pmap.c revision 1.211.2.13 1 /* $NetBSD: pmap.c,v 1.211.2.13 2010/05/31 13:26:36 uebayasi Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194 #include "opt_direct_page.h"
195 #include "opt_xip.h"
196
197 #include <sys/param.h>
198 #include <sys/types.h>
199 #include <sys/kernel.h>
200 #include <sys/systm.h>
201 #include <sys/proc.h>
202 #include <sys/malloc.h>
203 #include <sys/pool.h>
204 #include <sys/cdefs.h>
205 #include <sys/cpu.h>
206 #include <sys/sysctl.h>
207
208 #include <uvm/uvm.h>
209
210 #include <machine/bus.h>
211 #include <machine/pmap.h>
212 #include <machine/pcb.h>
213 #include <machine/param.h>
214 #include <arm/arm32/katelib.h>
215
216 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.211.2.13 2010/05/31 13:26:36 uebayasi Exp $");
217
218 #ifdef PMAP_DEBUG
219
220 /* XXX need to get rid of all refs to this */
221 int pmap_debug_level = 0;
222
223 /*
224 * for switching to potentially finer grained debugging
225 */
226 #define PDB_FOLLOW 0x0001
227 #define PDB_INIT 0x0002
228 #define PDB_ENTER 0x0004
229 #define PDB_REMOVE 0x0008
230 #define PDB_CREATE 0x0010
231 #define PDB_PTPAGE 0x0020
232 #define PDB_GROWKERN 0x0040
233 #define PDB_BITS 0x0080
234 #define PDB_COLLECT 0x0100
235 #define PDB_PROTECT 0x0200
236 #define PDB_MAP_L1 0x0400
237 #define PDB_BOOTSTRAP 0x1000
238 #define PDB_PARANOIA 0x2000
239 #define PDB_WIRING 0x4000
240 #define PDB_PVDUMP 0x8000
241 #define PDB_VAC 0x10000
242 #define PDB_KENTER 0x20000
243 #define PDB_KREMOVE 0x40000
244 #define PDB_EXEC 0x80000
245
246 int debugmap = 1;
247 int pmapdebug = 0;
248 #define NPDEBUG(_lev_,_stat_) \
249 if (pmapdebug & (_lev_)) \
250 ((_stat_))
251
252 #else /* PMAP_DEBUG */
253 #define NPDEBUG(_lev_,_stat_) /* Nothing */
254 #endif /* PMAP_DEBUG */
255
256 /*
257 * pmap_kernel() points here
258 */
259 static struct pmap kernel_pmap_store;
260 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
261
262 /*
263 * Which pmap is currently 'live' in the cache
264 *
265 * XXXSCW: Fix for SMP ...
266 */
267 static pmap_t pmap_recent_user;
268
269 /*
270 * Pointer to last active lwp, or NULL if it exited.
271 */
272 struct lwp *pmap_previous_active_lwp;
273
274 /*
275 * Pool and cache that pmap structures are allocated from.
276 * We use a cache to avoid clearing the pm_l2[] array (1KB)
277 * in pmap_create().
278 */
279 static struct pool_cache pmap_cache;
280 static LIST_HEAD(, pmap) pmap_pmaps;
281
282 /*
283 * Pool of PV structures
284 */
285 static struct pool pmap_pv_pool;
286 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
287 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
288 static struct pool_allocator pmap_bootstrap_pv_allocator = {
289 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
290 };
291
292 /*
293 * Pool and cache of l2_dtable structures.
294 * We use a cache to avoid clearing the structures when they're
295 * allocated. (196 bytes)
296 */
297 static struct pool_cache pmap_l2dtable_cache;
298 static vaddr_t pmap_kernel_l2dtable_kva;
299
300 /*
301 * Pool and cache of L2 page descriptors.
302 * We use a cache to avoid clearing the descriptor table
303 * when they're allocated. (1KB)
304 */
305 static struct pool_cache pmap_l2ptp_cache;
306 static vaddr_t pmap_kernel_l2ptp_kva;
307 static paddr_t pmap_kernel_l2ptp_phys;
308
309 #ifdef PMAPCOUNTERS
310 #define PMAP_EVCNT_INITIALIZER(name) \
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
312
313 #ifdef PMAP_CACHE_VIPT
314 static struct evcnt pmap_ev_vac_clean_one =
315 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
316 static struct evcnt pmap_ev_vac_flush_one =
317 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_lots =
319 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
320 static struct evcnt pmap_ev_vac_flush_lots2 =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
322 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
326
327 static struct evcnt pmap_ev_vac_color_new =
328 PMAP_EVCNT_INITIALIZER("new page color");
329 static struct evcnt pmap_ev_vac_color_reuse =
330 PMAP_EVCNT_INITIALIZER("ok first page color");
331 static struct evcnt pmap_ev_vac_color_ok =
332 PMAP_EVCNT_INITIALIZER("ok page color");
333 static struct evcnt pmap_ev_vac_color_blind =
334 PMAP_EVCNT_INITIALIZER("blind page color");
335 static struct evcnt pmap_ev_vac_color_change =
336 PMAP_EVCNT_INITIALIZER("change page color");
337 static struct evcnt pmap_ev_vac_color_erase =
338 PMAP_EVCNT_INITIALIZER("erase page color");
339 static struct evcnt pmap_ev_vac_color_none =
340 PMAP_EVCNT_INITIALIZER("no page color");
341 static struct evcnt pmap_ev_vac_color_restore =
342 PMAP_EVCNT_INITIALIZER("restore page color");
343
344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
352 #endif
353
354 static struct evcnt pmap_ev_mappings =
355 PMAP_EVCNT_INITIALIZER("pages mapped");
356 static struct evcnt pmap_ev_unmappings =
357 PMAP_EVCNT_INITIALIZER("pages unmapped");
358 static struct evcnt pmap_ev_remappings =
359 PMAP_EVCNT_INITIALIZER("pages remapped");
360
361 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
362 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
363 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
364
365 static struct evcnt pmap_ev_kernel_mappings =
366 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
367 static struct evcnt pmap_ev_kernel_unmappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
369 static struct evcnt pmap_ev_kernel_remappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
371
372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
375
376 static struct evcnt pmap_ev_kenter_mappings =
377 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
378 static struct evcnt pmap_ev_kenter_unmappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
380 static struct evcnt pmap_ev_kenter_remappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
382 static struct evcnt pmap_ev_pt_mappings =
383 PMAP_EVCNT_INITIALIZER("page table pages mapped");
384
385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
389
390 #ifdef PMAP_CACHE_VIPT
391 static struct evcnt pmap_ev_exec_mappings =
392 PMAP_EVCNT_INITIALIZER("exec pages mapped");
393 static struct evcnt pmap_ev_exec_cached =
394 PMAP_EVCNT_INITIALIZER("exec pages cached");
395
396 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
397 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
398
399 static struct evcnt pmap_ev_exec_synced =
400 PMAP_EVCNT_INITIALIZER("exec pages synced");
401 static struct evcnt pmap_ev_exec_synced_map =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
403 static struct evcnt pmap_ev_exec_synced_unmap =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
405 static struct evcnt pmap_ev_exec_synced_remap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
407 static struct evcnt pmap_ev_exec_synced_clearbit =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
409 static struct evcnt pmap_ev_exec_synced_kremove =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
411
412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
418
419 static struct evcnt pmap_ev_exec_discarded_unmap =
420 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
421 static struct evcnt pmap_ev_exec_discarded_zero =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
423 static struct evcnt pmap_ev_exec_discarded_copy =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
425 static struct evcnt pmap_ev_exec_discarded_page_protect =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
427 static struct evcnt pmap_ev_exec_discarded_clearbit =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
429 static struct evcnt pmap_ev_exec_discarded_kremove =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
431
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
438 #endif /* PMAP_CACHE_VIPT */
439
440 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
441 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
442 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
443
444 EVCNT_ATTACH_STATIC(pmap_ev_updates);
445 EVCNT_ATTACH_STATIC(pmap_ev_collects);
446 EVCNT_ATTACH_STATIC(pmap_ev_activations);
447
448 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
449 #else
450 #define PMAPCOUNT(x) ((void)0)
451 #endif
452
453 /*
454 * pmap copy/zero page, and mem(5) hook point
455 */
456 static pt_entry_t *csrc_pte, *cdst_pte;
457 static vaddr_t csrcp, cdstp;
458 vaddr_t memhook; /* used by mem.c */
459 kmutex_t memlock; /* used by mem.c */
460 void *zeropage; /* used by mem.c */
461 extern void *msgbufaddr;
462 int pmap_kmpages;
463 /*
464 * Flag to indicate if pmap_init() has done its thing
465 */
466 bool pmap_initialized;
467
468 /*
469 * Misc. locking data structures
470 */
471
472 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
473 static struct lock pmap_main_lock;
474
475 #define PMAP_MAP_TO_HEAD_LOCK() \
476 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
477 #define PMAP_MAP_TO_HEAD_UNLOCK() \
478 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
479 #define PMAP_HEAD_TO_MAP_LOCK() \
480 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
481 #define PMAP_HEAD_TO_MAP_UNLOCK() \
482 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
483 #else
484 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
485 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
486 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
487 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
488 #endif
489
490 #define pmap_acquire_pmap_lock(pm) \
491 do { \
492 if ((pm) != pmap_kernel()) \
493 mutex_enter(&(pm)->pm_lock); \
494 } while (/*CONSTCOND*/0)
495
496 #define pmap_release_pmap_lock(pm) \
497 do { \
498 if ((pm) != pmap_kernel()) \
499 mutex_exit(&(pm)->pm_lock); \
500 } while (/*CONSTCOND*/0)
501
502
503 /*
504 * Metadata for L1 translation tables.
505 */
506 struct l1_ttable {
507 /* Entry on the L1 Table list */
508 SLIST_ENTRY(l1_ttable) l1_link;
509
510 /* Entry on the L1 Least Recently Used list */
511 TAILQ_ENTRY(l1_ttable) l1_lru;
512
513 /* Track how many domains are allocated from this L1 */
514 volatile u_int l1_domain_use_count;
515
516 /*
517 * A free-list of domain numbers for this L1.
518 * We avoid using ffs() and a bitmap to track domains since ffs()
519 * is slow on ARM.
520 */
521 u_int8_t l1_domain_first;
522 u_int8_t l1_domain_free[PMAP_DOMAINS];
523
524 /* Physical address of this L1 page table */
525 paddr_t l1_physaddr;
526
527 /* KVA of this L1 page table */
528 pd_entry_t *l1_kva;
529 };
530
531 /*
532 * Convert a virtual address into its L1 table index. That is, the
533 * index used to locate the L2 descriptor table pointer in an L1 table.
534 * This is basically used to index l1->l1_kva[].
535 *
536 * Each L2 descriptor table represents 1MB of VA space.
537 */
538 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
539
540 /*
541 * L1 Page Tables are tracked using a Least Recently Used list.
542 * - New L1s are allocated from the HEAD.
543 * - Freed L1s are added to the TAIl.
544 * - Recently accessed L1s (where an 'access' is some change to one of
545 * the userland pmaps which owns this L1) are moved to the TAIL.
546 */
547 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
548 static struct simplelock l1_lru_lock;
549
550 /*
551 * A list of all L1 tables
552 */
553 static SLIST_HEAD(, l1_ttable) l1_list;
554
555 /*
556 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
557 *
558 * This is normally 16MB worth L2 page descriptors for any given pmap.
559 * Reference counts are maintained for L2 descriptors so they can be
560 * freed when empty.
561 */
562 struct l2_dtable {
563 /* The number of L2 page descriptors allocated to this l2_dtable */
564 u_int l2_occupancy;
565
566 /* List of L2 page descriptors */
567 struct l2_bucket {
568 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
569 paddr_t l2b_phys; /* Physical address of same */
570 u_short l2b_l1idx; /* This L2 table's L1 index */
571 u_short l2b_occupancy; /* How many active descriptors */
572 } l2_bucket[L2_BUCKET_SIZE];
573 };
574
575 /*
576 * Given an L1 table index, calculate the corresponding l2_dtable index
577 * and bucket index within the l2_dtable.
578 */
579 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
580 (L2_SIZE - 1))
581 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
582
583 /*
584 * Given a virtual address, this macro returns the
585 * virtual address required to drop into the next L2 bucket.
586 */
587 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
588
589 /*
590 * L2 allocation.
591 */
592 #define pmap_alloc_l2_dtable() \
593 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
594 #define pmap_free_l2_dtable(l2) \
595 pool_cache_put(&pmap_l2dtable_cache, (l2))
596 #define pmap_alloc_l2_ptp(pap) \
597 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
598 PR_NOWAIT, (pap)))
599
600 /*
601 * We try to map the page tables write-through, if possible. However, not
602 * all CPUs have a write-through cache mode, so on those we have to sync
603 * the cache when we frob page tables.
604 *
605 * We try to evaluate this at compile time, if possible. However, it's
606 * not always possible to do that, hence this run-time var.
607 */
608 int pmap_needs_pte_sync;
609
610 /*
611 * Real definition of pv_entry.
612 */
613 struct pv_entry {
614 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
615 pmap_t pv_pmap; /* pmap where mapping lies */
616 vaddr_t pv_va; /* virtual address for mapping */
617 u_int pv_flags; /* flags */
618 };
619
620 /*
621 * Macro to determine if a mapping might be resident in the
622 * instruction cache and/or TLB
623 */
624 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
625 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
626
627 /*
628 * Macro to determine if a mapping might be resident in the
629 * data cache and/or TLB
630 */
631 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
632
633 /*
634 * Local prototypes
635 */
636 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
637 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
638 pt_entry_t **);
639 static bool pmap_is_current(pmap_t);
640 static bool pmap_is_cached(pmap_t);
641 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
642 pmap_t, vaddr_t, u_int);
643 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
644 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
645 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
646 u_int, u_int);
647
648 static void pmap_pinit(pmap_t);
649 static int pmap_pmap_ctor(void *, void *, int);
650
651 static void pmap_alloc_l1(pmap_t);
652 static void pmap_free_l1(pmap_t);
653 static void pmap_use_l1(pmap_t);
654
655 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
656 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
657 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
658 static int pmap_l2ptp_ctor(void *, void *, int);
659 static int pmap_l2dtable_ctor(void *, void *, int);
660
661 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
662 #ifdef PMAP_CACHE_VIVT
663 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
665 #endif
666
667 static void pmap_clearbit(struct vm_page *, u_int);
668 #ifdef PMAP_CACHE_VIVT
669 static int pmap_clean_page(struct pv_entry *, bool);
670 #endif
671 #ifdef PMAP_CACHE_VIPT
672 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
673 enum pmap_flush_op {
674 PMAP_FLUSH_PRIMARY,
675 PMAP_FLUSH_SECONDARY,
676 PMAP_CLEAN_PRIMARY
677 };
678 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
679 #endif
680 static void pmap_page_remove(struct vm_page *);
681
682 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
683 static vaddr_t kernel_pt_lookup(paddr_t);
684
685
686 /*
687 * External function prototypes
688 */
689 extern void bzero_page(vaddr_t);
690 extern void bcopy_page(vaddr_t, vaddr_t);
691
692 /*
693 * Misc variables
694 */
695 vaddr_t virtual_avail;
696 vaddr_t virtual_end;
697 vaddr_t pmap_curmaxkvaddr;
698
699 paddr_t avail_start;
700 paddr_t avail_end;
701
702 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
703 pv_addr_t kernelpages;
704 pv_addr_t kernel_l1pt;
705 pv_addr_t systempage;
706
707 /* Function to set the debug level of the pmap code */
708
709 #ifdef PMAP_DEBUG
710 void
711 pmap_debug(int level)
712 {
713 pmap_debug_level = level;
714 printf("pmap_debug: level=%d\n", pmap_debug_level);
715 }
716 #endif /* PMAP_DEBUG */
717
718 /*
719 * A bunch of routines to conditionally flush the caches/TLB depending
720 * on whether the specified pmap actually needs to be flushed at any
721 * given time.
722 */
723 static inline void
724 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
725 {
726
727 if (pm->pm_cstate.cs_tlb_id)
728 cpu_tlb_flushID_SE(va);
729 }
730
731 static inline void
732 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
733 {
734
735 if (pm->pm_cstate.cs_tlb_d)
736 cpu_tlb_flushD_SE(va);
737 }
738
739 static inline void
740 pmap_tlb_flushID(pmap_t pm)
741 {
742
743 if (pm->pm_cstate.cs_tlb_id) {
744 cpu_tlb_flushID();
745 pm->pm_cstate.cs_tlb = 0;
746 }
747 }
748
749 static inline void
750 pmap_tlb_flushD(pmap_t pm)
751 {
752
753 if (pm->pm_cstate.cs_tlb_d) {
754 cpu_tlb_flushD();
755 pm->pm_cstate.cs_tlb_d = 0;
756 }
757 }
758
759 #ifdef PMAP_CACHE_VIVT
760 static inline void
761 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
762 {
763 if (pm->pm_cstate.cs_cache_id) {
764 cpu_idcache_wbinv_range(va, len);
765 }
766 }
767
768 static inline void
769 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
770 bool do_inv, bool rd_only)
771 {
772
773 if (pm->pm_cstate.cs_cache_d) {
774 if (do_inv) {
775 if (rd_only)
776 cpu_dcache_inv_range(va, len);
777 else
778 cpu_dcache_wbinv_range(va, len);
779 } else
780 if (!rd_only)
781 cpu_dcache_wb_range(va, len);
782 }
783 }
784
785 static inline void
786 pmap_idcache_wbinv_all(pmap_t pm)
787 {
788 if (pm->pm_cstate.cs_cache_id) {
789 cpu_idcache_wbinv_all();
790 pm->pm_cstate.cs_cache = 0;
791 }
792 }
793
794 static inline void
795 pmap_dcache_wbinv_all(pmap_t pm)
796 {
797 if (pm->pm_cstate.cs_cache_d) {
798 cpu_dcache_wbinv_all();
799 pm->pm_cstate.cs_cache_d = 0;
800 }
801 }
802 #endif /* PMAP_CACHE_VIVT */
803
804 static inline bool
805 pmap_is_current(pmap_t pm)
806 {
807
808 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
809 return true;
810
811 return false;
812 }
813
814 static inline bool
815 pmap_is_cached(pmap_t pm)
816 {
817
818 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
819 pmap_recent_user == pm)
820 return (true);
821
822 return false;
823 }
824
825 /*
826 * PTE_SYNC_CURRENT:
827 *
828 * Make sure the pte is written out to RAM.
829 * We need to do this for one of two cases:
830 * - We're dealing with the kernel pmap
831 * - There is no pmap active in the cache/tlb.
832 * - The specified pmap is 'active' in the cache/tlb.
833 */
834 #ifdef PMAP_INCLUDE_PTE_SYNC
835 #define PTE_SYNC_CURRENT(pm, ptep) \
836 do { \
837 if (PMAP_NEEDS_PTE_SYNC && \
838 pmap_is_cached(pm)) \
839 PTE_SYNC(ptep); \
840 } while (/*CONSTCOND*/0)
841 #else
842 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
843 #endif
844
845 /*
846 * main pv_entry manipulation functions:
847 * pmap_enter_pv: enter a mapping onto a vm_page list
848 * pmap_remove_pv: remove a mappiing from a vm_page list
849 *
850 * NOTE: pmap_enter_pv expects to lock the pvh itself
851 * pmap_remove_pv expects te caller to lock the pvh before calling
852 */
853
854 /*
855 * pmap_enter_pv: enter a mapping onto a vm_page lst
856 *
857 * => caller should hold the proper lock on pmap_main_lock
858 * => caller should have pmap locked
859 * => we will gain the lock on the vm_page and allocate the new pv_entry
860 * => caller should adjust ptp's wire_count before calling
861 * => caller should not adjust pmap's wire_count
862 */
863 static void
864 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
865 vaddr_t va, u_int flags)
866 {
867 struct pv_entry **pvp;
868
869 NPDEBUG(PDB_PVDUMP,
870 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
871
872 pv->pv_pmap = pm;
873 pv->pv_va = va;
874 pv->pv_flags = flags;
875
876 simple_lock(&md->pvh_slock); /* lock vm_page */
877 pvp = &SLIST_FIRST(&md->pvh_list);
878 #ifdef PMAP_CACHE_VIPT
879 /*
880 * Insert unmanaged entries, writeable first, at the head of
881 * the pv list.
882 */
883 if (__predict_true((flags & PVF_KENTRY) == 0)) {
884 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
885 pvp = &SLIST_NEXT(*pvp, pv_link);
886 } else if ((flags & PVF_WRITE) == 0) {
887 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
888 pvp = &SLIST_NEXT(*pvp, pv_link);
889 }
890 #endif
891 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
892 *pvp = pv; /* ... locked list */
893 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
894 #ifdef PMAP_CACHE_VIPT
895 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
896 md->pvh_attrs |= PVF_KMOD;
897 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
898 md->pvh_attrs |= PVF_DIRTY;
899 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
900 #endif
901 if (pm == pmap_kernel()) {
902 PMAPCOUNT(kernel_mappings);
903 if (flags & PVF_WRITE)
904 md->krw_mappings++;
905 else
906 md->kro_mappings++;
907 } else {
908 if (flags & PVF_WRITE)
909 md->urw_mappings++;
910 else
911 md->uro_mappings++;
912 }
913
914 #ifdef PMAP_CACHE_VIPT
915 /*
916 * If this is an exec mapping and its the first exec mapping
917 * for this page, make sure to sync the I-cache.
918 */
919 if (PV_IS_EXEC_P(flags)) {
920 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
921 pmap_syncicache_page(md, pa);
922 PMAPCOUNT(exec_synced_map);
923 }
924 PMAPCOUNT(exec_mappings);
925 }
926 #endif
927
928 PMAPCOUNT(mappings);
929 simple_unlock(&md->pvh_slock); /* unlock, done! */
930
931 if (pv->pv_flags & PVF_WIRED)
932 ++pm->pm_stats.wired_count;
933 }
934
935 /*
936 *
937 * pmap_find_pv: Find a pv entry
938 *
939 * => caller should hold lock on vm_page
940 */
941 static inline struct pv_entry *
942 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
943 {
944 struct pv_entry *pv;
945
946 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
947 if (pm == pv->pv_pmap && va == pv->pv_va)
948 break;
949 }
950
951 return (pv);
952 }
953
954 /*
955 * pmap_remove_pv: try to remove a mapping from a pv_list
956 *
957 * => caller should hold proper lock on pmap_main_lock
958 * => pmap should be locked
959 * => caller should hold lock on vm_page [so that attrs can be adjusted]
960 * => caller should adjust ptp's wire_count and free PTP if needed
961 * => caller should NOT adjust pmap's wire_count
962 * => we return the removed pv
963 */
964 static struct pv_entry *
965 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
966 {
967 struct pv_entry *pv, **prevptr;
968
969 NPDEBUG(PDB_PVDUMP,
970 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
971
972 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
973 pv = *prevptr;
974
975 while (pv) {
976 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
977 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
978 "%p\n", pm, md));
979 if (pv->pv_flags & PVF_WIRED) {
980 --pm->pm_stats.wired_count;
981 }
982 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
983 if (pm == pmap_kernel()) {
984 PMAPCOUNT(kernel_unmappings);
985 if (pv->pv_flags & PVF_WRITE)
986 md->krw_mappings--;
987 else
988 md->kro_mappings--;
989 } else {
990 if (pv->pv_flags & PVF_WRITE)
991 md->urw_mappings--;
992 else
993 md->uro_mappings--;
994 }
995
996 PMAPCOUNT(unmappings);
997 #ifdef PMAP_CACHE_VIPT
998 if (!(pv->pv_flags & PVF_WRITE))
999 break;
1000 /*
1001 * If this page has had an exec mapping, then if
1002 * this was the last mapping, discard the contents,
1003 * otherwise sync the i-cache for this page.
1004 */
1005 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1006 if (SLIST_EMPTY(&md->pvh_list)) {
1007 md->pvh_attrs &= ~PVF_EXEC;
1008 PMAPCOUNT(exec_discarded_unmap);
1009 } else {
1010 pmap_syncicache_page(md, pa);
1011 PMAPCOUNT(exec_synced_unmap);
1012 }
1013 }
1014 #endif /* PMAP_CACHE_VIPT */
1015 break;
1016 }
1017 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1018 pv = *prevptr; /* advance */
1019 }
1020
1021 #ifdef PMAP_CACHE_VIPT
1022 /*
1023 * If we no longer have a WRITEABLE KENTRY at the head of list,
1024 * clear the KMOD attribute from the page.
1025 */
1026 if (SLIST_FIRST(&md->pvh_list) == NULL
1027 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1028 md->pvh_attrs &= ~PVF_KMOD;
1029
1030 /*
1031 * If this was a writeable page and there are no more writeable
1032 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1033 * the contents to memory.
1034 */
1035 if (md->krw_mappings + md->urw_mappings == 0)
1036 md->pvh_attrs &= ~PVF_WRITE;
1037 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1038 #endif /* PMAP_CACHE_VIPT */
1039
1040 return(pv); /* return removed pv */
1041 }
1042
1043 /*
1044 *
1045 * pmap_modify_pv: Update pv flags
1046 *
1047 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1048 * => caller should NOT adjust pmap's wire_count
1049 * => caller must call pmap_vac_me_harder() if writable status of a page
1050 * may have changed.
1051 * => we return the old flags
1052 *
1053 * Modify a physical-virtual mapping in the pv table
1054 */
1055 static u_int
1056 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1057 u_int clr_mask, u_int set_mask)
1058 {
1059 struct pv_entry *npv;
1060 u_int flags, oflags;
1061
1062 KASSERT((clr_mask & PVF_KENTRY) == 0);
1063 KASSERT((set_mask & PVF_KENTRY) == 0);
1064
1065 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1066 return (0);
1067
1068 NPDEBUG(PDB_PVDUMP,
1069 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1070
1071 /*
1072 * There is at least one VA mapping this page.
1073 */
1074
1075 if (clr_mask & (PVF_REF | PVF_MOD)) {
1076 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1077 #ifdef PMAP_CACHE_VIPT
1078 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1079 md->pvh_attrs |= PVF_DIRTY;
1080 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1081 #endif
1082 }
1083
1084 oflags = npv->pv_flags;
1085 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1086
1087 if ((flags ^ oflags) & PVF_WIRED) {
1088 if (flags & PVF_WIRED)
1089 ++pm->pm_stats.wired_count;
1090 else
1091 --pm->pm_stats.wired_count;
1092 }
1093
1094 if ((flags ^ oflags) & PVF_WRITE) {
1095 if (pm == pmap_kernel()) {
1096 if (flags & PVF_WRITE) {
1097 md->krw_mappings++;
1098 md->kro_mappings--;
1099 } else {
1100 md->kro_mappings++;
1101 md->krw_mappings--;
1102 }
1103 } else {
1104 if (flags & PVF_WRITE) {
1105 md->urw_mappings++;
1106 md->uro_mappings--;
1107 } else {
1108 md->uro_mappings++;
1109 md->urw_mappings--;
1110 }
1111 }
1112 }
1113 #ifdef PMAP_CACHE_VIPT
1114 if (md->urw_mappings + md->krw_mappings == 0)
1115 md->pvh_attrs &= ~PVF_WRITE;
1116 /*
1117 * We have two cases here: the first is from enter_pv (new exec
1118 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1119 * Since in latter, pmap_enter_pv won't do anything, we just have
1120 * to do what pmap_remove_pv would do.
1121 */
1122 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1123 || (PV_IS_EXEC_P(md->pvh_attrs)
1124 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1125 pmap_syncicache_page(md, pa);
1126 PMAPCOUNT(exec_synced_remap);
1127 }
1128 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1129 #endif
1130
1131 PMAPCOUNT(remappings);
1132
1133 return (oflags);
1134 }
1135
1136 /*
1137 * Allocate an L1 translation table for the specified pmap.
1138 * This is called at pmap creation time.
1139 */
1140 static void
1141 pmap_alloc_l1(pmap_t pm)
1142 {
1143 struct l1_ttable *l1;
1144 u_int8_t domain;
1145
1146 /*
1147 * Remove the L1 at the head of the LRU list
1148 */
1149 simple_lock(&l1_lru_lock);
1150 l1 = TAILQ_FIRST(&l1_lru_list);
1151 KDASSERT(l1 != NULL);
1152 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1153
1154 /*
1155 * Pick the first available domain number, and update
1156 * the link to the next number.
1157 */
1158 domain = l1->l1_domain_first;
1159 l1->l1_domain_first = l1->l1_domain_free[domain];
1160
1161 /*
1162 * If there are still free domain numbers in this L1,
1163 * put it back on the TAIL of the LRU list.
1164 */
1165 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1166 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1167
1168 simple_unlock(&l1_lru_lock);
1169
1170 /*
1171 * Fix up the relevant bits in the pmap structure
1172 */
1173 pm->pm_l1 = l1;
1174 pm->pm_domain = domain;
1175 }
1176
1177 /*
1178 * Free an L1 translation table.
1179 * This is called at pmap destruction time.
1180 */
1181 static void
1182 pmap_free_l1(pmap_t pm)
1183 {
1184 struct l1_ttable *l1 = pm->pm_l1;
1185
1186 simple_lock(&l1_lru_lock);
1187
1188 /*
1189 * If this L1 is currently on the LRU list, remove it.
1190 */
1191 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1192 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1193
1194 /*
1195 * Free up the domain number which was allocated to the pmap
1196 */
1197 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1198 l1->l1_domain_first = pm->pm_domain;
1199 l1->l1_domain_use_count--;
1200
1201 /*
1202 * The L1 now must have at least 1 free domain, so add
1203 * it back to the LRU list. If the use count is zero,
1204 * put it at the head of the list, otherwise it goes
1205 * to the tail.
1206 */
1207 if (l1->l1_domain_use_count == 0)
1208 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1209 else
1210 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1211
1212 simple_unlock(&l1_lru_lock);
1213 }
1214
1215 static inline void
1216 pmap_use_l1(pmap_t pm)
1217 {
1218 struct l1_ttable *l1;
1219
1220 /*
1221 * Do nothing if we're in interrupt context.
1222 * Access to an L1 by the kernel pmap must not affect
1223 * the LRU list.
1224 */
1225 if (cpu_intr_p() || pm == pmap_kernel())
1226 return;
1227
1228 l1 = pm->pm_l1;
1229
1230 /*
1231 * If the L1 is not currently on the LRU list, just return
1232 */
1233 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1234 return;
1235
1236 simple_lock(&l1_lru_lock);
1237
1238 /*
1239 * Check the use count again, now that we've acquired the lock
1240 */
1241 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1242 simple_unlock(&l1_lru_lock);
1243 return;
1244 }
1245
1246 /*
1247 * Move the L1 to the back of the LRU list
1248 */
1249 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1250 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1251
1252 simple_unlock(&l1_lru_lock);
1253 }
1254
1255 /*
1256 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1257 *
1258 * Free an L2 descriptor table.
1259 */
1260 static inline void
1261 #ifndef PMAP_INCLUDE_PTE_SYNC
1262 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1263 #else
1264 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1265 #endif
1266 {
1267 #ifdef PMAP_INCLUDE_PTE_SYNC
1268 #ifdef PMAP_CACHE_VIVT
1269 /*
1270 * Note: With a write-back cache, we may need to sync this
1271 * L2 table before re-using it.
1272 * This is because it may have belonged to a non-current
1273 * pmap, in which case the cache syncs would have been
1274 * skipped for the pages that were being unmapped. If the
1275 * L2 table were then to be immediately re-allocated to
1276 * the *current* pmap, it may well contain stale mappings
1277 * which have not yet been cleared by a cache write-back
1278 * and so would still be visible to the mmu.
1279 */
1280 if (need_sync)
1281 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1282 #endif /* PMAP_CACHE_VIVT */
1283 #endif /* PMAP_INCLUDE_PTE_SYNC */
1284 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1285 }
1286
1287 /*
1288 * Returns a pointer to the L2 bucket associated with the specified pmap
1289 * and VA, or NULL if no L2 bucket exists for the address.
1290 */
1291 static inline struct l2_bucket *
1292 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1293 {
1294 struct l2_dtable *l2;
1295 struct l2_bucket *l2b;
1296 u_short l1idx;
1297
1298 l1idx = L1_IDX(va);
1299
1300 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1301 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1302 return (NULL);
1303
1304 return (l2b);
1305 }
1306
1307 /*
1308 * Returns a pointer to the L2 bucket associated with the specified pmap
1309 * and VA.
1310 *
1311 * If no L2 bucket exists, perform the necessary allocations to put an L2
1312 * bucket/page table in place.
1313 *
1314 * Note that if a new L2 bucket/page was allocated, the caller *must*
1315 * increment the bucket occupancy counter appropriately *before*
1316 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1317 * the bucket/page in the meantime.
1318 */
1319 static struct l2_bucket *
1320 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1321 {
1322 struct l2_dtable *l2;
1323 struct l2_bucket *l2b;
1324 u_short l1idx;
1325
1326 l1idx = L1_IDX(va);
1327
1328 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1329 /*
1330 * No mapping at this address, as there is
1331 * no entry in the L1 table.
1332 * Need to allocate a new l2_dtable.
1333 */
1334 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1335 return (NULL);
1336
1337 /*
1338 * Link it into the parent pmap
1339 */
1340 pm->pm_l2[L2_IDX(l1idx)] = l2;
1341 }
1342
1343 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1344
1345 /*
1346 * Fetch pointer to the L2 page table associated with the address.
1347 */
1348 if (l2b->l2b_kva == NULL) {
1349 pt_entry_t *ptep;
1350
1351 /*
1352 * No L2 page table has been allocated. Chances are, this
1353 * is because we just allocated the l2_dtable, above.
1354 */
1355 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1356 /*
1357 * Oops, no more L2 page tables available at this
1358 * time. We may need to deallocate the l2_dtable
1359 * if we allocated a new one above.
1360 */
1361 if (l2->l2_occupancy == 0) {
1362 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1363 pmap_free_l2_dtable(l2);
1364 }
1365 return (NULL);
1366 }
1367
1368 l2->l2_occupancy++;
1369 l2b->l2b_kva = ptep;
1370 l2b->l2b_l1idx = l1idx;
1371 }
1372
1373 return (l2b);
1374 }
1375
1376 /*
1377 * One or more mappings in the specified L2 descriptor table have just been
1378 * invalidated.
1379 *
1380 * Garbage collect the metadata and descriptor table itself if necessary.
1381 *
1382 * The pmap lock must be acquired when this is called (not necessary
1383 * for the kernel pmap).
1384 */
1385 static void
1386 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1387 {
1388 struct l2_dtable *l2;
1389 pd_entry_t *pl1pd, l1pd;
1390 pt_entry_t *ptep;
1391 u_short l1idx;
1392
1393 KDASSERT(count <= l2b->l2b_occupancy);
1394
1395 /*
1396 * Update the bucket's reference count according to how many
1397 * PTEs the caller has just invalidated.
1398 */
1399 l2b->l2b_occupancy -= count;
1400
1401 /*
1402 * Note:
1403 *
1404 * Level 2 page tables allocated to the kernel pmap are never freed
1405 * as that would require checking all Level 1 page tables and
1406 * removing any references to the Level 2 page table. See also the
1407 * comment elsewhere about never freeing bootstrap L2 descriptors.
1408 *
1409 * We make do with just invalidating the mapping in the L2 table.
1410 *
1411 * This isn't really a big deal in practice and, in fact, leads
1412 * to a performance win over time as we don't need to continually
1413 * alloc/free.
1414 */
1415 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1416 return;
1417
1418 /*
1419 * There are no more valid mappings in this level 2 page table.
1420 * Go ahead and NULL-out the pointer in the bucket, then
1421 * free the page table.
1422 */
1423 l1idx = l2b->l2b_l1idx;
1424 ptep = l2b->l2b_kva;
1425 l2b->l2b_kva = NULL;
1426
1427 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1428
1429 /*
1430 * If the L1 slot matches the pmap's domain
1431 * number, then invalidate it.
1432 */
1433 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1434 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1435 *pl1pd = 0;
1436 PTE_SYNC(pl1pd);
1437 }
1438
1439 /*
1440 * Release the L2 descriptor table back to the pool cache.
1441 */
1442 #ifndef PMAP_INCLUDE_PTE_SYNC
1443 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1444 #else
1445 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1446 #endif
1447
1448 /*
1449 * Update the reference count in the associated l2_dtable
1450 */
1451 l2 = pm->pm_l2[L2_IDX(l1idx)];
1452 if (--l2->l2_occupancy > 0)
1453 return;
1454
1455 /*
1456 * There are no more valid mappings in any of the Level 1
1457 * slots managed by this l2_dtable. Go ahead and NULL-out
1458 * the pointer in the parent pmap and free the l2_dtable.
1459 */
1460 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1461 pmap_free_l2_dtable(l2);
1462 }
1463
1464 /*
1465 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1466 * structures.
1467 */
1468 static int
1469 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1470 {
1471 #ifndef PMAP_INCLUDE_PTE_SYNC
1472 struct l2_bucket *l2b;
1473 pt_entry_t *ptep, pte;
1474 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1475
1476 /*
1477 * The mappings for these page tables were initially made using
1478 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1479 * mode will not be right for page table mappings. To avoid
1480 * polluting the pmap_kenter_pa() code with a special case for
1481 * page tables, we simply fix up the cache-mode here if it's not
1482 * correct.
1483 */
1484 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1485 KDASSERT(l2b != NULL);
1486 ptep = &l2b->l2b_kva[l2pte_index(va)];
1487 pte = *ptep;
1488
1489 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1490 /*
1491 * Page tables must have the cache-mode set to Write-Thru.
1492 */
1493 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1494 PTE_SYNC(ptep);
1495 cpu_tlb_flushD_SE(va);
1496 cpu_cpwait();
1497 }
1498 #endif
1499
1500 memset(v, 0, L2_TABLE_SIZE_REAL);
1501 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1502 return (0);
1503 }
1504
1505 static int
1506 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1507 {
1508
1509 memset(v, 0, sizeof(struct l2_dtable));
1510 return (0);
1511 }
1512
1513 static int
1514 pmap_pmap_ctor(void *arg, void *v, int flags)
1515 {
1516
1517 memset(v, 0, sizeof(struct pmap));
1518 return (0);
1519 }
1520
1521 static void
1522 pmap_pinit(pmap_t pm)
1523 {
1524 struct l2_bucket *l2b;
1525
1526 if (vector_page < KERNEL_BASE) {
1527 /*
1528 * Map the vector page.
1529 */
1530 pmap_enter(pm, vector_page, systempage.pv_pa,
1531 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1532 pmap_update(pm);
1533
1534 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1535 l2b = pmap_get_l2_bucket(pm, vector_page);
1536 KDASSERT(l2b != NULL);
1537 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1538 L1_C_DOM(pm->pm_domain);
1539 } else
1540 pm->pm_pl1vec = NULL;
1541 }
1542
1543 #ifdef PMAP_CACHE_VIVT
1544 /*
1545 * Since we have a virtually indexed cache, we may need to inhibit caching if
1546 * there is more than one mapping and at least one of them is writable.
1547 * Since we purge the cache on every context switch, we only need to check for
1548 * other mappings within the same pmap, or kernel_pmap.
1549 * This function is also called when a page is unmapped, to possibly reenable
1550 * caching on any remaining mappings.
1551 *
1552 * The code implements the following logic, where:
1553 *
1554 * KW = # of kernel read/write pages
1555 * KR = # of kernel read only pages
1556 * UW = # of user read/write pages
1557 * UR = # of user read only pages
1558 *
1559 * KC = kernel mapping is cacheable
1560 * UC = user mapping is cacheable
1561 *
1562 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1563 * +---------------------------------------------
1564 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1565 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1566 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1567 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1568 */
1569
1570 static const int pmap_vac_flags[4][4] = {
1571 {-1, 0, 0, PVF_KNC},
1572 {0, 0, PVF_NC, PVF_NC},
1573 {0, PVF_NC, PVF_NC, PVF_NC},
1574 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1575 };
1576
1577 static inline int
1578 pmap_get_vac_flags(const struct vm_page_md *md)
1579 {
1580 int kidx, uidx;
1581
1582 kidx = 0;
1583 if (md->kro_mappings || md->krw_mappings > 1)
1584 kidx |= 1;
1585 if (md->krw_mappings)
1586 kidx |= 2;
1587
1588 uidx = 0;
1589 if (md->uro_mappings || md->urw_mappings > 1)
1590 uidx |= 1;
1591 if (md->urw_mappings)
1592 uidx |= 2;
1593
1594 return (pmap_vac_flags[uidx][kidx]);
1595 }
1596
1597 static inline void
1598 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1599 {
1600 int nattr;
1601
1602 nattr = pmap_get_vac_flags(md);
1603
1604 if (nattr < 0) {
1605 md->pvh_attrs &= ~PVF_NC;
1606 return;
1607 }
1608
1609 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1610 return;
1611
1612 if (pm == pmap_kernel())
1613 pmap_vac_me_kpmap(md, pa, pm, va);
1614 else
1615 pmap_vac_me_user(md, pa, pm, va);
1616
1617 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1618 }
1619
1620 static void
1621 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1622 {
1623 u_int u_cacheable, u_entries;
1624 struct pv_entry *pv;
1625 pmap_t last_pmap = pm;
1626
1627 /*
1628 * Pass one, see if there are both kernel and user pmaps for
1629 * this page. Calculate whether there are user-writable or
1630 * kernel-writable pages.
1631 */
1632 u_cacheable = 0;
1633 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1634 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1635 u_cacheable++;
1636 }
1637
1638 u_entries = md->urw_mappings + md->uro_mappings;
1639
1640 /*
1641 * We know we have just been updating a kernel entry, so if
1642 * all user pages are already cacheable, then there is nothing
1643 * further to do.
1644 */
1645 if (md->k_mappings == 0 && u_cacheable == u_entries)
1646 return;
1647
1648 if (u_entries) {
1649 /*
1650 * Scan over the list again, for each entry, if it
1651 * might not be set correctly, call pmap_vac_me_user
1652 * to recalculate the settings.
1653 */
1654 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1655 /*
1656 * We know kernel mappings will get set
1657 * correctly in other calls. We also know
1658 * that if the pmap is the same as last_pmap
1659 * then we've just handled this entry.
1660 */
1661 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1662 continue;
1663
1664 /*
1665 * If there are kernel entries and this page
1666 * is writable but non-cacheable, then we can
1667 * skip this entry also.
1668 */
1669 if (md->k_mappings &&
1670 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1671 (PVF_NC | PVF_WRITE))
1672 continue;
1673
1674 /*
1675 * Similarly if there are no kernel-writable
1676 * entries and the page is already
1677 * read-only/cacheable.
1678 */
1679 if (md->krw_mappings == 0 &&
1680 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1681 continue;
1682
1683 /*
1684 * For some of the remaining cases, we know
1685 * that we must recalculate, but for others we
1686 * can't tell if they are correct or not, so
1687 * we recalculate anyway.
1688 */
1689 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1690 }
1691
1692 if (md->k_mappings == 0)
1693 return;
1694 }
1695
1696 pmap_vac_me_user(md, pa, pm, va);
1697 }
1698
1699 static void
1700 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1701 {
1702 pmap_t kpmap = pmap_kernel();
1703 struct pv_entry *pv, *npv = NULL;
1704 struct l2_bucket *l2b;
1705 pt_entry_t *ptep, pte;
1706 u_int entries = 0;
1707 u_int writable = 0;
1708 u_int cacheable_entries = 0;
1709 u_int kern_cacheable = 0;
1710 u_int other_writable = 0;
1711
1712 /*
1713 * Count mappings and writable mappings in this pmap.
1714 * Include kernel mappings as part of our own.
1715 * Keep a pointer to the first one.
1716 */
1717 npv = NULL;
1718 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1719 /* Count mappings in the same pmap */
1720 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1721 if (entries++ == 0)
1722 npv = pv;
1723
1724 /* Cacheable mappings */
1725 if ((pv->pv_flags & PVF_NC) == 0) {
1726 cacheable_entries++;
1727 if (kpmap == pv->pv_pmap)
1728 kern_cacheable++;
1729 }
1730
1731 /* Writable mappings */
1732 if (pv->pv_flags & PVF_WRITE)
1733 ++writable;
1734 } else
1735 if (pv->pv_flags & PVF_WRITE)
1736 other_writable = 1;
1737 }
1738
1739 /*
1740 * Enable or disable caching as necessary.
1741 * Note: the first entry might be part of the kernel pmap,
1742 * so we can't assume this is indicative of the state of the
1743 * other (maybe non-kpmap) entries.
1744 */
1745 if ((entries > 1 && writable) ||
1746 (entries > 0 && pm == kpmap && other_writable)) {
1747 if (cacheable_entries == 0)
1748 return;
1749
1750 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1751 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1752 (pv->pv_flags & PVF_NC))
1753 continue;
1754
1755 pv->pv_flags |= PVF_NC;
1756
1757 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1758 KDASSERT(l2b != NULL);
1759 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1760 pte = *ptep & ~L2_S_CACHE_MASK;
1761
1762 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1763 l2pte_valid(pte)) {
1764 if (PV_BEEN_EXECD(pv->pv_flags)) {
1765 #ifdef PMAP_CACHE_VIVT
1766 pmap_idcache_wbinv_range(pv->pv_pmap,
1767 pv->pv_va, PAGE_SIZE);
1768 #endif
1769 pmap_tlb_flushID_SE(pv->pv_pmap,
1770 pv->pv_va);
1771 } else
1772 if (PV_BEEN_REFD(pv->pv_flags)) {
1773 #ifdef PMAP_CACHE_VIVT
1774 pmap_dcache_wb_range(pv->pv_pmap,
1775 pv->pv_va, PAGE_SIZE, true,
1776 (pv->pv_flags & PVF_WRITE) == 0);
1777 #endif
1778 pmap_tlb_flushD_SE(pv->pv_pmap,
1779 pv->pv_va);
1780 }
1781 }
1782
1783 *ptep = pte;
1784 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1785 }
1786 cpu_cpwait();
1787 } else
1788 if (entries > cacheable_entries) {
1789 /*
1790 * Turn cacheing back on for some pages. If it is a kernel
1791 * page, only do so if there are no other writable pages.
1792 */
1793 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1794 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1795 (kpmap != pv->pv_pmap || other_writable)))
1796 continue;
1797
1798 pv->pv_flags &= ~PVF_NC;
1799
1800 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1801 KDASSERT(l2b != NULL);
1802 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1803 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1804
1805 if (l2pte_valid(pte)) {
1806 if (PV_BEEN_EXECD(pv->pv_flags)) {
1807 pmap_tlb_flushID_SE(pv->pv_pmap,
1808 pv->pv_va);
1809 } else
1810 if (PV_BEEN_REFD(pv->pv_flags)) {
1811 pmap_tlb_flushD_SE(pv->pv_pmap,
1812 pv->pv_va);
1813 }
1814 }
1815
1816 *ptep = pte;
1817 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1818 }
1819 }
1820 }
1821 #endif
1822
1823 #ifdef PMAP_CACHE_VIPT
1824 static void
1825 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1826 {
1827 struct pv_entry *pv;
1828 vaddr_t tst_mask;
1829 bool bad_alias;
1830 struct l2_bucket *l2b;
1831 pt_entry_t *ptep, pte, opte;
1832 const u_int
1833 rw_mappings = md->urw_mappings + md->krw_mappings,
1834 ro_mappings = md->uro_mappings + md->kro_mappings;
1835
1836 /* do we need to do anything? */
1837 if (arm_cache_prefer_mask == 0)
1838 return;
1839
1840 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1841 md, pm, va));
1842
1843 KASSERT(!va || pm);
1844 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1845
1846 /* Already a conflict? */
1847 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1848 /* just an add, things are already non-cached */
1849 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1850 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1851 bad_alias = false;
1852 if (va) {
1853 PMAPCOUNT(vac_color_none);
1854 bad_alias = true;
1855 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1856 goto fixup;
1857 }
1858 pv = SLIST_FIRST(&md->pvh_list);
1859 /* the list can't be empty because it would be cachable */
1860 if (md->pvh_attrs & PVF_KMPAGE) {
1861 tst_mask = md->pvh_attrs;
1862 } else {
1863 KASSERT(pv);
1864 tst_mask = pv->pv_va;
1865 pv = SLIST_NEXT(pv, pv_link);
1866 }
1867 /*
1868 * Only check for a bad alias if we have writable mappings.
1869 */
1870 tst_mask &= arm_cache_prefer_mask;
1871 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1872 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1873 /* if there's a bad alias, stop checking. */
1874 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1875 bad_alias = true;
1876 }
1877 md->pvh_attrs |= PVF_WRITE;
1878 if (!bad_alias)
1879 md->pvh_attrs |= PVF_DIRTY;
1880 } else {
1881 /*
1882 * We have only read-only mappings. Let's see if there
1883 * are multiple colors in use or if we mapped a KMPAGE.
1884 * If the latter, we have a bad alias. If the former,
1885 * we need to remember that.
1886 */
1887 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1888 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1889 if (md->pvh_attrs & PVF_KMPAGE)
1890 bad_alias = true;
1891 break;
1892 }
1893 }
1894 md->pvh_attrs &= ~PVF_WRITE;
1895 /*
1896 * No KMPAGE and we exited early, so we must have
1897 * multiple color mappings.
1898 */
1899 if (!bad_alias && pv != NULL)
1900 md->pvh_attrs |= PVF_MULTCLR;
1901 }
1902
1903 /* If no conflicting colors, set everything back to cached */
1904 if (!bad_alias) {
1905 #ifdef DEBUG
1906 if ((md->pvh_attrs & PVF_WRITE)
1907 || ro_mappings < 2) {
1908 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1909 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1910 }
1911 #endif
1912 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1913 md->pvh_attrs |= tst_mask | PVF_COLORED;
1914 /*
1915 * Restore DIRTY bit if page is modified
1916 */
1917 if (md->pvh_attrs & PVF_DMOD)
1918 md->pvh_attrs |= PVF_DIRTY;
1919 PMAPCOUNT(vac_color_restore);
1920 } else {
1921 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1922 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1923 }
1924 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1925 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1926 } else if (!va) {
1927 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
1928 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1929 || (md->pvh_attrs & PVF_DIRTY));
1930 if (rw_mappings == 0) {
1931 md->pvh_attrs &= ~PVF_WRITE;
1932 if (ro_mappings == 1
1933 && (md->pvh_attrs & PVF_MULTCLR)) {
1934 /*
1935 * If this is the last readonly mapping
1936 * but it doesn't match the current color
1937 * for the page, change the current color
1938 * to match this last readonly mapping.
1939 */
1940 pv = SLIST_FIRST(&md->pvh_list);
1941 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1942 & arm_cache_prefer_mask;
1943 if (tst_mask) {
1944 md->pvh_attrs ^= tst_mask;
1945 PMAPCOUNT(vac_color_change);
1946 }
1947 }
1948 }
1949 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1950 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1951 return;
1952 } else if (!pmap_is_page_colored_p(md)) {
1953 /* not colored so we just use its color */
1954 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1955 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1956 PMAPCOUNT(vac_color_new);
1957 md->pvh_attrs &= PAGE_SIZE - 1;
1958 md->pvh_attrs |= PVF_COLORED
1959 | (va & arm_cache_prefer_mask)
1960 | (rw_mappings > 0 ? PVF_WRITE : 0);
1961 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1962 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1963 return;
1964 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1965 bad_alias = false;
1966 if (rw_mappings > 0) {
1967 /*
1968 * We now have writeable mappings and if we have
1969 * readonly mappings in more than once color, we have
1970 * an aliasing problem. Regardless mark the page as
1971 * writeable.
1972 */
1973 if (md->pvh_attrs & PVF_MULTCLR) {
1974 if (ro_mappings < 2) {
1975 /*
1976 * If we only have less than two
1977 * read-only mappings, just flush the
1978 * non-primary colors from the cache.
1979 */
1980 pmap_flush_page(md, pa,
1981 PMAP_FLUSH_SECONDARY);
1982 } else {
1983 bad_alias = true;
1984 }
1985 }
1986 md->pvh_attrs |= PVF_WRITE;
1987 }
1988 /* If no conflicting colors, set everything back to cached */
1989 if (!bad_alias) {
1990 #ifdef DEBUG
1991 if (rw_mappings > 0
1992 || (md->pvh_attrs & PMAP_KMPAGE)) {
1993 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
1994 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1995 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1996 }
1997 #endif
1998 if (SLIST_EMPTY(&md->pvh_list))
1999 PMAPCOUNT(vac_color_reuse);
2000 else
2001 PMAPCOUNT(vac_color_ok);
2002
2003 /* matching color, just return */
2004 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2005 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2006 return;
2007 }
2008 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2009 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2010
2011 /* color conflict. evict from cache. */
2012
2013 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2014 md->pvh_attrs &= ~PVF_COLORED;
2015 md->pvh_attrs |= PVF_NC;
2016 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2017 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2018 PMAPCOUNT(vac_color_erase);
2019 } else if (rw_mappings == 0
2020 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2021 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2022
2023 /*
2024 * If the page has dirty cache lines, clean it.
2025 */
2026 if (md->pvh_attrs & PVF_DIRTY)
2027 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2028
2029 /*
2030 * If this is the first remapping (we know that there are no
2031 * writeable mappings), then this is a simple color change.
2032 * Otherwise this is a seconary r/o mapping, which means
2033 * we don't have to do anything.
2034 */
2035 if (ro_mappings == 1) {
2036 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2037 md->pvh_attrs &= PAGE_SIZE - 1;
2038 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2039 PMAPCOUNT(vac_color_change);
2040 } else {
2041 PMAPCOUNT(vac_color_blind);
2042 }
2043 md->pvh_attrs |= PVF_MULTCLR;
2044 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2045 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2046 return;
2047 } else {
2048 if (rw_mappings > 0)
2049 md->pvh_attrs |= PVF_WRITE;
2050
2051 /* color conflict. evict from cache. */
2052 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2053
2054 /* the list can't be empty because this was a enter/modify */
2055 pv = SLIST_FIRST(&md->pvh_list);
2056 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2057 KASSERT(pv);
2058 /*
2059 * If there's only one mapped page, change color to the
2060 * page's new color and return. Restore the DIRTY bit
2061 * that was erased by pmap_flush_page.
2062 */
2063 if (SLIST_NEXT(pv, pv_link) == NULL) {
2064 md->pvh_attrs &= PAGE_SIZE - 1;
2065 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2066 if (md->pvh_attrs & PVF_DMOD)
2067 md->pvh_attrs |= PVF_DIRTY;
2068 PMAPCOUNT(vac_color_change);
2069 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2070 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2071 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2072 return;
2073 }
2074 }
2075 bad_alias = true;
2076 md->pvh_attrs &= ~PVF_COLORED;
2077 md->pvh_attrs |= PVF_NC;
2078 PMAPCOUNT(vac_color_erase);
2079 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2080 }
2081
2082 fixup:
2083 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2084
2085 /*
2086 * Turn cacheing on/off for all pages.
2087 */
2088 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2089 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2090 KDASSERT(l2b != NULL);
2091 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2092 opte = *ptep;
2093 pte = opte & ~L2_S_CACHE_MASK;
2094 if (bad_alias) {
2095 pv->pv_flags |= PVF_NC;
2096 } else {
2097 pv->pv_flags &= ~PVF_NC;
2098 pte |= pte_l2_s_cache_mode;
2099 }
2100
2101 if (opte == pte) /* only update is there's a change */
2102 continue;
2103
2104 if (l2pte_valid(pte)) {
2105 if (PV_BEEN_EXECD(pv->pv_flags)) {
2106 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2107 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2108 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2109 }
2110 }
2111
2112 *ptep = pte;
2113 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2114 }
2115 }
2116 #endif /* PMAP_CACHE_VIPT */
2117
2118
2119 /*
2120 * Modify pte bits for all ptes corresponding to the given physical address.
2121 * We use `maskbits' rather than `clearbits' because we're always passing
2122 * constants and the latter would require an extra inversion at run-time.
2123 */
2124 static void
2125 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2126 {
2127 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2128 struct l2_bucket *l2b;
2129 struct pv_entry *pv;
2130 pt_entry_t *ptep, npte, opte;
2131 pmap_t pm;
2132 vaddr_t va;
2133 u_int oflags;
2134 #ifdef PMAP_CACHE_VIPT
2135 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2136 bool need_syncicache = false;
2137 bool did_syncicache = false;
2138 bool need_vac_me_harder = false;
2139 #endif
2140
2141 NPDEBUG(PDB_BITS,
2142 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2143 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2144
2145 PMAP_HEAD_TO_MAP_LOCK();
2146 simple_lock(&md->pvh_slock);
2147
2148 #ifdef PMAP_CACHE_VIPT
2149 /*
2150 * If we might want to sync the I-cache and we've modified it,
2151 * then we know we definitely need to sync or discard it.
2152 */
2153 if (want_syncicache)
2154 need_syncicache = md->pvh_attrs & PVF_MOD;
2155 #endif
2156 /*
2157 * Clear saved attributes (modify, reference)
2158 */
2159 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2160
2161 if (SLIST_EMPTY(&md->pvh_list)) {
2162 #ifdef PMAP_CACHE_VIPT
2163 if (need_syncicache) {
2164 /*
2165 * No one has it mapped, so just discard it. The next
2166 * exec remapping will cause it to be synced.
2167 */
2168 md->pvh_attrs &= ~PVF_EXEC;
2169 PMAPCOUNT(exec_discarded_clearbit);
2170 }
2171 #endif
2172 simple_unlock(&md->pvh_slock);
2173 PMAP_HEAD_TO_MAP_UNLOCK();
2174 return;
2175 }
2176
2177 /*
2178 * Loop over all current mappings setting/clearing as appropos
2179 */
2180 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2181 va = pv->pv_va;
2182 pm = pv->pv_pmap;
2183 oflags = pv->pv_flags;
2184 /*
2185 * Kernel entries are unmanaged and as such not to be changed.
2186 */
2187 if (oflags & PVF_KENTRY)
2188 continue;
2189 pv->pv_flags &= ~maskbits;
2190
2191 pmap_acquire_pmap_lock(pm);
2192
2193 l2b = pmap_get_l2_bucket(pm, va);
2194 KDASSERT(l2b != NULL);
2195
2196 ptep = &l2b->l2b_kva[l2pte_index(va)];
2197 npte = opte = *ptep;
2198
2199 NPDEBUG(PDB_BITS,
2200 printf(
2201 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2202 pv, pv->pv_pmap, pv->pv_va, oflags));
2203
2204 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2205 #ifdef PMAP_CACHE_VIVT
2206 if ((pv->pv_flags & PVF_NC)) {
2207 /*
2208 * Entry is not cacheable:
2209 *
2210 * Don't turn caching on again if this is a
2211 * modified emulation. This would be
2212 * inconsitent with the settings created by
2213 * pmap_vac_me_harder(). Otherwise, it's safe
2214 * to re-enable cacheing.
2215 *
2216 * There's no need to call pmap_vac_me_harder()
2217 * here: all pages are losing their write
2218 * permission.
2219 */
2220 if (maskbits & PVF_WRITE) {
2221 npte |= pte_l2_s_cache_mode;
2222 pv->pv_flags &= ~PVF_NC;
2223 }
2224 } else
2225 if (opte & L2_S_PROT_W) {
2226 /*
2227 * Entry is writable/cacheable: check if pmap
2228 * is current if it is flush it, otherwise it
2229 * won't be in the cache
2230 */
2231 if (PV_BEEN_EXECD(oflags))
2232 pmap_idcache_wbinv_range(pm, pv->pv_va,
2233 PAGE_SIZE);
2234 else
2235 if (PV_BEEN_REFD(oflags))
2236 pmap_dcache_wb_range(pm, pv->pv_va,
2237 PAGE_SIZE,
2238 (maskbits & PVF_REF) != 0, false);
2239 }
2240 #endif
2241
2242 /* make the pte read only */
2243 npte &= ~L2_S_PROT_W;
2244
2245 if (maskbits & oflags & PVF_WRITE) {
2246 /*
2247 * Keep alias accounting up to date
2248 */
2249 if (pv->pv_pmap == pmap_kernel()) {
2250 md->krw_mappings--;
2251 md->kro_mappings++;
2252 } else {
2253 md->urw_mappings--;
2254 md->uro_mappings++;
2255 }
2256 #ifdef PMAP_CACHE_VIPT
2257 if (md->urw_mappings + md->krw_mappings == 0)
2258 md->pvh_attrs &= ~PVF_WRITE;
2259 if (want_syncicache)
2260 need_syncicache = true;
2261 need_vac_me_harder = true;
2262 #endif
2263 }
2264 }
2265
2266 if (maskbits & PVF_REF) {
2267 if ((pv->pv_flags & PVF_NC) == 0 &&
2268 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2269 l2pte_valid(npte)) {
2270 #ifdef PMAP_CACHE_VIVT
2271 /*
2272 * Check npte here; we may have already
2273 * done the wbinv above, and the validity
2274 * of the PTE is the same for opte and
2275 * npte.
2276 */
2277 /* XXXJRT need idcache_inv_range */
2278 if (PV_BEEN_EXECD(oflags))
2279 pmap_idcache_wbinv_range(pm,
2280 pv->pv_va, PAGE_SIZE);
2281 else
2282 if (PV_BEEN_REFD(oflags))
2283 pmap_dcache_wb_range(pm,
2284 pv->pv_va, PAGE_SIZE,
2285 true, true);
2286 #endif
2287 }
2288
2289 /*
2290 * Make the PTE invalid so that we will take a
2291 * page fault the next time the mapping is
2292 * referenced.
2293 */
2294 npte &= ~L2_TYPE_MASK;
2295 npte |= L2_TYPE_INV;
2296 }
2297
2298 if (npte != opte) {
2299 *ptep = npte;
2300 PTE_SYNC(ptep);
2301 /* Flush the TLB entry if a current pmap. */
2302 if (PV_BEEN_EXECD(oflags))
2303 pmap_tlb_flushID_SE(pm, pv->pv_va);
2304 else
2305 if (PV_BEEN_REFD(oflags))
2306 pmap_tlb_flushD_SE(pm, pv->pv_va);
2307 }
2308
2309 pmap_release_pmap_lock(pm);
2310
2311 NPDEBUG(PDB_BITS,
2312 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2313 pm, va, opte, npte));
2314 }
2315
2316 #ifdef PMAP_CACHE_VIPT
2317 /*
2318 * If we need to sync the I-cache and we haven't done it yet, do it.
2319 */
2320 if (need_syncicache && !did_syncicache) {
2321 pmap_syncicache_page(md, VM_PAGE_TO_PHYS(pg));
2322 PMAPCOUNT(exec_synced_clearbit);
2323 }
2324 /*
2325 * If we are changing this to read-only, we need to call vac_me_harder
2326 * so we can change all the read-only pages to cacheable. We pretend
2327 * this as a page deletion.
2328 */
2329 if (need_vac_me_harder) {
2330 if (md->pvh_attrs & PVF_NC)
2331 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), NULL, 0);
2332 }
2333 #endif
2334
2335 simple_unlock(&md->pvh_slock);
2336 PMAP_HEAD_TO_MAP_UNLOCK();
2337 }
2338
2339 /*
2340 * pmap_clean_page()
2341 *
2342 * This is a local function used to work out the best strategy to clean
2343 * a single page referenced by its entry in the PV table. It's used by
2344 * pmap_copy_page, pmap_zero page and maybe some others later on.
2345 *
2346 * Its policy is effectively:
2347 * o If there are no mappings, we don't bother doing anything with the cache.
2348 * o If there is one mapping, we clean just that page.
2349 * o If there are multiple mappings, we clean the entire cache.
2350 *
2351 * So that some functions can be further optimised, it returns 0 if it didn't
2352 * clean the entire cache, or 1 if it did.
2353 *
2354 * XXX One bug in this routine is that if the pv_entry has a single page
2355 * mapped at 0x00000000 a whole cache clean will be performed rather than
2356 * just the 1 page. Since this should not occur in everyday use and if it does
2357 * it will just result in not the most efficient clean for the page.
2358 */
2359 #ifdef PMAP_CACHE_VIVT
2360 static int
2361 pmap_clean_page(struct pv_entry *pv, bool is_src)
2362 {
2363 pmap_t pm_to_clean = NULL;
2364 struct pv_entry *npv;
2365 u_int cache_needs_cleaning = 0;
2366 u_int flags = 0;
2367 vaddr_t page_to_clean = 0;
2368
2369 if (pv == NULL) {
2370 /* nothing mapped in so nothing to flush */
2371 return (0);
2372 }
2373
2374 /*
2375 * Since we flush the cache each time we change to a different
2376 * user vmspace, we only need to flush the page if it is in the
2377 * current pmap.
2378 */
2379
2380 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2381 if (pmap_is_current(npv->pv_pmap)) {
2382 flags |= npv->pv_flags;
2383 /*
2384 * The page is mapped non-cacheable in
2385 * this map. No need to flush the cache.
2386 */
2387 if (npv->pv_flags & PVF_NC) {
2388 #ifdef DIAGNOSTIC
2389 if (cache_needs_cleaning)
2390 panic("pmap_clean_page: "
2391 "cache inconsistency");
2392 #endif
2393 break;
2394 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2395 continue;
2396 if (cache_needs_cleaning) {
2397 page_to_clean = 0;
2398 break;
2399 } else {
2400 page_to_clean = npv->pv_va;
2401 pm_to_clean = npv->pv_pmap;
2402 }
2403 cache_needs_cleaning = 1;
2404 }
2405 }
2406
2407 if (page_to_clean) {
2408 if (PV_BEEN_EXECD(flags))
2409 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2410 PAGE_SIZE);
2411 else
2412 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2413 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2414 } else if (cache_needs_cleaning) {
2415 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2416
2417 if (PV_BEEN_EXECD(flags))
2418 pmap_idcache_wbinv_all(pm);
2419 else
2420 pmap_dcache_wbinv_all(pm);
2421 return (1);
2422 }
2423 return (0);
2424 }
2425 #endif
2426
2427 #ifdef PMAP_CACHE_VIPT
2428 /*
2429 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2430 * right cache alias to make sure we flush the right stuff.
2431 */
2432 void
2433 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2434 {
2435 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2436 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2437
2438 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2439 md, md->pvh_attrs));
2440 /*
2441 * No need to clean the page if it's non-cached.
2442 */
2443 if (md->pvh_attrs & PVF_NC)
2444 return;
2445 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2446
2447 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2448 /*
2449 * Set up a PTE with the right coloring to flush existing cache lines.
2450 */
2451 *ptep = L2_S_PROTO |
2452 pa
2453 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2454 | pte_l2_s_cache_mode;
2455 PTE_SYNC(ptep);
2456
2457 /*
2458 * Flush it.
2459 */
2460 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2461 /*
2462 * Unmap the page.
2463 */
2464 *ptep = 0;
2465 PTE_SYNC(ptep);
2466 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2467
2468 md->pvh_attrs |= PVF_EXEC;
2469 PMAPCOUNT(exec_synced);
2470 }
2471
2472 void
2473 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2474 {
2475 vsize_t va_offset, end_va;
2476 void (*cf)(vaddr_t, vsize_t);
2477
2478 if (arm_cache_prefer_mask == 0)
2479 return;
2480
2481 switch (flush) {
2482 case PMAP_FLUSH_PRIMARY:
2483 if (md->pvh_attrs & PVF_MULTCLR) {
2484 va_offset = 0;
2485 end_va = arm_cache_prefer_mask;
2486 md->pvh_attrs &= ~PVF_MULTCLR;
2487 PMAPCOUNT(vac_flush_lots);
2488 } else {
2489 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2490 end_va = va_offset;
2491 PMAPCOUNT(vac_flush_one);
2492 }
2493 /*
2494 * Mark that the page is no longer dirty.
2495 */
2496 md->pvh_attrs &= ~PVF_DIRTY;
2497 cf = cpufuncs.cf_idcache_wbinv_range;
2498 break;
2499 case PMAP_FLUSH_SECONDARY:
2500 va_offset = 0;
2501 end_va = arm_cache_prefer_mask;
2502 cf = cpufuncs.cf_idcache_wbinv_range;
2503 md->pvh_attrs &= ~PVF_MULTCLR;
2504 PMAPCOUNT(vac_flush_lots);
2505 break;
2506 case PMAP_CLEAN_PRIMARY:
2507 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2508 end_va = va_offset;
2509 cf = cpufuncs.cf_dcache_wb_range;
2510 /*
2511 * Mark that the page is no longer dirty.
2512 */
2513 if ((md->pvh_attrs & PVF_DMOD) == 0)
2514 md->pvh_attrs &= ~PVF_DIRTY;
2515 PMAPCOUNT(vac_clean_one);
2516 break;
2517 default:
2518 return;
2519 }
2520
2521 KASSERT(!(md->pvh_attrs & PVF_NC));
2522
2523 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2524 md, md->pvh_attrs));
2525
2526 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2527 const size_t pte_offset = va_offset >> PGSHIFT;
2528 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2529 const pt_entry_t oldpte = *ptep;
2530
2531 if (flush == PMAP_FLUSH_SECONDARY
2532 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2533 continue;
2534
2535 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2536 /*
2537 * Set up a PTE with the right coloring to flush
2538 * existing cache entries.
2539 */
2540 *ptep = L2_S_PROTO
2541 | pa
2542 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2543 | pte_l2_s_cache_mode;
2544 PTE_SYNC(ptep);
2545
2546 /*
2547 * Flush it.
2548 */
2549 (*cf)(cdstp + va_offset, PAGE_SIZE);
2550
2551 /*
2552 * Restore the page table entry since we might have interrupted
2553 * pmap_zero_page or pmap_copy_page which was already using
2554 * this pte.
2555 */
2556 *ptep = oldpte;
2557 PTE_SYNC(ptep);
2558 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2559 }
2560 }
2561 #endif /* PMAP_CACHE_VIPT */
2562
2563 /*
2564 * Routine: pmap_page_remove
2565 * Function:
2566 * Removes this physical page from
2567 * all physical maps in which it resides.
2568 * Reflects back modify bits to the pager.
2569 */
2570 static void
2571 pmap_page_remove(struct vm_page *pg)
2572 {
2573 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2574 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2575 struct l2_bucket *l2b;
2576 struct pv_entry *pv, *npv, **pvp;
2577 pmap_t pm;
2578 pt_entry_t *ptep;
2579 bool flush;
2580 u_int flags;
2581
2582 NPDEBUG(PDB_FOLLOW,
2583 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2584 pa));
2585
2586 PMAP_HEAD_TO_MAP_LOCK();
2587 simple_lock(&md->pvh_slock);
2588
2589 pv = SLIST_FIRST(&md->pvh_list);
2590 if (pv == NULL) {
2591 #ifdef PMAP_CACHE_VIPT
2592 /*
2593 * We *know* the page contents are about to be replaced.
2594 * Discard the exec contents
2595 */
2596 if (PV_IS_EXEC_P(md->pvh_attrs))
2597 PMAPCOUNT(exec_discarded_page_protect);
2598 md->pvh_attrs &= ~PVF_EXEC;
2599 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2600 #endif
2601 simple_unlock(&md->pvh_slock);
2602 PMAP_HEAD_TO_MAP_UNLOCK();
2603 return;
2604 }
2605 #ifdef PMAP_CACHE_VIPT
2606 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2607 #endif
2608
2609 /*
2610 * Clear alias counts
2611 */
2612 #ifdef PMAP_CACHE_VIVT
2613 md->k_mappings = 0;
2614 #endif
2615 md->urw_mappings = md->uro_mappings = 0;
2616
2617 flush = false;
2618 flags = 0;
2619
2620 #ifdef PMAP_CACHE_VIVT
2621 pmap_clean_page(pv, false);
2622 #endif
2623
2624 pvp = &SLIST_FIRST(&md->pvh_list);
2625 while (pv) {
2626 pm = pv->pv_pmap;
2627 npv = SLIST_NEXT(pv, pv_link);
2628 if (flush == false && pmap_is_current(pm))
2629 flush = true;
2630
2631 if (pm == pmap_kernel()) {
2632 #ifdef PMAP_CACHE_VIPT
2633 /*
2634 * If this was unmanaged mapping, it must be preserved.
2635 * Move it back on the list and advance the end-of-list
2636 * pointer.
2637 */
2638 if (pv->pv_flags & PVF_KENTRY) {
2639 *pvp = pv;
2640 pvp = &SLIST_NEXT(pv, pv_link);
2641 pv = npv;
2642 continue;
2643 }
2644 if (pv->pv_flags & PVF_WRITE)
2645 md->krw_mappings--;
2646 else
2647 md->kro_mappings--;
2648 #endif
2649 PMAPCOUNT(kernel_unmappings);
2650 }
2651 PMAPCOUNT(unmappings);
2652
2653 pmap_acquire_pmap_lock(pm);
2654
2655 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2656 KDASSERT(l2b != NULL);
2657
2658 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2659
2660 /*
2661 * Update statistics
2662 */
2663 --pm->pm_stats.resident_count;
2664
2665 /* Wired bit */
2666 if (pv->pv_flags & PVF_WIRED)
2667 --pm->pm_stats.wired_count;
2668
2669 flags |= pv->pv_flags;
2670
2671 /*
2672 * Invalidate the PTEs.
2673 */
2674 *ptep = 0;
2675 PTE_SYNC_CURRENT(pm, ptep);
2676 pmap_free_l2_bucket(pm, l2b, 1);
2677
2678 pool_put(&pmap_pv_pool, pv);
2679 pv = npv;
2680 /*
2681 * if we reach the end of the list and there are still
2682 * mappings, they might be able to be cached now.
2683 */
2684 if (pv == NULL) {
2685 *pvp = NULL;
2686 if (!SLIST_EMPTY(&md->pvh_list))
2687 pmap_vac_me_harder(md, pa, pm, 0);
2688 }
2689 pmap_release_pmap_lock(pm);
2690 }
2691 #ifdef PMAP_CACHE_VIPT
2692 /*
2693 * Its EXEC cache is now gone.
2694 */
2695 if (PV_IS_EXEC_P(md->pvh_attrs))
2696 PMAPCOUNT(exec_discarded_page_protect);
2697 md->pvh_attrs &= ~PVF_EXEC;
2698 KASSERT(md->urw_mappings == 0);
2699 KASSERT(md->uro_mappings == 0);
2700 if (md->krw_mappings == 0)
2701 md->pvh_attrs &= ~PVF_WRITE;
2702 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2703 #endif
2704 simple_unlock(&md->pvh_slock);
2705 PMAP_HEAD_TO_MAP_UNLOCK();
2706
2707 if (flush) {
2708 /*
2709 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2710 * would need a subsequent call to pmap_update() to ensure
2711 * curpm->pm_cstate.cs_all is reset. Our callers are not
2712 * required to do that (see pmap(9)), so we can't modify
2713 * the current pmap's state.
2714 */
2715 if (PV_BEEN_EXECD(flags))
2716 cpu_tlb_flushID();
2717 else
2718 cpu_tlb_flushD();
2719 }
2720 cpu_cpwait();
2721 }
2722
2723 /*
2724 * pmap_t pmap_create(void)
2725 *
2726 * Create a new pmap structure from scratch.
2727 */
2728 pmap_t
2729 pmap_create(void)
2730 {
2731 pmap_t pm;
2732
2733 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2734
2735 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2736 pm->pm_stats.wired_count = 0;
2737 pm->pm_stats.resident_count = 1;
2738 pm->pm_cstate.cs_all = 0;
2739 pmap_alloc_l1(pm);
2740
2741 /*
2742 * Note: The pool cache ensures that the pm_l2[] array is already
2743 * initialised to zero.
2744 */
2745
2746 pmap_pinit(pm);
2747
2748 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2749
2750 return (pm);
2751 }
2752
2753 /*
2754 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2755 * u_int flags)
2756 *
2757 * Insert the given physical page (p) at
2758 * the specified virtual address (v) in the
2759 * target physical map with the protection requested.
2760 *
2761 * NB: This is the only routine which MAY NOT lazy-evaluate
2762 * or lose information. That is, this routine must actually
2763 * insert this page into the given map NOW.
2764 */
2765 int
2766 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2767 {
2768 struct l2_bucket *l2b;
2769 struct vm_page *pg, *opg;
2770 struct pv_entry *pv;
2771 pt_entry_t *ptep, npte, opte;
2772 u_int nflags;
2773 u_int oflags;
2774
2775 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2776
2777 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2778 KDASSERT(((va | pa) & PGOFSET) == 0);
2779
2780 /*
2781 * Get a pointer to the page. Later on in this function, we
2782 * test for a managed page by checking pg != NULL.
2783 */
2784 pg = (pmap_initialized && ((flags & PMAP_UNMANAGED) == 0)) ?
2785 PHYS_TO_VM_PAGE(pa) : NULL;
2786
2787 nflags = 0;
2788 if (prot & VM_PROT_WRITE)
2789 nflags |= PVF_WRITE;
2790 if (prot & VM_PROT_EXECUTE)
2791 nflags |= PVF_EXEC;
2792 if (flags & PMAP_WIRED)
2793 nflags |= PVF_WIRED;
2794
2795 PMAP_MAP_TO_HEAD_LOCK();
2796 pmap_acquire_pmap_lock(pm);
2797
2798 /*
2799 * Fetch the L2 bucket which maps this page, allocating one if
2800 * necessary for user pmaps.
2801 */
2802 if (pm == pmap_kernel())
2803 l2b = pmap_get_l2_bucket(pm, va);
2804 else
2805 l2b = pmap_alloc_l2_bucket(pm, va);
2806 if (l2b == NULL) {
2807 if (flags & PMAP_CANFAIL) {
2808 pmap_release_pmap_lock(pm);
2809 PMAP_MAP_TO_HEAD_UNLOCK();
2810 return (ENOMEM);
2811 }
2812 panic("pmap_enter: failed to allocate L2 bucket");
2813 }
2814 ptep = &l2b->l2b_kva[l2pte_index(va)];
2815 opte = *ptep;
2816 npte = pa;
2817 oflags = 0;
2818
2819 if (opte) {
2820 /*
2821 * There is already a mapping at this address.
2822 * If the physical address is different, lookup the
2823 * vm_page.
2824 */
2825 if (l2pte_pa(opte) != pa)
2826 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2827 else
2828 opg = pg;
2829 } else
2830 opg = NULL;
2831
2832 if (pg) {
2833 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2834
2835 /*
2836 * This is to be a managed mapping.
2837 */
2838 if ((flags & VM_PROT_ALL) ||
2839 (md->pvh_attrs & PVF_REF)) {
2840 /*
2841 * - The access type indicates that we don't need
2842 * to do referenced emulation.
2843 * OR
2844 * - The physical page has already been referenced
2845 * so no need to re-do referenced emulation here.
2846 */
2847 npte |= L2_S_PROTO;
2848
2849 nflags |= PVF_REF;
2850
2851 if ((prot & VM_PROT_WRITE) != 0 &&
2852 ((flags & VM_PROT_WRITE) != 0 ||
2853 (md->pvh_attrs & PVF_MOD) != 0)) {
2854 /*
2855 * This is a writable mapping, and the
2856 * page's mod state indicates it has
2857 * already been modified. Make it
2858 * writable from the outset.
2859 */
2860 npte |= L2_S_PROT_W;
2861 nflags |= PVF_MOD;
2862 }
2863 } else {
2864 /*
2865 * Need to do page referenced emulation.
2866 */
2867 npte |= L2_TYPE_INV;
2868 }
2869
2870 npte |= pte_l2_s_cache_mode;
2871
2872 if (pg == opg) {
2873 /*
2874 * We're changing the attrs of an existing mapping.
2875 */
2876 simple_lock(&md->pvh_slock);
2877 oflags = pmap_modify_pv(md, pa, pm, va,
2878 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2879 PVF_MOD | PVF_REF, nflags);
2880 simple_unlock(&md->pvh_slock);
2881
2882 #ifdef PMAP_CACHE_VIVT
2883 /*
2884 * We may need to flush the cache if we're
2885 * doing rw-ro...
2886 */
2887 if (pm->pm_cstate.cs_cache_d &&
2888 (oflags & PVF_NC) == 0 &&
2889 (opte & L2_S_PROT_W) != 0 &&
2890 (prot & VM_PROT_WRITE) == 0)
2891 cpu_dcache_wb_range(va, PAGE_SIZE);
2892 #endif
2893 } else {
2894 /*
2895 * New mapping, or changing the backing page
2896 * of an existing mapping.
2897 */
2898 if (opg) {
2899 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2900 paddr_t opa;
2901
2902 opa = VM_PAGE_TO_PHYS(opg);
2903
2904 /*
2905 * Replacing an existing mapping with a new one.
2906 * It is part of our managed memory so we
2907 * must remove it from the PV list
2908 */
2909 simple_lock(&omd->pvh_slock);
2910 pv = pmap_remove_pv(omd, opa, pm, va);
2911 pmap_vac_me_harder(omd, opa, pm, 0);
2912 simple_unlock(&omd->pvh_slock);
2913 oflags = pv->pv_flags;
2914
2915 #ifdef PMAP_CACHE_VIVT
2916 /*
2917 * If the old mapping was valid (ref/mod
2918 * emulation creates 'invalid' mappings
2919 * initially) then make sure to frob
2920 * the cache.
2921 */
2922 if ((oflags & PVF_NC) == 0 &&
2923 l2pte_valid(opte)) {
2924 if (PV_BEEN_EXECD(oflags)) {
2925 pmap_idcache_wbinv_range(pm, va,
2926 PAGE_SIZE);
2927 } else
2928 if (PV_BEEN_REFD(oflags)) {
2929 pmap_dcache_wb_range(pm, va,
2930 PAGE_SIZE, true,
2931 (oflags & PVF_WRITE) == 0);
2932 }
2933 }
2934 #endif
2935 } else
2936 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2937 if ((flags & PMAP_CANFAIL) == 0)
2938 panic("pmap_enter: no pv entries");
2939
2940 if (pm != pmap_kernel())
2941 pmap_free_l2_bucket(pm, l2b, 0);
2942 pmap_release_pmap_lock(pm);
2943 PMAP_MAP_TO_HEAD_UNLOCK();
2944 NPDEBUG(PDB_ENTER,
2945 printf("pmap_enter: ENOMEM\n"));
2946 return (ENOMEM);
2947 }
2948
2949 pmap_enter_pv(md, VM_PAGE_TO_PHYS(pg), pv, pm, va, nflags);
2950 }
2951 } else {
2952 /*
2953 * We're mapping an unmanaged page.
2954 * These are always readable, and possibly writable, from
2955 * the get go as we don't need to track ref/mod status.
2956 */
2957 npte |= L2_S_PROTO;
2958 if (prot & VM_PROT_WRITE)
2959 npte |= L2_S_PROT_W;
2960
2961 /*
2962 * Make sure the vector table is mapped cacheable
2963 */
2964 if (pm != pmap_kernel() && va == vector_page)
2965 npte |= pte_l2_s_cache_mode;
2966
2967 if (opg) {
2968 /*
2969 * Looks like there's an existing 'managed' mapping
2970 * at this address.
2971 */
2972 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2973 simple_lock(&omd->pvh_slock);
2974 pv = pmap_remove_pv(omd, VM_PAGE_TO_PHYS(opg), pm, va);
2975 pmap_vac_me_harder(omd, VM_PAGE_TO_PHYS(opg), pm, 0);
2976 simple_unlock(&omd->pvh_slock);
2977 oflags = pv->pv_flags;
2978
2979 #ifdef PMAP_CACHE_VIVT
2980 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2981 if (PV_BEEN_EXECD(oflags))
2982 pmap_idcache_wbinv_range(pm, va,
2983 PAGE_SIZE);
2984 else
2985 if (PV_BEEN_REFD(oflags))
2986 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2987 true, (oflags & PVF_WRITE) == 0);
2988 }
2989 #endif
2990 pool_put(&pmap_pv_pool, pv);
2991 }
2992 }
2993
2994 /*
2995 * Make sure userland mappings get the right permissions
2996 */
2997 if (pm != pmap_kernel() && va != vector_page)
2998 npte |= L2_S_PROT_U;
2999
3000 /*
3001 * Keep the stats up to date
3002 */
3003 if (opte == 0) {
3004 l2b->l2b_occupancy++;
3005 pm->pm_stats.resident_count++;
3006 }
3007
3008 NPDEBUG(PDB_ENTER,
3009 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3010
3011 /*
3012 * If this is just a wiring change, the two PTEs will be
3013 * identical, so there's no need to update the page table.
3014 */
3015 if (npte != opte) {
3016 bool is_cached = pmap_is_cached(pm);
3017
3018 *ptep = npte;
3019 if (is_cached) {
3020 /*
3021 * We only need to frob the cache/tlb if this pmap
3022 * is current
3023 */
3024 PTE_SYNC(ptep);
3025 if (va != vector_page && l2pte_valid(npte)) {
3026 /*
3027 * This mapping is likely to be accessed as
3028 * soon as we return to userland. Fix up the
3029 * L1 entry to avoid taking another
3030 * page/domain fault.
3031 */
3032 pd_entry_t *pl1pd, l1pd;
3033
3034 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3035 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3036 L1_C_PROTO;
3037 if (*pl1pd != l1pd) {
3038 *pl1pd = l1pd;
3039 PTE_SYNC(pl1pd);
3040 }
3041 }
3042 }
3043
3044 if (PV_BEEN_EXECD(oflags))
3045 pmap_tlb_flushID_SE(pm, va);
3046 else
3047 if (PV_BEEN_REFD(oflags))
3048 pmap_tlb_flushD_SE(pm, va);
3049
3050 NPDEBUG(PDB_ENTER,
3051 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3052 is_cached, pm->pm_cstate.cs_all));
3053
3054 if (pg != NULL) {
3055 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3056 simple_lock(&md->pvh_slock);
3057 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, va);
3058 simple_unlock(&md->pvh_slock);
3059 }
3060 }
3061 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3062 if (pg) {
3063 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3064 simple_lock(&md->pvh_slock);
3065 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3066 KASSERT(((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0));
3067 simple_unlock(&md->pvh_slock);
3068 }
3069 #endif
3070
3071 pmap_release_pmap_lock(pm);
3072 PMAP_MAP_TO_HEAD_UNLOCK();
3073
3074 return (0);
3075 }
3076
3077 /*
3078 * pmap_remove()
3079 *
3080 * pmap_remove is responsible for nuking a number of mappings for a range
3081 * of virtual address space in the current pmap. To do this efficiently
3082 * is interesting, because in a number of cases a wide virtual address
3083 * range may be supplied that contains few actual mappings. So, the
3084 * optimisations are:
3085 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3086 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3087 * maybe do just a partial cache clean. This path of execution is
3088 * complicated by the fact that the cache must be flushed _before_
3089 * the PTE is nuked, being a VAC :-)
3090 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3091 * all invalidations until pmap_update(), since pmap_remove_all() has
3092 * already flushed the cache.
3093 * 4. Maybe later fast-case a single page, but I don't think this is
3094 * going to make _that_ much difference overall.
3095 */
3096
3097 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3098
3099 void
3100 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3101 {
3102 struct l2_bucket *l2b;
3103 vaddr_t next_bucket;
3104 pt_entry_t *ptep;
3105 u_int cleanlist_idx, total, cnt;
3106 struct {
3107 vaddr_t va;
3108 pt_entry_t *ptep;
3109 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3110 u_int mappings, is_exec, is_refd;
3111
3112 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3113 "eva=%08lx\n", pm, sva, eva));
3114
3115 /*
3116 * we lock in the pmap => pv_head direction
3117 */
3118 PMAP_MAP_TO_HEAD_LOCK();
3119 pmap_acquire_pmap_lock(pm);
3120
3121 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3122 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3123 if (pm->pm_cstate.cs_tlb == 0)
3124 pm->pm_remove_all = true;
3125 } else
3126 cleanlist_idx = 0;
3127
3128 total = 0;
3129
3130 while (sva < eva) {
3131 /*
3132 * Do one L2 bucket's worth at a time.
3133 */
3134 next_bucket = L2_NEXT_BUCKET(sva);
3135 if (next_bucket > eva)
3136 next_bucket = eva;
3137
3138 l2b = pmap_get_l2_bucket(pm, sva);
3139 if (l2b == NULL) {
3140 sva = next_bucket;
3141 continue;
3142 }
3143
3144 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3145
3146 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3147 struct vm_page *pg;
3148 pt_entry_t pte;
3149 paddr_t pa;
3150
3151 pte = *ptep;
3152
3153 if (pte == 0) {
3154 /* Nothing here, move along */
3155 continue;
3156 }
3157
3158 pa = l2pte_pa(pte);
3159 is_exec = 0;
3160 is_refd = 1;
3161
3162 /*
3163 * Update flags. In a number of circumstances,
3164 * we could cluster a lot of these and do a
3165 * number of sequential pages in one go.
3166 */
3167 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3168 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3169 struct pv_entry *pv;
3170 simple_lock(&md->pvh_slock);
3171 pv = pmap_remove_pv(md, VM_PAGE_TO_PHYS(pg), pm, sva);
3172 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, 0);
3173 simple_unlock(&md->pvh_slock);
3174 if (pv != NULL) {
3175 if (pm->pm_remove_all == false) {
3176 is_exec =
3177 PV_BEEN_EXECD(pv->pv_flags);
3178 is_refd =
3179 PV_BEEN_REFD(pv->pv_flags);
3180 }
3181 pool_put(&pmap_pv_pool, pv);
3182 }
3183 }
3184 mappings++;
3185
3186 if (!l2pte_valid(pte)) {
3187 /*
3188 * Ref/Mod emulation is still active for this
3189 * mapping, therefore it is has not yet been
3190 * accessed. No need to frob the cache/tlb.
3191 */
3192 *ptep = 0;
3193 PTE_SYNC_CURRENT(pm, ptep);
3194 continue;
3195 }
3196
3197 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3198 /* Add to the clean list. */
3199 cleanlist[cleanlist_idx].ptep = ptep;
3200 cleanlist[cleanlist_idx].va =
3201 sva | (is_exec & 1);
3202 cleanlist_idx++;
3203 } else
3204 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3205 /* Nuke everything if needed. */
3206 #ifdef PMAP_CACHE_VIVT
3207 pmap_idcache_wbinv_all(pm);
3208 #endif
3209 pmap_tlb_flushID(pm);
3210
3211 /*
3212 * Roll back the previous PTE list,
3213 * and zero out the current PTE.
3214 */
3215 for (cnt = 0;
3216 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3217 *cleanlist[cnt].ptep = 0;
3218 PTE_SYNC(cleanlist[cnt].ptep);
3219 }
3220 *ptep = 0;
3221 PTE_SYNC(ptep);
3222 cleanlist_idx++;
3223 pm->pm_remove_all = true;
3224 } else {
3225 *ptep = 0;
3226 PTE_SYNC(ptep);
3227 if (pm->pm_remove_all == false) {
3228 if (is_exec)
3229 pmap_tlb_flushID_SE(pm, sva);
3230 else
3231 if (is_refd)
3232 pmap_tlb_flushD_SE(pm, sva);
3233 }
3234 }
3235 }
3236
3237 /*
3238 * Deal with any left overs
3239 */
3240 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3241 total += cleanlist_idx;
3242 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3243 if (pm->pm_cstate.cs_all != 0) {
3244 vaddr_t clva = cleanlist[cnt].va & ~1;
3245 if (cleanlist[cnt].va & 1) {
3246 #ifdef PMAP_CACHE_VIVT
3247 pmap_idcache_wbinv_range(pm,
3248 clva, PAGE_SIZE);
3249 #endif
3250 pmap_tlb_flushID_SE(pm, clva);
3251 } else {
3252 #ifdef PMAP_CACHE_VIVT
3253 pmap_dcache_wb_range(pm,
3254 clva, PAGE_SIZE, true,
3255 false);
3256 #endif
3257 pmap_tlb_flushD_SE(pm, clva);
3258 }
3259 }
3260 *cleanlist[cnt].ptep = 0;
3261 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3262 }
3263
3264 /*
3265 * If it looks like we're removing a whole bunch
3266 * of mappings, it's faster to just write-back
3267 * the whole cache now and defer TLB flushes until
3268 * pmap_update() is called.
3269 */
3270 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3271 cleanlist_idx = 0;
3272 else {
3273 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3274 #ifdef PMAP_CACHE_VIVT
3275 pmap_idcache_wbinv_all(pm);
3276 #endif
3277 pm->pm_remove_all = true;
3278 }
3279 }
3280
3281 pmap_free_l2_bucket(pm, l2b, mappings);
3282 pm->pm_stats.resident_count -= mappings;
3283 }
3284
3285 pmap_release_pmap_lock(pm);
3286 PMAP_MAP_TO_HEAD_UNLOCK();
3287 }
3288
3289 #ifdef PMAP_CACHE_VIPT
3290 static struct pv_entry *
3291 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3292 {
3293 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3294 struct pv_entry *pv;
3295
3296 simple_lock(&md->pvh_slock);
3297 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3298 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3299
3300 pv = pmap_remove_pv(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), va);
3301 KASSERT(pv);
3302 KASSERT(pv->pv_flags & PVF_KENTRY);
3303
3304 /*
3305 * If we are removing a writeable mapping to a cached exec page,
3306 * if it's the last mapping then clear it execness other sync
3307 * the page to the icache.
3308 */
3309 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3310 && (pv->pv_flags & PVF_WRITE) != 0) {
3311 if (SLIST_EMPTY(&md->pvh_list)) {
3312 md->pvh_attrs &= ~PVF_EXEC;
3313 PMAPCOUNT(exec_discarded_kremove);
3314 } else {
3315 pmap_syncicache_page(md, VM_PAGE_TO_PHYS(pg));
3316 PMAPCOUNT(exec_synced_kremove);
3317 }
3318 }
3319 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), 0);
3320 simple_unlock(&md->pvh_slock);
3321
3322 return pv;
3323 }
3324 #endif /* PMAP_CACHE_VIPT */
3325
3326 /*
3327 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3328 *
3329 * We assume there is already sufficient KVM space available
3330 * to do this, as we can't allocate L2 descriptor tables/metadata
3331 * from here.
3332 */
3333 void
3334 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3335 {
3336 struct l2_bucket *l2b;
3337 pt_entry_t *ptep, opte;
3338 #ifdef PMAP_CACHE_VIVT
3339 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3340 #endif
3341 #ifdef PMAP_CACHE_VIPT
3342 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3343 struct vm_page *opg;
3344 struct pv_entry *pv = NULL;
3345 #endif
3346 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3347
3348 NPDEBUG(PDB_KENTER,
3349 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x pg %p md %p\n",
3350 va, pa, prot, pg, md));
3351
3352 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3353 KDASSERT(l2b != NULL);
3354
3355 ptep = &l2b->l2b_kva[l2pte_index(va)];
3356 opte = *ptep;
3357
3358 if (opte == 0) {
3359 PMAPCOUNT(kenter_mappings);
3360 l2b->l2b_occupancy++;
3361 } else {
3362 PMAPCOUNT(kenter_remappings);
3363 #ifdef PMAP_CACHE_VIPT
3364 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3365 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3366 if (opg) {
3367 KASSERT(opg != pg);
3368 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3369 KASSERT((prot & PMAP_KMPAGE) == 0);
3370 simple_lock(&omd->pvh_slock);
3371 pv = pmap_kremove_pg(opg, va);
3372 simple_unlock(&omd->pvh_slock);
3373 }
3374 #endif
3375 if (l2pte_valid(opte)) {
3376 #ifdef PMAP_CACHE_VIVT
3377 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3378 #endif
3379 cpu_tlb_flushD_SE(va);
3380 cpu_cpwait();
3381 }
3382 }
3383
3384 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3385 pte_l2_s_cache_mode;
3386 PTE_SYNC(ptep);
3387
3388 if (pg) {
3389 if (prot & PMAP_KMPAGE) {
3390 simple_lock(&md->pvh_slock);
3391 KASSERT(md->urw_mappings == 0);
3392 KASSERT(md->uro_mappings == 0);
3393 KASSERT(md->krw_mappings == 0);
3394 KASSERT(md->kro_mappings == 0);
3395 #ifdef PMAP_CACHE_VIPT
3396 KASSERT(pv == NULL);
3397 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3398 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3399 /* if there is a color conflict, evict from cache. */
3400 if (pmap_is_page_colored_p(md)
3401 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3402 PMAPCOUNT(vac_color_change);
3403 pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_FLUSH_PRIMARY);
3404 } else if (md->pvh_attrs & PVF_MULTCLR) {
3405 /*
3406 * If this page has multiple colors, expunge
3407 * them.
3408 */
3409 PMAPCOUNT(vac_flush_lots2);
3410 pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_FLUSH_SECONDARY);
3411 }
3412 md->pvh_attrs &= PAGE_SIZE - 1;
3413 md->pvh_attrs |= PVF_KMPAGE
3414 | PVF_COLORED | PVF_DIRTY
3415 | (va & arm_cache_prefer_mask);
3416 #endif
3417 #ifdef PMAP_CACHE_VIVT
3418 md->pvh_attrs |= PVF_KMPAGE;
3419 #endif
3420 pmap_kmpages++;
3421 simple_unlock(&md->pvh_slock);
3422 #ifdef PMAP_CACHE_VIPT
3423 } else {
3424 if (pv == NULL) {
3425 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3426 KASSERT(pv != NULL);
3427 }
3428 pmap_enter_pv(md, VM_PAGE_TO_PHYS(pg), pv, pmap_kernel(), va,
3429 PVF_WIRED | PVF_KENTRY
3430 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3431 if ((prot & VM_PROT_WRITE)
3432 && !(md->pvh_attrs & PVF_NC))
3433 md->pvh_attrs |= PVF_DIRTY;
3434 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3435 simple_lock(&md->pvh_slock);
3436 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), va);
3437 simple_unlock(&md->pvh_slock);
3438 #endif
3439 }
3440 #ifdef PMAP_CACHE_VIPT
3441 } else {
3442 if (pv != NULL)
3443 pool_put(&pmap_pv_pool, pv);
3444 #endif
3445 }
3446 }
3447
3448 void
3449 pmap_kremove(vaddr_t va, vsize_t len)
3450 {
3451 struct l2_bucket *l2b;
3452 pt_entry_t *ptep, *sptep, opte;
3453 vaddr_t next_bucket, eva;
3454 u_int mappings;
3455 struct vm_page *opg;
3456
3457 PMAPCOUNT(kenter_unmappings);
3458
3459 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3460 va, len));
3461
3462 eva = va + len;
3463
3464 while (va < eva) {
3465 next_bucket = L2_NEXT_BUCKET(va);
3466 if (next_bucket > eva)
3467 next_bucket = eva;
3468
3469 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3470 KDASSERT(l2b != NULL);
3471
3472 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3473 mappings = 0;
3474
3475 while (va < next_bucket) {
3476 opte = *ptep;
3477 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3478 if (opg) {
3479 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3480 if (omd->pvh_attrs & PVF_KMPAGE) {
3481 simple_lock(&omd->pvh_slock);
3482 KASSERT(omd->urw_mappings == 0);
3483 KASSERT(omd->uro_mappings == 0);
3484 KASSERT(omd->krw_mappings == 0);
3485 KASSERT(omd->kro_mappings == 0);
3486 omd->pvh_attrs &= ~PVF_KMPAGE;
3487 #ifdef PMAP_CACHE_VIPT
3488 omd->pvh_attrs &= ~PVF_WRITE;
3489 #endif
3490 pmap_kmpages--;
3491 simple_unlock(&omd->pvh_slock);
3492 #ifdef PMAP_CACHE_VIPT
3493 } else {
3494 pool_put(&pmap_pv_pool,
3495 pmap_kremove_pg(opg, va));
3496 #endif
3497 }
3498 }
3499 if (l2pte_valid(opte)) {
3500 #ifdef PMAP_CACHE_VIVT
3501 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3502 #endif
3503 cpu_tlb_flushD_SE(va);
3504 }
3505 if (opte) {
3506 *ptep = 0;
3507 mappings++;
3508 }
3509 va += PAGE_SIZE;
3510 ptep++;
3511 }
3512 KDASSERT(mappings <= l2b->l2b_occupancy);
3513 l2b->l2b_occupancy -= mappings;
3514 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3515 }
3516 cpu_cpwait();
3517 }
3518
3519 bool
3520 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3521 {
3522 struct l2_dtable *l2;
3523 pd_entry_t *pl1pd, l1pd;
3524 pt_entry_t *ptep, pte;
3525 paddr_t pa;
3526 u_int l1idx;
3527
3528 pmap_acquire_pmap_lock(pm);
3529
3530 l1idx = L1_IDX(va);
3531 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3532 l1pd = *pl1pd;
3533
3534 if (l1pte_section_p(l1pd)) {
3535 /*
3536 * These should only happen for pmap_kernel()
3537 */
3538 KDASSERT(pm == pmap_kernel());
3539 pmap_release_pmap_lock(pm);
3540 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3541 } else {
3542 /*
3543 * Note that we can't rely on the validity of the L1
3544 * descriptor as an indication that a mapping exists.
3545 * We have to look it up in the L2 dtable.
3546 */
3547 l2 = pm->pm_l2[L2_IDX(l1idx)];
3548
3549 if (l2 == NULL ||
3550 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3551 pmap_release_pmap_lock(pm);
3552 return false;
3553 }
3554
3555 ptep = &ptep[l2pte_index(va)];
3556 pte = *ptep;
3557 pmap_release_pmap_lock(pm);
3558
3559 if (pte == 0)
3560 return false;
3561
3562 switch (pte & L2_TYPE_MASK) {
3563 case L2_TYPE_L:
3564 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3565 break;
3566
3567 default:
3568 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3569 break;
3570 }
3571 }
3572
3573 if (pap != NULL)
3574 *pap = pa;
3575
3576 return true;
3577 }
3578
3579 void
3580 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3581 {
3582 struct l2_bucket *l2b;
3583 pt_entry_t *ptep, pte;
3584 vaddr_t next_bucket;
3585 u_int flags;
3586 u_int clr_mask;
3587 int flush;
3588
3589 NPDEBUG(PDB_PROTECT,
3590 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3591 pm, sva, eva, prot));
3592
3593 if ((prot & VM_PROT_READ) == 0) {
3594 pmap_remove(pm, sva, eva);
3595 return;
3596 }
3597
3598 if (prot & VM_PROT_WRITE) {
3599 /*
3600 * If this is a read->write transition, just ignore it and let
3601 * uvm_fault() take care of it later.
3602 */
3603 return;
3604 }
3605
3606 PMAP_MAP_TO_HEAD_LOCK();
3607 pmap_acquire_pmap_lock(pm);
3608
3609 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3610 flags = 0;
3611 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3612
3613 while (sva < eva) {
3614 next_bucket = L2_NEXT_BUCKET(sva);
3615 if (next_bucket > eva)
3616 next_bucket = eva;
3617
3618 l2b = pmap_get_l2_bucket(pm, sva);
3619 if (l2b == NULL) {
3620 sva = next_bucket;
3621 continue;
3622 }
3623
3624 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3625
3626 while (sva < next_bucket) {
3627 pte = *ptep;
3628 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3629 struct vm_page *pg;
3630 u_int f;
3631
3632 #ifdef PMAP_CACHE_VIVT
3633 /*
3634 * OK, at this point, we know we're doing
3635 * write-protect operation. If the pmap is
3636 * active, write-back the page.
3637 */
3638 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3639 false, false);
3640 #endif
3641
3642 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3643 pte &= ~L2_S_PROT_W;
3644 *ptep = pte;
3645 PTE_SYNC(ptep);
3646
3647 if (pg != NULL) {
3648 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3649 simple_lock(&md->pvh_slock);
3650 f = pmap_modify_pv(md, VM_PAGE_TO_PHYS(pg), pm, sva,
3651 clr_mask, 0);
3652 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, sva);
3653 simple_unlock(&md->pvh_slock);
3654 } else
3655 f = PVF_REF | PVF_EXEC;
3656
3657 if (flush >= 0) {
3658 flush++;
3659 flags |= f;
3660 } else
3661 if (PV_BEEN_EXECD(f))
3662 pmap_tlb_flushID_SE(pm, sva);
3663 else
3664 if (PV_BEEN_REFD(f))
3665 pmap_tlb_flushD_SE(pm, sva);
3666 }
3667
3668 sva += PAGE_SIZE;
3669 ptep++;
3670 }
3671 }
3672
3673 pmap_release_pmap_lock(pm);
3674 PMAP_MAP_TO_HEAD_UNLOCK();
3675
3676 if (flush) {
3677 if (PV_BEEN_EXECD(flags))
3678 pmap_tlb_flushID(pm);
3679 else
3680 if (PV_BEEN_REFD(flags))
3681 pmap_tlb_flushD(pm);
3682 }
3683 }
3684
3685 void
3686 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3687 {
3688 struct l2_bucket *l2b;
3689 pt_entry_t *ptep;
3690 vaddr_t next_bucket;
3691 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3692
3693 NPDEBUG(PDB_EXEC,
3694 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3695 pm, sva, eva));
3696
3697 PMAP_MAP_TO_HEAD_LOCK();
3698 pmap_acquire_pmap_lock(pm);
3699
3700 while (sva < eva) {
3701 next_bucket = L2_NEXT_BUCKET(sva);
3702 if (next_bucket > eva)
3703 next_bucket = eva;
3704
3705 l2b = pmap_get_l2_bucket(pm, sva);
3706 if (l2b == NULL) {
3707 sva = next_bucket;
3708 continue;
3709 }
3710
3711 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3712 sva < next_bucket;
3713 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3714 if (l2pte_valid(*ptep)) {
3715 cpu_icache_sync_range(sva,
3716 min(page_size, eva - sva));
3717 }
3718 }
3719 }
3720
3721 pmap_release_pmap_lock(pm);
3722 PMAP_MAP_TO_HEAD_UNLOCK();
3723 }
3724
3725 void
3726 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3727 {
3728
3729 NPDEBUG(PDB_PROTECT,
3730 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3731 pg, VM_PAGE_TO_PHYS(pg), prot));
3732
3733 switch(prot) {
3734 case VM_PROT_READ|VM_PROT_WRITE:
3735 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3736 pmap_clearbit(pg, PVF_EXEC);
3737 break;
3738 #endif
3739 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3740 break;
3741
3742 case VM_PROT_READ:
3743 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3744 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3745 break;
3746 #endif
3747 case VM_PROT_READ|VM_PROT_EXECUTE:
3748 pmap_clearbit(pg, PVF_WRITE);
3749 break;
3750
3751 default:
3752 pmap_page_remove(pg);
3753 break;
3754 }
3755 }
3756
3757 /*
3758 * pmap_clear_modify:
3759 *
3760 * Clear the "modified" attribute for a page.
3761 */
3762 bool
3763 pmap_clear_modify(struct vm_page *pg)
3764 {
3765 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3766 bool rv;
3767
3768 if (md->pvh_attrs & PVF_MOD) {
3769 rv = true;
3770 #ifdef PMAP_CACHE_VIPT
3771 /*
3772 * If we are going to clear the modified bit and there are
3773 * no other modified bits set, flush the page to memory and
3774 * mark it clean.
3775 */
3776 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3777 pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_CLEAN_PRIMARY);
3778 #endif
3779 pmap_clearbit(pg, PVF_MOD);
3780 } else
3781 rv = false;
3782
3783 return (rv);
3784 }
3785
3786 /*
3787 * pmap_clear_reference:
3788 *
3789 * Clear the "referenced" attribute for a page.
3790 */
3791 bool
3792 pmap_clear_reference(struct vm_page *pg)
3793 {
3794 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3795 bool rv;
3796
3797 if (md->pvh_attrs & PVF_REF) {
3798 rv = true;
3799 pmap_clearbit(pg, PVF_REF);
3800 } else
3801 rv = false;
3802
3803 return (rv);
3804 }
3805
3806 /*
3807 * pmap_is_modified:
3808 *
3809 * Test if a page has the "modified" attribute.
3810 */
3811 /* See <arm/arm32/pmap.h> */
3812
3813 /*
3814 * pmap_is_referenced:
3815 *
3816 * Test if a page has the "referenced" attribute.
3817 */
3818 /* See <arm/arm32/pmap.h> */
3819
3820 int
3821 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3822 {
3823 struct l2_dtable *l2;
3824 struct l2_bucket *l2b;
3825 pd_entry_t *pl1pd, l1pd;
3826 pt_entry_t *ptep, pte;
3827 paddr_t pa;
3828 u_int l1idx;
3829 int rv = 0;
3830
3831 PMAP_MAP_TO_HEAD_LOCK();
3832 pmap_acquire_pmap_lock(pm);
3833
3834 l1idx = L1_IDX(va);
3835
3836 /*
3837 * If there is no l2_dtable for this address, then the process
3838 * has no business accessing it.
3839 *
3840 * Note: This will catch userland processes trying to access
3841 * kernel addresses.
3842 */
3843 l2 = pm->pm_l2[L2_IDX(l1idx)];
3844 if (l2 == NULL)
3845 goto out;
3846
3847 /*
3848 * Likewise if there is no L2 descriptor table
3849 */
3850 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3851 if (l2b->l2b_kva == NULL)
3852 goto out;
3853
3854 /*
3855 * Check the PTE itself.
3856 */
3857 ptep = &l2b->l2b_kva[l2pte_index(va)];
3858 pte = *ptep;
3859 if (pte == 0)
3860 goto out;
3861
3862 /*
3863 * Catch a userland access to the vector page mapped at 0x0
3864 */
3865 if (user && (pte & L2_S_PROT_U) == 0)
3866 goto out;
3867
3868 pa = l2pte_pa(pte);
3869
3870 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3871 /*
3872 * This looks like a good candidate for "page modified"
3873 * emulation...
3874 */
3875 struct pv_entry *pv;
3876 struct vm_page *pg;
3877
3878 /* Extract the physical address of the page */
3879 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3880 goto out;
3881
3882 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3883
3884 /* Get the current flags for this page. */
3885 simple_lock(&md->pvh_slock);
3886
3887 pv = pmap_find_pv(md, pm, va);
3888 if (pv == NULL) {
3889 simple_unlock(&md->pvh_slock);
3890 goto out;
3891 }
3892
3893 /*
3894 * Do the flags say this page is writable? If not then it
3895 * is a genuine write fault. If yes then the write fault is
3896 * our fault as we did not reflect the write access in the
3897 * PTE. Now we know a write has occurred we can correct this
3898 * and also set the modified bit
3899 */
3900 if ((pv->pv_flags & PVF_WRITE) == 0) {
3901 simple_unlock(&md->pvh_slock);
3902 goto out;
3903 }
3904
3905 NPDEBUG(PDB_FOLLOW,
3906 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3907 pm, va, VM_PAGE_TO_PHYS(pg)));
3908
3909 md->pvh_attrs |= PVF_REF | PVF_MOD;
3910 pv->pv_flags |= PVF_REF | PVF_MOD;
3911 #ifdef PMAP_CACHE_VIPT
3912 /*
3913 * If there are cacheable mappings for this page, mark it dirty.
3914 */
3915 if ((md->pvh_attrs & PVF_NC) == 0)
3916 md->pvh_attrs |= PVF_DIRTY;
3917 #endif
3918 simple_unlock(&md->pvh_slock);
3919
3920 /*
3921 * Re-enable write permissions for the page. No need to call
3922 * pmap_vac_me_harder(), since this is just a
3923 * modified-emulation fault, and the PVF_WRITE bit isn't
3924 * changing. We've already set the cacheable bits based on
3925 * the assumption that we can write to this page.
3926 */
3927 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3928 PTE_SYNC(ptep);
3929 rv = 1;
3930 } else
3931 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3932 /*
3933 * This looks like a good candidate for "page referenced"
3934 * emulation.
3935 */
3936 struct pv_entry *pv;
3937 struct vm_page *pg;
3938
3939 /* Extract the physical address of the page */
3940 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3941 goto out;
3942
3943 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3944
3945 /* Get the current flags for this page. */
3946 simple_lock(&md->pvh_slock);
3947
3948 pv = pmap_find_pv(md, pm, va);
3949 if (pv == NULL) {
3950 simple_unlock(&md->pvh_slock);
3951 goto out;
3952 }
3953
3954 md->pvh_attrs |= PVF_REF;
3955 pv->pv_flags |= PVF_REF;
3956 simple_unlock(&md->pvh_slock);
3957
3958 NPDEBUG(PDB_FOLLOW,
3959 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3960 pm, va, VM_PAGE_TO_PHYS(pg)));
3961
3962 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3963 PTE_SYNC(ptep);
3964 rv = 1;
3965 }
3966
3967 /*
3968 * We know there is a valid mapping here, so simply
3969 * fix up the L1 if necessary.
3970 */
3971 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3972 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3973 if (*pl1pd != l1pd) {
3974 *pl1pd = l1pd;
3975 PTE_SYNC(pl1pd);
3976 rv = 1;
3977 }
3978
3979 #ifdef CPU_SA110
3980 /*
3981 * There are bugs in the rev K SA110. This is a check for one
3982 * of them.
3983 */
3984 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3985 curcpu()->ci_arm_cpurev < 3) {
3986 /* Always current pmap */
3987 if (l2pte_valid(pte)) {
3988 extern int kernel_debug;
3989 if (kernel_debug & 1) {
3990 struct proc *p = curlwp->l_proc;
3991 printf("prefetch_abort: page is already "
3992 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3993 printf("prefetch_abort: pc=%08lx proc=%p "
3994 "process=%s\n", va, p, p->p_comm);
3995 printf("prefetch_abort: far=%08x fs=%x\n",
3996 cpu_faultaddress(), cpu_faultstatus());
3997 }
3998 #ifdef DDB
3999 if (kernel_debug & 2)
4000 Debugger();
4001 #endif
4002 rv = 1;
4003 }
4004 }
4005 #endif /* CPU_SA110 */
4006
4007 #ifdef DEBUG
4008 /*
4009 * If 'rv == 0' at this point, it generally indicates that there is a
4010 * stale TLB entry for the faulting address. This happens when two or
4011 * more processes are sharing an L1. Since we don't flush the TLB on
4012 * a context switch between such processes, we can take domain faults
4013 * for mappings which exist at the same VA in both processes. EVEN IF
4014 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4015 * example.
4016 *
4017 * This is extremely likely to happen if pmap_enter() updated the L1
4018 * entry for a recently entered mapping. In this case, the TLB is
4019 * flushed for the new mapping, but there may still be TLB entries for
4020 * other mappings belonging to other processes in the 1MB range
4021 * covered by the L1 entry.
4022 *
4023 * Since 'rv == 0', we know that the L1 already contains the correct
4024 * value, so the fault must be due to a stale TLB entry.
4025 *
4026 * Since we always need to flush the TLB anyway in the case where we
4027 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4028 * stale TLB entries dynamically.
4029 *
4030 * However, the above condition can ONLY happen if the current L1 is
4031 * being shared. If it happens when the L1 is unshared, it indicates
4032 * that other parts of the pmap are not doing their job WRT managing
4033 * the TLB.
4034 */
4035 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4036 extern int last_fault_code;
4037 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4038 pm, va, ftype);
4039 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4040 l2, l2b, ptep, pl1pd);
4041 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4042 pte, l1pd, last_fault_code);
4043 #ifdef DDB
4044 Debugger();
4045 #endif
4046 }
4047 #endif
4048
4049 cpu_tlb_flushID_SE(va);
4050 cpu_cpwait();
4051
4052 rv = 1;
4053
4054 out:
4055 pmap_release_pmap_lock(pm);
4056 PMAP_MAP_TO_HEAD_UNLOCK();
4057
4058 return (rv);
4059 }
4060
4061 /*
4062 * Routine: pmap_procwr
4063 *
4064 * Function:
4065 * Synchronize caches corresponding to [addr, addr+len) in p.
4066 *
4067 */
4068 void
4069 pmap_procwr(struct proc *p, vaddr_t va, int len)
4070 {
4071 /* We only need to do anything if it is the current process. */
4072 if (p == curproc)
4073 cpu_icache_sync_range(va, len);
4074 }
4075
4076 /*
4077 * Routine: pmap_unwire
4078 * Function: Clear the wired attribute for a map/virtual-address pair.
4079 *
4080 * In/out conditions:
4081 * The mapping must already exist in the pmap.
4082 */
4083 void
4084 pmap_unwire(pmap_t pm, vaddr_t va)
4085 {
4086 struct l2_bucket *l2b;
4087 pt_entry_t *ptep, pte;
4088 struct vm_page *pg;
4089 paddr_t pa;
4090
4091 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4092
4093 PMAP_MAP_TO_HEAD_LOCK();
4094 pmap_acquire_pmap_lock(pm);
4095
4096 l2b = pmap_get_l2_bucket(pm, va);
4097 KDASSERT(l2b != NULL);
4098
4099 ptep = &l2b->l2b_kva[l2pte_index(va)];
4100 pte = *ptep;
4101
4102 /* Extract the physical address of the page */
4103 pa = l2pte_pa(pte);
4104
4105 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4106 /* Update the wired bit in the pv entry for this page. */
4107 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4108 simple_lock(&md->pvh_slock);
4109 (void) pmap_modify_pv(md, VM_PAGE_TO_PHYS(pg), pm, va, PVF_WIRED, 0);
4110 simple_unlock(&md->pvh_slock);
4111 }
4112
4113 pmap_release_pmap_lock(pm);
4114 PMAP_MAP_TO_HEAD_UNLOCK();
4115 }
4116
4117 void
4118 pmap_activate(struct lwp *l)
4119 {
4120 extern int block_userspace_access;
4121 pmap_t opm, npm, rpm;
4122 uint32_t odacr, ndacr;
4123 int oldirqstate;
4124
4125 /*
4126 * If activating a non-current lwp or the current lwp is
4127 * already active, just return.
4128 */
4129 if (l != curlwp ||
4130 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4131 return;
4132
4133 npm = l->l_proc->p_vmspace->vm_map.pmap;
4134 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4135 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4136
4137 /*
4138 * If TTB and DACR are unchanged, short-circuit all the
4139 * TLB/cache management stuff.
4140 */
4141 if (pmap_previous_active_lwp != NULL) {
4142 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4143 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4144 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4145
4146 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4147 goto all_done;
4148 } else
4149 opm = NULL;
4150
4151 PMAPCOUNT(activations);
4152 block_userspace_access = 1;
4153
4154 /*
4155 * If switching to a user vmspace which is different to the
4156 * most recent one, and the most recent one is potentially
4157 * live in the cache, we must write-back and invalidate the
4158 * entire cache.
4159 */
4160 rpm = pmap_recent_user;
4161
4162 /*
4163 * XXXSCW: There's a corner case here which can leave turds in the cache as
4164 * reported in kern/41058. They're probably left over during tear-down and
4165 * switching away from an exiting process. Until the root cause is identified
4166 * and fixed, zap the cache when switching pmaps. This will result in a few
4167 * unnecessary cache flushes, but that's better than silently corrupting data.
4168 */
4169 #if 0
4170 if (npm != pmap_kernel() && rpm && npm != rpm &&
4171 rpm->pm_cstate.cs_cache) {
4172 rpm->pm_cstate.cs_cache = 0;
4173 #ifdef PMAP_CACHE_VIVT
4174 cpu_idcache_wbinv_all();
4175 #endif
4176 }
4177 #else
4178 if (rpm) {
4179 rpm->pm_cstate.cs_cache = 0;
4180 if (npm == pmap_kernel())
4181 pmap_recent_user = NULL;
4182 #ifdef PMAP_CACHE_VIVT
4183 cpu_idcache_wbinv_all();
4184 #endif
4185 }
4186 #endif
4187
4188 /* No interrupts while we frob the TTB/DACR */
4189 oldirqstate = disable_interrupts(IF32_bits);
4190
4191 /*
4192 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4193 * entry corresponding to 'vector_page' in the incoming L1 table
4194 * before switching to it otherwise subsequent interrupts/exceptions
4195 * (including domain faults!) will jump into hyperspace.
4196 */
4197 if (npm->pm_pl1vec != NULL) {
4198 cpu_tlb_flushID_SE((u_int)vector_page);
4199 cpu_cpwait();
4200 *npm->pm_pl1vec = npm->pm_l1vec;
4201 PTE_SYNC(npm->pm_pl1vec);
4202 }
4203
4204 cpu_domains(ndacr);
4205
4206 if (npm == pmap_kernel() || npm == rpm) {
4207 /*
4208 * Switching to a kernel thread, or back to the
4209 * same user vmspace as before... Simply update
4210 * the TTB (no TLB flush required)
4211 */
4212 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4213 "r"(npm->pm_l1->l1_physaddr));
4214 cpu_cpwait();
4215 } else {
4216 /*
4217 * Otherwise, update TTB and flush TLB
4218 */
4219 cpu_context_switch(npm->pm_l1->l1_physaddr);
4220 if (rpm != NULL)
4221 rpm->pm_cstate.cs_tlb = 0;
4222 }
4223
4224 restore_interrupts(oldirqstate);
4225
4226 block_userspace_access = 0;
4227
4228 all_done:
4229 /*
4230 * The new pmap is resident. Make sure it's marked
4231 * as resident in the cache/TLB.
4232 */
4233 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4234 if (npm != pmap_kernel())
4235 pmap_recent_user = npm;
4236
4237 /* The old pmap is not longer active */
4238 if (opm != NULL)
4239 opm->pm_activated = false;
4240
4241 /* But the new one is */
4242 npm->pm_activated = true;
4243 }
4244
4245 void
4246 pmap_deactivate(struct lwp *l)
4247 {
4248
4249 /*
4250 * If the process is exiting, make sure pmap_activate() does
4251 * a full MMU context-switch and cache flush, which we might
4252 * otherwise skip. See PR port-arm/38950.
4253 */
4254 if (l->l_proc->p_sflag & PS_WEXIT)
4255 pmap_previous_active_lwp = NULL;
4256
4257 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4258 }
4259
4260 void
4261 pmap_update(pmap_t pm)
4262 {
4263
4264 if (pm->pm_remove_all) {
4265 /*
4266 * Finish up the pmap_remove_all() optimisation by flushing
4267 * the TLB.
4268 */
4269 pmap_tlb_flushID(pm);
4270 pm->pm_remove_all = false;
4271 }
4272
4273 if (pmap_is_current(pm)) {
4274 /*
4275 * If we're dealing with a current userland pmap, move its L1
4276 * to the end of the LRU.
4277 */
4278 if (pm != pmap_kernel())
4279 pmap_use_l1(pm);
4280
4281 /*
4282 * We can assume we're done with frobbing the cache/tlb for
4283 * now. Make sure any future pmap ops don't skip cache/tlb
4284 * flushes.
4285 */
4286 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4287 }
4288
4289 PMAPCOUNT(updates);
4290
4291 /*
4292 * make sure TLB/cache operations have completed.
4293 */
4294 cpu_cpwait();
4295 }
4296
4297 void
4298 pmap_remove_all(pmap_t pm)
4299 {
4300
4301 /*
4302 * The vmspace described by this pmap is about to be torn down.
4303 * Until pmap_update() is called, UVM will only make calls
4304 * to pmap_remove(). We can make life much simpler by flushing
4305 * the cache now, and deferring TLB invalidation to pmap_update().
4306 */
4307 #ifdef PMAP_CACHE_VIVT
4308 pmap_idcache_wbinv_all(pm);
4309 #endif
4310 pm->pm_remove_all = true;
4311 }
4312
4313 /*
4314 * Retire the given physical map from service.
4315 * Should only be called if the map contains no valid mappings.
4316 */
4317 void
4318 pmap_destroy(pmap_t pm)
4319 {
4320 u_int count;
4321
4322 if (pm == NULL)
4323 return;
4324
4325 if (pm->pm_remove_all) {
4326 pmap_tlb_flushID(pm);
4327 pm->pm_remove_all = false;
4328 }
4329
4330 /*
4331 * Drop reference count
4332 */
4333 mutex_enter(&pm->pm_lock);
4334 count = --pm->pm_obj.uo_refs;
4335 mutex_exit(&pm->pm_lock);
4336 if (count > 0) {
4337 if (pmap_is_current(pm)) {
4338 if (pm != pmap_kernel())
4339 pmap_use_l1(pm);
4340 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4341 }
4342 return;
4343 }
4344
4345 /*
4346 * reference count is zero, free pmap resources and then free pmap.
4347 */
4348
4349 if (vector_page < KERNEL_BASE) {
4350 KDASSERT(!pmap_is_current(pm));
4351
4352 /* Remove the vector page mapping */
4353 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4354 pmap_update(pm);
4355 }
4356
4357 LIST_REMOVE(pm, pm_list);
4358
4359 pmap_free_l1(pm);
4360
4361 if (pmap_recent_user == pm)
4362 pmap_recent_user = NULL;
4363
4364 UVM_OBJ_DESTROY(&pm->pm_obj);
4365
4366 /* return the pmap to the pool */
4367 pool_cache_put(&pmap_cache, pm);
4368 }
4369
4370
4371 /*
4372 * void pmap_reference(pmap_t pm)
4373 *
4374 * Add a reference to the specified pmap.
4375 */
4376 void
4377 pmap_reference(pmap_t pm)
4378 {
4379
4380 if (pm == NULL)
4381 return;
4382
4383 pmap_use_l1(pm);
4384
4385 mutex_enter(&pm->pm_lock);
4386 pm->pm_obj.uo_refs++;
4387 mutex_exit(&pm->pm_lock);
4388 }
4389
4390 #if ARM_MMU_V6 > 0
4391
4392 static struct evcnt pmap_prefer_nochange_ev =
4393 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4394 static struct evcnt pmap_prefer_change_ev =
4395 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4396
4397 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4398 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4399
4400 void
4401 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4402 {
4403 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4404 vaddr_t va = *vap;
4405 vaddr_t diff = (hint - va) & mask;
4406 if (diff == 0) {
4407 pmap_prefer_nochange_ev.ev_count++;
4408 } else {
4409 pmap_prefer_change_ev.ev_count++;
4410 if (__predict_false(td))
4411 va -= mask + 1;
4412 *vap = va + diff;
4413 }
4414 }
4415 #endif /* ARM_MMU_V6 */
4416
4417 /*
4418 * pmap_zero_page()
4419 *
4420 * Zero a given physical page by mapping it at a page hook point.
4421 * In doing the zero page op, the page we zero is mapped cachable, as with
4422 * StrongARM accesses to non-cached pages are non-burst making writing
4423 * _any_ bulk data very slow.
4424 */
4425 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4426 void
4427 pmap_zero_page_generic(paddr_t phys)
4428 {
4429 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4430 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4431 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4432 #endif
4433 #ifdef PMAP_CACHE_VIPT
4434 /* Choose the last page color it had, if any */
4435 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4436 #else
4437 const vsize_t va_offset = 0;
4438 #endif
4439 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4440
4441 #ifdef DEBUG
4442 if (!SLIST_EMPTY(&md->pvh_list))
4443 panic("pmap_zero_page: page has mappings");
4444 #endif
4445
4446 KDASSERT((phys & PGOFSET) == 0);
4447
4448 /*
4449 * Hook in the page, zero it, and purge the cache for that
4450 * zeroed page. Invalidate the TLB as needed.
4451 */
4452 *ptep = L2_S_PROTO | phys |
4453 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4454 PTE_SYNC(ptep);
4455 cpu_tlb_flushD_SE(cdstp + va_offset);
4456 cpu_cpwait();
4457 bzero_page(cdstp + va_offset);
4458 /*
4459 * Unmap the page.
4460 */
4461 *ptep = 0;
4462 PTE_SYNC(ptep);
4463 cpu_tlb_flushD_SE(cdstp + va_offset);
4464 #ifdef PMAP_CACHE_VIVT
4465 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4466 #endif
4467 #ifdef PMAP_CACHE_VIPT
4468 /*
4469 * This page is now cache resident so it now has a page color.
4470 * Any contents have been obliterated so clear the EXEC flag.
4471 */
4472 if (!pmap_is_page_colored_p(md)) {
4473 PMAPCOUNT(vac_color_new);
4474 md->pvh_attrs |= PVF_COLORED;
4475 }
4476 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4477 md->pvh_attrs &= ~PVF_EXEC;
4478 PMAPCOUNT(exec_discarded_zero);
4479 }
4480 md->pvh_attrs |= PVF_DIRTY;
4481 #endif
4482 }
4483 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4484
4485 #if ARM_MMU_XSCALE == 1
4486 void
4487 pmap_zero_page_xscale(paddr_t phys)
4488 {
4489 #ifdef DEBUG
4490 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4491 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4492
4493 if (!SLIST_EMPTY(&md->pvh_list))
4494 panic("pmap_zero_page: page has mappings");
4495 #endif
4496
4497 KDASSERT((phys & PGOFSET) == 0);
4498
4499 /*
4500 * Hook in the page, zero it, and purge the cache for that
4501 * zeroed page. Invalidate the TLB as needed.
4502 */
4503 *cdst_pte = L2_S_PROTO | phys |
4504 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4505 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4506 PTE_SYNC(cdst_pte);
4507 cpu_tlb_flushD_SE(cdstp);
4508 cpu_cpwait();
4509 bzero_page(cdstp);
4510 xscale_cache_clean_minidata();
4511 }
4512 #endif /* ARM_MMU_XSCALE == 1 */
4513
4514 /* pmap_pageidlezero()
4515 *
4516 * The same as above, except that we assume that the page is not
4517 * mapped. This means we never have to flush the cache first. Called
4518 * from the idle loop.
4519 */
4520 bool
4521 pmap_pageidlezero(paddr_t phys)
4522 {
4523 unsigned int i;
4524 int *ptr;
4525 bool rv = true;
4526 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4527 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4528 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4529 #endif
4530 #ifdef PMAP_CACHE_VIPT
4531 /* Choose the last page color it had, if any */
4532 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4533 #else
4534 const vsize_t va_offset = 0;
4535 #endif
4536 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4537
4538
4539 #ifdef DEBUG
4540 if (!SLIST_EMPTY(&md->pvh_list))
4541 panic("pmap_pageidlezero: page has mappings");
4542 #endif
4543
4544 KDASSERT((phys & PGOFSET) == 0);
4545
4546 /*
4547 * Hook in the page, zero it, and purge the cache for that
4548 * zeroed page. Invalidate the TLB as needed.
4549 */
4550 *ptep = L2_S_PROTO | phys |
4551 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4552 PTE_SYNC(ptep);
4553 cpu_tlb_flushD_SE(cdstp + va_offset);
4554 cpu_cpwait();
4555
4556 for (i = 0, ptr = (int *)(cdstp + va_offset);
4557 i < (PAGE_SIZE / sizeof(int)); i++) {
4558 if (sched_curcpu_runnable_p() != 0) {
4559 /*
4560 * A process has become ready. Abort now,
4561 * so we don't keep it waiting while we
4562 * do slow memory access to finish this
4563 * page.
4564 */
4565 rv = false;
4566 break;
4567 }
4568 *ptr++ = 0;
4569 }
4570
4571 #ifdef PMAP_CACHE_VIVT
4572 if (rv)
4573 /*
4574 * if we aborted we'll rezero this page again later so don't
4575 * purge it unless we finished it
4576 */
4577 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4578 #elif defined(PMAP_CACHE_VIPT)
4579 /*
4580 * This page is now cache resident so it now has a page color.
4581 * Any contents have been obliterated so clear the EXEC flag.
4582 */
4583 if (!pmap_is_page_colored_p(md)) {
4584 PMAPCOUNT(vac_color_new);
4585 md->pvh_attrs |= PVF_COLORED;
4586 }
4587 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4588 md->pvh_attrs &= ~PVF_EXEC;
4589 PMAPCOUNT(exec_discarded_zero);
4590 }
4591 #endif
4592 /*
4593 * Unmap the page.
4594 */
4595 *ptep = 0;
4596 PTE_SYNC(ptep);
4597 cpu_tlb_flushD_SE(cdstp + va_offset);
4598
4599 return (rv);
4600 }
4601
4602 /*
4603 * pmap_copy_page()
4604 *
4605 * Copy one physical page into another, by mapping the pages into
4606 * hook points. The same comment regarding cachability as in
4607 * pmap_zero_page also applies here.
4608 */
4609 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4610 void
4611 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4612 {
4613 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4614 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4615 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4616 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4617 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4618 #endif
4619 #ifdef PMAP_CACHE_VIPT
4620 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4621 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4622 #else
4623 const vsize_t src_va_offset = 0;
4624 const vsize_t dst_va_offset = 0;
4625 #endif
4626 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4627 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4628
4629 #ifdef DEBUG
4630 if (!SLIST_EMPTY(&dst_md->pvh_list))
4631 panic("pmap_copy_page: dst page has mappings");
4632 #endif
4633
4634 #ifdef PMAP_CACHE_VIPT
4635 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4636 #endif
4637 KDASSERT((src & PGOFSET) == 0);
4638 KDASSERT((dst & PGOFSET) == 0);
4639
4640 /*
4641 * Clean the source page. Hold the source page's lock for
4642 * the duration of the copy so that no other mappings can
4643 * be created while we have a potentially aliased mapping.
4644 */
4645 simple_lock(&src_md->pvh_slock);
4646 #ifdef PMAP_CACHE_VIVT
4647 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4648 #endif
4649
4650 /*
4651 * Map the pages into the page hook points, copy them, and purge
4652 * the cache for the appropriate page. Invalidate the TLB
4653 * as required.
4654 */
4655 *src_ptep = L2_S_PROTO
4656 | src
4657 #ifdef PMAP_CACHE_VIPT
4658 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4659 #endif
4660 #ifdef PMAP_CACHE_VIVT
4661 | pte_l2_s_cache_mode
4662 #endif
4663 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4664 *dst_ptep = L2_S_PROTO | dst |
4665 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4666 PTE_SYNC(src_ptep);
4667 PTE_SYNC(dst_ptep);
4668 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4669 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4670 cpu_cpwait();
4671 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4672 #ifdef PMAP_CACHE_VIVT
4673 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4674 #endif
4675 simple_unlock(&src_md->pvh_slock); /* cache is safe again */
4676 #ifdef PMAP_CACHE_VIVT
4677 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4678 #endif
4679 /*
4680 * Unmap the pages.
4681 */
4682 *src_ptep = 0;
4683 *dst_ptep = 0;
4684 PTE_SYNC(src_ptep);
4685 PTE_SYNC(dst_ptep);
4686 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4687 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4688 #ifdef PMAP_CACHE_VIPT
4689 /*
4690 * Now that the destination page is in the cache, mark it as colored.
4691 * If this was an exec page, discard it.
4692 */
4693 if (!pmap_is_page_colored_p(dst_md)) {
4694 PMAPCOUNT(vac_color_new);
4695 dst_md->pvh_attrs |= PVF_COLORED;
4696 }
4697 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4698 dst_md->pvh_attrs &= ~PVF_EXEC;
4699 PMAPCOUNT(exec_discarded_copy);
4700 }
4701 dst_md->pvh_attrs |= PVF_DIRTY;
4702 #endif
4703 }
4704 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4705
4706 #if ARM_MMU_XSCALE == 1
4707 void
4708 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4709 {
4710 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4711 #ifdef DEBUG
4712 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4713
4714 if (!SLIST_EMPTY(&dst_md->pvh_list))
4715 panic("pmap_copy_page: dst page has mappings");
4716 #endif
4717
4718 KDASSERT((src & PGOFSET) == 0);
4719 KDASSERT((dst & PGOFSET) == 0);
4720
4721 /*
4722 * Clean the source page. Hold the source page's lock for
4723 * the duration of the copy so that no other mappings can
4724 * be created while we have a potentially aliased mapping.
4725 */
4726 simple_lock(&src_md->pvh_slock);
4727 #ifdef PMAP_CACHE_VIVT
4728 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4729 #endif
4730
4731 /*
4732 * Map the pages into the page hook points, copy them, and purge
4733 * the cache for the appropriate page. Invalidate the TLB
4734 * as required.
4735 */
4736 *csrc_pte = L2_S_PROTO | src |
4737 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4738 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4739 PTE_SYNC(csrc_pte);
4740 *cdst_pte = L2_S_PROTO | dst |
4741 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4742 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4743 PTE_SYNC(cdst_pte);
4744 cpu_tlb_flushD_SE(csrcp);
4745 cpu_tlb_flushD_SE(cdstp);
4746 cpu_cpwait();
4747 bcopy_page(csrcp, cdstp);
4748 simple_unlock(&src_md->pvh_slock); /* cache is safe again */
4749 xscale_cache_clean_minidata();
4750 }
4751 #endif /* ARM_MMU_XSCALE == 1 */
4752
4753 /*
4754 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4755 *
4756 * Return the start and end addresses of the kernel's virtual space.
4757 * These values are setup in pmap_bootstrap and are updated as pages
4758 * are allocated.
4759 */
4760 void
4761 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4762 {
4763 *start = virtual_avail;
4764 *end = virtual_end;
4765 }
4766
4767 /*
4768 * Helper function for pmap_grow_l2_bucket()
4769 */
4770 static inline int
4771 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4772 {
4773 struct l2_bucket *l2b;
4774 pt_entry_t *ptep;
4775 paddr_t pa;
4776
4777 if (uvm.page_init_done == false) {
4778 #ifdef PMAP_STEAL_MEMORY
4779 pv_addr_t pv;
4780 pmap_boot_pagealloc(PAGE_SIZE,
4781 #ifdef PMAP_CACHE_VIPT
4782 arm_cache_prefer_mask,
4783 va & arm_cache_prefer_mask,
4784 #else
4785 0, 0,
4786 #endif
4787 &pv);
4788 pa = pv.pv_pa;
4789 #else
4790 if (uvm_page_physget(&pa) == false)
4791 return (1);
4792 #endif /* PMAP_STEAL_MEMORY */
4793 } else {
4794 struct vm_page *pg;
4795 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4796 if (pg == NULL)
4797 return (1);
4798 pa = VM_PAGE_TO_PHYS(pg);
4799 #ifdef PMAP_CACHE_VIPT
4800 #ifdef DIAGNOSTIC
4801 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4802 #endif
4803 /*
4804 * This new page must not have any mappings. Enter it via
4805 * pmap_kenter_pa and let that routine do the hard work.
4806 */
4807 KASSERT(SLIST_EMPTY(&md->pvh_list));
4808 pmap_kenter_pa(va, pa,
4809 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
4810 #endif
4811 }
4812
4813 if (pap)
4814 *pap = pa;
4815
4816 PMAPCOUNT(pt_mappings);
4817 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4818 KDASSERT(l2b != NULL);
4819
4820 ptep = &l2b->l2b_kva[l2pte_index(va)];
4821 *ptep = L2_S_PROTO | pa | cache_mode |
4822 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4823 PTE_SYNC(ptep);
4824 memset((void *)va, 0, PAGE_SIZE);
4825 return (0);
4826 }
4827
4828 /*
4829 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4830 * used by pmap_growkernel().
4831 */
4832 static inline struct l2_bucket *
4833 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4834 {
4835 struct l2_dtable *l2;
4836 struct l2_bucket *l2b;
4837 u_short l1idx;
4838 vaddr_t nva;
4839
4840 l1idx = L1_IDX(va);
4841
4842 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4843 /*
4844 * No mapping at this address, as there is
4845 * no entry in the L1 table.
4846 * Need to allocate a new l2_dtable.
4847 */
4848 nva = pmap_kernel_l2dtable_kva;
4849 if ((nva & PGOFSET) == 0) {
4850 /*
4851 * Need to allocate a backing page
4852 */
4853 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4854 return (NULL);
4855 }
4856
4857 l2 = (struct l2_dtable *)nva;
4858 nva += sizeof(struct l2_dtable);
4859
4860 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4861 /*
4862 * The new l2_dtable straddles a page boundary.
4863 * Map in another page to cover it.
4864 */
4865 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4866 return (NULL);
4867 }
4868
4869 pmap_kernel_l2dtable_kva = nva;
4870
4871 /*
4872 * Link it into the parent pmap
4873 */
4874 pm->pm_l2[L2_IDX(l1idx)] = l2;
4875 }
4876
4877 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4878
4879 /*
4880 * Fetch pointer to the L2 page table associated with the address.
4881 */
4882 if (l2b->l2b_kva == NULL) {
4883 pt_entry_t *ptep;
4884
4885 /*
4886 * No L2 page table has been allocated. Chances are, this
4887 * is because we just allocated the l2_dtable, above.
4888 */
4889 nva = pmap_kernel_l2ptp_kva;
4890 ptep = (pt_entry_t *)nva;
4891 if ((nva & PGOFSET) == 0) {
4892 /*
4893 * Need to allocate a backing page
4894 */
4895 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4896 &pmap_kernel_l2ptp_phys))
4897 return (NULL);
4898 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4899 }
4900
4901 l2->l2_occupancy++;
4902 l2b->l2b_kva = ptep;
4903 l2b->l2b_l1idx = l1idx;
4904 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4905
4906 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4907 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4908 }
4909
4910 return (l2b);
4911 }
4912
4913 vaddr_t
4914 pmap_growkernel(vaddr_t maxkvaddr)
4915 {
4916 pmap_t kpm = pmap_kernel();
4917 struct l1_ttable *l1;
4918 struct l2_bucket *l2b;
4919 pd_entry_t *pl1pd;
4920 int s;
4921
4922 if (maxkvaddr <= pmap_curmaxkvaddr)
4923 goto out; /* we are OK */
4924
4925 NPDEBUG(PDB_GROWKERN,
4926 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4927 pmap_curmaxkvaddr, maxkvaddr));
4928
4929 KDASSERT(maxkvaddr <= virtual_end);
4930
4931 /*
4932 * whoops! we need to add kernel PTPs
4933 */
4934
4935 s = splhigh(); /* to be safe */
4936 mutex_enter(&kpm->pm_lock);
4937
4938 /* Map 1MB at a time */
4939 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4940
4941 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4942 KDASSERT(l2b != NULL);
4943
4944 /* Distribute new L1 entry to all other L1s */
4945 SLIST_FOREACH(l1, &l1_list, l1_link) {
4946 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4947 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4948 L1_C_PROTO;
4949 PTE_SYNC(pl1pd);
4950 }
4951 }
4952
4953 /*
4954 * flush out the cache, expensive but growkernel will happen so
4955 * rarely
4956 */
4957 cpu_dcache_wbinv_all();
4958 cpu_tlb_flushD();
4959 cpu_cpwait();
4960
4961 mutex_exit(&kpm->pm_lock);
4962 splx(s);
4963
4964 out:
4965 return (pmap_curmaxkvaddr);
4966 }
4967
4968 /************************ Utility routines ****************************/
4969
4970 /*
4971 * vector_page_setprot:
4972 *
4973 * Manipulate the protection of the vector page.
4974 */
4975 void
4976 vector_page_setprot(int prot)
4977 {
4978 struct l2_bucket *l2b;
4979 pt_entry_t *ptep;
4980
4981 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4982 KDASSERT(l2b != NULL);
4983
4984 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4985
4986 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4987 PTE_SYNC(ptep);
4988 cpu_tlb_flushD_SE(vector_page);
4989 cpu_cpwait();
4990 }
4991
4992 /*
4993 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4994 * Returns true if the mapping exists, else false.
4995 *
4996 * NOTE: This function is only used by a couple of arm-specific modules.
4997 * It is not safe to take any pmap locks here, since we could be right
4998 * in the middle of debugging the pmap anyway...
4999 *
5000 * It is possible for this routine to return false even though a valid
5001 * mapping does exist. This is because we don't lock, so the metadata
5002 * state may be inconsistent.
5003 *
5004 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5005 * a "section" mapping.
5006 */
5007 bool
5008 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5009 {
5010 struct l2_dtable *l2;
5011 pd_entry_t *pl1pd, l1pd;
5012 pt_entry_t *ptep;
5013 u_short l1idx;
5014
5015 if (pm->pm_l1 == NULL)
5016 return false;
5017
5018 l1idx = L1_IDX(va);
5019 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
5020 l1pd = *pl1pd;
5021
5022 if (l1pte_section_p(l1pd)) {
5023 *ptp = NULL;
5024 return true;
5025 }
5026
5027 if (pm->pm_l2 == NULL)
5028 return false;
5029
5030 l2 = pm->pm_l2[L2_IDX(l1idx)];
5031
5032 if (l2 == NULL ||
5033 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5034 return false;
5035 }
5036
5037 *ptp = &ptep[l2pte_index(va)];
5038 return true;
5039 }
5040
5041 bool
5042 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5043 {
5044 u_short l1idx;
5045
5046 if (pm->pm_l1 == NULL)
5047 return false;
5048
5049 l1idx = L1_IDX(va);
5050 *pdp = &pm->pm_l1->l1_kva[l1idx];
5051
5052 return true;
5053 }
5054
5055 /************************ Bootstrapping routines ****************************/
5056
5057 static void
5058 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5059 {
5060 int i;
5061
5062 l1->l1_kva = l1pt;
5063 l1->l1_domain_use_count = 0;
5064 l1->l1_domain_first = 0;
5065
5066 for (i = 0; i < PMAP_DOMAINS; i++)
5067 l1->l1_domain_free[i] = i + 1;
5068
5069 /*
5070 * Copy the kernel's L1 entries to each new L1.
5071 */
5072 if (pmap_initialized)
5073 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5074
5075 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5076 &l1->l1_physaddr) == false)
5077 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5078
5079 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5080 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5081 }
5082
5083 /*
5084 * pmap_bootstrap() is called from the board-specific initarm() routine
5085 * once the kernel L1/L2 descriptors tables have been set up.
5086 *
5087 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5088 * spread over a number of disparate files/functions.
5089 *
5090 * We are passed the following parameters
5091 * - kernel_l1pt
5092 * This is a pointer to the base of the kernel's L1 translation table.
5093 * - vstart
5094 * 1MB-aligned start of managed kernel virtual memory.
5095 * - vend
5096 * 1MB-aligned end of managed kernel virtual memory.
5097 *
5098 * We use the first parameter to build the metadata (struct l1_ttable and
5099 * struct l2_dtable) necessary to track kernel mappings.
5100 */
5101 #define PMAP_STATIC_L2_SIZE 16
5102 void
5103 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5104 {
5105 static struct l1_ttable static_l1;
5106 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5107 struct l1_ttable *l1 = &static_l1;
5108 struct l2_dtable *l2;
5109 struct l2_bucket *l2b;
5110 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5111 pmap_t pm = pmap_kernel();
5112 pd_entry_t pde;
5113 pt_entry_t *ptep;
5114 paddr_t pa;
5115 vaddr_t va;
5116 vsize_t size;
5117 int nptes, l1idx, l2idx, l2next = 0;
5118
5119 /*
5120 * Initialise the kernel pmap object
5121 */
5122 pm->pm_l1 = l1;
5123 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5124 pm->pm_activated = true;
5125 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5126 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5127
5128 /*
5129 * Scan the L1 translation table created by initarm() and create
5130 * the required metadata for all valid mappings found in it.
5131 */
5132 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5133 pde = l1pt[l1idx];
5134
5135 /*
5136 * We're only interested in Coarse mappings.
5137 * pmap_extract() can deal with section mappings without
5138 * recourse to checking L2 metadata.
5139 */
5140 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5141 continue;
5142
5143 /*
5144 * Lookup the KVA of this L2 descriptor table
5145 */
5146 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5147 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5148 if (ptep == NULL) {
5149 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5150 (u_int)l1idx << L1_S_SHIFT, pa);
5151 }
5152
5153 /*
5154 * Fetch the associated L2 metadata structure.
5155 * Allocate a new one if necessary.
5156 */
5157 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5158 if (l2next == PMAP_STATIC_L2_SIZE)
5159 panic("pmap_bootstrap: out of static L2s");
5160 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5161 }
5162
5163 /*
5164 * One more L1 slot tracked...
5165 */
5166 l2->l2_occupancy++;
5167
5168 /*
5169 * Fill in the details of the L2 descriptor in the
5170 * appropriate bucket.
5171 */
5172 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5173 l2b->l2b_kva = ptep;
5174 l2b->l2b_phys = pa;
5175 l2b->l2b_l1idx = l1idx;
5176
5177 /*
5178 * Establish an initial occupancy count for this descriptor
5179 */
5180 for (l2idx = 0;
5181 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5182 l2idx++) {
5183 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5184 l2b->l2b_occupancy++;
5185 }
5186 }
5187
5188 /*
5189 * Make sure the descriptor itself has the correct cache mode.
5190 * If not, fix it, but whine about the problem. Port-meisters
5191 * should consider this a clue to fix up their initarm()
5192 * function. :)
5193 */
5194 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5195 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5196 "L2 pte @ %p\n", ptep);
5197 }
5198 }
5199
5200 /*
5201 * Ensure the primary (kernel) L1 has the correct cache mode for
5202 * a page table. Bitch if it is not correctly set.
5203 */
5204 for (va = (vaddr_t)l1pt;
5205 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5206 if (pmap_set_pt_cache_mode(l1pt, va))
5207 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5208 "primary L1 @ 0x%lx\n", va);
5209 }
5210
5211 cpu_dcache_wbinv_all();
5212 cpu_tlb_flushID();
5213 cpu_cpwait();
5214
5215 /*
5216 * now we allocate the "special" VAs which are used for tmp mappings
5217 * by the pmap (and other modules). we allocate the VAs by advancing
5218 * virtual_avail (note that there are no pages mapped at these VAs).
5219 *
5220 * Managed KVM space start from wherever initarm() tells us.
5221 */
5222 virtual_avail = vstart;
5223 virtual_end = vend;
5224
5225 #ifdef PMAP_CACHE_VIPT
5226 /*
5227 * If we have a VIPT cache, we need one page/pte per possible alias
5228 * page so we won't violate cache aliasing rules.
5229 */
5230 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5231 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5232 #else
5233 nptes = 1;
5234 #endif
5235 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5236 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5237 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5238 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5239 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5240 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5241 (void *)&msgbufaddr, NULL);
5242
5243 /*
5244 * Allocate a range of kernel virtual address space to be used
5245 * for L2 descriptor tables and metadata allocation in
5246 * pmap_growkernel().
5247 */
5248 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5249 pmap_alloc_specials(&virtual_avail,
5250 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5251 &pmap_kernel_l2ptp_kva, NULL);
5252
5253 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5254 pmap_alloc_specials(&virtual_avail,
5255 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5256 &pmap_kernel_l2dtable_kva, NULL);
5257
5258 /*
5259 * init the static-global locks and global pmap list.
5260 */
5261 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5262
5263 /*
5264 * We can now initialise the first L1's metadata.
5265 */
5266 SLIST_INIT(&l1_list);
5267 TAILQ_INIT(&l1_lru_list);
5268 simple_lock_init(&l1_lru_lock);
5269 pmap_init_l1(l1, l1pt);
5270
5271 /* Set up vector page L1 details, if necessary */
5272 if (vector_page < KERNEL_BASE) {
5273 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5274 l2b = pmap_get_l2_bucket(pm, vector_page);
5275 KDASSERT(l2b != NULL);
5276 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5277 L1_C_DOM(pm->pm_domain);
5278 } else
5279 pm->pm_pl1vec = NULL;
5280
5281 /*
5282 * Initialize the pmap cache
5283 */
5284 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5285 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5286 LIST_INIT(&pmap_pmaps);
5287 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5288
5289 /*
5290 * Initialize the pv pool.
5291 */
5292 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5293 &pmap_bootstrap_pv_allocator, IPL_NONE);
5294
5295 /*
5296 * Initialize the L2 dtable pool and cache.
5297 */
5298 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5299 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5300
5301 /*
5302 * Initialise the L2 descriptor table pool and cache
5303 */
5304 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5305 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5306 pmap_l2ptp_ctor, NULL, NULL);
5307
5308 cpu_dcache_wbinv_all();
5309 }
5310
5311 static int
5312 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5313 {
5314 pd_entry_t *pdep, pde;
5315 pt_entry_t *ptep, pte;
5316 vaddr_t pa;
5317 int rv = 0;
5318
5319 /*
5320 * Make sure the descriptor itself has the correct cache mode
5321 */
5322 pdep = &kl1[L1_IDX(va)];
5323 pde = *pdep;
5324
5325 if (l1pte_section_p(pde)) {
5326 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5327 *pdep = (pde & ~L1_S_CACHE_MASK) |
5328 pte_l1_s_cache_mode_pt;
5329 PTE_SYNC(pdep);
5330 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5331 rv = 1;
5332 }
5333 } else {
5334 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5335 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5336 if (ptep == NULL)
5337 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5338
5339 ptep = &ptep[l2pte_index(va)];
5340 pte = *ptep;
5341 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5342 *ptep = (pte & ~L2_S_CACHE_MASK) |
5343 pte_l2_s_cache_mode_pt;
5344 PTE_SYNC(ptep);
5345 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5346 rv = 1;
5347 }
5348 }
5349
5350 return (rv);
5351 }
5352
5353 static void
5354 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5355 {
5356 vaddr_t va = *availp;
5357 struct l2_bucket *l2b;
5358
5359 if (ptep) {
5360 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5361 if (l2b == NULL)
5362 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5363
5364 if (ptep)
5365 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5366 }
5367
5368 *vap = va;
5369 *availp = va + (PAGE_SIZE * pages);
5370 }
5371
5372 void
5373 pmap_init(void)
5374 {
5375
5376 /*
5377 * Set the available memory vars - These do not map to real memory
5378 * addresses and cannot as the physical memory is fragmented.
5379 * They are used by ps for %mem calculations.
5380 * One could argue whether this should be the entire memory or just
5381 * the memory that is useable in a user process.
5382 */
5383 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5384 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5385
5386 /*
5387 * Now we need to free enough pv_entry structures to allow us to get
5388 * the kmem_map/kmem_object allocated and inited (done after this
5389 * function is finished). to do this we allocate one bootstrap page out
5390 * of kernel_map and use it to provide an initial pool of pv_entry
5391 * structures. we never free this page.
5392 */
5393 pool_setlowat(&pmap_pv_pool,
5394 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5395
5396 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5397 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5398 UVM_KMF_WIRED|UVM_KMF_ZERO);
5399
5400 pmap_initialized = true;
5401 }
5402
5403 static vaddr_t last_bootstrap_page = 0;
5404 static void *free_bootstrap_pages = NULL;
5405
5406 static void *
5407 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5408 {
5409 extern void *pool_page_alloc(struct pool *, int);
5410 vaddr_t new_page;
5411 void *rv;
5412
5413 if (pmap_initialized)
5414 return (pool_page_alloc(pp, flags));
5415
5416 if (free_bootstrap_pages) {
5417 rv = free_bootstrap_pages;
5418 free_bootstrap_pages = *((void **)rv);
5419 return (rv);
5420 }
5421
5422 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5423 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5424
5425 KASSERT(new_page > last_bootstrap_page);
5426 last_bootstrap_page = new_page;
5427 return ((void *)new_page);
5428 }
5429
5430 static void
5431 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5432 {
5433 extern void pool_page_free(struct pool *, void *);
5434
5435 if ((vaddr_t)v <= last_bootstrap_page) {
5436 *((void **)v) = free_bootstrap_pages;
5437 free_bootstrap_pages = v;
5438 return;
5439 }
5440
5441 if (pmap_initialized) {
5442 pool_page_free(pp, v);
5443 return;
5444 }
5445 }
5446
5447 /*
5448 * pmap_postinit()
5449 *
5450 * This routine is called after the vm and kmem subsystems have been
5451 * initialised. This allows the pmap code to perform any initialisation
5452 * that can only be done one the memory allocation is in place.
5453 */
5454 void
5455 pmap_postinit(void)
5456 {
5457 extern paddr_t physical_start, physical_end;
5458 struct l2_bucket *l2b;
5459 struct l1_ttable *l1;
5460 struct pglist plist;
5461 struct vm_page *m;
5462 pd_entry_t *pl1pt;
5463 pt_entry_t *ptep, pte;
5464 vaddr_t va, eva;
5465 u_int loop, needed;
5466 int error;
5467
5468 pool_cache_setlowat(&pmap_l2ptp_cache,
5469 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5470 pool_cache_setlowat(&pmap_l2dtable_cache,
5471 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5472
5473 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5474 needed -= 1;
5475
5476 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5477
5478 for (loop = 0; loop < needed; loop++, l1++) {
5479 /* Allocate a L1 page table */
5480 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5481 if (va == 0)
5482 panic("Cannot allocate L1 KVM");
5483
5484 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5485 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5486 if (error)
5487 panic("Cannot allocate L1 physical pages");
5488
5489 m = TAILQ_FIRST(&plist);
5490 eva = va + L1_TABLE_SIZE;
5491 pl1pt = (pd_entry_t *)va;
5492
5493 while (m && va < eva) {
5494 paddr_t pa = VM_PAGE_TO_PHYS(m);
5495
5496 pmap_kenter_pa(va, pa,
5497 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
5498
5499 /*
5500 * Make sure the L1 descriptor table is mapped
5501 * with the cache-mode set to write-through.
5502 */
5503 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5504 KDASSERT(l2b != NULL);
5505 ptep = &l2b->l2b_kva[l2pte_index(va)];
5506 pte = *ptep;
5507 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5508 *ptep = pte;
5509 PTE_SYNC(ptep);
5510 cpu_tlb_flushD_SE(va);
5511
5512 va += PAGE_SIZE;
5513 m = TAILQ_NEXT(m, pageq.queue);
5514 }
5515
5516 #ifdef DIAGNOSTIC
5517 if (m)
5518 panic("pmap_alloc_l1pt: pglist not empty");
5519 #endif /* DIAGNOSTIC */
5520
5521 pmap_init_l1(l1, pl1pt);
5522 }
5523
5524 #ifdef DEBUG
5525 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5526 needed);
5527 #endif
5528 }
5529
5530 /*
5531 * Note that the following routines are used by board-specific initialisation
5532 * code to configure the initial kernel page tables.
5533 *
5534 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5535 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5536 * behaviour of the old pmap, and provides an easy migration path for
5537 * initial bring-up of the new pmap on existing ports. Fortunately,
5538 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5539 * will be deprecated.
5540 *
5541 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5542 * tables.
5543 */
5544
5545 /*
5546 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5547 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5548 * find them as necessary.
5549 *
5550 * Note that the data on this list MUST remain valid after initarm() returns,
5551 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5552 */
5553 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5554
5555 static vaddr_t
5556 kernel_pt_lookup(paddr_t pa)
5557 {
5558 pv_addr_t *pv;
5559
5560 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5561 #ifndef ARM32_NEW_VM_LAYOUT
5562 if (pv->pv_pa == (pa & ~PGOFSET))
5563 return (pv->pv_va | (pa & PGOFSET));
5564 #else
5565 if (pv->pv_pa == pa)
5566 return (pv->pv_va);
5567 #endif
5568 }
5569 return (0);
5570 }
5571
5572 /*
5573 * pmap_map_section:
5574 *
5575 * Create a single section mapping.
5576 */
5577 void
5578 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5579 {
5580 pd_entry_t *pde = (pd_entry_t *) l1pt;
5581 pd_entry_t fl;
5582
5583 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5584
5585 switch (cache) {
5586 case PTE_NOCACHE:
5587 default:
5588 fl = 0;
5589 break;
5590
5591 case PTE_CACHE:
5592 fl = pte_l1_s_cache_mode;
5593 break;
5594
5595 case PTE_PAGETABLE:
5596 fl = pte_l1_s_cache_mode_pt;
5597 break;
5598 }
5599
5600 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5601 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5602 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5603 }
5604
5605 /*
5606 * pmap_map_entry:
5607 *
5608 * Create a single page mapping.
5609 */
5610 void
5611 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5612 {
5613 pd_entry_t *pde = (pd_entry_t *) l1pt;
5614 pt_entry_t fl;
5615 pt_entry_t *pte;
5616
5617 KASSERT(((va | pa) & PGOFSET) == 0);
5618
5619 switch (cache) {
5620 case PTE_NOCACHE:
5621 default:
5622 fl = 0;
5623 break;
5624
5625 case PTE_CACHE:
5626 fl = pte_l2_s_cache_mode;
5627 break;
5628
5629 case PTE_PAGETABLE:
5630 fl = pte_l2_s_cache_mode_pt;
5631 break;
5632 }
5633
5634 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5635 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5636
5637 #ifndef ARM32_NEW_VM_LAYOUT
5638 pte = (pt_entry_t *)
5639 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5640 #else
5641 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5642 #endif
5643 if (pte == NULL)
5644 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5645
5646 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5647 #ifndef ARM32_NEW_VM_LAYOUT
5648 pte += (va >> PGSHIFT) & 0x3ff;
5649 #else
5650 pte += l2pte_index(va);
5651 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5652 #endif
5653 *pte = fl;
5654 PTE_SYNC(pte);
5655 }
5656
5657 /*
5658 * pmap_link_l2pt:
5659 *
5660 * Link the L2 page table specified by "l2pv" into the L1
5661 * page table at the slot for "va".
5662 */
5663 void
5664 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5665 {
5666 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5667 u_int slot = va >> L1_S_SHIFT;
5668
5669 #ifndef ARM32_NEW_VM_LAYOUT
5670 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5671 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5672 #endif
5673
5674 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5675
5676 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5677 #ifdef ARM32_NEW_VM_LAYOUT
5678 PTE_SYNC(&pde[slot]);
5679 #else
5680 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5681 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5682 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5683 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5684 #endif
5685
5686 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5687 }
5688
5689 /*
5690 * pmap_map_chunk:
5691 *
5692 * Map a chunk of memory using the most efficient mappings
5693 * possible (section, large page, small page) into the
5694 * provided L1 and L2 tables at the specified virtual address.
5695 */
5696 vsize_t
5697 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5698 int prot, int cache)
5699 {
5700 pd_entry_t *pde = (pd_entry_t *) l1pt;
5701 pt_entry_t *pte, f1, f2s, f2l;
5702 vsize_t resid;
5703 int i;
5704
5705 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5706
5707 if (l1pt == 0)
5708 panic("pmap_map_chunk: no L1 table provided");
5709
5710 #ifdef VERBOSE_INIT_ARM
5711 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5712 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5713 #endif
5714
5715 switch (cache) {
5716 case PTE_NOCACHE:
5717 default:
5718 f1 = 0;
5719 f2l = 0;
5720 f2s = 0;
5721 break;
5722
5723 case PTE_CACHE:
5724 f1 = pte_l1_s_cache_mode;
5725 f2l = pte_l2_l_cache_mode;
5726 f2s = pte_l2_s_cache_mode;
5727 break;
5728
5729 case PTE_PAGETABLE:
5730 f1 = pte_l1_s_cache_mode_pt;
5731 f2l = pte_l2_l_cache_mode_pt;
5732 f2s = pte_l2_s_cache_mode_pt;
5733 break;
5734 }
5735
5736 size = resid;
5737
5738 while (resid > 0) {
5739 /* See if we can use a section mapping. */
5740 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5741 #ifdef VERBOSE_INIT_ARM
5742 printf("S");
5743 #endif
5744 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5745 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5746 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5747 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5748 va += L1_S_SIZE;
5749 pa += L1_S_SIZE;
5750 resid -= L1_S_SIZE;
5751 continue;
5752 }
5753
5754 /*
5755 * Ok, we're going to use an L2 table. Make sure
5756 * one is actually in the corresponding L1 slot
5757 * for the current VA.
5758 */
5759 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5760 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5761
5762 #ifndef ARM32_NEW_VM_LAYOUT
5763 pte = (pt_entry_t *)
5764 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5765 #else
5766 pte = (pt_entry_t *) kernel_pt_lookup(
5767 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5768 #endif
5769 if (pte == NULL)
5770 panic("pmap_map_chunk: can't find L2 table for VA"
5771 "0x%08lx", va);
5772
5773 /* See if we can use a L2 large page mapping. */
5774 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5775 #ifdef VERBOSE_INIT_ARM
5776 printf("L");
5777 #endif
5778 for (i = 0; i < 16; i++) {
5779 #ifndef ARM32_NEW_VM_LAYOUT
5780 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5781 L2_L_PROTO | pa |
5782 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5783 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5784 #else
5785 pte[l2pte_index(va) + i] =
5786 L2_L_PROTO | pa |
5787 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5788 PTE_SYNC(&pte[l2pte_index(va) + i]);
5789 #endif
5790 }
5791 va += L2_L_SIZE;
5792 pa += L2_L_SIZE;
5793 resid -= L2_L_SIZE;
5794 continue;
5795 }
5796
5797 /* Use a small page mapping. */
5798 #ifdef VERBOSE_INIT_ARM
5799 printf("P");
5800 #endif
5801 #ifndef ARM32_NEW_VM_LAYOUT
5802 pte[(va >> PGSHIFT) & 0x3ff] =
5803 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5804 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5805 #else
5806 pte[l2pte_index(va)] =
5807 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5808 PTE_SYNC(&pte[l2pte_index(va)]);
5809 #endif
5810 va += PAGE_SIZE;
5811 pa += PAGE_SIZE;
5812 resid -= PAGE_SIZE;
5813 }
5814 #ifdef VERBOSE_INIT_ARM
5815 printf("\n");
5816 #endif
5817 return (size);
5818 }
5819
5820 /********************** Static device map routines ***************************/
5821
5822 static const struct pmap_devmap *pmap_devmap_table;
5823
5824 /*
5825 * Register the devmap table. This is provided in case early console
5826 * initialization needs to register mappings created by bootstrap code
5827 * before pmap_devmap_bootstrap() is called.
5828 */
5829 void
5830 pmap_devmap_register(const struct pmap_devmap *table)
5831 {
5832
5833 pmap_devmap_table = table;
5834 }
5835
5836 /*
5837 * Map all of the static regions in the devmap table, and remember
5838 * the devmap table so other parts of the kernel can look up entries
5839 * later.
5840 */
5841 void
5842 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5843 {
5844 int i;
5845
5846 pmap_devmap_table = table;
5847
5848 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5849 #ifdef VERBOSE_INIT_ARM
5850 printf("devmap: %08lx -> %08lx @ %08lx\n",
5851 pmap_devmap_table[i].pd_pa,
5852 pmap_devmap_table[i].pd_pa +
5853 pmap_devmap_table[i].pd_size - 1,
5854 pmap_devmap_table[i].pd_va);
5855 #endif
5856 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5857 pmap_devmap_table[i].pd_pa,
5858 pmap_devmap_table[i].pd_size,
5859 pmap_devmap_table[i].pd_prot,
5860 pmap_devmap_table[i].pd_cache);
5861 }
5862 }
5863
5864 const struct pmap_devmap *
5865 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5866 {
5867 uint64_t endpa;
5868 int i;
5869
5870 if (pmap_devmap_table == NULL)
5871 return (NULL);
5872
5873 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5874
5875 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5876 if (pa >= pmap_devmap_table[i].pd_pa &&
5877 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5878 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5879 return (&pmap_devmap_table[i]);
5880 }
5881
5882 return (NULL);
5883 }
5884
5885 const struct pmap_devmap *
5886 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5887 {
5888 int i;
5889
5890 if (pmap_devmap_table == NULL)
5891 return (NULL);
5892
5893 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5894 if (va >= pmap_devmap_table[i].pd_va &&
5895 va + size - 1 <= pmap_devmap_table[i].pd_va +
5896 pmap_devmap_table[i].pd_size - 1)
5897 return (&pmap_devmap_table[i]);
5898 }
5899
5900 return (NULL);
5901 }
5902
5903 /********************** PTE initialization routines **************************/
5904
5905 /*
5906 * These routines are called when the CPU type is identified to set up
5907 * the PTE prototypes, cache modes, etc.
5908 *
5909 * The variables are always here, just in case modules need to reference
5910 * them (though, they shouldn't).
5911 */
5912
5913 pt_entry_t pte_l1_s_cache_mode;
5914 pt_entry_t pte_l1_s_cache_mode_pt;
5915 pt_entry_t pte_l1_s_cache_mask;
5916
5917 pt_entry_t pte_l2_l_cache_mode;
5918 pt_entry_t pte_l2_l_cache_mode_pt;
5919 pt_entry_t pte_l2_l_cache_mask;
5920
5921 pt_entry_t pte_l2_s_cache_mode;
5922 pt_entry_t pte_l2_s_cache_mode_pt;
5923 pt_entry_t pte_l2_s_cache_mask;
5924
5925 pt_entry_t pte_l2_s_prot_u;
5926 pt_entry_t pte_l2_s_prot_w;
5927 pt_entry_t pte_l2_s_prot_mask;
5928
5929 pt_entry_t pte_l1_s_proto;
5930 pt_entry_t pte_l1_c_proto;
5931 pt_entry_t pte_l2_s_proto;
5932
5933 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5934 void (*pmap_zero_page_func)(paddr_t);
5935
5936 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5937 void
5938 pmap_pte_init_generic(void)
5939 {
5940
5941 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5942 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5943
5944 pte_l2_l_cache_mode = L2_B|L2_C;
5945 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5946
5947 pte_l2_s_cache_mode = L2_B|L2_C;
5948 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5949
5950 /*
5951 * If we have a write-through cache, set B and C. If
5952 * we have a write-back cache, then we assume setting
5953 * only C will make those pages write-through.
5954 */
5955 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5956 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5957 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5958 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5959 } else {
5960 #if ARM_MMU_V6 > 1
5961 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5962 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5963 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5964 #else
5965 pte_l1_s_cache_mode_pt = L1_S_C;
5966 pte_l2_l_cache_mode_pt = L2_C;
5967 pte_l2_s_cache_mode_pt = L2_C;
5968 #endif
5969 }
5970
5971 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5972 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5973 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5974
5975 pte_l1_s_proto = L1_S_PROTO_generic;
5976 pte_l1_c_proto = L1_C_PROTO_generic;
5977 pte_l2_s_proto = L2_S_PROTO_generic;
5978
5979 pmap_copy_page_func = pmap_copy_page_generic;
5980 pmap_zero_page_func = pmap_zero_page_generic;
5981 }
5982
5983 #if defined(CPU_ARM8)
5984 void
5985 pmap_pte_init_arm8(void)
5986 {
5987
5988 /*
5989 * ARM8 is compatible with generic, but we need to use
5990 * the page tables uncached.
5991 */
5992 pmap_pte_init_generic();
5993
5994 pte_l1_s_cache_mode_pt = 0;
5995 pte_l2_l_cache_mode_pt = 0;
5996 pte_l2_s_cache_mode_pt = 0;
5997 }
5998 #endif /* CPU_ARM8 */
5999
6000 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6001 void
6002 pmap_pte_init_arm9(void)
6003 {
6004
6005 /*
6006 * ARM9 is compatible with generic, but we want to use
6007 * write-through caching for now.
6008 */
6009 pmap_pte_init_generic();
6010
6011 pte_l1_s_cache_mode = L1_S_C;
6012 pte_l2_l_cache_mode = L2_C;
6013 pte_l2_s_cache_mode = L2_C;
6014
6015 pte_l1_s_cache_mode_pt = L1_S_C;
6016 pte_l2_l_cache_mode_pt = L2_C;
6017 pte_l2_s_cache_mode_pt = L2_C;
6018 }
6019 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6020 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6021
6022 #if defined(CPU_ARM10)
6023 void
6024 pmap_pte_init_arm10(void)
6025 {
6026
6027 /*
6028 * ARM10 is compatible with generic, but we want to use
6029 * write-through caching for now.
6030 */
6031 pmap_pte_init_generic();
6032
6033 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6034 pte_l2_l_cache_mode = L2_B | L2_C;
6035 pte_l2_s_cache_mode = L2_B | L2_C;
6036
6037 pte_l1_s_cache_mode_pt = L1_S_C;
6038 pte_l2_l_cache_mode_pt = L2_C;
6039 pte_l2_s_cache_mode_pt = L2_C;
6040
6041 }
6042 #endif /* CPU_ARM10 */
6043
6044 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6045 void
6046 pmap_pte_init_arm11(void)
6047 {
6048
6049 /*
6050 * ARM11 is compatible with generic, but we want to use
6051 * write-through caching for now.
6052 */
6053 pmap_pte_init_generic();
6054
6055 pte_l1_s_cache_mode = L1_S_C;
6056 pte_l2_l_cache_mode = L2_C;
6057 pte_l2_s_cache_mode = L2_C;
6058
6059 pte_l1_s_cache_mode_pt = L1_S_C;
6060 pte_l2_l_cache_mode_pt = L2_C;
6061 pte_l2_s_cache_mode_pt = L2_C;
6062 }
6063 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6064
6065 #if ARM_MMU_SA1 == 1
6066 void
6067 pmap_pte_init_sa1(void)
6068 {
6069
6070 /*
6071 * The StrongARM SA-1 cache does not have a write-through
6072 * mode. So, do the generic initialization, then reset
6073 * the page table cache mode to B=1,C=1, and note that
6074 * the PTEs need to be sync'd.
6075 */
6076 pmap_pte_init_generic();
6077
6078 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6079 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6080 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6081
6082 pmap_needs_pte_sync = 1;
6083 }
6084 #endif /* ARM_MMU_SA1 == 1*/
6085
6086 #if ARM_MMU_XSCALE == 1
6087 #if (ARM_NMMUS > 1)
6088 static u_int xscale_use_minidata;
6089 #endif
6090
6091 void
6092 pmap_pte_init_xscale(void)
6093 {
6094 uint32_t auxctl;
6095 int write_through = 0;
6096
6097 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6098 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6099
6100 pte_l2_l_cache_mode = L2_B|L2_C;
6101 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6102
6103 pte_l2_s_cache_mode = L2_B|L2_C;
6104 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6105
6106 pte_l1_s_cache_mode_pt = L1_S_C;
6107 pte_l2_l_cache_mode_pt = L2_C;
6108 pte_l2_s_cache_mode_pt = L2_C;
6109
6110 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6111 /*
6112 * The XScale core has an enhanced mode where writes that
6113 * miss the cache cause a cache line to be allocated. This
6114 * is significantly faster than the traditional, write-through
6115 * behavior of this case.
6116 */
6117 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6118 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6119 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6120 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6121
6122 #ifdef XSCALE_CACHE_WRITE_THROUGH
6123 /*
6124 * Some versions of the XScale core have various bugs in
6125 * their cache units, the work-around for which is to run
6126 * the cache in write-through mode. Unfortunately, this
6127 * has a major (negative) impact on performance. So, we
6128 * go ahead and run fast-and-loose, in the hopes that we
6129 * don't line up the planets in a way that will trip the
6130 * bugs.
6131 *
6132 * However, we give you the option to be slow-but-correct.
6133 */
6134 write_through = 1;
6135 #elif defined(XSCALE_CACHE_WRITE_BACK)
6136 /* force write back cache mode */
6137 write_through = 0;
6138 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6139 /*
6140 * Intel PXA2[15]0 processors are known to have a bug in
6141 * write-back cache on revision 4 and earlier (stepping
6142 * A[01] and B[012]). Fixed for C0 and later.
6143 */
6144 {
6145 uint32_t id, type;
6146
6147 id = cpufunc_id();
6148 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6149
6150 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6151 if ((id & CPU_ID_REVISION_MASK) < 5) {
6152 /* write through for stepping A0-1 and B0-2 */
6153 write_through = 1;
6154 }
6155 }
6156 }
6157 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6158
6159 if (write_through) {
6160 pte_l1_s_cache_mode = L1_S_C;
6161 pte_l2_l_cache_mode = L2_C;
6162 pte_l2_s_cache_mode = L2_C;
6163 }
6164
6165 #if (ARM_NMMUS > 1)
6166 xscale_use_minidata = 1;
6167 #endif
6168
6169 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6170 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6171 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6172
6173 pte_l1_s_proto = L1_S_PROTO_xscale;
6174 pte_l1_c_proto = L1_C_PROTO_xscale;
6175 pte_l2_s_proto = L2_S_PROTO_xscale;
6176
6177 pmap_copy_page_func = pmap_copy_page_xscale;
6178 pmap_zero_page_func = pmap_zero_page_xscale;
6179
6180 /*
6181 * Disable ECC protection of page table access, for now.
6182 */
6183 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6184 auxctl &= ~XSCALE_AUXCTL_P;
6185 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6186 }
6187
6188 /*
6189 * xscale_setup_minidata:
6190 *
6191 * Set up the mini-data cache clean area. We require the
6192 * caller to allocate the right amount of physically and
6193 * virtually contiguous space.
6194 */
6195 void
6196 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6197 {
6198 extern vaddr_t xscale_minidata_clean_addr;
6199 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6200 pd_entry_t *pde = (pd_entry_t *) l1pt;
6201 pt_entry_t *pte;
6202 vsize_t size;
6203 uint32_t auxctl;
6204
6205 xscale_minidata_clean_addr = va;
6206
6207 /* Round it to page size. */
6208 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6209
6210 for (; size != 0;
6211 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6212 #ifndef ARM32_NEW_VM_LAYOUT
6213 pte = (pt_entry_t *)
6214 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6215 #else
6216 pte = (pt_entry_t *) kernel_pt_lookup(
6217 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6218 #endif
6219 if (pte == NULL)
6220 panic("xscale_setup_minidata: can't find L2 table for "
6221 "VA 0x%08lx", va);
6222 #ifndef ARM32_NEW_VM_LAYOUT
6223 pte[(va >> PGSHIFT) & 0x3ff] =
6224 #else
6225 pte[l2pte_index(va)] =
6226 #endif
6227 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6228 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6229 }
6230
6231 /*
6232 * Configure the mini-data cache for write-back with
6233 * read/write-allocate.
6234 *
6235 * NOTE: In order to reconfigure the mini-data cache, we must
6236 * make sure it contains no valid data! In order to do that,
6237 * we must issue a global data cache invalidate command!
6238 *
6239 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6240 * THIS IS VERY IMPORTANT!
6241 */
6242
6243 /* Invalidate data and mini-data. */
6244 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6245 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6246 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6247 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6248 }
6249
6250 /*
6251 * Change the PTEs for the specified kernel mappings such that they
6252 * will use the mini data cache instead of the main data cache.
6253 */
6254 void
6255 pmap_uarea(vaddr_t va)
6256 {
6257 struct l2_bucket *l2b;
6258 pt_entry_t *ptep, *sptep, pte;
6259 vaddr_t next_bucket, eva;
6260
6261 #if (ARM_NMMUS > 1)
6262 if (xscale_use_minidata == 0)
6263 return;
6264 #endif
6265
6266 eva = va + USPACE;
6267
6268 while (va < eva) {
6269 next_bucket = L2_NEXT_BUCKET(va);
6270 if (next_bucket > eva)
6271 next_bucket = eva;
6272
6273 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6274 KDASSERT(l2b != NULL);
6275
6276 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6277
6278 while (va < next_bucket) {
6279 pte = *ptep;
6280 if (!l2pte_minidata(pte)) {
6281 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6282 cpu_tlb_flushD_SE(va);
6283 *ptep = pte & ~L2_B;
6284 }
6285 ptep++;
6286 va += PAGE_SIZE;
6287 }
6288 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6289 }
6290 cpu_cpwait();
6291 }
6292 #endif /* ARM_MMU_XSCALE == 1 */
6293
6294 /*
6295 * return the PA of the current L1 table, for use when handling a crash dump
6296 */
6297 uint32_t pmap_kernel_L1_addr(void)
6298 {
6299 return pmap_kernel()->pm_l1->l1_physaddr;
6300 }
6301
6302 #if defined(DDB)
6303 /*
6304 * A couple of ddb-callable functions for dumping pmaps
6305 */
6306 void pmap_dump_all(void);
6307 void pmap_dump(pmap_t);
6308
6309 void
6310 pmap_dump_all(void)
6311 {
6312 pmap_t pm;
6313
6314 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6315 if (pm == pmap_kernel())
6316 continue;
6317 pmap_dump(pm);
6318 printf("\n");
6319 }
6320 }
6321
6322 static pt_entry_t ncptes[64];
6323 static void pmap_dump_ncpg(pmap_t);
6324
6325 void
6326 pmap_dump(pmap_t pm)
6327 {
6328 struct l2_dtable *l2;
6329 struct l2_bucket *l2b;
6330 pt_entry_t *ptep, pte;
6331 vaddr_t l2_va, l2b_va, va;
6332 int i, j, k, occ, rows = 0;
6333
6334 if (pm == pmap_kernel())
6335 printf("pmap_kernel (%p): ", pm);
6336 else
6337 printf("user pmap (%p): ", pm);
6338
6339 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6340
6341 l2_va = 0;
6342 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6343 l2 = pm->pm_l2[i];
6344
6345 if (l2 == NULL || l2->l2_occupancy == 0)
6346 continue;
6347
6348 l2b_va = l2_va;
6349 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6350 l2b = &l2->l2_bucket[j];
6351
6352 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6353 continue;
6354
6355 ptep = l2b->l2b_kva;
6356
6357 for (k = 0; k < 256 && ptep[k] == 0; k++)
6358 ;
6359
6360 k &= ~63;
6361 occ = l2b->l2b_occupancy;
6362 va = l2b_va + (k * 4096);
6363 for (; k < 256; k++, va += 0x1000) {
6364 char ch = ' ';
6365 if ((k % 64) == 0) {
6366 if ((rows % 8) == 0) {
6367 printf(
6368 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6369 }
6370 printf("%08lx: ", va);
6371 }
6372
6373 ncptes[k & 63] = 0;
6374 pte = ptep[k];
6375 if (pte == 0) {
6376 ch = '.';
6377 } else {
6378 occ--;
6379 switch (pte & 0x0c) {
6380 case 0x00:
6381 ch = 'D'; /* No cache No buff */
6382 break;
6383 case 0x04:
6384 ch = 'B'; /* No cache buff */
6385 break;
6386 case 0x08:
6387 if (pte & 0x40)
6388 ch = 'm';
6389 else
6390 ch = 'C'; /* Cache No buff */
6391 break;
6392 case 0x0c:
6393 ch = 'F'; /* Cache Buff */
6394 break;
6395 }
6396
6397 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6398 ch += 0x20;
6399
6400 if ((pte & 0xc) == 0)
6401 ncptes[k & 63] = pte;
6402 }
6403
6404 if ((k % 64) == 63) {
6405 rows++;
6406 printf("%c\n", ch);
6407 pmap_dump_ncpg(pm);
6408 if (occ == 0)
6409 break;
6410 } else
6411 printf("%c", ch);
6412 }
6413 }
6414 }
6415 }
6416
6417 static void
6418 pmap_dump_ncpg(pmap_t pm)
6419 {
6420 struct vm_page *pg;
6421 struct vm_page_md *md;
6422 struct pv_entry *pv;
6423 int i;
6424
6425 for (i = 0; i < 63; i++) {
6426 if (ncptes[i] == 0)
6427 continue;
6428
6429 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6430 if (pg == NULL)
6431 continue;
6432 md = VM_PAGE_TO_MD(pg);
6433
6434 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6435 VM_PAGE_TO_PHYS(pg),
6436 md->krw_mappings, md->kro_mappings,
6437 md->urw_mappings, md->uro_mappings);
6438
6439 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6440 printf(" %c va 0x%08lx, flags 0x%x\n",
6441 (pm == pv->pv_pmap) ? '*' : ' ',
6442 pv->pv_va, pv->pv_flags);
6443 }
6444 }
6445 }
6446 #endif
6447
6448 #ifdef PMAP_STEAL_MEMORY
6449 void
6450 pmap_boot_pageadd(pv_addr_t *newpv)
6451 {
6452 pv_addr_t *pv, *npv;
6453
6454 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6455 if (newpv->pv_pa < pv->pv_va) {
6456 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6457 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6458 newpv->pv_size += pv->pv_size;
6459 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6460 }
6461 pv = NULL;
6462 } else {
6463 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6464 pv = npv) {
6465 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6466 KASSERT(pv->pv_pa < newpv->pv_pa);
6467 if (newpv->pv_pa > npv->pv_pa)
6468 continue;
6469 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6470 pv->pv_size += newpv->pv_size;
6471 return;
6472 }
6473 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6474 break;
6475 newpv->pv_size += npv->pv_size;
6476 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6477 SLIST_REMOVE_AFTER(newpv, pv_list);
6478 return;
6479 }
6480 }
6481 }
6482
6483 if (pv) {
6484 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6485 } else {
6486 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6487 }
6488 }
6489
6490 void
6491 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6492 pv_addr_t *rpv)
6493 {
6494 pv_addr_t *pv, **pvp;
6495 struct vm_physseg *ps;
6496 size_t i;
6497
6498 KASSERT(amount & PGOFSET);
6499 KASSERT((mask & PGOFSET) == 0);
6500 KASSERT((match & PGOFSET) == 0);
6501 KASSERT(amount != 0);
6502
6503 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6504 (pv = *pvp) != NULL;
6505 pvp = &SLIST_NEXT(pv, pv_list)) {
6506 pv_addr_t *newpv;
6507 psize_t off;
6508 /*
6509 * If this entry is too small to satify the request...
6510 */
6511 KASSERT(pv->pv_size > 0);
6512 if (pv->pv_size < amount)
6513 continue;
6514
6515 for (off = 0; off <= mask; off += PAGE_SIZE) {
6516 if (((pv->pv_pa + off) & mask) == match
6517 && off + amount <= pv->pv_size)
6518 break;
6519 }
6520 if (off > mask)
6521 continue;
6522
6523 rpv->pv_va = pv->pv_va + off;
6524 rpv->pv_pa = pv->pv_pa + off;
6525 rpv->pv_size = amount;
6526 pv->pv_size -= amount;
6527 if (pv->pv_size == 0) {
6528 KASSERT(off == 0);
6529 KASSERT((vaddr_t) pv == rpv->pv_va);
6530 *pvp = SLIST_NEXT(pv, pv_list);
6531 } else if (off == 0) {
6532 KASSERT((vaddr_t) pv == rpv->pv_va);
6533 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6534 *newpv = *pv;
6535 newpv->pv_pa += amount;
6536 newpv->pv_va += amount;
6537 *pvp = newpv;
6538 } else if (off < pv->pv_size) {
6539 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6540 *newpv = *pv;
6541 newpv->pv_size -= off;
6542 newpv->pv_pa += off + amount;
6543 newpv->pv_va += off + amount;
6544
6545 SLIST_NEXT(pv, pv_list) = newpv;
6546 pv->pv_size = off;
6547 } else {
6548 KASSERT((vaddr_t) pv != rpv->pv_va);
6549 }
6550 memset((void *)rpv->pv_va, 0, amount);
6551 return;
6552 }
6553
6554 if (vm_nphysseg == 0)
6555 panic("pmap_boot_pagealloc: couldn't allocate memory");
6556
6557 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6558 (pv = *pvp) != NULL;
6559 pvp = &SLIST_NEXT(pv, pv_list)) {
6560 if (SLIST_NEXT(pv, pv_list) == NULL)
6561 break;
6562 }
6563 KASSERT(mask == 0);
6564 for (i = 0; i < vm_nphysseg; i++) {
6565 ps = vm_physmem_ptrs[i];
6566 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6567 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6568 rpv->pv_va = pv->pv_va;
6569 rpv->pv_pa = pv->pv_pa;
6570 rpv->pv_size = amount;
6571 *pvp = NULL;
6572 pmap_map_chunk(kernel_l1pt.pv_va,
6573 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6574 ptoa(ps->avail_start),
6575 amount - pv->pv_size,
6576 VM_PROT_READ|VM_PROT_WRITE,
6577 PTE_CACHE);
6578 ps->avail_start += atop(amount - pv->pv_size);
6579 /*
6580 * If we consumed the entire physseg, remove it.
6581 */
6582 if (ps->avail_start == ps->avail_end) {
6583 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6584 ps[0] = ps[1];
6585 }
6586 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6587 return;
6588 }
6589 }
6590
6591 panic("pmap_boot_pagealloc: couldn't allocate memory");
6592 }
6593
6594 vaddr_t
6595 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6596 {
6597 pv_addr_t pv;
6598
6599 pmap_boot_pagealloc(size, 0, 0, &pv);
6600
6601 return pv.pv_va;
6602 }
6603 #endif /* PMAP_STEAL_MEMORY */
6604
6605 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6606 {
6607 sysctl_createv(clog, 0, NULL, NULL,
6608 CTLFLAG_PERMANENT,
6609 CTLTYPE_NODE, "machdep", NULL,
6610 NULL, 0, NULL, 0,
6611 CTL_MACHDEP, CTL_EOL);
6612
6613 sysctl_createv(clog, 0, NULL, NULL,
6614 CTLFLAG_PERMANENT,
6615 CTLTYPE_INT, "kmpages",
6616 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6617 NULL, 0, &pmap_kmpages, 0,
6618 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6619 }
6620