t, vaddr_t, u_int);
628 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
629 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
630 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
631 u_int, u_int);
632
633 static void pmap_pinit(pmap_t);
634 static int pmap_pmap_ctor(void *, void *, int);
635
636 static void pmap_alloc_l1(pmap_t);
637 static void pmap_free_l1(pmap_t);
638 static void pmap_use_l1(pmap_t);
639
640 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
641 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
642 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
643 static int pmap_l2ptp_ctor(void *, void *, int);
644 static int pmap_l2dtable_ctor(void *, void *, int);
645
646 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
647 #ifdef PMAP_CACHE_VIVT
648 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
649 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
650 #endif
651
652 static void pmap_clearbit(struct vm_page *, u_int);
653 #ifdef PMAP_CACHE_VIVT
654 static int pmap_clean_page(struct pv_entry *, bool);
655 #endif
656 #ifdef PMAP_CACHE_VIPT
657 static void pmap_syncicache_page(struct vm_page *);
658 static void pmap_flush_page(struct vm_page *, bool);
659 #endif
660 static void pmap_page_remove(struct vm_page *);
661
662 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
663 static vaddr_t kernel_pt_lookup(paddr_t);
664
665
666 /*
667 * External function prototypes
668 */
669 extern void bzero_page(vaddr_t);
670 extern void bcopy_page(vaddr_t, vaddr_t);
671
672 /*
673 * Misc variables
674 */
675 vaddr_t virtual_avail;
676 vaddr_t virtual_end;
677 vaddr_t pmap_curmaxkvaddr;
678
679 vaddr_t avail_start;
680 vaddr_t avail_end;
681
682 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
683 pv_addr_t kernelpages;
684 pv_addr_t kernel_l1pt;
685 pv_addr_t systempage;
686
687 /* Function to set the debug level of the pmap code */
688
689 #ifdef PMAP_DEBUG
690 void
691 pmap_debug(int level)
692 {
693 pmap_debug_level = level;
694 printf("pmap_debug: level=%d\n", pmap_debug_level);
695 }
696 #endif /* PMAP_DEBUG */
697
698 /*
699 * A bunch of routines to conditionally flush the caches/TLB depending
700 * on whether the specified pmap actually needs to be flushed at any
701 * given time.
702 */
703 static inline void
704 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
705 {
706
707 if (pm->pm_cstate.cs_tlb_id)
708 cpu_tlb_flushID_SE(va);
709 }
710
711 static inline void
712 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
713 {
714
715 if (pm->pm_cstate.cs_tlb_d)
716 cpu_tlb_flushD_SE(va);
717 }
718
719 static inline void
720 pmap_tlb_flushID(pmap_t pm)
721 {
722
723 if (pm->pm_cstate.cs_tlb_id) {
724 cpu_tlb_flushID();
725 pm->pm_cstate.cs_tlb = 0;
726 }
727 }
728
729 static inline void
730 pmap_tlb_flushD(pmap_t pm)
731 {
732
733 if (pm->pm_cstate.cs_tlb_d) {
734 cpu_tlb_flushD();
735 pm->pm_cstate.cs_tlb_d = 0;
736 }
737 }
738
739 #ifdef PMAP_CACHE_VIVT
740 static inline void
741 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
742 {
743 if (pm->pm_cstate.cs_cache_id) {
744 cpu_idcache_wbinv_range(va, len);
745 }
746 }
747
748 static inline void
749 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
750 bool do_inv, bool rd_only)
751 {
752
753 if (pm->pm_cstate.cs_cache_d) {
754 if (do_inv) {
755 if (rd_only)
756 cpu_dcache_inv_range(va, len);
757 else
758 cpu_dcache_wbinv_range(va, len);
759 } else
760 if (!rd_only)
761 cpu_dcache_wb_range(va, len);
762 }
763 }
764
765 static inline void
766 pmap_idcache_wbinv_all(pmap_t pm)
767 {
768 if (pm->pm_cstate.cs_cache_id) {
769 cpu_idcache_wbinv_all();
770 pm->pm_cstate.cs_cache = 0;
771 }
772 }
773
774 static inline void
775 pmap_dcache_wbinv_all(pmap_t pm)
776 {
777 if (pm->pm_cstate.cs_cache_d) {
778 cpu_dcache_wbinv_all();
779 pm->pm_cstate.cs_cache_d = 0;
780 }
781 }
782 #endif /* PMAP_CACHE_VIVT */
783
784 static inline bool
785 pmap_is_current(pmap_t pm)
786 {
787
788 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
789 return true;
790
791 return false;
792 }
793
794 static inline bool
795 pmap_is_cached(pmap_t pm)
796 {
797
798 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
799 pmap_recent_user == pm)
800 return (true);
801
802 return false;
803 }
804
805 /*
806 * PTE_SYNC_CURRENT:
807 *
808 * Make sure the pte is written out to RAM.
809 * We need to do this for one of two cases:
810 * - We're dealing with the kernel pmap
811 * - There is no pmap active in the cache/tlb.
812 * - The specified pmap is 'active' in the cache/tlb.
813 */
814 #ifdef PMAP_INCLUDE_PTE_SYNC
815 #define PTE_SYNC_CURRENT(pm, ptep) \
816 do { \
817 if (PMAP_NEEDS_PTE_SYNC && \
818 pmap_is_cached(pm)) \
819 PTE_SYNC(ptep); \
820 } while (/*CONSTCOND*/0)
821 #else
822 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
823 #endif
824
825 /*
826 * main pv_entry manipulation functions:
827 * pmap_enter_pv: enter a mapping onto a vm_page list
828 * pmap_remove_pv: remove a mappiing from a vm_page list
829 *
830 * NOTE: pmap_enter_pv expects to lock the pvh itself
831 * pmap_remove_pv expects te caller to lock the pvh before calling
832 */
833
834 /*
835 * pmap_enter_pv: enter a mapping onto a vm_page lst
836 *
837 * => caller should hold the proper lock on pmap_main_lock
838 * => caller should have pmap locked
839 * => we will gain the lock on the vm_page and allocate the new pv_entry
840 * => caller should adjust ptp's wire_count before calling
841 * => caller should not adjust pmap's wire_count
842 */
843 static void
844 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
845 vaddr_t va, u_int flags)
846 {
847 struct pv_entry **pvp;
848
849 NPDEBUG(PDB_PVDUMP,
850 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
851
852 pve->pv_pmap = pm;
853 pve->pv_va = va;
854 pve->pv_flags = flags;
855
856 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
857 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
858 #ifdef PMAP_CACHE_VIPT
859 /*
860 * Insert unmanaged entries, writeable first, at the head of
861 * the pv list.
862 */
863 if (__predict_true((flags & PVF_KENTRY) == 0)) {
864 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
865 pvp = &SLIST_NEXT(*pvp, pv_link);
866 } else if ((flags & PVF_WRITE) == 0) {
867 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
868 pvp = &SLIST_NEXT(*pvp, pv_link);
869 }
870 #endif
871 SLIST_NEXT(pve, pv_link) = *pvp; /* add to ... */
872 *pvp = pve; /* ... locked list */
873 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
874 #ifdef PMAP_CACHE_VIPT
875 if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
876 pg->mdpage.pvh_attrs |= PVF_KMOD;
877 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
878 pg->mdpage.pvh_attrs |= PVF_DIRTY;
879 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
880 #endif
881 if (pm == pmap_kernel()) {
882 PMAPCOUNT(kernel_mappings);
883 if (flags & PVF_WRITE)
884 pg->mdpage.krw_mappings++;
885 else
886 pg->mdpage.kro_mappings++;
887 } else
888 if (flags & PVF_WRITE)
889 pg->mdpage.urw_mappings++;
890 else
891 pg->mdpage.uro_mappings++;
892
893 #ifdef PMAP_CACHE_VIPT
894 /*
895 * If this is an exec mapping and its the first exec mapping
896 * for this page, make sure to sync the I-cache.
897 */
898 if (PV_IS_EXEC_P(flags)) {
899 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
900 pmap_syncicache_page(pg);
901 PMAPCOUNT(exec_synced_map);
902 }
903 PMAPCOUNT(exec_mappings);
904 }
905 #endif
906
907 PMAPCOUNT(mappings);
908 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
909
910 if (pve->pv_flags & PVF_WIRED)
911 ++pm->pm_stats.wired_count;
912 }
913
914 /*
915 *
916 * pmap_find_pv: Find a pv entry
917 *
918 * => caller should hold lock on vm_page
919 */
920 static inline struct pv_entry *
921 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
922 {
923 struct pv_entry *pv;
924
925 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
926 if (pm == pv->pv_pmap && va == pv->pv_va)
927 break;
928 }
929
930 return (pv);
931 }
932
933 /*
934 * pmap_remove_pv: try to remove a mapping from a pv_list
935 *
936 * => caller should hold proper lock on pmap_main_lock
937 * => pmap should be locked
938 * => caller should hold lock on vm_page [so that attrs can be adjusted]
939 * => caller should adjust ptp's wire_count and free PTP if needed
940 * => caller should NOT adjust pmap's wire_count
941 * => we return the removed pve
942 */
943 static struct pv_entry *
944 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
945 {
946 struct pv_entry *pve, **prevptr;
947
948 NPDEBUG(PDB_PVDUMP,
949 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
950
951 prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
952 pve = *prevptr;
953
954 while (pve) {
955 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
956 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
957 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
958 if (pve->pv_flags & PVF_WIRED) {
959 if (skip_wired)
960 return (NULL);
961 --pm->pm_stats.wired_count;
962 }
963 *prevptr = SLIST_NEXT(pve, pv_link); /* remove it! */
964 if (pm == pmap_kernel()) {
965 PMAPCOUNT(kernel_unmappings);
966 if (pve->pv_flags & PVF_WRITE)
967 pg->mdpage.krw_mappings--;
968 else
969 pg->mdpage.kro_mappings--;
970 } else
971 if (pve->pv_flags & PVF_WRITE)
972 pg->mdpage.urw_mappings--;
973 else
974 pg->mdpage.uro_mappings--;
975
976 PMAPCOUNT(unmappings);
977 #ifdef PMAP_CACHE_VIPT
978 if (!(pve->pv_flags & PVF_WRITE))
979 break;
980 /*
981 * If this page has had an exec mapping, then if
982 * this was the last mapping, discard the contents,
983 * otherwise sync the i-cache for this page.
984 */
985 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
986 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
987 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
988 PMAPCOUNT(exec_discarded_unmap);
989 } else {
990 pmap_syncicache_page(pg);
991 PMAPCOUNT(exec_synced_unmap);
992 }
993 }
994 #endif /* PMAP_CACHE_VIPT */
995 break;
996 }
997 prevptr = &SLIST_NEXT(pve, pv_link); /* previous pointer */
998 pve = *prevptr; /* advance */
999 }
1000
1001 #ifdef PMAP_CACHE_VIPT
1002 /*
1003 * If we no longer have a WRITEABLE KENTRY at the head of list,
1004 * clear the KMOD attribute from the page.
1005 */
1006 if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
1007 || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1008 pg->mdpage.pvh_attrs &= ~PVF_KMOD;
1009
1010 /*
1011 * If this was a writeable page and there are no more writeable
1012 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1013 * the contents to memory.
1014 */
1015 if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
1016 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1017 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1018 #endif /* PMAP_CACHE_VIPT */
1019
1020 return(pve); /* return removed pve */
1021 }
1022
1023 /*
1024 *
1025 * pmap_modify_pv: Update pv flags
1026 *
1027 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1028 * => caller should NOT adjust pmap's wire_count
1029 * => caller must call pmap_vac_me_harder() if writable status of a page
1030 * may have changed.
1031 * => we return the old flags
1032 *
1033 * Modify a physical-virtual mapping in the pv table
1034 */
1035 static u_int
1036 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
1037 u_int clr_mask, u_int set_mask)
1038 {
1039 struct pv_entry *npv;
1040 u_int flags, oflags;
1041
1042 KASSERT((clr_mask & PVF_KENTRY) == 0);
1043 KASSERT((set_mask & PVF_KENTRY) == 0);
1044
1045 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1046 return (0);
1047
1048 NPDEBUG(PDB_PVDUMP,
1049 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
1050
1051 /*
1052 * There is at least one VA mapping this page.
1053 */
1054
1055 if (clr_mask & (PVF_REF | PVF_MOD)) {
1056 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1057 #ifdef PMAP_CACHE_VIPT
1058 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1059 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1060 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1061 #endif
1062 }
1063
1064 oflags = npv->pv_flags;
1065 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1066
1067 if ((flags ^ oflags) & PVF_WIRED) {
1068 if (flags & PVF_WIRED)
1069 ++pm->pm_stats.wired_count;
1070 else
1071 --pm->pm_stats.wired_count;
1072 }
1073
1074 if ((flags ^ oflags) & PVF_WRITE) {
1075 if (pm == pmap_kernel()) {
1076 if (flags & PVF_WRITE) {
1077 pg->mdpage.krw_mappings++;
1078 pg->mdpage.kro_mappings--;
1079 } else {
1080 pg->mdpage.kro_mappings++;
1081 pg->mdpage.krw_mappings--;
1082 }
1083 } else
1084 if (flags & PVF_WRITE) {
1085 pg->mdpage.urw_mappings++;
1086 pg->mdpage.uro_mappings--;
1087 } else {
1088 pg->mdpage.uro_mappings++;
1089 pg->mdpage.urw_mappings--;
1090 }
1091 }
1092 #ifdef PMAP_CACHE_VIPT
1093 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
1094 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1095 /*
1096 * We have two cases here: the first is from enter_pv (new exec
1097 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1098 * Since in latter, pmap_enter_pv won't do anything, we just have
1099 * to do what pmap_remove_pv would do.
1100 */
1101 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
1102 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
1103 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1104 pmap_syncicache_page(pg);
1105 PMAPCOUNT(exec_synced_remap);
1106 }
1107 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1108 #endif
1109
1110 PMAPCOUNT(remappings);
1111
1112 return (oflags);
1113 }
1114
1115 /*
1116 * Allocate an L1 translation table for the specified pmap.
1117 * This is called at pmap creation time.
1118 */
1119 static void
1120 pmap_alloc_l1(pmap_t pm)
1121 {
1122 struct l1_ttable *l1;
1123 u_int8_t domain;
1124
1125 /*
1126 * Remove the L1 at the head of the LRU list
1127 */
1128 simple_lock(&l1_lru_lock);
1129 l1 = TAILQ_FIRST(&l1_lru_list);
1130 KDASSERT(l1 != NULL);
1131 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1132
1133 /*
1134 * Pick the first available domain number, and update
1135 * the link to the next number.
1136 */
1137 domain = l1->l1_domain_first;
1138 l1->l1_domain_first = l1->l1_domain_free[domain];
1139
1140 /*
1141 * If there are still free domain numbers in this L1,
1142 * put it back on the TAIL of the LRU list.
1143 */
1144 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1145 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1146
1147 simple_unlock(&l1_lru_lock);
1148
1149 /*
1150 * Fix up the relevant bits in the pmap structure
1151 */
1152 pm->pm_l1 = l1;
1153 pm->pm_domain = domain;
1154 }
1155
1156 /*
1157 * Free an L1 translation table.
1158 * This is called at pmap destruction time.
1159 */
1160 static void
1161 pmap_free_l1(pmap_t pm)
1162 {
1163 struct l1_ttable *l1 = pm->pm_l1;
1164
1165 simple_lock(&l1_lru_lock);
1166
1167 /*
1168 * If this L1 is currently on the LRU list, remove it.
1169 */
1170 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1171 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1172
1173 /*
1174 * Free up the domain number which was allocated to the pmap
1175 */
1176 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1177 l1->l1_domain_first = pm->pm_domain;
1178 l1->l1_domain_use_count--;
1179
1180 /*
1181 * The L1 now must have at least 1 free domain, so add
1182 * it back to the LRU list. If the use count is zero,
1183 * put it at the head of the list, otherwise it goes
1184 * to the tail.
1185 */
1186 if (l1->l1_domain_use_count == 0)
1187 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1188 else
1189 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1190
1191 simple_unlock(&l1_lru_lock);
1192 }
1193
1194 static inline void
1195 pmap_use_l1(pmap_t pm)
1196 {
1197 struct l1_ttable *l1;
1198
1199 /*
1200 * Do nothing if we're in interrupt context.
1201 * Access to an L1 by the kernel pmap must not affect
1202 * the LRU list.
1203 */
1204 if (cpu_intr_p() || pm == pmap_kernel())
1205 return;
1206
1207 l1 = pm->pm_l1;
1208
1209 /*
1210 * If the L1 is not currently on the LRU list, just return
1211 */
1212 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1213 return;
1214
1215 simple_lock(&l1_lru_lock);
1216
1217 /*
1218 * Check the use count again, now that we've acquired the lock
1219 */
1220 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1221 simple_unlock(&l1_lru_lock);
1222 return;
1223 }
1224
1225 /*
1226 * Move the L1 to the back of the LRU list
1227 */
1228 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1229 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1230
1231 simple_unlock(&l1_lru_lock);
1232 }
1233
1234 /*
1235 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1236 *
1237 * Free an L2 descriptor table.
1238 */
1239 static inline void
1240 #ifndef PMAP_INCLUDE_PTE_SYNC
1241 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1242 #else
1243 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1244 #endif
1245 {
1246 #ifdef PMAP_INCLUDE_PTE_SYNC
1247 #ifdef PMAP_CACHE_VIVT
1248 /*
1249 * Note: With a write-back cache, we may need to sync this
1250 * L2 table before re-using it.
1251 * This is because it may have belonged to a non-current
1252 * pmap, in which case the cache syncs would have been
1253 * skipped for the pages that were being unmapped. If the
1254 * L2 table were then to be immediately re-allocated to
1255 * the *current* pmap, it may well contain stale mappings
1256 * which have not yet been cleared by a cache write-back
1257 * and so would still be visible to the mmu.
1258 */
1259 if (need_sync)
1260 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1261 #endif /* PMAP_CACHE_VIVT */
1262 #endif /* PMAP_INCLUDE_PTE_SYNC */
1263 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1264 }
1265
1266 /*
1267 * Returns a pointer to the L2 bucket associated with the specified pmap
1268 * and VA, or NULL if no L2 bucket exists for the address.
1269 */
1270 static inline struct l2_bucket *
1271 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1272 {
1273 struct l2_dtable *l2;
1274 struct l2_bucket *l2b;
1275 u_short l1idx;
1276
1277 l1idx = L1_IDX(va);
1278
1279 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1280 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1281 return (NULL);
1282
1283 return (l2b);
1284 }
1285
1286 /*
1287 * Returns a pointer to the L2 bucket associated with the specified pmap
1288 * and VA.
1289 *
1290 * If no L2 bucket exists, perform the necessary allocations to put an L2
1291 * bucket/page table in place.
1292 *
1293 * Note that if a new L2 bucket/page was allocated, the caller *must*
1294 * increment the bucket occupancy counter appropriately *before*
1295 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1296 * the bucket/page in the meantime.
1297 */
1298 static struct l2_bucket *
1299 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1300 {
1301 struct l2_dtable *l2;
1302 struct l2_bucket *l2b;
1303 u_short l1idx;
1304
1305 l1idx = L1_IDX(va);
1306
1307 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1308 /*
1309 * No mapping at this address, as there is
1310 * no entry in the L1 table.
1311 * Need to allocate a new l2_dtable.
1312 */
1313 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1314 return (NULL);
1315
1316 /*
1317 * Link it into the parent pmap
1318 */
1319 pm->pm_l2[L2_IDX(l1idx)] = l2;
1320 }
1321
1322 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1323
1324 /*
1325 * Fetch pointer to the L2 page table associated with the address.
1326 */
1327 if (l2b->l2b_kva == NULL) {
1328 pt_entry_t *ptep;
1329
1330 /*
1331 * No L2 page table has been allocated. Chances are, this
1332 * is because we just allocated the l2_dtable, above.
1333 */
1334 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1335 /*
1336 * Oops, no more L2 page tables available at this
1337 * time. We may need to deallocate the l2_dtable
1338 * if we allocated a new one above.
1339 */
1340 if (l2->l2_occupancy == 0) {
1341 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1342 pmap_free_l2_dtable(l2);
1343 }
1344 return (NULL);
1345 }
1346
1347 l2->l2_occupancy++;
1348 l2b->l2b_kva = ptep;
1349 l2b->l2b_l1idx = l1idx;
1350 }
1351
1352 return (l2b);
1353 }
1354
1355 /*
1356 * One or more mappings in the specified L2 descriptor table have just been
1357 * invalidated.
1358 *
1359 * Garbage collect the metadata and descriptor table itself if necessary.
1360 *
1361 * The pmap lock must be acquired when this is called (not necessary
1362 * for the kernel pmap).
1363 */
1364 static void
1365 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1366 {
1367 struct l2_dtable *l2;
1368 pd_entry_t *pl1pd, l1pd;
1369 pt_entry_t *ptep;
1370 u_short l1idx;
1371
1372 KDASSERT(count <= l2b->l2b_occupancy);
1373
1374 /*
1375 * Update the bucket's reference count according to how many
1376 * PTEs the caller has just invalidated.
1377 */
1378 l2b->l2b_occupancy -= count;
1379
1380 /*
1381 * Note:
1382 *
1383 * Level 2 page tables allocated to the kernel pmap are never freed
1384 * as that would require checking all Level 1 page tables and
1385 * removing any references to the Level 2 page table. See also the
1386 * comment elsewhere about never freeing bootstrap L2 descriptors.
1387 *
1388 * We make do with just invalidating the mapping in the L2 table.
1389 *
1390 * This isn't really a big deal in practice and, in fact, leads
1391 * to a performance win over time as we don't need to continually
1392 * alloc/free.
1393 */
1394 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1395 return;
1396
1397 /*
1398 * There are no more valid mappings in this level 2 page table.
1399 * Go ahead and NULL-out the pointer in the bucket, then
1400 * free the page table.
1401 */
1402 l1idx = l2b->l2b_l1idx;
1403 ptep = l2b->l2b_kva;
1404 l2b->l2b_kva = NULL;
1405
1406 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1407
1408 /*
1409 * If the L1 slot matches the pmap's domain
1410 * number, then invalidate it.
1411 */
1412 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1413 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1414 *pl1pd = 0;
1415 PTE_SYNC(pl1pd);
1416 }
1417
1418 /*
1419 * Release the L2 descriptor table back to the pool cache.
1420 */
1421 #ifndef PMAP_INCLUDE_PTE_SYNC
1422 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1423 #else
1424 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1425 #endif
1426
1427 /*
1428 * Update the reference count in the associated l2_dtable
1429 */
1430 l2 = pm->pm_l2[L2_IDX(l1idx)];
1431 if (--l2->l2_occupancy > 0)
1432 return;
1433
1434 /*
1435 * There are no more valid mappings in any of the Level 1
1436 * slots managed by this l2_dtable. Go ahead and NULL-out
1437 * the pointer in the parent pmap and free the l2_dtable.
1438 */
1439 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1440 pmap_free_l2_dtable(l2);
1441 }
1442
1443 /*
1444 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1445 * structures.
1446 */
1447 static int
1448 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1449 {
1450 #ifndef PMAP_INCLUDE_PTE_SYNC
1451 struct l2_bucket *l2b;
1452 pt_entry_t *ptep, pte;
1453 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1454
1455 /*
1456 * The mappings for these page tables were initially made using
1457 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1458 * mode will not be right for page table mappings. To avoid
1459 * polluting the pmap_kenter_pa() code with a special case for
1460 * page tables, we simply fix up the cache-mode here if it's not
1461 * correct.
1462 */
1463 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1464 KDASSERT(l2b != NULL);
1465 ptep = &l2b->l2b_kva[l2pte_index(va)];
1466 pte = *ptep;
1467
1468 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1469 /*
1470 * Page tables must have the cache-mode set to Write-Thru.
1471 */
1472 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1473 PTE_SYNC(ptep);
1474 cpu_tlb_flushD_SE(va);
1475 cpu_cpwait();
1476 }
1477 #endif
1478
1479 memset(v, 0, L2_TABLE_SIZE_REAL);
1480 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1481 return (0);
1482 }
1483
1484 static int
1485 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1486 {
1487
1488 memset(v, 0, sizeof(struct l2_dtable));
1489 return (0);
1490 }
1491
1492 static int
1493 pmap_pmap_ctor(void *arg, void *v, int flags)
1494 {
1495
1496 memset(v, 0, sizeof(struct pmap));
1497 return (0);
1498 }
1499
1500 static void
1501 pmap_pinit(pmap_t pm)
1502 {
1503 struct l2_bucket *l2b;
1504
1505 if (vector_page < KERNEL_BASE) {
1506 /*
1507 * Map the vector page.
1508 */
1509 pmap_enter(pm, vector_page, systempage.pv_pa,
1510 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1511 pmap_update(pm);
1512
1513 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1514 l2b = pmap_get_l2_bucket(pm, vector_page);
1515 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1516 L1_C_DOM(pm->pm_domain);
1517 } else
1518 pm->pm_pl1vec = NULL;
1519 }
1520
1521 #ifdef PMAP_CACHE_VIVT
1522 /*
1523 * Since we have a virtually indexed cache, we may need to inhibit caching if
1524 * there is more than one mapping and at least one of them is writable.
1525 * Since we purge the cache on every context switch, we only need to check for
1526 * other mappings within the same pmap, or kernel_pmap.
1527 * This function is also called when a page is unmapped, to possibly reenable
1528 * caching on any remaining mappings.
1529 *
1530 * The code implements the following logic, where:
1531 *
1532 * KW = # of kernel read/write pages
1533 * KR = # of kernel read only pages
1534 * UW = # of user read/write pages
1535 * UR = # of user read only pages
1536 *
1537 * KC = kernel mapping is cacheable
1538 * UC = user mapping is cacheable
1539 *
1540 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1541 * +---------------------------------------------
1542 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1543 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1544 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1545 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1546 */
1547
1548 static const int pmap_vac_flags[4][4] = {
1549 {-1, 0, 0, PVF_KNC},
1550 {0, 0, PVF_NC, PVF_NC},
1551 {0, PVF_NC, PVF_NC, PVF_NC},
1552 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1553 };
1554
1555 static inline int
1556 pmap_get_vac_flags(const struct vm_page *pg)
1557 {
1558 int kidx, uidx;
1559
1560 kidx = 0;
1561 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1562 kidx |= 1;
1563 if (pg->mdpage.krw_mappings)
1564 kidx |= 2;
1565
1566 uidx = 0;
1567 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1568 uidx |= 1;
1569 if (pg->mdpage.urw_mappings)
1570 uidx |= 2;
1571
1572 return (pmap_vac_flags[uidx][kidx]);
1573 }
1574
1575 static inline void
1576 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1577 {
1578 int nattr;
1579
1580 nattr = pmap_get_vac_flags(pg);
1581
1582 if (nattr < 0) {
1583 pg->mdpage.pvh_attrs &= ~PVF_NC;
1584 return;
1585 }
1586
1587 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1588 return;
1589
1590 if (pm == pmap_kernel())
1591 pmap_vac_me_kpmap(pg, pm, va);
1592 else
1593 pmap_vac_me_user(pg, pm, va);
1594
1595 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1596 }
1597
1598 static void
1599 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1600 {
1601 u_int u_cacheable, u_entries;
1602 struct pv_entry *pv;
1603 pmap_t last_pmap = pm;
1604
1605 /*
1606 * Pass one, see if there are both kernel and user pmaps for
1607 * this page. Calculate whether there are user-writable or
1608 * kernel-writable pages.
1609 */
1610 u_cacheable = 0;
1611 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1612 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1613 u_cacheable++;
1614 }
1615
1616 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1617
1618 /*
1619 * We know we have just been updating a kernel entry, so if
1620 * all user pages are already cacheable, then there is nothing
1621 * further to do.
1622 */
1623 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1624 return;
1625
1626 if (u_entries) {
1627 /*
1628 * Scan over the list again, for each entry, if it
1629 * might not be set correctly, call pmap_vac_me_user
1630 * to recalculate the settings.
1631 */
1632 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1633 /*
1634 * We know kernel mappings will get set
1635 * correctly in other calls. We also know
1636 * that if the pmap is the same as last_pmap
1637 * then we've just handled this entry.
1638 */
1639 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1640 continue;
1641
1642 /*
1643 * If there are kernel entries and this page
1644 * is writable but non-cacheable, then we can
1645 * skip this entry also.
1646 */
1647 if (pg->mdpage.k_mappings &&
1648 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1649 (PVF_NC | PVF_WRITE))
1650 continue;
1651
1652 /*
1653 * Similarly if there are no kernel-writable
1654 * entries and the page is already
1655 * read-only/cacheable.
1656 */
1657 if (pg->mdpage.krw_mappings == 0 &&
1658 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1659 continue;
1660
1661 /*
1662 * For some of the remaining cases, we know
1663 * that we must recalculate, but for others we
1664 * can't tell if they are correct or not, so
1665 * we recalculate anyway.
1666 */
1667 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1668 }
1669
1670 if (pg->mdpage.k_mappings == 0)
1671 return;
1672 }
1673
1674 pmap_vac_me_user(pg, pm, va);
1675 }
1676
1677 static void
1678 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1679 {
1680 pmap_t kpmap = pmap_kernel();
1681 struct pv_entry *pv, *npv = NULL;
1682 struct l2_bucket *l2b;
1683 pt_entry_t *ptep, pte;
1684 u_int entries = 0;
1685 u_int writable = 0;
1686 u_int cacheable_entries = 0;
1687 u_int kern_cacheable = 0;
1688 u_int other_writable = 0;
1689
1690 /*
1691 * Count mappings and writable mappings in this pmap.
1692 * Include kernel mappings as part of our own.
1693 * Keep a pointer to the first one.
1694 */
1695 npv = NULL;
1696 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1697 /* Count mappings in the same pmap */
1698 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1699 if (entries++ == 0)
1700 npv = pv;
1701
1702 /* Cacheable mappings */
1703 if ((pv->pv_flags & PVF_NC) == 0) {
1704 cacheable_entries++;
1705 if (kpmap == pv->pv_pmap)
1706 kern_cacheable++;
1707 }
1708
1709 /* Writable mappings */
1710 if (pv->pv_flags & PVF_WRITE)
1711 ++writable;
1712 } else
1713 if (pv->pv_flags & PVF_WRITE)
1714 other_writable = 1;
1715 }
1716
1717 /*
1718 * Enable or disable caching as necessary.
1719 * Note: the first entry might be part of the kernel pmap,
1720 * so we can't assume this is indicative of the state of the
1721 * other (maybe non-kpmap) entries.
1722 */
1723 if ((entries > 1 && writable) ||
1724 (entries > 0 && pm == kpmap && other_writable)) {
1725 if (cacheable_entries == 0)
1726 return;
1727
1728 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1729 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1730 (pv->pv_flags & PVF_NC))
1731 continue;
1732
1733 pv->pv_flags |= PVF_NC;
1734
1735 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1736 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1737 pte = *ptep & ~L2_S_CACHE_MASK;
1738
1739 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1740 l2pte_valid(pte)) {
1741 if (PV_BEEN_EXECD(pv->pv_flags)) {
1742 #ifdef PMAP_CACHE_VIVT
1743 pmap_idcache_wbinv_range(pv->pv_pmap,
1744 pv->pv_va, PAGE_SIZE);
1745 #endif
1746 pmap_tlb_flushID_SE(pv->pv_pmap,
1747 pv->pv_va);
1748 } else
1749 if (PV_BEEN_REFD(pv->pv_flags)) {
1750 #ifdef PMAP_CACHE_VIVT
1751 pmap_dcache_wb_range(pv->pv_pmap,
1752 pv->pv_va, PAGE_SIZE, true,
1753 (pv->pv_flags & PVF_WRITE) == 0);
1754 #endif
1755 pmap_tlb_flushD_SE(pv->pv_pmap,
1756 pv->pv_va);
1757 }
1758 }
1759
1760 *ptep = pte;
1761 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1762 }
1763 cpu_cpwait();
1764 } else
1765 if (entries > cacheable_entries) {
1766 /*
1767 * Turn cacheing back on for some pages. If it is a kernel
1768 * page, only do so if there are no other writable pages.
1769 */
1770 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1771 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1772 (kpmap != pv->pv_pmap || other_writable)))
1773 continue;
1774
1775 pv->pv_flags &= ~PVF_NC;
1776
1777 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1778 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1779 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1780
1781 if (l2pte_valid(pte)) {
1782 if (PV_BEEN_EXECD(pv->pv_flags)) {
1783 pmap_tlb_flushID_SE(pv->pv_pmap,
1784 pv->pv_va);
1785 } else
1786 if (PV_BEEN_REFD(pv->pv_flags)) {
1787 pmap_tlb_flushD_SE(pv->pv_pmap,
1788 pv->pv_va);
1789 }
1790 }
1791
1792 *ptep = pte;
1793 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1794 }
1795 }
1796 }
1797 #endif
1798
1799 #ifdef PMAP_CACHE_VIPT
1800 /*
1801 * For virtually indexed / physically tagged caches, what we have to worry
1802 * about is illegal cache aliases. To prevent this, we must ensure that
1803 * virtual addresses that map the physical page use the same bits for those
1804 * bits masked by "arm_cache_prefer_mask" (bits 12+). If there is a conflict,
1805 * all mappings of the page must be non-cached.
1806 */
1807 #if 0
1808 static inline vaddr_t
1809 pmap_check_sets(paddr_t pa)
1810 {
1811 extern int arm_dcache_l2_nsets;
1812 int set, way;
1813 vaddr_t mask = 0;
1814 int v;
1815 pa |= 1;
1816 for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
1817 for (way = 0; way < 4; way++) {
1818 v = (way << 30) | (set << 5);
1819 asm("mcr p15, 3, %0, c15, c2, 0" :: "r"(v));
1820 asm("mrc p15, 3, %0, c15, c0, 0" : "=r"(v));
1821
1822 if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
1823 mask |= 1 << (set >> 7);
1824 }
1825 }
1826 }
1827 return mask;
1828 }
1829 #endif
1830 static void
1831 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1832 {
1833 struct pv_entry *pv;
1834 vaddr_t tst_mask;
1835 bool bad_alias;
1836 struct l2_bucket *l2b;
1837 pt_entry_t *ptep, pte, opte;
1838 const u_int
1839 rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
1840 ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
1841
1842 /* do we need to do anything? */
1843 if (arm_cache_prefer_mask == 0)
1844 return;
1845
1846 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
1847 pg, pm, va));
1848
1849 #define popc4(x) \
1850 (((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
1851 #if 0
1852 tst_mask = pmap_check_sets(pg->phys_addr);
1853 KASSERT(popc4(tst_mask) < 2);
1854 #endif
1855
1856 KASSERT(!va || pm);
1857 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1858
1859 /* Already a conflict? */
1860 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
1861 /* just an add, things are already non-cached */
1862 KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
1863 bad_alias = false;
1864 if (va) {
1865 PMAPCOUNT(vac_color_none);
1866 bad_alias = true;
1867 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1868 goto fixup;
1869 }
1870 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1871 /* the list can't be empty because it would be cachable */
1872 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
1873 tst_mask = pg->mdpage.pvh_attrs;
1874 } else {
1875 KASSERT(pv);
1876 tst_mask = pv->pv_va;
1877 pv = SLIST_NEXT(pv, pv_link);
1878 }
1879 /*
1880 * Only check for a bad alias if we have writable mappings.
1881 */
1882 tst_mask &= arm_cache_prefer_mask;
1883 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1884 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1885 /* if there's a bad alias, stop checking. */
1886 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1887 bad_alias = true;
1888 }
1889 pg->mdpage.pvh_attrs |= PVF_WRITE;
1890 if (!bad_alias)
1891 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1892 } else {
1893 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1894 }
1895 /* If no conflicting colors, set everything back to cached */
1896 if (!bad_alias) {
1897 #ifdef DEBUG
1898 if ((pg->mdpage.pvh_attrs & PVF_WRITE)
1899 || ro_mappings < 2) {
1900 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1901 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1902 }
1903
1904 #endif
1905 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1906 pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
1907 /*
1908 * Restore DIRTY bit if page is modified
1909 */
1910 if (pg->mdpage.pvh_attrs & PVF_DMOD)
1911 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1912 PMAPCOUNT(vac_color_restore);
1913 } else {
1914 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1915 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1916 }
1917 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1918 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1919 } else if (!va) {
1920 KASSERT(pmap_is_page_colored_p(pg));
1921 KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
1922 || (pg->mdpage.pvh_attrs & PVF_DIRTY));
1923 if (rw_mappings == 0)
1924 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1925 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1926 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1927 return;
1928 } else if (!pmap_is_page_colored_p(pg)) {
1929 /* not colored so we just use its color */
1930 KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1931 PMAPCOUNT(vac_color_new);
1932 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1933 pg->mdpage.pvh_attrs |= PVF_COLORED
1934 | (va & arm_cache_prefer_mask)
1935 | (rw_mappings > 0 ? PVF_WRITE : 0);
1936 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1937 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1938 return;
1939 } else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1940 bad_alias = false;
1941 if (rw_mappings > 0) {
1942 /*
1943 * We now have writeable mappings and more than one
1944 * readonly mapping, verify the colors don't clash
1945 * and mark the page as writeable.
1946 */
1947 if (ro_mappings > 1
1948 && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0
1949 && arm_cache_prefer_mask) {
1950 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1951 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1952 /* if there's a bad alias, stop checking. */
1953 if (((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0) {
1954 bad_alias = true;
1955 break;
1956 }
1957 }
1958 }
1959 pg->mdpage.pvh_attrs |= PVF_WRITE;
1960 }
1961 /* If no conflicting colors, set everything back to cached */
1962 if (!bad_alias) {
1963 #ifdef DEBUG
1964 if (rw_mappings > 0
1965 || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
1966 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1967 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1968 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1969 }
1970 #endif
1971 if (SLIST_EMPTY(&pg->mdpage.pvh_list))
1972 PMAPCOUNT(vac_color_reuse);
1973 else
1974 PMAPCOUNT(vac_color_ok);
1975
1976 /* matching color, just return */
1977 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1978 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1979 return;
1980 }
1981 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1982 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1983
1984 /* color conflict. evict from cache. */
1985
1986 pmap_flush_page(pg, true);
1987 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
1988 pg->mdpage.pvh_attrs |= PVF_NC;
1989 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1990 PMAPCOUNT(vac_color_erase);
1991 } else if (rw_mappings == 0
1992 && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
1993 KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
1994
1995 /*
1996 * If the page has dirty cache lines, clean it.
1997 */
1998 if (pg->mdpage.pvh_attrs & PVF_DIRTY)
1999 pmap_flush_page(pg, false);
2000
2001 /*
2002 * If this is the first remapping (we know that there are no
2003 * writeable mappings), then this is a simple color change.
2004 * Otherwise this is a seconary r/o mapping, which means
2005 * we don't have to do anything.
2006 */
2007 if (ro_mappings == 1) {
2008 KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2009 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2010 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2011 PMAPCOUNT(vac_color_change);
2012 } else {
2013 PMAPCOUNT(vac_color_blind);
2014 }
2015 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2016 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2017 return;
2018 } else {
2019 if (rw_mappings > 0)
2020 pg->mdpage.pvh_attrs |= PVF_WRITE;
2021
2022 /* color conflict. evict from cache. */
2023 pmap_flush_page(pg, true);
2024
2025 /* the list can't be empty because this was a enter/modify */
2026 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2027 if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2028 KASSERT(pv);
2029 /*
2030 * If there's only one mapped page, change color to the
2031 * page's new color and return. Restore the DIRTY bit
2032 * that was erased by pmap_flush_page.
2033 */
2034 if (SLIST_NEXT(pv, pv_link) == NULL) {
2035 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2036 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2037 if (pg->mdpage.pvh_attrs & PVF_DMOD)
2038 pg->mdpage.pvh_attrs |= PVF_DIRTY;
2039 PMAPCOUNT(vac_color_change);
2040 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2041 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2042 return;
2043 }
2044 }
2045 bad_alias = true;
2046 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2047 pg->mdpage.pvh_attrs |= PVF_NC;
2048 PMAPCOUNT(vac_color_erase);
2049 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2050 }
2051
2052 fixup:
2053 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2054
2055 /*
2056 * Turn cacheing on/off for all pages.
2057 */
2058 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2059 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2060 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2061 opte = *ptep;
2062 pte = opte & ~L2_S_CACHE_MASK;
2063 if (bad_alias) {
2064 pv->pv_flags |= PVF_NC;
2065 } else {
2066 pv->pv_flags &= ~PVF_NC;
2067 pte |= pte_l2_s_cache_mode;
2068 }
2069
2070 if (opte == pte) /* only update is there's a change */
2071 continue;
2072
2073 if (l2pte_valid(pte)) {
2074 if (PV_BEEN_EXECD(pv->pv_flags)) {
2075 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2076 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2077 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2078 }
2079 }
2080
2081 *ptep = pte;
2082 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2083 }
2084 }
2085 #endif /* PMAP_CACHE_VIPT */
2086
2087
2088 /*
2089 * Modify pte bits for all ptes corresponding to the given physical address.
2090 * We use `maskbits' rather than `clearbits' because we're always passing
2091 * constants and the latter would require an extra inversion at run-time.
2092 */
2093 static void
2094 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2095 {
2096 struct l2_bucket *l2b;
2097 struct pv_entry *pv;
2098 pt_entry_t *ptep, npte, opte;
2099 pmap_t pm;
2100 vaddr_t va;
2101 u_int oflags;
2102 #ifdef PMAP_CACHE_VIPT
2103 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
2104 bool need_syncicache = false;
2105 bool did_syncicache = false;
2106 bool need_vac_me_harder = false;
2107 #endif
2108
2109 NPDEBUG(PDB_BITS,
2110 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2111 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2112
2113 PMAP_HEAD_TO_MAP_LOCK();
2114 simple_lock(&pg->mdpage.pvh_slock);
2115
2116 #ifdef PMAP_CACHE_VIPT
2117 /*
2118 * If we might want to sync the I-cache and we've modified it,
2119 * then we know we definitely need to sync or discard it.
2120 */
2121 if (want_syncicache)
2122 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
2123 #endif
2124 /*
2125 * Clear saved attributes (modify, reference)
2126 */
2127 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2128
2129 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
2130 #ifdef PMAP_CACHE_VIPT
2131 if (need_syncicache) {
2132 /*
2133 * No one has it mapped, so just discard it. The next
2134 * exec remapping will cause it to be synced.
2135 */
2136 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2137 PMAPCOUNT(exec_discarded_clearbit);
2138 }
2139 #endif
2140 simple_unlock(&pg->mdpage.pvh_slock);
2141 PMAP_HEAD_TO_MAP_UNLOCK();
2142 return;
2143 }
2144
2145 /*
2146 * Loop over all current mappings setting/clearing as appropos
2147 */
2148 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2149 va = pv->pv_va;
2150 pm = pv->pv_pmap;
2151 oflags = pv->pv_flags;
2152 /*
2153 * Kernel entries are unmanaged and as such not to be changed.
2154 */
2155 if (oflags & PVF_KENTRY)
2156 continue;
2157 pv->pv_flags &= ~maskbits;
2158
2159 pmap_acquire_pmap_lock(pm);
2160
2161 l2b = pmap_get_l2_bucket(pm, va);
2162 KDASSERT(l2b != NULL);
2163
2164 ptep = &l2b->l2b_kva[l2pte_index(va)];
2165 npte = opte = *ptep;
2166
2167 NPDEBUG(PDB_BITS,
2168 printf(
2169 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2170 pv, pv->pv_pmap, pv->pv_va, oflags));
2171
2172 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2173 #ifdef PMAP_CACHE_VIVT
2174 if ((pv->pv_flags & PVF_NC)) {
2175 /*
2176 * Entry is not cacheable:
2177 *
2178 * Don't turn caching on again if this is a
2179 * modified emulation. This would be
2180 * inconsitent with the settings created by
2181 * pmap_vac_me_harder(). Otherwise, it's safe
2182 * to re-enable cacheing.
2183 *
2184 * There's no need to call pmap_vac_me_harder()
2185 * here: all pages are losing their write
2186 * permission.
2187 */
2188 if (maskbits & PVF_WRITE) {
2189 npte |= pte_l2_s_cache_mode;
2190 pv->pv_flags &= ~PVF_NC;
2191 }
2192 } else
2193 if (opte & L2_S_PROT_W) {
2194 /*
2195 * Entry is writable/cacheable: check if pmap
2196 * is current if it is flush it, otherwise it
2197 * won't be in the cache
2198 */
2199 if (PV_BEEN_EXECD(oflags))
2200 pmap_idcache_wbinv_range(pm, pv->pv_va,
2201 PAGE_SIZE);
2202 else
2203 if (PV_BEEN_REFD(oflags))
2204 pmap_dcache_wb_range(pm, pv->pv_va,
2205 PAGE_SIZE,
2206 (maskbits & PVF_REF) != 0, false);
2207 }
2208 #endif
2209
2210 /* make the pte read only */
2211 npte &= ~L2_S_PROT_W;
2212
2213 if (maskbits & oflags & PVF_WRITE) {
2214 /*
2215 * Keep alias accounting up to date
2216 */
2217 if (pv->pv_pmap == pmap_kernel()) {
2218 pg->mdpage.krw_mappings--;
2219 pg->mdpage.kro_mappings++;
2220 } else {
2221 pg->mdpage.urw_mappings--;
2222 pg->mdpage.uro_mappings++;
2223 }
2224 #ifdef PMAP_CACHE_VIPT
2225 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
2226 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2227 if (want_syncicache)
2228 need_syncicache = true;
2229 need_vac_me_harder = true;
2230 #endif
2231 }
2232 }
2233
2234 if (maskbits & PVF_REF) {
2235 if ((pv->pv_flags & PVF_NC) == 0 &&
2236 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2237 l2pte_valid(npte)) {
2238 #ifdef PMAP_CACHE_VIVT
2239 /*
2240 * Check npte here; we may have already
2241 * done the wbinv above, and the validity
2242 * of the PTE is the same for opte and
2243 * npte.
2244 */
2245 /* XXXJRT need idcache_inv_range */
2246 if (PV_BEEN_EXECD(oflags))
2247 pmap_idcache_wbinv_range(pm,
2248 pv->pv_va, PAGE_SIZE);
2249 else
2250 if (PV_BEEN_REFD(oflags))
2251 pmap_dcache_wb_range(pm,
2252 pv->pv_va, PAGE_SIZE,
2253 true, true);
2254 #endif
2255 }
2256
2257 /*
2258 * Make the PTE invalid so that we will take a
2259 * page fault the next time the mapping is
2260 * referenced.
2261 */
2262 npte &= ~L2_TYPE_MASK;
2263 npte |= L2_TYPE_INV;
2264 }
2265
2266 if (npte != opte) {
2267 *ptep = npte;
2268 PTE_SYNC(ptep);
2269 /* Flush the TLB entry if a current pmap. */
2270 if (PV_BEEN_EXECD(oflags))
2271 pmap_tlb_flushID_SE(pm, pv->pv_va);
2272 else
2273 if (PV_BEEN_REFD(oflags))
2274 pmap_tlb_flushD_SE(pm, pv->pv_va);
2275 }
2276
2277 pmap_release_pmap_lock(pm);
2278
2279 NPDEBUG(PDB_BITS,
2280 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2281 pm, va, opte, npte));
2282 }
2283
2284 #ifdef PMAP_CACHE_VIPT
2285 /*
2286 * If we need to sync the I-cache and we haven't done it yet, do it.
2287 */
2288 if (need_syncicache && !did_syncicache) {
2289 pmap_syncicache_page(pg);
2290 PMAPCOUNT(exec_synced_clearbit);
2291 }
2292 /*
2293 * If we are changing this to read-only, we need to call vac_me_harder
2294 * so we can change all the read-only pages to cacheable. We pretend
2295 * this as a page deletion.
2296 */
2297 if (need_vac_me_harder) {
2298 if (pg->mdpage.pvh_attrs & PVF_NC)
2299 pmap_vac_me_harder(pg, NULL, 0);
2300 }
2301 #endif
2302
2303 simple_unlock(&pg->mdpage.pvh_slock);
2304 PMAP_HEAD_TO_MAP_UNLOCK();
2305 }
2306
2307 /*
2308 * pmap_clean_page()
2309 *
2310 * This is a local function used to work out the best strategy to clean
2311 * a single page referenced by its entry in the PV table. It's used by
2312 * pmap_copy_page, pmap_zero page and maybe some others later on.
2313 *
2314 * Its policy is effectively:
2315 * o If there are no mappings, we don't bother doing anything with the cache.
2316 * o If there is one mapping, we clean just that page.
2317 * o If there are multiple mappings, we clean the entire cache.
2318 *
2319 * So that some functions can be further optimised, it returns 0 if it didn't
2320 * clean the entire cache, or 1 if it did.
2321 *
2322 * XXX One bug in this routine is that if the pv_entry has a single page
2323 * mapped at 0x00000000 a whole cache clean will be performed rather than
2324 * just the 1 page. Since this should not occur in everyday use and if it does
2325 * it will just result in not the most efficient clean for the page.
2326 */
2327 #ifdef PMAP_CACHE_VIVT
2328 static int
2329 pmap_clean_page(struct pv_entry *pv, bool is_src)
2330 {
2331 pmap_t pm, pm_to_clean = NULL;
2332 struct pv_entry *npv;
2333 u_int cache_needs_cleaning = 0;
2334 u_int flags = 0;
2335 vaddr_t page_to_clean = 0;
2336
2337 if (pv == NULL) {
2338 /* nothing mapped in so nothing to flush */
2339 return (0);
2340 }
2341
2342 /*
2343 * Since we flush the cache each time we change to a different
2344 * user vmspace, we only need to flush the page if it is in the
2345 * current pmap.
2346 */
2347 pm = curproc->p_vmspace->vm_map.pmap;
2348
2349 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2350 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
2351 flags |= npv->pv_flags;
2352 /*
2353 * The page is mapped non-cacheable in
2354 * this map. No need to flush the cache.
2355 */
2356 if (npv->pv_flags & PVF_NC) {
2357 #ifdef DIAGNOSTIC
2358 if (cache_needs_cleaning)
2359 panic("pmap_clean_page: "
2360 "cache inconsistency");
2361 #endif
2362 break;
2363 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2364 continue;
2365 if (cache_needs_cleaning) {
2366 page_to_clean = 0;
2367 break;
2368 } else {
2369 page_to_clean = npv->pv_va;
2370 pm_to_clean = npv->pv_pmap;
2371 }
2372 cache_needs_cleaning = 1;
2373 }
2374 }
2375
2376 if (page_to_clean) {
2377 if (PV_BEEN_EXECD(flags))
2378 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2379 PAGE_SIZE);
2380 else
2381 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2382 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2383 } else if (cache_needs_cleaning) {
2384 if (PV_BEEN_EXECD(flags))
2385 pmap_idcache_wbinv_all(pm);
2386 else
2387 pmap_dcache_wbinv_all(pm);
2388 return (1);
2389 }
2390 return (0);
2391 }
2392 #endif
2393
2394 #ifdef PMAP_CACHE_VIPT
2395 /*
2396 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2397 * right cache alias to make sure we flush the right stuff.
2398 */
2399 void
2400 pmap_syncicache_page(struct vm_page *pg)
2401 {
2402 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2403 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2404
2405 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
2406 pg, pg->mdpage.pvh_attrs));
2407 /*
2408 * No need to clean the page if it's non-cached.
2409 */
2410 if (pg->mdpage.pvh_attrs & PVF_NC)
2411 return;
2412 KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
2413
2414 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2415 /*
2416 * Set up a PTE with the right coloring to flush existing cache lines.
2417 */
2418 *ptep = L2_S_PROTO |
2419 VM_PAGE_TO_PHYS(pg)
2420 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2421 | pte_l2_s_cache_mode;
2422 PTE_SYNC(ptep);
2423
2424 /*
2425 * Flush it.
2426 */
2427 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2428 /*
2429 * Unmap the page.
2430 */
2431 *ptep = 0;
2432 PTE_SYNC(ptep);
2433 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2434
2435 pg->mdpage.pvh_attrs |= PVF_EXEC;
2436 PMAPCOUNT(exec_synced);
2437 }
2438
2439 void
2440 pmap_flush_page(struct vm_page *pg, bool flush)
2441 {
2442 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2443 const size_t pte_offset = va_offset >> PGSHIFT;
2444 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2445 const pt_entry_t oldpte = *ptep;
2446 #if 0
2447 vaddr_t mask;
2448 #endif
2449
2450 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
2451 #if 0
2452 mask = pmap_check_sets(pg->phys_addr);
2453 KASSERT(popc4(mask) < 2);
2454 #endif
2455
2456 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
2457 pg, pg->mdpage.pvh_attrs));
2458 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2459 /*
2460 * Set up a PTE with the right coloring to flush existing cache entries.
2461 */
2462 *ptep = L2_S_PROTO
2463 | VM_PAGE_TO_PHYS(pg)
2464 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2465 | pte_l2_s_cache_mode;
2466 PTE_SYNC(ptep);
2467
2468 /*
2469 * Flush it.
2470 */
2471 if (flush) {
2472 cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
2473 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2474 } else {
2475 cpu_dcache_wb_range(cdstp + va_offset, PAGE_SIZE);
2476 /*
2477 * Mark that the page is no longer dirty.
2478 */
2479 if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
2480 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2481 }
2482
2483 /*
2484 * Restore the page table entry since we might have interrupted
2485 * pmap_zero_page or pmap_copy_page which was already using this pte.
2486 */
2487 *ptep = oldpte;
2488 PTE_SYNC(ptep);
2489 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2490 #if 0
2491 mask = pmap_check_sets(pg->phys_addr);
2492 KASSERT(mask == 0);
2493 #endif
2494 }
2495 #endif /* PMAP_CACHE_VIPT */
2496
2497 /*
2498 * Routine: pmap_page_remove
2499 * Function:
2500 * Removes this physical page from
2501 * all physical maps in which it resides.
2502 * Reflects back modify bits to the pager.
2503 */
2504 static void
2505 pmap_page_remove(struct vm_page *pg)
2506 {
2507 struct l2_bucket *l2b;
2508 struct pv_entry *pv, *npv, **pvp;
2509 pmap_t pm, curpm;
2510 pt_entry_t *ptep, pte;
2511 bool flush;
2512 u_int flags;
2513
2514 NPDEBUG(PDB_FOLLOW,
2515 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2516 VM_PAGE_TO_PHYS(pg)));
2517
2518 PMAP_HEAD_TO_MAP_LOCK();
2519 simple_lock(&pg->mdpage.pvh_slock);
2520
2521 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2522 if (pv == NULL) {
2523 #ifdef PMAP_CACHE_VIPT
2524 /*
2525 * We *know* the page contents are about to be replaced.
2526 * Discard the exec contents
2527 */
2528 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2529 PMAPCOUNT(exec_discarded_page_protect);
2530 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2531 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2532 #endif
2533 simple_unlock(&pg->mdpage.pvh_slock);
2534 PMAP_HEAD_TO_MAP_UNLOCK();
2535 return;
2536 }
2537 #ifdef PMAP_CACHE_VIPT
2538 KASSERT(pmap_is_page_colored_p(pg));
2539 #endif
2540
2541 /*
2542 * Clear alias counts
2543 */
2544 #ifdef PMAP_CACHE_VIVT
2545 pg->mdpage.k_mappings = 0;
2546 #endif
2547 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
2548
2549 flush = false;
2550 flags = 0;
2551 curpm = curproc->p_vmspace->vm_map.pmap;
2552
2553 #ifdef PMAP_CACHE_VIVT
2554 pmap_clean_page(pv, false);
2555 #endif
2556
2557 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
2558 while (pv) {
2559 pm = pv->pv_pmap;
2560 npv = SLIST_NEXT(pv, pv_link);
2561 if (flush == false && (pm == curpm || pm == pmap_kernel()))
2562 flush = true;
2563
2564 if (pm == pmap_kernel()) {
2565 #ifdef PMAP_CACHE_VIPT
2566 /*
2567 * If this was unmanaged mapping, it must be preserved.
2568 * Move it back on the list and advance the end-of-list
2569 * pointer.
2570 */
2571 if (pv->pv_flags & PVF_KENTRY) {
2572 *pvp = pv;
2573 pvp = &SLIST_NEXT(pv, pv_link);
2574 pv = npv;
2575 continue;
2576 }
2577 if (pv->pv_flags & PVF_WRITE)
2578 pg->mdpage.krw_mappings--;
2579 else
2580 pg->mdpage.kro_mappings--;
2581 #endif
2582 PMAPCOUNT(kernel_unmappings);
2583 }
2584 PMAPCOUNT(unmappings);
2585
2586 pmap_acquire_pmap_lock(pm);
2587
2588 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2589 KDASSERT(l2b != NULL);
2590
2591 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2592 pte = *ptep;
2593
2594 /*
2595 * Update statistics
2596 */
2597 --pm->pm_stats.resident_count;
2598
2599 /* Wired bit */
2600 if (pv->pv_flags & PVF_WIRED)
2601 --pm->pm_stats.wired_count;
2602
2603 flags |= pv->pv_flags;
2604
2605 /*
2606 * Invalidate the PTEs.
2607 */
2608 *ptep = 0;
2609 PTE_SYNC_CURRENT(pm, ptep);
2610 pmap_free_l2_bucket(pm, l2b, 1);
2611
2612 pool_put(&pmap_pv_pool, pv);
2613 pv = npv;
2614 /*
2615 * if we reach the end of the list and there are still
2616 * mappings, they might be able to be cached now.
2617 */
2618 if (pv == NULL) {
2619 *pvp = NULL;
2620 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
2621 pmap_vac_me_harder(pg, pm, 0);
2622 }
2623 pmap_release_pmap_lock(pm);
2624 }
2625 #ifdef PMAP_CACHE_VIPT
2626 /*
2627 * Its EXEC cache is now gone.
2628 */
2629 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2630 PMAPCOUNT(exec_discarded_page_protect);
2631 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2632 KASSERT(pg->mdpage.urw_mappings == 0);
2633 KASSERT(pg->mdpage.uro_mappings == 0);
2634 if (pg->mdpage.krw_mappings == 0)
2635 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2636 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2637 #endif
2638 simple_unlock(&pg->mdpage.pvh_slock);
2639 PMAP_HEAD_TO_MAP_UNLOCK();
2640
2641 if (flush) {
2642 /*
2643 * Note: We can't use pmap_tlb_flush{I,}D() here since that
2644 * would need a subsequent call to pmap_update() to ensure
2645 * curpm->pm_cstate.cs_all is reset. Our callers are not
2646 * required to do that (see pmap(9)), so we can't modify
2647 * the current pmap's state.
2648 */
2649 if (PV_BEEN_EXECD(flags))
2650 cpu_tlb_flushID();
2651 else
2652 cpu_tlb_flushD();
2653 }
2654 cpu_cpwait();
2655 }
2656
2657 /*
2658 * pmap_t pmap_create(void)
2659 *
2660 * Create a new pmap structure from scratch.
2661 */
2662 pmap_t
2663 pmap_create(void)
2664 {
2665 pmap_t pm;
2666
2667 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2668
2669 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2670 pm->pm_stats.wired_count = 0;
2671 pm->pm_stats.resident_count = 1;
2672 pm->pm_cstate.cs_all = 0;
2673 pmap_alloc_l1(pm);
2674
2675 /*
2676 * Note: The pool cache ensures that the pm_l2[] array is already
2677 * initialised to zero.
2678 */
2679
2680 pmap_pinit(pm);
2681
2682 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2683
2684 return (pm);
2685 }
2686
2687 /*
2688 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2689 * int flags)
2690 *
2691 * Insert the given physical page (p) at
2692 * the specified virtual address (v) in the
2693 * target physical map with the protection requested.
2694 *
2695 * NB: This is the only routine which MAY NOT lazy-evaluate
2696 * or lose information. That is, this routine must actually
2697 * insert this page into the given map NOW.
2698 */
2699 int
2700 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
2701 {
2702 struct l2_bucket *l2b;
2703 struct vm_page *pg, *opg;
2704 struct pv_entry *pve;
2705 pt_entry_t *ptep, npte, opte;
2706 u_int nflags;
2707 u_int oflags;
2708
2709 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2710
2711 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2712 KDASSERT(((va | pa) & PGOFSET) == 0);
2713
2714 /*
2715 * Get a pointer to the page. Later on in this function, we
2716 * test for a managed page by checking pg != NULL.
2717 */
2718 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2719
2720 nflags = 0;
2721 if (prot & VM_PROT_WRITE)
2722 nflags |= PVF_WRITE;
2723 if (prot & VM_PROT_EXECUTE)
2724 nflags |= PVF_EXEC;
2725 if (flags & PMAP_WIRED)
2726 nflags |= PVF_WIRED;
2727
2728 PMAP_MAP_TO_HEAD_LOCK();
2729 pmap_acquire_pmap_lock(pm);
2730
2731 /*
2732 * Fetch the L2 bucket which maps this page, allocating one if
2733 * necessary for user pmaps.
2734 */
2735 if (pm == pmap_kernel())
2736 l2b = pmap_get_l2_bucket(pm, va);
2737 else
2738 l2b = pmap_alloc_l2_bucket(pm, va);
2739 if (l2b == NULL) {
2740 if (flags & PMAP_CANFAIL) {
2741 pmap_release_pmap_lock(pm);
2742 PMAP_MAP_TO_HEAD_UNLOCK();
2743 return (ENOMEM);
2744 }
2745 panic("pmap_enter: failed to allocate L2 bucket");
2746 }
2747 ptep = &l2b->l2b_kva[l2pte_index(va)];
2748 opte = *ptep;
2749 npte = pa;
2750 oflags = 0;
2751
2752 if (opte) {
2753 /*
2754 * There is already a mapping at this address.
2755 * If the physical address is different, lookup the
2756 * vm_page.
2757 */
2758 if (l2pte_pa(opte) != pa)
2759 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2760 else
2761 opg = pg;
2762 } else
2763 opg = NULL;
2764
2765 if (pg) {
2766 /*
2767 * This is to be a managed mapping.
2768 */
2769 if ((flags & VM_PROT_ALL) ||
2770 (pg->mdpage.pvh_attrs & PVF_REF)) {
2771 /*
2772 * - The access type indicates that we don't need
2773 * to do referenced emulation.
2774 * OR
2775 * - The physical page has already been referenced
2776 * so no need to re-do referenced emulation here.
2777 */
2778 npte |= L2_S_PROTO;
2779
2780 nflags |= PVF_REF;
2781
2782 if ((prot & VM_PROT_WRITE) != 0 &&
2783 ((flags & VM_PROT_WRITE) != 0 ||
2784 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2785 /*
2786 * This is a writable mapping, and the
2787 * page's mod state indicates it has
2788 * already been modified. Make it
2789 * writable from the outset.
2790 */
2791 npte |= L2_S_PROT_W;
2792 nflags |= PVF_MOD;
2793 }
2794 } else {
2795 /*
2796 * Need to do page referenced emulation.
2797 */
2798 npte |= L2_TYPE_INV;
2799 }
2800
2801 npte |= pte_l2_s_cache_mode;
2802
2803 if (pg == opg) {
2804 /*
2805 * We're changing the attrs of an existing mapping.
2806 */
2807 simple_lock(&pg->mdpage.pvh_slock);
2808 oflags = pmap_modify_pv(pg, pm, va,
2809 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2810 PVF_MOD | PVF_REF, nflags);
2811 simple_unlock(&pg->mdpage.pvh_slock);
2812
2813 #ifdef PMAP_CACHE_VIVT
2814 /*
2815 * We may need to flush the cache if we're
2816 * doing rw-ro...
2817 */
2818 if (pm->pm_cstate.cs_cache_d &&
2819 (oflags & PVF_NC) == 0 &&
2820 (opte & L2_S_PROT_W) != 0 &&
2821 (prot & VM_PROT_WRITE) == 0)
2822 cpu_dcache_wb_range(va, PAGE_SIZE);
2823 #endif
2824 } else {
2825 /*
2826 * New mapping, or changing the backing page
2827 * of an existing mapping.
2828 */
2829 if (opg) {
2830 /*
2831 * Replacing an existing mapping with a new one.
2832 * It is part of our managed memory so we
2833 * must remove it from the PV list
2834 */
2835 simple_lock(&opg->mdpage.pvh_slock);
2836 pve = pmap_remove_pv(opg, pm, va, 0);
2837 pmap_vac_me_harder(opg, pm, 0);
2838 simple_unlock(&opg->mdpage.pvh_slock);
2839 oflags = pve->pv_flags;
2840
2841 #ifdef PMAP_CACHE_VIVT
2842 /*
2843 * If the old mapping was valid (ref/mod
2844 * emulation creates 'invalid' mappings
2845 * initially) then make sure to frob
2846 * the cache.
2847 */
2848 if ((oflags & PVF_NC) == 0 &&
2849 l2pte_valid(opte)) {
2850 if (PV_BEEN_EXECD(oflags)) {
2851 pmap_idcache_wbinv_range(pm, va,
2852 PAGE_SIZE);
2853 } else
2854 if (PV_BEEN_REFD(oflags)) {
2855 pmap_dcache_wb_range(pm, va,
2856 PAGE_SIZE, true,
2857 (oflags & PVF_WRITE) == 0);
2858 }
2859 }
2860 #endif
2861 } else
2862 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2863 if ((flags & PMAP_CANFAIL) == 0)
2864 panic("pmap_enter: no pv entries");
2865
2866 if (pm != pmap_kernel())
2867 pmap_free_l2_bucket(pm, l2b, 0);
2868 pmap_release_pmap_lock(pm);
2869 PMAP_MAP_TO_HEAD_UNLOCK();
2870 NPDEBUG(PDB_ENTER,
2871 printf("pmap_enter: ENOMEM\n"));
2872 return (ENOMEM);
2873 }
2874
2875 pmap_enter_pv(pg, pve, pm, va, nflags);
2876 }
2877 } else {
2878 /*
2879 * We're mapping an unmanaged page.
2880 * These are always readable, and possibly writable, from
2881 * the get go as we don't need to track ref/mod status.
2882 */
2883 npte |= L2_S_PROTO;
2884 if (prot & VM_PROT_WRITE)
2885 npte |= L2_S_PROT_W;
2886
2887 /*
2888 * Make sure the vector table is mapped cacheable
2889 */
2890 if (pm != pmap_kernel() && va == vector_page)
2891 npte |= pte_l2_s_cache_mode;
2892
2893 if (opg) {
2894 /*
2895 * Looks like there's an existing 'managed' mapping
2896 * at this address.
2897 */
2898 simple_lock(&opg->mdpage.pvh_slock);
2899 pve = pmap_remove_pv(opg, pm, va, 0);
2900 pmap_vac_me_harder(opg, pm, 0);
2901 simple_unlock(&opg->mdpage.pvh_slock);
2902 oflags = pve->pv_flags;
2903
2904 #ifdef PMAP_CACHE_VIVT
2905 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2906 if (PV_BEEN_EXECD(oflags))
2907 pmap_idcache_wbinv_range(pm, va,
2908 PAGE_SIZE);
2909 else
2910 if (PV_BEEN_REFD(oflags))
2911 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2912 true, (oflags & PVF_WRITE) == 0);
2913 }
2914 #endif
2915 pool_put(&pmap_pv_pool, pve);
2916 }
2917 }
2918
2919 /*
2920 * Make sure userland mappings get the right permissions
2921 */
2922 if (pm != pmap_kernel() && va != vector_page)
2923 npte |= L2_S_PROT_U;
2924
2925 /*
2926 * Keep the stats up to date
2927 */
2928 if (opte == 0) {
2929 l2b->l2b_occupancy++;
2930 pm->pm_stats.resident_count++;
2931 }
2932
2933 NPDEBUG(PDB_ENTER,
2934 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2935
2936 /*
2937 * If this is just a wiring change, the two PTEs will be
2938 * identical, so there's no need to update the page table.
2939 */
2940 if (npte != opte) {
2941 bool is_cached = pmap_is_cached(pm);
2942
2943 *ptep = npte;
2944 if (is_cached) {
2945 /*
2946 * We only need to frob the cache/tlb if this pmap
2947 * is current
2948 */
2949 PTE_SYNC(ptep);
2950 if (va != vector_page && l2pte_valid(npte)) {
2951 /*
2952 * This mapping is likely to be accessed as
2953 * soon as we return to userland. Fix up the
2954 * L1 entry to avoid taking another
2955 * page/domain fault.
2956 */
2957 pd_entry_t *pl1pd, l1pd;
2958
2959 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2960 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2961 L1_C_PROTO;
2962 if (*pl1pd != l1pd) {
2963 *pl1pd = l1pd;
2964 PTE_SYNC(pl1pd);
2965 }
2966 }
2967 }
2968
2969 if (PV_BEEN_EXECD(oflags))
2970 pmap_tlb_flushID_SE(pm, va);
2971 else
2972 if (PV_BEEN_REFD(oflags))
2973 pmap_tlb_flushD_SE(pm, va);
2974
2975 NPDEBUG(PDB_ENTER,
2976 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2977 is_cached, pm->pm_cstate.cs_all));
2978
2979 if (pg != NULL) {
2980 simple_lock(&pg->mdpage.pvh_slock);
2981 pmap_vac_me_harder(pg, pm, va);
2982 simple_unlock(&pg->mdpage.pvh_slock);
2983 }
2984 }
2985 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
2986 if (pg) {
2987 simple_lock(&pg->mdpage.pvh_slock);
2988 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2989 KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
2990 simple_unlock(&pg->mdpage.pvh_slock);
2991 }
2992 #endif
2993
2994 pmap_release_pmap_lock(pm);
2995 PMAP_MAP_TO_HEAD_UNLOCK();
2996
2997 return (0);
2998 }
2999
3000 /*
3001 * pmap_remove()
3002 *
3003 * pmap_remove is responsible for nuking a number of mappings for a range
3004 * of virtual address space in the current pmap. To do this efficiently
3005 * is interesting, because in a number of cases a wide virtual address
3006 * range may be supplied that contains few actual mappings. So, the
3007 * optimisations are:
3008 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3009 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3010 * maybe do just a partial cache clean. This path of execution is
3011 * complicated by the fact that the cache must be flushed _before_
3012 * the PTE is nuked, being a VAC :-)
3013 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3014 * all invalidations until pmap_update(), since pmap_remove_all() has
3015 * already flushed the cache.
3016 * 4. Maybe later fast-case a single page, but I don't think this is
3017 * going to make _that_ much difference overall.
3018 */
3019
3020 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3021
3022 void
3023 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
3024 {
3025 struct l2_bucket *l2b;
3026 vaddr_t next_bucket;
3027 pt_entry_t *ptep;
3028 u_int cleanlist_idx, total, cnt;
3029 struct {
3030 vaddr_t va;
3031 pt_entry_t *ptep;
3032 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3033 u_int mappings, is_exec, is_refd;
3034
3035 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3036 "eva=%08lx\n", pm, sva, eva));
3037
3038 /*
3039 * we lock in the pmap => pv_head direction
3040 */
3041 PMAP_MAP_TO_HEAD_LOCK();
3042 pmap_acquire_pmap_lock(pm);
3043
3044 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3045 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3046 if (pm->pm_cstate.cs_tlb == 0)
3047 pm->pm_remove_all = true;
3048 } else
3049 cleanlist_idx = 0;
3050
3051 total = 0;
3052
3053 while (sva < eva) {
3054 /*
3055 * Do one L2 bucket's worth at a time.
3056 */
3057 next_bucket = L2_NEXT_BUCKET(sva);
3058 if (next_bucket > eva)
3059 next_bucket = eva;
3060
3061 l2b = pmap_get_l2_bucket(pm, sva);
3062 if (l2b == NULL) {
3063 sva = next_bucket;
3064 continue;
3065 }
3066
3067 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3068
3069 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3070 struct vm_page *pg;
3071 pt_entry_t pte;
3072 paddr_t pa;
3073
3074 pte = *ptep;
3075
3076 if (pte == 0) {
3077 /* Nothing here, move along */
3078 continue;
3079 }
3080
3081 pa = l2pte_pa(pte);
3082 is_exec = 0;
3083 is_refd = 1;
3084
3085 /*
3086 * Update flags. In a number of circumstances,
3087 * we could cluster a lot of these and do a
3088 * number of sequential pages in one go.
3089 */
3090 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3091 struct pv_entry *pve;
3092 simple_lock(&pg->mdpage.pvh_slock);
3093 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
3094 pmap_vac_me_harder(pg, pm, 0);
3095 simple_unlock(&pg->mdpage.pvh_slock);
3096 if (pve != NULL) {
3097 if (pm->pm_remove_all == false) {
3098 is_exec =
3099 PV_BEEN_EXECD(pve->pv_flags);
3100 is_refd =
3101 PV_BEEN_REFD(pve->pv_flags);
3102 }
3103 pool_put(&pmap_pv_pool, pve);
3104 } else
3105 if (skip_wired) {
3106 /* The mapping is wired. Skip it */
3107 continue;
3108 }
3109 } else
3110 if (skip_wired) {
3111 /* Unmanaged pages are always wired. */
3112 continue;
3113 }
3114
3115 mappings++;
3116
3117 if (!l2pte_valid(pte)) {
3118 /*
3119 * Ref/Mod emulation is still active for this
3120 * mapping, therefore it is has not yet been
3121 * accessed. No need to frob the cache/tlb.
3122 */
3123 *ptep = 0;
3124 PTE_SYNC_CURRENT(pm, ptep);
3125 continue;
3126 }
3127
3128 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3129 /* Add to the clean list. */
3130 cleanlist[cleanlist_idx].ptep = ptep;
3131 cleanlist[cleanlist_idx].va =
3132 sva | (is_exec & 1);
3133 cleanlist_idx++;
3134 } else
3135 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3136 /* Nuke everything if needed. */
3137 #ifdef PMAP_CACHE_VIVT
3138 pmap_idcache_wbinv_all(pm);
3139 #endif
3140 pmap_tlb_flushID(pm);
3141
3142 /*
3143 * Roll back the previous PTE list,
3144 * and zero out the current PTE.
3145 */
3146 for (cnt = 0;
3147 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3148 *cleanlist[cnt].ptep = 0;
3149 PTE_SYNC(cleanlist[cnt].ptep);
3150 }
3151 *ptep = 0;
3152 PTE_SYNC(ptep);
3153 cleanlist_idx++;
3154 pm->pm_remove_all = true;
3155 } else {
3156 *ptep = 0;
3157 PTE_SYNC(ptep);
3158 if (pm->pm_remove_all == false) {
3159 if (is_exec)
3160 pmap_tlb_flushID_SE(pm, sva);
3161 else
3162 if (is_refd)
3163 pmap_tlb_flushD_SE(pm, sva);
3164 }
3165 }
3166 }
3167
3168 /*
3169 * Deal with any left overs
3170 */
3171 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3172 total += cleanlist_idx;
3173 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3174 if (pm->pm_cstate.cs_all != 0) {
3175 vaddr_t clva = cleanlist[cnt].va & ~1;
3176 if (cleanlist[cnt].va & 1) {
3177 #ifdef PMAP_CACHE_VIVT
3178 pmap_idcache_wbinv_range(pm,
3179 clva, PAGE_SIZE);
3180 #endif
3181 pmap_tlb_flushID_SE(pm, clva);
3182 } else {
3183 #ifdef PMAP_CACHE_VIVT
3184 pmap_dcache_wb_range(pm,
3185 clva, PAGE_SIZE, true,
3186 false);
3187 #endif
3188 pmap_tlb_flushD_SE(pm, clva);
3189 }
3190 }
3191 *cleanlist[cnt].ptep = 0;
3192 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3193 }
3194
3195 /*
3196 * If it looks like we're removing a whole bunch
3197 * of mappings, it's faster to just write-back
3198 * the whole cache now and defer TLB flushes until
3199 * pmap_update() is called.
3200 */
3201 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3202 cleanlist_idx = 0;
3203 else {
3204 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3205 #ifdef PMAP_CACHE_VIVT
3206 pmap_idcache_wbinv_all(pm);
3207 #endif
3208 pm->pm_remove_all = true;
3209 }
3210 }
3211
3212 pmap_free_l2_bucket(pm, l2b, mappings);
3213 pm->pm_stats.resident_count -= mappings;
3214 }
3215
3216 pmap_release_pmap_lock(pm);
3217 PMAP_MAP_TO_HEAD_UNLOCK();
3218 }
3219
3220 #ifdef PMAP_CACHE_VIPT
3221 static struct pv_entry *
3222 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3223 {
3224 struct pv_entry *pv;
3225
3226 simple_lock(&pg->mdpage.pvh_slock);
3227 KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
3228 KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3229
3230 pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
3231 KASSERT(pv);
3232 KASSERT(pv->pv_flags & PVF_KENTRY);
3233
3234 /*
3235 * If we are removing a writeable mapping to a cached exec page,
3236 * if it's the last mapping then clear it execness other sync
3237 * the page to the icache.
3238 */
3239 if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3240 && (pv->pv_flags & PVF_WRITE) != 0) {
3241 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
3242 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
3243 PMAPCOUNT(exec_discarded_kremove);
3244 } else {
3245 pmap_syncicache_page(pg);
3246 PMAPCOUNT(exec_synced_kremove);
3247 }
3248 }
3249 pmap_vac_me_harder(pg, pmap_kernel(), 0);
3250 simple_unlock(&pg->mdpage.pvh_slock);
3251
3252 return pv;
3253 }
3254 #endif /* PMAP_CACHE_VIPT */
3255
3256 /*
3257 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3258 *
3259 * We assume there is already sufficient KVM space available
3260 * to do this, as we can't allocate L2 descriptor tables/metadata
3261 * from here.
3262 */
3263 void
3264 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
3265 {
3266 struct l2_bucket *l2b;
3267 pt_entry_t *ptep, opte;
3268 #ifdef PMAP_CACHE_VIVT
3269 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3270 #endif
3271 #ifdef PMAP_CACHE_VIPT
3272 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3273 struct vm_page *opg;
3274 struct pv_entry *pv = NULL;
3275 #endif
3276
3277 NPDEBUG(PDB_KENTER,
3278 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3279 va, pa, prot));
3280
3281 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3282 KDASSERT(l2b != NULL);
3283
3284 ptep = &l2b->l2b_kva[l2pte_index(va)];
3285 opte = *ptep;
3286
3287 if (opte == 0) {
3288 PMAPCOUNT(kenter_mappings);
3289 l2b->l2b_occupancy++;
3290 } else {
3291 PMAPCOUNT(kenter_remappings);
3292 #ifdef PMAP_CACHE_VIPT
3293 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3294 if (opg) {
3295 KASSERT(opg != pg);
3296 KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3297 KASSERT((prot & PMAP_KMPAGE) == 0);
3298 simple_lock(&opg->mdpage.pvh_slock);
3299 pv = pmap_kremove_pg(opg, va);
3300 simple_unlock(&opg->mdpage.pvh_slock);
3301 }
3302 #endif
3303 if (l2pte_valid(opte)) {
3304 #ifdef PMAP_CACHE_VIVT
3305 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3306 #endif
3307 cpu_tlb_flushD_SE(va);
3308 cpu_cpwait();
3309 }
3310 }
3311
3312 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3313 pte_l2_s_cache_mode;
3314 PTE_SYNC(ptep);
3315
3316 if (pg) {
3317 if (prot & PMAP_KMPAGE) {
3318 simple_lock(&pg->mdpage.pvh_slock);
3319 KASSERT(pg->mdpage.urw_mappings == 0);
3320 KASSERT(pg->mdpage.uro_mappings == 0);
3321 KASSERT(pg->mdpage.krw_mappings == 0);
3322 KASSERT(pg->mdpage.kro_mappings == 0);
3323 #ifdef PMAP_CACHE_VIPT
3324 KASSERT(pv == NULL);
3325 KASSERT((va & PVF_COLORED) == 0);
3326 KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
3327 /* if there is a color conflict, evict from cache. */
3328 if (pmap_is_page_colored_p(pg)
3329 && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
3330 PMAPCOUNT(vac_color_change);
3331 pmap_flush_page(pg, true);
3332 }
3333 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
3334 pg->mdpage.pvh_attrs |= PVF_KMPAGE
3335 | PVF_COLORED | PVF_DIRTY
3336 | (va & arm_cache_prefer_mask);
3337 #endif
3338 #ifdef PMAP_CACHE_VIVT
3339 pg->mdpage.pvh_attrs |= PVF_KMPAGE;
3340 #endif
3341 pmap_kmpages++;
3342 simple_unlock(&pg->mdpage.pvh_slock);
3343 #ifdef PMAP_CACHE_VIPT
3344 } else {
3345 if (pv == NULL) {
3346 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3347 KASSERT(pv != NULL);
3348 }
3349 pmap_enter_pv(pg, pv, pmap_kernel(), va,
3350 PVF_WIRED | PVF_KENTRY
3351 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3352 if ((prot & VM_PROT_WRITE)
3353 && !(pg->mdpage.pvh_attrs & PVF_NC))
3354 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3355 KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3356 simple_lock(&pg->mdpage.pvh_slock);
3357 pmap_vac_me_harder(pg, pmap_kernel(), va);
3358 simple_unlock(&pg->mdpage.pvh_slock);
3359 #endif
3360 }
3361 #ifdef PMAP_CACHE_VIPT
3362 } else {
3363 if (pv != NULL)
3364 pool_put(&pmap_pv_pool, pv);
3365 #endif
3366 }
3367 }
3368
3369 void
3370 pmap_kremove(vaddr_t va, vsize_t len)
3371 {
3372 struct l2_bucket *l2b;
3373 pt_entry_t *ptep, *sptep, opte;
3374 vaddr_t next_bucket, eva;
3375 u_int mappings;
3376 struct vm_page *opg;
3377
3378 PMAPCOUNT(kenter_unmappings);
3379
3380 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3381 va, len));
3382
3383 eva = va + len;
3384
3385 while (va < eva) {
3386 next_bucket = L2_NEXT_BUCKET(va);
3387 if (next_bucket > eva)
3388 next_bucket = eva;
3389
3390 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3391 KDASSERT(l2b != NULL);
3392
3393 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3394 mappings = 0;
3395
3396 while (va < next_bucket) {
3397 opte = *ptep;
3398 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3399 if (opg) {
3400 if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
3401 simple_lock(&opg->mdpage.pvh_slock);
3402 KASSERT(opg->mdpage.urw_mappings == 0);
3403 KASSERT(opg->mdpage.uro_mappings == 0);
3404 KASSERT(opg->mdpage.krw_mappings == 0);
3405 KASSERT(opg->mdpage.kro_mappings == 0);
3406 opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
3407 #ifdef PMAP_CACHE_VIPT
3408 opg->mdpage.pvh_attrs &= ~PVF_WRITE;
3409 #endif
3410 pmap_kmpages--;
3411 simple_unlock(&opg->mdpage.pvh_slock);
3412 #ifdef PMAP_CACHE_VIPT
3413 } else {
3414 pool_put(&pmap_pv_pool,
3415 pmap_kremove_pg(opg, va));
3416 #endif
3417 }
3418 }
3419 if (l2pte_valid(opte)) {
3420 #ifdef PMAP_CACHE_VIVT
3421 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3422 #endif
3423 cpu_tlb_flushD_SE(va);
3424 }
3425 if (opte) {
3426 *ptep = 0;
3427 mappings++;
3428 }
3429 va += PAGE_SIZE;
3430 ptep++;
3431 }
3432 KDASSERT(mappings <= l2b->l2b_occupancy);
3433 l2b->l2b_occupancy -= mappings;
3434 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3435 }
3436 cpu_cpwait();
3437 }
3438
3439 bool
3440 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3441 {
3442 struct l2_dtable *l2;
3443 pd_entry_t *pl1pd, l1pd;
3444 pt_entry_t *ptep, pte;
3445 paddr_t pa;
3446 u_int l1idx;
3447
3448 pmap_acquire_pmap_lock(pm);
3449
3450 l1idx = L1_IDX(va);
3451 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3452 l1pd = *pl1pd;
3453
3454 if (l1pte_section_p(l1pd)) {
3455 /*
3456 * These should only happen for pmap_kernel()
3457 */
3458 KDASSERT(pm == pmap_kernel());
3459 pmap_release_pmap_lock(pm);
3460 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3461 } else {
3462 /*
3463 * Note that we can't rely on the validity of the L1
3464 * descriptor as an indication that a mapping exists.
3465 * We have to look it up in the L2 dtable.
3466 */
3467 l2 = pm->pm_l2[L2_IDX(l1idx)];
3468
3469 if (l2 == NULL ||
3470 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3471 pmap_release_pmap_lock(pm);
3472 return false;
3473 }
3474
3475 ptep = &ptep[l2pte_index(va)];
3476 pte = *ptep;
3477 pmap_release_pmap_lock(pm);
3478
3479 if (pte == 0)
3480 return false;
3481
3482 switch (pte & L2_TYPE_MASK) {
3483 case L2_TYPE_L:
3484 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3485 break;
3486
3487 default:
3488 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3489 break;
3490 }
3491 }
3492
3493 if (pap != NULL)
3494 *pap = pa;
3495
3496 return true;
3497 }
3498
3499 void
3500 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3501 {
3502 struct l2_bucket *l2b;
3503 pt_entry_t *ptep, pte;
3504 vaddr_t next_bucket;
3505 u_int flags;
3506 u_int clr_mask;
3507 int flush;
3508
3509 NPDEBUG(PDB_PROTECT,
3510 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3511 pm, sva, eva, prot));
3512
3513 if ((prot & VM_PROT_READ) == 0) {
3514 pmap_remove(pm, sva, eva);
3515 return;
3516 }
3517
3518 if (prot & VM_PROT_WRITE) {
3519 /*
3520 * If this is a read->write transition, just ignore it and let
3521 * uvm_fault() take care of it later.
3522 */
3523 return;
3524 }
3525
3526 PMAP_MAP_TO_HEAD_LOCK();
3527 pmap_acquire_pmap_lock(pm);
3528
3529 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3530 flags = 0;
3531 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3532
3533 while (sva < eva) {
3534 next_bucket = L2_NEXT_BUCKET(sva);
3535 if (next_bucket > eva)
3536 next_bucket = eva;
3537
3538 l2b = pmap_get_l2_bucket(pm, sva);
3539 if (l2b == NULL) {
3540 sva = next_bucket;
3541 continue;
3542 }
3543
3544 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3545
3546 while (sva < next_bucket) {
3547 pte = *ptep;
3548 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3549 struct vm_page *pg;
3550 u_int f;
3551
3552 #ifdef PMAP_CACHE_VIVT
3553 /*
3554 * OK, at this point, we know we're doing
3555 * write-protect operation. If the pmap is
3556 * active, write-back the page.
3557 */
3558 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3559 false, false);
3560 #endif
3561
3562 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3563 pte &= ~L2_S_PROT_W;
3564 *ptep = pte;
3565 PTE_SYNC(ptep);
3566
3567 if (pg != NULL) {
3568 simple_lock(&pg->mdpage.pvh_slock);
3569 f = pmap_modify_pv(pg, pm, sva,
3570 clr_mask, 0);
3571 pmap_vac_me_harder(pg, pm, sva);
3572 simple_unlock(&pg->mdpage.pvh_slock);
3573 } else
3574 f = PVF_REF | PVF_EXEC;
3575
3576 if (flush >= 0) {
3577 flush++;
3578 flags |= f;
3579 } else
3580 if (PV_BEEN_EXECD(f))
3581 pmap_tlb_flushID_SE(pm, sva);
3582 else
3583 if (PV_BEEN_REFD(f))
3584 pmap_tlb_flushD_SE(pm, sva);
3585 }
3586
3587 sva += PAGE_SIZE;
3588 ptep++;
3589 }
3590 }
3591
3592 pmap_release_pmap_lock(pm);
3593 PMAP_MAP_TO_HEAD_UNLOCK();
3594
3595 if (flush) {
3596 if (PV_BEEN_EXECD(flags))
3597 pmap_tlb_flushID(pm);
3598 else
3599 if (PV_BEEN_REFD(flags))
3600 pmap_tlb_flushD(pm);
3601 }
3602 }
3603
3604 void
3605 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3606 {
3607 struct l2_bucket *l2b;
3608 pt_entry_t *ptep;
3609 vaddr_t next_bucket;
3610 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3611
3612 NPDEBUG(PDB_EXEC,
3613 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3614 pm, sva, eva));
3615
3616 PMAP_MAP_TO_HEAD_LOCK();
3617 pmap_acquire_pmap_lock(pm);
3618
3619 while (sva < eva) {
3620 next_bucket = L2_NEXT_BUCKET(sva);
3621 if (next_bucket > eva)
3622 next_bucket = eva;
3623
3624 l2b = pmap_get_l2_bucket(pm, sva);
3625 if (l2b == NULL) {
3626 sva = next_bucket;
3627 continue;
3628 }
3629
3630 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3631 sva < next_bucket;
3632 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3633 if (l2pte_valid(*ptep)) {
3634 cpu_icache_sync_range(sva,
3635 min(page_size, eva - sva));
3636 }
3637 }
3638 }
3639
3640 pmap_release_pmap_lock(pm);
3641 PMAP_MAP_TO_HEAD_UNLOCK();
3642 }
3643
3644 void
3645 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3646 {
3647
3648 NPDEBUG(PDB_PROTECT,
3649 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3650 pg, VM_PAGE_TO_PHYS(pg), prot));
3651
3652 switch(prot) {
3653 return;
3654 case VM_PROT_READ|VM_PROT_WRITE:
3655 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3656 pmap_clearbit(pg, PVF_EXEC);
3657 break;
3658 #endif
3659 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3660 break;
3661
3662 case VM_PROT_READ:
3663 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3664 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3665 break;
3666 #endif
3667 case VM_PROT_READ|VM_PROT_EXECUTE:
3668 pmap_clearbit(pg, PVF_WRITE);
3669 break;
3670
3671 default:
3672 pmap_page_remove(pg);
3673 break;
3674 }
3675 }
3676
3677 /*
3678 * pmap_clear_modify:
3679 *
3680 * Clear the "modified" attribute for a page.
3681 */
3682 bool
3683 pmap_clear_modify(struct vm_page *pg)
3684 {
3685 bool rv;
3686
3687 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3688 rv = true;
3689 pmap_clearbit(pg, PVF_MOD);
3690 } else
3691 rv = false;
3692
3693 return (rv);
3694 }
3695
3696 /*
3697 * pmap_clear_reference:
3698 *
3699 * Clear the "referenced" attribute for a page.
3700 */
3701 bool
3702 pmap_clear_reference(struct vm_page *pg)
3703 {
3704 bool rv;
3705
3706 if (pg->mdpage.pvh_attrs & PVF_REF) {
3707 rv = true;
3708 pmap_clearbit(pg, PVF_REF);
3709 } else
3710 rv = false;
3711
3712 return (rv);
3713 }
3714
3715 /*
3716 * pmap_is_modified:
3717 *
3718 * Test if a page has the "modified" attribute.
3719 */
3720 /* See <arm/arm32/pmap.h> */
3721
3722 /*
3723 * pmap_is_referenced:
3724 *
3725 * Test if a page has the "referenced" attribute.
3726 */
3727 /* See <arm/arm32/pmap.h> */
3728
3729 int
3730 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3731 {
3732 struct l2_dtable *l2;
3733 struct l2_bucket *l2b;
3734 pd_entry_t *pl1pd, l1pd;
3735 pt_entry_t *ptep, pte;
3736 paddr_t pa;
3737 u_int l1idx;
3738 int rv = 0;
3739
3740 PMAP_MAP_TO_HEAD_LOCK();
3741 pmap_acquire_pmap_lock(pm);
3742
3743 l1idx = L1_IDX(va);
3744
3745 /*
3746 * If there is no l2_dtable for this address, then the process
3747 * has no business accessing it.
3748 *
3749 * Note: This will catch userland processes trying to access
3750 * kernel addresses.
3751 */
3752 l2 = pm->pm_l2[L2_IDX(l1idx)];
3753 if (l2 == NULL)
3754 goto out;
3755
3756 /*
3757 * Likewise if there is no L2 descriptor table
3758 */
3759 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3760 if (l2b->l2b_kva == NULL)
3761 goto out;
3762
3763 /*
3764 * Check the PTE itself.
3765 */
3766 ptep = &l2b->l2b_kva[l2pte_index(va)];
3767 pte = *ptep;
3768 if (pte == 0)
3769 goto out;
3770
3771 /*
3772 * Catch a userland access to the vector page mapped at 0x0
3773 */
3774 if (user && (pte & L2_S_PROT_U) == 0)
3775 goto out;
3776
3777 pa = l2pte_pa(pte);
3778
3779 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3780 /*
3781 * This looks like a good candidate for "page modified"
3782 * emulation...
3783 */
3784 struct pv_entry *pv;
3785 struct vm_page *pg;
3786
3787 /* Extract the physical address of the page */
3788 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3789 goto out;
3790
3791 /* Get the current flags for this page. */
3792 simple_lock(&pg->mdpage.pvh_slock);
3793
3794 pv = pmap_find_pv(pg, pm, va);
3795 if (pv == NULL) {
3796 simple_unlock(&pg->mdpage.pvh_slock);
3797 goto out;
3798 }
3799
3800 /*
3801 * Do the flags say this page is writable? If not then it
3802 * is a genuine write fault. If yes then the write fault is
3803 * our fault as we did not reflect the write access in the
3804 * PTE. Now we know a write has occurred we can correct this
3805 * and also set the modified bit
3806 */
3807 if ((pv->pv_flags & PVF_WRITE) == 0) {
3808 simple_unlock(&pg->mdpage.pvh_slock);
3809 goto out;
3810 }
3811
3812 NPDEBUG(PDB_FOLLOW,
3813 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3814 pm, va, VM_PAGE_TO_PHYS(pg)));
3815
3816 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3817 pv->pv_flags |= PVF_REF | PVF_MOD;
3818 #ifdef PMAP_CACHE_VIPT
3819 /*
3820 * If there are cacheable mappings for this page, mark it dirty.
3821 */
3822 if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
3823 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3824 #endif
3825 simple_unlock(&pg->mdpage.pvh_slock);
3826
3827 /*
3828 * Re-enable write permissions for the page. No need to call
3829 * pmap_vac_me_harder(), since this is just a
3830 * modified-emulation fault, and the PVF_WRITE bit isn't
3831 * changing. We've already set the cacheable bits based on
3832 * the assumption that we can write to this page.
3833 */
3834 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3835 PTE_SYNC(ptep);
3836 rv = 1;
3837 } else
3838 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3839 /*
3840 * This looks like a good candidate for "page referenced"
3841 * emulation.
3842 */
3843 struct pv_entry *pv;
3844 struct vm_page *pg;
3845
3846 /* Extract the physical address of the page */
3847 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3848 goto out;
3849
3850 /* Get the current flags for this page. */
3851 simple_lock(&pg->mdpage.pvh_slock);
3852
3853 pv = pmap_find_pv(pg, pm, va);
3854 if (pv == NULL) {
3855 simple_unlock(&pg->mdpage.pvh_slock);
3856 goto out;
3857 }
3858
3859 pg->mdpage.pvh_attrs |= PVF_REF;
3860 pv->pv_flags |= PVF_REF;
3861 simple_unlock(&pg->mdpage.pvh_slock);
3862
3863 NPDEBUG(PDB_FOLLOW,
3864 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3865 pm, va, VM_PAGE_TO_PHYS(pg)));
3866
3867 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3868 PTE_SYNC(ptep);
3869 rv = 1;
3870 }
3871
3872 /*
3873 * We know there is a valid mapping here, so simply
3874 * fix up the L1 if necessary.
3875 */
3876 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3877 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3878 if (*pl1pd != l1pd) {
3879 *pl1pd = l1pd;
3880 PTE_SYNC(pl1pd);
3881 rv = 1;
3882 }
3883
3884 #ifdef CPU_SA110
3885 /*
3886 * There are bugs in the rev K SA110. This is a check for one
3887 * of them.
3888 */
3889 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3890 curcpu()->ci_arm_cpurev < 3) {
3891 /* Always current pmap */
3892 if (l2pte_valid(pte)) {
3893 extern int kernel_debug;
3894 if (kernel_debug & 1) {
3895 struct proc *p = curlwp->l_proc;
3896 printf("prefetch_abort: page is already "
3897 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3898 printf("prefetch_abort: pc=%08lx proc=%p "
3899 "process=%s\n", va, p, p->p_comm);
3900 printf("prefetch_abort: far=%08x fs=%x\n",
3901 cpu_faultaddress(), cpu_faultstatus());
3902 }
3903 #ifdef DDB
3904 if (kernel_debug & 2)
3905 Debugger();
3906 #endif
3907 rv = 1;
3908 }
3909 }
3910 #endif /* CPU_SA110 */
3911
3912 #ifdef DEBUG
3913 /*
3914 * If 'rv == 0' at this point, it generally indicates that there is a
3915 * stale TLB entry for the faulting address. This happens when two or
3916 * more processes are sharing an L1. Since we don't flush the TLB on
3917 * a context switch between such processes, we can take domain faults
3918 * for mappings which exist at the same VA in both processes. EVEN IF
3919 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
3920 * example.
3921 *
3922 * This is extremely likely to happen if pmap_enter() updated the L1
3923 * entry for a recently entered mapping. In this case, the TLB is
3924 * flushed for the new mapping, but there may still be TLB entries for
3925 * other mappings belonging to other processes in the 1MB range
3926 * covered by the L1 entry.
3927 *
3928 * Since 'rv == 0', we know that the L1 already contains the correct
3929 * value, so the fault must be due to a stale TLB entry.
3930 *
3931 * Since we always need to flush the TLB anyway in the case where we
3932 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
3933 * stale TLB entries dynamically.
3934 *
3935 * However, the above condition can ONLY happen if the current L1 is
3936 * being shared. If it happens when the L1 is unshared, it indicates
3937 * that other parts of the pmap are not doing their job WRT managing
3938 * the TLB.
3939 */
3940 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
3941 extern int last_fault_code;
3942 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
3943 pm, va, ftype);
3944 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
3945 l2, l2b, ptep, pl1pd);
3946 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
3947 pte, l1pd, last_fault_code);
3948 #ifdef DDB
3949 Debugger();
3950 #endif
3951 }
3952 #endif
3953
3954 cpu_tlb_flushID_SE(va);
3955 cpu_cpwait();
3956
3957 rv = 1;
3958
3959 out:
3960 pmap_release_pmap_lock(pm);
3961 PMAP_MAP_TO_HEAD_UNLOCK();
3962
3963 return (rv);
3964 }
3965
3966 /*
3967 * pmap_collect: free resources held by a pmap
3968 *
3969 * => optional function.
3970 * => called when a process is swapped out to free memory.
3971 */
3972 void
3973 pmap_collect(pmap_t pm)
3974 {
3975
3976 #ifdef PMAP_CACHE_VIVT
3977 pmap_idcache_wbinv_all(pm);
3978 #endif
3979 pm->pm_remove_all = true;
3980 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
3981 pmap_update(pm);
3982 PMAPCOUNT(collects);
3983 }
3984
3985 /*
3986 * Routine: pmap_procwr
3987 *
3988 * Function:
3989 * Synchronize caches corresponding to [addr, addr+len) in p.
3990 *
3991 */
3992 void
3993 pmap_procwr(struct proc *p, vaddr_t va, int len)
3994 {
3995 /* We only need to do anything if it is the current process. */
3996 if (p == curproc)
3997 cpu_icache_sync_range(va, len);
3998 }
3999
4000 /*
4001 * Routine: pmap_unwire
4002 * Function: Clear the wired attribute for a map/virtual-address pair.
4003 *
4004 * In/out conditions:
4005 * The mapping must already exist in the pmap.
4006 */
4007 void
4008 pmap_unwire(pmap_t pm, vaddr_t va)
4009 {
4010 struct l2_bucket *l2b;
4011 pt_entry_t *ptep, pte;
4012 struct vm_page *pg;
4013 paddr_t pa;
4014
4015 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4016
4017 PMAP_MAP_TO_HEAD_LOCK();
4018 pmap_acquire_pmap_lock(pm);
4019
4020 l2b = pmap_get_l2_bucket(pm, va);
4021 KDASSERT(l2b != NULL);
4022
4023 ptep = &l2b->l2b_kva[l2pte_index(va)];
4024 pte = *ptep;
4025
4026 /* Extract the physical address of the page */
4027 pa = l2pte_pa(pte);
4028
4029 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4030 /* Update the wired bit in the pv entry for this page. */
4031 simple_lock(&pg->mdpage.pvh_slock);
4032 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
4033 simple_unlock(&pg->mdpage.pvh_slock);
4034 }
4035
4036 pmap_release_pmap_lock(pm);
4037 PMAP_MAP_TO_HEAD_UNLOCK();
4038 }
4039
4040 void
4041 pmap_activate(struct lwp *l)
4042 {
4043 extern int block_userspace_access;
4044 pmap_t opm, npm, rpm;
4045 uint32_t odacr, ndacr;
4046 int oldirqstate;
4047
4048 /*
4049 * If activating a non-current lwp or the current lwp is
4050 * already active, just return.
4051 */
4052 if (l != curlwp ||
4053 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4054 return;
4055
4056 npm = l->l_proc->p_vmspace->vm_map.pmap;
4057 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4058 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4059
4060 /*
4061 * If TTB and DACR are unchanged, short-circuit all the
4062 * TLB/cache management stuff.
4063 */
4064 if (pmap_previous_active_lwp != NULL) {
4065 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4066 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4067 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4068
4069 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4070 goto all_done;
4071 } else
4072 opm = NULL;
4073
4074 PMAPCOUNT(activations);
4075 block_userspace_access = 1;
4076
4077 /*
4078 * If switching to a user vmspace which is different to the
4079 * most recent one, and the most recent one is potentially
4080 * live in the cache, we must write-back and invalidate the
4081 * entire cache.
4082 */
4083 rpm = pmap_recent_user;
4084 if (npm != pmap_kernel() && rpm && npm != rpm &&
4085 rpm->pm_cstate.cs_cache) {
4086 rpm->pm_cstate.cs_cache = 0;
4087 #ifdef PMAP_CACHE_VIVT
4088 cpu_idcache_wbinv_all();
4089 #endif
4090 }
4091
4092 /* No interrupts while we frob the TTB/DACR */
4093 oldirqstate = disable_interrupts(IF32_bits);
4094
4095 /*
4096 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4097 * entry corresponding to 'vector_page' in the incoming L1 table
4098 * before switching to it otherwise subsequent interrupts/exceptions
4099 * (including domain faults!) will jump into hyperspace.
4100 */
4101 if (npm->pm_pl1vec != NULL) {
4102 cpu_tlb_flushID_SE((u_int)vector_page);
4103 cpu_cpwait();
4104 *npm->pm_pl1vec = npm->pm_l1vec;
4105 PTE_SYNC(npm->pm_pl1vec);
4106 }
4107
4108 cpu_domains(ndacr);
4109
4110 if (npm == pmap_kernel() || npm == rpm) {
4111 /*
4112 * Switching to a kernel thread, or back to the
4113 * same user vmspace as before... Simply update
4114 * the TTB (no TLB flush required)
4115 */
4116 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4117 "r"(npm->pm_l1->l1_physaddr));
4118 cpu_cpwait();
4119 } else {
4120 /*
4121 * Otherwise, update TTB and flush TLB
4122 */
4123 cpu_context_switch(npm->pm_l1->l1_physaddr);
4124 if (rpm != NULL)
4125 rpm->pm_cstate.cs_tlb = 0;
4126 }
4127
4128 restore_interrupts(oldirqstate);
4129
4130 block_userspace_access = 0;
4131
4132 all_done:
4133 /*
4134 * The new pmap is resident. Make sure it's marked
4135 * as resident in the cache/TLB.
4136 */
4137 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4138 if (npm != pmap_kernel())
4139 pmap_recent_user = npm;
4140
4141 /* The old pmap is not longer active */
4142 if (opm != NULL)
4143 opm->pm_activated = false;
4144
4145 /* But the new one is */
4146 npm->pm_activated = true;
4147 }
4148
4149 void
4150 pmap_deactivate(struct lwp *l)
4151 {
4152
4153 /*
4154 * If the process is exiting, make sure pmap_activate() does
4155 * a full MMU context-switch and cache flush, which we might
4156 * otherwise skip. See PR port-arm/38950.
4157 */
4158 if (l->l_proc->p_sflag & PS_WEXIT)
4159 pmap_previous_active_lwp = NULL;
4160
4161 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4162 }
4163
4164 void
4165 pmap_update(pmap_t pm)
4166 {
4167
4168 if (pm->pm_remove_all) {
4169 /*
4170 * Finish up the pmap_remove_all() optimisation by flushing
4171 * the TLB.
4172 */
4173 pmap_tlb_flushID(pm);
4174 pm->pm_remove_all = false;
4175 }
4176
4177 if (pmap_is_current(pm)) {
4178 /*
4179 * If we're dealing with a current userland pmap, move its L1
4180 * to the end of the LRU.
4181 */
4182 if (pm != pmap_kernel())
4183 pmap_use_l1(pm);
4184
4185 /*
4186 * We can assume we're done with frobbing the cache/tlb for
4187 * now. Make sure any future pmap ops don't skip cache/tlb
4188 * flushes.
4189 */
4190 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4191 }
4192
4193 PMAPCOUNT(updates);
4194
4195 /*
4196 * make sure TLB/cache operations have completed.
4197 */
4198 cpu_cpwait();
4199 }
4200
4201 void
4202 pmap_remove_all(pmap_t pm)
4203 {
4204
4205 /*
4206 * The vmspace described by this pmap is about to be torn down.
4207 * Until pmap_update() is called, UVM will only make calls
4208 * to pmap_remove(). We can make life much simpler by flushing
4209 * the cache now, and deferring TLB invalidation to pmap_update().
4210 */
4211 #ifdef PMAP_CACHE_VIVT
4212 pmap_idcache_wbinv_all(pm);
4213 #endif
4214 pm->pm_remove_all = true;
4215 }
4216
4217 /*
4218 * Retire the given physical map from service.
4219 * Should only be called if the map contains no valid mappings.
4220 */
4221 void
4222 pmap_destroy(pmap_t pm)
4223 {
4224 u_int count;
4225
4226 if (pm == NULL)
4227 return;
4228
4229 if (pm->pm_remove_all) {
4230 pmap_tlb_flushID(pm);
4231 pm->pm_remove_all = false;
4232 }
4233
4234 /*
4235 * Drop reference count
4236 */
4237 mutex_enter(&pm->pm_lock);
4238 count = --pm->pm_obj.uo_refs;
4239 mutex_exit(&pm->pm_lock);
4240 if (count > 0) {
4241 if (pmap_is_current(pm)) {
4242 if (pm != pmap_kernel())
4243 pmap_use_l1(pm);
4244 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4245 }
4246 return;
4247 }
4248
4249 /*
4250 * reference count is zero, free pmap resources and then free pmap.
4251 */
4252
4253 if (vector_page < KERNEL_BASE) {
4254 KDASSERT(!pmap_is_current(pm));
4255
4256 /* Remove the vector page mapping */
4257 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4258 pmap_update(pm);
4259 }
4260
4261 LIST_REMOVE(pm, pm_list);
4262
4263 pmap_free_l1(pm);
4264
4265 if (pmap_recent_user == pm)
4266 pmap_recent_user = NULL;
4267
4268 UVM_OBJ_DESTROY(&pm->pm_obj);
4269
4270 /* return the pmap to the pool */
4271 pool_cache_put(&pmap_cache, pm);
4272 }
4273
4274
4275 /*
4276 * void pmap_reference(pmap_t pm)
4277 *
4278 * Add a reference to the specified pmap.
4279 */
4280 void
4281 pmap_reference(pmap_t pm)
4282 {
4283
4284 if (pm == NULL)
4285 return;
4286
4287 pmap_use_l1(pm);
4288
4289 mutex_enter(&pm->pm_lock);
4290 pm->pm_obj.uo_refs++;
4291 mutex_exit(&pm->pm_lock);
4292 }
4293
4294 #if ARM_MMU_V6 > 0
4295
4296 static struct evcnt pmap_prefer_nochange_ev =
4297 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4298 static struct evcnt pmap_prefer_change_ev =
4299 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4300
4301 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4302 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4303
4304 void
4305 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4306 {
4307 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4308 vaddr_t va = *vap;
4309 vaddr_t diff = (hint - va) & mask;
4310 if (diff == 0) {
4311 pmap_prefer_nochange_ev.ev_count++;
4312 } else {
4313 pmap_prefer_change_ev.ev_count++;
4314 if (__predict_false(td))
4315 va -= mask + 1;
4316 *vap = va + diff;
4317 }
4318 }
4319 #endif /* ARM_MMU_V6 */
4320
4321 /*
4322 * pmap_zero_page()
4323 *
4324 * Zero a given physical page by mapping it at a page hook point.
4325 * In doing the zero page op, the page we zero is mapped cachable, as with
4326 * StrongARM accesses to non-cached pages are non-burst making writing
4327 * _any_ bulk data very slow.
4328 */
4329 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4330 void
4331 pmap_zero_page_generic(paddr_t phys)
4332 {
4333 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4334 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4335 #endif
4336 #ifdef PMAP_CACHE_VIPT
4337 /* Choose the last page color it had, if any */
4338 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4339 #else
4340 const vsize_t va_offset = 0;
4341 #endif
4342 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4343
4344 #ifdef DEBUG
4345 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4346 panic("pmap_zero_page: page has mappings");
4347 #endif
4348
4349 KDASSERT((phys & PGOFSET) == 0);
4350
4351 /*
4352 * Hook in the page, zero it, and purge the cache for that
4353 * zeroed page. Invalidate the TLB as needed.
4354 */
4355 *ptep = L2_S_PROTO | phys |
4356 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4357 PTE_SYNC(ptep);
4358 cpu_tlb_flushD_SE(cdstp + va_offset);
4359 cpu_cpwait();
4360 bzero_page(cdstp + va_offset);
4361 /*
4362 * Unmap the page.
4363 */
4364 *ptep = 0;
4365 PTE_SYNC(ptep);
4366 cpu_tlb_flushD_SE(cdstp + va_offset);
4367 #ifdef PMAP_CACHE_VIVT
4368 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4369 #endif
4370 #ifdef PMAP_CACHE_VIPT
4371 /*
4372 * This page is now cache resident so it now has a page color.
4373 * Any contents have been obliterated so clear the EXEC flag.
4374 */
4375 if (!pmap_is_page_colored_p(pg)) {
4376 PMAPCOUNT(vac_color_new);
4377 pg->mdpage.pvh_attrs |= PVF_COLORED;
4378 }
4379 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4380 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4381 PMAPCOUNT(exec_discarded_zero);
4382 }
4383 pg->mdpage.pvh_attrs |= PVF_DIRTY;
4384 #endif
4385 }
4386 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4387
4388 #if ARM_MMU_XSCALE == 1
4389 void
4390 pmap_zero_page_xscale(paddr_t phys)
4391 {
4392 #ifdef DEBUG
4393 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4394
4395 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4396 panic("pmap_zero_page: page has mappings");
4397 #endif
4398
4399 KDASSERT((phys & PGOFSET) == 0);
4400
4401 /*
4402 * Hook in the page, zero it, and purge the cache for that
4403 * zeroed page. Invalidate the TLB as needed.
4404 */
4405 *cdst_pte = L2_S_PROTO | phys |
4406 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4407 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4408 PTE_SYNC(cdst_pte);
4409 cpu_tlb_flushD_SE(cdstp);
4410 cpu_cpwait();
4411 bzero_page(cdstp);
4412 xscale_cache_clean_minidata();
4413 }
4414 #endif /* ARM_MMU_XSCALE == 1 */
4415
4416 /* pmap_pageidlezero()
4417 *
4418 * The same as above, except that we assume that the page is not
4419 * mapped. This means we never have to flush the cache first. Called
4420 * from the idle loop.
4421 */
4422 bool
4423 pmap_pageidlezero(paddr_t phys)
4424 {
4425 unsigned int i;
4426 int *ptr;
4427 bool rv = true;
4428 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4429 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4430 #endif
4431 #ifdef PMAP_CACHE_VIPT
4432 /* Choose the last page color it had, if any */
4433 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4434 #else
4435 const vsize_t va_offset = 0;
4436 #endif
4437 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4438
4439
4440 #ifdef DEBUG
4441 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4442 panic("pmap_pageidlezero: page has mappings");
4443 #endif
4444
4445 KDASSERT((phys & PGOFSET) == 0);
4446
4447 /*
4448 * Hook in the page, zero it, and purge the cache for that
4449 * zeroed page. Invalidate the TLB as needed.
4450 */
4451 *ptep = L2_S_PROTO | phys |
4452 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4453 PTE_SYNC(ptep);
4454 cpu_tlb_flushD_SE(cdstp + va_offset);
4455 cpu_cpwait();
4456
4457 for (i = 0, ptr = (int *)(cdstp + va_offset);
4458 i < (PAGE_SIZE / sizeof(int)); i++) {
4459 if (sched_curcpu_runnable_p() != 0) {
4460 /*
4461 * A process has become ready. Abort now,
4462 * so we don't keep it waiting while we
4463 * do slow memory access to finish this
4464 * page.
4465 */
4466 rv = false;
4467 break;
4468 }
4469 *ptr++ = 0;
4470 }
4471
4472 #ifdef PMAP_CACHE_VIVT
4473 if (rv)
4474 /*
4475 * if we aborted we'll rezero this page again later so don't
4476 * purge it unless we finished it
4477 */
4478 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4479 #elif defined(PMAP_CACHE_VIPT)
4480 /*
4481 * This page is now cache resident so it now has a page color.
4482 * Any contents have been obliterated so clear the EXEC flag.
4483 */
4484 if (!pmap_is_page_colored_p(pg)) {
4485 PMAPCOUNT(vac_color_new);
4486 pg->mdpage.pvh_attrs |= PVF_COLORED;
4487 }
4488 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4489 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4490 PMAPCOUNT(exec_discarded_zero);
4491 }
4492 #endif
4493 /*
4494 * Unmap the page.
4495 */
4496 *ptep = 0;
4497 PTE_SYNC(ptep);
4498 cpu_tlb_flushD_SE(cdstp + va_offset);
4499
4500 return (rv);
4501 }
4502
4503 /*
4504 * pmap_copy_page()
4505 *
4506 * Copy one physical page into another, by mapping the pages into
4507 * hook points. The same comment regarding cachability as in
4508 * pmap_zero_page also applies here.
4509 */
4510 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4511 void
4512 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4513 {
4514 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4515 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4516 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4517 #endif
4518 #ifdef PMAP_CACHE_VIPT
4519 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4520 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4521 #else
4522 const vsize_t src_va_offset = 0;
4523 const vsize_t dst_va_offset = 0;
4524 #endif
4525 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4526 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4527
4528 #ifdef DEBUG
4529 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4530 panic("pmap_copy_page: dst page has mappings");
4531 #endif
4532
4533 #ifdef PMAP_CACHE_VIPT
4534 KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
4535 #endif
4536 KDASSERT((src & PGOFSET) == 0);
4537 KDASSERT((dst & PGOFSET) == 0);
4538
4539 /*
4540 * Clean the source page. Hold the source page's lock for
4541 * the duration of the copy so that no other mappings can
4542 * be created while we have a potentially aliased mapping.
4543 */
4544 simple_lock(&src_pg->mdpage.pvh_slock);
4545 #ifdef PMAP_CACHE_VIVT
4546 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4547 #endif
4548
4549 /*
4550 * Map the pages into the page hook points, copy them, and purge
4551 * the cache for the appropriate page. Invalidate the TLB
4552 * as required.
4553 */
4554 *src_ptep = L2_S_PROTO
4555 | src
4556 #ifdef PMAP_CACHE_VIPT
4557 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4558 #endif
4559 #ifdef PMAP_CACHE_VIVT
4560 | pte_l2_s_cache_mode
4561 #endif
4562 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4563 *dst_ptep = L2_S_PROTO | dst |
4564 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4565 PTE_SYNC(src_ptep);
4566 PTE_SYNC(dst_ptep);
4567 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4568 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4569 cpu_cpwait();
4570 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4571 #ifdef PMAP_CACHE_VIVT
4572 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4573 #endif
4574 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4575 #ifdef PMAP_CACHE_VIVT
4576 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4577 #endif
4578 /*
4579 * Unmap the pages.
4580 */
4581 *src_ptep = 0;
4582 *dst_ptep = 0;
4583 PTE_SYNC(src_ptep);
4584 PTE_SYNC(dst_ptep);
4585 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4586 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4587 #ifdef PMAP_CACHE_VIPT
4588 /*
4589 * Now that the destination page is in the cache, mark it as colored.
4590 * If this was an exec page, discard it.
4591 */
4592 if (!pmap_is_page_colored_p(dst_pg)) {
4593 PMAPCOUNT(vac_color_new);
4594 dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
4595 }
4596 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
4597 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4598 PMAPCOUNT(exec_discarded_copy);
4599 }
4600 dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
4601 #endif
4602 }
4603 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4604
4605 #if ARM_MMU_XSCALE == 1
4606 void
4607 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4608 {
4609 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4610 #ifdef DEBUG
4611 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4612
4613 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4614 panic("pmap_copy_page: dst page has mappings");
4615 #endif
4616
4617 KDASSERT((src & PGOFSET) == 0);
4618 KDASSERT((dst & PGOFSET) == 0);
4619
4620 /*
4621 * Clean the source page. Hold the source page's lock for
4622 * the duration of the copy so that no other mappings can
4623 * be created while we have a potentially aliased mapping.
4624 */
4625 simple_lock(&src_pg->mdpage.pvh_slock);
4626 #ifdef PMAP_CACHE_VIVT
4627 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4628 #endif
4629
4630 /*
4631 * Map the pages into the page hook points, copy them, and purge
4632 * the cache for the appropriate page. Invalidate the TLB
4633 * as required.
4634 */
4635 *csrc_pte = L2_S_PROTO | src |
4636 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4637 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4638 PTE_SYNC(csrc_pte);
4639 *cdst_pte = L2_S_PROTO | dst |
4640 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4641 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4642 PTE_SYNC(cdst_pte);
4643 cpu_tlb_flushD_SE(csrcp);
4644 cpu_tlb_flushD_SE(cdstp);
4645 cpu_cpwait();
4646 bcopy_page(csrcp, cdstp);
4647 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4648 xscale_cache_clean_minidata();
4649 }
4650 #endif /* ARM_MMU_XSCALE == 1 */
4651
4652 /*
4653 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4654 *
4655 * Return the start and end addresses of the kernel's virtual space.
4656 * These values are setup in pmap_bootstrap and are updated as pages
4657 * are allocated.
4658 */
4659 void
4660 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4661 {
4662 *start = virtual_avail;
4663 *end = virtual_end;
4664 }
4665
4666 /*
4667 * Helper function for pmap_grow_l2_bucket()
4668 */
4669 static inline int
4670 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4671 {
4672 struct l2_bucket *l2b;
4673 pt_entry_t *ptep;
4674 paddr_t pa;
4675
4676 if (uvm.page_init_done == false) {
4677 #ifdef PMAP_STEAL_MEMORY
4678 pv_addr_t pv;
4679 pmap_boot_pagealloc(PAGE_SIZE,
4680 #ifdef PMAP_CACHE_VIPT
4681 arm_cache_prefer_mask,
4682 va & arm_cache_prefer_mask,
4683 #else
4684 0, 0,
4685 #endif
4686 &pv);
4687 pa = pv.pv_pa;
4688 #else
4689 if (uvm_page_physget(&pa) == false)
4690 return (1);
4691 #endif /* PMAP_STEAL_MEMORY */
4692 } else {
4693 struct vm_page *pg;
4694 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4695 if (pg == NULL)
4696 return (1);
4697 pa = VM_PAGE_TO_PHYS(pg);
4698 #ifdef PMAP_CACHE_VIPT
4699 /*
4700 * This new page must not have any mappings. Enter it via
4701 * pmap_kenter_pa and let that routine do the hard work.
4702 */
4703 KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
4704 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
4705 #endif
4706 }
4707
4708 if (pap)
4709 *pap = pa;
4710
4711 PMAPCOUNT(pt_mappings);
4712 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4713 KDASSERT(l2b != NULL);
4714
4715 ptep = &l2b->l2b_kva[l2pte_index(va)];
4716 *ptep = L2_S_PROTO | pa | cache_mode |
4717 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4718 PTE_SYNC(ptep);
4719 memset((void *)va, 0, PAGE_SIZE);
4720 return (0);
4721 }
4722
4723 /*
4724 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4725 * used by pmap_growkernel().
4726 */
4727 static inline struct l2_bucket *
4728 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4729 {
4730 struct l2_dtable *l2;
4731 struct l2_bucket *l2b;
4732 u_short l1idx;
4733 vaddr_t nva;
4734
4735 l1idx = L1_IDX(va);
4736
4737 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4738 /*
4739 * No mapping at this address, as there is
4740 * no entry in the L1 table.
4741 * Need to allocate a new l2_dtable.
4742 */
4743 nva = pmap_kernel_l2dtable_kva;
4744 if ((nva & PGOFSET) == 0) {
4745 /*
4746 * Need to allocate a backing page
4747 */
4748 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4749 return (NULL);
4750 }
4751
4752 l2 = (struct l2_dtable *)nva;
4753 nva += sizeof(struct l2_dtable);
4754
4755 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4756 /*
4757 * The new l2_dtable straddles a page boundary.
4758 * Map in another page to cover it.
4759 */
4760 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4761 return (NULL);
4762 }
4763
4764 pmap_kernel_l2dtable_kva = nva;
4765
4766 /*
4767 * Link it into the parent pmap
4768 */
4769 pm->pm_l2[L2_IDX(l1idx)] = l2;
4770 }
4771
4772 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4773
4774 /*
4775 * Fetch pointer to the L2 page table associated with the address.
4776 */
4777 if (l2b->l2b_kva == NULL) {
4778 pt_entry_t *ptep;
4779
4780 /*
4781 * No L2 page table has been allocated. Chances are, this
4782 * is because we just allocated the l2_dtable, above.
4783 */
4784 nva = pmap_kernel_l2ptp_kva;
4785 ptep = (pt_entry_t *)nva;
4786 if ((nva & PGOFSET) == 0) {
4787 /*
4788 * Need to allocate a backing page
4789 */
4790 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4791 &pmap_kernel_l2ptp_phys))
4792 return (NULL);
4793 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4794 }
4795
4796 l2->l2_occupancy++;
4797 l2b->l2b_kva = ptep;
4798 l2b->l2b_l1idx = l1idx;
4799 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4800
4801 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4802 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4803 }
4804
4805 return (l2b);
4806 }
4807
4808 vaddr_t
4809 pmap_growkernel(vaddr_t maxkvaddr)
4810 {
4811 pmap_t kpm = pmap_kernel();
4812 struct l1_ttable *l1;
4813 struct l2_bucket *l2b;
4814 pd_entry_t *pl1pd;
4815 int s;
4816
4817 if (maxkvaddr <= pmap_curmaxkvaddr)
4818 goto out; /* we are OK */
4819
4820 NPDEBUG(PDB_GROWKERN,
4821 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4822 pmap_curmaxkvaddr, maxkvaddr));
4823
4824 KDASSERT(maxkvaddr <= virtual_end);
4825
4826 /*
4827 * whoops! we need to add kernel PTPs
4828 */
4829
4830 s = splhigh(); /* to be safe */
4831 mutex_enter(&kpm->pm_lock);
4832
4833 /* Map 1MB at a time */
4834 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4835
4836 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4837 KDASSERT(l2b != NULL);
4838
4839 /* Distribute new L1 entry to all other L1s */
4840 SLIST_FOREACH(l1, &l1_list, l1_link) {
4841 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4842 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4843 L1_C_PROTO;
4844 PTE_SYNC(pl1pd);
4845 }
4846 }
4847
4848 /*
4849 * flush out the cache, expensive but growkernel will happen so
4850 * rarely
4851 */
4852 cpu_dcache_wbinv_all();
4853 cpu_tlb_flushD();
4854 cpu_cpwait();
4855
4856 mutex_exit(&kpm->pm_lock);
4857 splx(s);
4858
4859 out:
4860 return (pmap_curmaxkvaddr);
4861 }
4862
4863 /************************ Utility routines ****************************/
4864
4865 /*
4866 * vector_page_setprot:
4867 *
4868 * Manipulate the protection of the vector page.
4869 */
4870 void
4871 vector_page_setprot(int prot)
4872 {
4873 struct l2_bucket *l2b;
4874 pt_entry_t *ptep;
4875
4876 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4877 KDASSERT(l2b != NULL);
4878
4879 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4880
4881 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4882 PTE_SYNC(ptep);
4883 cpu_tlb_flushD_SE(vector_page);
4884 cpu_cpwait();
4885 }
4886
4887 /*
4888 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4889 * Returns true if the mapping exists, else false.
4890 *
4891 * NOTE: This function is only used by a couple of arm-specific modules.
4892 * It is not safe to take any pmap locks here, since we could be right
4893 * in the middle of debugging the pmap anyway...
4894 *
4895 * It is possible for this routine to return false even though a valid
4896 * mapping does exist. This is because we don't lock, so the metadata
4897 * state may be inconsistent.
4898 *
4899 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
4900 * a "section" mapping.
4901 */
4902 bool
4903 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
4904 {
4905 struct l2_dtable *l2;
4906 pd_entry_t *pl1pd, l1pd;
4907 pt_entry_t *ptep;
4908 u_short l1idx;
4909
4910 if (pm->pm_l1 == NULL)
4911 return false;
4912
4913 l1idx = L1_IDX(va);
4914 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
4915 l1pd = *pl1pd;
4916
4917 if (l1pte_section_p(l1pd)) {
4918 *ptp = NULL;
4919 return true;
4920 }
4921
4922 if (pm->pm_l2 == NULL)
4923 return false;
4924
4925 l2 = pm->pm_l2[L2_IDX(l1idx)];
4926
4927 if (l2 == NULL ||
4928 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
4929 return false;
4930 }
4931
4932 *ptp = &ptep[l2pte_index(va)];
4933 return true;
4934 }
4935
4936 bool
4937 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
4938 {
4939 u_short l1idx;
4940
4941 if (pm->pm_l1 == NULL)
4942 return false;
4943
4944 l1idx = L1_IDX(va);
4945 *pdp = &pm->pm_l1->l1_kva[l1idx];
4946
4947 return true;
4948 }
4949
4950 /************************ Bootstrapping routines ****************************/
4951
4952 static void
4953 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
4954 {
4955 int i;
4956
4957 l1->l1_kva = l1pt;
4958 l1->l1_domain_use_count = 0;
4959 l1->l1_domain_first = 0;
4960
4961 for (i = 0; i < PMAP_DOMAINS; i++)
4962 l1->l1_domain_free[i] = i + 1;
4963
4964 /*
4965 * Copy the kernel's L1 entries to each new L1.
4966 */
4967 if (pmap_initialized)
4968 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
4969
4970 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
4971 &l1->l1_physaddr) == false)
4972 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
4973
4974 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
4975 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
4976 }
4977
4978 /*
4979 * pmap_bootstrap() is called from the board-specific initarm() routine
4980 * once the kernel L1/L2 descriptors tables have been set up.
4981 *
4982 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
4983 * spread over a number of disparate files/functions.
4984 *
4985 * We are passed the following parameters
4986 * - kernel_l1pt
4987 * This is a pointer to the base of the kernel's L1 translation table.
4988 * - vstart
4989 * 1MB-aligned start of managed kernel virtual memory.
4990 * - vend
4991 * 1MB-aligned end of managed kernel virtual memory.
4992 *
4993 * We use the first parameter to build the metadata (struct l1_ttable and
4994 * struct l2_dtable) necessary to track kernel mappings.
4995 */
4996 #define PMAP_STATIC_L2_SIZE 16
4997 void
4998 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
4999 {
5000 static struct l1_ttable static_l1;
5001 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5002 struct l1_ttable *l1 = &static_l1;
5003 struct l2_dtable *l2;
5004 struct l2_bucket *l2b;
5005 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5006 pmap_t pm = pmap_kernel();
5007 pd_entry_t pde;
5008 pt_entry_t *ptep;
5009 paddr_t pa;
5010 vaddr_t va;
5011 vsize_t size;
5012 int nptes, l1idx, l2idx, l2next = 0;
5013
5014 /*
5015 * Initialise the kernel pmap object
5016 */
5017 pm->pm_l1 = l1;
5018 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5019 pm->pm_activated = true;
5020 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5021 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5022
5023 /*
5024 * Scan the L1 translation table created by initarm() and create
5025 * the required metadata for all valid mappings found in it.
5026 */
5027 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5028 pde = l1pt[l1idx];
5029
5030 /*
5031 * We're only interested in Coarse mappings.
5032 * pmap_extract() can deal with section mappings without
5033 * recourse to checking L2 metadata.
5034 */
5035 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5036 continue;
5037
5038 /*
5039 * Lookup the KVA of this L2 descriptor table
5040 */
5041 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5042 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5043 if (ptep == NULL) {
5044 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5045 (u_int)l1idx << L1_S_SHIFT, pa);
5046 }
5047
5048 /*
5049 * Fetch the associated L2 metadata structure.
5050 * Allocate a new one if necessary.
5051 */
5052 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5053 if (l2next == PMAP_STATIC_L2_SIZE)
5054 panic("pmap_bootstrap: out of static L2s");
5055 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5056 }
5057
5058 /*
5059 * One more L1 slot tracked...
5060 */
5061 l2->l2_occupancy++;
5062
5063 /*
5064 * Fill in the details of the L2 descriptor in the
5065 * appropriate bucket.
5066 */
5067 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5068 l2b->l2b_kva = ptep;
5069 l2b->l2b_phys = pa;
5070 l2b->l2b_l1idx = l1idx;
5071
5072 /*
5073 * Establish an initial occupancy count for this descriptor
5074 */
5075 for (l2idx = 0;
5076 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5077 l2idx++) {
5078 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5079 l2b->l2b_occupancy++;
5080 }
5081 }
5082
5083 /*
5084 * Make sure the descriptor itself has the correct cache mode.
5085 * If not, fix it, but whine about the problem. Port-meisters
5086 * should consider this a clue to fix up their initarm()
5087 * function. :)
5088 */
5089 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5090 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5091 "L2 pte @ %p\n", ptep);
5092 }
5093 }
5094
5095 /*
5096 * Ensure the primary (kernel) L1 has the correct cache mode for
5097 * a page table. Bitch if it is not correctly set.
5098 */
5099 for (va = (vaddr_t)l1pt;
5100 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5101 if (pmap_set_pt_cache_mode(l1pt, va))
5102 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5103 "primary L1 @ 0x%lx\n", va);
5104 }
5105
5106 cpu_dcache_wbinv_all();
5107 cpu_tlb_flushID();
5108 cpu_cpwait();
5109
5110 /*
5111 * now we allocate the "special" VAs which are used for tmp mappings
5112 * by the pmap (and other modules). we allocate the VAs by advancing
5113 * virtual_avail (note that there are no pages mapped at these VAs).
5114 *
5115 * Managed KVM space start from wherever initarm() tells us.
5116 */
5117 virtual_avail = vstart;
5118 virtual_end = vend;
5119
5120 #ifdef PMAP_CACHE_VIPT
5121 /*
5122 * If we have a VIPT cache, we need one page/pte per possible alias
5123 * page so we won't violate cache aliasing rules.
5124 */
5125 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5126 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5127 #else
5128 nptes = 1;
5129 #endif
5130 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5131 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5132 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5133 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5134 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5135 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5136 (void *)&msgbufaddr, NULL);
5137
5138 /*
5139 * Allocate a range of kernel virtual address space to be used
5140 * for L2 descriptor tables and metadata allocation in
5141 * pmap_growkernel().
5142 */
5143 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5144 pmap_alloc_specials(&virtual_avail,
5145 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5146 &pmap_kernel_l2ptp_kva, NULL);
5147
5148 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5149 pmap_alloc_specials(&virtual_avail,
5150 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5151 &pmap_kernel_l2dtable_kva, NULL);
5152
5153 /*
5154 * init the static-global locks and global pmap list.
5155 */
5156 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5157
5158 /*
5159 * We can now initialise the first L1's metadata.
5160 */
5161 SLIST_INIT(&l1_list);
5162 TAILQ_INIT(&l1_lru_list);
5163 simple_lock_init(&l1_lru_lock);
5164 pmap_init_l1(l1, l1pt);
5165
5166 /* Set up vector page L1 details, if necessary */
5167 if (vector_page < KERNEL_BASE) {
5168 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5169 l2b = pmap_get_l2_bucket(pm, vector_page);
5170 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5171 L1_C_DOM(pm->pm_domain);
5172 } else
5173 pm->pm_pl1vec = NULL;
5174
5175 /*
5176 * Initialize the pmap cache
5177 */
5178 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5179 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5180 LIST_INIT(&pmap_pmaps);
5181 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5182
5183 /*
5184 * Initialize the pv pool.
5185 */
5186 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5187 &pmap_bootstrap_pv_allocator, IPL_NONE);
5188
5189 /*
5190 * Initialize the L2 dtable pool and cache.
5191 */
5192 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5193 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5194
5195 /*
5196 * Initialise the L2 descriptor table pool and cache
5197 */
5198 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5199 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5200 pmap_l2ptp_ctor, NULL, NULL);
5201
5202 cpu_dcache_wbinv_all();
5203 }
5204
5205 static int
5206 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5207 {
5208 pd_entry_t *pdep, pde;
5209 pt_entry_t *ptep, pte;
5210 vaddr_t pa;
5211 int rv = 0;
5212
5213 /*
5214 * Make sure the descriptor itself has the correct cache mode
5215 */
5216 pdep = &kl1[L1_IDX(va)];
5217 pde = *pdep;
5218
5219 if (l1pte_section_p(pde)) {
5220 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5221 *pdep = (pde & ~L1_S_CACHE_MASK) |
5222 pte_l1_s_cache_mode_pt;
5223 PTE_SYNC(pdep);
5224 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5225 rv = 1;
5226 }
5227 } else {
5228 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5229 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5230 if (ptep == NULL)
5231 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5232
5233 ptep = &ptep[l2pte_index(va)];
5234 pte = *ptep;
5235 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5236 *ptep = (pte & ~L2_S_CACHE_MASK) |
5237 pte_l2_s_cache_mode_pt;
5238 PTE_SYNC(ptep);
5239 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5240 rv = 1;
5241 }
5242 }
5243
5244 return (rv);
5245 }
5246
5247 static void
5248 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5249 {
5250 vaddr_t va = *availp;
5251 struct l2_bucket *l2b;
5252
5253 if (ptep) {
5254 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5255 if (l2b == NULL)
5256 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5257
5258 if (ptep)
5259 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5260 }
5261
5262 *vap = va;
5263 *availp = va + (PAGE_SIZE * pages);
5264 }
5265
5266 void
5267 pmap_init(void)
5268 {
5269 extern int physmem;
5270
5271 /*
5272 * Set the available memory vars - These do not map to real memory
5273 * addresses and cannot as the physical memory is fragmented.
5274 * They are used by ps for %mem calculations.
5275 * One could argue whether this should be the entire memory or just
5276 * the memory that is useable in a user process.
5277 */
5278 avail_start = 0;
5279 avail_end = physmem * PAGE_SIZE;
5280
5281 /*
5282 * Now we need to free enough pv_entry structures to allow us to get
5283 * the kmem_map/kmem_object allocated and inited (done after this
5284 * function is finished). to do this we allocate one bootstrap page out
5285 * of kernel_map and use it to provide an initial pool of pv_entry
5286 * structures. we never free this page.
5287 */
5288 pool_setlowat(&pmap_pv_pool,
5289 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5290
5291 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5292 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5293 UVM_KMF_WIRED|UVM_KMF_ZERO);
5294
5295 pmap_initialized = true;
5296 }
5297
5298 static vaddr_t last_bootstrap_page = 0;
5299 static void *free_bootstrap_pages = NULL;
5300
5301 static void *
5302 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5303 {
5304 extern void *pool_page_alloc(struct pool *, int);
5305 vaddr_t new_page;
5306 void *rv;
5307
5308 if (pmap_initialized)
5309 return (pool_page_alloc(pp, flags));
5310
5311 if (free_bootstrap_pages) {
5312 rv = free_bootstrap_pages;
5313 free_bootstrap_pages = *((void **)rv);
5314 return (rv);
5315 }
5316
5317 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5318 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5319
5320 KASSERT(new_page > last_bootstrap_page);
5321 last_bootstrap_page = new_page;
5322 return ((void *)new_page);
5323 }
5324
5325 static void
5326 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5327 {
5328 extern void pool_page_free(struct pool *, void *);
5329
5330 if ((vaddr_t)v <= last_bootstrap_page) {
5331 *((void **)v) = free_bootstrap_pages;
5332 free_bootstrap_pages = v;
5333 return;
5334 }
5335
5336 if (pmap_initialized) {
5337 pool_page_free(pp, v);
5338 return;
5339 }
5340 }
5341
5342 /*
5343 * pmap_postinit()
5344 *
5345 * This routine is called after the vm and kmem subsystems have been
5346 * initialised. This allows the pmap code to perform any initialisation
5347 * that can only be done one the memory allocation is in place.
5348 */
5349 void
5350 pmap_postinit(void)
5351 {
5352 extern paddr_t physical_start, physical_end;
5353 struct l2_bucket *l2b;
5354 struct l1_ttable *l1;
5355 struct pglist plist;
5356 struct vm_page *m;
5357 pd_entry_t *pl1pt;
5358 pt_entry_t *ptep, pte;
5359 vaddr_t va, eva;
5360 u_int loop, needed;
5361 int error;
5362
5363 pool_cache_setlowat(&pmap_l2ptp_cache,
5364 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5365 pool_cache_setlowat(&pmap_l2dtable_cache,
5366 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5367
5368 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5369 needed -= 1;
5370
5371 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5372
5373 for (loop = 0; loop < needed; loop++, l1++) {
5374 /* Allocate a L1 page table */
5375 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5376 if (va == 0)
5377 panic("Cannot allocate L1 KVM");
5378
5379 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5380 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5381 if (error)
5382 panic("Cannot allocate L1 physical pages");
5383
5384 m = TAILQ_FIRST(&plist);
5385 eva = va + L1_TABLE_SIZE;
5386 pl1pt = (pd_entry_t *)va;
5387
5388 while (m && va < eva) {
5389 paddr_t pa = VM_PAGE_TO_PHYS(m);
5390
5391 pmap_kenter_pa(va, pa,
5392 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
5393
5394 /*
5395 * Make sure the L1 descriptor table is mapped
5396 * with the cache-mode set to write-through.
5397 */
5398 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5399 ptep = &l2b->l2b_kva[l2pte_index(va)];
5400 pte = *ptep;
5401 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5402 *ptep = pte;
5403 PTE_SYNC(ptep);
5404 cpu_tlb_flushD_SE(va);
5405
5406 va += PAGE_SIZE;
5407 m = TAILQ_NEXT(m, pageq.queue);
5408 }
5409
5410 #ifdef DIAGNOSTIC
5411 if (m)
5412 panic("pmap_alloc_l1pt: pglist not empty");
5413 #endif /* DIAGNOSTIC */
5414
5415 pmap_init_l1(l1, pl1pt);
5416 }
5417
5418 #ifdef DEBUG
5419 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5420 needed);
5421 #endif
5422 }
5423
5424 /*
5425 * Note that the following routines are used by board-specific initialisation
5426 * code to configure the initial kernel page tables.
5427 *
5428 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5429 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5430 * behaviour of the old pmap, and provides an easy migration path for
5431 * initial bring-up of the new pmap on existing ports. Fortunately,
5432 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5433 * will be deprecated.
5434 *
5435 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5436 * tables.
5437 */
5438
5439 /*
5440 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5441 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5442 * find them as necessary.
5443 *
5444 * Note that the data on this list MUST remain valid after initarm() returns,
5445 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5446 */
5447 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5448
5449 static vaddr_t
5450 kernel_pt_lookup(paddr_t pa)
5451 {
5452 pv_addr_t *pv;
5453
5454 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5455 #ifndef ARM32_NEW_VM_LAYOUT
5456 if (pv->pv_pa == (pa & ~PGOFSET))
5457 return (pv->pv_va | (pa & PGOFSET));
5458 #else
5459 if (pv->pv_pa == pa)
5460 return (pv->pv_va);
5461 #endif
5462 }
5463 return (0);
5464 }
5465
5466 /*
5467 * pmap_map_section:
5468 *
5469 * Create a single section mapping.
5470 */
5471 void
5472 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5473 {
5474 pd_entry_t *pde = (pd_entry_t *) l1pt;
5475 pd_entry_t fl;
5476
5477 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5478
5479 switch (cache) {
5480 case PTE_NOCACHE:
5481 default:
5482 fl = 0;
5483 break;
5484
5485 case PTE_CACHE:
5486 fl = pte_l1_s_cache_mode;
5487 break;
5488
5489 case PTE_PAGETABLE:
5490 fl = pte_l1_s_cache_mode_pt;
5491 break;
5492 }
5493
5494 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5495 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5496 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5497 }
5498
5499 /*
5500 * pmap_map_entry:
5501 *
5502 * Create a single page mapping.
5503 */
5504 void
5505 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5506 {
5507 pd_entry_t *pde = (pd_entry_t *) l1pt;
5508 pt_entry_t fl;
5509 pt_entry_t *pte;
5510
5511 KASSERT(((va | pa) & PGOFSET) == 0);
5512
5513 switch (cache) {
5514 case PTE_NOCACHE:
5515 default:
5516 fl = 0;
5517 break;
5518
5519 case PTE_CACHE:
5520 fl = pte_l2_s_cache_mode;
5521 break;
5522
5523 case PTE_PAGETABLE:
5524 fl = pte_l2_s_cache_mode_pt;
5525 break;
5526 }
5527
5528 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5529 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5530
5531 #ifndef ARM32_NEW_VM_LAYOUT
5532 pte = (pt_entry_t *)
5533 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5534 #else
5535 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5536 #endif
5537 if (pte == NULL)
5538 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5539
5540 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5541 #ifndef ARM32_NEW_VM_LAYOUT
5542 pte += (va >> PGSHIFT) & 0x3ff;
5543 #else
5544 pte += l2pte_index(va);
5545 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5546 #endif
5547 *pte = fl;
5548 PTE_SYNC(pte);
5549 }
5550
5551 /*
5552 * pmap_link_l2pt:
5553 *
5554 * Link the L2 page table specified by "l2pv" into the L1
5555 * page table at the slot for "va".
5556 */
5557 void
5558 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5559 {
5560 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5561 u_int slot = va >> L1_S_SHIFT;
5562
5563 #ifndef ARM32_NEW_VM_LAYOUT
5564 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5565 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5566 #endif
5567
5568 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5569
5570 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5571 #ifdef ARM32_NEW_VM_LAYOUT
5572 PTE_SYNC(&pde[slot]);
5573 #else
5574 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5575 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5576 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5577 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5578 #endif
5579
5580 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5581 }
5582
5583 /*
5584 * pmap_map_chunk:
5585 *
5586 * Map a chunk of memory using the most efficient mappings
5587 * possible (section, large page, small page) into the
5588 * provided L1 and L2 tables at the specified virtual address.
5589 */
5590 vsize_t
5591 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5592 int prot, int cache)
5593 {
5594 pd_entry_t *pde = (pd_entry_t *) l1pt;
5595 pt_entry_t *pte, f1, f2s, f2l;
5596 vsize_t resid;
5597 int i;
5598
5599 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5600
5601 if (l1pt == 0)
5602 panic("pmap_map_chunk: no L1 table provided");
5603
5604 #ifdef VERBOSE_INIT_ARM
5605 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5606 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5607 #endif
5608
5609 switch (cache) {
5610 case PTE_NOCACHE:
5611 default:
5612 f1 = 0;
5613 f2l = 0;
5614 f2s = 0;
5615 break;
5616
5617 case PTE_CACHE:
5618 f1 = pte_l1_s_cache_mode;
5619 f2l = pte_l2_l_cache_mode;
5620 f2s = pte_l2_s_cache_mode;
5621 break;
5622
5623 case PTE_PAGETABLE:
5624 f1 = pte_l1_s_cache_mode_pt;
5625 f2l = pte_l2_l_cache_mode_pt;
5626 f2s = pte_l2_s_cache_mode_pt;
5627 break;
5628 }
5629
5630 size = resid;
5631
5632 while (resid > 0) {
5633 /* See if we can use a section mapping. */
5634 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5635 #ifdef VERBOSE_INIT_ARM
5636 printf("S");
5637 #endif
5638 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5639 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5640 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5641 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5642 va += L1_S_SIZE;
5643 pa += L1_S_SIZE;
5644 resid -= L1_S_SIZE;
5645 continue;
5646 }
5647
5648 /*
5649 * Ok, we're going to use an L2 table. Make sure
5650 * one is actually in the corresponding L1 slot
5651 * for the current VA.
5652 */
5653 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5654 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5655
5656 #ifndef ARM32_NEW_VM_LAYOUT
5657 pte = (pt_entry_t *)
5658 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5659 #else
5660 pte = (pt_entry_t *) kernel_pt_lookup(
5661 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5662 #endif
5663 if (pte == NULL)
5664 panic("pmap_map_chunk: can't find L2 table for VA"
5665 "0x%08lx", va);
5666
5667 /* See if we can use a L2 large page mapping. */
5668 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5669 #ifdef VERBOSE_INIT_ARM
5670 printf("L");
5671 #endif
5672 for (i = 0; i < 16; i++) {
5673 #ifndef ARM32_NEW_VM_LAYOUT
5674 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5675 L2_L_PROTO | pa |
5676 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5677 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5678 #else
5679 pte[l2pte_index(va) + i] =
5680 L2_L_PROTO | pa |
5681 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5682 PTE_SYNC(&pte[l2pte_index(va) + i]);
5683 #endif
5684 }
5685 va += L2_L_SIZE;
5686 pa += L2_L_SIZE;
5687 resid -= L2_L_SIZE;
5688 continue;
5689 }
5690
5691 /* Use a small page mapping. */
5692 #ifdef VERBOSE_INIT_ARM
5693 printf("P");
5694 #endif
5695 #ifndef ARM32_NEW_VM_LAYOUT
5696 pte[(va >> PGSHIFT) & 0x3ff] =
5697 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5698 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5699 #else
5700 pte[l2pte_index(va)] =
5701 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5702 PTE_SYNC(&pte[l2pte_index(va)]);
5703 #endif
5704 va += PAGE_SIZE;
5705 pa += PAGE_SIZE;
5706 resid -= PAGE_SIZE;
5707 }
5708 #ifdef VERBOSE_INIT_ARM
5709 printf("\n");
5710 #endif
5711 return (size);
5712 }
5713
5714 /********************** Static device map routines ***************************/
5715
5716 static const struct pmap_devmap *pmap_devmap_table;
5717
5718 /*
5719 * Register the devmap table. This is provided in case early console
5720 * initialization needs to register mappings created by bootstrap code
5721 * before pmap_devmap_bootstrap() is called.
5722 */
5723 void
5724 pmap_devmap_register(const struct pmap_devmap *table)
5725 {
5726
5727 pmap_devmap_table = table;
5728 }
5729
5730 /*
5731 * Map all of the static regions in the devmap table, and remember
5732 * the devmap table so other parts of the kernel can look up entries
5733 * later.
5734 */
5735 void
5736 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5737 {
5738 int i;
5739
5740 pmap_devmap_table = table;
5741
5742 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5743 #ifdef VERBOSE_INIT_ARM
5744 printf("devmap: %08lx -> %08lx @ %08lx\n",
5745 pmap_devmap_table[i].pd_pa,
5746 pmap_devmap_table[i].pd_pa +
5747 pmap_devmap_table[i].pd_size - 1,
5748 pmap_devmap_table[i].pd_va);
5749 #endif
5750 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5751 pmap_devmap_table[i].pd_pa,
5752 pmap_devmap_table[i].pd_size,
5753 pmap_devmap_table[i].pd_prot,
5754 pmap_devmap_table[i].pd_cache);
5755 }
5756 }
5757
5758 const struct pmap_devmap *
5759 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5760 {
5761 uint64_t endpa;
5762 int i;
5763
5764 if (pmap_devmap_table == NULL)
5765 return (NULL);
5766
5767 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5768
5769 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5770 if (pa >= pmap_devmap_table[i].pd_pa &&
5771 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5772 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5773 return (&pmap_devmap_table[i]);
5774 }
5775
5776 return (NULL);
5777 }
5778
5779 const struct pmap_devmap *
5780 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5781 {
5782 int i;
5783
5784 if (pmap_devmap_table == NULL)
5785 return (NULL);
5786
5787 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5788 if (va >= pmap_devmap_table[i].pd_va &&
5789 va + size - 1 <= pmap_devmap_table[i].pd_va +
5790 pmap_devmap_table[i].pd_size - 1)
5791 return (&pmap_devmap_table[i]);
5792 }
5793
5794 return (NULL);
5795 }
5796
5797 /********************** PTE initialization routines **************************/
5798
5799 /*
5800 * These routines are called when the CPU type is identified to set up
5801 * the PTE prototypes, cache modes, etc.
5802 *
5803 * The variables are always here, just in case modules need to reference
5804 * them (though, they shouldn't).
5805 */
5806
5807 pt_entry_t pte_l1_s_cache_mode;
5808 pt_entry_t pte_l1_s_cache_mode_pt;
5809 pt_entry_t pte_l1_s_cache_mask;
5810
5811 pt_entry_t pte_l2_l_cache_mode;
5812 pt_entry_t pte_l2_l_cache_mode_pt;
5813 pt_entry_t pte_l2_l_cache_mask;
5814
5815 pt_entry_t pte_l2_s_cache_mode;
5816 pt_entry_t pte_l2_s_cache_mode_pt;
5817 pt_entry_t pte_l2_s_cache_mask;
5818
5819 pt_entry_t pte_l2_s_prot_u;
5820 pt_entry_t pte_l2_s_prot_w;
5821 pt_entry_t pte_l2_s_prot_mask;
5822
5823 pt_entry_t pte_l1_s_proto;
5824 pt_entry_t pte_l1_c_proto;
5825 pt_entry_t pte_l2_s_proto;
5826
5827 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5828 void (*pmap_zero_page_func)(paddr_t);
5829
5830 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5831 void
5832 pmap_pte_init_generic(void)
5833 {
5834
5835 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5836 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5837
5838 pte_l2_l_cache_mode = L2_B|L2_C;
5839 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5840
5841 pte_l2_s_cache_mode = L2_B|L2_C;
5842 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5843
5844 /*
5845 * If we have a write-through cache, set B and C. If
5846 * we have a write-back cache, then we assume setting
5847 * only C will make those pages write-through.
5848 */
5849 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5850 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5851 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5852 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5853 } else {
5854 #if ARM_MMU_V6 > 1
5855 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5856 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5857 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5858 #else
5859 pte_l1_s_cache_mode_pt = L1_S_C;
5860 pte_l2_l_cache_mode_pt = L2_C;
5861 pte_l2_s_cache_mode_pt = L2_C;
5862 #endif
5863 }
5864
5865 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5866 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5867 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5868
5869 pte_l1_s_proto = L1_S_PROTO_generic;
5870 pte_l1_c_proto = L1_C_PROTO_generic;
5871 pte_l2_s_proto = L2_S_PROTO_generic;
5872
5873 pmap_copy_page_func = pmap_copy_page_generic;
5874 pmap_zero_page_func = pmap_zero_page_generic;
5875 }
5876
5877 #if defined(CPU_ARM8)
5878 void
5879 pmap_pte_init_arm8(void)
5880 {
5881
5882 /*
5883 * ARM8 is compatible with generic, but we need to use
5884 * the page tables uncached.
5885 */
5886 pmap_pte_init_generic();
5887
5888 pte_l1_s_cache_mode_pt = 0;
5889 pte_l2_l_cache_mode_pt = 0;
5890 pte_l2_s_cache_mode_pt = 0;
5891 }
5892 #endif /* CPU_ARM8 */
5893
5894 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
5895 void
5896 pmap_pte_init_arm9(void)
5897 {
5898
5899 /*
5900 * ARM9 is compatible with generic, but we want to use
5901 * write-through caching for now.
5902 */
5903 pmap_pte_init_generic();
5904
5905 pte_l1_s_cache_mode = L1_S_C;
5906 pte_l2_l_cache_mode = L2_C;
5907 pte_l2_s_cache_mode = L2_C;
5908
5909 pte_l1_s_cache_mode_pt = L1_S_C;
5910 pte_l2_l_cache_mode_pt = L2_C;
5911 pte_l2_s_cache_mode_pt = L2_C;
5912 }
5913 #endif /* CPU_ARM9 */
5914 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5915
5916 #if defined(CPU_ARM10)
5917 void
5918 pmap_pte_init_arm10(void)
5919 {
5920
5921 /*
5922 * ARM10 is compatible with generic, but we want to use
5923 * write-through caching for now.
5924 */
5925 pmap_pte_init_generic();
5926
5927 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
5928 pte_l2_l_cache_mode = L2_B | L2_C;
5929 pte_l2_s_cache_mode = L2_B | L2_C;
5930
5931 pte_l1_s_cache_mode_pt = L1_S_C;
5932 pte_l2_l_cache_mode_pt = L2_C;
5933 pte_l2_s_cache_mode_pt = L2_C;
5934
5935 }
5936 #endif /* CPU_ARM10 */
5937
5938 #if ARM_MMU_SA1 == 1
5939 void
5940 pmap_pte_init_sa1(void)
5941 {
5942
5943 /*
5944 * The StrongARM SA-1 cache does not have a write-through
5945 * mode. So, do the generic initialization, then reset
5946 * the page table cache mode to B=1,C=1, and note that
5947 * the PTEs need to be sync'd.
5948 */
5949 pmap_pte_init_generic();
5950
5951 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5952 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5953 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5954
5955 pmap_needs_pte_sync = 1;
5956 }
5957 #endif /* ARM_MMU_SA1 == 1*/
5958
5959 #if ARM_MMU_XSCALE == 1
5960 #if (ARM_NMMUS > 1)
5961 static u_int xscale_use_minidata;
5962 #endif
5963
5964 void
5965 pmap_pte_init_xscale(void)
5966 {
5967 uint32_t auxctl;
5968 int write_through = 0;
5969
5970 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5971 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
5972
5973 pte_l2_l_cache_mode = L2_B|L2_C;
5974 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
5975
5976 pte_l2_s_cache_mode = L2_B|L2_C;
5977 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
5978
5979 pte_l1_s_cache_mode_pt = L1_S_C;
5980 pte_l2_l_cache_mode_pt = L2_C;
5981 pte_l2_s_cache_mode_pt = L2_C;
5982
5983 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
5984 /*
5985 * The XScale core has an enhanced mode where writes that
5986 * miss the cache cause a cache line to be allocated. This
5987 * is significantly faster than the traditional, write-through
5988 * behavior of this case.
5989 */
5990 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
5991 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
5992 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
5993 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
5994
5995 #ifdef XSCALE_CACHE_WRITE_THROUGH
5996 /*
5997 * Some versions of the XScale core have various bugs in
5998 * their cache units, the work-around for which is to run
5999 * the cache in write-through mode. Unfortunately, this
6000 * has a major (negative) impact on performance. So, we
6001 * go ahead and run fast-and-loose, in the hopes that we
6002 * don't line up the planets in a way that will trip the
6003 * bugs.
6004 *
6005 * However, we give you the option to be slow-but-correct.
6006 */
6007 write_through = 1;
6008 #elif defined(XSCALE_CACHE_WRITE_BACK)
6009 /* force write back cache mode */
6010 write_through = 0;
6011 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6012 /*
6013 * Intel PXA2[15]0 processors are known to have a bug in
6014 * write-back cache on revision 4 and earlier (stepping
6015 * A[01] and B[012]). Fixed for C0 and later.
6016 */
6017 {
6018 uint32_t id, type;
6019
6020 id = cpufunc_id();
6021 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6022
6023 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6024 if ((id & CPU_ID_REVISION_MASK) < 5) {
6025 /* write through for stepping A0-1 and B0-2 */
6026 write_through = 1;
6027 }
6028 }
6029 }
6030 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6031
6032 if (write_through) {
6033 pte_l1_s_cache_mode = L1_S_C;
6034 pte_l2_l_cache_mode = L2_C;
6035 pte_l2_s_cache_mode = L2_C;
6036 }
6037
6038 #if (ARM_NMMUS > 1)
6039 xscale_use_minidata = 1;
6040 #endif
6041
6042 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6043 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6044 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6045
6046 pte_l1_s_proto = L1_S_PROTO_xscale;
6047 pte_l1_c_proto = L1_C_PROTO_xscale;
6048 pte_l2_s_proto = L2_S_PROTO_xscale;
6049
6050 pmap_copy_page_func = pmap_copy_page_xscale;
6051 pmap_zero_page_func = pmap_zero_page_xscale;
6052
6053 /*
6054 * Disable ECC protection of page table access, for now.
6055 */
6056 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6057 auxctl &= ~XSCALE_AUXCTL_P;
6058 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6059 }
6060
6061 /*
6062 * xscale_setup_minidata:
6063 *
6064 * Set up the mini-data cache clean area. We require the
6065 * caller to allocate the right amount of physically and
6066 * virtually contiguous space.
6067 */
6068 void
6069 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6070 {
6071 extern vaddr_t xscale_minidata_clean_addr;
6072 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6073 pd_entry_t *pde = (pd_entry_t *) l1pt;
6074 pt_entry_t *pte;
6075 vsize_t size;
6076 uint32_t auxctl;
6077
6078 xscale_minidata_clean_addr = va;
6079
6080 /* Round it to page size. */
6081 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6082
6083 for (; size != 0;
6084 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6085 #ifndef ARM32_NEW_VM_LAYOUT
6086 pte = (pt_entry_t *)
6087 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6088 #else
6089 pte = (pt_entry_t *) kernel_pt_lookup(
6090 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6091 #endif
6092 if (pte == NULL)
6093 panic("xscale_setup_minidata: can't find L2 table for "
6094 "VA 0x%08lx", va);
6095 #ifndef ARM32_NEW_VM_LAYOUT
6096 pte[(va >> PGSHIFT) & 0x3ff] =
6097 #else
6098 pte[l2pte_index(va)] =
6099 #endif
6100 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6101 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6102 }
6103
6104 /*
6105 * Configure the mini-data cache for write-back with
6106 * read/write-allocate.
6107 *
6108 * NOTE: In order to reconfigure the mini-data cache, we must
6109 * make sure it contains no valid data! In order to do that,
6110 * we must issue a global data cache invalidate command!
6111 *
6112 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6113 * THIS IS VERY IMPORTANT!
6114 */
6115
6116 /* Invalidate data and mini-data. */
6117 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6118 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6119 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6120 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6121 }
6122
6123 /*
6124 * Change the PTEs for the specified kernel mappings such that they
6125 * will use the mini data cache instead of the main data cache.
6126 */
6127 void
6128 pmap_uarea(vaddr_t va)
6129 {
6130 struct l2_bucket *l2b;
6131 pt_entry_t *ptep, *sptep, pte;
6132 vaddr_t next_bucket, eva;
6133
6134 #if (ARM_NMMUS > 1)
6135 if (xscale_use_minidata == 0)
6136 return;
6137 #endif
6138
6139 eva = va + USPACE;
6140
6141 while (va < eva) {
6142 next_bucket = L2_NEXT_BUCKET(va);
6143 if (next_bucket > eva)
6144 next_bucket = eva;
6145
6146 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6147 KDASSERT(l2b != NULL);
6148
6149 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6150
6151 while (va < next_bucket) {
6152 pte = *ptep;
6153 if (!l2pte_minidata(pte)) {
6154 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6155 cpu_tlb_flushD_SE(va);
6156 *ptep = pte & ~L2_B;
6157 }
6158 ptep++;
6159 va += PAGE_SIZE;
6160 }
6161 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6162 }
6163 cpu_cpwait();
6164 }
6165 #endif /* ARM_MMU_XSCALE == 1 */
6166
6167 /*
6168 * return the PA of the current L1 table, for use when handling a crash dump
6169 */
6170 uint32_t pmap_kernel_L1_addr()
6171 {
6172 return pmap_kernel()->pm_l1->l1_physaddr;
6173 }
6174
6175 #if defined(DDB)
6176 /*
6177 * A couple of ddb-callable functions for dumping pmaps
6178 */
6179 void pmap_dump_all(void);
6180 void pmap_dump(pmap_t);
6181
6182 void
6183 pmap_dump_all(void)
6184 {
6185 pmap_t pm;
6186
6187 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6188 if (pm == pmap_kernel())
6189 continue;
6190 pmap_dump(pm);
6191 printf("\n");
6192 }
6193 }
6194
6195 static pt_entry_t ncptes[64];
6196 static void pmap_dump_ncpg(pmap_t);
6197
6198 void
6199 pmap_dump(pmap_t pm)
6200 {
6201 struct l2_dtable *l2;
6202 struct l2_bucket *l2b;
6203 pt_entry_t *ptep, pte;
6204 vaddr_t l2_va, l2b_va, va;
6205 int i, j, k, occ, rows = 0;
6206
6207 if (pm == pmap_kernel())
6208 printf("pmap_kernel (%p): ", pm);
6209 else
6210 printf("user pmap (%p): ", pm);
6211
6212 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6213
6214 l2_va = 0;
6215 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6216 l2 = pm->pm_l2[i];
6217
6218 if (l2 == NULL || l2->l2_occupancy == 0)
6219 continue;
6220
6221 l2b_va = l2_va;
6222 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6223 l2b = &l2->l2_bucket[j];
6224
6225 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6226 continue;
6227
6228 ptep = l2b->l2b_kva;
6229
6230 for (k = 0; k < 256 && ptep[k] == 0; k++)
6231 ;
6232
6233 k &= ~63;
6234 occ = l2b->l2b_occupancy;
6235 va = l2b_va + (k * 4096);
6236 for (; k < 256; k++, va += 0x1000) {
6237 char ch = ' ';
6238 if ((k % 64) == 0) {
6239 if ((rows % 8) == 0) {
6240 printf(
6241 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6242 }
6243 printf("%08lx: ", va);
6244 }
6245
6246 ncptes[k & 63] = 0;
6247 pte = ptep[k];
6248 if (pte == 0) {
6249 ch = '.';
6250 } else {
6251 occ--;
6252 switch (pte & 0x0c) {
6253 case 0x00:
6254 ch = 'D'; /* No cache No buff */
6255 break;
6256 case 0x04:
6257 ch = 'B'; /* No cache buff */
6258 break;
6259 case 0x08:
6260 if (pte & 0x40)
6261 ch = 'm';
6262 else
6263 ch = 'C'; /* Cache No buff */
6264 break;
6265 case 0x0c:
6266 ch = 'F'; /* Cache Buff */
6267 break;
6268 }
6269
6270 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6271 ch += 0x20;
6272
6273 if ((pte & 0xc) == 0)
6274 ncptes[k & 63] = pte;
6275 }
6276
6277 if ((k % 64) == 63) {
6278 rows++;
6279 printf("%c\n", ch);
6280 pmap_dump_ncpg(pm);
6281 if (occ == 0)
6282 break;
6283 } else
6284 printf("%c", ch);
6285 }
6286 }
6287 }
6288 }
6289
6290 static void
6291 pmap_dump_ncpg(pmap_t pm)
6292 {
6293 struct vm_page *pg;
6294 struct pv_entry *pv;
6295 int i;
6296
6297 for (i = 0; i < 63; i++) {
6298 if (ncptes[i] == 0)
6299 continue;
6300
6301 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6302 if (pg == NULL)
6303 continue;
6304
6305 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6306 VM_PAGE_TO_PHYS(pg),
6307 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
6308 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
6309
6310 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
6311 printf(" %c va 0x%08lx, flags 0x%x\n",
6312 (pm == pv->pv_pmap) ? '*' : ' ',
6313 pv->pv_va, pv->pv_flags);
6314 }
6315 }
6316 }
6317 #endif
6318
6319 #ifdef PMAP_STEAL_MEMORY
6320 void
6321 pmap_boot_pageadd(pv_addr_t *newpv)
6322 {
6323 pv_addr_t *pv, *npv;
6324
6325 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6326 if (newpv->pv_pa < pv->pv_va) {
6327 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6328 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6329 newpv->pv_size += pv->pv_size;
6330 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6331 }
6332 pv = NULL;
6333 } else {
6334 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6335 pv = npv) {
6336 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6337 KASSERT(pv->pv_pa < newpv->pv_pa);
6338 if (newpv->pv_pa > npv->pv_pa)
6339 continue;
6340 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6341 pv->pv_size += newpv->pv_size;
6342 return;
6343 }
6344 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6345 break;
6346 newpv->pv_size += npv->pv_size;
6347 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6348 SLIST_REMOVE_AFTER(newpv, pv_list);
6349 return;
6350 }
6351 }
6352 }
6353
6354 if (pv) {
6355 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6356 } else {
6357 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6358 }
6359 }
6360
6361 void
6362 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6363 pv_addr_t *rpv)
6364 {
6365 pv_addr_t *pv, **pvp;
6366 struct vm_physseg *ps;
6367 size_t i;
6368
6369 KASSERT(amount & PGOFSET);
6370 KASSERT((mask & PGOFSET) == 0);
6371 KASSERT((match & PGOFSET) == 0);
6372 KASSERT(amount != 0);
6373
6374 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6375 (pv = *pvp) != NULL;
6376 pvp = &SLIST_NEXT(pv, pv_list)) {
6377 pv_addr_t *newpv;
6378 psize_t off;
6379 /*
6380 * If this entry is too small to satify the request...
6381 */
6382 KASSERT(pv->pv_size > 0);
6383 if (pv->pv_size < amount)
6384 continue;
6385
6386 for (off = 0; off <= mask; off += PAGE_SIZE) {
6387 if (((pv->pv_pa + off) & mask) == match
6388 && off + amount <= pv->pv_size)
6389 break;
6390 }
6391 if (off > mask)
6392 continue;
6393
6394 rpv->pv_va = pv->pv_va + off;
6395 rpv->pv_pa = pv->pv_pa + off;
6396 rpv->pv_size = amount;
6397 pv->pv_size -= amount;
6398 if (pv->pv_size == 0) {
6399 KASSERT(off == 0);
6400 KASSERT((vaddr_t) pv == rpv->pv_va);
6401 *pvp = SLIST_NEXT(pv, pv_list);
6402 } else if (off == 0) {
6403 KASSERT((vaddr_t) pv == rpv->pv_va);
6404 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6405 *newpv = *pv;
6406 newpv->pv_pa += amount;
6407 newpv->pv_va += amount;
6408 *pvp = newpv;
6409 } else if (off < pv->pv_size) {
6410 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6411 *newpv = *pv;
6412 newpv->pv_size -= off;
6413 newpv->pv_pa += off + amount;
6414 newpv->pv_va += off + amount;
6415
6416 SLIST_NEXT(pv, pv_list) = newpv;
6417 pv->pv_size = off;
6418 } else {
6419 KASSERT((vaddr_t) pv != rpv->pv_va);
6420 }
6421 memset((void *)rpv->pv_va, 0, amount);
6422 return;
6423 }
6424
6425 if (vm_nphysseg == 0)
6426 panic("pmap_boot_pagealloc: couldn't allocate memory");
6427
6428 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6429 (pv = *pvp) != NULL;
6430 pvp = &SLIST_NEXT(pv, pv_list)) {
6431 if (SLIST_NEXT(pv, pv_list) == NULL)
6432 break;
6433 }
6434 KASSERT(mask == 0);
6435 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
6436 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6437 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6438 rpv->pv_va = pv->pv_va;
6439 rpv->pv_pa = pv->pv_pa;
6440 rpv->pv_size = amount;
6441 *pvp = NULL;
6442 pmap_map_chunk(kernel_l1pt.pv_va,
6443 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6444 ptoa(ps->avail_start),
6445 amount - pv->pv_size,
6446 VM_PROT_READ|VM_PROT_WRITE,
6447 PTE_CACHE);
6448 ps->avail_start += atop(amount - pv->pv_size);
6449 /*
6450 * If we consumed the entire physseg, remove it.
6451 */
6452 if (ps->avail_start == ps->avail_end) {
6453 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6454 ps[0] = ps[1];
6455 }
6456 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6457 return;
6458 }
6459 }
6460
6461 panic("pmap_boot_pagealloc: couldn't allocate memory");
6462 }
6463
6464 vaddr_t
6465 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6466 {
6467 pv_addr_t pv;
6468
6469 pmap_boot_pagealloc(size, 0, 0, &pv);
6470
6471 return pv.pv_va;
6472 }
6473 #endif /* PMAP_STEAL_MEMORY */
6474
6475 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6476 {
6477 sysctl_createv(clog, 0, NULL, NULL,
6478 CTLFLAG_PERMANENT,
6479 CTLTYPE_NODE, "machdep", NULL,
6480 NULL, 0, NULL, 0,
6481 CTL_MACHDEP, CTL_EOL);
6482
6483 sysctl_createv(clog, 0, NULL, NULL,
6484 CTLFLAG_PERMANENT,
6485 CTLTYPE_INT, "kmpages",
6486 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6487 NULL, 0, &pmap_kmpages, 0,
6488 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6489 }
6490