pmap.c revision 1.194 1 /* $NetBSD: pmap.c,v 1.194 2008/12/30 05:51:19 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/user.h>
202 #include <sys/pool.h>
203 #include <sys/cdefs.h>
204 #include <sys/cpu.h>
205 #include <sys/sysctl.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.194 2008/12/30 05:51:19 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260
261 /*
262 * Which pmap is currently 'live' in the cache
263 *
264 * XXXSCW: Fix for SMP ...
265 */
266 static pmap_t pmap_recent_user;
267
268 /*
269 * Pointer to last active lwp, or NULL if it exited.
270 */
271 struct lwp *pmap_previous_active_lwp;
272
273 /*
274 * Pool and cache that pmap structures are allocated from.
275 * We use a cache to avoid clearing the pm_l2[] array (1KB)
276 * in pmap_create().
277 */
278 static struct pool_cache pmap_cache;
279 static LIST_HEAD(, pmap) pmap_pmaps;
280
281 /*
282 * Pool of PV structures
283 */
284 static struct pool pmap_pv_pool;
285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
288 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
289 };
290
291 /*
292 * Pool and cache of l2_dtable structures.
293 * We use a cache to avoid clearing the structures when they're
294 * allocated. (196 bytes)
295 */
296 static struct pool_cache pmap_l2dtable_cache;
297 static vaddr_t pmap_kernel_l2dtable_kva;
298
299 /*
300 * Pool and cache of L2 page descriptors.
301 * We use a cache to avoid clearing the descriptor table
302 * when they're allocated. (1KB)
303 */
304 static struct pool_cache pmap_l2ptp_cache;
305 static vaddr_t pmap_kernel_l2ptp_kva;
306 static paddr_t pmap_kernel_l2ptp_phys;
307
308 #ifdef PMAPCOUNTERS
309 #define PMAP_EVCNT_INITIALIZER(name) \
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
311
312 #ifdef PMAP_CACHE_VIPT
313 static struct evcnt pmap_ev_vac_clean_one =
314 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
315 static struct evcnt pmap_ev_vac_flush_one =
316 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
317 static struct evcnt pmap_ev_vac_flush_lots =
318 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
319 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
322
323 static struct evcnt pmap_ev_vac_color_new =
324 PMAP_EVCNT_INITIALIZER("new page color");
325 static struct evcnt pmap_ev_vac_color_reuse =
326 PMAP_EVCNT_INITIALIZER("ok first page color");
327 static struct evcnt pmap_ev_vac_color_ok =
328 PMAP_EVCNT_INITIALIZER("ok page color");
329 static struct evcnt pmap_ev_vac_color_blind =
330 PMAP_EVCNT_INITIALIZER("blind page color");
331 static struct evcnt pmap_ev_vac_color_change =
332 PMAP_EVCNT_INITIALIZER("change page color");
333 static struct evcnt pmap_ev_vac_color_erase =
334 PMAP_EVCNT_INITIALIZER("erase page color");
335 static struct evcnt pmap_ev_vac_color_none =
336 PMAP_EVCNT_INITIALIZER("no page color");
337 static struct evcnt pmap_ev_vac_color_restore =
338 PMAP_EVCNT_INITIALIZER("restore page color");
339
340 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
341 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
342 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
348 #endif
349
350 static struct evcnt pmap_ev_mappings =
351 PMAP_EVCNT_INITIALIZER("pages mapped");
352 static struct evcnt pmap_ev_unmappings =
353 PMAP_EVCNT_INITIALIZER("pages unmapped");
354 static struct evcnt pmap_ev_remappings =
355 PMAP_EVCNT_INITIALIZER("pages remapped");
356
357 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
358 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
359 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
360
361 static struct evcnt pmap_ev_kernel_mappings =
362 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
363 static struct evcnt pmap_ev_kernel_unmappings =
364 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
365 static struct evcnt pmap_ev_kernel_remappings =
366 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
367
368 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
369 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
370 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
371
372 static struct evcnt pmap_ev_kenter_mappings =
373 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
374 static struct evcnt pmap_ev_kenter_unmappings =
375 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
376 static struct evcnt pmap_ev_kenter_remappings =
377 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
378 static struct evcnt pmap_ev_pt_mappings =
379 PMAP_EVCNT_INITIALIZER("page table pages mapped");
380
381 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
382 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
383 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
384 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
385
386 #ifdef PMAP_CACHE_VIPT
387 static struct evcnt pmap_ev_exec_mappings =
388 PMAP_EVCNT_INITIALIZER("exec pages mapped");
389 static struct evcnt pmap_ev_exec_cached =
390 PMAP_EVCNT_INITIALIZER("exec pages cached");
391
392 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
393 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
394
395 static struct evcnt pmap_ev_exec_synced =
396 PMAP_EVCNT_INITIALIZER("exec pages synced");
397 static struct evcnt pmap_ev_exec_synced_map =
398 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
399 static struct evcnt pmap_ev_exec_synced_unmap =
400 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
401 static struct evcnt pmap_ev_exec_synced_remap =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
403 static struct evcnt pmap_ev_exec_synced_clearbit =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
405 static struct evcnt pmap_ev_exec_synced_kremove =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
407
408 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
409 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
414
415 static struct evcnt pmap_ev_exec_discarded_unmap =
416 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
417 static struct evcnt pmap_ev_exec_discarded_zero =
418 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
419 static struct evcnt pmap_ev_exec_discarded_copy =
420 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
421 static struct evcnt pmap_ev_exec_discarded_page_protect =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
423 static struct evcnt pmap_ev_exec_discarded_clearbit =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
425 static struct evcnt pmap_ev_exec_discarded_kremove =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
427
428 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
429 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
434 #endif /* PMAP_CACHE_VIPT */
435
436 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
437 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
438 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
439
440 EVCNT_ATTACH_STATIC(pmap_ev_updates);
441 EVCNT_ATTACH_STATIC(pmap_ev_collects);
442 EVCNT_ATTACH_STATIC(pmap_ev_activations);
443
444 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
445 #else
446 #define PMAPCOUNT(x) ((void)0)
447 #endif
448
449 /*
450 * pmap copy/zero page, and mem(5) hook point
451 */
452 static pt_entry_t *csrc_pte, *cdst_pte;
453 static vaddr_t csrcp, cdstp;
454 vaddr_t memhook; /* used by mem.c */
455 kmutex_t memlock; /* used by mem.c */
456 void *zeropage; /* used by mem.c */
457 extern void *msgbufaddr;
458 int pmap_kmpages;
459 /*
460 * Flag to indicate if pmap_init() has done its thing
461 */
462 bool pmap_initialized;
463
464 /*
465 * Misc. locking data structures
466 */
467
468 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
469 static struct lock pmap_main_lock;
470
471 #define PMAP_MAP_TO_HEAD_LOCK() \
472 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
473 #define PMAP_MAP_TO_HEAD_UNLOCK() \
474 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
475 #define PMAP_HEAD_TO_MAP_LOCK() \
476 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
477 #define PMAP_HEAD_TO_MAP_UNLOCK() \
478 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
479 #else
480 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
481 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
482 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
483 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
484 #endif
485
486 #define pmap_acquire_pmap_lock(pm) \
487 do { \
488 if ((pm) != pmap_kernel()) \
489 mutex_enter(&(pm)->pm_lock); \
490 } while (/*CONSTCOND*/0)
491
492 #define pmap_release_pmap_lock(pm) \
493 do { \
494 if ((pm) != pmap_kernel()) \
495 mutex_exit(&(pm)->pm_lock); \
496 } while (/*CONSTCOND*/0)
497
498
499 /*
500 * Metadata for L1 translation tables.
501 */
502 struct l1_ttable {
503 /* Entry on the L1 Table list */
504 SLIST_ENTRY(l1_ttable) l1_link;
505
506 /* Entry on the L1 Least Recently Used list */
507 TAILQ_ENTRY(l1_ttable) l1_lru;
508
509 /* Track how many domains are allocated from this L1 */
510 volatile u_int l1_domain_use_count;
511
512 /*
513 * A free-list of domain numbers for this L1.
514 * We avoid using ffs() and a bitmap to track domains since ffs()
515 * is slow on ARM.
516 */
517 u_int8_t l1_domain_first;
518 u_int8_t l1_domain_free[PMAP_DOMAINS];
519
520 /* Physical address of this L1 page table */
521 paddr_t l1_physaddr;
522
523 /* KVA of this L1 page table */
524 pd_entry_t *l1_kva;
525 };
526
527 /*
528 * Convert a virtual address into its L1 table index. That is, the
529 * index used to locate the L2 descriptor table pointer in an L1 table.
530 * This is basically used to index l1->l1_kva[].
531 *
532 * Each L2 descriptor table represents 1MB of VA space.
533 */
534 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
535
536 /*
537 * L1 Page Tables are tracked using a Least Recently Used list.
538 * - New L1s are allocated from the HEAD.
539 * - Freed L1s are added to the TAIl.
540 * - Recently accessed L1s (where an 'access' is some change to one of
541 * the userland pmaps which owns this L1) are moved to the TAIL.
542 */
543 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
544 static struct simplelock l1_lru_lock;
545
546 /*
547 * A list of all L1 tables
548 */
549 static SLIST_HEAD(, l1_ttable) l1_list;
550
551 /*
552 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
553 *
554 * This is normally 16MB worth L2 page descriptors for any given pmap.
555 * Reference counts are maintained for L2 descriptors so they can be
556 * freed when empty.
557 */
558 struct l2_dtable {
559 /* The number of L2 page descriptors allocated to this l2_dtable */
560 u_int l2_occupancy;
561
562 /* List of L2 page descriptors */
563 struct l2_bucket {
564 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
565 paddr_t l2b_phys; /* Physical address of same */
566 u_short l2b_l1idx; /* This L2 table's L1 index */
567 u_short l2b_occupancy; /* How many active descriptors */
568 } l2_bucket[L2_BUCKET_SIZE];
569 };
570
571 /*
572 * Given an L1 table index, calculate the corresponding l2_dtable index
573 * and bucket index within the l2_dtable.
574 */
575 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
576 (L2_SIZE - 1))
577 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
578
579 /*
580 * Given a virtual address, this macro returns the
581 * virtual address required to drop into the next L2 bucket.
582 */
583 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
584
585 /*
586 * L2 allocation.
587 */
588 #define pmap_alloc_l2_dtable() \
589 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
590 #define pmap_free_l2_dtable(l2) \
591 pool_cache_put(&pmap_l2dtable_cache, (l2))
592 #define pmap_alloc_l2_ptp(pap) \
593 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
594 PR_NOWAIT, (pap)))
595
596 /*
597 * We try to map the page tables write-through, if possible. However, not
598 * all CPUs have a write-through cache mode, so on those we have to sync
599 * the cache when we frob page tables.
600 *
601 * We try to evaluate this at compile time, if possible. However, it's
602 * not always possible to do that, hence this run-time var.
603 */
604 int pmap_needs_pte_sync;
605
606 /*
607 * Real definition of pv_entry.
608 */
609 struct pv_entry {
610 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
611 pmap_t pv_pmap; /* pmap where mapping lies */
612 vaddr_t pv_va; /* virtual address for mapping */
613 u_int pv_flags; /* flags */
614 };
615
616 /*
617 * Macro to determine if a mapping might be resident in the
618 * instruction cache and/or TLB
619 */
620 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
621 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
622
623 /*
624 * Macro to determine if a mapping might be resident in the
625 * data cache and/or TLB
626 */
627 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
628
629 /*
630 * Local prototypes
631 */
632 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
633 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
634 pt_entry_t **);
635 static bool pmap_is_current(pmap_t);
636 static bool pmap_is_cached(pmap_t);
637 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
638 pmap_t, vaddr_t, u_int);
639 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
640 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
641 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
642 u_int, u_int);
643
644 static void pmap_pinit(pmap_t);
645 static int pmap_pmap_ctor(void *, void *, int);
646
647 static void pmap_alloc_l1(pmap_t);
648 static void pmap_free_l1(pmap_t);
649 static void pmap_use_l1(pmap_t);
650
651 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
652 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
653 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
654 static int pmap_l2ptp_ctor(void *, void *, int);
655 static int pmap_l2dtable_ctor(void *, void *, int);
656
657 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
658 #ifdef PMAP_CACHE_VIVT
659 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
660 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
661 #endif
662
663 static void pmap_clearbit(struct vm_page *, u_int);
664 #ifdef PMAP_CACHE_VIVT
665 static int pmap_clean_page(struct pv_entry *, bool);
666 #endif
667 #ifdef PMAP_CACHE_VIPT
668 static void pmap_syncicache_page(struct vm_page *);
669 enum pmap_flush_op {
670 PMAP_FLUSH_PRIMARY,
671 PMAP_FLUSH_SECONDARY,
672 PMAP_CLEAN_PRIMARY
673 };
674 static void pmap_flush_page(struct vm_page *, enum pmap_flush_op);
675 #endif
676 static void pmap_page_remove(struct vm_page *);
677
678 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
679 static vaddr_t kernel_pt_lookup(paddr_t);
680
681
682 /*
683 * External function prototypes
684 */
685 extern void bzero_page(vaddr_t);
686 extern void bcopy_page(vaddr_t, vaddr_t);
687
688 /*
689 * Misc variables
690 */
691 vaddr_t virtual_avail;
692 vaddr_t virtual_end;
693 vaddr_t pmap_curmaxkvaddr;
694
695 vaddr_t avail_start;
696 vaddr_t avail_end;
697
698 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
699 pv_addr_t kernelpages;
700 pv_addr_t kernel_l1pt;
701 pv_addr_t systempage;
702
703 /* Function to set the debug level of the pmap code */
704
705 #ifdef PMAP_DEBUG
706 void
707 pmap_debug(int level)
708 {
709 pmap_debug_level = level;
710 printf("pmap_debug: level=%d\n", pmap_debug_level);
711 }
712 #endif /* PMAP_DEBUG */
713
714 /*
715 * A bunch of routines to conditionally flush the caches/TLB depending
716 * on whether the specified pmap actually needs to be flushed at any
717 * given time.
718 */
719 static inline void
720 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
721 {
722
723 if (pm->pm_cstate.cs_tlb_id)
724 cpu_tlb_flushID_SE(va);
725 }
726
727 static inline void
728 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
729 {
730
731 if (pm->pm_cstate.cs_tlb_d)
732 cpu_tlb_flushD_SE(va);
733 }
734
735 static inline void
736 pmap_tlb_flushID(pmap_t pm)
737 {
738
739 if (pm->pm_cstate.cs_tlb_id) {
740 cpu_tlb_flushID();
741 pm->pm_cstate.cs_tlb = 0;
742 }
743 }
744
745 static inline void
746 pmap_tlb_flushD(pmap_t pm)
747 {
748
749 if (pm->pm_cstate.cs_tlb_d) {
750 cpu_tlb_flushD();
751 pm->pm_cstate.cs_tlb_d = 0;
752 }
753 }
754
755 #ifdef PMAP_CACHE_VIVT
756 static inline void
757 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
758 {
759 if (pm->pm_cstate.cs_cache_id) {
760 cpu_idcache_wbinv_range(va, len);
761 }
762 }
763
764 static inline void
765 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
766 bool do_inv, bool rd_only)
767 {
768
769 if (pm->pm_cstate.cs_cache_d) {
770 if (do_inv) {
771 if (rd_only)
772 cpu_dcache_inv_range(va, len);
773 else
774 cpu_dcache_wbinv_range(va, len);
775 } else
776 if (!rd_only)
777 cpu_dcache_wb_range(va, len);
778 }
779 }
780
781 static inline void
782 pmap_idcache_wbinv_all(pmap_t pm)
783 {
784 if (pm->pm_cstate.cs_cache_id) {
785 cpu_idcache_wbinv_all();
786 pm->pm_cstate.cs_cache = 0;
787 }
788 }
789
790 static inline void
791 pmap_dcache_wbinv_all(pmap_t pm)
792 {
793 if (pm->pm_cstate.cs_cache_d) {
794 cpu_dcache_wbinv_all();
795 pm->pm_cstate.cs_cache_d = 0;
796 }
797 }
798 #endif /* PMAP_CACHE_VIVT */
799
800 static inline bool
801 pmap_is_current(pmap_t pm)
802 {
803
804 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
805 return true;
806
807 return false;
808 }
809
810 static inline bool
811 pmap_is_cached(pmap_t pm)
812 {
813
814 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
815 pmap_recent_user == pm)
816 return (true);
817
818 return false;
819 }
820
821 /*
822 * PTE_SYNC_CURRENT:
823 *
824 * Make sure the pte is written out to RAM.
825 * We need to do this for one of two cases:
826 * - We're dealing with the kernel pmap
827 * - There is no pmap active in the cache/tlb.
828 * - The specified pmap is 'active' in the cache/tlb.
829 */
830 #ifdef PMAP_INCLUDE_PTE_SYNC
831 #define PTE_SYNC_CURRENT(pm, ptep) \
832 do { \
833 if (PMAP_NEEDS_PTE_SYNC && \
834 pmap_is_cached(pm)) \
835 PTE_SYNC(ptep); \
836 } while (/*CONSTCOND*/0)
837 #else
838 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
839 #endif
840
841 /*
842 * main pv_entry manipulation functions:
843 * pmap_enter_pv: enter a mapping onto a vm_page list
844 * pmap_remove_pv: remove a mappiing from a vm_page list
845 *
846 * NOTE: pmap_enter_pv expects to lock the pvh itself
847 * pmap_remove_pv expects te caller to lock the pvh before calling
848 */
849
850 /*
851 * pmap_enter_pv: enter a mapping onto a vm_page lst
852 *
853 * => caller should hold the proper lock on pmap_main_lock
854 * => caller should have pmap locked
855 * => we will gain the lock on the vm_page and allocate the new pv_entry
856 * => caller should adjust ptp's wire_count before calling
857 * => caller should not adjust pmap's wire_count
858 */
859 static void
860 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
861 vaddr_t va, u_int flags)
862 {
863 struct pv_entry **pvp;
864
865 NPDEBUG(PDB_PVDUMP,
866 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
867
868 pve->pv_pmap = pm;
869 pve->pv_va = va;
870 pve->pv_flags = flags;
871
872 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
873 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
874 #ifdef PMAP_CACHE_VIPT
875 /*
876 * Insert unmanaged entries, writeable first, at the head of
877 * the pv list.
878 */
879 if (__predict_true((flags & PVF_KENTRY) == 0)) {
880 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
881 pvp = &SLIST_NEXT(*pvp, pv_link);
882 } else if ((flags & PVF_WRITE) == 0) {
883 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
884 pvp = &SLIST_NEXT(*pvp, pv_link);
885 }
886 #endif
887 SLIST_NEXT(pve, pv_link) = *pvp; /* add to ... */
888 *pvp = pve; /* ... locked list */
889 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
890 #ifdef PMAP_CACHE_VIPT
891 if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
892 pg->mdpage.pvh_attrs |= PVF_KMOD;
893 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
894 pg->mdpage.pvh_attrs |= PVF_DIRTY;
895 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
896 #endif
897 if (pm == pmap_kernel()) {
898 PMAPCOUNT(kernel_mappings);
899 if (flags & PVF_WRITE)
900 pg->mdpage.krw_mappings++;
901 else
902 pg->mdpage.kro_mappings++;
903 } else
904 if (flags & PVF_WRITE)
905 pg->mdpage.urw_mappings++;
906 else
907 pg->mdpage.uro_mappings++;
908
909 #ifdef PMAP_CACHE_VIPT
910 /*
911 * If this is an exec mapping and its the first exec mapping
912 * for this page, make sure to sync the I-cache.
913 */
914 if (PV_IS_EXEC_P(flags)) {
915 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
916 pmap_syncicache_page(pg);
917 PMAPCOUNT(exec_synced_map);
918 }
919 PMAPCOUNT(exec_mappings);
920 }
921 #endif
922
923 PMAPCOUNT(mappings);
924 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
925
926 if (pve->pv_flags & PVF_WIRED)
927 ++pm->pm_stats.wired_count;
928 }
929
930 /*
931 *
932 * pmap_find_pv: Find a pv entry
933 *
934 * => caller should hold lock on vm_page
935 */
936 static inline struct pv_entry *
937 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
938 {
939 struct pv_entry *pv;
940
941 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
942 if (pm == pv->pv_pmap && va == pv->pv_va)
943 break;
944 }
945
946 return (pv);
947 }
948
949 /*
950 * pmap_remove_pv: try to remove a mapping from a pv_list
951 *
952 * => caller should hold proper lock on pmap_main_lock
953 * => pmap should be locked
954 * => caller should hold lock on vm_page [so that attrs can be adjusted]
955 * => caller should adjust ptp's wire_count and free PTP if needed
956 * => caller should NOT adjust pmap's wire_count
957 * => we return the removed pve
958 */
959 static struct pv_entry *
960 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
961 {
962 struct pv_entry *pve, **prevptr;
963
964 NPDEBUG(PDB_PVDUMP,
965 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
966
967 prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
968 pve = *prevptr;
969
970 while (pve) {
971 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
972 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
973 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
974 if (pve->pv_flags & PVF_WIRED) {
975 if (skip_wired)
976 return (NULL);
977 --pm->pm_stats.wired_count;
978 }
979 *prevptr = SLIST_NEXT(pve, pv_link); /* remove it! */
980 if (pm == pmap_kernel()) {
981 PMAPCOUNT(kernel_unmappings);
982 if (pve->pv_flags & PVF_WRITE)
983 pg->mdpage.krw_mappings--;
984 else
985 pg->mdpage.kro_mappings--;
986 } else
987 if (pve->pv_flags & PVF_WRITE)
988 pg->mdpage.urw_mappings--;
989 else
990 pg->mdpage.uro_mappings--;
991
992 PMAPCOUNT(unmappings);
993 #ifdef PMAP_CACHE_VIPT
994 if (!(pve->pv_flags & PVF_WRITE))
995 break;
996 /*
997 * If this page has had an exec mapping, then if
998 * this was the last mapping, discard the contents,
999 * otherwise sync the i-cache for this page.
1000 */
1001 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
1002 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
1003 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
1004 PMAPCOUNT(exec_discarded_unmap);
1005 } else {
1006 pmap_syncicache_page(pg);
1007 PMAPCOUNT(exec_synced_unmap);
1008 }
1009 }
1010 #endif /* PMAP_CACHE_VIPT */
1011 break;
1012 }
1013 prevptr = &SLIST_NEXT(pve, pv_link); /* previous pointer */
1014 pve = *prevptr; /* advance */
1015 }
1016
1017 #ifdef PMAP_CACHE_VIPT
1018 /*
1019 * If we no longer have a WRITEABLE KENTRY at the head of list,
1020 * clear the KMOD attribute from the page.
1021 */
1022 if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
1023 || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1024 pg->mdpage.pvh_attrs &= ~PVF_KMOD;
1025
1026 /*
1027 * If this was a writeable page and there are no more writeable
1028 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1029 * the contents to memory.
1030 */
1031 if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
1032 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1033 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1034 #endif /* PMAP_CACHE_VIPT */
1035
1036 return(pve); /* return removed pve */
1037 }
1038
1039 /*
1040 *
1041 * pmap_modify_pv: Update pv flags
1042 *
1043 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1044 * => caller should NOT adjust pmap's wire_count
1045 * => caller must call pmap_vac_me_harder() if writable status of a page
1046 * may have changed.
1047 * => we return the old flags
1048 *
1049 * Modify a physical-virtual mapping in the pv table
1050 */
1051 static u_int
1052 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
1053 u_int clr_mask, u_int set_mask)
1054 {
1055 struct pv_entry *npv;
1056 u_int flags, oflags;
1057
1058 KASSERT((clr_mask & PVF_KENTRY) == 0);
1059 KASSERT((set_mask & PVF_KENTRY) == 0);
1060
1061 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1062 return (0);
1063
1064 NPDEBUG(PDB_PVDUMP,
1065 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
1066
1067 /*
1068 * There is at least one VA mapping this page.
1069 */
1070
1071 if (clr_mask & (PVF_REF | PVF_MOD)) {
1072 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1073 #ifdef PMAP_CACHE_VIPT
1074 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1075 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1076 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1077 #endif
1078 }
1079
1080 oflags = npv->pv_flags;
1081 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1082
1083 if ((flags ^ oflags) & PVF_WIRED) {
1084 if (flags & PVF_WIRED)
1085 ++pm->pm_stats.wired_count;
1086 else
1087 --pm->pm_stats.wired_count;
1088 }
1089
1090 if ((flags ^ oflags) & PVF_WRITE) {
1091 if (pm == pmap_kernel()) {
1092 if (flags & PVF_WRITE) {
1093 pg->mdpage.krw_mappings++;
1094 pg->mdpage.kro_mappings--;
1095 } else {
1096 pg->mdpage.kro_mappings++;
1097 pg->mdpage.krw_mappings--;
1098 }
1099 } else
1100 if (flags & PVF_WRITE) {
1101 pg->mdpage.urw_mappings++;
1102 pg->mdpage.uro_mappings--;
1103 } else {
1104 pg->mdpage.uro_mappings++;
1105 pg->mdpage.urw_mappings--;
1106 }
1107 }
1108 #ifdef PMAP_CACHE_VIPT
1109 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
1110 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1111 /*
1112 * We have two cases here: the first is from enter_pv (new exec
1113 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1114 * Since in latter, pmap_enter_pv won't do anything, we just have
1115 * to do what pmap_remove_pv would do.
1116 */
1117 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
1118 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
1119 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1120 pmap_syncicache_page(pg);
1121 PMAPCOUNT(exec_synced_remap);
1122 }
1123 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1124 #endif
1125
1126 PMAPCOUNT(remappings);
1127
1128 return (oflags);
1129 }
1130
1131 /*
1132 * Allocate an L1 translation table for the specified pmap.
1133 * This is called at pmap creation time.
1134 */
1135 static void
1136 pmap_alloc_l1(pmap_t pm)
1137 {
1138 struct l1_ttable *l1;
1139 u_int8_t domain;
1140
1141 /*
1142 * Remove the L1 at the head of the LRU list
1143 */
1144 simple_lock(&l1_lru_lock);
1145 l1 = TAILQ_FIRST(&l1_lru_list);
1146 KDASSERT(l1 != NULL);
1147 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1148
1149 /*
1150 * Pick the first available domain number, and update
1151 * the link to the next number.
1152 */
1153 domain = l1->l1_domain_first;
1154 l1->l1_domain_first = l1->l1_domain_free[domain];
1155
1156 /*
1157 * If there are still free domain numbers in this L1,
1158 * put it back on the TAIL of the LRU list.
1159 */
1160 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1161 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1162
1163 simple_unlock(&l1_lru_lock);
1164
1165 /*
1166 * Fix up the relevant bits in the pmap structure
1167 */
1168 pm->pm_l1 = l1;
1169 pm->pm_domain = domain;
1170 }
1171
1172 /*
1173 * Free an L1 translation table.
1174 * This is called at pmap destruction time.
1175 */
1176 static void
1177 pmap_free_l1(pmap_t pm)
1178 {
1179 struct l1_ttable *l1 = pm->pm_l1;
1180
1181 simple_lock(&l1_lru_lock);
1182
1183 /*
1184 * If this L1 is currently on the LRU list, remove it.
1185 */
1186 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1187 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1188
1189 /*
1190 * Free up the domain number which was allocated to the pmap
1191 */
1192 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1193 l1->l1_domain_first = pm->pm_domain;
1194 l1->l1_domain_use_count--;
1195
1196 /*
1197 * The L1 now must have at least 1 free domain, so add
1198 * it back to the LRU list. If the use count is zero,
1199 * put it at the head of the list, otherwise it goes
1200 * to the tail.
1201 */
1202 if (l1->l1_domain_use_count == 0)
1203 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1204 else
1205 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1206
1207 simple_unlock(&l1_lru_lock);
1208 }
1209
1210 static inline void
1211 pmap_use_l1(pmap_t pm)
1212 {
1213 struct l1_ttable *l1;
1214
1215 /*
1216 * Do nothing if we're in interrupt context.
1217 * Access to an L1 by the kernel pmap must not affect
1218 * the LRU list.
1219 */
1220 if (cpu_intr_p() || pm == pmap_kernel())
1221 return;
1222
1223 l1 = pm->pm_l1;
1224
1225 /*
1226 * If the L1 is not currently on the LRU list, just return
1227 */
1228 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1229 return;
1230
1231 simple_lock(&l1_lru_lock);
1232
1233 /*
1234 * Check the use count again, now that we've acquired the lock
1235 */
1236 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1237 simple_unlock(&l1_lru_lock);
1238 return;
1239 }
1240
1241 /*
1242 * Move the L1 to the back of the LRU list
1243 */
1244 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1245 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1246
1247 simple_unlock(&l1_lru_lock);
1248 }
1249
1250 /*
1251 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1252 *
1253 * Free an L2 descriptor table.
1254 */
1255 static inline void
1256 #ifndef PMAP_INCLUDE_PTE_SYNC
1257 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1258 #else
1259 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1260 #endif
1261 {
1262 #ifdef PMAP_INCLUDE_PTE_SYNC
1263 #ifdef PMAP_CACHE_VIVT
1264 /*
1265 * Note: With a write-back cache, we may need to sync this
1266 * L2 table before re-using it.
1267 * This is because it may have belonged to a non-current
1268 * pmap, in which case the cache syncs would have been
1269 * skipped for the pages that were being unmapped. If the
1270 * L2 table were then to be immediately re-allocated to
1271 * the *current* pmap, it may well contain stale mappings
1272 * which have not yet been cleared by a cache write-back
1273 * and so would still be visible to the mmu.
1274 */
1275 if (need_sync)
1276 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1277 #endif /* PMAP_CACHE_VIVT */
1278 #endif /* PMAP_INCLUDE_PTE_SYNC */
1279 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1280 }
1281
1282 /*
1283 * Returns a pointer to the L2 bucket associated with the specified pmap
1284 * and VA, or NULL if no L2 bucket exists for the address.
1285 */
1286 static inline struct l2_bucket *
1287 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1288 {
1289 struct l2_dtable *l2;
1290 struct l2_bucket *l2b;
1291 u_short l1idx;
1292
1293 l1idx = L1_IDX(va);
1294
1295 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1296 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1297 return (NULL);
1298
1299 return (l2b);
1300 }
1301
1302 /*
1303 * Returns a pointer to the L2 bucket associated with the specified pmap
1304 * and VA.
1305 *
1306 * If no L2 bucket exists, perform the necessary allocations to put an L2
1307 * bucket/page table in place.
1308 *
1309 * Note that if a new L2 bucket/page was allocated, the caller *must*
1310 * increment the bucket occupancy counter appropriately *before*
1311 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1312 * the bucket/page in the meantime.
1313 */
1314 static struct l2_bucket *
1315 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1316 {
1317 struct l2_dtable *l2;
1318 struct l2_bucket *l2b;
1319 u_short l1idx;
1320
1321 l1idx = L1_IDX(va);
1322
1323 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1324 /*
1325 * No mapping at this address, as there is
1326 * no entry in the L1 table.
1327 * Need to allocate a new l2_dtable.
1328 */
1329 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1330 return (NULL);
1331
1332 /*
1333 * Link it into the parent pmap
1334 */
1335 pm->pm_l2[L2_IDX(l1idx)] = l2;
1336 }
1337
1338 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1339
1340 /*
1341 * Fetch pointer to the L2 page table associated with the address.
1342 */
1343 if (l2b->l2b_kva == NULL) {
1344 pt_entry_t *ptep;
1345
1346 /*
1347 * No L2 page table has been allocated. Chances are, this
1348 * is because we just allocated the l2_dtable, above.
1349 */
1350 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1351 /*
1352 * Oops, no more L2 page tables available at this
1353 * time. We may need to deallocate the l2_dtable
1354 * if we allocated a new one above.
1355 */
1356 if (l2->l2_occupancy == 0) {
1357 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1358 pmap_free_l2_dtable(l2);
1359 }
1360 return (NULL);
1361 }
1362
1363 l2->l2_occupancy++;
1364 l2b->l2b_kva = ptep;
1365 l2b->l2b_l1idx = l1idx;
1366 }
1367
1368 return (l2b);
1369 }
1370
1371 /*
1372 * One or more mappings in the specified L2 descriptor table have just been
1373 * invalidated.
1374 *
1375 * Garbage collect the metadata and descriptor table itself if necessary.
1376 *
1377 * The pmap lock must be acquired when this is called (not necessary
1378 * for the kernel pmap).
1379 */
1380 static void
1381 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1382 {
1383 struct l2_dtable *l2;
1384 pd_entry_t *pl1pd, l1pd;
1385 pt_entry_t *ptep;
1386 u_short l1idx;
1387
1388 KDASSERT(count <= l2b->l2b_occupancy);
1389
1390 /*
1391 * Update the bucket's reference count according to how many
1392 * PTEs the caller has just invalidated.
1393 */
1394 l2b->l2b_occupancy -= count;
1395
1396 /*
1397 * Note:
1398 *
1399 * Level 2 page tables allocated to the kernel pmap are never freed
1400 * as that would require checking all Level 1 page tables and
1401 * removing any references to the Level 2 page table. See also the
1402 * comment elsewhere about never freeing bootstrap L2 descriptors.
1403 *
1404 * We make do with just invalidating the mapping in the L2 table.
1405 *
1406 * This isn't really a big deal in practice and, in fact, leads
1407 * to a performance win over time as we don't need to continually
1408 * alloc/free.
1409 */
1410 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1411 return;
1412
1413 /*
1414 * There are no more valid mappings in this level 2 page table.
1415 * Go ahead and NULL-out the pointer in the bucket, then
1416 * free the page table.
1417 */
1418 l1idx = l2b->l2b_l1idx;
1419 ptep = l2b->l2b_kva;
1420 l2b->l2b_kva = NULL;
1421
1422 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1423
1424 /*
1425 * If the L1 slot matches the pmap's domain
1426 * number, then invalidate it.
1427 */
1428 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1429 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1430 *pl1pd = 0;
1431 PTE_SYNC(pl1pd);
1432 }
1433
1434 /*
1435 * Release the L2 descriptor table back to the pool cache.
1436 */
1437 #ifndef PMAP_INCLUDE_PTE_SYNC
1438 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1439 #else
1440 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1441 #endif
1442
1443 /*
1444 * Update the reference count in the associated l2_dtable
1445 */
1446 l2 = pm->pm_l2[L2_IDX(l1idx)];
1447 if (--l2->l2_occupancy > 0)
1448 return;
1449
1450 /*
1451 * There are no more valid mappings in any of the Level 1
1452 * slots managed by this l2_dtable. Go ahead and NULL-out
1453 * the pointer in the parent pmap and free the l2_dtable.
1454 */
1455 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1456 pmap_free_l2_dtable(l2);
1457 }
1458
1459 /*
1460 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1461 * structures.
1462 */
1463 static int
1464 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1465 {
1466 #ifndef PMAP_INCLUDE_PTE_SYNC
1467 struct l2_bucket *l2b;
1468 pt_entry_t *ptep, pte;
1469 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1470
1471 /*
1472 * The mappings for these page tables were initially made using
1473 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1474 * mode will not be right for page table mappings. To avoid
1475 * polluting the pmap_kenter_pa() code with a special case for
1476 * page tables, we simply fix up the cache-mode here if it's not
1477 * correct.
1478 */
1479 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1480 KDASSERT(l2b != NULL);
1481 ptep = &l2b->l2b_kva[l2pte_index(va)];
1482 pte = *ptep;
1483
1484 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1485 /*
1486 * Page tables must have the cache-mode set to Write-Thru.
1487 */
1488 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1489 PTE_SYNC(ptep);
1490 cpu_tlb_flushD_SE(va);
1491 cpu_cpwait();
1492 }
1493 #endif
1494
1495 memset(v, 0, L2_TABLE_SIZE_REAL);
1496 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1497 return (0);
1498 }
1499
1500 static int
1501 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1502 {
1503
1504 memset(v, 0, sizeof(struct l2_dtable));
1505 return (0);
1506 }
1507
1508 static int
1509 pmap_pmap_ctor(void *arg, void *v, int flags)
1510 {
1511
1512 memset(v, 0, sizeof(struct pmap));
1513 return (0);
1514 }
1515
1516 static void
1517 pmap_pinit(pmap_t pm)
1518 {
1519 struct l2_bucket *l2b;
1520
1521 if (vector_page < KERNEL_BASE) {
1522 /*
1523 * Map the vector page.
1524 */
1525 pmap_enter(pm, vector_page, systempage.pv_pa,
1526 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1527 pmap_update(pm);
1528
1529 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1530 l2b = pmap_get_l2_bucket(pm, vector_page);
1531 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1532 L1_C_DOM(pm->pm_domain);
1533 } else
1534 pm->pm_pl1vec = NULL;
1535 }
1536
1537 #ifdef PMAP_CACHE_VIVT
1538 /*
1539 * Since we have a virtually indexed cache, we may need to inhibit caching if
1540 * there is more than one mapping and at least one of them is writable.
1541 * Since we purge the cache on every context switch, we only need to check for
1542 * other mappings within the same pmap, or kernel_pmap.
1543 * This function is also called when a page is unmapped, to possibly reenable
1544 * caching on any remaining mappings.
1545 *
1546 * The code implements the following logic, where:
1547 *
1548 * KW = # of kernel read/write pages
1549 * KR = # of kernel read only pages
1550 * UW = # of user read/write pages
1551 * UR = # of user read only pages
1552 *
1553 * KC = kernel mapping is cacheable
1554 * UC = user mapping is cacheable
1555 *
1556 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1557 * +---------------------------------------------
1558 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1559 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1560 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1561 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1562 */
1563
1564 static const int pmap_vac_flags[4][4] = {
1565 {-1, 0, 0, PVF_KNC},
1566 {0, 0, PVF_NC, PVF_NC},
1567 {0, PVF_NC, PVF_NC, PVF_NC},
1568 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1569 };
1570
1571 static inline int
1572 pmap_get_vac_flags(const struct vm_page *pg)
1573 {
1574 int kidx, uidx;
1575
1576 kidx = 0;
1577 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1578 kidx |= 1;
1579 if (pg->mdpage.krw_mappings)
1580 kidx |= 2;
1581
1582 uidx = 0;
1583 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1584 uidx |= 1;
1585 if (pg->mdpage.urw_mappings)
1586 uidx |= 2;
1587
1588 return (pmap_vac_flags[uidx][kidx]);
1589 }
1590
1591 static inline void
1592 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1593 {
1594 int nattr;
1595
1596 nattr = pmap_get_vac_flags(pg);
1597
1598 if (nattr < 0) {
1599 pg->mdpage.pvh_attrs &= ~PVF_NC;
1600 return;
1601 }
1602
1603 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1604 return;
1605
1606 if (pm == pmap_kernel())
1607 pmap_vac_me_kpmap(pg, pm, va);
1608 else
1609 pmap_vac_me_user(pg, pm, va);
1610
1611 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1612 }
1613
1614 static void
1615 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1616 {
1617 u_int u_cacheable, u_entries;
1618 struct pv_entry *pv;
1619 pmap_t last_pmap = pm;
1620
1621 /*
1622 * Pass one, see if there are both kernel and user pmaps for
1623 * this page. Calculate whether there are user-writable or
1624 * kernel-writable pages.
1625 */
1626 u_cacheable = 0;
1627 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1628 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1629 u_cacheable++;
1630 }
1631
1632 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1633
1634 /*
1635 * We know we have just been updating a kernel entry, so if
1636 * all user pages are already cacheable, then there is nothing
1637 * further to do.
1638 */
1639 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1640 return;
1641
1642 if (u_entries) {
1643 /*
1644 * Scan over the list again, for each entry, if it
1645 * might not be set correctly, call pmap_vac_me_user
1646 * to recalculate the settings.
1647 */
1648 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1649 /*
1650 * We know kernel mappings will get set
1651 * correctly in other calls. We also know
1652 * that if the pmap is the same as last_pmap
1653 * then we've just handled this entry.
1654 */
1655 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1656 continue;
1657
1658 /*
1659 * If there are kernel entries and this page
1660 * is writable but non-cacheable, then we can
1661 * skip this entry also.
1662 */
1663 if (pg->mdpage.k_mappings &&
1664 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1665 (PVF_NC | PVF_WRITE))
1666 continue;
1667
1668 /*
1669 * Similarly if there are no kernel-writable
1670 * entries and the page is already
1671 * read-only/cacheable.
1672 */
1673 if (pg->mdpage.krw_mappings == 0 &&
1674 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1675 continue;
1676
1677 /*
1678 * For some of the remaining cases, we know
1679 * that we must recalculate, but for others we
1680 * can't tell if they are correct or not, so
1681 * we recalculate anyway.
1682 */
1683 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1684 }
1685
1686 if (pg->mdpage.k_mappings == 0)
1687 return;
1688 }
1689
1690 pmap_vac_me_user(pg, pm, va);
1691 }
1692
1693 static void
1694 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1695 {
1696 pmap_t kpmap = pmap_kernel();
1697 struct pv_entry *pv, *npv = NULL;
1698 struct l2_bucket *l2b;
1699 pt_entry_t *ptep, pte;
1700 u_int entries = 0;
1701 u_int writable = 0;
1702 u_int cacheable_entries = 0;
1703 u_int kern_cacheable = 0;
1704 u_int other_writable = 0;
1705
1706 /*
1707 * Count mappings and writable mappings in this pmap.
1708 * Include kernel mappings as part of our own.
1709 * Keep a pointer to the first one.
1710 */
1711 npv = NULL;
1712 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1713 /* Count mappings in the same pmap */
1714 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1715 if (entries++ == 0)
1716 npv = pv;
1717
1718 /* Cacheable mappings */
1719 if ((pv->pv_flags & PVF_NC) == 0) {
1720 cacheable_entries++;
1721 if (kpmap == pv->pv_pmap)
1722 kern_cacheable++;
1723 }
1724
1725 /* Writable mappings */
1726 if (pv->pv_flags & PVF_WRITE)
1727 ++writable;
1728 } else
1729 if (pv->pv_flags & PVF_WRITE)
1730 other_writable = 1;
1731 }
1732
1733 /*
1734 * Enable or disable caching as necessary.
1735 * Note: the first entry might be part of the kernel pmap,
1736 * so we can't assume this is indicative of the state of the
1737 * other (maybe non-kpmap) entries.
1738 */
1739 if ((entries > 1 && writable) ||
1740 (entries > 0 && pm == kpmap && other_writable)) {
1741 if (cacheable_entries == 0)
1742 return;
1743
1744 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1745 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1746 (pv->pv_flags & PVF_NC))
1747 continue;
1748
1749 pv->pv_flags |= PVF_NC;
1750
1751 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1752 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1753 pte = *ptep & ~L2_S_CACHE_MASK;
1754
1755 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1756 l2pte_valid(pte)) {
1757 if (PV_BEEN_EXECD(pv->pv_flags)) {
1758 #ifdef PMAP_CACHE_VIVT
1759 pmap_idcache_wbinv_range(pv->pv_pmap,
1760 pv->pv_va, PAGE_SIZE);
1761 #endif
1762 pmap_tlb_flushID_SE(pv->pv_pmap,
1763 pv->pv_va);
1764 } else
1765 if (PV_BEEN_REFD(pv->pv_flags)) {
1766 #ifdef PMAP_CACHE_VIVT
1767 pmap_dcache_wb_range(pv->pv_pmap,
1768 pv->pv_va, PAGE_SIZE, true,
1769 (pv->pv_flags & PVF_WRITE) == 0);
1770 #endif
1771 pmap_tlb_flushD_SE(pv->pv_pmap,
1772 pv->pv_va);
1773 }
1774 }
1775
1776 *ptep = pte;
1777 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1778 }
1779 cpu_cpwait();
1780 } else
1781 if (entries > cacheable_entries) {
1782 /*
1783 * Turn cacheing back on for some pages. If it is a kernel
1784 * page, only do so if there are no other writable pages.
1785 */
1786 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1787 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1788 (kpmap != pv->pv_pmap || other_writable)))
1789 continue;
1790
1791 pv->pv_flags &= ~PVF_NC;
1792
1793 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1794 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1795 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1796
1797 if (l2pte_valid(pte)) {
1798 if (PV_BEEN_EXECD(pv->pv_flags)) {
1799 pmap_tlb_flushID_SE(pv->pv_pmap,
1800 pv->pv_va);
1801 } else
1802 if (PV_BEEN_REFD(pv->pv_flags)) {
1803 pmap_tlb_flushD_SE(pv->pv_pmap,
1804 pv->pv_va);
1805 }
1806 }
1807
1808 *ptep = pte;
1809 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1810 }
1811 }
1812 }
1813 #endif
1814
1815 #ifdef PMAP_CACHE_VIPT
1816 static void
1817 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1818 {
1819 struct pv_entry *pv;
1820 vaddr_t tst_mask;
1821 bool bad_alias;
1822 struct l2_bucket *l2b;
1823 pt_entry_t *ptep, pte, opte;
1824 const u_int
1825 rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
1826 ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
1827
1828 /* do we need to do anything? */
1829 if (arm_cache_prefer_mask == 0)
1830 return;
1831
1832 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
1833 pg, pm, va));
1834
1835 KASSERT(!va || pm);
1836 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1837
1838 /* Already a conflict? */
1839 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
1840 /* just an add, things are already non-cached */
1841 KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
1842 bad_alias = false;
1843 if (va) {
1844 PMAPCOUNT(vac_color_none);
1845 bad_alias = true;
1846 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1847 goto fixup;
1848 }
1849 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1850 /* the list can't be empty because it would be cachable */
1851 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
1852 tst_mask = pg->mdpage.pvh_attrs;
1853 } else {
1854 KASSERT(pv);
1855 tst_mask = pv->pv_va;
1856 pv = SLIST_NEXT(pv, pv_link);
1857 }
1858 /*
1859 * Only check for a bad alias if we have writable mappings.
1860 */
1861 tst_mask &= arm_cache_prefer_mask;
1862 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1863 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1864 /* if there's a bad alias, stop checking. */
1865 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1866 bad_alias = true;
1867 }
1868 pg->mdpage.pvh_attrs |= PVF_WRITE;
1869 if (!bad_alias)
1870 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1871 } else {
1872 /*
1873 * We have only read-only mappings. Let's see if there
1874 * are multiple colors in use or if we mapped a KMPAGE.
1875 * If the latter, we have a bad alias. If the former,
1876 * we need to remember that.
1877 */
1878 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1879 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1880 if (pg->mdpage.pvh_attrs & PVF_KMPAGE)
1881 bad_alias = true;
1882 break;
1883 }
1884 }
1885 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1886 /*
1887 * No KMPAGE and we exited early, so we must have
1888 * multiple color mappings.
1889 */
1890 if (!bad_alias && pv != NULL)
1891 pg->mdpage.pvh_attrs |= PVF_MULTCLR;
1892 }
1893
1894 /* If no conflicting colors, set everything back to cached */
1895 if (!bad_alias) {
1896 #ifdef DEBUG
1897 if ((pg->mdpage.pvh_attrs & PVF_WRITE)
1898 || ro_mappings < 2) {
1899 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1900 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1901 }
1902 #endif
1903 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1904 pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
1905 /*
1906 * Restore DIRTY bit if page is modified
1907 */
1908 if (pg->mdpage.pvh_attrs & PVF_DMOD)
1909 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1910 PMAPCOUNT(vac_color_restore);
1911 } else {
1912 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1913 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1914 }
1915 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1916 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1917 } else if (!va) {
1918 KASSERT(pmap_is_page_colored_p(pg));
1919 KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
1920 || (pg->mdpage.pvh_attrs & PVF_DIRTY));
1921 if (rw_mappings == 0) {
1922 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1923 if (ro_mappings == 1
1924 && (pg->mdpage.pvh_attrs & PVF_MULTCLR)) {
1925 /*
1926 * If this is the last readonly mapping
1927 * but it doesn't match the current color
1928 * for the page, change the current color
1929 * to match this last readonly mapping.
1930 */
1931 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1932 tst_mask = (pg->mdpage.pvh_attrs ^ pv->pv_va)
1933 & arm_cache_prefer_mask;
1934 if (tst_mask) {
1935 pg->mdpage.pvh_attrs ^= tst_mask;
1936 PMAPCOUNT(vac_color_change);
1937 }
1938 }
1939 }
1940 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1941 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1942 return;
1943 } else if (!pmap_is_page_colored_p(pg)) {
1944 /* not colored so we just use its color */
1945 KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1946 PMAPCOUNT(vac_color_new);
1947 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1948 pg->mdpage.pvh_attrs |= PVF_COLORED
1949 | (va & arm_cache_prefer_mask)
1950 | (rw_mappings > 0 ? PVF_WRITE : 0);
1951 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1952 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1953 return;
1954 } else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1955 bad_alias = false;
1956 if (rw_mappings > 0) {
1957 /*
1958 * We now have writeable mappings and if we have
1959 * readonly mappings in more than once color, we have
1960 * an aliasing problem. Regardless mark the page as
1961 * writeable.
1962 */
1963 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
1964 if (ro_mappings < 2) {
1965 /*
1966 * If we only have less than two
1967 * read-only mappings, just flush the
1968 * non-primary colors from the cache.
1969 */
1970 pmap_flush_page(pg,
1971 PMAP_FLUSH_SECONDARY);
1972 } else {
1973 bad_alias = true;
1974 }
1975 }
1976 pg->mdpage.pvh_attrs |= PVF_WRITE;
1977 }
1978 /* If no conflicting colors, set everything back to cached */
1979 if (!bad_alias) {
1980 #ifdef DEBUG
1981 if (rw_mappings > 0
1982 || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
1983 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1984 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1985 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1986 }
1987 #endif
1988 if (SLIST_EMPTY(&pg->mdpage.pvh_list))
1989 PMAPCOUNT(vac_color_reuse);
1990 else
1991 PMAPCOUNT(vac_color_ok);
1992
1993 /* matching color, just return */
1994 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1995 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1996 return;
1997 }
1998 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1999 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
2000
2001 /* color conflict. evict from cache. */
2002
2003 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
2004 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2005 pg->mdpage.pvh_attrs |= PVF_NC;
2006 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2007 PMAPCOUNT(vac_color_erase);
2008 } else if (rw_mappings == 0
2009 && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2010 KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
2011
2012 /*
2013 * If the page has dirty cache lines, clean it.
2014 */
2015 if (pg->mdpage.pvh_attrs & PVF_DIRTY)
2016 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
2017
2018 /*
2019 * If this is the first remapping (we know that there are no
2020 * writeable mappings), then this is a simple color change.
2021 * Otherwise this is a seconary r/o mapping, which means
2022 * we don't have to do anything.
2023 */
2024 if (ro_mappings == 1) {
2025 KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2026 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2027 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2028 PMAPCOUNT(vac_color_change);
2029 } else {
2030 PMAPCOUNT(vac_color_blind);
2031 }
2032 pg->mdpage.pvh_attrs |= PVF_MULTCLR;
2033 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2034 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2035 return;
2036 } else {
2037 if (rw_mappings > 0)
2038 pg->mdpage.pvh_attrs |= PVF_WRITE;
2039
2040 /* color conflict. evict from cache. */
2041 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
2042
2043 /* the list can't be empty because this was a enter/modify */
2044 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2045 if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2046 KASSERT(pv);
2047 /*
2048 * If there's only one mapped page, change color to the
2049 * page's new color and return. Restore the DIRTY bit
2050 * that was erased by pmap_flush_page.
2051 */
2052 if (SLIST_NEXT(pv, pv_link) == NULL) {
2053 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2054 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2055 if (pg->mdpage.pvh_attrs & PVF_DMOD)
2056 pg->mdpage.pvh_attrs |= PVF_DIRTY;
2057 PMAPCOUNT(vac_color_change);
2058 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2059 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2060 return;
2061 }
2062 }
2063 bad_alias = true;
2064 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2065 pg->mdpage.pvh_attrs |= PVF_NC;
2066 PMAPCOUNT(vac_color_erase);
2067 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2068 }
2069
2070 fixup:
2071 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2072
2073 /*
2074 * Turn cacheing on/off for all pages.
2075 */
2076 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2077 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2078 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2079 opte = *ptep;
2080 pte = opte & ~L2_S_CACHE_MASK;
2081 if (bad_alias) {
2082 pv->pv_flags |= PVF_NC;
2083 } else {
2084 pv->pv_flags &= ~PVF_NC;
2085 pte |= pte_l2_s_cache_mode;
2086 }
2087
2088 if (opte == pte) /* only update is there's a change */
2089 continue;
2090
2091 if (l2pte_valid(pte)) {
2092 if (PV_BEEN_EXECD(pv->pv_flags)) {
2093 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2094 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2095 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2096 }
2097 }
2098
2099 *ptep = pte;
2100 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2101 }
2102 }
2103 #endif /* PMAP_CACHE_VIPT */
2104
2105
2106 /*
2107 * Modify pte bits for all ptes corresponding to the given physical address.
2108 * We use `maskbits' rather than `clearbits' because we're always passing
2109 * constants and the latter would require an extra inversion at run-time.
2110 */
2111 static void
2112 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2113 {
2114 struct l2_bucket *l2b;
2115 struct pv_entry *pv;
2116 pt_entry_t *ptep, npte, opte;
2117 pmap_t pm;
2118 vaddr_t va;
2119 u_int oflags;
2120 #ifdef PMAP_CACHE_VIPT
2121 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
2122 bool need_syncicache = false;
2123 bool did_syncicache = false;
2124 bool need_vac_me_harder = false;
2125 #endif
2126
2127 NPDEBUG(PDB_BITS,
2128 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2129 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2130
2131 PMAP_HEAD_TO_MAP_LOCK();
2132 simple_lock(&pg->mdpage.pvh_slock);
2133
2134 #ifdef PMAP_CACHE_VIPT
2135 /*
2136 * If we might want to sync the I-cache and we've modified it,
2137 * then we know we definitely need to sync or discard it.
2138 */
2139 if (want_syncicache)
2140 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
2141 #endif
2142 /*
2143 * Clear saved attributes (modify, reference)
2144 */
2145 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2146
2147 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
2148 #ifdef PMAP_CACHE_VIPT
2149 if (need_syncicache) {
2150 /*
2151 * No one has it mapped, so just discard it. The next
2152 * exec remapping will cause it to be synced.
2153 */
2154 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2155 PMAPCOUNT(exec_discarded_clearbit);
2156 }
2157 #endif
2158 simple_unlock(&pg->mdpage.pvh_slock);
2159 PMAP_HEAD_TO_MAP_UNLOCK();
2160 return;
2161 }
2162
2163 /*
2164 * Loop over all current mappings setting/clearing as appropos
2165 */
2166 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2167 va = pv->pv_va;
2168 pm = pv->pv_pmap;
2169 oflags = pv->pv_flags;
2170 /*
2171 * Kernel entries are unmanaged and as such not to be changed.
2172 */
2173 if (oflags & PVF_KENTRY)
2174 continue;
2175 pv->pv_flags &= ~maskbits;
2176
2177 pmap_acquire_pmap_lock(pm);
2178
2179 l2b = pmap_get_l2_bucket(pm, va);
2180 KDASSERT(l2b != NULL);
2181
2182 ptep = &l2b->l2b_kva[l2pte_index(va)];
2183 npte = opte = *ptep;
2184
2185 NPDEBUG(PDB_BITS,
2186 printf(
2187 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2188 pv, pv->pv_pmap, pv->pv_va, oflags));
2189
2190 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2191 #ifdef PMAP_CACHE_VIVT
2192 if ((pv->pv_flags & PVF_NC)) {
2193 /*
2194 * Entry is not cacheable:
2195 *
2196 * Don't turn caching on again if this is a
2197 * modified emulation. This would be
2198 * inconsitent with the settings created by
2199 * pmap_vac_me_harder(). Otherwise, it's safe
2200 * to re-enable cacheing.
2201 *
2202 * There's no need to call pmap_vac_me_harder()
2203 * here: all pages are losing their write
2204 * permission.
2205 */
2206 if (maskbits & PVF_WRITE) {
2207 npte |= pte_l2_s_cache_mode;
2208 pv->pv_flags &= ~PVF_NC;
2209 }
2210 } else
2211 if (opte & L2_S_PROT_W) {
2212 /*
2213 * Entry is writable/cacheable: check if pmap
2214 * is current if it is flush it, otherwise it
2215 * won't be in the cache
2216 */
2217 if (PV_BEEN_EXECD(oflags))
2218 pmap_idcache_wbinv_range(pm, pv->pv_va,
2219 PAGE_SIZE);
2220 else
2221 if (PV_BEEN_REFD(oflags))
2222 pmap_dcache_wb_range(pm, pv->pv_va,
2223 PAGE_SIZE,
2224 (maskbits & PVF_REF) != 0, false);
2225 }
2226 #endif
2227
2228 /* make the pte read only */
2229 npte &= ~L2_S_PROT_W;
2230
2231 if (maskbits & oflags & PVF_WRITE) {
2232 /*
2233 * Keep alias accounting up to date
2234 */
2235 if (pv->pv_pmap == pmap_kernel()) {
2236 pg->mdpage.krw_mappings--;
2237 pg->mdpage.kro_mappings++;
2238 } else {
2239 pg->mdpage.urw_mappings--;
2240 pg->mdpage.uro_mappings++;
2241 }
2242 #ifdef PMAP_CACHE_VIPT
2243 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
2244 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2245 if (want_syncicache)
2246 need_syncicache = true;
2247 need_vac_me_harder = true;
2248 #endif
2249 }
2250 }
2251
2252 if (maskbits & PVF_REF) {
2253 if ((pv->pv_flags & PVF_NC) == 0 &&
2254 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2255 l2pte_valid(npte)) {
2256 #ifdef PMAP_CACHE_VIVT
2257 /*
2258 * Check npte here; we may have already
2259 * done the wbinv above, and the validity
2260 * of the PTE is the same for opte and
2261 * npte.
2262 */
2263 /* XXXJRT need idcache_inv_range */
2264 if (PV_BEEN_EXECD(oflags))
2265 pmap_idcache_wbinv_range(pm,
2266 pv->pv_va, PAGE_SIZE);
2267 else
2268 if (PV_BEEN_REFD(oflags))
2269 pmap_dcache_wb_range(pm,
2270 pv->pv_va, PAGE_SIZE,
2271 true, true);
2272 #endif
2273 }
2274
2275 /*
2276 * Make the PTE invalid so that we will take a
2277 * page fault the next time the mapping is
2278 * referenced.
2279 */
2280 npte &= ~L2_TYPE_MASK;
2281 npte |= L2_TYPE_INV;
2282 }
2283
2284 if (npte != opte) {
2285 *ptep = npte;
2286 PTE_SYNC(ptep);
2287 /* Flush the TLB entry if a current pmap. */
2288 if (PV_BEEN_EXECD(oflags))
2289 pmap_tlb_flushID_SE(pm, pv->pv_va);
2290 else
2291 if (PV_BEEN_REFD(oflags))
2292 pmap_tlb_flushD_SE(pm, pv->pv_va);
2293 }
2294
2295 pmap_release_pmap_lock(pm);
2296
2297 NPDEBUG(PDB_BITS,
2298 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2299 pm, va, opte, npte));
2300 }
2301
2302 #ifdef PMAP_CACHE_VIPT
2303 /*
2304 * If we need to sync the I-cache and we haven't done it yet, do it.
2305 */
2306 if (need_syncicache && !did_syncicache) {
2307 pmap_syncicache_page(pg);
2308 PMAPCOUNT(exec_synced_clearbit);
2309 }
2310 /*
2311 * If we are changing this to read-only, we need to call vac_me_harder
2312 * so we can change all the read-only pages to cacheable. We pretend
2313 * this as a page deletion.
2314 */
2315 if (need_vac_me_harder) {
2316 if (pg->mdpage.pvh_attrs & PVF_NC)
2317 pmap_vac_me_harder(pg, NULL, 0);
2318 }
2319 #endif
2320
2321 simple_unlock(&pg->mdpage.pvh_slock);
2322 PMAP_HEAD_TO_MAP_UNLOCK();
2323 }
2324
2325 /*
2326 * pmap_clean_page()
2327 *
2328 * This is a local function used to work out the best strategy to clean
2329 * a single page referenced by its entry in the PV table. It's used by
2330 * pmap_copy_page, pmap_zero page and maybe some others later on.
2331 *
2332 * Its policy is effectively:
2333 * o If there are no mappings, we don't bother doing anything with the cache.
2334 * o If there is one mapping, we clean just that page.
2335 * o If there are multiple mappings, we clean the entire cache.
2336 *
2337 * So that some functions can be further optimised, it returns 0 if it didn't
2338 * clean the entire cache, or 1 if it did.
2339 *
2340 * XXX One bug in this routine is that if the pv_entry has a single page
2341 * mapped at 0x00000000 a whole cache clean will be performed rather than
2342 * just the 1 page. Since this should not occur in everyday use and if it does
2343 * it will just result in not the most efficient clean for the page.
2344 */
2345 #ifdef PMAP_CACHE_VIVT
2346 static int
2347 pmap_clean_page(struct pv_entry *pv, bool is_src)
2348 {
2349 pmap_t pm, pm_to_clean = NULL;
2350 struct pv_entry *npv;
2351 u_int cache_needs_cleaning = 0;
2352 u_int flags = 0;
2353 vaddr_t page_to_clean = 0;
2354
2355 if (pv == NULL) {
2356 /* nothing mapped in so nothing to flush */
2357 return (0);
2358 }
2359
2360 /*
2361 * Since we flush the cache each time we change to a different
2362 * user vmspace, we only need to flush the page if it is in the
2363 * current pmap.
2364 */
2365 pm = curproc->p_vmspace->vm_map.pmap;
2366
2367 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2368 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
2369 flags |= npv->pv_flags;
2370 /*
2371 * The page is mapped non-cacheable in
2372 * this map. No need to flush the cache.
2373 */
2374 if (npv->pv_flags & PVF_NC) {
2375 #ifdef DIAGNOSTIC
2376 if (cache_needs_cleaning)
2377 panic("pmap_clean_page: "
2378 "cache inconsistency");
2379 #endif
2380 break;
2381 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2382 continue;
2383 if (cache_needs_cleaning) {
2384 page_to_clean = 0;
2385 break;
2386 } else {
2387 page_to_clean = npv->pv_va;
2388 pm_to_clean = npv->pv_pmap;
2389 }
2390 cache_needs_cleaning = 1;
2391 }
2392 }
2393
2394 if (page_to_clean) {
2395 if (PV_BEEN_EXECD(flags))
2396 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2397 PAGE_SIZE);
2398 else
2399 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2400 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2401 } else if (cache_needs_cleaning) {
2402 if (PV_BEEN_EXECD(flags))
2403 pmap_idcache_wbinv_all(pm);
2404 else
2405 pmap_dcache_wbinv_all(pm);
2406 return (1);
2407 }
2408 return (0);
2409 }
2410 #endif
2411
2412 #ifdef PMAP_CACHE_VIPT
2413 /*
2414 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2415 * right cache alias to make sure we flush the right stuff.
2416 */
2417 void
2418 pmap_syncicache_page(struct vm_page *pg)
2419 {
2420 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2421 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2422
2423 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
2424 pg, pg->mdpage.pvh_attrs));
2425 /*
2426 * No need to clean the page if it's non-cached.
2427 */
2428 if (pg->mdpage.pvh_attrs & PVF_NC)
2429 return;
2430 KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
2431
2432 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2433 /*
2434 * Set up a PTE with the right coloring to flush existing cache lines.
2435 */
2436 *ptep = L2_S_PROTO |
2437 VM_PAGE_TO_PHYS(pg)
2438 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2439 | pte_l2_s_cache_mode;
2440 PTE_SYNC(ptep);
2441
2442 /*
2443 * Flush it.
2444 */
2445 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2446 /*
2447 * Unmap the page.
2448 */
2449 *ptep = 0;
2450 PTE_SYNC(ptep);
2451 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2452
2453 pg->mdpage.pvh_attrs |= PVF_EXEC;
2454 PMAPCOUNT(exec_synced);
2455 }
2456
2457 void
2458 pmap_flush_page(struct vm_page *pg, enum pmap_flush_op flush)
2459 {
2460 vsize_t va_offset, end_va;
2461 void (*cf)(vaddr_t, vsize_t);
2462
2463 if (arm_cache_prefer_mask == 0)
2464 return;
2465
2466 switch (flush) {
2467 case PMAP_FLUSH_PRIMARY:
2468 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
2469 va_offset = 0;
2470 end_va = arm_cache_prefer_mask;
2471 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
2472 PMAPCOUNT(vac_flush_lots);
2473 } else {
2474 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2475 end_va = va_offset;
2476 PMAPCOUNT(vac_flush_one);
2477 }
2478 /*
2479 * Mark that the page is no longer dirty.
2480 */
2481 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2482 cf = cpufuncs.cf_idcache_wbinv_range;
2483 break;
2484 case PMAP_FLUSH_SECONDARY:
2485 va_offset = 0;
2486 end_va = arm_cache_prefer_mask;
2487 cf = cpufuncs.cf_idcache_wbinv_range;
2488 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
2489 PMAPCOUNT(vac_flush_lots);
2490 break;
2491 case PMAP_CLEAN_PRIMARY:
2492 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2493 end_va = va_offset;
2494 cf = cpufuncs.cf_dcache_wb_range;
2495 /*
2496 * Mark that the page is no longer dirty.
2497 */
2498 if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
2499 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2500 PMAPCOUNT(vac_clean_one);
2501 break;
2502 default:
2503 return;
2504 }
2505
2506 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
2507
2508 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
2509 pg, pg->mdpage.pvh_attrs));
2510
2511 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2512 const size_t pte_offset = va_offset >> PGSHIFT;
2513 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2514 const pt_entry_t oldpte = *ptep;
2515
2516 if (flush == PMAP_FLUSH_SECONDARY
2517 && va_offset == (pg->mdpage.pvh_attrs & arm_cache_prefer_mask))
2518 continue;
2519
2520 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2521 /*
2522 * Set up a PTE with the right coloring to flush
2523 * existing cache entries.
2524 */
2525 *ptep = L2_S_PROTO
2526 | VM_PAGE_TO_PHYS(pg)
2527 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2528 | pte_l2_s_cache_mode;
2529 PTE_SYNC(ptep);
2530
2531 /*
2532 * Flush it.
2533 */
2534 (*cf)(cdstp + va_offset, PAGE_SIZE);
2535
2536 /*
2537 * Restore the page table entry since we might have interrupted
2538 * pmap_zero_page or pmap_copy_page which was already using
2539 * this pte.
2540 */
2541 *ptep = oldpte;
2542 PTE_SYNC(ptep);
2543 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2544 }
2545 }
2546 #endif /* PMAP_CACHE_VIPT */
2547
2548 /*
2549 * Routine: pmap_page_remove
2550 * Function:
2551 * Removes this physical page from
2552 * all physical maps in which it resides.
2553 * Reflects back modify bits to the pager.
2554 */
2555 static void
2556 pmap_page_remove(struct vm_page *pg)
2557 {
2558 struct l2_bucket *l2b;
2559 struct pv_entry *pv, *npv, **pvp;
2560 pmap_t pm, curpm;
2561 pt_entry_t *ptep, pte;
2562 bool flush;
2563 u_int flags;
2564
2565 NPDEBUG(PDB_FOLLOW,
2566 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2567 VM_PAGE_TO_PHYS(pg)));
2568
2569 PMAP_HEAD_TO_MAP_LOCK();
2570 simple_lock(&pg->mdpage.pvh_slock);
2571
2572 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2573 if (pv == NULL) {
2574 #ifdef PMAP_CACHE_VIPT
2575 /*
2576 * We *know* the page contents are about to be replaced.
2577 * Discard the exec contents
2578 */
2579 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2580 PMAPCOUNT(exec_discarded_page_protect);
2581 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2582 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2583 #endif
2584 simple_unlock(&pg->mdpage.pvh_slock);
2585 PMAP_HEAD_TO_MAP_UNLOCK();
2586 return;
2587 }
2588 #ifdef PMAP_CACHE_VIPT
2589 KASSERT(pmap_is_page_colored_p(pg));
2590 #endif
2591
2592 /*
2593 * Clear alias counts
2594 */
2595 #ifdef PMAP_CACHE_VIVT
2596 pg->mdpage.k_mappings = 0;
2597 #endif
2598 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
2599
2600 flush = false;
2601 flags = 0;
2602 curpm = curproc->p_vmspace->vm_map.pmap;
2603
2604 #ifdef PMAP_CACHE_VIVT
2605 pmap_clean_page(pv, false);
2606 #endif
2607
2608 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
2609 while (pv) {
2610 pm = pv->pv_pmap;
2611 npv = SLIST_NEXT(pv, pv_link);
2612 if (flush == false && (pm == curpm || pm == pmap_kernel()))
2613 flush = true;
2614
2615 if (pm == pmap_kernel()) {
2616 #ifdef PMAP_CACHE_VIPT
2617 /*
2618 * If this was unmanaged mapping, it must be preserved.
2619 * Move it back on the list and advance the end-of-list
2620 * pointer.
2621 */
2622 if (pv->pv_flags & PVF_KENTRY) {
2623 *pvp = pv;
2624 pvp = &SLIST_NEXT(pv, pv_link);
2625 pv = npv;
2626 continue;
2627 }
2628 if (pv->pv_flags & PVF_WRITE)
2629 pg->mdpage.krw_mappings--;
2630 else
2631 pg->mdpage.kro_mappings--;
2632 #endif
2633 PMAPCOUNT(kernel_unmappings);
2634 }
2635 PMAPCOUNT(unmappings);
2636
2637 pmap_acquire_pmap_lock(pm);
2638
2639 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2640 KDASSERT(l2b != NULL);
2641
2642 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2643 pte = *ptep;
2644
2645 /*
2646 * Update statistics
2647 */
2648 --pm->pm_stats.resident_count;
2649
2650 /* Wired bit */
2651 if (pv->pv_flags & PVF_WIRED)
2652 --pm->pm_stats.wired_count;
2653
2654 flags |= pv->pv_flags;
2655
2656 /*
2657 * Invalidate the PTEs.
2658 */
2659 *ptep = 0;
2660 PTE_SYNC_CURRENT(pm, ptep);
2661 pmap_free_l2_bucket(pm, l2b, 1);
2662
2663 pool_put(&pmap_pv_pool, pv);
2664 pv = npv;
2665 /*
2666 * if we reach the end of the list and there are still
2667 * mappings, they might be able to be cached now.
2668 */
2669 if (pv == NULL) {
2670 *pvp = NULL;
2671 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
2672 pmap_vac_me_harder(pg, pm, 0);
2673 }
2674 pmap_release_pmap_lock(pm);
2675 }
2676 #ifdef PMAP_CACHE_VIPT
2677 /*
2678 * Its EXEC cache is now gone.
2679 */
2680 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2681 PMAPCOUNT(exec_discarded_page_protect);
2682 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2683 KASSERT(pg->mdpage.urw_mappings == 0);
2684 KASSERT(pg->mdpage.uro_mappings == 0);
2685 if (pg->mdpage.krw_mappings == 0)
2686 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2687 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2688 #endif
2689 simple_unlock(&pg->mdpage.pvh_slock);
2690 PMAP_HEAD_TO_MAP_UNLOCK();
2691
2692 if (flush) {
2693 /*
2694 * Note: We can't use pmap_tlb_flush{I,}D() here since that
2695 * would need a subsequent call to pmap_update() to ensure
2696 * curpm->pm_cstate.cs_all is reset. Our callers are not
2697 * required to do that (see pmap(9)), so we can't modify
2698 * the current pmap's state.
2699 */
2700 if (PV_BEEN_EXECD(flags))
2701 cpu_tlb_flushID();
2702 else
2703 cpu_tlb_flushD();
2704 }
2705 cpu_cpwait();
2706 }
2707
2708 /*
2709 * pmap_t pmap_create(void)
2710 *
2711 * Create a new pmap structure from scratch.
2712 */
2713 pmap_t
2714 pmap_create(void)
2715 {
2716 pmap_t pm;
2717
2718 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2719
2720 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2721 pm->pm_stats.wired_count = 0;
2722 pm->pm_stats.resident_count = 1;
2723 pm->pm_cstate.cs_all = 0;
2724 pmap_alloc_l1(pm);
2725
2726 /*
2727 * Note: The pool cache ensures that the pm_l2[] array is already
2728 * initialised to zero.
2729 */
2730
2731 pmap_pinit(pm);
2732
2733 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2734
2735 return (pm);
2736 }
2737
2738 /*
2739 * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2740 * int flags)
2741 *
2742 * Insert the given physical page (p) at
2743 * the specified virtual address (v) in the
2744 * target physical map with the protection requested.
2745 *
2746 * NB: This is the only routine which MAY NOT lazy-evaluate
2747 * or lose information. That is, this routine must actually
2748 * insert this page into the given map NOW.
2749 */
2750 int
2751 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
2752 {
2753 struct l2_bucket *l2b;
2754 struct vm_page *pg, *opg;
2755 struct pv_entry *pve;
2756 pt_entry_t *ptep, npte, opte;
2757 u_int nflags;
2758 u_int oflags;
2759
2760 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2761
2762 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2763 KDASSERT(((va | pa) & PGOFSET) == 0);
2764
2765 /*
2766 * Get a pointer to the page. Later on in this function, we
2767 * test for a managed page by checking pg != NULL.
2768 */
2769 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2770
2771 nflags = 0;
2772 if (prot & VM_PROT_WRITE)
2773 nflags |= PVF_WRITE;
2774 if (prot & VM_PROT_EXECUTE)
2775 nflags |= PVF_EXEC;
2776 if (flags & PMAP_WIRED)
2777 nflags |= PVF_WIRED;
2778
2779 PMAP_MAP_TO_HEAD_LOCK();
2780 pmap_acquire_pmap_lock(pm);
2781
2782 /*
2783 * Fetch the L2 bucket which maps this page, allocating one if
2784 * necessary for user pmaps.
2785 */
2786 if (pm == pmap_kernel())
2787 l2b = pmap_get_l2_bucket(pm, va);
2788 else
2789 l2b = pmap_alloc_l2_bucket(pm, va);
2790 if (l2b == NULL) {
2791 if (flags & PMAP_CANFAIL) {
2792 pmap_release_pmap_lock(pm);
2793 PMAP_MAP_TO_HEAD_UNLOCK();
2794 return (ENOMEM);
2795 }
2796 panic("pmap_enter: failed to allocate L2 bucket");
2797 }
2798 ptep = &l2b->l2b_kva[l2pte_index(va)];
2799 opte = *ptep;
2800 npte = pa;
2801 oflags = 0;
2802
2803 if (opte) {
2804 /*
2805 * There is already a mapping at this address.
2806 * If the physical address is different, lookup the
2807 * vm_page.
2808 */
2809 if (l2pte_pa(opte) != pa)
2810 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2811 else
2812 opg = pg;
2813 } else
2814 opg = NULL;
2815
2816 if (pg) {
2817 /*
2818 * This is to be a managed mapping.
2819 */
2820 if ((flags & VM_PROT_ALL) ||
2821 (pg->mdpage.pvh_attrs & PVF_REF)) {
2822 /*
2823 * - The access type indicates that we don't need
2824 * to do referenced emulation.
2825 * OR
2826 * - The physical page has already been referenced
2827 * so no need to re-do referenced emulation here.
2828 */
2829 npte |= L2_S_PROTO;
2830
2831 nflags |= PVF_REF;
2832
2833 if ((prot & VM_PROT_WRITE) != 0 &&
2834 ((flags & VM_PROT_WRITE) != 0 ||
2835 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2836 /*
2837 * This is a writable mapping, and the
2838 * page's mod state indicates it has
2839 * already been modified. Make it
2840 * writable from the outset.
2841 */
2842 npte |= L2_S_PROT_W;
2843 nflags |= PVF_MOD;
2844 }
2845 } else {
2846 /*
2847 * Need to do page referenced emulation.
2848 */
2849 npte |= L2_TYPE_INV;
2850 }
2851
2852 npte |= pte_l2_s_cache_mode;
2853
2854 if (pg == opg) {
2855 /*
2856 * We're changing the attrs of an existing mapping.
2857 */
2858 simple_lock(&pg->mdpage.pvh_slock);
2859 oflags = pmap_modify_pv(pg, pm, va,
2860 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2861 PVF_MOD | PVF_REF, nflags);
2862 simple_unlock(&pg->mdpage.pvh_slock);
2863
2864 #ifdef PMAP_CACHE_VIVT
2865 /*
2866 * We may need to flush the cache if we're
2867 * doing rw-ro...
2868 */
2869 if (pm->pm_cstate.cs_cache_d &&
2870 (oflags & PVF_NC) == 0 &&
2871 (opte & L2_S_PROT_W) != 0 &&
2872 (prot & VM_PROT_WRITE) == 0)
2873 cpu_dcache_wb_range(va, PAGE_SIZE);
2874 #endif
2875 } else {
2876 /*
2877 * New mapping, or changing the backing page
2878 * of an existing mapping.
2879 */
2880 if (opg) {
2881 /*
2882 * Replacing an existing mapping with a new one.
2883 * It is part of our managed memory so we
2884 * must remove it from the PV list
2885 */
2886 simple_lock(&opg->mdpage.pvh_slock);
2887 pve = pmap_remove_pv(opg, pm, va, 0);
2888 pmap_vac_me_harder(opg, pm, 0);
2889 simple_unlock(&opg->mdpage.pvh_slock);
2890 oflags = pve->pv_flags;
2891
2892 #ifdef PMAP_CACHE_VIVT
2893 /*
2894 * If the old mapping was valid (ref/mod
2895 * emulation creates 'invalid' mappings
2896 * initially) then make sure to frob
2897 * the cache.
2898 */
2899 if ((oflags & PVF_NC) == 0 &&
2900 l2pte_valid(opte)) {
2901 if (PV_BEEN_EXECD(oflags)) {
2902 pmap_idcache_wbinv_range(pm, va,
2903 PAGE_SIZE);
2904 } else
2905 if (PV_BEEN_REFD(oflags)) {
2906 pmap_dcache_wb_range(pm, va,
2907 PAGE_SIZE, true,
2908 (oflags & PVF_WRITE) == 0);
2909 }
2910 }
2911 #endif
2912 } else
2913 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2914 if ((flags & PMAP_CANFAIL) == 0)
2915 panic("pmap_enter: no pv entries");
2916
2917 if (pm != pmap_kernel())
2918 pmap_free_l2_bucket(pm, l2b, 0);
2919 pmap_release_pmap_lock(pm);
2920 PMAP_MAP_TO_HEAD_UNLOCK();
2921 NPDEBUG(PDB_ENTER,
2922 printf("pmap_enter: ENOMEM\n"));
2923 return (ENOMEM);
2924 }
2925
2926 pmap_enter_pv(pg, pve, pm, va, nflags);
2927 }
2928 } else {
2929 /*
2930 * We're mapping an unmanaged page.
2931 * These are always readable, and possibly writable, from
2932 * the get go as we don't need to track ref/mod status.
2933 */
2934 npte |= L2_S_PROTO;
2935 if (prot & VM_PROT_WRITE)
2936 npte |= L2_S_PROT_W;
2937
2938 /*
2939 * Make sure the vector table is mapped cacheable
2940 */
2941 if (pm != pmap_kernel() && va == vector_page)
2942 npte |= pte_l2_s_cache_mode;
2943
2944 if (opg) {
2945 /*
2946 * Looks like there's an existing 'managed' mapping
2947 * at this address.
2948 */
2949 simple_lock(&opg->mdpage.pvh_slock);
2950 pve = pmap_remove_pv(opg, pm, va, 0);
2951 pmap_vac_me_harder(opg, pm, 0);
2952 simple_unlock(&opg->mdpage.pvh_slock);
2953 oflags = pve->pv_flags;
2954
2955 #ifdef PMAP_CACHE_VIVT
2956 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2957 if (PV_BEEN_EXECD(oflags))
2958 pmap_idcache_wbinv_range(pm, va,
2959 PAGE_SIZE);
2960 else
2961 if (PV_BEEN_REFD(oflags))
2962 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2963 true, (oflags & PVF_WRITE) == 0);
2964 }
2965 #endif
2966 pool_put(&pmap_pv_pool, pve);
2967 }
2968 }
2969
2970 /*
2971 * Make sure userland mappings get the right permissions
2972 */
2973 if (pm != pmap_kernel() && va != vector_page)
2974 npte |= L2_S_PROT_U;
2975
2976 /*
2977 * Keep the stats up to date
2978 */
2979 if (opte == 0) {
2980 l2b->l2b_occupancy++;
2981 pm->pm_stats.resident_count++;
2982 }
2983
2984 NPDEBUG(PDB_ENTER,
2985 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2986
2987 /*
2988 * If this is just a wiring change, the two PTEs will be
2989 * identical, so there's no need to update the page table.
2990 */
2991 if (npte != opte) {
2992 bool is_cached = pmap_is_cached(pm);
2993
2994 *ptep = npte;
2995 if (is_cached) {
2996 /*
2997 * We only need to frob the cache/tlb if this pmap
2998 * is current
2999 */
3000 PTE_SYNC(ptep);
3001 if (va != vector_page && l2pte_valid(npte)) {
3002 /*
3003 * This mapping is likely to be accessed as
3004 * soon as we return to userland. Fix up the
3005 * L1 entry to avoid taking another
3006 * page/domain fault.
3007 */
3008 pd_entry_t *pl1pd, l1pd;
3009
3010 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3011 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3012 L1_C_PROTO;
3013 if (*pl1pd != l1pd) {
3014 *pl1pd = l1pd;
3015 PTE_SYNC(pl1pd);
3016 }
3017 }
3018 }
3019
3020 if (PV_BEEN_EXECD(oflags))
3021 pmap_tlb_flushID_SE(pm, va);
3022 else
3023 if (PV_BEEN_REFD(oflags))
3024 pmap_tlb_flushD_SE(pm, va);
3025
3026 NPDEBUG(PDB_ENTER,
3027 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3028 is_cached, pm->pm_cstate.cs_all));
3029
3030 if (pg != NULL) {
3031 simple_lock(&pg->mdpage.pvh_slock);
3032 pmap_vac_me_harder(pg, pm, va);
3033 simple_unlock(&pg->mdpage.pvh_slock);
3034 }
3035 }
3036 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3037 if (pg) {
3038 simple_lock(&pg->mdpage.pvh_slock);
3039 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3040 KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
3041 simple_unlock(&pg->mdpage.pvh_slock);
3042 }
3043 #endif
3044
3045 pmap_release_pmap_lock(pm);
3046 PMAP_MAP_TO_HEAD_UNLOCK();
3047
3048 return (0);
3049 }
3050
3051 /*
3052 * pmap_remove()
3053 *
3054 * pmap_remove is responsible for nuking a number of mappings for a range
3055 * of virtual address space in the current pmap. To do this efficiently
3056 * is interesting, because in a number of cases a wide virtual address
3057 * range may be supplied that contains few actual mappings. So, the
3058 * optimisations are:
3059 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3060 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3061 * maybe do just a partial cache clean. This path of execution is
3062 * complicated by the fact that the cache must be flushed _before_
3063 * the PTE is nuked, being a VAC :-)
3064 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3065 * all invalidations until pmap_update(), since pmap_remove_all() has
3066 * already flushed the cache.
3067 * 4. Maybe later fast-case a single page, but I don't think this is
3068 * going to make _that_ much difference overall.
3069 */
3070
3071 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3072
3073 void
3074 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
3075 {
3076 struct l2_bucket *l2b;
3077 vaddr_t next_bucket;
3078 pt_entry_t *ptep;
3079 u_int cleanlist_idx, total, cnt;
3080 struct {
3081 vaddr_t va;
3082 pt_entry_t *ptep;
3083 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3084 u_int mappings, is_exec, is_refd;
3085
3086 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3087 "eva=%08lx\n", pm, sva, eva));
3088
3089 /*
3090 * we lock in the pmap => pv_head direction
3091 */
3092 PMAP_MAP_TO_HEAD_LOCK();
3093 pmap_acquire_pmap_lock(pm);
3094
3095 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3096 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3097 if (pm->pm_cstate.cs_tlb == 0)
3098 pm->pm_remove_all = true;
3099 } else
3100 cleanlist_idx = 0;
3101
3102 total = 0;
3103
3104 while (sva < eva) {
3105 /*
3106 * Do one L2 bucket's worth at a time.
3107 */
3108 next_bucket = L2_NEXT_BUCKET(sva);
3109 if (next_bucket > eva)
3110 next_bucket = eva;
3111
3112 l2b = pmap_get_l2_bucket(pm, sva);
3113 if (l2b == NULL) {
3114 sva = next_bucket;
3115 continue;
3116 }
3117
3118 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3119
3120 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3121 struct vm_page *pg;
3122 pt_entry_t pte;
3123 paddr_t pa;
3124
3125 pte = *ptep;
3126
3127 if (pte == 0) {
3128 /* Nothing here, move along */
3129 continue;
3130 }
3131
3132 pa = l2pte_pa(pte);
3133 is_exec = 0;
3134 is_refd = 1;
3135
3136 /*
3137 * Update flags. In a number of circumstances,
3138 * we could cluster a lot of these and do a
3139 * number of sequential pages in one go.
3140 */
3141 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3142 struct pv_entry *pve;
3143 simple_lock(&pg->mdpage.pvh_slock);
3144 pve = pmap_remove_pv(pg, pm, sva, skip_wired);
3145 pmap_vac_me_harder(pg, pm, 0);
3146 simple_unlock(&pg->mdpage.pvh_slock);
3147 if (pve != NULL) {
3148 if (pm->pm_remove_all == false) {
3149 is_exec =
3150 PV_BEEN_EXECD(pve->pv_flags);
3151 is_refd =
3152 PV_BEEN_REFD(pve->pv_flags);
3153 }
3154 pool_put(&pmap_pv_pool, pve);
3155 } else
3156 if (skip_wired) {
3157 /* The mapping is wired. Skip it */
3158 continue;
3159 }
3160 } else
3161 if (skip_wired) {
3162 /* Unmanaged pages are always wired. */
3163 continue;
3164 }
3165
3166 mappings++;
3167
3168 if (!l2pte_valid(pte)) {
3169 /*
3170 * Ref/Mod emulation is still active for this
3171 * mapping, therefore it is has not yet been
3172 * accessed. No need to frob the cache/tlb.
3173 */
3174 *ptep = 0;
3175 PTE_SYNC_CURRENT(pm, ptep);
3176 continue;
3177 }
3178
3179 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3180 /* Add to the clean list. */
3181 cleanlist[cleanlist_idx].ptep = ptep;
3182 cleanlist[cleanlist_idx].va =
3183 sva | (is_exec & 1);
3184 cleanlist_idx++;
3185 } else
3186 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3187 /* Nuke everything if needed. */
3188 #ifdef PMAP_CACHE_VIVT
3189 pmap_idcache_wbinv_all(pm);
3190 #endif
3191 pmap_tlb_flushID(pm);
3192
3193 /*
3194 * Roll back the previous PTE list,
3195 * and zero out the current PTE.
3196 */
3197 for (cnt = 0;
3198 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3199 *cleanlist[cnt].ptep = 0;
3200 PTE_SYNC(cleanlist[cnt].ptep);
3201 }
3202 *ptep = 0;
3203 PTE_SYNC(ptep);
3204 cleanlist_idx++;
3205 pm->pm_remove_all = true;
3206 } else {
3207 *ptep = 0;
3208 PTE_SYNC(ptep);
3209 if (pm->pm_remove_all == false) {
3210 if (is_exec)
3211 pmap_tlb_flushID_SE(pm, sva);
3212 else
3213 if (is_refd)
3214 pmap_tlb_flushD_SE(pm, sva);
3215 }
3216 }
3217 }
3218
3219 /*
3220 * Deal with any left overs
3221 */
3222 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3223 total += cleanlist_idx;
3224 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3225 if (pm->pm_cstate.cs_all != 0) {
3226 vaddr_t clva = cleanlist[cnt].va & ~1;
3227 if (cleanlist[cnt].va & 1) {
3228 #ifdef PMAP_CACHE_VIVT
3229 pmap_idcache_wbinv_range(pm,
3230 clva, PAGE_SIZE);
3231 #endif
3232 pmap_tlb_flushID_SE(pm, clva);
3233 } else {
3234 #ifdef PMAP_CACHE_VIVT
3235 pmap_dcache_wb_range(pm,
3236 clva, PAGE_SIZE, true,
3237 false);
3238 #endif
3239 pmap_tlb_flushD_SE(pm, clva);
3240 }
3241 }
3242 *cleanlist[cnt].ptep = 0;
3243 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3244 }
3245
3246 /*
3247 * If it looks like we're removing a whole bunch
3248 * of mappings, it's faster to just write-back
3249 * the whole cache now and defer TLB flushes until
3250 * pmap_update() is called.
3251 */
3252 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3253 cleanlist_idx = 0;
3254 else {
3255 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3256 #ifdef PMAP_CACHE_VIVT
3257 pmap_idcache_wbinv_all(pm);
3258 #endif
3259 pm->pm_remove_all = true;
3260 }
3261 }
3262
3263 pmap_free_l2_bucket(pm, l2b, mappings);
3264 pm->pm_stats.resident_count -= mappings;
3265 }
3266
3267 pmap_release_pmap_lock(pm);
3268 PMAP_MAP_TO_HEAD_UNLOCK();
3269 }
3270
3271 #ifdef PMAP_CACHE_VIPT
3272 static struct pv_entry *
3273 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3274 {
3275 struct pv_entry *pv;
3276
3277 simple_lock(&pg->mdpage.pvh_slock);
3278 KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
3279 KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3280
3281 pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
3282 KASSERT(pv);
3283 KASSERT(pv->pv_flags & PVF_KENTRY);
3284
3285 /*
3286 * If we are removing a writeable mapping to a cached exec page,
3287 * if it's the last mapping then clear it execness other sync
3288 * the page to the icache.
3289 */
3290 if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3291 && (pv->pv_flags & PVF_WRITE) != 0) {
3292 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
3293 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
3294 PMAPCOUNT(exec_discarded_kremove);
3295 } else {
3296 pmap_syncicache_page(pg);
3297 PMAPCOUNT(exec_synced_kremove);
3298 }
3299 }
3300 pmap_vac_me_harder(pg, pmap_kernel(), 0);
3301 simple_unlock(&pg->mdpage.pvh_slock);
3302
3303 return pv;
3304 }
3305 #endif /* PMAP_CACHE_VIPT */
3306
3307 /*
3308 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3309 *
3310 * We assume there is already sufficient KVM space available
3311 * to do this, as we can't allocate L2 descriptor tables/metadata
3312 * from here.
3313 */
3314 void
3315 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
3316 {
3317 struct l2_bucket *l2b;
3318 pt_entry_t *ptep, opte;
3319 #ifdef PMAP_CACHE_VIVT
3320 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3321 #endif
3322 #ifdef PMAP_CACHE_VIPT
3323 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3324 struct vm_page *opg;
3325 struct pv_entry *pv = NULL;
3326 #endif
3327
3328 NPDEBUG(PDB_KENTER,
3329 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3330 va, pa, prot));
3331
3332 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3333 KDASSERT(l2b != NULL);
3334
3335 ptep = &l2b->l2b_kva[l2pte_index(va)];
3336 opte = *ptep;
3337
3338 if (opte == 0) {
3339 PMAPCOUNT(kenter_mappings);
3340 l2b->l2b_occupancy++;
3341 } else {
3342 PMAPCOUNT(kenter_remappings);
3343 #ifdef PMAP_CACHE_VIPT
3344 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3345 if (opg) {
3346 KASSERT(opg != pg);
3347 KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3348 KASSERT((prot & PMAP_KMPAGE) == 0);
3349 simple_lock(&opg->mdpage.pvh_slock);
3350 pv = pmap_kremove_pg(opg, va);
3351 simple_unlock(&opg->mdpage.pvh_slock);
3352 }
3353 #endif
3354 if (l2pte_valid(opte)) {
3355 #ifdef PMAP_CACHE_VIVT
3356 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3357 #endif
3358 cpu_tlb_flushD_SE(va);
3359 cpu_cpwait();
3360 }
3361 }
3362
3363 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3364 pte_l2_s_cache_mode;
3365 PTE_SYNC(ptep);
3366
3367 if (pg) {
3368 if (prot & PMAP_KMPAGE) {
3369 simple_lock(&pg->mdpage.pvh_slock);
3370 KASSERT(pg->mdpage.urw_mappings == 0);
3371 KASSERT(pg->mdpage.uro_mappings == 0);
3372 KASSERT(pg->mdpage.krw_mappings == 0);
3373 KASSERT(pg->mdpage.kro_mappings == 0);
3374 #ifdef PMAP_CACHE_VIPT
3375 KASSERT(pv == NULL);
3376 KASSERT((va & PVF_COLORED) == 0);
3377 KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
3378 /* if there is a color conflict, evict from cache. */
3379 if (pmap_is_page_colored_p(pg)
3380 && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
3381 PMAPCOUNT(vac_color_change);
3382 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
3383 }
3384 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
3385 pg->mdpage.pvh_attrs |= PVF_KMPAGE
3386 | PVF_COLORED | PVF_DIRTY
3387 | (va & arm_cache_prefer_mask);
3388 #endif
3389 #ifdef PMAP_CACHE_VIVT
3390 pg->mdpage.pvh_attrs |= PVF_KMPAGE;
3391 #endif
3392 pmap_kmpages++;
3393 simple_unlock(&pg->mdpage.pvh_slock);
3394 #ifdef PMAP_CACHE_VIPT
3395 } else {
3396 if (pv == NULL) {
3397 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3398 KASSERT(pv != NULL);
3399 }
3400 pmap_enter_pv(pg, pv, pmap_kernel(), va,
3401 PVF_WIRED | PVF_KENTRY
3402 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3403 if ((prot & VM_PROT_WRITE)
3404 && !(pg->mdpage.pvh_attrs & PVF_NC))
3405 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3406 KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3407 simple_lock(&pg->mdpage.pvh_slock);
3408 pmap_vac_me_harder(pg, pmap_kernel(), va);
3409 simple_unlock(&pg->mdpage.pvh_slock);
3410 #endif
3411 }
3412 #ifdef PMAP_CACHE_VIPT
3413 } else {
3414 if (pv != NULL)
3415 pool_put(&pmap_pv_pool, pv);
3416 #endif
3417 }
3418 }
3419
3420 void
3421 pmap_kremove(vaddr_t va, vsize_t len)
3422 {
3423 struct l2_bucket *l2b;
3424 pt_entry_t *ptep, *sptep, opte;
3425 vaddr_t next_bucket, eva;
3426 u_int mappings;
3427 struct vm_page *opg;
3428
3429 PMAPCOUNT(kenter_unmappings);
3430
3431 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3432 va, len));
3433
3434 eva = va + len;
3435
3436 while (va < eva) {
3437 next_bucket = L2_NEXT_BUCKET(va);
3438 if (next_bucket > eva)
3439 next_bucket = eva;
3440
3441 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3442 KDASSERT(l2b != NULL);
3443
3444 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3445 mappings = 0;
3446
3447 while (va < next_bucket) {
3448 opte = *ptep;
3449 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3450 if (opg) {
3451 if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
3452 simple_lock(&opg->mdpage.pvh_slock);
3453 KASSERT(opg->mdpage.urw_mappings == 0);
3454 KASSERT(opg->mdpage.uro_mappings == 0);
3455 KASSERT(opg->mdpage.krw_mappings == 0);
3456 KASSERT(opg->mdpage.kro_mappings == 0);
3457 opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
3458 #ifdef PMAP_CACHE_VIPT
3459 opg->mdpage.pvh_attrs &= ~PVF_WRITE;
3460 #endif
3461 pmap_kmpages--;
3462 simple_unlock(&opg->mdpage.pvh_slock);
3463 #ifdef PMAP_CACHE_VIPT
3464 } else {
3465 pool_put(&pmap_pv_pool,
3466 pmap_kremove_pg(opg, va));
3467 #endif
3468 }
3469 }
3470 if (l2pte_valid(opte)) {
3471 #ifdef PMAP_CACHE_VIVT
3472 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3473 #endif
3474 cpu_tlb_flushD_SE(va);
3475 }
3476 if (opte) {
3477 *ptep = 0;
3478 mappings++;
3479 }
3480 va += PAGE_SIZE;
3481 ptep++;
3482 }
3483 KDASSERT(mappings <= l2b->l2b_occupancy);
3484 l2b->l2b_occupancy -= mappings;
3485 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3486 }
3487 cpu_cpwait();
3488 }
3489
3490 bool
3491 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3492 {
3493 struct l2_dtable *l2;
3494 pd_entry_t *pl1pd, l1pd;
3495 pt_entry_t *ptep, pte;
3496 paddr_t pa;
3497 u_int l1idx;
3498
3499 pmap_acquire_pmap_lock(pm);
3500
3501 l1idx = L1_IDX(va);
3502 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3503 l1pd = *pl1pd;
3504
3505 if (l1pte_section_p(l1pd)) {
3506 /*
3507 * These should only happen for pmap_kernel()
3508 */
3509 KDASSERT(pm == pmap_kernel());
3510 pmap_release_pmap_lock(pm);
3511 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3512 } else {
3513 /*
3514 * Note that we can't rely on the validity of the L1
3515 * descriptor as an indication that a mapping exists.
3516 * We have to look it up in the L2 dtable.
3517 */
3518 l2 = pm->pm_l2[L2_IDX(l1idx)];
3519
3520 if (l2 == NULL ||
3521 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3522 pmap_release_pmap_lock(pm);
3523 return false;
3524 }
3525
3526 ptep = &ptep[l2pte_index(va)];
3527 pte = *ptep;
3528 pmap_release_pmap_lock(pm);
3529
3530 if (pte == 0)
3531 return false;
3532
3533 switch (pte & L2_TYPE_MASK) {
3534 case L2_TYPE_L:
3535 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3536 break;
3537
3538 default:
3539 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3540 break;
3541 }
3542 }
3543
3544 if (pap != NULL)
3545 *pap = pa;
3546
3547 return true;
3548 }
3549
3550 void
3551 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3552 {
3553 struct l2_bucket *l2b;
3554 pt_entry_t *ptep, pte;
3555 vaddr_t next_bucket;
3556 u_int flags;
3557 u_int clr_mask;
3558 int flush;
3559
3560 NPDEBUG(PDB_PROTECT,
3561 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3562 pm, sva, eva, prot));
3563
3564 if ((prot & VM_PROT_READ) == 0) {
3565 pmap_remove(pm, sva, eva);
3566 return;
3567 }
3568
3569 if (prot & VM_PROT_WRITE) {
3570 /*
3571 * If this is a read->write transition, just ignore it and let
3572 * uvm_fault() take care of it later.
3573 */
3574 return;
3575 }
3576
3577 PMAP_MAP_TO_HEAD_LOCK();
3578 pmap_acquire_pmap_lock(pm);
3579
3580 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3581 flags = 0;
3582 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3583
3584 while (sva < eva) {
3585 next_bucket = L2_NEXT_BUCKET(sva);
3586 if (next_bucket > eva)
3587 next_bucket = eva;
3588
3589 l2b = pmap_get_l2_bucket(pm, sva);
3590 if (l2b == NULL) {
3591 sva = next_bucket;
3592 continue;
3593 }
3594
3595 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3596
3597 while (sva < next_bucket) {
3598 pte = *ptep;
3599 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3600 struct vm_page *pg;
3601 u_int f;
3602
3603 #ifdef PMAP_CACHE_VIVT
3604 /*
3605 * OK, at this point, we know we're doing
3606 * write-protect operation. If the pmap is
3607 * active, write-back the page.
3608 */
3609 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3610 false, false);
3611 #endif
3612
3613 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3614 pte &= ~L2_S_PROT_W;
3615 *ptep = pte;
3616 PTE_SYNC(ptep);
3617
3618 if (pg != NULL) {
3619 simple_lock(&pg->mdpage.pvh_slock);
3620 f = pmap_modify_pv(pg, pm, sva,
3621 clr_mask, 0);
3622 pmap_vac_me_harder(pg, pm, sva);
3623 simple_unlock(&pg->mdpage.pvh_slock);
3624 } else
3625 f = PVF_REF | PVF_EXEC;
3626
3627 if (flush >= 0) {
3628 flush++;
3629 flags |= f;
3630 } else
3631 if (PV_BEEN_EXECD(f))
3632 pmap_tlb_flushID_SE(pm, sva);
3633 else
3634 if (PV_BEEN_REFD(f))
3635 pmap_tlb_flushD_SE(pm, sva);
3636 }
3637
3638 sva += PAGE_SIZE;
3639 ptep++;
3640 }
3641 }
3642
3643 pmap_release_pmap_lock(pm);
3644 PMAP_MAP_TO_HEAD_UNLOCK();
3645
3646 if (flush) {
3647 if (PV_BEEN_EXECD(flags))
3648 pmap_tlb_flushID(pm);
3649 else
3650 if (PV_BEEN_REFD(flags))
3651 pmap_tlb_flushD(pm);
3652 }
3653 }
3654
3655 void
3656 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3657 {
3658 struct l2_bucket *l2b;
3659 pt_entry_t *ptep;
3660 vaddr_t next_bucket;
3661 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3662
3663 NPDEBUG(PDB_EXEC,
3664 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3665 pm, sva, eva));
3666
3667 PMAP_MAP_TO_HEAD_LOCK();
3668 pmap_acquire_pmap_lock(pm);
3669
3670 while (sva < eva) {
3671 next_bucket = L2_NEXT_BUCKET(sva);
3672 if (next_bucket > eva)
3673 next_bucket = eva;
3674
3675 l2b = pmap_get_l2_bucket(pm, sva);
3676 if (l2b == NULL) {
3677 sva = next_bucket;
3678 continue;
3679 }
3680
3681 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3682 sva < next_bucket;
3683 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3684 if (l2pte_valid(*ptep)) {
3685 cpu_icache_sync_range(sva,
3686 min(page_size, eva - sva));
3687 }
3688 }
3689 }
3690
3691 pmap_release_pmap_lock(pm);
3692 PMAP_MAP_TO_HEAD_UNLOCK();
3693 }
3694
3695 void
3696 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3697 {
3698
3699 NPDEBUG(PDB_PROTECT,
3700 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3701 pg, VM_PAGE_TO_PHYS(pg), prot));
3702
3703 switch(prot) {
3704 return;
3705 case VM_PROT_READ|VM_PROT_WRITE:
3706 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3707 pmap_clearbit(pg, PVF_EXEC);
3708 break;
3709 #endif
3710 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3711 break;
3712
3713 case VM_PROT_READ:
3714 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3715 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3716 break;
3717 #endif
3718 case VM_PROT_READ|VM_PROT_EXECUTE:
3719 pmap_clearbit(pg, PVF_WRITE);
3720 break;
3721
3722 default:
3723 pmap_page_remove(pg);
3724 break;
3725 }
3726 }
3727
3728 /*
3729 * pmap_clear_modify:
3730 *
3731 * Clear the "modified" attribute for a page.
3732 */
3733 bool
3734 pmap_clear_modify(struct vm_page *pg)
3735 {
3736 bool rv;
3737
3738 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3739 rv = true;
3740 #ifdef PMAP_CACHE_VIPT
3741 /*
3742 * If we are going to clear the modified bit and there are
3743 * no other modified bits set, flush the page to memory and
3744 * mark it clean.
3745 */
3746 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3747 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
3748 #endif
3749 pmap_clearbit(pg, PVF_MOD);
3750 } else
3751 rv = false;
3752
3753 return (rv);
3754 }
3755
3756 /*
3757 * pmap_clear_reference:
3758 *
3759 * Clear the "referenced" attribute for a page.
3760 */
3761 bool
3762 pmap_clear_reference(struct vm_page *pg)
3763 {
3764 bool rv;
3765
3766 if (pg->mdpage.pvh_attrs & PVF_REF) {
3767 rv = true;
3768 pmap_clearbit(pg, PVF_REF);
3769 } else
3770 rv = false;
3771
3772 return (rv);
3773 }
3774
3775 /*
3776 * pmap_is_modified:
3777 *
3778 * Test if a page has the "modified" attribute.
3779 */
3780 /* See <arm/arm32/pmap.h> */
3781
3782 /*
3783 * pmap_is_referenced:
3784 *
3785 * Test if a page has the "referenced" attribute.
3786 */
3787 /* See <arm/arm32/pmap.h> */
3788
3789 int
3790 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3791 {
3792 struct l2_dtable *l2;
3793 struct l2_bucket *l2b;
3794 pd_entry_t *pl1pd, l1pd;
3795 pt_entry_t *ptep, pte;
3796 paddr_t pa;
3797 u_int l1idx;
3798 int rv = 0;
3799
3800 PMAP_MAP_TO_HEAD_LOCK();
3801 pmap_acquire_pmap_lock(pm);
3802
3803 l1idx = L1_IDX(va);
3804
3805 /*
3806 * If there is no l2_dtable for this address, then the process
3807 * has no business accessing it.
3808 *
3809 * Note: This will catch userland processes trying to access
3810 * kernel addresses.
3811 */
3812 l2 = pm->pm_l2[L2_IDX(l1idx)];
3813 if (l2 == NULL)
3814 goto out;
3815
3816 /*
3817 * Likewise if there is no L2 descriptor table
3818 */
3819 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3820 if (l2b->l2b_kva == NULL)
3821 goto out;
3822
3823 /*
3824 * Check the PTE itself.
3825 */
3826 ptep = &l2b->l2b_kva[l2pte_index(va)];
3827 pte = *ptep;
3828 if (pte == 0)
3829 goto out;
3830
3831 /*
3832 * Catch a userland access to the vector page mapped at 0x0
3833 */
3834 if (user && (pte & L2_S_PROT_U) == 0)
3835 goto out;
3836
3837 pa = l2pte_pa(pte);
3838
3839 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3840 /*
3841 * This looks like a good candidate for "page modified"
3842 * emulation...
3843 */
3844 struct pv_entry *pv;
3845 struct vm_page *pg;
3846
3847 /* Extract the physical address of the page */
3848 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3849 goto out;
3850
3851 /* Get the current flags for this page. */
3852 simple_lock(&pg->mdpage.pvh_slock);
3853
3854 pv = pmap_find_pv(pg, pm, va);
3855 if (pv == NULL) {
3856 simple_unlock(&pg->mdpage.pvh_slock);
3857 goto out;
3858 }
3859
3860 /*
3861 * Do the flags say this page is writable? If not then it
3862 * is a genuine write fault. If yes then the write fault is
3863 * our fault as we did not reflect the write access in the
3864 * PTE. Now we know a write has occurred we can correct this
3865 * and also set the modified bit
3866 */
3867 if ((pv->pv_flags & PVF_WRITE) == 0) {
3868 simple_unlock(&pg->mdpage.pvh_slock);
3869 goto out;
3870 }
3871
3872 NPDEBUG(PDB_FOLLOW,
3873 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3874 pm, va, VM_PAGE_TO_PHYS(pg)));
3875
3876 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3877 pv->pv_flags |= PVF_REF | PVF_MOD;
3878 #ifdef PMAP_CACHE_VIPT
3879 /*
3880 * If there are cacheable mappings for this page, mark it dirty.
3881 */
3882 if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
3883 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3884 #endif
3885 simple_unlock(&pg->mdpage.pvh_slock);
3886
3887 /*
3888 * Re-enable write permissions for the page. No need to call
3889 * pmap_vac_me_harder(), since this is just a
3890 * modified-emulation fault, and the PVF_WRITE bit isn't
3891 * changing. We've already set the cacheable bits based on
3892 * the assumption that we can write to this page.
3893 */
3894 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3895 PTE_SYNC(ptep);
3896 rv = 1;
3897 } else
3898 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3899 /*
3900 * This looks like a good candidate for "page referenced"
3901 * emulation.
3902 */
3903 struct pv_entry *pv;
3904 struct vm_page *pg;
3905
3906 /* Extract the physical address of the page */
3907 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3908 goto out;
3909
3910 /* Get the current flags for this page. */
3911 simple_lock(&pg->mdpage.pvh_slock);
3912
3913 pv = pmap_find_pv(pg, pm, va);
3914 if (pv == NULL) {
3915 simple_unlock(&pg->mdpage.pvh_slock);
3916 goto out;
3917 }
3918
3919 pg->mdpage.pvh_attrs |= PVF_REF;
3920 pv->pv_flags |= PVF_REF;
3921 simple_unlock(&pg->mdpage.pvh_slock);
3922
3923 NPDEBUG(PDB_FOLLOW,
3924 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3925 pm, va, VM_PAGE_TO_PHYS(pg)));
3926
3927 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3928 PTE_SYNC(ptep);
3929 rv = 1;
3930 }
3931
3932 /*
3933 * We know there is a valid mapping here, so simply
3934 * fix up the L1 if necessary.
3935 */
3936 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3937 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3938 if (*pl1pd != l1pd) {
3939 *pl1pd = l1pd;
3940 PTE_SYNC(pl1pd);
3941 rv = 1;
3942 }
3943
3944 #ifdef CPU_SA110
3945 /*
3946 * There are bugs in the rev K SA110. This is a check for one
3947 * of them.
3948 */
3949 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3950 curcpu()->ci_arm_cpurev < 3) {
3951 /* Always current pmap */
3952 if (l2pte_valid(pte)) {
3953 extern int kernel_debug;
3954 if (kernel_debug & 1) {
3955 struct proc *p = curlwp->l_proc;
3956 printf("prefetch_abort: page is already "
3957 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3958 printf("prefetch_abort: pc=%08lx proc=%p "
3959 "process=%s\n", va, p, p->p_comm);
3960 printf("prefetch_abort: far=%08x fs=%x\n",
3961 cpu_faultaddress(), cpu_faultstatus());
3962 }
3963 #ifdef DDB
3964 if (kernel_debug & 2)
3965 Debugger();
3966 #endif
3967 rv = 1;
3968 }
3969 }
3970 #endif /* CPU_SA110 */
3971
3972 #ifdef DEBUG
3973 /*
3974 * If 'rv == 0' at this point, it generally indicates that there is a
3975 * stale TLB entry for the faulting address. This happens when two or
3976 * more processes are sharing an L1. Since we don't flush the TLB on
3977 * a context switch between such processes, we can take domain faults
3978 * for mappings which exist at the same VA in both processes. EVEN IF
3979 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
3980 * example.
3981 *
3982 * This is extremely likely to happen if pmap_enter() updated the L1
3983 * entry for a recently entered mapping. In this case, the TLB is
3984 * flushed for the new mapping, but there may still be TLB entries for
3985 * other mappings belonging to other processes in the 1MB range
3986 * covered by the L1 entry.
3987 *
3988 * Since 'rv == 0', we know that the L1 already contains the correct
3989 * value, so the fault must be due to a stale TLB entry.
3990 *
3991 * Since we always need to flush the TLB anyway in the case where we
3992 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
3993 * stale TLB entries dynamically.
3994 *
3995 * However, the above condition can ONLY happen if the current L1 is
3996 * being shared. If it happens when the L1 is unshared, it indicates
3997 * that other parts of the pmap are not doing their job WRT managing
3998 * the TLB.
3999 */
4000 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4001 extern int last_fault_code;
4002 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4003 pm, va, ftype);
4004 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4005 l2, l2b, ptep, pl1pd);
4006 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4007 pte, l1pd, last_fault_code);
4008 #ifdef DDB
4009 Debugger();
4010 #endif
4011 }
4012 #endif
4013
4014 cpu_tlb_flushID_SE(va);
4015 cpu_cpwait();
4016
4017 rv = 1;
4018
4019 out:
4020 pmap_release_pmap_lock(pm);
4021 PMAP_MAP_TO_HEAD_UNLOCK();
4022
4023 return (rv);
4024 }
4025
4026 /*
4027 * pmap_collect: free resources held by a pmap
4028 *
4029 * => optional function.
4030 * => called when a process is swapped out to free memory.
4031 */
4032 void
4033 pmap_collect(pmap_t pm)
4034 {
4035
4036 #ifdef PMAP_CACHE_VIVT
4037 pmap_idcache_wbinv_all(pm);
4038 #endif
4039 pm->pm_remove_all = true;
4040 pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
4041 pmap_update(pm);
4042 PMAPCOUNT(collects);
4043 }
4044
4045 /*
4046 * Routine: pmap_procwr
4047 *
4048 * Function:
4049 * Synchronize caches corresponding to [addr, addr+len) in p.
4050 *
4051 */
4052 void
4053 pmap_procwr(struct proc *p, vaddr_t va, int len)
4054 {
4055 /* We only need to do anything if it is the current process. */
4056 if (p == curproc)
4057 cpu_icache_sync_range(va, len);
4058 }
4059
4060 /*
4061 * Routine: pmap_unwire
4062 * Function: Clear the wired attribute for a map/virtual-address pair.
4063 *
4064 * In/out conditions:
4065 * The mapping must already exist in the pmap.
4066 */
4067 void
4068 pmap_unwire(pmap_t pm, vaddr_t va)
4069 {
4070 struct l2_bucket *l2b;
4071 pt_entry_t *ptep, pte;
4072 struct vm_page *pg;
4073 paddr_t pa;
4074
4075 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4076
4077 PMAP_MAP_TO_HEAD_LOCK();
4078 pmap_acquire_pmap_lock(pm);
4079
4080 l2b = pmap_get_l2_bucket(pm, va);
4081 KDASSERT(l2b != NULL);
4082
4083 ptep = &l2b->l2b_kva[l2pte_index(va)];
4084 pte = *ptep;
4085
4086 /* Extract the physical address of the page */
4087 pa = l2pte_pa(pte);
4088
4089 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4090 /* Update the wired bit in the pv entry for this page. */
4091 simple_lock(&pg->mdpage.pvh_slock);
4092 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
4093 simple_unlock(&pg->mdpage.pvh_slock);
4094 }
4095
4096 pmap_release_pmap_lock(pm);
4097 PMAP_MAP_TO_HEAD_UNLOCK();
4098 }
4099
4100 void
4101 pmap_activate(struct lwp *l)
4102 {
4103 extern int block_userspace_access;
4104 pmap_t opm, npm, rpm;
4105 uint32_t odacr, ndacr;
4106 int oldirqstate;
4107
4108 /*
4109 * If activating a non-current lwp or the current lwp is
4110 * already active, just return.
4111 */
4112 if (l != curlwp ||
4113 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4114 return;
4115
4116 npm = l->l_proc->p_vmspace->vm_map.pmap;
4117 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4118 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4119
4120 /*
4121 * If TTB and DACR are unchanged, short-circuit all the
4122 * TLB/cache management stuff.
4123 */
4124 if (pmap_previous_active_lwp != NULL) {
4125 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4126 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4127 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4128
4129 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4130 goto all_done;
4131 } else
4132 opm = NULL;
4133
4134 PMAPCOUNT(activations);
4135 block_userspace_access = 1;
4136
4137 /*
4138 * If switching to a user vmspace which is different to the
4139 * most recent one, and the most recent one is potentially
4140 * live in the cache, we must write-back and invalidate the
4141 * entire cache.
4142 */
4143 rpm = pmap_recent_user;
4144 if (npm != pmap_kernel() && rpm && npm != rpm &&
4145 rpm->pm_cstate.cs_cache) {
4146 rpm->pm_cstate.cs_cache = 0;
4147 #ifdef PMAP_CACHE_VIVT
4148 cpu_idcache_wbinv_all();
4149 #endif
4150 }
4151
4152 /* No interrupts while we frob the TTB/DACR */
4153 oldirqstate = disable_interrupts(IF32_bits);
4154
4155 /*
4156 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4157 * entry corresponding to 'vector_page' in the incoming L1 table
4158 * before switching to it otherwise subsequent interrupts/exceptions
4159 * (including domain faults!) will jump into hyperspace.
4160 */
4161 if (npm->pm_pl1vec != NULL) {
4162 cpu_tlb_flushID_SE((u_int)vector_page);
4163 cpu_cpwait();
4164 *npm->pm_pl1vec = npm->pm_l1vec;
4165 PTE_SYNC(npm->pm_pl1vec);
4166 }
4167
4168 cpu_domains(ndacr);
4169
4170 if (npm == pmap_kernel() || npm == rpm) {
4171 /*
4172 * Switching to a kernel thread, or back to the
4173 * same user vmspace as before... Simply update
4174 * the TTB (no TLB flush required)
4175 */
4176 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4177 "r"(npm->pm_l1->l1_physaddr));
4178 cpu_cpwait();
4179 } else {
4180 /*
4181 * Otherwise, update TTB and flush TLB
4182 */
4183 cpu_context_switch(npm->pm_l1->l1_physaddr);
4184 if (rpm != NULL)
4185 rpm->pm_cstate.cs_tlb = 0;
4186 }
4187
4188 restore_interrupts(oldirqstate);
4189
4190 block_userspace_access = 0;
4191
4192 all_done:
4193 /*
4194 * The new pmap is resident. Make sure it's marked
4195 * as resident in the cache/TLB.
4196 */
4197 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4198 if (npm != pmap_kernel())
4199 pmap_recent_user = npm;
4200
4201 /* The old pmap is not longer active */
4202 if (opm != NULL)
4203 opm->pm_activated = false;
4204
4205 /* But the new one is */
4206 npm->pm_activated = true;
4207 }
4208
4209 void
4210 pmap_deactivate(struct lwp *l)
4211 {
4212
4213 /*
4214 * If the process is exiting, make sure pmap_activate() does
4215 * a full MMU context-switch and cache flush, which we might
4216 * otherwise skip. See PR port-arm/38950.
4217 */
4218 if (l->l_proc->p_sflag & PS_WEXIT)
4219 pmap_previous_active_lwp = NULL;
4220
4221 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4222 }
4223
4224 void
4225 pmap_update(pmap_t pm)
4226 {
4227
4228 if (pm->pm_remove_all) {
4229 /*
4230 * Finish up the pmap_remove_all() optimisation by flushing
4231 * the TLB.
4232 */
4233 pmap_tlb_flushID(pm);
4234 pm->pm_remove_all = false;
4235 }
4236
4237 if (pmap_is_current(pm)) {
4238 /*
4239 * If we're dealing with a current userland pmap, move its L1
4240 * to the end of the LRU.
4241 */
4242 if (pm != pmap_kernel())
4243 pmap_use_l1(pm);
4244
4245 /*
4246 * We can assume we're done with frobbing the cache/tlb for
4247 * now. Make sure any future pmap ops don't skip cache/tlb
4248 * flushes.
4249 */
4250 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4251 }
4252
4253 PMAPCOUNT(updates);
4254
4255 /*
4256 * make sure TLB/cache operations have completed.
4257 */
4258 cpu_cpwait();
4259 }
4260
4261 void
4262 pmap_remove_all(pmap_t pm)
4263 {
4264
4265 /*
4266 * The vmspace described by this pmap is about to be torn down.
4267 * Until pmap_update() is called, UVM will only make calls
4268 * to pmap_remove(). We can make life much simpler by flushing
4269 * the cache now, and deferring TLB invalidation to pmap_update().
4270 */
4271 #ifdef PMAP_CACHE_VIVT
4272 pmap_idcache_wbinv_all(pm);
4273 #endif
4274 pm->pm_remove_all = true;
4275 }
4276
4277 /*
4278 * Retire the given physical map from service.
4279 * Should only be called if the map contains no valid mappings.
4280 */
4281 void
4282 pmap_destroy(pmap_t pm)
4283 {
4284 u_int count;
4285
4286 if (pm == NULL)
4287 return;
4288
4289 if (pm->pm_remove_all) {
4290 pmap_tlb_flushID(pm);
4291 pm->pm_remove_all = false;
4292 }
4293
4294 /*
4295 * Drop reference count
4296 */
4297 mutex_enter(&pm->pm_lock);
4298 count = --pm->pm_obj.uo_refs;
4299 mutex_exit(&pm->pm_lock);
4300 if (count > 0) {
4301 if (pmap_is_current(pm)) {
4302 if (pm != pmap_kernel())
4303 pmap_use_l1(pm);
4304 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4305 }
4306 return;
4307 }
4308
4309 /*
4310 * reference count is zero, free pmap resources and then free pmap.
4311 */
4312
4313 if (vector_page < KERNEL_BASE) {
4314 KDASSERT(!pmap_is_current(pm));
4315
4316 /* Remove the vector page mapping */
4317 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4318 pmap_update(pm);
4319 }
4320
4321 LIST_REMOVE(pm, pm_list);
4322
4323 pmap_free_l1(pm);
4324
4325 if (pmap_recent_user == pm)
4326 pmap_recent_user = NULL;
4327
4328 UVM_OBJ_DESTROY(&pm->pm_obj);
4329
4330 /* return the pmap to the pool */
4331 pool_cache_put(&pmap_cache, pm);
4332 }
4333
4334
4335 /*
4336 * void pmap_reference(pmap_t pm)
4337 *
4338 * Add a reference to the specified pmap.
4339 */
4340 void
4341 pmap_reference(pmap_t pm)
4342 {
4343
4344 if (pm == NULL)
4345 return;
4346
4347 pmap_use_l1(pm);
4348
4349 mutex_enter(&pm->pm_lock);
4350 pm->pm_obj.uo_refs++;
4351 mutex_exit(&pm->pm_lock);
4352 }
4353
4354 #if ARM_MMU_V6 > 0
4355
4356 static struct evcnt pmap_prefer_nochange_ev =
4357 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4358 static struct evcnt pmap_prefer_change_ev =
4359 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4360
4361 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4362 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4363
4364 void
4365 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4366 {
4367 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4368 vaddr_t va = *vap;
4369 vaddr_t diff = (hint - va) & mask;
4370 if (diff == 0) {
4371 pmap_prefer_nochange_ev.ev_count++;
4372 } else {
4373 pmap_prefer_change_ev.ev_count++;
4374 if (__predict_false(td))
4375 va -= mask + 1;
4376 *vap = va + diff;
4377 }
4378 }
4379 #endif /* ARM_MMU_V6 */
4380
4381 /*
4382 * pmap_zero_page()
4383 *
4384 * Zero a given physical page by mapping it at a page hook point.
4385 * In doing the zero page op, the page we zero is mapped cachable, as with
4386 * StrongARM accesses to non-cached pages are non-burst making writing
4387 * _any_ bulk data very slow.
4388 */
4389 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4390 void
4391 pmap_zero_page_generic(paddr_t phys)
4392 {
4393 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4394 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4395 #endif
4396 #ifdef PMAP_CACHE_VIPT
4397 /* Choose the last page color it had, if any */
4398 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4399 #else
4400 const vsize_t va_offset = 0;
4401 #endif
4402 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4403
4404 #ifdef DEBUG
4405 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4406 panic("pmap_zero_page: page has mappings");
4407 #endif
4408
4409 KDASSERT((phys & PGOFSET) == 0);
4410
4411 /*
4412 * Hook in the page, zero it, and purge the cache for that
4413 * zeroed page. Invalidate the TLB as needed.
4414 */
4415 *ptep = L2_S_PROTO | phys |
4416 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4417 PTE_SYNC(ptep);
4418 cpu_tlb_flushD_SE(cdstp + va_offset);
4419 cpu_cpwait();
4420 bzero_page(cdstp + va_offset);
4421 /*
4422 * Unmap the page.
4423 */
4424 *ptep = 0;
4425 PTE_SYNC(ptep);
4426 cpu_tlb_flushD_SE(cdstp + va_offset);
4427 #ifdef PMAP_CACHE_VIVT
4428 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4429 #endif
4430 #ifdef PMAP_CACHE_VIPT
4431 /*
4432 * This page is now cache resident so it now has a page color.
4433 * Any contents have been obliterated so clear the EXEC flag.
4434 */
4435 if (!pmap_is_page_colored_p(pg)) {
4436 PMAPCOUNT(vac_color_new);
4437 pg->mdpage.pvh_attrs |= PVF_COLORED;
4438 }
4439 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4440 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4441 PMAPCOUNT(exec_discarded_zero);
4442 }
4443 pg->mdpage.pvh_attrs |= PVF_DIRTY;
4444 #endif
4445 }
4446 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4447
4448 #if ARM_MMU_XSCALE == 1
4449 void
4450 pmap_zero_page_xscale(paddr_t phys)
4451 {
4452 #ifdef DEBUG
4453 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4454
4455 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4456 panic("pmap_zero_page: page has mappings");
4457 #endif
4458
4459 KDASSERT((phys & PGOFSET) == 0);
4460
4461 /*
4462 * Hook in the page, zero it, and purge the cache for that
4463 * zeroed page. Invalidate the TLB as needed.
4464 */
4465 *cdst_pte = L2_S_PROTO | phys |
4466 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4467 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4468 PTE_SYNC(cdst_pte);
4469 cpu_tlb_flushD_SE(cdstp);
4470 cpu_cpwait();
4471 bzero_page(cdstp);
4472 xscale_cache_clean_minidata();
4473 }
4474 #endif /* ARM_MMU_XSCALE == 1 */
4475
4476 /* pmap_pageidlezero()
4477 *
4478 * The same as above, except that we assume that the page is not
4479 * mapped. This means we never have to flush the cache first. Called
4480 * from the idle loop.
4481 */
4482 bool
4483 pmap_pageidlezero(paddr_t phys)
4484 {
4485 unsigned int i;
4486 int *ptr;
4487 bool rv = true;
4488 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4489 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4490 #endif
4491 #ifdef PMAP_CACHE_VIPT
4492 /* Choose the last page color it had, if any */
4493 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4494 #else
4495 const vsize_t va_offset = 0;
4496 #endif
4497 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4498
4499
4500 #ifdef DEBUG
4501 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4502 panic("pmap_pageidlezero: page has mappings");
4503 #endif
4504
4505 KDASSERT((phys & PGOFSET) == 0);
4506
4507 /*
4508 * Hook in the page, zero it, and purge the cache for that
4509 * zeroed page. Invalidate the TLB as needed.
4510 */
4511 *ptep = L2_S_PROTO | phys |
4512 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4513 PTE_SYNC(ptep);
4514 cpu_tlb_flushD_SE(cdstp + va_offset);
4515 cpu_cpwait();
4516
4517 for (i = 0, ptr = (int *)(cdstp + va_offset);
4518 i < (PAGE_SIZE / sizeof(int)); i++) {
4519 if (sched_curcpu_runnable_p() != 0) {
4520 /*
4521 * A process has become ready. Abort now,
4522 * so we don't keep it waiting while we
4523 * do slow memory access to finish this
4524 * page.
4525 */
4526 rv = false;
4527 break;
4528 }
4529 *ptr++ = 0;
4530 }
4531
4532 #ifdef PMAP_CACHE_VIVT
4533 if (rv)
4534 /*
4535 * if we aborted we'll rezero this page again later so don't
4536 * purge it unless we finished it
4537 */
4538 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4539 #elif defined(PMAP_CACHE_VIPT)
4540 /*
4541 * This page is now cache resident so it now has a page color.
4542 * Any contents have been obliterated so clear the EXEC flag.
4543 */
4544 if (!pmap_is_page_colored_p(pg)) {
4545 PMAPCOUNT(vac_color_new);
4546 pg->mdpage.pvh_attrs |= PVF_COLORED;
4547 }
4548 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4549 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4550 PMAPCOUNT(exec_discarded_zero);
4551 }
4552 #endif
4553 /*
4554 * Unmap the page.
4555 */
4556 *ptep = 0;
4557 PTE_SYNC(ptep);
4558 cpu_tlb_flushD_SE(cdstp + va_offset);
4559
4560 return (rv);
4561 }
4562
4563 /*
4564 * pmap_copy_page()
4565 *
4566 * Copy one physical page into another, by mapping the pages into
4567 * hook points. The same comment regarding cachability as in
4568 * pmap_zero_page also applies here.
4569 */
4570 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4571 void
4572 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4573 {
4574 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4575 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4576 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4577 #endif
4578 #ifdef PMAP_CACHE_VIPT
4579 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4580 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4581 #else
4582 const vsize_t src_va_offset = 0;
4583 const vsize_t dst_va_offset = 0;
4584 #endif
4585 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4586 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4587
4588 #ifdef DEBUG
4589 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4590 panic("pmap_copy_page: dst page has mappings");
4591 #endif
4592
4593 #ifdef PMAP_CACHE_VIPT
4594 KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
4595 #endif
4596 KDASSERT((src & PGOFSET) == 0);
4597 KDASSERT((dst & PGOFSET) == 0);
4598
4599 /*
4600 * Clean the source page. Hold the source page's lock for
4601 * the duration of the copy so that no other mappings can
4602 * be created while we have a potentially aliased mapping.
4603 */
4604 simple_lock(&src_pg->mdpage.pvh_slock);
4605 #ifdef PMAP_CACHE_VIVT
4606 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4607 #endif
4608
4609 /*
4610 * Map the pages into the page hook points, copy them, and purge
4611 * the cache for the appropriate page. Invalidate the TLB
4612 * as required.
4613 */
4614 *src_ptep = L2_S_PROTO
4615 | src
4616 #ifdef PMAP_CACHE_VIPT
4617 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4618 #endif
4619 #ifdef PMAP_CACHE_VIVT
4620 | pte_l2_s_cache_mode
4621 #endif
4622 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4623 *dst_ptep = L2_S_PROTO | dst |
4624 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4625 PTE_SYNC(src_ptep);
4626 PTE_SYNC(dst_ptep);
4627 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4628 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4629 cpu_cpwait();
4630 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4631 #ifdef PMAP_CACHE_VIVT
4632 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4633 #endif
4634 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4635 #ifdef PMAP_CACHE_VIVT
4636 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4637 #endif
4638 /*
4639 * Unmap the pages.
4640 */
4641 *src_ptep = 0;
4642 *dst_ptep = 0;
4643 PTE_SYNC(src_ptep);
4644 PTE_SYNC(dst_ptep);
4645 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4646 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4647 #ifdef PMAP_CACHE_VIPT
4648 /*
4649 * Now that the destination page is in the cache, mark it as colored.
4650 * If this was an exec page, discard it.
4651 */
4652 if (!pmap_is_page_colored_p(dst_pg)) {
4653 PMAPCOUNT(vac_color_new);
4654 dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
4655 }
4656 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
4657 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4658 PMAPCOUNT(exec_discarded_copy);
4659 }
4660 dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
4661 #endif
4662 }
4663 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4664
4665 #if ARM_MMU_XSCALE == 1
4666 void
4667 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4668 {
4669 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4670 #ifdef DEBUG
4671 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4672
4673 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4674 panic("pmap_copy_page: dst page has mappings");
4675 #endif
4676
4677 KDASSERT((src & PGOFSET) == 0);
4678 KDASSERT((dst & PGOFSET) == 0);
4679
4680 /*
4681 * Clean the source page. Hold the source page's lock for
4682 * the duration of the copy so that no other mappings can
4683 * be created while we have a potentially aliased mapping.
4684 */
4685 simple_lock(&src_pg->mdpage.pvh_slock);
4686 #ifdef PMAP_CACHE_VIVT
4687 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4688 #endif
4689
4690 /*
4691 * Map the pages into the page hook points, copy them, and purge
4692 * the cache for the appropriate page. Invalidate the TLB
4693 * as required.
4694 */
4695 *csrc_pte = L2_S_PROTO | src |
4696 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4697 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4698 PTE_SYNC(csrc_pte);
4699 *cdst_pte = L2_S_PROTO | dst |
4700 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4701 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4702 PTE_SYNC(cdst_pte);
4703 cpu_tlb_flushD_SE(csrcp);
4704 cpu_tlb_flushD_SE(cdstp);
4705 cpu_cpwait();
4706 bcopy_page(csrcp, cdstp);
4707 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4708 xscale_cache_clean_minidata();
4709 }
4710 #endif /* ARM_MMU_XSCALE == 1 */
4711
4712 /*
4713 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4714 *
4715 * Return the start and end addresses of the kernel's virtual space.
4716 * These values are setup in pmap_bootstrap and are updated as pages
4717 * are allocated.
4718 */
4719 void
4720 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4721 {
4722 *start = virtual_avail;
4723 *end = virtual_end;
4724 }
4725
4726 /*
4727 * Helper function for pmap_grow_l2_bucket()
4728 */
4729 static inline int
4730 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4731 {
4732 struct l2_bucket *l2b;
4733 pt_entry_t *ptep;
4734 paddr_t pa;
4735
4736 if (uvm.page_init_done == false) {
4737 #ifdef PMAP_STEAL_MEMORY
4738 pv_addr_t pv;
4739 pmap_boot_pagealloc(PAGE_SIZE,
4740 #ifdef PMAP_CACHE_VIPT
4741 arm_cache_prefer_mask,
4742 va & arm_cache_prefer_mask,
4743 #else
4744 0, 0,
4745 #endif
4746 &pv);
4747 pa = pv.pv_pa;
4748 #else
4749 if (uvm_page_physget(&pa) == false)
4750 return (1);
4751 #endif /* PMAP_STEAL_MEMORY */
4752 } else {
4753 struct vm_page *pg;
4754 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4755 if (pg == NULL)
4756 return (1);
4757 pa = VM_PAGE_TO_PHYS(pg);
4758 #ifdef PMAP_CACHE_VIPT
4759 /*
4760 * This new page must not have any mappings. Enter it via
4761 * pmap_kenter_pa and let that routine do the hard work.
4762 */
4763 KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
4764 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
4765 #endif
4766 }
4767
4768 if (pap)
4769 *pap = pa;
4770
4771 PMAPCOUNT(pt_mappings);
4772 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4773 KDASSERT(l2b != NULL);
4774
4775 ptep = &l2b->l2b_kva[l2pte_index(va)];
4776 *ptep = L2_S_PROTO | pa | cache_mode |
4777 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4778 PTE_SYNC(ptep);
4779 memset((void *)va, 0, PAGE_SIZE);
4780 return (0);
4781 }
4782
4783 /*
4784 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4785 * used by pmap_growkernel().
4786 */
4787 static inline struct l2_bucket *
4788 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4789 {
4790 struct l2_dtable *l2;
4791 struct l2_bucket *l2b;
4792 u_short l1idx;
4793 vaddr_t nva;
4794
4795 l1idx = L1_IDX(va);
4796
4797 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4798 /*
4799 * No mapping at this address, as there is
4800 * no entry in the L1 table.
4801 * Need to allocate a new l2_dtable.
4802 */
4803 nva = pmap_kernel_l2dtable_kva;
4804 if ((nva & PGOFSET) == 0) {
4805 /*
4806 * Need to allocate a backing page
4807 */
4808 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4809 return (NULL);
4810 }
4811
4812 l2 = (struct l2_dtable *)nva;
4813 nva += sizeof(struct l2_dtable);
4814
4815 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4816 /*
4817 * The new l2_dtable straddles a page boundary.
4818 * Map in another page to cover it.
4819 */
4820 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4821 return (NULL);
4822 }
4823
4824 pmap_kernel_l2dtable_kva = nva;
4825
4826 /*
4827 * Link it into the parent pmap
4828 */
4829 pm->pm_l2[L2_IDX(l1idx)] = l2;
4830 }
4831
4832 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4833
4834 /*
4835 * Fetch pointer to the L2 page table associated with the address.
4836 */
4837 if (l2b->l2b_kva == NULL) {
4838 pt_entry_t *ptep;
4839
4840 /*
4841 * No L2 page table has been allocated. Chances are, this
4842 * is because we just allocated the l2_dtable, above.
4843 */
4844 nva = pmap_kernel_l2ptp_kva;
4845 ptep = (pt_entry_t *)nva;
4846 if ((nva & PGOFSET) == 0) {
4847 /*
4848 * Need to allocate a backing page
4849 */
4850 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4851 &pmap_kernel_l2ptp_phys))
4852 return (NULL);
4853 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4854 }
4855
4856 l2->l2_occupancy++;
4857 l2b->l2b_kva = ptep;
4858 l2b->l2b_l1idx = l1idx;
4859 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4860
4861 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4862 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4863 }
4864
4865 return (l2b);
4866 }
4867
4868 vaddr_t
4869 pmap_growkernel(vaddr_t maxkvaddr)
4870 {
4871 pmap_t kpm = pmap_kernel();
4872 struct l1_ttable *l1;
4873 struct l2_bucket *l2b;
4874 pd_entry_t *pl1pd;
4875 int s;
4876
4877 if (maxkvaddr <= pmap_curmaxkvaddr)
4878 goto out; /* we are OK */
4879
4880 NPDEBUG(PDB_GROWKERN,
4881 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4882 pmap_curmaxkvaddr, maxkvaddr));
4883
4884 KDASSERT(maxkvaddr <= virtual_end);
4885
4886 /*
4887 * whoops! we need to add kernel PTPs
4888 */
4889
4890 s = splhigh(); /* to be safe */
4891 mutex_enter(&kpm->pm_lock);
4892
4893 /* Map 1MB at a time */
4894 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4895
4896 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4897 KDASSERT(l2b != NULL);
4898
4899 /* Distribute new L1 entry to all other L1s */
4900 SLIST_FOREACH(l1, &l1_list, l1_link) {
4901 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4902 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4903 L1_C_PROTO;
4904 PTE_SYNC(pl1pd);
4905 }
4906 }
4907
4908 /*
4909 * flush out the cache, expensive but growkernel will happen so
4910 * rarely
4911 */
4912 cpu_dcache_wbinv_all();
4913 cpu_tlb_flushD();
4914 cpu_cpwait();
4915
4916 mutex_exit(&kpm->pm_lock);
4917 splx(s);
4918
4919 out:
4920 return (pmap_curmaxkvaddr);
4921 }
4922
4923 /************************ Utility routines ****************************/
4924
4925 /*
4926 * vector_page_setprot:
4927 *
4928 * Manipulate the protection of the vector page.
4929 */
4930 void
4931 vector_page_setprot(int prot)
4932 {
4933 struct l2_bucket *l2b;
4934 pt_entry_t *ptep;
4935
4936 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4937 KDASSERT(l2b != NULL);
4938
4939 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4940
4941 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4942 PTE_SYNC(ptep);
4943 cpu_tlb_flushD_SE(vector_page);
4944 cpu_cpwait();
4945 }
4946
4947 /*
4948 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4949 * Returns true if the mapping exists, else false.
4950 *
4951 * NOTE: This function is only used by a couple of arm-specific modules.
4952 * It is not safe to take any pmap locks here, since we could be right
4953 * in the middle of debugging the pmap anyway...
4954 *
4955 * It is possible for this routine to return false even though a valid
4956 * mapping does exist. This is because we don't lock, so the metadata
4957 * state may be inconsistent.
4958 *
4959 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
4960 * a "section" mapping.
4961 */
4962 bool
4963 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
4964 {
4965 struct l2_dtable *l2;
4966 pd_entry_t *pl1pd, l1pd;
4967 pt_entry_t *ptep;
4968 u_short l1idx;
4969
4970 if (pm->pm_l1 == NULL)
4971 return false;
4972
4973 l1idx = L1_IDX(va);
4974 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
4975 l1pd = *pl1pd;
4976
4977 if (l1pte_section_p(l1pd)) {
4978 *ptp = NULL;
4979 return true;
4980 }
4981
4982 if (pm->pm_l2 == NULL)
4983 return false;
4984
4985 l2 = pm->pm_l2[L2_IDX(l1idx)];
4986
4987 if (l2 == NULL ||
4988 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
4989 return false;
4990 }
4991
4992 *ptp = &ptep[l2pte_index(va)];
4993 return true;
4994 }
4995
4996 bool
4997 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
4998 {
4999 u_short l1idx;
5000
5001 if (pm->pm_l1 == NULL)
5002 return false;
5003
5004 l1idx = L1_IDX(va);
5005 *pdp = &pm->pm_l1->l1_kva[l1idx];
5006
5007 return true;
5008 }
5009
5010 /************************ Bootstrapping routines ****************************/
5011
5012 static void
5013 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5014 {
5015 int i;
5016
5017 l1->l1_kva = l1pt;
5018 l1->l1_domain_use_count = 0;
5019 l1->l1_domain_first = 0;
5020
5021 for (i = 0; i < PMAP_DOMAINS; i++)
5022 l1->l1_domain_free[i] = i + 1;
5023
5024 /*
5025 * Copy the kernel's L1 entries to each new L1.
5026 */
5027 if (pmap_initialized)
5028 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5029
5030 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5031 &l1->l1_physaddr) == false)
5032 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5033
5034 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5035 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5036 }
5037
5038 /*
5039 * pmap_bootstrap() is called from the board-specific initarm() routine
5040 * once the kernel L1/L2 descriptors tables have been set up.
5041 *
5042 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5043 * spread over a number of disparate files/functions.
5044 *
5045 * We are passed the following parameters
5046 * - kernel_l1pt
5047 * This is a pointer to the base of the kernel's L1 translation table.
5048 * - vstart
5049 * 1MB-aligned start of managed kernel virtual memory.
5050 * - vend
5051 * 1MB-aligned end of managed kernel virtual memory.
5052 *
5053 * We use the first parameter to build the metadata (struct l1_ttable and
5054 * struct l2_dtable) necessary to track kernel mappings.
5055 */
5056 #define PMAP_STATIC_L2_SIZE 16
5057 void
5058 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5059 {
5060 static struct l1_ttable static_l1;
5061 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5062 struct l1_ttable *l1 = &static_l1;
5063 struct l2_dtable *l2;
5064 struct l2_bucket *l2b;
5065 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5066 pmap_t pm = pmap_kernel();
5067 pd_entry_t pde;
5068 pt_entry_t *ptep;
5069 paddr_t pa;
5070 vaddr_t va;
5071 vsize_t size;
5072 int nptes, l1idx, l2idx, l2next = 0;
5073
5074 /*
5075 * Initialise the kernel pmap object
5076 */
5077 pm->pm_l1 = l1;
5078 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5079 pm->pm_activated = true;
5080 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5081 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5082
5083 /*
5084 * Scan the L1 translation table created by initarm() and create
5085 * the required metadata for all valid mappings found in it.
5086 */
5087 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5088 pde = l1pt[l1idx];
5089
5090 /*
5091 * We're only interested in Coarse mappings.
5092 * pmap_extract() can deal with section mappings without
5093 * recourse to checking L2 metadata.
5094 */
5095 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5096 continue;
5097
5098 /*
5099 * Lookup the KVA of this L2 descriptor table
5100 */
5101 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5102 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5103 if (ptep == NULL) {
5104 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5105 (u_int)l1idx << L1_S_SHIFT, pa);
5106 }
5107
5108 /*
5109 * Fetch the associated L2 metadata structure.
5110 * Allocate a new one if necessary.
5111 */
5112 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5113 if (l2next == PMAP_STATIC_L2_SIZE)
5114 panic("pmap_bootstrap: out of static L2s");
5115 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5116 }
5117
5118 /*
5119 * One more L1 slot tracked...
5120 */
5121 l2->l2_occupancy++;
5122
5123 /*
5124 * Fill in the details of the L2 descriptor in the
5125 * appropriate bucket.
5126 */
5127 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5128 l2b->l2b_kva = ptep;
5129 l2b->l2b_phys = pa;
5130 l2b->l2b_l1idx = l1idx;
5131
5132 /*
5133 * Establish an initial occupancy count for this descriptor
5134 */
5135 for (l2idx = 0;
5136 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5137 l2idx++) {
5138 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5139 l2b->l2b_occupancy++;
5140 }
5141 }
5142
5143 /*
5144 * Make sure the descriptor itself has the correct cache mode.
5145 * If not, fix it, but whine about the problem. Port-meisters
5146 * should consider this a clue to fix up their initarm()
5147 * function. :)
5148 */
5149 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5150 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5151 "L2 pte @ %p\n", ptep);
5152 }
5153 }
5154
5155 /*
5156 * Ensure the primary (kernel) L1 has the correct cache mode for
5157 * a page table. Bitch if it is not correctly set.
5158 */
5159 for (va = (vaddr_t)l1pt;
5160 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5161 if (pmap_set_pt_cache_mode(l1pt, va))
5162 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5163 "primary L1 @ 0x%lx\n", va);
5164 }
5165
5166 cpu_dcache_wbinv_all();
5167 cpu_tlb_flushID();
5168 cpu_cpwait();
5169
5170 /*
5171 * now we allocate the "special" VAs which are used for tmp mappings
5172 * by the pmap (and other modules). we allocate the VAs by advancing
5173 * virtual_avail (note that there are no pages mapped at these VAs).
5174 *
5175 * Managed KVM space start from wherever initarm() tells us.
5176 */
5177 virtual_avail = vstart;
5178 virtual_end = vend;
5179
5180 #ifdef PMAP_CACHE_VIPT
5181 /*
5182 * If we have a VIPT cache, we need one page/pte per possible alias
5183 * page so we won't violate cache aliasing rules.
5184 */
5185 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5186 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5187 #else
5188 nptes = 1;
5189 #endif
5190 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5191 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5192 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5193 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5194 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5195 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5196 (void *)&msgbufaddr, NULL);
5197
5198 /*
5199 * Allocate a range of kernel virtual address space to be used
5200 * for L2 descriptor tables and metadata allocation in
5201 * pmap_growkernel().
5202 */
5203 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5204 pmap_alloc_specials(&virtual_avail,
5205 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5206 &pmap_kernel_l2ptp_kva, NULL);
5207
5208 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5209 pmap_alloc_specials(&virtual_avail,
5210 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5211 &pmap_kernel_l2dtable_kva, NULL);
5212
5213 /*
5214 * init the static-global locks and global pmap list.
5215 */
5216 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5217
5218 /*
5219 * We can now initialise the first L1's metadata.
5220 */
5221 SLIST_INIT(&l1_list);
5222 TAILQ_INIT(&l1_lru_list);
5223 simple_lock_init(&l1_lru_lock);
5224 pmap_init_l1(l1, l1pt);
5225
5226 /* Set up vector page L1 details, if necessary */
5227 if (vector_page < KERNEL_BASE) {
5228 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5229 l2b = pmap_get_l2_bucket(pm, vector_page);
5230 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5231 L1_C_DOM(pm->pm_domain);
5232 } else
5233 pm->pm_pl1vec = NULL;
5234
5235 /*
5236 * Initialize the pmap cache
5237 */
5238 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5239 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5240 LIST_INIT(&pmap_pmaps);
5241 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5242
5243 /*
5244 * Initialize the pv pool.
5245 */
5246 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5247 &pmap_bootstrap_pv_allocator, IPL_NONE);
5248
5249 /*
5250 * Initialize the L2 dtable pool and cache.
5251 */
5252 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5253 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5254
5255 /*
5256 * Initialise the L2 descriptor table pool and cache
5257 */
5258 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5259 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5260 pmap_l2ptp_ctor, NULL, NULL);
5261
5262 cpu_dcache_wbinv_all();
5263 }
5264
5265 static int
5266 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5267 {
5268 pd_entry_t *pdep, pde;
5269 pt_entry_t *ptep, pte;
5270 vaddr_t pa;
5271 int rv = 0;
5272
5273 /*
5274 * Make sure the descriptor itself has the correct cache mode
5275 */
5276 pdep = &kl1[L1_IDX(va)];
5277 pde = *pdep;
5278
5279 if (l1pte_section_p(pde)) {
5280 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5281 *pdep = (pde & ~L1_S_CACHE_MASK) |
5282 pte_l1_s_cache_mode_pt;
5283 PTE_SYNC(pdep);
5284 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5285 rv = 1;
5286 }
5287 } else {
5288 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5289 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5290 if (ptep == NULL)
5291 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5292
5293 ptep = &ptep[l2pte_index(va)];
5294 pte = *ptep;
5295 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5296 *ptep = (pte & ~L2_S_CACHE_MASK) |
5297 pte_l2_s_cache_mode_pt;
5298 PTE_SYNC(ptep);
5299 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5300 rv = 1;
5301 }
5302 }
5303
5304 return (rv);
5305 }
5306
5307 static void
5308 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5309 {
5310 vaddr_t va = *availp;
5311 struct l2_bucket *l2b;
5312
5313 if (ptep) {
5314 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5315 if (l2b == NULL)
5316 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5317
5318 if (ptep)
5319 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5320 }
5321
5322 *vap = va;
5323 *availp = va + (PAGE_SIZE * pages);
5324 }
5325
5326 void
5327 pmap_init(void)
5328 {
5329 extern int physmem;
5330
5331 /*
5332 * Set the available memory vars - These do not map to real memory
5333 * addresses and cannot as the physical memory is fragmented.
5334 * They are used by ps for %mem calculations.
5335 * One could argue whether this should be the entire memory or just
5336 * the memory that is useable in a user process.
5337 */
5338 avail_start = 0;
5339 avail_end = physmem * PAGE_SIZE;
5340
5341 /*
5342 * Now we need to free enough pv_entry structures to allow us to get
5343 * the kmem_map/kmem_object allocated and inited (done after this
5344 * function is finished). to do this we allocate one bootstrap page out
5345 * of kernel_map and use it to provide an initial pool of pv_entry
5346 * structures. we never free this page.
5347 */
5348 pool_setlowat(&pmap_pv_pool,
5349 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5350
5351 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5352 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5353 UVM_KMF_WIRED|UVM_KMF_ZERO);
5354
5355 pmap_initialized = true;
5356 }
5357
5358 static vaddr_t last_bootstrap_page = 0;
5359 static void *free_bootstrap_pages = NULL;
5360
5361 static void *
5362 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5363 {
5364 extern void *pool_page_alloc(struct pool *, int);
5365 vaddr_t new_page;
5366 void *rv;
5367
5368 if (pmap_initialized)
5369 return (pool_page_alloc(pp, flags));
5370
5371 if (free_bootstrap_pages) {
5372 rv = free_bootstrap_pages;
5373 free_bootstrap_pages = *((void **)rv);
5374 return (rv);
5375 }
5376
5377 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5378 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5379
5380 KASSERT(new_page > last_bootstrap_page);
5381 last_bootstrap_page = new_page;
5382 return ((void *)new_page);
5383 }
5384
5385 static void
5386 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5387 {
5388 extern void pool_page_free(struct pool *, void *);
5389
5390 if ((vaddr_t)v <= last_bootstrap_page) {
5391 *((void **)v) = free_bootstrap_pages;
5392 free_bootstrap_pages = v;
5393 return;
5394 }
5395
5396 if (pmap_initialized) {
5397 pool_page_free(pp, v);
5398 return;
5399 }
5400 }
5401
5402 /*
5403 * pmap_postinit()
5404 *
5405 * This routine is called after the vm and kmem subsystems have been
5406 * initialised. This allows the pmap code to perform any initialisation
5407 * that can only be done one the memory allocation is in place.
5408 */
5409 void
5410 pmap_postinit(void)
5411 {
5412 extern paddr_t physical_start, physical_end;
5413 struct l2_bucket *l2b;
5414 struct l1_ttable *l1;
5415 struct pglist plist;
5416 struct vm_page *m;
5417 pd_entry_t *pl1pt;
5418 pt_entry_t *ptep, pte;
5419 vaddr_t va, eva;
5420 u_int loop, needed;
5421 int error;
5422
5423 pool_cache_setlowat(&pmap_l2ptp_cache,
5424 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5425 pool_cache_setlowat(&pmap_l2dtable_cache,
5426 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5427
5428 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5429 needed -= 1;
5430
5431 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5432
5433 for (loop = 0; loop < needed; loop++, l1++) {
5434 /* Allocate a L1 page table */
5435 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5436 if (va == 0)
5437 panic("Cannot allocate L1 KVM");
5438
5439 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5440 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5441 if (error)
5442 panic("Cannot allocate L1 physical pages");
5443
5444 m = TAILQ_FIRST(&plist);
5445 eva = va + L1_TABLE_SIZE;
5446 pl1pt = (pd_entry_t *)va;
5447
5448 while (m && va < eva) {
5449 paddr_t pa = VM_PAGE_TO_PHYS(m);
5450
5451 pmap_kenter_pa(va, pa,
5452 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
5453
5454 /*
5455 * Make sure the L1 descriptor table is mapped
5456 * with the cache-mode set to write-through.
5457 */
5458 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5459 ptep = &l2b->l2b_kva[l2pte_index(va)];
5460 pte = *ptep;
5461 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5462 *ptep = pte;
5463 PTE_SYNC(ptep);
5464 cpu_tlb_flushD_SE(va);
5465
5466 va += PAGE_SIZE;
5467 m = TAILQ_NEXT(m, pageq.queue);
5468 }
5469
5470 #ifdef DIAGNOSTIC
5471 if (m)
5472 panic("pmap_alloc_l1pt: pglist not empty");
5473 #endif /* DIAGNOSTIC */
5474
5475 pmap_init_l1(l1, pl1pt);
5476 }
5477
5478 #ifdef DEBUG
5479 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5480 needed);
5481 #endif
5482 }
5483
5484 /*
5485 * Note that the following routines are used by board-specific initialisation
5486 * code to configure the initial kernel page tables.
5487 *
5488 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5489 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5490 * behaviour of the old pmap, and provides an easy migration path for
5491 * initial bring-up of the new pmap on existing ports. Fortunately,
5492 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5493 * will be deprecated.
5494 *
5495 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5496 * tables.
5497 */
5498
5499 /*
5500 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5501 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5502 * find them as necessary.
5503 *
5504 * Note that the data on this list MUST remain valid after initarm() returns,
5505 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5506 */
5507 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5508
5509 static vaddr_t
5510 kernel_pt_lookup(paddr_t pa)
5511 {
5512 pv_addr_t *pv;
5513
5514 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5515 #ifndef ARM32_NEW_VM_LAYOUT
5516 if (pv->pv_pa == (pa & ~PGOFSET))
5517 return (pv->pv_va | (pa & PGOFSET));
5518 #else
5519 if (pv->pv_pa == pa)
5520 return (pv->pv_va);
5521 #endif
5522 }
5523 return (0);
5524 }
5525
5526 /*
5527 * pmap_map_section:
5528 *
5529 * Create a single section mapping.
5530 */
5531 void
5532 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5533 {
5534 pd_entry_t *pde = (pd_entry_t *) l1pt;
5535 pd_entry_t fl;
5536
5537 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5538
5539 switch (cache) {
5540 case PTE_NOCACHE:
5541 default:
5542 fl = 0;
5543 break;
5544
5545 case PTE_CACHE:
5546 fl = pte_l1_s_cache_mode;
5547 break;
5548
5549 case PTE_PAGETABLE:
5550 fl = pte_l1_s_cache_mode_pt;
5551 break;
5552 }
5553
5554 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5555 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5556 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5557 }
5558
5559 /*
5560 * pmap_map_entry:
5561 *
5562 * Create a single page mapping.
5563 */
5564 void
5565 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5566 {
5567 pd_entry_t *pde = (pd_entry_t *) l1pt;
5568 pt_entry_t fl;
5569 pt_entry_t *pte;
5570
5571 KASSERT(((va | pa) & PGOFSET) == 0);
5572
5573 switch (cache) {
5574 case PTE_NOCACHE:
5575 default:
5576 fl = 0;
5577 break;
5578
5579 case PTE_CACHE:
5580 fl = pte_l2_s_cache_mode;
5581 break;
5582
5583 case PTE_PAGETABLE:
5584 fl = pte_l2_s_cache_mode_pt;
5585 break;
5586 }
5587
5588 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5589 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5590
5591 #ifndef ARM32_NEW_VM_LAYOUT
5592 pte = (pt_entry_t *)
5593 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5594 #else
5595 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5596 #endif
5597 if (pte == NULL)
5598 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5599
5600 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5601 #ifndef ARM32_NEW_VM_LAYOUT
5602 pte += (va >> PGSHIFT) & 0x3ff;
5603 #else
5604 pte += l2pte_index(va);
5605 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5606 #endif
5607 *pte = fl;
5608 PTE_SYNC(pte);
5609 }
5610
5611 /*
5612 * pmap_link_l2pt:
5613 *
5614 * Link the L2 page table specified by "l2pv" into the L1
5615 * page table at the slot for "va".
5616 */
5617 void
5618 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5619 {
5620 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5621 u_int slot = va >> L1_S_SHIFT;
5622
5623 #ifndef ARM32_NEW_VM_LAYOUT
5624 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5625 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5626 #endif
5627
5628 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5629
5630 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5631 #ifdef ARM32_NEW_VM_LAYOUT
5632 PTE_SYNC(&pde[slot]);
5633 #else
5634 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5635 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5636 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5637 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5638 #endif
5639
5640 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5641 }
5642
5643 /*
5644 * pmap_map_chunk:
5645 *
5646 * Map a chunk of memory using the most efficient mappings
5647 * possible (section, large page, small page) into the
5648 * provided L1 and L2 tables at the specified virtual address.
5649 */
5650 vsize_t
5651 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5652 int prot, int cache)
5653 {
5654 pd_entry_t *pde = (pd_entry_t *) l1pt;
5655 pt_entry_t *pte, f1, f2s, f2l;
5656 vsize_t resid;
5657 int i;
5658
5659 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5660
5661 if (l1pt == 0)
5662 panic("pmap_map_chunk: no L1 table provided");
5663
5664 #ifdef VERBOSE_INIT_ARM
5665 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5666 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5667 #endif
5668
5669 switch (cache) {
5670 case PTE_NOCACHE:
5671 default:
5672 f1 = 0;
5673 f2l = 0;
5674 f2s = 0;
5675 break;
5676
5677 case PTE_CACHE:
5678 f1 = pte_l1_s_cache_mode;
5679 f2l = pte_l2_l_cache_mode;
5680 f2s = pte_l2_s_cache_mode;
5681 break;
5682
5683 case PTE_PAGETABLE:
5684 f1 = pte_l1_s_cache_mode_pt;
5685 f2l = pte_l2_l_cache_mode_pt;
5686 f2s = pte_l2_s_cache_mode_pt;
5687 break;
5688 }
5689
5690 size = resid;
5691
5692 while (resid > 0) {
5693 /* See if we can use a section mapping. */
5694 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5695 #ifdef VERBOSE_INIT_ARM
5696 printf("S");
5697 #endif
5698 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5699 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5700 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5701 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5702 va += L1_S_SIZE;
5703 pa += L1_S_SIZE;
5704 resid -= L1_S_SIZE;
5705 continue;
5706 }
5707
5708 /*
5709 * Ok, we're going to use an L2 table. Make sure
5710 * one is actually in the corresponding L1 slot
5711 * for the current VA.
5712 */
5713 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5714 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5715
5716 #ifndef ARM32_NEW_VM_LAYOUT
5717 pte = (pt_entry_t *)
5718 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5719 #else
5720 pte = (pt_entry_t *) kernel_pt_lookup(
5721 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5722 #endif
5723 if (pte == NULL)
5724 panic("pmap_map_chunk: can't find L2 table for VA"
5725 "0x%08lx", va);
5726
5727 /* See if we can use a L2 large page mapping. */
5728 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5729 #ifdef VERBOSE_INIT_ARM
5730 printf("L");
5731 #endif
5732 for (i = 0; i < 16; i++) {
5733 #ifndef ARM32_NEW_VM_LAYOUT
5734 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5735 L2_L_PROTO | pa |
5736 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5737 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5738 #else
5739 pte[l2pte_index(va) + i] =
5740 L2_L_PROTO | pa |
5741 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5742 PTE_SYNC(&pte[l2pte_index(va) + i]);
5743 #endif
5744 }
5745 va += L2_L_SIZE;
5746 pa += L2_L_SIZE;
5747 resid -= L2_L_SIZE;
5748 continue;
5749 }
5750
5751 /* Use a small page mapping. */
5752 #ifdef VERBOSE_INIT_ARM
5753 printf("P");
5754 #endif
5755 #ifndef ARM32_NEW_VM_LAYOUT
5756 pte[(va >> PGSHIFT) & 0x3ff] =
5757 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5758 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5759 #else
5760 pte[l2pte_index(va)] =
5761 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5762 PTE_SYNC(&pte[l2pte_index(va)]);
5763 #endif
5764 va += PAGE_SIZE;
5765 pa += PAGE_SIZE;
5766 resid -= PAGE_SIZE;
5767 }
5768 #ifdef VERBOSE_INIT_ARM
5769 printf("\n");
5770 #endif
5771 return (size);
5772 }
5773
5774 /********************** Static device map routines ***************************/
5775
5776 static const struct pmap_devmap *pmap_devmap_table;
5777
5778 /*
5779 * Register the devmap table. This is provided in case early console
5780 * initialization needs to register mappings created by bootstrap code
5781 * before pmap_devmap_bootstrap() is called.
5782 */
5783 void
5784 pmap_devmap_register(const struct pmap_devmap *table)
5785 {
5786
5787 pmap_devmap_table = table;
5788 }
5789
5790 /*
5791 * Map all of the static regions in the devmap table, and remember
5792 * the devmap table so other parts of the kernel can look up entries
5793 * later.
5794 */
5795 void
5796 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5797 {
5798 int i;
5799
5800 pmap_devmap_table = table;
5801
5802 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5803 #ifdef VERBOSE_INIT_ARM
5804 printf("devmap: %08lx -> %08lx @ %08lx\n",
5805 pmap_devmap_table[i].pd_pa,
5806 pmap_devmap_table[i].pd_pa +
5807 pmap_devmap_table[i].pd_size - 1,
5808 pmap_devmap_table[i].pd_va);
5809 #endif
5810 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5811 pmap_devmap_table[i].pd_pa,
5812 pmap_devmap_table[i].pd_size,
5813 pmap_devmap_table[i].pd_prot,
5814 pmap_devmap_table[i].pd_cache);
5815 }
5816 }
5817
5818 const struct pmap_devmap *
5819 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5820 {
5821 uint64_t endpa;
5822 int i;
5823
5824 if (pmap_devmap_table == NULL)
5825 return (NULL);
5826
5827 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5828
5829 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5830 if (pa >= pmap_devmap_table[i].pd_pa &&
5831 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5832 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5833 return (&pmap_devmap_table[i]);
5834 }
5835
5836 return (NULL);
5837 }
5838
5839 const struct pmap_devmap *
5840 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5841 {
5842 int i;
5843
5844 if (pmap_devmap_table == NULL)
5845 return (NULL);
5846
5847 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5848 if (va >= pmap_devmap_table[i].pd_va &&
5849 va + size - 1 <= pmap_devmap_table[i].pd_va +
5850 pmap_devmap_table[i].pd_size - 1)
5851 return (&pmap_devmap_table[i]);
5852 }
5853
5854 return (NULL);
5855 }
5856
5857 /********************** PTE initialization routines **************************/
5858
5859 /*
5860 * These routines are called when the CPU type is identified to set up
5861 * the PTE prototypes, cache modes, etc.
5862 *
5863 * The variables are always here, just in case modules need to reference
5864 * them (though, they shouldn't).
5865 */
5866
5867 pt_entry_t pte_l1_s_cache_mode;
5868 pt_entry_t pte_l1_s_cache_mode_pt;
5869 pt_entry_t pte_l1_s_cache_mask;
5870
5871 pt_entry_t pte_l2_l_cache_mode;
5872 pt_entry_t pte_l2_l_cache_mode_pt;
5873 pt_entry_t pte_l2_l_cache_mask;
5874
5875 pt_entry_t pte_l2_s_cache_mode;
5876 pt_entry_t pte_l2_s_cache_mode_pt;
5877 pt_entry_t pte_l2_s_cache_mask;
5878
5879 pt_entry_t pte_l2_s_prot_u;
5880 pt_entry_t pte_l2_s_prot_w;
5881 pt_entry_t pte_l2_s_prot_mask;
5882
5883 pt_entry_t pte_l1_s_proto;
5884 pt_entry_t pte_l1_c_proto;
5885 pt_entry_t pte_l2_s_proto;
5886
5887 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5888 void (*pmap_zero_page_func)(paddr_t);
5889
5890 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5891 void
5892 pmap_pte_init_generic(void)
5893 {
5894
5895 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5896 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5897
5898 pte_l2_l_cache_mode = L2_B|L2_C;
5899 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5900
5901 pte_l2_s_cache_mode = L2_B|L2_C;
5902 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5903
5904 /*
5905 * If we have a write-through cache, set B and C. If
5906 * we have a write-back cache, then we assume setting
5907 * only C will make those pages write-through.
5908 */
5909 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5910 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5911 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5912 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5913 } else {
5914 #if ARM_MMU_V6 > 1
5915 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5916 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5917 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5918 #else
5919 pte_l1_s_cache_mode_pt = L1_S_C;
5920 pte_l2_l_cache_mode_pt = L2_C;
5921 pte_l2_s_cache_mode_pt = L2_C;
5922 #endif
5923 }
5924
5925 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5926 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5927 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5928
5929 pte_l1_s_proto = L1_S_PROTO_generic;
5930 pte_l1_c_proto = L1_C_PROTO_generic;
5931 pte_l2_s_proto = L2_S_PROTO_generic;
5932
5933 pmap_copy_page_func = pmap_copy_page_generic;
5934 pmap_zero_page_func = pmap_zero_page_generic;
5935 }
5936
5937 #if defined(CPU_ARM8)
5938 void
5939 pmap_pte_init_arm8(void)
5940 {
5941
5942 /*
5943 * ARM8 is compatible with generic, but we need to use
5944 * the page tables uncached.
5945 */
5946 pmap_pte_init_generic();
5947
5948 pte_l1_s_cache_mode_pt = 0;
5949 pte_l2_l_cache_mode_pt = 0;
5950 pte_l2_s_cache_mode_pt = 0;
5951 }
5952 #endif /* CPU_ARM8 */
5953
5954 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
5955 void
5956 pmap_pte_init_arm9(void)
5957 {
5958
5959 /*
5960 * ARM9 is compatible with generic, but we want to use
5961 * write-through caching for now.
5962 */
5963 pmap_pte_init_generic();
5964
5965 pte_l1_s_cache_mode = L1_S_C;
5966 pte_l2_l_cache_mode = L2_C;
5967 pte_l2_s_cache_mode = L2_C;
5968
5969 pte_l1_s_cache_mode_pt = L1_S_C;
5970 pte_l2_l_cache_mode_pt = L2_C;
5971 pte_l2_s_cache_mode_pt = L2_C;
5972 }
5973 #endif /* CPU_ARM9 */
5974 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5975
5976 #if defined(CPU_ARM10)
5977 void
5978 pmap_pte_init_arm10(void)
5979 {
5980
5981 /*
5982 * ARM10 is compatible with generic, but we want to use
5983 * write-through caching for now.
5984 */
5985 pmap_pte_init_generic();
5986
5987 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
5988 pte_l2_l_cache_mode = L2_B | L2_C;
5989 pte_l2_s_cache_mode = L2_B | L2_C;
5990
5991 pte_l1_s_cache_mode_pt = L1_S_C;
5992 pte_l2_l_cache_mode_pt = L2_C;
5993 pte_l2_s_cache_mode_pt = L2_C;
5994
5995 }
5996 #endif /* CPU_ARM10 */
5997
5998 #if ARM_MMU_SA1 == 1
5999 void
6000 pmap_pte_init_sa1(void)
6001 {
6002
6003 /*
6004 * The StrongARM SA-1 cache does not have a write-through
6005 * mode. So, do the generic initialization, then reset
6006 * the page table cache mode to B=1,C=1, and note that
6007 * the PTEs need to be sync'd.
6008 */
6009 pmap_pte_init_generic();
6010
6011 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6012 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6013 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6014
6015 pmap_needs_pte_sync = 1;
6016 }
6017 #endif /* ARM_MMU_SA1 == 1*/
6018
6019 #if ARM_MMU_XSCALE == 1
6020 #if (ARM_NMMUS > 1)
6021 static u_int xscale_use_minidata;
6022 #endif
6023
6024 void
6025 pmap_pte_init_xscale(void)
6026 {
6027 uint32_t auxctl;
6028 int write_through = 0;
6029
6030 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6031 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6032
6033 pte_l2_l_cache_mode = L2_B|L2_C;
6034 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6035
6036 pte_l2_s_cache_mode = L2_B|L2_C;
6037 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6038
6039 pte_l1_s_cache_mode_pt = L1_S_C;
6040 pte_l2_l_cache_mode_pt = L2_C;
6041 pte_l2_s_cache_mode_pt = L2_C;
6042
6043 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6044 /*
6045 * The XScale core has an enhanced mode where writes that
6046 * miss the cache cause a cache line to be allocated. This
6047 * is significantly faster than the traditional, write-through
6048 * behavior of this case.
6049 */
6050 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6051 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6052 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6053 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6054
6055 #ifdef XSCALE_CACHE_WRITE_THROUGH
6056 /*
6057 * Some versions of the XScale core have various bugs in
6058 * their cache units, the work-around for which is to run
6059 * the cache in write-through mode. Unfortunately, this
6060 * has a major (negative) impact on performance. So, we
6061 * go ahead and run fast-and-loose, in the hopes that we
6062 * don't line up the planets in a way that will trip the
6063 * bugs.
6064 *
6065 * However, we give you the option to be slow-but-correct.
6066 */
6067 write_through = 1;
6068 #elif defined(XSCALE_CACHE_WRITE_BACK)
6069 /* force write back cache mode */
6070 write_through = 0;
6071 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6072 /*
6073 * Intel PXA2[15]0 processors are known to have a bug in
6074 * write-back cache on revision 4 and earlier (stepping
6075 * A[01] and B[012]). Fixed for C0 and later.
6076 */
6077 {
6078 uint32_t id, type;
6079
6080 id = cpufunc_id();
6081 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6082
6083 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6084 if ((id & CPU_ID_REVISION_MASK) < 5) {
6085 /* write through for stepping A0-1 and B0-2 */
6086 write_through = 1;
6087 }
6088 }
6089 }
6090 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6091
6092 if (write_through) {
6093 pte_l1_s_cache_mode = L1_S_C;
6094 pte_l2_l_cache_mode = L2_C;
6095 pte_l2_s_cache_mode = L2_C;
6096 }
6097
6098 #if (ARM_NMMUS > 1)
6099 xscale_use_minidata = 1;
6100 #endif
6101
6102 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6103 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6104 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6105
6106 pte_l1_s_proto = L1_S_PROTO_xscale;
6107 pte_l1_c_proto = L1_C_PROTO_xscale;
6108 pte_l2_s_proto = L2_S_PROTO_xscale;
6109
6110 pmap_copy_page_func = pmap_copy_page_xscale;
6111 pmap_zero_page_func = pmap_zero_page_xscale;
6112
6113 /*
6114 * Disable ECC protection of page table access, for now.
6115 */
6116 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6117 auxctl &= ~XSCALE_AUXCTL_P;
6118 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6119 }
6120
6121 /*
6122 * xscale_setup_minidata:
6123 *
6124 * Set up the mini-data cache clean area. We require the
6125 * caller to allocate the right amount of physically and
6126 * virtually contiguous space.
6127 */
6128 void
6129 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6130 {
6131 extern vaddr_t xscale_minidata_clean_addr;
6132 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6133 pd_entry_t *pde = (pd_entry_t *) l1pt;
6134 pt_entry_t *pte;
6135 vsize_t size;
6136 uint32_t auxctl;
6137
6138 xscale_minidata_clean_addr = va;
6139
6140 /* Round it to page size. */
6141 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6142
6143 for (; size != 0;
6144 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6145 #ifndef ARM32_NEW_VM_LAYOUT
6146 pte = (pt_entry_t *)
6147 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6148 #else
6149 pte = (pt_entry_t *) kernel_pt_lookup(
6150 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6151 #endif
6152 if (pte == NULL)
6153 panic("xscale_setup_minidata: can't find L2 table for "
6154 "VA 0x%08lx", va);
6155 #ifndef ARM32_NEW_VM_LAYOUT
6156 pte[(va >> PGSHIFT) & 0x3ff] =
6157 #else
6158 pte[l2pte_index(va)] =
6159 #endif
6160 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6161 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6162 }
6163
6164 /*
6165 * Configure the mini-data cache for write-back with
6166 * read/write-allocate.
6167 *
6168 * NOTE: In order to reconfigure the mini-data cache, we must
6169 * make sure it contains no valid data! In order to do that,
6170 * we must issue a global data cache invalidate command!
6171 *
6172 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6173 * THIS IS VERY IMPORTANT!
6174 */
6175
6176 /* Invalidate data and mini-data. */
6177 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6178 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6179 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6180 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6181 }
6182
6183 /*
6184 * Change the PTEs for the specified kernel mappings such that they
6185 * will use the mini data cache instead of the main data cache.
6186 */
6187 void
6188 pmap_uarea(vaddr_t va)
6189 {
6190 struct l2_bucket *l2b;
6191 pt_entry_t *ptep, *sptep, pte;
6192 vaddr_t next_bucket, eva;
6193
6194 #if (ARM_NMMUS > 1)
6195 if (xscale_use_minidata == 0)
6196 return;
6197 #endif
6198
6199 eva = va + USPACE;
6200
6201 while (va < eva) {
6202 next_bucket = L2_NEXT_BUCKET(va);
6203 if (next_bucket > eva)
6204 next_bucket = eva;
6205
6206 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6207 KDASSERT(l2b != NULL);
6208
6209 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6210
6211 while (va < next_bucket) {
6212 pte = *ptep;
6213 if (!l2pte_minidata(pte)) {
6214 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6215 cpu_tlb_flushD_SE(va);
6216 *ptep = pte & ~L2_B;
6217 }
6218 ptep++;
6219 va += PAGE_SIZE;
6220 }
6221 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6222 }
6223 cpu_cpwait();
6224 }
6225 #endif /* ARM_MMU_XSCALE == 1 */
6226
6227 /*
6228 * return the PA of the current L1 table, for use when handling a crash dump
6229 */
6230 uint32_t pmap_kernel_L1_addr()
6231 {
6232 return pmap_kernel()->pm_l1->l1_physaddr;
6233 }
6234
6235 #if defined(DDB)
6236 /*
6237 * A couple of ddb-callable functions for dumping pmaps
6238 */
6239 void pmap_dump_all(void);
6240 void pmap_dump(pmap_t);
6241
6242 void
6243 pmap_dump_all(void)
6244 {
6245 pmap_t pm;
6246
6247 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6248 if (pm == pmap_kernel())
6249 continue;
6250 pmap_dump(pm);
6251 printf("\n");
6252 }
6253 }
6254
6255 static pt_entry_t ncptes[64];
6256 static void pmap_dump_ncpg(pmap_t);
6257
6258 void
6259 pmap_dump(pmap_t pm)
6260 {
6261 struct l2_dtable *l2;
6262 struct l2_bucket *l2b;
6263 pt_entry_t *ptep, pte;
6264 vaddr_t l2_va, l2b_va, va;
6265 int i, j, k, occ, rows = 0;
6266
6267 if (pm == pmap_kernel())
6268 printf("pmap_kernel (%p): ", pm);
6269 else
6270 printf("user pmap (%p): ", pm);
6271
6272 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6273
6274 l2_va = 0;
6275 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6276 l2 = pm->pm_l2[i];
6277
6278 if (l2 == NULL || l2->l2_occupancy == 0)
6279 continue;
6280
6281 l2b_va = l2_va;
6282 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6283 l2b = &l2->l2_bucket[j];
6284
6285 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6286 continue;
6287
6288 ptep = l2b->l2b_kva;
6289
6290 for (k = 0; k < 256 && ptep[k] == 0; k++)
6291 ;
6292
6293 k &= ~63;
6294 occ = l2b->l2b_occupancy;
6295 va = l2b_va + (k * 4096);
6296 for (; k < 256; k++, va += 0x1000) {
6297 char ch = ' ';
6298 if ((k % 64) == 0) {
6299 if ((rows % 8) == 0) {
6300 printf(
6301 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6302 }
6303 printf("%08lx: ", va);
6304 }
6305
6306 ncptes[k & 63] = 0;
6307 pte = ptep[k];
6308 if (pte == 0) {
6309 ch = '.';
6310 } else {
6311 occ--;
6312 switch (pte & 0x0c) {
6313 case 0x00:
6314 ch = 'D'; /* No cache No buff */
6315 break;
6316 case 0x04:
6317 ch = 'B'; /* No cache buff */
6318 break;
6319 case 0x08:
6320 if (pte & 0x40)
6321 ch = 'm';
6322 else
6323 ch = 'C'; /* Cache No buff */
6324 break;
6325 case 0x0c:
6326 ch = 'F'; /* Cache Buff */
6327 break;
6328 }
6329
6330 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6331 ch += 0x20;
6332
6333 if ((pte & 0xc) == 0)
6334 ncptes[k & 63] = pte;
6335 }
6336
6337 if ((k % 64) == 63) {
6338 rows++;
6339 printf("%c\n", ch);
6340 pmap_dump_ncpg(pm);
6341 if (occ == 0)
6342 break;
6343 } else
6344 printf("%c", ch);
6345 }
6346 }
6347 }
6348 }
6349
6350 static void
6351 pmap_dump_ncpg(pmap_t pm)
6352 {
6353 struct vm_page *pg;
6354 struct pv_entry *pv;
6355 int i;
6356
6357 for (i = 0; i < 63; i++) {
6358 if (ncptes[i] == 0)
6359 continue;
6360
6361 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6362 if (pg == NULL)
6363 continue;
6364
6365 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6366 VM_PAGE_TO_PHYS(pg),
6367 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
6368 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
6369
6370 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
6371 printf(" %c va 0x%08lx, flags 0x%x\n",
6372 (pm == pv->pv_pmap) ? '*' : ' ',
6373 pv->pv_va, pv->pv_flags);
6374 }
6375 }
6376 }
6377 #endif
6378
6379 #ifdef PMAP_STEAL_MEMORY
6380 void
6381 pmap_boot_pageadd(pv_addr_t *newpv)
6382 {
6383 pv_addr_t *pv, *npv;
6384
6385 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6386 if (newpv->pv_pa < pv->pv_va) {
6387 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6388 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6389 newpv->pv_size += pv->pv_size;
6390 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6391 }
6392 pv = NULL;
6393 } else {
6394 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6395 pv = npv) {
6396 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6397 KASSERT(pv->pv_pa < newpv->pv_pa);
6398 if (newpv->pv_pa > npv->pv_pa)
6399 continue;
6400 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6401 pv->pv_size += newpv->pv_size;
6402 return;
6403 }
6404 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6405 break;
6406 newpv->pv_size += npv->pv_size;
6407 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6408 SLIST_REMOVE_AFTER(newpv, pv_list);
6409 return;
6410 }
6411 }
6412 }
6413
6414 if (pv) {
6415 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6416 } else {
6417 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6418 }
6419 }
6420
6421 void
6422 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6423 pv_addr_t *rpv)
6424 {
6425 pv_addr_t *pv, **pvp;
6426 struct vm_physseg *ps;
6427 size_t i;
6428
6429 KASSERT(amount & PGOFSET);
6430 KASSERT((mask & PGOFSET) == 0);
6431 KASSERT((match & PGOFSET) == 0);
6432 KASSERT(amount != 0);
6433
6434 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6435 (pv = *pvp) != NULL;
6436 pvp = &SLIST_NEXT(pv, pv_list)) {
6437 pv_addr_t *newpv;
6438 psize_t off;
6439 /*
6440 * If this entry is too small to satify the request...
6441 */
6442 KASSERT(pv->pv_size > 0);
6443 if (pv->pv_size < amount)
6444 continue;
6445
6446 for (off = 0; off <= mask; off += PAGE_SIZE) {
6447 if (((pv->pv_pa + off) & mask) == match
6448 && off + amount <= pv->pv_size)
6449 break;
6450 }
6451 if (off > mask)
6452 continue;
6453
6454 rpv->pv_va = pv->pv_va + off;
6455 rpv->pv_pa = pv->pv_pa + off;
6456 rpv->pv_size = amount;
6457 pv->pv_size -= amount;
6458 if (pv->pv_size == 0) {
6459 KASSERT(off == 0);
6460 KASSERT((vaddr_t) pv == rpv->pv_va);
6461 *pvp = SLIST_NEXT(pv, pv_list);
6462 } else if (off == 0) {
6463 KASSERT((vaddr_t) pv == rpv->pv_va);
6464 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6465 *newpv = *pv;
6466 newpv->pv_pa += amount;
6467 newpv->pv_va += amount;
6468 *pvp = newpv;
6469 } else if (off < pv->pv_size) {
6470 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6471 *newpv = *pv;
6472 newpv->pv_size -= off;
6473 newpv->pv_pa += off + amount;
6474 newpv->pv_va += off + amount;
6475
6476 SLIST_NEXT(pv, pv_list) = newpv;
6477 pv->pv_size = off;
6478 } else {
6479 KASSERT((vaddr_t) pv != rpv->pv_va);
6480 }
6481 memset((void *)rpv->pv_va, 0, amount);
6482 return;
6483 }
6484
6485 if (vm_nphysseg == 0)
6486 panic("pmap_boot_pagealloc: couldn't allocate memory");
6487
6488 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6489 (pv = *pvp) != NULL;
6490 pvp = &SLIST_NEXT(pv, pv_list)) {
6491 if (SLIST_NEXT(pv, pv_list) == NULL)
6492 break;
6493 }
6494 KASSERT(mask == 0);
6495 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
6496 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6497 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6498 rpv->pv_va = pv->pv_va;
6499 rpv->pv_pa = pv->pv_pa;
6500 rpv->pv_size = amount;
6501 *pvp = NULL;
6502 pmap_map_chunk(kernel_l1pt.pv_va,
6503 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6504 ptoa(ps->avail_start),
6505 amount - pv->pv_size,
6506 VM_PROT_READ|VM_PROT_WRITE,
6507 PTE_CACHE);
6508 ps->avail_start += atop(amount - pv->pv_size);
6509 /*
6510 * If we consumed the entire physseg, remove it.
6511 */
6512 if (ps->avail_start == ps->avail_end) {
6513 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6514 ps[0] = ps[1];
6515 }
6516 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6517 return;
6518 }
6519 }
6520
6521 panic("pmap_boot_pagealloc: couldn't allocate memory");
6522 }
6523
6524 vaddr_t
6525 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6526 {
6527 pv_addr_t pv;
6528
6529 pmap_boot_pagealloc(size, 0, 0, &pv);
6530
6531 return pv.pv_va;
6532 }
6533 #endif /* PMAP_STEAL_MEMORY */
6534
6535 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6536 {
6537 sysctl_createv(clog, 0, NULL, NULL,
6538 CTLFLAG_PERMANENT,
6539 CTLTYPE_NODE, "machdep", NULL,
6540 NULL, 0, NULL, 0,
6541 CTL_MACHDEP, CTL_EOL);
6542
6543 sysctl_createv(clog, 0, NULL, NULL,
6544 CTLFLAG_PERMANENT,
6545 CTLTYPE_INT, "kmpages",
6546 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6547 NULL, 0, &pmap_kmpages, 0,
6548 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6549 }
6550