Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.201
      1 /*	$NetBSD: pmap.c,v 1.201 2009/11/07 07:27:41 cegger Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/user.h>
    202 #include <sys/pool.h>
    203 #include <sys/cdefs.h>
    204 #include <sys/cpu.h>
    205 #include <sys/sysctl.h>
    206 
    207 #include <uvm/uvm.h>
    208 
    209 #include <machine/bus.h>
    210 #include <machine/pmap.h>
    211 #include <machine/pcb.h>
    212 #include <machine/param.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.201 2009/11/07 07:27:41 cegger Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 static struct pmap	kernel_pmap_store;
    259 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    260 
    261 /*
    262  * Which pmap is currently 'live' in the cache
    263  *
    264  * XXXSCW: Fix for SMP ...
    265  */
    266 static pmap_t pmap_recent_user;
    267 
    268 /*
    269  * Pointer to last active lwp, or NULL if it exited.
    270  */
    271 struct lwp *pmap_previous_active_lwp;
    272 
    273 /*
    274  * Pool and cache that pmap structures are allocated from.
    275  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    276  * in pmap_create().
    277  */
    278 static struct pool_cache pmap_cache;
    279 static LIST_HEAD(, pmap) pmap_pmaps;
    280 
    281 /*
    282  * Pool of PV structures
    283  */
    284 static struct pool pmap_pv_pool;
    285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    288 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    289 };
    290 
    291 /*
    292  * Pool and cache of l2_dtable structures.
    293  * We use a cache to avoid clearing the structures when they're
    294  * allocated. (196 bytes)
    295  */
    296 static struct pool_cache pmap_l2dtable_cache;
    297 static vaddr_t pmap_kernel_l2dtable_kva;
    298 
    299 /*
    300  * Pool and cache of L2 page descriptors.
    301  * We use a cache to avoid clearing the descriptor table
    302  * when they're allocated. (1KB)
    303  */
    304 static struct pool_cache pmap_l2ptp_cache;
    305 static vaddr_t pmap_kernel_l2ptp_kva;
    306 static paddr_t pmap_kernel_l2ptp_phys;
    307 
    308 #ifdef PMAPCOUNTERS
    309 #define	PMAP_EVCNT_INITIALIZER(name) \
    310 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    311 
    312 #ifdef PMAP_CACHE_VIPT
    313 static struct evcnt pmap_ev_vac_clean_one =
    314    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    315 static struct evcnt pmap_ev_vac_flush_one =
    316    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    317 static struct evcnt pmap_ev_vac_flush_lots =
    318    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    319 static struct evcnt pmap_ev_vac_flush_lots2 =
    320    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    321 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    325 
    326 static struct evcnt pmap_ev_vac_color_new =
    327    PMAP_EVCNT_INITIALIZER("new page color");
    328 static struct evcnt pmap_ev_vac_color_reuse =
    329    PMAP_EVCNT_INITIALIZER("ok first page color");
    330 static struct evcnt pmap_ev_vac_color_ok =
    331    PMAP_EVCNT_INITIALIZER("ok page color");
    332 static struct evcnt pmap_ev_vac_color_blind =
    333    PMAP_EVCNT_INITIALIZER("blind page color");
    334 static struct evcnt pmap_ev_vac_color_change =
    335    PMAP_EVCNT_INITIALIZER("change page color");
    336 static struct evcnt pmap_ev_vac_color_erase =
    337    PMAP_EVCNT_INITIALIZER("erase page color");
    338 static struct evcnt pmap_ev_vac_color_none =
    339    PMAP_EVCNT_INITIALIZER("no page color");
    340 static struct evcnt pmap_ev_vac_color_restore =
    341    PMAP_EVCNT_INITIALIZER("restore page color");
    342 
    343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    351 #endif
    352 
    353 static struct evcnt pmap_ev_mappings =
    354    PMAP_EVCNT_INITIALIZER("pages mapped");
    355 static struct evcnt pmap_ev_unmappings =
    356    PMAP_EVCNT_INITIALIZER("pages unmapped");
    357 static struct evcnt pmap_ev_remappings =
    358    PMAP_EVCNT_INITIALIZER("pages remapped");
    359 
    360 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    361 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    362 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    363 
    364 static struct evcnt pmap_ev_kernel_mappings =
    365    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    366 static struct evcnt pmap_ev_kernel_unmappings =
    367    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    368 static struct evcnt pmap_ev_kernel_remappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    370 
    371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    374 
    375 static struct evcnt pmap_ev_kenter_mappings =
    376    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    377 static struct evcnt pmap_ev_kenter_unmappings =
    378    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    379 static struct evcnt pmap_ev_kenter_remappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    381 static struct evcnt pmap_ev_pt_mappings =
    382    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    383 
    384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    387 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    388 
    389 #ifdef PMAP_CACHE_VIPT
    390 static struct evcnt pmap_ev_exec_mappings =
    391    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    392 static struct evcnt pmap_ev_exec_cached =
    393    PMAP_EVCNT_INITIALIZER("exec pages cached");
    394 
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    397 
    398 static struct evcnt pmap_ev_exec_synced =
    399    PMAP_EVCNT_INITIALIZER("exec pages synced");
    400 static struct evcnt pmap_ev_exec_synced_map =
    401    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    402 static struct evcnt pmap_ev_exec_synced_unmap =
    403    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    404 static struct evcnt pmap_ev_exec_synced_remap =
    405    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    406 static struct evcnt pmap_ev_exec_synced_clearbit =
    407    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    408 static struct evcnt pmap_ev_exec_synced_kremove =
    409    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    410 
    411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    417 
    418 static struct evcnt pmap_ev_exec_discarded_unmap =
    419    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    420 static struct evcnt pmap_ev_exec_discarded_zero =
    421    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    422 static struct evcnt pmap_ev_exec_discarded_copy =
    423    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    424 static struct evcnt pmap_ev_exec_discarded_page_protect =
    425    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    426 static struct evcnt pmap_ev_exec_discarded_clearbit =
    427    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    428 static struct evcnt pmap_ev_exec_discarded_kremove =
    429    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    430 
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    437 #endif /* PMAP_CACHE_VIPT */
    438 
    439 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    440 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    441 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    442 
    443 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    444 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    445 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    446 
    447 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    448 #else
    449 #define	PMAPCOUNT(x)	((void)0)
    450 #endif
    451 
    452 /*
    453  * pmap copy/zero page, and mem(5) hook point
    454  */
    455 static pt_entry_t *csrc_pte, *cdst_pte;
    456 static vaddr_t csrcp, cdstp;
    457 vaddr_t memhook;			/* used by mem.c */
    458 kmutex_t memlock;			/* used by mem.c */
    459 void *zeropage;				/* used by mem.c */
    460 extern void *msgbufaddr;
    461 int pmap_kmpages;
    462 /*
    463  * Flag to indicate if pmap_init() has done its thing
    464  */
    465 bool pmap_initialized;
    466 
    467 /*
    468  * Misc. locking data structures
    469  */
    470 
    471 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    472 static struct lock pmap_main_lock;
    473 
    474 #define PMAP_MAP_TO_HEAD_LOCK() \
    475      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    476 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    477      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    478 #define PMAP_HEAD_TO_MAP_LOCK() \
    479      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    480 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    481      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    482 #else
    483 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    484 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    485 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    486 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    487 #endif
    488 
    489 #define	pmap_acquire_pmap_lock(pm)			\
    490 	do {						\
    491 		if ((pm) != pmap_kernel())		\
    492 			mutex_enter(&(pm)->pm_lock);	\
    493 	} while (/*CONSTCOND*/0)
    494 
    495 #define	pmap_release_pmap_lock(pm)			\
    496 	do {						\
    497 		if ((pm) != pmap_kernel())		\
    498 			mutex_exit(&(pm)->pm_lock);	\
    499 	} while (/*CONSTCOND*/0)
    500 
    501 
    502 /*
    503  * Metadata for L1 translation tables.
    504  */
    505 struct l1_ttable {
    506 	/* Entry on the L1 Table list */
    507 	SLIST_ENTRY(l1_ttable) l1_link;
    508 
    509 	/* Entry on the L1 Least Recently Used list */
    510 	TAILQ_ENTRY(l1_ttable) l1_lru;
    511 
    512 	/* Track how many domains are allocated from this L1 */
    513 	volatile u_int l1_domain_use_count;
    514 
    515 	/*
    516 	 * A free-list of domain numbers for this L1.
    517 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    518 	 * is slow on ARM.
    519 	 */
    520 	u_int8_t l1_domain_first;
    521 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    522 
    523 	/* Physical address of this L1 page table */
    524 	paddr_t l1_physaddr;
    525 
    526 	/* KVA of this L1 page table */
    527 	pd_entry_t *l1_kva;
    528 };
    529 
    530 /*
    531  * Convert a virtual address into its L1 table index. That is, the
    532  * index used to locate the L2 descriptor table pointer in an L1 table.
    533  * This is basically used to index l1->l1_kva[].
    534  *
    535  * Each L2 descriptor table represents 1MB of VA space.
    536  */
    537 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    538 
    539 /*
    540  * L1 Page Tables are tracked using a Least Recently Used list.
    541  *  - New L1s are allocated from the HEAD.
    542  *  - Freed L1s are added to the TAIl.
    543  *  - Recently accessed L1s (where an 'access' is some change to one of
    544  *    the userland pmaps which owns this L1) are moved to the TAIL.
    545  */
    546 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    547 static struct simplelock l1_lru_lock;
    548 
    549 /*
    550  * A list of all L1 tables
    551  */
    552 static SLIST_HEAD(, l1_ttable) l1_list;
    553 
    554 /*
    555  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    556  *
    557  * This is normally 16MB worth L2 page descriptors for any given pmap.
    558  * Reference counts are maintained for L2 descriptors so they can be
    559  * freed when empty.
    560  */
    561 struct l2_dtable {
    562 	/* The number of L2 page descriptors allocated to this l2_dtable */
    563 	u_int l2_occupancy;
    564 
    565 	/* List of L2 page descriptors */
    566 	struct l2_bucket {
    567 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    568 		paddr_t l2b_phys;	/* Physical address of same */
    569 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    570 		u_short l2b_occupancy;	/* How many active descriptors */
    571 	} l2_bucket[L2_BUCKET_SIZE];
    572 };
    573 
    574 /*
    575  * Given an L1 table index, calculate the corresponding l2_dtable index
    576  * and bucket index within the l2_dtable.
    577  */
    578 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    579 				 (L2_SIZE - 1))
    580 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    581 
    582 /*
    583  * Given a virtual address, this macro returns the
    584  * virtual address required to drop into the next L2 bucket.
    585  */
    586 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    587 
    588 /*
    589  * L2 allocation.
    590  */
    591 #define	pmap_alloc_l2_dtable()		\
    592 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    593 #define	pmap_free_l2_dtable(l2)		\
    594 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    595 #define pmap_alloc_l2_ptp(pap)		\
    596 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    597 	    PR_NOWAIT, (pap)))
    598 
    599 /*
    600  * We try to map the page tables write-through, if possible.  However, not
    601  * all CPUs have a write-through cache mode, so on those we have to sync
    602  * the cache when we frob page tables.
    603  *
    604  * We try to evaluate this at compile time, if possible.  However, it's
    605  * not always possible to do that, hence this run-time var.
    606  */
    607 int	pmap_needs_pte_sync;
    608 
    609 /*
    610  * Real definition of pv_entry.
    611  */
    612 struct pv_entry {
    613 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    614 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    615 	vaddr_t		pv_va;          /* virtual address for mapping */
    616 	u_int		pv_flags;       /* flags */
    617 };
    618 
    619 /*
    620  * Macro to determine if a mapping might be resident in the
    621  * instruction cache and/or TLB
    622  */
    623 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    624 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    625 
    626 /*
    627  * Macro to determine if a mapping might be resident in the
    628  * data cache and/or TLB
    629  */
    630 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    631 
    632 /*
    633  * Local prototypes
    634  */
    635 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    636 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    637 			    pt_entry_t **);
    638 static bool		pmap_is_current(pmap_t);
    639 static bool		pmap_is_cached(pmap_t);
    640 static void		pmap_enter_pv(struct vm_page *, struct pv_entry *,
    641 			    pmap_t, vaddr_t, u_int);
    642 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
    643 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
    644 static u_int		pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
    645 			    u_int, u_int);
    646 
    647 static void		pmap_pinit(pmap_t);
    648 static int		pmap_pmap_ctor(void *, void *, int);
    649 
    650 static void		pmap_alloc_l1(pmap_t);
    651 static void		pmap_free_l1(pmap_t);
    652 static void		pmap_use_l1(pmap_t);
    653 
    654 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    655 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    656 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    657 static int		pmap_l2ptp_ctor(void *, void *, int);
    658 static int		pmap_l2dtable_ctor(void *, void *, int);
    659 
    660 static void		pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
    661 #ifdef PMAP_CACHE_VIVT
    662 static void		pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
    663 static void		pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
    664 #endif
    665 
    666 static void		pmap_clearbit(struct vm_page *, u_int);
    667 #ifdef PMAP_CACHE_VIVT
    668 static int		pmap_clean_page(struct pv_entry *, bool);
    669 #endif
    670 #ifdef PMAP_CACHE_VIPT
    671 static void		pmap_syncicache_page(struct vm_page *);
    672 enum pmap_flush_op {
    673 	PMAP_FLUSH_PRIMARY,
    674 	PMAP_FLUSH_SECONDARY,
    675 	PMAP_CLEAN_PRIMARY
    676 };
    677 static void		pmap_flush_page(struct vm_page *, enum pmap_flush_op);
    678 #endif
    679 static void		pmap_page_remove(struct vm_page *);
    680 
    681 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    682 static vaddr_t		kernel_pt_lookup(paddr_t);
    683 
    684 
    685 /*
    686  * External function prototypes
    687  */
    688 extern void bzero_page(vaddr_t);
    689 extern void bcopy_page(vaddr_t, vaddr_t);
    690 
    691 /*
    692  * Misc variables
    693  */
    694 vaddr_t virtual_avail;
    695 vaddr_t virtual_end;
    696 vaddr_t pmap_curmaxkvaddr;
    697 
    698 paddr_t avail_start;
    699 paddr_t avail_end;
    700 
    701 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    702 pv_addr_t kernelpages;
    703 pv_addr_t kernel_l1pt;
    704 pv_addr_t systempage;
    705 
    706 /* Function to set the debug level of the pmap code */
    707 
    708 #ifdef PMAP_DEBUG
    709 void
    710 pmap_debug(int level)
    711 {
    712 	pmap_debug_level = level;
    713 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    714 }
    715 #endif	/* PMAP_DEBUG */
    716 
    717 /*
    718  * A bunch of routines to conditionally flush the caches/TLB depending
    719  * on whether the specified pmap actually needs to be flushed at any
    720  * given time.
    721  */
    722 static inline void
    723 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    724 {
    725 
    726 	if (pm->pm_cstate.cs_tlb_id)
    727 		cpu_tlb_flushID_SE(va);
    728 }
    729 
    730 static inline void
    731 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    732 {
    733 
    734 	if (pm->pm_cstate.cs_tlb_d)
    735 		cpu_tlb_flushD_SE(va);
    736 }
    737 
    738 static inline void
    739 pmap_tlb_flushID(pmap_t pm)
    740 {
    741 
    742 	if (pm->pm_cstate.cs_tlb_id) {
    743 		cpu_tlb_flushID();
    744 		pm->pm_cstate.cs_tlb = 0;
    745 	}
    746 }
    747 
    748 static inline void
    749 pmap_tlb_flushD(pmap_t pm)
    750 {
    751 
    752 	if (pm->pm_cstate.cs_tlb_d) {
    753 		cpu_tlb_flushD();
    754 		pm->pm_cstate.cs_tlb_d = 0;
    755 	}
    756 }
    757 
    758 #ifdef PMAP_CACHE_VIVT
    759 static inline void
    760 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    761 {
    762 	if (pm->pm_cstate.cs_cache_id) {
    763 		cpu_idcache_wbinv_range(va, len);
    764 	}
    765 }
    766 
    767 static inline void
    768 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    769     bool do_inv, bool rd_only)
    770 {
    771 
    772 	if (pm->pm_cstate.cs_cache_d) {
    773 		if (do_inv) {
    774 			if (rd_only)
    775 				cpu_dcache_inv_range(va, len);
    776 			else
    777 				cpu_dcache_wbinv_range(va, len);
    778 		} else
    779 		if (!rd_only)
    780 			cpu_dcache_wb_range(va, len);
    781 	}
    782 }
    783 
    784 static inline void
    785 pmap_idcache_wbinv_all(pmap_t pm)
    786 {
    787 	if (pm->pm_cstate.cs_cache_id) {
    788 		cpu_idcache_wbinv_all();
    789 		pm->pm_cstate.cs_cache = 0;
    790 	}
    791 }
    792 
    793 static inline void
    794 pmap_dcache_wbinv_all(pmap_t pm)
    795 {
    796 	if (pm->pm_cstate.cs_cache_d) {
    797 		cpu_dcache_wbinv_all();
    798 		pm->pm_cstate.cs_cache_d = 0;
    799 	}
    800 }
    801 #endif /* PMAP_CACHE_VIVT */
    802 
    803 static inline bool
    804 pmap_is_current(pmap_t pm)
    805 {
    806 
    807 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    808 		return true;
    809 
    810 	return false;
    811 }
    812 
    813 static inline bool
    814 pmap_is_cached(pmap_t pm)
    815 {
    816 
    817 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    818 	    pmap_recent_user == pm)
    819 		return (true);
    820 
    821 	return false;
    822 }
    823 
    824 /*
    825  * PTE_SYNC_CURRENT:
    826  *
    827  *     Make sure the pte is written out to RAM.
    828  *     We need to do this for one of two cases:
    829  *       - We're dealing with the kernel pmap
    830  *       - There is no pmap active in the cache/tlb.
    831  *       - The specified pmap is 'active' in the cache/tlb.
    832  */
    833 #ifdef PMAP_INCLUDE_PTE_SYNC
    834 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    835 do {					\
    836 	if (PMAP_NEEDS_PTE_SYNC && 	\
    837 	    pmap_is_cached(pm))		\
    838 		PTE_SYNC(ptep);		\
    839 } while (/*CONSTCOND*/0)
    840 #else
    841 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    842 #endif
    843 
    844 /*
    845  * main pv_entry manipulation functions:
    846  *   pmap_enter_pv: enter a mapping onto a vm_page list
    847  *   pmap_remove_pv: remove a mappiing from a vm_page list
    848  *
    849  * NOTE: pmap_enter_pv expects to lock the pvh itself
    850  *       pmap_remove_pv expects te caller to lock the pvh before calling
    851  */
    852 
    853 /*
    854  * pmap_enter_pv: enter a mapping onto a vm_page lst
    855  *
    856  * => caller should hold the proper lock on pmap_main_lock
    857  * => caller should have pmap locked
    858  * => we will gain the lock on the vm_page and allocate the new pv_entry
    859  * => caller should adjust ptp's wire_count before calling
    860  * => caller should not adjust pmap's wire_count
    861  */
    862 static void
    863 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
    864     vaddr_t va, u_int flags)
    865 {
    866 	struct pv_entry **pvp;
    867 
    868 	NPDEBUG(PDB_PVDUMP,
    869 	    printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
    870 
    871 	pve->pv_pmap = pm;
    872 	pve->pv_va = va;
    873 	pve->pv_flags = flags;
    874 
    875 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    876 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
    877 #ifdef PMAP_CACHE_VIPT
    878 	/*
    879 	 * Insert unmanaged entries, writeable first, at the head of
    880 	 * the pv list.
    881 	 */
    882 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    883 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    884 			pvp = &SLIST_NEXT(*pvp, pv_link);
    885 	} else if ((flags & PVF_WRITE) == 0) {
    886 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    887 			pvp = &SLIST_NEXT(*pvp, pv_link);
    888 	}
    889 #endif
    890 	SLIST_NEXT(pve, pv_link) = *pvp;		/* add to ... */
    891 	*pvp = pve;				/* ... locked list */
    892 	pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    893 #ifdef PMAP_CACHE_VIPT
    894 	if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    895 		pg->mdpage.pvh_attrs |= PVF_KMOD;
    896 	if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    897 		pg->mdpage.pvh_attrs |= PVF_DIRTY;
    898 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
    899 #endif
    900 	if (pm == pmap_kernel()) {
    901 		PMAPCOUNT(kernel_mappings);
    902 		if (flags & PVF_WRITE)
    903 			pg->mdpage.krw_mappings++;
    904 		else
    905 			pg->mdpage.kro_mappings++;
    906 	} else
    907 	if (flags & PVF_WRITE)
    908 		pg->mdpage.urw_mappings++;
    909 	else
    910 		pg->mdpage.uro_mappings++;
    911 
    912 #ifdef PMAP_CACHE_VIPT
    913 	/*
    914 	 * If this is an exec mapping and its the first exec mapping
    915 	 * for this page, make sure to sync the I-cache.
    916 	 */
    917 	if (PV_IS_EXEC_P(flags)) {
    918 		if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
    919 			pmap_syncicache_page(pg);
    920 			PMAPCOUNT(exec_synced_map);
    921 		}
    922 		PMAPCOUNT(exec_mappings);
    923 	}
    924 #endif
    925 
    926 	PMAPCOUNT(mappings);
    927 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    928 
    929 	if (pve->pv_flags & PVF_WIRED)
    930 		++pm->pm_stats.wired_count;
    931 }
    932 
    933 /*
    934  *
    935  * pmap_find_pv: Find a pv entry
    936  *
    937  * => caller should hold lock on vm_page
    938  */
    939 static inline struct pv_entry *
    940 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    941 {
    942 	struct pv_entry *pv;
    943 
    944 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
    945 		if (pm == pv->pv_pmap && va == pv->pv_va)
    946 			break;
    947 	}
    948 
    949 	return (pv);
    950 }
    951 
    952 /*
    953  * pmap_remove_pv: try to remove a mapping from a pv_list
    954  *
    955  * => caller should hold proper lock on pmap_main_lock
    956  * => pmap should be locked
    957  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    958  * => caller should adjust ptp's wire_count and free PTP if needed
    959  * => caller should NOT adjust pmap's wire_count
    960  * => we return the removed pve
    961  */
    962 static struct pv_entry *
    963 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
    964 {
    965 	struct pv_entry *pve, **prevptr;
    966 
    967 	NPDEBUG(PDB_PVDUMP,
    968 	    printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
    969 
    970 	prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
    971 	pve = *prevptr;
    972 
    973 	while (pve) {
    974 		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
    975 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
    976 			    "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
    977 			if (pve->pv_flags & PVF_WIRED) {
    978 				--pm->pm_stats.wired_count;
    979 			}
    980 			*prevptr = SLIST_NEXT(pve, pv_link);	/* remove it! */
    981 			if (pm == pmap_kernel()) {
    982 				PMAPCOUNT(kernel_unmappings);
    983 				if (pve->pv_flags & PVF_WRITE)
    984 					pg->mdpage.krw_mappings--;
    985 				else
    986 					pg->mdpage.kro_mappings--;
    987 			} else
    988 			if (pve->pv_flags & PVF_WRITE)
    989 				pg->mdpage.urw_mappings--;
    990 			else
    991 				pg->mdpage.uro_mappings--;
    992 
    993 			PMAPCOUNT(unmappings);
    994 #ifdef PMAP_CACHE_VIPT
    995 			if (!(pve->pv_flags & PVF_WRITE))
    996 				break;
    997 			/*
    998 			 * If this page has had an exec mapping, then if
    999 			 * this was the last mapping, discard the contents,
   1000 			 * otherwise sync the i-cache for this page.
   1001 			 */
   1002 			if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   1003 				if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   1004 					pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   1005 					PMAPCOUNT(exec_discarded_unmap);
   1006 				} else {
   1007 					pmap_syncicache_page(pg);
   1008 					PMAPCOUNT(exec_synced_unmap);
   1009 				}
   1010 			}
   1011 #endif /* PMAP_CACHE_VIPT */
   1012 			break;
   1013 		}
   1014 		prevptr = &SLIST_NEXT(pve, pv_link);	/* previous pointer */
   1015 		pve = *prevptr;				/* advance */
   1016 	}
   1017 
   1018 #ifdef PMAP_CACHE_VIPT
   1019 	/*
   1020 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1021 	 * clear the KMOD attribute from the page.
   1022 	 */
   1023 	if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
   1024 	    || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1025 		pg->mdpage.pvh_attrs &= ~PVF_KMOD;
   1026 
   1027 	/*
   1028 	 * If this was a writeable page and there are no more writeable
   1029 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1030 	 * the contents to memory.
   1031 	 */
   1032 	if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
   1033 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1034 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1035 #endif /* PMAP_CACHE_VIPT */
   1036 
   1037 	return(pve);				/* return removed pve */
   1038 }
   1039 
   1040 /*
   1041  *
   1042  * pmap_modify_pv: Update pv flags
   1043  *
   1044  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1045  * => caller should NOT adjust pmap's wire_count
   1046  * => caller must call pmap_vac_me_harder() if writable status of a page
   1047  *    may have changed.
   1048  * => we return the old flags
   1049  *
   1050  * Modify a physical-virtual mapping in the pv table
   1051  */
   1052 static u_int
   1053 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
   1054     u_int clr_mask, u_int set_mask)
   1055 {
   1056 	struct pv_entry *npv;
   1057 	u_int flags, oflags;
   1058 
   1059 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1060 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1061 
   1062 	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
   1063 		return (0);
   1064 
   1065 	NPDEBUG(PDB_PVDUMP,
   1066 	    printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
   1067 
   1068 	/*
   1069 	 * There is at least one VA mapping this page.
   1070 	 */
   1071 
   1072 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1073 		pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1074 #ifdef PMAP_CACHE_VIPT
   1075 		if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1076 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1077 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1078 #endif
   1079 	}
   1080 
   1081 	oflags = npv->pv_flags;
   1082 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1083 
   1084 	if ((flags ^ oflags) & PVF_WIRED) {
   1085 		if (flags & PVF_WIRED)
   1086 			++pm->pm_stats.wired_count;
   1087 		else
   1088 			--pm->pm_stats.wired_count;
   1089 	}
   1090 
   1091 	if ((flags ^ oflags) & PVF_WRITE) {
   1092 		if (pm == pmap_kernel()) {
   1093 			if (flags & PVF_WRITE) {
   1094 				pg->mdpage.krw_mappings++;
   1095 				pg->mdpage.kro_mappings--;
   1096 			} else {
   1097 				pg->mdpage.kro_mappings++;
   1098 				pg->mdpage.krw_mappings--;
   1099 			}
   1100 		} else
   1101 		if (flags & PVF_WRITE) {
   1102 			pg->mdpage.urw_mappings++;
   1103 			pg->mdpage.uro_mappings--;
   1104 		} else {
   1105 			pg->mdpage.uro_mappings++;
   1106 			pg->mdpage.urw_mappings--;
   1107 		}
   1108 	}
   1109 #ifdef PMAP_CACHE_VIPT
   1110 	if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   1111 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1112 	/*
   1113 	 * We have two cases here: the first is from enter_pv (new exec
   1114 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1115 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1116 	 * to do what pmap_remove_pv would do.
   1117 	 */
   1118 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   1119 	    || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
   1120 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1121 		pmap_syncicache_page(pg);
   1122 		PMAPCOUNT(exec_synced_remap);
   1123 	}
   1124 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1125 #endif
   1126 
   1127 	PMAPCOUNT(remappings);
   1128 
   1129 	return (oflags);
   1130 }
   1131 
   1132 /*
   1133  * Allocate an L1 translation table for the specified pmap.
   1134  * This is called at pmap creation time.
   1135  */
   1136 static void
   1137 pmap_alloc_l1(pmap_t pm)
   1138 {
   1139 	struct l1_ttable *l1;
   1140 	u_int8_t domain;
   1141 
   1142 	/*
   1143 	 * Remove the L1 at the head of the LRU list
   1144 	 */
   1145 	simple_lock(&l1_lru_lock);
   1146 	l1 = TAILQ_FIRST(&l1_lru_list);
   1147 	KDASSERT(l1 != NULL);
   1148 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1149 
   1150 	/*
   1151 	 * Pick the first available domain number, and update
   1152 	 * the link to the next number.
   1153 	 */
   1154 	domain = l1->l1_domain_first;
   1155 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1156 
   1157 	/*
   1158 	 * If there are still free domain numbers in this L1,
   1159 	 * put it back on the TAIL of the LRU list.
   1160 	 */
   1161 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1162 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1163 
   1164 	simple_unlock(&l1_lru_lock);
   1165 
   1166 	/*
   1167 	 * Fix up the relevant bits in the pmap structure
   1168 	 */
   1169 	pm->pm_l1 = l1;
   1170 	pm->pm_domain = domain;
   1171 }
   1172 
   1173 /*
   1174  * Free an L1 translation table.
   1175  * This is called at pmap destruction time.
   1176  */
   1177 static void
   1178 pmap_free_l1(pmap_t pm)
   1179 {
   1180 	struct l1_ttable *l1 = pm->pm_l1;
   1181 
   1182 	simple_lock(&l1_lru_lock);
   1183 
   1184 	/*
   1185 	 * If this L1 is currently on the LRU list, remove it.
   1186 	 */
   1187 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1188 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1189 
   1190 	/*
   1191 	 * Free up the domain number which was allocated to the pmap
   1192 	 */
   1193 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1194 	l1->l1_domain_first = pm->pm_domain;
   1195 	l1->l1_domain_use_count--;
   1196 
   1197 	/*
   1198 	 * The L1 now must have at least 1 free domain, so add
   1199 	 * it back to the LRU list. If the use count is zero,
   1200 	 * put it at the head of the list, otherwise it goes
   1201 	 * to the tail.
   1202 	 */
   1203 	if (l1->l1_domain_use_count == 0)
   1204 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1205 	else
   1206 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1207 
   1208 	simple_unlock(&l1_lru_lock);
   1209 }
   1210 
   1211 static inline void
   1212 pmap_use_l1(pmap_t pm)
   1213 {
   1214 	struct l1_ttable *l1;
   1215 
   1216 	/*
   1217 	 * Do nothing if we're in interrupt context.
   1218 	 * Access to an L1 by the kernel pmap must not affect
   1219 	 * the LRU list.
   1220 	 */
   1221 	if (cpu_intr_p() || pm == pmap_kernel())
   1222 		return;
   1223 
   1224 	l1 = pm->pm_l1;
   1225 
   1226 	/*
   1227 	 * If the L1 is not currently on the LRU list, just return
   1228 	 */
   1229 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1230 		return;
   1231 
   1232 	simple_lock(&l1_lru_lock);
   1233 
   1234 	/*
   1235 	 * Check the use count again, now that we've acquired the lock
   1236 	 */
   1237 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1238 		simple_unlock(&l1_lru_lock);
   1239 		return;
   1240 	}
   1241 
   1242 	/*
   1243 	 * Move the L1 to the back of the LRU list
   1244 	 */
   1245 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1246 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1247 
   1248 	simple_unlock(&l1_lru_lock);
   1249 }
   1250 
   1251 /*
   1252  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1253  *
   1254  * Free an L2 descriptor table.
   1255  */
   1256 static inline void
   1257 #ifndef PMAP_INCLUDE_PTE_SYNC
   1258 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1259 #else
   1260 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1261 #endif
   1262 {
   1263 #ifdef PMAP_INCLUDE_PTE_SYNC
   1264 #ifdef PMAP_CACHE_VIVT
   1265 	/*
   1266 	 * Note: With a write-back cache, we may need to sync this
   1267 	 * L2 table before re-using it.
   1268 	 * This is because it may have belonged to a non-current
   1269 	 * pmap, in which case the cache syncs would have been
   1270 	 * skipped for the pages that were being unmapped. If the
   1271 	 * L2 table were then to be immediately re-allocated to
   1272 	 * the *current* pmap, it may well contain stale mappings
   1273 	 * which have not yet been cleared by a cache write-back
   1274 	 * and so would still be visible to the mmu.
   1275 	 */
   1276 	if (need_sync)
   1277 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1278 #endif /* PMAP_CACHE_VIVT */
   1279 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1280 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1281 }
   1282 
   1283 /*
   1284  * Returns a pointer to the L2 bucket associated with the specified pmap
   1285  * and VA, or NULL if no L2 bucket exists for the address.
   1286  */
   1287 static inline struct l2_bucket *
   1288 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1289 {
   1290 	struct l2_dtable *l2;
   1291 	struct l2_bucket *l2b;
   1292 	u_short l1idx;
   1293 
   1294 	l1idx = L1_IDX(va);
   1295 
   1296 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1297 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1298 		return (NULL);
   1299 
   1300 	return (l2b);
   1301 }
   1302 
   1303 /*
   1304  * Returns a pointer to the L2 bucket associated with the specified pmap
   1305  * and VA.
   1306  *
   1307  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1308  * bucket/page table in place.
   1309  *
   1310  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1311  * increment the bucket occupancy counter appropriately *before*
   1312  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1313  * the bucket/page in the meantime.
   1314  */
   1315 static struct l2_bucket *
   1316 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1317 {
   1318 	struct l2_dtable *l2;
   1319 	struct l2_bucket *l2b;
   1320 	u_short l1idx;
   1321 
   1322 	l1idx = L1_IDX(va);
   1323 
   1324 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1325 		/*
   1326 		 * No mapping at this address, as there is
   1327 		 * no entry in the L1 table.
   1328 		 * Need to allocate a new l2_dtable.
   1329 		 */
   1330 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1331 			return (NULL);
   1332 
   1333 		/*
   1334 		 * Link it into the parent pmap
   1335 		 */
   1336 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1337 	}
   1338 
   1339 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1340 
   1341 	/*
   1342 	 * Fetch pointer to the L2 page table associated with the address.
   1343 	 */
   1344 	if (l2b->l2b_kva == NULL) {
   1345 		pt_entry_t *ptep;
   1346 
   1347 		/*
   1348 		 * No L2 page table has been allocated. Chances are, this
   1349 		 * is because we just allocated the l2_dtable, above.
   1350 		 */
   1351 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1352 			/*
   1353 			 * Oops, no more L2 page tables available at this
   1354 			 * time. We may need to deallocate the l2_dtable
   1355 			 * if we allocated a new one above.
   1356 			 */
   1357 			if (l2->l2_occupancy == 0) {
   1358 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1359 				pmap_free_l2_dtable(l2);
   1360 			}
   1361 			return (NULL);
   1362 		}
   1363 
   1364 		l2->l2_occupancy++;
   1365 		l2b->l2b_kva = ptep;
   1366 		l2b->l2b_l1idx = l1idx;
   1367 	}
   1368 
   1369 	return (l2b);
   1370 }
   1371 
   1372 /*
   1373  * One or more mappings in the specified L2 descriptor table have just been
   1374  * invalidated.
   1375  *
   1376  * Garbage collect the metadata and descriptor table itself if necessary.
   1377  *
   1378  * The pmap lock must be acquired when this is called (not necessary
   1379  * for the kernel pmap).
   1380  */
   1381 static void
   1382 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1383 {
   1384 	struct l2_dtable *l2;
   1385 	pd_entry_t *pl1pd, l1pd;
   1386 	pt_entry_t *ptep;
   1387 	u_short l1idx;
   1388 
   1389 	KDASSERT(count <= l2b->l2b_occupancy);
   1390 
   1391 	/*
   1392 	 * Update the bucket's reference count according to how many
   1393 	 * PTEs the caller has just invalidated.
   1394 	 */
   1395 	l2b->l2b_occupancy -= count;
   1396 
   1397 	/*
   1398 	 * Note:
   1399 	 *
   1400 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1401 	 * as that would require checking all Level 1 page tables and
   1402 	 * removing any references to the Level 2 page table. See also the
   1403 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1404 	 *
   1405 	 * We make do with just invalidating the mapping in the L2 table.
   1406 	 *
   1407 	 * This isn't really a big deal in practice and, in fact, leads
   1408 	 * to a performance win over time as we don't need to continually
   1409 	 * alloc/free.
   1410 	 */
   1411 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1412 		return;
   1413 
   1414 	/*
   1415 	 * There are no more valid mappings in this level 2 page table.
   1416 	 * Go ahead and NULL-out the pointer in the bucket, then
   1417 	 * free the page table.
   1418 	 */
   1419 	l1idx = l2b->l2b_l1idx;
   1420 	ptep = l2b->l2b_kva;
   1421 	l2b->l2b_kva = NULL;
   1422 
   1423 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1424 
   1425 	/*
   1426 	 * If the L1 slot matches the pmap's domain
   1427 	 * number, then invalidate it.
   1428 	 */
   1429 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1430 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1431 		*pl1pd = 0;
   1432 		PTE_SYNC(pl1pd);
   1433 	}
   1434 
   1435 	/*
   1436 	 * Release the L2 descriptor table back to the pool cache.
   1437 	 */
   1438 #ifndef PMAP_INCLUDE_PTE_SYNC
   1439 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1440 #else
   1441 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1442 #endif
   1443 
   1444 	/*
   1445 	 * Update the reference count in the associated l2_dtable
   1446 	 */
   1447 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1448 	if (--l2->l2_occupancy > 0)
   1449 		return;
   1450 
   1451 	/*
   1452 	 * There are no more valid mappings in any of the Level 1
   1453 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1454 	 * the pointer in the parent pmap and free the l2_dtable.
   1455 	 */
   1456 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1457 	pmap_free_l2_dtable(l2);
   1458 }
   1459 
   1460 /*
   1461  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1462  * structures.
   1463  */
   1464 static int
   1465 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1466 {
   1467 #ifndef PMAP_INCLUDE_PTE_SYNC
   1468 	struct l2_bucket *l2b;
   1469 	pt_entry_t *ptep, pte;
   1470 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1471 
   1472 	/*
   1473 	 * The mappings for these page tables were initially made using
   1474 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1475 	 * mode will not be right for page table mappings. To avoid
   1476 	 * polluting the pmap_kenter_pa() code with a special case for
   1477 	 * page tables, we simply fix up the cache-mode here if it's not
   1478 	 * correct.
   1479 	 */
   1480 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1481 	KDASSERT(l2b != NULL);
   1482 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1483 	pte = *ptep;
   1484 
   1485 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1486 		/*
   1487 		 * Page tables must have the cache-mode set to Write-Thru.
   1488 		 */
   1489 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1490 		PTE_SYNC(ptep);
   1491 		cpu_tlb_flushD_SE(va);
   1492 		cpu_cpwait();
   1493 	}
   1494 #endif
   1495 
   1496 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1497 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1498 	return (0);
   1499 }
   1500 
   1501 static int
   1502 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1503 {
   1504 
   1505 	memset(v, 0, sizeof(struct l2_dtable));
   1506 	return (0);
   1507 }
   1508 
   1509 static int
   1510 pmap_pmap_ctor(void *arg, void *v, int flags)
   1511 {
   1512 
   1513 	memset(v, 0, sizeof(struct pmap));
   1514 	return (0);
   1515 }
   1516 
   1517 static void
   1518 pmap_pinit(pmap_t pm)
   1519 {
   1520 	struct l2_bucket *l2b;
   1521 
   1522 	if (vector_page < KERNEL_BASE) {
   1523 		/*
   1524 		 * Map the vector page.
   1525 		 */
   1526 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1527 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1528 		pmap_update(pm);
   1529 
   1530 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1531 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1532 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1533 		    L1_C_DOM(pm->pm_domain);
   1534 	} else
   1535 		pm->pm_pl1vec = NULL;
   1536 }
   1537 
   1538 #ifdef PMAP_CACHE_VIVT
   1539 /*
   1540  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1541  * there is more than one mapping and at least one of them is writable.
   1542  * Since we purge the cache on every context switch, we only need to check for
   1543  * other mappings within the same pmap, or kernel_pmap.
   1544  * This function is also called when a page is unmapped, to possibly reenable
   1545  * caching on any remaining mappings.
   1546  *
   1547  * The code implements the following logic, where:
   1548  *
   1549  * KW = # of kernel read/write pages
   1550  * KR = # of kernel read only pages
   1551  * UW = # of user read/write pages
   1552  * UR = # of user read only pages
   1553  *
   1554  * KC = kernel mapping is cacheable
   1555  * UC = user mapping is cacheable
   1556  *
   1557  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1558  *             +---------------------------------------------
   1559  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1560  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1561  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1562  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1563  */
   1564 
   1565 static const int pmap_vac_flags[4][4] = {
   1566 	{-1,		0,		0,		PVF_KNC},
   1567 	{0,		0,		PVF_NC,		PVF_NC},
   1568 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1569 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1570 };
   1571 
   1572 static inline int
   1573 pmap_get_vac_flags(const struct vm_page *pg)
   1574 {
   1575 	int kidx, uidx;
   1576 
   1577 	kidx = 0;
   1578 	if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
   1579 		kidx |= 1;
   1580 	if (pg->mdpage.krw_mappings)
   1581 		kidx |= 2;
   1582 
   1583 	uidx = 0;
   1584 	if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
   1585 		uidx |= 1;
   1586 	if (pg->mdpage.urw_mappings)
   1587 		uidx |= 2;
   1588 
   1589 	return (pmap_vac_flags[uidx][kidx]);
   1590 }
   1591 
   1592 static inline void
   1593 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1594 {
   1595 	int nattr;
   1596 
   1597 	nattr = pmap_get_vac_flags(pg);
   1598 
   1599 	if (nattr < 0) {
   1600 		pg->mdpage.pvh_attrs &= ~PVF_NC;
   1601 		return;
   1602 	}
   1603 
   1604 	if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
   1605 		return;
   1606 
   1607 	if (pm == pmap_kernel())
   1608 		pmap_vac_me_kpmap(pg, pm, va);
   1609 	else
   1610 		pmap_vac_me_user(pg, pm, va);
   1611 
   1612 	pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
   1613 }
   1614 
   1615 static void
   1616 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1617 {
   1618 	u_int u_cacheable, u_entries;
   1619 	struct pv_entry *pv;
   1620 	pmap_t last_pmap = pm;
   1621 
   1622 	/*
   1623 	 * Pass one, see if there are both kernel and user pmaps for
   1624 	 * this page.  Calculate whether there are user-writable or
   1625 	 * kernel-writable pages.
   1626 	 */
   1627 	u_cacheable = 0;
   1628 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1629 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1630 			u_cacheable++;
   1631 	}
   1632 
   1633 	u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
   1634 
   1635 	/*
   1636 	 * We know we have just been updating a kernel entry, so if
   1637 	 * all user pages are already cacheable, then there is nothing
   1638 	 * further to do.
   1639 	 */
   1640 	if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
   1641 		return;
   1642 
   1643 	if (u_entries) {
   1644 		/*
   1645 		 * Scan over the list again, for each entry, if it
   1646 		 * might not be set correctly, call pmap_vac_me_user
   1647 		 * to recalculate the settings.
   1648 		 */
   1649 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1650 			/*
   1651 			 * We know kernel mappings will get set
   1652 			 * correctly in other calls.  We also know
   1653 			 * that if the pmap is the same as last_pmap
   1654 			 * then we've just handled this entry.
   1655 			 */
   1656 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1657 				continue;
   1658 
   1659 			/*
   1660 			 * If there are kernel entries and this page
   1661 			 * is writable but non-cacheable, then we can
   1662 			 * skip this entry also.
   1663 			 */
   1664 			if (pg->mdpage.k_mappings &&
   1665 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1666 			    (PVF_NC | PVF_WRITE))
   1667 				continue;
   1668 
   1669 			/*
   1670 			 * Similarly if there are no kernel-writable
   1671 			 * entries and the page is already
   1672 			 * read-only/cacheable.
   1673 			 */
   1674 			if (pg->mdpage.krw_mappings == 0 &&
   1675 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1676 				continue;
   1677 
   1678 			/*
   1679 			 * For some of the remaining cases, we know
   1680 			 * that we must recalculate, but for others we
   1681 			 * can't tell if they are correct or not, so
   1682 			 * we recalculate anyway.
   1683 			 */
   1684 			pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
   1685 		}
   1686 
   1687 		if (pg->mdpage.k_mappings == 0)
   1688 			return;
   1689 	}
   1690 
   1691 	pmap_vac_me_user(pg, pm, va);
   1692 }
   1693 
   1694 static void
   1695 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1696 {
   1697 	pmap_t kpmap = pmap_kernel();
   1698 	struct pv_entry *pv, *npv = NULL;
   1699 	struct l2_bucket *l2b;
   1700 	pt_entry_t *ptep, pte;
   1701 	u_int entries = 0;
   1702 	u_int writable = 0;
   1703 	u_int cacheable_entries = 0;
   1704 	u_int kern_cacheable = 0;
   1705 	u_int other_writable = 0;
   1706 
   1707 	/*
   1708 	 * Count mappings and writable mappings in this pmap.
   1709 	 * Include kernel mappings as part of our own.
   1710 	 * Keep a pointer to the first one.
   1711 	 */
   1712 	npv = NULL;
   1713 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   1714 		/* Count mappings in the same pmap */
   1715 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1716 			if (entries++ == 0)
   1717 				npv = pv;
   1718 
   1719 			/* Cacheable mappings */
   1720 			if ((pv->pv_flags & PVF_NC) == 0) {
   1721 				cacheable_entries++;
   1722 				if (kpmap == pv->pv_pmap)
   1723 					kern_cacheable++;
   1724 			}
   1725 
   1726 			/* Writable mappings */
   1727 			if (pv->pv_flags & PVF_WRITE)
   1728 				++writable;
   1729 		} else
   1730 		if (pv->pv_flags & PVF_WRITE)
   1731 			other_writable = 1;
   1732 	}
   1733 
   1734 	/*
   1735 	 * Enable or disable caching as necessary.
   1736 	 * Note: the first entry might be part of the kernel pmap,
   1737 	 * so we can't assume this is indicative of the state of the
   1738 	 * other (maybe non-kpmap) entries.
   1739 	 */
   1740 	if ((entries > 1 && writable) ||
   1741 	    (entries > 0 && pm == kpmap && other_writable)) {
   1742 		if (cacheable_entries == 0)
   1743 			return;
   1744 
   1745 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1746 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1747 			    (pv->pv_flags & PVF_NC))
   1748 				continue;
   1749 
   1750 			pv->pv_flags |= PVF_NC;
   1751 
   1752 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1753 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1754 			pte = *ptep & ~L2_S_CACHE_MASK;
   1755 
   1756 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1757 			    l2pte_valid(pte)) {
   1758 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1759 #ifdef PMAP_CACHE_VIVT
   1760 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1761 					    pv->pv_va, PAGE_SIZE);
   1762 #endif
   1763 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1764 					    pv->pv_va);
   1765 				} else
   1766 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1767 #ifdef PMAP_CACHE_VIVT
   1768 					pmap_dcache_wb_range(pv->pv_pmap,
   1769 					    pv->pv_va, PAGE_SIZE, true,
   1770 					    (pv->pv_flags & PVF_WRITE) == 0);
   1771 #endif
   1772 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1773 					    pv->pv_va);
   1774 				}
   1775 			}
   1776 
   1777 			*ptep = pte;
   1778 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1779 		}
   1780 		cpu_cpwait();
   1781 	} else
   1782 	if (entries > cacheable_entries) {
   1783 		/*
   1784 		 * Turn cacheing back on for some pages.  If it is a kernel
   1785 		 * page, only do so if there are no other writable pages.
   1786 		 */
   1787 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1788 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1789 			    (kpmap != pv->pv_pmap || other_writable)))
   1790 				continue;
   1791 
   1792 			pv->pv_flags &= ~PVF_NC;
   1793 
   1794 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1795 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1796 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1797 
   1798 			if (l2pte_valid(pte)) {
   1799 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1800 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1801 					    pv->pv_va);
   1802 				} else
   1803 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1804 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1805 					    pv->pv_va);
   1806 				}
   1807 			}
   1808 
   1809 			*ptep = pte;
   1810 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1811 		}
   1812 	}
   1813 }
   1814 #endif
   1815 
   1816 #ifdef PMAP_CACHE_VIPT
   1817 static void
   1818 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
   1819 {
   1820 	struct pv_entry *pv;
   1821 	vaddr_t tst_mask;
   1822 	bool bad_alias;
   1823 	struct l2_bucket *l2b;
   1824 	pt_entry_t *ptep, pte, opte;
   1825 	const u_int
   1826 	    rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
   1827 	    ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
   1828 
   1829 	/* do we need to do anything? */
   1830 	if (arm_cache_prefer_mask == 0)
   1831 		return;
   1832 
   1833 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
   1834 	    pg, pm, va));
   1835 
   1836 	KASSERT(!va || pm);
   1837 	KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1838 
   1839 	/* Already a conflict? */
   1840 	if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
   1841 		/* just an add, things are already non-cached */
   1842 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
   1843 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   1844 		bad_alias = false;
   1845 		if (va) {
   1846 			PMAPCOUNT(vac_color_none);
   1847 			bad_alias = true;
   1848 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1849 			goto fixup;
   1850 		}
   1851 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1852 		/* the list can't be empty because it would be cachable */
   1853 		if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
   1854 			tst_mask = pg->mdpage.pvh_attrs;
   1855 		} else {
   1856 			KASSERT(pv);
   1857 			tst_mask = pv->pv_va;
   1858 			pv = SLIST_NEXT(pv, pv_link);
   1859 		}
   1860 		/*
   1861 		 * Only check for a bad alias if we have writable mappings.
   1862 		 */
   1863 		tst_mask &= arm_cache_prefer_mask;
   1864 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1865 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1866 				/* if there's a bad alias, stop checking. */
   1867 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1868 					bad_alias = true;
   1869 			}
   1870 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1871 			if (!bad_alias)
   1872 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1873 		} else {
   1874 			/*
   1875 			 * We have only read-only mappings.  Let's see if there
   1876 			 * are multiple colors in use or if we mapped a KMPAGE.
   1877 			 * If the latter, we have a bad alias.  If the former,
   1878 			 * we need to remember that.
   1879 			 */
   1880 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1881 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1882 					if (pg->mdpage.pvh_attrs & PVF_KMPAGE)
   1883 						bad_alias = true;
   1884 					break;
   1885 				}
   1886 			}
   1887 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1888 			/*
   1889 			 * No KMPAGE and we exited early, so we must have
   1890 			 * multiple color mappings.
   1891 			 */
   1892 			if (!bad_alias && pv != NULL)
   1893 				pg->mdpage.pvh_attrs |= PVF_MULTCLR;
   1894 		}
   1895 
   1896 		/* If no conflicting colors, set everything back to cached */
   1897 		if (!bad_alias) {
   1898 #ifdef DEBUG
   1899 			if ((pg->mdpage.pvh_attrs & PVF_WRITE)
   1900 			    || ro_mappings < 2) {
   1901 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1902 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1903 			}
   1904 #endif
   1905 			pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1906 			pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
   1907 			/*
   1908 			 * Restore DIRTY bit if page is modified
   1909 			 */
   1910 			if (pg->mdpage.pvh_attrs & PVF_DMOD)
   1911 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   1912 			PMAPCOUNT(vac_color_restore);
   1913 		} else {
   1914 			KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   1915 			KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   1916 		}
   1917 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1918 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1919 	} else if (!va) {
   1920 		KASSERT(pmap_is_page_colored_p(pg));
   1921 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
   1922 		    || (pg->mdpage.pvh_attrs & PVF_DIRTY));
   1923 		if (rw_mappings == 0) {
   1924 			pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   1925 			if (ro_mappings == 1
   1926 			    && (pg->mdpage.pvh_attrs & PVF_MULTCLR)) {
   1927 				/*
   1928 				 * If this is the last readonly mapping
   1929 				 * but it doesn't match the current color
   1930 				 * for the page, change the current color
   1931 				 * to match this last readonly mapping.
   1932 				 */
   1933 				pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   1934 				tst_mask = (pg->mdpage.pvh_attrs ^ pv->pv_va)
   1935 				    & arm_cache_prefer_mask;
   1936 				if (tst_mask) {
   1937 					pg->mdpage.pvh_attrs ^= tst_mask;
   1938 					PMAPCOUNT(vac_color_change);
   1939 				}
   1940 			}
   1941 		}
   1942 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1943 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1944 		return;
   1945 	} else if (!pmap_is_page_colored_p(pg)) {
   1946 		/* not colored so we just use its color */
   1947 		KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1948 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   1949 		PMAPCOUNT(vac_color_new);
   1950 		pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   1951 		pg->mdpage.pvh_attrs |= PVF_COLORED
   1952 		    | (va & arm_cache_prefer_mask)
   1953 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1954 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1955 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1956 		return;
   1957 	} else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1958 		bad_alias = false;
   1959 		if (rw_mappings > 0) {
   1960 			/*
   1961 			 * We now have writeable mappings and if we have
   1962 			 * readonly mappings in more than once color, we have
   1963 			 * an aliasing problem.  Regardless mark the page as
   1964 			 * writeable.
   1965 			 */
   1966 			if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
   1967 				if (ro_mappings < 2) {
   1968 					/*
   1969 					 * If we only have less than two
   1970 					 * read-only mappings, just flush the
   1971 					 * non-primary colors from the cache.
   1972 					 */
   1973 					pmap_flush_page(pg,
   1974 					    PMAP_FLUSH_SECONDARY);
   1975 				} else {
   1976 					bad_alias = true;
   1977 				}
   1978 			}
   1979 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   1980 		}
   1981 		/* If no conflicting colors, set everything back to cached */
   1982 		if (!bad_alias) {
   1983 #ifdef DEBUG
   1984 			if (rw_mappings > 0
   1985 			    || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
   1986 				tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   1987 				SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
   1988 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1989 			}
   1990 #endif
   1991 			if (SLIST_EMPTY(&pg->mdpage.pvh_list))
   1992 				PMAPCOUNT(vac_color_reuse);
   1993 			else
   1994 				PMAPCOUNT(vac_color_ok);
   1995 
   1996 			/* matching color, just return */
   1997 			KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1998 			KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   1999 			return;
   2000 		}
   2001 		KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
   2002 		KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
   2003 
   2004 		/* color conflict.  evict from cache. */
   2005 
   2006 		pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
   2007 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2008 		pg->mdpage.pvh_attrs |= PVF_NC;
   2009 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2010 		KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   2011 		PMAPCOUNT(vac_color_erase);
   2012 	} else if (rw_mappings == 0
   2013 		   && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2014 		KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
   2015 
   2016 		/*
   2017 		 * If the page has dirty cache lines, clean it.
   2018 		 */
   2019 		if (pg->mdpage.pvh_attrs & PVF_DIRTY)
   2020 			pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
   2021 
   2022 		/*
   2023 		 * If this is the first remapping (we know that there are no
   2024 		 * writeable mappings), then this is a simple color change.
   2025 		 * Otherwise this is a seconary r/o mapping, which means
   2026 		 * we don't have to do anything.
   2027 		 */
   2028 		if (ro_mappings == 1) {
   2029 			KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2030 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2031 			pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2032 			PMAPCOUNT(vac_color_change);
   2033 		} else {
   2034 			PMAPCOUNT(vac_color_blind);
   2035 		}
   2036 		pg->mdpage.pvh_attrs |= PVF_MULTCLR;
   2037 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2038 		KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2039 		return;
   2040 	} else {
   2041 		if (rw_mappings > 0)
   2042 			pg->mdpage.pvh_attrs |= PVF_WRITE;
   2043 
   2044 		/* color conflict.  evict from cache. */
   2045 		pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
   2046 
   2047 		/* the list can't be empty because this was a enter/modify */
   2048 		pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2049 		if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
   2050 			KASSERT(pv);
   2051 			/*
   2052 			 * If there's only one mapped page, change color to the
   2053 			 * page's new color and return.  Restore the DIRTY bit
   2054 			 * that was erased by pmap_flush_page.
   2055 			 */
   2056 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2057 				pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   2058 				pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
   2059 				if (pg->mdpage.pvh_attrs & PVF_DMOD)
   2060 					pg->mdpage.pvh_attrs |= PVF_DIRTY;
   2061 				PMAPCOUNT(vac_color_change);
   2062 				KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2063 				KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2064 				KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
   2065 				return;
   2066 			}
   2067 		}
   2068 		bad_alias = true;
   2069 		pg->mdpage.pvh_attrs &= ~PVF_COLORED;
   2070 		pg->mdpage.pvh_attrs |= PVF_NC;
   2071 		PMAPCOUNT(vac_color_erase);
   2072 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2073 	}
   2074 
   2075   fixup:
   2076 	KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2077 
   2078 	/*
   2079 	 * Turn cacheing on/off for all pages.
   2080 	 */
   2081 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2082 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2083 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2084 		opte = *ptep;
   2085 		pte = opte & ~L2_S_CACHE_MASK;
   2086 		if (bad_alias) {
   2087 			pv->pv_flags |= PVF_NC;
   2088 		} else {
   2089 			pv->pv_flags &= ~PVF_NC;
   2090 			pte |= pte_l2_s_cache_mode;
   2091 		}
   2092 
   2093 		if (opte == pte)	/* only update is there's a change */
   2094 			continue;
   2095 
   2096 		if (l2pte_valid(pte)) {
   2097 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2098 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2099 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2100 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2101 			}
   2102 		}
   2103 
   2104 		*ptep = pte;
   2105 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2106 	}
   2107 }
   2108 #endif	/* PMAP_CACHE_VIPT */
   2109 
   2110 
   2111 /*
   2112  * Modify pte bits for all ptes corresponding to the given physical address.
   2113  * We use `maskbits' rather than `clearbits' because we're always passing
   2114  * constants and the latter would require an extra inversion at run-time.
   2115  */
   2116 static void
   2117 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2118 {
   2119 	struct l2_bucket *l2b;
   2120 	struct pv_entry *pv;
   2121 	pt_entry_t *ptep, npte, opte;
   2122 	pmap_t pm;
   2123 	vaddr_t va;
   2124 	u_int oflags;
   2125 #ifdef PMAP_CACHE_VIPT
   2126 	const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
   2127 	bool need_syncicache = false;
   2128 	bool did_syncicache = false;
   2129 	bool need_vac_me_harder = false;
   2130 #endif
   2131 
   2132 	NPDEBUG(PDB_BITS,
   2133 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2134 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2135 
   2136 	PMAP_HEAD_TO_MAP_LOCK();
   2137 	simple_lock(&pg->mdpage.pvh_slock);
   2138 
   2139 #ifdef PMAP_CACHE_VIPT
   2140 	/*
   2141 	 * If we might want to sync the I-cache and we've modified it,
   2142 	 * then we know we definitely need to sync or discard it.
   2143 	 */
   2144 	if (want_syncicache)
   2145 		need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
   2146 #endif
   2147 	/*
   2148 	 * Clear saved attributes (modify, reference)
   2149 	 */
   2150 	pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2151 
   2152 	if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   2153 #ifdef PMAP_CACHE_VIPT
   2154 		if (need_syncicache) {
   2155 			/*
   2156 			 * No one has it mapped, so just discard it.  The next
   2157 			 * exec remapping will cause it to be synced.
   2158 			 */
   2159 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2160 			PMAPCOUNT(exec_discarded_clearbit);
   2161 		}
   2162 #endif
   2163 		simple_unlock(&pg->mdpage.pvh_slock);
   2164 		PMAP_HEAD_TO_MAP_UNLOCK();
   2165 		return;
   2166 	}
   2167 
   2168 	/*
   2169 	 * Loop over all current mappings setting/clearing as appropos
   2170 	 */
   2171 	SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   2172 		va = pv->pv_va;
   2173 		pm = pv->pv_pmap;
   2174 		oflags = pv->pv_flags;
   2175 		/*
   2176 		 * Kernel entries are unmanaged and as such not to be changed.
   2177 		 */
   2178 		if (oflags & PVF_KENTRY)
   2179 			continue;
   2180 		pv->pv_flags &= ~maskbits;
   2181 
   2182 		pmap_acquire_pmap_lock(pm);
   2183 
   2184 		l2b = pmap_get_l2_bucket(pm, va);
   2185 		KDASSERT(l2b != NULL);
   2186 
   2187 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2188 		npte = opte = *ptep;
   2189 
   2190 		NPDEBUG(PDB_BITS,
   2191 		    printf(
   2192 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2193 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2194 
   2195 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2196 #ifdef PMAP_CACHE_VIVT
   2197 			if ((pv->pv_flags & PVF_NC)) {
   2198 				/*
   2199 				 * Entry is not cacheable:
   2200 				 *
   2201 				 * Don't turn caching on again if this is a
   2202 				 * modified emulation. This would be
   2203 				 * inconsitent with the settings created by
   2204 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2205 				 * to re-enable cacheing.
   2206 				 *
   2207 				 * There's no need to call pmap_vac_me_harder()
   2208 				 * here: all pages are losing their write
   2209 				 * permission.
   2210 				 */
   2211 				if (maskbits & PVF_WRITE) {
   2212 					npte |= pte_l2_s_cache_mode;
   2213 					pv->pv_flags &= ~PVF_NC;
   2214 				}
   2215 			} else
   2216 			if (opte & L2_S_PROT_W) {
   2217 				/*
   2218 				 * Entry is writable/cacheable: check if pmap
   2219 				 * is current if it is flush it, otherwise it
   2220 				 * won't be in the cache
   2221 				 */
   2222 				if (PV_BEEN_EXECD(oflags))
   2223 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2224 					    PAGE_SIZE);
   2225 				else
   2226 				if (PV_BEEN_REFD(oflags))
   2227 					pmap_dcache_wb_range(pm, pv->pv_va,
   2228 					    PAGE_SIZE,
   2229 					    (maskbits & PVF_REF) != 0, false);
   2230 			}
   2231 #endif
   2232 
   2233 			/* make the pte read only */
   2234 			npte &= ~L2_S_PROT_W;
   2235 
   2236 			if (maskbits & oflags & PVF_WRITE) {
   2237 				/*
   2238 				 * Keep alias accounting up to date
   2239 				 */
   2240 				if (pv->pv_pmap == pmap_kernel()) {
   2241 					pg->mdpage.krw_mappings--;
   2242 					pg->mdpage.kro_mappings++;
   2243 				} else {
   2244 					pg->mdpage.urw_mappings--;
   2245 					pg->mdpage.uro_mappings++;
   2246 				}
   2247 #ifdef PMAP_CACHE_VIPT
   2248 				if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
   2249 					pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2250 				if (want_syncicache)
   2251 					need_syncicache = true;
   2252 				need_vac_me_harder = true;
   2253 #endif
   2254 			}
   2255 		}
   2256 
   2257 		if (maskbits & PVF_REF) {
   2258 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2259 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2260 			    l2pte_valid(npte)) {
   2261 #ifdef PMAP_CACHE_VIVT
   2262 				/*
   2263 				 * Check npte here; we may have already
   2264 				 * done the wbinv above, and the validity
   2265 				 * of the PTE is the same for opte and
   2266 				 * npte.
   2267 				 */
   2268 				/* XXXJRT need idcache_inv_range */
   2269 				if (PV_BEEN_EXECD(oflags))
   2270 					pmap_idcache_wbinv_range(pm,
   2271 					    pv->pv_va, PAGE_SIZE);
   2272 				else
   2273 				if (PV_BEEN_REFD(oflags))
   2274 					pmap_dcache_wb_range(pm,
   2275 					    pv->pv_va, PAGE_SIZE,
   2276 					    true, true);
   2277 #endif
   2278 			}
   2279 
   2280 			/*
   2281 			 * Make the PTE invalid so that we will take a
   2282 			 * page fault the next time the mapping is
   2283 			 * referenced.
   2284 			 */
   2285 			npte &= ~L2_TYPE_MASK;
   2286 			npte |= L2_TYPE_INV;
   2287 		}
   2288 
   2289 		if (npte != opte) {
   2290 			*ptep = npte;
   2291 			PTE_SYNC(ptep);
   2292 			/* Flush the TLB entry if a current pmap. */
   2293 			if (PV_BEEN_EXECD(oflags))
   2294 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2295 			else
   2296 			if (PV_BEEN_REFD(oflags))
   2297 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2298 		}
   2299 
   2300 		pmap_release_pmap_lock(pm);
   2301 
   2302 		NPDEBUG(PDB_BITS,
   2303 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2304 		    pm, va, opte, npte));
   2305 	}
   2306 
   2307 #ifdef PMAP_CACHE_VIPT
   2308 	/*
   2309 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2310 	 */
   2311 	if (need_syncicache && !did_syncicache) {
   2312 		pmap_syncicache_page(pg);
   2313 		PMAPCOUNT(exec_synced_clearbit);
   2314 	}
   2315 	/*
   2316 	 * If we are changing this to read-only, we need to call vac_me_harder
   2317 	 * so we can change all the read-only pages to cacheable.  We pretend
   2318 	 * this as a page deletion.
   2319 	 */
   2320 	if (need_vac_me_harder) {
   2321 		if (pg->mdpage.pvh_attrs & PVF_NC)
   2322 			pmap_vac_me_harder(pg, NULL, 0);
   2323 	}
   2324 #endif
   2325 
   2326 	simple_unlock(&pg->mdpage.pvh_slock);
   2327 	PMAP_HEAD_TO_MAP_UNLOCK();
   2328 }
   2329 
   2330 /*
   2331  * pmap_clean_page()
   2332  *
   2333  * This is a local function used to work out the best strategy to clean
   2334  * a single page referenced by its entry in the PV table. It's used by
   2335  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2336  *
   2337  * Its policy is effectively:
   2338  *  o If there are no mappings, we don't bother doing anything with the cache.
   2339  *  o If there is one mapping, we clean just that page.
   2340  *  o If there are multiple mappings, we clean the entire cache.
   2341  *
   2342  * So that some functions can be further optimised, it returns 0 if it didn't
   2343  * clean the entire cache, or 1 if it did.
   2344  *
   2345  * XXX One bug in this routine is that if the pv_entry has a single page
   2346  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2347  * just the 1 page. Since this should not occur in everyday use and if it does
   2348  * it will just result in not the most efficient clean for the page.
   2349  */
   2350 #ifdef PMAP_CACHE_VIVT
   2351 static int
   2352 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2353 {
   2354 	pmap_t pm, pm_to_clean = NULL;
   2355 	struct pv_entry *npv;
   2356 	u_int cache_needs_cleaning = 0;
   2357 	u_int flags = 0;
   2358 	vaddr_t page_to_clean = 0;
   2359 
   2360 	if (pv == NULL) {
   2361 		/* nothing mapped in so nothing to flush */
   2362 		return (0);
   2363 	}
   2364 
   2365 	/*
   2366 	 * Since we flush the cache each time we change to a different
   2367 	 * user vmspace, we only need to flush the page if it is in the
   2368 	 * current pmap.
   2369 	 */
   2370 	pm = curproc->p_vmspace->vm_map.pmap;
   2371 
   2372 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2373 		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
   2374 			flags |= npv->pv_flags;
   2375 			/*
   2376 			 * The page is mapped non-cacheable in
   2377 			 * this map.  No need to flush the cache.
   2378 			 */
   2379 			if (npv->pv_flags & PVF_NC) {
   2380 #ifdef DIAGNOSTIC
   2381 				if (cache_needs_cleaning)
   2382 					panic("pmap_clean_page: "
   2383 					    "cache inconsistency");
   2384 #endif
   2385 				break;
   2386 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2387 				continue;
   2388 			if (cache_needs_cleaning) {
   2389 				page_to_clean = 0;
   2390 				break;
   2391 			} else {
   2392 				page_to_clean = npv->pv_va;
   2393 				pm_to_clean = npv->pv_pmap;
   2394 			}
   2395 			cache_needs_cleaning = 1;
   2396 		}
   2397 	}
   2398 
   2399 	if (page_to_clean) {
   2400 		if (PV_BEEN_EXECD(flags))
   2401 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2402 			    PAGE_SIZE);
   2403 		else
   2404 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2405 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2406 	} else if (cache_needs_cleaning) {
   2407 		if (PV_BEEN_EXECD(flags))
   2408 			pmap_idcache_wbinv_all(pm);
   2409 		else
   2410 			pmap_dcache_wbinv_all(pm);
   2411 		return (1);
   2412 	}
   2413 	return (0);
   2414 }
   2415 #endif
   2416 
   2417 #ifdef PMAP_CACHE_VIPT
   2418 /*
   2419  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2420  * right cache alias to make sure we flush the right stuff.
   2421  */
   2422 void
   2423 pmap_syncicache_page(struct vm_page *pg)
   2424 {
   2425 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2426 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2427 
   2428 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
   2429 	    pg, pg->mdpage.pvh_attrs));
   2430 	/*
   2431 	 * No need to clean the page if it's non-cached.
   2432 	 */
   2433 	if (pg->mdpage.pvh_attrs & PVF_NC)
   2434 		return;
   2435 	KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
   2436 
   2437 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2438 	/*
   2439 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2440 	 */
   2441 	*ptep = L2_S_PROTO |
   2442 	    VM_PAGE_TO_PHYS(pg)
   2443 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2444 	    | pte_l2_s_cache_mode;
   2445 	PTE_SYNC(ptep);
   2446 
   2447 	/*
   2448 	 * Flush it.
   2449 	 */
   2450 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2451 	/*
   2452 	 * Unmap the page.
   2453 	 */
   2454 	*ptep = 0;
   2455 	PTE_SYNC(ptep);
   2456 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2457 
   2458 	pg->mdpage.pvh_attrs |= PVF_EXEC;
   2459 	PMAPCOUNT(exec_synced);
   2460 }
   2461 
   2462 void
   2463 pmap_flush_page(struct vm_page *pg, enum pmap_flush_op flush)
   2464 {
   2465 	vsize_t va_offset, end_va;
   2466 	void (*cf)(vaddr_t, vsize_t);
   2467 
   2468 	if (arm_cache_prefer_mask == 0)
   2469 		return;
   2470 
   2471 	switch (flush) {
   2472 	case PMAP_FLUSH_PRIMARY:
   2473 		if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
   2474 			va_offset = 0;
   2475 			end_va = arm_cache_prefer_mask;
   2476 			pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
   2477 			PMAPCOUNT(vac_flush_lots);
   2478 		} else {
   2479 			va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2480 			end_va = va_offset;
   2481 			PMAPCOUNT(vac_flush_one);
   2482 		}
   2483 		/*
   2484 		 * Mark that the page is no longer dirty.
   2485 		 */
   2486 		pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2487 		cf = cpufuncs.cf_idcache_wbinv_range;
   2488 		break;
   2489 	case PMAP_FLUSH_SECONDARY:
   2490 		va_offset = 0;
   2491 		end_va = arm_cache_prefer_mask;
   2492 		cf = cpufuncs.cf_idcache_wbinv_range;
   2493 		pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
   2494 		PMAPCOUNT(vac_flush_lots);
   2495 		break;
   2496 	case PMAP_CLEAN_PRIMARY:
   2497 		va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   2498 		end_va = va_offset;
   2499 		cf = cpufuncs.cf_dcache_wb_range;
   2500 		/*
   2501 		 * Mark that the page is no longer dirty.
   2502 		 */
   2503 		if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
   2504 			pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
   2505 		PMAPCOUNT(vac_clean_one);
   2506 		break;
   2507 	default:
   2508 		return;
   2509 	}
   2510 
   2511 	KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
   2512 
   2513 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
   2514 	    pg, pg->mdpage.pvh_attrs));
   2515 
   2516 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2517 		const size_t pte_offset = va_offset >> PGSHIFT;
   2518 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2519 		const pt_entry_t oldpte = *ptep;
   2520 
   2521 		if (flush == PMAP_FLUSH_SECONDARY
   2522 		    && va_offset == (pg->mdpage.pvh_attrs & arm_cache_prefer_mask))
   2523 			continue;
   2524 
   2525 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2526 		/*
   2527 		 * Set up a PTE with the right coloring to flush
   2528 		 * existing cache entries.
   2529 		 */
   2530 		*ptep = L2_S_PROTO
   2531 		    | VM_PAGE_TO_PHYS(pg)
   2532 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2533 		    | pte_l2_s_cache_mode;
   2534 		PTE_SYNC(ptep);
   2535 
   2536 		/*
   2537 		 * Flush it.
   2538 		 */
   2539 		(*cf)(cdstp + va_offset, PAGE_SIZE);
   2540 
   2541 		/*
   2542 		 * Restore the page table entry since we might have interrupted
   2543 		 * pmap_zero_page or pmap_copy_page which was already using
   2544 		 * this pte.
   2545 		 */
   2546 		*ptep = oldpte;
   2547 		PTE_SYNC(ptep);
   2548 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2549 	}
   2550 }
   2551 #endif /* PMAP_CACHE_VIPT */
   2552 
   2553 /*
   2554  * Routine:	pmap_page_remove
   2555  * Function:
   2556  *		Removes this physical page from
   2557  *		all physical maps in which it resides.
   2558  *		Reflects back modify bits to the pager.
   2559  */
   2560 static void
   2561 pmap_page_remove(struct vm_page *pg)
   2562 {
   2563 	struct l2_bucket *l2b;
   2564 	struct pv_entry *pv, *npv, **pvp;
   2565 	pmap_t pm, curpm;
   2566 	pt_entry_t *ptep, pte;
   2567 	bool flush;
   2568 	u_int flags;
   2569 
   2570 	NPDEBUG(PDB_FOLLOW,
   2571 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2572 	    VM_PAGE_TO_PHYS(pg)));
   2573 
   2574 	PMAP_HEAD_TO_MAP_LOCK();
   2575 	simple_lock(&pg->mdpage.pvh_slock);
   2576 
   2577 	pv = SLIST_FIRST(&pg->mdpage.pvh_list);
   2578 	if (pv == NULL) {
   2579 #ifdef PMAP_CACHE_VIPT
   2580 		/*
   2581 		 * We *know* the page contents are about to be replaced.
   2582 		 * Discard the exec contents
   2583 		 */
   2584 		if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2585 			PMAPCOUNT(exec_discarded_page_protect);
   2586 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2587 		KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2588 #endif
   2589 		simple_unlock(&pg->mdpage.pvh_slock);
   2590 		PMAP_HEAD_TO_MAP_UNLOCK();
   2591 		return;
   2592 	}
   2593 #ifdef PMAP_CACHE_VIPT
   2594 	KASSERT(pmap_is_page_colored_p(pg));
   2595 #endif
   2596 
   2597 	/*
   2598 	 * Clear alias counts
   2599 	 */
   2600 #ifdef PMAP_CACHE_VIVT
   2601 	pg->mdpage.k_mappings = 0;
   2602 #endif
   2603 	pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
   2604 
   2605 	flush = false;
   2606 	flags = 0;
   2607 	curpm = curproc->p_vmspace->vm_map.pmap;
   2608 
   2609 #ifdef PMAP_CACHE_VIVT
   2610 	pmap_clean_page(pv, false);
   2611 #endif
   2612 
   2613 	pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
   2614 	while (pv) {
   2615 		pm = pv->pv_pmap;
   2616 		npv = SLIST_NEXT(pv, pv_link);
   2617 		if (flush == false && (pm == curpm || pm == pmap_kernel()))
   2618 			flush = true;
   2619 
   2620 		if (pm == pmap_kernel()) {
   2621 #ifdef PMAP_CACHE_VIPT
   2622 			/*
   2623 			 * If this was unmanaged mapping, it must be preserved.
   2624 			 * Move it back on the list and advance the end-of-list
   2625 			 * pointer.
   2626 			 */
   2627 			if (pv->pv_flags & PVF_KENTRY) {
   2628 				*pvp = pv;
   2629 				pvp = &SLIST_NEXT(pv, pv_link);
   2630 				pv = npv;
   2631 				continue;
   2632 			}
   2633 			if (pv->pv_flags & PVF_WRITE)
   2634 				pg->mdpage.krw_mappings--;
   2635 			else
   2636 				pg->mdpage.kro_mappings--;
   2637 #endif
   2638 			PMAPCOUNT(kernel_unmappings);
   2639 		}
   2640 		PMAPCOUNT(unmappings);
   2641 
   2642 		pmap_acquire_pmap_lock(pm);
   2643 
   2644 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2645 		KDASSERT(l2b != NULL);
   2646 
   2647 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2648 		pte = *ptep;
   2649 
   2650 		/*
   2651 		 * Update statistics
   2652 		 */
   2653 		--pm->pm_stats.resident_count;
   2654 
   2655 		/* Wired bit */
   2656 		if (pv->pv_flags & PVF_WIRED)
   2657 			--pm->pm_stats.wired_count;
   2658 
   2659 		flags |= pv->pv_flags;
   2660 
   2661 		/*
   2662 		 * Invalidate the PTEs.
   2663 		 */
   2664 		*ptep = 0;
   2665 		PTE_SYNC_CURRENT(pm, ptep);
   2666 		pmap_free_l2_bucket(pm, l2b, 1);
   2667 
   2668 		pool_put(&pmap_pv_pool, pv);
   2669 		pv = npv;
   2670 		/*
   2671 		 * if we reach the end of the list and there are still
   2672 		 * mappings, they might be able to be cached now.
   2673 		 */
   2674 		if (pv == NULL) {
   2675 			*pvp = NULL;
   2676 			if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   2677 				pmap_vac_me_harder(pg, pm, 0);
   2678 		}
   2679 		pmap_release_pmap_lock(pm);
   2680 	}
   2681 #ifdef PMAP_CACHE_VIPT
   2682 	/*
   2683 	 * Its EXEC cache is now gone.
   2684 	 */
   2685 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
   2686 		PMAPCOUNT(exec_discarded_page_protect);
   2687 	pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   2688 	KASSERT(pg->mdpage.urw_mappings == 0);
   2689 	KASSERT(pg->mdpage.uro_mappings == 0);
   2690 	if (pg->mdpage.krw_mappings == 0)
   2691 		pg->mdpage.pvh_attrs &= ~PVF_WRITE;
   2692 	KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
   2693 #endif
   2694 	simple_unlock(&pg->mdpage.pvh_slock);
   2695 	PMAP_HEAD_TO_MAP_UNLOCK();
   2696 
   2697 	if (flush) {
   2698 		/*
   2699 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2700 		 * would need a subsequent call to pmap_update() to ensure
   2701 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2702 		 * required to do that (see pmap(9)), so we can't modify
   2703 		 * the current pmap's state.
   2704 		 */
   2705 		if (PV_BEEN_EXECD(flags))
   2706 			cpu_tlb_flushID();
   2707 		else
   2708 			cpu_tlb_flushD();
   2709 	}
   2710 	cpu_cpwait();
   2711 }
   2712 
   2713 /*
   2714  * pmap_t pmap_create(void)
   2715  *
   2716  *      Create a new pmap structure from scratch.
   2717  */
   2718 pmap_t
   2719 pmap_create(void)
   2720 {
   2721 	pmap_t pm;
   2722 
   2723 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2724 
   2725 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2726 	pm->pm_stats.wired_count = 0;
   2727 	pm->pm_stats.resident_count = 1;
   2728 	pm->pm_cstate.cs_all = 0;
   2729 	pmap_alloc_l1(pm);
   2730 
   2731 	/*
   2732 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2733 	 * initialised to zero.
   2734 	 */
   2735 
   2736 	pmap_pinit(pm);
   2737 
   2738 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2739 
   2740 	return (pm);
   2741 }
   2742 
   2743 /*
   2744  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2745  *      u_int flags)
   2746  *
   2747  *      Insert the given physical page (p) at
   2748  *      the specified virtual address (v) in the
   2749  *      target physical map with the protection requested.
   2750  *
   2751  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2752  *      or lose information.  That is, this routine must actually
   2753  *      insert this page into the given map NOW.
   2754  */
   2755 int
   2756 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2757 {
   2758 	struct l2_bucket *l2b;
   2759 	struct vm_page *pg, *opg;
   2760 	struct pv_entry *pve;
   2761 	pt_entry_t *ptep, npte, opte;
   2762 	u_int nflags;
   2763 	u_int oflags;
   2764 
   2765 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2766 
   2767 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2768 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2769 
   2770 	/*
   2771 	 * Get a pointer to the page.  Later on in this function, we
   2772 	 * test for a managed page by checking pg != NULL.
   2773 	 */
   2774 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2775 
   2776 	nflags = 0;
   2777 	if (prot & VM_PROT_WRITE)
   2778 		nflags |= PVF_WRITE;
   2779 	if (prot & VM_PROT_EXECUTE)
   2780 		nflags |= PVF_EXEC;
   2781 	if (flags & PMAP_WIRED)
   2782 		nflags |= PVF_WIRED;
   2783 
   2784 	PMAP_MAP_TO_HEAD_LOCK();
   2785 	pmap_acquire_pmap_lock(pm);
   2786 
   2787 	/*
   2788 	 * Fetch the L2 bucket which maps this page, allocating one if
   2789 	 * necessary for user pmaps.
   2790 	 */
   2791 	if (pm == pmap_kernel())
   2792 		l2b = pmap_get_l2_bucket(pm, va);
   2793 	else
   2794 		l2b = pmap_alloc_l2_bucket(pm, va);
   2795 	if (l2b == NULL) {
   2796 		if (flags & PMAP_CANFAIL) {
   2797 			pmap_release_pmap_lock(pm);
   2798 			PMAP_MAP_TO_HEAD_UNLOCK();
   2799 			return (ENOMEM);
   2800 		}
   2801 		panic("pmap_enter: failed to allocate L2 bucket");
   2802 	}
   2803 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2804 	opte = *ptep;
   2805 	npte = pa;
   2806 	oflags = 0;
   2807 
   2808 	if (opte) {
   2809 		/*
   2810 		 * There is already a mapping at this address.
   2811 		 * If the physical address is different, lookup the
   2812 		 * vm_page.
   2813 		 */
   2814 		if (l2pte_pa(opte) != pa)
   2815 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2816 		else
   2817 			opg = pg;
   2818 	} else
   2819 		opg = NULL;
   2820 
   2821 	if (pg) {
   2822 		/*
   2823 		 * This is to be a managed mapping.
   2824 		 */
   2825 		if ((flags & VM_PROT_ALL) ||
   2826 		    (pg->mdpage.pvh_attrs & PVF_REF)) {
   2827 			/*
   2828 			 * - The access type indicates that we don't need
   2829 			 *   to do referenced emulation.
   2830 			 * OR
   2831 			 * - The physical page has already been referenced
   2832 			 *   so no need to re-do referenced emulation here.
   2833 			 */
   2834 			npte |= L2_S_PROTO;
   2835 
   2836 			nflags |= PVF_REF;
   2837 
   2838 			if ((prot & VM_PROT_WRITE) != 0 &&
   2839 			    ((flags & VM_PROT_WRITE) != 0 ||
   2840 			     (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
   2841 				/*
   2842 				 * This is a writable mapping, and the
   2843 				 * page's mod state indicates it has
   2844 				 * already been modified. Make it
   2845 				 * writable from the outset.
   2846 				 */
   2847 				npte |= L2_S_PROT_W;
   2848 				nflags |= PVF_MOD;
   2849 			}
   2850 		} else {
   2851 			/*
   2852 			 * Need to do page referenced emulation.
   2853 			 */
   2854 			npte |= L2_TYPE_INV;
   2855 		}
   2856 
   2857 		npte |= pte_l2_s_cache_mode;
   2858 
   2859 		if (pg == opg) {
   2860 			/*
   2861 			 * We're changing the attrs of an existing mapping.
   2862 			 */
   2863 			simple_lock(&pg->mdpage.pvh_slock);
   2864 			oflags = pmap_modify_pv(pg, pm, va,
   2865 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2866 			    PVF_MOD | PVF_REF, nflags);
   2867 			simple_unlock(&pg->mdpage.pvh_slock);
   2868 
   2869 #ifdef PMAP_CACHE_VIVT
   2870 			/*
   2871 			 * We may need to flush the cache if we're
   2872 			 * doing rw-ro...
   2873 			 */
   2874 			if (pm->pm_cstate.cs_cache_d &&
   2875 			    (oflags & PVF_NC) == 0 &&
   2876 			    (opte & L2_S_PROT_W) != 0 &&
   2877 			    (prot & VM_PROT_WRITE) == 0)
   2878 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2879 #endif
   2880 		} else {
   2881 			/*
   2882 			 * New mapping, or changing the backing page
   2883 			 * of an existing mapping.
   2884 			 */
   2885 			if (opg) {
   2886 				/*
   2887 				 * Replacing an existing mapping with a new one.
   2888 				 * It is part of our managed memory so we
   2889 				 * must remove it from the PV list
   2890 				 */
   2891 				simple_lock(&opg->mdpage.pvh_slock);
   2892 				pve = pmap_remove_pv(opg, pm, va);
   2893 				pmap_vac_me_harder(opg, pm, 0);
   2894 				simple_unlock(&opg->mdpage.pvh_slock);
   2895 				oflags = pve->pv_flags;
   2896 
   2897 #ifdef PMAP_CACHE_VIVT
   2898 				/*
   2899 				 * If the old mapping was valid (ref/mod
   2900 				 * emulation creates 'invalid' mappings
   2901 				 * initially) then make sure to frob
   2902 				 * the cache.
   2903 				 */
   2904 				if ((oflags & PVF_NC) == 0 &&
   2905 				    l2pte_valid(opte)) {
   2906 					if (PV_BEEN_EXECD(oflags)) {
   2907 						pmap_idcache_wbinv_range(pm, va,
   2908 						    PAGE_SIZE);
   2909 					} else
   2910 					if (PV_BEEN_REFD(oflags)) {
   2911 						pmap_dcache_wb_range(pm, va,
   2912 						    PAGE_SIZE, true,
   2913 						    (oflags & PVF_WRITE) == 0);
   2914 					}
   2915 				}
   2916 #endif
   2917 			} else
   2918 			if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2919 				if ((flags & PMAP_CANFAIL) == 0)
   2920 					panic("pmap_enter: no pv entries");
   2921 
   2922 				if (pm != pmap_kernel())
   2923 					pmap_free_l2_bucket(pm, l2b, 0);
   2924 				pmap_release_pmap_lock(pm);
   2925 				PMAP_MAP_TO_HEAD_UNLOCK();
   2926 				NPDEBUG(PDB_ENTER,
   2927 				    printf("pmap_enter: ENOMEM\n"));
   2928 				return (ENOMEM);
   2929 			}
   2930 
   2931 			pmap_enter_pv(pg, pve, pm, va, nflags);
   2932 		}
   2933 	} else {
   2934 		/*
   2935 		 * We're mapping an unmanaged page.
   2936 		 * These are always readable, and possibly writable, from
   2937 		 * the get go as we don't need to track ref/mod status.
   2938 		 */
   2939 		npte |= L2_S_PROTO;
   2940 		if (prot & VM_PROT_WRITE)
   2941 			npte |= L2_S_PROT_W;
   2942 
   2943 		/*
   2944 		 * Make sure the vector table is mapped cacheable
   2945 		 */
   2946 		if (pm != pmap_kernel() && va == vector_page)
   2947 			npte |= pte_l2_s_cache_mode;
   2948 
   2949 		if (opg) {
   2950 			/*
   2951 			 * Looks like there's an existing 'managed' mapping
   2952 			 * at this address.
   2953 			 */
   2954 			simple_lock(&opg->mdpage.pvh_slock);
   2955 			pve = pmap_remove_pv(opg, pm, va);
   2956 			pmap_vac_me_harder(opg, pm, 0);
   2957 			simple_unlock(&opg->mdpage.pvh_slock);
   2958 			oflags = pve->pv_flags;
   2959 
   2960 #ifdef PMAP_CACHE_VIVT
   2961 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2962 				if (PV_BEEN_EXECD(oflags))
   2963 					pmap_idcache_wbinv_range(pm, va,
   2964 					    PAGE_SIZE);
   2965 				else
   2966 				if (PV_BEEN_REFD(oflags))
   2967 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2968 					    true, (oflags & PVF_WRITE) == 0);
   2969 			}
   2970 #endif
   2971 			pool_put(&pmap_pv_pool, pve);
   2972 		}
   2973 	}
   2974 
   2975 	/*
   2976 	 * Make sure userland mappings get the right permissions
   2977 	 */
   2978 	if (pm != pmap_kernel() && va != vector_page)
   2979 		npte |= L2_S_PROT_U;
   2980 
   2981 	/*
   2982 	 * Keep the stats up to date
   2983 	 */
   2984 	if (opte == 0) {
   2985 		l2b->l2b_occupancy++;
   2986 		pm->pm_stats.resident_count++;
   2987 	}
   2988 
   2989 	NPDEBUG(PDB_ENTER,
   2990 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2991 
   2992 	/*
   2993 	 * If this is just a wiring change, the two PTEs will be
   2994 	 * identical, so there's no need to update the page table.
   2995 	 */
   2996 	if (npte != opte) {
   2997 		bool is_cached = pmap_is_cached(pm);
   2998 
   2999 		*ptep = npte;
   3000 		if (is_cached) {
   3001 			/*
   3002 			 * We only need to frob the cache/tlb if this pmap
   3003 			 * is current
   3004 			 */
   3005 			PTE_SYNC(ptep);
   3006 			if (va != vector_page && l2pte_valid(npte)) {
   3007 				/*
   3008 				 * This mapping is likely to be accessed as
   3009 				 * soon as we return to userland. Fix up the
   3010 				 * L1 entry to avoid taking another
   3011 				 * page/domain fault.
   3012 				 */
   3013 				pd_entry_t *pl1pd, l1pd;
   3014 
   3015 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   3016 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   3017 				    L1_C_PROTO;
   3018 				if (*pl1pd != l1pd) {
   3019 					*pl1pd = l1pd;
   3020 					PTE_SYNC(pl1pd);
   3021 				}
   3022 			}
   3023 		}
   3024 
   3025 		if (PV_BEEN_EXECD(oflags))
   3026 			pmap_tlb_flushID_SE(pm, va);
   3027 		else
   3028 		if (PV_BEEN_REFD(oflags))
   3029 			pmap_tlb_flushD_SE(pm, va);
   3030 
   3031 		NPDEBUG(PDB_ENTER,
   3032 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3033 		    is_cached, pm->pm_cstate.cs_all));
   3034 
   3035 		if (pg != NULL) {
   3036 			simple_lock(&pg->mdpage.pvh_slock);
   3037 			pmap_vac_me_harder(pg, pm, va);
   3038 			simple_unlock(&pg->mdpage.pvh_slock);
   3039 		}
   3040 	}
   3041 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3042 	if (pg) {
   3043 		simple_lock(&pg->mdpage.pvh_slock);
   3044 		KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3045 		KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
   3046 		simple_unlock(&pg->mdpage.pvh_slock);
   3047 	}
   3048 #endif
   3049 
   3050 	pmap_release_pmap_lock(pm);
   3051 	PMAP_MAP_TO_HEAD_UNLOCK();
   3052 
   3053 	return (0);
   3054 }
   3055 
   3056 /*
   3057  * pmap_remove()
   3058  *
   3059  * pmap_remove is responsible for nuking a number of mappings for a range
   3060  * of virtual address space in the current pmap. To do this efficiently
   3061  * is interesting, because in a number of cases a wide virtual address
   3062  * range may be supplied that contains few actual mappings. So, the
   3063  * optimisations are:
   3064  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3065  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3066  *     maybe do just a partial cache clean. This path of execution is
   3067  *     complicated by the fact that the cache must be flushed _before_
   3068  *     the PTE is nuked, being a VAC :-)
   3069  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3070  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3071  *     already flushed the cache.
   3072  *  4. Maybe later fast-case a single page, but I don't think this is
   3073  *     going to make _that_ much difference overall.
   3074  */
   3075 
   3076 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3077 
   3078 void
   3079 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3080 {
   3081 	struct l2_bucket *l2b;
   3082 	vaddr_t next_bucket;
   3083 	pt_entry_t *ptep;
   3084 	u_int cleanlist_idx, total, cnt;
   3085 	struct {
   3086 		vaddr_t va;
   3087 		pt_entry_t *ptep;
   3088 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3089 	u_int mappings, is_exec, is_refd;
   3090 
   3091 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3092 	    "eva=%08lx\n", pm, sva, eva));
   3093 
   3094 	/*
   3095 	 * we lock in the pmap => pv_head direction
   3096 	 */
   3097 	PMAP_MAP_TO_HEAD_LOCK();
   3098 	pmap_acquire_pmap_lock(pm);
   3099 
   3100 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3101 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3102 		if (pm->pm_cstate.cs_tlb == 0)
   3103 			pm->pm_remove_all = true;
   3104 	} else
   3105 		cleanlist_idx = 0;
   3106 
   3107 	total = 0;
   3108 
   3109 	while (sva < eva) {
   3110 		/*
   3111 		 * Do one L2 bucket's worth at a time.
   3112 		 */
   3113 		next_bucket = L2_NEXT_BUCKET(sva);
   3114 		if (next_bucket > eva)
   3115 			next_bucket = eva;
   3116 
   3117 		l2b = pmap_get_l2_bucket(pm, sva);
   3118 		if (l2b == NULL) {
   3119 			sva = next_bucket;
   3120 			continue;
   3121 		}
   3122 
   3123 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3124 
   3125 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3126 			struct vm_page *pg;
   3127 			pt_entry_t pte;
   3128 			paddr_t pa;
   3129 
   3130 			pte = *ptep;
   3131 
   3132 			if (pte == 0) {
   3133 				/* Nothing here, move along */
   3134 				continue;
   3135 			}
   3136 
   3137 			pa = l2pte_pa(pte);
   3138 			is_exec = 0;
   3139 			is_refd = 1;
   3140 
   3141 			/*
   3142 			 * Update flags. In a number of circumstances,
   3143 			 * we could cluster a lot of these and do a
   3144 			 * number of sequential pages in one go.
   3145 			 */
   3146 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3147 				struct pv_entry *pve;
   3148 				simple_lock(&pg->mdpage.pvh_slock);
   3149 				pve = pmap_remove_pv(pg, pm, sva);
   3150 				pmap_vac_me_harder(pg, pm, 0);
   3151 				simple_unlock(&pg->mdpage.pvh_slock);
   3152 				if (pve != NULL) {
   3153 					if (pm->pm_remove_all == false) {
   3154 						is_exec =
   3155 						   PV_BEEN_EXECD(pve->pv_flags);
   3156 						is_refd =
   3157 						   PV_BEEN_REFD(pve->pv_flags);
   3158 					}
   3159 					pool_put(&pmap_pv_pool, pve);
   3160 				}
   3161 			}
   3162 			mappings++;
   3163 
   3164 			if (!l2pte_valid(pte)) {
   3165 				/*
   3166 				 * Ref/Mod emulation is still active for this
   3167 				 * mapping, therefore it is has not yet been
   3168 				 * accessed. No need to frob the cache/tlb.
   3169 				 */
   3170 				*ptep = 0;
   3171 				PTE_SYNC_CURRENT(pm, ptep);
   3172 				continue;
   3173 			}
   3174 
   3175 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3176 				/* Add to the clean list. */
   3177 				cleanlist[cleanlist_idx].ptep = ptep;
   3178 				cleanlist[cleanlist_idx].va =
   3179 				    sva | (is_exec & 1);
   3180 				cleanlist_idx++;
   3181 			} else
   3182 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3183 				/* Nuke everything if needed. */
   3184 #ifdef PMAP_CACHE_VIVT
   3185 				pmap_idcache_wbinv_all(pm);
   3186 #endif
   3187 				pmap_tlb_flushID(pm);
   3188 
   3189 				/*
   3190 				 * Roll back the previous PTE list,
   3191 				 * and zero out the current PTE.
   3192 				 */
   3193 				for (cnt = 0;
   3194 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3195 					*cleanlist[cnt].ptep = 0;
   3196 					PTE_SYNC(cleanlist[cnt].ptep);
   3197 				}
   3198 				*ptep = 0;
   3199 				PTE_SYNC(ptep);
   3200 				cleanlist_idx++;
   3201 				pm->pm_remove_all = true;
   3202 			} else {
   3203 				*ptep = 0;
   3204 				PTE_SYNC(ptep);
   3205 				if (pm->pm_remove_all == false) {
   3206 					if (is_exec)
   3207 						pmap_tlb_flushID_SE(pm, sva);
   3208 					else
   3209 					if (is_refd)
   3210 						pmap_tlb_flushD_SE(pm, sva);
   3211 				}
   3212 			}
   3213 		}
   3214 
   3215 		/*
   3216 		 * Deal with any left overs
   3217 		 */
   3218 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3219 			total += cleanlist_idx;
   3220 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3221 				if (pm->pm_cstate.cs_all != 0) {
   3222 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3223 					if (cleanlist[cnt].va & 1) {
   3224 #ifdef PMAP_CACHE_VIVT
   3225 						pmap_idcache_wbinv_range(pm,
   3226 						    clva, PAGE_SIZE);
   3227 #endif
   3228 						pmap_tlb_flushID_SE(pm, clva);
   3229 					} else {
   3230 #ifdef PMAP_CACHE_VIVT
   3231 						pmap_dcache_wb_range(pm,
   3232 						    clva, PAGE_SIZE, true,
   3233 						    false);
   3234 #endif
   3235 						pmap_tlb_flushD_SE(pm, clva);
   3236 					}
   3237 				}
   3238 				*cleanlist[cnt].ptep = 0;
   3239 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3240 			}
   3241 
   3242 			/*
   3243 			 * If it looks like we're removing a whole bunch
   3244 			 * of mappings, it's faster to just write-back
   3245 			 * the whole cache now and defer TLB flushes until
   3246 			 * pmap_update() is called.
   3247 			 */
   3248 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3249 				cleanlist_idx = 0;
   3250 			else {
   3251 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3252 #ifdef PMAP_CACHE_VIVT
   3253 				pmap_idcache_wbinv_all(pm);
   3254 #endif
   3255 				pm->pm_remove_all = true;
   3256 			}
   3257 		}
   3258 
   3259 		pmap_free_l2_bucket(pm, l2b, mappings);
   3260 		pm->pm_stats.resident_count -= mappings;
   3261 	}
   3262 
   3263 	pmap_release_pmap_lock(pm);
   3264 	PMAP_MAP_TO_HEAD_UNLOCK();
   3265 }
   3266 
   3267 #ifdef PMAP_CACHE_VIPT
   3268 static struct pv_entry *
   3269 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3270 {
   3271 	struct pv_entry *pv;
   3272 
   3273 	simple_lock(&pg->mdpage.pvh_slock);
   3274 	KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   3275 	KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3276 
   3277 	pv = pmap_remove_pv(pg, pmap_kernel(), va);
   3278 	KASSERT(pv);
   3279 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3280 
   3281 	/*
   3282 	 * If we are removing a writeable mapping to a cached exec page,
   3283 	 * if it's the last mapping then clear it execness other sync
   3284 	 * the page to the icache.
   3285 	 */
   3286 	if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3287 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3288 		if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
   3289 			pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   3290 			PMAPCOUNT(exec_discarded_kremove);
   3291 		} else {
   3292 			pmap_syncicache_page(pg);
   3293 			PMAPCOUNT(exec_synced_kremove);
   3294 		}
   3295 	}
   3296 	pmap_vac_me_harder(pg, pmap_kernel(), 0);
   3297 	simple_unlock(&pg->mdpage.pvh_slock);
   3298 
   3299 	return pv;
   3300 }
   3301 #endif /* PMAP_CACHE_VIPT */
   3302 
   3303 /*
   3304  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3305  *
   3306  * We assume there is already sufficient KVM space available
   3307  * to do this, as we can't allocate L2 descriptor tables/metadata
   3308  * from here.
   3309  */
   3310 void
   3311 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3312 {
   3313 	struct l2_bucket *l2b;
   3314 	pt_entry_t *ptep, opte;
   3315 #ifdef PMAP_CACHE_VIVT
   3316 	struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3317 #endif
   3318 #ifdef PMAP_CACHE_VIPT
   3319 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3320 	struct vm_page *opg;
   3321 	struct pv_entry *pv = NULL;
   3322 #endif
   3323 
   3324 	NPDEBUG(PDB_KENTER,
   3325 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3326 	    va, pa, prot));
   3327 
   3328 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3329 	KDASSERT(l2b != NULL);
   3330 
   3331 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3332 	opte = *ptep;
   3333 
   3334 	if (opte == 0) {
   3335 		PMAPCOUNT(kenter_mappings);
   3336 		l2b->l2b_occupancy++;
   3337 	} else {
   3338 		PMAPCOUNT(kenter_remappings);
   3339 #ifdef PMAP_CACHE_VIPT
   3340 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3341 		if (opg) {
   3342 			KASSERT(opg != pg);
   3343 			KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
   3344 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3345 			simple_lock(&opg->mdpage.pvh_slock);
   3346 			pv = pmap_kremove_pg(opg, va);
   3347 			simple_unlock(&opg->mdpage.pvh_slock);
   3348 		}
   3349 #endif
   3350 		if (l2pte_valid(opte)) {
   3351 #ifdef PMAP_CACHE_VIVT
   3352 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3353 #endif
   3354 			cpu_tlb_flushD_SE(va);
   3355 			cpu_cpwait();
   3356 		}
   3357 	}
   3358 
   3359 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3360 	    pte_l2_s_cache_mode;
   3361 	PTE_SYNC(ptep);
   3362 
   3363 	if (pg) {
   3364 		if (prot & PMAP_KMPAGE) {
   3365 			simple_lock(&pg->mdpage.pvh_slock);
   3366 			KASSERT(pg->mdpage.urw_mappings == 0);
   3367 			KASSERT(pg->mdpage.uro_mappings == 0);
   3368 			KASSERT(pg->mdpage.krw_mappings == 0);
   3369 			KASSERT(pg->mdpage.kro_mappings == 0);
   3370 #ifdef PMAP_CACHE_VIPT
   3371 			KASSERT(pv == NULL);
   3372 			KASSERT((va & PVF_COLORED) == 0);
   3373 			KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
   3374 			/* if there is a color conflict, evict from cache. */
   3375 			if (pmap_is_page_colored_p(pg)
   3376 			    && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
   3377 				PMAPCOUNT(vac_color_change);
   3378 				pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
   3379 			} else if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
   3380 				/*
   3381 				 * If this page has multiple colors, expunge
   3382 				 * them.
   3383 				 */
   3384 				PMAPCOUNT(vac_flush_lots2);
   3385 				pmap_flush_page(pg, PMAP_FLUSH_SECONDARY);
   3386 			}
   3387 			pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
   3388 			pg->mdpage.pvh_attrs |= PVF_KMPAGE
   3389 			    | PVF_COLORED | PVF_DIRTY
   3390 			    | (va & arm_cache_prefer_mask);
   3391 #endif
   3392 #ifdef PMAP_CACHE_VIVT
   3393 			pg->mdpage.pvh_attrs |= PVF_KMPAGE;
   3394 #endif
   3395 			pmap_kmpages++;
   3396 			simple_unlock(&pg->mdpage.pvh_slock);
   3397 #ifdef PMAP_CACHE_VIPT
   3398 		} else {
   3399 			if (pv == NULL) {
   3400 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3401 				KASSERT(pv != NULL);
   3402 			}
   3403 			pmap_enter_pv(pg, pv, pmap_kernel(), va,
   3404 			    PVF_WIRED | PVF_KENTRY
   3405 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3406 			if ((prot & VM_PROT_WRITE)
   3407 			    && !(pg->mdpage.pvh_attrs & PVF_NC))
   3408 				pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3409 			KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3410 			simple_lock(&pg->mdpage.pvh_slock);
   3411 			pmap_vac_me_harder(pg, pmap_kernel(), va);
   3412 			simple_unlock(&pg->mdpage.pvh_slock);
   3413 #endif
   3414 		}
   3415 #ifdef PMAP_CACHE_VIPT
   3416 	} else {
   3417 		if (pv != NULL)
   3418 			pool_put(&pmap_pv_pool, pv);
   3419 #endif
   3420 	}
   3421 }
   3422 
   3423 void
   3424 pmap_kremove(vaddr_t va, vsize_t len)
   3425 {
   3426 	struct l2_bucket *l2b;
   3427 	pt_entry_t *ptep, *sptep, opte;
   3428 	vaddr_t next_bucket, eva;
   3429 	u_int mappings;
   3430 	struct vm_page *opg;
   3431 
   3432 	PMAPCOUNT(kenter_unmappings);
   3433 
   3434 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3435 	    va, len));
   3436 
   3437 	eva = va + len;
   3438 
   3439 	while (va < eva) {
   3440 		next_bucket = L2_NEXT_BUCKET(va);
   3441 		if (next_bucket > eva)
   3442 			next_bucket = eva;
   3443 
   3444 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3445 		KDASSERT(l2b != NULL);
   3446 
   3447 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3448 		mappings = 0;
   3449 
   3450 		while (va < next_bucket) {
   3451 			opte = *ptep;
   3452 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3453 			if (opg) {
   3454 				if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
   3455 					simple_lock(&opg->mdpage.pvh_slock);
   3456 					KASSERT(opg->mdpage.urw_mappings == 0);
   3457 					KASSERT(opg->mdpage.uro_mappings == 0);
   3458 					KASSERT(opg->mdpage.krw_mappings == 0);
   3459 					KASSERT(opg->mdpage.kro_mappings == 0);
   3460 					opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
   3461 #ifdef PMAP_CACHE_VIPT
   3462 					opg->mdpage.pvh_attrs &= ~PVF_WRITE;
   3463 #endif
   3464 					pmap_kmpages--;
   3465 					simple_unlock(&opg->mdpage.pvh_slock);
   3466 #ifdef PMAP_CACHE_VIPT
   3467 				} else {
   3468 					pool_put(&pmap_pv_pool,
   3469 					    pmap_kremove_pg(opg, va));
   3470 #endif
   3471 				}
   3472 			}
   3473 			if (l2pte_valid(opte)) {
   3474 #ifdef PMAP_CACHE_VIVT
   3475 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3476 #endif
   3477 				cpu_tlb_flushD_SE(va);
   3478 			}
   3479 			if (opte) {
   3480 				*ptep = 0;
   3481 				mappings++;
   3482 			}
   3483 			va += PAGE_SIZE;
   3484 			ptep++;
   3485 		}
   3486 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3487 		l2b->l2b_occupancy -= mappings;
   3488 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3489 	}
   3490 	cpu_cpwait();
   3491 }
   3492 
   3493 bool
   3494 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3495 {
   3496 	struct l2_dtable *l2;
   3497 	pd_entry_t *pl1pd, l1pd;
   3498 	pt_entry_t *ptep, pte;
   3499 	paddr_t pa;
   3500 	u_int l1idx;
   3501 
   3502 	pmap_acquire_pmap_lock(pm);
   3503 
   3504 	l1idx = L1_IDX(va);
   3505 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3506 	l1pd = *pl1pd;
   3507 
   3508 	if (l1pte_section_p(l1pd)) {
   3509 		/*
   3510 		 * These should only happen for pmap_kernel()
   3511 		 */
   3512 		KDASSERT(pm == pmap_kernel());
   3513 		pmap_release_pmap_lock(pm);
   3514 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3515 	} else {
   3516 		/*
   3517 		 * Note that we can't rely on the validity of the L1
   3518 		 * descriptor as an indication that a mapping exists.
   3519 		 * We have to look it up in the L2 dtable.
   3520 		 */
   3521 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3522 
   3523 		if (l2 == NULL ||
   3524 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3525 			pmap_release_pmap_lock(pm);
   3526 			return false;
   3527 		}
   3528 
   3529 		ptep = &ptep[l2pte_index(va)];
   3530 		pte = *ptep;
   3531 		pmap_release_pmap_lock(pm);
   3532 
   3533 		if (pte == 0)
   3534 			return false;
   3535 
   3536 		switch (pte & L2_TYPE_MASK) {
   3537 		case L2_TYPE_L:
   3538 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3539 			break;
   3540 
   3541 		default:
   3542 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3543 			break;
   3544 		}
   3545 	}
   3546 
   3547 	if (pap != NULL)
   3548 		*pap = pa;
   3549 
   3550 	return true;
   3551 }
   3552 
   3553 void
   3554 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3555 {
   3556 	struct l2_bucket *l2b;
   3557 	pt_entry_t *ptep, pte;
   3558 	vaddr_t next_bucket;
   3559 	u_int flags;
   3560 	u_int clr_mask;
   3561 	int flush;
   3562 
   3563 	NPDEBUG(PDB_PROTECT,
   3564 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3565 	    pm, sva, eva, prot));
   3566 
   3567 	if ((prot & VM_PROT_READ) == 0) {
   3568 		pmap_remove(pm, sva, eva);
   3569 		return;
   3570 	}
   3571 
   3572 	if (prot & VM_PROT_WRITE) {
   3573 		/*
   3574 		 * If this is a read->write transition, just ignore it and let
   3575 		 * uvm_fault() take care of it later.
   3576 		 */
   3577 		return;
   3578 	}
   3579 
   3580 	PMAP_MAP_TO_HEAD_LOCK();
   3581 	pmap_acquire_pmap_lock(pm);
   3582 
   3583 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3584 	flags = 0;
   3585 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3586 
   3587 	while (sva < eva) {
   3588 		next_bucket = L2_NEXT_BUCKET(sva);
   3589 		if (next_bucket > eva)
   3590 			next_bucket = eva;
   3591 
   3592 		l2b = pmap_get_l2_bucket(pm, sva);
   3593 		if (l2b == NULL) {
   3594 			sva = next_bucket;
   3595 			continue;
   3596 		}
   3597 
   3598 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3599 
   3600 		while (sva < next_bucket) {
   3601 			pte = *ptep;
   3602 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3603 				struct vm_page *pg;
   3604 				u_int f;
   3605 
   3606 #ifdef PMAP_CACHE_VIVT
   3607 				/*
   3608 				 * OK, at this point, we know we're doing
   3609 				 * write-protect operation.  If the pmap is
   3610 				 * active, write-back the page.
   3611 				 */
   3612 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3613 				    false, false);
   3614 #endif
   3615 
   3616 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3617 				pte &= ~L2_S_PROT_W;
   3618 				*ptep = pte;
   3619 				PTE_SYNC(ptep);
   3620 
   3621 				if (pg != NULL) {
   3622 					simple_lock(&pg->mdpage.pvh_slock);
   3623 					f = pmap_modify_pv(pg, pm, sva,
   3624 					    clr_mask, 0);
   3625 					pmap_vac_me_harder(pg, pm, sva);
   3626 					simple_unlock(&pg->mdpage.pvh_slock);
   3627 				} else
   3628 					f = PVF_REF | PVF_EXEC;
   3629 
   3630 				if (flush >= 0) {
   3631 					flush++;
   3632 					flags |= f;
   3633 				} else
   3634 				if (PV_BEEN_EXECD(f))
   3635 					pmap_tlb_flushID_SE(pm, sva);
   3636 				else
   3637 				if (PV_BEEN_REFD(f))
   3638 					pmap_tlb_flushD_SE(pm, sva);
   3639 			}
   3640 
   3641 			sva += PAGE_SIZE;
   3642 			ptep++;
   3643 		}
   3644 	}
   3645 
   3646 	pmap_release_pmap_lock(pm);
   3647 	PMAP_MAP_TO_HEAD_UNLOCK();
   3648 
   3649 	if (flush) {
   3650 		if (PV_BEEN_EXECD(flags))
   3651 			pmap_tlb_flushID(pm);
   3652 		else
   3653 		if (PV_BEEN_REFD(flags))
   3654 			pmap_tlb_flushD(pm);
   3655 	}
   3656 }
   3657 
   3658 void
   3659 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3660 {
   3661 	struct l2_bucket *l2b;
   3662 	pt_entry_t *ptep;
   3663 	vaddr_t next_bucket;
   3664 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3665 
   3666 	NPDEBUG(PDB_EXEC,
   3667 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3668 	    pm, sva, eva));
   3669 
   3670 	PMAP_MAP_TO_HEAD_LOCK();
   3671 	pmap_acquire_pmap_lock(pm);
   3672 
   3673 	while (sva < eva) {
   3674 		next_bucket = L2_NEXT_BUCKET(sva);
   3675 		if (next_bucket > eva)
   3676 			next_bucket = eva;
   3677 
   3678 		l2b = pmap_get_l2_bucket(pm, sva);
   3679 		if (l2b == NULL) {
   3680 			sva = next_bucket;
   3681 			continue;
   3682 		}
   3683 
   3684 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3685 		     sva < next_bucket;
   3686 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3687 			if (l2pte_valid(*ptep)) {
   3688 				cpu_icache_sync_range(sva,
   3689 				    min(page_size, eva - sva));
   3690 			}
   3691 		}
   3692 	}
   3693 
   3694 	pmap_release_pmap_lock(pm);
   3695 	PMAP_MAP_TO_HEAD_UNLOCK();
   3696 }
   3697 
   3698 void
   3699 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3700 {
   3701 
   3702 	NPDEBUG(PDB_PROTECT,
   3703 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3704 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3705 
   3706 	switch(prot) {
   3707 		return;
   3708 	case VM_PROT_READ|VM_PROT_WRITE:
   3709 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3710 		pmap_clearbit(pg, PVF_EXEC);
   3711 		break;
   3712 #endif
   3713 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3714 		break;
   3715 
   3716 	case VM_PROT_READ:
   3717 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3718 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3719 		break;
   3720 #endif
   3721 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3722 		pmap_clearbit(pg, PVF_WRITE);
   3723 		break;
   3724 
   3725 	default:
   3726 		pmap_page_remove(pg);
   3727 		break;
   3728 	}
   3729 }
   3730 
   3731 /*
   3732  * pmap_clear_modify:
   3733  *
   3734  *	Clear the "modified" attribute for a page.
   3735  */
   3736 bool
   3737 pmap_clear_modify(struct vm_page *pg)
   3738 {
   3739 	bool rv;
   3740 
   3741 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3742 		rv = true;
   3743 #ifdef PMAP_CACHE_VIPT
   3744 		/*
   3745 		 * If we are going to clear the modified bit and there are
   3746 		 * no other modified bits set, flush the page to memory and
   3747 		 * mark it clean.
   3748 		 */
   3749 		if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3750 			pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
   3751 #endif
   3752 		pmap_clearbit(pg, PVF_MOD);
   3753 	} else
   3754 		rv = false;
   3755 
   3756 	return (rv);
   3757 }
   3758 
   3759 /*
   3760  * pmap_clear_reference:
   3761  *
   3762  *	Clear the "referenced" attribute for a page.
   3763  */
   3764 bool
   3765 pmap_clear_reference(struct vm_page *pg)
   3766 {
   3767 	bool rv;
   3768 
   3769 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3770 		rv = true;
   3771 		pmap_clearbit(pg, PVF_REF);
   3772 	} else
   3773 		rv = false;
   3774 
   3775 	return (rv);
   3776 }
   3777 
   3778 /*
   3779  * pmap_is_modified:
   3780  *
   3781  *	Test if a page has the "modified" attribute.
   3782  */
   3783 /* See <arm/arm32/pmap.h> */
   3784 
   3785 /*
   3786  * pmap_is_referenced:
   3787  *
   3788  *	Test if a page has the "referenced" attribute.
   3789  */
   3790 /* See <arm/arm32/pmap.h> */
   3791 
   3792 int
   3793 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3794 {
   3795 	struct l2_dtable *l2;
   3796 	struct l2_bucket *l2b;
   3797 	pd_entry_t *pl1pd, l1pd;
   3798 	pt_entry_t *ptep, pte;
   3799 	paddr_t pa;
   3800 	u_int l1idx;
   3801 	int rv = 0;
   3802 
   3803 	PMAP_MAP_TO_HEAD_LOCK();
   3804 	pmap_acquire_pmap_lock(pm);
   3805 
   3806 	l1idx = L1_IDX(va);
   3807 
   3808 	/*
   3809 	 * If there is no l2_dtable for this address, then the process
   3810 	 * has no business accessing it.
   3811 	 *
   3812 	 * Note: This will catch userland processes trying to access
   3813 	 * kernel addresses.
   3814 	 */
   3815 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3816 	if (l2 == NULL)
   3817 		goto out;
   3818 
   3819 	/*
   3820 	 * Likewise if there is no L2 descriptor table
   3821 	 */
   3822 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3823 	if (l2b->l2b_kva == NULL)
   3824 		goto out;
   3825 
   3826 	/*
   3827 	 * Check the PTE itself.
   3828 	 */
   3829 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3830 	pte = *ptep;
   3831 	if (pte == 0)
   3832 		goto out;
   3833 
   3834 	/*
   3835 	 * Catch a userland access to the vector page mapped at 0x0
   3836 	 */
   3837 	if (user && (pte & L2_S_PROT_U) == 0)
   3838 		goto out;
   3839 
   3840 	pa = l2pte_pa(pte);
   3841 
   3842 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3843 		/*
   3844 		 * This looks like a good candidate for "page modified"
   3845 		 * emulation...
   3846 		 */
   3847 		struct pv_entry *pv;
   3848 		struct vm_page *pg;
   3849 
   3850 		/* Extract the physical address of the page */
   3851 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3852 			goto out;
   3853 
   3854 		/* Get the current flags for this page. */
   3855 		simple_lock(&pg->mdpage.pvh_slock);
   3856 
   3857 		pv = pmap_find_pv(pg, pm, va);
   3858 		if (pv == NULL) {
   3859 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3860 			goto out;
   3861 		}
   3862 
   3863 		/*
   3864 		 * Do the flags say this page is writable? If not then it
   3865 		 * is a genuine write fault. If yes then the write fault is
   3866 		 * our fault as we did not reflect the write access in the
   3867 		 * PTE. Now we know a write has occurred we can correct this
   3868 		 * and also set the modified bit
   3869 		 */
   3870 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3871 		    	simple_unlock(&pg->mdpage.pvh_slock);
   3872 			goto out;
   3873 		}
   3874 
   3875 		NPDEBUG(PDB_FOLLOW,
   3876 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3877 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3878 
   3879 		pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3880 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3881 #ifdef PMAP_CACHE_VIPT
   3882 		/*
   3883 		 * If there are cacheable mappings for this page, mark it dirty.
   3884 		 */
   3885 		if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
   3886 			pg->mdpage.pvh_attrs |= PVF_DIRTY;
   3887 #endif
   3888 		simple_unlock(&pg->mdpage.pvh_slock);
   3889 
   3890 		/*
   3891 		 * Re-enable write permissions for the page.  No need to call
   3892 		 * pmap_vac_me_harder(), since this is just a
   3893 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3894 		 * changing. We've already set the cacheable bits based on
   3895 		 * the assumption that we can write to this page.
   3896 		 */
   3897 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3898 		PTE_SYNC(ptep);
   3899 		rv = 1;
   3900 	} else
   3901 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3902 		/*
   3903 		 * This looks like a good candidate for "page referenced"
   3904 		 * emulation.
   3905 		 */
   3906 		struct pv_entry *pv;
   3907 		struct vm_page *pg;
   3908 
   3909 		/* Extract the physical address of the page */
   3910 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3911 			goto out;
   3912 
   3913 		/* Get the current flags for this page. */
   3914 		simple_lock(&pg->mdpage.pvh_slock);
   3915 
   3916 		pv = pmap_find_pv(pg, pm, va);
   3917 		if (pv == NULL) {
   3918 	    		simple_unlock(&pg->mdpage.pvh_slock);
   3919 			goto out;
   3920 		}
   3921 
   3922 		pg->mdpage.pvh_attrs |= PVF_REF;
   3923 		pv->pv_flags |= PVF_REF;
   3924 		simple_unlock(&pg->mdpage.pvh_slock);
   3925 
   3926 		NPDEBUG(PDB_FOLLOW,
   3927 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3928 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3929 
   3930 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3931 		PTE_SYNC(ptep);
   3932 		rv = 1;
   3933 	}
   3934 
   3935 	/*
   3936 	 * We know there is a valid mapping here, so simply
   3937 	 * fix up the L1 if necessary.
   3938 	 */
   3939 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3940 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3941 	if (*pl1pd != l1pd) {
   3942 		*pl1pd = l1pd;
   3943 		PTE_SYNC(pl1pd);
   3944 		rv = 1;
   3945 	}
   3946 
   3947 #ifdef CPU_SA110
   3948 	/*
   3949 	 * There are bugs in the rev K SA110.  This is a check for one
   3950 	 * of them.
   3951 	 */
   3952 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3953 	    curcpu()->ci_arm_cpurev < 3) {
   3954 		/* Always current pmap */
   3955 		if (l2pte_valid(pte)) {
   3956 			extern int kernel_debug;
   3957 			if (kernel_debug & 1) {
   3958 				struct proc *p = curlwp->l_proc;
   3959 				printf("prefetch_abort: page is already "
   3960 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3961 				printf("prefetch_abort: pc=%08lx proc=%p "
   3962 				    "process=%s\n", va, p, p->p_comm);
   3963 				printf("prefetch_abort: far=%08x fs=%x\n",
   3964 				    cpu_faultaddress(), cpu_faultstatus());
   3965 			}
   3966 #ifdef DDB
   3967 			if (kernel_debug & 2)
   3968 				Debugger();
   3969 #endif
   3970 			rv = 1;
   3971 		}
   3972 	}
   3973 #endif /* CPU_SA110 */
   3974 
   3975 #ifdef DEBUG
   3976 	/*
   3977 	 * If 'rv == 0' at this point, it generally indicates that there is a
   3978 	 * stale TLB entry for the faulting address. This happens when two or
   3979 	 * more processes are sharing an L1. Since we don't flush the TLB on
   3980 	 * a context switch between such processes, we can take domain faults
   3981 	 * for mappings which exist at the same VA in both processes. EVEN IF
   3982 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   3983 	 * example.
   3984 	 *
   3985 	 * This is extremely likely to happen if pmap_enter() updated the L1
   3986 	 * entry for a recently entered mapping. In this case, the TLB is
   3987 	 * flushed for the new mapping, but there may still be TLB entries for
   3988 	 * other mappings belonging to other processes in the 1MB range
   3989 	 * covered by the L1 entry.
   3990 	 *
   3991 	 * Since 'rv == 0', we know that the L1 already contains the correct
   3992 	 * value, so the fault must be due to a stale TLB entry.
   3993 	 *
   3994 	 * Since we always need to flush the TLB anyway in the case where we
   3995 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   3996 	 * stale TLB entries dynamically.
   3997 	 *
   3998 	 * However, the above condition can ONLY happen if the current L1 is
   3999 	 * being shared. If it happens when the L1 is unshared, it indicates
   4000 	 * that other parts of the pmap are not doing their job WRT managing
   4001 	 * the TLB.
   4002 	 */
   4003 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4004 		extern int last_fault_code;
   4005 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4006 		    pm, va, ftype);
   4007 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4008 		    l2, l2b, ptep, pl1pd);
   4009 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4010 		    pte, l1pd, last_fault_code);
   4011 #ifdef DDB
   4012 		Debugger();
   4013 #endif
   4014 	}
   4015 #endif
   4016 
   4017 	cpu_tlb_flushID_SE(va);
   4018 	cpu_cpwait();
   4019 
   4020 	rv = 1;
   4021 
   4022 out:
   4023 	pmap_release_pmap_lock(pm);
   4024 	PMAP_MAP_TO_HEAD_UNLOCK();
   4025 
   4026 	return (rv);
   4027 }
   4028 
   4029 /*
   4030  * Routine:	pmap_procwr
   4031  *
   4032  * Function:
   4033  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4034  *
   4035  */
   4036 void
   4037 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4038 {
   4039 	/* We only need to do anything if it is the current process. */
   4040 	if (p == curproc)
   4041 		cpu_icache_sync_range(va, len);
   4042 }
   4043 
   4044 /*
   4045  * Routine:	pmap_unwire
   4046  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4047  *
   4048  * In/out conditions:
   4049  *		The mapping must already exist in the pmap.
   4050  */
   4051 void
   4052 pmap_unwire(pmap_t pm, vaddr_t va)
   4053 {
   4054 	struct l2_bucket *l2b;
   4055 	pt_entry_t *ptep, pte;
   4056 	struct vm_page *pg;
   4057 	paddr_t pa;
   4058 
   4059 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4060 
   4061 	PMAP_MAP_TO_HEAD_LOCK();
   4062 	pmap_acquire_pmap_lock(pm);
   4063 
   4064 	l2b = pmap_get_l2_bucket(pm, va);
   4065 	KDASSERT(l2b != NULL);
   4066 
   4067 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4068 	pte = *ptep;
   4069 
   4070 	/* Extract the physical address of the page */
   4071 	pa = l2pte_pa(pte);
   4072 
   4073 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4074 		/* Update the wired bit in the pv entry for this page. */
   4075 		simple_lock(&pg->mdpage.pvh_slock);
   4076 		(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
   4077 		simple_unlock(&pg->mdpage.pvh_slock);
   4078 	}
   4079 
   4080 	pmap_release_pmap_lock(pm);
   4081 	PMAP_MAP_TO_HEAD_UNLOCK();
   4082 }
   4083 
   4084 void
   4085 pmap_activate(struct lwp *l)
   4086 {
   4087 	extern int block_userspace_access;
   4088 	pmap_t opm, npm, rpm;
   4089 	uint32_t odacr, ndacr;
   4090 	int oldirqstate;
   4091 
   4092 	/*
   4093 	 * If activating a non-current lwp or the current lwp is
   4094 	 * already active, just return.
   4095 	 */
   4096 	if (l != curlwp ||
   4097 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4098 		return;
   4099 
   4100 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4101 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4102 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4103 
   4104 	/*
   4105 	 * If TTB and DACR are unchanged, short-circuit all the
   4106 	 * TLB/cache management stuff.
   4107 	 */
   4108 	if (pmap_previous_active_lwp != NULL) {
   4109 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4110 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4111 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4112 
   4113 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4114 			goto all_done;
   4115 	} else
   4116 		opm = NULL;
   4117 
   4118 	PMAPCOUNT(activations);
   4119 	block_userspace_access = 1;
   4120 
   4121 	/*
   4122 	 * If switching to a user vmspace which is different to the
   4123 	 * most recent one, and the most recent one is potentially
   4124 	 * live in the cache, we must write-back and invalidate the
   4125 	 * entire cache.
   4126 	 */
   4127 	rpm = pmap_recent_user;
   4128 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4129 	    rpm->pm_cstate.cs_cache) {
   4130 		rpm->pm_cstate.cs_cache = 0;
   4131 #ifdef PMAP_CACHE_VIVT
   4132 		cpu_idcache_wbinv_all();
   4133 #endif
   4134 	}
   4135 
   4136 	/* No interrupts while we frob the TTB/DACR */
   4137 	oldirqstate = disable_interrupts(IF32_bits);
   4138 
   4139 	/*
   4140 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4141 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4142 	 * before switching to it otherwise subsequent interrupts/exceptions
   4143 	 * (including domain faults!) will jump into hyperspace.
   4144 	 */
   4145 	if (npm->pm_pl1vec != NULL) {
   4146 		cpu_tlb_flushID_SE((u_int)vector_page);
   4147 		cpu_cpwait();
   4148 		*npm->pm_pl1vec = npm->pm_l1vec;
   4149 		PTE_SYNC(npm->pm_pl1vec);
   4150 	}
   4151 
   4152 	cpu_domains(ndacr);
   4153 
   4154 	if (npm == pmap_kernel() || npm == rpm) {
   4155 		/*
   4156 		 * Switching to a kernel thread, or back to the
   4157 		 * same user vmspace as before... Simply update
   4158 		 * the TTB (no TLB flush required)
   4159 		 */
   4160 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4161 		    "r"(npm->pm_l1->l1_physaddr));
   4162 		cpu_cpwait();
   4163 	} else {
   4164 		/*
   4165 		 * Otherwise, update TTB and flush TLB
   4166 		 */
   4167 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4168 		if (rpm != NULL)
   4169 			rpm->pm_cstate.cs_tlb = 0;
   4170 	}
   4171 
   4172 	restore_interrupts(oldirqstate);
   4173 
   4174 	block_userspace_access = 0;
   4175 
   4176  all_done:
   4177 	/*
   4178 	 * The new pmap is resident. Make sure it's marked
   4179 	 * as resident in the cache/TLB.
   4180 	 */
   4181 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4182 	if (npm != pmap_kernel())
   4183 		pmap_recent_user = npm;
   4184 
   4185 	/* The old pmap is not longer active */
   4186 	if (opm != NULL)
   4187 		opm->pm_activated = false;
   4188 
   4189 	/* But the new one is */
   4190 	npm->pm_activated = true;
   4191 }
   4192 
   4193 void
   4194 pmap_deactivate(struct lwp *l)
   4195 {
   4196 
   4197 	/*
   4198 	 * If the process is exiting, make sure pmap_activate() does
   4199 	 * a full MMU context-switch and cache flush, which we might
   4200 	 * otherwise skip. See PR port-arm/38950.
   4201 	 */
   4202 	if (l->l_proc->p_sflag & PS_WEXIT)
   4203 		pmap_previous_active_lwp = NULL;
   4204 
   4205 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4206 }
   4207 
   4208 void
   4209 pmap_update(pmap_t pm)
   4210 {
   4211 
   4212 	if (pm->pm_remove_all) {
   4213 		/*
   4214 		 * Finish up the pmap_remove_all() optimisation by flushing
   4215 		 * the TLB.
   4216 		 */
   4217 		pmap_tlb_flushID(pm);
   4218 		pm->pm_remove_all = false;
   4219 	}
   4220 
   4221 	if (pmap_is_current(pm)) {
   4222 		/*
   4223 		 * If we're dealing with a current userland pmap, move its L1
   4224 		 * to the end of the LRU.
   4225 		 */
   4226 		if (pm != pmap_kernel())
   4227 			pmap_use_l1(pm);
   4228 
   4229 		/*
   4230 		 * We can assume we're done with frobbing the cache/tlb for
   4231 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4232 		 * flushes.
   4233 		 */
   4234 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4235 	}
   4236 
   4237 	PMAPCOUNT(updates);
   4238 
   4239 	/*
   4240 	 * make sure TLB/cache operations have completed.
   4241 	 */
   4242 	cpu_cpwait();
   4243 }
   4244 
   4245 void
   4246 pmap_remove_all(pmap_t pm)
   4247 {
   4248 
   4249 	/*
   4250 	 * The vmspace described by this pmap is about to be torn down.
   4251 	 * Until pmap_update() is called, UVM will only make calls
   4252 	 * to pmap_remove(). We can make life much simpler by flushing
   4253 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4254 	 */
   4255 #ifdef PMAP_CACHE_VIVT
   4256 	pmap_idcache_wbinv_all(pm);
   4257 #endif
   4258 	pm->pm_remove_all = true;
   4259 }
   4260 
   4261 /*
   4262  * Retire the given physical map from service.
   4263  * Should only be called if the map contains no valid mappings.
   4264  */
   4265 void
   4266 pmap_destroy(pmap_t pm)
   4267 {
   4268 	u_int count;
   4269 
   4270 	if (pm == NULL)
   4271 		return;
   4272 
   4273 	if (pm->pm_remove_all) {
   4274 		pmap_tlb_flushID(pm);
   4275 		pm->pm_remove_all = false;
   4276 	}
   4277 
   4278 	/*
   4279 	 * Drop reference count
   4280 	 */
   4281 	mutex_enter(&pm->pm_lock);
   4282 	count = --pm->pm_obj.uo_refs;
   4283 	mutex_exit(&pm->pm_lock);
   4284 	if (count > 0) {
   4285 		if (pmap_is_current(pm)) {
   4286 			if (pm != pmap_kernel())
   4287 				pmap_use_l1(pm);
   4288 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4289 		}
   4290 		return;
   4291 	}
   4292 
   4293 	/*
   4294 	 * reference count is zero, free pmap resources and then free pmap.
   4295 	 */
   4296 
   4297 	if (vector_page < KERNEL_BASE) {
   4298 		KDASSERT(!pmap_is_current(pm));
   4299 
   4300 		/* Remove the vector page mapping */
   4301 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4302 		pmap_update(pm);
   4303 	}
   4304 
   4305 	LIST_REMOVE(pm, pm_list);
   4306 
   4307 	pmap_free_l1(pm);
   4308 
   4309 	if (pmap_recent_user == pm)
   4310 		pmap_recent_user = NULL;
   4311 
   4312 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4313 
   4314 	/* return the pmap to the pool */
   4315 	pool_cache_put(&pmap_cache, pm);
   4316 }
   4317 
   4318 
   4319 /*
   4320  * void pmap_reference(pmap_t pm)
   4321  *
   4322  * Add a reference to the specified pmap.
   4323  */
   4324 void
   4325 pmap_reference(pmap_t pm)
   4326 {
   4327 
   4328 	if (pm == NULL)
   4329 		return;
   4330 
   4331 	pmap_use_l1(pm);
   4332 
   4333 	mutex_enter(&pm->pm_lock);
   4334 	pm->pm_obj.uo_refs++;
   4335 	mutex_exit(&pm->pm_lock);
   4336 }
   4337 
   4338 #if ARM_MMU_V6 > 0
   4339 
   4340 static struct evcnt pmap_prefer_nochange_ev =
   4341     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4342 static struct evcnt pmap_prefer_change_ev =
   4343     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4344 
   4345 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4346 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4347 
   4348 void
   4349 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4350 {
   4351 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4352 	vaddr_t va = *vap;
   4353 	vaddr_t diff = (hint - va) & mask;
   4354 	if (diff == 0) {
   4355 		pmap_prefer_nochange_ev.ev_count++;
   4356 	} else {
   4357 		pmap_prefer_change_ev.ev_count++;
   4358 		if (__predict_false(td))
   4359 			va -= mask + 1;
   4360 		*vap = va + diff;
   4361 	}
   4362 }
   4363 #endif /* ARM_MMU_V6 */
   4364 
   4365 /*
   4366  * pmap_zero_page()
   4367  *
   4368  * Zero a given physical page by mapping it at a page hook point.
   4369  * In doing the zero page op, the page we zero is mapped cachable, as with
   4370  * StrongARM accesses to non-cached pages are non-burst making writing
   4371  * _any_ bulk data very slow.
   4372  */
   4373 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4374 void
   4375 pmap_zero_page_generic(paddr_t phys)
   4376 {
   4377 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4378 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4379 #endif
   4380 #ifdef PMAP_CACHE_VIPT
   4381 	/* Choose the last page color it had, if any */
   4382 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4383 #else
   4384 	const vsize_t va_offset = 0;
   4385 #endif
   4386 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4387 
   4388 #ifdef DEBUG
   4389 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4390 		panic("pmap_zero_page: page has mappings");
   4391 #endif
   4392 
   4393 	KDASSERT((phys & PGOFSET) == 0);
   4394 
   4395 	/*
   4396 	 * Hook in the page, zero it, and purge the cache for that
   4397 	 * zeroed page. Invalidate the TLB as needed.
   4398 	 */
   4399 	*ptep = L2_S_PROTO | phys |
   4400 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4401 	PTE_SYNC(ptep);
   4402 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4403 	cpu_cpwait();
   4404 	bzero_page(cdstp + va_offset);
   4405 	/*
   4406 	 * Unmap the page.
   4407 	 */
   4408 	*ptep = 0;
   4409 	PTE_SYNC(ptep);
   4410 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4411 #ifdef PMAP_CACHE_VIVT
   4412 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4413 #endif
   4414 #ifdef PMAP_CACHE_VIPT
   4415 	/*
   4416 	 * This page is now cache resident so it now has a page color.
   4417 	 * Any contents have been obliterated so clear the EXEC flag.
   4418 	 */
   4419 	if (!pmap_is_page_colored_p(pg)) {
   4420 		PMAPCOUNT(vac_color_new);
   4421 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4422 	}
   4423 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4424 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4425 		PMAPCOUNT(exec_discarded_zero);
   4426 	}
   4427 	pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4428 #endif
   4429 }
   4430 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4431 
   4432 #if ARM_MMU_XSCALE == 1
   4433 void
   4434 pmap_zero_page_xscale(paddr_t phys)
   4435 {
   4436 #ifdef DEBUG
   4437 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4438 
   4439 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4440 		panic("pmap_zero_page: page has mappings");
   4441 #endif
   4442 
   4443 	KDASSERT((phys & PGOFSET) == 0);
   4444 
   4445 	/*
   4446 	 * Hook in the page, zero it, and purge the cache for that
   4447 	 * zeroed page. Invalidate the TLB as needed.
   4448 	 */
   4449 	*cdst_pte = L2_S_PROTO | phys |
   4450 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4451 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4452 	PTE_SYNC(cdst_pte);
   4453 	cpu_tlb_flushD_SE(cdstp);
   4454 	cpu_cpwait();
   4455 	bzero_page(cdstp);
   4456 	xscale_cache_clean_minidata();
   4457 }
   4458 #endif /* ARM_MMU_XSCALE == 1 */
   4459 
   4460 /* pmap_pageidlezero()
   4461  *
   4462  * The same as above, except that we assume that the page is not
   4463  * mapped.  This means we never have to flush the cache first.  Called
   4464  * from the idle loop.
   4465  */
   4466 bool
   4467 pmap_pageidlezero(paddr_t phys)
   4468 {
   4469 	unsigned int i;
   4470 	int *ptr;
   4471 	bool rv = true;
   4472 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4473 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4474 #endif
   4475 #ifdef PMAP_CACHE_VIPT
   4476 	/* Choose the last page color it had, if any */
   4477 	const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4478 #else
   4479 	const vsize_t va_offset = 0;
   4480 #endif
   4481 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4482 
   4483 
   4484 #ifdef DEBUG
   4485 	if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
   4486 		panic("pmap_pageidlezero: page has mappings");
   4487 #endif
   4488 
   4489 	KDASSERT((phys & PGOFSET) == 0);
   4490 
   4491 	/*
   4492 	 * Hook in the page, zero it, and purge the cache for that
   4493 	 * zeroed page. Invalidate the TLB as needed.
   4494 	 */
   4495 	*ptep = L2_S_PROTO | phys |
   4496 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4497 	PTE_SYNC(ptep);
   4498 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4499 	cpu_cpwait();
   4500 
   4501 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4502 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4503 		if (sched_curcpu_runnable_p() != 0) {
   4504 			/*
   4505 			 * A process has become ready.  Abort now,
   4506 			 * so we don't keep it waiting while we
   4507 			 * do slow memory access to finish this
   4508 			 * page.
   4509 			 */
   4510 			rv = false;
   4511 			break;
   4512 		}
   4513 		*ptr++ = 0;
   4514 	}
   4515 
   4516 #ifdef PMAP_CACHE_VIVT
   4517 	if (rv)
   4518 		/*
   4519 		 * if we aborted we'll rezero this page again later so don't
   4520 		 * purge it unless we finished it
   4521 		 */
   4522 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4523 #elif defined(PMAP_CACHE_VIPT)
   4524 	/*
   4525 	 * This page is now cache resident so it now has a page color.
   4526 	 * Any contents have been obliterated so clear the EXEC flag.
   4527 	 */
   4528 	if (!pmap_is_page_colored_p(pg)) {
   4529 		PMAPCOUNT(vac_color_new);
   4530 		pg->mdpage.pvh_attrs |= PVF_COLORED;
   4531 	}
   4532 	if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
   4533 		pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4534 		PMAPCOUNT(exec_discarded_zero);
   4535 	}
   4536 #endif
   4537 	/*
   4538 	 * Unmap the page.
   4539 	 */
   4540 	*ptep = 0;
   4541 	PTE_SYNC(ptep);
   4542 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4543 
   4544 	return (rv);
   4545 }
   4546 
   4547 /*
   4548  * pmap_copy_page()
   4549  *
   4550  * Copy one physical page into another, by mapping the pages into
   4551  * hook points. The same comment regarding cachability as in
   4552  * pmap_zero_page also applies here.
   4553  */
   4554 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4555 void
   4556 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4557 {
   4558 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4559 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4560 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4561 #endif
   4562 #ifdef PMAP_CACHE_VIPT
   4563 	const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4564 	const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
   4565 #else
   4566 	const vsize_t src_va_offset = 0;
   4567 	const vsize_t dst_va_offset = 0;
   4568 #endif
   4569 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4570 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4571 
   4572 #ifdef DEBUG
   4573 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4574 		panic("pmap_copy_page: dst page has mappings");
   4575 #endif
   4576 
   4577 #ifdef PMAP_CACHE_VIPT
   4578 	KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
   4579 #endif
   4580 	KDASSERT((src & PGOFSET) == 0);
   4581 	KDASSERT((dst & PGOFSET) == 0);
   4582 
   4583 	/*
   4584 	 * Clean the source page.  Hold the source page's lock for
   4585 	 * the duration of the copy so that no other mappings can
   4586 	 * be created while we have a potentially aliased mapping.
   4587 	 */
   4588 	simple_lock(&src_pg->mdpage.pvh_slock);
   4589 #ifdef PMAP_CACHE_VIVT
   4590 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4591 #endif
   4592 
   4593 	/*
   4594 	 * Map the pages into the page hook points, copy them, and purge
   4595 	 * the cache for the appropriate page. Invalidate the TLB
   4596 	 * as required.
   4597 	 */
   4598 	*src_ptep = L2_S_PROTO
   4599 	    | src
   4600 #ifdef PMAP_CACHE_VIPT
   4601 	    | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4602 #endif
   4603 #ifdef PMAP_CACHE_VIVT
   4604 	    | pte_l2_s_cache_mode
   4605 #endif
   4606 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4607 	*dst_ptep = L2_S_PROTO | dst |
   4608 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4609 	PTE_SYNC(src_ptep);
   4610 	PTE_SYNC(dst_ptep);
   4611 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4612 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4613 	cpu_cpwait();
   4614 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4615 #ifdef PMAP_CACHE_VIVT
   4616 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4617 #endif
   4618 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4619 #ifdef PMAP_CACHE_VIVT
   4620 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4621 #endif
   4622 	/*
   4623 	 * Unmap the pages.
   4624 	 */
   4625 	*src_ptep = 0;
   4626 	*dst_ptep = 0;
   4627 	PTE_SYNC(src_ptep);
   4628 	PTE_SYNC(dst_ptep);
   4629 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4630 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4631 #ifdef PMAP_CACHE_VIPT
   4632 	/*
   4633 	 * Now that the destination page is in the cache, mark it as colored.
   4634 	 * If this was an exec page, discard it.
   4635 	 */
   4636 	if (!pmap_is_page_colored_p(dst_pg)) {
   4637 		PMAPCOUNT(vac_color_new);
   4638 		dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
   4639 	}
   4640 	if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
   4641 		dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
   4642 		PMAPCOUNT(exec_discarded_copy);
   4643 	}
   4644 	dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
   4645 #endif
   4646 }
   4647 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4648 
   4649 #if ARM_MMU_XSCALE == 1
   4650 void
   4651 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4652 {
   4653 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4654 #ifdef DEBUG
   4655 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4656 
   4657 	if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
   4658 		panic("pmap_copy_page: dst page has mappings");
   4659 #endif
   4660 
   4661 	KDASSERT((src & PGOFSET) == 0);
   4662 	KDASSERT((dst & PGOFSET) == 0);
   4663 
   4664 	/*
   4665 	 * Clean the source page.  Hold the source page's lock for
   4666 	 * the duration of the copy so that no other mappings can
   4667 	 * be created while we have a potentially aliased mapping.
   4668 	 */
   4669 	simple_lock(&src_pg->mdpage.pvh_slock);
   4670 #ifdef PMAP_CACHE_VIVT
   4671 	(void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
   4672 #endif
   4673 
   4674 	/*
   4675 	 * Map the pages into the page hook points, copy them, and purge
   4676 	 * the cache for the appropriate page. Invalidate the TLB
   4677 	 * as required.
   4678 	 */
   4679 	*csrc_pte = L2_S_PROTO | src |
   4680 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4681 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4682 	PTE_SYNC(csrc_pte);
   4683 	*cdst_pte = L2_S_PROTO | dst |
   4684 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4685 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4686 	PTE_SYNC(cdst_pte);
   4687 	cpu_tlb_flushD_SE(csrcp);
   4688 	cpu_tlb_flushD_SE(cdstp);
   4689 	cpu_cpwait();
   4690 	bcopy_page(csrcp, cdstp);
   4691 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   4692 	xscale_cache_clean_minidata();
   4693 }
   4694 #endif /* ARM_MMU_XSCALE == 1 */
   4695 
   4696 /*
   4697  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4698  *
   4699  * Return the start and end addresses of the kernel's virtual space.
   4700  * These values are setup in pmap_bootstrap and are updated as pages
   4701  * are allocated.
   4702  */
   4703 void
   4704 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4705 {
   4706 	*start = virtual_avail;
   4707 	*end = virtual_end;
   4708 }
   4709 
   4710 /*
   4711  * Helper function for pmap_grow_l2_bucket()
   4712  */
   4713 static inline int
   4714 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4715 {
   4716 	struct l2_bucket *l2b;
   4717 	pt_entry_t *ptep;
   4718 	paddr_t pa;
   4719 
   4720 	if (uvm.page_init_done == false) {
   4721 #ifdef PMAP_STEAL_MEMORY
   4722 		pv_addr_t pv;
   4723 		pmap_boot_pagealloc(PAGE_SIZE,
   4724 #ifdef PMAP_CACHE_VIPT
   4725 		    arm_cache_prefer_mask,
   4726 		    va & arm_cache_prefer_mask,
   4727 #else
   4728 		    0, 0,
   4729 #endif
   4730 		    &pv);
   4731 		pa = pv.pv_pa;
   4732 #else
   4733 		if (uvm_page_physget(&pa) == false)
   4734 			return (1);
   4735 #endif	/* PMAP_STEAL_MEMORY */
   4736 	} else {
   4737 		struct vm_page *pg;
   4738 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4739 		if (pg == NULL)
   4740 			return (1);
   4741 		pa = VM_PAGE_TO_PHYS(pg);
   4742 #ifdef PMAP_CACHE_VIPT
   4743 		/*
   4744 		 * This new page must not have any mappings.  Enter it via
   4745 		 * pmap_kenter_pa and let that routine do the hard work.
   4746 		 */
   4747 		KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
   4748 		pmap_kenter_pa(va, pa,
   4749 		    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
   4750 #endif
   4751 	}
   4752 
   4753 	if (pap)
   4754 		*pap = pa;
   4755 
   4756 	PMAPCOUNT(pt_mappings);
   4757 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4758 	KDASSERT(l2b != NULL);
   4759 
   4760 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4761 	*ptep = L2_S_PROTO | pa | cache_mode |
   4762 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4763 	PTE_SYNC(ptep);
   4764 	memset((void *)va, 0, PAGE_SIZE);
   4765 	return (0);
   4766 }
   4767 
   4768 /*
   4769  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4770  * used by pmap_growkernel().
   4771  */
   4772 static inline struct l2_bucket *
   4773 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4774 {
   4775 	struct l2_dtable *l2;
   4776 	struct l2_bucket *l2b;
   4777 	u_short l1idx;
   4778 	vaddr_t nva;
   4779 
   4780 	l1idx = L1_IDX(va);
   4781 
   4782 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4783 		/*
   4784 		 * No mapping at this address, as there is
   4785 		 * no entry in the L1 table.
   4786 		 * Need to allocate a new l2_dtable.
   4787 		 */
   4788 		nva = pmap_kernel_l2dtable_kva;
   4789 		if ((nva & PGOFSET) == 0) {
   4790 			/*
   4791 			 * Need to allocate a backing page
   4792 			 */
   4793 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4794 				return (NULL);
   4795 		}
   4796 
   4797 		l2 = (struct l2_dtable *)nva;
   4798 		nva += sizeof(struct l2_dtable);
   4799 
   4800 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4801 			/*
   4802 			 * The new l2_dtable straddles a page boundary.
   4803 			 * Map in another page to cover it.
   4804 			 */
   4805 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4806 				return (NULL);
   4807 		}
   4808 
   4809 		pmap_kernel_l2dtable_kva = nva;
   4810 
   4811 		/*
   4812 		 * Link it into the parent pmap
   4813 		 */
   4814 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4815 	}
   4816 
   4817 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4818 
   4819 	/*
   4820 	 * Fetch pointer to the L2 page table associated with the address.
   4821 	 */
   4822 	if (l2b->l2b_kva == NULL) {
   4823 		pt_entry_t *ptep;
   4824 
   4825 		/*
   4826 		 * No L2 page table has been allocated. Chances are, this
   4827 		 * is because we just allocated the l2_dtable, above.
   4828 		 */
   4829 		nva = pmap_kernel_l2ptp_kva;
   4830 		ptep = (pt_entry_t *)nva;
   4831 		if ((nva & PGOFSET) == 0) {
   4832 			/*
   4833 			 * Need to allocate a backing page
   4834 			 */
   4835 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4836 			    &pmap_kernel_l2ptp_phys))
   4837 				return (NULL);
   4838 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4839 		}
   4840 
   4841 		l2->l2_occupancy++;
   4842 		l2b->l2b_kva = ptep;
   4843 		l2b->l2b_l1idx = l1idx;
   4844 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4845 
   4846 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4847 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4848 	}
   4849 
   4850 	return (l2b);
   4851 }
   4852 
   4853 vaddr_t
   4854 pmap_growkernel(vaddr_t maxkvaddr)
   4855 {
   4856 	pmap_t kpm = pmap_kernel();
   4857 	struct l1_ttable *l1;
   4858 	struct l2_bucket *l2b;
   4859 	pd_entry_t *pl1pd;
   4860 	int s;
   4861 
   4862 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4863 		goto out;		/* we are OK */
   4864 
   4865 	NPDEBUG(PDB_GROWKERN,
   4866 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4867 	    pmap_curmaxkvaddr, maxkvaddr));
   4868 
   4869 	KDASSERT(maxkvaddr <= virtual_end);
   4870 
   4871 	/*
   4872 	 * whoops!   we need to add kernel PTPs
   4873 	 */
   4874 
   4875 	s = splhigh();	/* to be safe */
   4876 	mutex_enter(&kpm->pm_lock);
   4877 
   4878 	/* Map 1MB at a time */
   4879 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4880 
   4881 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4882 		KDASSERT(l2b != NULL);
   4883 
   4884 		/* Distribute new L1 entry to all other L1s */
   4885 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4886 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4887 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4888 			    L1_C_PROTO;
   4889 			PTE_SYNC(pl1pd);
   4890 		}
   4891 	}
   4892 
   4893 	/*
   4894 	 * flush out the cache, expensive but growkernel will happen so
   4895 	 * rarely
   4896 	 */
   4897 	cpu_dcache_wbinv_all();
   4898 	cpu_tlb_flushD();
   4899 	cpu_cpwait();
   4900 
   4901 	mutex_exit(&kpm->pm_lock);
   4902 	splx(s);
   4903 
   4904 out:
   4905 	return (pmap_curmaxkvaddr);
   4906 }
   4907 
   4908 /************************ Utility routines ****************************/
   4909 
   4910 /*
   4911  * vector_page_setprot:
   4912  *
   4913  *	Manipulate the protection of the vector page.
   4914  */
   4915 void
   4916 vector_page_setprot(int prot)
   4917 {
   4918 	struct l2_bucket *l2b;
   4919 	pt_entry_t *ptep;
   4920 
   4921 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4922 	KDASSERT(l2b != NULL);
   4923 
   4924 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4925 
   4926 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4927 	PTE_SYNC(ptep);
   4928 	cpu_tlb_flushD_SE(vector_page);
   4929 	cpu_cpwait();
   4930 }
   4931 
   4932 /*
   4933  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4934  * Returns true if the mapping exists, else false.
   4935  *
   4936  * NOTE: This function is only used by a couple of arm-specific modules.
   4937  * It is not safe to take any pmap locks here, since we could be right
   4938  * in the middle of debugging the pmap anyway...
   4939  *
   4940  * It is possible for this routine to return false even though a valid
   4941  * mapping does exist. This is because we don't lock, so the metadata
   4942  * state may be inconsistent.
   4943  *
   4944  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   4945  * a "section" mapping.
   4946  */
   4947 bool
   4948 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   4949 {
   4950 	struct l2_dtable *l2;
   4951 	pd_entry_t *pl1pd, l1pd;
   4952 	pt_entry_t *ptep;
   4953 	u_short l1idx;
   4954 
   4955 	if (pm->pm_l1 == NULL)
   4956 		return false;
   4957 
   4958 	l1idx = L1_IDX(va);
   4959 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   4960 	l1pd = *pl1pd;
   4961 
   4962 	if (l1pte_section_p(l1pd)) {
   4963 		*ptp = NULL;
   4964 		return true;
   4965 	}
   4966 
   4967 	if (pm->pm_l2 == NULL)
   4968 		return false;
   4969 
   4970 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   4971 
   4972 	if (l2 == NULL ||
   4973 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   4974 		return false;
   4975 	}
   4976 
   4977 	*ptp = &ptep[l2pte_index(va)];
   4978 	return true;
   4979 }
   4980 
   4981 bool
   4982 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   4983 {
   4984 	u_short l1idx;
   4985 
   4986 	if (pm->pm_l1 == NULL)
   4987 		return false;
   4988 
   4989 	l1idx = L1_IDX(va);
   4990 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   4991 
   4992 	return true;
   4993 }
   4994 
   4995 /************************ Bootstrapping routines ****************************/
   4996 
   4997 static void
   4998 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   4999 {
   5000 	int i;
   5001 
   5002 	l1->l1_kva = l1pt;
   5003 	l1->l1_domain_use_count = 0;
   5004 	l1->l1_domain_first = 0;
   5005 
   5006 	for (i = 0; i < PMAP_DOMAINS; i++)
   5007 		l1->l1_domain_free[i] = i + 1;
   5008 
   5009 	/*
   5010 	 * Copy the kernel's L1 entries to each new L1.
   5011 	 */
   5012 	if (pmap_initialized)
   5013 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   5014 
   5015 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5016 	    &l1->l1_physaddr) == false)
   5017 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5018 
   5019 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5020 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5021 }
   5022 
   5023 /*
   5024  * pmap_bootstrap() is called from the board-specific initarm() routine
   5025  * once the kernel L1/L2 descriptors tables have been set up.
   5026  *
   5027  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5028  * spread over a number of disparate files/functions.
   5029  *
   5030  * We are passed the following parameters
   5031  *  - kernel_l1pt
   5032  *    This is a pointer to the base of the kernel's L1 translation table.
   5033  *  - vstart
   5034  *    1MB-aligned start of managed kernel virtual memory.
   5035  *  - vend
   5036  *    1MB-aligned end of managed kernel virtual memory.
   5037  *
   5038  * We use the first parameter to build the metadata (struct l1_ttable and
   5039  * struct l2_dtable) necessary to track kernel mappings.
   5040  */
   5041 #define	PMAP_STATIC_L2_SIZE 16
   5042 void
   5043 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5044 {
   5045 	static struct l1_ttable static_l1;
   5046 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5047 	struct l1_ttable *l1 = &static_l1;
   5048 	struct l2_dtable *l2;
   5049 	struct l2_bucket *l2b;
   5050 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5051 	pmap_t pm = pmap_kernel();
   5052 	pd_entry_t pde;
   5053 	pt_entry_t *ptep;
   5054 	paddr_t pa;
   5055 	vaddr_t va;
   5056 	vsize_t size;
   5057 	int nptes, l1idx, l2idx, l2next = 0;
   5058 
   5059 	/*
   5060 	 * Initialise the kernel pmap object
   5061 	 */
   5062 	pm->pm_l1 = l1;
   5063 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5064 	pm->pm_activated = true;
   5065 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5066 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   5067 
   5068 	/*
   5069 	 * Scan the L1 translation table created by initarm() and create
   5070 	 * the required metadata for all valid mappings found in it.
   5071 	 */
   5072 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5073 		pde = l1pt[l1idx];
   5074 
   5075 		/*
   5076 		 * We're only interested in Coarse mappings.
   5077 		 * pmap_extract() can deal with section mappings without
   5078 		 * recourse to checking L2 metadata.
   5079 		 */
   5080 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5081 			continue;
   5082 
   5083 		/*
   5084 		 * Lookup the KVA of this L2 descriptor table
   5085 		 */
   5086 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5087 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5088 		if (ptep == NULL) {
   5089 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5090 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5091 		}
   5092 
   5093 		/*
   5094 		 * Fetch the associated L2 metadata structure.
   5095 		 * Allocate a new one if necessary.
   5096 		 */
   5097 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5098 			if (l2next == PMAP_STATIC_L2_SIZE)
   5099 				panic("pmap_bootstrap: out of static L2s");
   5100 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5101 		}
   5102 
   5103 		/*
   5104 		 * One more L1 slot tracked...
   5105 		 */
   5106 		l2->l2_occupancy++;
   5107 
   5108 		/*
   5109 		 * Fill in the details of the L2 descriptor in the
   5110 		 * appropriate bucket.
   5111 		 */
   5112 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5113 		l2b->l2b_kva = ptep;
   5114 		l2b->l2b_phys = pa;
   5115 		l2b->l2b_l1idx = l1idx;
   5116 
   5117 		/*
   5118 		 * Establish an initial occupancy count for this descriptor
   5119 		 */
   5120 		for (l2idx = 0;
   5121 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5122 		    l2idx++) {
   5123 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5124 				l2b->l2b_occupancy++;
   5125 			}
   5126 		}
   5127 
   5128 		/*
   5129 		 * Make sure the descriptor itself has the correct cache mode.
   5130 		 * If not, fix it, but whine about the problem. Port-meisters
   5131 		 * should consider this a clue to fix up their initarm()
   5132 		 * function. :)
   5133 		 */
   5134 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5135 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5136 			    "L2 pte @ %p\n", ptep);
   5137 		}
   5138 	}
   5139 
   5140 	/*
   5141 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5142 	 * a page table. Bitch if it is not correctly set.
   5143 	 */
   5144 	for (va = (vaddr_t)l1pt;
   5145 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5146 		if (pmap_set_pt_cache_mode(l1pt, va))
   5147 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5148 			    "primary L1 @ 0x%lx\n", va);
   5149 	}
   5150 
   5151 	cpu_dcache_wbinv_all();
   5152 	cpu_tlb_flushID();
   5153 	cpu_cpwait();
   5154 
   5155 	/*
   5156 	 * now we allocate the "special" VAs which are used for tmp mappings
   5157 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5158 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5159 	 *
   5160 	 * Managed KVM space start from wherever initarm() tells us.
   5161 	 */
   5162 	virtual_avail = vstart;
   5163 	virtual_end = vend;
   5164 
   5165 #ifdef PMAP_CACHE_VIPT
   5166 	/*
   5167 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5168 	 * page so we won't violate cache aliasing rules.
   5169 	 */
   5170 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5171 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5172 #else
   5173 	nptes = 1;
   5174 #endif
   5175 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5176 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5177 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5178 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5179 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5180 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5181 	    (void *)&msgbufaddr, NULL);
   5182 
   5183 	/*
   5184 	 * Allocate a range of kernel virtual address space to be used
   5185 	 * for L2 descriptor tables and metadata allocation in
   5186 	 * pmap_growkernel().
   5187 	 */
   5188 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5189 	pmap_alloc_specials(&virtual_avail,
   5190 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5191 	    &pmap_kernel_l2ptp_kva, NULL);
   5192 
   5193 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5194 	pmap_alloc_specials(&virtual_avail,
   5195 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5196 	    &pmap_kernel_l2dtable_kva, NULL);
   5197 
   5198 	/*
   5199 	 * init the static-global locks and global pmap list.
   5200 	 */
   5201 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5202 
   5203 	/*
   5204 	 * We can now initialise the first L1's metadata.
   5205 	 */
   5206 	SLIST_INIT(&l1_list);
   5207 	TAILQ_INIT(&l1_lru_list);
   5208 	simple_lock_init(&l1_lru_lock);
   5209 	pmap_init_l1(l1, l1pt);
   5210 
   5211 	/* Set up vector page L1 details, if necessary */
   5212 	if (vector_page < KERNEL_BASE) {
   5213 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5214 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5215 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5216 		    L1_C_DOM(pm->pm_domain);
   5217 	} else
   5218 		pm->pm_pl1vec = NULL;
   5219 
   5220 	/*
   5221 	 * Initialize the pmap cache
   5222 	 */
   5223 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5224 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5225 	LIST_INIT(&pmap_pmaps);
   5226 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5227 
   5228 	/*
   5229 	 * Initialize the pv pool.
   5230 	 */
   5231 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5232 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5233 
   5234 	/*
   5235 	 * Initialize the L2 dtable pool and cache.
   5236 	 */
   5237 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5238 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5239 
   5240 	/*
   5241 	 * Initialise the L2 descriptor table pool and cache
   5242 	 */
   5243 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5244 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5245 	    pmap_l2ptp_ctor, NULL, NULL);
   5246 
   5247 	cpu_dcache_wbinv_all();
   5248 }
   5249 
   5250 static int
   5251 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5252 {
   5253 	pd_entry_t *pdep, pde;
   5254 	pt_entry_t *ptep, pte;
   5255 	vaddr_t pa;
   5256 	int rv = 0;
   5257 
   5258 	/*
   5259 	 * Make sure the descriptor itself has the correct cache mode
   5260 	 */
   5261 	pdep = &kl1[L1_IDX(va)];
   5262 	pde = *pdep;
   5263 
   5264 	if (l1pte_section_p(pde)) {
   5265 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5266 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5267 			    pte_l1_s_cache_mode_pt;
   5268 			PTE_SYNC(pdep);
   5269 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5270 			rv = 1;
   5271 		}
   5272 	} else {
   5273 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5274 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5275 		if (ptep == NULL)
   5276 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5277 
   5278 		ptep = &ptep[l2pte_index(va)];
   5279 		pte = *ptep;
   5280 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5281 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5282 			    pte_l2_s_cache_mode_pt;
   5283 			PTE_SYNC(ptep);
   5284 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5285 			rv = 1;
   5286 		}
   5287 	}
   5288 
   5289 	return (rv);
   5290 }
   5291 
   5292 static void
   5293 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5294 {
   5295 	vaddr_t va = *availp;
   5296 	struct l2_bucket *l2b;
   5297 
   5298 	if (ptep) {
   5299 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5300 		if (l2b == NULL)
   5301 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5302 
   5303 		if (ptep)
   5304 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5305 	}
   5306 
   5307 	*vap = va;
   5308 	*availp = va + (PAGE_SIZE * pages);
   5309 }
   5310 
   5311 void
   5312 pmap_init(void)
   5313 {
   5314 
   5315 	/*
   5316 	 * Set the available memory vars - These do not map to real memory
   5317 	 * addresses and cannot as the physical memory is fragmented.
   5318 	 * They are used by ps for %mem calculations.
   5319 	 * One could argue whether this should be the entire memory or just
   5320 	 * the memory that is useable in a user process.
   5321 	 */
   5322 	avail_start = ptoa(vm_physmem[0].start);
   5323 	avail_end = ptoa(vm_physmem[vm_nphysseg - 1].end);
   5324 
   5325 	/*
   5326 	 * Now we need to free enough pv_entry structures to allow us to get
   5327 	 * the kmem_map/kmem_object allocated and inited (done after this
   5328 	 * function is finished).  to do this we allocate one bootstrap page out
   5329 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5330 	 * structures.   we never free this page.
   5331 	 */
   5332 	pool_setlowat(&pmap_pv_pool,
   5333 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5334 
   5335 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5336 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5337 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5338 
   5339 	pmap_initialized = true;
   5340 }
   5341 
   5342 static vaddr_t last_bootstrap_page = 0;
   5343 static void *free_bootstrap_pages = NULL;
   5344 
   5345 static void *
   5346 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5347 {
   5348 	extern void *pool_page_alloc(struct pool *, int);
   5349 	vaddr_t new_page;
   5350 	void *rv;
   5351 
   5352 	if (pmap_initialized)
   5353 		return (pool_page_alloc(pp, flags));
   5354 
   5355 	if (free_bootstrap_pages) {
   5356 		rv = free_bootstrap_pages;
   5357 		free_bootstrap_pages = *((void **)rv);
   5358 		return (rv);
   5359 	}
   5360 
   5361 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5362 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5363 
   5364 	KASSERT(new_page > last_bootstrap_page);
   5365 	last_bootstrap_page = new_page;
   5366 	return ((void *)new_page);
   5367 }
   5368 
   5369 static void
   5370 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5371 {
   5372 	extern void pool_page_free(struct pool *, void *);
   5373 
   5374 	if ((vaddr_t)v <= last_bootstrap_page) {
   5375 		*((void **)v) = free_bootstrap_pages;
   5376 		free_bootstrap_pages = v;
   5377 		return;
   5378 	}
   5379 
   5380 	if (pmap_initialized) {
   5381 		pool_page_free(pp, v);
   5382 		return;
   5383 	}
   5384 }
   5385 
   5386 /*
   5387  * pmap_postinit()
   5388  *
   5389  * This routine is called after the vm and kmem subsystems have been
   5390  * initialised. This allows the pmap code to perform any initialisation
   5391  * that can only be done one the memory allocation is in place.
   5392  */
   5393 void
   5394 pmap_postinit(void)
   5395 {
   5396 	extern paddr_t physical_start, physical_end;
   5397 	struct l2_bucket *l2b;
   5398 	struct l1_ttable *l1;
   5399 	struct pglist plist;
   5400 	struct vm_page *m;
   5401 	pd_entry_t *pl1pt;
   5402 	pt_entry_t *ptep, pte;
   5403 	vaddr_t va, eva;
   5404 	u_int loop, needed;
   5405 	int error;
   5406 
   5407 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5408 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5409 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5410 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5411 
   5412 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5413 	needed -= 1;
   5414 
   5415 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5416 
   5417 	for (loop = 0; loop < needed; loop++, l1++) {
   5418 		/* Allocate a L1 page table */
   5419 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5420 		if (va == 0)
   5421 			panic("Cannot allocate L1 KVM");
   5422 
   5423 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5424 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5425 		if (error)
   5426 			panic("Cannot allocate L1 physical pages");
   5427 
   5428 		m = TAILQ_FIRST(&plist);
   5429 		eva = va + L1_TABLE_SIZE;
   5430 		pl1pt = (pd_entry_t *)va;
   5431 
   5432 		while (m && va < eva) {
   5433 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5434 
   5435 			pmap_kenter_pa(va, pa,
   5436 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
   5437 
   5438 			/*
   5439 			 * Make sure the L1 descriptor table is mapped
   5440 			 * with the cache-mode set to write-through.
   5441 			 */
   5442 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5443 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5444 			pte = *ptep;
   5445 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5446 			*ptep = pte;
   5447 			PTE_SYNC(ptep);
   5448 			cpu_tlb_flushD_SE(va);
   5449 
   5450 			va += PAGE_SIZE;
   5451 			m = TAILQ_NEXT(m, pageq.queue);
   5452 		}
   5453 
   5454 #ifdef DIAGNOSTIC
   5455 		if (m)
   5456 			panic("pmap_alloc_l1pt: pglist not empty");
   5457 #endif	/* DIAGNOSTIC */
   5458 
   5459 		pmap_init_l1(l1, pl1pt);
   5460 	}
   5461 
   5462 #ifdef DEBUG
   5463 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5464 	    needed);
   5465 #endif
   5466 }
   5467 
   5468 /*
   5469  * Note that the following routines are used by board-specific initialisation
   5470  * code to configure the initial kernel page tables.
   5471  *
   5472  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5473  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5474  * behaviour of the old pmap, and provides an easy migration path for
   5475  * initial bring-up of the new pmap on existing ports. Fortunately,
   5476  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5477  * will be deprecated.
   5478  *
   5479  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5480  * tables.
   5481  */
   5482 
   5483 /*
   5484  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5485  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5486  * find them as necessary.
   5487  *
   5488  * Note that the data on this list MUST remain valid after initarm() returns,
   5489  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5490  */
   5491 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5492 
   5493 static vaddr_t
   5494 kernel_pt_lookup(paddr_t pa)
   5495 {
   5496 	pv_addr_t *pv;
   5497 
   5498 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5499 #ifndef ARM32_NEW_VM_LAYOUT
   5500 		if (pv->pv_pa == (pa & ~PGOFSET))
   5501 			return (pv->pv_va | (pa & PGOFSET));
   5502 #else
   5503 		if (pv->pv_pa == pa)
   5504 			return (pv->pv_va);
   5505 #endif
   5506 	}
   5507 	return (0);
   5508 }
   5509 
   5510 /*
   5511  * pmap_map_section:
   5512  *
   5513  *	Create a single section mapping.
   5514  */
   5515 void
   5516 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5517 {
   5518 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5519 	pd_entry_t fl;
   5520 
   5521 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5522 
   5523 	switch (cache) {
   5524 	case PTE_NOCACHE:
   5525 	default:
   5526 		fl = 0;
   5527 		break;
   5528 
   5529 	case PTE_CACHE:
   5530 		fl = pte_l1_s_cache_mode;
   5531 		break;
   5532 
   5533 	case PTE_PAGETABLE:
   5534 		fl = pte_l1_s_cache_mode_pt;
   5535 		break;
   5536 	}
   5537 
   5538 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5539 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5540 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5541 }
   5542 
   5543 /*
   5544  * pmap_map_entry:
   5545  *
   5546  *	Create a single page mapping.
   5547  */
   5548 void
   5549 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5550 {
   5551 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5552 	pt_entry_t fl;
   5553 	pt_entry_t *pte;
   5554 
   5555 	KASSERT(((va | pa) & PGOFSET) == 0);
   5556 
   5557 	switch (cache) {
   5558 	case PTE_NOCACHE:
   5559 	default:
   5560 		fl = 0;
   5561 		break;
   5562 
   5563 	case PTE_CACHE:
   5564 		fl = pte_l2_s_cache_mode;
   5565 		break;
   5566 
   5567 	case PTE_PAGETABLE:
   5568 		fl = pte_l2_s_cache_mode_pt;
   5569 		break;
   5570 	}
   5571 
   5572 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5573 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5574 
   5575 #ifndef ARM32_NEW_VM_LAYOUT
   5576 	pte = (pt_entry_t *)
   5577 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5578 #else
   5579 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5580 #endif
   5581 	if (pte == NULL)
   5582 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5583 
   5584 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5585 #ifndef ARM32_NEW_VM_LAYOUT
   5586 	pte += (va >> PGSHIFT) & 0x3ff;
   5587 #else
   5588 	pte += l2pte_index(va);
   5589 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5590 #endif
   5591 	*pte = fl;
   5592 	PTE_SYNC(pte);
   5593 }
   5594 
   5595 /*
   5596  * pmap_link_l2pt:
   5597  *
   5598  *	Link the L2 page table specified by "l2pv" into the L1
   5599  *	page table at the slot for "va".
   5600  */
   5601 void
   5602 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5603 {
   5604 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5605 	u_int slot = va >> L1_S_SHIFT;
   5606 
   5607 #ifndef ARM32_NEW_VM_LAYOUT
   5608 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5609 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5610 #endif
   5611 
   5612 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5613 
   5614 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5615 #ifdef ARM32_NEW_VM_LAYOUT
   5616 	PTE_SYNC(&pde[slot]);
   5617 #else
   5618 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5619 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5620 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5621 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5622 #endif
   5623 
   5624 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5625 }
   5626 
   5627 /*
   5628  * pmap_map_chunk:
   5629  *
   5630  *	Map a chunk of memory using the most efficient mappings
   5631  *	possible (section, large page, small page) into the
   5632  *	provided L1 and L2 tables at the specified virtual address.
   5633  */
   5634 vsize_t
   5635 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5636     int prot, int cache)
   5637 {
   5638 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5639 	pt_entry_t *pte, f1, f2s, f2l;
   5640 	vsize_t resid;
   5641 	int i;
   5642 
   5643 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5644 
   5645 	if (l1pt == 0)
   5646 		panic("pmap_map_chunk: no L1 table provided");
   5647 
   5648 #ifdef VERBOSE_INIT_ARM
   5649 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5650 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5651 #endif
   5652 
   5653 	switch (cache) {
   5654 	case PTE_NOCACHE:
   5655 	default:
   5656 		f1 = 0;
   5657 		f2l = 0;
   5658 		f2s = 0;
   5659 		break;
   5660 
   5661 	case PTE_CACHE:
   5662 		f1 = pte_l1_s_cache_mode;
   5663 		f2l = pte_l2_l_cache_mode;
   5664 		f2s = pte_l2_s_cache_mode;
   5665 		break;
   5666 
   5667 	case PTE_PAGETABLE:
   5668 		f1 = pte_l1_s_cache_mode_pt;
   5669 		f2l = pte_l2_l_cache_mode_pt;
   5670 		f2s = pte_l2_s_cache_mode_pt;
   5671 		break;
   5672 	}
   5673 
   5674 	size = resid;
   5675 
   5676 	while (resid > 0) {
   5677 		/* See if we can use a section mapping. */
   5678 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5679 #ifdef VERBOSE_INIT_ARM
   5680 			printf("S");
   5681 #endif
   5682 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5683 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5684 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5685 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5686 			va += L1_S_SIZE;
   5687 			pa += L1_S_SIZE;
   5688 			resid -= L1_S_SIZE;
   5689 			continue;
   5690 		}
   5691 
   5692 		/*
   5693 		 * Ok, we're going to use an L2 table.  Make sure
   5694 		 * one is actually in the corresponding L1 slot
   5695 		 * for the current VA.
   5696 		 */
   5697 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5698 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5699 
   5700 #ifndef ARM32_NEW_VM_LAYOUT
   5701 		pte = (pt_entry_t *)
   5702 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5703 #else
   5704 		pte = (pt_entry_t *) kernel_pt_lookup(
   5705 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5706 #endif
   5707 		if (pte == NULL)
   5708 			panic("pmap_map_chunk: can't find L2 table for VA"
   5709 			    "0x%08lx", va);
   5710 
   5711 		/* See if we can use a L2 large page mapping. */
   5712 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5713 #ifdef VERBOSE_INIT_ARM
   5714 			printf("L");
   5715 #endif
   5716 			for (i = 0; i < 16; i++) {
   5717 #ifndef ARM32_NEW_VM_LAYOUT
   5718 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5719 				    L2_L_PROTO | pa |
   5720 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5721 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5722 #else
   5723 				pte[l2pte_index(va) + i] =
   5724 				    L2_L_PROTO | pa |
   5725 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5726 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5727 #endif
   5728 			}
   5729 			va += L2_L_SIZE;
   5730 			pa += L2_L_SIZE;
   5731 			resid -= L2_L_SIZE;
   5732 			continue;
   5733 		}
   5734 
   5735 		/* Use a small page mapping. */
   5736 #ifdef VERBOSE_INIT_ARM
   5737 		printf("P");
   5738 #endif
   5739 #ifndef ARM32_NEW_VM_LAYOUT
   5740 		pte[(va >> PGSHIFT) & 0x3ff] =
   5741 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5742 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5743 #else
   5744 		pte[l2pte_index(va)] =
   5745 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5746 		PTE_SYNC(&pte[l2pte_index(va)]);
   5747 #endif
   5748 		va += PAGE_SIZE;
   5749 		pa += PAGE_SIZE;
   5750 		resid -= PAGE_SIZE;
   5751 	}
   5752 #ifdef VERBOSE_INIT_ARM
   5753 	printf("\n");
   5754 #endif
   5755 	return (size);
   5756 }
   5757 
   5758 /********************** Static device map routines ***************************/
   5759 
   5760 static const struct pmap_devmap *pmap_devmap_table;
   5761 
   5762 /*
   5763  * Register the devmap table.  This is provided in case early console
   5764  * initialization needs to register mappings created by bootstrap code
   5765  * before pmap_devmap_bootstrap() is called.
   5766  */
   5767 void
   5768 pmap_devmap_register(const struct pmap_devmap *table)
   5769 {
   5770 
   5771 	pmap_devmap_table = table;
   5772 }
   5773 
   5774 /*
   5775  * Map all of the static regions in the devmap table, and remember
   5776  * the devmap table so other parts of the kernel can look up entries
   5777  * later.
   5778  */
   5779 void
   5780 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5781 {
   5782 	int i;
   5783 
   5784 	pmap_devmap_table = table;
   5785 
   5786 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5787 #ifdef VERBOSE_INIT_ARM
   5788 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5789 		    pmap_devmap_table[i].pd_pa,
   5790 		    pmap_devmap_table[i].pd_pa +
   5791 			pmap_devmap_table[i].pd_size - 1,
   5792 		    pmap_devmap_table[i].pd_va);
   5793 #endif
   5794 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5795 		    pmap_devmap_table[i].pd_pa,
   5796 		    pmap_devmap_table[i].pd_size,
   5797 		    pmap_devmap_table[i].pd_prot,
   5798 		    pmap_devmap_table[i].pd_cache);
   5799 	}
   5800 }
   5801 
   5802 const struct pmap_devmap *
   5803 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5804 {
   5805 	uint64_t endpa;
   5806 	int i;
   5807 
   5808 	if (pmap_devmap_table == NULL)
   5809 		return (NULL);
   5810 
   5811 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5812 
   5813 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5814 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5815 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5816 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5817 			return (&pmap_devmap_table[i]);
   5818 	}
   5819 
   5820 	return (NULL);
   5821 }
   5822 
   5823 const struct pmap_devmap *
   5824 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5825 {
   5826 	int i;
   5827 
   5828 	if (pmap_devmap_table == NULL)
   5829 		return (NULL);
   5830 
   5831 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5832 		if (va >= pmap_devmap_table[i].pd_va &&
   5833 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5834 				     pmap_devmap_table[i].pd_size - 1)
   5835 			return (&pmap_devmap_table[i]);
   5836 	}
   5837 
   5838 	return (NULL);
   5839 }
   5840 
   5841 /********************** PTE initialization routines **************************/
   5842 
   5843 /*
   5844  * These routines are called when the CPU type is identified to set up
   5845  * the PTE prototypes, cache modes, etc.
   5846  *
   5847  * The variables are always here, just in case modules need to reference
   5848  * them (though, they shouldn't).
   5849  */
   5850 
   5851 pt_entry_t	pte_l1_s_cache_mode;
   5852 pt_entry_t	pte_l1_s_cache_mode_pt;
   5853 pt_entry_t	pte_l1_s_cache_mask;
   5854 
   5855 pt_entry_t	pte_l2_l_cache_mode;
   5856 pt_entry_t	pte_l2_l_cache_mode_pt;
   5857 pt_entry_t	pte_l2_l_cache_mask;
   5858 
   5859 pt_entry_t	pte_l2_s_cache_mode;
   5860 pt_entry_t	pte_l2_s_cache_mode_pt;
   5861 pt_entry_t	pte_l2_s_cache_mask;
   5862 
   5863 pt_entry_t	pte_l2_s_prot_u;
   5864 pt_entry_t	pte_l2_s_prot_w;
   5865 pt_entry_t	pte_l2_s_prot_mask;
   5866 
   5867 pt_entry_t	pte_l1_s_proto;
   5868 pt_entry_t	pte_l1_c_proto;
   5869 pt_entry_t	pte_l2_s_proto;
   5870 
   5871 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5872 void		(*pmap_zero_page_func)(paddr_t);
   5873 
   5874 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5875 void
   5876 pmap_pte_init_generic(void)
   5877 {
   5878 
   5879 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5880 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5881 
   5882 	pte_l2_l_cache_mode = L2_B|L2_C;
   5883 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5884 
   5885 	pte_l2_s_cache_mode = L2_B|L2_C;
   5886 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5887 
   5888 	/*
   5889 	 * If we have a write-through cache, set B and C.  If
   5890 	 * we have a write-back cache, then we assume setting
   5891 	 * only C will make those pages write-through.
   5892 	 */
   5893 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5894 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5895 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5896 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5897 	} else {
   5898 #if ARM_MMU_V6 > 1
   5899 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5900 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5901 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5902 #else
   5903 		pte_l1_s_cache_mode_pt = L1_S_C;
   5904 		pte_l2_l_cache_mode_pt = L2_C;
   5905 		pte_l2_s_cache_mode_pt = L2_C;
   5906 #endif
   5907 	}
   5908 
   5909 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5910 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5911 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5912 
   5913 	pte_l1_s_proto = L1_S_PROTO_generic;
   5914 	pte_l1_c_proto = L1_C_PROTO_generic;
   5915 	pte_l2_s_proto = L2_S_PROTO_generic;
   5916 
   5917 	pmap_copy_page_func = pmap_copy_page_generic;
   5918 	pmap_zero_page_func = pmap_zero_page_generic;
   5919 }
   5920 
   5921 #if defined(CPU_ARM8)
   5922 void
   5923 pmap_pte_init_arm8(void)
   5924 {
   5925 
   5926 	/*
   5927 	 * ARM8 is compatible with generic, but we need to use
   5928 	 * the page tables uncached.
   5929 	 */
   5930 	pmap_pte_init_generic();
   5931 
   5932 	pte_l1_s_cache_mode_pt = 0;
   5933 	pte_l2_l_cache_mode_pt = 0;
   5934 	pte_l2_s_cache_mode_pt = 0;
   5935 }
   5936 #endif /* CPU_ARM8 */
   5937 
   5938 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5939 void
   5940 pmap_pte_init_arm9(void)
   5941 {
   5942 
   5943 	/*
   5944 	 * ARM9 is compatible with generic, but we want to use
   5945 	 * write-through caching for now.
   5946 	 */
   5947 	pmap_pte_init_generic();
   5948 
   5949 	pte_l1_s_cache_mode = L1_S_C;
   5950 	pte_l2_l_cache_mode = L2_C;
   5951 	pte_l2_s_cache_mode = L2_C;
   5952 
   5953 	pte_l1_s_cache_mode_pt = L1_S_C;
   5954 	pte_l2_l_cache_mode_pt = L2_C;
   5955 	pte_l2_s_cache_mode_pt = L2_C;
   5956 }
   5957 #endif /* CPU_ARM9 */
   5958 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5959 
   5960 #if defined(CPU_ARM10)
   5961 void
   5962 pmap_pte_init_arm10(void)
   5963 {
   5964 
   5965 	/*
   5966 	 * ARM10 is compatible with generic, but we want to use
   5967 	 * write-through caching for now.
   5968 	 */
   5969 	pmap_pte_init_generic();
   5970 
   5971 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   5972 	pte_l2_l_cache_mode = L2_B | L2_C;
   5973 	pte_l2_s_cache_mode = L2_B | L2_C;
   5974 
   5975 	pte_l1_s_cache_mode_pt = L1_S_C;
   5976 	pte_l2_l_cache_mode_pt = L2_C;
   5977 	pte_l2_s_cache_mode_pt = L2_C;
   5978 
   5979 }
   5980 #endif /* CPU_ARM10 */
   5981 
   5982 #if ARM_MMU_SA1 == 1
   5983 void
   5984 pmap_pte_init_sa1(void)
   5985 {
   5986 
   5987 	/*
   5988 	 * The StrongARM SA-1 cache does not have a write-through
   5989 	 * mode.  So, do the generic initialization, then reset
   5990 	 * the page table cache mode to B=1,C=1, and note that
   5991 	 * the PTEs need to be sync'd.
   5992 	 */
   5993 	pmap_pte_init_generic();
   5994 
   5995 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5996 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5997 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5998 
   5999 	pmap_needs_pte_sync = 1;
   6000 }
   6001 #endif /* ARM_MMU_SA1 == 1*/
   6002 
   6003 #if ARM_MMU_XSCALE == 1
   6004 #if (ARM_NMMUS > 1)
   6005 static u_int xscale_use_minidata;
   6006 #endif
   6007 
   6008 void
   6009 pmap_pte_init_xscale(void)
   6010 {
   6011 	uint32_t auxctl;
   6012 	int write_through = 0;
   6013 
   6014 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6015 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6016 
   6017 	pte_l2_l_cache_mode = L2_B|L2_C;
   6018 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6019 
   6020 	pte_l2_s_cache_mode = L2_B|L2_C;
   6021 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6022 
   6023 	pte_l1_s_cache_mode_pt = L1_S_C;
   6024 	pte_l2_l_cache_mode_pt = L2_C;
   6025 	pte_l2_s_cache_mode_pt = L2_C;
   6026 
   6027 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6028 	/*
   6029 	 * The XScale core has an enhanced mode where writes that
   6030 	 * miss the cache cause a cache line to be allocated.  This
   6031 	 * is significantly faster than the traditional, write-through
   6032 	 * behavior of this case.
   6033 	 */
   6034 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6035 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6036 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6037 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6038 
   6039 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6040 	/*
   6041 	 * Some versions of the XScale core have various bugs in
   6042 	 * their cache units, the work-around for which is to run
   6043 	 * the cache in write-through mode.  Unfortunately, this
   6044 	 * has a major (negative) impact on performance.  So, we
   6045 	 * go ahead and run fast-and-loose, in the hopes that we
   6046 	 * don't line up the planets in a way that will trip the
   6047 	 * bugs.
   6048 	 *
   6049 	 * However, we give you the option to be slow-but-correct.
   6050 	 */
   6051 	write_through = 1;
   6052 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6053 	/* force write back cache mode */
   6054 	write_through = 0;
   6055 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6056 	/*
   6057 	 * Intel PXA2[15]0 processors are known to have a bug in
   6058 	 * write-back cache on revision 4 and earlier (stepping
   6059 	 * A[01] and B[012]).  Fixed for C0 and later.
   6060 	 */
   6061 	{
   6062 		uint32_t id, type;
   6063 
   6064 		id = cpufunc_id();
   6065 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6066 
   6067 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6068 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6069 				/* write through for stepping A0-1 and B0-2 */
   6070 				write_through = 1;
   6071 			}
   6072 		}
   6073 	}
   6074 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6075 
   6076 	if (write_through) {
   6077 		pte_l1_s_cache_mode = L1_S_C;
   6078 		pte_l2_l_cache_mode = L2_C;
   6079 		pte_l2_s_cache_mode = L2_C;
   6080 	}
   6081 
   6082 #if (ARM_NMMUS > 1)
   6083 	xscale_use_minidata = 1;
   6084 #endif
   6085 
   6086 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6087 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6088 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6089 
   6090 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6091 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6092 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6093 
   6094 	pmap_copy_page_func = pmap_copy_page_xscale;
   6095 	pmap_zero_page_func = pmap_zero_page_xscale;
   6096 
   6097 	/*
   6098 	 * Disable ECC protection of page table access, for now.
   6099 	 */
   6100 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6101 	auxctl &= ~XSCALE_AUXCTL_P;
   6102 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6103 }
   6104 
   6105 /*
   6106  * xscale_setup_minidata:
   6107  *
   6108  *	Set up the mini-data cache clean area.  We require the
   6109  *	caller to allocate the right amount of physically and
   6110  *	virtually contiguous space.
   6111  */
   6112 void
   6113 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6114 {
   6115 	extern vaddr_t xscale_minidata_clean_addr;
   6116 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6117 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6118 	pt_entry_t *pte;
   6119 	vsize_t size;
   6120 	uint32_t auxctl;
   6121 
   6122 	xscale_minidata_clean_addr = va;
   6123 
   6124 	/* Round it to page size. */
   6125 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6126 
   6127 	for (; size != 0;
   6128 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6129 #ifndef ARM32_NEW_VM_LAYOUT
   6130 		pte = (pt_entry_t *)
   6131 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6132 #else
   6133 		pte = (pt_entry_t *) kernel_pt_lookup(
   6134 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6135 #endif
   6136 		if (pte == NULL)
   6137 			panic("xscale_setup_minidata: can't find L2 table for "
   6138 			    "VA 0x%08lx", va);
   6139 #ifndef ARM32_NEW_VM_LAYOUT
   6140 		pte[(va >> PGSHIFT) & 0x3ff] =
   6141 #else
   6142 		pte[l2pte_index(va)] =
   6143 #endif
   6144 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6145 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6146 	}
   6147 
   6148 	/*
   6149 	 * Configure the mini-data cache for write-back with
   6150 	 * read/write-allocate.
   6151 	 *
   6152 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6153 	 * make sure it contains no valid data!  In order to do that,
   6154 	 * we must issue a global data cache invalidate command!
   6155 	 *
   6156 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6157 	 * THIS IS VERY IMPORTANT!
   6158 	 */
   6159 
   6160 	/* Invalidate data and mini-data. */
   6161 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6162 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6163 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6164 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6165 }
   6166 
   6167 /*
   6168  * Change the PTEs for the specified kernel mappings such that they
   6169  * will use the mini data cache instead of the main data cache.
   6170  */
   6171 void
   6172 pmap_uarea(vaddr_t va)
   6173 {
   6174 	struct l2_bucket *l2b;
   6175 	pt_entry_t *ptep, *sptep, pte;
   6176 	vaddr_t next_bucket, eva;
   6177 
   6178 #if (ARM_NMMUS > 1)
   6179 	if (xscale_use_minidata == 0)
   6180 		return;
   6181 #endif
   6182 
   6183 	eva = va + USPACE;
   6184 
   6185 	while (va < eva) {
   6186 		next_bucket = L2_NEXT_BUCKET(va);
   6187 		if (next_bucket > eva)
   6188 			next_bucket = eva;
   6189 
   6190 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6191 		KDASSERT(l2b != NULL);
   6192 
   6193 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6194 
   6195 		while (va < next_bucket) {
   6196 			pte = *ptep;
   6197 			if (!l2pte_minidata(pte)) {
   6198 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6199 				cpu_tlb_flushD_SE(va);
   6200 				*ptep = pte & ~L2_B;
   6201 			}
   6202 			ptep++;
   6203 			va += PAGE_SIZE;
   6204 		}
   6205 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6206 	}
   6207 	cpu_cpwait();
   6208 }
   6209 #endif /* ARM_MMU_XSCALE == 1 */
   6210 
   6211 /*
   6212  * return the PA of the current L1 table, for use when handling a crash dump
   6213  */
   6214 uint32_t pmap_kernel_L1_addr(void)
   6215 {
   6216 	return pmap_kernel()->pm_l1->l1_physaddr;
   6217 }
   6218 
   6219 #if defined(DDB)
   6220 /*
   6221  * A couple of ddb-callable functions for dumping pmaps
   6222  */
   6223 void pmap_dump_all(void);
   6224 void pmap_dump(pmap_t);
   6225 
   6226 void
   6227 pmap_dump_all(void)
   6228 {
   6229 	pmap_t pm;
   6230 
   6231 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6232 		if (pm == pmap_kernel())
   6233 			continue;
   6234 		pmap_dump(pm);
   6235 		printf("\n");
   6236 	}
   6237 }
   6238 
   6239 static pt_entry_t ncptes[64];
   6240 static void pmap_dump_ncpg(pmap_t);
   6241 
   6242 void
   6243 pmap_dump(pmap_t pm)
   6244 {
   6245 	struct l2_dtable *l2;
   6246 	struct l2_bucket *l2b;
   6247 	pt_entry_t *ptep, pte;
   6248 	vaddr_t l2_va, l2b_va, va;
   6249 	int i, j, k, occ, rows = 0;
   6250 
   6251 	if (pm == pmap_kernel())
   6252 		printf("pmap_kernel (%p): ", pm);
   6253 	else
   6254 		printf("user pmap (%p): ", pm);
   6255 
   6256 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6257 
   6258 	l2_va = 0;
   6259 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6260 		l2 = pm->pm_l2[i];
   6261 
   6262 		if (l2 == NULL || l2->l2_occupancy == 0)
   6263 			continue;
   6264 
   6265 		l2b_va = l2_va;
   6266 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6267 			l2b = &l2->l2_bucket[j];
   6268 
   6269 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6270 				continue;
   6271 
   6272 			ptep = l2b->l2b_kva;
   6273 
   6274 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6275 				;
   6276 
   6277 			k &= ~63;
   6278 			occ = l2b->l2b_occupancy;
   6279 			va = l2b_va + (k * 4096);
   6280 			for (; k < 256; k++, va += 0x1000) {
   6281 				char ch = ' ';
   6282 				if ((k % 64) == 0) {
   6283 					if ((rows % 8) == 0) {
   6284 						printf(
   6285 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6286 					}
   6287 					printf("%08lx: ", va);
   6288 				}
   6289 
   6290 				ncptes[k & 63] = 0;
   6291 				pte = ptep[k];
   6292 				if (pte == 0) {
   6293 					ch = '.';
   6294 				} else {
   6295 					occ--;
   6296 					switch (pte & 0x0c) {
   6297 					case 0x00:
   6298 						ch = 'D'; /* No cache No buff */
   6299 						break;
   6300 					case 0x04:
   6301 						ch = 'B'; /* No cache buff */
   6302 						break;
   6303 					case 0x08:
   6304 						if (pte & 0x40)
   6305 							ch = 'm';
   6306 						else
   6307 						   ch = 'C'; /* Cache No buff */
   6308 						break;
   6309 					case 0x0c:
   6310 						ch = 'F'; /* Cache Buff */
   6311 						break;
   6312 					}
   6313 
   6314 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6315 						ch += 0x20;
   6316 
   6317 					if ((pte & 0xc) == 0)
   6318 						ncptes[k & 63] = pte;
   6319 				}
   6320 
   6321 				if ((k % 64) == 63) {
   6322 					rows++;
   6323 					printf("%c\n", ch);
   6324 					pmap_dump_ncpg(pm);
   6325 					if (occ == 0)
   6326 						break;
   6327 				} else
   6328 					printf("%c", ch);
   6329 			}
   6330 		}
   6331 	}
   6332 }
   6333 
   6334 static void
   6335 pmap_dump_ncpg(pmap_t pm)
   6336 {
   6337 	struct vm_page *pg;
   6338 	struct pv_entry *pv;
   6339 	int i;
   6340 
   6341 	for (i = 0; i < 63; i++) {
   6342 		if (ncptes[i] == 0)
   6343 			continue;
   6344 
   6345 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6346 		if (pg == NULL)
   6347 			continue;
   6348 
   6349 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6350 		    VM_PAGE_TO_PHYS(pg),
   6351 		    pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
   6352 		    pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
   6353 
   6354 		SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
   6355 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6356 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6357 			    pv->pv_va, pv->pv_flags);
   6358 		}
   6359 	}
   6360 }
   6361 #endif
   6362 
   6363 #ifdef PMAP_STEAL_MEMORY
   6364 void
   6365 pmap_boot_pageadd(pv_addr_t *newpv)
   6366 {
   6367 	pv_addr_t *pv, *npv;
   6368 
   6369 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6370 		if (newpv->pv_pa < pv->pv_va) {
   6371 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6372 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6373 				newpv->pv_size += pv->pv_size;
   6374 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6375 			}
   6376 			pv = NULL;
   6377 		} else {
   6378 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6379 			     pv = npv) {
   6380 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6381 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6382 				if (newpv->pv_pa > npv->pv_pa)
   6383 					continue;
   6384 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6385 					pv->pv_size += newpv->pv_size;
   6386 					return;
   6387 				}
   6388 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6389 					break;
   6390 				newpv->pv_size += npv->pv_size;
   6391 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6392 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6393 				return;
   6394 			}
   6395 		}
   6396 	}
   6397 
   6398 	if (pv) {
   6399 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6400 	} else {
   6401 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6402 	}
   6403 }
   6404 
   6405 void
   6406 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6407 	pv_addr_t *rpv)
   6408 {
   6409 	pv_addr_t *pv, **pvp;
   6410 	struct vm_physseg *ps;
   6411 	size_t i;
   6412 
   6413 	KASSERT(amount & PGOFSET);
   6414 	KASSERT((mask & PGOFSET) == 0);
   6415 	KASSERT((match & PGOFSET) == 0);
   6416 	KASSERT(amount != 0);
   6417 
   6418 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6419 	     (pv = *pvp) != NULL;
   6420 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6421 		pv_addr_t *newpv;
   6422 		psize_t off;
   6423 		/*
   6424 		 * If this entry is too small to satify the request...
   6425 		 */
   6426 		KASSERT(pv->pv_size > 0);
   6427 		if (pv->pv_size < amount)
   6428 			continue;
   6429 
   6430 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6431 			if (((pv->pv_pa + off) & mask) == match
   6432 			    && off + amount <= pv->pv_size)
   6433 				break;
   6434 		}
   6435 		if (off > mask)
   6436 			continue;
   6437 
   6438 		rpv->pv_va = pv->pv_va + off;
   6439 		rpv->pv_pa = pv->pv_pa + off;
   6440 		rpv->pv_size = amount;
   6441 		pv->pv_size -= amount;
   6442 		if (pv->pv_size == 0) {
   6443 			KASSERT(off == 0);
   6444 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6445 			*pvp = SLIST_NEXT(pv, pv_list);
   6446 		} else if (off == 0) {
   6447 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6448 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6449 			*newpv = *pv;
   6450 			newpv->pv_pa += amount;
   6451 			newpv->pv_va += amount;
   6452 			*pvp = newpv;
   6453 		} else if (off < pv->pv_size) {
   6454 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6455 			*newpv = *pv;
   6456 			newpv->pv_size -= off;
   6457 			newpv->pv_pa += off + amount;
   6458 			newpv->pv_va += off + amount;
   6459 
   6460 			SLIST_NEXT(pv, pv_list) = newpv;
   6461 			pv->pv_size = off;
   6462 		} else {
   6463 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6464 		}
   6465 		memset((void *)rpv->pv_va, 0, amount);
   6466 		return;
   6467 	}
   6468 
   6469 	if (vm_nphysseg == 0)
   6470 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6471 
   6472 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6473 	     (pv = *pvp) != NULL;
   6474 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6475 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6476 			break;
   6477 	}
   6478 	KASSERT(mask == 0);
   6479 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6480 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6481 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6482 			rpv->pv_va = pv->pv_va;
   6483 			rpv->pv_pa = pv->pv_pa;
   6484 			rpv->pv_size = amount;
   6485 			*pvp = NULL;
   6486 			pmap_map_chunk(kernel_l1pt.pv_va,
   6487 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6488 			     ptoa(ps->avail_start),
   6489 			     amount - pv->pv_size,
   6490 			     VM_PROT_READ|VM_PROT_WRITE,
   6491 			     PTE_CACHE);
   6492 			ps->avail_start += atop(amount - pv->pv_size);
   6493 			/*
   6494 			 * If we consumed the entire physseg, remove it.
   6495 			 */
   6496 			if (ps->avail_start == ps->avail_end) {
   6497 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6498 					ps[0] = ps[1];
   6499 			}
   6500 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6501 			return;
   6502 		}
   6503 	}
   6504 
   6505 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6506 }
   6507 
   6508 vaddr_t
   6509 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6510 {
   6511 	pv_addr_t pv;
   6512 
   6513 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6514 
   6515 	return pv.pv_va;
   6516 }
   6517 #endif /* PMAP_STEAL_MEMORY */
   6518 
   6519 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6520 {
   6521 	sysctl_createv(clog, 0, NULL, NULL,
   6522 			CTLFLAG_PERMANENT,
   6523 			CTLTYPE_NODE, "machdep", NULL,
   6524 			NULL, 0, NULL, 0,
   6525 			CTL_MACHDEP, CTL_EOL);
   6526 
   6527 	sysctl_createv(clog, 0, NULL, NULL,
   6528 			CTLFLAG_PERMANENT,
   6529 			CTLTYPE_INT, "kmpages",
   6530 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6531 			NULL, 0, &pmap_kmpages, 0,
   6532 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6533 }
   6534