Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.196
      1 /*	$NetBSD: pmap.c,v 1.196 2009/03/09 08:42:36 nonaka Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/user.h>
    202 #include <sys/pool.h>
    203 #include <sys/cdefs.h>
    204 #include <sys/cpu.h>
    205 #include <sys/sysctl.h>
    206 
    207 #include <uvm/uvm.h>
    208 
    209 #include <machine/bus.h>
    210 #include <machine/pmap.h>
    211 #include <machine/pcb.h>
    212 #include <machine/param.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.196 2009/03/09 08:42:36 nonaka Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 static struct pmap	kernel_pmap_store;
    259 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    260 
    261 /*
    262  * Which pmap is currently 'live' in the cache
    263  *
    264  * XXXSCW: Fix for SMP ...
    265  */
    266 static pmap_t pmap_recent_user;
    267 
    268 /*
    269  * Pointer to last active lwp, or NULL if it exited.
    270  */
    271 struct lwp *pmap_previous_active_lwp;
    272 
    273 /*
    274  * Pool and cache that pmap structures are allocated from.
    275  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    276  * in pmap_create().
    277  */
    278 static struct pool_cache pmap_cache;
    279 static LIST_HEAD(, pmap) pmap_pmaps;
    280 
    281 /*
    282  * Pool of PV structures
    283  */
    284 static struct pool pmap_pv_pool;
    285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    288 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    289 };
    290 
    291 /*
    292  * Pool and cache of l2_dtable structures.
    293  * We use a cache to avoid clearing the structures when they're
    294  * allocated. (196 bytes)
    295  */
    296 static struct pool_cache pmap_l2dtable_cache;
    297 static vaddr_t pmap_kernel_l2dtable_kva;
    298 
    299 /*
    300  * Pool and cache of L2 page descriptors.
    301  * We use a cache to avoid clearing the descriptor table
    302  * when they're allocated. (1KB)
    303  */
    304 static struct pool_cache pmap_l2ptp_cache;
    305 static vaddr_t pmap_kernel_l2ptp_kva;
    306 static paddr_t pmap_kernel_l2ptp_phys;
    307 
    308 #ifdef PMAPCOUNTERS
    309 #define	PMAP_EVCNT_INITIALIZER(name) \
    310 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    311 
    312 #ifdef PMAP_CACHE_VIPT
    313 static struct evcnt pmap_ev_vac_clean_one =
    314    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    315 static struct evcnt pmap_ev_vac_flush_one =
    316    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    317 static struct evcnt pmap_ev_vac_flush_lots =
    318    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    319 static struct evcnt pmap_ev_vac_flush_lots2 =
    320    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    321 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    325 
    326 static struct evcnt pmap_ev_vac_color_new =
    327    PMAP_EVCNT_INITIALIZER("new page color");
    328 static struct evcnt pmap_ev_vac_color_reuse =
    329    PMAP_EVCNT_INITIALIZER("ok first page color");
    330 static struct evcnt pmap_ev_vac_color_ok =
    331    PMAP_EVCNT_INITIALIZER("ok page color");
    332 static struct evcnt pmap_ev_vac_color_blind =
    333    PMAP_EVCNT_INITIALIZER("blind page color");
    334 static struct evcnt pmap_ev_vac_color_change =
    335    PMAP_EVCNT_INITIALIZER("change page color");
    336 static struct evcnt pmap_ev_vac_color_erase =
    337    PMAP_EVCNT_INITIALIZER("erase page color");
    338 static struct evcnt pmap_ev_vac_color_none =
    339    PMAP_EVCNT_INITIALIZER("no page color");
    340 static struct evcnt pmap_ev_vac_color_restore =
    341    PMAP_EVCNT_INITIALIZER("restore page color");
    342 
    343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    351 #endif
    352 
    353 static struct evcnt pmap_ev_mappings =
    354    PMAP_EVCNT_INITIALIZER("pages mapped");
    355 static struct evcnt pmap_ev_unmappings =
    356    PMAP_EVCNT_INITIALIZER("pages unmapped");
    357 static struct evcnt pmap_ev_remappings =
    358    PMAP_EVCNT_INITIALIZER("pages remapped");
    359 
    360 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    361 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    362 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    363 
    364 static struct evcnt pmap_ev_kernel_mappings =
    365    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    366 static struct evcnt pmap_ev_kernel_unmappings =
    367    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    368 static struct evcnt pmap_ev_kernel_remappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    370 
    371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    374 
    375 static struct evcnt pmap_ev_kenter_mappings =
    376    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    377 static struct evcnt pmap_ev_kenter_unmappings =
    378    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    379 static struct evcnt pmap_ev_kenter_remappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    381 static struct evcnt pmap_ev_pt_mappings =
    382    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    383 
    384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    387 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    388 
    389 #ifdef PMAP_CACHE_VIPT
    390 static struct evcnt pmap_ev_exec_mappings =
    391    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    392 static struct evcnt pmap_ev_exec_cached =
    393    PMAP_EVCNT_INITIALIZER("exec pages cached");
    394 
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    397 
    398 static struct evcnt pmap_ev_exec_synced =
    399    PMAP_EVCNT_INITIALIZER("exec pages synced");
    400 static struct evcnt pmap_ev_exec_synced_map =
    401    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    402 static struct evcnt pmap_ev_exec_synced_unmap =
    403    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    404 static struct evcnt pmap_ev_exec_synced_remap =
    405    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    406 static struct evcnt pmap_ev_exec_synced_clearbit =
    407    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    408 static struct evcnt pmap_ev_exec_synced_kremove =
    409    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    410 
    411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    417 
    418 static struct evcnt pmap_ev_exec_discarded_unmap =
    419    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    420 static struct evcnt pmap_ev_exec_discarded_zero =
    421    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    422 static struct evcnt pmap_ev_exec_discarded_copy =
    423    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    424 static struct evcnt pmap_ev_exec_discarded_page_protect =
    425    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    426 static struct evcnt pmap_ev_exec_discarded_clearbit =
    427    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    428 static struct evcnt pmap_ev_exec_discarded_kremove =
    429    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    430 
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    437 #endif /* PMAP_CACHE_VIPT */
    438 
    439 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    440 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    441 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    442 
    443 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    444 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    445 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    446 
    447 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    448 #else
    449 #define	PMAPCOUNT(x)	((void)0)
    450 #endif
    451 
    452 /*
    453  * pmap copy/zero page, and mem(5) hook point
    454  */
    455 static pt_entry_t *csrc_pte, *cdst_pte;
    456 static vaddr_t csrcp, cdstp;
    457 vaddr_t memhook;			/* used by mem.c */
    458 kmutex_t memlock;			/* used by mem.c */
    459 void *zeropage;				/* used by mem.c */
    460 extern void *msgbufaddr;
    461 int pmap_kmpages;
    462 /*
    463  * Flag to indicate if pmap_init() has done its thing
    464  */
    465 bool pmap_initialized;
    466 
    467 /*
    468  * Misc. locking data structures
    469  */
    470 
    471 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    472 static struct lock pmap_main_lock;
    473 
    474 #define PMAP_MAP_TO_HEAD_LOCK() \
    475      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    476 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    477      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    478 #define PMAP_HEAD_TO_MAP_LOCK() \
    479      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    480 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    481      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    482 #else
    483 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    484 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    485 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    486 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    487 #endif
    488 
    489 #define	pmap_acquire_pmap_lock(pm)			\
    490 	do {						\
    491 		if ((pm) != pmap_kernel())		\
    492 			mutex_enter(&(pm)->pm_lock);	\
    493 	} while (/*CONSTCOND*/0)
    494 
    495 #define	pmap_release_pmap_lock(pm)			\
    496 	do {						\
    497 		if ((pm) != pmap_kernel())		\
    498 			mutex_exit(&(pm)->pm_lock);	\
    499 	} while (/*CONSTCOND*/0)
    500 
    501 
    502 /*
    503  * Metadata for L1 translation tables.
    504  */
    505 struct l1_ttable {
    506 	/* Entry on the L1 Table list */
    507 	SLIST_ENTRY(l1_ttable) l1_link;
    508 
    509 	/* Entry on the L1 Least Recently Used list */
    510 	TAILQ_ENTRY(l1_ttable) l1_lru;
    511 
    512 	/* Track how many domains are allocated from this L1 */
    513 	volatile u_int l1_domain_use_count;
    514 
    515 	/*
    516 	 * A free-list of domain numbers for this L1.
    517 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    518 	 * is slow on ARM.
    519 	 */
    520 	u_int8_t l1_domain_first;
    521 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    522 
    523 	/* Physical address of this L1 page table */
    524 	paddr_t l1_physaddr;
    525 
    526 	/* KVA of this L1 page table */
    527 	pd_entry_t *l1_kva;
    528 };
    529 
    530 /*
    531  * Convert a virtual address into its L1 table index. That is, the
    532  * index used to locate the L2 descriptor table pointer in an L1 table.
    533  * This is basically used to index l1->l1_kva[].
    534  *
    535  * Each L2 descriptor table represents 1MB of VA space.
    536  */
    537 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    538 
    539 /*
    540  * L1 Page Tables are tracked using a Least Recently Used list.
    541  *  - New L1s are allocated from the HEAD.
    542  *  - Freed L1s are added to the TAIl.
    543  *  - Recently accessed L1s (where an 'access' is some change to one of
    544  *    the userland pmaps which owns this L1) are moved to the TAIL.
    545  */
    546 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    547 static struct simplelock l1_lru_lock;
    548 
    549 /*
    550  * A list of all L1 tables
    551  */
    552 static SLIST_HEAD(, l1_ttable) l1_list;
    553 
    554 /*
    555  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    556  *
    557  * This is normally 16MB worth L2 page descriptors for any given pmap.
    558  * Reference counts are maintained for L2 descriptors so they can be
    559  * freed when empty.
    560  */
    561 struct l2_dtable {
    562 	/* The number of L2 page descriptors allocated to this l2_dtable */
    563 	u_int l2_occupancy;
    564 
    565 	/* List of L2 page descriptors */
    566 	struct l2_bucket {
    567 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    568 		paddr_t l2b_phys;	/* Physical address of same */
    569 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    570 		u_short l2b_occupancy;	/* How many active descriptors */
    571 	} l2_bucket[L2_BUCKET_SIZE];
    572 };
    573 
    574 /*
    575  * Given an L1 table index, calculate the corresponding l2_dtable index
    576  * and bucket index within the l2_dtable.
    577  */
    578 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    579 				 (L2_SIZE - 1))
    580 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    581 
    582 /*
    583  * Given a virtual address, this macro returns the
    584  * virtual address required to drop into the next L2 bucket.
    585  */
    586 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    587 
    588 /*
    589  * L2 allocation.
    590  */
    591 #define	pmap_alloc_l2_dtable()		\
    592 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    593 #define	pmap_free_l2_dtable(l2)		\
    594 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    595 #define pmap_alloc_l2_ptp(pap)		\
    596 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    597 	    PR_NOWAIT, (pap)))
    598 
    599 /*
    600  * We try to map the page tables write-through, if possible.  However, not
    601  * all CPUs have a write-through cache mode, so on those we have to sync
    602  * the cache when we frob page tables.
    603  *
    604  * We try to evaluate this at compile time, if possible.  However, it's
    605  * not always possible to do that, hence this run-time var.
    606  */
    607 int	pmap_needs_pte_sync;
    608 
    609 /*
    610  * Real definition of pv_entry.
    611  */
    612 struct pv_entry {
    613 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    614 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    615 	vaddr_t		pv_va;          /* virtual address for mapping */
    616 	u_int		pv_flags;       /* flags */
    617 };
    618 
    619 /*
    620  * Macro to determine if a mapping might be resident in the
    621  * instruction cache and/or TLB
    622  */
    623 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    624 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    625 
    626 /*
    627  * Macro to determine if a mapping might be resident in the
    628  * data cache and/or TLB
    629  */
    630 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    631 
    632 /*
    633  * Local prototypes
    634  */
    635 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    636 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    637 			    pt_entry_t **);
    638 static bool		pmap_is_current(pmap_t);
    639 static bool		pmap_is_cached(pmap_t);
    640 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    641 			    pmap_t, vaddr_t, u_int);
    642 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    643 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t, int);
    644 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    645 			    u_int, u_int);
    646 
    647 static void		pmap_pinit(pmap_t);
    648 static int		pmap_pmap_ctor(void *, void *, int);
    649 
    650 static void		pmap_alloc_l1(pmap_t);
    651 static void		pmap_free_l1(pmap_t);
    652 static void		pmap_use_l1(pmap_t);
    653 
    654 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    655 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    656 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    657 static int		pmap_l2ptp_ctor(void *, void *, int);
    658 static int		pmap_l2dtable_ctor(void *, void *, int);
    659 
    660 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    661 #ifdef PMAP_CACHE_VIVT
    662 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    663 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    664 #endif
    665 
    666 static void		pmap_clearbit(struct vm_page *, u_int);
    667 #ifdef PMAP_CACHE_VIVT
    668 static int		pmap_clean_page(struct pv_entry *, bool);
    669 #endif
    670 #ifdef PMAP_CACHE_VIPT
    671 static void		pmap_syncicache_page(struct vm_page *);
    672 enum pmap_flush_op {
    673 	PMAP_FLUSH_PRIMARY,
    674 	PMAP_FLUSH_SECONDARY,
    675 	PMAP_CLEAN_PRIMARY
    676 };
    677 static void		pmap_flush_page(struct vm_page *, enum pmap_flush_op);
    678 #endif
    679 static void		pmap_page_remove(struct vm_page *);
    680 
    681 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    682 static vaddr_t		kernel_pt_lookup(paddr_t);
    683 
    684 
    685 /*
    686  * External function prototypes
    687  */
    688 extern void bzero_page(vaddr_t);
    689 extern void bcopy_page(vaddr_t, vaddr_t);
    690 
    691 /*
    692  * Misc variables
    693  */
    694 vaddr_t virtual_avail;
    695 vaddr_t virtual_end;
    696 vaddr_t pmap_curmaxkvaddr;
    697 
    698 paddr_t avail_start;
    699 paddr_t avail_end;
    700 
    701 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    702 pv_addr_t kernelpages;
    703 pv_addr_t kernel_l1pt;
    704 pv_addr_t systempage;
    705 
    706 /* Function to set the debug level of the pmap code */
    707 
    708 #ifdef PMAP_DEBUG
    709 void
    710 pmap_debug(int level)
    711 {
    712 	pmap_debug_level = level;
    713 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    714 }
    715 #endif	/* PMAP_DEBUG */
    716 
    717 /*
    718  * A bunch of routines to conditionally flush the caches/TLB depending
    719  * on whether the specified pmap actually needs to be flushed at any
    720  * given time.
    721  */
    722 static inline void
    723 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    724 {
    725 
    726 	if (pm->pm_cstate.cs_tlb_id)
    727 		cpu_tlb_flushID_SE(va);
    728 }
    729 
    730 static inline void
    731 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    732 {
    733 
    734 	if (pm->pm_cstate.cs_tlb_d)
    735 		cpu_tlb_flushD_SE(va);
    736 }
    737 
    738 static inline void
    739 pmap_tlb_flushID(pmap_t pm)
    740 {
    741 
    742 	if (pm->pm_cstate.cs_tlb_id) {
    743 		cpu_tlb_flushID();
    744 		pm->pm_cstate.cs_tlb = 0;
    745 	}
    746 }
    747 
    748 static inline void
    749 pmap_tlb_flushD(pmap_t pm)
    750 {
    751 
    752 	if (pm->pm_cstate.cs_tlb_d) {
    753 		cpu_tlb_flushD();
    754 		pm->pm_cstate.cs_tlb_d = 0;
    755 	}
    756 }
    757 
    758 #ifdef PMAP_CACHE_VIVT
    759 static inline void
    760 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    761 {
    762 	if (pm->pm_cstate.cs_cache_id) {
    763 		cpu_idcache_wbinv_range(va, len);
    764 	}
    765 }
    766 
    767 static inline void
    768 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    769     bool do_inv, bool rd_only)
    770 {
    771 
    772 	if (pm->pm_cstate.cs_cache_d) {
    773 		if (do_inv) {
    774 			if (rd_only)
    775 				cpu_dcache_inv_range(va, len);
    776 			else
    777 				cpu_dcache_wbinv_range(va, len);
    778 		} else
    779 		if (!rd_only)
    780 			cpu_dcache_wb_range(va, len);
    781 	}
    782 }
    783 
    784 static inline void
    785 pmap_idcache_wbinv_all(pmap_t pm)
    786 {
    787 	if (pm->pm_cstate.cs_cache_id) {
    788 		cpu_idcache_wbinv_all();
    789 		pm->pm_cstate.cs_cache = 0;
    790 	}
    791 }
    792 
    793 static inline void
    794 pmap_dcache_wbinv_all(pmap_t pm)
    795 {
    796 	if (pm->pm_cstate.cs_cache_d) {
    797 		cpu_dcache_wbinv_all();
    798 		pm->pm_cstate.cs_cache_d = 0;
    799 	}
    800 }
    801 #endif /* PMAP_CACHE_VIVT */
    802 
    803 static inline bool
    804 pmap_is_current(pmap_t pm)
    805 {
    806 
    807 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    808 		return true;
    809 
    810 	return false;
    811 }
    812 
    813 static inline bool
    814 pmap_is_cached(pmap_t pm)
    815 {
    816 
    817 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    818 	    pmap_recent_user == pm)
    819 		return (true);
    820 
    821 	return false;
    822 }
    823 
    824 /*
    825  * PTE_SYNC_CURRENT:
    826  *
    827  *     Make sure the pte is written out to RAM.
    828  *     We need to do this for one of two cases:
    829  *       - We're dealing with the kernel pmap
    830  *       - There is no pmap active in the cache/tlb.
    831  *       - The specified pmap is 'active' in the cache/tlb.
    832  */
    833 #ifdef PMAP_INCLUDE_PTE_SYNC
    834 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    835 do {					\
    836 	if (PMAP_NEEDS_PTE_SYNC && 	\
    837 	    pmap_is_cached(pm))		\
    838 		PTE_SYNC(ptep);		\
    839 } while (/*CONSTCOND*/0)
    840 #else
    841 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    842 #endif
    843 
    844 /*
    845  * main pv_entry manipulation functions:
    846  *   pmap_enter_pv: enter a mapping onto a vm_page list
    847  *   pmap_remove_pv: remove a mappiing from a vm_page list
    848  *
    849  * NOTE: pmap_enter_pv expects to lock the pvh itself
    850  *       pmap_remove_pv expects te caller to lock the pvh before calling
    851  */
    852 
    853 /*
    854  * pmap_enter_pv: enter a mapping onto a vm_page lst
    855  *
    856  * => caller should hold the proper lock on pmap_main_lock
    857  * => caller should have pmap locked
    858  * => we will gain the lock on the vm_page and allocate the new pv_entry
    859  * => caller should adjust ptp's wire_count before calling
    860  * => caller should not adjust pmap's wire_count
    861  */
    862 static void
    863 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    864     vaddr_t va, u_int flags)
    865 {
    866 	struct pv_entry **pvp;
    867 
    868 	NPDEBUG(PDB_PVDUMP,
    869 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    870 
    871 	pve->pv_pmap = pm;
    872 	pve->pv_va = va;
    873 	pve->pv_flags = flags;
    874 
    875 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    876 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
    877 #ifdef PMAP_CACHE_VIPT
    878 	/*
    879 	 * Insert unmanaged entries, writeable first, at the head of
    880 	 * the pv list.
    881 	 */
    882 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    883 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    884 			pvp = &SLIST_NEXT(*pvp, pv_link);
    885 	} else if ((flags & PVF_WRITE) == 0) {
    886 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    887 			pvp = &SLIST_NEXT(*pvp, pv_link);
    888 	}
    889 #endif
    890 	SLIST_NEXT(pve, pv_link) = *pvp;		/* add to ... */
    891 	*pvp = pve;				/* ... locked list */
    892 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    893 #ifdef PMAP_CACHE_VIPT
    894 	if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    895 		pg->mdpage.pvh_attrs |= PVF_KMOD;
    896 	if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    897 		pg->mdpage.pvh_attrs |= PVF_DIRTY;
    898 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
    899 #endif
    900 	if (pm == pmap_kernel()) {
    901 		PMAPCOUNT(kernel_mappings);
    902 		if (flags & PVF_WRITE)
    903 			pg->mdpage.krw_mappings++;
    904 		else
    905 			pg->mdpage.kro_mappings++;
    906 	} else
    907 	if (flags & PVF_WRITE)
    908 		pg->mdpage.urw_mappings++;
    909 	else
    910 		pg->mdpage.uro_mappings++;
    911 
    912 #ifdef PMAP_CACHE_VIPT
    913 	/*
    914 	 * If this is an exec mapping and its the first exec mapping
    915 	 * for this page, make sure to sync the I-cache.
    916 	 */
    917 	if (PV_IS_EXEC_P(flags)) {
    918 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    919 			pmap_syncicache_page(pg);
    920 			PMAPCOUNT(exec_synced_map);
    921 		}
    922 		PMAPCOUNT(exec_mappings);
    923 	}
    924 #endif
    925 
    926 	PMAPCOUNT(mappings);
    927 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    928 
    929 	if (pve->pv_flags & PVF_WIRED)
    930 		++pm->pm_stats.wired_count;
    931 }
    932 
    933 /*
    934  *
    935  * pmap_find_pv: Find a pv entry
    936  *
    937  * => caller should hold lock on vm_page
    938  */
    939 static inline struct pv_entry *
    940 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    941 {
    942 	struct pv_entry *pv;
    943 
    944 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
    945 		if (pm == pv->pv_pmap && va == pv->pv_va)
    946 			break;
    947 	}
    948 
    949 	return (pv);
    950 }
    951 
    952 /*
    953  * pmap_remove_pv: try to remove a mapping from a pv_list
    954  *
    955  * => caller should hold proper lock on pmap_main_lock
    956  * => pmap should be locked
    957  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    958  * => caller should adjust ptp's wire_count and free PTP if needed
    959  * => caller should NOT adjust pmap's wire_count
    960  * => we return the removed pve
    961  */
    962 static struct pv_entry *
    963 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va, int skip_wired)
    964 {
    965 	struct pv_entry *pve, **prevptr;
    966 
    967 	NPDEBUG(PDB_PVDUMP,
    968 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    969 
    970 	prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
    971 	pve = *prevptr;
    972 
    973 	while (pve) {
    974 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    975 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    976 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    977 			if (pve->pv_flags & PVF_WIRED) {
    978 				if (skip_wired)
    979 					return (NULL);
    980 				--pm->pm_stats.wired_count;
    981 			}
    982 			*prevptr = SLIST_NEXT(pve, pv_link);	/* remove it! */
    983 			if (pm == pmap_kernel()) {
    984 				PMAPCOUNT(kernel_unmappings);
    985 				if (pve->pv_flags & PVF_WRITE)
    986 					pg->mdpage.krw_mappings--;
    987 				else
    988 					pg->mdpage.kro_mappings--;
    989 			} else
    990 			if (pve->pv_flags & PVF_WRITE)
    991 				pg->mdpage.urw_mappings--;
    992 			else
    993 				pg->mdpage.uro_mappings--;
    994 
    995 			PMAPCOUNT(unmappings);
    996 #ifdef PMAP_CACHE_VIPT
    997 			if (!(pve->pv_flags & PVF_WRITE))
    998 				break;
    999 			/*
   1000 			 * If this page has had an exec mapping, then if
   1001 			 * this was the last mapping, discard the contents,
   1002 			 * otherwise sync the i-cache for this page.
   1003 			 */
   1004 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   1005 				if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   1006 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   1007 					PMAPCOUNT(exec_discarded_unmap);
   1008 				} else {
   1009 					pmap_syncicache_page(pg);
   1010 					PMAPCOUNT(exec_synced_unmap);
   1011 				}
   1012 			}
   1013 #endif /* PMAP_CACHE_VIPT */
   1014 			break;
   1015 		}
   1016 		prevptr = &SLIST_NEXT(pve, pv_link);	/* previous pointer */
   1017 		pve = *prevptr;				/* advance */
   1018 	}
   1019 
   1020 #ifdef PMAP_CACHE_VIPT
   1021 	/*
   1022 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1023 	 * clear the KMOD attribute from the page.
   1024 	 */
   1025 	if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
   1026 	    || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1027 		pg->mdpage.pvh_attrs &= ~PVF_KMOD;
   1028 
   1029 	/*
   1030 	 * If this was a writeable page and there are no more writeable
   1031 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1032 	 * the contents to memory.
   1033 	 */
   1034 	if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
   1035 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1036 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1037 #endif /* PMAP_CACHE_VIPT */
   1038 
   1039 	return(pve);				/* return removed pve */
   1040 }
   1041 
   1042 /*
   1043  *
   1044  * pmap_modify_pv: Update pv flags
   1045  *
   1046  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1047  * => caller should NOT adjust pmap's wire_count
   1048  * => caller must call pmap_vac_me_harder() if writable status of a page
   1049  *    may have changed.
   1050  * => we return the old flags
   1051  *
   1052  * Modify a physical-virtual mapping in the pv table
   1053  */
   1054 static u_int
   1055 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
   1056     u_int clr_mask, u_int set_mask)
   1057 {
   1058 	struct pv_entry *npv;
   1059 	u_int flags, oflags;
   1060 
   1061 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1062 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1063 
   1064 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1065 		return (0);
   1066 
   1067 	NPDEBUG(PDB_PVDUMP,
   1068 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1069 
   1070 	/*
   1071 	 * There is at least one VA mapping this page.
   1072 	 */
   1073 
   1074 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1075 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1076 #ifdef PMAP_CACHE_VIPT
   1077 		if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1078 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1079 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1080 #endif
   1081 	}
   1082 
   1083 	oflags = npv->pv_flags;
   1084 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1085 
   1086 	if ((flags ^ oflags) & PVF_WIRED) {
   1087 		if (flags & PVF_WIRED)
   1088 			++pm->pm_stats.wired_count;
   1089 		else
   1090 			--pm->pm_stats.wired_count;
   1091 	}
   1092 
   1093 	if ((flags ^ oflags) & PVF_WRITE) {
   1094 		if (pm == pmap_kernel()) {
   1095 			if (flags & PVF_WRITE) {
   1096 				pg->mdpage.krw_mappings++;
   1097 				pg->mdpage.kro_mappings--;
   1098 			} else {
   1099 				pg->mdpage.kro_mappings++;
   1100 				pg->mdpage.krw_mappings--;
   1101 			}
   1102 		} else
   1103 		if (flags & PVF_WRITE) {
   1104 			pg->mdpage.urw_mappings++;
   1105 			pg->mdpage.uro_mappings--;
   1106 		} else {
   1107 			pg->mdpage.uro_mappings++;
   1108 			pg->mdpage.urw_mappings--;
   1109 		}
   1110 	}
   1111 #ifdef PMAP_CACHE_VIPT
   1112 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1113 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1114 	/*
   1115 	 * We have two cases here: the first is from enter_pv (new exec
   1116 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1117 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1118 	 * to do what pmap_remove_pv would do.
   1119 	 */
   1120 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1121 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1122 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1123 		pmap_syncicache_page(pg);
   1124 		PMAPCOUNT(exec_synced_remap);
   1125 	}
   1126 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1127 #endif
   1128 
   1129 	PMAPCOUNT(remappings);
   1130 
   1131 	return (oflags);
   1132 }
   1133 
   1134 /*
   1135  * Allocate an L1 translation table for the specified pmap.
   1136  * This is called at pmap creation time.
   1137  */
   1138 static void
   1139 pmap_alloc_l1(pmap_t pm)
   1140 {
   1141 	struct l1_ttable *l1;
   1142 	u_int8_t domain;
   1143 
   1144 	/*
   1145 	 * Remove the L1 at the head of the LRU list
   1146 	 */
   1147 	simple_lock(&l1_lru_lock);
   1148 	l1 = TAILQ_FIRST(&l1_lru_list);
   1149 	KDASSERT(l1 != NULL);
   1150 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1151 
   1152 	/*
   1153 	 * Pick the first available domain number, and update
   1154 	 * the link to the next number.
   1155 	 */
   1156 	domain = l1->l1_domain_first;
   1157 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1158 
   1159 	/*
   1160 	 * If there are still free domain numbers in this L1,
   1161 	 * put it back on the TAIL of the LRU list.
   1162 	 */
   1163 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1164 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1165 
   1166 	simple_unlock(&l1_lru_lock);
   1167 
   1168 	/*
   1169 	 * Fix up the relevant bits in the pmap structure
   1170 	 */
   1171 	pm->pm_l1 = l1;
   1172 	pm->pm_domain = domain;
   1173 }
   1174 
   1175 /*
   1176  * Free an L1 translation table.
   1177  * This is called at pmap destruction time.
   1178  */
   1179 static void
   1180 pmap_free_l1(pmap_t pm)
   1181 {
   1182 	struct l1_ttable *l1 = pm->pm_l1;
   1183 
   1184 	simple_lock(&l1_lru_lock);
   1185 
   1186 	/*
   1187 	 * If this L1 is currently on the LRU list, remove it.
   1188 	 */
   1189 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1190 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1191 
   1192 	/*
   1193 	 * Free up the domain number which was allocated to the pmap
   1194 	 */
   1195 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1196 	l1->l1_domain_first = pm->pm_domain;
   1197 	l1->l1_domain_use_count--;
   1198 
   1199 	/*
   1200 	 * The L1 now must have at least 1 free domain, so add
   1201 	 * it back to the LRU list. If the use count is zero,
   1202 	 * put it at the head of the list, otherwise it goes
   1203 	 * to the tail.
   1204 	 */
   1205 	if (l1->l1_domain_use_count == 0)
   1206 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1207 	else
   1208 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1209 
   1210 	simple_unlock(&l1_lru_lock);
   1211 }
   1212 
   1213 static inline void
   1214 pmap_use_l1(pmap_t pm)
   1215 {
   1216 	struct l1_ttable *l1;
   1217 
   1218 	/*
   1219 	 * Do nothing if we're in interrupt context.
   1220 	 * Access to an L1 by the kernel pmap must not affect
   1221 	 * the LRU list.
   1222 	 */
   1223 	if (cpu_intr_p() || pm == pmap_kernel())
   1224 		return;
   1225 
   1226 	l1 = pm->pm_l1;
   1227 
   1228 	/*
   1229 	 * If the L1 is not currently on the LRU list, just return
   1230 	 */
   1231 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1232 		return;
   1233 
   1234 	simple_lock(&l1_lru_lock);
   1235 
   1236 	/*
   1237 	 * Check the use count again, now that we've acquired the lock
   1238 	 */
   1239 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1240 		simple_unlock(&l1_lru_lock);
   1241 		return;
   1242 	}
   1243 
   1244 	/*
   1245 	 * Move the L1 to the back of the LRU list
   1246 	 */
   1247 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1248 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1249 
   1250 	simple_unlock(&l1_lru_lock);
   1251 }
   1252 
   1253 /*
   1254  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1255  *
   1256  * Free an L2 descriptor table.
   1257  */
   1258 static inline void
   1259 #ifndef PMAP_INCLUDE_PTE_SYNC
   1260 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1261 #else
   1262 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1263 #endif
   1264 {
   1265 #ifdef PMAP_INCLUDE_PTE_SYNC
   1266 #ifdef PMAP_CACHE_VIVT
   1267 	/*
   1268 	 * Note: With a write-back cache, we may need to sync this
   1269 	 * L2 table before re-using it.
   1270 	 * This is because it may have belonged to a non-current
   1271 	 * pmap, in which case the cache syncs would have been
   1272 	 * skipped for the pages that were being unmapped. If the
   1273 	 * L2 table were then to be immediately re-allocated to
   1274 	 * the *current* pmap, it may well contain stale mappings
   1275 	 * which have not yet been cleared by a cache write-back
   1276 	 * and so would still be visible to the mmu.
   1277 	 */
   1278 	if (need_sync)
   1279 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1280 #endif /* PMAP_CACHE_VIVT */
   1281 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1282 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1283 }
   1284 
   1285 /*
   1286  * Returns a pointer to the L2 bucket associated with the specified pmap
   1287  * and VA, or NULL if no L2 bucket exists for the address.
   1288  */
   1289 static inline struct l2_bucket *
   1290 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1291 {
   1292 	struct l2_dtable *l2;
   1293 	struct l2_bucket *l2b;
   1294 	u_short l1idx;
   1295 
   1296 	l1idx = L1_IDX(va);
   1297 
   1298 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1299 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1300 		return (NULL);
   1301 
   1302 	return (l2b);
   1303 }
   1304 
   1305 /*
   1306  * Returns a pointer to the L2 bucket associated with the specified pmap
   1307  * and VA.
   1308  *
   1309  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1310  * bucket/page table in place.
   1311  *
   1312  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1313  * increment the bucket occupancy counter appropriately *before*
   1314  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1315  * the bucket/page in the meantime.
   1316  */
   1317 static struct l2_bucket *
   1318 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1319 {
   1320 	struct l2_dtable *l2;
   1321 	struct l2_bucket *l2b;
   1322 	u_short l1idx;
   1323 
   1324 	l1idx = L1_IDX(va);
   1325 
   1326 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1327 		/*
   1328 		 * No mapping at this address, as there is
   1329 		 * no entry in the L1 table.
   1330 		 * Need to allocate a new l2_dtable.
   1331 		 */
   1332 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1333 			return (NULL);
   1334 
   1335 		/*
   1336 		 * Link it into the parent pmap
   1337 		 */
   1338 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1339 	}
   1340 
   1341 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1342 
   1343 	/*
   1344 	 * Fetch pointer to the L2 page table associated with the address.
   1345 	 */
   1346 	if (l2b->l2b_kva == NULL) {
   1347 		pt_entry_t *ptep;
   1348 
   1349 		/*
   1350 		 * No L2 page table has been allocated. Chances are, this
   1351 		 * is because we just allocated the l2_dtable, above.
   1352 		 */
   1353 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1354 			/*
   1355 			 * Oops, no more L2 page tables available at this
   1356 			 * time. We may need to deallocate the l2_dtable
   1357 			 * if we allocated a new one above.
   1358 			 */
   1359 			if (l2->l2_occupancy == 0) {
   1360 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1361 				pmap_free_l2_dtable(l2);
   1362 			}
   1363 			return (NULL);
   1364 		}
   1365 
   1366 		l2->l2_occupancy++;
   1367 		l2b->l2b_kva = ptep;
   1368 		l2b->l2b_l1idx = l1idx;
   1369 	}
   1370 
   1371 	return (l2b);
   1372 }
   1373 
   1374 /*
   1375  * One or more mappings in the specified L2 descriptor table have just been
   1376  * invalidated.
   1377  *
   1378  * Garbage collect the metadata and descriptor table itself if necessary.
   1379  *
   1380  * The pmap lock must be acquired when this is called (not necessary
   1381  * for the kernel pmap).
   1382  */
   1383 static void
   1384 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1385 {
   1386 	struct l2_dtable *l2;
   1387 	pd_entry_t *pl1pd, l1pd;
   1388 	pt_entry_t *ptep;
   1389 	u_short l1idx;
   1390 
   1391 	KDASSERT(count <= l2b->l2b_occupancy);
   1392 
   1393 	/*
   1394 	 * Update the bucket's reference count according to how many
   1395 	 * PTEs the caller has just invalidated.
   1396 	 */
   1397 	l2b->l2b_occupancy -= count;
   1398 
   1399 	/*
   1400 	 * Note:
   1401 	 *
   1402 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1403 	 * as that would require checking all Level 1 page tables and
   1404 	 * removing any references to the Level 2 page table. See also the
   1405 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1406 	 *
   1407 	 * We make do with just invalidating the mapping in the L2 table.
   1408 	 *
   1409 	 * This isn't really a big deal in practice and, in fact, leads
   1410 	 * to a performance win over time as we don't need to continually
   1411 	 * alloc/free.
   1412 	 */
   1413 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1414 		return;
   1415 
   1416 	/*
   1417 	 * There are no more valid mappings in this level 2 page table.
   1418 	 * Go ahead and NULL-out the pointer in the bucket, then
   1419 	 * free the page table.
   1420 	 */
   1421 	l1idx = l2b->l2b_l1idx;
   1422 	ptep = l2b->l2b_kva;
   1423 	l2b->l2b_kva = NULL;
   1424 
   1425 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1426 
   1427 	/*
   1428 	 * If the L1 slot matches the pmap's domain
   1429 	 * number, then invalidate it.
   1430 	 */
   1431 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1432 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1433 		*pl1pd = 0;
   1434 		PTE_SYNC(pl1pd);
   1435 	}
   1436 
   1437 	/*
   1438 	 * Release the L2 descriptor table back to the pool cache.
   1439 	 */
   1440 #ifndef PMAP_INCLUDE_PTE_SYNC
   1441 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1442 #else
   1443 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1444 #endif
   1445 
   1446 	/*
   1447 	 * Update the reference count in the associated l2_dtable
   1448 	 */
   1449 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1450 	if (--l2->l2_occupancy > 0)
   1451 		return;
   1452 
   1453 	/*
   1454 	 * There are no more valid mappings in any of the Level 1
   1455 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1456 	 * the pointer in the parent pmap and free the l2_dtable.
   1457 	 */
   1458 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1459 	pmap_free_l2_dtable(l2);
   1460 }
   1461 
   1462 /*
   1463  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1464  * structures.
   1465  */
   1466 static int
   1467 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1468 {
   1469 #ifndef PMAP_INCLUDE_PTE_SYNC
   1470 	struct l2_bucket *l2b;
   1471 	pt_entry_t *ptep, pte;
   1472 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1473 
   1474 	/*
   1475 	 * The mappings for these page tables were initially made using
   1476 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1477 	 * mode will not be right for page table mappings. To avoid
   1478 	 * polluting the pmap_kenter_pa() code with a special case for
   1479 	 * page tables, we simply fix up the cache-mode here if it's not
   1480 	 * correct.
   1481 	 */
   1482 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1483 	KDASSERT(l2b != NULL);
   1484 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1485 	pte = *ptep;
   1486 
   1487 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1488 		/*
   1489 		 * Page tables must have the cache-mode set to Write-Thru.
   1490 		 */
   1491 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1492 		PTE_SYNC(ptep);
   1493 		cpu_tlb_flushD_SE(va);
   1494 		cpu_cpwait();
   1495 	}
   1496 #endif
   1497 
   1498 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1499 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1500 	return (0);
   1501 }
   1502 
   1503 static int
   1504 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1505 {
   1506 
   1507 	memset(v, 0, sizeof(struct l2_dtable));
   1508 	return (0);
   1509 }
   1510 
   1511 static int
   1512 pmap_pmap_ctor(void *arg, void *v, int flags)
   1513 {
   1514 
   1515 	memset(v, 0, sizeof(struct pmap));
   1516 	return (0);
   1517 }
   1518 
   1519 static void
   1520 pmap_pinit(pmap_t pm)
   1521 {
   1522 	struct l2_bucket *l2b;
   1523 
   1524 	if (vector_page < KERNEL_BASE) {
   1525 		/*
   1526 		 * Map the vector page.
   1527 		 */
   1528 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1529 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1530 		pmap_update(pm);
   1531 
   1532 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1533 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1534 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1535 		    L1_C_DOM(pm->pm_domain);
   1536 	} else
   1537 		pm->pm_pl1vec = NULL;
   1538 }
   1539 
   1540 #ifdef PMAP_CACHE_VIVT
   1541 /*
   1542  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1543  * there is more than one mapping and at least one of them is writable.
   1544  * Since we purge the cache on every context switch, we only need to check for
   1545  * other mappings within the same pmap, or kernel_pmap.
   1546  * This function is also called when a page is unmapped, to possibly reenable
   1547  * caching on any remaining mappings.
   1548  *
   1549  * The code implements the following logic, where:
   1550  *
   1551  * KW = # of kernel read/write pages
   1552  * KR = # of kernel read only pages
   1553  * UW = # of user read/write pages
   1554  * UR = # of user read only pages
   1555  *
   1556  * KC = kernel mapping is cacheable
   1557  * UC = user mapping is cacheable
   1558  *
   1559  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1560  *             +---------------------------------------------
   1561  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1562  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1563  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1564  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1565  */
   1566 
   1567 static const int pmap_vac_flags[4][4] = {
   1568 	{-1,		0,		0,		PVF_KNC},
   1569 	{0,		0,		PVF_NC,		PVF_NC},
   1570 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1571 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1572 };
   1573 
   1574 static inline int
   1575 pmap_get_vac_flags(const struct vm_page *pg)
   1576 {
   1577 	int kidx, uidx;
   1578 
   1579 	kidx = 0;
   1580 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1581 		kidx |= 1;
   1582 	if (pg->mdpage.krw_mappings)
   1583 		kidx |= 2;
   1584 
   1585 	uidx = 0;
   1586 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1587 		uidx |= 1;
   1588 	if (pg->mdpage.urw_mappings)
   1589 		uidx |= 2;
   1590 
   1591 	return (pmap_vac_flags[uidx][kidx]);
   1592 }
   1593 
   1594 static inline void
   1595 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1596 {
   1597 	int nattr;
   1598 
   1599 	nattr = pmap_get_vac_flags(pg);
   1600 
   1601 	if (nattr < 0) {
   1602 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1603 		return;
   1604 	}
   1605 
   1606 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1607 		return;
   1608 
   1609 	if (pm == pmap_kernel())
   1610 		pmap_vac_me_kpmap(pg, pm, va);
   1611 	else
   1612 		pmap_vac_me_user(pg, pm, va);
   1613 
   1614 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1615 }
   1616 
   1617 static void
   1618 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1619 {
   1620 	u_int u_cacheable, u_entries;
   1621 	struct pv_entry *pv;
   1622 	pmap_t last_pmap = pm;
   1623 
   1624 	/*
   1625 	 * Pass one, see if there are both kernel and user pmaps for
   1626 	 * this page.  Calculate whether there are user-writable or
   1627 	 * kernel-writable pages.
   1628 	 */
   1629 	u_cacheable = 0;
   1630 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1631 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1632 			u_cacheable++;
   1633 	}
   1634 
   1635 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1636 
   1637 	/*
   1638 	 * We know we have just been updating a kernel entry, so if
   1639 	 * all user pages are already cacheable, then there is nothing
   1640 	 * further to do.
   1641 	 */
   1642 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1643 		return;
   1644 
   1645 	if (u_entries) {
   1646 		/*
   1647 		 * Scan over the list again, for each entry, if it
   1648 		 * might not be set correctly, call pmap_vac_me_user
   1649 		 * to recalculate the settings.
   1650 		 */
   1651 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1652 			/*
   1653 			 * We know kernel mappings will get set
   1654 			 * correctly in other calls.  We also know
   1655 			 * that if the pmap is the same as last_pmap
   1656 			 * then we've just handled this entry.
   1657 			 */
   1658 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1659 				continue;
   1660 
   1661 			/*
   1662 			 * If there are kernel entries and this page
   1663 			 * is writable but non-cacheable, then we can
   1664 			 * skip this entry also.
   1665 			 */
   1666 			if (pg->mdpage.k_mappings &&
   1667 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1668 			    (PVF_NC | PVF_WRITE))
   1669 				continue;
   1670 
   1671 			/*
   1672 			 * Similarly if there are no kernel-writable
   1673 			 * entries and the page is already
   1674 			 * read-only/cacheable.
   1675 			 */
   1676 			if (pg->mdpage.krw_mappings == 0 &&
   1677 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1678 				continue;
   1679 
   1680 			/*
   1681 			 * For some of the remaining cases, we know
   1682 			 * that we must recalculate, but for others we
   1683 			 * can't tell if they are correct or not, so
   1684 			 * we recalculate anyway.
   1685 			 */
   1686 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1687 		}
   1688 
   1689 		if (pg->mdpage.k_mappings == 0)
   1690 			return;
   1691 	}
   1692 
   1693 	pmap_vac_me_user(pg, pm, va);
   1694 }
   1695 
   1696 static void
   1697 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1698 {
   1699 	pmap_t kpmap = pmap_kernel();
   1700 	struct pv_entry *pv, *npv = NULL;
   1701 	struct l2_bucket *l2b;
   1702 	pt_entry_t *ptep, pte;
   1703 	u_int entries = 0;
   1704 	u_int writable = 0;
   1705 	u_int cacheable_entries = 0;
   1706 	u_int kern_cacheable = 0;
   1707 	u_int other_writable = 0;
   1708 
   1709 	/*
   1710 	 * Count mappings and writable mappings in this pmap.
   1711 	 * Include kernel mappings as part of our own.
   1712 	 * Keep a pointer to the first one.
   1713 	 */
   1714 	npv = NULL;
   1715 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1716 		/* Count mappings in the same pmap */
   1717 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1718 			if (entries++ == 0)
   1719 				npv = pv;
   1720 
   1721 			/* Cacheable mappings */
   1722 			if ((pv->pv_flags & PVF_NC) == 0) {
   1723 				cacheable_entries++;
   1724 				if (kpmap == pv->pv_pmap)
   1725 					kern_cacheable++;
   1726 			}
   1727 
   1728 			/* Writable mappings */
   1729 			if (pv->pv_flags & PVF_WRITE)
   1730 				++writable;
   1731 		} else
   1732 		if (pv->pv_flags & PVF_WRITE)
   1733 			other_writable = 1;
   1734 	}
   1735 
   1736 	/*
   1737 	 * Enable or disable caching as necessary.
   1738 	 * Note: the first entry might be part of the kernel pmap,
   1739 	 * so we can't assume this is indicative of the state of the
   1740 	 * other (maybe non-kpmap) entries.
   1741 	 */
   1742 	if ((entries > 1 && writable) ||
   1743 	    (entries > 0 && pm == kpmap && other_writable)) {
   1744 		if (cacheable_entries == 0)
   1745 			return;
   1746 
   1747 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1748 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1749 			    (pv->pv_flags & PVF_NC))
   1750 				continue;
   1751 
   1752 			pv->pv_flags |= PVF_NC;
   1753 
   1754 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1755 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1756 			pte = *ptep & ~L2_S_CACHE_MASK;
   1757 
   1758 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1759 			    l2pte_valid(pte)) {
   1760 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1761 #ifdef PMAP_CACHE_VIVT
   1762 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1763 					    pv->pv_va, PAGE_SIZE);
   1764 #endif
   1765 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1766 					    pv->pv_va);
   1767 				} else
   1768 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1769 #ifdef PMAP_CACHE_VIVT
   1770 					pmap_dcache_wb_range(pv->pv_pmap,
   1771 					    pv->pv_va, PAGE_SIZE, true,
   1772 					    (pv->pv_flags & PVF_WRITE) == 0);
   1773 #endif
   1774 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1775 					    pv->pv_va);
   1776 				}
   1777 			}
   1778 
   1779 			*ptep = pte;
   1780 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1781 		}
   1782 		cpu_cpwait();
   1783 	} else
   1784 	if (entries > cacheable_entries) {
   1785 		/*
   1786 		 * Turn cacheing back on for some pages.  If it is a kernel
   1787 		 * page, only do so if there are no other writable pages.
   1788 		 */
   1789 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1790 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1791 			    (kpmap != pv->pv_pmap || other_writable)))
   1792 				continue;
   1793 
   1794 			pv->pv_flags &= ~PVF_NC;
   1795 
   1796 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1797 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1798 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1799 
   1800 			if (l2pte_valid(pte)) {
   1801 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1802 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1803 					    pv->pv_va);
   1804 				} else
   1805 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1806 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1807 					    pv->pv_va);
   1808 				}
   1809 			}
   1810 
   1811 			*ptep = pte;
   1812 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1813 		}
   1814 	}
   1815 }
   1816 #endif
   1817 
   1818 #ifdef PMAP_CACHE_VIPT
   1819 static void
   1820 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1821 {
   1822 	struct pv_entry *pv;
   1823 	vaddr_t tst_mask;
   1824 	bool bad_alias;
   1825 	struct l2_bucket *l2b;
   1826 	pt_entry_t *ptep, pte, opte;
   1827 	const u_int
   1828 	    rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
   1829 	    ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
   1830 
   1831 	/* do we need to do anything? */
   1832 	if (arm_cache_prefer_mask == 0)
   1833 		return;
   1834 
   1835 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1836 	    pg, pm, va));
   1837 
   1838 	KASSERT(!va || pm);
   1839 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1840 
   1841 	/* Already a conflict? */
   1842 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1843 		/* just an add, things are already non-cached */
   1844 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
   1845 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   1846 		bad_alias = false;
   1847 		if (va) {
   1848 			PMAPCOUNT(vac_color_none);
   1849 			bad_alias = true;
   1850 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1851 			goto fixup;
   1852 		}
   1853 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1854 		/* the list can't be empty because it would be cachable */
   1855 		if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
   1856 			tst_mask = pg->mdpage.pvh_attrs;
   1857 		} else {
   1858 			KASSERT(pv);
   1859 			tst_mask = pv->pv_va;
   1860 			pv = SLIST_NEXT(pv, pv_link);
   1861 		}
   1862 		/*
   1863 		 * Only check for a bad alias if we have writable mappings.
   1864 		 */
   1865 		tst_mask &= arm_cache_prefer_mask;
   1866 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1867 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1868 				/* if there's a bad alias, stop checking. */
   1869 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1870 					bad_alias = true;
   1871 			}
   1872 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1873 			if (!bad_alias)
   1874 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1875 		} else {
   1876 			/*
   1877 			 * We have only read-only mappings.  Let's see if there
   1878 			 * are multiple colors in use or if we mapped a KMPAGE.
   1879 			 * If the latter, we have a bad alias.  If the former,
   1880 			 * we need to remember that.
   1881 			 */
   1882 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1883 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1884 					if (pg->mdpage.pvh_attrs & PVF_KMPAGE)
   1885 						bad_alias = true;
   1886 					break;
   1887 				}
   1888 			}
   1889 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1890 			/*
   1891 			 * No KMPAGE and we exited early, so we must have
   1892 			 * multiple color mappings.
   1893 			 */
   1894 			if (!bad_alias && pv != NULL)
   1895 				pg->mdpage.pvh_attrs |= PVF_MULTCLR;
   1896 		}
   1897 
   1898 		/* If no conflicting colors, set everything back to cached */
   1899 		if (!bad_alias) {
   1900 #ifdef DEBUG
   1901 			if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1902 			    || ro_mappings < 2) {
   1903 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1904 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1905 			}
   1906 #endif
   1907 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1908 			pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
   1909 			/*
   1910 			 * Restore DIRTY bit if page is modified
   1911 			 */
   1912 			if (pg->mdpage.pvh_attrs & PVF_DMOD)
   1913 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1914 			PMAPCOUNT(vac_color_restore);
   1915 		} else {
   1916 			KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1917 			KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1918 		}
   1919 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1920 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1921 	} else if (!va) {
   1922 		KASSERT(pmap_is_page_colored_p(pg));
   1923 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
   1924 		    || (pg->mdpage.pvh_attrs & PVF_DIRTY));
   1925 		if (rw_mappings == 0) {
   1926 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1927 			if (ro_mappings == 1
   1928 			    && (pg->mdpage.pvh_attrs & PVF_MULTCLR)) {
   1929 				/*
   1930 				 * If this is the last readonly mapping
   1931 				 * but it doesn't match the current color
   1932 				 * for the page, change the current color
   1933 				 * to match this last readonly mapping.
   1934 				 */
   1935 				pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1936 				tst_mask = (pg->mdpage.pvh_attrs ^ pv->pv_va)
   1937 				    & arm_cache_prefer_mask;
   1938 				if (tst_mask) {
   1939 					pg->mdpage.pvh_attrs ^= tst_mask;
   1940 					PMAPCOUNT(vac_color_change);
   1941 				}
   1942 			}
   1943 		}
   1944 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1945 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1946 		return;
   1947 	} else if (!pmap_is_page_colored_p(pg)) {
   1948 		/* not colored so we just use its color */
   1949 		KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1950 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   1951 		PMAPCOUNT(vac_color_new);
   1952 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1953 		pg->mdpage.pvh_attrs |= PVF_COLORED
   1954 		    | (va & arm_cache_prefer_mask)
   1955 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1956 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1957 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1958 		return;
   1959 	} else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1960 		bad_alias = false;
   1961 		if (rw_mappings > 0) {
   1962 			/*
   1963 			 * We now have writeable mappings and if we have
   1964 			 * readonly mappings in more than once color, we have
   1965 			 * an aliasing problem.  Regardless mark the page as
   1966 			 * writeable.
   1967 			 */
   1968 			if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
   1969 				if (ro_mappings < 2) {
   1970 					/*
   1971 					 * If we only have less than two
   1972 					 * read-only mappings, just flush the
   1973 					 * non-primary colors from the cache.
   1974 					 */
   1975 					pmap_flush_page(pg,
   1976 					    PMAP_FLUSH_SECONDARY);
   1977 				} else {
   1978 					bad_alias = true;
   1979 				}
   1980 			}
   1981 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1982 		}
   1983 		/* If no conflicting colors, set everything back to cached */
   1984 		if (!bad_alias) {
   1985 #ifdef DEBUG
   1986 			if (rw_mappings > 0
   1987 			    || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
   1988 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1989 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1990 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1991 			}
   1992 #endif
   1993 			if (SLIST_EMPTY(&pg->mdpage.pvh_list))
   1994 				PMAPCOUNT(vac_color_reuse);
   1995 			else
   1996 				PMAPCOUNT(vac_color_ok);
   1997 
   1998 			/* matching color, just return */
   1999 			KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2000 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2001 			return;
   2002 		}
   2003 		KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   2004 		KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   2005 
   2006 		/* color conflict.  evict from cache. */
   2007 
   2008 		pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
   2009 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2010 		pg->mdpage.pvh_attrs |= PVF_NC;
   2011 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2012 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   2013 		PMAPCOUNT(vac_color_erase);
   2014 	} else if (rw_mappings == 0
   2015 		   && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2016 		KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
   2017 
   2018 		/*
   2019 		 * If the page has dirty cache lines, clean it.
   2020 		 */
   2021 		if (pg->mdpage.pvh_attrs & PVF_DIRTY)
   2022 			pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
   2023 
   2024 		/*
   2025 		 * If this is the first remapping (we know that there are no
   2026 		 * writeable mappings), then this is a simple color change.
   2027 		 * Otherwise this is a seconary r/o mapping, which means
   2028 		 * we don't have to do anything.
   2029 		 */
   2030 		if (ro_mappings == 1) {
   2031 			KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2032 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2033 			pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2034 			PMAPCOUNT(vac_color_change);
   2035 		} else {
   2036 			PMAPCOUNT(vac_color_blind);
   2037 		}
   2038 		pg->mdpage.pvh_attrs |= PVF_MULTCLR;
   2039 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2040 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2041 		return;
   2042 	} else {
   2043 		if (rw_mappings > 0)
   2044 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   2045 
   2046 		/* color conflict.  evict from cache. */
   2047 		pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
   2048 
   2049 		/* the list can't be empty because this was a enter/modify */
   2050 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2051 		if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2052 			KASSERT(pv);
   2053 			/*
   2054 			 * If there's only one mapped page, change color to the
   2055 			 * page's new color and return.  Restore the DIRTY bit
   2056 			 * that was erased by pmap_flush_page.
   2057 			 */
   2058 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2059 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2060 				pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2061 				if (pg->mdpage.pvh_attrs & PVF_DMOD)
   2062 					pg->mdpage.pvh_attrs |= PVF_DIRTY;
   2063 				PMAPCOUNT(vac_color_change);
   2064 				KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2065 				KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2066 				KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   2067 				return;
   2068 			}
   2069 		}
   2070 		bad_alias = true;
   2071 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2072 		pg->mdpage.pvh_attrs |= PVF_NC;
   2073 		PMAPCOUNT(vac_color_erase);
   2074 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2075 	}
   2076 
   2077   fixup:
   2078 	KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2079 
   2080 	/*
   2081 	 * Turn cacheing on/off for all pages.
   2082 	 */
   2083 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2084 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2085 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2086 		opte = *ptep;
   2087 		pte = opte & ~L2_S_CACHE_MASK;
   2088 		if (bad_alias) {
   2089 			pv->pv_flags |= PVF_NC;
   2090 		} else {
   2091 			pv->pv_flags &= ~PVF_NC;
   2092 			pte |= pte_l2_s_cache_mode;
   2093 		}
   2094 
   2095 		if (opte == pte)	/* only update is there's a change */
   2096 			continue;
   2097 
   2098 		if (l2pte_valid(pte)) {
   2099 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2100 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2101 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2102 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2103 			}
   2104 		}
   2105 
   2106 		*ptep = pte;
   2107 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2108 	}
   2109 }
   2110 #endif	/* PMAP_CACHE_VIPT */
   2111 
   2112 
   2113 /*
   2114  * Modify pte bits for all ptes corresponding to the given physical address.
   2115  * We use `maskbits' rather than `clearbits' because we're always passing
   2116  * constants and the latter would require an extra inversion at run-time.
   2117  */
   2118 static void
   2119 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2120 {
   2121 	struct l2_bucket *l2b;
   2122 	struct pv_entry *pv;
   2123 	pt_entry_t *ptep, npte, opte;
   2124 	pmap_t pm;
   2125 	vaddr_t va;
   2126 	u_int oflags;
   2127 #ifdef PMAP_CACHE_VIPT
   2128 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   2129 	bool need_syncicache = false;
   2130 	bool did_syncicache = false;
   2131 	bool need_vac_me_harder = false;
   2132 #endif
   2133 
   2134 	NPDEBUG(PDB_BITS,
   2135 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2136 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2137 
   2138 	PMAP_HEAD_TO_MAP_LOCK();
   2139 	simple_lock(&pg->mdpage.pvh_slock);
   2140 
   2141 #ifdef PMAP_CACHE_VIPT
   2142 	/*
   2143 	 * If we might want to sync the I-cache and we've modified it,
   2144 	 * then we know we definitely need to sync or discard it.
   2145 	 */
   2146 	if (want_syncicache)
   2147 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   2148 #endif
   2149 	/*
   2150 	 * Clear saved attributes (modify, reference)
   2151 	 */
   2152 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2153 
   2154 	if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   2155 #ifdef PMAP_CACHE_VIPT
   2156 		if (need_syncicache) {
   2157 			/*
   2158 			 * No one has it mapped, so just discard it.  The next
   2159 			 * exec remapping will cause it to be synced.
   2160 			 */
   2161 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2162 			PMAPCOUNT(exec_discarded_clearbit);
   2163 		}
   2164 #endif
   2165 		simple_unlock(&pg->mdpage.pvh_slock);
   2166 		PMAP_HEAD_TO_MAP_UNLOCK();
   2167 		return;
   2168 	}
   2169 
   2170 	/*
   2171 	 * Loop over all current mappings setting/clearing as appropos
   2172 	 */
   2173 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2174 		va = pv->pv_va;
   2175 		pm = pv->pv_pmap;
   2176 		oflags = pv->pv_flags;
   2177 		/*
   2178 		 * Kernel entries are unmanaged and as such not to be changed.
   2179 		 */
   2180 		if (oflags & PVF_KENTRY)
   2181 			continue;
   2182 		pv->pv_flags &= ~maskbits;
   2183 
   2184 		pmap_acquire_pmap_lock(pm);
   2185 
   2186 		l2b = pmap_get_l2_bucket(pm, va);
   2187 		KDASSERT(l2b != NULL);
   2188 
   2189 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2190 		npte = opte = *ptep;
   2191 
   2192 		NPDEBUG(PDB_BITS,
   2193 		    printf(
   2194 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2195 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2196 
   2197 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2198 #ifdef PMAP_CACHE_VIVT
   2199 			if ((pv->pv_flags & PVF_NC)) {
   2200 				/*
   2201 				 * Entry is not cacheable:
   2202 				 *
   2203 				 * Don't turn caching on again if this is a
   2204 				 * modified emulation. This would be
   2205 				 * inconsitent with the settings created by
   2206 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2207 				 * to re-enable cacheing.
   2208 				 *
   2209 				 * There's no need to call pmap_vac_me_harder()
   2210 				 * here: all pages are losing their write
   2211 				 * permission.
   2212 				 */
   2213 				if (maskbits & PVF_WRITE) {
   2214 					npte |= pte_l2_s_cache_mode;
   2215 					pv->pv_flags &= ~PVF_NC;
   2216 				}
   2217 			} else
   2218 			if (opte & L2_S_PROT_W) {
   2219 				/*
   2220 				 * Entry is writable/cacheable: check if pmap
   2221 				 * is current if it is flush it, otherwise it
   2222 				 * won't be in the cache
   2223 				 */
   2224 				if (PV_BEEN_EXECD(oflags))
   2225 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2226 					    PAGE_SIZE);
   2227 				else
   2228 				if (PV_BEEN_REFD(oflags))
   2229 					pmap_dcache_wb_range(pm, pv->pv_va,
   2230 					    PAGE_SIZE,
   2231 					    (maskbits & PVF_REF) != 0, false);
   2232 			}
   2233 #endif
   2234 
   2235 			/* make the pte read only */
   2236 			npte &= ~L2_S_PROT_W;
   2237 
   2238 			if (maskbits & oflags & PVF_WRITE) {
   2239 				/*
   2240 				 * Keep alias accounting up to date
   2241 				 */
   2242 				if (pv->pv_pmap == pmap_kernel()) {
   2243 					pg->mdpage.krw_mappings--;
   2244 					pg->mdpage.kro_mappings++;
   2245 				} else {
   2246 					pg->mdpage.urw_mappings--;
   2247 					pg->mdpage.uro_mappings++;
   2248 				}
   2249 #ifdef PMAP_CACHE_VIPT
   2250 				if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2251 					pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2252 				if (want_syncicache)
   2253 					need_syncicache = true;
   2254 				need_vac_me_harder = true;
   2255 #endif
   2256 			}
   2257 		}
   2258 
   2259 		if (maskbits & PVF_REF) {
   2260 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2261 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2262 			    l2pte_valid(npte)) {
   2263 #ifdef PMAP_CACHE_VIVT
   2264 				/*
   2265 				 * Check npte here; we may have already
   2266 				 * done the wbinv above, and the validity
   2267 				 * of the PTE is the same for opte and
   2268 				 * npte.
   2269 				 */
   2270 				/* XXXJRT need idcache_inv_range */
   2271 				if (PV_BEEN_EXECD(oflags))
   2272 					pmap_idcache_wbinv_range(pm,
   2273 					    pv->pv_va, PAGE_SIZE);
   2274 				else
   2275 				if (PV_BEEN_REFD(oflags))
   2276 					pmap_dcache_wb_range(pm,
   2277 					    pv->pv_va, PAGE_SIZE,
   2278 					    true, true);
   2279 #endif
   2280 			}
   2281 
   2282 			/*
   2283 			 * Make the PTE invalid so that we will take a
   2284 			 * page fault the next time the mapping is
   2285 			 * referenced.
   2286 			 */
   2287 			npte &= ~L2_TYPE_MASK;
   2288 			npte |= L2_TYPE_INV;
   2289 		}
   2290 
   2291 		if (npte != opte) {
   2292 			*ptep = npte;
   2293 			PTE_SYNC(ptep);
   2294 			/* Flush the TLB entry if a current pmap. */
   2295 			if (PV_BEEN_EXECD(oflags))
   2296 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2297 			else
   2298 			if (PV_BEEN_REFD(oflags))
   2299 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2300 		}
   2301 
   2302 		pmap_release_pmap_lock(pm);
   2303 
   2304 		NPDEBUG(PDB_BITS,
   2305 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2306 		    pm, va, opte, npte));
   2307 	}
   2308 
   2309 #ifdef PMAP_CACHE_VIPT
   2310 	/*
   2311 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2312 	 */
   2313 	if (need_syncicache && !did_syncicache) {
   2314 		pmap_syncicache_page(pg);
   2315 		PMAPCOUNT(exec_synced_clearbit);
   2316 	}
   2317 	/*
   2318 	 * If we are changing this to read-only, we need to call vac_me_harder
   2319 	 * so we can change all the read-only pages to cacheable.  We pretend
   2320 	 * this as a page deletion.
   2321 	 */
   2322 	if (need_vac_me_harder) {
   2323 		if (pg->mdpage.pvh_attrs & PVF_NC)
   2324 			pmap_vac_me_harder(pg, NULL, 0);
   2325 	}
   2326 #endif
   2327 
   2328 	simple_unlock(&pg->mdpage.pvh_slock);
   2329 	PMAP_HEAD_TO_MAP_UNLOCK();
   2330 }
   2331 
   2332 /*
   2333  * pmap_clean_page()
   2334  *
   2335  * This is a local function used to work out the best strategy to clean
   2336  * a single page referenced by its entry in the PV table. It's used by
   2337  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2338  *
   2339  * Its policy is effectively:
   2340  *  o If there are no mappings, we don't bother doing anything with the cache.
   2341  *  o If there is one mapping, we clean just that page.
   2342  *  o If there are multiple mappings, we clean the entire cache.
   2343  *
   2344  * So that some functions can be further optimised, it returns 0 if it didn't
   2345  * clean the entire cache, or 1 if it did.
   2346  *
   2347  * XXX One bug in this routine is that if the pv_entry has a single page
   2348  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2349  * just the 1 page. Since this should not occur in everyday use and if it does
   2350  * it will just result in not the most efficient clean for the page.
   2351  */
   2352 #ifdef PMAP_CACHE_VIVT
   2353 static int
   2354 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2355 {
   2356 	pmap_t pm, pm_to_clean = NULL;
   2357 	struct pv_entry *npv;
   2358 	u_int cache_needs_cleaning = 0;
   2359 	u_int flags = 0;
   2360 	vaddr_t page_to_clean = 0;
   2361 
   2362 	if (pv == NULL) {
   2363 		/* nothing mapped in so nothing to flush */
   2364 		return (0);
   2365 	}
   2366 
   2367 	/*
   2368 	 * Since we flush the cache each time we change to a different
   2369 	 * user vmspace, we only need to flush the page if it is in the
   2370 	 * current pmap.
   2371 	 */
   2372 	pm = curproc->p_vmspace->vm_map.pmap;
   2373 
   2374 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2375 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2376 			flags |= npv->pv_flags;
   2377 			/*
   2378 			 * The page is mapped non-cacheable in
   2379 			 * this map.  No need to flush the cache.
   2380 			 */
   2381 			if (npv->pv_flags & PVF_NC) {
   2382 #ifdef DIAGNOSTIC
   2383 				if (cache_needs_cleaning)
   2384 					panic("pmap_clean_page: "
   2385 					    "cache inconsistency");
   2386 #endif
   2387 				break;
   2388 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2389 				continue;
   2390 			if (cache_needs_cleaning) {
   2391 				page_to_clean = 0;
   2392 				break;
   2393 			} else {
   2394 				page_to_clean = npv->pv_va;
   2395 				pm_to_clean = npv->pv_pmap;
   2396 			}
   2397 			cache_needs_cleaning = 1;
   2398 		}
   2399 	}
   2400 
   2401 	if (page_to_clean) {
   2402 		if (PV_BEEN_EXECD(flags))
   2403 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2404 			    PAGE_SIZE);
   2405 		else
   2406 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2407 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2408 	} else if (cache_needs_cleaning) {
   2409 		if (PV_BEEN_EXECD(flags))
   2410 			pmap_idcache_wbinv_all(pm);
   2411 		else
   2412 			pmap_dcache_wbinv_all(pm);
   2413 		return (1);
   2414 	}
   2415 	return (0);
   2416 }
   2417 #endif
   2418 
   2419 #ifdef PMAP_CACHE_VIPT
   2420 /*
   2421  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2422  * right cache alias to make sure we flush the right stuff.
   2423  */
   2424 void
   2425 pmap_syncicache_page(struct vm_page *pg)
   2426 {
   2427 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2428 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2429 
   2430 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2431 	    pg, pg->mdpage.pvh_attrs));
   2432 	/*
   2433 	 * No need to clean the page if it's non-cached.
   2434 	 */
   2435 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2436 		return;
   2437 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2438 
   2439 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2440 	/*
   2441 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2442 	 */
   2443 	*ptep = L2_S_PROTO |
   2444 	    VM_PAGE_TO_PHYS(pg)
   2445 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2446 	    | pte_l2_s_cache_mode;
   2447 	PTE_SYNC(ptep);
   2448 
   2449 	/*
   2450 	 * Flush it.
   2451 	 */
   2452 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2453 	/*
   2454 	 * Unmap the page.
   2455 	 */
   2456 	*ptep = 0;
   2457 	PTE_SYNC(ptep);
   2458 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2459 
   2460 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2461 	PMAPCOUNT(exec_synced);
   2462 }
   2463 
   2464 void
   2465 pmap_flush_page(struct vm_page *pg, enum pmap_flush_op flush)
   2466 {
   2467 	vsize_t va_offset, end_va;
   2468 	void (*cf)(vaddr_t, vsize_t);
   2469 
   2470 	if (arm_cache_prefer_mask == 0)
   2471 		return;
   2472 
   2473 	switch (flush) {
   2474 	case PMAP_FLUSH_PRIMARY:
   2475 		if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
   2476 			va_offset = 0;
   2477 			end_va = arm_cache_prefer_mask;
   2478 			pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
   2479 			PMAPCOUNT(vac_flush_lots);
   2480 		} else {
   2481 			va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2482 			end_va = va_offset;
   2483 			PMAPCOUNT(vac_flush_one);
   2484 		}
   2485 		/*
   2486 		 * Mark that the page is no longer dirty.
   2487 		 */
   2488 		pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2489 		cf = cpufuncs.cf_idcache_wbinv_range;
   2490 		break;
   2491 	case PMAP_FLUSH_SECONDARY:
   2492 		va_offset = 0;
   2493 		end_va = arm_cache_prefer_mask;
   2494 		cf = cpufuncs.cf_idcache_wbinv_range;
   2495 		pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
   2496 		PMAPCOUNT(vac_flush_lots);
   2497 		break;
   2498 	case PMAP_CLEAN_PRIMARY:
   2499 		va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2500 		end_va = va_offset;
   2501 		cf = cpufuncs.cf_dcache_wb_range;
   2502 		/*
   2503 		 * Mark that the page is no longer dirty.
   2504 		 */
   2505 		if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
   2506 			pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2507 		PMAPCOUNT(vac_clean_one);
   2508 		break;
   2509 	default:
   2510 		return;
   2511 	}
   2512 
   2513 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2514 
   2515 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2516 	    pg, pg->mdpage.pvh_attrs));
   2517 
   2518 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2519 		const size_t pte_offset = va_offset >> PGSHIFT;
   2520 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2521 		const pt_entry_t oldpte = *ptep;
   2522 
   2523 		if (flush == PMAP_FLUSH_SECONDARY
   2524 		    && va_offset == (pg->mdpage.pvh_attrs & arm_cache_prefer_mask))
   2525 			continue;
   2526 
   2527 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2528 		/*
   2529 		 * Set up a PTE with the right coloring to flush
   2530 		 * existing cache entries.
   2531 		 */
   2532 		*ptep = L2_S_PROTO
   2533 		    | VM_PAGE_TO_PHYS(pg)
   2534 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2535 		    | pte_l2_s_cache_mode;
   2536 		PTE_SYNC(ptep);
   2537 
   2538 		/*
   2539 		 * Flush it.
   2540 		 */
   2541 		(*cf)(cdstp + va_offset, PAGE_SIZE);
   2542 
   2543 		/*
   2544 		 * Restore the page table entry since we might have interrupted
   2545 		 * pmap_zero_page or pmap_copy_page which was already using
   2546 		 * this pte.
   2547 		 */
   2548 		*ptep = oldpte;
   2549 		PTE_SYNC(ptep);
   2550 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2551 	}
   2552 }
   2553 #endif /* PMAP_CACHE_VIPT */
   2554 
   2555 /*
   2556  * Routine:	pmap_page_remove
   2557  * Function:
   2558  *		Removes this physical page from
   2559  *		all physical maps in which it resides.
   2560  *		Reflects back modify bits to the pager.
   2561  */
   2562 static void
   2563 pmap_page_remove(struct vm_page *pg)
   2564 {
   2565 	struct l2_bucket *l2b;
   2566 	struct pv_entry *pv, *npv, **pvp;
   2567 	pmap_t pm, curpm;
   2568 	pt_entry_t *ptep, pte;
   2569 	bool flush;
   2570 	u_int flags;
   2571 
   2572 	NPDEBUG(PDB_FOLLOW,
   2573 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2574 	    VM_PAGE_TO_PHYS(pg)));
   2575 
   2576 	PMAP_HEAD_TO_MAP_LOCK();
   2577 	simple_lock(&pg->mdpage.pvh_slock);
   2578 
   2579 	pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2580 	if (pv == NULL) {
   2581 #ifdef PMAP_CACHE_VIPT
   2582 		/*
   2583 		 * We *know* the page contents are about to be replaced.
   2584 		 * Discard the exec contents
   2585 		 */
   2586 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2587 			PMAPCOUNT(exec_discarded_page_protect);
   2588 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2589 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2590 #endif
   2591 		simple_unlock(&pg->mdpage.pvh_slock);
   2592 		PMAP_HEAD_TO_MAP_UNLOCK();
   2593 		return;
   2594 	}
   2595 #ifdef PMAP_CACHE_VIPT
   2596 	KASSERT(pmap_is_page_colored_p(pg));
   2597 #endif
   2598 
   2599 	/*
   2600 	 * Clear alias counts
   2601 	 */
   2602 #ifdef PMAP_CACHE_VIVT
   2603 	pg->mdpage.k_mappings = 0;
   2604 #endif
   2605 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2606 
   2607 	flush = false;
   2608 	flags = 0;
   2609 	curpm = curproc->p_vmspace->vm_map.pmap;
   2610 
   2611 #ifdef PMAP_CACHE_VIVT
   2612 	pmap_clean_page(pv, false);
   2613 #endif
   2614 
   2615 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
   2616 	while (pv) {
   2617 		pm = pv->pv_pmap;
   2618 		npv = SLIST_NEXT(pv, pv_link);
   2619 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2620 			flush = true;
   2621 
   2622 		if (pm == pmap_kernel()) {
   2623 #ifdef PMAP_CACHE_VIPT
   2624 			/*
   2625 			 * If this was unmanaged mapping, it must be preserved.
   2626 			 * Move it back on the list and advance the end-of-list
   2627 			 * pointer.
   2628 			 */
   2629 			if (pv->pv_flags & PVF_KENTRY) {
   2630 				*pvp = pv;
   2631 				pvp = &SLIST_NEXT(pv, pv_link);
   2632 				pv = npv;
   2633 				continue;
   2634 			}
   2635 			if (pv->pv_flags & PVF_WRITE)
   2636 				pg->mdpage.krw_mappings--;
   2637 			else
   2638 				pg->mdpage.kro_mappings--;
   2639 #endif
   2640 			PMAPCOUNT(kernel_unmappings);
   2641 		}
   2642 		PMAPCOUNT(unmappings);
   2643 
   2644 		pmap_acquire_pmap_lock(pm);
   2645 
   2646 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2647 		KDASSERT(l2b != NULL);
   2648 
   2649 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2650 		pte = *ptep;
   2651 
   2652 		/*
   2653 		 * Update statistics
   2654 		 */
   2655 		--pm->pm_stats.resident_count;
   2656 
   2657 		/* Wired bit */
   2658 		if (pv->pv_flags & PVF_WIRED)
   2659 			--pm->pm_stats.wired_count;
   2660 
   2661 		flags |= pv->pv_flags;
   2662 
   2663 		/*
   2664 		 * Invalidate the PTEs.
   2665 		 */
   2666 		*ptep = 0;
   2667 		PTE_SYNC_CURRENT(pm, ptep);
   2668 		pmap_free_l2_bucket(pm, l2b, 1);
   2669 
   2670 		pool_put(&pmap_pv_pool, pv);
   2671 		pv = npv;
   2672 		/*
   2673 		 * if we reach the end of the list and there are still
   2674 		 * mappings, they might be able to be cached now.
   2675 		 */
   2676 		if (pv == NULL) {
   2677 			*pvp = NULL;
   2678 			if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   2679 				pmap_vac_me_harder(pg, pm, 0);
   2680 		}
   2681 		pmap_release_pmap_lock(pm);
   2682 	}
   2683 #ifdef PMAP_CACHE_VIPT
   2684 	/*
   2685 	 * Its EXEC cache is now gone.
   2686 	 */
   2687 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2688 		PMAPCOUNT(exec_discarded_page_protect);
   2689 	pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2690 	KASSERT(pg->mdpage.urw_mappings == 0);
   2691 	KASSERT(pg->mdpage.uro_mappings == 0);
   2692 	if (pg->mdpage.krw_mappings == 0)
   2693 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2694 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2695 #endif
   2696 	simple_unlock(&pg->mdpage.pvh_slock);
   2697 	PMAP_HEAD_TO_MAP_UNLOCK();
   2698 
   2699 	if (flush) {
   2700 		/*
   2701 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2702 		 * would need a subsequent call to pmap_update() to ensure
   2703 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2704 		 * required to do that (see pmap(9)), so we can't modify
   2705 		 * the current pmap's state.
   2706 		 */
   2707 		if (PV_BEEN_EXECD(flags))
   2708 			cpu_tlb_flushID();
   2709 		else
   2710 			cpu_tlb_flushD();
   2711 	}
   2712 	cpu_cpwait();
   2713 }
   2714 
   2715 /*
   2716  * pmap_t pmap_create(void)
   2717  *
   2718  *      Create a new pmap structure from scratch.
   2719  */
   2720 pmap_t
   2721 pmap_create(void)
   2722 {
   2723 	pmap_t pm;
   2724 
   2725 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2726 
   2727 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2728 	pm->pm_stats.wired_count = 0;
   2729 	pm->pm_stats.resident_count = 1;
   2730 	pm->pm_cstate.cs_all = 0;
   2731 	pmap_alloc_l1(pm);
   2732 
   2733 	/*
   2734 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2735 	 * initialised to zero.
   2736 	 */
   2737 
   2738 	pmap_pinit(pm);
   2739 
   2740 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2741 
   2742 	return (pm);
   2743 }
   2744 
   2745 /*
   2746  * void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2747  *     int flags)
   2748  *
   2749  *      Insert the given physical page (p) at
   2750  *      the specified virtual address (v) in the
   2751  *      target physical map with the protection requested.
   2752  *
   2753  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2754  *      or lose information.  That is, this routine must actually
   2755  *      insert this page into the given map NOW.
   2756  */
   2757 int
   2758 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   2759 {
   2760 	struct l2_bucket *l2b;
   2761 	struct vm_page *pg, *opg;
   2762 	struct pv_entry *pve;
   2763 	pt_entry_t *ptep, npte, opte;
   2764 	u_int nflags;
   2765 	u_int oflags;
   2766 
   2767 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2768 
   2769 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2770 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2771 
   2772 	/*
   2773 	 * Get a pointer to the page.  Later on in this function, we
   2774 	 * test for a managed page by checking pg != NULL.
   2775 	 */
   2776 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2777 
   2778 	nflags = 0;
   2779 	if (prot & VM_PROT_WRITE)
   2780 		nflags |= PVF_WRITE;
   2781 	if (prot & VM_PROT_EXECUTE)
   2782 		nflags |= PVF_EXEC;
   2783 	if (flags & PMAP_WIRED)
   2784 		nflags |= PVF_WIRED;
   2785 
   2786 	PMAP_MAP_TO_HEAD_LOCK();
   2787 	pmap_acquire_pmap_lock(pm);
   2788 
   2789 	/*
   2790 	 * Fetch the L2 bucket which maps this page, allocating one if
   2791 	 * necessary for user pmaps.
   2792 	 */
   2793 	if (pm == pmap_kernel())
   2794 		l2b = pmap_get_l2_bucket(pm, va);
   2795 	else
   2796 		l2b = pmap_alloc_l2_bucket(pm, va);
   2797 	if (l2b == NULL) {
   2798 		if (flags & PMAP_CANFAIL) {
   2799 			pmap_release_pmap_lock(pm);
   2800 			PMAP_MAP_TO_HEAD_UNLOCK();
   2801 			return (ENOMEM);
   2802 		}
   2803 		panic("pmap_enter: failed to allocate L2 bucket");
   2804 	}
   2805 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2806 	opte = *ptep;
   2807 	npte = pa;
   2808 	oflags = 0;
   2809 
   2810 	if (opte) {
   2811 		/*
   2812 		 * There is already a mapping at this address.
   2813 		 * If the physical address is different, lookup the
   2814 		 * vm_page.
   2815 		 */
   2816 		if (l2pte_pa(opte) != pa)
   2817 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2818 		else
   2819 			opg = pg;
   2820 	} else
   2821 		opg = NULL;
   2822 
   2823 	if (pg) {
   2824 		/*
   2825 		 * This is to be a managed mapping.
   2826 		 */
   2827 		if ((flags & VM_PROT_ALL) ||
   2828 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2829 			/*
   2830 			 * - The access type indicates that we don't need
   2831 			 *   to do referenced emulation.
   2832 			 * OR
   2833 			 * - The physical page has already been referenced
   2834 			 *   so no need to re-do referenced emulation here.
   2835 			 */
   2836 			npte |= L2_S_PROTO;
   2837 
   2838 			nflags |= PVF_REF;
   2839 
   2840 			if ((prot & VM_PROT_WRITE) != 0 &&
   2841 			    ((flags & VM_PROT_WRITE) != 0 ||
   2842 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2843 				/*
   2844 				 * This is a writable mapping, and the
   2845 				 * page's mod state indicates it has
   2846 				 * already been modified. Make it
   2847 				 * writable from the outset.
   2848 				 */
   2849 				npte |= L2_S_PROT_W;
   2850 				nflags |= PVF_MOD;
   2851 			}
   2852 		} else {
   2853 			/*
   2854 			 * Need to do page referenced emulation.
   2855 			 */
   2856 			npte |= L2_TYPE_INV;
   2857 		}
   2858 
   2859 		npte |= pte_l2_s_cache_mode;
   2860 
   2861 		if (pg == opg) {
   2862 			/*
   2863 			 * We're changing the attrs of an existing mapping.
   2864 			 */
   2865 			simple_lock(&pg->mdpage.pvh_slock);
   2866 			oflags = pmap_modify_pv(pg, pm, va,
   2867 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2868 			    PVF_MOD | PVF_REF, nflags);
   2869 			simple_unlock(&pg->mdpage.pvh_slock);
   2870 
   2871 #ifdef PMAP_CACHE_VIVT
   2872 			/*
   2873 			 * We may need to flush the cache if we're
   2874 			 * doing rw-ro...
   2875 			 */
   2876 			if (pm->pm_cstate.cs_cache_d &&
   2877 			    (oflags & PVF_NC) == 0 &&
   2878 			    (opte & L2_S_PROT_W) != 0 &&
   2879 			    (prot & VM_PROT_WRITE) == 0)
   2880 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2881 #endif
   2882 		} else {
   2883 			/*
   2884 			 * New mapping, or changing the backing page
   2885 			 * of an existing mapping.
   2886 			 */
   2887 			if (opg) {
   2888 				/*
   2889 				 * Replacing an existing mapping with a new one.
   2890 				 * It is part of our managed memory so we
   2891 				 * must remove it from the PV list
   2892 				 */
   2893 				simple_lock(&opg->mdpage.pvh_slock);
   2894 				pve = pmap_remove_pv(opg, pm, va, 0);
   2895 				pmap_vac_me_harder(opg, pm, 0);
   2896 				simple_unlock(&opg->mdpage.pvh_slock);
   2897 				oflags = pve->pv_flags;
   2898 
   2899 #ifdef PMAP_CACHE_VIVT
   2900 				/*
   2901 				 * If the old mapping was valid (ref/mod
   2902 				 * emulation creates 'invalid' mappings
   2903 				 * initially) then make sure to frob
   2904 				 * the cache.
   2905 				 */
   2906 				if ((oflags & PVF_NC) == 0 &&
   2907 				    l2pte_valid(opte)) {
   2908 					if (PV_BEEN_EXECD(oflags)) {
   2909 						pmap_idcache_wbinv_range(pm, va,
   2910 						    PAGE_SIZE);
   2911 					} else
   2912 					if (PV_BEEN_REFD(oflags)) {
   2913 						pmap_dcache_wb_range(pm, va,
   2914 						    PAGE_SIZE, true,
   2915 						    (oflags & PVF_WRITE) == 0);
   2916 					}
   2917 				}
   2918 #endif
   2919 			} else
   2920 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2921 				if ((flags & PMAP_CANFAIL) == 0)
   2922 					panic("pmap_enter: no pv entries");
   2923 
   2924 				if (pm != pmap_kernel())
   2925 					pmap_free_l2_bucket(pm, l2b, 0);
   2926 				pmap_release_pmap_lock(pm);
   2927 				PMAP_MAP_TO_HEAD_UNLOCK();
   2928 				NPDEBUG(PDB_ENTER,
   2929 				    printf("pmap_enter: ENOMEM\n"));
   2930 				return (ENOMEM);
   2931 			}
   2932 
   2933 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2934 		}
   2935 	} else {
   2936 		/*
   2937 		 * We're mapping an unmanaged page.
   2938 		 * These are always readable, and possibly writable, from
   2939 		 * the get go as we don't need to track ref/mod status.
   2940 		 */
   2941 		npte |= L2_S_PROTO;
   2942 		if (prot & VM_PROT_WRITE)
   2943 			npte |= L2_S_PROT_W;
   2944 
   2945 		/*
   2946 		 * Make sure the vector table is mapped cacheable
   2947 		 */
   2948 		if (pm != pmap_kernel() && va == vector_page)
   2949 			npte |= pte_l2_s_cache_mode;
   2950 
   2951 		if (opg) {
   2952 			/*
   2953 			 * Looks like there's an existing 'managed' mapping
   2954 			 * at this address.
   2955 			 */
   2956 			simple_lock(&opg->mdpage.pvh_slock);
   2957 			pve = pmap_remove_pv(opg, pm, va, 0);
   2958 			pmap_vac_me_harder(opg, pm, 0);
   2959 			simple_unlock(&opg->mdpage.pvh_slock);
   2960 			oflags = pve->pv_flags;
   2961 
   2962 #ifdef PMAP_CACHE_VIVT
   2963 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2964 				if (PV_BEEN_EXECD(oflags))
   2965 					pmap_idcache_wbinv_range(pm, va,
   2966 					    PAGE_SIZE);
   2967 				else
   2968 				if (PV_BEEN_REFD(oflags))
   2969 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2970 					    true, (oflags & PVF_WRITE) == 0);
   2971 			}
   2972 #endif
   2973 			pool_put(&pmap_pv_pool, pve);
   2974 		}
   2975 	}
   2976 
   2977 	/*
   2978 	 * Make sure userland mappings get the right permissions
   2979 	 */
   2980 	if (pm != pmap_kernel() && va != vector_page)
   2981 		npte |= L2_S_PROT_U;
   2982 
   2983 	/*
   2984 	 * Keep the stats up to date
   2985 	 */
   2986 	if (opte == 0) {
   2987 		l2b->l2b_occupancy++;
   2988 		pm->pm_stats.resident_count++;
   2989 	}
   2990 
   2991 	NPDEBUG(PDB_ENTER,
   2992 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2993 
   2994 	/*
   2995 	 * If this is just a wiring change, the two PTEs will be
   2996 	 * identical, so there's no need to update the page table.
   2997 	 */
   2998 	if (npte != opte) {
   2999 		bool is_cached = pmap_is_cached(pm);
   3000 
   3001 		*ptep = npte;
   3002 		if (is_cached) {
   3003 			/*
   3004 			 * We only need to frob the cache/tlb if this pmap
   3005 			 * is current
   3006 			 */
   3007 			PTE_SYNC(ptep);
   3008 			if (va != vector_page && l2pte_valid(npte)) {
   3009 				/*
   3010 				 * This mapping is likely to be accessed as
   3011 				 * soon as we return to userland. Fix up the
   3012 				 * L1 entry to avoid taking another
   3013 				 * page/domain fault.
   3014 				 */
   3015 				pd_entry_t *pl1pd, l1pd;
   3016 
   3017 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   3018 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   3019 				    L1_C_PROTO;
   3020 				if (*pl1pd != l1pd) {
   3021 					*pl1pd = l1pd;
   3022 					PTE_SYNC(pl1pd);
   3023 				}
   3024 			}
   3025 		}
   3026 
   3027 		if (PV_BEEN_EXECD(oflags))
   3028 			pmap_tlb_flushID_SE(pm, va);
   3029 		else
   3030 		if (PV_BEEN_REFD(oflags))
   3031 			pmap_tlb_flushD_SE(pm, va);
   3032 
   3033 		NPDEBUG(PDB_ENTER,
   3034 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3035 		    is_cached, pm->pm_cstate.cs_all));
   3036 
   3037 		if (pg != NULL) {
   3038 			simple_lock(&pg->mdpage.pvh_slock);
   3039 			pmap_vac_me_harder(pg, pm, va);
   3040 			simple_unlock(&pg->mdpage.pvh_slock);
   3041 		}
   3042 	}
   3043 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3044 	if (pg) {
   3045 		simple_lock(&pg->mdpage.pvh_slock);
   3046 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3047 		KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
   3048 		simple_unlock(&pg->mdpage.pvh_slock);
   3049 	}
   3050 #endif
   3051 
   3052 	pmap_release_pmap_lock(pm);
   3053 	PMAP_MAP_TO_HEAD_UNLOCK();
   3054 
   3055 	return (0);
   3056 }
   3057 
   3058 /*
   3059  * pmap_remove()
   3060  *
   3061  * pmap_remove is responsible for nuking a number of mappings for a range
   3062  * of virtual address space in the current pmap. To do this efficiently
   3063  * is interesting, because in a number of cases a wide virtual address
   3064  * range may be supplied that contains few actual mappings. So, the
   3065  * optimisations are:
   3066  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3067  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3068  *     maybe do just a partial cache clean. This path of execution is
   3069  *     complicated by the fact that the cache must be flushed _before_
   3070  *     the PTE is nuked, being a VAC :-)
   3071  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3072  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3073  *     already flushed the cache.
   3074  *  4. Maybe later fast-case a single page, but I don't think this is
   3075  *     going to make _that_ much difference overall.
   3076  */
   3077 
   3078 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3079 
   3080 void
   3081 pmap_do_remove(pmap_t pm, vaddr_t sva, vaddr_t eva, int skip_wired)
   3082 {
   3083 	struct l2_bucket *l2b;
   3084 	vaddr_t next_bucket;
   3085 	pt_entry_t *ptep;
   3086 	u_int cleanlist_idx, total, cnt;
   3087 	struct {
   3088 		vaddr_t va;
   3089 		pt_entry_t *ptep;
   3090 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3091 	u_int mappings, is_exec, is_refd;
   3092 
   3093 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3094 	    "eva=%08lx\n", pm, sva, eva));
   3095 
   3096 	/*
   3097 	 * we lock in the pmap => pv_head direction
   3098 	 */
   3099 	PMAP_MAP_TO_HEAD_LOCK();
   3100 	pmap_acquire_pmap_lock(pm);
   3101 
   3102 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3103 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3104 		if (pm->pm_cstate.cs_tlb == 0)
   3105 			pm->pm_remove_all = true;
   3106 	} else
   3107 		cleanlist_idx = 0;
   3108 
   3109 	total = 0;
   3110 
   3111 	while (sva < eva) {
   3112 		/*
   3113 		 * Do one L2 bucket's worth at a time.
   3114 		 */
   3115 		next_bucket = L2_NEXT_BUCKET(sva);
   3116 		if (next_bucket > eva)
   3117 			next_bucket = eva;
   3118 
   3119 		l2b = pmap_get_l2_bucket(pm, sva);
   3120 		if (l2b == NULL) {
   3121 			sva = next_bucket;
   3122 			continue;
   3123 		}
   3124 
   3125 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3126 
   3127 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3128 			struct vm_page *pg;
   3129 			pt_entry_t pte;
   3130 			paddr_t pa;
   3131 
   3132 			pte = *ptep;
   3133 
   3134 			if (pte == 0) {
   3135 				/* Nothing here, move along */
   3136 				continue;
   3137 			}
   3138 
   3139 			pa = l2pte_pa(pte);
   3140 			is_exec = 0;
   3141 			is_refd = 1;
   3142 
   3143 			/*
   3144 			 * Update flags. In a number of circumstances,
   3145 			 * we could cluster a lot of these and do a
   3146 			 * number of sequential pages in one go.
   3147 			 */
   3148 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3149 				struct pv_entry *pve;
   3150 				simple_lock(&pg->mdpage.pvh_slock);
   3151 				pve = pmap_remove_pv(pg, pm, sva, skip_wired);
   3152 				pmap_vac_me_harder(pg, pm, 0);
   3153 				simple_unlock(&pg->mdpage.pvh_slock);
   3154 				if (pve != NULL) {
   3155 					if (pm->pm_remove_all == false) {
   3156 						is_exec =
   3157 						   PV_BEEN_EXECD(pve->pv_flags);
   3158 						is_refd =
   3159 						   PV_BEEN_REFD(pve->pv_flags);
   3160 					}
   3161 					pool_put(&pmap_pv_pool, pve);
   3162 				} else
   3163 				if (skip_wired) {
   3164 					/* The mapping is wired. Skip it */
   3165 					continue;
   3166 				}
   3167 			} else
   3168 			if (skip_wired) {
   3169 				/* Unmanaged pages are always wired. */
   3170 				continue;
   3171 			}
   3172 
   3173 			mappings++;
   3174 
   3175 			if (!l2pte_valid(pte)) {
   3176 				/*
   3177 				 * Ref/Mod emulation is still active for this
   3178 				 * mapping, therefore it is has not yet been
   3179 				 * accessed. No need to frob the cache/tlb.
   3180 				 */
   3181 				*ptep = 0;
   3182 				PTE_SYNC_CURRENT(pm, ptep);
   3183 				continue;
   3184 			}
   3185 
   3186 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3187 				/* Add to the clean list. */
   3188 				cleanlist[cleanlist_idx].ptep = ptep;
   3189 				cleanlist[cleanlist_idx].va =
   3190 				    sva | (is_exec & 1);
   3191 				cleanlist_idx++;
   3192 			} else
   3193 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3194 				/* Nuke everything if needed. */
   3195 #ifdef PMAP_CACHE_VIVT
   3196 				pmap_idcache_wbinv_all(pm);
   3197 #endif
   3198 				pmap_tlb_flushID(pm);
   3199 
   3200 				/*
   3201 				 * Roll back the previous PTE list,
   3202 				 * and zero out the current PTE.
   3203 				 */
   3204 				for (cnt = 0;
   3205 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3206 					*cleanlist[cnt].ptep = 0;
   3207 					PTE_SYNC(cleanlist[cnt].ptep);
   3208 				}
   3209 				*ptep = 0;
   3210 				PTE_SYNC(ptep);
   3211 				cleanlist_idx++;
   3212 				pm->pm_remove_all = true;
   3213 			} else {
   3214 				*ptep = 0;
   3215 				PTE_SYNC(ptep);
   3216 				if (pm->pm_remove_all == false) {
   3217 					if (is_exec)
   3218 						pmap_tlb_flushID_SE(pm, sva);
   3219 					else
   3220 					if (is_refd)
   3221 						pmap_tlb_flushD_SE(pm, sva);
   3222 				}
   3223 			}
   3224 		}
   3225 
   3226 		/*
   3227 		 * Deal with any left overs
   3228 		 */
   3229 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3230 			total += cleanlist_idx;
   3231 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3232 				if (pm->pm_cstate.cs_all != 0) {
   3233 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3234 					if (cleanlist[cnt].va & 1) {
   3235 #ifdef PMAP_CACHE_VIVT
   3236 						pmap_idcache_wbinv_range(pm,
   3237 						    clva, PAGE_SIZE);
   3238 #endif
   3239 						pmap_tlb_flushID_SE(pm, clva);
   3240 					} else {
   3241 #ifdef PMAP_CACHE_VIVT
   3242 						pmap_dcache_wb_range(pm,
   3243 						    clva, PAGE_SIZE, true,
   3244 						    false);
   3245 #endif
   3246 						pmap_tlb_flushD_SE(pm, clva);
   3247 					}
   3248 				}
   3249 				*cleanlist[cnt].ptep = 0;
   3250 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3251 			}
   3252 
   3253 			/*
   3254 			 * If it looks like we're removing a whole bunch
   3255 			 * of mappings, it's faster to just write-back
   3256 			 * the whole cache now and defer TLB flushes until
   3257 			 * pmap_update() is called.
   3258 			 */
   3259 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3260 				cleanlist_idx = 0;
   3261 			else {
   3262 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3263 #ifdef PMAP_CACHE_VIVT
   3264 				pmap_idcache_wbinv_all(pm);
   3265 #endif
   3266 				pm->pm_remove_all = true;
   3267 			}
   3268 		}
   3269 
   3270 		pmap_free_l2_bucket(pm, l2b, mappings);
   3271 		pm->pm_stats.resident_count -= mappings;
   3272 	}
   3273 
   3274 	pmap_release_pmap_lock(pm);
   3275 	PMAP_MAP_TO_HEAD_UNLOCK();
   3276 }
   3277 
   3278 #ifdef PMAP_CACHE_VIPT
   3279 static struct pv_entry *
   3280 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3281 {
   3282 	struct pv_entry *pv;
   3283 
   3284 	simple_lock(&pg->mdpage.pvh_slock);
   3285 	KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   3286 	KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3287 
   3288 	pv = pmap_remove_pv(pg, pmap_kernel(), va, false);
   3289 	KASSERT(pv);
   3290 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3291 
   3292 	/*
   3293 	 * If we are removing a writeable mapping to a cached exec page,
   3294 	 * if it's the last mapping then clear it execness other sync
   3295 	 * the page to the icache.
   3296 	 */
   3297 	if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3298 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3299 		if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   3300 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3301 			PMAPCOUNT(exec_discarded_kremove);
   3302 		} else {
   3303 			pmap_syncicache_page(pg);
   3304 			PMAPCOUNT(exec_synced_kremove);
   3305 		}
   3306 	}
   3307 	pmap_vac_me_harder(pg, pmap_kernel(), 0);
   3308 	simple_unlock(&pg->mdpage.pvh_slock);
   3309 
   3310 	return pv;
   3311 }
   3312 #endif /* PMAP_CACHE_VIPT */
   3313 
   3314 /*
   3315  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3316  *
   3317  * We assume there is already sufficient KVM space available
   3318  * to do this, as we can't allocate L2 descriptor tables/metadata
   3319  * from here.
   3320  */
   3321 void
   3322 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   3323 {
   3324 	struct l2_bucket *l2b;
   3325 	pt_entry_t *ptep, opte;
   3326 #ifdef PMAP_CACHE_VIVT
   3327 	struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3328 #endif
   3329 #ifdef PMAP_CACHE_VIPT
   3330 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3331 	struct vm_page *opg;
   3332 	struct pv_entry *pv = NULL;
   3333 #endif
   3334 
   3335 	NPDEBUG(PDB_KENTER,
   3336 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3337 	    va, pa, prot));
   3338 
   3339 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3340 	KDASSERT(l2b != NULL);
   3341 
   3342 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3343 	opte = *ptep;
   3344 
   3345 	if (opte == 0) {
   3346 		PMAPCOUNT(kenter_mappings);
   3347 		l2b->l2b_occupancy++;
   3348 	} else {
   3349 		PMAPCOUNT(kenter_remappings);
   3350 #ifdef PMAP_CACHE_VIPT
   3351 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3352 		if (opg) {
   3353 			KASSERT(opg != pg);
   3354 			KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3355 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3356 			simple_lock(&opg->mdpage.pvh_slock);
   3357 			pv = pmap_kremove_pg(opg, va);
   3358 			simple_unlock(&opg->mdpage.pvh_slock);
   3359 		}
   3360 #endif
   3361 		if (l2pte_valid(opte)) {
   3362 #ifdef PMAP_CACHE_VIVT
   3363 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3364 #endif
   3365 			cpu_tlb_flushD_SE(va);
   3366 			cpu_cpwait();
   3367 		}
   3368 	}
   3369 
   3370 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3371 	    pte_l2_s_cache_mode;
   3372 	PTE_SYNC(ptep);
   3373 
   3374 	if (pg) {
   3375 		if (prot & PMAP_KMPAGE) {
   3376 			simple_lock(&pg->mdpage.pvh_slock);
   3377 			KASSERT(pg->mdpage.urw_mappings == 0);
   3378 			KASSERT(pg->mdpage.uro_mappings == 0);
   3379 			KASSERT(pg->mdpage.krw_mappings == 0);
   3380 			KASSERT(pg->mdpage.kro_mappings == 0);
   3381 #ifdef PMAP_CACHE_VIPT
   3382 			KASSERT(pv == NULL);
   3383 			KASSERT((va & PVF_COLORED) == 0);
   3384 			KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
   3385 			/* if there is a color conflict, evict from cache. */
   3386 			if (pmap_is_page_colored_p(pg)
   3387 			    && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
   3388 				PMAPCOUNT(vac_color_change);
   3389 				pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
   3390 			} else if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
   3391 				/*
   3392 				 * If this page has multiple colors, expunge
   3393 				 * them.
   3394 				 */
   3395 				PMAPCOUNT(vac_flush_lots2);
   3396 				pmap_flush_page(pg, PMAP_FLUSH_SECONDARY);
   3397 			}
   3398 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   3399 			pg->mdpage.pvh_attrs |= PVF_KMPAGE
   3400 			    | PVF_COLORED | PVF_DIRTY
   3401 			    | (va & arm_cache_prefer_mask);
   3402 #endif
   3403 #ifdef PMAP_CACHE_VIVT
   3404 			pg->mdpage.pvh_attrs |= PVF_KMPAGE;
   3405 #endif
   3406 			pmap_kmpages++;
   3407 			simple_unlock(&pg->mdpage.pvh_slock);
   3408 #ifdef PMAP_CACHE_VIPT
   3409 		} else {
   3410 			if (pv == NULL) {
   3411 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3412 				KASSERT(pv != NULL);
   3413 			}
   3414 			pmap_enter_pv(pg, pv, pmap_kernel(), va,
   3415 			    PVF_WIRED | PVF_KENTRY
   3416 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3417 			if ((prot & VM_PROT_WRITE)
   3418 			    && !(pg->mdpage.pvh_attrs & PVF_NC))
   3419 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3420 			KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3421 			simple_lock(&pg->mdpage.pvh_slock);
   3422 			pmap_vac_me_harder(pg, pmap_kernel(), va);
   3423 			simple_unlock(&pg->mdpage.pvh_slock);
   3424 #endif
   3425 		}
   3426 #ifdef PMAP_CACHE_VIPT
   3427 	} else {
   3428 		if (pv != NULL)
   3429 			pool_put(&pmap_pv_pool, pv);
   3430 #endif
   3431 	}
   3432 }
   3433 
   3434 void
   3435 pmap_kremove(vaddr_t va, vsize_t len)
   3436 {
   3437 	struct l2_bucket *l2b;
   3438 	pt_entry_t *ptep, *sptep, opte;
   3439 	vaddr_t next_bucket, eva;
   3440 	u_int mappings;
   3441 	struct vm_page *opg;
   3442 
   3443 	PMAPCOUNT(kenter_unmappings);
   3444 
   3445 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3446 	    va, len));
   3447 
   3448 	eva = va + len;
   3449 
   3450 	while (va < eva) {
   3451 		next_bucket = L2_NEXT_BUCKET(va);
   3452 		if (next_bucket > eva)
   3453 			next_bucket = eva;
   3454 
   3455 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3456 		KDASSERT(l2b != NULL);
   3457 
   3458 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3459 		mappings = 0;
   3460 
   3461 		while (va < next_bucket) {
   3462 			opte = *ptep;
   3463 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3464 			if (opg) {
   3465 				if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
   3466 					simple_lock(&opg->mdpage.pvh_slock);
   3467 					KASSERT(opg->mdpage.urw_mappings == 0);
   3468 					KASSERT(opg->mdpage.uro_mappings == 0);
   3469 					KASSERT(opg->mdpage.krw_mappings == 0);
   3470 					KASSERT(opg->mdpage.kro_mappings == 0);
   3471 					opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
   3472 #ifdef PMAP_CACHE_VIPT
   3473 					opg->mdpage.pvh_attrs &= ~PVF_WRITE;
   3474 #endif
   3475 					pmap_kmpages--;
   3476 					simple_unlock(&opg->mdpage.pvh_slock);
   3477 #ifdef PMAP_CACHE_VIPT
   3478 				} else {
   3479 					pool_put(&pmap_pv_pool,
   3480 					    pmap_kremove_pg(opg, va));
   3481 #endif
   3482 				}
   3483 			}
   3484 			if (l2pte_valid(opte)) {
   3485 #ifdef PMAP_CACHE_VIVT
   3486 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3487 #endif
   3488 				cpu_tlb_flushD_SE(va);
   3489 			}
   3490 			if (opte) {
   3491 				*ptep = 0;
   3492 				mappings++;
   3493 			}
   3494 			va += PAGE_SIZE;
   3495 			ptep++;
   3496 		}
   3497 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3498 		l2b->l2b_occupancy -= mappings;
   3499 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3500 	}
   3501 	cpu_cpwait();
   3502 }
   3503 
   3504 bool
   3505 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3506 {
   3507 	struct l2_dtable *l2;
   3508 	pd_entry_t *pl1pd, l1pd;
   3509 	pt_entry_t *ptep, pte;
   3510 	paddr_t pa;
   3511 	u_int l1idx;
   3512 
   3513 	pmap_acquire_pmap_lock(pm);
   3514 
   3515 	l1idx = L1_IDX(va);
   3516 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3517 	l1pd = *pl1pd;
   3518 
   3519 	if (l1pte_section_p(l1pd)) {
   3520 		/*
   3521 		 * These should only happen for pmap_kernel()
   3522 		 */
   3523 		KDASSERT(pm == pmap_kernel());
   3524 		pmap_release_pmap_lock(pm);
   3525 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3526 	} else {
   3527 		/*
   3528 		 * Note that we can't rely on the validity of the L1
   3529 		 * descriptor as an indication that a mapping exists.
   3530 		 * We have to look it up in the L2 dtable.
   3531 		 */
   3532 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3533 
   3534 		if (l2 == NULL ||
   3535 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3536 			pmap_release_pmap_lock(pm);
   3537 			return false;
   3538 		}
   3539 
   3540 		ptep = &ptep[l2pte_index(va)];
   3541 		pte = *ptep;
   3542 		pmap_release_pmap_lock(pm);
   3543 
   3544 		if (pte == 0)
   3545 			return false;
   3546 
   3547 		switch (pte & L2_TYPE_MASK) {
   3548 		case L2_TYPE_L:
   3549 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3550 			break;
   3551 
   3552 		default:
   3553 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3554 			break;
   3555 		}
   3556 	}
   3557 
   3558 	if (pap != NULL)
   3559 		*pap = pa;
   3560 
   3561 	return true;
   3562 }
   3563 
   3564 void
   3565 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3566 {
   3567 	struct l2_bucket *l2b;
   3568 	pt_entry_t *ptep, pte;
   3569 	vaddr_t next_bucket;
   3570 	u_int flags;
   3571 	u_int clr_mask;
   3572 	int flush;
   3573 
   3574 	NPDEBUG(PDB_PROTECT,
   3575 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3576 	    pm, sva, eva, prot));
   3577 
   3578 	if ((prot & VM_PROT_READ) == 0) {
   3579 		pmap_remove(pm, sva, eva);
   3580 		return;
   3581 	}
   3582 
   3583 	if (prot & VM_PROT_WRITE) {
   3584 		/*
   3585 		 * If this is a read->write transition, just ignore it and let
   3586 		 * uvm_fault() take care of it later.
   3587 		 */
   3588 		return;
   3589 	}
   3590 
   3591 	PMAP_MAP_TO_HEAD_LOCK();
   3592 	pmap_acquire_pmap_lock(pm);
   3593 
   3594 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3595 	flags = 0;
   3596 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3597 
   3598 	while (sva < eva) {
   3599 		next_bucket = L2_NEXT_BUCKET(sva);
   3600 		if (next_bucket > eva)
   3601 			next_bucket = eva;
   3602 
   3603 		l2b = pmap_get_l2_bucket(pm, sva);
   3604 		if (l2b == NULL) {
   3605 			sva = next_bucket;
   3606 			continue;
   3607 		}
   3608 
   3609 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3610 
   3611 		while (sva < next_bucket) {
   3612 			pte = *ptep;
   3613 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3614 				struct vm_page *pg;
   3615 				u_int f;
   3616 
   3617 #ifdef PMAP_CACHE_VIVT
   3618 				/*
   3619 				 * OK, at this point, we know we're doing
   3620 				 * write-protect operation.  If the pmap is
   3621 				 * active, write-back the page.
   3622 				 */
   3623 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3624 				    false, false);
   3625 #endif
   3626 
   3627 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3628 				pte &= ~L2_S_PROT_W;
   3629 				*ptep = pte;
   3630 				PTE_SYNC(ptep);
   3631 
   3632 				if (pg != NULL) {
   3633 					simple_lock(&pg->mdpage.pvh_slock);
   3634 					f = pmap_modify_pv(pg, pm, sva,
   3635 					    clr_mask, 0);
   3636 					pmap_vac_me_harder(pg, pm, sva);
   3637 					simple_unlock(&pg->mdpage.pvh_slock);
   3638 				} else
   3639 					f = PVF_REF | PVF_EXEC;
   3640 
   3641 				if (flush >= 0) {
   3642 					flush++;
   3643 					flags |= f;
   3644 				} else
   3645 				if (PV_BEEN_EXECD(f))
   3646 					pmap_tlb_flushID_SE(pm, sva);
   3647 				else
   3648 				if (PV_BEEN_REFD(f))
   3649 					pmap_tlb_flushD_SE(pm, sva);
   3650 			}
   3651 
   3652 			sva += PAGE_SIZE;
   3653 			ptep++;
   3654 		}
   3655 	}
   3656 
   3657 	pmap_release_pmap_lock(pm);
   3658 	PMAP_MAP_TO_HEAD_UNLOCK();
   3659 
   3660 	if (flush) {
   3661 		if (PV_BEEN_EXECD(flags))
   3662 			pmap_tlb_flushID(pm);
   3663 		else
   3664 		if (PV_BEEN_REFD(flags))
   3665 			pmap_tlb_flushD(pm);
   3666 	}
   3667 }
   3668 
   3669 void
   3670 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3671 {
   3672 	struct l2_bucket *l2b;
   3673 	pt_entry_t *ptep;
   3674 	vaddr_t next_bucket;
   3675 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3676 
   3677 	NPDEBUG(PDB_EXEC,
   3678 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3679 	    pm, sva, eva));
   3680 
   3681 	PMAP_MAP_TO_HEAD_LOCK();
   3682 	pmap_acquire_pmap_lock(pm);
   3683 
   3684 	while (sva < eva) {
   3685 		next_bucket = L2_NEXT_BUCKET(sva);
   3686 		if (next_bucket > eva)
   3687 			next_bucket = eva;
   3688 
   3689 		l2b = pmap_get_l2_bucket(pm, sva);
   3690 		if (l2b == NULL) {
   3691 			sva = next_bucket;
   3692 			continue;
   3693 		}
   3694 
   3695 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3696 		     sva < next_bucket;
   3697 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3698 			if (l2pte_valid(*ptep)) {
   3699 				cpu_icache_sync_range(sva,
   3700 				    min(page_size, eva - sva));
   3701 			}
   3702 		}
   3703 	}
   3704 
   3705 	pmap_release_pmap_lock(pm);
   3706 	PMAP_MAP_TO_HEAD_UNLOCK();
   3707 }
   3708 
   3709 void
   3710 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3711 {
   3712 
   3713 	NPDEBUG(PDB_PROTECT,
   3714 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3715 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3716 
   3717 	switch(prot) {
   3718 		return;
   3719 	case VM_PROT_READ|VM_PROT_WRITE:
   3720 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3721 		pmap_clearbit(pg, PVF_EXEC);
   3722 		break;
   3723 #endif
   3724 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3725 		break;
   3726 
   3727 	case VM_PROT_READ:
   3728 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3729 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3730 		break;
   3731 #endif
   3732 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3733 		pmap_clearbit(pg, PVF_WRITE);
   3734 		break;
   3735 
   3736 	default:
   3737 		pmap_page_remove(pg);
   3738 		break;
   3739 	}
   3740 }
   3741 
   3742 /*
   3743  * pmap_clear_modify:
   3744  *
   3745  *	Clear the "modified" attribute for a page.
   3746  */
   3747 bool
   3748 pmap_clear_modify(struct vm_page *pg)
   3749 {
   3750 	bool rv;
   3751 
   3752 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3753 		rv = true;
   3754 #ifdef PMAP_CACHE_VIPT
   3755 		/*
   3756 		 * If we are going to clear the modified bit and there are
   3757 		 * no other modified bits set, flush the page to memory and
   3758 		 * mark it clean.
   3759 		 */
   3760 		if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3761 			pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
   3762 #endif
   3763 		pmap_clearbit(pg, PVF_MOD);
   3764 	} else
   3765 		rv = false;
   3766 
   3767 	return (rv);
   3768 }
   3769 
   3770 /*
   3771  * pmap_clear_reference:
   3772  *
   3773  *	Clear the "referenced" attribute for a page.
   3774  */
   3775 bool
   3776 pmap_clear_reference(struct vm_page *pg)
   3777 {
   3778 	bool rv;
   3779 
   3780 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3781 		rv = true;
   3782 		pmap_clearbit(pg, PVF_REF);
   3783 	} else
   3784 		rv = false;
   3785 
   3786 	return (rv);
   3787 }
   3788 
   3789 /*
   3790  * pmap_is_modified:
   3791  *
   3792  *	Test if a page has the "modified" attribute.
   3793  */
   3794 /* See <arm/arm32/pmap.h> */
   3795 
   3796 /*
   3797  * pmap_is_referenced:
   3798  *
   3799  *	Test if a page has the "referenced" attribute.
   3800  */
   3801 /* See <arm/arm32/pmap.h> */
   3802 
   3803 int
   3804 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3805 {
   3806 	struct l2_dtable *l2;
   3807 	struct l2_bucket *l2b;
   3808 	pd_entry_t *pl1pd, l1pd;
   3809 	pt_entry_t *ptep, pte;
   3810 	paddr_t pa;
   3811 	u_int l1idx;
   3812 	int rv = 0;
   3813 
   3814 	PMAP_MAP_TO_HEAD_LOCK();
   3815 	pmap_acquire_pmap_lock(pm);
   3816 
   3817 	l1idx = L1_IDX(va);
   3818 
   3819 	/*
   3820 	 * If there is no l2_dtable for this address, then the process
   3821 	 * has no business accessing it.
   3822 	 *
   3823 	 * Note: This will catch userland processes trying to access
   3824 	 * kernel addresses.
   3825 	 */
   3826 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3827 	if (l2 == NULL)
   3828 		goto out;
   3829 
   3830 	/*
   3831 	 * Likewise if there is no L2 descriptor table
   3832 	 */
   3833 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3834 	if (l2b->l2b_kva == NULL)
   3835 		goto out;
   3836 
   3837 	/*
   3838 	 * Check the PTE itself.
   3839 	 */
   3840 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3841 	pte = *ptep;
   3842 	if (pte == 0)
   3843 		goto out;
   3844 
   3845 	/*
   3846 	 * Catch a userland access to the vector page mapped at 0x0
   3847 	 */
   3848 	if (user && (pte & L2_S_PROT_U) == 0)
   3849 		goto out;
   3850 
   3851 	pa = l2pte_pa(pte);
   3852 
   3853 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3854 		/*
   3855 		 * This looks like a good candidate for "page modified"
   3856 		 * emulation...
   3857 		 */
   3858 		struct pv_entry *pv;
   3859 		struct vm_page *pg;
   3860 
   3861 		/* Extract the physical address of the page */
   3862 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3863 			goto out;
   3864 
   3865 		/* Get the current flags for this page. */
   3866 		simple_lock(&pg->mdpage.pvh_slock);
   3867 
   3868 		pv = pmap_find_pv(pg, pm, va);
   3869 		if (pv == NULL) {
   3870 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3871 			goto out;
   3872 		}
   3873 
   3874 		/*
   3875 		 * Do the flags say this page is writable? If not then it
   3876 		 * is a genuine write fault. If yes then the write fault is
   3877 		 * our fault as we did not reflect the write access in the
   3878 		 * PTE. Now we know a write has occurred we can correct this
   3879 		 * and also set the modified bit
   3880 		 */
   3881 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3882 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3883 			goto out;
   3884 		}
   3885 
   3886 		NPDEBUG(PDB_FOLLOW,
   3887 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3888 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3889 
   3890 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3891 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3892 #ifdef PMAP_CACHE_VIPT
   3893 		/*
   3894 		 * If there are cacheable mappings for this page, mark it dirty.
   3895 		 */
   3896 		if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
   3897 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3898 #endif
   3899 		simple_unlock(&pg->mdpage.pvh_slock);
   3900 
   3901 		/*
   3902 		 * Re-enable write permissions for the page.  No need to call
   3903 		 * pmap_vac_me_harder(), since this is just a
   3904 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3905 		 * changing. We've already set the cacheable bits based on
   3906 		 * the assumption that we can write to this page.
   3907 		 */
   3908 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3909 		PTE_SYNC(ptep);
   3910 		rv = 1;
   3911 	} else
   3912 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3913 		/*
   3914 		 * This looks like a good candidate for "page referenced"
   3915 		 * emulation.
   3916 		 */
   3917 		struct pv_entry *pv;
   3918 		struct vm_page *pg;
   3919 
   3920 		/* Extract the physical address of the page */
   3921 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3922 			goto out;
   3923 
   3924 		/* Get the current flags for this page. */
   3925 		simple_lock(&pg->mdpage.pvh_slock);
   3926 
   3927 		pv = pmap_find_pv(pg, pm, va);
   3928 		if (pv == NULL) {
   3929 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3930 			goto out;
   3931 		}
   3932 
   3933 		pg->mdpage.pvh_attrs |= PVF_REF;
   3934 		pv->pv_flags |= PVF_REF;
   3935 		simple_unlock(&pg->mdpage.pvh_slock);
   3936 
   3937 		NPDEBUG(PDB_FOLLOW,
   3938 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3939 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3940 
   3941 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3942 		PTE_SYNC(ptep);
   3943 		rv = 1;
   3944 	}
   3945 
   3946 	/*
   3947 	 * We know there is a valid mapping here, so simply
   3948 	 * fix up the L1 if necessary.
   3949 	 */
   3950 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3951 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3952 	if (*pl1pd != l1pd) {
   3953 		*pl1pd = l1pd;
   3954 		PTE_SYNC(pl1pd);
   3955 		rv = 1;
   3956 	}
   3957 
   3958 #ifdef CPU_SA110
   3959 	/*
   3960 	 * There are bugs in the rev K SA110.  This is a check for one
   3961 	 * of them.
   3962 	 */
   3963 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3964 	    curcpu()->ci_arm_cpurev < 3) {
   3965 		/* Always current pmap */
   3966 		if (l2pte_valid(pte)) {
   3967 			extern int kernel_debug;
   3968 			if (kernel_debug & 1) {
   3969 				struct proc *p = curlwp->l_proc;
   3970 				printf("prefetch_abort: page is already "
   3971 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3972 				printf("prefetch_abort: pc=%08lx proc=%p "
   3973 				    "process=%s\n", va, p, p->p_comm);
   3974 				printf("prefetch_abort: far=%08x fs=%x\n",
   3975 				    cpu_faultaddress(), cpu_faultstatus());
   3976 			}
   3977 #ifdef DDB
   3978 			if (kernel_debug & 2)
   3979 				Debugger();
   3980 #endif
   3981 			rv = 1;
   3982 		}
   3983 	}
   3984 #endif /* CPU_SA110 */
   3985 
   3986 #ifdef DEBUG
   3987 	/*
   3988 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3989 	 * stale TLB entry for the faulting address. This happens when two or
   3990 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3991 	 * a context switch between such processes, we can take domain faults
   3992 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3993 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3994 	 * example.
   3995 	 *
   3996 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3997 	 * entry for a recently entered mapping. In this case, the TLB is
   3998 	 * flushed for the new mapping, but there may still be TLB entries for
   3999 	 * other mappings belonging to other processes in the 1MB range
   4000 	 * covered by the L1 entry.
   4001 	 *
   4002 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4003 	 * value, so the fault must be due to a stale TLB entry.
   4004 	 *
   4005 	 * Since we always need to flush the TLB anyway in the case where we
   4006 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4007 	 * stale TLB entries dynamically.
   4008 	 *
   4009 	 * However, the above condition can ONLY happen if the current L1 is
   4010 	 * being shared. If it happens when the L1 is unshared, it indicates
   4011 	 * that other parts of the pmap are not doing their job WRT managing
   4012 	 * the TLB.
   4013 	 */
   4014 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4015 		extern int last_fault_code;
   4016 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4017 		    pm, va, ftype);
   4018 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4019 		    l2, l2b, ptep, pl1pd);
   4020 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4021 		    pte, l1pd, last_fault_code);
   4022 #ifdef DDB
   4023 		Debugger();
   4024 #endif
   4025 	}
   4026 #endif
   4027 
   4028 	cpu_tlb_flushID_SE(va);
   4029 	cpu_cpwait();
   4030 
   4031 	rv = 1;
   4032 
   4033 out:
   4034 	pmap_release_pmap_lock(pm);
   4035 	PMAP_MAP_TO_HEAD_UNLOCK();
   4036 
   4037 	return (rv);
   4038 }
   4039 
   4040 /*
   4041  * pmap_collect: free resources held by a pmap
   4042  *
   4043  * => optional function.
   4044  * => called when a process is swapped out to free memory.
   4045  */
   4046 void
   4047 pmap_collect(pmap_t pm)
   4048 {
   4049 
   4050 #ifdef PMAP_CACHE_VIVT
   4051 	pmap_idcache_wbinv_all(pm);
   4052 #endif
   4053 	pm->pm_remove_all = true;
   4054 	pmap_do_remove(pm, VM_MIN_ADDRESS, VM_MAX_ADDRESS, 1);
   4055 	pmap_update(pm);
   4056 	PMAPCOUNT(collects);
   4057 }
   4058 
   4059 /*
   4060  * Routine:	pmap_procwr
   4061  *
   4062  * Function:
   4063  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4064  *
   4065  */
   4066 void
   4067 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4068 {
   4069 	/* We only need to do anything if it is the current process. */
   4070 	if (p == curproc)
   4071 		cpu_icache_sync_range(va, len);
   4072 }
   4073 
   4074 /*
   4075  * Routine:	pmap_unwire
   4076  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4077  *
   4078  * In/out conditions:
   4079  *		The mapping must already exist in the pmap.
   4080  */
   4081 void
   4082 pmap_unwire(pmap_t pm, vaddr_t va)
   4083 {
   4084 	struct l2_bucket *l2b;
   4085 	pt_entry_t *ptep, pte;
   4086 	struct vm_page *pg;
   4087 	paddr_t pa;
   4088 
   4089 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4090 
   4091 	PMAP_MAP_TO_HEAD_LOCK();
   4092 	pmap_acquire_pmap_lock(pm);
   4093 
   4094 	l2b = pmap_get_l2_bucket(pm, va);
   4095 	KDASSERT(l2b != NULL);
   4096 
   4097 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4098 	pte = *ptep;
   4099 
   4100 	/* Extract the physical address of the page */
   4101 	pa = l2pte_pa(pte);
   4102 
   4103 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4104 		/* Update the wired bit in the pv entry for this page. */
   4105 		simple_lock(&pg->mdpage.pvh_slock);
   4106 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   4107 		simple_unlock(&pg->mdpage.pvh_slock);
   4108 	}
   4109 
   4110 	pmap_release_pmap_lock(pm);
   4111 	PMAP_MAP_TO_HEAD_UNLOCK();
   4112 }
   4113 
   4114 void
   4115 pmap_activate(struct lwp *l)
   4116 {
   4117 	extern int block_userspace_access;
   4118 	pmap_t opm, npm, rpm;
   4119 	uint32_t odacr, ndacr;
   4120 	int oldirqstate;
   4121 
   4122 	/*
   4123 	 * If activating a non-current lwp or the current lwp is
   4124 	 * already active, just return.
   4125 	 */
   4126 	if (l != curlwp ||
   4127 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4128 		return;
   4129 
   4130 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4131 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4132 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4133 
   4134 	/*
   4135 	 * If TTB and DACR are unchanged, short-circuit all the
   4136 	 * TLB/cache management stuff.
   4137 	 */
   4138 	if (pmap_previous_active_lwp != NULL) {
   4139 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4140 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4141 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4142 
   4143 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4144 			goto all_done;
   4145 	} else
   4146 		opm = NULL;
   4147 
   4148 	PMAPCOUNT(activations);
   4149 	block_userspace_access = 1;
   4150 
   4151 	/*
   4152 	 * If switching to a user vmspace which is different to the
   4153 	 * most recent one, and the most recent one is potentially
   4154 	 * live in the cache, we must write-back and invalidate the
   4155 	 * entire cache.
   4156 	 */
   4157 	rpm = pmap_recent_user;
   4158 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4159 	    rpm->pm_cstate.cs_cache) {
   4160 		rpm->pm_cstate.cs_cache = 0;
   4161 #ifdef PMAP_CACHE_VIVT
   4162 		cpu_idcache_wbinv_all();
   4163 #endif
   4164 	}
   4165 
   4166 	/* No interrupts while we frob the TTB/DACR */
   4167 	oldirqstate = disable_interrupts(IF32_bits);
   4168 
   4169 	/*
   4170 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4171 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4172 	 * before switching to it otherwise subsequent interrupts/exceptions
   4173 	 * (including domain faults!) will jump into hyperspace.
   4174 	 */
   4175 	if (npm->pm_pl1vec != NULL) {
   4176 		cpu_tlb_flushID_SE((u_int)vector_page);
   4177 		cpu_cpwait();
   4178 		*npm->pm_pl1vec = npm->pm_l1vec;
   4179 		PTE_SYNC(npm->pm_pl1vec);
   4180 	}
   4181 
   4182 	cpu_domains(ndacr);
   4183 
   4184 	if (npm == pmap_kernel() || npm == rpm) {
   4185 		/*
   4186 		 * Switching to a kernel thread, or back to the
   4187 		 * same user vmspace as before... Simply update
   4188 		 * the TTB (no TLB flush required)
   4189 		 */
   4190 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4191 		    "r"(npm->pm_l1->l1_physaddr));
   4192 		cpu_cpwait();
   4193 	} else {
   4194 		/*
   4195 		 * Otherwise, update TTB and flush TLB
   4196 		 */
   4197 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4198 		if (rpm != NULL)
   4199 			rpm->pm_cstate.cs_tlb = 0;
   4200 	}
   4201 
   4202 	restore_interrupts(oldirqstate);
   4203 
   4204 	block_userspace_access = 0;
   4205 
   4206  all_done:
   4207 	/*
   4208 	 * The new pmap is resident. Make sure it's marked
   4209 	 * as resident in the cache/TLB.
   4210 	 */
   4211 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4212 	if (npm != pmap_kernel())
   4213 		pmap_recent_user = npm;
   4214 
   4215 	/* The old pmap is not longer active */
   4216 	if (opm != NULL)
   4217 		opm->pm_activated = false;
   4218 
   4219 	/* But the new one is */
   4220 	npm->pm_activated = true;
   4221 }
   4222 
   4223 void
   4224 pmap_deactivate(struct lwp *l)
   4225 {
   4226 
   4227 	/*
   4228 	 * If the process is exiting, make sure pmap_activate() does
   4229 	 * a full MMU context-switch and cache flush, which we might
   4230 	 * otherwise skip. See PR port-arm/38950.
   4231 	 */
   4232 	if (l->l_proc->p_sflag & PS_WEXIT)
   4233 		pmap_previous_active_lwp = NULL;
   4234 
   4235 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4236 }
   4237 
   4238 void
   4239 pmap_update(pmap_t pm)
   4240 {
   4241 
   4242 	if (pm->pm_remove_all) {
   4243 		/*
   4244 		 * Finish up the pmap_remove_all() optimisation by flushing
   4245 		 * the TLB.
   4246 		 */
   4247 		pmap_tlb_flushID(pm);
   4248 		pm->pm_remove_all = false;
   4249 	}
   4250 
   4251 	if (pmap_is_current(pm)) {
   4252 		/*
   4253 		 * If we're dealing with a current userland pmap, move its L1
   4254 		 * to the end of the LRU.
   4255 		 */
   4256 		if (pm != pmap_kernel())
   4257 			pmap_use_l1(pm);
   4258 
   4259 		/*
   4260 		 * We can assume we're done with frobbing the cache/tlb for
   4261 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4262 		 * flushes.
   4263 		 */
   4264 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4265 	}
   4266 
   4267 	PMAPCOUNT(updates);
   4268 
   4269 	/*
   4270 	 * make sure TLB/cache operations have completed.
   4271 	 */
   4272 	cpu_cpwait();
   4273 }
   4274 
   4275 void
   4276 pmap_remove_all(pmap_t pm)
   4277 {
   4278 
   4279 	/*
   4280 	 * The vmspace described by this pmap is about to be torn down.
   4281 	 * Until pmap_update() is called, UVM will only make calls
   4282 	 * to pmap_remove(). We can make life much simpler by flushing
   4283 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4284 	 */
   4285 #ifdef PMAP_CACHE_VIVT
   4286 	pmap_idcache_wbinv_all(pm);
   4287 #endif
   4288 	pm->pm_remove_all = true;
   4289 }
   4290 
   4291 /*
   4292  * Retire the given physical map from service.
   4293  * Should only be called if the map contains no valid mappings.
   4294  */
   4295 void
   4296 pmap_destroy(pmap_t pm)
   4297 {
   4298 	u_int count;
   4299 
   4300 	if (pm == NULL)
   4301 		return;
   4302 
   4303 	if (pm->pm_remove_all) {
   4304 		pmap_tlb_flushID(pm);
   4305 		pm->pm_remove_all = false;
   4306 	}
   4307 
   4308 	/*
   4309 	 * Drop reference count
   4310 	 */
   4311 	mutex_enter(&pm->pm_lock);
   4312 	count = --pm->pm_obj.uo_refs;
   4313 	mutex_exit(&pm->pm_lock);
   4314 	if (count > 0) {
   4315 		if (pmap_is_current(pm)) {
   4316 			if (pm != pmap_kernel())
   4317 				pmap_use_l1(pm);
   4318 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4319 		}
   4320 		return;
   4321 	}
   4322 
   4323 	/*
   4324 	 * reference count is zero, free pmap resources and then free pmap.
   4325 	 */
   4326 
   4327 	if (vector_page < KERNEL_BASE) {
   4328 		KDASSERT(!pmap_is_current(pm));
   4329 
   4330 		/* Remove the vector page mapping */
   4331 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4332 		pmap_update(pm);
   4333 	}
   4334 
   4335 	LIST_REMOVE(pm, pm_list);
   4336 
   4337 	pmap_free_l1(pm);
   4338 
   4339 	if (pmap_recent_user == pm)
   4340 		pmap_recent_user = NULL;
   4341 
   4342 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4343 
   4344 	/* return the pmap to the pool */
   4345 	pool_cache_put(&pmap_cache, pm);
   4346 }
   4347 
   4348 
   4349 /*
   4350  * void pmap_reference(pmap_t pm)
   4351  *
   4352  * Add a reference to the specified pmap.
   4353  */
   4354 void
   4355 pmap_reference(pmap_t pm)
   4356 {
   4357 
   4358 	if (pm == NULL)
   4359 		return;
   4360 
   4361 	pmap_use_l1(pm);
   4362 
   4363 	mutex_enter(&pm->pm_lock);
   4364 	pm->pm_obj.uo_refs++;
   4365 	mutex_exit(&pm->pm_lock);
   4366 }
   4367 
   4368 #if ARM_MMU_V6 > 0
   4369 
   4370 static struct evcnt pmap_prefer_nochange_ev =
   4371     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4372 static struct evcnt pmap_prefer_change_ev =
   4373     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4374 
   4375 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4376 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4377 
   4378 void
   4379 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4380 {
   4381 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4382 	vaddr_t va = *vap;
   4383 	vaddr_t diff = (hint - va) & mask;
   4384 	if (diff == 0) {
   4385 		pmap_prefer_nochange_ev.ev_count++;
   4386 	} else {
   4387 		pmap_prefer_change_ev.ev_count++;
   4388 		if (__predict_false(td))
   4389 			va -= mask + 1;
   4390 		*vap = va + diff;
   4391 	}
   4392 }
   4393 #endif /* ARM_MMU_V6 */
   4394 
   4395 /*
   4396  * pmap_zero_page()
   4397  *
   4398  * Zero a given physical page by mapping it at a page hook point.
   4399  * In doing the zero page op, the page we zero is mapped cachable, as with
   4400  * StrongARM accesses to non-cached pages are non-burst making writing
   4401  * _any_ bulk data very slow.
   4402  */
   4403 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4404 void
   4405 pmap_zero_page_generic(paddr_t phys)
   4406 {
   4407 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4408 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4409 #endif
   4410 #ifdef PMAP_CACHE_VIPT
   4411 	/* Choose the last page color it had, if any */
   4412 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4413 #else
   4414 	const vsize_t va_offset = 0;
   4415 #endif
   4416 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4417 
   4418 #ifdef DEBUG
   4419 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4420 		panic("pmap_zero_page: page has mappings");
   4421 #endif
   4422 
   4423 	KDASSERT((phys & PGOFSET) == 0);
   4424 
   4425 	/*
   4426 	 * Hook in the page, zero it, and purge the cache for that
   4427 	 * zeroed page. Invalidate the TLB as needed.
   4428 	 */
   4429 	*ptep = L2_S_PROTO | phys |
   4430 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4431 	PTE_SYNC(ptep);
   4432 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4433 	cpu_cpwait();
   4434 	bzero_page(cdstp + va_offset);
   4435 	/*
   4436 	 * Unmap the page.
   4437 	 */
   4438 	*ptep = 0;
   4439 	PTE_SYNC(ptep);
   4440 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4441 #ifdef PMAP_CACHE_VIVT
   4442 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4443 #endif
   4444 #ifdef PMAP_CACHE_VIPT
   4445 	/*
   4446 	 * This page is now cache resident so it now has a page color.
   4447 	 * Any contents have been obliterated so clear the EXEC flag.
   4448 	 */
   4449 	if (!pmap_is_page_colored_p(pg)) {
   4450 		PMAPCOUNT(vac_color_new);
   4451 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4452 	}
   4453 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4454 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4455 		PMAPCOUNT(exec_discarded_zero);
   4456 	}
   4457 	pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4458 #endif
   4459 }
   4460 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4461 
   4462 #if ARM_MMU_XSCALE == 1
   4463 void
   4464 pmap_zero_page_xscale(paddr_t phys)
   4465 {
   4466 #ifdef DEBUG
   4467 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4468 
   4469 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4470 		panic("pmap_zero_page: page has mappings");
   4471 #endif
   4472 
   4473 	KDASSERT((phys & PGOFSET) == 0);
   4474 
   4475 	/*
   4476 	 * Hook in the page, zero it, and purge the cache for that
   4477 	 * zeroed page. Invalidate the TLB as needed.
   4478 	 */
   4479 	*cdst_pte = L2_S_PROTO | phys |
   4480 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4481 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4482 	PTE_SYNC(cdst_pte);
   4483 	cpu_tlb_flushD_SE(cdstp);
   4484 	cpu_cpwait();
   4485 	bzero_page(cdstp);
   4486 	xscale_cache_clean_minidata();
   4487 }
   4488 #endif /* ARM_MMU_XSCALE == 1 */
   4489 
   4490 /* pmap_pageidlezero()
   4491  *
   4492  * The same as above, except that we assume that the page is not
   4493  * mapped.  This means we never have to flush the cache first.  Called
   4494  * from the idle loop.
   4495  */
   4496 bool
   4497 pmap_pageidlezero(paddr_t phys)
   4498 {
   4499 	unsigned int i;
   4500 	int *ptr;
   4501 	bool rv = true;
   4502 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4503 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4504 #endif
   4505 #ifdef PMAP_CACHE_VIPT
   4506 	/* Choose the last page color it had, if any */
   4507 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4508 #else
   4509 	const vsize_t va_offset = 0;
   4510 #endif
   4511 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4512 
   4513 
   4514 #ifdef DEBUG
   4515 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4516 		panic("pmap_pageidlezero: page has mappings");
   4517 #endif
   4518 
   4519 	KDASSERT((phys & PGOFSET) == 0);
   4520 
   4521 	/*
   4522 	 * Hook in the page, zero it, and purge the cache for that
   4523 	 * zeroed page. Invalidate the TLB as needed.
   4524 	 */
   4525 	*ptep = L2_S_PROTO | phys |
   4526 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4527 	PTE_SYNC(ptep);
   4528 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4529 	cpu_cpwait();
   4530 
   4531 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4532 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4533 		if (sched_curcpu_runnable_p() != 0) {
   4534 			/*
   4535 			 * A process has become ready.  Abort now,
   4536 			 * so we don't keep it waiting while we
   4537 			 * do slow memory access to finish this
   4538 			 * page.
   4539 			 */
   4540 			rv = false;
   4541 			break;
   4542 		}
   4543 		*ptr++ = 0;
   4544 	}
   4545 
   4546 #ifdef PMAP_CACHE_VIVT
   4547 	if (rv)
   4548 		/*
   4549 		 * if we aborted we'll rezero this page again later so don't
   4550 		 * purge it unless we finished it
   4551 		 */
   4552 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4553 #elif defined(PMAP_CACHE_VIPT)
   4554 	/*
   4555 	 * This page is now cache resident so it now has a page color.
   4556 	 * Any contents have been obliterated so clear the EXEC flag.
   4557 	 */
   4558 	if (!pmap_is_page_colored_p(pg)) {
   4559 		PMAPCOUNT(vac_color_new);
   4560 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4561 	}
   4562 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4563 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4564 		PMAPCOUNT(exec_discarded_zero);
   4565 	}
   4566 #endif
   4567 	/*
   4568 	 * Unmap the page.
   4569 	 */
   4570 	*ptep = 0;
   4571 	PTE_SYNC(ptep);
   4572 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4573 
   4574 	return (rv);
   4575 }
   4576 
   4577 /*
   4578  * pmap_copy_page()
   4579  *
   4580  * Copy one physical page into another, by mapping the pages into
   4581  * hook points. The same comment regarding cachability as in
   4582  * pmap_zero_page also applies here.
   4583  */
   4584 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4585 void
   4586 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4587 {
   4588 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4589 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4590 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4591 #endif
   4592 #ifdef PMAP_CACHE_VIPT
   4593 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4594 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4595 #else
   4596 	const vsize_t src_va_offset = 0;
   4597 	const vsize_t dst_va_offset = 0;
   4598 #endif
   4599 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4600 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4601 
   4602 #ifdef DEBUG
   4603 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4604 		panic("pmap_copy_page: dst page has mappings");
   4605 #endif
   4606 
   4607 #ifdef PMAP_CACHE_VIPT
   4608 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4609 #endif
   4610 	KDASSERT((src & PGOFSET) == 0);
   4611 	KDASSERT((dst & PGOFSET) == 0);
   4612 
   4613 	/*
   4614 	 * Clean the source page.  Hold the source page's lock for
   4615 	 * the duration of the copy so that no other mappings can
   4616 	 * be created while we have a potentially aliased mapping.
   4617 	 */
   4618 	simple_lock(&src_pg->mdpage.pvh_slock);
   4619 #ifdef PMAP_CACHE_VIVT
   4620 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4621 #endif
   4622 
   4623 	/*
   4624 	 * Map the pages into the page hook points, copy them, and purge
   4625 	 * the cache for the appropriate page. Invalidate the TLB
   4626 	 * as required.
   4627 	 */
   4628 	*src_ptep = L2_S_PROTO
   4629 	    | src
   4630 #ifdef PMAP_CACHE_VIPT
   4631 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4632 #endif
   4633 #ifdef PMAP_CACHE_VIVT
   4634 	    | pte_l2_s_cache_mode
   4635 #endif
   4636 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4637 	*dst_ptep = L2_S_PROTO | dst |
   4638 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4639 	PTE_SYNC(src_ptep);
   4640 	PTE_SYNC(dst_ptep);
   4641 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4642 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4643 	cpu_cpwait();
   4644 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4645 #ifdef PMAP_CACHE_VIVT
   4646 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4647 #endif
   4648 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4649 #ifdef PMAP_CACHE_VIVT
   4650 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4651 #endif
   4652 	/*
   4653 	 * Unmap the pages.
   4654 	 */
   4655 	*src_ptep = 0;
   4656 	*dst_ptep = 0;
   4657 	PTE_SYNC(src_ptep);
   4658 	PTE_SYNC(dst_ptep);
   4659 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4660 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4661 #ifdef PMAP_CACHE_VIPT
   4662 	/*
   4663 	 * Now that the destination page is in the cache, mark it as colored.
   4664 	 * If this was an exec page, discard it.
   4665 	 */
   4666 	if (!pmap_is_page_colored_p(dst_pg)) {
   4667 		PMAPCOUNT(vac_color_new);
   4668 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4669 	}
   4670 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4671 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4672 		PMAPCOUNT(exec_discarded_copy);
   4673 	}
   4674 	dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4675 #endif
   4676 }
   4677 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4678 
   4679 #if ARM_MMU_XSCALE == 1
   4680 void
   4681 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4682 {
   4683 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4684 #ifdef DEBUG
   4685 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4686 
   4687 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4688 		panic("pmap_copy_page: dst page has mappings");
   4689 #endif
   4690 
   4691 	KDASSERT((src & PGOFSET) == 0);
   4692 	KDASSERT((dst & PGOFSET) == 0);
   4693 
   4694 	/*
   4695 	 * Clean the source page.  Hold the source page's lock for
   4696 	 * the duration of the copy so that no other mappings can
   4697 	 * be created while we have a potentially aliased mapping.
   4698 	 */
   4699 	simple_lock(&src_pg->mdpage.pvh_slock);
   4700 #ifdef PMAP_CACHE_VIVT
   4701 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4702 #endif
   4703 
   4704 	/*
   4705 	 * Map the pages into the page hook points, copy them, and purge
   4706 	 * the cache for the appropriate page. Invalidate the TLB
   4707 	 * as required.
   4708 	 */
   4709 	*csrc_pte = L2_S_PROTO | src |
   4710 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4711 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4712 	PTE_SYNC(csrc_pte);
   4713 	*cdst_pte = L2_S_PROTO | dst |
   4714 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4715 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4716 	PTE_SYNC(cdst_pte);
   4717 	cpu_tlb_flushD_SE(csrcp);
   4718 	cpu_tlb_flushD_SE(cdstp);
   4719 	cpu_cpwait();
   4720 	bcopy_page(csrcp, cdstp);
   4721 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4722 	xscale_cache_clean_minidata();
   4723 }
   4724 #endif /* ARM_MMU_XSCALE == 1 */
   4725 
   4726 /*
   4727  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4728  *
   4729  * Return the start and end addresses of the kernel's virtual space.
   4730  * These values are setup in pmap_bootstrap and are updated as pages
   4731  * are allocated.
   4732  */
   4733 void
   4734 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4735 {
   4736 	*start = virtual_avail;
   4737 	*end = virtual_end;
   4738 }
   4739 
   4740 /*
   4741  * Helper function for pmap_grow_l2_bucket()
   4742  */
   4743 static inline int
   4744 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4745 {
   4746 	struct l2_bucket *l2b;
   4747 	pt_entry_t *ptep;
   4748 	paddr_t pa;
   4749 
   4750 	if (uvm.page_init_done == false) {
   4751 #ifdef PMAP_STEAL_MEMORY
   4752 		pv_addr_t pv;
   4753 		pmap_boot_pagealloc(PAGE_SIZE,
   4754 #ifdef PMAP_CACHE_VIPT
   4755 		    arm_cache_prefer_mask,
   4756 		    va & arm_cache_prefer_mask,
   4757 #else
   4758 		    0, 0,
   4759 #endif
   4760 		    &pv);
   4761 		pa = pv.pv_pa;
   4762 #else
   4763 		if (uvm_page_physget(&pa) == false)
   4764 			return (1);
   4765 #endif	/* PMAP_STEAL_MEMORY */
   4766 	} else {
   4767 		struct vm_page *pg;
   4768 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4769 		if (pg == NULL)
   4770 			return (1);
   4771 		pa = VM_PAGE_TO_PHYS(pg);
   4772 #ifdef PMAP_CACHE_VIPT
   4773 		/*
   4774 		 * This new page must not have any mappings.  Enter it via
   4775 		 * pmap_kenter_pa and let that routine do the hard work.
   4776 		 */
   4777 		KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
   4778 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   4779 #endif
   4780 	}
   4781 
   4782 	if (pap)
   4783 		*pap = pa;
   4784 
   4785 	PMAPCOUNT(pt_mappings);
   4786 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4787 	KDASSERT(l2b != NULL);
   4788 
   4789 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4790 	*ptep = L2_S_PROTO | pa | cache_mode |
   4791 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4792 	PTE_SYNC(ptep);
   4793 	memset((void *)va, 0, PAGE_SIZE);
   4794 	return (0);
   4795 }
   4796 
   4797 /*
   4798  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4799  * used by pmap_growkernel().
   4800  */
   4801 static inline struct l2_bucket *
   4802 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4803 {
   4804 	struct l2_dtable *l2;
   4805 	struct l2_bucket *l2b;
   4806 	u_short l1idx;
   4807 	vaddr_t nva;
   4808 
   4809 	l1idx = L1_IDX(va);
   4810 
   4811 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4812 		/*
   4813 		 * No mapping at this address, as there is
   4814 		 * no entry in the L1 table.
   4815 		 * Need to allocate a new l2_dtable.
   4816 		 */
   4817 		nva = pmap_kernel_l2dtable_kva;
   4818 		if ((nva & PGOFSET) == 0) {
   4819 			/*
   4820 			 * Need to allocate a backing page
   4821 			 */
   4822 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4823 				return (NULL);
   4824 		}
   4825 
   4826 		l2 = (struct l2_dtable *)nva;
   4827 		nva += sizeof(struct l2_dtable);
   4828 
   4829 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4830 			/*
   4831 			 * The new l2_dtable straddles a page boundary.
   4832 			 * Map in another page to cover it.
   4833 			 */
   4834 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4835 				return (NULL);
   4836 		}
   4837 
   4838 		pmap_kernel_l2dtable_kva = nva;
   4839 
   4840 		/*
   4841 		 * Link it into the parent pmap
   4842 		 */
   4843 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4844 	}
   4845 
   4846 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4847 
   4848 	/*
   4849 	 * Fetch pointer to the L2 page table associated with the address.
   4850 	 */
   4851 	if (l2b->l2b_kva == NULL) {
   4852 		pt_entry_t *ptep;
   4853 
   4854 		/*
   4855 		 * No L2 page table has been allocated. Chances are, this
   4856 		 * is because we just allocated the l2_dtable, above.
   4857 		 */
   4858 		nva = pmap_kernel_l2ptp_kva;
   4859 		ptep = (pt_entry_t *)nva;
   4860 		if ((nva & PGOFSET) == 0) {
   4861 			/*
   4862 			 * Need to allocate a backing page
   4863 			 */
   4864 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4865 			    &pmap_kernel_l2ptp_phys))
   4866 				return (NULL);
   4867 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4868 		}
   4869 
   4870 		l2->l2_occupancy++;
   4871 		l2b->l2b_kva = ptep;
   4872 		l2b->l2b_l1idx = l1idx;
   4873 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4874 
   4875 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4876 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4877 	}
   4878 
   4879 	return (l2b);
   4880 }
   4881 
   4882 vaddr_t
   4883 pmap_growkernel(vaddr_t maxkvaddr)
   4884 {
   4885 	pmap_t kpm = pmap_kernel();
   4886 	struct l1_ttable *l1;
   4887 	struct l2_bucket *l2b;
   4888 	pd_entry_t *pl1pd;
   4889 	int s;
   4890 
   4891 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4892 		goto out;		/* we are OK */
   4893 
   4894 	NPDEBUG(PDB_GROWKERN,
   4895 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4896 	    pmap_curmaxkvaddr, maxkvaddr));
   4897 
   4898 	KDASSERT(maxkvaddr <= virtual_end);
   4899 
   4900 	/*
   4901 	 * whoops!   we need to add kernel PTPs
   4902 	 */
   4903 
   4904 	s = splhigh();	/* to be safe */
   4905 	mutex_enter(&kpm->pm_lock);
   4906 
   4907 	/* Map 1MB at a time */
   4908 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4909 
   4910 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4911 		KDASSERT(l2b != NULL);
   4912 
   4913 		/* Distribute new L1 entry to all other L1s */
   4914 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4915 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4916 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4917 			    L1_C_PROTO;
   4918 			PTE_SYNC(pl1pd);
   4919 		}
   4920 	}
   4921 
   4922 	/*
   4923 	 * flush out the cache, expensive but growkernel will happen so
   4924 	 * rarely
   4925 	 */
   4926 	cpu_dcache_wbinv_all();
   4927 	cpu_tlb_flushD();
   4928 	cpu_cpwait();
   4929 
   4930 	mutex_exit(&kpm->pm_lock);
   4931 	splx(s);
   4932 
   4933 out:
   4934 	return (pmap_curmaxkvaddr);
   4935 }
   4936 
   4937 /************************ Utility routines ****************************/
   4938 
   4939 /*
   4940  * vector_page_setprot:
   4941  *
   4942  *	Manipulate the protection of the vector page.
   4943  */
   4944 void
   4945 vector_page_setprot(int prot)
   4946 {
   4947 	struct l2_bucket *l2b;
   4948 	pt_entry_t *ptep;
   4949 
   4950 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4951 	KDASSERT(l2b != NULL);
   4952 
   4953 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4954 
   4955 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4956 	PTE_SYNC(ptep);
   4957 	cpu_tlb_flushD_SE(vector_page);
   4958 	cpu_cpwait();
   4959 }
   4960 
   4961 /*
   4962  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4963  * Returns true if the mapping exists, else false.
   4964  *
   4965  * NOTE: This function is only used by a couple of arm-specific modules.
   4966  * It is not safe to take any pmap locks here, since we could be right
   4967  * in the middle of debugging the pmap anyway...
   4968  *
   4969  * It is possible for this routine to return false even though a valid
   4970  * mapping does exist. This is because we don't lock, so the metadata
   4971  * state may be inconsistent.
   4972  *
   4973  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4974  * a "section" mapping.
   4975  */
   4976 bool
   4977 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4978 {
   4979 	struct l2_dtable *l2;
   4980 	pd_entry_t *pl1pd, l1pd;
   4981 	pt_entry_t *ptep;
   4982 	u_short l1idx;
   4983 
   4984 	if (pm->pm_l1 == NULL)
   4985 		return false;
   4986 
   4987 	l1idx = L1_IDX(va);
   4988 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4989 	l1pd = *pl1pd;
   4990 
   4991 	if (l1pte_section_p(l1pd)) {
   4992 		*ptp = NULL;
   4993 		return true;
   4994 	}
   4995 
   4996 	if (pm->pm_l2 == NULL)
   4997 		return false;
   4998 
   4999 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5000 
   5001 	if (l2 == NULL ||
   5002 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5003 		return false;
   5004 	}
   5005 
   5006 	*ptp = &ptep[l2pte_index(va)];
   5007 	return true;
   5008 }
   5009 
   5010 bool
   5011 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5012 {
   5013 	u_short l1idx;
   5014 
   5015 	if (pm->pm_l1 == NULL)
   5016 		return false;
   5017 
   5018 	l1idx = L1_IDX(va);
   5019 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   5020 
   5021 	return true;
   5022 }
   5023 
   5024 /************************ Bootstrapping routines ****************************/
   5025 
   5026 static void
   5027 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5028 {
   5029 	int i;
   5030 
   5031 	l1->l1_kva = l1pt;
   5032 	l1->l1_domain_use_count = 0;
   5033 	l1->l1_domain_first = 0;
   5034 
   5035 	for (i = 0; i < PMAP_DOMAINS; i++)
   5036 		l1->l1_domain_free[i] = i + 1;
   5037 
   5038 	/*
   5039 	 * Copy the kernel's L1 entries to each new L1.
   5040 	 */
   5041 	if (pmap_initialized)
   5042 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   5043 
   5044 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5045 	    &l1->l1_physaddr) == false)
   5046 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5047 
   5048 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5049 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5050 }
   5051 
   5052 /*
   5053  * pmap_bootstrap() is called from the board-specific initarm() routine
   5054  * once the kernel L1/L2 descriptors tables have been set up.
   5055  *
   5056  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5057  * spread over a number of disparate files/functions.
   5058  *
   5059  * We are passed the following parameters
   5060  *  - kernel_l1pt
   5061  *    This is a pointer to the base of the kernel's L1 translation table.
   5062  *  - vstart
   5063  *    1MB-aligned start of managed kernel virtual memory.
   5064  *  - vend
   5065  *    1MB-aligned end of managed kernel virtual memory.
   5066  *
   5067  * We use the first parameter to build the metadata (struct l1_ttable and
   5068  * struct l2_dtable) necessary to track kernel mappings.
   5069  */
   5070 #define	PMAP_STATIC_L2_SIZE 16
   5071 void
   5072 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5073 {
   5074 	static struct l1_ttable static_l1;
   5075 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5076 	struct l1_ttable *l1 = &static_l1;
   5077 	struct l2_dtable *l2;
   5078 	struct l2_bucket *l2b;
   5079 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5080 	pmap_t pm = pmap_kernel();
   5081 	pd_entry_t pde;
   5082 	pt_entry_t *ptep;
   5083 	paddr_t pa;
   5084 	vaddr_t va;
   5085 	vsize_t size;
   5086 	int nptes, l1idx, l2idx, l2next = 0;
   5087 
   5088 	/*
   5089 	 * Initialise the kernel pmap object
   5090 	 */
   5091 	pm->pm_l1 = l1;
   5092 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5093 	pm->pm_activated = true;
   5094 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5095 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   5096 
   5097 	/*
   5098 	 * Scan the L1 translation table created by initarm() and create
   5099 	 * the required metadata for all valid mappings found in it.
   5100 	 */
   5101 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5102 		pde = l1pt[l1idx];
   5103 
   5104 		/*
   5105 		 * We're only interested in Coarse mappings.
   5106 		 * pmap_extract() can deal with section mappings without
   5107 		 * recourse to checking L2 metadata.
   5108 		 */
   5109 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5110 			continue;
   5111 
   5112 		/*
   5113 		 * Lookup the KVA of this L2 descriptor table
   5114 		 */
   5115 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5116 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5117 		if (ptep == NULL) {
   5118 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5119 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5120 		}
   5121 
   5122 		/*
   5123 		 * Fetch the associated L2 metadata structure.
   5124 		 * Allocate a new one if necessary.
   5125 		 */
   5126 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5127 			if (l2next == PMAP_STATIC_L2_SIZE)
   5128 				panic("pmap_bootstrap: out of static L2s");
   5129 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5130 		}
   5131 
   5132 		/*
   5133 		 * One more L1 slot tracked...
   5134 		 */
   5135 		l2->l2_occupancy++;
   5136 
   5137 		/*
   5138 		 * Fill in the details of the L2 descriptor in the
   5139 		 * appropriate bucket.
   5140 		 */
   5141 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5142 		l2b->l2b_kva = ptep;
   5143 		l2b->l2b_phys = pa;
   5144 		l2b->l2b_l1idx = l1idx;
   5145 
   5146 		/*
   5147 		 * Establish an initial occupancy count for this descriptor
   5148 		 */
   5149 		for (l2idx = 0;
   5150 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5151 		    l2idx++) {
   5152 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5153 				l2b->l2b_occupancy++;
   5154 			}
   5155 		}
   5156 
   5157 		/*
   5158 		 * Make sure the descriptor itself has the correct cache mode.
   5159 		 * If not, fix it, but whine about the problem. Port-meisters
   5160 		 * should consider this a clue to fix up their initarm()
   5161 		 * function. :)
   5162 		 */
   5163 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5164 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5165 			    "L2 pte @ %p\n", ptep);
   5166 		}
   5167 	}
   5168 
   5169 	/*
   5170 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5171 	 * a page table. Bitch if it is not correctly set.
   5172 	 */
   5173 	for (va = (vaddr_t)l1pt;
   5174 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5175 		if (pmap_set_pt_cache_mode(l1pt, va))
   5176 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5177 			    "primary L1 @ 0x%lx\n", va);
   5178 	}
   5179 
   5180 	cpu_dcache_wbinv_all();
   5181 	cpu_tlb_flushID();
   5182 	cpu_cpwait();
   5183 
   5184 	/*
   5185 	 * now we allocate the "special" VAs which are used for tmp mappings
   5186 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5187 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5188 	 *
   5189 	 * Managed KVM space start from wherever initarm() tells us.
   5190 	 */
   5191 	virtual_avail = vstart;
   5192 	virtual_end = vend;
   5193 
   5194 #ifdef PMAP_CACHE_VIPT
   5195 	/*
   5196 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5197 	 * page so we won't violate cache aliasing rules.
   5198 	 */
   5199 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5200 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5201 #else
   5202 	nptes = 1;
   5203 #endif
   5204 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5205 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5206 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5207 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5208 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5209 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5210 	    (void *)&msgbufaddr, NULL);
   5211 
   5212 	/*
   5213 	 * Allocate a range of kernel virtual address space to be used
   5214 	 * for L2 descriptor tables and metadata allocation in
   5215 	 * pmap_growkernel().
   5216 	 */
   5217 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5218 	pmap_alloc_specials(&virtual_avail,
   5219 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5220 	    &pmap_kernel_l2ptp_kva, NULL);
   5221 
   5222 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5223 	pmap_alloc_specials(&virtual_avail,
   5224 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5225 	    &pmap_kernel_l2dtable_kva, NULL);
   5226 
   5227 	/*
   5228 	 * init the static-global locks and global pmap list.
   5229 	 */
   5230 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5231 
   5232 	/*
   5233 	 * We can now initialise the first L1's metadata.
   5234 	 */
   5235 	SLIST_INIT(&l1_list);
   5236 	TAILQ_INIT(&l1_lru_list);
   5237 	simple_lock_init(&l1_lru_lock);
   5238 	pmap_init_l1(l1, l1pt);
   5239 
   5240 	/* Set up vector page L1 details, if necessary */
   5241 	if (vector_page < KERNEL_BASE) {
   5242 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5243 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5244 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5245 		    L1_C_DOM(pm->pm_domain);
   5246 	} else
   5247 		pm->pm_pl1vec = NULL;
   5248 
   5249 	/*
   5250 	 * Initialize the pmap cache
   5251 	 */
   5252 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5253 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5254 	LIST_INIT(&pmap_pmaps);
   5255 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5256 
   5257 	/*
   5258 	 * Initialize the pv pool.
   5259 	 */
   5260 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5261 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5262 
   5263 	/*
   5264 	 * Initialize the L2 dtable pool and cache.
   5265 	 */
   5266 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5267 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5268 
   5269 	/*
   5270 	 * Initialise the L2 descriptor table pool and cache
   5271 	 */
   5272 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5273 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5274 	    pmap_l2ptp_ctor, NULL, NULL);
   5275 
   5276 	cpu_dcache_wbinv_all();
   5277 }
   5278 
   5279 static int
   5280 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5281 {
   5282 	pd_entry_t *pdep, pde;
   5283 	pt_entry_t *ptep, pte;
   5284 	vaddr_t pa;
   5285 	int rv = 0;
   5286 
   5287 	/*
   5288 	 * Make sure the descriptor itself has the correct cache mode
   5289 	 */
   5290 	pdep = &kl1[L1_IDX(va)];
   5291 	pde = *pdep;
   5292 
   5293 	if (l1pte_section_p(pde)) {
   5294 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5295 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5296 			    pte_l1_s_cache_mode_pt;
   5297 			PTE_SYNC(pdep);
   5298 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5299 			rv = 1;
   5300 		}
   5301 	} else {
   5302 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5303 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5304 		if (ptep == NULL)
   5305 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5306 
   5307 		ptep = &ptep[l2pte_index(va)];
   5308 		pte = *ptep;
   5309 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5310 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5311 			    pte_l2_s_cache_mode_pt;
   5312 			PTE_SYNC(ptep);
   5313 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5314 			rv = 1;
   5315 		}
   5316 	}
   5317 
   5318 	return (rv);
   5319 }
   5320 
   5321 static void
   5322 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5323 {
   5324 	vaddr_t va = *availp;
   5325 	struct l2_bucket *l2b;
   5326 
   5327 	if (ptep) {
   5328 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5329 		if (l2b == NULL)
   5330 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5331 
   5332 		if (ptep)
   5333 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5334 	}
   5335 
   5336 	*vap = va;
   5337 	*availp = va + (PAGE_SIZE * pages);
   5338 }
   5339 
   5340 void
   5341 pmap_init(void)
   5342 {
   5343 
   5344 	/*
   5345 	 * Set the available memory vars - These do not map to real memory
   5346 	 * addresses and cannot as the physical memory is fragmented.
   5347 	 * They are used by ps for %mem calculations.
   5348 	 * One could argue whether this should be the entire memory or just
   5349 	 * the memory that is useable in a user process.
   5350 	 */
   5351 	avail_start = ptoa(vm_physmem[0].start);
   5352 	avail_end = ptoa(vm_physmem[vm_nphysseg - 1].end);
   5353 
   5354 	/*
   5355 	 * Now we need to free enough pv_entry structures to allow us to get
   5356 	 * the kmem_map/kmem_object allocated and inited (done after this
   5357 	 * function is finished).  to do this we allocate one bootstrap page out
   5358 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5359 	 * structures.   we never free this page.
   5360 	 */
   5361 	pool_setlowat(&pmap_pv_pool,
   5362 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5363 
   5364 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5365 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5366 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5367 
   5368 	pmap_initialized = true;
   5369 }
   5370 
   5371 static vaddr_t last_bootstrap_page = 0;
   5372 static void *free_bootstrap_pages = NULL;
   5373 
   5374 static void *
   5375 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5376 {
   5377 	extern void *pool_page_alloc(struct pool *, int);
   5378 	vaddr_t new_page;
   5379 	void *rv;
   5380 
   5381 	if (pmap_initialized)
   5382 		return (pool_page_alloc(pp, flags));
   5383 
   5384 	if (free_bootstrap_pages) {
   5385 		rv = free_bootstrap_pages;
   5386 		free_bootstrap_pages = *((void **)rv);
   5387 		return (rv);
   5388 	}
   5389 
   5390 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5391 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5392 
   5393 	KASSERT(new_page > last_bootstrap_page);
   5394 	last_bootstrap_page = new_page;
   5395 	return ((void *)new_page);
   5396 }
   5397 
   5398 static void
   5399 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5400 {
   5401 	extern void pool_page_free(struct pool *, void *);
   5402 
   5403 	if ((vaddr_t)v <= last_bootstrap_page) {
   5404 		*((void **)v) = free_bootstrap_pages;
   5405 		free_bootstrap_pages = v;
   5406 		return;
   5407 	}
   5408 
   5409 	if (pmap_initialized) {
   5410 		pool_page_free(pp, v);
   5411 		return;
   5412 	}
   5413 }
   5414 
   5415 /*
   5416  * pmap_postinit()
   5417  *
   5418  * This routine is called after the vm and kmem subsystems have been
   5419  * initialised. This allows the pmap code to perform any initialisation
   5420  * that can only be done one the memory allocation is in place.
   5421  */
   5422 void
   5423 pmap_postinit(void)
   5424 {
   5425 	extern paddr_t physical_start, physical_end;
   5426 	struct l2_bucket *l2b;
   5427 	struct l1_ttable *l1;
   5428 	struct pglist plist;
   5429 	struct vm_page *m;
   5430 	pd_entry_t *pl1pt;
   5431 	pt_entry_t *ptep, pte;
   5432 	vaddr_t va, eva;
   5433 	u_int loop, needed;
   5434 	int error;
   5435 
   5436 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5437 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5438 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5439 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5440 
   5441 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5442 	needed -= 1;
   5443 
   5444 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5445 
   5446 	for (loop = 0; loop < needed; loop++, l1++) {
   5447 		/* Allocate a L1 page table */
   5448 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5449 		if (va == 0)
   5450 			panic("Cannot allocate L1 KVM");
   5451 
   5452 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5453 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5454 		if (error)
   5455 			panic("Cannot allocate L1 physical pages");
   5456 
   5457 		m = TAILQ_FIRST(&plist);
   5458 		eva = va + L1_TABLE_SIZE;
   5459 		pl1pt = (pd_entry_t *)va;
   5460 
   5461 		while (m && va < eva) {
   5462 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5463 
   5464 			pmap_kenter_pa(va, pa,
   5465 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
   5466 
   5467 			/*
   5468 			 * Make sure the L1 descriptor table is mapped
   5469 			 * with the cache-mode set to write-through.
   5470 			 */
   5471 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5472 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5473 			pte = *ptep;
   5474 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5475 			*ptep = pte;
   5476 			PTE_SYNC(ptep);
   5477 			cpu_tlb_flushD_SE(va);
   5478 
   5479 			va += PAGE_SIZE;
   5480 			m = TAILQ_NEXT(m, pageq.queue);
   5481 		}
   5482 
   5483 #ifdef DIAGNOSTIC
   5484 		if (m)
   5485 			panic("pmap_alloc_l1pt: pglist not empty");
   5486 #endif	/* DIAGNOSTIC */
   5487 
   5488 		pmap_init_l1(l1, pl1pt);
   5489 	}
   5490 
   5491 #ifdef DEBUG
   5492 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5493 	    needed);
   5494 #endif
   5495 }
   5496 
   5497 /*
   5498  * Note that the following routines are used by board-specific initialisation
   5499  * code to configure the initial kernel page tables.
   5500  *
   5501  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5502  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5503  * behaviour of the old pmap, and provides an easy migration path for
   5504  * initial bring-up of the new pmap on existing ports. Fortunately,
   5505  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5506  * will be deprecated.
   5507  *
   5508  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5509  * tables.
   5510  */
   5511 
   5512 /*
   5513  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5514  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5515  * find them as necessary.
   5516  *
   5517  * Note that the data on this list MUST remain valid after initarm() returns,
   5518  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5519  */
   5520 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5521 
   5522 static vaddr_t
   5523 kernel_pt_lookup(paddr_t pa)
   5524 {
   5525 	pv_addr_t *pv;
   5526 
   5527 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5528 #ifndef ARM32_NEW_VM_LAYOUT
   5529 		if (pv->pv_pa == (pa & ~PGOFSET))
   5530 			return (pv->pv_va | (pa & PGOFSET));
   5531 #else
   5532 		if (pv->pv_pa == pa)
   5533 			return (pv->pv_va);
   5534 #endif
   5535 	}
   5536 	return (0);
   5537 }
   5538 
   5539 /*
   5540  * pmap_map_section:
   5541  *
   5542  *	Create a single section mapping.
   5543  */
   5544 void
   5545 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5546 {
   5547 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5548 	pd_entry_t fl;
   5549 
   5550 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5551 
   5552 	switch (cache) {
   5553 	case PTE_NOCACHE:
   5554 	default:
   5555 		fl = 0;
   5556 		break;
   5557 
   5558 	case PTE_CACHE:
   5559 		fl = pte_l1_s_cache_mode;
   5560 		break;
   5561 
   5562 	case PTE_PAGETABLE:
   5563 		fl = pte_l1_s_cache_mode_pt;
   5564 		break;
   5565 	}
   5566 
   5567 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5568 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5569 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5570 }
   5571 
   5572 /*
   5573  * pmap_map_entry:
   5574  *
   5575  *	Create a single page mapping.
   5576  */
   5577 void
   5578 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5579 {
   5580 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5581 	pt_entry_t fl;
   5582 	pt_entry_t *pte;
   5583 
   5584 	KASSERT(((va | pa) & PGOFSET) == 0);
   5585 
   5586 	switch (cache) {
   5587 	case PTE_NOCACHE:
   5588 	default:
   5589 		fl = 0;
   5590 		break;
   5591 
   5592 	case PTE_CACHE:
   5593 		fl = pte_l2_s_cache_mode;
   5594 		break;
   5595 
   5596 	case PTE_PAGETABLE:
   5597 		fl = pte_l2_s_cache_mode_pt;
   5598 		break;
   5599 	}
   5600 
   5601 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5602 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5603 
   5604 #ifndef ARM32_NEW_VM_LAYOUT
   5605 	pte = (pt_entry_t *)
   5606 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5607 #else
   5608 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5609 #endif
   5610 	if (pte == NULL)
   5611 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5612 
   5613 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5614 #ifndef ARM32_NEW_VM_LAYOUT
   5615 	pte += (va >> PGSHIFT) & 0x3ff;
   5616 #else
   5617 	pte += l2pte_index(va);
   5618 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5619 #endif
   5620 	*pte = fl;
   5621 	PTE_SYNC(pte);
   5622 }
   5623 
   5624 /*
   5625  * pmap_link_l2pt:
   5626  *
   5627  *	Link the L2 page table specified by "l2pv" into the L1
   5628  *	page table at the slot for "va".
   5629  */
   5630 void
   5631 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5632 {
   5633 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5634 	u_int slot = va >> L1_S_SHIFT;
   5635 
   5636 #ifndef ARM32_NEW_VM_LAYOUT
   5637 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5638 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5639 #endif
   5640 
   5641 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5642 
   5643 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5644 #ifdef ARM32_NEW_VM_LAYOUT
   5645 	PTE_SYNC(&pde[slot]);
   5646 #else
   5647 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5648 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5649 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5650 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5651 #endif
   5652 
   5653 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5654 }
   5655 
   5656 /*
   5657  * pmap_map_chunk:
   5658  *
   5659  *	Map a chunk of memory using the most efficient mappings
   5660  *	possible (section, large page, small page) into the
   5661  *	provided L1 and L2 tables at the specified virtual address.
   5662  */
   5663 vsize_t
   5664 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5665     int prot, int cache)
   5666 {
   5667 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5668 	pt_entry_t *pte, f1, f2s, f2l;
   5669 	vsize_t resid;
   5670 	int i;
   5671 
   5672 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5673 
   5674 	if (l1pt == 0)
   5675 		panic("pmap_map_chunk: no L1 table provided");
   5676 
   5677 #ifdef VERBOSE_INIT_ARM
   5678 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5679 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5680 #endif
   5681 
   5682 	switch (cache) {
   5683 	case PTE_NOCACHE:
   5684 	default:
   5685 		f1 = 0;
   5686 		f2l = 0;
   5687 		f2s = 0;
   5688 		break;
   5689 
   5690 	case PTE_CACHE:
   5691 		f1 = pte_l1_s_cache_mode;
   5692 		f2l = pte_l2_l_cache_mode;
   5693 		f2s = pte_l2_s_cache_mode;
   5694 		break;
   5695 
   5696 	case PTE_PAGETABLE:
   5697 		f1 = pte_l1_s_cache_mode_pt;
   5698 		f2l = pte_l2_l_cache_mode_pt;
   5699 		f2s = pte_l2_s_cache_mode_pt;
   5700 		break;
   5701 	}
   5702 
   5703 	size = resid;
   5704 
   5705 	while (resid > 0) {
   5706 		/* See if we can use a section mapping. */
   5707 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5708 #ifdef VERBOSE_INIT_ARM
   5709 			printf("S");
   5710 #endif
   5711 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5712 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5713 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5714 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5715 			va += L1_S_SIZE;
   5716 			pa += L1_S_SIZE;
   5717 			resid -= L1_S_SIZE;
   5718 			continue;
   5719 		}
   5720 
   5721 		/*
   5722 		 * Ok, we're going to use an L2 table.  Make sure
   5723 		 * one is actually in the corresponding L1 slot
   5724 		 * for the current VA.
   5725 		 */
   5726 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5727 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5728 
   5729 #ifndef ARM32_NEW_VM_LAYOUT
   5730 		pte = (pt_entry_t *)
   5731 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5732 #else
   5733 		pte = (pt_entry_t *) kernel_pt_lookup(
   5734 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5735 #endif
   5736 		if (pte == NULL)
   5737 			panic("pmap_map_chunk: can't find L2 table for VA"
   5738 			    "0x%08lx", va);
   5739 
   5740 		/* See if we can use a L2 large page mapping. */
   5741 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5742 #ifdef VERBOSE_INIT_ARM
   5743 			printf("L");
   5744 #endif
   5745 			for (i = 0; i < 16; i++) {
   5746 #ifndef ARM32_NEW_VM_LAYOUT
   5747 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5748 				    L2_L_PROTO | pa |
   5749 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5750 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5751 #else
   5752 				pte[l2pte_index(va) + i] =
   5753 				    L2_L_PROTO | pa |
   5754 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5755 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5756 #endif
   5757 			}
   5758 			va += L2_L_SIZE;
   5759 			pa += L2_L_SIZE;
   5760 			resid -= L2_L_SIZE;
   5761 			continue;
   5762 		}
   5763 
   5764 		/* Use a small page mapping. */
   5765 #ifdef VERBOSE_INIT_ARM
   5766 		printf("P");
   5767 #endif
   5768 #ifndef ARM32_NEW_VM_LAYOUT
   5769 		pte[(va >> PGSHIFT) & 0x3ff] =
   5770 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5771 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5772 #else
   5773 		pte[l2pte_index(va)] =
   5774 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5775 		PTE_SYNC(&pte[l2pte_index(va)]);
   5776 #endif
   5777 		va += PAGE_SIZE;
   5778 		pa += PAGE_SIZE;
   5779 		resid -= PAGE_SIZE;
   5780 	}
   5781 #ifdef VERBOSE_INIT_ARM
   5782 	printf("\n");
   5783 #endif
   5784 	return (size);
   5785 }
   5786 
   5787 /********************** Static device map routines ***************************/
   5788 
   5789 static const struct pmap_devmap *pmap_devmap_table;
   5790 
   5791 /*
   5792  * Register the devmap table.  This is provided in case early console
   5793  * initialization needs to register mappings created by bootstrap code
   5794  * before pmap_devmap_bootstrap() is called.
   5795  */
   5796 void
   5797 pmap_devmap_register(const struct pmap_devmap *table)
   5798 {
   5799 
   5800 	pmap_devmap_table = table;
   5801 }
   5802 
   5803 /*
   5804  * Map all of the static regions in the devmap table, and remember
   5805  * the devmap table so other parts of the kernel can look up entries
   5806  * later.
   5807  */
   5808 void
   5809 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5810 {
   5811 	int i;
   5812 
   5813 	pmap_devmap_table = table;
   5814 
   5815 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5816 #ifdef VERBOSE_INIT_ARM
   5817 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5818 		    pmap_devmap_table[i].pd_pa,
   5819 		    pmap_devmap_table[i].pd_pa +
   5820 			pmap_devmap_table[i].pd_size - 1,
   5821 		    pmap_devmap_table[i].pd_va);
   5822 #endif
   5823 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5824 		    pmap_devmap_table[i].pd_pa,
   5825 		    pmap_devmap_table[i].pd_size,
   5826 		    pmap_devmap_table[i].pd_prot,
   5827 		    pmap_devmap_table[i].pd_cache);
   5828 	}
   5829 }
   5830 
   5831 const struct pmap_devmap *
   5832 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5833 {
   5834 	uint64_t endpa;
   5835 	int i;
   5836 
   5837 	if (pmap_devmap_table == NULL)
   5838 		return (NULL);
   5839 
   5840 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5841 
   5842 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5843 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5844 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5845 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5846 			return (&pmap_devmap_table[i]);
   5847 	}
   5848 
   5849 	return (NULL);
   5850 }
   5851 
   5852 const struct pmap_devmap *
   5853 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5854 {
   5855 	int i;
   5856 
   5857 	if (pmap_devmap_table == NULL)
   5858 		return (NULL);
   5859 
   5860 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5861 		if (va >= pmap_devmap_table[i].pd_va &&
   5862 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5863 				     pmap_devmap_table[i].pd_size - 1)
   5864 			return (&pmap_devmap_table[i]);
   5865 	}
   5866 
   5867 	return (NULL);
   5868 }
   5869 
   5870 /********************** PTE initialization routines **************************/
   5871 
   5872 /*
   5873  * These routines are called when the CPU type is identified to set up
   5874  * the PTE prototypes, cache modes, etc.
   5875  *
   5876  * The variables are always here, just in case modules need to reference
   5877  * them (though, they shouldn't).
   5878  */
   5879 
   5880 pt_entry_t	pte_l1_s_cache_mode;
   5881 pt_entry_t	pte_l1_s_cache_mode_pt;
   5882 pt_entry_t	pte_l1_s_cache_mask;
   5883 
   5884 pt_entry_t	pte_l2_l_cache_mode;
   5885 pt_entry_t	pte_l2_l_cache_mode_pt;
   5886 pt_entry_t	pte_l2_l_cache_mask;
   5887 
   5888 pt_entry_t	pte_l2_s_cache_mode;
   5889 pt_entry_t	pte_l2_s_cache_mode_pt;
   5890 pt_entry_t	pte_l2_s_cache_mask;
   5891 
   5892 pt_entry_t	pte_l2_s_prot_u;
   5893 pt_entry_t	pte_l2_s_prot_w;
   5894 pt_entry_t	pte_l2_s_prot_mask;
   5895 
   5896 pt_entry_t	pte_l1_s_proto;
   5897 pt_entry_t	pte_l1_c_proto;
   5898 pt_entry_t	pte_l2_s_proto;
   5899 
   5900 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5901 void		(*pmap_zero_page_func)(paddr_t);
   5902 
   5903 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5904 void
   5905 pmap_pte_init_generic(void)
   5906 {
   5907 
   5908 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5909 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5910 
   5911 	pte_l2_l_cache_mode = L2_B|L2_C;
   5912 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5913 
   5914 	pte_l2_s_cache_mode = L2_B|L2_C;
   5915 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5916 
   5917 	/*
   5918 	 * If we have a write-through cache, set B and C.  If
   5919 	 * we have a write-back cache, then we assume setting
   5920 	 * only C will make those pages write-through.
   5921 	 */
   5922 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5923 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5924 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5925 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5926 	} else {
   5927 #if ARM_MMU_V6 > 1
   5928 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5929 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5930 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5931 #else
   5932 		pte_l1_s_cache_mode_pt = L1_S_C;
   5933 		pte_l2_l_cache_mode_pt = L2_C;
   5934 		pte_l2_s_cache_mode_pt = L2_C;
   5935 #endif
   5936 	}
   5937 
   5938 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5939 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5940 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5941 
   5942 	pte_l1_s_proto = L1_S_PROTO_generic;
   5943 	pte_l1_c_proto = L1_C_PROTO_generic;
   5944 	pte_l2_s_proto = L2_S_PROTO_generic;
   5945 
   5946 	pmap_copy_page_func = pmap_copy_page_generic;
   5947 	pmap_zero_page_func = pmap_zero_page_generic;
   5948 }
   5949 
   5950 #if defined(CPU_ARM8)
   5951 void
   5952 pmap_pte_init_arm8(void)
   5953 {
   5954 
   5955 	/*
   5956 	 * ARM8 is compatible with generic, but we need to use
   5957 	 * the page tables uncached.
   5958 	 */
   5959 	pmap_pte_init_generic();
   5960 
   5961 	pte_l1_s_cache_mode_pt = 0;
   5962 	pte_l2_l_cache_mode_pt = 0;
   5963 	pte_l2_s_cache_mode_pt = 0;
   5964 }
   5965 #endif /* CPU_ARM8 */
   5966 
   5967 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5968 void
   5969 pmap_pte_init_arm9(void)
   5970 {
   5971 
   5972 	/*
   5973 	 * ARM9 is compatible with generic, but we want to use
   5974 	 * write-through caching for now.
   5975 	 */
   5976 	pmap_pte_init_generic();
   5977 
   5978 	pte_l1_s_cache_mode = L1_S_C;
   5979 	pte_l2_l_cache_mode = L2_C;
   5980 	pte_l2_s_cache_mode = L2_C;
   5981 
   5982 	pte_l1_s_cache_mode_pt = L1_S_C;
   5983 	pte_l2_l_cache_mode_pt = L2_C;
   5984 	pte_l2_s_cache_mode_pt = L2_C;
   5985 }
   5986 #endif /* CPU_ARM9 */
   5987 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5988 
   5989 #if defined(CPU_ARM10)
   5990 void
   5991 pmap_pte_init_arm10(void)
   5992 {
   5993 
   5994 	/*
   5995 	 * ARM10 is compatible with generic, but we want to use
   5996 	 * write-through caching for now.
   5997 	 */
   5998 	pmap_pte_init_generic();
   5999 
   6000 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6001 	pte_l2_l_cache_mode = L2_B | L2_C;
   6002 	pte_l2_s_cache_mode = L2_B | L2_C;
   6003 
   6004 	pte_l1_s_cache_mode_pt = L1_S_C;
   6005 	pte_l2_l_cache_mode_pt = L2_C;
   6006 	pte_l2_s_cache_mode_pt = L2_C;
   6007 
   6008 }
   6009 #endif /* CPU_ARM10 */
   6010 
   6011 #if ARM_MMU_SA1 == 1
   6012 void
   6013 pmap_pte_init_sa1(void)
   6014 {
   6015 
   6016 	/*
   6017 	 * The StrongARM SA-1 cache does not have a write-through
   6018 	 * mode.  So, do the generic initialization, then reset
   6019 	 * the page table cache mode to B=1,C=1, and note that
   6020 	 * the PTEs need to be sync'd.
   6021 	 */
   6022 	pmap_pte_init_generic();
   6023 
   6024 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6025 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6026 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6027 
   6028 	pmap_needs_pte_sync = 1;
   6029 }
   6030 #endif /* ARM_MMU_SA1 == 1*/
   6031 
   6032 #if ARM_MMU_XSCALE == 1
   6033 #if (ARM_NMMUS > 1)
   6034 static u_int xscale_use_minidata;
   6035 #endif
   6036 
   6037 void
   6038 pmap_pte_init_xscale(void)
   6039 {
   6040 	uint32_t auxctl;
   6041 	int write_through = 0;
   6042 
   6043 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6044 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6045 
   6046 	pte_l2_l_cache_mode = L2_B|L2_C;
   6047 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6048 
   6049 	pte_l2_s_cache_mode = L2_B|L2_C;
   6050 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6051 
   6052 	pte_l1_s_cache_mode_pt = L1_S_C;
   6053 	pte_l2_l_cache_mode_pt = L2_C;
   6054 	pte_l2_s_cache_mode_pt = L2_C;
   6055 
   6056 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6057 	/*
   6058 	 * The XScale core has an enhanced mode where writes that
   6059 	 * miss the cache cause a cache line to be allocated.  This
   6060 	 * is significantly faster than the traditional, write-through
   6061 	 * behavior of this case.
   6062 	 */
   6063 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6064 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6065 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6066 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6067 
   6068 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6069 	/*
   6070 	 * Some versions of the XScale core have various bugs in
   6071 	 * their cache units, the work-around for which is to run
   6072 	 * the cache in write-through mode.  Unfortunately, this
   6073 	 * has a major (negative) impact on performance.  So, we
   6074 	 * go ahead and run fast-and-loose, in the hopes that we
   6075 	 * don't line up the planets in a way that will trip the
   6076 	 * bugs.
   6077 	 *
   6078 	 * However, we give you the option to be slow-but-correct.
   6079 	 */
   6080 	write_through = 1;
   6081 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6082 	/* force write back cache mode */
   6083 	write_through = 0;
   6084 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6085 	/*
   6086 	 * Intel PXA2[15]0 processors are known to have a bug in
   6087 	 * write-back cache on revision 4 and earlier (stepping
   6088 	 * A[01] and B[012]).  Fixed for C0 and later.
   6089 	 */
   6090 	{
   6091 		uint32_t id, type;
   6092 
   6093 		id = cpufunc_id();
   6094 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6095 
   6096 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6097 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6098 				/* write through for stepping A0-1 and B0-2 */
   6099 				write_through = 1;
   6100 			}
   6101 		}
   6102 	}
   6103 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6104 
   6105 	if (write_through) {
   6106 		pte_l1_s_cache_mode = L1_S_C;
   6107 		pte_l2_l_cache_mode = L2_C;
   6108 		pte_l2_s_cache_mode = L2_C;
   6109 	}
   6110 
   6111 #if (ARM_NMMUS > 1)
   6112 	xscale_use_minidata = 1;
   6113 #endif
   6114 
   6115 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6116 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6117 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6118 
   6119 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6120 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6121 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6122 
   6123 	pmap_copy_page_func = pmap_copy_page_xscale;
   6124 	pmap_zero_page_func = pmap_zero_page_xscale;
   6125 
   6126 	/*
   6127 	 * Disable ECC protection of page table access, for now.
   6128 	 */
   6129 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6130 	auxctl &= ~XSCALE_AUXCTL_P;
   6131 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6132 }
   6133 
   6134 /*
   6135  * xscale_setup_minidata:
   6136  *
   6137  *	Set up the mini-data cache clean area.  We require the
   6138  *	caller to allocate the right amount of physically and
   6139  *	virtually contiguous space.
   6140  */
   6141 void
   6142 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6143 {
   6144 	extern vaddr_t xscale_minidata_clean_addr;
   6145 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6146 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6147 	pt_entry_t *pte;
   6148 	vsize_t size;
   6149 	uint32_t auxctl;
   6150 
   6151 	xscale_minidata_clean_addr = va;
   6152 
   6153 	/* Round it to page size. */
   6154 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6155 
   6156 	for (; size != 0;
   6157 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6158 #ifndef ARM32_NEW_VM_LAYOUT
   6159 		pte = (pt_entry_t *)
   6160 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6161 #else
   6162 		pte = (pt_entry_t *) kernel_pt_lookup(
   6163 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6164 #endif
   6165 		if (pte == NULL)
   6166 			panic("xscale_setup_minidata: can't find L2 table for "
   6167 			    "VA 0x%08lx", va);
   6168 #ifndef ARM32_NEW_VM_LAYOUT
   6169 		pte[(va >> PGSHIFT) & 0x3ff] =
   6170 #else
   6171 		pte[l2pte_index(va)] =
   6172 #endif
   6173 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6174 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6175 	}
   6176 
   6177 	/*
   6178 	 * Configure the mini-data cache for write-back with
   6179 	 * read/write-allocate.
   6180 	 *
   6181 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6182 	 * make sure it contains no valid data!  In order to do that,
   6183 	 * we must issue a global data cache invalidate command!
   6184 	 *
   6185 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6186 	 * THIS IS VERY IMPORTANT!
   6187 	 */
   6188 
   6189 	/* Invalidate data and mini-data. */
   6190 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6191 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6192 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6193 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6194 }
   6195 
   6196 /*
   6197  * Change the PTEs for the specified kernel mappings such that they
   6198  * will use the mini data cache instead of the main data cache.
   6199  */
   6200 void
   6201 pmap_uarea(vaddr_t va)
   6202 {
   6203 	struct l2_bucket *l2b;
   6204 	pt_entry_t *ptep, *sptep, pte;
   6205 	vaddr_t next_bucket, eva;
   6206 
   6207 #if (ARM_NMMUS > 1)
   6208 	if (xscale_use_minidata == 0)
   6209 		return;
   6210 #endif
   6211 
   6212 	eva = va + USPACE;
   6213 
   6214 	while (va < eva) {
   6215 		next_bucket = L2_NEXT_BUCKET(va);
   6216 		if (next_bucket > eva)
   6217 			next_bucket = eva;
   6218 
   6219 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6220 		KDASSERT(l2b != NULL);
   6221 
   6222 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6223 
   6224 		while (va < next_bucket) {
   6225 			pte = *ptep;
   6226 			if (!l2pte_minidata(pte)) {
   6227 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6228 				cpu_tlb_flushD_SE(va);
   6229 				*ptep = pte & ~L2_B;
   6230 			}
   6231 			ptep++;
   6232 			va += PAGE_SIZE;
   6233 		}
   6234 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6235 	}
   6236 	cpu_cpwait();
   6237 }
   6238 #endif /* ARM_MMU_XSCALE == 1 */
   6239 
   6240 /*
   6241  * return the PA of the current L1 table, for use when handling a crash dump
   6242  */
   6243 uint32_t pmap_kernel_L1_addr()
   6244 {
   6245 	return pmap_kernel()->pm_l1->l1_physaddr;
   6246 }
   6247 
   6248 #if defined(DDB)
   6249 /*
   6250  * A couple of ddb-callable functions for dumping pmaps
   6251  */
   6252 void pmap_dump_all(void);
   6253 void pmap_dump(pmap_t);
   6254 
   6255 void
   6256 pmap_dump_all(void)
   6257 {
   6258 	pmap_t pm;
   6259 
   6260 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6261 		if (pm == pmap_kernel())
   6262 			continue;
   6263 		pmap_dump(pm);
   6264 		printf("\n");
   6265 	}
   6266 }
   6267 
   6268 static pt_entry_t ncptes[64];
   6269 static void pmap_dump_ncpg(pmap_t);
   6270 
   6271 void
   6272 pmap_dump(pmap_t pm)
   6273 {
   6274 	struct l2_dtable *l2;
   6275 	struct l2_bucket *l2b;
   6276 	pt_entry_t *ptep, pte;
   6277 	vaddr_t l2_va, l2b_va, va;
   6278 	int i, j, k, occ, rows = 0;
   6279 
   6280 	if (pm == pmap_kernel())
   6281 		printf("pmap_kernel (%p): ", pm);
   6282 	else
   6283 		printf("user pmap (%p): ", pm);
   6284 
   6285 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6286 
   6287 	l2_va = 0;
   6288 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6289 		l2 = pm->pm_l2[i];
   6290 
   6291 		if (l2 == NULL || l2->l2_occupancy == 0)
   6292 			continue;
   6293 
   6294 		l2b_va = l2_va;
   6295 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6296 			l2b = &l2->l2_bucket[j];
   6297 
   6298 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6299 				continue;
   6300 
   6301 			ptep = l2b->l2b_kva;
   6302 
   6303 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6304 				;
   6305 
   6306 			k &= ~63;
   6307 			occ = l2b->l2b_occupancy;
   6308 			va = l2b_va + (k * 4096);
   6309 			for (; k < 256; k++, va += 0x1000) {
   6310 				char ch = ' ';
   6311 				if ((k % 64) == 0) {
   6312 					if ((rows % 8) == 0) {
   6313 						printf(
   6314 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6315 					}
   6316 					printf("%08lx: ", va);
   6317 				}
   6318 
   6319 				ncptes[k & 63] = 0;
   6320 				pte = ptep[k];
   6321 				if (pte == 0) {
   6322 					ch = '.';
   6323 				} else {
   6324 					occ--;
   6325 					switch (pte & 0x0c) {
   6326 					case 0x00:
   6327 						ch = 'D'; /* No cache No buff */
   6328 						break;
   6329 					case 0x04:
   6330 						ch = 'B'; /* No cache buff */
   6331 						break;
   6332 					case 0x08:
   6333 						if (pte & 0x40)
   6334 							ch = 'm';
   6335 						else
   6336 						   ch = 'C'; /* Cache No buff */
   6337 						break;
   6338 					case 0x0c:
   6339 						ch = 'F'; /* Cache Buff */
   6340 						break;
   6341 					}
   6342 
   6343 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6344 						ch += 0x20;
   6345 
   6346 					if ((pte & 0xc) == 0)
   6347 						ncptes[k & 63] = pte;
   6348 				}
   6349 
   6350 				if ((k % 64) == 63) {
   6351 					rows++;
   6352 					printf("%c\n", ch);
   6353 					pmap_dump_ncpg(pm);
   6354 					if (occ == 0)
   6355 						break;
   6356 				} else
   6357 					printf("%c", ch);
   6358 			}
   6359 		}
   6360 	}
   6361 }
   6362 
   6363 static void
   6364 pmap_dump_ncpg(pmap_t pm)
   6365 {
   6366 	struct vm_page *pg;
   6367 	struct pv_entry *pv;
   6368 	int i;
   6369 
   6370 	for (i = 0; i < 63; i++) {
   6371 		if (ncptes[i] == 0)
   6372 			continue;
   6373 
   6374 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6375 		if (pg == NULL)
   6376 			continue;
   6377 
   6378 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6379 		    VM_PAGE_TO_PHYS(pg),
   6380 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6381 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6382 
   6383 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   6384 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6385 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6386 			    pv->pv_va, pv->pv_flags);
   6387 		}
   6388 	}
   6389 }
   6390 #endif
   6391 
   6392 #ifdef PMAP_STEAL_MEMORY
   6393 void
   6394 pmap_boot_pageadd(pv_addr_t *newpv)
   6395 {
   6396 	pv_addr_t *pv, *npv;
   6397 
   6398 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6399 		if (newpv->pv_pa < pv->pv_va) {
   6400 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6401 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6402 				newpv->pv_size += pv->pv_size;
   6403 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6404 			}
   6405 			pv = NULL;
   6406 		} else {
   6407 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6408 			     pv = npv) {
   6409 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6410 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6411 				if (newpv->pv_pa > npv->pv_pa)
   6412 					continue;
   6413 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6414 					pv->pv_size += newpv->pv_size;
   6415 					return;
   6416 				}
   6417 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6418 					break;
   6419 				newpv->pv_size += npv->pv_size;
   6420 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6421 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6422 				return;
   6423 			}
   6424 		}
   6425 	}
   6426 
   6427 	if (pv) {
   6428 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6429 	} else {
   6430 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6431 	}
   6432 }
   6433 
   6434 void
   6435 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6436 	pv_addr_t *rpv)
   6437 {
   6438 	pv_addr_t *pv, **pvp;
   6439 	struct vm_physseg *ps;
   6440 	size_t i;
   6441 
   6442 	KASSERT(amount & PGOFSET);
   6443 	KASSERT((mask & PGOFSET) == 0);
   6444 	KASSERT((match & PGOFSET) == 0);
   6445 	KASSERT(amount != 0);
   6446 
   6447 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6448 	     (pv = *pvp) != NULL;
   6449 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6450 		pv_addr_t *newpv;
   6451 		psize_t off;
   6452 		/*
   6453 		 * If this entry is too small to satify the request...
   6454 		 */
   6455 		KASSERT(pv->pv_size > 0);
   6456 		if (pv->pv_size < amount)
   6457 			continue;
   6458 
   6459 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6460 			if (((pv->pv_pa + off) & mask) == match
   6461 			    && off + amount <= pv->pv_size)
   6462 				break;
   6463 		}
   6464 		if (off > mask)
   6465 			continue;
   6466 
   6467 		rpv->pv_va = pv->pv_va + off;
   6468 		rpv->pv_pa = pv->pv_pa + off;
   6469 		rpv->pv_size = amount;
   6470 		pv->pv_size -= amount;
   6471 		if (pv->pv_size == 0) {
   6472 			KASSERT(off == 0);
   6473 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6474 			*pvp = SLIST_NEXT(pv, pv_list);
   6475 		} else if (off == 0) {
   6476 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6477 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6478 			*newpv = *pv;
   6479 			newpv->pv_pa += amount;
   6480 			newpv->pv_va += amount;
   6481 			*pvp = newpv;
   6482 		} else if (off < pv->pv_size) {
   6483 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6484 			*newpv = *pv;
   6485 			newpv->pv_size -= off;
   6486 			newpv->pv_pa += off + amount;
   6487 			newpv->pv_va += off + amount;
   6488 
   6489 			SLIST_NEXT(pv, pv_list) = newpv;
   6490 			pv->pv_size = off;
   6491 		} else {
   6492 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6493 		}
   6494 		memset((void *)rpv->pv_va, 0, amount);
   6495 		return;
   6496 	}
   6497 
   6498 	if (vm_nphysseg == 0)
   6499 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6500 
   6501 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6502 	     (pv = *pvp) != NULL;
   6503 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6504 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6505 			break;
   6506 	}
   6507 	KASSERT(mask == 0);
   6508 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6509 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6510 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6511 			rpv->pv_va = pv->pv_va;
   6512 			rpv->pv_pa = pv->pv_pa;
   6513 			rpv->pv_size = amount;
   6514 			*pvp = NULL;
   6515 			pmap_map_chunk(kernel_l1pt.pv_va,
   6516 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6517 			     ptoa(ps->avail_start),
   6518 			     amount - pv->pv_size,
   6519 			     VM_PROT_READ|VM_PROT_WRITE,
   6520 			     PTE_CACHE);
   6521 			ps->avail_start += atop(amount - pv->pv_size);
   6522 			/*
   6523 			 * If we consumed the entire physseg, remove it.
   6524 			 */
   6525 			if (ps->avail_start == ps->avail_end) {
   6526 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6527 					ps[0] = ps[1];
   6528 			}
   6529 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6530 			return;
   6531 		}
   6532 	}
   6533 
   6534 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6535 }
   6536 
   6537 vaddr_t
   6538 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6539 {
   6540 	pv_addr_t pv;
   6541 
   6542 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6543 
   6544 	return pv.pv_va;
   6545 }
   6546 #endif /* PMAP_STEAL_MEMORY */
   6547 
   6548 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6549 {
   6550 	sysctl_createv(clog, 0, NULL, NULL,
   6551 			CTLFLAG_PERMANENT,
   6552 			CTLTYPE_NODE, "machdep", NULL,
   6553 			NULL, 0, NULL, 0,
   6554 			CTL_MACHDEP, CTL_EOL);
   6555 
   6556 	sysctl_createv(clog, 0, NULL, NULL,
   6557 			CTLFLAG_PERMANENT,
   6558 			CTLTYPE_INT, "kmpages",
   6559 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6560 			NULL, 0, &pmap_kmpages, 0,
   6561 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6562 }
   6563