pmap.c revision 1.203 1 /* $NetBSD: pmap.c,v 1.203 2009/11/28 11:44:45 scw Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/pool.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <machine/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/arm32/katelib.h>
213
214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.203 2009/11/28 11:44:45 scw Exp $");
215
216 #ifdef PMAP_DEBUG
217
218 /* XXX need to get rid of all refs to this */
219 int pmap_debug_level = 0;
220
221 /*
222 * for switching to potentially finer grained debugging
223 */
224 #define PDB_FOLLOW 0x0001
225 #define PDB_INIT 0x0002
226 #define PDB_ENTER 0x0004
227 #define PDB_REMOVE 0x0008
228 #define PDB_CREATE 0x0010
229 #define PDB_PTPAGE 0x0020
230 #define PDB_GROWKERN 0x0040
231 #define PDB_BITS 0x0080
232 #define PDB_COLLECT 0x0100
233 #define PDB_PROTECT 0x0200
234 #define PDB_MAP_L1 0x0400
235 #define PDB_BOOTSTRAP 0x1000
236 #define PDB_PARANOIA 0x2000
237 #define PDB_WIRING 0x4000
238 #define PDB_PVDUMP 0x8000
239 #define PDB_VAC 0x10000
240 #define PDB_KENTER 0x20000
241 #define PDB_KREMOVE 0x40000
242 #define PDB_EXEC 0x80000
243
244 int debugmap = 1;
245 int pmapdebug = 0;
246 #define NPDEBUG(_lev_,_stat_) \
247 if (pmapdebug & (_lev_)) \
248 ((_stat_))
249
250 #else /* PMAP_DEBUG */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif /* PMAP_DEBUG */
253
254 /*
255 * pmap_kernel() points here
256 */
257 static struct pmap kernel_pmap_store;
258 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
259
260 /*
261 * Which pmap is currently 'live' in the cache
262 *
263 * XXXSCW: Fix for SMP ...
264 */
265 static pmap_t pmap_recent_user;
266
267 /*
268 * Pointer to last active lwp, or NULL if it exited.
269 */
270 struct lwp *pmap_previous_active_lwp;
271
272 /*
273 * Pool and cache that pmap structures are allocated from.
274 * We use a cache to avoid clearing the pm_l2[] array (1KB)
275 * in pmap_create().
276 */
277 static struct pool_cache pmap_cache;
278 static LIST_HEAD(, pmap) pmap_pmaps;
279
280 /*
281 * Pool of PV structures
282 */
283 static struct pool pmap_pv_pool;
284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
287 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
288 };
289
290 /*
291 * Pool and cache of l2_dtable structures.
292 * We use a cache to avoid clearing the structures when they're
293 * allocated. (196 bytes)
294 */
295 static struct pool_cache pmap_l2dtable_cache;
296 static vaddr_t pmap_kernel_l2dtable_kva;
297
298 /*
299 * Pool and cache of L2 page descriptors.
300 * We use a cache to avoid clearing the descriptor table
301 * when they're allocated. (1KB)
302 */
303 static struct pool_cache pmap_l2ptp_cache;
304 static vaddr_t pmap_kernel_l2ptp_kva;
305 static paddr_t pmap_kernel_l2ptp_phys;
306
307 #ifdef PMAPCOUNTERS
308 #define PMAP_EVCNT_INITIALIZER(name) \
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
310
311 #ifdef PMAP_CACHE_VIPT
312 static struct evcnt pmap_ev_vac_clean_one =
313 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
314 static struct evcnt pmap_ev_vac_flush_one =
315 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
316 static struct evcnt pmap_ev_vac_flush_lots =
317 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
318 static struct evcnt pmap_ev_vac_flush_lots2 =
319 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
324
325 static struct evcnt pmap_ev_vac_color_new =
326 PMAP_EVCNT_INITIALIZER("new page color");
327 static struct evcnt pmap_ev_vac_color_reuse =
328 PMAP_EVCNT_INITIALIZER("ok first page color");
329 static struct evcnt pmap_ev_vac_color_ok =
330 PMAP_EVCNT_INITIALIZER("ok page color");
331 static struct evcnt pmap_ev_vac_color_blind =
332 PMAP_EVCNT_INITIALIZER("blind page color");
333 static struct evcnt pmap_ev_vac_color_change =
334 PMAP_EVCNT_INITIALIZER("change page color");
335 static struct evcnt pmap_ev_vac_color_erase =
336 PMAP_EVCNT_INITIALIZER("erase page color");
337 static struct evcnt pmap_ev_vac_color_none =
338 PMAP_EVCNT_INITIALIZER("no page color");
339 static struct evcnt pmap_ev_vac_color_restore =
340 PMAP_EVCNT_INITIALIZER("restore page color");
341
342 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
350 #endif
351
352 static struct evcnt pmap_ev_mappings =
353 PMAP_EVCNT_INITIALIZER("pages mapped");
354 static struct evcnt pmap_ev_unmappings =
355 PMAP_EVCNT_INITIALIZER("pages unmapped");
356 static struct evcnt pmap_ev_remappings =
357 PMAP_EVCNT_INITIALIZER("pages remapped");
358
359 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
360 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
361 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
362
363 static struct evcnt pmap_ev_kernel_mappings =
364 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
365 static struct evcnt pmap_ev_kernel_unmappings =
366 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
367 static struct evcnt pmap_ev_kernel_remappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
369
370 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
373
374 static struct evcnt pmap_ev_kenter_mappings =
375 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
376 static struct evcnt pmap_ev_kenter_unmappings =
377 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
378 static struct evcnt pmap_ev_kenter_remappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
380 static struct evcnt pmap_ev_pt_mappings =
381 PMAP_EVCNT_INITIALIZER("page table pages mapped");
382
383 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
386 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
387
388 #ifdef PMAP_CACHE_VIPT
389 static struct evcnt pmap_ev_exec_mappings =
390 PMAP_EVCNT_INITIALIZER("exec pages mapped");
391 static struct evcnt pmap_ev_exec_cached =
392 PMAP_EVCNT_INITIALIZER("exec pages cached");
393
394 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
395 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
396
397 static struct evcnt pmap_ev_exec_synced =
398 PMAP_EVCNT_INITIALIZER("exec pages synced");
399 static struct evcnt pmap_ev_exec_synced_map =
400 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
401 static struct evcnt pmap_ev_exec_synced_unmap =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
403 static struct evcnt pmap_ev_exec_synced_remap =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
405 static struct evcnt pmap_ev_exec_synced_clearbit =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
407 static struct evcnt pmap_ev_exec_synced_kremove =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
409
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
416
417 static struct evcnt pmap_ev_exec_discarded_unmap =
418 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
419 static struct evcnt pmap_ev_exec_discarded_zero =
420 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
421 static struct evcnt pmap_ev_exec_discarded_copy =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
423 static struct evcnt pmap_ev_exec_discarded_page_protect =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
425 static struct evcnt pmap_ev_exec_discarded_clearbit =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
427 static struct evcnt pmap_ev_exec_discarded_kremove =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
429
430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
436 #endif /* PMAP_CACHE_VIPT */
437
438 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
439 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
440 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
441
442 EVCNT_ATTACH_STATIC(pmap_ev_updates);
443 EVCNT_ATTACH_STATIC(pmap_ev_collects);
444 EVCNT_ATTACH_STATIC(pmap_ev_activations);
445
446 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
447 #else
448 #define PMAPCOUNT(x) ((void)0)
449 #endif
450
451 /*
452 * pmap copy/zero page, and mem(5) hook point
453 */
454 static pt_entry_t *csrc_pte, *cdst_pte;
455 static vaddr_t csrcp, cdstp;
456 vaddr_t memhook; /* used by mem.c */
457 kmutex_t memlock; /* used by mem.c */
458 void *zeropage; /* used by mem.c */
459 extern void *msgbufaddr;
460 int pmap_kmpages;
461 /*
462 * Flag to indicate if pmap_init() has done its thing
463 */
464 bool pmap_initialized;
465
466 /*
467 * Misc. locking data structures
468 */
469
470 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
471 static struct lock pmap_main_lock;
472
473 #define PMAP_MAP_TO_HEAD_LOCK() \
474 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
475 #define PMAP_MAP_TO_HEAD_UNLOCK() \
476 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
477 #define PMAP_HEAD_TO_MAP_LOCK() \
478 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
479 #define PMAP_HEAD_TO_MAP_UNLOCK() \
480 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
481 #else
482 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
483 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
484 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
485 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
486 #endif
487
488 #define pmap_acquire_pmap_lock(pm) \
489 do { \
490 if ((pm) != pmap_kernel()) \
491 mutex_enter(&(pm)->pm_lock); \
492 } while (/*CONSTCOND*/0)
493
494 #define pmap_release_pmap_lock(pm) \
495 do { \
496 if ((pm) != pmap_kernel()) \
497 mutex_exit(&(pm)->pm_lock); \
498 } while (/*CONSTCOND*/0)
499
500
501 /*
502 * Metadata for L1 translation tables.
503 */
504 struct l1_ttable {
505 /* Entry on the L1 Table list */
506 SLIST_ENTRY(l1_ttable) l1_link;
507
508 /* Entry on the L1 Least Recently Used list */
509 TAILQ_ENTRY(l1_ttable) l1_lru;
510
511 /* Track how many domains are allocated from this L1 */
512 volatile u_int l1_domain_use_count;
513
514 /*
515 * A free-list of domain numbers for this L1.
516 * We avoid using ffs() and a bitmap to track domains since ffs()
517 * is slow on ARM.
518 */
519 u_int8_t l1_domain_first;
520 u_int8_t l1_domain_free[PMAP_DOMAINS];
521
522 /* Physical address of this L1 page table */
523 paddr_t l1_physaddr;
524
525 /* KVA of this L1 page table */
526 pd_entry_t *l1_kva;
527 };
528
529 /*
530 * Convert a virtual address into its L1 table index. That is, the
531 * index used to locate the L2 descriptor table pointer in an L1 table.
532 * This is basically used to index l1->l1_kva[].
533 *
534 * Each L2 descriptor table represents 1MB of VA space.
535 */
536 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
537
538 /*
539 * L1 Page Tables are tracked using a Least Recently Used list.
540 * - New L1s are allocated from the HEAD.
541 * - Freed L1s are added to the TAIl.
542 * - Recently accessed L1s (where an 'access' is some change to one of
543 * the userland pmaps which owns this L1) are moved to the TAIL.
544 */
545 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
546 static struct simplelock l1_lru_lock;
547
548 /*
549 * A list of all L1 tables
550 */
551 static SLIST_HEAD(, l1_ttable) l1_list;
552
553 /*
554 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
555 *
556 * This is normally 16MB worth L2 page descriptors for any given pmap.
557 * Reference counts are maintained for L2 descriptors so they can be
558 * freed when empty.
559 */
560 struct l2_dtable {
561 /* The number of L2 page descriptors allocated to this l2_dtable */
562 u_int l2_occupancy;
563
564 /* List of L2 page descriptors */
565 struct l2_bucket {
566 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
567 paddr_t l2b_phys; /* Physical address of same */
568 u_short l2b_l1idx; /* This L2 table's L1 index */
569 u_short l2b_occupancy; /* How many active descriptors */
570 } l2_bucket[L2_BUCKET_SIZE];
571 };
572
573 /*
574 * Given an L1 table index, calculate the corresponding l2_dtable index
575 * and bucket index within the l2_dtable.
576 */
577 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
578 (L2_SIZE - 1))
579 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
580
581 /*
582 * Given a virtual address, this macro returns the
583 * virtual address required to drop into the next L2 bucket.
584 */
585 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
586
587 /*
588 * L2 allocation.
589 */
590 #define pmap_alloc_l2_dtable() \
591 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
592 #define pmap_free_l2_dtable(l2) \
593 pool_cache_put(&pmap_l2dtable_cache, (l2))
594 #define pmap_alloc_l2_ptp(pap) \
595 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
596 PR_NOWAIT, (pap)))
597
598 /*
599 * We try to map the page tables write-through, if possible. However, not
600 * all CPUs have a write-through cache mode, so on those we have to sync
601 * the cache when we frob page tables.
602 *
603 * We try to evaluate this at compile time, if possible. However, it's
604 * not always possible to do that, hence this run-time var.
605 */
606 int pmap_needs_pte_sync;
607
608 /*
609 * Real definition of pv_entry.
610 */
611 struct pv_entry {
612 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
613 pmap_t pv_pmap; /* pmap where mapping lies */
614 vaddr_t pv_va; /* virtual address for mapping */
615 u_int pv_flags; /* flags */
616 };
617
618 /*
619 * Macro to determine if a mapping might be resident in the
620 * instruction cache and/or TLB
621 */
622 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
623 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
624
625 /*
626 * Macro to determine if a mapping might be resident in the
627 * data cache and/or TLB
628 */
629 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
630
631 /*
632 * Local prototypes
633 */
634 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
635 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
636 pt_entry_t **);
637 static bool pmap_is_current(pmap_t);
638 static bool pmap_is_cached(pmap_t);
639 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
640 pmap_t, vaddr_t, u_int);
641 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
642 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
643 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
644 u_int, u_int);
645
646 static void pmap_pinit(pmap_t);
647 static int pmap_pmap_ctor(void *, void *, int);
648
649 static void pmap_alloc_l1(pmap_t);
650 static void pmap_free_l1(pmap_t);
651 static void pmap_use_l1(pmap_t);
652
653 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
654 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
655 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
656 static int pmap_l2ptp_ctor(void *, void *, int);
657 static int pmap_l2dtable_ctor(void *, void *, int);
658
659 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
660 #ifdef PMAP_CACHE_VIVT
661 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
662 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
663 #endif
664
665 static void pmap_clearbit(struct vm_page *, u_int);
666 #ifdef PMAP_CACHE_VIVT
667 static int pmap_clean_page(struct pv_entry *, bool);
668 #endif
669 #ifdef PMAP_CACHE_VIPT
670 static void pmap_syncicache_page(struct vm_page *);
671 enum pmap_flush_op {
672 PMAP_FLUSH_PRIMARY,
673 PMAP_FLUSH_SECONDARY,
674 PMAP_CLEAN_PRIMARY
675 };
676 static void pmap_flush_page(struct vm_page *, enum pmap_flush_op);
677 #endif
678 static void pmap_page_remove(struct vm_page *);
679
680 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
681 static vaddr_t kernel_pt_lookup(paddr_t);
682
683
684 /*
685 * External function prototypes
686 */
687 extern void bzero_page(vaddr_t);
688 extern void bcopy_page(vaddr_t, vaddr_t);
689
690 /*
691 * Misc variables
692 */
693 vaddr_t virtual_avail;
694 vaddr_t virtual_end;
695 vaddr_t pmap_curmaxkvaddr;
696
697 paddr_t avail_start;
698 paddr_t avail_end;
699
700 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
701 pv_addr_t kernelpages;
702 pv_addr_t kernel_l1pt;
703 pv_addr_t systempage;
704
705 /* Function to set the debug level of the pmap code */
706
707 #ifdef PMAP_DEBUG
708 void
709 pmap_debug(int level)
710 {
711 pmap_debug_level = level;
712 printf("pmap_debug: level=%d\n", pmap_debug_level);
713 }
714 #endif /* PMAP_DEBUG */
715
716 /*
717 * A bunch of routines to conditionally flush the caches/TLB depending
718 * on whether the specified pmap actually needs to be flushed at any
719 * given time.
720 */
721 static inline void
722 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
723 {
724
725 if (pm->pm_cstate.cs_tlb_id)
726 cpu_tlb_flushID_SE(va);
727 }
728
729 static inline void
730 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
731 {
732
733 if (pm->pm_cstate.cs_tlb_d)
734 cpu_tlb_flushD_SE(va);
735 }
736
737 static inline void
738 pmap_tlb_flushID(pmap_t pm)
739 {
740
741 if (pm->pm_cstate.cs_tlb_id) {
742 cpu_tlb_flushID();
743 pm->pm_cstate.cs_tlb = 0;
744 }
745 }
746
747 static inline void
748 pmap_tlb_flushD(pmap_t pm)
749 {
750
751 if (pm->pm_cstate.cs_tlb_d) {
752 cpu_tlb_flushD();
753 pm->pm_cstate.cs_tlb_d = 0;
754 }
755 }
756
757 #ifdef PMAP_CACHE_VIVT
758 static inline void
759 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
760 {
761 if (pm->pm_cstate.cs_cache_id) {
762 cpu_idcache_wbinv_range(va, len);
763 }
764 }
765
766 static inline void
767 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
768 bool do_inv, bool rd_only)
769 {
770
771 if (pm->pm_cstate.cs_cache_d) {
772 if (do_inv) {
773 if (rd_only)
774 cpu_dcache_inv_range(va, len);
775 else
776 cpu_dcache_wbinv_range(va, len);
777 } else
778 if (!rd_only)
779 cpu_dcache_wb_range(va, len);
780 }
781 }
782
783 static inline void
784 pmap_idcache_wbinv_all(pmap_t pm)
785 {
786 if (pm->pm_cstate.cs_cache_id) {
787 cpu_idcache_wbinv_all();
788 pm->pm_cstate.cs_cache = 0;
789 }
790 }
791
792 static inline void
793 pmap_dcache_wbinv_all(pmap_t pm)
794 {
795 if (pm->pm_cstate.cs_cache_d) {
796 cpu_dcache_wbinv_all();
797 pm->pm_cstate.cs_cache_d = 0;
798 }
799 }
800 #endif /* PMAP_CACHE_VIVT */
801
802 static inline bool
803 pmap_is_current(pmap_t pm)
804 {
805
806 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
807 return true;
808
809 return false;
810 }
811
812 static inline bool
813 pmap_is_cached(pmap_t pm)
814 {
815
816 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
817 pmap_recent_user == pm)
818 return (true);
819
820 return false;
821 }
822
823 /*
824 * PTE_SYNC_CURRENT:
825 *
826 * Make sure the pte is written out to RAM.
827 * We need to do this for one of two cases:
828 * - We're dealing with the kernel pmap
829 * - There is no pmap active in the cache/tlb.
830 * - The specified pmap is 'active' in the cache/tlb.
831 */
832 #ifdef PMAP_INCLUDE_PTE_SYNC
833 #define PTE_SYNC_CURRENT(pm, ptep) \
834 do { \
835 if (PMAP_NEEDS_PTE_SYNC && \
836 pmap_is_cached(pm)) \
837 PTE_SYNC(ptep); \
838 } while (/*CONSTCOND*/0)
839 #else
840 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
841 #endif
842
843 /*
844 * main pv_entry manipulation functions:
845 * pmap_enter_pv: enter a mapping onto a vm_page list
846 * pmap_remove_pv: remove a mappiing from a vm_page list
847 *
848 * NOTE: pmap_enter_pv expects to lock the pvh itself
849 * pmap_remove_pv expects te caller to lock the pvh before calling
850 */
851
852 /*
853 * pmap_enter_pv: enter a mapping onto a vm_page lst
854 *
855 * => caller should hold the proper lock on pmap_main_lock
856 * => caller should have pmap locked
857 * => we will gain the lock on the vm_page and allocate the new pv_entry
858 * => caller should adjust ptp's wire_count before calling
859 * => caller should not adjust pmap's wire_count
860 */
861 static void
862 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
863 vaddr_t va, u_int flags)
864 {
865 struct pv_entry **pvp;
866
867 NPDEBUG(PDB_PVDUMP,
868 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
869
870 pve->pv_pmap = pm;
871 pve->pv_va = va;
872 pve->pv_flags = flags;
873
874 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
875 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
876 #ifdef PMAP_CACHE_VIPT
877 /*
878 * Insert unmanaged entries, writeable first, at the head of
879 * the pv list.
880 */
881 if (__predict_true((flags & PVF_KENTRY) == 0)) {
882 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
883 pvp = &SLIST_NEXT(*pvp, pv_link);
884 } else if ((flags & PVF_WRITE) == 0) {
885 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
886 pvp = &SLIST_NEXT(*pvp, pv_link);
887 }
888 #endif
889 SLIST_NEXT(pve, pv_link) = *pvp; /* add to ... */
890 *pvp = pve; /* ... locked list */
891 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
892 #ifdef PMAP_CACHE_VIPT
893 if ((pve->pv_flags & PVF_KWRITE) == PVF_KWRITE)
894 pg->mdpage.pvh_attrs |= PVF_KMOD;
895 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
896 pg->mdpage.pvh_attrs |= PVF_DIRTY;
897 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
898 #endif
899 if (pm == pmap_kernel()) {
900 PMAPCOUNT(kernel_mappings);
901 if (flags & PVF_WRITE)
902 pg->mdpage.krw_mappings++;
903 else
904 pg->mdpage.kro_mappings++;
905 } else
906 if (flags & PVF_WRITE)
907 pg->mdpage.urw_mappings++;
908 else
909 pg->mdpage.uro_mappings++;
910
911 #ifdef PMAP_CACHE_VIPT
912 /*
913 * If this is an exec mapping and its the first exec mapping
914 * for this page, make sure to sync the I-cache.
915 */
916 if (PV_IS_EXEC_P(flags)) {
917 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
918 pmap_syncicache_page(pg);
919 PMAPCOUNT(exec_synced_map);
920 }
921 PMAPCOUNT(exec_mappings);
922 }
923 #endif
924
925 PMAPCOUNT(mappings);
926 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
927
928 if (pve->pv_flags & PVF_WIRED)
929 ++pm->pm_stats.wired_count;
930 }
931
932 /*
933 *
934 * pmap_find_pv: Find a pv entry
935 *
936 * => caller should hold lock on vm_page
937 */
938 static inline struct pv_entry *
939 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
940 {
941 struct pv_entry *pv;
942
943 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
944 if (pm == pv->pv_pmap && va == pv->pv_va)
945 break;
946 }
947
948 return (pv);
949 }
950
951 /*
952 * pmap_remove_pv: try to remove a mapping from a pv_list
953 *
954 * => caller should hold proper lock on pmap_main_lock
955 * => pmap should be locked
956 * => caller should hold lock on vm_page [so that attrs can be adjusted]
957 * => caller should adjust ptp's wire_count and free PTP if needed
958 * => caller should NOT adjust pmap's wire_count
959 * => we return the removed pve
960 */
961 static struct pv_entry *
962 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
963 {
964 struct pv_entry *pve, **prevptr;
965
966 NPDEBUG(PDB_PVDUMP,
967 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
968
969 prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
970 pve = *prevptr;
971
972 while (pve) {
973 if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
974 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
975 "%p, flags 0x%x\n", pm, pg, pve->pv_flags));
976 if (pve->pv_flags & PVF_WIRED) {
977 --pm->pm_stats.wired_count;
978 }
979 *prevptr = SLIST_NEXT(pve, pv_link); /* remove it! */
980 if (pm == pmap_kernel()) {
981 PMAPCOUNT(kernel_unmappings);
982 if (pve->pv_flags & PVF_WRITE)
983 pg->mdpage.krw_mappings--;
984 else
985 pg->mdpage.kro_mappings--;
986 } else
987 if (pve->pv_flags & PVF_WRITE)
988 pg->mdpage.urw_mappings--;
989 else
990 pg->mdpage.uro_mappings--;
991
992 PMAPCOUNT(unmappings);
993 #ifdef PMAP_CACHE_VIPT
994 if (!(pve->pv_flags & PVF_WRITE))
995 break;
996 /*
997 * If this page has had an exec mapping, then if
998 * this was the last mapping, discard the contents,
999 * otherwise sync the i-cache for this page.
1000 */
1001 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
1002 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
1003 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
1004 PMAPCOUNT(exec_discarded_unmap);
1005 } else {
1006 pmap_syncicache_page(pg);
1007 PMAPCOUNT(exec_synced_unmap);
1008 }
1009 }
1010 #endif /* PMAP_CACHE_VIPT */
1011 break;
1012 }
1013 prevptr = &SLIST_NEXT(pve, pv_link); /* previous pointer */
1014 pve = *prevptr; /* advance */
1015 }
1016
1017 #ifdef PMAP_CACHE_VIPT
1018 /*
1019 * If we no longer have a WRITEABLE KENTRY at the head of list,
1020 * clear the KMOD attribute from the page.
1021 */
1022 if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
1023 || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1024 pg->mdpage.pvh_attrs &= ~PVF_KMOD;
1025
1026 /*
1027 * If this was a writeable page and there are no more writeable
1028 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1029 * the contents to memory.
1030 */
1031 if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
1032 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1033 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1034 #endif /* PMAP_CACHE_VIPT */
1035
1036 return(pve); /* return removed pve */
1037 }
1038
1039 /*
1040 *
1041 * pmap_modify_pv: Update pv flags
1042 *
1043 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1044 * => caller should NOT adjust pmap's wire_count
1045 * => caller must call pmap_vac_me_harder() if writable status of a page
1046 * may have changed.
1047 * => we return the old flags
1048 *
1049 * Modify a physical-virtual mapping in the pv table
1050 */
1051 static u_int
1052 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
1053 u_int clr_mask, u_int set_mask)
1054 {
1055 struct pv_entry *npv;
1056 u_int flags, oflags;
1057
1058 KASSERT((clr_mask & PVF_KENTRY) == 0);
1059 KASSERT((set_mask & PVF_KENTRY) == 0);
1060
1061 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1062 return (0);
1063
1064 NPDEBUG(PDB_PVDUMP,
1065 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
1066
1067 /*
1068 * There is at least one VA mapping this page.
1069 */
1070
1071 if (clr_mask & (PVF_REF | PVF_MOD)) {
1072 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1073 #ifdef PMAP_CACHE_VIPT
1074 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1075 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1076 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1077 #endif
1078 }
1079
1080 oflags = npv->pv_flags;
1081 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1082
1083 if ((flags ^ oflags) & PVF_WIRED) {
1084 if (flags & PVF_WIRED)
1085 ++pm->pm_stats.wired_count;
1086 else
1087 --pm->pm_stats.wired_count;
1088 }
1089
1090 if ((flags ^ oflags) & PVF_WRITE) {
1091 if (pm == pmap_kernel()) {
1092 if (flags & PVF_WRITE) {
1093 pg->mdpage.krw_mappings++;
1094 pg->mdpage.kro_mappings--;
1095 } else {
1096 pg->mdpage.kro_mappings++;
1097 pg->mdpage.krw_mappings--;
1098 }
1099 } else
1100 if (flags & PVF_WRITE) {
1101 pg->mdpage.urw_mappings++;
1102 pg->mdpage.uro_mappings--;
1103 } else {
1104 pg->mdpage.uro_mappings++;
1105 pg->mdpage.urw_mappings--;
1106 }
1107 }
1108 #ifdef PMAP_CACHE_VIPT
1109 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
1110 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1111 /*
1112 * We have two cases here: the first is from enter_pv (new exec
1113 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1114 * Since in latter, pmap_enter_pv won't do anything, we just have
1115 * to do what pmap_remove_pv would do.
1116 */
1117 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
1118 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
1119 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1120 pmap_syncicache_page(pg);
1121 PMAPCOUNT(exec_synced_remap);
1122 }
1123 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1124 #endif
1125
1126 PMAPCOUNT(remappings);
1127
1128 return (oflags);
1129 }
1130
1131 /*
1132 * Allocate an L1 translation table for the specified pmap.
1133 * This is called at pmap creation time.
1134 */
1135 static void
1136 pmap_alloc_l1(pmap_t pm)
1137 {
1138 struct l1_ttable *l1;
1139 u_int8_t domain;
1140
1141 /*
1142 * Remove the L1 at the head of the LRU list
1143 */
1144 simple_lock(&l1_lru_lock);
1145 l1 = TAILQ_FIRST(&l1_lru_list);
1146 KDASSERT(l1 != NULL);
1147 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1148
1149 /*
1150 * Pick the first available domain number, and update
1151 * the link to the next number.
1152 */
1153 domain = l1->l1_domain_first;
1154 l1->l1_domain_first = l1->l1_domain_free[domain];
1155
1156 /*
1157 * If there are still free domain numbers in this L1,
1158 * put it back on the TAIL of the LRU list.
1159 */
1160 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1161 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1162
1163 simple_unlock(&l1_lru_lock);
1164
1165 /*
1166 * Fix up the relevant bits in the pmap structure
1167 */
1168 pm->pm_l1 = l1;
1169 pm->pm_domain = domain;
1170 }
1171
1172 /*
1173 * Free an L1 translation table.
1174 * This is called at pmap destruction time.
1175 */
1176 static void
1177 pmap_free_l1(pmap_t pm)
1178 {
1179 struct l1_ttable *l1 = pm->pm_l1;
1180
1181 simple_lock(&l1_lru_lock);
1182
1183 /*
1184 * If this L1 is currently on the LRU list, remove it.
1185 */
1186 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1187 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1188
1189 /*
1190 * Free up the domain number which was allocated to the pmap
1191 */
1192 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1193 l1->l1_domain_first = pm->pm_domain;
1194 l1->l1_domain_use_count--;
1195
1196 /*
1197 * The L1 now must have at least 1 free domain, so add
1198 * it back to the LRU list. If the use count is zero,
1199 * put it at the head of the list, otherwise it goes
1200 * to the tail.
1201 */
1202 if (l1->l1_domain_use_count == 0)
1203 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1204 else
1205 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1206
1207 simple_unlock(&l1_lru_lock);
1208 }
1209
1210 static inline void
1211 pmap_use_l1(pmap_t pm)
1212 {
1213 struct l1_ttable *l1;
1214
1215 /*
1216 * Do nothing if we're in interrupt context.
1217 * Access to an L1 by the kernel pmap must not affect
1218 * the LRU list.
1219 */
1220 if (cpu_intr_p() || pm == pmap_kernel())
1221 return;
1222
1223 l1 = pm->pm_l1;
1224
1225 /*
1226 * If the L1 is not currently on the LRU list, just return
1227 */
1228 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1229 return;
1230
1231 simple_lock(&l1_lru_lock);
1232
1233 /*
1234 * Check the use count again, now that we've acquired the lock
1235 */
1236 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1237 simple_unlock(&l1_lru_lock);
1238 return;
1239 }
1240
1241 /*
1242 * Move the L1 to the back of the LRU list
1243 */
1244 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1245 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1246
1247 simple_unlock(&l1_lru_lock);
1248 }
1249
1250 /*
1251 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1252 *
1253 * Free an L2 descriptor table.
1254 */
1255 static inline void
1256 #ifndef PMAP_INCLUDE_PTE_SYNC
1257 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1258 #else
1259 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1260 #endif
1261 {
1262 #ifdef PMAP_INCLUDE_PTE_SYNC
1263 #ifdef PMAP_CACHE_VIVT
1264 /*
1265 * Note: With a write-back cache, we may need to sync this
1266 * L2 table before re-using it.
1267 * This is because it may have belonged to a non-current
1268 * pmap, in which case the cache syncs would have been
1269 * skipped for the pages that were being unmapped. If the
1270 * L2 table were then to be immediately re-allocated to
1271 * the *current* pmap, it may well contain stale mappings
1272 * which have not yet been cleared by a cache write-back
1273 * and so would still be visible to the mmu.
1274 */
1275 if (need_sync)
1276 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1277 #endif /* PMAP_CACHE_VIVT */
1278 #endif /* PMAP_INCLUDE_PTE_SYNC */
1279 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1280 }
1281
1282 /*
1283 * Returns a pointer to the L2 bucket associated with the specified pmap
1284 * and VA, or NULL if no L2 bucket exists for the address.
1285 */
1286 static inline struct l2_bucket *
1287 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1288 {
1289 struct l2_dtable *l2;
1290 struct l2_bucket *l2b;
1291 u_short l1idx;
1292
1293 l1idx = L1_IDX(va);
1294
1295 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1296 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1297 return (NULL);
1298
1299 return (l2b);
1300 }
1301
1302 /*
1303 * Returns a pointer to the L2 bucket associated with the specified pmap
1304 * and VA.
1305 *
1306 * If no L2 bucket exists, perform the necessary allocations to put an L2
1307 * bucket/page table in place.
1308 *
1309 * Note that if a new L2 bucket/page was allocated, the caller *must*
1310 * increment the bucket occupancy counter appropriately *before*
1311 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1312 * the bucket/page in the meantime.
1313 */
1314 static struct l2_bucket *
1315 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1316 {
1317 struct l2_dtable *l2;
1318 struct l2_bucket *l2b;
1319 u_short l1idx;
1320
1321 l1idx = L1_IDX(va);
1322
1323 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1324 /*
1325 * No mapping at this address, as there is
1326 * no entry in the L1 table.
1327 * Need to allocate a new l2_dtable.
1328 */
1329 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1330 return (NULL);
1331
1332 /*
1333 * Link it into the parent pmap
1334 */
1335 pm->pm_l2[L2_IDX(l1idx)] = l2;
1336 }
1337
1338 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1339
1340 /*
1341 * Fetch pointer to the L2 page table associated with the address.
1342 */
1343 if (l2b->l2b_kva == NULL) {
1344 pt_entry_t *ptep;
1345
1346 /*
1347 * No L2 page table has been allocated. Chances are, this
1348 * is because we just allocated the l2_dtable, above.
1349 */
1350 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1351 /*
1352 * Oops, no more L2 page tables available at this
1353 * time. We may need to deallocate the l2_dtable
1354 * if we allocated a new one above.
1355 */
1356 if (l2->l2_occupancy == 0) {
1357 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1358 pmap_free_l2_dtable(l2);
1359 }
1360 return (NULL);
1361 }
1362
1363 l2->l2_occupancy++;
1364 l2b->l2b_kva = ptep;
1365 l2b->l2b_l1idx = l1idx;
1366 }
1367
1368 return (l2b);
1369 }
1370
1371 /*
1372 * One or more mappings in the specified L2 descriptor table have just been
1373 * invalidated.
1374 *
1375 * Garbage collect the metadata and descriptor table itself if necessary.
1376 *
1377 * The pmap lock must be acquired when this is called (not necessary
1378 * for the kernel pmap).
1379 */
1380 static void
1381 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1382 {
1383 struct l2_dtable *l2;
1384 pd_entry_t *pl1pd, l1pd;
1385 pt_entry_t *ptep;
1386 u_short l1idx;
1387
1388 KDASSERT(count <= l2b->l2b_occupancy);
1389
1390 /*
1391 * Update the bucket's reference count according to how many
1392 * PTEs the caller has just invalidated.
1393 */
1394 l2b->l2b_occupancy -= count;
1395
1396 /*
1397 * Note:
1398 *
1399 * Level 2 page tables allocated to the kernel pmap are never freed
1400 * as that would require checking all Level 1 page tables and
1401 * removing any references to the Level 2 page table. See also the
1402 * comment elsewhere about never freeing bootstrap L2 descriptors.
1403 *
1404 * We make do with just invalidating the mapping in the L2 table.
1405 *
1406 * This isn't really a big deal in practice and, in fact, leads
1407 * to a performance win over time as we don't need to continually
1408 * alloc/free.
1409 */
1410 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1411 return;
1412
1413 /*
1414 * There are no more valid mappings in this level 2 page table.
1415 * Go ahead and NULL-out the pointer in the bucket, then
1416 * free the page table.
1417 */
1418 l1idx = l2b->l2b_l1idx;
1419 ptep = l2b->l2b_kva;
1420 l2b->l2b_kva = NULL;
1421
1422 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1423
1424 /*
1425 * If the L1 slot matches the pmap's domain
1426 * number, then invalidate it.
1427 */
1428 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1429 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1430 *pl1pd = 0;
1431 PTE_SYNC(pl1pd);
1432 }
1433
1434 /*
1435 * Release the L2 descriptor table back to the pool cache.
1436 */
1437 #ifndef PMAP_INCLUDE_PTE_SYNC
1438 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1439 #else
1440 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1441 #endif
1442
1443 /*
1444 * Update the reference count in the associated l2_dtable
1445 */
1446 l2 = pm->pm_l2[L2_IDX(l1idx)];
1447 if (--l2->l2_occupancy > 0)
1448 return;
1449
1450 /*
1451 * There are no more valid mappings in any of the Level 1
1452 * slots managed by this l2_dtable. Go ahead and NULL-out
1453 * the pointer in the parent pmap and free the l2_dtable.
1454 */
1455 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1456 pmap_free_l2_dtable(l2);
1457 }
1458
1459 /*
1460 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1461 * structures.
1462 */
1463 static int
1464 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1465 {
1466 #ifndef PMAP_INCLUDE_PTE_SYNC
1467 struct l2_bucket *l2b;
1468 pt_entry_t *ptep, pte;
1469 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1470
1471 /*
1472 * The mappings for these page tables were initially made using
1473 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1474 * mode will not be right for page table mappings. To avoid
1475 * polluting the pmap_kenter_pa() code with a special case for
1476 * page tables, we simply fix up the cache-mode here if it's not
1477 * correct.
1478 */
1479 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1480 KDASSERT(l2b != NULL);
1481 ptep = &l2b->l2b_kva[l2pte_index(va)];
1482 pte = *ptep;
1483
1484 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1485 /*
1486 * Page tables must have the cache-mode set to Write-Thru.
1487 */
1488 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1489 PTE_SYNC(ptep);
1490 cpu_tlb_flushD_SE(va);
1491 cpu_cpwait();
1492 }
1493 #endif
1494
1495 memset(v, 0, L2_TABLE_SIZE_REAL);
1496 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1497 return (0);
1498 }
1499
1500 static int
1501 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1502 {
1503
1504 memset(v, 0, sizeof(struct l2_dtable));
1505 return (0);
1506 }
1507
1508 static int
1509 pmap_pmap_ctor(void *arg, void *v, int flags)
1510 {
1511
1512 memset(v, 0, sizeof(struct pmap));
1513 return (0);
1514 }
1515
1516 static void
1517 pmap_pinit(pmap_t pm)
1518 {
1519 struct l2_bucket *l2b;
1520
1521 if (vector_page < KERNEL_BASE) {
1522 /*
1523 * Map the vector page.
1524 */
1525 pmap_enter(pm, vector_page, systempage.pv_pa,
1526 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1527 pmap_update(pm);
1528
1529 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1530 l2b = pmap_get_l2_bucket(pm, vector_page);
1531 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1532 L1_C_DOM(pm->pm_domain);
1533 } else
1534 pm->pm_pl1vec = NULL;
1535 }
1536
1537 #ifdef PMAP_CACHE_VIVT
1538 /*
1539 * Since we have a virtually indexed cache, we may need to inhibit caching if
1540 * there is more than one mapping and at least one of them is writable.
1541 * Since we purge the cache on every context switch, we only need to check for
1542 * other mappings within the same pmap, or kernel_pmap.
1543 * This function is also called when a page is unmapped, to possibly reenable
1544 * caching on any remaining mappings.
1545 *
1546 * The code implements the following logic, where:
1547 *
1548 * KW = # of kernel read/write pages
1549 * KR = # of kernel read only pages
1550 * UW = # of user read/write pages
1551 * UR = # of user read only pages
1552 *
1553 * KC = kernel mapping is cacheable
1554 * UC = user mapping is cacheable
1555 *
1556 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1557 * +---------------------------------------------
1558 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1559 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1560 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1561 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1562 */
1563
1564 static const int pmap_vac_flags[4][4] = {
1565 {-1, 0, 0, PVF_KNC},
1566 {0, 0, PVF_NC, PVF_NC},
1567 {0, PVF_NC, PVF_NC, PVF_NC},
1568 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1569 };
1570
1571 static inline int
1572 pmap_get_vac_flags(const struct vm_page *pg)
1573 {
1574 int kidx, uidx;
1575
1576 kidx = 0;
1577 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1578 kidx |= 1;
1579 if (pg->mdpage.krw_mappings)
1580 kidx |= 2;
1581
1582 uidx = 0;
1583 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1584 uidx |= 1;
1585 if (pg->mdpage.urw_mappings)
1586 uidx |= 2;
1587
1588 return (pmap_vac_flags[uidx][kidx]);
1589 }
1590
1591 static inline void
1592 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1593 {
1594 int nattr;
1595
1596 nattr = pmap_get_vac_flags(pg);
1597
1598 if (nattr < 0) {
1599 pg->mdpage.pvh_attrs &= ~PVF_NC;
1600 return;
1601 }
1602
1603 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1604 return;
1605
1606 if (pm == pmap_kernel())
1607 pmap_vac_me_kpmap(pg, pm, va);
1608 else
1609 pmap_vac_me_user(pg, pm, va);
1610
1611 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1612 }
1613
1614 static void
1615 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1616 {
1617 u_int u_cacheable, u_entries;
1618 struct pv_entry *pv;
1619 pmap_t last_pmap = pm;
1620
1621 /*
1622 * Pass one, see if there are both kernel and user pmaps for
1623 * this page. Calculate whether there are user-writable or
1624 * kernel-writable pages.
1625 */
1626 u_cacheable = 0;
1627 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1628 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1629 u_cacheable++;
1630 }
1631
1632 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1633
1634 /*
1635 * We know we have just been updating a kernel entry, so if
1636 * all user pages are already cacheable, then there is nothing
1637 * further to do.
1638 */
1639 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1640 return;
1641
1642 if (u_entries) {
1643 /*
1644 * Scan over the list again, for each entry, if it
1645 * might not be set correctly, call pmap_vac_me_user
1646 * to recalculate the settings.
1647 */
1648 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1649 /*
1650 * We know kernel mappings will get set
1651 * correctly in other calls. We also know
1652 * that if the pmap is the same as last_pmap
1653 * then we've just handled this entry.
1654 */
1655 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1656 continue;
1657
1658 /*
1659 * If there are kernel entries and this page
1660 * is writable but non-cacheable, then we can
1661 * skip this entry also.
1662 */
1663 if (pg->mdpage.k_mappings &&
1664 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1665 (PVF_NC | PVF_WRITE))
1666 continue;
1667
1668 /*
1669 * Similarly if there are no kernel-writable
1670 * entries and the page is already
1671 * read-only/cacheable.
1672 */
1673 if (pg->mdpage.krw_mappings == 0 &&
1674 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1675 continue;
1676
1677 /*
1678 * For some of the remaining cases, we know
1679 * that we must recalculate, but for others we
1680 * can't tell if they are correct or not, so
1681 * we recalculate anyway.
1682 */
1683 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1684 }
1685
1686 if (pg->mdpage.k_mappings == 0)
1687 return;
1688 }
1689
1690 pmap_vac_me_user(pg, pm, va);
1691 }
1692
1693 static void
1694 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1695 {
1696 pmap_t kpmap = pmap_kernel();
1697 struct pv_entry *pv, *npv = NULL;
1698 struct l2_bucket *l2b;
1699 pt_entry_t *ptep, pte;
1700 u_int entries = 0;
1701 u_int writable = 0;
1702 u_int cacheable_entries = 0;
1703 u_int kern_cacheable = 0;
1704 u_int other_writable = 0;
1705
1706 /*
1707 * Count mappings and writable mappings in this pmap.
1708 * Include kernel mappings as part of our own.
1709 * Keep a pointer to the first one.
1710 */
1711 npv = NULL;
1712 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1713 /* Count mappings in the same pmap */
1714 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1715 if (entries++ == 0)
1716 npv = pv;
1717
1718 /* Cacheable mappings */
1719 if ((pv->pv_flags & PVF_NC) == 0) {
1720 cacheable_entries++;
1721 if (kpmap == pv->pv_pmap)
1722 kern_cacheable++;
1723 }
1724
1725 /* Writable mappings */
1726 if (pv->pv_flags & PVF_WRITE)
1727 ++writable;
1728 } else
1729 if (pv->pv_flags & PVF_WRITE)
1730 other_writable = 1;
1731 }
1732
1733 /*
1734 * Enable or disable caching as necessary.
1735 * Note: the first entry might be part of the kernel pmap,
1736 * so we can't assume this is indicative of the state of the
1737 * other (maybe non-kpmap) entries.
1738 */
1739 if ((entries > 1 && writable) ||
1740 (entries > 0 && pm == kpmap && other_writable)) {
1741 if (cacheable_entries == 0)
1742 return;
1743
1744 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1745 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1746 (pv->pv_flags & PVF_NC))
1747 continue;
1748
1749 pv->pv_flags |= PVF_NC;
1750
1751 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1752 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1753 pte = *ptep & ~L2_S_CACHE_MASK;
1754
1755 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1756 l2pte_valid(pte)) {
1757 if (PV_BEEN_EXECD(pv->pv_flags)) {
1758 #ifdef PMAP_CACHE_VIVT
1759 pmap_idcache_wbinv_range(pv->pv_pmap,
1760 pv->pv_va, PAGE_SIZE);
1761 #endif
1762 pmap_tlb_flushID_SE(pv->pv_pmap,
1763 pv->pv_va);
1764 } else
1765 if (PV_BEEN_REFD(pv->pv_flags)) {
1766 #ifdef PMAP_CACHE_VIVT
1767 pmap_dcache_wb_range(pv->pv_pmap,
1768 pv->pv_va, PAGE_SIZE, true,
1769 (pv->pv_flags & PVF_WRITE) == 0);
1770 #endif
1771 pmap_tlb_flushD_SE(pv->pv_pmap,
1772 pv->pv_va);
1773 }
1774 }
1775
1776 *ptep = pte;
1777 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1778 }
1779 cpu_cpwait();
1780 } else
1781 if (entries > cacheable_entries) {
1782 /*
1783 * Turn cacheing back on for some pages. If it is a kernel
1784 * page, only do so if there are no other writable pages.
1785 */
1786 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1787 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1788 (kpmap != pv->pv_pmap || other_writable)))
1789 continue;
1790
1791 pv->pv_flags &= ~PVF_NC;
1792
1793 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1794 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1795 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1796
1797 if (l2pte_valid(pte)) {
1798 if (PV_BEEN_EXECD(pv->pv_flags)) {
1799 pmap_tlb_flushID_SE(pv->pv_pmap,
1800 pv->pv_va);
1801 } else
1802 if (PV_BEEN_REFD(pv->pv_flags)) {
1803 pmap_tlb_flushD_SE(pv->pv_pmap,
1804 pv->pv_va);
1805 }
1806 }
1807
1808 *ptep = pte;
1809 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1810 }
1811 }
1812 }
1813 #endif
1814
1815 #ifdef PMAP_CACHE_VIPT
1816 static void
1817 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1818 {
1819 struct pv_entry *pv;
1820 vaddr_t tst_mask;
1821 bool bad_alias;
1822 struct l2_bucket *l2b;
1823 pt_entry_t *ptep, pte, opte;
1824 const u_int
1825 rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
1826 ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
1827
1828 /* do we need to do anything? */
1829 if (arm_cache_prefer_mask == 0)
1830 return;
1831
1832 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
1833 pg, pm, va));
1834
1835 KASSERT(!va || pm);
1836 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1837
1838 /* Already a conflict? */
1839 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
1840 /* just an add, things are already non-cached */
1841 KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
1842 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
1843 bad_alias = false;
1844 if (va) {
1845 PMAPCOUNT(vac_color_none);
1846 bad_alias = true;
1847 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1848 goto fixup;
1849 }
1850 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1851 /* the list can't be empty because it would be cachable */
1852 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
1853 tst_mask = pg->mdpage.pvh_attrs;
1854 } else {
1855 KASSERT(pv);
1856 tst_mask = pv->pv_va;
1857 pv = SLIST_NEXT(pv, pv_link);
1858 }
1859 /*
1860 * Only check for a bad alias if we have writable mappings.
1861 */
1862 tst_mask &= arm_cache_prefer_mask;
1863 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1864 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1865 /* if there's a bad alias, stop checking. */
1866 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1867 bad_alias = true;
1868 }
1869 pg->mdpage.pvh_attrs |= PVF_WRITE;
1870 if (!bad_alias)
1871 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1872 } else {
1873 /*
1874 * We have only read-only mappings. Let's see if there
1875 * are multiple colors in use or if we mapped a KMPAGE.
1876 * If the latter, we have a bad alias. If the former,
1877 * we need to remember that.
1878 */
1879 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1880 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1881 if (pg->mdpage.pvh_attrs & PVF_KMPAGE)
1882 bad_alias = true;
1883 break;
1884 }
1885 }
1886 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1887 /*
1888 * No KMPAGE and we exited early, so we must have
1889 * multiple color mappings.
1890 */
1891 if (!bad_alias && pv != NULL)
1892 pg->mdpage.pvh_attrs |= PVF_MULTCLR;
1893 }
1894
1895 /* If no conflicting colors, set everything back to cached */
1896 if (!bad_alias) {
1897 #ifdef DEBUG
1898 if ((pg->mdpage.pvh_attrs & PVF_WRITE)
1899 || ro_mappings < 2) {
1900 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1901 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1902 }
1903 #endif
1904 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1905 pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
1906 /*
1907 * Restore DIRTY bit if page is modified
1908 */
1909 if (pg->mdpage.pvh_attrs & PVF_DMOD)
1910 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1911 PMAPCOUNT(vac_color_restore);
1912 } else {
1913 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1914 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1915 }
1916 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1917 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1918 } else if (!va) {
1919 KASSERT(pmap_is_page_colored_p(pg));
1920 KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
1921 || (pg->mdpage.pvh_attrs & PVF_DIRTY));
1922 if (rw_mappings == 0) {
1923 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1924 if (ro_mappings == 1
1925 && (pg->mdpage.pvh_attrs & PVF_MULTCLR)) {
1926 /*
1927 * If this is the last readonly mapping
1928 * but it doesn't match the current color
1929 * for the page, change the current color
1930 * to match this last readonly mapping.
1931 */
1932 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1933 tst_mask = (pg->mdpage.pvh_attrs ^ pv->pv_va)
1934 & arm_cache_prefer_mask;
1935 if (tst_mask) {
1936 pg->mdpage.pvh_attrs ^= tst_mask;
1937 PMAPCOUNT(vac_color_change);
1938 }
1939 }
1940 }
1941 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1942 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1943 return;
1944 } else if (!pmap_is_page_colored_p(pg)) {
1945 /* not colored so we just use its color */
1946 KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1947 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
1948 PMAPCOUNT(vac_color_new);
1949 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1950 pg->mdpage.pvh_attrs |= PVF_COLORED
1951 | (va & arm_cache_prefer_mask)
1952 | (rw_mappings > 0 ? PVF_WRITE : 0);
1953 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1954 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1955 return;
1956 } else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1957 bad_alias = false;
1958 if (rw_mappings > 0) {
1959 /*
1960 * We now have writeable mappings and if we have
1961 * readonly mappings in more than once color, we have
1962 * an aliasing problem. Regardless mark the page as
1963 * writeable.
1964 */
1965 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
1966 if (ro_mappings < 2) {
1967 /*
1968 * If we only have less than two
1969 * read-only mappings, just flush the
1970 * non-primary colors from the cache.
1971 */
1972 pmap_flush_page(pg,
1973 PMAP_FLUSH_SECONDARY);
1974 } else {
1975 bad_alias = true;
1976 }
1977 }
1978 pg->mdpage.pvh_attrs |= PVF_WRITE;
1979 }
1980 /* If no conflicting colors, set everything back to cached */
1981 if (!bad_alias) {
1982 #ifdef DEBUG
1983 if (rw_mappings > 0
1984 || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
1985 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1986 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1987 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1988 }
1989 #endif
1990 if (SLIST_EMPTY(&pg->mdpage.pvh_list))
1991 PMAPCOUNT(vac_color_reuse);
1992 else
1993 PMAPCOUNT(vac_color_ok);
1994
1995 /* matching color, just return */
1996 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1997 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1998 return;
1999 }
2000 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
2001 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
2002
2003 /* color conflict. evict from cache. */
2004
2005 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
2006 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2007 pg->mdpage.pvh_attrs |= PVF_NC;
2008 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2009 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
2010 PMAPCOUNT(vac_color_erase);
2011 } else if (rw_mappings == 0
2012 && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2013 KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
2014
2015 /*
2016 * If the page has dirty cache lines, clean it.
2017 */
2018 if (pg->mdpage.pvh_attrs & PVF_DIRTY)
2019 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
2020
2021 /*
2022 * If this is the first remapping (we know that there are no
2023 * writeable mappings), then this is a simple color change.
2024 * Otherwise this is a seconary r/o mapping, which means
2025 * we don't have to do anything.
2026 */
2027 if (ro_mappings == 1) {
2028 KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2029 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2030 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2031 PMAPCOUNT(vac_color_change);
2032 } else {
2033 PMAPCOUNT(vac_color_blind);
2034 }
2035 pg->mdpage.pvh_attrs |= PVF_MULTCLR;
2036 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2037 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2038 return;
2039 } else {
2040 if (rw_mappings > 0)
2041 pg->mdpage.pvh_attrs |= PVF_WRITE;
2042
2043 /* color conflict. evict from cache. */
2044 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
2045
2046 /* the list can't be empty because this was a enter/modify */
2047 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2048 if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2049 KASSERT(pv);
2050 /*
2051 * If there's only one mapped page, change color to the
2052 * page's new color and return. Restore the DIRTY bit
2053 * that was erased by pmap_flush_page.
2054 */
2055 if (SLIST_NEXT(pv, pv_link) == NULL) {
2056 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2057 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2058 if (pg->mdpage.pvh_attrs & PVF_DMOD)
2059 pg->mdpage.pvh_attrs |= PVF_DIRTY;
2060 PMAPCOUNT(vac_color_change);
2061 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2062 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2063 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
2064 return;
2065 }
2066 }
2067 bad_alias = true;
2068 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2069 pg->mdpage.pvh_attrs |= PVF_NC;
2070 PMAPCOUNT(vac_color_erase);
2071 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2072 }
2073
2074 fixup:
2075 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2076
2077 /*
2078 * Turn cacheing on/off for all pages.
2079 */
2080 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2081 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2082 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2083 opte = *ptep;
2084 pte = opte & ~L2_S_CACHE_MASK;
2085 if (bad_alias) {
2086 pv->pv_flags |= PVF_NC;
2087 } else {
2088 pv->pv_flags &= ~PVF_NC;
2089 pte |= pte_l2_s_cache_mode;
2090 }
2091
2092 if (opte == pte) /* only update is there's a change */
2093 continue;
2094
2095 if (l2pte_valid(pte)) {
2096 if (PV_BEEN_EXECD(pv->pv_flags)) {
2097 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2098 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2099 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2100 }
2101 }
2102
2103 *ptep = pte;
2104 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2105 }
2106 }
2107 #endif /* PMAP_CACHE_VIPT */
2108
2109
2110 /*
2111 * Modify pte bits for all ptes corresponding to the given physical address.
2112 * We use `maskbits' rather than `clearbits' because we're always passing
2113 * constants and the latter would require an extra inversion at run-time.
2114 */
2115 static void
2116 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2117 {
2118 struct l2_bucket *l2b;
2119 struct pv_entry *pv;
2120 pt_entry_t *ptep, npte, opte;
2121 pmap_t pm;
2122 vaddr_t va;
2123 u_int oflags;
2124 #ifdef PMAP_CACHE_VIPT
2125 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
2126 bool need_syncicache = false;
2127 bool did_syncicache = false;
2128 bool need_vac_me_harder = false;
2129 #endif
2130
2131 NPDEBUG(PDB_BITS,
2132 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2133 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2134
2135 PMAP_HEAD_TO_MAP_LOCK();
2136 simple_lock(&pg->mdpage.pvh_slock);
2137
2138 #ifdef PMAP_CACHE_VIPT
2139 /*
2140 * If we might want to sync the I-cache and we've modified it,
2141 * then we know we definitely need to sync or discard it.
2142 */
2143 if (want_syncicache)
2144 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
2145 #endif
2146 /*
2147 * Clear saved attributes (modify, reference)
2148 */
2149 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2150
2151 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
2152 #ifdef PMAP_CACHE_VIPT
2153 if (need_syncicache) {
2154 /*
2155 * No one has it mapped, so just discard it. The next
2156 * exec remapping will cause it to be synced.
2157 */
2158 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2159 PMAPCOUNT(exec_discarded_clearbit);
2160 }
2161 #endif
2162 simple_unlock(&pg->mdpage.pvh_slock);
2163 PMAP_HEAD_TO_MAP_UNLOCK();
2164 return;
2165 }
2166
2167 /*
2168 * Loop over all current mappings setting/clearing as appropos
2169 */
2170 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2171 va = pv->pv_va;
2172 pm = pv->pv_pmap;
2173 oflags = pv->pv_flags;
2174 /*
2175 * Kernel entries are unmanaged and as such not to be changed.
2176 */
2177 if (oflags & PVF_KENTRY)
2178 continue;
2179 pv->pv_flags &= ~maskbits;
2180
2181 pmap_acquire_pmap_lock(pm);
2182
2183 l2b = pmap_get_l2_bucket(pm, va);
2184 KDASSERT(l2b != NULL);
2185
2186 ptep = &l2b->l2b_kva[l2pte_index(va)];
2187 npte = opte = *ptep;
2188
2189 NPDEBUG(PDB_BITS,
2190 printf(
2191 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2192 pv, pv->pv_pmap, pv->pv_va, oflags));
2193
2194 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2195 #ifdef PMAP_CACHE_VIVT
2196 if ((pv->pv_flags & PVF_NC)) {
2197 /*
2198 * Entry is not cacheable:
2199 *
2200 * Don't turn caching on again if this is a
2201 * modified emulation. This would be
2202 * inconsitent with the settings created by
2203 * pmap_vac_me_harder(). Otherwise, it's safe
2204 * to re-enable cacheing.
2205 *
2206 * There's no need to call pmap_vac_me_harder()
2207 * here: all pages are losing their write
2208 * permission.
2209 */
2210 if (maskbits & PVF_WRITE) {
2211 npte |= pte_l2_s_cache_mode;
2212 pv->pv_flags &= ~PVF_NC;
2213 }
2214 } else
2215 if (opte & L2_S_PROT_W) {
2216 /*
2217 * Entry is writable/cacheable: check if pmap
2218 * is current if it is flush it, otherwise it
2219 * won't be in the cache
2220 */
2221 if (PV_BEEN_EXECD(oflags))
2222 pmap_idcache_wbinv_range(pm, pv->pv_va,
2223 PAGE_SIZE);
2224 else
2225 if (PV_BEEN_REFD(oflags))
2226 pmap_dcache_wb_range(pm, pv->pv_va,
2227 PAGE_SIZE,
2228 (maskbits & PVF_REF) != 0, false);
2229 }
2230 #endif
2231
2232 /* make the pte read only */
2233 npte &= ~L2_S_PROT_W;
2234
2235 if (maskbits & oflags & PVF_WRITE) {
2236 /*
2237 * Keep alias accounting up to date
2238 */
2239 if (pv->pv_pmap == pmap_kernel()) {
2240 pg->mdpage.krw_mappings--;
2241 pg->mdpage.kro_mappings++;
2242 } else {
2243 pg->mdpage.urw_mappings--;
2244 pg->mdpage.uro_mappings++;
2245 }
2246 #ifdef PMAP_CACHE_VIPT
2247 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
2248 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2249 if (want_syncicache)
2250 need_syncicache = true;
2251 need_vac_me_harder = true;
2252 #endif
2253 }
2254 }
2255
2256 if (maskbits & PVF_REF) {
2257 if ((pv->pv_flags & PVF_NC) == 0 &&
2258 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2259 l2pte_valid(npte)) {
2260 #ifdef PMAP_CACHE_VIVT
2261 /*
2262 * Check npte here; we may have already
2263 * done the wbinv above, and the validity
2264 * of the PTE is the same for opte and
2265 * npte.
2266 */
2267 /* XXXJRT need idcache_inv_range */
2268 if (PV_BEEN_EXECD(oflags))
2269 pmap_idcache_wbinv_range(pm,
2270 pv->pv_va, PAGE_SIZE);
2271 else
2272 if (PV_BEEN_REFD(oflags))
2273 pmap_dcache_wb_range(pm,
2274 pv->pv_va, PAGE_SIZE,
2275 true, true);
2276 #endif
2277 }
2278
2279 /*
2280 * Make the PTE invalid so that we will take a
2281 * page fault the next time the mapping is
2282 * referenced.
2283 */
2284 npte &= ~L2_TYPE_MASK;
2285 npte |= L2_TYPE_INV;
2286 }
2287
2288 if (npte != opte) {
2289 *ptep = npte;
2290 PTE_SYNC(ptep);
2291 /* Flush the TLB entry if a current pmap. */
2292 if (PV_BEEN_EXECD(oflags))
2293 pmap_tlb_flushID_SE(pm, pv->pv_va);
2294 else
2295 if (PV_BEEN_REFD(oflags))
2296 pmap_tlb_flushD_SE(pm, pv->pv_va);
2297 }
2298
2299 pmap_release_pmap_lock(pm);
2300
2301 NPDEBUG(PDB_BITS,
2302 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2303 pm, va, opte, npte));
2304 }
2305
2306 #ifdef PMAP_CACHE_VIPT
2307 /*
2308 * If we need to sync the I-cache and we haven't done it yet, do it.
2309 */
2310 if (need_syncicache && !did_syncicache) {
2311 pmap_syncicache_page(pg);
2312 PMAPCOUNT(exec_synced_clearbit);
2313 }
2314 /*
2315 * If we are changing this to read-only, we need to call vac_me_harder
2316 * so we can change all the read-only pages to cacheable. We pretend
2317 * this as a page deletion.
2318 */
2319 if (need_vac_me_harder) {
2320 if (pg->mdpage.pvh_attrs & PVF_NC)
2321 pmap_vac_me_harder(pg, NULL, 0);
2322 }
2323 #endif
2324
2325 simple_unlock(&pg->mdpage.pvh_slock);
2326 PMAP_HEAD_TO_MAP_UNLOCK();
2327 }
2328
2329 /*
2330 * pmap_clean_page()
2331 *
2332 * This is a local function used to work out the best strategy to clean
2333 * a single page referenced by its entry in the PV table. It's used by
2334 * pmap_copy_page, pmap_zero page and maybe some others later on.
2335 *
2336 * Its policy is effectively:
2337 * o If there are no mappings, we don't bother doing anything with the cache.
2338 * o If there is one mapping, we clean just that page.
2339 * o If there are multiple mappings, we clean the entire cache.
2340 *
2341 * So that some functions can be further optimised, it returns 0 if it didn't
2342 * clean the entire cache, or 1 if it did.
2343 *
2344 * XXX One bug in this routine is that if the pv_entry has a single page
2345 * mapped at 0x00000000 a whole cache clean will be performed rather than
2346 * just the 1 page. Since this should not occur in everyday use and if it does
2347 * it will just result in not the most efficient clean for the page.
2348 */
2349 #ifdef PMAP_CACHE_VIVT
2350 static int
2351 pmap_clean_page(struct pv_entry *pv, bool is_src)
2352 {
2353 pmap_t pm, pm_to_clean = NULL;
2354 struct pv_entry *npv;
2355 u_int cache_needs_cleaning = 0;
2356 u_int flags = 0;
2357 vaddr_t page_to_clean = 0;
2358
2359 if (pv == NULL) {
2360 /* nothing mapped in so nothing to flush */
2361 return (0);
2362 }
2363
2364 /*
2365 * Since we flush the cache each time we change to a different
2366 * user vmspace, we only need to flush the page if it is in the
2367 * current pmap.
2368 */
2369 pm = curproc->p_vmspace->vm_map.pmap;
2370
2371 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2372 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
2373 flags |= npv->pv_flags;
2374 /*
2375 * The page is mapped non-cacheable in
2376 * this map. No need to flush the cache.
2377 */
2378 if (npv->pv_flags & PVF_NC) {
2379 #ifdef DIAGNOSTIC
2380 if (cache_needs_cleaning)
2381 panic("pmap_clean_page: "
2382 "cache inconsistency");
2383 #endif
2384 break;
2385 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2386 continue;
2387 if (cache_needs_cleaning) {
2388 page_to_clean = 0;
2389 break;
2390 } else {
2391 page_to_clean = npv->pv_va;
2392 pm_to_clean = npv->pv_pmap;
2393 }
2394 cache_needs_cleaning = 1;
2395 }
2396 }
2397
2398 if (page_to_clean) {
2399 if (PV_BEEN_EXECD(flags))
2400 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2401 PAGE_SIZE);
2402 else
2403 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2404 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2405 } else if (cache_needs_cleaning) {
2406 if (PV_BEEN_EXECD(flags))
2407 pmap_idcache_wbinv_all(pm);
2408 else
2409 pmap_dcache_wbinv_all(pm);
2410 return (1);
2411 }
2412 return (0);
2413 }
2414 #endif
2415
2416 #ifdef PMAP_CACHE_VIPT
2417 /*
2418 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2419 * right cache alias to make sure we flush the right stuff.
2420 */
2421 void
2422 pmap_syncicache_page(struct vm_page *pg)
2423 {
2424 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2425 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2426
2427 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
2428 pg, pg->mdpage.pvh_attrs));
2429 /*
2430 * No need to clean the page if it's non-cached.
2431 */
2432 if (pg->mdpage.pvh_attrs & PVF_NC)
2433 return;
2434 KASSERT(pg->mdpage.pvh_attrs & PVF_COLORED);
2435
2436 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2437 /*
2438 * Set up a PTE with the right coloring to flush existing cache lines.
2439 */
2440 *ptep = L2_S_PROTO |
2441 VM_PAGE_TO_PHYS(pg)
2442 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2443 | pte_l2_s_cache_mode;
2444 PTE_SYNC(ptep);
2445
2446 /*
2447 * Flush it.
2448 */
2449 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2450 /*
2451 * Unmap the page.
2452 */
2453 *ptep = 0;
2454 PTE_SYNC(ptep);
2455 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2456
2457 pg->mdpage.pvh_attrs |= PVF_EXEC;
2458 PMAPCOUNT(exec_synced);
2459 }
2460
2461 void
2462 pmap_flush_page(struct vm_page *pg, enum pmap_flush_op flush)
2463 {
2464 vsize_t va_offset, end_va;
2465 void (*cf)(vaddr_t, vsize_t);
2466
2467 if (arm_cache_prefer_mask == 0)
2468 return;
2469
2470 switch (flush) {
2471 case PMAP_FLUSH_PRIMARY:
2472 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
2473 va_offset = 0;
2474 end_va = arm_cache_prefer_mask;
2475 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
2476 PMAPCOUNT(vac_flush_lots);
2477 } else {
2478 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2479 end_va = va_offset;
2480 PMAPCOUNT(vac_flush_one);
2481 }
2482 /*
2483 * Mark that the page is no longer dirty.
2484 */
2485 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2486 cf = cpufuncs.cf_idcache_wbinv_range;
2487 break;
2488 case PMAP_FLUSH_SECONDARY:
2489 va_offset = 0;
2490 end_va = arm_cache_prefer_mask;
2491 cf = cpufuncs.cf_idcache_wbinv_range;
2492 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
2493 PMAPCOUNT(vac_flush_lots);
2494 break;
2495 case PMAP_CLEAN_PRIMARY:
2496 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2497 end_va = va_offset;
2498 cf = cpufuncs.cf_dcache_wb_range;
2499 /*
2500 * Mark that the page is no longer dirty.
2501 */
2502 if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
2503 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2504 PMAPCOUNT(vac_clean_one);
2505 break;
2506 default:
2507 return;
2508 }
2509
2510 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
2511
2512 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
2513 pg, pg->mdpage.pvh_attrs));
2514
2515 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2516 const size_t pte_offset = va_offset >> PGSHIFT;
2517 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2518 const pt_entry_t oldpte = *ptep;
2519
2520 if (flush == PMAP_FLUSH_SECONDARY
2521 && va_offset == (pg->mdpage.pvh_attrs & arm_cache_prefer_mask))
2522 continue;
2523
2524 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2525 /*
2526 * Set up a PTE with the right coloring to flush
2527 * existing cache entries.
2528 */
2529 *ptep = L2_S_PROTO
2530 | VM_PAGE_TO_PHYS(pg)
2531 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2532 | pte_l2_s_cache_mode;
2533 PTE_SYNC(ptep);
2534
2535 /*
2536 * Flush it.
2537 */
2538 (*cf)(cdstp + va_offset, PAGE_SIZE);
2539
2540 /*
2541 * Restore the page table entry since we might have interrupted
2542 * pmap_zero_page or pmap_copy_page which was already using
2543 * this pte.
2544 */
2545 *ptep = oldpte;
2546 PTE_SYNC(ptep);
2547 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2548 }
2549 }
2550 #endif /* PMAP_CACHE_VIPT */
2551
2552 /*
2553 * Routine: pmap_page_remove
2554 * Function:
2555 * Removes this physical page from
2556 * all physical maps in which it resides.
2557 * Reflects back modify bits to the pager.
2558 */
2559 static void
2560 pmap_page_remove(struct vm_page *pg)
2561 {
2562 struct l2_bucket *l2b;
2563 struct pv_entry *pv, *npv, **pvp;
2564 pmap_t pm, curpm;
2565 pt_entry_t *ptep, pte;
2566 bool flush;
2567 u_int flags;
2568
2569 NPDEBUG(PDB_FOLLOW,
2570 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2571 VM_PAGE_TO_PHYS(pg)));
2572
2573 PMAP_HEAD_TO_MAP_LOCK();
2574 simple_lock(&pg->mdpage.pvh_slock);
2575
2576 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2577 if (pv == NULL) {
2578 #ifdef PMAP_CACHE_VIPT
2579 /*
2580 * We *know* the page contents are about to be replaced.
2581 * Discard the exec contents
2582 */
2583 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2584 PMAPCOUNT(exec_discarded_page_protect);
2585 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2586 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2587 #endif
2588 simple_unlock(&pg->mdpage.pvh_slock);
2589 PMAP_HEAD_TO_MAP_UNLOCK();
2590 return;
2591 }
2592 #ifdef PMAP_CACHE_VIPT
2593 KASSERT(pmap_is_page_colored_p(pg));
2594 #endif
2595
2596 /*
2597 * Clear alias counts
2598 */
2599 #ifdef PMAP_CACHE_VIVT
2600 pg->mdpage.k_mappings = 0;
2601 #endif
2602 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
2603
2604 flush = false;
2605 flags = 0;
2606 curpm = curproc->p_vmspace->vm_map.pmap;
2607
2608 #ifdef PMAP_CACHE_VIVT
2609 pmap_clean_page(pv, false);
2610 #endif
2611
2612 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
2613 while (pv) {
2614 pm = pv->pv_pmap;
2615 npv = SLIST_NEXT(pv, pv_link);
2616 if (flush == false && (pm == curpm || pm == pmap_kernel()))
2617 flush = true;
2618
2619 if (pm == pmap_kernel()) {
2620 #ifdef PMAP_CACHE_VIPT
2621 /*
2622 * If this was unmanaged mapping, it must be preserved.
2623 * Move it back on the list and advance the end-of-list
2624 * pointer.
2625 */
2626 if (pv->pv_flags & PVF_KENTRY) {
2627 *pvp = pv;
2628 pvp = &SLIST_NEXT(pv, pv_link);
2629 pv = npv;
2630 continue;
2631 }
2632 if (pv->pv_flags & PVF_WRITE)
2633 pg->mdpage.krw_mappings--;
2634 else
2635 pg->mdpage.kro_mappings--;
2636 #endif
2637 PMAPCOUNT(kernel_unmappings);
2638 }
2639 PMAPCOUNT(unmappings);
2640
2641 pmap_acquire_pmap_lock(pm);
2642
2643 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2644 KDASSERT(l2b != NULL);
2645
2646 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2647 pte = *ptep;
2648
2649 /*
2650 * Update statistics
2651 */
2652 --pm->pm_stats.resident_count;
2653
2654 /* Wired bit */
2655 if (pv->pv_flags & PVF_WIRED)
2656 --pm->pm_stats.wired_count;
2657
2658 flags |= pv->pv_flags;
2659
2660 /*
2661 * Invalidate the PTEs.
2662 */
2663 *ptep = 0;
2664 PTE_SYNC_CURRENT(pm, ptep);
2665 pmap_free_l2_bucket(pm, l2b, 1);
2666
2667 pool_put(&pmap_pv_pool, pv);
2668 pv = npv;
2669 /*
2670 * if we reach the end of the list and there are still
2671 * mappings, they might be able to be cached now.
2672 */
2673 if (pv == NULL) {
2674 *pvp = NULL;
2675 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
2676 pmap_vac_me_harder(pg, pm, 0);
2677 }
2678 pmap_release_pmap_lock(pm);
2679 }
2680 #ifdef PMAP_CACHE_VIPT
2681 /*
2682 * Its EXEC cache is now gone.
2683 */
2684 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2685 PMAPCOUNT(exec_discarded_page_protect);
2686 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2687 KASSERT(pg->mdpage.urw_mappings == 0);
2688 KASSERT(pg->mdpage.uro_mappings == 0);
2689 if (pg->mdpage.krw_mappings == 0)
2690 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2691 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2692 #endif
2693 simple_unlock(&pg->mdpage.pvh_slock);
2694 PMAP_HEAD_TO_MAP_UNLOCK();
2695
2696 if (flush) {
2697 /*
2698 * Note: We can't use pmap_tlb_flush{I,}D() here since that
2699 * would need a subsequent call to pmap_update() to ensure
2700 * curpm->pm_cstate.cs_all is reset. Our callers are not
2701 * required to do that (see pmap(9)), so we can't modify
2702 * the current pmap's state.
2703 */
2704 if (PV_BEEN_EXECD(flags))
2705 cpu_tlb_flushID();
2706 else
2707 cpu_tlb_flushD();
2708 }
2709 cpu_cpwait();
2710 }
2711
2712 /*
2713 * pmap_t pmap_create(void)
2714 *
2715 * Create a new pmap structure from scratch.
2716 */
2717 pmap_t
2718 pmap_create(void)
2719 {
2720 pmap_t pm;
2721
2722 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2723
2724 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2725 pm->pm_stats.wired_count = 0;
2726 pm->pm_stats.resident_count = 1;
2727 pm->pm_cstate.cs_all = 0;
2728 pmap_alloc_l1(pm);
2729
2730 /*
2731 * Note: The pool cache ensures that the pm_l2[] array is already
2732 * initialised to zero.
2733 */
2734
2735 pmap_pinit(pm);
2736
2737 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2738
2739 return (pm);
2740 }
2741
2742 /*
2743 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2744 * u_int flags)
2745 *
2746 * Insert the given physical page (p) at
2747 * the specified virtual address (v) in the
2748 * target physical map with the protection requested.
2749 *
2750 * NB: This is the only routine which MAY NOT lazy-evaluate
2751 * or lose information. That is, this routine must actually
2752 * insert this page into the given map NOW.
2753 */
2754 int
2755 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2756 {
2757 struct l2_bucket *l2b;
2758 struct vm_page *pg, *opg;
2759 struct pv_entry *pve;
2760 pt_entry_t *ptep, npte, opte;
2761 u_int nflags;
2762 u_int oflags;
2763
2764 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2765
2766 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2767 KDASSERT(((va | pa) & PGOFSET) == 0);
2768
2769 /*
2770 * Get a pointer to the page. Later on in this function, we
2771 * test for a managed page by checking pg != NULL.
2772 */
2773 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2774
2775 nflags = 0;
2776 if (prot & VM_PROT_WRITE)
2777 nflags |= PVF_WRITE;
2778 if (prot & VM_PROT_EXECUTE)
2779 nflags |= PVF_EXEC;
2780 if (flags & PMAP_WIRED)
2781 nflags |= PVF_WIRED;
2782
2783 PMAP_MAP_TO_HEAD_LOCK();
2784 pmap_acquire_pmap_lock(pm);
2785
2786 /*
2787 * Fetch the L2 bucket which maps this page, allocating one if
2788 * necessary for user pmaps.
2789 */
2790 if (pm == pmap_kernel())
2791 l2b = pmap_get_l2_bucket(pm, va);
2792 else
2793 l2b = pmap_alloc_l2_bucket(pm, va);
2794 if (l2b == NULL) {
2795 if (flags & PMAP_CANFAIL) {
2796 pmap_release_pmap_lock(pm);
2797 PMAP_MAP_TO_HEAD_UNLOCK();
2798 return (ENOMEM);
2799 }
2800 panic("pmap_enter: failed to allocate L2 bucket");
2801 }
2802 ptep = &l2b->l2b_kva[l2pte_index(va)];
2803 opte = *ptep;
2804 npte = pa;
2805 oflags = 0;
2806
2807 if (opte) {
2808 /*
2809 * There is already a mapping at this address.
2810 * If the physical address is different, lookup the
2811 * vm_page.
2812 */
2813 if (l2pte_pa(opte) != pa)
2814 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2815 else
2816 opg = pg;
2817 } else
2818 opg = NULL;
2819
2820 if (pg) {
2821 /*
2822 * This is to be a managed mapping.
2823 */
2824 if ((flags & VM_PROT_ALL) ||
2825 (pg->mdpage.pvh_attrs & PVF_REF)) {
2826 /*
2827 * - The access type indicates that we don't need
2828 * to do referenced emulation.
2829 * OR
2830 * - The physical page has already been referenced
2831 * so no need to re-do referenced emulation here.
2832 */
2833 npte |= L2_S_PROTO;
2834
2835 nflags |= PVF_REF;
2836
2837 if ((prot & VM_PROT_WRITE) != 0 &&
2838 ((flags & VM_PROT_WRITE) != 0 ||
2839 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2840 /*
2841 * This is a writable mapping, and the
2842 * page's mod state indicates it has
2843 * already been modified. Make it
2844 * writable from the outset.
2845 */
2846 npte |= L2_S_PROT_W;
2847 nflags |= PVF_MOD;
2848 }
2849 } else {
2850 /*
2851 * Need to do page referenced emulation.
2852 */
2853 npte |= L2_TYPE_INV;
2854 }
2855
2856 npte |= pte_l2_s_cache_mode;
2857
2858 if (pg == opg) {
2859 /*
2860 * We're changing the attrs of an existing mapping.
2861 */
2862 simple_lock(&pg->mdpage.pvh_slock);
2863 oflags = pmap_modify_pv(pg, pm, va,
2864 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2865 PVF_MOD | PVF_REF, nflags);
2866 simple_unlock(&pg->mdpage.pvh_slock);
2867
2868 #ifdef PMAP_CACHE_VIVT
2869 /*
2870 * We may need to flush the cache if we're
2871 * doing rw-ro...
2872 */
2873 if (pm->pm_cstate.cs_cache_d &&
2874 (oflags & PVF_NC) == 0 &&
2875 (opte & L2_S_PROT_W) != 0 &&
2876 (prot & VM_PROT_WRITE) == 0)
2877 cpu_dcache_wb_range(va, PAGE_SIZE);
2878 #endif
2879 } else {
2880 /*
2881 * New mapping, or changing the backing page
2882 * of an existing mapping.
2883 */
2884 if (opg) {
2885 /*
2886 * Replacing an existing mapping with a new one.
2887 * It is part of our managed memory so we
2888 * must remove it from the PV list
2889 */
2890 simple_lock(&opg->mdpage.pvh_slock);
2891 pve = pmap_remove_pv(opg, pm, va);
2892 pmap_vac_me_harder(opg, pm, 0);
2893 simple_unlock(&opg->mdpage.pvh_slock);
2894 oflags = pve->pv_flags;
2895
2896 #ifdef PMAP_CACHE_VIVT
2897 /*
2898 * If the old mapping was valid (ref/mod
2899 * emulation creates 'invalid' mappings
2900 * initially) then make sure to frob
2901 * the cache.
2902 */
2903 if ((oflags & PVF_NC) == 0 &&
2904 l2pte_valid(opte)) {
2905 if (PV_BEEN_EXECD(oflags)) {
2906 pmap_idcache_wbinv_range(pm, va,
2907 PAGE_SIZE);
2908 } else
2909 if (PV_BEEN_REFD(oflags)) {
2910 pmap_dcache_wb_range(pm, va,
2911 PAGE_SIZE, true,
2912 (oflags & PVF_WRITE) == 0);
2913 }
2914 }
2915 #endif
2916 } else
2917 if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2918 if ((flags & PMAP_CANFAIL) == 0)
2919 panic("pmap_enter: no pv entries");
2920
2921 if (pm != pmap_kernel())
2922 pmap_free_l2_bucket(pm, l2b, 0);
2923 pmap_release_pmap_lock(pm);
2924 PMAP_MAP_TO_HEAD_UNLOCK();
2925 NPDEBUG(PDB_ENTER,
2926 printf("pmap_enter: ENOMEM\n"));
2927 return (ENOMEM);
2928 }
2929
2930 pmap_enter_pv(pg, pve, pm, va, nflags);
2931 }
2932 } else {
2933 /*
2934 * We're mapping an unmanaged page.
2935 * These are always readable, and possibly writable, from
2936 * the get go as we don't need to track ref/mod status.
2937 */
2938 npte |= L2_S_PROTO;
2939 if (prot & VM_PROT_WRITE)
2940 npte |= L2_S_PROT_W;
2941
2942 /*
2943 * Make sure the vector table is mapped cacheable
2944 */
2945 if (pm != pmap_kernel() && va == vector_page)
2946 npte |= pte_l2_s_cache_mode;
2947
2948 if (opg) {
2949 /*
2950 * Looks like there's an existing 'managed' mapping
2951 * at this address.
2952 */
2953 simple_lock(&opg->mdpage.pvh_slock);
2954 pve = pmap_remove_pv(opg, pm, va);
2955 pmap_vac_me_harder(opg, pm, 0);
2956 simple_unlock(&opg->mdpage.pvh_slock);
2957 oflags = pve->pv_flags;
2958
2959 #ifdef PMAP_CACHE_VIVT
2960 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2961 if (PV_BEEN_EXECD(oflags))
2962 pmap_idcache_wbinv_range(pm, va,
2963 PAGE_SIZE);
2964 else
2965 if (PV_BEEN_REFD(oflags))
2966 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2967 true, (oflags & PVF_WRITE) == 0);
2968 }
2969 #endif
2970 pool_put(&pmap_pv_pool, pve);
2971 }
2972 }
2973
2974 /*
2975 * Make sure userland mappings get the right permissions
2976 */
2977 if (pm != pmap_kernel() && va != vector_page)
2978 npte |= L2_S_PROT_U;
2979
2980 /*
2981 * Keep the stats up to date
2982 */
2983 if (opte == 0) {
2984 l2b->l2b_occupancy++;
2985 pm->pm_stats.resident_count++;
2986 }
2987
2988 NPDEBUG(PDB_ENTER,
2989 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2990
2991 /*
2992 * If this is just a wiring change, the two PTEs will be
2993 * identical, so there's no need to update the page table.
2994 */
2995 if (npte != opte) {
2996 bool is_cached = pmap_is_cached(pm);
2997
2998 *ptep = npte;
2999 if (is_cached) {
3000 /*
3001 * We only need to frob the cache/tlb if this pmap
3002 * is current
3003 */
3004 PTE_SYNC(ptep);
3005 if (va != vector_page && l2pte_valid(npte)) {
3006 /*
3007 * This mapping is likely to be accessed as
3008 * soon as we return to userland. Fix up the
3009 * L1 entry to avoid taking another
3010 * page/domain fault.
3011 */
3012 pd_entry_t *pl1pd, l1pd;
3013
3014 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3015 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3016 L1_C_PROTO;
3017 if (*pl1pd != l1pd) {
3018 *pl1pd = l1pd;
3019 PTE_SYNC(pl1pd);
3020 }
3021 }
3022 }
3023
3024 if (PV_BEEN_EXECD(oflags))
3025 pmap_tlb_flushID_SE(pm, va);
3026 else
3027 if (PV_BEEN_REFD(oflags))
3028 pmap_tlb_flushD_SE(pm, va);
3029
3030 NPDEBUG(PDB_ENTER,
3031 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3032 is_cached, pm->pm_cstate.cs_all));
3033
3034 if (pg != NULL) {
3035 simple_lock(&pg->mdpage.pvh_slock);
3036 pmap_vac_me_harder(pg, pm, va);
3037 simple_unlock(&pg->mdpage.pvh_slock);
3038 }
3039 }
3040 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3041 if (pg) {
3042 simple_lock(&pg->mdpage.pvh_slock);
3043 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3044 KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
3045 simple_unlock(&pg->mdpage.pvh_slock);
3046 }
3047 #endif
3048
3049 pmap_release_pmap_lock(pm);
3050 PMAP_MAP_TO_HEAD_UNLOCK();
3051
3052 return (0);
3053 }
3054
3055 /*
3056 * pmap_remove()
3057 *
3058 * pmap_remove is responsible for nuking a number of mappings for a range
3059 * of virtual address space in the current pmap. To do this efficiently
3060 * is interesting, because in a number of cases a wide virtual address
3061 * range may be supplied that contains few actual mappings. So, the
3062 * optimisations are:
3063 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3064 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3065 * maybe do just a partial cache clean. This path of execution is
3066 * complicated by the fact that the cache must be flushed _before_
3067 * the PTE is nuked, being a VAC :-)
3068 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3069 * all invalidations until pmap_update(), since pmap_remove_all() has
3070 * already flushed the cache.
3071 * 4. Maybe later fast-case a single page, but I don't think this is
3072 * going to make _that_ much difference overall.
3073 */
3074
3075 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3076
3077 void
3078 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3079 {
3080 struct l2_bucket *l2b;
3081 vaddr_t next_bucket;
3082 pt_entry_t *ptep;
3083 u_int cleanlist_idx, total, cnt;
3084 struct {
3085 vaddr_t va;
3086 pt_entry_t *ptep;
3087 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3088 u_int mappings, is_exec, is_refd;
3089
3090 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3091 "eva=%08lx\n", pm, sva, eva));
3092
3093 /*
3094 * we lock in the pmap => pv_head direction
3095 */
3096 PMAP_MAP_TO_HEAD_LOCK();
3097 pmap_acquire_pmap_lock(pm);
3098
3099 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3100 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3101 if (pm->pm_cstate.cs_tlb == 0)
3102 pm->pm_remove_all = true;
3103 } else
3104 cleanlist_idx = 0;
3105
3106 total = 0;
3107
3108 while (sva < eva) {
3109 /*
3110 * Do one L2 bucket's worth at a time.
3111 */
3112 next_bucket = L2_NEXT_BUCKET(sva);
3113 if (next_bucket > eva)
3114 next_bucket = eva;
3115
3116 l2b = pmap_get_l2_bucket(pm, sva);
3117 if (l2b == NULL) {
3118 sva = next_bucket;
3119 continue;
3120 }
3121
3122 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3123
3124 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3125 struct vm_page *pg;
3126 pt_entry_t pte;
3127 paddr_t pa;
3128
3129 pte = *ptep;
3130
3131 if (pte == 0) {
3132 /* Nothing here, move along */
3133 continue;
3134 }
3135
3136 pa = l2pte_pa(pte);
3137 is_exec = 0;
3138 is_refd = 1;
3139
3140 /*
3141 * Update flags. In a number of circumstances,
3142 * we could cluster a lot of these and do a
3143 * number of sequential pages in one go.
3144 */
3145 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3146 struct pv_entry *pve;
3147 simple_lock(&pg->mdpage.pvh_slock);
3148 pve = pmap_remove_pv(pg, pm, sva);
3149 pmap_vac_me_harder(pg, pm, 0);
3150 simple_unlock(&pg->mdpage.pvh_slock);
3151 if (pve != NULL) {
3152 if (pm->pm_remove_all == false) {
3153 is_exec =
3154 PV_BEEN_EXECD(pve->pv_flags);
3155 is_refd =
3156 PV_BEEN_REFD(pve->pv_flags);
3157 }
3158 pool_put(&pmap_pv_pool, pve);
3159 }
3160 }
3161 mappings++;
3162
3163 if (!l2pte_valid(pte)) {
3164 /*
3165 * Ref/Mod emulation is still active for this
3166 * mapping, therefore it is has not yet been
3167 * accessed. No need to frob the cache/tlb.
3168 */
3169 *ptep = 0;
3170 PTE_SYNC_CURRENT(pm, ptep);
3171 continue;
3172 }
3173
3174 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3175 /* Add to the clean list. */
3176 cleanlist[cleanlist_idx].ptep = ptep;
3177 cleanlist[cleanlist_idx].va =
3178 sva | (is_exec & 1);
3179 cleanlist_idx++;
3180 } else
3181 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3182 /* Nuke everything if needed. */
3183 #ifdef PMAP_CACHE_VIVT
3184 pmap_idcache_wbinv_all(pm);
3185 #endif
3186 pmap_tlb_flushID(pm);
3187
3188 /*
3189 * Roll back the previous PTE list,
3190 * and zero out the current PTE.
3191 */
3192 for (cnt = 0;
3193 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3194 *cleanlist[cnt].ptep = 0;
3195 PTE_SYNC(cleanlist[cnt].ptep);
3196 }
3197 *ptep = 0;
3198 PTE_SYNC(ptep);
3199 cleanlist_idx++;
3200 pm->pm_remove_all = true;
3201 } else {
3202 *ptep = 0;
3203 PTE_SYNC(ptep);
3204 if (pm->pm_remove_all == false) {
3205 if (is_exec)
3206 pmap_tlb_flushID_SE(pm, sva);
3207 else
3208 if (is_refd)
3209 pmap_tlb_flushD_SE(pm, sva);
3210 }
3211 }
3212 }
3213
3214 /*
3215 * Deal with any left overs
3216 */
3217 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3218 total += cleanlist_idx;
3219 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3220 if (pm->pm_cstate.cs_all != 0) {
3221 vaddr_t clva = cleanlist[cnt].va & ~1;
3222 if (cleanlist[cnt].va & 1) {
3223 #ifdef PMAP_CACHE_VIVT
3224 pmap_idcache_wbinv_range(pm,
3225 clva, PAGE_SIZE);
3226 #endif
3227 pmap_tlb_flushID_SE(pm, clva);
3228 } else {
3229 #ifdef PMAP_CACHE_VIVT
3230 pmap_dcache_wb_range(pm,
3231 clva, PAGE_SIZE, true,
3232 false);
3233 #endif
3234 pmap_tlb_flushD_SE(pm, clva);
3235 }
3236 }
3237 *cleanlist[cnt].ptep = 0;
3238 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3239 }
3240
3241 /*
3242 * If it looks like we're removing a whole bunch
3243 * of mappings, it's faster to just write-back
3244 * the whole cache now and defer TLB flushes until
3245 * pmap_update() is called.
3246 */
3247 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3248 cleanlist_idx = 0;
3249 else {
3250 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3251 #ifdef PMAP_CACHE_VIVT
3252 pmap_idcache_wbinv_all(pm);
3253 #endif
3254 pm->pm_remove_all = true;
3255 }
3256 }
3257
3258 pmap_free_l2_bucket(pm, l2b, mappings);
3259 pm->pm_stats.resident_count -= mappings;
3260 }
3261
3262 pmap_release_pmap_lock(pm);
3263 PMAP_MAP_TO_HEAD_UNLOCK();
3264 }
3265
3266 #ifdef PMAP_CACHE_VIPT
3267 static struct pv_entry *
3268 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3269 {
3270 struct pv_entry *pv;
3271
3272 simple_lock(&pg->mdpage.pvh_slock);
3273 KASSERT(pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
3274 KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3275
3276 pv = pmap_remove_pv(pg, pmap_kernel(), va);
3277 KASSERT(pv);
3278 KASSERT(pv->pv_flags & PVF_KENTRY);
3279
3280 /*
3281 * If we are removing a writeable mapping to a cached exec page,
3282 * if it's the last mapping then clear it execness other sync
3283 * the page to the icache.
3284 */
3285 if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3286 && (pv->pv_flags & PVF_WRITE) != 0) {
3287 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
3288 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
3289 PMAPCOUNT(exec_discarded_kremove);
3290 } else {
3291 pmap_syncicache_page(pg);
3292 PMAPCOUNT(exec_synced_kremove);
3293 }
3294 }
3295 pmap_vac_me_harder(pg, pmap_kernel(), 0);
3296 simple_unlock(&pg->mdpage.pvh_slock);
3297
3298 return pv;
3299 }
3300 #endif /* PMAP_CACHE_VIPT */
3301
3302 /*
3303 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3304 *
3305 * We assume there is already sufficient KVM space available
3306 * to do this, as we can't allocate L2 descriptor tables/metadata
3307 * from here.
3308 */
3309 void
3310 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3311 {
3312 struct l2_bucket *l2b;
3313 pt_entry_t *ptep, opte;
3314 #ifdef PMAP_CACHE_VIVT
3315 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3316 #endif
3317 #ifdef PMAP_CACHE_VIPT
3318 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3319 struct vm_page *opg;
3320 struct pv_entry *pv = NULL;
3321 #endif
3322
3323 NPDEBUG(PDB_KENTER,
3324 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3325 va, pa, prot));
3326
3327 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3328 KDASSERT(l2b != NULL);
3329
3330 ptep = &l2b->l2b_kva[l2pte_index(va)];
3331 opte = *ptep;
3332
3333 if (opte == 0) {
3334 PMAPCOUNT(kenter_mappings);
3335 l2b->l2b_occupancy++;
3336 } else {
3337 PMAPCOUNT(kenter_remappings);
3338 #ifdef PMAP_CACHE_VIPT
3339 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3340 if (opg) {
3341 KASSERT(opg != pg);
3342 KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3343 KASSERT((prot & PMAP_KMPAGE) == 0);
3344 simple_lock(&opg->mdpage.pvh_slock);
3345 pv = pmap_kremove_pg(opg, va);
3346 simple_unlock(&opg->mdpage.pvh_slock);
3347 }
3348 #endif
3349 if (l2pte_valid(opte)) {
3350 #ifdef PMAP_CACHE_VIVT
3351 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3352 #endif
3353 cpu_tlb_flushD_SE(va);
3354 cpu_cpwait();
3355 }
3356 }
3357
3358 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3359 pte_l2_s_cache_mode;
3360 PTE_SYNC(ptep);
3361
3362 if (pg) {
3363 if (prot & PMAP_KMPAGE) {
3364 simple_lock(&pg->mdpage.pvh_slock);
3365 KASSERT(pg->mdpage.urw_mappings == 0);
3366 KASSERT(pg->mdpage.uro_mappings == 0);
3367 KASSERT(pg->mdpage.krw_mappings == 0);
3368 KASSERT(pg->mdpage.kro_mappings == 0);
3369 #ifdef PMAP_CACHE_VIPT
3370 KASSERT(pv == NULL);
3371 KASSERT((va & PVF_COLORED) == 0);
3372 KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
3373 /* if there is a color conflict, evict from cache. */
3374 if (pmap_is_page_colored_p(pg)
3375 && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
3376 PMAPCOUNT(vac_color_change);
3377 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
3378 } else if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
3379 /*
3380 * If this page has multiple colors, expunge
3381 * them.
3382 */
3383 PMAPCOUNT(vac_flush_lots2);
3384 pmap_flush_page(pg, PMAP_FLUSH_SECONDARY);
3385 }
3386 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
3387 pg->mdpage.pvh_attrs |= PVF_KMPAGE
3388 | PVF_COLORED | PVF_DIRTY
3389 | (va & arm_cache_prefer_mask);
3390 #endif
3391 #ifdef PMAP_CACHE_VIVT
3392 pg->mdpage.pvh_attrs |= PVF_KMPAGE;
3393 #endif
3394 pmap_kmpages++;
3395 simple_unlock(&pg->mdpage.pvh_slock);
3396 #ifdef PMAP_CACHE_VIPT
3397 } else {
3398 if (pv == NULL) {
3399 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3400 KASSERT(pv != NULL);
3401 }
3402 pmap_enter_pv(pg, pv, pmap_kernel(), va,
3403 PVF_WIRED | PVF_KENTRY
3404 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3405 if ((prot & VM_PROT_WRITE)
3406 && !(pg->mdpage.pvh_attrs & PVF_NC))
3407 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3408 KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3409 simple_lock(&pg->mdpage.pvh_slock);
3410 pmap_vac_me_harder(pg, pmap_kernel(), va);
3411 simple_unlock(&pg->mdpage.pvh_slock);
3412 #endif
3413 }
3414 #ifdef PMAP_CACHE_VIPT
3415 } else {
3416 if (pv != NULL)
3417 pool_put(&pmap_pv_pool, pv);
3418 #endif
3419 }
3420 }
3421
3422 void
3423 pmap_kremove(vaddr_t va, vsize_t len)
3424 {
3425 struct l2_bucket *l2b;
3426 pt_entry_t *ptep, *sptep, opte;
3427 vaddr_t next_bucket, eva;
3428 u_int mappings;
3429 struct vm_page *opg;
3430
3431 PMAPCOUNT(kenter_unmappings);
3432
3433 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3434 va, len));
3435
3436 eva = va + len;
3437
3438 while (va < eva) {
3439 next_bucket = L2_NEXT_BUCKET(va);
3440 if (next_bucket > eva)
3441 next_bucket = eva;
3442
3443 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3444 KDASSERT(l2b != NULL);
3445
3446 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3447 mappings = 0;
3448
3449 while (va < next_bucket) {
3450 opte = *ptep;
3451 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3452 if (opg) {
3453 if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
3454 simple_lock(&opg->mdpage.pvh_slock);
3455 KASSERT(opg->mdpage.urw_mappings == 0);
3456 KASSERT(opg->mdpage.uro_mappings == 0);
3457 KASSERT(opg->mdpage.krw_mappings == 0);
3458 KASSERT(opg->mdpage.kro_mappings == 0);
3459 opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
3460 #ifdef PMAP_CACHE_VIPT
3461 opg->mdpage.pvh_attrs &= ~PVF_WRITE;
3462 #endif
3463 pmap_kmpages--;
3464 simple_unlock(&opg->mdpage.pvh_slock);
3465 #ifdef PMAP_CACHE_VIPT
3466 } else {
3467 pool_put(&pmap_pv_pool,
3468 pmap_kremove_pg(opg, va));
3469 #endif
3470 }
3471 }
3472 if (l2pte_valid(opte)) {
3473 #ifdef PMAP_CACHE_VIVT
3474 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3475 #endif
3476 cpu_tlb_flushD_SE(va);
3477 }
3478 if (opte) {
3479 *ptep = 0;
3480 mappings++;
3481 }
3482 va += PAGE_SIZE;
3483 ptep++;
3484 }
3485 KDASSERT(mappings <= l2b->l2b_occupancy);
3486 l2b->l2b_occupancy -= mappings;
3487 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3488 }
3489 cpu_cpwait();
3490 }
3491
3492 bool
3493 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3494 {
3495 struct l2_dtable *l2;
3496 pd_entry_t *pl1pd, l1pd;
3497 pt_entry_t *ptep, pte;
3498 paddr_t pa;
3499 u_int l1idx;
3500
3501 pmap_acquire_pmap_lock(pm);
3502
3503 l1idx = L1_IDX(va);
3504 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3505 l1pd = *pl1pd;
3506
3507 if (l1pte_section_p(l1pd)) {
3508 /*
3509 * These should only happen for pmap_kernel()
3510 */
3511 KDASSERT(pm == pmap_kernel());
3512 pmap_release_pmap_lock(pm);
3513 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3514 } else {
3515 /*
3516 * Note that we can't rely on the validity of the L1
3517 * descriptor as an indication that a mapping exists.
3518 * We have to look it up in the L2 dtable.
3519 */
3520 l2 = pm->pm_l2[L2_IDX(l1idx)];
3521
3522 if (l2 == NULL ||
3523 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3524 pmap_release_pmap_lock(pm);
3525 return false;
3526 }
3527
3528 ptep = &ptep[l2pte_index(va)];
3529 pte = *ptep;
3530 pmap_release_pmap_lock(pm);
3531
3532 if (pte == 0)
3533 return false;
3534
3535 switch (pte & L2_TYPE_MASK) {
3536 case L2_TYPE_L:
3537 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3538 break;
3539
3540 default:
3541 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3542 break;
3543 }
3544 }
3545
3546 if (pap != NULL)
3547 *pap = pa;
3548
3549 return true;
3550 }
3551
3552 void
3553 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3554 {
3555 struct l2_bucket *l2b;
3556 pt_entry_t *ptep, pte;
3557 vaddr_t next_bucket;
3558 u_int flags;
3559 u_int clr_mask;
3560 int flush;
3561
3562 NPDEBUG(PDB_PROTECT,
3563 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3564 pm, sva, eva, prot));
3565
3566 if ((prot & VM_PROT_READ) == 0) {
3567 pmap_remove(pm, sva, eva);
3568 return;
3569 }
3570
3571 if (prot & VM_PROT_WRITE) {
3572 /*
3573 * If this is a read->write transition, just ignore it and let
3574 * uvm_fault() take care of it later.
3575 */
3576 return;
3577 }
3578
3579 PMAP_MAP_TO_HEAD_LOCK();
3580 pmap_acquire_pmap_lock(pm);
3581
3582 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3583 flags = 0;
3584 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3585
3586 while (sva < eva) {
3587 next_bucket = L2_NEXT_BUCKET(sva);
3588 if (next_bucket > eva)
3589 next_bucket = eva;
3590
3591 l2b = pmap_get_l2_bucket(pm, sva);
3592 if (l2b == NULL) {
3593 sva = next_bucket;
3594 continue;
3595 }
3596
3597 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3598
3599 while (sva < next_bucket) {
3600 pte = *ptep;
3601 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3602 struct vm_page *pg;
3603 u_int f;
3604
3605 #ifdef PMAP_CACHE_VIVT
3606 /*
3607 * OK, at this point, we know we're doing
3608 * write-protect operation. If the pmap is
3609 * active, write-back the page.
3610 */
3611 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3612 false, false);
3613 #endif
3614
3615 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3616 pte &= ~L2_S_PROT_W;
3617 *ptep = pte;
3618 PTE_SYNC(ptep);
3619
3620 if (pg != NULL) {
3621 simple_lock(&pg->mdpage.pvh_slock);
3622 f = pmap_modify_pv(pg, pm, sva,
3623 clr_mask, 0);
3624 pmap_vac_me_harder(pg, pm, sva);
3625 simple_unlock(&pg->mdpage.pvh_slock);
3626 } else
3627 f = PVF_REF | PVF_EXEC;
3628
3629 if (flush >= 0) {
3630 flush++;
3631 flags |= f;
3632 } else
3633 if (PV_BEEN_EXECD(f))
3634 pmap_tlb_flushID_SE(pm, sva);
3635 else
3636 if (PV_BEEN_REFD(f))
3637 pmap_tlb_flushD_SE(pm, sva);
3638 }
3639
3640 sva += PAGE_SIZE;
3641 ptep++;
3642 }
3643 }
3644
3645 pmap_release_pmap_lock(pm);
3646 PMAP_MAP_TO_HEAD_UNLOCK();
3647
3648 if (flush) {
3649 if (PV_BEEN_EXECD(flags))
3650 pmap_tlb_flushID(pm);
3651 else
3652 if (PV_BEEN_REFD(flags))
3653 pmap_tlb_flushD(pm);
3654 }
3655 }
3656
3657 void
3658 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3659 {
3660 struct l2_bucket *l2b;
3661 pt_entry_t *ptep;
3662 vaddr_t next_bucket;
3663 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3664
3665 NPDEBUG(PDB_EXEC,
3666 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3667 pm, sva, eva));
3668
3669 PMAP_MAP_TO_HEAD_LOCK();
3670 pmap_acquire_pmap_lock(pm);
3671
3672 while (sva < eva) {
3673 next_bucket = L2_NEXT_BUCKET(sva);
3674 if (next_bucket > eva)
3675 next_bucket = eva;
3676
3677 l2b = pmap_get_l2_bucket(pm, sva);
3678 if (l2b == NULL) {
3679 sva = next_bucket;
3680 continue;
3681 }
3682
3683 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3684 sva < next_bucket;
3685 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3686 if (l2pte_valid(*ptep)) {
3687 cpu_icache_sync_range(sva,
3688 min(page_size, eva - sva));
3689 }
3690 }
3691 }
3692
3693 pmap_release_pmap_lock(pm);
3694 PMAP_MAP_TO_HEAD_UNLOCK();
3695 }
3696
3697 void
3698 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3699 {
3700
3701 NPDEBUG(PDB_PROTECT,
3702 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3703 pg, VM_PAGE_TO_PHYS(pg), prot));
3704
3705 switch(prot) {
3706 case VM_PROT_READ|VM_PROT_WRITE:
3707 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3708 pmap_clearbit(pg, PVF_EXEC);
3709 break;
3710 #endif
3711 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3712 break;
3713
3714 case VM_PROT_READ:
3715 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3716 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3717 break;
3718 #endif
3719 case VM_PROT_READ|VM_PROT_EXECUTE:
3720 pmap_clearbit(pg, PVF_WRITE);
3721 break;
3722
3723 default:
3724 pmap_page_remove(pg);
3725 break;
3726 }
3727 }
3728
3729 /*
3730 * pmap_clear_modify:
3731 *
3732 * Clear the "modified" attribute for a page.
3733 */
3734 bool
3735 pmap_clear_modify(struct vm_page *pg)
3736 {
3737 bool rv;
3738
3739 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3740 rv = true;
3741 #ifdef PMAP_CACHE_VIPT
3742 /*
3743 * If we are going to clear the modified bit and there are
3744 * no other modified bits set, flush the page to memory and
3745 * mark it clean.
3746 */
3747 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3748 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
3749 #endif
3750 pmap_clearbit(pg, PVF_MOD);
3751 } else
3752 rv = false;
3753
3754 return (rv);
3755 }
3756
3757 /*
3758 * pmap_clear_reference:
3759 *
3760 * Clear the "referenced" attribute for a page.
3761 */
3762 bool
3763 pmap_clear_reference(struct vm_page *pg)
3764 {
3765 bool rv;
3766
3767 if (pg->mdpage.pvh_attrs & PVF_REF) {
3768 rv = true;
3769 pmap_clearbit(pg, PVF_REF);
3770 } else
3771 rv = false;
3772
3773 return (rv);
3774 }
3775
3776 /*
3777 * pmap_is_modified:
3778 *
3779 * Test if a page has the "modified" attribute.
3780 */
3781 /* See <arm/arm32/pmap.h> */
3782
3783 /*
3784 * pmap_is_referenced:
3785 *
3786 * Test if a page has the "referenced" attribute.
3787 */
3788 /* See <arm/arm32/pmap.h> */
3789
3790 int
3791 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3792 {
3793 struct l2_dtable *l2;
3794 struct l2_bucket *l2b;
3795 pd_entry_t *pl1pd, l1pd;
3796 pt_entry_t *ptep, pte;
3797 paddr_t pa;
3798 u_int l1idx;
3799 int rv = 0;
3800
3801 PMAP_MAP_TO_HEAD_LOCK();
3802 pmap_acquire_pmap_lock(pm);
3803
3804 l1idx = L1_IDX(va);
3805
3806 /*
3807 * If there is no l2_dtable for this address, then the process
3808 * has no business accessing it.
3809 *
3810 * Note: This will catch userland processes trying to access
3811 * kernel addresses.
3812 */
3813 l2 = pm->pm_l2[L2_IDX(l1idx)];
3814 if (l2 == NULL)
3815 goto out;
3816
3817 /*
3818 * Likewise if there is no L2 descriptor table
3819 */
3820 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3821 if (l2b->l2b_kva == NULL)
3822 goto out;
3823
3824 /*
3825 * Check the PTE itself.
3826 */
3827 ptep = &l2b->l2b_kva[l2pte_index(va)];
3828 pte = *ptep;
3829 if (pte == 0)
3830 goto out;
3831
3832 /*
3833 * Catch a userland access to the vector page mapped at 0x0
3834 */
3835 if (user && (pte & L2_S_PROT_U) == 0)
3836 goto out;
3837
3838 pa = l2pte_pa(pte);
3839
3840 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3841 /*
3842 * This looks like a good candidate for "page modified"
3843 * emulation...
3844 */
3845 struct pv_entry *pv;
3846 struct vm_page *pg;
3847
3848 /* Extract the physical address of the page */
3849 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3850 goto out;
3851
3852 /* Get the current flags for this page. */
3853 simple_lock(&pg->mdpage.pvh_slock);
3854
3855 pv = pmap_find_pv(pg, pm, va);
3856 if (pv == NULL) {
3857 simple_unlock(&pg->mdpage.pvh_slock);
3858 goto out;
3859 }
3860
3861 /*
3862 * Do the flags say this page is writable? If not then it
3863 * is a genuine write fault. If yes then the write fault is
3864 * our fault as we did not reflect the write access in the
3865 * PTE. Now we know a write has occurred we can correct this
3866 * and also set the modified bit
3867 */
3868 if ((pv->pv_flags & PVF_WRITE) == 0) {
3869 simple_unlock(&pg->mdpage.pvh_slock);
3870 goto out;
3871 }
3872
3873 NPDEBUG(PDB_FOLLOW,
3874 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3875 pm, va, VM_PAGE_TO_PHYS(pg)));
3876
3877 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3878 pv->pv_flags |= PVF_REF | PVF_MOD;
3879 #ifdef PMAP_CACHE_VIPT
3880 /*
3881 * If there are cacheable mappings for this page, mark it dirty.
3882 */
3883 if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
3884 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3885 #endif
3886 simple_unlock(&pg->mdpage.pvh_slock);
3887
3888 /*
3889 * Re-enable write permissions for the page. No need to call
3890 * pmap_vac_me_harder(), since this is just a
3891 * modified-emulation fault, and the PVF_WRITE bit isn't
3892 * changing. We've already set the cacheable bits based on
3893 * the assumption that we can write to this page.
3894 */
3895 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3896 PTE_SYNC(ptep);
3897 rv = 1;
3898 } else
3899 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3900 /*
3901 * This looks like a good candidate for "page referenced"
3902 * emulation.
3903 */
3904 struct pv_entry *pv;
3905 struct vm_page *pg;
3906
3907 /* Extract the physical address of the page */
3908 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3909 goto out;
3910
3911 /* Get the current flags for this page. */
3912 simple_lock(&pg->mdpage.pvh_slock);
3913
3914 pv = pmap_find_pv(pg, pm, va);
3915 if (pv == NULL) {
3916 simple_unlock(&pg->mdpage.pvh_slock);
3917 goto out;
3918 }
3919
3920 pg->mdpage.pvh_attrs |= PVF_REF;
3921 pv->pv_flags |= PVF_REF;
3922 simple_unlock(&pg->mdpage.pvh_slock);
3923
3924 NPDEBUG(PDB_FOLLOW,
3925 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3926 pm, va, VM_PAGE_TO_PHYS(pg)));
3927
3928 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3929 PTE_SYNC(ptep);
3930 rv = 1;
3931 }
3932
3933 /*
3934 * We know there is a valid mapping here, so simply
3935 * fix up the L1 if necessary.
3936 */
3937 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3938 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3939 if (*pl1pd != l1pd) {
3940 *pl1pd = l1pd;
3941 PTE_SYNC(pl1pd);
3942 rv = 1;
3943 }
3944
3945 #ifdef CPU_SA110
3946 /*
3947 * There are bugs in the rev K SA110. This is a check for one
3948 * of them.
3949 */
3950 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3951 curcpu()->ci_arm_cpurev < 3) {
3952 /* Always current pmap */
3953 if (l2pte_valid(pte)) {
3954 extern int kernel_debug;
3955 if (kernel_debug & 1) {
3956 struct proc *p = curlwp->l_proc;
3957 printf("prefetch_abort: page is already "
3958 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3959 printf("prefetch_abort: pc=%08lx proc=%p "
3960 "process=%s\n", va, p, p->p_comm);
3961 printf("prefetch_abort: far=%08x fs=%x\n",
3962 cpu_faultaddress(), cpu_faultstatus());
3963 }
3964 #ifdef DDB
3965 if (kernel_debug & 2)
3966 Debugger();
3967 #endif
3968 rv = 1;
3969 }
3970 }
3971 #endif /* CPU_SA110 */
3972
3973 #ifdef DEBUG
3974 /*
3975 * If 'rv == 0' at this point, it generally indicates that there is a
3976 * stale TLB entry for the faulting address. This happens when two or
3977 * more processes are sharing an L1. Since we don't flush the TLB on
3978 * a context switch between such processes, we can take domain faults
3979 * for mappings which exist at the same VA in both processes. EVEN IF
3980 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
3981 * example.
3982 *
3983 * This is extremely likely to happen if pmap_enter() updated the L1
3984 * entry for a recently entered mapping. In this case, the TLB is
3985 * flushed for the new mapping, but there may still be TLB entries for
3986 * other mappings belonging to other processes in the 1MB range
3987 * covered by the L1 entry.
3988 *
3989 * Since 'rv == 0', we know that the L1 already contains the correct
3990 * value, so the fault must be due to a stale TLB entry.
3991 *
3992 * Since we always need to flush the TLB anyway in the case where we
3993 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
3994 * stale TLB entries dynamically.
3995 *
3996 * However, the above condition can ONLY happen if the current L1 is
3997 * being shared. If it happens when the L1 is unshared, it indicates
3998 * that other parts of the pmap are not doing their job WRT managing
3999 * the TLB.
4000 */
4001 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4002 extern int last_fault_code;
4003 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4004 pm, va, ftype);
4005 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4006 l2, l2b, ptep, pl1pd);
4007 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4008 pte, l1pd, last_fault_code);
4009 #ifdef DDB
4010 Debugger();
4011 #endif
4012 }
4013 #endif
4014
4015 cpu_tlb_flushID_SE(va);
4016 cpu_cpwait();
4017
4018 rv = 1;
4019
4020 out:
4021 pmap_release_pmap_lock(pm);
4022 PMAP_MAP_TO_HEAD_UNLOCK();
4023
4024 return (rv);
4025 }
4026
4027 /*
4028 * Routine: pmap_procwr
4029 *
4030 * Function:
4031 * Synchronize caches corresponding to [addr, addr+len) in p.
4032 *
4033 */
4034 void
4035 pmap_procwr(struct proc *p, vaddr_t va, int len)
4036 {
4037 /* We only need to do anything if it is the current process. */
4038 if (p == curproc)
4039 cpu_icache_sync_range(va, len);
4040 }
4041
4042 /*
4043 * Routine: pmap_unwire
4044 * Function: Clear the wired attribute for a map/virtual-address pair.
4045 *
4046 * In/out conditions:
4047 * The mapping must already exist in the pmap.
4048 */
4049 void
4050 pmap_unwire(pmap_t pm, vaddr_t va)
4051 {
4052 struct l2_bucket *l2b;
4053 pt_entry_t *ptep, pte;
4054 struct vm_page *pg;
4055 paddr_t pa;
4056
4057 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4058
4059 PMAP_MAP_TO_HEAD_LOCK();
4060 pmap_acquire_pmap_lock(pm);
4061
4062 l2b = pmap_get_l2_bucket(pm, va);
4063 KDASSERT(l2b != NULL);
4064
4065 ptep = &l2b->l2b_kva[l2pte_index(va)];
4066 pte = *ptep;
4067
4068 /* Extract the physical address of the page */
4069 pa = l2pte_pa(pte);
4070
4071 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4072 /* Update the wired bit in the pv entry for this page. */
4073 simple_lock(&pg->mdpage.pvh_slock);
4074 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
4075 simple_unlock(&pg->mdpage.pvh_slock);
4076 }
4077
4078 pmap_release_pmap_lock(pm);
4079 PMAP_MAP_TO_HEAD_UNLOCK();
4080 }
4081
4082 void
4083 pmap_activate(struct lwp *l)
4084 {
4085 extern int block_userspace_access;
4086 pmap_t opm, npm, rpm;
4087 uint32_t odacr, ndacr;
4088 int oldirqstate;
4089
4090 /*
4091 * If activating a non-current lwp or the current lwp is
4092 * already active, just return.
4093 */
4094 if (l != curlwp ||
4095 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4096 return;
4097
4098 npm = l->l_proc->p_vmspace->vm_map.pmap;
4099 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4100 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4101
4102 /*
4103 * If TTB and DACR are unchanged, short-circuit all the
4104 * TLB/cache management stuff.
4105 */
4106 if (pmap_previous_active_lwp != NULL) {
4107 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4108 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4109 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4110
4111 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4112 goto all_done;
4113 } else
4114 opm = NULL;
4115
4116 PMAPCOUNT(activations);
4117 block_userspace_access = 1;
4118
4119 /*
4120 * If switching to a user vmspace which is different to the
4121 * most recent one, and the most recent one is potentially
4122 * live in the cache, we must write-back and invalidate the
4123 * entire cache.
4124 */
4125 rpm = pmap_recent_user;
4126
4127 /*
4128 * XXXSCW: There's a corner case here which can leave turds in the cache as
4129 * reported in kern/41058. They're probably left over during tear-down and
4130 * switching away from an exiting process. Until the root cause is identified
4131 * and fixed, zap the cache when switching pmaps. This will result in a few
4132 * unnecessary cache flushes, but that's better than silently corrupting data.
4133 */
4134 #if 0
4135 if (npm != pmap_kernel() && rpm && npm != rpm &&
4136 rpm->pm_cstate.cs_cache) {
4137 rpm->pm_cstate.cs_cache = 0;
4138 #ifdef PMAP_CACHE_VIVT
4139 cpu_idcache_wbinv_all();
4140 #endif
4141 }
4142 #else
4143 if (rpm) {
4144 rpm->pm_cstate.cs_cache = 0;
4145 if (npm == pmap_kernel())
4146 pmap_recent_user = NULL;
4147 #ifdef PMAP_CACHE_VIVT
4148 cpu_idcache_wbinv_all();
4149 #endif
4150 }
4151 #endif
4152
4153 /* No interrupts while we frob the TTB/DACR */
4154 oldirqstate = disable_interrupts(IF32_bits);
4155
4156 /*
4157 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4158 * entry corresponding to 'vector_page' in the incoming L1 table
4159 * before switching to it otherwise subsequent interrupts/exceptions
4160 * (including domain faults!) will jump into hyperspace.
4161 */
4162 if (npm->pm_pl1vec != NULL) {
4163 cpu_tlb_flushID_SE((u_int)vector_page);
4164 cpu_cpwait();
4165 *npm->pm_pl1vec = npm->pm_l1vec;
4166 PTE_SYNC(npm->pm_pl1vec);
4167 }
4168
4169 cpu_domains(ndacr);
4170
4171 if (npm == pmap_kernel() || npm == rpm) {
4172 /*
4173 * Switching to a kernel thread, or back to the
4174 * same user vmspace as before... Simply update
4175 * the TTB (no TLB flush required)
4176 */
4177 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4178 "r"(npm->pm_l1->l1_physaddr));
4179 cpu_cpwait();
4180 } else {
4181 /*
4182 * Otherwise, update TTB and flush TLB
4183 */
4184 cpu_context_switch(npm->pm_l1->l1_physaddr);
4185 if (rpm != NULL)
4186 rpm->pm_cstate.cs_tlb = 0;
4187 }
4188
4189 restore_interrupts(oldirqstate);
4190
4191 block_userspace_access = 0;
4192
4193 all_done:
4194 /*
4195 * The new pmap is resident. Make sure it's marked
4196 * as resident in the cache/TLB.
4197 */
4198 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4199 if (npm != pmap_kernel())
4200 pmap_recent_user = npm;
4201
4202 /* The old pmap is not longer active */
4203 if (opm != NULL)
4204 opm->pm_activated = false;
4205
4206 /* But the new one is */
4207 npm->pm_activated = true;
4208 }
4209
4210 void
4211 pmap_deactivate(struct lwp *l)
4212 {
4213
4214 /*
4215 * If the process is exiting, make sure pmap_activate() does
4216 * a full MMU context-switch and cache flush, which we might
4217 * otherwise skip. See PR port-arm/38950.
4218 */
4219 if (l->l_proc->p_sflag & PS_WEXIT)
4220 pmap_previous_active_lwp = NULL;
4221
4222 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4223 }
4224
4225 void
4226 pmap_update(pmap_t pm)
4227 {
4228
4229 if (pm->pm_remove_all) {
4230 /*
4231 * Finish up the pmap_remove_all() optimisation by flushing
4232 * the TLB.
4233 */
4234 pmap_tlb_flushID(pm);
4235 pm->pm_remove_all = false;
4236 }
4237
4238 if (pmap_is_current(pm)) {
4239 /*
4240 * If we're dealing with a current userland pmap, move its L1
4241 * to the end of the LRU.
4242 */
4243 if (pm != pmap_kernel())
4244 pmap_use_l1(pm);
4245
4246 /*
4247 * We can assume we're done with frobbing the cache/tlb for
4248 * now. Make sure any future pmap ops don't skip cache/tlb
4249 * flushes.
4250 */
4251 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4252 }
4253
4254 PMAPCOUNT(updates);
4255
4256 /*
4257 * make sure TLB/cache operations have completed.
4258 */
4259 cpu_cpwait();
4260 }
4261
4262 void
4263 pmap_remove_all(pmap_t pm)
4264 {
4265
4266 /*
4267 * The vmspace described by this pmap is about to be torn down.
4268 * Until pmap_update() is called, UVM will only make calls
4269 * to pmap_remove(). We can make life much simpler by flushing
4270 * the cache now, and deferring TLB invalidation to pmap_update().
4271 */
4272 #ifdef PMAP_CACHE_VIVT
4273 pmap_idcache_wbinv_all(pm);
4274 #endif
4275 pm->pm_remove_all = true;
4276 }
4277
4278 /*
4279 * Retire the given physical map from service.
4280 * Should only be called if the map contains no valid mappings.
4281 */
4282 void
4283 pmap_destroy(pmap_t pm)
4284 {
4285 u_int count;
4286
4287 if (pm == NULL)
4288 return;
4289
4290 if (pm->pm_remove_all) {
4291 pmap_tlb_flushID(pm);
4292 pm->pm_remove_all = false;
4293 }
4294
4295 /*
4296 * Drop reference count
4297 */
4298 mutex_enter(&pm->pm_lock);
4299 count = --pm->pm_obj.uo_refs;
4300 mutex_exit(&pm->pm_lock);
4301 if (count > 0) {
4302 if (pmap_is_current(pm)) {
4303 if (pm != pmap_kernel())
4304 pmap_use_l1(pm);
4305 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4306 }
4307 return;
4308 }
4309
4310 /*
4311 * reference count is zero, free pmap resources and then free pmap.
4312 */
4313
4314 if (vector_page < KERNEL_BASE) {
4315 KDASSERT(!pmap_is_current(pm));
4316
4317 /* Remove the vector page mapping */
4318 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4319 pmap_update(pm);
4320 }
4321
4322 LIST_REMOVE(pm, pm_list);
4323
4324 pmap_free_l1(pm);
4325
4326 if (pmap_recent_user == pm)
4327 pmap_recent_user = NULL;
4328
4329 UVM_OBJ_DESTROY(&pm->pm_obj);
4330
4331 /* return the pmap to the pool */
4332 pool_cache_put(&pmap_cache, pm);
4333 }
4334
4335
4336 /*
4337 * void pmap_reference(pmap_t pm)
4338 *
4339 * Add a reference to the specified pmap.
4340 */
4341 void
4342 pmap_reference(pmap_t pm)
4343 {
4344
4345 if (pm == NULL)
4346 return;
4347
4348 pmap_use_l1(pm);
4349
4350 mutex_enter(&pm->pm_lock);
4351 pm->pm_obj.uo_refs++;
4352 mutex_exit(&pm->pm_lock);
4353 }
4354
4355 #if ARM_MMU_V6 > 0
4356
4357 static struct evcnt pmap_prefer_nochange_ev =
4358 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4359 static struct evcnt pmap_prefer_change_ev =
4360 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4361
4362 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4363 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4364
4365 void
4366 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4367 {
4368 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4369 vaddr_t va = *vap;
4370 vaddr_t diff = (hint - va) & mask;
4371 if (diff == 0) {
4372 pmap_prefer_nochange_ev.ev_count++;
4373 } else {
4374 pmap_prefer_change_ev.ev_count++;
4375 if (__predict_false(td))
4376 va -= mask + 1;
4377 *vap = va + diff;
4378 }
4379 }
4380 #endif /* ARM_MMU_V6 */
4381
4382 /*
4383 * pmap_zero_page()
4384 *
4385 * Zero a given physical page by mapping it at a page hook point.
4386 * In doing the zero page op, the page we zero is mapped cachable, as with
4387 * StrongARM accesses to non-cached pages are non-burst making writing
4388 * _any_ bulk data very slow.
4389 */
4390 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4391 void
4392 pmap_zero_page_generic(paddr_t phys)
4393 {
4394 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4395 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4396 #endif
4397 #ifdef PMAP_CACHE_VIPT
4398 /* Choose the last page color it had, if any */
4399 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4400 #else
4401 const vsize_t va_offset = 0;
4402 #endif
4403 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4404
4405 #ifdef DEBUG
4406 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4407 panic("pmap_zero_page: page has mappings");
4408 #endif
4409
4410 KDASSERT((phys & PGOFSET) == 0);
4411
4412 /*
4413 * Hook in the page, zero it, and purge the cache for that
4414 * zeroed page. Invalidate the TLB as needed.
4415 */
4416 *ptep = L2_S_PROTO | phys |
4417 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4418 PTE_SYNC(ptep);
4419 cpu_tlb_flushD_SE(cdstp + va_offset);
4420 cpu_cpwait();
4421 bzero_page(cdstp + va_offset);
4422 /*
4423 * Unmap the page.
4424 */
4425 *ptep = 0;
4426 PTE_SYNC(ptep);
4427 cpu_tlb_flushD_SE(cdstp + va_offset);
4428 #ifdef PMAP_CACHE_VIVT
4429 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4430 #endif
4431 #ifdef PMAP_CACHE_VIPT
4432 /*
4433 * This page is now cache resident so it now has a page color.
4434 * Any contents have been obliterated so clear the EXEC flag.
4435 */
4436 if (!pmap_is_page_colored_p(pg)) {
4437 PMAPCOUNT(vac_color_new);
4438 pg->mdpage.pvh_attrs |= PVF_COLORED;
4439 }
4440 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4441 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4442 PMAPCOUNT(exec_discarded_zero);
4443 }
4444 pg->mdpage.pvh_attrs |= PVF_DIRTY;
4445 #endif
4446 }
4447 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4448
4449 #if ARM_MMU_XSCALE == 1
4450 void
4451 pmap_zero_page_xscale(paddr_t phys)
4452 {
4453 #ifdef DEBUG
4454 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4455
4456 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4457 panic("pmap_zero_page: page has mappings");
4458 #endif
4459
4460 KDASSERT((phys & PGOFSET) == 0);
4461
4462 /*
4463 * Hook in the page, zero it, and purge the cache for that
4464 * zeroed page. Invalidate the TLB as needed.
4465 */
4466 *cdst_pte = L2_S_PROTO | phys |
4467 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4468 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4469 PTE_SYNC(cdst_pte);
4470 cpu_tlb_flushD_SE(cdstp);
4471 cpu_cpwait();
4472 bzero_page(cdstp);
4473 xscale_cache_clean_minidata();
4474 }
4475 #endif /* ARM_MMU_XSCALE == 1 */
4476
4477 /* pmap_pageidlezero()
4478 *
4479 * The same as above, except that we assume that the page is not
4480 * mapped. This means we never have to flush the cache first. Called
4481 * from the idle loop.
4482 */
4483 bool
4484 pmap_pageidlezero(paddr_t phys)
4485 {
4486 unsigned int i;
4487 int *ptr;
4488 bool rv = true;
4489 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4490 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4491 #endif
4492 #ifdef PMAP_CACHE_VIPT
4493 /* Choose the last page color it had, if any */
4494 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4495 #else
4496 const vsize_t va_offset = 0;
4497 #endif
4498 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4499
4500
4501 #ifdef DEBUG
4502 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4503 panic("pmap_pageidlezero: page has mappings");
4504 #endif
4505
4506 KDASSERT((phys & PGOFSET) == 0);
4507
4508 /*
4509 * Hook in the page, zero it, and purge the cache for that
4510 * zeroed page. Invalidate the TLB as needed.
4511 */
4512 *ptep = L2_S_PROTO | phys |
4513 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4514 PTE_SYNC(ptep);
4515 cpu_tlb_flushD_SE(cdstp + va_offset);
4516 cpu_cpwait();
4517
4518 for (i = 0, ptr = (int *)(cdstp + va_offset);
4519 i < (PAGE_SIZE / sizeof(int)); i++) {
4520 if (sched_curcpu_runnable_p() != 0) {
4521 /*
4522 * A process has become ready. Abort now,
4523 * so we don't keep it waiting while we
4524 * do slow memory access to finish this
4525 * page.
4526 */
4527 rv = false;
4528 break;
4529 }
4530 *ptr++ = 0;
4531 }
4532
4533 #ifdef PMAP_CACHE_VIVT
4534 if (rv)
4535 /*
4536 * if we aborted we'll rezero this page again later so don't
4537 * purge it unless we finished it
4538 */
4539 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4540 #elif defined(PMAP_CACHE_VIPT)
4541 /*
4542 * This page is now cache resident so it now has a page color.
4543 * Any contents have been obliterated so clear the EXEC flag.
4544 */
4545 if (!pmap_is_page_colored_p(pg)) {
4546 PMAPCOUNT(vac_color_new);
4547 pg->mdpage.pvh_attrs |= PVF_COLORED;
4548 }
4549 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4550 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4551 PMAPCOUNT(exec_discarded_zero);
4552 }
4553 #endif
4554 /*
4555 * Unmap the page.
4556 */
4557 *ptep = 0;
4558 PTE_SYNC(ptep);
4559 cpu_tlb_flushD_SE(cdstp + va_offset);
4560
4561 return (rv);
4562 }
4563
4564 /*
4565 * pmap_copy_page()
4566 *
4567 * Copy one physical page into another, by mapping the pages into
4568 * hook points. The same comment regarding cachability as in
4569 * pmap_zero_page also applies here.
4570 */
4571 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4572 void
4573 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4574 {
4575 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4576 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4577 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4578 #endif
4579 #ifdef PMAP_CACHE_VIPT
4580 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4581 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4582 #else
4583 const vsize_t src_va_offset = 0;
4584 const vsize_t dst_va_offset = 0;
4585 #endif
4586 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4587 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4588
4589 #ifdef DEBUG
4590 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4591 panic("pmap_copy_page: dst page has mappings");
4592 #endif
4593
4594 #ifdef PMAP_CACHE_VIPT
4595 KASSERT(src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
4596 #endif
4597 KDASSERT((src & PGOFSET) == 0);
4598 KDASSERT((dst & PGOFSET) == 0);
4599
4600 /*
4601 * Clean the source page. Hold the source page's lock for
4602 * the duration of the copy so that no other mappings can
4603 * be created while we have a potentially aliased mapping.
4604 */
4605 simple_lock(&src_pg->mdpage.pvh_slock);
4606 #ifdef PMAP_CACHE_VIVT
4607 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4608 #endif
4609
4610 /*
4611 * Map the pages into the page hook points, copy them, and purge
4612 * the cache for the appropriate page. Invalidate the TLB
4613 * as required.
4614 */
4615 *src_ptep = L2_S_PROTO
4616 | src
4617 #ifdef PMAP_CACHE_VIPT
4618 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4619 #endif
4620 #ifdef PMAP_CACHE_VIVT
4621 | pte_l2_s_cache_mode
4622 #endif
4623 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4624 *dst_ptep = L2_S_PROTO | dst |
4625 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4626 PTE_SYNC(src_ptep);
4627 PTE_SYNC(dst_ptep);
4628 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4629 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4630 cpu_cpwait();
4631 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4632 #ifdef PMAP_CACHE_VIVT
4633 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4634 #endif
4635 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4636 #ifdef PMAP_CACHE_VIVT
4637 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4638 #endif
4639 /*
4640 * Unmap the pages.
4641 */
4642 *src_ptep = 0;
4643 *dst_ptep = 0;
4644 PTE_SYNC(src_ptep);
4645 PTE_SYNC(dst_ptep);
4646 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4647 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4648 #ifdef PMAP_CACHE_VIPT
4649 /*
4650 * Now that the destination page is in the cache, mark it as colored.
4651 * If this was an exec page, discard it.
4652 */
4653 if (!pmap_is_page_colored_p(dst_pg)) {
4654 PMAPCOUNT(vac_color_new);
4655 dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
4656 }
4657 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
4658 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4659 PMAPCOUNT(exec_discarded_copy);
4660 }
4661 dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
4662 #endif
4663 }
4664 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4665
4666 #if ARM_MMU_XSCALE == 1
4667 void
4668 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4669 {
4670 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4671 #ifdef DEBUG
4672 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4673
4674 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4675 panic("pmap_copy_page: dst page has mappings");
4676 #endif
4677
4678 KDASSERT((src & PGOFSET) == 0);
4679 KDASSERT((dst & PGOFSET) == 0);
4680
4681 /*
4682 * Clean the source page. Hold the source page's lock for
4683 * the duration of the copy so that no other mappings can
4684 * be created while we have a potentially aliased mapping.
4685 */
4686 simple_lock(&src_pg->mdpage.pvh_slock);
4687 #ifdef PMAP_CACHE_VIVT
4688 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4689 #endif
4690
4691 /*
4692 * Map the pages into the page hook points, copy them, and purge
4693 * the cache for the appropriate page. Invalidate the TLB
4694 * as required.
4695 */
4696 *csrc_pte = L2_S_PROTO | src |
4697 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4698 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4699 PTE_SYNC(csrc_pte);
4700 *cdst_pte = L2_S_PROTO | dst |
4701 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4702 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4703 PTE_SYNC(cdst_pte);
4704 cpu_tlb_flushD_SE(csrcp);
4705 cpu_tlb_flushD_SE(cdstp);
4706 cpu_cpwait();
4707 bcopy_page(csrcp, cdstp);
4708 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4709 xscale_cache_clean_minidata();
4710 }
4711 #endif /* ARM_MMU_XSCALE == 1 */
4712
4713 /*
4714 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4715 *
4716 * Return the start and end addresses of the kernel's virtual space.
4717 * These values are setup in pmap_bootstrap and are updated as pages
4718 * are allocated.
4719 */
4720 void
4721 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4722 {
4723 *start = virtual_avail;
4724 *end = virtual_end;
4725 }
4726
4727 /*
4728 * Helper function for pmap_grow_l2_bucket()
4729 */
4730 static inline int
4731 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4732 {
4733 struct l2_bucket *l2b;
4734 pt_entry_t *ptep;
4735 paddr_t pa;
4736
4737 if (uvm.page_init_done == false) {
4738 #ifdef PMAP_STEAL_MEMORY
4739 pv_addr_t pv;
4740 pmap_boot_pagealloc(PAGE_SIZE,
4741 #ifdef PMAP_CACHE_VIPT
4742 arm_cache_prefer_mask,
4743 va & arm_cache_prefer_mask,
4744 #else
4745 0, 0,
4746 #endif
4747 &pv);
4748 pa = pv.pv_pa;
4749 #else
4750 if (uvm_page_physget(&pa) == false)
4751 return (1);
4752 #endif /* PMAP_STEAL_MEMORY */
4753 } else {
4754 struct vm_page *pg;
4755 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4756 if (pg == NULL)
4757 return (1);
4758 pa = VM_PAGE_TO_PHYS(pg);
4759 #ifdef PMAP_CACHE_VIPT
4760 /*
4761 * This new page must not have any mappings. Enter it via
4762 * pmap_kenter_pa and let that routine do the hard work.
4763 */
4764 KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
4765 pmap_kenter_pa(va, pa,
4766 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
4767 #endif
4768 }
4769
4770 if (pap)
4771 *pap = pa;
4772
4773 PMAPCOUNT(pt_mappings);
4774 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4775 KDASSERT(l2b != NULL);
4776
4777 ptep = &l2b->l2b_kva[l2pte_index(va)];
4778 *ptep = L2_S_PROTO | pa | cache_mode |
4779 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4780 PTE_SYNC(ptep);
4781 memset((void *)va, 0, PAGE_SIZE);
4782 return (0);
4783 }
4784
4785 /*
4786 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4787 * used by pmap_growkernel().
4788 */
4789 static inline struct l2_bucket *
4790 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4791 {
4792 struct l2_dtable *l2;
4793 struct l2_bucket *l2b;
4794 u_short l1idx;
4795 vaddr_t nva;
4796
4797 l1idx = L1_IDX(va);
4798
4799 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4800 /*
4801 * No mapping at this address, as there is
4802 * no entry in the L1 table.
4803 * Need to allocate a new l2_dtable.
4804 */
4805 nva = pmap_kernel_l2dtable_kva;
4806 if ((nva & PGOFSET) == 0) {
4807 /*
4808 * Need to allocate a backing page
4809 */
4810 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4811 return (NULL);
4812 }
4813
4814 l2 = (struct l2_dtable *)nva;
4815 nva += sizeof(struct l2_dtable);
4816
4817 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4818 /*
4819 * The new l2_dtable straddles a page boundary.
4820 * Map in another page to cover it.
4821 */
4822 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4823 return (NULL);
4824 }
4825
4826 pmap_kernel_l2dtable_kva = nva;
4827
4828 /*
4829 * Link it into the parent pmap
4830 */
4831 pm->pm_l2[L2_IDX(l1idx)] = l2;
4832 }
4833
4834 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4835
4836 /*
4837 * Fetch pointer to the L2 page table associated with the address.
4838 */
4839 if (l2b->l2b_kva == NULL) {
4840 pt_entry_t *ptep;
4841
4842 /*
4843 * No L2 page table has been allocated. Chances are, this
4844 * is because we just allocated the l2_dtable, above.
4845 */
4846 nva = pmap_kernel_l2ptp_kva;
4847 ptep = (pt_entry_t *)nva;
4848 if ((nva & PGOFSET) == 0) {
4849 /*
4850 * Need to allocate a backing page
4851 */
4852 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4853 &pmap_kernel_l2ptp_phys))
4854 return (NULL);
4855 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4856 }
4857
4858 l2->l2_occupancy++;
4859 l2b->l2b_kva = ptep;
4860 l2b->l2b_l1idx = l1idx;
4861 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4862
4863 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4864 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4865 }
4866
4867 return (l2b);
4868 }
4869
4870 vaddr_t
4871 pmap_growkernel(vaddr_t maxkvaddr)
4872 {
4873 pmap_t kpm = pmap_kernel();
4874 struct l1_ttable *l1;
4875 struct l2_bucket *l2b;
4876 pd_entry_t *pl1pd;
4877 int s;
4878
4879 if (maxkvaddr <= pmap_curmaxkvaddr)
4880 goto out; /* we are OK */
4881
4882 NPDEBUG(PDB_GROWKERN,
4883 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4884 pmap_curmaxkvaddr, maxkvaddr));
4885
4886 KDASSERT(maxkvaddr <= virtual_end);
4887
4888 /*
4889 * whoops! we need to add kernel PTPs
4890 */
4891
4892 s = splhigh(); /* to be safe */
4893 mutex_enter(&kpm->pm_lock);
4894
4895 /* Map 1MB at a time */
4896 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4897
4898 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4899 KDASSERT(l2b != NULL);
4900
4901 /* Distribute new L1 entry to all other L1s */
4902 SLIST_FOREACH(l1, &l1_list, l1_link) {
4903 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4904 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4905 L1_C_PROTO;
4906 PTE_SYNC(pl1pd);
4907 }
4908 }
4909
4910 /*
4911 * flush out the cache, expensive but growkernel will happen so
4912 * rarely
4913 */
4914 cpu_dcache_wbinv_all();
4915 cpu_tlb_flushD();
4916 cpu_cpwait();
4917
4918 mutex_exit(&kpm->pm_lock);
4919 splx(s);
4920
4921 out:
4922 return (pmap_curmaxkvaddr);
4923 }
4924
4925 /************************ Utility routines ****************************/
4926
4927 /*
4928 * vector_page_setprot:
4929 *
4930 * Manipulate the protection of the vector page.
4931 */
4932 void
4933 vector_page_setprot(int prot)
4934 {
4935 struct l2_bucket *l2b;
4936 pt_entry_t *ptep;
4937
4938 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4939 KDASSERT(l2b != NULL);
4940
4941 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4942
4943 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4944 PTE_SYNC(ptep);
4945 cpu_tlb_flushD_SE(vector_page);
4946 cpu_cpwait();
4947 }
4948
4949 /*
4950 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4951 * Returns true if the mapping exists, else false.
4952 *
4953 * NOTE: This function is only used by a couple of arm-specific modules.
4954 * It is not safe to take any pmap locks here, since we could be right
4955 * in the middle of debugging the pmap anyway...
4956 *
4957 * It is possible for this routine to return false even though a valid
4958 * mapping does exist. This is because we don't lock, so the metadata
4959 * state may be inconsistent.
4960 *
4961 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
4962 * a "section" mapping.
4963 */
4964 bool
4965 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
4966 {
4967 struct l2_dtable *l2;
4968 pd_entry_t *pl1pd, l1pd;
4969 pt_entry_t *ptep;
4970 u_short l1idx;
4971
4972 if (pm->pm_l1 == NULL)
4973 return false;
4974
4975 l1idx = L1_IDX(va);
4976 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
4977 l1pd = *pl1pd;
4978
4979 if (l1pte_section_p(l1pd)) {
4980 *ptp = NULL;
4981 return true;
4982 }
4983
4984 if (pm->pm_l2 == NULL)
4985 return false;
4986
4987 l2 = pm->pm_l2[L2_IDX(l1idx)];
4988
4989 if (l2 == NULL ||
4990 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
4991 return false;
4992 }
4993
4994 *ptp = &ptep[l2pte_index(va)];
4995 return true;
4996 }
4997
4998 bool
4999 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5000 {
5001 u_short l1idx;
5002
5003 if (pm->pm_l1 == NULL)
5004 return false;
5005
5006 l1idx = L1_IDX(va);
5007 *pdp = &pm->pm_l1->l1_kva[l1idx];
5008
5009 return true;
5010 }
5011
5012 /************************ Bootstrapping routines ****************************/
5013
5014 static void
5015 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5016 {
5017 int i;
5018
5019 l1->l1_kva = l1pt;
5020 l1->l1_domain_use_count = 0;
5021 l1->l1_domain_first = 0;
5022
5023 for (i = 0; i < PMAP_DOMAINS; i++)
5024 l1->l1_domain_free[i] = i + 1;
5025
5026 /*
5027 * Copy the kernel's L1 entries to each new L1.
5028 */
5029 if (pmap_initialized)
5030 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5031
5032 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5033 &l1->l1_physaddr) == false)
5034 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5035
5036 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5037 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5038 }
5039
5040 /*
5041 * pmap_bootstrap() is called from the board-specific initarm() routine
5042 * once the kernel L1/L2 descriptors tables have been set up.
5043 *
5044 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5045 * spread over a number of disparate files/functions.
5046 *
5047 * We are passed the following parameters
5048 * - kernel_l1pt
5049 * This is a pointer to the base of the kernel's L1 translation table.
5050 * - vstart
5051 * 1MB-aligned start of managed kernel virtual memory.
5052 * - vend
5053 * 1MB-aligned end of managed kernel virtual memory.
5054 *
5055 * We use the first parameter to build the metadata (struct l1_ttable and
5056 * struct l2_dtable) necessary to track kernel mappings.
5057 */
5058 #define PMAP_STATIC_L2_SIZE 16
5059 void
5060 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5061 {
5062 static struct l1_ttable static_l1;
5063 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5064 struct l1_ttable *l1 = &static_l1;
5065 struct l2_dtable *l2;
5066 struct l2_bucket *l2b;
5067 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5068 pmap_t pm = pmap_kernel();
5069 pd_entry_t pde;
5070 pt_entry_t *ptep;
5071 paddr_t pa;
5072 vaddr_t va;
5073 vsize_t size;
5074 int nptes, l1idx, l2idx, l2next = 0;
5075
5076 /*
5077 * Initialise the kernel pmap object
5078 */
5079 pm->pm_l1 = l1;
5080 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5081 pm->pm_activated = true;
5082 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5083 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5084
5085 /*
5086 * Scan the L1 translation table created by initarm() and create
5087 * the required metadata for all valid mappings found in it.
5088 */
5089 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5090 pde = l1pt[l1idx];
5091
5092 /*
5093 * We're only interested in Coarse mappings.
5094 * pmap_extract() can deal with section mappings without
5095 * recourse to checking L2 metadata.
5096 */
5097 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5098 continue;
5099
5100 /*
5101 * Lookup the KVA of this L2 descriptor table
5102 */
5103 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5104 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5105 if (ptep == NULL) {
5106 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5107 (u_int)l1idx << L1_S_SHIFT, pa);
5108 }
5109
5110 /*
5111 * Fetch the associated L2 metadata structure.
5112 * Allocate a new one if necessary.
5113 */
5114 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5115 if (l2next == PMAP_STATIC_L2_SIZE)
5116 panic("pmap_bootstrap: out of static L2s");
5117 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5118 }
5119
5120 /*
5121 * One more L1 slot tracked...
5122 */
5123 l2->l2_occupancy++;
5124
5125 /*
5126 * Fill in the details of the L2 descriptor in the
5127 * appropriate bucket.
5128 */
5129 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5130 l2b->l2b_kva = ptep;
5131 l2b->l2b_phys = pa;
5132 l2b->l2b_l1idx = l1idx;
5133
5134 /*
5135 * Establish an initial occupancy count for this descriptor
5136 */
5137 for (l2idx = 0;
5138 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5139 l2idx++) {
5140 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5141 l2b->l2b_occupancy++;
5142 }
5143 }
5144
5145 /*
5146 * Make sure the descriptor itself has the correct cache mode.
5147 * If not, fix it, but whine about the problem. Port-meisters
5148 * should consider this a clue to fix up their initarm()
5149 * function. :)
5150 */
5151 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5152 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5153 "L2 pte @ %p\n", ptep);
5154 }
5155 }
5156
5157 /*
5158 * Ensure the primary (kernel) L1 has the correct cache mode for
5159 * a page table. Bitch if it is not correctly set.
5160 */
5161 for (va = (vaddr_t)l1pt;
5162 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5163 if (pmap_set_pt_cache_mode(l1pt, va))
5164 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5165 "primary L1 @ 0x%lx\n", va);
5166 }
5167
5168 cpu_dcache_wbinv_all();
5169 cpu_tlb_flushID();
5170 cpu_cpwait();
5171
5172 /*
5173 * now we allocate the "special" VAs which are used for tmp mappings
5174 * by the pmap (and other modules). we allocate the VAs by advancing
5175 * virtual_avail (note that there are no pages mapped at these VAs).
5176 *
5177 * Managed KVM space start from wherever initarm() tells us.
5178 */
5179 virtual_avail = vstart;
5180 virtual_end = vend;
5181
5182 #ifdef PMAP_CACHE_VIPT
5183 /*
5184 * If we have a VIPT cache, we need one page/pte per possible alias
5185 * page so we won't violate cache aliasing rules.
5186 */
5187 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5188 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5189 #else
5190 nptes = 1;
5191 #endif
5192 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5193 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5194 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5195 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5196 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5197 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5198 (void *)&msgbufaddr, NULL);
5199
5200 /*
5201 * Allocate a range of kernel virtual address space to be used
5202 * for L2 descriptor tables and metadata allocation in
5203 * pmap_growkernel().
5204 */
5205 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5206 pmap_alloc_specials(&virtual_avail,
5207 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5208 &pmap_kernel_l2ptp_kva, NULL);
5209
5210 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5211 pmap_alloc_specials(&virtual_avail,
5212 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5213 &pmap_kernel_l2dtable_kva, NULL);
5214
5215 /*
5216 * init the static-global locks and global pmap list.
5217 */
5218 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5219
5220 /*
5221 * We can now initialise the first L1's metadata.
5222 */
5223 SLIST_INIT(&l1_list);
5224 TAILQ_INIT(&l1_lru_list);
5225 simple_lock_init(&l1_lru_lock);
5226 pmap_init_l1(l1, l1pt);
5227
5228 /* Set up vector page L1 details, if necessary */
5229 if (vector_page < KERNEL_BASE) {
5230 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5231 l2b = pmap_get_l2_bucket(pm, vector_page);
5232 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5233 L1_C_DOM(pm->pm_domain);
5234 } else
5235 pm->pm_pl1vec = NULL;
5236
5237 /*
5238 * Initialize the pmap cache
5239 */
5240 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5241 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5242 LIST_INIT(&pmap_pmaps);
5243 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5244
5245 /*
5246 * Initialize the pv pool.
5247 */
5248 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5249 &pmap_bootstrap_pv_allocator, IPL_NONE);
5250
5251 /*
5252 * Initialize the L2 dtable pool and cache.
5253 */
5254 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5255 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5256
5257 /*
5258 * Initialise the L2 descriptor table pool and cache
5259 */
5260 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5261 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5262 pmap_l2ptp_ctor, NULL, NULL);
5263
5264 cpu_dcache_wbinv_all();
5265 }
5266
5267 static int
5268 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5269 {
5270 pd_entry_t *pdep, pde;
5271 pt_entry_t *ptep, pte;
5272 vaddr_t pa;
5273 int rv = 0;
5274
5275 /*
5276 * Make sure the descriptor itself has the correct cache mode
5277 */
5278 pdep = &kl1[L1_IDX(va)];
5279 pde = *pdep;
5280
5281 if (l1pte_section_p(pde)) {
5282 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5283 *pdep = (pde & ~L1_S_CACHE_MASK) |
5284 pte_l1_s_cache_mode_pt;
5285 PTE_SYNC(pdep);
5286 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5287 rv = 1;
5288 }
5289 } else {
5290 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5291 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5292 if (ptep == NULL)
5293 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5294
5295 ptep = &ptep[l2pte_index(va)];
5296 pte = *ptep;
5297 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5298 *ptep = (pte & ~L2_S_CACHE_MASK) |
5299 pte_l2_s_cache_mode_pt;
5300 PTE_SYNC(ptep);
5301 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5302 rv = 1;
5303 }
5304 }
5305
5306 return (rv);
5307 }
5308
5309 static void
5310 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5311 {
5312 vaddr_t va = *availp;
5313 struct l2_bucket *l2b;
5314
5315 if (ptep) {
5316 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5317 if (l2b == NULL)
5318 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5319
5320 if (ptep)
5321 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5322 }
5323
5324 *vap = va;
5325 *availp = va + (PAGE_SIZE * pages);
5326 }
5327
5328 void
5329 pmap_init(void)
5330 {
5331
5332 /*
5333 * Set the available memory vars - These do not map to real memory
5334 * addresses and cannot as the physical memory is fragmented.
5335 * They are used by ps for %mem calculations.
5336 * One could argue whether this should be the entire memory or just
5337 * the memory that is useable in a user process.
5338 */
5339 avail_start = ptoa(vm_physmem[0].start);
5340 avail_end = ptoa(vm_physmem[vm_nphysseg - 1].end);
5341
5342 /*
5343 * Now we need to free enough pv_entry structures to allow us to get
5344 * the kmem_map/kmem_object allocated and inited (done after this
5345 * function is finished). to do this we allocate one bootstrap page out
5346 * of kernel_map and use it to provide an initial pool of pv_entry
5347 * structures. we never free this page.
5348 */
5349 pool_setlowat(&pmap_pv_pool,
5350 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5351
5352 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5353 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5354 UVM_KMF_WIRED|UVM_KMF_ZERO);
5355
5356 pmap_initialized = true;
5357 }
5358
5359 static vaddr_t last_bootstrap_page = 0;
5360 static void *free_bootstrap_pages = NULL;
5361
5362 static void *
5363 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5364 {
5365 extern void *pool_page_alloc(struct pool *, int);
5366 vaddr_t new_page;
5367 void *rv;
5368
5369 if (pmap_initialized)
5370 return (pool_page_alloc(pp, flags));
5371
5372 if (free_bootstrap_pages) {
5373 rv = free_bootstrap_pages;
5374 free_bootstrap_pages = *((void **)rv);
5375 return (rv);
5376 }
5377
5378 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5379 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5380
5381 KASSERT(new_page > last_bootstrap_page);
5382 last_bootstrap_page = new_page;
5383 return ((void *)new_page);
5384 }
5385
5386 static void
5387 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5388 {
5389 extern void pool_page_free(struct pool *, void *);
5390
5391 if ((vaddr_t)v <= last_bootstrap_page) {
5392 *((void **)v) = free_bootstrap_pages;
5393 free_bootstrap_pages = v;
5394 return;
5395 }
5396
5397 if (pmap_initialized) {
5398 pool_page_free(pp, v);
5399 return;
5400 }
5401 }
5402
5403 /*
5404 * pmap_postinit()
5405 *
5406 * This routine is called after the vm and kmem subsystems have been
5407 * initialised. This allows the pmap code to perform any initialisation
5408 * that can only be done one the memory allocation is in place.
5409 */
5410 void
5411 pmap_postinit(void)
5412 {
5413 extern paddr_t physical_start, physical_end;
5414 struct l2_bucket *l2b;
5415 struct l1_ttable *l1;
5416 struct pglist plist;
5417 struct vm_page *m;
5418 pd_entry_t *pl1pt;
5419 pt_entry_t *ptep, pte;
5420 vaddr_t va, eva;
5421 u_int loop, needed;
5422 int error;
5423
5424 pool_cache_setlowat(&pmap_l2ptp_cache,
5425 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5426 pool_cache_setlowat(&pmap_l2dtable_cache,
5427 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5428
5429 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5430 needed -= 1;
5431
5432 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5433
5434 for (loop = 0; loop < needed; loop++, l1++) {
5435 /* Allocate a L1 page table */
5436 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5437 if (va == 0)
5438 panic("Cannot allocate L1 KVM");
5439
5440 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5441 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5442 if (error)
5443 panic("Cannot allocate L1 physical pages");
5444
5445 m = TAILQ_FIRST(&plist);
5446 eva = va + L1_TABLE_SIZE;
5447 pl1pt = (pd_entry_t *)va;
5448
5449 while (m && va < eva) {
5450 paddr_t pa = VM_PAGE_TO_PHYS(m);
5451
5452 pmap_kenter_pa(va, pa,
5453 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
5454
5455 /*
5456 * Make sure the L1 descriptor table is mapped
5457 * with the cache-mode set to write-through.
5458 */
5459 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5460 ptep = &l2b->l2b_kva[l2pte_index(va)];
5461 pte = *ptep;
5462 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5463 *ptep = pte;
5464 PTE_SYNC(ptep);
5465 cpu_tlb_flushD_SE(va);
5466
5467 va += PAGE_SIZE;
5468 m = TAILQ_NEXT(m, pageq.queue);
5469 }
5470
5471 #ifdef DIAGNOSTIC
5472 if (m)
5473 panic("pmap_alloc_l1pt: pglist not empty");
5474 #endif /* DIAGNOSTIC */
5475
5476 pmap_init_l1(l1, pl1pt);
5477 }
5478
5479 #ifdef DEBUG
5480 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5481 needed);
5482 #endif
5483 }
5484
5485 /*
5486 * Note that the following routines are used by board-specific initialisation
5487 * code to configure the initial kernel page tables.
5488 *
5489 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5490 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5491 * behaviour of the old pmap, and provides an easy migration path for
5492 * initial bring-up of the new pmap on existing ports. Fortunately,
5493 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5494 * will be deprecated.
5495 *
5496 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5497 * tables.
5498 */
5499
5500 /*
5501 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5502 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5503 * find them as necessary.
5504 *
5505 * Note that the data on this list MUST remain valid after initarm() returns,
5506 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5507 */
5508 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5509
5510 static vaddr_t
5511 kernel_pt_lookup(paddr_t pa)
5512 {
5513 pv_addr_t *pv;
5514
5515 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5516 #ifndef ARM32_NEW_VM_LAYOUT
5517 if (pv->pv_pa == (pa & ~PGOFSET))
5518 return (pv->pv_va | (pa & PGOFSET));
5519 #else
5520 if (pv->pv_pa == pa)
5521 return (pv->pv_va);
5522 #endif
5523 }
5524 return (0);
5525 }
5526
5527 /*
5528 * pmap_map_section:
5529 *
5530 * Create a single section mapping.
5531 */
5532 void
5533 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5534 {
5535 pd_entry_t *pde = (pd_entry_t *) l1pt;
5536 pd_entry_t fl;
5537
5538 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5539
5540 switch (cache) {
5541 case PTE_NOCACHE:
5542 default:
5543 fl = 0;
5544 break;
5545
5546 case PTE_CACHE:
5547 fl = pte_l1_s_cache_mode;
5548 break;
5549
5550 case PTE_PAGETABLE:
5551 fl = pte_l1_s_cache_mode_pt;
5552 break;
5553 }
5554
5555 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5556 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5557 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5558 }
5559
5560 /*
5561 * pmap_map_entry:
5562 *
5563 * Create a single page mapping.
5564 */
5565 void
5566 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5567 {
5568 pd_entry_t *pde = (pd_entry_t *) l1pt;
5569 pt_entry_t fl;
5570 pt_entry_t *pte;
5571
5572 KASSERT(((va | pa) & PGOFSET) == 0);
5573
5574 switch (cache) {
5575 case PTE_NOCACHE:
5576 default:
5577 fl = 0;
5578 break;
5579
5580 case PTE_CACHE:
5581 fl = pte_l2_s_cache_mode;
5582 break;
5583
5584 case PTE_PAGETABLE:
5585 fl = pte_l2_s_cache_mode_pt;
5586 break;
5587 }
5588
5589 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5590 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5591
5592 #ifndef ARM32_NEW_VM_LAYOUT
5593 pte = (pt_entry_t *)
5594 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5595 #else
5596 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5597 #endif
5598 if (pte == NULL)
5599 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5600
5601 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5602 #ifndef ARM32_NEW_VM_LAYOUT
5603 pte += (va >> PGSHIFT) & 0x3ff;
5604 #else
5605 pte += l2pte_index(va);
5606 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5607 #endif
5608 *pte = fl;
5609 PTE_SYNC(pte);
5610 }
5611
5612 /*
5613 * pmap_link_l2pt:
5614 *
5615 * Link the L2 page table specified by "l2pv" into the L1
5616 * page table at the slot for "va".
5617 */
5618 void
5619 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5620 {
5621 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5622 u_int slot = va >> L1_S_SHIFT;
5623
5624 #ifndef ARM32_NEW_VM_LAYOUT
5625 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5626 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5627 #endif
5628
5629 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5630
5631 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5632 #ifdef ARM32_NEW_VM_LAYOUT
5633 PTE_SYNC(&pde[slot]);
5634 #else
5635 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5636 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5637 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5638 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5639 #endif
5640
5641 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5642 }
5643
5644 /*
5645 * pmap_map_chunk:
5646 *
5647 * Map a chunk of memory using the most efficient mappings
5648 * possible (section, large page, small page) into the
5649 * provided L1 and L2 tables at the specified virtual address.
5650 */
5651 vsize_t
5652 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5653 int prot, int cache)
5654 {
5655 pd_entry_t *pde = (pd_entry_t *) l1pt;
5656 pt_entry_t *pte, f1, f2s, f2l;
5657 vsize_t resid;
5658 int i;
5659
5660 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5661
5662 if (l1pt == 0)
5663 panic("pmap_map_chunk: no L1 table provided");
5664
5665 #ifdef VERBOSE_INIT_ARM
5666 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5667 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5668 #endif
5669
5670 switch (cache) {
5671 case PTE_NOCACHE:
5672 default:
5673 f1 = 0;
5674 f2l = 0;
5675 f2s = 0;
5676 break;
5677
5678 case PTE_CACHE:
5679 f1 = pte_l1_s_cache_mode;
5680 f2l = pte_l2_l_cache_mode;
5681 f2s = pte_l2_s_cache_mode;
5682 break;
5683
5684 case PTE_PAGETABLE:
5685 f1 = pte_l1_s_cache_mode_pt;
5686 f2l = pte_l2_l_cache_mode_pt;
5687 f2s = pte_l2_s_cache_mode_pt;
5688 break;
5689 }
5690
5691 size = resid;
5692
5693 while (resid > 0) {
5694 /* See if we can use a section mapping. */
5695 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5696 #ifdef VERBOSE_INIT_ARM
5697 printf("S");
5698 #endif
5699 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5700 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5701 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5702 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5703 va += L1_S_SIZE;
5704 pa += L1_S_SIZE;
5705 resid -= L1_S_SIZE;
5706 continue;
5707 }
5708
5709 /*
5710 * Ok, we're going to use an L2 table. Make sure
5711 * one is actually in the corresponding L1 slot
5712 * for the current VA.
5713 */
5714 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5715 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5716
5717 #ifndef ARM32_NEW_VM_LAYOUT
5718 pte = (pt_entry_t *)
5719 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5720 #else
5721 pte = (pt_entry_t *) kernel_pt_lookup(
5722 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5723 #endif
5724 if (pte == NULL)
5725 panic("pmap_map_chunk: can't find L2 table for VA"
5726 "0x%08lx", va);
5727
5728 /* See if we can use a L2 large page mapping. */
5729 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5730 #ifdef VERBOSE_INIT_ARM
5731 printf("L");
5732 #endif
5733 for (i = 0; i < 16; i++) {
5734 #ifndef ARM32_NEW_VM_LAYOUT
5735 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5736 L2_L_PROTO | pa |
5737 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5738 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5739 #else
5740 pte[l2pte_index(va) + i] =
5741 L2_L_PROTO | pa |
5742 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5743 PTE_SYNC(&pte[l2pte_index(va) + i]);
5744 #endif
5745 }
5746 va += L2_L_SIZE;
5747 pa += L2_L_SIZE;
5748 resid -= L2_L_SIZE;
5749 continue;
5750 }
5751
5752 /* Use a small page mapping. */
5753 #ifdef VERBOSE_INIT_ARM
5754 printf("P");
5755 #endif
5756 #ifndef ARM32_NEW_VM_LAYOUT
5757 pte[(va >> PGSHIFT) & 0x3ff] =
5758 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5759 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5760 #else
5761 pte[l2pte_index(va)] =
5762 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5763 PTE_SYNC(&pte[l2pte_index(va)]);
5764 #endif
5765 va += PAGE_SIZE;
5766 pa += PAGE_SIZE;
5767 resid -= PAGE_SIZE;
5768 }
5769 #ifdef VERBOSE_INIT_ARM
5770 printf("\n");
5771 #endif
5772 return (size);
5773 }
5774
5775 /********************** Static device map routines ***************************/
5776
5777 static const struct pmap_devmap *pmap_devmap_table;
5778
5779 /*
5780 * Register the devmap table. This is provided in case early console
5781 * initialization needs to register mappings created by bootstrap code
5782 * before pmap_devmap_bootstrap() is called.
5783 */
5784 void
5785 pmap_devmap_register(const struct pmap_devmap *table)
5786 {
5787
5788 pmap_devmap_table = table;
5789 }
5790
5791 /*
5792 * Map all of the static regions in the devmap table, and remember
5793 * the devmap table so other parts of the kernel can look up entries
5794 * later.
5795 */
5796 void
5797 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5798 {
5799 int i;
5800
5801 pmap_devmap_table = table;
5802
5803 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5804 #ifdef VERBOSE_INIT_ARM
5805 printf("devmap: %08lx -> %08lx @ %08lx\n",
5806 pmap_devmap_table[i].pd_pa,
5807 pmap_devmap_table[i].pd_pa +
5808 pmap_devmap_table[i].pd_size - 1,
5809 pmap_devmap_table[i].pd_va);
5810 #endif
5811 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5812 pmap_devmap_table[i].pd_pa,
5813 pmap_devmap_table[i].pd_size,
5814 pmap_devmap_table[i].pd_prot,
5815 pmap_devmap_table[i].pd_cache);
5816 }
5817 }
5818
5819 const struct pmap_devmap *
5820 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5821 {
5822 uint64_t endpa;
5823 int i;
5824
5825 if (pmap_devmap_table == NULL)
5826 return (NULL);
5827
5828 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5829
5830 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5831 if (pa >= pmap_devmap_table[i].pd_pa &&
5832 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5833 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5834 return (&pmap_devmap_table[i]);
5835 }
5836
5837 return (NULL);
5838 }
5839
5840 const struct pmap_devmap *
5841 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5842 {
5843 int i;
5844
5845 if (pmap_devmap_table == NULL)
5846 return (NULL);
5847
5848 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5849 if (va >= pmap_devmap_table[i].pd_va &&
5850 va + size - 1 <= pmap_devmap_table[i].pd_va +
5851 pmap_devmap_table[i].pd_size - 1)
5852 return (&pmap_devmap_table[i]);
5853 }
5854
5855 return (NULL);
5856 }
5857
5858 /********************** PTE initialization routines **************************/
5859
5860 /*
5861 * These routines are called when the CPU type is identified to set up
5862 * the PTE prototypes, cache modes, etc.
5863 *
5864 * The variables are always here, just in case modules need to reference
5865 * them (though, they shouldn't).
5866 */
5867
5868 pt_entry_t pte_l1_s_cache_mode;
5869 pt_entry_t pte_l1_s_cache_mode_pt;
5870 pt_entry_t pte_l1_s_cache_mask;
5871
5872 pt_entry_t pte_l2_l_cache_mode;
5873 pt_entry_t pte_l2_l_cache_mode_pt;
5874 pt_entry_t pte_l2_l_cache_mask;
5875
5876 pt_entry_t pte_l2_s_cache_mode;
5877 pt_entry_t pte_l2_s_cache_mode_pt;
5878 pt_entry_t pte_l2_s_cache_mask;
5879
5880 pt_entry_t pte_l2_s_prot_u;
5881 pt_entry_t pte_l2_s_prot_w;
5882 pt_entry_t pte_l2_s_prot_mask;
5883
5884 pt_entry_t pte_l1_s_proto;
5885 pt_entry_t pte_l1_c_proto;
5886 pt_entry_t pte_l2_s_proto;
5887
5888 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5889 void (*pmap_zero_page_func)(paddr_t);
5890
5891 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5892 void
5893 pmap_pte_init_generic(void)
5894 {
5895
5896 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5897 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5898
5899 pte_l2_l_cache_mode = L2_B|L2_C;
5900 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5901
5902 pte_l2_s_cache_mode = L2_B|L2_C;
5903 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5904
5905 /*
5906 * If we have a write-through cache, set B and C. If
5907 * we have a write-back cache, then we assume setting
5908 * only C will make those pages write-through.
5909 */
5910 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5911 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5912 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5913 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5914 } else {
5915 #if ARM_MMU_V6 > 1
5916 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5917 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5918 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5919 #else
5920 pte_l1_s_cache_mode_pt = L1_S_C;
5921 pte_l2_l_cache_mode_pt = L2_C;
5922 pte_l2_s_cache_mode_pt = L2_C;
5923 #endif
5924 }
5925
5926 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5927 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5928 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5929
5930 pte_l1_s_proto = L1_S_PROTO_generic;
5931 pte_l1_c_proto = L1_C_PROTO_generic;
5932 pte_l2_s_proto = L2_S_PROTO_generic;
5933
5934 pmap_copy_page_func = pmap_copy_page_generic;
5935 pmap_zero_page_func = pmap_zero_page_generic;
5936 }
5937
5938 #if defined(CPU_ARM8)
5939 void
5940 pmap_pte_init_arm8(void)
5941 {
5942
5943 /*
5944 * ARM8 is compatible with generic, but we need to use
5945 * the page tables uncached.
5946 */
5947 pmap_pte_init_generic();
5948
5949 pte_l1_s_cache_mode_pt = 0;
5950 pte_l2_l_cache_mode_pt = 0;
5951 pte_l2_s_cache_mode_pt = 0;
5952 }
5953 #endif /* CPU_ARM8 */
5954
5955 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
5956 void
5957 pmap_pte_init_arm9(void)
5958 {
5959
5960 /*
5961 * ARM9 is compatible with generic, but we want to use
5962 * write-through caching for now.
5963 */
5964 pmap_pte_init_generic();
5965
5966 pte_l1_s_cache_mode = L1_S_C;
5967 pte_l2_l_cache_mode = L2_C;
5968 pte_l2_s_cache_mode = L2_C;
5969
5970 pte_l1_s_cache_mode_pt = L1_S_C;
5971 pte_l2_l_cache_mode_pt = L2_C;
5972 pte_l2_s_cache_mode_pt = L2_C;
5973 }
5974 #endif /* CPU_ARM9 */
5975 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5976
5977 #if defined(CPU_ARM10)
5978 void
5979 pmap_pte_init_arm10(void)
5980 {
5981
5982 /*
5983 * ARM10 is compatible with generic, but we want to use
5984 * write-through caching for now.
5985 */
5986 pmap_pte_init_generic();
5987
5988 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
5989 pte_l2_l_cache_mode = L2_B | L2_C;
5990 pte_l2_s_cache_mode = L2_B | L2_C;
5991
5992 pte_l1_s_cache_mode_pt = L1_S_C;
5993 pte_l2_l_cache_mode_pt = L2_C;
5994 pte_l2_s_cache_mode_pt = L2_C;
5995
5996 }
5997 #endif /* CPU_ARM10 */
5998
5999 #if ARM_MMU_SA1 == 1
6000 void
6001 pmap_pte_init_sa1(void)
6002 {
6003
6004 /*
6005 * The StrongARM SA-1 cache does not have a write-through
6006 * mode. So, do the generic initialization, then reset
6007 * the page table cache mode to B=1,C=1, and note that
6008 * the PTEs need to be sync'd.
6009 */
6010 pmap_pte_init_generic();
6011
6012 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6013 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6014 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6015
6016 pmap_needs_pte_sync = 1;
6017 }
6018 #endif /* ARM_MMU_SA1 == 1*/
6019
6020 #if ARM_MMU_XSCALE == 1
6021 #if (ARM_NMMUS > 1)
6022 static u_int xscale_use_minidata;
6023 #endif
6024
6025 void
6026 pmap_pte_init_xscale(void)
6027 {
6028 uint32_t auxctl;
6029 int write_through = 0;
6030
6031 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6032 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6033
6034 pte_l2_l_cache_mode = L2_B|L2_C;
6035 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6036
6037 pte_l2_s_cache_mode = L2_B|L2_C;
6038 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6039
6040 pte_l1_s_cache_mode_pt = L1_S_C;
6041 pte_l2_l_cache_mode_pt = L2_C;
6042 pte_l2_s_cache_mode_pt = L2_C;
6043
6044 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6045 /*
6046 * The XScale core has an enhanced mode where writes that
6047 * miss the cache cause a cache line to be allocated. This
6048 * is significantly faster than the traditional, write-through
6049 * behavior of this case.
6050 */
6051 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6052 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6053 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6054 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6055
6056 #ifdef XSCALE_CACHE_WRITE_THROUGH
6057 /*
6058 * Some versions of the XScale core have various bugs in
6059 * their cache units, the work-around for which is to run
6060 * the cache in write-through mode. Unfortunately, this
6061 * has a major (negative) impact on performance. So, we
6062 * go ahead and run fast-and-loose, in the hopes that we
6063 * don't line up the planets in a way that will trip the
6064 * bugs.
6065 *
6066 * However, we give you the option to be slow-but-correct.
6067 */
6068 write_through = 1;
6069 #elif defined(XSCALE_CACHE_WRITE_BACK)
6070 /* force write back cache mode */
6071 write_through = 0;
6072 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6073 /*
6074 * Intel PXA2[15]0 processors are known to have a bug in
6075 * write-back cache on revision 4 and earlier (stepping
6076 * A[01] and B[012]). Fixed for C0 and later.
6077 */
6078 {
6079 uint32_t id, type;
6080
6081 id = cpufunc_id();
6082 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6083
6084 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6085 if ((id & CPU_ID_REVISION_MASK) < 5) {
6086 /* write through for stepping A0-1 and B0-2 */
6087 write_through = 1;
6088 }
6089 }
6090 }
6091 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6092
6093 if (write_through) {
6094 pte_l1_s_cache_mode = L1_S_C;
6095 pte_l2_l_cache_mode = L2_C;
6096 pte_l2_s_cache_mode = L2_C;
6097 }
6098
6099 #if (ARM_NMMUS > 1)
6100 xscale_use_minidata = 1;
6101 #endif
6102
6103 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6104 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6105 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6106
6107 pte_l1_s_proto = L1_S_PROTO_xscale;
6108 pte_l1_c_proto = L1_C_PROTO_xscale;
6109 pte_l2_s_proto = L2_S_PROTO_xscale;
6110
6111 pmap_copy_page_func = pmap_copy_page_xscale;
6112 pmap_zero_page_func = pmap_zero_page_xscale;
6113
6114 /*
6115 * Disable ECC protection of page table access, for now.
6116 */
6117 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6118 auxctl &= ~XSCALE_AUXCTL_P;
6119 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6120 }
6121
6122 /*
6123 * xscale_setup_minidata:
6124 *
6125 * Set up the mini-data cache clean area. We require the
6126 * caller to allocate the right amount of physically and
6127 * virtually contiguous space.
6128 */
6129 void
6130 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6131 {
6132 extern vaddr_t xscale_minidata_clean_addr;
6133 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6134 pd_entry_t *pde = (pd_entry_t *) l1pt;
6135 pt_entry_t *pte;
6136 vsize_t size;
6137 uint32_t auxctl;
6138
6139 xscale_minidata_clean_addr = va;
6140
6141 /* Round it to page size. */
6142 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6143
6144 for (; size != 0;
6145 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6146 #ifndef ARM32_NEW_VM_LAYOUT
6147 pte = (pt_entry_t *)
6148 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6149 #else
6150 pte = (pt_entry_t *) kernel_pt_lookup(
6151 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6152 #endif
6153 if (pte == NULL)
6154 panic("xscale_setup_minidata: can't find L2 table for "
6155 "VA 0x%08lx", va);
6156 #ifndef ARM32_NEW_VM_LAYOUT
6157 pte[(va >> PGSHIFT) & 0x3ff] =
6158 #else
6159 pte[l2pte_index(va)] =
6160 #endif
6161 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6162 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6163 }
6164
6165 /*
6166 * Configure the mini-data cache for write-back with
6167 * read/write-allocate.
6168 *
6169 * NOTE: In order to reconfigure the mini-data cache, we must
6170 * make sure it contains no valid data! In order to do that,
6171 * we must issue a global data cache invalidate command!
6172 *
6173 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6174 * THIS IS VERY IMPORTANT!
6175 */
6176
6177 /* Invalidate data and mini-data. */
6178 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6179 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6180 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6181 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6182 }
6183
6184 /*
6185 * Change the PTEs for the specified kernel mappings such that they
6186 * will use the mini data cache instead of the main data cache.
6187 */
6188 void
6189 pmap_uarea(vaddr_t va)
6190 {
6191 struct l2_bucket *l2b;
6192 pt_entry_t *ptep, *sptep, pte;
6193 vaddr_t next_bucket, eva;
6194
6195 #if (ARM_NMMUS > 1)
6196 if (xscale_use_minidata == 0)
6197 return;
6198 #endif
6199
6200 eva = va + USPACE;
6201
6202 while (va < eva) {
6203 next_bucket = L2_NEXT_BUCKET(va);
6204 if (next_bucket > eva)
6205 next_bucket = eva;
6206
6207 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6208 KDASSERT(l2b != NULL);
6209
6210 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6211
6212 while (va < next_bucket) {
6213 pte = *ptep;
6214 if (!l2pte_minidata(pte)) {
6215 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6216 cpu_tlb_flushD_SE(va);
6217 *ptep = pte & ~L2_B;
6218 }
6219 ptep++;
6220 va += PAGE_SIZE;
6221 }
6222 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6223 }
6224 cpu_cpwait();
6225 }
6226 #endif /* ARM_MMU_XSCALE == 1 */
6227
6228 /*
6229 * return the PA of the current L1 table, for use when handling a crash dump
6230 */
6231 uint32_t pmap_kernel_L1_addr(void)
6232 {
6233 return pmap_kernel()->pm_l1->l1_physaddr;
6234 }
6235
6236 #if defined(DDB)
6237 /*
6238 * A couple of ddb-callable functions for dumping pmaps
6239 */
6240 void pmap_dump_all(void);
6241 void pmap_dump(pmap_t);
6242
6243 void
6244 pmap_dump_all(void)
6245 {
6246 pmap_t pm;
6247
6248 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6249 if (pm == pmap_kernel())
6250 continue;
6251 pmap_dump(pm);
6252 printf("\n");
6253 }
6254 }
6255
6256 static pt_entry_t ncptes[64];
6257 static void pmap_dump_ncpg(pmap_t);
6258
6259 void
6260 pmap_dump(pmap_t pm)
6261 {
6262 struct l2_dtable *l2;
6263 struct l2_bucket *l2b;
6264 pt_entry_t *ptep, pte;
6265 vaddr_t l2_va, l2b_va, va;
6266 int i, j, k, occ, rows = 0;
6267
6268 if (pm == pmap_kernel())
6269 printf("pmap_kernel (%p): ", pm);
6270 else
6271 printf("user pmap (%p): ", pm);
6272
6273 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6274
6275 l2_va = 0;
6276 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6277 l2 = pm->pm_l2[i];
6278
6279 if (l2 == NULL || l2->l2_occupancy == 0)
6280 continue;
6281
6282 l2b_va = l2_va;
6283 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6284 l2b = &l2->l2_bucket[j];
6285
6286 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6287 continue;
6288
6289 ptep = l2b->l2b_kva;
6290
6291 for (k = 0; k < 256 && ptep[k] == 0; k++)
6292 ;
6293
6294 k &= ~63;
6295 occ = l2b->l2b_occupancy;
6296 va = l2b_va + (k * 4096);
6297 for (; k < 256; k++, va += 0x1000) {
6298 char ch = ' ';
6299 if ((k % 64) == 0) {
6300 if ((rows % 8) == 0) {
6301 printf(
6302 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6303 }
6304 printf("%08lx: ", va);
6305 }
6306
6307 ncptes[k & 63] = 0;
6308 pte = ptep[k];
6309 if (pte == 0) {
6310 ch = '.';
6311 } else {
6312 occ--;
6313 switch (pte & 0x0c) {
6314 case 0x00:
6315 ch = 'D'; /* No cache No buff */
6316 break;
6317 case 0x04:
6318 ch = 'B'; /* No cache buff */
6319 break;
6320 case 0x08:
6321 if (pte & 0x40)
6322 ch = 'm';
6323 else
6324 ch = 'C'; /* Cache No buff */
6325 break;
6326 case 0x0c:
6327 ch = 'F'; /* Cache Buff */
6328 break;
6329 }
6330
6331 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6332 ch += 0x20;
6333
6334 if ((pte & 0xc) == 0)
6335 ncptes[k & 63] = pte;
6336 }
6337
6338 if ((k % 64) == 63) {
6339 rows++;
6340 printf("%c\n", ch);
6341 pmap_dump_ncpg(pm);
6342 if (occ == 0)
6343 break;
6344 } else
6345 printf("%c", ch);
6346 }
6347 }
6348 }
6349 }
6350
6351 static void
6352 pmap_dump_ncpg(pmap_t pm)
6353 {
6354 struct vm_page *pg;
6355 struct pv_entry *pv;
6356 int i;
6357
6358 for (i = 0; i < 63; i++) {
6359 if (ncptes[i] == 0)
6360 continue;
6361
6362 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6363 if (pg == NULL)
6364 continue;
6365
6366 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6367 VM_PAGE_TO_PHYS(pg),
6368 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
6369 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
6370
6371 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
6372 printf(" %c va 0x%08lx, flags 0x%x\n",
6373 (pm == pv->pv_pmap) ? '*' : ' ',
6374 pv->pv_va, pv->pv_flags);
6375 }
6376 }
6377 }
6378 #endif
6379
6380 #ifdef PMAP_STEAL_MEMORY
6381 void
6382 pmap_boot_pageadd(pv_addr_t *newpv)
6383 {
6384 pv_addr_t *pv, *npv;
6385
6386 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6387 if (newpv->pv_pa < pv->pv_va) {
6388 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6389 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6390 newpv->pv_size += pv->pv_size;
6391 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6392 }
6393 pv = NULL;
6394 } else {
6395 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6396 pv = npv) {
6397 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6398 KASSERT(pv->pv_pa < newpv->pv_pa);
6399 if (newpv->pv_pa > npv->pv_pa)
6400 continue;
6401 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6402 pv->pv_size += newpv->pv_size;
6403 return;
6404 }
6405 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6406 break;
6407 newpv->pv_size += npv->pv_size;
6408 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6409 SLIST_REMOVE_AFTER(newpv, pv_list);
6410 return;
6411 }
6412 }
6413 }
6414
6415 if (pv) {
6416 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6417 } else {
6418 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6419 }
6420 }
6421
6422 void
6423 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6424 pv_addr_t *rpv)
6425 {
6426 pv_addr_t *pv, **pvp;
6427 struct vm_physseg *ps;
6428 size_t i;
6429
6430 KASSERT(amount & PGOFSET);
6431 KASSERT((mask & PGOFSET) == 0);
6432 KASSERT((match & PGOFSET) == 0);
6433 KASSERT(amount != 0);
6434
6435 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6436 (pv = *pvp) != NULL;
6437 pvp = &SLIST_NEXT(pv, pv_list)) {
6438 pv_addr_t *newpv;
6439 psize_t off;
6440 /*
6441 * If this entry is too small to satify the request...
6442 */
6443 KASSERT(pv->pv_size > 0);
6444 if (pv->pv_size < amount)
6445 continue;
6446
6447 for (off = 0; off <= mask; off += PAGE_SIZE) {
6448 if (((pv->pv_pa + off) & mask) == match
6449 && off + amount <= pv->pv_size)
6450 break;
6451 }
6452 if (off > mask)
6453 continue;
6454
6455 rpv->pv_va = pv->pv_va + off;
6456 rpv->pv_pa = pv->pv_pa + off;
6457 rpv->pv_size = amount;
6458 pv->pv_size -= amount;
6459 if (pv->pv_size == 0) {
6460 KASSERT(off == 0);
6461 KASSERT((vaddr_t) pv == rpv->pv_va);
6462 *pvp = SLIST_NEXT(pv, pv_list);
6463 } else if (off == 0) {
6464 KASSERT((vaddr_t) pv == rpv->pv_va);
6465 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6466 *newpv = *pv;
6467 newpv->pv_pa += amount;
6468 newpv->pv_va += amount;
6469 *pvp = newpv;
6470 } else if (off < pv->pv_size) {
6471 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6472 *newpv = *pv;
6473 newpv->pv_size -= off;
6474 newpv->pv_pa += off + amount;
6475 newpv->pv_va += off + amount;
6476
6477 SLIST_NEXT(pv, pv_list) = newpv;
6478 pv->pv_size = off;
6479 } else {
6480 KASSERT((vaddr_t) pv != rpv->pv_va);
6481 }
6482 memset((void *)rpv->pv_va, 0, amount);
6483 return;
6484 }
6485
6486 if (vm_nphysseg == 0)
6487 panic("pmap_boot_pagealloc: couldn't allocate memory");
6488
6489 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6490 (pv = *pvp) != NULL;
6491 pvp = &SLIST_NEXT(pv, pv_list)) {
6492 if (SLIST_NEXT(pv, pv_list) == NULL)
6493 break;
6494 }
6495 KASSERT(mask == 0);
6496 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
6497 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6498 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6499 rpv->pv_va = pv->pv_va;
6500 rpv->pv_pa = pv->pv_pa;
6501 rpv->pv_size = amount;
6502 *pvp = NULL;
6503 pmap_map_chunk(kernel_l1pt.pv_va,
6504 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6505 ptoa(ps->avail_start),
6506 amount - pv->pv_size,
6507 VM_PROT_READ|VM_PROT_WRITE,
6508 PTE_CACHE);
6509 ps->avail_start += atop(amount - pv->pv_size);
6510 /*
6511 * If we consumed the entire physseg, remove it.
6512 */
6513 if (ps->avail_start == ps->avail_end) {
6514 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6515 ps[0] = ps[1];
6516 }
6517 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6518 return;
6519 }
6520 }
6521
6522 panic("pmap_boot_pagealloc: couldn't allocate memory");
6523 }
6524
6525 vaddr_t
6526 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6527 {
6528 pv_addr_t pv;
6529
6530 pmap_boot_pagealloc(size, 0, 0, &pv);
6531
6532 return pv.pv_va;
6533 }
6534 #endif /* PMAP_STEAL_MEMORY */
6535
6536 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6537 {
6538 sysctl_createv(clog, 0, NULL, NULL,
6539 CTLFLAG_PERMANENT,
6540 CTLTYPE_NODE, "machdep", NULL,
6541 NULL, 0, NULL, 0,
6542 CTL_MACHDEP, CTL_EOL);
6543
6544 sysctl_createv(clog, 0, NULL, NULL,
6545 CTLFLAG_PERMANENT,
6546 CTLTYPE_INT, "kmpages",
6547 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6548 NULL, 0, &pmap_kmpages, 0,
6549 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6550 }
6551