pmap.c revision 1.193 1 /* $NetBSD: pmap.c,v 1.193 2008/12/10 11:10:18 pooka Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/user.h>
202 #include <sys/pool.h>
203 #include <sys/cdefs.h>
204 #include <sys/cpu.h>
205 #include <sys/sysctl.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.193 2008/12/10 11:10:18 pooka Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260
261 /*
262 * Which pmap is currently 'live' in the cache
263 *
264 * XXXSCW: Fix for SMP ...
265 */
266 static pmap_t pmap_recent_user;
267
268 /*
269 * Pointer to last active lwp, or NULL if it exited.
270 */
271 struct lwp *pmap_previous_active_lwp;
272
273 /*
274 * Pool and cache that pmap structures are allocated from.
275 * We use a cache to avoid clearing the pm_l2[] array (1KB)
276 * in pmap_create().
277 */
278 static struct pool_cache pmap_cache;
279 static LIST_HEAD(, pmap) pmap_pmaps;
280
281 /*
282 * Pool of PV structures
283 */
284 static struct pool pmap_pv_pool;
285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
288 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
289 };
290
291 /*
292 * Pool and cache of l2_dtable structures.
293 * We use a cache to avoid clearing the structures when they're
294 * allocated. (196 bytes)
295 */
296 static struct pool_cache pmap_l2dtable_cache;
297 static vaddr_t pmap_kernel_l2dtable_kva;
298
299 /*
300 * Pool and cache of L2 page descriptors.
301 * We use a cache to avoid clearing the descriptor table
302 * when they're allocated. (1KB)
303 */
304 static struct pool_cache pmap_l2ptp_cache;
305 static vaddr_t pmap_kernel_l2ptp_kva;
306 static paddr_t pmap_kernel_l2ptp_phys;
307
308 #ifdef PMAPCOUNTERS
309 #define PMAP_EVCNT_INITIALIZER(name) \
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
311
312 #ifdef PMAP_CACHE_VIPT
313 static struct evcnt pmap_ev_vac_color_new =
314 PMAP_EVCNT_INITIALIZER("new page color");
315 static struct evcnt pmap_ev_vac_color_reuse =
316 PMAP_EVCNT_INITIALIZER("ok first page color");
317 static struct evcnt pmap_ev_vac_color_ok =
318 PMAP_EVCNT_INITIALIZER("ok page color");
319 static struct evcnt pmap_ev_vac_color_blind =
320 PMAP_EVCNT_INITIALIZER("blind page color");
321 static struct evcnt pmap_ev_vac_color_change =
322 PMAP_EVCNT_INITIALIZER("change page color");
323 static struct evcnt pmap_ev_vac_color_erase =
324 PMAP_EVCNT_INITIALIZER("erase page color");
325 static struct evcnt pmap_ev_vac_color_none =
326 PMAP_EVCNT_INITIALIZER("no page color");
327 static struct evcnt pmap_ev_vac_color_restore =
328 PMAP_EVCNT_INITIALIZER("restore page color");
329
330 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
331 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
337 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
338 #endif
339
340 static struct evcnt pmap_ev_mappings =
341 PMAP_EVCNT_INITIALIZER("pages mapped");
342 static struct evcnt pmap_ev_unmappings =
343 PMAP_EVCNT_INITIALIZER("pages unmapped");
344 static struct evcnt pmap_ev_remappings =
345 PMAP_EVCNT_INITIALIZER("pages remapped");
346
347 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
348 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
349 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
350
351 static struct evcnt pmap_ev_kernel_mappings =
352 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
353 static struct evcnt pmap_ev_kernel_unmappings =
354 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
355 static struct evcnt pmap_ev_kernel_remappings =
356 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
357
358 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
359 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
360 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
361
362 static struct evcnt pmap_ev_kenter_mappings =
363 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
364 static struct evcnt pmap_ev_kenter_unmappings =
365 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
366 static struct evcnt pmap_ev_kenter_remappings =
367 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
368 static struct evcnt pmap_ev_pt_mappings =
369 PMAP_EVCNT_INITIALIZER("page table pages mapped");
370
371 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
374 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
375
376 #ifdef PMAP_CACHE_VIPT
377 static struct evcnt pmap_ev_exec_mappings =
378 PMAP_EVCNT_INITIALIZER("exec pages mapped");
379 static struct evcnt pmap_ev_exec_cached =
380 PMAP_EVCNT_INITIALIZER("exec pages cached");
381
382 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
383 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
384
385 static struct evcnt pmap_ev_exec_synced =
386 PMAP_EVCNT_INITIALIZER("exec pages synced");
387 static struct evcnt pmap_ev_exec_synced_map =
388 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
389 static struct evcnt pmap_ev_exec_synced_unmap =
390 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
391 static struct evcnt pmap_ev_exec_synced_remap =
392 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
393 static struct evcnt pmap_ev_exec_synced_clearbit =
394 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
395 static struct evcnt pmap_ev_exec_synced_kremove =
396 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
400 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
401 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
402 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
403 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
404
405 static struct evcnt pmap_ev_exec_discarded_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
407 static struct evcnt pmap_ev_exec_discarded_zero =
408 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
409 static struct evcnt pmap_ev_exec_discarded_copy =
410 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
411 static struct evcnt pmap_ev_exec_discarded_page_protect =
412 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
413 static struct evcnt pmap_ev_exec_discarded_clearbit =
414 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
415 static struct evcnt pmap_ev_exec_discarded_kremove =
416 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
417
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
420 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
421 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
422 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
423 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
424 #endif /* PMAP_CACHE_VIPT */
425
426 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
427 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
428 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
429
430 EVCNT_ATTACH_STATIC(pmap_ev_updates);
431 EVCNT_ATTACH_STATIC(pmap_ev_collects);
432 EVCNT_ATTACH_STATIC(pmap_ev_activations);
433
434 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
435 #else
436 #define PMAPCOUNT(x) ((void)0)
437 #endif
438
439 /*
440 * pmap copy/zero page, and mem(5) hook point
441 */
442 static pt_entry_t *csrc_pte, *cdst_pte;
443 static vaddr_t csrcp, cdstp;
444 vaddr_t memhook; /* used by mem.c */
445 kmutex_t memlock; /* used by mem.c */
446 void *zeropage; /* used by mem.c */
447 extern void *msgbufaddr;
448 int pmap_kmpages;
449 /*
450 * Flag to indicate if pmap_init() has done its thing
451 */
452 bool pmap_initialized;
453
454 /*
455 * Misc. locking data structures
456 */
457
458 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
459 static struct lock pmap_main_lock;
460
461 #define PMAP_MAP_TO_HEAD_LOCK() \
462 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
463 #define PMAP_MAP_TO_HEAD_UNLOCK() \
464 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
465 #define PMAP_HEAD_TO_MAP_LOCK() \
466 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
467 #define PMAP_HEAD_TO_MAP_UNLOCK() \
468 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
469 #else
470 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
471 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
472 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
473 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
474 #endif
475
476 #define pmap_acquire_pmap_lock(pm) \
477 do { \
478 if ((pm) != pmap_kernel()) \
479 mutex_enter(&(pm)->pm_lock); \
480 } while (/*CONSTCOND*/0)
481
482 #define pmap_release_pmap_lock(pm) \
483 do { \
484 if ((pm) != pmap_kernel()) \
485 mutex_exit(&(pm)->pm_lock); \
486 } while (/*CONSTCOND*/0)
487
488
489 /*
490 * Metadata for L1 translation tables.
491 */
492 struct l1_ttable {
493 /* Entry on the L1 Table list */
494 SLIST_ENTRY(l1_ttable) l1_link;
495
496 /* Entry on the L1 Least Recently Used list */
497 TAILQ_ENTRY(l1_ttable) l1_lru;
498
499 /* Track how many domains are allocated from this L1 */
500 volatile u_int l1_domain_use_count;
501
502 /*
503 * A free-list of domain numbers for this L1.
504 * We avoid using ffs() and a bitmap to track domains since ffs()
505 * is slow on ARM.
506 */
507 u_int8_t l1_domain_first;
508 u_int8_t l1_domain_free[PMAP_DOMAINS];
509
510 /* Physical address of this L1 page table */
511 paddr_t l1_physaddr;
512
513 /* KVA of this L1 page table */
514 pd_entry_t *l1_kva;
515 };
516
517 /*
518 * Convert a virtual address into its L1 table index. That is, the
519 * index used to locate the L2 descriptor table pointer in an L1 table.
520 * This is basically used to index l1->l1_kva[].
521 *
522 * Each L2 descriptor table represents 1MB of VA space.
523 */
524 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
525
526 /*
527 * L1 Page Tables are tracked using a Least Recently Used list.
528 * - New L1s are allocated from the HEAD.
529 * - Freed L1s are added to the TAIl.
530 * - Recently accessed L1s (where an 'access' is some change to one of
531 * the userland pmaps which owns this L1) are moved to the TAIL.
532 */
533 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
534 static struct simplelock l1_lru_lock;
535
536 /*
537 * A list of all L1 tables
538 */
539 static SLIST_HEAD(, l1_ttable) l1_list;
540
541 /*
542 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
543 *
544 * This is normally 16MB worth L2 page descriptors for any given pmap.
545 * Reference counts are maintained for L2 descriptors so they can be
546 * freed when empty.
547 */
548 struct l2_dtable {
549 /* The number of L2 page descriptors allocated to this l2_dtable */
550 u_int l2_occupancy;
551
552 /* List of L2 page descriptors */
553 struct l2_bucket {
554 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
555 paddr_t l2b_phys; /* Physical address of same */
556 u_short l2b_l1idx; /* This L2 table's L1 index */
557 u_short l2b_occupancy; /* How many active descriptors */
558 } l2_bucket[L2_BUCKET_SIZE];
559 };
560
561 /*
562 * Given an L1 table index, calculate the corresponding l2_dtable index
563 * and bucket index within the l2_dtable.
564 */
565 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
566 (L2_SIZE - 1))
567 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
568
569 /*
570 * Given a virtual address, this macro returns the
571 * virtual address required to drop into the next L2 bucket.
572 */
573 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
574
575 /*
576 * L2 allocation.
577 */
578 #define pmap_alloc_l2_dtable() \
579 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
580 #define pmap_free_l2_dtable(l2) \
581 pool_cache_put(&pmap_l2dtable_cache, (l2))
582 #define pmap_alloc_l2_ptp(pap) \
583 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
584 PR_NOWAIT, (pap)))
585
586 /*
587 * We try to map the page tables write-through, if possible. However, not
588 * all CPUs have a write-through cache mode, so on those we have to sync
589 * the cache when we frob page tables.
590 *
591 * We try to evaluate this at compile time, if possible. However, it's
592 * not always possible to do that, hence this run-time var.
593 */
594 int pmap_needs_pte_sync;
595
596 /*
597 * Real definition of pv_entry.
598 */
599 struct pv_entry {
600 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
601 pmap_t pv_pmap; /* pmap where mapping lies */
602 vaddr_t pv_va; /* virtual address for mapping */
603 u_int pv_flags; /* flags */
604 };
605
606 /*
607 * Macro to determine if a mapping might be resident in the
608 * instruction cache and/or TLB
609 */
610 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
611 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
612
613 /*
614 * Macro to determine if a mapping might be resident in the
615 * data cache and/or TLB
616 */
617 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
618
619 /*
620 * Local prototypes
621 */
622 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
623 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
624 pt_entry_t **);
625 static bool pmap_is_current(pmap_t);
626 static bool pmap_is_cached(pmap_t);
627 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
628 pmap_t, vaddr_t, u_int);
629 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
630 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
631 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
632 u_int, u_int);
633
634 static void pmap_pinit(pmap_t);
635 static int pmap_pmap_ctor(void *, void *, int);
636
637 static void pmap_alloc_l1(pmap_t);
638 static void pmap_free_l1(pmap_t);
639 static void pmap_use_l1(pmap_t);
640
641 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
642 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
643 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
644 static int pmap_l2ptp_ctor(void *, void *, int);
645 static int pmap_l2dtable_ctor(void *, void *, int);
646
647 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
648 #ifdef PMAP_CACHE_VIVT
649 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
650 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
651 #endif
652
653 static void pmap_clearbit(struct vm_page *, u_int);
654 #ifdef PMAP_CACHE_VIVT
655 static int pmap_clean_page(struct pv_entry *, bool);
656 #endif
657 #ifdef PMAP_CACHE_VIPT
658 static void pmap_syncicache_page(struct vm_page *);
659 static void pmap_flush_page(struct vm_page *, bool);
660 #endif
661 static void pmap_page_remove(struct vm_page *);
662
663 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
664 static vaddr_t kernel_pt_lookup(paddr_t);
665
666
667 /*
668 * External function prototypes
669 */
670 extern void bzero_page(vaddr_t);
671 extern void bcopy_page(vaddr_t, vaddr_t);
672
673 /*
674 * Misc variables
675 */
676 vaddr_t virtual_avail;
677 vaddr_t virtual_end;
678 vaddr_t pmap_curmaxkvaddr;
679
680 vaddr_t avail_start;
681 vaddr_t avail_end;
682
683 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
684 pv_addr_t kernelpages;
685 pv_addr_t kernel_l1pt;
686 pv_addr_t systempage;
687
688 /* Function to set the debug level of the pmap code */
689
690 #ifdef PMAP_DEBUG
691 void
692 pmap_debug(int level)
693 {
694 pmap_debug_level = level;
695 printf("pmap_debug: level=%d\n", pmap_debug_level);
696 }
697 #endif /* PMAP_DEBUG */
698
699 /*
700 * A bunch of routines to conditionally flush the caches/TLB depending
701 * on whether the specified pmap actually needs to be flushed at any
702 * given time.
703 */
704 static inline void
705 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
706 {
707
708 if (pm->pm_cstate.cs_tlb_id)
709 cpu_tlb_flushID_SE(va);
710 }
711
712 static inline void
713 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
714 {
715
716 if (pm->pm_cstate.cs_tlb_d)
717 cpu_tlb_flushD_SE(va);
718 }
719
720 static inline void
721 pmap_tlb_flushID(pmap_t pm)
722 {
723
724 if (pm->pm_cstate.cs_tlb_id) {
725 cpu_tlb_flushID();
726 pm->pm_cstate.cs_tlb = 0;
727 }
728 }
729
730 static inline void
731 pmap_tlb_flushD(pmap_t pm)
732 {
733
734 if (pm->pm_cstate.cs_tlb_d) {
735 cpu_tlb_flushD();
736 pm->pm_cstate.cs_tlb_d = 0;
737 }
738 }
739
740 #ifdef PMAP_CACHE_VIVT
741 static inline void
742 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
743 {
744 if (pm->pm_cstate.cs_cache_id) {
745 cpu_idcache_wbinv_range(va, len);
746 }
747 }
748
749 static inline void
750 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
751 bool do_inv, bool rd_only)
752 {
753
754 if (pm->pm_cstate.cs_cache_d) {
755 if (do_inv) {
756 if (rd_only)
757 cpu_dcache_inv_range(va, len);
758 else
759 cpu_dcache_wbinv_range(va, len);
760 } else
761 if (!rd_only)
762 cpu_dcache_wb_range(va, len);
763 }
764 }
765
766 static inline void
767 pmap_idcache_wbinv_all(pmap_t pm)
768 {
769 if (pm->pm_cstate.cs_cache_id) {
770 cpu_idcache_wbinv_all();
771 pm->pm_cstate.cs_cache = 0;
772 }
773 }
774
775 static inline void
776 pmap_dcache_wbinv_all(pmap_t pm)
777 {
778 if (pm->pm_cstate.cs_cache_d) {
779 cpu_dcache_wbinv_all();
780 pm->pm_cstate.cs_cache_d = 0;
781 }
782 }
783 #endif /* PMAP_CACHE_VIVT */
784
785 static inline bool
786 pmap_is_current(pmap_t pm)
787 {
788
789 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
790 return true;
791
792 return false;
793 }
794
795 static inline bool
796 pmap_is_cached(pmap_t pm)
797 {
798
799 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
800 pmap_recent_user == pm)
801 return (true);
802
803 return false;
804 }
805
806 /*
807 * PTE_SYNC_CURRENT:
808 *
809 * Make sure the pte is written out to RAM.
810 * We need to do this for one of two cases:
811 * - We're dealing with the kernel pmap
812 * - There is no pmap active in the cache/tlb.
813 * - The specified pmap is 'active' in the cache/tlb.
814 */
815 #ifdef PMAP_INCLUDE_PTE_SYNC
816 #define PTE_SYNC_CURRENT(pm, ptep) \
817 do { \
818 if (PMAP_NEEDS_PTE_SYNC && \
819 pmap_is_cached(pm)) \
820 PTE_SYNC(ptep); \
821 } while (/*CONSTCOND*/0)
822 #else
823 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
824 #endif
825
826 /*
827 * main pv_entry manipulation functions:
828 * pmap_enter_pv: enter a mapping onto a vm_page list
829 * pmap_remove_pv: remove a mappiing from a vm_page list
830 *
831 * NOTE: pmap_enter_pv expects to lock the pvh itself
832 * pmap_remove_pv expects te caller to lock the pvh before calling
833 */
834
835 /*
836 * pmap_enter_pv: enter a mapping onto a vm_page lst
837 *
838 * => caller should hold the proper lock on pmap_main_lock
839 * => caller should have pmap locked
840 * => we will gain the lock on the vm_page and allocate the new pv_entry
841 * => caller should adjust ptp's wire_count before calling
842 * => caller should not adjust pmap's wire_count
843 */
844 static void
845 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
846 vaddr_t va, u_int flags)
847 {
848 struct pv_entry **pvp;
849
850 NPDEBUG(PDB_PVDUMP,
851 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
852
853 pve->pv_pmap = pm;
854 pve->pv_va = va;
855 pve->pv_flags = flags;
856
857 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
858 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
859 #ifdef PMAP_CACHE_VIPT
860 /*
861 * Insert unmanaged entries, writeable first, at the head of
862 * the pv list.
863 */
864 if (__predict_true((flags & PVF_KENTRY) == 0)) {
865 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
866 pvp = &SLIST_NEXT(*pvp, pv_link);
867 } else if ((flags & PVF_WRITE) == 0) {
868 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
869 pvp = &SLIST_NEXT(*pvp, pv_link);
870 }
871 #endif
872 SLIST_NEXT(pve, pv_link) = *pvp; /* add to ... */
873 *pvp = pve; /* ... locked list */
874 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
875 #ifdef PMAP_CACHE_VIPT
876 if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
877 pg->mdpage.pvh_attrs |= PVF_KMOD;
878 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
879 pg->mdpage.pvh_attrs |= PVF_DIRTY;
880 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
881 #endif
882 if (pm == pmap_kernel()) {
883 PMAPCOUNT(kernel_mappings);
884 if (flags & PVF_WRITE)
885 pg->mdpage.krw_mappings++;
886 else
887 pg->mdpage.kro_mappings++;
888 } else
889 if (flags & PVF_WRITE)
890 pg->mdpage.urw_mappings++;
891 else
892 pg->mdpage.uro_mappings++;
893
894 #ifdef PMAP_CACHE_VIPT
895 /*
896 * If this is an exec mapping and its the first exec mapping
897 * for this page, make sure to sync the I-cache.
898 */
899 if (PV_IS_EXEC_P(flags)) {
900 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
901 pmap_syncicache_page(pg);
902 PMAPCOUNT(exec_synced_map);
903 }
904 PMAPCOUNT(exec_mappings);
905 }
906 #endif
907
908 PMAPCOUNT(mappings);
909 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
910
911 if (pve->pv_flags & PVF_WIRED)
912 ++pm->pm_stats.wired_count;
913 }
914
915 /*
916 *
917 * pmap_find_pv: Find a pv entry
918 *
919 * => caller should hold lock on vm_page
920 */
921 static inline struct pv_entry *
922 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
923 {
924 struct pv_entry *pv;
925
926 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
927 if (pm == pv->pv_pmap && va == pv->pv_va)
928 break;
929 }
930
931 return (pv);
932 }
933
934 /*
935 * pmap_remove_pv: try to remove a mapping from a pv_list
936 *
937 * => caller should hold proper lock on pmap_main_lock
938 * => pmap should be locked
939 * => caller should hold lock on vm_page [so that attrs can be adjusted]
940 * => caller should adjust ptp's wire_count and free PTP if needed
941 * => caller should NOT adjust pmap's wire_count
942 * => we return the removed pve
943 */
944 static struct pv_entry *
945 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
946 {
947 struct pv_entry *pve, **prevptr;
948
949 NPDEBUG(PDB_PVDUMP,
950 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
951
952 prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
953 pve = *prevptr;
954
955 while (pve) {
956 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
957 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
958 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
959 if (pve->pv_flags & PVF_WIRED) {
960 if (skip_wired)
961 return (NULL);
962 --pm->pm_stats.wired_count;
963 }
964 *prevptr = SLIST_NEXT(pve, pv_link); /* remove it! */
965 if (pm == pmap_kernel()) {
966 PMAPCOUNT(kernel_unmappings);
967 if (pve->pv_flags & PVF_WRITE)
968 pg->mdpage.krw_mappings--;
969 else
970 pg->mdpage.kro_mappings--;
971 } else
972 if (pve->pv_flags & PVF_WRITE)
973 pg->mdpage.urw_mappings--;
974 else
975 pg->mdpage.uro_mappings--;
976
977 PMAPCOUNT(unmappings);
978 #ifdef PMAP_CACHE_VIPT
979 if (!(pve->pv_flags & PVF_WRITE))
980 break;
981 /*
982 * If this page has had an exec mapping, then if
983 * this was the last mapping, discard the contents,
984 * otherwise sync the i-cache for this page.
985 */
986 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
987 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
988 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
989 PMAPCOUNT(exec_discarded_unmap);
990 } else {
991 pmap_syncicache_page(pg);
992 PMAPCOUNT(exec_synced_unmap);
993 }
994 }
995 #endif /* PMAP_CACHE_VIPT */
996 break;
997 }
998 prevptr = &SLIST_NEXT(pve, pv_link); /* previous pointer */
999 pve = *prevptr; /* advance */
1000 }
1001
1002 #ifdef PMAP_CACHE_VIPT
1003 /*
1004 * If we no longer have a WRITEABLE KENTRY at the head of list,
1005 * clear the KMOD attribute from the page.
1006 */
1007 if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
1008 || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) == PVF_KWRITE)
1009 pg->mdpage.pvh_attrs &= ~PVF_KMOD;
1010
1011 /*
1012 * If this was a writeable page and there are no more writeable
1013 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1014 * the contents to memory.
1015 */
1016 if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
1017 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1018 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1019 #endif /* PMAP_CACHE_VIPT */
1020
1021 return(pve); /* return removed pve */
1022 }
1023
1024 /*
1025 *
1026 * pmap_modify_pv: Update pv flags
1027 *
1028 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1029 * => caller should NOT adjust pmap's wire_count
1030 * => caller must call pmap_vac_me_harder() if writable status of a page
1031 * may have changed.
1032 * => we return the old flags
1033 *
1034 * Modify a physical-virtual mapping in the pv table
1035 */
1036 static u_int
1037 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
1038 u_int clr_mask, u_int set_mask)
1039 {
1040 struct pv_entry *npv;
1041 u_int flags, oflags;
1042
1043 KASSERT((clr_mask & PVF_KENTRY) == 0);
1044 KASSERT((set_mask & PVF_KENTRY) == 0);
1045
1046 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1047 return (0);
1048
1049 NPDEBUG(PDB_PVDUMP,
1050 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
1051
1052 /*
1053 * There is at least one VA mapping this page.
1054 */
1055
1056 if (clr_mask & (PVF_REF | PVF_MOD)) {
1057 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1058 #ifdef PMAP_CACHE_VIPT
1059 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1060 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1061 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1062 #endif
1063 }
1064
1065 oflags = npv->pv_flags;
1066 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1067
1068 if ((flags ^ oflags) & PVF_WIRED) {
1069 if (flags & PVF_WIRED)
1070 ++pm->pm_stats.wired_count;
1071 else
1072 --pm->pm_stats.wired_count;
1073 }
1074
1075 if ((flags ^ oflags) & PVF_WRITE) {
1076 if (pm == pmap_kernel()) {
1077 if (flags & PVF_WRITE) {
1078 pg->mdpage.krw_mappings++;
1079 pg->mdpage.kro_mappings--;
1080 } else {
1081 pg->mdpage.kro_mappings++;
1082 pg->mdpage.krw_mappings--;
1083 }
1084 } else
1085 if (flags & PVF_WRITE) {
1086 pg->mdpage.urw_mappings++;
1087 pg->mdpage.uro_mappings--;
1088 } else {
1089 pg->mdpage.uro_mappings++;
1090 pg->mdpage.urw_mappings--;
1091 }
1092 }
1093 #ifdef PMAP_CACHE_VIPT
1094 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
1095 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1096 /*
1097 * We have two cases here: the first is from enter_pv (new exec
1098 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1099 * Since in latter, pmap_enter_pv won't do anything, we just have
1100 * to do what pmap_remove_pv would do.
1101 */
1102 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
1103 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
1104 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1105 pmap_syncicache_page(pg);
1106 PMAPCOUNT(exec_synced_remap);
1107 }
1108 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1109 #endif
1110
1111 PMAPCOUNT(remappings);
1112
1113 return (oflags);
1114 }
1115
1116 /*
1117 * Allocate an L1 translation table for the specified pmap.
1118 * This is called at pmap creation time.
1119 */
1120 static void
1121 pmap_alloc_l1(pmap_t pm)
1122 {
1123 struct l1_ttable *l1;
1124 u_int8_t domain;
1125
1126 /*
1127 * Remove the L1 at the head of the LRU list
1128 */
1129 simple_lock(&l1_lru_lock);
1130 l1 = TAILQ_FIRST(&l1_lru_list);
1131 KDASSERT(l1 != NULL);
1132 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1133
1134 /*
1135 * Pick the first available domain number, and update
1136 * the link to the next number.
1137 */
1138 domain = l1->l1_domain_first;
1139 l1->l1_domain_first = l1->l1_domain_free[domain];
1140
1141 /*
1142 * If there are still free domain numbers in this L1,
1143 * put it back on the TAIL of the LRU list.
1144 */
1145 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1146 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1147
1148 simple_unlock(&l1_lru_lock);
1149
1150 /*
1151 * Fix up the relevant bits in the pmap structure
1152 */
1153 pm->pm_l1 = l1;
1154 pm->pm_domain = domain;
1155 }
1156
1157 /*
1158 * Free an L1 translation table.
1159 * This is called at pmap destruction time.
1160 */
1161 static void
1162 pmap_free_l1(pmap_t pm)
1163 {
1164 struct l1_ttable *l1 = pm->pm_l1;
1165
1166 simple_lock(&l1_lru_lock);
1167
1168 /*
1169 * If this L1 is currently on the LRU list, remove it.
1170 */
1171 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1172 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1173
1174 /*
1175 * Free up the domain number which was allocated to the pmap
1176 */
1177 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1178 l1->l1_domain_first = pm->pm_domain;
1179 l1->l1_domain_use_count--;
1180
1181 /*
1182 * The L1 now must have at least 1 free domain, so add
1183 * it back to the LRU list. If the use count is zero,
1184 * put it at the head of the list, otherwise it goes
1185 * to the tail.
1186 */
1187 if (l1->l1_domain_use_count == 0)
1188 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1189 else
1190 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1191
1192 simple_unlock(&l1_lru_lock);
1193 }
1194
1195 static inline void
1196 pmap_use_l1(pmap_t pm)
1197 {
1198 struct l1_ttable *l1;
1199
1200 /*
1201 * Do nothing if we're in interrupt context.
1202 * Access to an L1 by the kernel pmap must not affect
1203 * the LRU list.
1204 */
1205 if (cpu_intr_p() || pm == pmap_kernel())
1206 return;
1207
1208 l1 = pm->pm_l1;
1209
1210 /*
1211 * If the L1 is not currently on the LRU list, just return
1212 */
1213 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1214 return;
1215
1216 simple_lock(&l1_lru_lock);
1217
1218 /*
1219 * Check the use count again, now that we've acquired the lock
1220 */
1221 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1222 simple_unlock(&l1_lru_lock);
1223 return;
1224 }
1225
1226 /*
1227 * Move the L1 to the back of the LRU list
1228 */
1229 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1230 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1231
1232 simple_unlock(&l1_lru_lock);
1233 }
1234
1235 /*
1236 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1237 *
1238 * Free an L2 descriptor table.
1239 */
1240 static inline void
1241 #ifndef PMAP_INCLUDE_PTE_SYNC
1242 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1243 #else
1244 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1245 #endif
1246 {
1247 #ifdef PMAP_INCLUDE_PTE_SYNC
1248 #ifdef PMAP_CACHE_VIVT
1249 /*
1250 * Note: With a write-back cache, we may need to sync this
1251 * L2 table before re-using it.
1252 * This is because it may have belonged to a non-current
1253 * pmap, in which case the cache syncs would have been
1254 * skipped for the pages that were being unmapped. If the
1255 * L2 table were then to be immediately re-allocated to
1256 * the *current* pmap, it may well contain stale mappings
1257 * which have not yet been cleared by a cache write-back
1258 * and so would still be visible to the mmu.
1259 */
1260 if (need_sync)
1261 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1262 #endif /* PMAP_CACHE_VIVT */
1263 #endif /* PMAP_INCLUDE_PTE_SYNC */
1264 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1265 }
1266
1267 /*
1268 * Returns a pointer to the L2 bucket associated with the specified pmap
1269 * and VA, or NULL if no L2 bucket exists for the address.
1270 */
1271 static inline struct l2_bucket *
1272 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1273 {
1274 struct l2_dtable *l2;
1275 struct l2_bucket *l2b;
1276 u_short l1idx;
1277
1278 l1idx = L1_IDX(va);
1279
1280 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1281 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1282 return (NULL);
1283
1284 return (l2b);
1285 }
1286
1287 /*
1288 * Returns a pointer to the L2 bucket associated with the specified pmap
1289 * and VA.
1290 *
1291 * If no L2 bucket exists, perform the necessary allocations to put an L2
1292 * bucket/page table in place.
1293 *
1294 * Note that if a new L2 bucket/page was allocated, the caller *must*
1295 * increment the bucket occupancy counter appropriately *before*
1296 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1297 * the bucket/page in the meantime.
1298 */
1299 static struct l2_bucket *
1300 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1301 {
1302 struct l2_dtable *l2;
1303 struct l2_bucket *l2b;
1304 u_short l1idx;
1305
1306 l1idx = L1_IDX(va);
1307
1308 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1309 /*
1310 * No mapping at this address, as there is
1311 * no entry in the L1 table.
1312 * Need to allocate a new l2_dtable.
1313 */
1314 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1315 return (NULL);
1316
1317 /*
1318 * Link it into the parent pmap
1319 */
1320 pm->pm_l2[L2_IDX(l1idx)] = l2;
1321 }
1322
1323 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1324
1325 /*
1326 * Fetch pointer to the L2 page table associated with the address.
1327 */
1328 if (l2b->l2b_kva == NULL) {
1329 pt_entry_t *ptep;
1330
1331 /*
1332 * No L2 page table has been allocated. Chances are, this
1333 * is because we just allocated the l2_dtable, above.
1334 */
1335 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1336 /*
1337 * Oops, no more L2 page tables available at this
1338 * time. We may need to deallocate the l2_dtable
1339 * if we allocated a new one above.
1340 */
1341 if (l2->l2_occupancy == 0) {
1342 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1343 pmap_free_l2_dtable(l2);
1344 }
1345 return (NULL);
1346 }
1347
1348 l2->l2_occupancy++;
1349 l2b->l2b_kva = ptep;
1350 l2b->l2b_l1idx = l1idx;
1351 }
1352
1353 return (l2b);
1354 }
1355
1356 /*
1357 * One or more mappings in the specified L2 descriptor table have just been
1358 * invalidated.
1359 *
1360 * Garbage collect the metadata and descriptor table itself if necessary.
1361 *
1362 * The pmap lock must be acquired when this is called (not necessary
1363 * for the kernel pmap).
1364 */
1365 static void
1366 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1367 {
1368 struct l2_dtable *l2;
1369 pd_entry_t *pl1pd, l1pd;
1370 pt_entry_t *ptep;
1371 u_short l1idx;
1372
1373 KDASSERT(count <= l2b->l2b_occupancy);
1374
1375 /*
1376 * Update the bucket's reference count according to how many
1377 * PTEs the caller has just invalidated.
1378 */
1379 l2b->l2b_occupancy -= count;
1380
1381 /*
1382 * Note:
1383 *
1384 * Level 2 page tables allocated to the kernel pmap are never freed
1385 * as that would require checking all Level 1 page tables and
1386 * removing any references to the Level 2 page table. See also the
1387 * comment elsewhere about never freeing bootstrap L2 descriptors.
1388 *
1389 * We make do with just invalidating the mapping in the L2 table.
1390 *
1391 * This isn't really a big deal in practice and, in fact, leads
1392 * to a performance win over time as we don't need to continually
1393 * alloc/free.
1394 */
1395 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1396 return;
1397
1398 /*
1399 * There are no more valid mappings in this level 2 page table.
1400 * Go ahead and NULL-out the pointer in the bucket, then
1401 * free the page table.
1402 */
1403 l1idx = l2b->l2b_l1idx;
1404 ptep = l2b->l2b_kva;
1405 l2b->l2b_kva = NULL;
1406
1407 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1408
1409 /*
1410 * If the L1 slot matches the pmap's domain
1411 * number, then invalidate it.
1412 */
1413 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1414 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1415 *pl1pd = 0;
1416 PTE_SYNC(pl1pd);
1417 }
1418
1419 /*
1420 * Release the L2 descriptor table back to the pool cache.
1421 */
1422 #ifndef PMAP_INCLUDE_PTE_SYNC
1423 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1424 #else
1425 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1426 #endif
1427
1428 /*
1429 * Update the reference count in the associated l2_dtable
1430 */
1431 l2 = pm->pm_l2[L2_IDX(l1idx)];
1432 if (--l2->l2_occupancy > 0)
1433 return;
1434
1435 /*
1436 * There are no more valid mappings in any of the Level 1
1437 * slots managed by this l2_dtable. Go ahead and NULL-out
1438 * the pointer in the parent pmap and free the l2_dtable.
1439 */
1440 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1441 pmap_free_l2_dtable(l2);
1442 }
1443
1444 /*
1445 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1446 * structures.
1447 */
1448 static int
1449 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1450 {
1451 #ifndef PMAP_INCLUDE_PTE_SYNC
1452 struct l2_bucket *l2b;
1453 pt_entry_t *ptep, pte;
1454 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1455
1456 /*
1457 * The mappings for these page tables were initially made using
1458 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1459 * mode will not be right for page table mappings. To avoid
1460 * polluting the pmap_kenter_pa() code with a special case for
1461 * page tables, we simply fix up the cache-mode here if it's not
1462 * correct.
1463 */
1464 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1465 KDASSERT(l2b != NULL);
1466 ptep = &l2b->l2b_kva[l2pte_index(va)];
1467 pte = *ptep;
1468
1469 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1470 /*
1471 * Page tables must have the cache-mode set to Write-Thru.
1472 */
1473 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1474 PTE_SYNC(ptep);
1475 cpu_tlb_flushD_SE(va);
1476 cpu_cpwait();
1477 }
1478 #endif
1479
1480 memset(v, 0, L2_TABLE_SIZE_REAL);
1481 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1482 return (0);
1483 }
1484
1485 static int
1486 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1487 {
1488
1489 memset(v, 0, sizeof(struct l2_dtable));
1490 return (0);
1491 }
1492
1493 static int
1494 pmap_pmap_ctor(void *arg, void *v, int flags)
1495 {
1496
1497 memset(v, 0, sizeof(struct pmap));
1498 return (0);
1499 }
1500
1501 static void
1502 pmap_pinit(pmap_t pm)
1503 {
1504 struct l2_bucket *l2b;
1505
1506 if (vector_page < KERNEL_BASE) {
1507 /*
1508 * Map the vector page.
1509 */
1510 pmap_enter(pm, vector_page, systempage.pv_pa,
1511 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1512 pmap_update(pm);
1513
1514 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1515 l2b = pmap_get_l2_bucket(pm, vector_page);
1516 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1517 L1_C_DOM(pm->pm_domain);
1518 } else
1519 pm->pm_pl1vec = NULL;
1520 }
1521
1522 #ifdef PMAP_CACHE_VIVT
1523 /*
1524 * Since we have a virtually indexed cache, we may need to inhibit caching if
1525 * there is more than one mapping and at least one of them is writable.
1526 * Since we purge the cache on every context switch, we only need to check for
1527 * other mappings within the same pmap, or kernel_pmap.
1528 * This function is also called when a page is unmapped, to possibly reenable
1529 * caching on any remaining mappings.
1530 *
1531 * The code implements the following logic, where:
1532 *
1533 * KW = # of kernel read/write pages
1534 * KR = # of kernel read only pages
1535 * UW = # of user read/write pages
1536 * UR = # of user read only pages
1537 *
1538 * KC = kernel mapping is cacheable
1539 * UC = user mapping is cacheable
1540 *
1541 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1542 * +---------------------------------------------
1543 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1544 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1545 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1546 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1547 */
1548
1549 static const int pmap_vac_flags[4][4] = {
1550 {-1, 0, 0, PVF_KNC},
1551 {0, 0, PVF_NC, PVF_NC},
1552 {0, PVF_NC, PVF_NC, PVF_NC},
1553 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1554 };
1555
1556 static inline int
1557 pmap_get_vac_flags(const struct vm_page *pg)
1558 {
1559 int kidx, uidx;
1560
1561 kidx = 0;
1562 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1563 kidx |= 1;
1564 if (pg->mdpage.krw_mappings)
1565 kidx |= 2;
1566
1567 uidx = 0;
1568 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1569 uidx |= 1;
1570 if (pg->mdpage.urw_mappings)
1571 uidx |= 2;
1572
1573 return (pmap_vac_flags[uidx][kidx]);
1574 }
1575
1576 static inline void
1577 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1578 {
1579 int nattr;
1580
1581 nattr = pmap_get_vac_flags(pg);
1582
1583 if (nattr < 0) {
1584 pg->mdpage.pvh_attrs &= ~PVF_NC;
1585 return;
1586 }
1587
1588 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1589 return;
1590
1591 if (pm == pmap_kernel())
1592 pmap_vac_me_kpmap(pg, pm, va);
1593 else
1594 pmap_vac_me_user(pg, pm, va);
1595
1596 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1597 }
1598
1599 static void
1600 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1601 {
1602 u_int u_cacheable, u_entries;
1603 struct pv_entry *pv;
1604 pmap_t last_pmap = pm;
1605
1606 /*
1607 * Pass one, see if there are both kernel and user pmaps for
1608 * this page. Calculate whether there are user-writable or
1609 * kernel-writable pages.
1610 */
1611 u_cacheable = 0;
1612 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1613 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1614 u_cacheable++;
1615 }
1616
1617 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1618
1619 /*
1620 * We know we have just been updating a kernel entry, so if
1621 * all user pages are already cacheable, then there is nothing
1622 * further to do.
1623 */
1624 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1625 return;
1626
1627 if (u_entries) {
1628 /*
1629 * Scan over the list again, for each entry, if it
1630 * might not be set correctly, call pmap_vac_me_user
1631 * to recalculate the settings.
1632 */
1633 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1634 /*
1635 * We know kernel mappings will get set
1636 * correctly in other calls. We also know
1637 * that if the pmap is the same as last_pmap
1638 * then we've just handled this entry.
1639 */
1640 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1641 continue;
1642
1643 /*
1644 * If there are kernel entries and this page
1645 * is writable but non-cacheable, then we can
1646 * skip this entry also.
1647 */
1648 if (pg->mdpage.k_mappings &&
1649 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1650 (PVF_NC | PVF_WRITE))
1651 continue;
1652
1653 /*
1654 * Similarly if there are no kernel-writable
1655 * entries and the page is already
1656 * read-only/cacheable.
1657 */
1658 if (pg->mdpage.krw_mappings == 0 &&
1659 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1660 continue;
1661
1662 /*
1663 * For some of the remaining cases, we know
1664 * that we must recalculate, but for others we
1665 * can't tell if they are correct or not, so
1666 * we recalculate anyway.
1667 */
1668 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1669 }
1670
1671 if (pg->mdpage.k_mappings == 0)
1672 return;
1673 }
1674
1675 pmap_vac_me_user(pg, pm, va);
1676 }
1677
1678 static void
1679 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1680 {
1681 pmap_t kpmap = pmap_kernel();
1682 struct pv_entry *pv, *npv = NULL;
1683 struct l2_bucket *l2b;
1684 pt_entry_t *ptep, pte;
1685 u_int entries = 0;
1686 u_int writable = 0;
1687 u_int cacheable_entries = 0;
1688 u_int kern_cacheable = 0;
1689 u_int other_writable = 0;
1690
1691 /*
1692 * Count mappings and writable mappings in this pmap.
1693 * Include kernel mappings as part of our own.
1694 * Keep a pointer to the first one.
1695 */
1696 npv = NULL;
1697 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1698 /* Count mappings in the same pmap */
1699 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1700 if (entries++ == 0)
1701 npv = pv;
1702
1703 /* Cacheable mappings */
1704 if ((pv->pv_flags & PVF_NC) == 0) {
1705 cacheable_entries++;
1706 if (kpmap == pv->pv_pmap)
1707 kern_cacheable++;
1708 }
1709
1710 /* Writable mappings */
1711 if (pv->pv_flags & PVF_WRITE)
1712 ++writable;
1713 } else
1714 if (pv->pv_flags & PVF_WRITE)
1715 other_writable = 1;
1716 }
1717
1718 /*
1719 * Enable or disable caching as necessary.
1720 * Note: the first entry might be part of the kernel pmap,
1721 * so we can't assume this is indicative of the state of the
1722 * other (maybe non-kpmap) entries.
1723 */
1724 if ((entries > 1 && writable) ||
1725 (entries > 0 && pm == kpmap && other_writable)) {
1726 if (cacheable_entries == 0)
1727 return;
1728
1729 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1730 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1731 (pv->pv_flags & PVF_NC))
1732 continue;
1733
1734 pv->pv_flags |= PVF_NC;
1735
1736 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1737 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1738 pte = *ptep & ~L2_S_CACHE_MASK;
1739
1740 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1741 l2pte_valid(pte)) {
1742 if (PV_BEEN_EXECD(pv->pv_flags)) {
1743 #ifdef PMAP_CACHE_VIVT
1744 pmap_idcache_wbinv_range(pv->pv_pmap,
1745 pv->pv_va, PAGE_SIZE);
1746 #endif
1747 pmap_tlb_flushID_SE(pv->pv_pmap,
1748 pv->pv_va);
1749 } else
1750 if (PV_BEEN_REFD(pv->pv_flags)) {
1751 #ifdef PMAP_CACHE_VIVT
1752 pmap_dcache_wb_range(pv->pv_pmap,
1753 pv->pv_va, PAGE_SIZE, true,
1754 (pv->pv_flags & PVF_WRITE) == 0);
1755 #endif
1756 pmap_tlb_flushD_SE(pv->pv_pmap,
1757 pv->pv_va);
1758 }
1759 }
1760
1761 *ptep = pte;
1762 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1763 }
1764 cpu_cpwait();
1765 } else
1766 if (entries > cacheable_entries) {
1767 /*
1768 * Turn cacheing back on for some pages. If it is a kernel
1769 * page, only do so if there are no other writable pages.
1770 */
1771 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1772 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1773 (kpmap != pv->pv_pmap || other_writable)))
1774 continue;
1775
1776 pv->pv_flags &= ~PVF_NC;
1777
1778 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1779 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1780 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1781
1782 if (l2pte_valid(pte)) {
1783 if (PV_BEEN_EXECD(pv->pv_flags)) {
1784 pmap_tlb_flushID_SE(pv->pv_pmap,
1785 pv->pv_va);
1786 } else
1787 if (PV_BEEN_REFD(pv->pv_flags)) {
1788 pmap_tlb_flushD_SE(pv->pv_pmap,
1789 pv->pv_va);
1790 }
1791 }
1792
1793 *ptep = pte;
1794 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1795 }
1796 }
1797 }
1798 #endif
1799
1800 #ifdef PMAP_CACHE_VIPT
1801 /*
1802 * For virtually indexed / physically tagged caches, what we have to worry
1803 * about is illegal cache aliases. To prevent this, we must ensure that
1804 * virtual addresses that map the physical page use the same bits for those
1805 * bits masked by "arm_cache_prefer_mask" (bits 12+). If there is a conflict,
1806 * all mappings of the page must be non-cached.
1807 */
1808 #if 0
1809 static inline vaddr_t
1810 pmap_check_sets(paddr_t pa)
1811 {
1812 extern int arm_dcache_l2_nsets;
1813 int set, way;
1814 vaddr_t mask = 0;
1815 int v;
1816 pa |= 1;
1817 for (set = 0; set < (1 << arm_dcache_l2_nsets); set++) {
1818 for (way = 0; way < 4; way++) {
1819 v = (way << 30) | (set << 5);
1820 asm("mcr p15, 3, %0, c15, c2, 0" :: "r"(v));
1821 asm("mrc p15, 3, %0, c15, c0, 0" : "=r"(v));
1822
1823 if ((v & (1 | ~(PAGE_SIZE-1))) == pa) {
1824 mask |= 1 << (set >> 7);
1825 }
1826 }
1827 }
1828 return mask;
1829 }
1830 #endif
1831 static void
1832 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1833 {
1834 struct pv_entry *pv;
1835 vaddr_t tst_mask;
1836 bool bad_alias;
1837 struct l2_bucket *l2b;
1838 pt_entry_t *ptep, pte, opte;
1839 const u_int
1840 rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
1841 ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
1842
1843 /* do we need to do anything? */
1844 if (arm_cache_prefer_mask == 0)
1845 return;
1846
1847 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
1848 pg, pm, va));
1849
1850 #define popc4(x) \
1851 (((0x94 >> ((x & 3) << 1)) & 3) + ((0x94 >> ((x & 12) >> 1)) & 3))
1852 #if 0
1853 tst_mask = pmap_check_sets(pg->phys_addr);
1854 KASSERT(popc4(tst_mask) < 2);
1855 #endif
1856
1857 KASSERT(!va || pm);
1858 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1859
1860 /* Already a conflict? */
1861 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
1862 /* just an add, things are already non-cached */
1863 KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
1864 bad_alias = false;
1865 if (va) {
1866 PMAPCOUNT(vac_color_none);
1867 bad_alias = true;
1868 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1869 goto fixup;
1870 }
1871 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1872 /* the list can't be empty because it would be cachable */
1873 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
1874 tst_mask = pg->mdpage.pvh_attrs;
1875 } else {
1876 KASSERT(pv);
1877 tst_mask = pv->pv_va;
1878 pv = SLIST_NEXT(pv, pv_link);
1879 }
1880 /*
1881 * Only check for a bad alias if we have writable mappings.
1882 */
1883 tst_mask &= arm_cache_prefer_mask;
1884 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1885 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1886 /* if there's a bad alias, stop checking. */
1887 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1888 bad_alias = true;
1889 }
1890 pg->mdpage.pvh_attrs |= PVF_WRITE;
1891 if (!bad_alias)
1892 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1893 } else {
1894 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1895 }
1896 /* If no conflicting colors, set everything back to cached */
1897 if (!bad_alias) {
1898 #ifdef DEBUG
1899 if ((pg->mdpage.pvh_attrs & PVF_WRITE)
1900 || ro_mappings < 2) {
1901 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1902 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1903 }
1904
1905 #endif
1906 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1907 pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
1908 /*
1909 * Restore DIRTY bit if page is modified
1910 */
1911 if (pg->mdpage.pvh_attrs & PVF_DMOD)
1912 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1913 PMAPCOUNT(vac_color_restore);
1914 } else {
1915 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1916 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1917 }
1918 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1919 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1920 } else if (!va) {
1921 KASSERT(pmap_is_page_colored_p(pg));
1922 KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
1923 || (pg->mdpage.pvh_attrs & PVF_DIRTY));
1924 if (rw_mappings == 0)
1925 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1926 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1927 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1928 return;
1929 } else if (!pmap_is_page_colored_p(pg)) {
1930 /* not colored so we just use its color */
1931 KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1932 PMAPCOUNT(vac_color_new);
1933 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1934 pg->mdpage.pvh_attrs |= PVF_COLORED
1935 | (va & arm_cache_prefer_mask)
1936 | (rw_mappings > 0 ? PVF_WRITE : 0);
1937 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1938 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1939 return;
1940 } else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1941 bad_alias = false;
1942 if (rw_mappings > 0) {
1943 /*
1944 * We now have writeable mappings and more than one
1945 * readonly mapping, verify the colors don't clash
1946 * and mark the page as writeable.
1947 */
1948 if (ro_mappings > 1
1949 && (pg->mdpage.pvh_attrs & PVF_WRITE) == 0
1950 && arm_cache_prefer_mask) {
1951 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1952 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1953 /* if there's a bad alias, stop checking. */
1954 if (((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0) {
1955 bad_alias = true;
1956 break;
1957 }
1958 }
1959 }
1960 pg->mdpage.pvh_attrs |= PVF_WRITE;
1961 }
1962 /* If no conflicting colors, set everything back to cached */
1963 if (!bad_alias) {
1964 #ifdef DEBUG
1965 if (rw_mappings > 0
1966 || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
1967 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1968 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1969 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1970 }
1971 #endif
1972 if (SLIST_EMPTY(&pg->mdpage.pvh_list))
1973 PMAPCOUNT(vac_color_reuse);
1974 else
1975 PMAPCOUNT(vac_color_ok);
1976
1977 /* matching color, just return */
1978 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1979 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1980 return;
1981 }
1982 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1983 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1984
1985 /* color conflict. evict from cache. */
1986
1987 pmap_flush_page(pg, true);
1988 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
1989 pg->mdpage.pvh_attrs |= PVF_NC;
1990 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1991 PMAPCOUNT(vac_color_erase);
1992 } else if (rw_mappings == 0
1993 && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
1994 KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
1995
1996 /*
1997 * If the page has dirty cache lines, clean it.
1998 */
1999 if (pg->mdpage.pvh_attrs & PVF_DIRTY)
2000 pmap_flush_page(pg, false);
2001
2002 /*
2003 * If this is the first remapping (we know that there are no
2004 * writeable mappings), then this is a simple color change.
2005 * Otherwise this is a seconary r/o mapping, which means
2006 * we don't have to do anything.
2007 */
2008 if (ro_mappings == 1) {
2009 KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2010 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2011 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2012 PMAPCOUNT(vac_color_change);
2013 } else {
2014 PMAPCOUNT(vac_color_blind);
2015 }
2016 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2017 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2018 return;
2019 } else {
2020 if (rw_mappings > 0)
2021 pg->mdpage.pvh_attrs |= PVF_WRITE;
2022
2023 /* color conflict. evict from cache. */
2024 pmap_flush_page(pg, true);
2025
2026 /* the list can't be empty because this was a enter/modify */
2027 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2028 if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2029 KASSERT(pv);
2030 /*
2031 * If there's only one mapped page, change color to the
2032 * page's new color and return. Restore the DIRTY bit
2033 * that was erased by pmap_flush_page.
2034 */
2035 if (SLIST_NEXT(pv, pv_link) == NULL) {
2036 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2037 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2038 if (pg->mdpage.pvh_attrs & PVF_DMOD)
2039 pg->mdpage.pvh_attrs |= PVF_DIRTY;
2040 PMAPCOUNT(vac_color_change);
2041 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2042 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2043 return;
2044 }
2045 }
2046 bad_alias = true;
2047 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2048 pg->mdpage.pvh_attrs |= PVF_NC;
2049 PMAPCOUNT(vac_color_erase);
2050 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2051 }
2052
2053 fixup:
2054 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2055
2056 /*
2057 * Turn cacheing on/off for all pages.
2058 */
2059 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2060 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2061 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2062 opte = *ptep;
2063 pte = opte & ~L2_S_CACHE_MASK;
2064 if (bad_alias) {
2065 pv->pv_flags |= PVF_NC;
2066 } else {
2067 pv->pv_flags &= ~PVF_NC;
2068 pte |= pte_l2_s_cache_mode;
2069 }
2070
2071 if (opte == pte) /* only update is there's a change */
2072 continue;
2073
2074 if (l2pte_valid(pte)) {
2075 if (PV_BEEN_EXECD(pv->pv_flags)) {
2076 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2077 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2078 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2079 }
2080 }
2081
2082 *ptep = pte;
2083 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2084 }
2085 }
2086 #endif /* PMAP_CACHE_VIPT */
2087
2088
2089 /*
2090 * Modify pte bits for all ptes corresponding to the given physical address.
2091 * We use `maskbits' rather than `clearbits' because we're always passing
2092 * constants and the latter would require an extra inversion at run-time.
2093 */
2094 static void
2095 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2096 {
2097 struct l2_bucket *l2b;
2098 struct pv_entry *pv;
2099 pt_entry_t *ptep, npte, opte;
2100 pmap_t pm;
2101 vaddr_t va;
2102 u_int oflags;
2103 #ifdef PMAP_CACHE_VIPT
2104 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
2105 bool need_syncicache = false;
2106 bool did_syncicache = false;
2107 bool need_vac_me_harder = false;
2108 #endif
2109
2110 NPDEBUG(PDB_BITS,
2111 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2112 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2113
2114 PMAP_HEAD_TO_MAP_LOCK();
2115 simple_lock(&pg->mdpage.pvh_slock);
2116
2117 #ifdef PMAP_CACHE_VIPT
2118 /*
2119 * If we might want to sync the I-cache and we've modified it,
2120 * then we know we definitely need to sync or discard it.
2121 */
2122 if (want_syncicache)
2123 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
2124 #endif
2125 /*
2126 * Clear saved attributes (modify, reference)
2127 */
2128 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2129
2130 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
2131 #ifdef PMAP_CACHE_VIPT
2132 if (need_syncicache) {
2133 /*
2134 * No one has it mapped, so just discard it. The next
2135 * exec remapping will cause it to be synced.
2136 */
2137 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2138 PMAPCOUNT(exec_discarded_clearbit);
2139 }
2140 #endif
2141 simple_unlock(&pg->mdpage.pvh_slock);
2142 PMAP_HEAD_TO_MAP_UNLOCK();
2143 return;
2144 }
2145
2146 /*
2147 * Loop over all current mappings setting/clearing as appropos
2148 */
2149 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2150 va = pv->pv_va;
2151 pm = pv->pv_pmap;
2152 oflags = pv->pv_flags;
2153 /*
2154 * Kernel entries are unmanaged and as such not to be changed.
2155 */
2156 if (oflags & PVF_KENTRY)
2157 continue;
2158 pv->pv_flags &= ~maskbits;
2159
2160 pmap_acquire_pmap_lock(pm);
2161
2162 l2b = pmap_get_l2_bucket(pm, va);
2163 KDASSERT(l2b != NULL);
2164
2165 ptep = &l2b->l2b_kva[l2pte_index(va)];
2166 npte = opte = *ptep;
2167
2168 NPDEBUG(PDB_BITS,
2169 printf(
2170 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2171 pv, pv->pv_pmap, pv->pv_va, oflags));
2172
2173 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2174 #ifdef PMAP_CACHE_VIVT
2175 if ((pv->pv_flags & PVF_NC)) {
2176 /*
2177 * Entry is not cacheable:
2178 *
2179 * Don't turn caching on again if this is a
2180 * modified emulation. This would be
2181 * inconsitent with the settings created by
2182 * pmap_vac_me_harder(). Otherwise, it's safe
2183 * to re-enable cacheing.
2184 *
2185 * There's no need to call pmap_vac_me_harder()
2186 * here: all pages are losing their write
2187 * permission.
2188 */
2189 if (maskbits & PVF_WRITE) {
2190 npte |= pte_l2_s_cache_mode;
2191 pv->pv_flags &= ~PVF_NC;
2192 }
2193 } else
2194 if (opte & L2_S_PROT_W) {
2195 /*
2196 * Entry is writable/cacheable: check if pmap
2197 * is current if it is flush it, otherwise it
2198 * won't be in the cache
2199 */
2200 if (PV_BEEN_EXECD(oflags))
2201 pmap_idcache_wbinv_range(pm, pv->pv_va,
2202 PAGE_SIZE);
2203 else
2204 if (PV_BEEN_REFD(oflags))
2205 pmap_dcache_wb_range(pm, pv->pv_va,
2206 PAGE_SIZE,
2207 (maskbits & PVF_REF) != 0, false);
2208 }
2209 #endif
2210
2211 /* make the pte read only */
2212 npte &= ~L2_S_PROT_W;
2213
2214 if (maskbits & oflags & PVF_WRITE) {
2215 /*
2216 * Keep alias accounting up to date
2217 */
2218 if (pv->pv_pmap == pmap_kernel()) {
2219 pg->mdpage.krw_mappings--;
2220 pg->mdpage.kro_mappings++;
2221 } else {
2222 pg->mdpage.urw_mappings--;
2223 pg->mdpage.uro_mappings++;
2224 }
2225 #ifdef PMAP_CACHE_VIPT
2226 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
2227 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2228 if (want_syncicache)
2229 need_syncicache = true;
2230 need_vac_me_harder = true;
2231 #endif
2232 }
2233 }
2234
2235 if (maskbits & PVF_REF) {
2236 if ((pv->pv_flags & PVF_NC) == 0 &&
2237 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2238 l2pte_valid(npte)) {
2239 #ifdef PMAP_CACHE_VIVT
2240 /*
2241 * Check npte here; we may have already
2242 * done the wbinv above, and the validity
2243 * of the PTE is the same for opte and
2244 * npte.
2245 */
2246 /* XXXJRT need idcache_inv_range */
2247 if (PV_BEEN_EXECD(oflags))
2248 pmap_idcache_wbinv_range(pm,
2249 pv->pv_va, PAGE_SIZE);
2250 else
2251 if (PV_BEEN_REFD(oflags))
2252 pmap_dcache_wb_range(pm,
2253 pv->pv_va, PAGE_SIZE,
2254 true, true);
2255 #endif
2256 }
2257
2258 /*
2259 * Make the PTE invalid so that we will take a
2260 * page fault the next time the mapping is
2261 * referenced.
2262 */
2263 npte &= ~L2_TYPE_MASK;
2264 npte |= L2_TYPE_INV;
2265 }
2266
2267 if (npte != opte) {
2268 *ptep = npte;
2269 PTE_SYNC(ptep);
2270 /* Flush the TLB entry if a current pmap. */
2271 if (PV_BEEN_EXECD(oflags))
2272 pmap_tlb_flushID_SE(pm, pv->pv_va);
2273 else
2274 if (PV_BEEN_REFD(oflags))
2275 pmap_tlb_flushD_SE(pm, pv->pv_va);
2276 }
2277
2278 pmap_release_pmap_lock(pm);
2279
2280 NPDEBUG(PDB_BITS,
2281 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2282 pm, va, opte, npte));
2283 }
2284
2285 #ifdef PMAP_CACHE_VIPT
2286 /*
2287 * If we need to sync the I-cache and we haven't done it yet, do it.
2288 */
2289 if (need_syncicache && !did_syncicache) {
2290 pmap_syncicache_page(pg);
2291 PMAPCOUNT(exec_synced_clearbit);
2292 }
2293 /*
2294 * If we are changing this to read-only, we need to call vac_me_harder
2295 * so we can change all the read-only pages to cacheable. We pretend
2296 * this as a page deletion.
2297 */
2298 if (need_vac_me_harder) {
2299 if (pg->mdpage.pvh_attrs & PVF_NC)
2300 pmap_vac_me_harder(pg, NULL, 0);
2301 }
2302 #endif
2303
2304 simple_unlock(&pg->mdpage.pvh_slock);
2305 PMAP_HEAD_TO_MAP_UNLOCK();
2306 }
2307
2308 /*
2309 * pmap_clean_page()
2310 *
2311 * This is a local function used to work out the best strategy to clean
2312 * a single page referenced by its entry in the PV table. It's used by
2313 * pmap_copy_page, pmap_zero page and maybe some others later on.
2314 *
2315 * Its policy is effectively:
2316 * o If there are no mappings, we don't bother doing anything with the cache.
2317 * o If there is one mapping, we clean just that page.
2318 * o If there are multiple mappings, we clean the entire cache.
2319 *
2320 * So that some functions can be further optimised, it returns 0 if it didn't
2321 * clean the entire cache, or 1 if it did.
2322 *
2323 * XXX One bug in this routine is that if the pv_entry has a single page
2324 * mapped at 0x00000000 a whole cache clean will be performed rather than
2325 * just the 1 page. Since this should not occur in everyday use and if it does
2326 * it will just result in not the most efficient clean for the page.
2327 */
2328 #ifdef PMAP_CACHE_VIVT
2329 static int
2330 pmap_clean_page(struct pv_entry *pv, bool is_src)
2331 {
2332 pmap_t pm, pm_to_clean = NULL;
2333 struct pv_entry *npv;
2334 u_int cache_needs_cleaning = 0;
2335 u_int flags = 0;
2336 vaddr_t page_to_clean = 0;
2337
2338 if (pv == NULL) {
2339 /* nothing mapped in so nothing to flush */
2340 return (0);
2341 }
2342
2343 /*
2344 * Since we flush the cache each time we change to a different
2345 * user vmspace, we only need to flush the page if it is in the
2346 * current pmap.
2347 */
2348 pm = curproc->p_vmspace->vm_map.pmap;
2349
2350 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2351 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
2352 flags |= npv->pv_flags;
2353 /*
2354 * The page is mapped non-cacheable in
2355 * this map. No need to flush the cache.
2356 */
2357 if (npv->pv_flags & PVF_NC) {
2358 #ifdef DIAGNOSTIC
2359 if (cache_needs_cleaning)
2360 panic("pmap_clean_page: "
2361 "cache inconsistency");
2362 #endif
2363 break;
2364 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2365 continue;
2366 if (cache_needs_cleaning) {
2367 page_to_clean = 0;
2368 break;
2369 } else {
2370 page_to_clean = npv->pv_va;
2371 pm_to_clean = npv->pv_pmap;
2372 }
2373 cache_needs_cleaning = 1;
2374 }
2375 }
2376
2377 if (page_to_clean) {
2378 if (PV_BEEN_EXECD(flags))
2379 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2380 PAGE_SIZE);
2381 else
2382 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2383 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2384 } else if (cache_needs_cleaning) {
2385 if (PV_BEEN_EXECD(flags))
2386 pmap_idcache_wbinv_all(pm);
2387 else
2388 pmap_dcache_wbinv_all(pm);
2389 return (1);
2390 }
2391 return (0);
2392 }
2393 #endif
2394
2395 #ifdef PMAP_CACHE_VIPT
2396 /*
2397 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2398 * right cache alias to make sure we flush the right stuff.
2399 */
2400 void
2401 pmap_syncicache_page(struct vm_page *pg)
2402 {
2403 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2404 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2405
2406 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
2407 pg, pg->mdpage.pvh_attrs));
2408 /*
2409 * No need to clean the page if it's non-cached.
2410 */
2411 if (pg->mdpage.pvh_attrs & PVF_NC)
2412 return;
2413 KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
2414
2415 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2416 /*
2417 * Set up a PTE with the right coloring to flush existing cache lines.
2418 */
2419 *ptep = L2_S_PROTO |
2420 VM_PAGE_TO_PHYS(pg)
2421 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2422 | pte_l2_s_cache_mode;
2423 PTE_SYNC(ptep);
2424
2425 /*
2426 * Flush it.
2427 */
2428 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2429 /*
2430 * Unmap the page.
2431 */
2432 *ptep = 0;
2433 PTE_SYNC(ptep);
2434 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2435
2436 pg->mdpage.pvh_attrs |= PVF_EXEC;
2437 PMAPCOUNT(exec_synced);
2438 }
2439
2440 void
2441 pmap_flush_page(struct vm_page *pg, bool flush)
2442 {
2443 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2444 const size_t pte_offset = va_offset >> PGSHIFT;
2445 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2446 const pt_entry_t oldpte = *ptep;
2447 #if 0
2448 vaddr_t mask;
2449 #endif
2450
2451 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
2452 #if 0
2453 mask = pmap_check_sets(pg->phys_addr);
2454 KASSERT(popc4(mask) < 2);
2455 #endif
2456
2457 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
2458 pg, pg->mdpage.pvh_attrs));
2459 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2460 /*
2461 * Set up a PTE with the right coloring to flush existing cache entries.
2462 */
2463 *ptep = L2_S_PROTO
2464 | VM_PAGE_TO_PHYS(pg)
2465 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2466 | pte_l2_s_cache_mode;
2467 PTE_SYNC(ptep);
2468
2469 /*
2470 * Flush it.
2471 */
2472 if (flush) {
2473 cpu_idcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
2474 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2475 } else {
2476 cpu_dcache_wb_range(cdstp + va_offset, PAGE_SIZE);
2477 /*
2478 * Mark that the page is no longer dirty.
2479 */
2480 if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
2481 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2482 }
2483
2484 /*
2485 * Restore the page table entry since we might have interrupted
2486 * pmap_zero_page or pmap_copy_page which was already using this pte.
2487 */
2488 *ptep = oldpte;
2489 PTE_SYNC(ptep);
2490 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2491 #if 0
2492 mask = pmap_check_sets(pg->phys_addr);
2493 KASSERT(mask == 0);
2494 #endif
2495 }
2496 #endif /* PMAP_CACHE_VIPT */
2497
2498 /*
2499 * Routine: pmap_page_remove
2500 * Function:
2501 * Removes this physical page from
2502 * all physical maps in which it resides.
2503 * Reflects back modify bits to the pager.
2504 */
2505 static void
2506 pmap_page_remove(struct vm_page *pg)
2507 {
2508 struct l2_bucket *l2b;
2509 struct pv_entry *pv, *npv, **pvp;
2510 pmap_t pm, curpm;
2511 pt_entry_t *ptep, pte;
2512 bool flush;
2513 u_int flags;
2514
2515 NPDEBUG(PDB_FOLLOW,
2516 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2517 VM_PAGE_TO_PHYS(pg)));
2518
2519 PMAP_HEAD_TO_MAP_LOCK();
2520 simple_lock(&pg->mdpage.pvh_slock);
2521
2522 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2523 if (pv == NULL) {
2524 #ifdef PMAP_CACHE_VIPT
2525 /*
2526 * We *know* the page contents are about to be replaced.
2527 * Discard the exec contents
2528 */
2529 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2530 PMAPCOUNT(exec_discarded_page_protect);
2531 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2532 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2533 #endif
2534 simple_unlock(&pg->mdpage.pvh_slock);
2535 PMAP_HEAD_TO_MAP_UNLOCK();
2536 return;
2537 }
2538 #ifdef PMAP_CACHE_VIPT
2539 KASSERT(pmap_is_page_colored_p(pg));
2540 #endif
2541
2542 /*
2543 * Clear alias counts
2544 */
2545 #ifdef PMAP_CACHE_VIVT
2546 pg->mdpage.k_mappings = 0;
2547 #endif
2548 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
2549
2550 flush = false;
2551 flags = 0;
2552 curpm = curproc->p_vmspace->vm_map.pmap;
2553
2554 #ifdef PMAP_CACHE_VIVT
2555 pmap_clean_page(pv, false);
2556 #endif
2557
2558 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
2559 while (pv) {
2560 pm = pv->pv_pmap;
2561 npv = SLIST_NEXT(pv, pv_link);
2562 if (flush == false && (pm == curpm || pm == pmap_kernel()))
2563 flush = true;
2564
2565 if (pm == pmap_kernel()) {
2566 #ifdef PMAP_CACHE_VIPT
2567 /*
2568 * If this was unmanaged mapping, it must be preserved.
2569 * Move it back on the list and advance the end-of-list
2570 * pointer.
2571 */
2572 if (pv->pv_flags & PVF_KENTRY) {
2573 *pvp = pv;
2574 pvp = &SLIST_NEXT(pv, pv_link);
2575 pv = npv;
2576 continue;
2577 }
2578 if (pv->pv_flags & PVF_WRITE)
2579 pg->mdpage.krw_mappings--;
2580 else
2581 pg->mdpage.kro_mappings--;
2582 #endif
2583 PMAPCOUNT(kernel_unmappings);
2584 }
2585 PMAPCOUNT(unmappings);
2586
2587 pmap_acquire_pmap_lock(pm);
2588
2589 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2590 KDASSERT(l2b != NULL);
2591
2592 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2593 pte = *ptep;
2594
2595 /*
2596 * Update statistics
2597 */
2598 --pm->pm_stats.resident_count;
2599
2600 /* Wired bit */
2601 if (pv->pv_flags & PVF_WIRED)
2602 --pm->pm_stats.wired_count;
2603
2604 flags |= pv->pv_flags;
2605
2606 /*
2607 * Invalidate the PTEs.
2608 */
2609 *ptep = 0;
2610 PTE_SYNC_CURRENT(pm, ptep);
2611 pmap_free_l2_bucket(pm, l2b, 1);
2612
2613 pool_put(&pmap_pv_pool, pv);
2614 pv = npv;
2615 /*
2616 * if we reach the end of the list and there are still
2617 * mappings, they might be able to be cached now.
2618 */
2619 if (pv == NULL) {
2620 *pvp = NULL;
2621 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
2622 pmap_vac_me_harder(pg, pm, 0);
2623 }
2624 pmap_release_pmap_lock(pm);
2625 }
2626 #ifdef PMAP_CACHE_VIPT
2627 /*
2628 * Its EXEC cache is now gone.
2629 */
2630 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2631 PMAPCOUNT(exec_discarded_page_protect);
2632 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2633 KASSERT(pg->mdpage.urw_mappings == 0);
2634 KASSERT(pg->mdpage.uro_mappings == 0);
2635 if (pg->mdpage.krw_mappings == 0)
2636 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2637 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2638 #endif
2639 simple_unlock(&pg->mdpage.pvh_slock);
2640 PMAP_HEAD_TO_MAP_UNLOCK();
2641
2642 if (flush) {
2643 /*
2644 * Note: We can't use pmap_tlb_flush{I,}D() here since that
2645 * would need a subsequent call to pmap_update() to ensure
2646 * curpm->pm_cstate.cs_all is reset. Our callers are not
2647 * required to do that (see pmap(9)), so we can't modify
2648 * the current pmap's state.
2649 */
2650 if (PV_BEEN_EXECD(flags))
2651 cpu_tlb_flushID();
2652 else
2653 cpu_tlb_flushD();
2654 }
2655 cpu_cpwait();
2656 }
2657
2658 /*
2659 * pmap_t pmap_create(void)
2660 *
2661 * Create a new pmap structure from scratch.
2662 */
2663 pmap_t
2664 pmap_create(void)
2665 {
2666 pmap_t pm;
2667
2668 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2669
2670 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2671 pm->pm_stats.wired_count = 0;
2672 pm->pm_stats.resident_count = 1;
2673 pm->pm_cstate.cs_all = 0;
2674 pmap_alloc_l1(pm);
2675
2676 /*
2677 * Note: The pool cache ensures that the pm_l2[] array is already
2678 * initialised to zero.
2679 */
2680
2681 pmap_pinit(pm);
2682
2683 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2684
2685 return (pm);
2686 }
2687
2688 /*
2689 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2690 * int flags)
2691 *
2692 * Insert the given physical page (p) at
2693 * the specified virtual address (v) in the
2694 * target physical map with the protection requested.
2695 *
2696 * NB: This is the only routine which MAY NOT lazy-evaluate
2697 * or lose information. That is, this routine must actually
2698 * insert this page into the given map NOW.
2699 */
2700 int
2701 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
2702 {
2703 struct l2_bucket *l2b;
2704 struct vm_page *pg, *opg;
2705 struct pv_entry *pve;
2706 pt_entry_t *ptep, npte, opte;
2707 u_int nflags;
2708 u_int oflags;
2709
2710 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2711
2712 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2713 KDASSERT(((va | pa) & PGOFSET) == 0);
2714
2715 /*
2716 * Get a pointer to the page. Later on in this function, we
2717 * test for a managed page by checking pg != NULL.
2718 */
2719 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2720
2721 nflags = 0;
2722 if (prot & VM_PROT_WRITE)
2723 nflags |= PVF_WRITE;
2724 if (prot & VM_PROT_EXECUTE)
2725 nflags |= PVF_EXEC;
2726 if (flags & PMAP_WIRED)
2727 nflags |= PVF_WIRED;
2728
2729 PMAP_MAP_TO_HEAD_LOCK();
2730 pmap_acquire_pmap_lock(pm);
2731
2732 /*
2733 * Fetch the L2 bucket which maps this page, allocating one if
2734 * necessary for user pmaps.
2735 */
2736 if (pm == pmap_kernel())
2737 l2b = pmap_get_l2_bucket(pm, va);
2738 else
2739 l2b = pmap_alloc_l2_bucket(pm, va);
2740 if (l2b == NULL) {
2741 if (flags & PMAP_CANFAIL) {
2742 pmap_release_pmap_lock(pm);
2743 PMAP_MAP_TO_HEAD_UNLOCK();
2744 return (ENOMEM);
2745 }
2746 panic("pmap_enter: failed to allocate L2 bucket");
2747 }
2748 ptep = &l2b->l2b_kva[l2pte_index(va)];
2749 opte = *ptep;
2750 npte = pa;
2751 oflags = 0;
2752
2753 if (opte) {
2754 /*
2755 * There is already a mapping at this address.
2756 * If the physical address is different, lookup the
2757 * vm_page.
2758 */
2759 if (l2pte_pa(opte) != pa)
2760 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2761 else
2762 opg = pg;
2763 } else
2764 opg = NULL;
2765
2766 if (pg) {
2767 /*
2768 * This is to be a managed mapping.
2769 */
2770 if ((flags & VM_PROT_ALL) ||
2771 (pg->mdpage.pvh_attrs & PVF_REF)) {
2772 /*
2773 * - The access type indicates that we don't need
2774 * to do referenced emulation.
2775 * OR
2776 * - The physical page has already been referenced
2777 * so no need to re-do referenced emulation here.
2778 */
2779 npte |= L2_S_PROTO;
2780
2781 nflags |= PVF_REF;
2782
2783 if ((prot & VM_PROT_WRITE) != 0 &&
2784 ((flags & VM_PROT_WRITE) != 0 ||
2785 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2786 /*
2787 * This is a writable mapping, and the
2788 * page's mod state indicates it has
2789 * already been modified. Make it
2790 * writable from the outset.
2791 */
2792 npte |= L2_S_PROT_W;
2793 nflags |= PVF_MOD;
2794 }
2795 } else {
2796 /*
2797 * Need to do page referenced emulation.
2798 */
2799 npte |= L2_TYPE_INV;
2800 }
2801
2802 npte |= pte_l2_s_cache_mode;
2803
2804 if (pg == opg) {
2805 /*
2806 * We're changing the attrs of an existing mapping.
2807 */
2808 simple_lock(&pg->mdpage.pvh_slock);
2809 oflags = pmap_modify_pv(pg, pm, va,
2810 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2811 PVF_MOD | PVF_REF, nflags);
2812 simple_unlock(&pg->mdpage.pvh_slock);
2813
2814 #ifdef PMAP_CACHE_VIVT
2815 /*
2816 * We may need to flush the cache if we're
2817 * doing rw-ro...
2818 */
2819 if (pm->pm_cstate.cs_cache_d &&
2820 (oflags & PVF_NC) == 0 &&
2821 (opte & L2_S_PROT_W) != 0 &&
2822 (prot & VM_PROT_WRITE) == 0)
2823 cpu_dcache_wb_range(va, PAGE_SIZE);
2824 #endif
2825 } else {
2826 /*
2827 * New mapping, or changing the backing page
2828 * of an existing mapping.
2829 */
2830 if (opg) {
2831 /*
2832 * Replacing an existing mapping with a new one.
2833 * It is part of our managed memory so we
2834 * must remove it from the PV list
2835 */
2836 simple_lock(&opg->mdpage.pvh_slock);
2837 pve = pmap_remove_pv(opg, pm, va, 0);
2838 pmap_vac_me_harder(opg, pm, 0);
2839 simple_unlock(&opg->mdpage.pvh_slock);
2840 oflags = pve->pv_flags;
2841
2842 #ifdef PMAP_CACHE_VIVT
2843 /*
2844 * If the old mapping was valid (ref/mod
2845 * emulation creates 'invalid' mappings
2846 * initially) then make sure to frob
2847 * the cache.
2848 */
2849 if ((oflags & PVF_NC) == 0 &&
2850 l2pte_valid(opte)) {
2851 if (PV_BEEN_EXECD(oflags)) {
2852 pmap_idcache_wbinv_range(pm, va,
2853 PAGE_SIZE);
2854 } else
2855 if (PV_BEEN_REFD(oflags)) {
2856 pmap_dcache_wb_range(pm, va,
2857 PAGE_SIZE, true,
2858 (oflags & PVF_WRITE) == 0);
2859 }
2860 }
2861 #endif
2862 } else
2863 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2864 if ((flags & PMAP_CANFAIL) == 0)
2865 panic("pmap_enter: no pv entries");
2866
2867 if (pm != pmap_kernel())
2868 pmap_free_l2_bucket(pm, l2b, 0);
2869 pmap_release_pmap_lock(pm);
2870 PMAP_MAP_TO_HEAD_UNLOCK();
2871 NPDEBUG(PDB_ENTER,
2872 printf("pmap_enter: ENOMEM\n"));
2873 return (ENOMEM);
2874 }
2875
2876 pmap_enter_pv(pg, pve, pm, va, nflags);
2877 }
2878 } else {
2879 /*
2880 * We're mapping an unmanaged page.
2881 * These are always readable, and possibly writable, from
2882 * the get go as we don't need to track ref/mod status.
2883 */
2884 npte |= L2_S_PROTO;
2885 if (prot & VM_PROT_WRITE)
2886 npte |= L2_S_PROT_W;
2887
2888 /*
2889 * Make sure the vector table is mapped cacheable
2890 */
2891 if (pm != pmap_kernel() && va == vector_page)
2892 npte |= pte_l2_s_cache_mode;
2893
2894 if (opg) {
2895 /*
2896 * Looks like there's an existing 'managed' mapping
2897 * at this address.
2898 */
2899 simple_lock(&opg->mdpage.pvh_slock);
2900 pve = pmap_remove_pv(opg, pm, va, 0);
2901 pmap_vac_me_harder(opg, pm, 0);
2902 simple_unlock(&opg->mdpage.pvh_slock);
2903 oflags = pve->pv_flags;
2904
2905 #ifdef PMAP_CACHE_VIVT
2906 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2907 if (PV_BEEN_EXECD(oflags))
2908 pmap_idcache_wbinv_range(pm, va,
2909 PAGE_SIZE);
2910 else
2911 if (PV_BEEN_REFD(oflags))
2912 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2913 true, (oflags & PVF_WRITE) == 0);
2914 }
2915 #endif
2916 pool_put(&pmap_pv_pool, pve);
2917 }
2918 }
2919
2920 /*
2921 * Make sure userland mappings get the right permissions
2922 */
2923 if (pm != pmap_kernel() && va != vector_page)
2924 npte |= L2_S_PROT_U;
2925
2926 /*
2927 * Keep the stats up to date
2928 */
2929 if (opte == 0) {
2930 l2b->l2b_occupancy++;
2931 pm->pm_stats.resident_count++;
2932 }
2933
2934 NPDEBUG(PDB_ENTER,
2935 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2936
2937 /*
2938 * If this is just a wiring change, the two PTEs will be
2939 * identical, so there's no need to update the page table.
2940 */
2941 if (npte != opte) {
2942 bool is_cached = pmap_is_cached(pm);
2943
2944 *ptep = npte;
2945 if (is_cached) {
2946 /*
2947 * We only need to frob the cache/tlb if this pmap
2948 * is current
2949 */
2950 PTE_SYNC(ptep);
2951 if (va != vector_page && l2pte_valid(npte)) {
2952 /*
2953 * This mapping is likely to be accessed as
2954 * soon as we return to userland. Fix up the
2955 * L1 entry to avoid taking another
2956 * page/domain fault.
2957 */
2958 pd_entry_t *pl1pd, l1pd;
2959
2960 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
2961 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
2962 L1_C_PROTO;
2963 if (*pl1pd != l1pd) {
2964 *pl1pd = l1pd;
2965 PTE_SYNC(pl1pd);
2966 }
2967 }
2968 }
2969
2970 if (PV_BEEN_EXECD(oflags))
2971 pmap_tlb_flushID_SE(pm, va);
2972 else
2973 if (PV_BEEN_REFD(oflags))
2974 pmap_tlb_flushD_SE(pm, va);
2975
2976 NPDEBUG(PDB_ENTER,
2977 printf("pmap_enter: is_cached %d cs 0x%08x\n",
2978 is_cached, pm->pm_cstate.cs_all));
2979
2980 if (pg != NULL) {
2981 simple_lock(&pg->mdpage.pvh_slock);
2982 pmap_vac_me_harder(pg, pm, va);
2983 simple_unlock(&pg->mdpage.pvh_slock);
2984 }
2985 }
2986 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
2987 if (pg) {
2988 simple_lock(&pg->mdpage.pvh_slock);
2989 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2990 KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
2991 simple_unlock(&pg->mdpage.pvh_slock);
2992 }
2993 #endif
2994
2995 pmap_release_pmap_lock(pm);
2996 PMAP_MAP_TO_HEAD_UNLOCK();
2997
2998 return (0);
2999 }
3000
3001 /*
3002 * pmap_remove()
3003 *
3004 * pmap_remove is responsible for nuking a number of mappings for a range
3005 * of virtual address space in the current pmap. To do this efficiently
3006 * is interesting, because in a number of cases a wide virtual address
3007 * range may be supplied that contains few actual mappings. So, the
3008 * optimisations are:
3009 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3010 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3011 * maybe do just a partial cache clean. This path of execution is
3012 * complicated by the fact that the cache must be flushed _before_
3013 * the PTE is nuked, being a VAC :-)
3014 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3015 * all invalidations until pmap_update(), since pmap_remove_all() has
3016 * already flushed the cache.
3017 * 4. Maybe later fast-case a single page, but I don't think this is
3018 * going to make _that_ much difference overall.
3019 */
3020
3021 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3022
3023 void
3024 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
3025 {
3026 struct l2_bucket *l2b;
3027 vaddr_t next_bucket;
3028 pt_entry_t *ptep;
3029 u_int cleanlist_idx, total, cnt;
3030 struct {
3031 vaddr_t va;
3032 pt_entry_t *ptep;
3033 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3034 u_int mappings, is_exec, is_refd;
3035
3036 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3037 "eva=%08lx\n", pm, sva, eva));
3038
3039 /*
3040 * we lock in the pmap => pv_head direction
3041 */
3042 PMAP_MAP_TO_HEAD_LOCK();
3043 pmap_acquire_pmap_lock(pm);
3044
3045 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3046 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3047 if (pm->pm_cstate.cs_tlb == 0)
3048 pm->pm_remove_all = true;
3049 } else
3050 cleanlist_idx = 0;
3051
3052 total = 0;
3053
3054 while (sva < eva) {
3055 /*
3056 * Do one L2 bucket's worth at a time.
3057 */
3058 next_bucket = L2_NEXT_BUCKET(sva);
3059 if (next_bucket > eva)
3060 next_bucket = eva;
3061
3062 l2b = pmap_get_l2_bucket(pm, sva);
3063 if (l2b == NULL) {
3064 sva = next_bucket;
3065 continue;
3066 }
3067
3068 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3069
3070 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3071 struct vm_page *pg;
3072 pt_entry_t pte;
3073 paddr_t pa;
3074
3075 pte = *ptep;
3076
3077 if (pte == 0) {
3078 /* Nothing here, move along */
3079 continue;
3080 }
3081
3082 pa = l2pte_pa(pte);
3083 is_exec = 0;
3084 is_refd = 1;
3085
3086 /*
3087 * Update flags. In a number of circumstances,
3088 * we could cluster a lot of these and do a
3089 * number of sequential pages in one go.
3090 */
3091 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3092 struct pv_entry *pve;
3093 simple_lock(&pg->mdpage.pvh_slock);
3094 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
3095 pmap_vac_me_harder(pg, pm, 0);
3096 simple_unlock(&pg->mdpage.pvh_slock);
3097 if (pve != NULL) {
3098 if (pm->pm_remove_all == false) {
3099 is_exec =
3100 PV_BEEN_EXECD(pve->pv_flags);
3101 is_refd =
3102 PV_BEEN_REFD(pve->pv_flags);
3103 }
3104 pool_put(&pmap_pv_pool, pve);
3105 } else
3106 if (skip_wired) {
3107 /* The mapping is wired. Skip it */
3108 continue;
3109 }
3110 } else
3111 if (skip_wired) {
3112 /* Unmanaged pages are always wired. */
3113 continue;
3114 }
3115
3116 mappings++;
3117
3118 if (!l2pte_valid(pte)) {
3119 /*
3120 * Ref/Mod emulation is still active for this
3121 * mapping, therefore it is has not yet been
3122 * accessed. No need to frob the cache/tlb.
3123 */
3124 *ptep = 0;
3125 PTE_SYNC_CURRENT(pm, ptep);
3126 continue;
3127 }
3128
3129 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3130 /* Add to the clean list. */
3131 cleanlist[cleanlist_idx].ptep = ptep;
3132 cleanlist[cleanlist_idx].va =
3133 sva | (is_exec & 1);
3134 cleanlist_idx++;
3135 } else
3136 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3137 /* Nuke everything if needed. */
3138 #ifdef PMAP_CACHE_VIVT
3139 pmap_idcache_wbinv_all(pm);
3140 #endif
3141 pmap_tlb_flushID(pm);
3142
3143 /*
3144 * Roll back the previous PTE list,
3145 * and zero out the current PTE.
3146 */
3147 for (cnt = 0;
3148 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3149 *cleanlist[cnt].ptep = 0;
3150 PTE_SYNC(cleanlist[cnt].ptep);
3151 }
3152 *ptep = 0;
3153 PTE_SYNC(ptep);
3154 cleanlist_idx++;
3155 pm->pm_remove_all = true;
3156 } else {
3157 *ptep = 0;
3158 PTE_SYNC(ptep);
3159 if (pm->pm_remove_all == false) {
3160 if (is_exec)
3161 pmap_tlb_flushID_SE(pm, sva);
3162 else
3163 if (is_refd)
3164 pmap_tlb_flushD_SE(pm, sva);
3165 }
3166 }
3167 }
3168
3169 /*
3170 * Deal with any left overs
3171 */
3172 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3173 total += cleanlist_idx;
3174 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3175 if (pm->pm_cstate.cs_all != 0) {
3176 vaddr_t clva = cleanlist[cnt].va & ~1;
3177 if (cleanlist[cnt].va & 1) {
3178 #ifdef PMAP_CACHE_VIVT
3179 pmap_idcache_wbinv_range(pm,
3180 clva, PAGE_SIZE);
3181 #endif
3182 pmap_tlb_flushID_SE(pm, clva);
3183 } else {
3184 #ifdef PMAP_CACHE_VIVT
3185 pmap_dcache_wb_range(pm,
3186 clva, PAGE_SIZE, true,
3187 false);
3188 #endif
3189 pmap_tlb_flushD_SE(pm, clva);
3190 }
3191 }
3192 *cleanlist[cnt].ptep = 0;
3193 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3194 }
3195
3196 /*
3197 * If it looks like we're removing a whole bunch
3198 * of mappings, it's faster to just write-back
3199 * the whole cache now and defer TLB flushes until
3200 * pmap_update() is called.
3201 */
3202 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3203 cleanlist_idx = 0;
3204 else {
3205 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3206 #ifdef PMAP_CACHE_VIVT
3207 pmap_idcache_wbinv_all(pm);
3208 #endif
3209 pm->pm_remove_all = true;
3210 }
3211 }
3212
3213 pmap_free_l2_bucket(pm, l2b, mappings);
3214 pm->pm_stats.resident_count -= mappings;
3215 }
3216
3217 pmap_release_pmap_lock(pm);
3218 PMAP_MAP_TO_HEAD_UNLOCK();
3219 }
3220
3221 #ifdef PMAP_CACHE_VIPT
3222 static struct pv_entry *
3223 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3224 {
3225 struct pv_entry *pv;
3226
3227 simple_lock(&pg->mdpage.pvh_slock);
3228 KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
3229 KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3230
3231 pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
3232 KASSERT(pv);
3233 KASSERT(pv->pv_flags & PVF_KENTRY);
3234
3235 /*
3236 * If we are removing a writeable mapping to a cached exec page,
3237 * if it's the last mapping then clear it execness other sync
3238 * the page to the icache.
3239 */
3240 if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3241 && (pv->pv_flags & PVF_WRITE) != 0) {
3242 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
3243 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
3244 PMAPCOUNT(exec_discarded_kremove);
3245 } else {
3246 pmap_syncicache_page(pg);
3247 PMAPCOUNT(exec_synced_kremove);
3248 }
3249 }
3250 pmap_vac_me_harder(pg, pmap_kernel(), 0);
3251 simple_unlock(&pg->mdpage.pvh_slock);
3252
3253 return pv;
3254 }
3255 #endif /* PMAP_CACHE_VIPT */
3256
3257 /*
3258 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3259 *
3260 * We assume there is already sufficient KVM space available
3261 * to do this, as we can't allocate L2 descriptor tables/metadata
3262 * from here.
3263 */
3264 void
3265 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
3266 {
3267 struct l2_bucket *l2b;
3268 pt_entry_t *ptep, opte;
3269 #ifdef PMAP_CACHE_VIVT
3270 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3271 #endif
3272 #ifdef PMAP_CACHE_VIPT
3273 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3274 struct vm_page *opg;
3275 struct pv_entry *pv = NULL;
3276 #endif
3277
3278 NPDEBUG(PDB_KENTER,
3279 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3280 va, pa, prot));
3281
3282 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3283 KDASSERT(l2b != NULL);
3284
3285 ptep = &l2b->l2b_kva[l2pte_index(va)];
3286 opte = *ptep;
3287
3288 if (opte == 0) {
3289 PMAPCOUNT(kenter_mappings);
3290 l2b->l2b_occupancy++;
3291 } else {
3292 PMAPCOUNT(kenter_remappings);
3293 #ifdef PMAP_CACHE_VIPT
3294 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3295 if (opg) {
3296 KASSERT(opg != pg);
3297 KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3298 KASSERT((prot & PMAP_KMPAGE) == 0);
3299 simple_lock(&opg->mdpage.pvh_slock);
3300 pv = pmap_kremove_pg(opg, va);
3301 simple_unlock(&opg->mdpage.pvh_slock);
3302 }
3303 #endif
3304 if (l2pte_valid(opte)) {
3305 #ifdef PMAP_CACHE_VIVT
3306 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3307 #endif
3308 cpu_tlb_flushD_SE(va);
3309 cpu_cpwait();
3310 }
3311 }
3312
3313 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3314 pte_l2_s_cache_mode;
3315 PTE_SYNC(ptep);
3316
3317 if (pg) {
3318 if (prot & PMAP_KMPAGE) {
3319 simple_lock(&pg->mdpage.pvh_slock);
3320 KASSERT(pg->mdpage.urw_mappings == 0);
3321 KASSERT(pg->mdpage.uro_mappings == 0);
3322 KASSERT(pg->mdpage.krw_mappings == 0);
3323 KASSERT(pg->mdpage.kro_mappings == 0);
3324 #ifdef PMAP_CACHE_VIPT
3325 KASSERT(pv == NULL);
3326 KASSERT((va & PVF_COLORED) == 0);
3327 KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
3328 /* if there is a color conflict, evict from cache. */
3329 if (pmap_is_page_colored_p(pg)
3330 && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
3331 PMAPCOUNT(vac_color_change);
3332 pmap_flush_page(pg, true);
3333 }
3334 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
3335 pg->mdpage.pvh_attrs |= PVF_KMPAGE
3336 | PVF_COLORED | PVF_DIRTY
3337 | (va & arm_cache_prefer_mask);
3338 #endif
3339 #ifdef PMAP_CACHE_VIVT
3340 pg->mdpage.pvh_attrs |= PVF_KMPAGE;
3341 #endif
3342 pmap_kmpages++;
3343 simple_unlock(&pg->mdpage.pvh_slock);
3344 #ifdef PMAP_CACHE_VIPT
3345 } else {
3346 if (pv == NULL) {
3347 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3348 KASSERT(pv != NULL);
3349 }
3350 pmap_enter_pv(pg, pv, pmap_kernel(), va,
3351 PVF_WIRED | PVF_KENTRY
3352 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3353 if ((prot & VM_PROT_WRITE)
3354 && !(pg->mdpage.pvh_attrs & PVF_NC))
3355 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3356 KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3357 simple_lock(&pg->mdpage.pvh_slock);
3358 pmap_vac_me_harder(pg, pmap_kernel(), va);
3359 simple_unlock(&pg->mdpage.pvh_slock);
3360 #endif
3361 }
3362 #ifdef PMAP_CACHE_VIPT
3363 } else {
3364 if (pv != NULL)
3365 pool_put(&pmap_pv_pool, pv);
3366 #endif
3367 }
3368 }
3369
3370 void
3371 pmap_kremove(vaddr_t va, vsize_t len)
3372 {
3373 struct l2_bucket *l2b;
3374 pt_entry_t *ptep, *sptep, opte;
3375 vaddr_t next_bucket, eva;
3376 u_int mappings;
3377 struct vm_page *opg;
3378
3379 PMAPCOUNT(kenter_unmappings);
3380
3381 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3382 va, len));
3383
3384 eva = va + len;
3385
3386 while (va < eva) {
3387 next_bucket = L2_NEXT_BUCKET(va);
3388 if (next_bucket > eva)
3389 next_bucket = eva;
3390
3391 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3392 KDASSERT(l2b != NULL);
3393
3394 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3395 mappings = 0;
3396
3397 while (va < next_bucket) {
3398 opte = *ptep;
3399 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3400 if (opg) {
3401 if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
3402 simple_lock(&opg->mdpage.pvh_slock);
3403 KASSERT(opg->mdpage.urw_mappings == 0);
3404 KASSERT(opg->mdpage.uro_mappings == 0);
3405 KASSERT(opg->mdpage.krw_mappings == 0);
3406 KASSERT(opg->mdpage.kro_mappings == 0);
3407 opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
3408 #ifdef PMAP_CACHE_VIPT
3409 opg->mdpage.pvh_attrs &= ~PVF_WRITE;
3410 #endif
3411 pmap_kmpages--;
3412 simple_unlock(&opg->mdpage.pvh_slock);
3413 #ifdef PMAP_CACHE_VIPT
3414 } else {
3415 pool_put(&pmap_pv_pool,
3416 pmap_kremove_pg(opg, va));
3417 #endif
3418 }
3419 }
3420 if (l2pte_valid(opte)) {
3421 #ifdef PMAP_CACHE_VIVT
3422 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3423 #endif
3424 cpu_tlb_flushD_SE(va);
3425 }
3426 if (opte) {
3427 *ptep = 0;
3428 mappings++;
3429 }
3430 va += PAGE_SIZE;
3431 ptep++;
3432 }
3433 KDASSERT(mappings <= l2b->l2b_occupancy);
3434 l2b->l2b_occupancy -= mappings;
3435 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3436 }
3437 cpu_cpwait();
3438 }
3439
3440 bool
3441 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3442 {
3443 struct l2_dtable *l2;
3444 pd_entry_t *pl1pd, l1pd;
3445 pt_entry_t *ptep, pte;
3446 paddr_t pa;
3447 u_int l1idx;
3448
3449 pmap_acquire_pmap_lock(pm);
3450
3451 l1idx = L1_IDX(va);
3452 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3453 l1pd = *pl1pd;
3454
3455 if (l1pte_section_p(l1pd)) {
3456 /*
3457 * These should only happen for pmap_kernel()
3458 */
3459 KDASSERT(pm == pmap_kernel());
3460 pmap_release_pmap_lock(pm);
3461 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3462 } else {
3463 /*
3464 * Note that we can't rely on the validity of the L1
3465 * descriptor as an indication that a mapping exists.
3466 * We have to look it up in the L2 dtable.
3467 */
3468 l2 = pm->pm_l2[L2_IDX(l1idx)];
3469
3470 if (l2 == NULL ||
3471 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3472 pmap_release_pmap_lock(pm);
3473 return false;
3474 }
3475
3476 ptep = &ptep[l2pte_index(va)];
3477 pte = *ptep;
3478 pmap_release_pmap_lock(pm);
3479
3480 if (pte == 0)
3481 return false;
3482
3483 switch (pte & L2_TYPE_MASK) {
3484 case L2_TYPE_L:
3485 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3486 break;
3487
3488 default:
3489 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3490 break;
3491 }
3492 }
3493
3494 if (pap != NULL)
3495 *pap = pa;
3496
3497 return true;
3498 }
3499
3500 void
3501 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3502 {
3503 struct l2_bucket *l2b;
3504 pt_entry_t *ptep, pte;
3505 vaddr_t next_bucket;
3506 u_int flags;
3507 u_int clr_mask;
3508 int flush;
3509
3510 NPDEBUG(PDB_PROTECT,
3511 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3512 pm, sva, eva, prot));
3513
3514 if ((prot & VM_PROT_READ) == 0) {
3515 pmap_remove(pm, sva, eva);
3516 return;
3517 }
3518
3519 if (prot & VM_PROT_WRITE) {
3520 /*
3521 * If this is a read->write transition, just ignore it and let
3522 * uvm_fault() take care of it later.
3523 */
3524 return;
3525 }
3526
3527 PMAP_MAP_TO_HEAD_LOCK();
3528 pmap_acquire_pmap_lock(pm);
3529
3530 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3531 flags = 0;
3532 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3533
3534 while (sva < eva) {
3535 next_bucket = L2_NEXT_BUCKET(sva);
3536 if (next_bucket > eva)
3537 next_bucket = eva;
3538
3539 l2b = pmap_get_l2_bucket(pm, sva);
3540 if (l2b == NULL) {
3541 sva = next_bucket;
3542 continue;
3543 }
3544
3545 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3546
3547 while (sva < next_bucket) {
3548 pte = *ptep;
3549 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3550 struct vm_page *pg;
3551 u_int f;
3552
3553 #ifdef PMAP_CACHE_VIVT
3554 /*
3555 * OK, at this point, we know we're doing
3556 * write-protect operation. If the pmap is
3557 * active, write-back the page.
3558 */
3559 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3560 false, false);
3561 #endif
3562
3563 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3564 pte &= ~L2_S_PROT_W;
3565 *ptep = pte;
3566 PTE_SYNC(ptep);
3567
3568 if (pg != NULL) {
3569 simple_lock(&pg->mdpage.pvh_slock);
3570 f = pmap_modify_pv(pg, pm, sva,
3571 clr_mask, 0);
3572 pmap_vac_me_harder(pg, pm, sva);
3573 simple_unlock(&pg->mdpage.pvh_slock);
3574 } else
3575 f = PVF_REF | PVF_EXEC;
3576
3577 if (flush >= 0) {
3578 flush++;
3579 flags |= f;
3580 } else
3581 if (PV_BEEN_EXECD(f))
3582 pmap_tlb_flushID_SE(pm, sva);
3583 else
3584 if (PV_BEEN_REFD(f))
3585 pmap_tlb_flushD_SE(pm, sva);
3586 }
3587
3588 sva += PAGE_SIZE;
3589 ptep++;
3590 }
3591 }
3592
3593 pmap_release_pmap_lock(pm);
3594 PMAP_MAP_TO_HEAD_UNLOCK();
3595
3596 if (flush) {
3597 if (PV_BEEN_EXECD(flags))
3598 pmap_tlb_flushID(pm);
3599 else
3600 if (PV_BEEN_REFD(flags))
3601 pmap_tlb_flushD(pm);
3602 }
3603 }
3604
3605 void
3606 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3607 {
3608 struct l2_bucket *l2b;
3609 pt_entry_t *ptep;
3610 vaddr_t next_bucket;
3611 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3612
3613 NPDEBUG(PDB_EXEC,
3614 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3615 pm, sva, eva));
3616
3617 PMAP_MAP_TO_HEAD_LOCK();
3618 pmap_acquire_pmap_lock(pm);
3619
3620 while (sva < eva) {
3621 next_bucket = L2_NEXT_BUCKET(sva);
3622 if (next_bucket > eva)
3623 next_bucket = eva;
3624
3625 l2b = pmap_get_l2_bucket(pm, sva);
3626 if (l2b == NULL) {
3627 sva = next_bucket;
3628 continue;
3629 }
3630
3631 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3632 sva < next_bucket;
3633 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3634 if (l2pte_valid(*ptep)) {
3635 cpu_icache_sync_range(sva,
3636 min(page_size, eva - sva));
3637 }
3638 }
3639 }
3640
3641 pmap_release_pmap_lock(pm);
3642 PMAP_MAP_TO_HEAD_UNLOCK();
3643 }
3644
3645 void
3646 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3647 {
3648
3649 NPDEBUG(PDB_PROTECT,
3650 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3651 pg, VM_PAGE_TO_PHYS(pg), prot));
3652
3653 switch(prot) {
3654 return;
3655 case VM_PROT_READ|VM_PROT_WRITE:
3656 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3657 pmap_clearbit(pg, PVF_EXEC);
3658 break;
3659 #endif
3660 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3661 break;
3662
3663 case VM_PROT_READ:
3664 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3665 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3666 break;
3667 #endif
3668 case VM_PROT_READ|VM_PROT_EXECUTE:
3669 pmap_clearbit(pg, PVF_WRITE);
3670 break;
3671
3672 default:
3673 pmap_page_remove(pg);
3674 break;
3675 }
3676 }
3677
3678 /*
3679 * pmap_clear_modify:
3680 *
3681 * Clear the "modified" attribute for a page.
3682 */
3683 bool
3684 pmap_clear_modify(struct vm_page *pg)
3685 {
3686 bool rv;
3687
3688 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3689 rv = true;
3690 pmap_clearbit(pg, PVF_MOD);
3691 } else
3692 rv = false;
3693
3694 return (rv);
3695 }
3696
3697 /*
3698 * pmap_clear_reference:
3699 *
3700 * Clear the "referenced" attribute for a page.
3701 */
3702 bool
3703 pmap_clear_reference(struct vm_page *pg)
3704 {
3705 bool rv;
3706
3707 if (pg->mdpage.pvh_attrs & PVF_REF) {
3708 rv = true;
3709 pmap_clearbit(pg, PVF_REF);
3710 } else
3711 rv = false;
3712
3713 return (rv);
3714 }
3715
3716 /*
3717 * pmap_is_modified:
3718 *
3719 * Test if a page has the "modified" attribute.
3720 */
3721 /* See <arm/arm32/pmap.h> */
3722
3723 /*
3724 * pmap_is_referenced:
3725 *
3726 * Test if a page has the "referenced" attribute.
3727 */
3728 /* See <arm/arm32/pmap.h> */
3729
3730 int
3731 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3732 {
3733 struct l2_dtable *l2;
3734 struct l2_bucket *l2b;
3735 pd_entry_t *pl1pd, l1pd;
3736 pt_entry_t *ptep, pte;
3737 paddr_t pa;
3738 u_int l1idx;
3739 int rv = 0;
3740
3741 PMAP_MAP_TO_HEAD_LOCK();
3742 pmap_acquire_pmap_lock(pm);
3743
3744 l1idx = L1_IDX(va);
3745
3746 /*
3747 * If there is no l2_dtable for this address, then the process
3748 * has no business accessing it.
3749 *
3750 * Note: This will catch userland processes trying to access
3751 * kernel addresses.
3752 */
3753 l2 = pm->pm_l2[L2_IDX(l1idx)];
3754 if (l2 == NULL)
3755 goto out;
3756
3757 /*
3758 * Likewise if there is no L2 descriptor table
3759 */
3760 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3761 if (l2b->l2b_kva == NULL)
3762 goto out;
3763
3764 /*
3765 * Check the PTE itself.
3766 */
3767 ptep = &l2b->l2b_kva[l2pte_index(va)];
3768 pte = *ptep;
3769 if (pte == 0)
3770 goto out;
3771
3772 /*
3773 * Catch a userland access to the vector page mapped at 0x0
3774 */
3775 if (user && (pte & L2_S_PROT_U) == 0)
3776 goto out;
3777
3778 pa = l2pte_pa(pte);
3779
3780 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3781 /*
3782 * This looks like a good candidate for "page modified"
3783 * emulation...
3784 */
3785 struct pv_entry *pv;
3786 struct vm_page *pg;
3787
3788 /* Extract the physical address of the page */
3789 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3790 goto out;
3791
3792 /* Get the current flags for this page. */
3793 simple_lock(&pg->mdpage.pvh_slock);
3794
3795 pv = pmap_find_pv(pg, pm, va);
3796 if (pv == NULL) {
3797 simple_unlock(&pg->mdpage.pvh_slock);
3798 goto out;
3799 }
3800
3801 /*
3802 * Do the flags say this page is writable? If not then it
3803 * is a genuine write fault. If yes then the write fault is
3804 * our fault as we did not reflect the write access in the
3805 * PTE. Now we know a write has occurred we can correct this
3806 * and also set the modified bit
3807 */
3808 if ((pv->pv_flags & PVF_WRITE) == 0) {
3809 simple_unlock(&pg->mdpage.pvh_slock);
3810 goto out;
3811 }
3812
3813 NPDEBUG(PDB_FOLLOW,
3814 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3815 pm, va, VM_PAGE_TO_PHYS(pg)));
3816
3817 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3818 pv->pv_flags |= PVF_REF | PVF_MOD;
3819 #ifdef PMAP_CACHE_VIPT
3820 /*
3821 * If there are cacheable mappings for this page, mark it dirty.
3822 */
3823 if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
3824 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3825 #endif
3826 simple_unlock(&pg->mdpage.pvh_slock);
3827
3828 /*
3829 * Re-enable write permissions for the page. No need to call
3830 * pmap_vac_me_harder(), since this is just a
3831 * modified-emulation fault, and the PVF_WRITE bit isn't
3832 * changing. We've already set the cacheable bits based on
3833 * the assumption that we can write to this page.
3834 */
3835 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3836 PTE_SYNC(ptep);
3837 rv = 1;
3838 } else
3839 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3840 /*
3841 * This looks like a good candidate for "page referenced"
3842 * emulation.
3843 */
3844 struct pv_entry *pv;
3845 struct vm_page *pg;
3846
3847 /* Extract the physical address of the page */
3848 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3849 goto out;
3850
3851 /* Get the current flags for this page. */
3852 simple_lock(&pg->mdpage.pvh_slock);
3853
3854 pv = pmap_find_pv(pg, pm, va);
3855 if (pv == NULL) {
3856 simple_unlock(&pg->mdpage.pvh_slock);
3857 goto out;
3858 }
3859
3860 pg->mdpage.pvh_attrs |= PVF_REF;
3861 pv->pv_flags |= PVF_REF;
3862 simple_unlock(&pg->mdpage.pvh_slock);
3863
3864 NPDEBUG(PDB_FOLLOW,
3865 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3866 pm, va, VM_PAGE_TO_PHYS(pg)));
3867
3868 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3869 PTE_SYNC(ptep);
3870 rv = 1;
3871 }
3872
3873 /*
3874 * We know there is a valid mapping here, so simply
3875 * fix up the L1 if necessary.
3876 */
3877 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3878 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3879 if (*pl1pd != l1pd) {
3880 *pl1pd = l1pd;
3881 PTE_SYNC(pl1pd);
3882 rv = 1;
3883 }
3884
3885 #ifdef CPU_SA110
3886 /*
3887 * There are bugs in the rev K SA110. This is a check for one
3888 * of them.
3889 */
3890 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3891 curcpu()->ci_arm_cpurev < 3) {
3892 /* Always current pmap */
3893 if (l2pte_valid(pte)) {
3894 extern int kernel_debug;
3895 if (kernel_debug & 1) {
3896 struct proc *p = curlwp->l_proc;
3897 printf("prefetch_abort: page is already "
3898 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3899 printf("prefetch_abort: pc=%08lx proc=%p "
3900 "process=%s\n", va, p, p->p_comm);
3901 printf("prefetch_abort: far=%08x fs=%x\n",
3902 cpu_faultaddress(), cpu_faultstatus());
3903 }
3904 #ifdef DDB
3905 if (kernel_debug & 2)
3906 Debugger();
3907 #endif
3908 rv = 1;
3909 }
3910 }
3911 #endif /* CPU_SA110 */
3912
3913 #ifdef DEBUG
3914 /*
3915 * If 'rv == 0' at this point, it generally indicates that there is a
3916 * stale TLB entry for the faulting address. This happens when two or
3917 * more processes are sharing an L1. Since we don't flush the TLB on
3918 * a context switch between such processes, we can take domain faults
3919 * for mappings which exist at the same VA in both processes. EVEN IF
3920 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
3921 * example.
3922 *
3923 * This is extremely likely to happen if pmap_enter() updated the L1
3924 * entry for a recently entered mapping. In this case, the TLB is
3925 * flushed for the new mapping, but there may still be TLB entries for
3926 * other mappings belonging to other processes in the 1MB range
3927 * covered by the L1 entry.
3928 *
3929 * Since 'rv == 0', we know that the L1 already contains the correct
3930 * value, so the fault must be due to a stale TLB entry.
3931 *
3932 * Since we always need to flush the TLB anyway in the case where we
3933 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
3934 * stale TLB entries dynamically.
3935 *
3936 * However, the above condition can ONLY happen if the current L1 is
3937 * being shared. If it happens when the L1 is unshared, it indicates
3938 * that other parts of the pmap are not doing their job WRT managing
3939 * the TLB.
3940 */
3941 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
3942 extern int last_fault_code;
3943 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
3944 pm, va, ftype);
3945 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
3946 l2, l2b, ptep, pl1pd);
3947 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
3948 pte, l1pd, last_fault_code);
3949 #ifdef DDB
3950 Debugger();
3951 #endif
3952 }
3953 #endif
3954
3955 cpu_tlb_flushID_SE(va);
3956 cpu_cpwait();
3957
3958 rv = 1;
3959
3960 out:
3961 pmap_release_pmap_lock(pm);
3962 PMAP_MAP_TO_HEAD_UNLOCK();
3963
3964 return (rv);
3965 }
3966
3967 /*
3968 * pmap_collect: free resources held by a pmap
3969 *
3970 * => optional function.
3971 * => called when a process is swapped out to free memory.
3972 */
3973 void
3974 pmap_collect(pmap_t pm)
3975 {
3976
3977 #ifdef PMAP_CACHE_VIVT
3978 pmap_idcache_wbinv_all(pm);
3979 #endif
3980 pm->pm_remove_all = true;
3981 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
3982 pmap_update(pm);
3983 PMAPCOUNT(collects);
3984 }
3985
3986 /*
3987 * Routine: pmap_procwr
3988 *
3989 * Function:
3990 * Synchronize caches corresponding to [addr, addr+len) in p.
3991 *
3992 */
3993 void
3994 pmap_procwr(struct proc *p, vaddr_t va, int len)
3995 {
3996 /* We only need to do anything if it is the current process. */
3997 if (p == curproc)
3998 cpu_icache_sync_range(va, len);
3999 }
4000
4001 /*
4002 * Routine: pmap_unwire
4003 * Function: Clear the wired attribute for a map/virtual-address pair.
4004 *
4005 * In/out conditions:
4006 * The mapping must already exist in the pmap.
4007 */
4008 void
4009 pmap_unwire(pmap_t pm, vaddr_t va)
4010 {
4011 struct l2_bucket *l2b;
4012 pt_entry_t *ptep, pte;
4013 struct vm_page *pg;
4014 paddr_t pa;
4015
4016 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4017
4018 PMAP_MAP_TO_HEAD_LOCK();
4019 pmap_acquire_pmap_lock(pm);
4020
4021 l2b = pmap_get_l2_bucket(pm, va);
4022 KDASSERT(l2b != NULL);
4023
4024 ptep = &l2b->l2b_kva[l2pte_index(va)];
4025 pte = *ptep;
4026
4027 /* Extract the physical address of the page */
4028 pa = l2pte_pa(pte);
4029
4030 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4031 /* Update the wired bit in the pv entry for this page. */
4032 simple_lock(&pg->mdpage.pvh_slock);
4033 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
4034 simple_unlock(&pg->mdpage.pvh_slock);
4035 }
4036
4037 pmap_release_pmap_lock(pm);
4038 PMAP_MAP_TO_HEAD_UNLOCK();
4039 }
4040
4041 void
4042 pmap_activate(struct lwp *l)
4043 {
4044 extern int block_userspace_access;
4045 pmap_t opm, npm, rpm;
4046 uint32_t odacr, ndacr;
4047 int oldirqstate;
4048
4049 /*
4050 * If activating a non-current lwp or the current lwp is
4051 * already active, just return.
4052 */
4053 if (l != curlwp ||
4054 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4055 return;
4056
4057 npm = l->l_proc->p_vmspace->vm_map.pmap;
4058 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4059 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4060
4061 /*
4062 * If TTB and DACR are unchanged, short-circuit all the
4063 * TLB/cache management stuff.
4064 */
4065 if (pmap_previous_active_lwp != NULL) {
4066 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4067 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4068 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4069
4070 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4071 goto all_done;
4072 } else
4073 opm = NULL;
4074
4075 PMAPCOUNT(activations);
4076 block_userspace_access = 1;
4077
4078 /*
4079 * If switching to a user vmspace which is different to the
4080 * most recent one, and the most recent one is potentially
4081 * live in the cache, we must write-back and invalidate the
4082 * entire cache.
4083 */
4084 rpm = pmap_recent_user;
4085 if (npm != pmap_kernel() && rpm && npm != rpm &&
4086 rpm->pm_cstate.cs_cache) {
4087 rpm->pm_cstate.cs_cache = 0;
4088 #ifdef PMAP_CACHE_VIVT
4089 cpu_idcache_wbinv_all();
4090 #endif
4091 }
4092
4093 /* No interrupts while we frob the TTB/DACR */
4094 oldirqstate = disable_interrupts(IF32_bits);
4095
4096 /*
4097 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4098 * entry corresponding to 'vector_page' in the incoming L1 table
4099 * before switching to it otherwise subsequent interrupts/exceptions
4100 * (including domain faults!) will jump into hyperspace.
4101 */
4102 if (npm->pm_pl1vec != NULL) {
4103 cpu_tlb_flushID_SE((u_int)vector_page);
4104 cpu_cpwait();
4105 *npm->pm_pl1vec = npm->pm_l1vec;
4106 PTE_SYNC(npm->pm_pl1vec);
4107 }
4108
4109 cpu_domains(ndacr);
4110
4111 if (npm == pmap_kernel() || npm == rpm) {
4112 /*
4113 * Switching to a kernel thread, or back to the
4114 * same user vmspace as before... Simply update
4115 * the TTB (no TLB flush required)
4116 */
4117 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4118 "r"(npm->pm_l1->l1_physaddr));
4119 cpu_cpwait();
4120 } else {
4121 /*
4122 * Otherwise, update TTB and flush TLB
4123 */
4124 cpu_context_switch(npm->pm_l1->l1_physaddr);
4125 if (rpm != NULL)
4126 rpm->pm_cstate.cs_tlb = 0;
4127 }
4128
4129 restore_interrupts(oldirqstate);
4130
4131 block_userspace_access = 0;
4132
4133 all_done:
4134 /*
4135 * The new pmap is resident. Make sure it's marked
4136 * as resident in the cache/TLB.
4137 */
4138 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4139 if (npm != pmap_kernel())
4140 pmap_recent_user = npm;
4141
4142 /* The old pmap is not longer active */
4143 if (opm != NULL)
4144 opm->pm_activated = false;
4145
4146 /* But the new one is */
4147 npm->pm_activated = true;
4148 }
4149
4150 void
4151 pmap_deactivate(struct lwp *l)
4152 {
4153
4154 /*
4155 * If the process is exiting, make sure pmap_activate() does
4156 * a full MMU context-switch and cache flush, which we might
4157 * otherwise skip. See PR port-arm/38950.
4158 */
4159 if (l->l_proc->p_sflag & PS_WEXIT)
4160 pmap_previous_active_lwp = NULL;
4161
4162 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4163 }
4164
4165 void
4166 pmap_update(pmap_t pm)
4167 {
4168
4169 if (pm->pm_remove_all) {
4170 /*
4171 * Finish up the pmap_remove_all() optimisation by flushing
4172 * the TLB.
4173 */
4174 pmap_tlb_flushID(pm);
4175 pm->pm_remove_all = false;
4176 }
4177
4178 if (pmap_is_current(pm)) {
4179 /*
4180 * If we're dealing with a current userland pmap, move its L1
4181 * to the end of the LRU.
4182 */
4183 if (pm != pmap_kernel())
4184 pmap_use_l1(pm);
4185
4186 /*
4187 * We can assume we're done with frobbing the cache/tlb for
4188 * now. Make sure any future pmap ops don't skip cache/tlb
4189 * flushes.
4190 */
4191 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4192 }
4193
4194 PMAPCOUNT(updates);
4195
4196 /*
4197 * make sure TLB/cache operations have completed.
4198 */
4199 cpu_cpwait();
4200 }
4201
4202 void
4203 pmap_remove_all(pmap_t pm)
4204 {
4205
4206 /*
4207 * The vmspace described by this pmap is about to be torn down.
4208 * Until pmap_update() is called, UVM will only make calls
4209 * to pmap_remove(). We can make life much simpler by flushing
4210 * the cache now, and deferring TLB invalidation to pmap_update().
4211 */
4212 #ifdef PMAP_CACHE_VIVT
4213 pmap_idcache_wbinv_all(pm);
4214 #endif
4215 pm->pm_remove_all = true;
4216 }
4217
4218 /*
4219 * Retire the given physical map from service.
4220 * Should only be called if the map contains no valid mappings.
4221 */
4222 void
4223 pmap_destroy(pmap_t pm)
4224 {
4225 u_int count;
4226
4227 if (pm == NULL)
4228 return;
4229
4230 if (pm->pm_remove_all) {
4231 pmap_tlb_flushID(pm);
4232 pm->pm_remove_all = false;
4233 }
4234
4235 /*
4236 * Drop reference count
4237 */
4238 mutex_enter(&pm->pm_lock);
4239 count = --pm->pm_obj.uo_refs;
4240 mutex_exit(&pm->pm_lock);
4241 if (count > 0) {
4242 if (pmap_is_current(pm)) {
4243 if (pm != pmap_kernel())
4244 pmap_use_l1(pm);
4245 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4246 }
4247 return;
4248 }
4249
4250 /*
4251 * reference count is zero, free pmap resources and then free pmap.
4252 */
4253
4254 if (vector_page < KERNEL_BASE) {
4255 KDASSERT(!pmap_is_current(pm));
4256
4257 /* Remove the vector page mapping */
4258 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4259 pmap_update(pm);
4260 }
4261
4262 LIST_REMOVE(pm, pm_list);
4263
4264 pmap_free_l1(pm);
4265
4266 if (pmap_recent_user == pm)
4267 pmap_recent_user = NULL;
4268
4269 UVM_OBJ_DESTROY(&pm->pm_obj);
4270
4271 /* return the pmap to the pool */
4272 pool_cache_put(&pmap_cache, pm);
4273 }
4274
4275
4276 /*
4277 * void pmap_reference(pmap_t pm)
4278 *
4279 * Add a reference to the specified pmap.
4280 */
4281 void
4282 pmap_reference(pmap_t pm)
4283 {
4284
4285 if (pm == NULL)
4286 return;
4287
4288 pmap_use_l1(pm);
4289
4290 mutex_enter(&pm->pm_lock);
4291 pm->pm_obj.uo_refs++;
4292 mutex_exit(&pm->pm_lock);
4293 }
4294
4295 #if ARM_MMU_V6 > 0
4296
4297 static struct evcnt pmap_prefer_nochange_ev =
4298 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4299 static struct evcnt pmap_prefer_change_ev =
4300 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4301
4302 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4303 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4304
4305 void
4306 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4307 {
4308 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4309 vaddr_t va = *vap;
4310 vaddr_t diff = (hint - va) & mask;
4311 if (diff == 0) {
4312 pmap_prefer_nochange_ev.ev_count++;
4313 } else {
4314 pmap_prefer_change_ev.ev_count++;
4315 if (__predict_false(td))
4316 va -= mask + 1;
4317 *vap = va + diff;
4318 }
4319 }
4320 #endif /* ARM_MMU_V6 */
4321
4322 /*
4323 * pmap_zero_page()
4324 *
4325 * Zero a given physical page by mapping it at a page hook point.
4326 * In doing the zero page op, the page we zero is mapped cachable, as with
4327 * StrongARM accesses to non-cached pages are non-burst making writing
4328 * _any_ bulk data very slow.
4329 */
4330 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4331 void
4332 pmap_zero_page_generic(paddr_t phys)
4333 {
4334 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4335 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4336 #endif
4337 #ifdef PMAP_CACHE_VIPT
4338 /* Choose the last page color it had, if any */
4339 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4340 #else
4341 const vsize_t va_offset = 0;
4342 #endif
4343 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4344
4345 #ifdef DEBUG
4346 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4347 panic("pmap_zero_page: page has mappings");
4348 #endif
4349
4350 KDASSERT((phys & PGOFSET) == 0);
4351
4352 /*
4353 * Hook in the page, zero it, and purge the cache for that
4354 * zeroed page. Invalidate the TLB as needed.
4355 */
4356 *ptep = L2_S_PROTO | phys |
4357 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4358 PTE_SYNC(ptep);
4359 cpu_tlb_flushD_SE(cdstp + va_offset);
4360 cpu_cpwait();
4361 bzero_page(cdstp + va_offset);
4362 /*
4363 * Unmap the page.
4364 */
4365 *ptep = 0;
4366 PTE_SYNC(ptep);
4367 cpu_tlb_flushD_SE(cdstp + va_offset);
4368 #ifdef PMAP_CACHE_VIVT
4369 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4370 #endif
4371 #ifdef PMAP_CACHE_VIPT
4372 /*
4373 * This page is now cache resident so it now has a page color.
4374 * Any contents have been obliterated so clear the EXEC flag.
4375 */
4376 if (!pmap_is_page_colored_p(pg)) {
4377 PMAPCOUNT(vac_color_new);
4378 pg->mdpage.pvh_attrs |= PVF_COLORED;
4379 }
4380 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4381 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4382 PMAPCOUNT(exec_discarded_zero);
4383 }
4384 pg->mdpage.pvh_attrs |= PVF_DIRTY;
4385 #endif
4386 }
4387 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4388
4389 #if ARM_MMU_XSCALE == 1
4390 void
4391 pmap_zero_page_xscale(paddr_t phys)
4392 {
4393 #ifdef DEBUG
4394 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4395
4396 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4397 panic("pmap_zero_page: page has mappings");
4398 #endif
4399
4400 KDASSERT((phys & PGOFSET) == 0);
4401
4402 /*
4403 * Hook in the page, zero it, and purge the cache for that
4404 * zeroed page. Invalidate the TLB as needed.
4405 */
4406 *cdst_pte = L2_S_PROTO | phys |
4407 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4408 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4409 PTE_SYNC(cdst_pte);
4410 cpu_tlb_flushD_SE(cdstp);
4411 cpu_cpwait();
4412 bzero_page(cdstp);
4413 xscale_cache_clean_minidata();
4414 }
4415 #endif /* ARM_MMU_XSCALE == 1 */
4416
4417 /* pmap_pageidlezero()
4418 *
4419 * The same as above, except that we assume that the page is not
4420 * mapped. This means we never have to flush the cache first. Called
4421 * from the idle loop.
4422 */
4423 bool
4424 pmap_pageidlezero(paddr_t phys)
4425 {
4426 unsigned int i;
4427 int *ptr;
4428 bool rv = true;
4429 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4430 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4431 #endif
4432 #ifdef PMAP_CACHE_VIPT
4433 /* Choose the last page color it had, if any */
4434 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4435 #else
4436 const vsize_t va_offset = 0;
4437 #endif
4438 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4439
4440
4441 #ifdef DEBUG
4442 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4443 panic("pmap_pageidlezero: page has mappings");
4444 #endif
4445
4446 KDASSERT((phys & PGOFSET) == 0);
4447
4448 /*
4449 * Hook in the page, zero it, and purge the cache for that
4450 * zeroed page. Invalidate the TLB as needed.
4451 */
4452 *ptep = L2_S_PROTO | phys |
4453 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4454 PTE_SYNC(ptep);
4455 cpu_tlb_flushD_SE(cdstp + va_offset);
4456 cpu_cpwait();
4457
4458 for (i = 0, ptr = (int *)(cdstp + va_offset);
4459 i < (PAGE_SIZE / sizeof(int)); i++) {
4460 if (sched_curcpu_runnable_p() != 0) {
4461 /*
4462 * A process has become ready. Abort now,
4463 * so we don't keep it waiting while we
4464 * do slow memory access to finish this
4465 * page.
4466 */
4467 rv = false;
4468 break;
4469 }
4470 *ptr++ = 0;
4471 }
4472
4473 #ifdef PMAP_CACHE_VIVT
4474 if (rv)
4475 /*
4476 * if we aborted we'll rezero this page again later so don't
4477 * purge it unless we finished it
4478 */
4479 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4480 #elif defined(PMAP_CACHE_VIPT)
4481 /*
4482 * This page is now cache resident so it now has a page color.
4483 * Any contents have been obliterated so clear the EXEC flag.
4484 */
4485 if (!pmap_is_page_colored_p(pg)) {
4486 PMAPCOUNT(vac_color_new);
4487 pg->mdpage.pvh_attrs |= PVF_COLORED;
4488 }
4489 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4490 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4491 PMAPCOUNT(exec_discarded_zero);
4492 }
4493 #endif
4494 /*
4495 * Unmap the page.
4496 */
4497 *ptep = 0;
4498 PTE_SYNC(ptep);
4499 cpu_tlb_flushD_SE(cdstp + va_offset);
4500
4501 return (rv);
4502 }
4503
4504 /*
4505 * pmap_copy_page()
4506 *
4507 * Copy one physical page into another, by mapping the pages into
4508 * hook points. The same comment regarding cachability as in
4509 * pmap_zero_page also applies here.
4510 */
4511 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4512 void
4513 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4514 {
4515 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4516 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4517 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4518 #endif
4519 #ifdef PMAP_CACHE_VIPT
4520 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4521 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4522 #else
4523 const vsize_t src_va_offset = 0;
4524 const vsize_t dst_va_offset = 0;
4525 #endif
4526 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4527 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4528
4529 #ifdef DEBUG
4530 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4531 panic("pmap_copy_page: dst page has mappings");
4532 #endif
4533
4534 #ifdef PMAP_CACHE_VIPT
4535 KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
4536 #endif
4537 KDASSERT((src & PGOFSET) == 0);
4538 KDASSERT((dst & PGOFSET) == 0);
4539
4540 /*
4541 * Clean the source page. Hold the source page's lock for
4542 * the duration of the copy so that no other mappings can
4543 * be created while we have a potentially aliased mapping.
4544 */
4545 simple_lock(&src_pg->mdpage.pvh_slock);
4546 #ifdef PMAP_CACHE_VIVT
4547 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4548 #endif
4549
4550 /*
4551 * Map the pages into the page hook points, copy them, and purge
4552 * the cache for the appropriate page. Invalidate the TLB
4553 * as required.
4554 */
4555 *src_ptep = L2_S_PROTO
4556 | src
4557 #ifdef PMAP_CACHE_VIPT
4558 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4559 #endif
4560 #ifdef PMAP_CACHE_VIVT
4561 | pte_l2_s_cache_mode
4562 #endif
4563 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4564 *dst_ptep = L2_S_PROTO | dst |
4565 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4566 PTE_SYNC(src_ptep);
4567 PTE_SYNC(dst_ptep);
4568 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4569 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4570 cpu_cpwait();
4571 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4572 #ifdef PMAP_CACHE_VIVT
4573 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4574 #endif
4575 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4576 #ifdef PMAP_CACHE_VIVT
4577 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4578 #endif
4579 /*
4580 * Unmap the pages.
4581 */
4582 *src_ptep = 0;
4583 *dst_ptep = 0;
4584 PTE_SYNC(src_ptep);
4585 PTE_SYNC(dst_ptep);
4586 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4587 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4588 #ifdef PMAP_CACHE_VIPT
4589 /*
4590 * Now that the destination page is in the cache, mark it as colored.
4591 * If this was an exec page, discard it.
4592 */
4593 if (!pmap_is_page_colored_p(dst_pg)) {
4594 PMAPCOUNT(vac_color_new);
4595 dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
4596 }
4597 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
4598 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4599 PMAPCOUNT(exec_discarded_copy);
4600 }
4601 dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
4602 #endif
4603 }
4604 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4605
4606 #if ARM_MMU_XSCALE == 1
4607 void
4608 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4609 {
4610 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4611 #ifdef DEBUG
4612 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4613
4614 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4615 panic("pmap_copy_page: dst page has mappings");
4616 #endif
4617
4618 KDASSERT((src & PGOFSET) == 0);
4619 KDASSERT((dst & PGOFSET) == 0);
4620
4621 /*
4622 * Clean the source page. Hold the source page's lock for
4623 * the duration of the copy so that no other mappings can
4624 * be created while we have a potentially aliased mapping.
4625 */
4626 simple_lock(&src_pg->mdpage.pvh_slock);
4627 #ifdef PMAP_CACHE_VIVT
4628 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4629 #endif
4630
4631 /*
4632 * Map the pages into the page hook points, copy them, and purge
4633 * the cache for the appropriate page. Invalidate the TLB
4634 * as required.
4635 */
4636 *csrc_pte = L2_S_PROTO | src |
4637 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4638 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4639 PTE_SYNC(csrc_pte);
4640 *cdst_pte = L2_S_PROTO | dst |
4641 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4642 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4643 PTE_SYNC(cdst_pte);
4644 cpu_tlb_flushD_SE(csrcp);
4645 cpu_tlb_flushD_SE(cdstp);
4646 cpu_cpwait();
4647 bcopy_page(csrcp, cdstp);
4648 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4649 xscale_cache_clean_minidata();
4650 }
4651 #endif /* ARM_MMU_XSCALE == 1 */
4652
4653 /*
4654 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4655 *
4656 * Return the start and end addresses of the kernel's virtual space.
4657 * These values are setup in pmap_bootstrap and are updated as pages
4658 * are allocated.
4659 */
4660 void
4661 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4662 {
4663 *start = virtual_avail;
4664 *end = virtual_end;
4665 }
4666
4667 /*
4668 * Helper function for pmap_grow_l2_bucket()
4669 */
4670 static inline int
4671 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4672 {
4673 struct l2_bucket *l2b;
4674 pt_entry_t *ptep;
4675 paddr_t pa;
4676
4677 if (uvm.page_init_done == false) {
4678 #ifdef PMAP_STEAL_MEMORY
4679 pv_addr_t pv;
4680 pmap_boot_pagealloc(PAGE_SIZE,
4681 #ifdef PMAP_CACHE_VIPT
4682 arm_cache_prefer_mask,
4683 va & arm_cache_prefer_mask,
4684 #else
4685 0, 0,
4686 #endif
4687 &pv);
4688 pa = pv.pv_pa;
4689 #else
4690 if (uvm_page_physget(&pa) == false)
4691 return (1);
4692 #endif /* PMAP_STEAL_MEMORY */
4693 } else {
4694 struct vm_page *pg;
4695 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4696 if (pg == NULL)
4697 return (1);
4698 pa = VM_PAGE_TO_PHYS(pg);
4699 #ifdef PMAP_CACHE_VIPT
4700 /*
4701 * This new page must not have any mappings. Enter it via
4702 * pmap_kenter_pa and let that routine do the hard work.
4703 */
4704 KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
4705 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
4706 #endif
4707 }
4708
4709 if (pap)
4710 *pap = pa;
4711
4712 PMAPCOUNT(pt_mappings);
4713 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4714 KDASSERT(l2b != NULL);
4715
4716 ptep = &l2b->l2b_kva[l2pte_index(va)];
4717 *ptep = L2_S_PROTO | pa | cache_mode |
4718 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4719 PTE_SYNC(ptep);
4720 memset((void *)va, 0, PAGE_SIZE);
4721 return (0);
4722 }
4723
4724 /*
4725 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4726 * used by pmap_growkernel().
4727 */
4728 static inline struct l2_bucket *
4729 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4730 {
4731 struct l2_dtable *l2;
4732 struct l2_bucket *l2b;
4733 u_short l1idx;
4734 vaddr_t nva;
4735
4736 l1idx = L1_IDX(va);
4737
4738 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4739 /*
4740 * No mapping at this address, as there is
4741 * no entry in the L1 table.
4742 * Need to allocate a new l2_dtable.
4743 */
4744 nva = pmap_kernel_l2dtable_kva;
4745 if ((nva & PGOFSET) == 0) {
4746 /*
4747 * Need to allocate a backing page
4748 */
4749 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4750 return (NULL);
4751 }
4752
4753 l2 = (struct l2_dtable *)nva;
4754 nva += sizeof(struct l2_dtable);
4755
4756 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4757 /*
4758 * The new l2_dtable straddles a page boundary.
4759 * Map in another page to cover it.
4760 */
4761 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4762 return (NULL);
4763 }
4764
4765 pmap_kernel_l2dtable_kva = nva;
4766
4767 /*
4768 * Link it into the parent pmap
4769 */
4770 pm->pm_l2[L2_IDX(l1idx)] = l2;
4771 }
4772
4773 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4774
4775 /*
4776 * Fetch pointer to the L2 page table associated with the address.
4777 */
4778 if (l2b->l2b_kva == NULL) {
4779 pt_entry_t *ptep;
4780
4781 /*
4782 * No L2 page table has been allocated. Chances are, this
4783 * is because we just allocated the l2_dtable, above.
4784 */
4785 nva = pmap_kernel_l2ptp_kva;
4786 ptep = (pt_entry_t *)nva;
4787 if ((nva & PGOFSET) == 0) {
4788 /*
4789 * Need to allocate a backing page
4790 */
4791 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4792 &pmap_kernel_l2ptp_phys))
4793 return (NULL);
4794 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4795 }
4796
4797 l2->l2_occupancy++;
4798 l2b->l2b_kva = ptep;
4799 l2b->l2b_l1idx = l1idx;
4800 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4801
4802 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4803 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4804 }
4805
4806 return (l2b);
4807 }
4808
4809 vaddr_t
4810 pmap_growkernel(vaddr_t maxkvaddr)
4811 {
4812 pmap_t kpm = pmap_kernel();
4813 struct l1_ttable *l1;
4814 struct l2_bucket *l2b;
4815 pd_entry_t *pl1pd;
4816 int s;
4817
4818 if (maxkvaddr <= pmap_curmaxkvaddr)
4819 goto out; /* we are OK */
4820
4821 NPDEBUG(PDB_GROWKERN,
4822 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4823 pmap_curmaxkvaddr, maxkvaddr));
4824
4825 KDASSERT(maxkvaddr <= virtual_end);
4826
4827 /*
4828 * whoops! we need to add kernel PTPs
4829 */
4830
4831 s = splhigh(); /* to be safe */
4832 mutex_enter(&kpm->pm_lock);
4833
4834 /* Map 1MB at a time */
4835 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4836
4837 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4838 KDASSERT(l2b != NULL);
4839
4840 /* Distribute new L1 entry to all other L1s */
4841 SLIST_FOREACH(l1, &l1_list, l1_link) {
4842 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4843 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4844 L1_C_PROTO;
4845 PTE_SYNC(pl1pd);
4846 }
4847 }
4848
4849 /*
4850 * flush out the cache, expensive but growkernel will happen so
4851 * rarely
4852 */
4853 cpu_dcache_wbinv_all();
4854 cpu_tlb_flushD();
4855 cpu_cpwait();
4856
4857 mutex_exit(&kpm->pm_lock);
4858 splx(s);
4859
4860 out:
4861 return (pmap_curmaxkvaddr);
4862 }
4863
4864 /************************ Utility routines ****************************/
4865
4866 /*
4867 * vector_page_setprot:
4868 *
4869 * Manipulate the protection of the vector page.
4870 */
4871 void
4872 vector_page_setprot(int prot)
4873 {
4874 struct l2_bucket *l2b;
4875 pt_entry_t *ptep;
4876
4877 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4878 KDASSERT(l2b != NULL);
4879
4880 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4881
4882 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4883 PTE_SYNC(ptep);
4884 cpu_tlb_flushD_SE(vector_page);
4885 cpu_cpwait();
4886 }
4887
4888 /*
4889 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4890 * Returns true if the mapping exists, else false.
4891 *
4892 * NOTE: This function is only used by a couple of arm-specific modules.
4893 * It is not safe to take any pmap locks here, since we could be right
4894 * in the middle of debugging the pmap anyway...
4895 *
4896 * It is possible for this routine to return false even though a valid
4897 * mapping does exist. This is because we don't lock, so the metadata
4898 * state may be inconsistent.
4899 *
4900 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
4901 * a "section" mapping.
4902 */
4903 bool
4904 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
4905 {
4906 struct l2_dtable *l2;
4907 pd_entry_t *pl1pd, l1pd;
4908 pt_entry_t *ptep;
4909 u_short l1idx;
4910
4911 if (pm->pm_l1 == NULL)
4912 return false;
4913
4914 l1idx = L1_IDX(va);
4915 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
4916 l1pd = *pl1pd;
4917
4918 if (l1pte_section_p(l1pd)) {
4919 *ptp = NULL;
4920 return true;
4921 }
4922
4923 if (pm->pm_l2 == NULL)
4924 return false;
4925
4926 l2 = pm->pm_l2[L2_IDX(l1idx)];
4927
4928 if (l2 == NULL ||
4929 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
4930 return false;
4931 }
4932
4933 *ptp = &ptep[l2pte_index(va)];
4934 return true;
4935 }
4936
4937 bool
4938 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
4939 {
4940 u_short l1idx;
4941
4942 if (pm->pm_l1 == NULL)
4943 return false;
4944
4945 l1idx = L1_IDX(va);
4946 *pdp = &pm->pm_l1->l1_kva[l1idx];
4947
4948 return true;
4949 }
4950
4951 /************************ Bootstrapping routines ****************************/
4952
4953 static void
4954 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
4955 {
4956 int i;
4957
4958 l1->l1_kva = l1pt;
4959 l1->l1_domain_use_count = 0;
4960 l1->l1_domain_first = 0;
4961
4962 for (i = 0; i < PMAP_DOMAINS; i++)
4963 l1->l1_domain_free[i] = i + 1;
4964
4965 /*
4966 * Copy the kernel's L1 entries to each new L1.
4967 */
4968 if (pmap_initialized)
4969 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
4970
4971 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
4972 &l1->l1_physaddr) == false)
4973 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
4974
4975 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
4976 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
4977 }
4978
4979 /*
4980 * pmap_bootstrap() is called from the board-specific initarm() routine
4981 * once the kernel L1/L2 descriptors tables have been set up.
4982 *
4983 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
4984 * spread over a number of disparate files/functions.
4985 *
4986 * We are passed the following parameters
4987 * - kernel_l1pt
4988 * This is a pointer to the base of the kernel's L1 translation table.
4989 * - vstart
4990 * 1MB-aligned start of managed kernel virtual memory.
4991 * - vend
4992 * 1MB-aligned end of managed kernel virtual memory.
4993 *
4994 * We use the first parameter to build the metadata (struct l1_ttable and
4995 * struct l2_dtable) necessary to track kernel mappings.
4996 */
4997 #define PMAP_STATIC_L2_SIZE 16
4998 void
4999 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5000 {
5001 static struct l1_ttable static_l1;
5002 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5003 struct l1_ttable *l1 = &static_l1;
5004 struct l2_dtable *l2;
5005 struct l2_bucket *l2b;
5006 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5007 pmap_t pm = pmap_kernel();
5008 pd_entry_t pde;
5009 pt_entry_t *ptep;
5010 paddr_t pa;
5011 vaddr_t va;
5012 vsize_t size;
5013 int nptes, l1idx, l2idx, l2next = 0;
5014
5015 /*
5016 * Initialise the kernel pmap object
5017 */
5018 pm->pm_l1 = l1;
5019 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5020 pm->pm_activated = true;
5021 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5022 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5023
5024 /*
5025 * Scan the L1 translation table created by initarm() and create
5026 * the required metadata for all valid mappings found in it.
5027 */
5028 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5029 pde = l1pt[l1idx];
5030
5031 /*
5032 * We're only interested in Coarse mappings.
5033 * pmap_extract() can deal with section mappings without
5034 * recourse to checking L2 metadata.
5035 */
5036 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5037 continue;
5038
5039 /*
5040 * Lookup the KVA of this L2 descriptor table
5041 */
5042 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5043 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5044 if (ptep == NULL) {
5045 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5046 (u_int)l1idx << L1_S_SHIFT, pa);
5047 }
5048
5049 /*
5050 * Fetch the associated L2 metadata structure.
5051 * Allocate a new one if necessary.
5052 */
5053 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5054 if (l2next == PMAP_STATIC_L2_SIZE)
5055 panic("pmap_bootstrap: out of static L2s");
5056 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5057 }
5058
5059 /*
5060 * One more L1 slot tracked...
5061 */
5062 l2->l2_occupancy++;
5063
5064 /*
5065 * Fill in the details of the L2 descriptor in the
5066 * appropriate bucket.
5067 */
5068 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5069 l2b->l2b_kva = ptep;
5070 l2b->l2b_phys = pa;
5071 l2b->l2b_l1idx = l1idx;
5072
5073 /*
5074 * Establish an initial occupancy count for this descriptor
5075 */
5076 for (l2idx = 0;
5077 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5078 l2idx++) {
5079 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5080 l2b->l2b_occupancy++;
5081 }
5082 }
5083
5084 /*
5085 * Make sure the descriptor itself has the correct cache mode.
5086 * If not, fix it, but whine about the problem. Port-meisters
5087 * should consider this a clue to fix up their initarm()
5088 * function. :)
5089 */
5090 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5091 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5092 "L2 pte @ %p\n", ptep);
5093 }
5094 }
5095
5096 /*
5097 * Ensure the primary (kernel) L1 has the correct cache mode for
5098 * a page table. Bitch if it is not correctly set.
5099 */
5100 for (va = (vaddr_t)l1pt;
5101 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5102 if (pmap_set_pt_cache_mode(l1pt, va))
5103 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5104 "primary L1 @ 0x%lx\n", va);
5105 }
5106
5107 cpu_dcache_wbinv_all();
5108 cpu_tlb_flushID();
5109 cpu_cpwait();
5110
5111 /*
5112 * now we allocate the "special" VAs which are used for tmp mappings
5113 * by the pmap (and other modules). we allocate the VAs by advancing
5114 * virtual_avail (note that there are no pages mapped at these VAs).
5115 *
5116 * Managed KVM space start from wherever initarm() tells us.
5117 */
5118 virtual_avail = vstart;
5119 virtual_end = vend;
5120
5121 #ifdef PMAP_CACHE_VIPT
5122 /*
5123 * If we have a VIPT cache, we need one page/pte per possible alias
5124 * page so we won't violate cache aliasing rules.
5125 */
5126 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5127 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5128 #else
5129 nptes = 1;
5130 #endif
5131 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5132 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5133 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5134 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5135 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5136 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5137 (void *)&msgbufaddr, NULL);
5138
5139 /*
5140 * Allocate a range of kernel virtual address space to be used
5141 * for L2 descriptor tables and metadata allocation in
5142 * pmap_growkernel().
5143 */
5144 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5145 pmap_alloc_specials(&virtual_avail,
5146 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5147 &pmap_kernel_l2ptp_kva, NULL);
5148
5149 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5150 pmap_alloc_specials(&virtual_avail,
5151 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5152 &pmap_kernel_l2dtable_kva, NULL);
5153
5154 /*
5155 * init the static-global locks and global pmap list.
5156 */
5157 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5158
5159 /*
5160 * We can now initialise the first L1's metadata.
5161 */
5162 SLIST_INIT(&l1_list);
5163 TAILQ_INIT(&l1_lru_list);
5164 simple_lock_init(&l1_lru_lock);
5165 pmap_init_l1(l1, l1pt);
5166
5167 /* Set up vector page L1 details, if necessary */
5168 if (vector_page < KERNEL_BASE) {
5169 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5170 l2b = pmap_get_l2_bucket(pm, vector_page);
5171 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5172 L1_C_DOM(pm->pm_domain);
5173 } else
5174 pm->pm_pl1vec = NULL;
5175
5176 /*
5177 * Initialize the pmap cache
5178 */
5179 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5180 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5181 LIST_INIT(&pmap_pmaps);
5182 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5183
5184 /*
5185 * Initialize the pv pool.
5186 */
5187 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5188 &pmap_bootstrap_pv_allocator, IPL_NONE);
5189
5190 /*
5191 * Initialize the L2 dtable pool and cache.
5192 */
5193 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5194 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5195
5196 /*
5197 * Initialise the L2 descriptor table pool and cache
5198 */
5199 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5200 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5201 pmap_l2ptp_ctor, NULL, NULL);
5202
5203 cpu_dcache_wbinv_all();
5204 }
5205
5206 static int
5207 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5208 {
5209 pd_entry_t *pdep, pde;
5210 pt_entry_t *ptep, pte;
5211 vaddr_t pa;
5212 int rv = 0;
5213
5214 /*
5215 * Make sure the descriptor itself has the correct cache mode
5216 */
5217 pdep = &kl1[L1_IDX(va)];
5218 pde = *pdep;
5219
5220 if (l1pte_section_p(pde)) {
5221 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5222 *pdep = (pde & ~L1_S_CACHE_MASK) |
5223 pte_l1_s_cache_mode_pt;
5224 PTE_SYNC(pdep);
5225 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5226 rv = 1;
5227 }
5228 } else {
5229 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5230 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5231 if (ptep == NULL)
5232 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5233
5234 ptep = &ptep[l2pte_index(va)];
5235 pte = *ptep;
5236 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5237 *ptep = (pte & ~L2_S_CACHE_MASK) |
5238 pte_l2_s_cache_mode_pt;
5239 PTE_SYNC(ptep);
5240 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5241 rv = 1;
5242 }
5243 }
5244
5245 return (rv);
5246 }
5247
5248 static void
5249 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5250 {
5251 vaddr_t va = *availp;
5252 struct l2_bucket *l2b;
5253
5254 if (ptep) {
5255 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5256 if (l2b == NULL)
5257 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5258
5259 if (ptep)
5260 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5261 }
5262
5263 *vap = va;
5264 *availp = va + (PAGE_SIZE * pages);
5265 }
5266
5267 void
5268 pmap_init(void)
5269 {
5270 extern int physmem;
5271
5272 /*
5273 * Set the available memory vars - These do not map to real memory
5274 * addresses and cannot as the physical memory is fragmented.
5275 * They are used by ps for %mem calculations.
5276 * One could argue whether this should be the entire memory or just
5277 * the memory that is useable in a user process.
5278 */
5279 avail_start = 0;
5280 avail_end = physmem * PAGE_SIZE;
5281
5282 /*
5283 * Now we need to free enough pv_entry structures to allow us to get
5284 * the kmem_map/kmem_object allocated and inited (done after this
5285 * function is finished). to do this we allocate one bootstrap page out
5286 * of kernel_map and use it to provide an initial pool of pv_entry
5287 * structures. we never free this page.
5288 */
5289 pool_setlowat(&pmap_pv_pool,
5290 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5291
5292 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5293 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5294 UVM_KMF_WIRED|UVM_KMF_ZERO);
5295
5296 pmap_initialized = true;
5297 }
5298
5299 static vaddr_t last_bootstrap_page = 0;
5300 static void *free_bootstrap_pages = NULL;
5301
5302 static void *
5303 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5304 {
5305 extern void *pool_page_alloc(struct pool *, int);
5306 vaddr_t new_page;
5307 void *rv;
5308
5309 if (pmap_initialized)
5310 return (pool_page_alloc(pp, flags));
5311
5312 if (free_bootstrap_pages) {
5313 rv = free_bootstrap_pages;
5314 free_bootstrap_pages = *((void **)rv);
5315 return (rv);
5316 }
5317
5318 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5319 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5320
5321 KASSERT(new_page > last_bootstrap_page);
5322 last_bootstrap_page = new_page;
5323 return ((void *)new_page);
5324 }
5325
5326 static void
5327 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5328 {
5329 extern void pool_page_free(struct pool *, void *);
5330
5331 if ((vaddr_t)v <= last_bootstrap_page) {
5332 *((void **)v) = free_bootstrap_pages;
5333 free_bootstrap_pages = v;
5334 return;
5335 }
5336
5337 if (pmap_initialized) {
5338 pool_page_free(pp, v);
5339 return;
5340 }
5341 }
5342
5343 /*
5344 * pmap_postinit()
5345 *
5346 * This routine is called after the vm and kmem subsystems have been
5347 * initialised. This allows the pmap code to perform any initialisation
5348 * that can only be done one the memory allocation is in place.
5349 */
5350 void
5351 pmap_postinit(void)
5352 {
5353 extern paddr_t physical_start, physical_end;
5354 struct l2_bucket *l2b;
5355 struct l1_ttable *l1;
5356 struct pglist plist;
5357 struct vm_page *m;
5358 pd_entry_t *pl1pt;
5359 pt_entry_t *ptep, pte;
5360 vaddr_t va, eva;
5361 u_int loop, needed;
5362 int error;
5363
5364 pool_cache_setlowat(&pmap_l2ptp_cache,
5365 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5366 pool_cache_setlowat(&pmap_l2dtable_cache,
5367 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5368
5369 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5370 needed -= 1;
5371
5372 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5373
5374 for (loop = 0; loop < needed; loop++, l1++) {
5375 /* Allocate a L1 page table */
5376 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5377 if (va == 0)
5378 panic("Cannot allocate L1 KVM");
5379
5380 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5381 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5382 if (error)
5383 panic("Cannot allocate L1 physical pages");
5384
5385 m = TAILQ_FIRST(&plist);
5386 eva = va + L1_TABLE_SIZE;
5387 pl1pt = (pd_entry_t *)va;
5388
5389 while (m && va < eva) {
5390 paddr_t pa = VM_PAGE_TO_PHYS(m);
5391
5392 pmap_kenter_pa(va, pa,
5393 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
5394
5395 /*
5396 * Make sure the L1 descriptor table is mapped
5397 * with the cache-mode set to write-through.
5398 */
5399 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5400 ptep = &l2b->l2b_kva[l2pte_index(va)];
5401 pte = *ptep;
5402 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5403 *ptep = pte;
5404 PTE_SYNC(ptep);
5405 cpu_tlb_flushD_SE(va);
5406
5407 va += PAGE_SIZE;
5408 m = TAILQ_NEXT(m, pageq.queue);
5409 }
5410
5411 #ifdef DIAGNOSTIC
5412 if (m)
5413 panic("pmap_alloc_l1pt: pglist not empty");
5414 #endif /* DIAGNOSTIC */
5415
5416 pmap_init_l1(l1, pl1pt);
5417 }
5418
5419 #ifdef DEBUG
5420 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5421 needed);
5422 #endif
5423 }
5424
5425 /*
5426 * Note that the following routines are used by board-specific initialisation
5427 * code to configure the initial kernel page tables.
5428 *
5429 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5430 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5431 * behaviour of the old pmap, and provides an easy migration path for
5432 * initial bring-up of the new pmap on existing ports. Fortunately,
5433 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5434 * will be deprecated.
5435 *
5436 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5437 * tables.
5438 */
5439
5440 /*
5441 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5442 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5443 * find them as necessary.
5444 *
5445 * Note that the data on this list MUST remain valid after initarm() returns,
5446 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5447 */
5448 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5449
5450 static vaddr_t
5451 kernel_pt_lookup(paddr_t pa)
5452 {
5453 pv_addr_t *pv;
5454
5455 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5456 #ifndef ARM32_NEW_VM_LAYOUT
5457 if (pv->pv_pa == (pa & ~PGOFSET))
5458 return (pv->pv_va | (pa & PGOFSET));
5459 #else
5460 if (pv->pv_pa == pa)
5461 return (pv->pv_va);
5462 #endif
5463 }
5464 return (0);
5465 }
5466
5467 /*
5468 * pmap_map_section:
5469 *
5470 * Create a single section mapping.
5471 */
5472 void
5473 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5474 {
5475 pd_entry_t *pde = (pd_entry_t *) l1pt;
5476 pd_entry_t fl;
5477
5478 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5479
5480 switch (cache) {
5481 case PTE_NOCACHE:
5482 default:
5483 fl = 0;
5484 break;
5485
5486 case PTE_CACHE:
5487 fl = pte_l1_s_cache_mode;
5488 break;
5489
5490 case PTE_PAGETABLE:
5491 fl = pte_l1_s_cache_mode_pt;
5492 break;
5493 }
5494
5495 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5496 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5497 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5498 }
5499
5500 /*
5501 * pmap_map_entry:
5502 *
5503 * Create a single page mapping.
5504 */
5505 void
5506 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5507 {
5508 pd_entry_t *pde = (pd_entry_t *) l1pt;
5509 pt_entry_t fl;
5510 pt_entry_t *pte;
5511
5512 KASSERT(((va | pa) & PGOFSET) == 0);
5513
5514 switch (cache) {
5515 case PTE_NOCACHE:
5516 default:
5517 fl = 0;
5518 break;
5519
5520 case PTE_CACHE:
5521 fl = pte_l2_s_cache_mode;
5522 break;
5523
5524 case PTE_PAGETABLE:
5525 fl = pte_l2_s_cache_mode_pt;
5526 break;
5527 }
5528
5529 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5530 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5531
5532 #ifndef ARM32_NEW_VM_LAYOUT
5533 pte = (pt_entry_t *)
5534 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5535 #else
5536 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5537 #endif
5538 if (pte == NULL)
5539 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5540
5541 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5542 #ifndef ARM32_NEW_VM_LAYOUT
5543 pte += (va >> PGSHIFT) & 0x3ff;
5544 #else
5545 pte += l2pte_index(va);
5546 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5547 #endif
5548 *pte = fl;
5549 PTE_SYNC(pte);
5550 }
5551
5552 /*
5553 * pmap_link_l2pt:
5554 *
5555 * Link the L2 page table specified by "l2pv" into the L1
5556 * page table at the slot for "va".
5557 */
5558 void
5559 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5560 {
5561 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5562 u_int slot = va >> L1_S_SHIFT;
5563
5564 #ifndef ARM32_NEW_VM_LAYOUT
5565 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5566 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5567 #endif
5568
5569 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5570
5571 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5572 #ifdef ARM32_NEW_VM_LAYOUT
5573 PTE_SYNC(&pde[slot]);
5574 #else
5575 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5576 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5577 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5578 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5579 #endif
5580
5581 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5582 }
5583
5584 /*
5585 * pmap_map_chunk:
5586 *
5587 * Map a chunk of memory using the most efficient mappings
5588 * possible (section, large page, small page) into the
5589 * provided L1 and L2 tables at the specified virtual address.
5590 */
5591 vsize_t
5592 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5593 int prot, int cache)
5594 {
5595 pd_entry_t *pde = (pd_entry_t *) l1pt;
5596 pt_entry_t *pte, f1, f2s, f2l;
5597 vsize_t resid;
5598 int i;
5599
5600 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5601
5602 if (l1pt == 0)
5603 panic("pmap_map_chunk: no L1 table provided");
5604
5605 #ifdef VERBOSE_INIT_ARM
5606 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5607 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5608 #endif
5609
5610 switch (cache) {
5611 case PTE_NOCACHE:
5612 default:
5613 f1 = 0;
5614 f2l = 0;
5615 f2s = 0;
5616 break;
5617
5618 case PTE_CACHE:
5619 f1 = pte_l1_s_cache_mode;
5620 f2l = pte_l2_l_cache_mode;
5621 f2s = pte_l2_s_cache_mode;
5622 break;
5623
5624 case PTE_PAGETABLE:
5625 f1 = pte_l1_s_cache_mode_pt;
5626 f2l = pte_l2_l_cache_mode_pt;
5627 f2s = pte_l2_s_cache_mode_pt;
5628 break;
5629 }
5630
5631 size = resid;
5632
5633 while (resid > 0) {
5634 /* See if we can use a section mapping. */
5635 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5636 #ifdef VERBOSE_INIT_ARM
5637 printf("S");
5638 #endif
5639 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5640 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5641 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5642 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5643 va += L1_S_SIZE;
5644 pa += L1_S_SIZE;
5645 resid -= L1_S_SIZE;
5646 continue;
5647 }
5648
5649 /*
5650 * Ok, we're going to use an L2 table. Make sure
5651 * one is actually in the corresponding L1 slot
5652 * for the current VA.
5653 */
5654 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5655 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5656
5657 #ifndef ARM32_NEW_VM_LAYOUT
5658 pte = (pt_entry_t *)
5659 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5660 #else
5661 pte = (pt_entry_t *) kernel_pt_lookup(
5662 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5663 #endif
5664 if (pte == NULL)
5665 panic("pmap_map_chunk: can't find L2 table for VA"
5666 "0x%08lx", va);
5667
5668 /* See if we can use a L2 large page mapping. */
5669 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5670 #ifdef VERBOSE_INIT_ARM
5671 printf("L");
5672 #endif
5673 for (i = 0; i < 16; i++) {
5674 #ifndef ARM32_NEW_VM_LAYOUT
5675 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5676 L2_L_PROTO | pa |
5677 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5678 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5679 #else
5680 pte[l2pte_index(va) + i] =
5681 L2_L_PROTO | pa |
5682 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5683 PTE_SYNC(&pte[l2pte_index(va) + i]);
5684 #endif
5685 }
5686 va += L2_L_SIZE;
5687 pa += L2_L_SIZE;
5688 resid -= L2_L_SIZE;
5689 continue;
5690 }
5691
5692 /* Use a small page mapping. */
5693 #ifdef VERBOSE_INIT_ARM
5694 printf("P");
5695 #endif
5696 #ifndef ARM32_NEW_VM_LAYOUT
5697 pte[(va >> PGSHIFT) & 0x3ff] =
5698 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5699 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5700 #else
5701 pte[l2pte_index(va)] =
5702 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5703 PTE_SYNC(&pte[l2pte_index(va)]);
5704 #endif
5705 va += PAGE_SIZE;
5706 pa += PAGE_SIZE;
5707 resid -= PAGE_SIZE;
5708 }
5709 #ifdef VERBOSE_INIT_ARM
5710 printf("\n");
5711 #endif
5712 return (size);
5713 }
5714
5715 /********************** Static device map routines ***************************/
5716
5717 static const struct pmap_devmap *pmap_devmap_table;
5718
5719 /*
5720 * Register the devmap table. This is provided in case early console
5721 * initialization needs to register mappings created by bootstrap code
5722 * before pmap_devmap_bootstrap() is called.
5723 */
5724 void
5725 pmap_devmap_register(const struct pmap_devmap *table)
5726 {
5727
5728 pmap_devmap_table = table;
5729 }
5730
5731 /*
5732 * Map all of the static regions in the devmap table, and remember
5733 * the devmap table so other parts of the kernel can look up entries
5734 * later.
5735 */
5736 void
5737 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5738 {
5739 int i;
5740
5741 pmap_devmap_table = table;
5742
5743 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5744 #ifdef VERBOSE_INIT_ARM
5745 printf("devmap: %08lx -> %08lx @ %08lx\n",
5746 pmap_devmap_table[i].pd_pa,
5747 pmap_devmap_table[i].pd_pa +
5748 pmap_devmap_table[i].pd_size - 1,
5749 pmap_devmap_table[i].pd_va);
5750 #endif
5751 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5752 pmap_devmap_table[i].pd_pa,
5753 pmap_devmap_table[i].pd_size,
5754 pmap_devmap_table[i].pd_prot,
5755 pmap_devmap_table[i].pd_cache);
5756 }
5757 }
5758
5759 const struct pmap_devmap *
5760 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5761 {
5762 uint64_t endpa;
5763 int i;
5764
5765 if (pmap_devmap_table == NULL)
5766 return (NULL);
5767
5768 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5769
5770 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5771 if (pa >= pmap_devmap_table[i].pd_pa &&
5772 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5773 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5774 return (&pmap_devmap_table[i]);
5775 }
5776
5777 return (NULL);
5778 }
5779
5780 const struct pmap_devmap *
5781 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5782 {
5783 int i;
5784
5785 if (pmap_devmap_table == NULL)
5786 return (NULL);
5787
5788 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5789 if (va >= pmap_devmap_table[i].pd_va &&
5790 va + size - 1 <= pmap_devmap_table[i].pd_va +
5791 pmap_devmap_table[i].pd_size - 1)
5792 return (&pmap_devmap_table[i]);
5793 }
5794
5795 return (NULL);
5796 }
5797
5798 /********************** PTE initialization routines **************************/
5799
5800 /*
5801 * These routines are called when the CPU type is identified to set up
5802 * the PTE prototypes, cache modes, etc.
5803 *
5804 * The variables are always here, just in case modules need to reference
5805 * them (though, they shouldn't).
5806 */
5807
5808 pt_entry_t pte_l1_s_cache_mode;
5809 pt_entry_t pte_l1_s_cache_mode_pt;
5810 pt_entry_t pte_l1_s_cache_mask;
5811
5812 pt_entry_t pte_l2_l_cache_mode;
5813 pt_entry_t pte_l2_l_cache_mode_pt;
5814 pt_entry_t pte_l2_l_cache_mask;
5815
5816 pt_entry_t pte_l2_s_cache_mode;
5817 pt_entry_t pte_l2_s_cache_mode_pt;
5818 pt_entry_t pte_l2_s_cache_mask;
5819
5820 pt_entry_t pte_l2_s_prot_u;
5821 pt_entry_t pte_l2_s_prot_w;
5822 pt_entry_t pte_l2_s_prot_mask;
5823
5824 pt_entry_t pte_l1_s_proto;
5825 pt_entry_t pte_l1_c_proto;
5826 pt_entry_t pte_l2_s_proto;
5827
5828 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5829 void (*pmap_zero_page_func)(paddr_t);
5830
5831 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5832 void
5833 pmap_pte_init_generic(void)
5834 {
5835
5836 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5837 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5838
5839 pte_l2_l_cache_mode = L2_B|L2_C;
5840 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5841
5842 pte_l2_s_cache_mode = L2_B|L2_C;
5843 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5844
5845 /*
5846 * If we have a write-through cache, set B and C. If
5847 * we have a write-back cache, then we assume setting
5848 * only C will make those pages write-through.
5849 */
5850 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5851 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5852 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5853 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5854 } else {
5855 #if ARM_MMU_V6 > 1
5856 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5857 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5858 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5859 #else
5860 pte_l1_s_cache_mode_pt = L1_S_C;
5861 pte_l2_l_cache_mode_pt = L2_C;
5862 pte_l2_s_cache_mode_pt = L2_C;
5863 #endif
5864 }
5865
5866 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5867 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5868 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5869
5870 pte_l1_s_proto = L1_S_PROTO_generic;
5871 pte_l1_c_proto = L1_C_PROTO_generic;
5872 pte_l2_s_proto = L2_S_PROTO_generic;
5873
5874 pmap_copy_page_func = pmap_copy_page_generic;
5875 pmap_zero_page_func = pmap_zero_page_generic;
5876 }
5877
5878 #if defined(CPU_ARM8)
5879 void
5880 pmap_pte_init_arm8(void)
5881 {
5882
5883 /*
5884 * ARM8 is compatible with generic, but we need to use
5885 * the page tables uncached.
5886 */
5887 pmap_pte_init_generic();
5888
5889 pte_l1_s_cache_mode_pt = 0;
5890 pte_l2_l_cache_mode_pt = 0;
5891 pte_l2_s_cache_mode_pt = 0;
5892 }
5893 #endif /* CPU_ARM8 */
5894
5895 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
5896 void
5897 pmap_pte_init_arm9(void)
5898 {
5899
5900 /*
5901 * ARM9 is compatible with generic, but we want to use
5902 * write-through caching for now.
5903 */
5904 pmap_pte_init_generic();
5905
5906 pte_l1_s_cache_mode = L1_S_C;
5907 pte_l2_l_cache_mode = L2_C;
5908 pte_l2_s_cache_mode = L2_C;
5909
5910 pte_l1_s_cache_mode_pt = L1_S_C;
5911 pte_l2_l_cache_mode_pt = L2_C;
5912 pte_l2_s_cache_mode_pt = L2_C;
5913 }
5914 #endif /* CPU_ARM9 */
5915 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5916
5917 #if defined(CPU_ARM10)
5918 void
5919 pmap_pte_init_arm10(void)
5920 {
5921
5922 /*
5923 * ARM10 is compatible with generic, but we want to use
5924 * write-through caching for now.
5925 */
5926 pmap_pte_init_generic();
5927
5928 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
5929 pte_l2_l_cache_mode = L2_B | L2_C;
5930 pte_l2_s_cache_mode = L2_B | L2_C;
5931
5932 pte_l1_s_cache_mode_pt = L1_S_C;
5933 pte_l2_l_cache_mode_pt = L2_C;
5934 pte_l2_s_cache_mode_pt = L2_C;
5935
5936 }
5937 #endif /* CPU_ARM10 */
5938
5939 #if ARM_MMU_SA1 == 1
5940 void
5941 pmap_pte_init_sa1(void)
5942 {
5943
5944 /*
5945 * The StrongARM SA-1 cache does not have a write-through
5946 * mode. So, do the generic initialization, then reset
5947 * the page table cache mode to B=1,C=1, and note that
5948 * the PTEs need to be sync'd.
5949 */
5950 pmap_pte_init_generic();
5951
5952 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5953 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5954 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5955
5956 pmap_needs_pte_sync = 1;
5957 }
5958 #endif /* ARM_MMU_SA1 == 1*/
5959
5960 #if ARM_MMU_XSCALE == 1
5961 #if (ARM_NMMUS > 1)
5962 static u_int xscale_use_minidata;
5963 #endif
5964
5965 void
5966 pmap_pte_init_xscale(void)
5967 {
5968 uint32_t auxctl;
5969 int write_through = 0;
5970
5971 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5972 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
5973
5974 pte_l2_l_cache_mode = L2_B|L2_C;
5975 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
5976
5977 pte_l2_s_cache_mode = L2_B|L2_C;
5978 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
5979
5980 pte_l1_s_cache_mode_pt = L1_S_C;
5981 pte_l2_l_cache_mode_pt = L2_C;
5982 pte_l2_s_cache_mode_pt = L2_C;
5983
5984 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
5985 /*
5986 * The XScale core has an enhanced mode where writes that
5987 * miss the cache cause a cache line to be allocated. This
5988 * is significantly faster than the traditional, write-through
5989 * behavior of this case.
5990 */
5991 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
5992 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
5993 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
5994 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
5995
5996 #ifdef XSCALE_CACHE_WRITE_THROUGH
5997 /*
5998 * Some versions of the XScale core have various bugs in
5999 * their cache units, the work-around for which is to run
6000 * the cache in write-through mode. Unfortunately, this
6001 * has a major (negative) impact on performance. So, we
6002 * go ahead and run fast-and-loose, in the hopes that we
6003 * don't line up the planets in a way that will trip the
6004 * bugs.
6005 *
6006 * However, we give you the option to be slow-but-correct.
6007 */
6008 write_through = 1;
6009 #elif defined(XSCALE_CACHE_WRITE_BACK)
6010 /* force write back cache mode */
6011 write_through = 0;
6012 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6013 /*
6014 * Intel PXA2[15]0 processors are known to have a bug in
6015 * write-back cache on revision 4 and earlier (stepping
6016 * A[01] and B[012]). Fixed for C0 and later.
6017 */
6018 {
6019 uint32_t id, type;
6020
6021 id = cpufunc_id();
6022 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6023
6024 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6025 if ((id & CPU_ID_REVISION_MASK) < 5) {
6026 /* write through for stepping A0-1 and B0-2 */
6027 write_through = 1;
6028 }
6029 }
6030 }
6031 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6032
6033 if (write_through) {
6034 pte_l1_s_cache_mode = L1_S_C;
6035 pte_l2_l_cache_mode = L2_C;
6036 pte_l2_s_cache_mode = L2_C;
6037 }
6038
6039 #if (ARM_NMMUS > 1)
6040 xscale_use_minidata = 1;
6041 #endif
6042
6043 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6044 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6045 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6046
6047 pte_l1_s_proto = L1_S_PROTO_xscale;
6048 pte_l1_c_proto = L1_C_PROTO_xscale;
6049 pte_l2_s_proto = L2_S_PROTO_xscale;
6050
6051 pmap_copy_page_func = pmap_copy_page_xscale;
6052 pmap_zero_page_func = pmap_zero_page_xscale;
6053
6054 /*
6055 * Disable ECC protection of page table access, for now.
6056 */
6057 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6058 auxctl &= ~XSCALE_AUXCTL_P;
6059 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6060 }
6061
6062 /*
6063 * xscale_setup_minidata:
6064 *
6065 * Set up the mini-data cache clean area. We require the
6066 * caller to allocate the right amount of physically and
6067 * virtually contiguous space.
6068 */
6069 void
6070 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6071 {
6072 extern vaddr_t xscale_minidata_clean_addr;
6073 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6074 pd_entry_t *pde = (pd_entry_t *) l1pt;
6075 pt_entry_t *pte;
6076 vsize_t size;
6077 uint32_t auxctl;
6078
6079 xscale_minidata_clean_addr = va;
6080
6081 /* Round it to page size. */
6082 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6083
6084 for (; size != 0;
6085 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6086 #ifndef ARM32_NEW_VM_LAYOUT
6087 pte = (pt_entry_t *)
6088 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6089 #else
6090 pte = (pt_entry_t *) kernel_pt_lookup(
6091 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6092 #endif
6093 if (pte == NULL)
6094 panic("xscale_setup_minidata: can't find L2 table for "
6095 "VA 0x%08lx", va);
6096 #ifndef ARM32_NEW_VM_LAYOUT
6097 pte[(va >> PGSHIFT) & 0x3ff] =
6098 #else
6099 pte[l2pte_index(va)] =
6100 #endif
6101 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6102 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6103 }
6104
6105 /*
6106 * Configure the mini-data cache for write-back with
6107 * read/write-allocate.
6108 *
6109 * NOTE: In order to reconfigure the mini-data cache, we must
6110 * make sure it contains no valid data! In order to do that,
6111 * we must issue a global data cache invalidate command!
6112 *
6113 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6114 * THIS IS VERY IMPORTANT!
6115 */
6116
6117 /* Invalidate data and mini-data. */
6118 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6119 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6120 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6121 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6122 }
6123
6124 /*
6125 * Change the PTEs for the specified kernel mappings such that they
6126 * will use the mini data cache instead of the main data cache.
6127 */
6128 void
6129 pmap_uarea(vaddr_t va)
6130 {
6131 struct l2_bucket *l2b;
6132 pt_entry_t *ptep, *sptep, pte;
6133 vaddr_t next_bucket, eva;
6134
6135 #if (ARM_NMMUS > 1)
6136 if (xscale_use_minidata == 0)
6137 return;
6138 #endif
6139
6140 eva = va + USPACE;
6141
6142 while (va < eva) {
6143 next_bucket = L2_NEXT_BUCKET(va);
6144 if (next_bucket > eva)
6145 next_bucket = eva;
6146
6147 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6148 KDASSERT(l2b != NULL);
6149
6150 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6151
6152 while (va < next_bucket) {
6153 pte = *ptep;
6154 if (!l2pte_minidata(pte)) {
6155 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6156 cpu_tlb_flushD_SE(va);
6157 *ptep = pte & ~L2_B;
6158 }
6159 ptep++;
6160 va += PAGE_SIZE;
6161 }
6162 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6163 }
6164 cpu_cpwait();
6165 }
6166 #endif /* ARM_MMU_XSCALE == 1 */
6167
6168 /*
6169 * return the PA of the current L1 table, for use when handling a crash dump
6170 */
6171 uint32_t pmap_kernel_L1_addr()
6172 {
6173 return pmap_kernel()->pm_l1->l1_physaddr;
6174 }
6175
6176 #if defined(DDB)
6177 /*
6178 * A couple of ddb-callable functions for dumping pmaps
6179 */
6180 void pmap_dump_all(void);
6181 void pmap_dump(pmap_t);
6182
6183 void
6184 pmap_dump_all(void)
6185 {
6186 pmap_t pm;
6187
6188 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6189 if (pm == pmap_kernel())
6190 continue;
6191 pmap_dump(pm);
6192 printf("\n");
6193 }
6194 }
6195
6196 static pt_entry_t ncptes[64];
6197 static void pmap_dump_ncpg(pmap_t);
6198
6199 void
6200 pmap_dump(pmap_t pm)
6201 {
6202 struct l2_dtable *l2;
6203 struct l2_bucket *l2b;
6204 pt_entry_t *ptep, pte;
6205 vaddr_t l2_va, l2b_va, va;
6206 int i, j, k, occ, rows = 0;
6207
6208 if (pm == pmap_kernel())
6209 printf("pmap_kernel (%p): ", pm);
6210 else
6211 printf("user pmap (%p): ", pm);
6212
6213 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6214
6215 l2_va = 0;
6216 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6217 l2 = pm->pm_l2[i];
6218
6219 if (l2 == NULL || l2->l2_occupancy == 0)
6220 continue;
6221
6222 l2b_va = l2_va;
6223 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6224 l2b = &l2->l2_bucket[j];
6225
6226 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6227 continue;
6228
6229 ptep = l2b->l2b_kva;
6230
6231 for (k = 0; k < 256 && ptep[k] == 0; k++)
6232 ;
6233
6234 k &= ~63;
6235 occ = l2b->l2b_occupancy;
6236 va = l2b_va + (k * 4096);
6237 for (; k < 256; k++, va += 0x1000) {
6238 char ch = ' ';
6239 if ((k % 64) == 0) {
6240 if ((rows % 8) == 0) {
6241 printf(
6242 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6243 }
6244 printf("%08lx: ", va);
6245 }
6246
6247 ncptes[k & 63] = 0;
6248 pte = ptep[k];
6249 if (pte == 0) {
6250 ch = '.';
6251 } else {
6252 occ--;
6253 switch (pte & 0x0c) {
6254 case 0x00:
6255 ch = 'D'; /* No cache No buff */
6256 break;
6257 case 0x04:
6258 ch = 'B'; /* No cache buff */
6259 break;
6260 case 0x08:
6261 if (pte & 0x40)
6262 ch = 'm';
6263 else
6264 ch = 'C'; /* Cache No buff */
6265 break;
6266 case 0x0c:
6267 ch = 'F'; /* Cache Buff */
6268 break;
6269 }
6270
6271 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6272 ch += 0x20;
6273
6274 if ((pte & 0xc) == 0)
6275 ncptes[k & 63] = pte;
6276 }
6277
6278 if ((k % 64) == 63) {
6279 rows++;
6280 printf("%c\n", ch);
6281 pmap_dump_ncpg(pm);
6282 if (occ == 0)
6283 break;
6284 } else
6285 printf("%c", ch);
6286 }
6287 }
6288 }
6289 }
6290
6291 static void
6292 pmap_dump_ncpg(pmap_t pm)
6293 {
6294 struct vm_page *pg;
6295 struct pv_entry *pv;
6296 int i;
6297
6298 for (i = 0; i < 63; i++) {
6299 if (ncptes[i] == 0)
6300 continue;
6301
6302 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6303 if (pg == NULL)
6304 continue;
6305
6306 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6307 VM_PAGE_TO_PHYS(pg),
6308 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
6309 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
6310
6311 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
6312 printf(" %c va 0x%08lx, flags 0x%x\n",
6313 (pm == pv->pv_pmap) ? '*' : ' ',
6314 pv->pv_va, pv->pv_flags);
6315 }
6316 }
6317 }
6318 #endif
6319
6320 #ifdef PMAP_STEAL_MEMORY
6321 void
6322 pmap_boot_pageadd(pv_addr_t *newpv)
6323 {
6324 pv_addr_t *pv, *npv;
6325
6326 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6327 if (newpv->pv_pa < pv->pv_va) {
6328 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6329 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6330 newpv->pv_size += pv->pv_size;
6331 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6332 }
6333 pv = NULL;
6334 } else {
6335 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6336 pv = npv) {
6337 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6338 KASSERT(pv->pv_pa < newpv->pv_pa);
6339 if (newpv->pv_pa > npv->pv_pa)
6340 continue;
6341 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6342 pv->pv_size += newpv->pv_size;
6343 return;
6344 }
6345 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6346 break;
6347 newpv->pv_size += npv->pv_size;
6348 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6349 SLIST_REMOVE_AFTER(newpv, pv_list);
6350 return;
6351 }
6352 }
6353 }
6354
6355 if (pv) {
6356 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6357 } else {
6358 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6359 }
6360 }
6361
6362 void
6363 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6364 pv_addr_t *rpv)
6365 {
6366 pv_addr_t *pv, **pvp;
6367 struct vm_physseg *ps;
6368 size_t i;
6369
6370 KASSERT(amount & PGOFSET);
6371 KASSERT((mask & PGOFSET) == 0);
6372 KASSERT((match & PGOFSET) == 0);
6373 KASSERT(amount != 0);
6374
6375 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6376 (pv = *pvp) != NULL;
6377 pvp = &SLIST_NEXT(pv, pv_list)) {
6378 pv_addr_t *newpv;
6379 psize_t off;
6380 /*
6381 * If this entry is too small to satify the request...
6382 */
6383 KASSERT(pv->pv_size > 0);
6384 if (pv->pv_size < amount)
6385 continue;
6386
6387 for (off = 0; off <= mask; off += PAGE_SIZE) {
6388 if (((pv->pv_pa + off) & mask) == match
6389 && off + amount <= pv->pv_size)
6390 break;
6391 }
6392 if (off > mask)
6393 continue;
6394
6395 rpv->pv_va = pv->pv_va + off;
6396 rpv->pv_pa = pv->pv_pa + off;
6397 rpv->pv_size = amount;
6398 pv->pv_size -= amount;
6399 if (pv->pv_size == 0) {
6400 KASSERT(off == 0);
6401 KASSERT((vaddr_t) pv == rpv->pv_va);
6402 *pvp = SLIST_NEXT(pv, pv_list);
6403 } else if (off == 0) {
6404 KASSERT((vaddr_t) pv == rpv->pv_va);
6405 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6406 *newpv = *pv;
6407 newpv->pv_pa += amount;
6408 newpv->pv_va += amount;
6409 *pvp = newpv;
6410 } else if (off < pv->pv_size) {
6411 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6412 *newpv = *pv;
6413 newpv->pv_size -= off;
6414 newpv->pv_pa += off + amount;
6415 newpv->pv_va += off + amount;
6416
6417 SLIST_NEXT(pv, pv_list) = newpv;
6418 pv->pv_size = off;
6419 } else {
6420 KASSERT((vaddr_t) pv != rpv->pv_va);
6421 }
6422 memset((void *)rpv->pv_va, 0, amount);
6423 return;
6424 }
6425
6426 if (vm_nphysseg == 0)
6427 panic("pmap_boot_pagealloc: couldn't allocate memory");
6428
6429 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6430 (pv = *pvp) != NULL;
6431 pvp = &SLIST_NEXT(pv, pv_list)) {
6432 if (SLIST_NEXT(pv, pv_list) == NULL)
6433 break;
6434 }
6435 KASSERT(mask == 0);
6436 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
6437 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6438 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6439 rpv->pv_va = pv->pv_va;
6440 rpv->pv_pa = pv->pv_pa;
6441 rpv->pv_size = amount;
6442 *pvp = NULL;
6443 pmap_map_chunk(kernel_l1pt.pv_va,
6444 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6445 ptoa(ps->avail_start),
6446 amount - pv->pv_size,
6447 VM_PROT_READ|VM_PROT_WRITE,
6448 PTE_CACHE);
6449 ps->avail_start += atop(amount - pv->pv_size);
6450 /*
6451 * If we consumed the entire physseg, remove it.
6452 */
6453 if (ps->avail_start == ps->avail_end) {
6454 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6455 ps[0] = ps[1];
6456 }
6457 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6458 return;
6459 }
6460 }
6461
6462 panic("pmap_boot_pagealloc: couldn't allocate memory");
6463 }
6464
6465 vaddr_t
6466 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6467 {
6468 pv_addr_t pv;
6469
6470 pmap_boot_pagealloc(size, 0, 0, &pv);
6471
6472 return pv.pv_va;
6473 }
6474 #endif /* PMAP_STEAL_MEMORY */
6475
6476 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6477 {
6478 sysctl_createv(clog, 0, NULL, NULL,
6479 CTLFLAG_PERMANENT,
6480 CTLTYPE_NODE, "machdep", NULL,
6481 NULL, 0, NULL, 0,
6482 CTL_MACHDEP, CTL_EOL);
6483
6484 sysctl_createv(clog, 0, NULL, NULL,
6485 CTLFLAG_PERMANENT,
6486 CTLTYPE_INT, "kmpages",
6487 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6488 NULL, 0, &pmap_kmpages, 0,
6489 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6490 }
6491