pmap.c revision 1.211.2.15 1 /* $NetBSD: pmap.c,v 1.211.2.15 2010/08/17 06:44:02 uebayasi Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194 #include "opt_xip.h"
195
196 #include <sys/param.h>
197 #include <sys/types.h>
198 #include <sys/kernel.h>
199 #include <sys/systm.h>
200 #include <sys/proc.h>
201 #include <sys/malloc.h>
202 #include <sys/pool.h>
203 #include <sys/cdefs.h>
204 #include <sys/cpu.h>
205 #include <sys/sysctl.h>
206
207 #include <uvm/uvm.h>
208
209 #include <machine/bus.h>
210 #include <machine/pmap.h>
211 #include <machine/pcb.h>
212 #include <machine/param.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.211.2.15 2010/08/17 06:44:02 uebayasi Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260
261 /*
262 * Which pmap is currently 'live' in the cache
263 *
264 * XXXSCW: Fix for SMP ...
265 */
266 static pmap_t pmap_recent_user;
267
268 /*
269 * Pointer to last active lwp, or NULL if it exited.
270 */
271 struct lwp *pmap_previous_active_lwp;
272
273 /*
274 * Pool and cache that pmap structures are allocated from.
275 * We use a cache to avoid clearing the pm_l2[] array (1KB)
276 * in pmap_create().
277 */
278 static struct pool_cache pmap_cache;
279 static LIST_HEAD(, pmap) pmap_pmaps;
280
281 /*
282 * Pool of PV structures
283 */
284 static struct pool pmap_pv_pool;
285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
288 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
289 };
290
291 /*
292 * Pool and cache of l2_dtable structures.
293 * We use a cache to avoid clearing the structures when they're
294 * allocated. (196 bytes)
295 */
296 static struct pool_cache pmap_l2dtable_cache;
297 static vaddr_t pmap_kernel_l2dtable_kva;
298
299 /*
300 * Pool and cache of L2 page descriptors.
301 * We use a cache to avoid clearing the descriptor table
302 * when they're allocated. (1KB)
303 */
304 static struct pool_cache pmap_l2ptp_cache;
305 static vaddr_t pmap_kernel_l2ptp_kva;
306 static paddr_t pmap_kernel_l2ptp_phys;
307
308 #ifdef PMAPCOUNTERS
309 #define PMAP_EVCNT_INITIALIZER(name) \
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
311
312 #ifdef PMAP_CACHE_VIPT
313 static struct evcnt pmap_ev_vac_clean_one =
314 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
315 static struct evcnt pmap_ev_vac_flush_one =
316 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
317 static struct evcnt pmap_ev_vac_flush_lots =
318 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
319 static struct evcnt pmap_ev_vac_flush_lots2 =
320 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
325
326 static struct evcnt pmap_ev_vac_color_new =
327 PMAP_EVCNT_INITIALIZER("new page color");
328 static struct evcnt pmap_ev_vac_color_reuse =
329 PMAP_EVCNT_INITIALIZER("ok first page color");
330 static struct evcnt pmap_ev_vac_color_ok =
331 PMAP_EVCNT_INITIALIZER("ok page color");
332 static struct evcnt pmap_ev_vac_color_blind =
333 PMAP_EVCNT_INITIALIZER("blind page color");
334 static struct evcnt pmap_ev_vac_color_change =
335 PMAP_EVCNT_INITIALIZER("change page color");
336 static struct evcnt pmap_ev_vac_color_erase =
337 PMAP_EVCNT_INITIALIZER("erase page color");
338 static struct evcnt pmap_ev_vac_color_none =
339 PMAP_EVCNT_INITIALIZER("no page color");
340 static struct evcnt pmap_ev_vac_color_restore =
341 PMAP_EVCNT_INITIALIZER("restore page color");
342
343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
351 #endif
352
353 static struct evcnt pmap_ev_mappings =
354 PMAP_EVCNT_INITIALIZER("pages mapped");
355 static struct evcnt pmap_ev_unmappings =
356 PMAP_EVCNT_INITIALIZER("pages unmapped");
357 static struct evcnt pmap_ev_remappings =
358 PMAP_EVCNT_INITIALIZER("pages remapped");
359
360 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
361 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
362 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
363
364 static struct evcnt pmap_ev_kernel_mappings =
365 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
366 static struct evcnt pmap_ev_kernel_unmappings =
367 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
368 static struct evcnt pmap_ev_kernel_remappings =
369 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
370
371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
374
375 static struct evcnt pmap_ev_kenter_mappings =
376 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
377 static struct evcnt pmap_ev_kenter_unmappings =
378 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
379 static struct evcnt pmap_ev_kenter_remappings =
380 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
381 static struct evcnt pmap_ev_pt_mappings =
382 PMAP_EVCNT_INITIALIZER("page table pages mapped");
383
384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
387 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
388
389 #ifdef PMAP_CACHE_VIPT
390 static struct evcnt pmap_ev_exec_mappings =
391 PMAP_EVCNT_INITIALIZER("exec pages mapped");
392 static struct evcnt pmap_ev_exec_cached =
393 PMAP_EVCNT_INITIALIZER("exec pages cached");
394
395 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
396 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
397
398 static struct evcnt pmap_ev_exec_synced =
399 PMAP_EVCNT_INITIALIZER("exec pages synced");
400 static struct evcnt pmap_ev_exec_synced_map =
401 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
402 static struct evcnt pmap_ev_exec_synced_unmap =
403 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
404 static struct evcnt pmap_ev_exec_synced_remap =
405 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
406 static struct evcnt pmap_ev_exec_synced_clearbit =
407 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
408 static struct evcnt pmap_ev_exec_synced_kremove =
409 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
410
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
417
418 static struct evcnt pmap_ev_exec_discarded_unmap =
419 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
420 static struct evcnt pmap_ev_exec_discarded_zero =
421 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
422 static struct evcnt pmap_ev_exec_discarded_copy =
423 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
424 static struct evcnt pmap_ev_exec_discarded_page_protect =
425 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
426 static struct evcnt pmap_ev_exec_discarded_clearbit =
427 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
428 static struct evcnt pmap_ev_exec_discarded_kremove =
429 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
430
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
437 #endif /* PMAP_CACHE_VIPT */
438
439 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
440 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
441 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
442
443 EVCNT_ATTACH_STATIC(pmap_ev_updates);
444 EVCNT_ATTACH_STATIC(pmap_ev_collects);
445 EVCNT_ATTACH_STATIC(pmap_ev_activations);
446
447 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
448 #else
449 #define PMAPCOUNT(x) ((void)0)
450 #endif
451
452 /*
453 * pmap copy/zero page, and mem(5) hook point
454 */
455 static pt_entry_t *csrc_pte, *cdst_pte;
456 static vaddr_t csrcp, cdstp;
457 vaddr_t memhook; /* used by mem.c */
458 kmutex_t memlock; /* used by mem.c */
459 void *zeropage; /* used by mem.c */
460 extern void *msgbufaddr;
461 int pmap_kmpages;
462 /*
463 * Flag to indicate if pmap_init() has done its thing
464 */
465 bool pmap_initialized;
466
467 /*
468 * Misc. locking data structures
469 */
470
471 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
472 static struct lock pmap_main_lock;
473
474 #define PMAP_MAP_TO_HEAD_LOCK() \
475 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
476 #define PMAP_MAP_TO_HEAD_UNLOCK() \
477 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
478 #define PMAP_HEAD_TO_MAP_LOCK() \
479 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
480 #define PMAP_HEAD_TO_MAP_UNLOCK() \
481 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
482 #else
483 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
484 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
485 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
486 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
487 #endif
488
489 #define pmap_acquire_pmap_lock(pm) \
490 do { \
491 if ((pm) != pmap_kernel()) \
492 mutex_enter(&(pm)->pm_lock); \
493 } while (/*CONSTCOND*/0)
494
495 #define pmap_release_pmap_lock(pm) \
496 do { \
497 if ((pm) != pmap_kernel()) \
498 mutex_exit(&(pm)->pm_lock); \
499 } while (/*CONSTCOND*/0)
500
501
502 /*
503 * Metadata for L1 translation tables.
504 */
505 struct l1_ttable {
506 /* Entry on the L1 Table list */
507 SLIST_ENTRY(l1_ttable) l1_link;
508
509 /* Entry on the L1 Least Recently Used list */
510 TAILQ_ENTRY(l1_ttable) l1_lru;
511
512 /* Track how many domains are allocated from this L1 */
513 volatile u_int l1_domain_use_count;
514
515 /*
516 * A free-list of domain numbers for this L1.
517 * We avoid using ffs() and a bitmap to track domains since ffs()
518 * is slow on ARM.
519 */
520 u_int8_t l1_domain_first;
521 u_int8_t l1_domain_free[PMAP_DOMAINS];
522
523 /* Physical address of this L1 page table */
524 paddr_t l1_physaddr;
525
526 /* KVA of this L1 page table */
527 pd_entry_t *l1_kva;
528 };
529
530 /*
531 * Convert a virtual address into its L1 table index. That is, the
532 * index used to locate the L2 descriptor table pointer in an L1 table.
533 * This is basically used to index l1->l1_kva[].
534 *
535 * Each L2 descriptor table represents 1MB of VA space.
536 */
537 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
538
539 /*
540 * L1 Page Tables are tracked using a Least Recently Used list.
541 * - New L1s are allocated from the HEAD.
542 * - Freed L1s are added to the TAIl.
543 * - Recently accessed L1s (where an 'access' is some change to one of
544 * the userland pmaps which owns this L1) are moved to the TAIL.
545 */
546 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
547 static struct simplelock l1_lru_lock;
548
549 /*
550 * A list of all L1 tables
551 */
552 static SLIST_HEAD(, l1_ttable) l1_list;
553
554 /*
555 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
556 *
557 * This is normally 16MB worth L2 page descriptors for any given pmap.
558 * Reference counts are maintained for L2 descriptors so they can be
559 * freed when empty.
560 */
561 struct l2_dtable {
562 /* The number of L2 page descriptors allocated to this l2_dtable */
563 u_int l2_occupancy;
564
565 /* List of L2 page descriptors */
566 struct l2_bucket {
567 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
568 paddr_t l2b_phys; /* Physical address of same */
569 u_short l2b_l1idx; /* This L2 table's L1 index */
570 u_short l2b_occupancy; /* How many active descriptors */
571 } l2_bucket[L2_BUCKET_SIZE];
572 };
573
574 /*
575 * Given an L1 table index, calculate the corresponding l2_dtable index
576 * and bucket index within the l2_dtable.
577 */
578 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
579 (L2_SIZE - 1))
580 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
581
582 /*
583 * Given a virtual address, this macro returns the
584 * virtual address required to drop into the next L2 bucket.
585 */
586 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
587
588 /*
589 * L2 allocation.
590 */
591 #define pmap_alloc_l2_dtable() \
592 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
593 #define pmap_free_l2_dtable(l2) \
594 pool_cache_put(&pmap_l2dtable_cache, (l2))
595 #define pmap_alloc_l2_ptp(pap) \
596 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
597 PR_NOWAIT, (pap)))
598
599 /*
600 * We try to map the page tables write-through, if possible. However, not
601 * all CPUs have a write-through cache mode, so on those we have to sync
602 * the cache when we frob page tables.
603 *
604 * We try to evaluate this at compile time, if possible. However, it's
605 * not always possible to do that, hence this run-time var.
606 */
607 int pmap_needs_pte_sync;
608
609 /*
610 * Real definition of pv_entry.
611 */
612 struct pv_entry {
613 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
614 pmap_t pv_pmap; /* pmap where mapping lies */
615 vaddr_t pv_va; /* virtual address for mapping */
616 u_int pv_flags; /* flags */
617 };
618
619 /*
620 * Macro to determine if a mapping might be resident in the
621 * instruction cache and/or TLB
622 */
623 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
624 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
625
626 /*
627 * Macro to determine if a mapping might be resident in the
628 * data cache and/or TLB
629 */
630 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
631
632 /*
633 * Local prototypes
634 */
635 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
636 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
637 pt_entry_t **);
638 static bool pmap_is_current(pmap_t);
639 static bool pmap_is_cached(pmap_t);
640 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
641 pmap_t, vaddr_t, u_int);
642 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
643 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
644 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
645 u_int, u_int);
646
647 static void pmap_pinit(pmap_t);
648 static int pmap_pmap_ctor(void *, void *, int);
649
650 static void pmap_alloc_l1(pmap_t);
651 static void pmap_free_l1(pmap_t);
652 static void pmap_use_l1(pmap_t);
653
654 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
655 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
656 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
657 static int pmap_l2ptp_ctor(void *, void *, int);
658 static int pmap_l2dtable_ctor(void *, void *, int);
659
660 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
661 #ifdef PMAP_CACHE_VIVT
662 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
663 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 #endif
665
666 static void pmap_clearbit(struct vm_page *, u_int);
667 #ifdef PMAP_CACHE_VIVT
668 static int pmap_clean_page(struct pv_entry *, bool);
669 #endif
670 #ifdef PMAP_CACHE_VIPT
671 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
672 enum pmap_flush_op {
673 PMAP_FLUSH_PRIMARY,
674 PMAP_FLUSH_SECONDARY,
675 PMAP_CLEAN_PRIMARY
676 };
677 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
678 #endif
679 static void pmap_page_remove(struct vm_page *);
680
681 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
682 static vaddr_t kernel_pt_lookup(paddr_t);
683
684
685 /*
686 * External function prototypes
687 */
688 extern void bzero_page(vaddr_t);
689 extern void bcopy_page(vaddr_t, vaddr_t);
690
691 /*
692 * Misc variables
693 */
694 vaddr_t virtual_avail;
695 vaddr_t virtual_end;
696 vaddr_t pmap_curmaxkvaddr;
697
698 paddr_t avail_start;
699 paddr_t avail_end;
700
701 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
702 pv_addr_t kernelpages;
703 pv_addr_t kernel_l1pt;
704 pv_addr_t systempage;
705
706 /* Function to set the debug level of the pmap code */
707
708 #ifdef PMAP_DEBUG
709 void
710 pmap_debug(int level)
711 {
712 pmap_debug_level = level;
713 printf("pmap_debug: level=%d\n", pmap_debug_level);
714 }
715 #endif /* PMAP_DEBUG */
716
717 /*
718 * A bunch of routines to conditionally flush the caches/TLB depending
719 * on whether the specified pmap actually needs to be flushed at any
720 * given time.
721 */
722 static inline void
723 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
724 {
725
726 if (pm->pm_cstate.cs_tlb_id)
727 cpu_tlb_flushID_SE(va);
728 }
729
730 static inline void
731 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
732 {
733
734 if (pm->pm_cstate.cs_tlb_d)
735 cpu_tlb_flushD_SE(va);
736 }
737
738 static inline void
739 pmap_tlb_flushID(pmap_t pm)
740 {
741
742 if (pm->pm_cstate.cs_tlb_id) {
743 cpu_tlb_flushID();
744 pm->pm_cstate.cs_tlb = 0;
745 }
746 }
747
748 static inline void
749 pmap_tlb_flushD(pmap_t pm)
750 {
751
752 if (pm->pm_cstate.cs_tlb_d) {
753 cpu_tlb_flushD();
754 pm->pm_cstate.cs_tlb_d = 0;
755 }
756 }
757
758 #ifdef PMAP_CACHE_VIVT
759 static inline void
760 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
761 {
762 if (pm->pm_cstate.cs_cache_id) {
763 cpu_idcache_wbinv_range(va, len);
764 }
765 }
766
767 static inline void
768 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
769 bool do_inv, bool rd_only)
770 {
771
772 if (pm->pm_cstate.cs_cache_d) {
773 if (do_inv) {
774 if (rd_only)
775 cpu_dcache_inv_range(va, len);
776 else
777 cpu_dcache_wbinv_range(va, len);
778 } else
779 if (!rd_only)
780 cpu_dcache_wb_range(va, len);
781 }
782 }
783
784 static inline void
785 pmap_idcache_wbinv_all(pmap_t pm)
786 {
787 if (pm->pm_cstate.cs_cache_id) {
788 cpu_idcache_wbinv_all();
789 pm->pm_cstate.cs_cache = 0;
790 }
791 }
792
793 static inline void
794 pmap_dcache_wbinv_all(pmap_t pm)
795 {
796 if (pm->pm_cstate.cs_cache_d) {
797 cpu_dcache_wbinv_all();
798 pm->pm_cstate.cs_cache_d = 0;
799 }
800 }
801 #endif /* PMAP_CACHE_VIVT */
802
803 static inline bool
804 pmap_is_current(pmap_t pm)
805 {
806
807 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
808 return true;
809
810 return false;
811 }
812
813 static inline bool
814 pmap_is_cached(pmap_t pm)
815 {
816
817 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
818 pmap_recent_user == pm)
819 return (true);
820
821 return false;
822 }
823
824 /*
825 * PTE_SYNC_CURRENT:
826 *
827 * Make sure the pte is written out to RAM.
828 * We need to do this for one of two cases:
829 * - We're dealing with the kernel pmap
830 * - There is no pmap active in the cache/tlb.
831 * - The specified pmap is 'active' in the cache/tlb.
832 */
833 #ifdef PMAP_INCLUDE_PTE_SYNC
834 #define PTE_SYNC_CURRENT(pm, ptep) \
835 do { \
836 if (PMAP_NEEDS_PTE_SYNC && \
837 pmap_is_cached(pm)) \
838 PTE_SYNC(ptep); \
839 } while (/*CONSTCOND*/0)
840 #else
841 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
842 #endif
843
844 /*
845 * main pv_entry manipulation functions:
846 * pmap_enter_pv: enter a mapping onto a vm_page list
847 * pmap_remove_pv: remove a mappiing from a vm_page list
848 *
849 * NOTE: pmap_enter_pv expects to lock the pvh itself
850 * pmap_remove_pv expects te caller to lock the pvh before calling
851 */
852
853 /*
854 * pmap_enter_pv: enter a mapping onto a vm_page lst
855 *
856 * => caller should hold the proper lock on pmap_main_lock
857 * => caller should have pmap locked
858 * => we will gain the lock on the vm_page and allocate the new pv_entry
859 * => caller should adjust ptp's wire_count before calling
860 * => caller should not adjust pmap's wire_count
861 */
862 static void
863 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
864 vaddr_t va, u_int flags)
865 {
866 struct pv_entry **pvp;
867
868 NPDEBUG(PDB_PVDUMP,
869 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
870
871 pv->pv_pmap = pm;
872 pv->pv_va = va;
873 pv->pv_flags = flags;
874
875 simple_lock(&md->pvh_slock); /* lock vm_page */
876 pvp = &SLIST_FIRST(&md->pvh_list);
877 #ifdef PMAP_CACHE_VIPT
878 /*
879 * Insert unmanaged entries, writeable first, at the head of
880 * the pv list.
881 */
882 if (__predict_true((flags & PVF_KENTRY) == 0)) {
883 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
884 pvp = &SLIST_NEXT(*pvp, pv_link);
885 } else if ((flags & PVF_WRITE) == 0) {
886 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
887 pvp = &SLIST_NEXT(*pvp, pv_link);
888 }
889 #endif
890 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
891 *pvp = pv; /* ... locked list */
892 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
893 #ifdef PMAP_CACHE_VIPT
894 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
895 md->pvh_attrs |= PVF_KMOD;
896 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
897 md->pvh_attrs |= PVF_DIRTY;
898 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
899 #endif
900 if (pm == pmap_kernel()) {
901 PMAPCOUNT(kernel_mappings);
902 if (flags & PVF_WRITE)
903 md->krw_mappings++;
904 else
905 md->kro_mappings++;
906 } else {
907 if (flags & PVF_WRITE)
908 md->urw_mappings++;
909 else
910 md->uro_mappings++;
911 }
912
913 #ifdef PMAP_CACHE_VIPT
914 /*
915 * If this is an exec mapping and its the first exec mapping
916 * for this page, make sure to sync the I-cache.
917 */
918 if (PV_IS_EXEC_P(flags)) {
919 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
920 pmap_syncicache_page(md, pa);
921 PMAPCOUNT(exec_synced_map);
922 }
923 PMAPCOUNT(exec_mappings);
924 }
925 #endif
926
927 PMAPCOUNT(mappings);
928 simple_unlock(&md->pvh_slock); /* unlock, done! */
929
930 if (pv->pv_flags & PVF_WIRED)
931 ++pm->pm_stats.wired_count;
932 }
933
934 /*
935 *
936 * pmap_find_pv: Find a pv entry
937 *
938 * => caller should hold lock on vm_page
939 */
940 static inline struct pv_entry *
941 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
942 {
943 struct pv_entry *pv;
944
945 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
946 if (pm == pv->pv_pmap && va == pv->pv_va)
947 break;
948 }
949
950 return (pv);
951 }
952
953 /*
954 * pmap_remove_pv: try to remove a mapping from a pv_list
955 *
956 * => caller should hold proper lock on pmap_main_lock
957 * => pmap should be locked
958 * => caller should hold lock on vm_page [so that attrs can be adjusted]
959 * => caller should adjust ptp's wire_count and free PTP if needed
960 * => caller should NOT adjust pmap's wire_count
961 * => we return the removed pv
962 */
963 static struct pv_entry *
964 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
965 {
966 struct pv_entry *pv, **prevptr;
967
968 NPDEBUG(PDB_PVDUMP,
969 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
970
971 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
972 pv = *prevptr;
973
974 while (pv) {
975 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
976 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
977 "%p\n", pm, md));
978 if (pv->pv_flags & PVF_WIRED) {
979 --pm->pm_stats.wired_count;
980 }
981 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
982 if (pm == pmap_kernel()) {
983 PMAPCOUNT(kernel_unmappings);
984 if (pv->pv_flags & PVF_WRITE)
985 md->krw_mappings--;
986 else
987 md->kro_mappings--;
988 } else {
989 if (pv->pv_flags & PVF_WRITE)
990 md->urw_mappings--;
991 else
992 md->uro_mappings--;
993 }
994
995 PMAPCOUNT(unmappings);
996 #ifdef PMAP_CACHE_VIPT
997 if (!(pv->pv_flags & PVF_WRITE))
998 break;
999 /*
1000 * If this page has had an exec mapping, then if
1001 * this was the last mapping, discard the contents,
1002 * otherwise sync the i-cache for this page.
1003 */
1004 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1005 if (SLIST_EMPTY(&md->pvh_list)) {
1006 md->pvh_attrs &= ~PVF_EXEC;
1007 PMAPCOUNT(exec_discarded_unmap);
1008 } else {
1009 pmap_syncicache_page(md, pa);
1010 PMAPCOUNT(exec_synced_unmap);
1011 }
1012 }
1013 #endif /* PMAP_CACHE_VIPT */
1014 break;
1015 }
1016 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1017 pv = *prevptr; /* advance */
1018 }
1019
1020 #ifdef PMAP_CACHE_VIPT
1021 /*
1022 * If we no longer have a WRITEABLE KENTRY at the head of list,
1023 * clear the KMOD attribute from the page.
1024 */
1025 if (SLIST_FIRST(&md->pvh_list) == NULL
1026 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1027 md->pvh_attrs &= ~PVF_KMOD;
1028
1029 /*
1030 * If this was a writeable page and there are no more writeable
1031 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1032 * the contents to memory.
1033 */
1034 if (md->krw_mappings + md->urw_mappings == 0)
1035 md->pvh_attrs &= ~PVF_WRITE;
1036 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1037 #endif /* PMAP_CACHE_VIPT */
1038
1039 return(pv); /* return removed pv */
1040 }
1041
1042 /*
1043 *
1044 * pmap_modify_pv: Update pv flags
1045 *
1046 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1047 * => caller should NOT adjust pmap's wire_count
1048 * => caller must call pmap_vac_me_harder() if writable status of a page
1049 * may have changed.
1050 * => we return the old flags
1051 *
1052 * Modify a physical-virtual mapping in the pv table
1053 */
1054 static u_int
1055 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1056 u_int clr_mask, u_int set_mask)
1057 {
1058 struct pv_entry *npv;
1059 u_int flags, oflags;
1060
1061 KASSERT((clr_mask & PVF_KENTRY) == 0);
1062 KASSERT((set_mask & PVF_KENTRY) == 0);
1063
1064 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1065 return (0);
1066
1067 NPDEBUG(PDB_PVDUMP,
1068 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1069
1070 /*
1071 * There is at least one VA mapping this page.
1072 */
1073
1074 if (clr_mask & (PVF_REF | PVF_MOD)) {
1075 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1076 #ifdef PMAP_CACHE_VIPT
1077 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1078 md->pvh_attrs |= PVF_DIRTY;
1079 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1080 #endif
1081 }
1082
1083 oflags = npv->pv_flags;
1084 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1085
1086 if ((flags ^ oflags) & PVF_WIRED) {
1087 if (flags & PVF_WIRED)
1088 ++pm->pm_stats.wired_count;
1089 else
1090 --pm->pm_stats.wired_count;
1091 }
1092
1093 if ((flags ^ oflags) & PVF_WRITE) {
1094 if (pm == pmap_kernel()) {
1095 if (flags & PVF_WRITE) {
1096 md->krw_mappings++;
1097 md->kro_mappings--;
1098 } else {
1099 md->kro_mappings++;
1100 md->krw_mappings--;
1101 }
1102 } else {
1103 if (flags & PVF_WRITE) {
1104 md->urw_mappings++;
1105 md->uro_mappings--;
1106 } else {
1107 md->uro_mappings++;
1108 md->urw_mappings--;
1109 }
1110 }
1111 }
1112 #ifdef PMAP_CACHE_VIPT
1113 if (md->urw_mappings + md->krw_mappings == 0)
1114 md->pvh_attrs &= ~PVF_WRITE;
1115 /*
1116 * We have two cases here: the first is from enter_pv (new exec
1117 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1118 * Since in latter, pmap_enter_pv won't do anything, we just have
1119 * to do what pmap_remove_pv would do.
1120 */
1121 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1122 || (PV_IS_EXEC_P(md->pvh_attrs)
1123 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1124 pmap_syncicache_page(md, pa);
1125 PMAPCOUNT(exec_synced_remap);
1126 }
1127 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1128 #endif
1129
1130 PMAPCOUNT(remappings);
1131
1132 return (oflags);
1133 }
1134
1135 /*
1136 * Allocate an L1 translation table for the specified pmap.
1137 * This is called at pmap creation time.
1138 */
1139 static void
1140 pmap_alloc_l1(pmap_t pm)
1141 {
1142 struct l1_ttable *l1;
1143 u_int8_t domain;
1144
1145 /*
1146 * Remove the L1 at the head of the LRU list
1147 */
1148 simple_lock(&l1_lru_lock);
1149 l1 = TAILQ_FIRST(&l1_lru_list);
1150 KDASSERT(l1 != NULL);
1151 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1152
1153 /*
1154 * Pick the first available domain number, and update
1155 * the link to the next number.
1156 */
1157 domain = l1->l1_domain_first;
1158 l1->l1_domain_first = l1->l1_domain_free[domain];
1159
1160 /*
1161 * If there are still free domain numbers in this L1,
1162 * put it back on the TAIL of the LRU list.
1163 */
1164 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1165 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1166
1167 simple_unlock(&l1_lru_lock);
1168
1169 /*
1170 * Fix up the relevant bits in the pmap structure
1171 */
1172 pm->pm_l1 = l1;
1173 pm->pm_domain = domain;
1174 }
1175
1176 /*
1177 * Free an L1 translation table.
1178 * This is called at pmap destruction time.
1179 */
1180 static void
1181 pmap_free_l1(pmap_t pm)
1182 {
1183 struct l1_ttable *l1 = pm->pm_l1;
1184
1185 simple_lock(&l1_lru_lock);
1186
1187 /*
1188 * If this L1 is currently on the LRU list, remove it.
1189 */
1190 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1191 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1192
1193 /*
1194 * Free up the domain number which was allocated to the pmap
1195 */
1196 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1197 l1->l1_domain_first = pm->pm_domain;
1198 l1->l1_domain_use_count--;
1199
1200 /*
1201 * The L1 now must have at least 1 free domain, so add
1202 * it back to the LRU list. If the use count is zero,
1203 * put it at the head of the list, otherwise it goes
1204 * to the tail.
1205 */
1206 if (l1->l1_domain_use_count == 0)
1207 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1208 else
1209 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1210
1211 simple_unlock(&l1_lru_lock);
1212 }
1213
1214 static inline void
1215 pmap_use_l1(pmap_t pm)
1216 {
1217 struct l1_ttable *l1;
1218
1219 /*
1220 * Do nothing if we're in interrupt context.
1221 * Access to an L1 by the kernel pmap must not affect
1222 * the LRU list.
1223 */
1224 if (cpu_intr_p() || pm == pmap_kernel())
1225 return;
1226
1227 l1 = pm->pm_l1;
1228
1229 /*
1230 * If the L1 is not currently on the LRU list, just return
1231 */
1232 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1233 return;
1234
1235 simple_lock(&l1_lru_lock);
1236
1237 /*
1238 * Check the use count again, now that we've acquired the lock
1239 */
1240 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1241 simple_unlock(&l1_lru_lock);
1242 return;
1243 }
1244
1245 /*
1246 * Move the L1 to the back of the LRU list
1247 */
1248 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1249 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1250
1251 simple_unlock(&l1_lru_lock);
1252 }
1253
1254 /*
1255 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1256 *
1257 * Free an L2 descriptor table.
1258 */
1259 static inline void
1260 #ifndef PMAP_INCLUDE_PTE_SYNC
1261 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1262 #else
1263 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1264 #endif
1265 {
1266 #ifdef PMAP_INCLUDE_PTE_SYNC
1267 #ifdef PMAP_CACHE_VIVT
1268 /*
1269 * Note: With a write-back cache, we may need to sync this
1270 * L2 table before re-using it.
1271 * This is because it may have belonged to a non-current
1272 * pmap, in which case the cache syncs would have been
1273 * skipped for the pages that were being unmapped. If the
1274 * L2 table were then to be immediately re-allocated to
1275 * the *current* pmap, it may well contain stale mappings
1276 * which have not yet been cleared by a cache write-back
1277 * and so would still be visible to the mmu.
1278 */
1279 if (need_sync)
1280 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1281 #endif /* PMAP_CACHE_VIVT */
1282 #endif /* PMAP_INCLUDE_PTE_SYNC */
1283 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1284 }
1285
1286 /*
1287 * Returns a pointer to the L2 bucket associated with the specified pmap
1288 * and VA, or NULL if no L2 bucket exists for the address.
1289 */
1290 static inline struct l2_bucket *
1291 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1292 {
1293 struct l2_dtable *l2;
1294 struct l2_bucket *l2b;
1295 u_short l1idx;
1296
1297 l1idx = L1_IDX(va);
1298
1299 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1300 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1301 return (NULL);
1302
1303 return (l2b);
1304 }
1305
1306 /*
1307 * Returns a pointer to the L2 bucket associated with the specified pmap
1308 * and VA.
1309 *
1310 * If no L2 bucket exists, perform the necessary allocations to put an L2
1311 * bucket/page table in place.
1312 *
1313 * Note that if a new L2 bucket/page was allocated, the caller *must*
1314 * increment the bucket occupancy counter appropriately *before*
1315 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1316 * the bucket/page in the meantime.
1317 */
1318 static struct l2_bucket *
1319 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1320 {
1321 struct l2_dtable *l2;
1322 struct l2_bucket *l2b;
1323 u_short l1idx;
1324
1325 l1idx = L1_IDX(va);
1326
1327 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1328 /*
1329 * No mapping at this address, as there is
1330 * no entry in the L1 table.
1331 * Need to allocate a new l2_dtable.
1332 */
1333 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1334 return (NULL);
1335
1336 /*
1337 * Link it into the parent pmap
1338 */
1339 pm->pm_l2[L2_IDX(l1idx)] = l2;
1340 }
1341
1342 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1343
1344 /*
1345 * Fetch pointer to the L2 page table associated with the address.
1346 */
1347 if (l2b->l2b_kva == NULL) {
1348 pt_entry_t *ptep;
1349
1350 /*
1351 * No L2 page table has been allocated. Chances are, this
1352 * is because we just allocated the l2_dtable, above.
1353 */
1354 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1355 /*
1356 * Oops, no more L2 page tables available at this
1357 * time. We may need to deallocate the l2_dtable
1358 * if we allocated a new one above.
1359 */
1360 if (l2->l2_occupancy == 0) {
1361 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1362 pmap_free_l2_dtable(l2);
1363 }
1364 return (NULL);
1365 }
1366
1367 l2->l2_occupancy++;
1368 l2b->l2b_kva = ptep;
1369 l2b->l2b_l1idx = l1idx;
1370 }
1371
1372 return (l2b);
1373 }
1374
1375 /*
1376 * One or more mappings in the specified L2 descriptor table have just been
1377 * invalidated.
1378 *
1379 * Garbage collect the metadata and descriptor table itself if necessary.
1380 *
1381 * The pmap lock must be acquired when this is called (not necessary
1382 * for the kernel pmap).
1383 */
1384 static void
1385 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1386 {
1387 struct l2_dtable *l2;
1388 pd_entry_t *pl1pd, l1pd;
1389 pt_entry_t *ptep;
1390 u_short l1idx;
1391
1392 KDASSERT(count <= l2b->l2b_occupancy);
1393
1394 /*
1395 * Update the bucket's reference count according to how many
1396 * PTEs the caller has just invalidated.
1397 */
1398 l2b->l2b_occupancy -= count;
1399
1400 /*
1401 * Note:
1402 *
1403 * Level 2 page tables allocated to the kernel pmap are never freed
1404 * as that would require checking all Level 1 page tables and
1405 * removing any references to the Level 2 page table. See also the
1406 * comment elsewhere about never freeing bootstrap L2 descriptors.
1407 *
1408 * We make do with just invalidating the mapping in the L2 table.
1409 *
1410 * This isn't really a big deal in practice and, in fact, leads
1411 * to a performance win over time as we don't need to continually
1412 * alloc/free.
1413 */
1414 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1415 return;
1416
1417 /*
1418 * There are no more valid mappings in this level 2 page table.
1419 * Go ahead and NULL-out the pointer in the bucket, then
1420 * free the page table.
1421 */
1422 l1idx = l2b->l2b_l1idx;
1423 ptep = l2b->l2b_kva;
1424 l2b->l2b_kva = NULL;
1425
1426 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1427
1428 /*
1429 * If the L1 slot matches the pmap's domain
1430 * number, then invalidate it.
1431 */
1432 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1433 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1434 *pl1pd = 0;
1435 PTE_SYNC(pl1pd);
1436 }
1437
1438 /*
1439 * Release the L2 descriptor table back to the pool cache.
1440 */
1441 #ifndef PMAP_INCLUDE_PTE_SYNC
1442 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1443 #else
1444 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1445 #endif
1446
1447 /*
1448 * Update the reference count in the associated l2_dtable
1449 */
1450 l2 = pm->pm_l2[L2_IDX(l1idx)];
1451 if (--l2->l2_occupancy > 0)
1452 return;
1453
1454 /*
1455 * There are no more valid mappings in any of the Level 1
1456 * slots managed by this l2_dtable. Go ahead and NULL-out
1457 * the pointer in the parent pmap and free the l2_dtable.
1458 */
1459 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1460 pmap_free_l2_dtable(l2);
1461 }
1462
1463 /*
1464 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1465 * structures.
1466 */
1467 static int
1468 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1469 {
1470 #ifndef PMAP_INCLUDE_PTE_SYNC
1471 struct l2_bucket *l2b;
1472 pt_entry_t *ptep, pte;
1473 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1474
1475 /*
1476 * The mappings for these page tables were initially made using
1477 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1478 * mode will not be right for page table mappings. To avoid
1479 * polluting the pmap_kenter_pa() code with a special case for
1480 * page tables, we simply fix up the cache-mode here if it's not
1481 * correct.
1482 */
1483 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1484 KDASSERT(l2b != NULL);
1485 ptep = &l2b->l2b_kva[l2pte_index(va)];
1486 pte = *ptep;
1487
1488 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1489 /*
1490 * Page tables must have the cache-mode set to Write-Thru.
1491 */
1492 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1493 PTE_SYNC(ptep);
1494 cpu_tlb_flushD_SE(va);
1495 cpu_cpwait();
1496 }
1497 #endif
1498
1499 memset(v, 0, L2_TABLE_SIZE_REAL);
1500 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1501 return (0);
1502 }
1503
1504 static int
1505 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1506 {
1507
1508 memset(v, 0, sizeof(struct l2_dtable));
1509 return (0);
1510 }
1511
1512 static int
1513 pmap_pmap_ctor(void *arg, void *v, int flags)
1514 {
1515
1516 memset(v, 0, sizeof(struct pmap));
1517 return (0);
1518 }
1519
1520 static void
1521 pmap_pinit(pmap_t pm)
1522 {
1523 struct l2_bucket *l2b;
1524
1525 if (vector_page < KERNEL_BASE) {
1526 /*
1527 * Map the vector page.
1528 */
1529 pmap_enter(pm, vector_page, systempage.pv_pa,
1530 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1531 pmap_update(pm);
1532
1533 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1534 l2b = pmap_get_l2_bucket(pm, vector_page);
1535 KDASSERT(l2b != NULL);
1536 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1537 L1_C_DOM(pm->pm_domain);
1538 } else
1539 pm->pm_pl1vec = NULL;
1540 }
1541
1542 #ifdef PMAP_CACHE_VIVT
1543 /*
1544 * Since we have a virtually indexed cache, we may need to inhibit caching if
1545 * there is more than one mapping and at least one of them is writable.
1546 * Since we purge the cache on every context switch, we only need to check for
1547 * other mappings within the same pmap, or kernel_pmap.
1548 * This function is also called when a page is unmapped, to possibly reenable
1549 * caching on any remaining mappings.
1550 *
1551 * The code implements the following logic, where:
1552 *
1553 * KW = # of kernel read/write pages
1554 * KR = # of kernel read only pages
1555 * UW = # of user read/write pages
1556 * UR = # of user read only pages
1557 *
1558 * KC = kernel mapping is cacheable
1559 * UC = user mapping is cacheable
1560 *
1561 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1562 * +---------------------------------------------
1563 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1564 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1565 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1566 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1567 */
1568
1569 static const int pmap_vac_flags[4][4] = {
1570 {-1, 0, 0, PVF_KNC},
1571 {0, 0, PVF_NC, PVF_NC},
1572 {0, PVF_NC, PVF_NC, PVF_NC},
1573 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1574 };
1575
1576 static inline int
1577 pmap_get_vac_flags(const struct vm_page_md *md)
1578 {
1579 int kidx, uidx;
1580
1581 kidx = 0;
1582 if (md->kro_mappings || md->krw_mappings > 1)
1583 kidx |= 1;
1584 if (md->krw_mappings)
1585 kidx |= 2;
1586
1587 uidx = 0;
1588 if (md->uro_mappings || md->urw_mappings > 1)
1589 uidx |= 1;
1590 if (md->urw_mappings)
1591 uidx |= 2;
1592
1593 return (pmap_vac_flags[uidx][kidx]);
1594 }
1595
1596 static inline void
1597 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1598 {
1599 int nattr;
1600
1601 nattr = pmap_get_vac_flags(md);
1602
1603 if (nattr < 0) {
1604 md->pvh_attrs &= ~PVF_NC;
1605 return;
1606 }
1607
1608 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1609 return;
1610
1611 if (pm == pmap_kernel())
1612 pmap_vac_me_kpmap(md, pa, pm, va);
1613 else
1614 pmap_vac_me_user(md, pa, pm, va);
1615
1616 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1617 }
1618
1619 static void
1620 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1621 {
1622 u_int u_cacheable, u_entries;
1623 struct pv_entry *pv;
1624 pmap_t last_pmap = pm;
1625
1626 /*
1627 * Pass one, see if there are both kernel and user pmaps for
1628 * this page. Calculate whether there are user-writable or
1629 * kernel-writable pages.
1630 */
1631 u_cacheable = 0;
1632 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1633 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1634 u_cacheable++;
1635 }
1636
1637 u_entries = md->urw_mappings + md->uro_mappings;
1638
1639 /*
1640 * We know we have just been updating a kernel entry, so if
1641 * all user pages are already cacheable, then there is nothing
1642 * further to do.
1643 */
1644 if (md->k_mappings == 0 && u_cacheable == u_entries)
1645 return;
1646
1647 if (u_entries) {
1648 /*
1649 * Scan over the list again, for each entry, if it
1650 * might not be set correctly, call pmap_vac_me_user
1651 * to recalculate the settings.
1652 */
1653 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1654 /*
1655 * We know kernel mappings will get set
1656 * correctly in other calls. We also know
1657 * that if the pmap is the same as last_pmap
1658 * then we've just handled this entry.
1659 */
1660 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1661 continue;
1662
1663 /*
1664 * If there are kernel entries and this page
1665 * is writable but non-cacheable, then we can
1666 * skip this entry also.
1667 */
1668 if (md->k_mappings &&
1669 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1670 (PVF_NC | PVF_WRITE))
1671 continue;
1672
1673 /*
1674 * Similarly if there are no kernel-writable
1675 * entries and the page is already
1676 * read-only/cacheable.
1677 */
1678 if (md->krw_mappings == 0 &&
1679 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1680 continue;
1681
1682 /*
1683 * For some of the remaining cases, we know
1684 * that we must recalculate, but for others we
1685 * can't tell if they are correct or not, so
1686 * we recalculate anyway.
1687 */
1688 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1689 }
1690
1691 if (md->k_mappings == 0)
1692 return;
1693 }
1694
1695 pmap_vac_me_user(md, pa, pm, va);
1696 }
1697
1698 static void
1699 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1700 {
1701 pmap_t kpmap = pmap_kernel();
1702 struct pv_entry *pv, *npv = NULL;
1703 struct l2_bucket *l2b;
1704 pt_entry_t *ptep, pte;
1705 u_int entries = 0;
1706 u_int writable = 0;
1707 u_int cacheable_entries = 0;
1708 u_int kern_cacheable = 0;
1709 u_int other_writable = 0;
1710
1711 /*
1712 * Count mappings and writable mappings in this pmap.
1713 * Include kernel mappings as part of our own.
1714 * Keep a pointer to the first one.
1715 */
1716 npv = NULL;
1717 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1718 /* Count mappings in the same pmap */
1719 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1720 if (entries++ == 0)
1721 npv = pv;
1722
1723 /* Cacheable mappings */
1724 if ((pv->pv_flags & PVF_NC) == 0) {
1725 cacheable_entries++;
1726 if (kpmap == pv->pv_pmap)
1727 kern_cacheable++;
1728 }
1729
1730 /* Writable mappings */
1731 if (pv->pv_flags & PVF_WRITE)
1732 ++writable;
1733 } else
1734 if (pv->pv_flags & PVF_WRITE)
1735 other_writable = 1;
1736 }
1737
1738 /*
1739 * Enable or disable caching as necessary.
1740 * Note: the first entry might be part of the kernel pmap,
1741 * so we can't assume this is indicative of the state of the
1742 * other (maybe non-kpmap) entries.
1743 */
1744 if ((entries > 1 && writable) ||
1745 (entries > 0 && pm == kpmap && other_writable)) {
1746 if (cacheable_entries == 0)
1747 return;
1748
1749 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1750 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1751 (pv->pv_flags & PVF_NC))
1752 continue;
1753
1754 pv->pv_flags |= PVF_NC;
1755
1756 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1757 KDASSERT(l2b != NULL);
1758 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1759 pte = *ptep & ~L2_S_CACHE_MASK;
1760
1761 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1762 l2pte_valid(pte)) {
1763 if (PV_BEEN_EXECD(pv->pv_flags)) {
1764 #ifdef PMAP_CACHE_VIVT
1765 pmap_idcache_wbinv_range(pv->pv_pmap,
1766 pv->pv_va, PAGE_SIZE);
1767 #endif
1768 pmap_tlb_flushID_SE(pv->pv_pmap,
1769 pv->pv_va);
1770 } else
1771 if (PV_BEEN_REFD(pv->pv_flags)) {
1772 #ifdef PMAP_CACHE_VIVT
1773 pmap_dcache_wb_range(pv->pv_pmap,
1774 pv->pv_va, PAGE_SIZE, true,
1775 (pv->pv_flags & PVF_WRITE) == 0);
1776 #endif
1777 pmap_tlb_flushD_SE(pv->pv_pmap,
1778 pv->pv_va);
1779 }
1780 }
1781
1782 *ptep = pte;
1783 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1784 }
1785 cpu_cpwait();
1786 } else
1787 if (entries > cacheable_entries) {
1788 /*
1789 * Turn cacheing back on for some pages. If it is a kernel
1790 * page, only do so if there are no other writable pages.
1791 */
1792 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1793 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1794 (kpmap != pv->pv_pmap || other_writable)))
1795 continue;
1796
1797 pv->pv_flags &= ~PVF_NC;
1798
1799 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1800 KDASSERT(l2b != NULL);
1801 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1802 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1803
1804 if (l2pte_valid(pte)) {
1805 if (PV_BEEN_EXECD(pv->pv_flags)) {
1806 pmap_tlb_flushID_SE(pv->pv_pmap,
1807 pv->pv_va);
1808 } else
1809 if (PV_BEEN_REFD(pv->pv_flags)) {
1810 pmap_tlb_flushD_SE(pv->pv_pmap,
1811 pv->pv_va);
1812 }
1813 }
1814
1815 *ptep = pte;
1816 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1817 }
1818 }
1819 }
1820 #endif
1821
1822 #ifdef PMAP_CACHE_VIPT
1823 static void
1824 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1825 {
1826 struct pv_entry *pv;
1827 vaddr_t tst_mask;
1828 bool bad_alias;
1829 struct l2_bucket *l2b;
1830 pt_entry_t *ptep, pte, opte;
1831 const u_int
1832 rw_mappings = md->urw_mappings + md->krw_mappings,
1833 ro_mappings = md->uro_mappings + md->kro_mappings;
1834
1835 /* do we need to do anything? */
1836 if (arm_cache_prefer_mask == 0)
1837 return;
1838
1839 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1840 md, pm, va));
1841
1842 KASSERT(!va || pm);
1843 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1844
1845 /* Already a conflict? */
1846 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1847 /* just an add, things are already non-cached */
1848 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1849 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1850 bad_alias = false;
1851 if (va) {
1852 PMAPCOUNT(vac_color_none);
1853 bad_alias = true;
1854 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1855 goto fixup;
1856 }
1857 pv = SLIST_FIRST(&md->pvh_list);
1858 /* the list can't be empty because it would be cachable */
1859 if (md->pvh_attrs & PVF_KMPAGE) {
1860 tst_mask = md->pvh_attrs;
1861 } else {
1862 KASSERT(pv);
1863 tst_mask = pv->pv_va;
1864 pv = SLIST_NEXT(pv, pv_link);
1865 }
1866 /*
1867 * Only check for a bad alias if we have writable mappings.
1868 */
1869 tst_mask &= arm_cache_prefer_mask;
1870 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1871 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1872 /* if there's a bad alias, stop checking. */
1873 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1874 bad_alias = true;
1875 }
1876 md->pvh_attrs |= PVF_WRITE;
1877 if (!bad_alias)
1878 md->pvh_attrs |= PVF_DIRTY;
1879 } else {
1880 /*
1881 * We have only read-only mappings. Let's see if there
1882 * are multiple colors in use or if we mapped a KMPAGE.
1883 * If the latter, we have a bad alias. If the former,
1884 * we need to remember that.
1885 */
1886 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1887 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1888 if (md->pvh_attrs & PVF_KMPAGE)
1889 bad_alias = true;
1890 break;
1891 }
1892 }
1893 md->pvh_attrs &= ~PVF_WRITE;
1894 /*
1895 * No KMPAGE and we exited early, so we must have
1896 * multiple color mappings.
1897 */
1898 if (!bad_alias && pv != NULL)
1899 md->pvh_attrs |= PVF_MULTCLR;
1900 }
1901
1902 /* If no conflicting colors, set everything back to cached */
1903 if (!bad_alias) {
1904 #ifdef DEBUG
1905 if ((md->pvh_attrs & PVF_WRITE)
1906 || ro_mappings < 2) {
1907 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1908 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1909 }
1910 #endif
1911 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1912 md->pvh_attrs |= tst_mask | PVF_COLORED;
1913 /*
1914 * Restore DIRTY bit if page is modified
1915 */
1916 if (md->pvh_attrs & PVF_DMOD)
1917 md->pvh_attrs |= PVF_DIRTY;
1918 PMAPCOUNT(vac_color_restore);
1919 } else {
1920 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1921 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1922 }
1923 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1924 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1925 } else if (!va) {
1926 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
1927 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1928 || (md->pvh_attrs & PVF_DIRTY));
1929 if (rw_mappings == 0) {
1930 md->pvh_attrs &= ~PVF_WRITE;
1931 if (ro_mappings == 1
1932 && (md->pvh_attrs & PVF_MULTCLR)) {
1933 /*
1934 * If this is the last readonly mapping
1935 * but it doesn't match the current color
1936 * for the page, change the current color
1937 * to match this last readonly mapping.
1938 */
1939 pv = SLIST_FIRST(&md->pvh_list);
1940 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1941 & arm_cache_prefer_mask;
1942 if (tst_mask) {
1943 md->pvh_attrs ^= tst_mask;
1944 PMAPCOUNT(vac_color_change);
1945 }
1946 }
1947 }
1948 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1949 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1950 return;
1951 } else if (!pmap_is_page_colored_p(md)) {
1952 /* not colored so we just use its color */
1953 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1954 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1955 PMAPCOUNT(vac_color_new);
1956 md->pvh_attrs &= PAGE_SIZE - 1;
1957 md->pvh_attrs |= PVF_COLORED
1958 | (va & arm_cache_prefer_mask)
1959 | (rw_mappings > 0 ? PVF_WRITE : 0);
1960 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1961 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1962 return;
1963 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1964 bad_alias = false;
1965 if (rw_mappings > 0) {
1966 /*
1967 * We now have writeable mappings and if we have
1968 * readonly mappings in more than once color, we have
1969 * an aliasing problem. Regardless mark the page as
1970 * writeable.
1971 */
1972 if (md->pvh_attrs & PVF_MULTCLR) {
1973 if (ro_mappings < 2) {
1974 /*
1975 * If we only have less than two
1976 * read-only mappings, just flush the
1977 * non-primary colors from the cache.
1978 */
1979 pmap_flush_page(md, pa,
1980 PMAP_FLUSH_SECONDARY);
1981 } else {
1982 bad_alias = true;
1983 }
1984 }
1985 md->pvh_attrs |= PVF_WRITE;
1986 }
1987 /* If no conflicting colors, set everything back to cached */
1988 if (!bad_alias) {
1989 #ifdef DEBUG
1990 if (rw_mappings > 0
1991 || (md->pvh_attrs & PMAP_KMPAGE)) {
1992 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
1993 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1994 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1995 }
1996 #endif
1997 if (SLIST_EMPTY(&md->pvh_list))
1998 PMAPCOUNT(vac_color_reuse);
1999 else
2000 PMAPCOUNT(vac_color_ok);
2001
2002 /* matching color, just return */
2003 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2004 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2005 return;
2006 }
2007 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2008 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2009
2010 /* color conflict. evict from cache. */
2011
2012 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2013 md->pvh_attrs &= ~PVF_COLORED;
2014 md->pvh_attrs |= PVF_NC;
2015 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2016 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2017 PMAPCOUNT(vac_color_erase);
2018 } else if (rw_mappings == 0
2019 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2020 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2021
2022 /*
2023 * If the page has dirty cache lines, clean it.
2024 */
2025 if (md->pvh_attrs & PVF_DIRTY)
2026 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2027
2028 /*
2029 * If this is the first remapping (we know that there are no
2030 * writeable mappings), then this is a simple color change.
2031 * Otherwise this is a seconary r/o mapping, which means
2032 * we don't have to do anything.
2033 */
2034 if (ro_mappings == 1) {
2035 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2036 md->pvh_attrs &= PAGE_SIZE - 1;
2037 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2038 PMAPCOUNT(vac_color_change);
2039 } else {
2040 PMAPCOUNT(vac_color_blind);
2041 }
2042 md->pvh_attrs |= PVF_MULTCLR;
2043 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2044 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2045 return;
2046 } else {
2047 if (rw_mappings > 0)
2048 md->pvh_attrs |= PVF_WRITE;
2049
2050 /* color conflict. evict from cache. */
2051 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2052
2053 /* the list can't be empty because this was a enter/modify */
2054 pv = SLIST_FIRST(&md->pvh_list);
2055 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2056 KASSERT(pv);
2057 /*
2058 * If there's only one mapped page, change color to the
2059 * page's new color and return. Restore the DIRTY bit
2060 * that was erased by pmap_flush_page.
2061 */
2062 if (SLIST_NEXT(pv, pv_link) == NULL) {
2063 md->pvh_attrs &= PAGE_SIZE - 1;
2064 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2065 if (md->pvh_attrs & PVF_DMOD)
2066 md->pvh_attrs |= PVF_DIRTY;
2067 PMAPCOUNT(vac_color_change);
2068 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2069 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2070 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2071 return;
2072 }
2073 }
2074 bad_alias = true;
2075 md->pvh_attrs &= ~PVF_COLORED;
2076 md->pvh_attrs |= PVF_NC;
2077 PMAPCOUNT(vac_color_erase);
2078 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2079 }
2080
2081 fixup:
2082 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2083
2084 /*
2085 * Turn cacheing on/off for all pages.
2086 */
2087 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2088 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2089 KDASSERT(l2b != NULL);
2090 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2091 opte = *ptep;
2092 pte = opte & ~L2_S_CACHE_MASK;
2093 if (bad_alias) {
2094 pv->pv_flags |= PVF_NC;
2095 } else {
2096 pv->pv_flags &= ~PVF_NC;
2097 pte |= pte_l2_s_cache_mode;
2098 }
2099
2100 if (opte == pte) /* only update is there's a change */
2101 continue;
2102
2103 if (l2pte_valid(pte)) {
2104 if (PV_BEEN_EXECD(pv->pv_flags)) {
2105 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2106 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2107 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2108 }
2109 }
2110
2111 *ptep = pte;
2112 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2113 }
2114 }
2115 #endif /* PMAP_CACHE_VIPT */
2116
2117
2118 /*
2119 * Modify pte bits for all ptes corresponding to the given physical address.
2120 * We use `maskbits' rather than `clearbits' because we're always passing
2121 * constants and the latter would require an extra inversion at run-time.
2122 */
2123 static void
2124 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2125 {
2126 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2127 struct l2_bucket *l2b;
2128 struct pv_entry *pv;
2129 pt_entry_t *ptep, npte, opte;
2130 pmap_t pm;
2131 vaddr_t va;
2132 u_int oflags;
2133 #ifdef PMAP_CACHE_VIPT
2134 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2135 bool need_syncicache = false;
2136 bool did_syncicache = false;
2137 bool need_vac_me_harder = false;
2138 #endif
2139
2140 NPDEBUG(PDB_BITS,
2141 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2142 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2143
2144 PMAP_HEAD_TO_MAP_LOCK();
2145 simple_lock(&md->pvh_slock);
2146
2147 #ifdef PMAP_CACHE_VIPT
2148 /*
2149 * If we might want to sync the I-cache and we've modified it,
2150 * then we know we definitely need to sync or discard it.
2151 */
2152 if (want_syncicache)
2153 need_syncicache = md->pvh_attrs & PVF_MOD;
2154 #endif
2155 /*
2156 * Clear saved attributes (modify, reference)
2157 */
2158 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2159
2160 if (SLIST_EMPTY(&md->pvh_list)) {
2161 #ifdef PMAP_CACHE_VIPT
2162 if (need_syncicache) {
2163 /*
2164 * No one has it mapped, so just discard it. The next
2165 * exec remapping will cause it to be synced.
2166 */
2167 md->pvh_attrs &= ~PVF_EXEC;
2168 PMAPCOUNT(exec_discarded_clearbit);
2169 }
2170 #endif
2171 simple_unlock(&md->pvh_slock);
2172 PMAP_HEAD_TO_MAP_UNLOCK();
2173 return;
2174 }
2175
2176 /*
2177 * Loop over all current mappings setting/clearing as appropos
2178 */
2179 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2180 va = pv->pv_va;
2181 pm = pv->pv_pmap;
2182 oflags = pv->pv_flags;
2183 /*
2184 * Kernel entries are unmanaged and as such not to be changed.
2185 */
2186 if (oflags & PVF_KENTRY)
2187 continue;
2188 pv->pv_flags &= ~maskbits;
2189
2190 pmap_acquire_pmap_lock(pm);
2191
2192 l2b = pmap_get_l2_bucket(pm, va);
2193 KDASSERT(l2b != NULL);
2194
2195 ptep = &l2b->l2b_kva[l2pte_index(va)];
2196 npte = opte = *ptep;
2197
2198 NPDEBUG(PDB_BITS,
2199 printf(
2200 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2201 pv, pv->pv_pmap, pv->pv_va, oflags));
2202
2203 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2204 #ifdef PMAP_CACHE_VIVT
2205 if ((pv->pv_flags & PVF_NC)) {
2206 /*
2207 * Entry is not cacheable:
2208 *
2209 * Don't turn caching on again if this is a
2210 * modified emulation. This would be
2211 * inconsitent with the settings created by
2212 * pmap_vac_me_harder(). Otherwise, it's safe
2213 * to re-enable cacheing.
2214 *
2215 * There's no need to call pmap_vac_me_harder()
2216 * here: all pages are losing their write
2217 * permission.
2218 */
2219 if (maskbits & PVF_WRITE) {
2220 npte |= pte_l2_s_cache_mode;
2221 pv->pv_flags &= ~PVF_NC;
2222 }
2223 } else
2224 if (l2pte_writable_p(opte)) {
2225 /*
2226 * Entry is writable/cacheable: check if pmap
2227 * is current if it is flush it, otherwise it
2228 * won't be in the cache
2229 */
2230 if (PV_BEEN_EXECD(oflags))
2231 pmap_idcache_wbinv_range(pm, pv->pv_va,
2232 PAGE_SIZE);
2233 else
2234 if (PV_BEEN_REFD(oflags))
2235 pmap_dcache_wb_range(pm, pv->pv_va,
2236 PAGE_SIZE,
2237 (maskbits & PVF_REF) != 0, false);
2238 }
2239 #endif
2240
2241 /* make the pte read only */
2242 npte = l2pte_set_readonly(npte);
2243
2244 if (maskbits & oflags & PVF_WRITE) {
2245 /*
2246 * Keep alias accounting up to date
2247 */
2248 if (pv->pv_pmap == pmap_kernel()) {
2249 md->krw_mappings--;
2250 md->kro_mappings++;
2251 } else {
2252 md->urw_mappings--;
2253 md->uro_mappings++;
2254 }
2255 #ifdef PMAP_CACHE_VIPT
2256 if (md->urw_mappings + md->krw_mappings == 0)
2257 md->pvh_attrs &= ~PVF_WRITE;
2258 if (want_syncicache)
2259 need_syncicache = true;
2260 need_vac_me_harder = true;
2261 #endif
2262 }
2263 }
2264
2265 if (maskbits & PVF_REF) {
2266 if ((pv->pv_flags & PVF_NC) == 0 &&
2267 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2268 l2pte_valid(npte)) {
2269 #ifdef PMAP_CACHE_VIVT
2270 /*
2271 * Check npte here; we may have already
2272 * done the wbinv above, and the validity
2273 * of the PTE is the same for opte and
2274 * npte.
2275 */
2276 /* XXXJRT need idcache_inv_range */
2277 if (PV_BEEN_EXECD(oflags))
2278 pmap_idcache_wbinv_range(pm,
2279 pv->pv_va, PAGE_SIZE);
2280 else
2281 if (PV_BEEN_REFD(oflags))
2282 pmap_dcache_wb_range(pm,
2283 pv->pv_va, PAGE_SIZE,
2284 true, true);
2285 #endif
2286 }
2287
2288 /*
2289 * Make the PTE invalid so that we will take a
2290 * page fault the next time the mapping is
2291 * referenced.
2292 */
2293 npte &= ~L2_TYPE_MASK;
2294 npte |= L2_TYPE_INV;
2295 }
2296
2297 if (npte != opte) {
2298 *ptep = npte;
2299 PTE_SYNC(ptep);
2300 /* Flush the TLB entry if a current pmap. */
2301 if (PV_BEEN_EXECD(oflags))
2302 pmap_tlb_flushID_SE(pm, pv->pv_va);
2303 else
2304 if (PV_BEEN_REFD(oflags))
2305 pmap_tlb_flushD_SE(pm, pv->pv_va);
2306 }
2307
2308 pmap_release_pmap_lock(pm);
2309
2310 NPDEBUG(PDB_BITS,
2311 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2312 pm, va, opte, npte));
2313 }
2314
2315 #ifdef PMAP_CACHE_VIPT
2316 /*
2317 * If we need to sync the I-cache and we haven't done it yet, do it.
2318 */
2319 if (need_syncicache && !did_syncicache) {
2320 pmap_syncicache_page(md, VM_PAGE_TO_PHYS(pg));
2321 PMAPCOUNT(exec_synced_clearbit);
2322 }
2323 /*
2324 * If we are changing this to read-only, we need to call vac_me_harder
2325 * so we can change all the read-only pages to cacheable. We pretend
2326 * this as a page deletion.
2327 */
2328 if (need_vac_me_harder) {
2329 if (md->pvh_attrs & PVF_NC)
2330 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), NULL, 0);
2331 }
2332 #endif
2333
2334 simple_unlock(&md->pvh_slock);
2335 PMAP_HEAD_TO_MAP_UNLOCK();
2336 }
2337
2338 /*
2339 * pmap_clean_page()
2340 *
2341 * This is a local function used to work out the best strategy to clean
2342 * a single page referenced by its entry in the PV table. It's used by
2343 * pmap_copy_page, pmap_zero page and maybe some others later on.
2344 *
2345 * Its policy is effectively:
2346 * o If there are no mappings, we don't bother doing anything with the cache.
2347 * o If there is one mapping, we clean just that page.
2348 * o If there are multiple mappings, we clean the entire cache.
2349 *
2350 * So that some functions can be further optimised, it returns 0 if it didn't
2351 * clean the entire cache, or 1 if it did.
2352 *
2353 * XXX One bug in this routine is that if the pv_entry has a single page
2354 * mapped at 0x00000000 a whole cache clean will be performed rather than
2355 * just the 1 page. Since this should not occur in everyday use and if it does
2356 * it will just result in not the most efficient clean for the page.
2357 */
2358 #ifdef PMAP_CACHE_VIVT
2359 static int
2360 pmap_clean_page(struct pv_entry *pv, bool is_src)
2361 {
2362 pmap_t pm_to_clean = NULL;
2363 struct pv_entry *npv;
2364 u_int cache_needs_cleaning = 0;
2365 u_int flags = 0;
2366 vaddr_t page_to_clean = 0;
2367
2368 if (pv == NULL) {
2369 /* nothing mapped in so nothing to flush */
2370 return (0);
2371 }
2372
2373 /*
2374 * Since we flush the cache each time we change to a different
2375 * user vmspace, we only need to flush the page if it is in the
2376 * current pmap.
2377 */
2378
2379 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2380 if (pmap_is_current(npv->pv_pmap)) {
2381 flags |= npv->pv_flags;
2382 /*
2383 * The page is mapped non-cacheable in
2384 * this map. No need to flush the cache.
2385 */
2386 if (npv->pv_flags & PVF_NC) {
2387 #ifdef DIAGNOSTIC
2388 if (cache_needs_cleaning)
2389 panic("pmap_clean_page: "
2390 "cache inconsistency");
2391 #endif
2392 break;
2393 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2394 continue;
2395 if (cache_needs_cleaning) {
2396 page_to_clean = 0;
2397 break;
2398 } else {
2399 page_to_clean = npv->pv_va;
2400 pm_to_clean = npv->pv_pmap;
2401 }
2402 cache_needs_cleaning = 1;
2403 }
2404 }
2405
2406 if (page_to_clean) {
2407 if (PV_BEEN_EXECD(flags))
2408 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2409 PAGE_SIZE);
2410 else
2411 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2412 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2413 } else if (cache_needs_cleaning) {
2414 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2415
2416 if (PV_BEEN_EXECD(flags))
2417 pmap_idcache_wbinv_all(pm);
2418 else
2419 pmap_dcache_wbinv_all(pm);
2420 return (1);
2421 }
2422 return (0);
2423 }
2424 #endif
2425
2426 #ifdef PMAP_CACHE_VIPT
2427 /*
2428 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2429 * right cache alias to make sure we flush the right stuff.
2430 */
2431 void
2432 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2433 {
2434 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2435 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2436
2437 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2438 md, md->pvh_attrs));
2439 /*
2440 * No need to clean the page if it's non-cached.
2441 */
2442 if (md->pvh_attrs & PVF_NC)
2443 return;
2444 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2445
2446 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2447 /*
2448 * Set up a PTE with the right coloring to flush existing cache lines.
2449 */
2450 *ptep = L2_S_PROTO |
2451 pa
2452 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2453 | pte_l2_s_cache_mode;
2454 PTE_SYNC(ptep);
2455
2456 /*
2457 * Flush it.
2458 */
2459 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2460 /*
2461 * Unmap the page.
2462 */
2463 *ptep = 0;
2464 PTE_SYNC(ptep);
2465 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2466
2467 md->pvh_attrs |= PVF_EXEC;
2468 PMAPCOUNT(exec_synced);
2469 }
2470
2471 void
2472 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2473 {
2474 vsize_t va_offset, end_va;
2475 void (*cf)(vaddr_t, vsize_t);
2476
2477 if (arm_cache_prefer_mask == 0)
2478 return;
2479
2480 switch (flush) {
2481 case PMAP_FLUSH_PRIMARY:
2482 if (md->pvh_attrs & PVF_MULTCLR) {
2483 va_offset = 0;
2484 end_va = arm_cache_prefer_mask;
2485 md->pvh_attrs &= ~PVF_MULTCLR;
2486 PMAPCOUNT(vac_flush_lots);
2487 } else {
2488 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2489 end_va = va_offset;
2490 PMAPCOUNT(vac_flush_one);
2491 }
2492 /*
2493 * Mark that the page is no longer dirty.
2494 */
2495 md->pvh_attrs &= ~PVF_DIRTY;
2496 cf = cpufuncs.cf_idcache_wbinv_range;
2497 break;
2498 case PMAP_FLUSH_SECONDARY:
2499 va_offset = 0;
2500 end_va = arm_cache_prefer_mask;
2501 cf = cpufuncs.cf_idcache_wbinv_range;
2502 md->pvh_attrs &= ~PVF_MULTCLR;
2503 PMAPCOUNT(vac_flush_lots);
2504 break;
2505 case PMAP_CLEAN_PRIMARY:
2506 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2507 end_va = va_offset;
2508 cf = cpufuncs.cf_dcache_wb_range;
2509 /*
2510 * Mark that the page is no longer dirty.
2511 */
2512 if ((md->pvh_attrs & PVF_DMOD) == 0)
2513 md->pvh_attrs &= ~PVF_DIRTY;
2514 PMAPCOUNT(vac_clean_one);
2515 break;
2516 default:
2517 return;
2518 }
2519
2520 KASSERT(!(md->pvh_attrs & PVF_NC));
2521
2522 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2523 md, md->pvh_attrs));
2524
2525 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2526 const size_t pte_offset = va_offset >> PGSHIFT;
2527 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2528 const pt_entry_t oldpte = *ptep;
2529
2530 if (flush == PMAP_FLUSH_SECONDARY
2531 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2532 continue;
2533
2534 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2535 /*
2536 * Set up a PTE with the right coloring to flush
2537 * existing cache entries.
2538 */
2539 *ptep = L2_S_PROTO
2540 | pa
2541 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2542 | pte_l2_s_cache_mode;
2543 PTE_SYNC(ptep);
2544
2545 /*
2546 * Flush it.
2547 */
2548 (*cf)(cdstp + va_offset, PAGE_SIZE);
2549
2550 /*
2551 * Restore the page table entry since we might have interrupted
2552 * pmap_zero_page or pmap_copy_page which was already using
2553 * this pte.
2554 */
2555 *ptep = oldpte;
2556 PTE_SYNC(ptep);
2557 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2558 }
2559 }
2560 #endif /* PMAP_CACHE_VIPT */
2561
2562 /*
2563 * Routine: pmap_page_remove
2564 * Function:
2565 * Removes this physical page from
2566 * all physical maps in which it resides.
2567 * Reflects back modify bits to the pager.
2568 */
2569 static void
2570 pmap_page_remove(struct vm_page *pg)
2571 {
2572 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2573 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2574 struct l2_bucket *l2b;
2575 struct pv_entry *pv, *npv, **pvp;
2576 pmap_t pm;
2577 pt_entry_t *ptep;
2578 bool flush;
2579 u_int flags;
2580
2581 NPDEBUG(PDB_FOLLOW,
2582 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2583 pa));
2584
2585 PMAP_HEAD_TO_MAP_LOCK();
2586 simple_lock(&md->pvh_slock);
2587
2588 pv = SLIST_FIRST(&md->pvh_list);
2589 if (pv == NULL) {
2590 #ifdef PMAP_CACHE_VIPT
2591 /*
2592 * We *know* the page contents are about to be replaced.
2593 * Discard the exec contents
2594 */
2595 if (PV_IS_EXEC_P(md->pvh_attrs))
2596 PMAPCOUNT(exec_discarded_page_protect);
2597 md->pvh_attrs &= ~PVF_EXEC;
2598 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2599 #endif
2600 simple_unlock(&md->pvh_slock);
2601 PMAP_HEAD_TO_MAP_UNLOCK();
2602 return;
2603 }
2604 #ifdef PMAP_CACHE_VIPT
2605 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2606 #endif
2607
2608 /*
2609 * Clear alias counts
2610 */
2611 #ifdef PMAP_CACHE_VIVT
2612 md->k_mappings = 0;
2613 #endif
2614 md->urw_mappings = md->uro_mappings = 0;
2615
2616 flush = false;
2617 flags = 0;
2618
2619 #ifdef PMAP_CACHE_VIVT
2620 pmap_clean_page(pv, false);
2621 #endif
2622
2623 pvp = &SLIST_FIRST(&md->pvh_list);
2624 while (pv) {
2625 pm = pv->pv_pmap;
2626 npv = SLIST_NEXT(pv, pv_link);
2627 if (flush == false && pmap_is_current(pm))
2628 flush = true;
2629
2630 if (pm == pmap_kernel()) {
2631 #ifdef PMAP_CACHE_VIPT
2632 /*
2633 * If this was unmanaged mapping, it must be preserved.
2634 * Move it back on the list and advance the end-of-list
2635 * pointer.
2636 */
2637 if (pv->pv_flags & PVF_KENTRY) {
2638 *pvp = pv;
2639 pvp = &SLIST_NEXT(pv, pv_link);
2640 pv = npv;
2641 continue;
2642 }
2643 if (pv->pv_flags & PVF_WRITE)
2644 md->krw_mappings--;
2645 else
2646 md->kro_mappings--;
2647 #endif
2648 PMAPCOUNT(kernel_unmappings);
2649 }
2650 PMAPCOUNT(unmappings);
2651
2652 pmap_acquire_pmap_lock(pm);
2653
2654 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2655 KDASSERT(l2b != NULL);
2656
2657 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2658
2659 /*
2660 * Update statistics
2661 */
2662 --pm->pm_stats.resident_count;
2663
2664 /* Wired bit */
2665 if (pv->pv_flags & PVF_WIRED)
2666 --pm->pm_stats.wired_count;
2667
2668 flags |= pv->pv_flags;
2669
2670 /*
2671 * Invalidate the PTEs.
2672 */
2673 *ptep = 0;
2674 PTE_SYNC_CURRENT(pm, ptep);
2675 pmap_free_l2_bucket(pm, l2b, 1);
2676
2677 pool_put(&pmap_pv_pool, pv);
2678 pv = npv;
2679 /*
2680 * if we reach the end of the list and there are still
2681 * mappings, they might be able to be cached now.
2682 */
2683 if (pv == NULL) {
2684 *pvp = NULL;
2685 if (!SLIST_EMPTY(&md->pvh_list))
2686 pmap_vac_me_harder(md, pa, pm, 0);
2687 }
2688 pmap_release_pmap_lock(pm);
2689 }
2690 #ifdef PMAP_CACHE_VIPT
2691 /*
2692 * Its EXEC cache is now gone.
2693 */
2694 if (PV_IS_EXEC_P(md->pvh_attrs))
2695 PMAPCOUNT(exec_discarded_page_protect);
2696 md->pvh_attrs &= ~PVF_EXEC;
2697 KASSERT(md->urw_mappings == 0);
2698 KASSERT(md->uro_mappings == 0);
2699 if (md->krw_mappings == 0)
2700 md->pvh_attrs &= ~PVF_WRITE;
2701 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2702 #endif
2703 simple_unlock(&md->pvh_slock);
2704 PMAP_HEAD_TO_MAP_UNLOCK();
2705
2706 if (flush) {
2707 /*
2708 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2709 * would need a subsequent call to pmap_update() to ensure
2710 * curpm->pm_cstate.cs_all is reset. Our callers are not
2711 * required to do that (see pmap(9)), so we can't modify
2712 * the current pmap's state.
2713 */
2714 if (PV_BEEN_EXECD(flags))
2715 cpu_tlb_flushID();
2716 else
2717 cpu_tlb_flushD();
2718 }
2719 cpu_cpwait();
2720 }
2721
2722 /*
2723 * pmap_t pmap_create(void)
2724 *
2725 * Create a new pmap structure from scratch.
2726 */
2727 pmap_t
2728 pmap_create(void)
2729 {
2730 pmap_t pm;
2731
2732 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2733
2734 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2735 pm->pm_stats.wired_count = 0;
2736 pm->pm_stats.resident_count = 1;
2737 pm->pm_cstate.cs_all = 0;
2738 pmap_alloc_l1(pm);
2739
2740 /*
2741 * Note: The pool cache ensures that the pm_l2[] array is already
2742 * initialised to zero.
2743 */
2744
2745 pmap_pinit(pm);
2746
2747 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2748
2749 return (pm);
2750 }
2751
2752 /*
2753 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2754 * u_int flags)
2755 *
2756 * Insert the given physical page (p) at
2757 * the specified virtual address (v) in the
2758 * target physical map with the protection requested.
2759 *
2760 * NB: This is the only routine which MAY NOT lazy-evaluate
2761 * or lose information. That is, this routine must actually
2762 * insert this page into the given map NOW.
2763 */
2764 int
2765 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2766 {
2767 struct l2_bucket *l2b;
2768 struct vm_page *pg, *opg;
2769 struct pv_entry *pv;
2770 pt_entry_t *ptep, npte, opte;
2771 u_int nflags;
2772 u_int oflags;
2773
2774 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2775
2776 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2777 KDASSERT(((va | pa) & PGOFSET) == 0);
2778
2779 /*
2780 * Get a pointer to the page. Later on in this function, we
2781 * test for a managed page by checking pg != NULL.
2782 */
2783 pg = (pmap_initialized && ((flags & PMAP_UNMANAGED) == 0)) ?
2784 PHYS_TO_VM_PAGE(pa) : NULL;
2785
2786 nflags = 0;
2787 if (prot & VM_PROT_WRITE)
2788 nflags |= PVF_WRITE;
2789 if (prot & VM_PROT_EXECUTE)
2790 nflags |= PVF_EXEC;
2791 if (flags & PMAP_WIRED)
2792 nflags |= PVF_WIRED;
2793
2794 PMAP_MAP_TO_HEAD_LOCK();
2795 pmap_acquire_pmap_lock(pm);
2796
2797 /*
2798 * Fetch the L2 bucket which maps this page, allocating one if
2799 * necessary for user pmaps.
2800 */
2801 if (pm == pmap_kernel())
2802 l2b = pmap_get_l2_bucket(pm, va);
2803 else
2804 l2b = pmap_alloc_l2_bucket(pm, va);
2805 if (l2b == NULL) {
2806 if (flags & PMAP_CANFAIL) {
2807 pmap_release_pmap_lock(pm);
2808 PMAP_MAP_TO_HEAD_UNLOCK();
2809 return (ENOMEM);
2810 }
2811 panic("pmap_enter: failed to allocate L2 bucket");
2812 }
2813 ptep = &l2b->l2b_kva[l2pte_index(va)];
2814 opte = *ptep;
2815 npte = pa;
2816 oflags = 0;
2817
2818 if (opte) {
2819 /*
2820 * There is already a mapping at this address.
2821 * If the physical address is different, lookup the
2822 * vm_page.
2823 */
2824 if (l2pte_pa(opte) != pa)
2825 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2826 else
2827 opg = pg;
2828 } else
2829 opg = NULL;
2830
2831 if (pg) {
2832 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2833
2834 /*
2835 * This is to be a managed mapping.
2836 */
2837 if ((flags & VM_PROT_ALL) ||
2838 (md->pvh_attrs & PVF_REF)) {
2839 /*
2840 * - The access type indicates that we don't need
2841 * to do referenced emulation.
2842 * OR
2843 * - The physical page has already been referenced
2844 * so no need to re-do referenced emulation here.
2845 */
2846 npte |= l2pte_set_readonly(L2_S_PROTO);
2847
2848 nflags |= PVF_REF;
2849
2850 if ((prot & VM_PROT_WRITE) != 0 &&
2851 ((flags & VM_PROT_WRITE) != 0 ||
2852 (md->pvh_attrs & PVF_MOD) != 0)) {
2853 /*
2854 * This is a writable mapping, and the
2855 * page's mod state indicates it has
2856 * already been modified. Make it
2857 * writable from the outset.
2858 */
2859 npte = l2pte_set_writable(npte);
2860 nflags |= PVF_MOD;
2861 }
2862 } else {
2863 /*
2864 * Need to do page referenced emulation.
2865 */
2866 npte |= L2_TYPE_INV;
2867 }
2868
2869 npte |= pte_l2_s_cache_mode;
2870
2871 if (pg == opg) {
2872 /*
2873 * We're changing the attrs of an existing mapping.
2874 */
2875 simple_lock(&md->pvh_slock);
2876 oflags = pmap_modify_pv(md, pa, pm, va,
2877 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2878 PVF_MOD | PVF_REF, nflags);
2879 simple_unlock(&md->pvh_slock);
2880
2881 #ifdef PMAP_CACHE_VIVT
2882 /*
2883 * We may need to flush the cache if we're
2884 * doing rw-ro...
2885 */
2886 if (pm->pm_cstate.cs_cache_d &&
2887 (oflags & PVF_NC) == 0 &&
2888 l2pte_writable_p(opte) &&
2889 (prot & VM_PROT_WRITE) == 0)
2890 cpu_dcache_wb_range(va, PAGE_SIZE);
2891 #endif
2892 } else {
2893 /*
2894 * New mapping, or changing the backing page
2895 * of an existing mapping.
2896 */
2897 if (opg) {
2898 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2899 paddr_t opa;
2900
2901 opa = VM_PAGE_TO_PHYS(opg);
2902
2903 /*
2904 * Replacing an existing mapping with a new one.
2905 * It is part of our managed memory so we
2906 * must remove it from the PV list
2907 */
2908 simple_lock(&omd->pvh_slock);
2909 pv = pmap_remove_pv(omd, opa, pm, va);
2910 pmap_vac_me_harder(omd, opa, pm, 0);
2911 simple_unlock(&omd->pvh_slock);
2912 oflags = pv->pv_flags;
2913
2914 #ifdef PMAP_CACHE_VIVT
2915 /*
2916 * If the old mapping was valid (ref/mod
2917 * emulation creates 'invalid' mappings
2918 * initially) then make sure to frob
2919 * the cache.
2920 */
2921 if ((oflags & PVF_NC) == 0 &&
2922 l2pte_valid(opte)) {
2923 if (PV_BEEN_EXECD(oflags)) {
2924 pmap_idcache_wbinv_range(pm, va,
2925 PAGE_SIZE);
2926 } else
2927 if (PV_BEEN_REFD(oflags)) {
2928 pmap_dcache_wb_range(pm, va,
2929 PAGE_SIZE, true,
2930 (oflags & PVF_WRITE) == 0);
2931 }
2932 }
2933 #endif
2934 } else
2935 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2936 if ((flags & PMAP_CANFAIL) == 0)
2937 panic("pmap_enter: no pv entries");
2938
2939 if (pm != pmap_kernel())
2940 pmap_free_l2_bucket(pm, l2b, 0);
2941 pmap_release_pmap_lock(pm);
2942 PMAP_MAP_TO_HEAD_UNLOCK();
2943 NPDEBUG(PDB_ENTER,
2944 printf("pmap_enter: ENOMEM\n"));
2945 return (ENOMEM);
2946 }
2947
2948 pmap_enter_pv(md, VM_PAGE_TO_PHYS(pg), pv, pm, va, nflags);
2949 }
2950 } else {
2951 /*
2952 * We're mapping an unmanaged page.
2953 * These are always readable, and possibly writable, from
2954 * the get go as we don't need to track ref/mod status.
2955 */
2956 npte |= l2pte_set_readonly(L2_S_PROTO);
2957 if (prot & VM_PROT_WRITE)
2958 npte = l2pte_set_writable(npte);
2959
2960 /*
2961 * Make sure the vector table is mapped cacheable
2962 */
2963 if (pm != pmap_kernel() && va == vector_page)
2964 npte |= pte_l2_s_cache_mode;
2965
2966 if (opg) {
2967 /*
2968 * Looks like there's an existing 'managed' mapping
2969 * at this address.
2970 */
2971 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2972 simple_lock(&omd->pvh_slock);
2973 pv = pmap_remove_pv(omd, VM_PAGE_TO_PHYS(opg), pm, va);
2974 pmap_vac_me_harder(omd, VM_PAGE_TO_PHYS(opg), pm, 0);
2975 simple_unlock(&omd->pvh_slock);
2976 oflags = pv->pv_flags;
2977
2978 #ifdef PMAP_CACHE_VIVT
2979 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2980 if (PV_BEEN_EXECD(oflags))
2981 pmap_idcache_wbinv_range(pm, va,
2982 PAGE_SIZE);
2983 else
2984 if (PV_BEEN_REFD(oflags))
2985 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2986 true, (oflags & PVF_WRITE) == 0);
2987 }
2988 #endif
2989 pool_put(&pmap_pv_pool, pv);
2990 }
2991 }
2992
2993 /*
2994 * Make sure userland mappings get the right permissions
2995 */
2996 if (pm != pmap_kernel() && va != vector_page)
2997 npte |= L2_S_PROT_U;
2998
2999 /*
3000 * Keep the stats up to date
3001 */
3002 if (opte == 0) {
3003 l2b->l2b_occupancy++;
3004 pm->pm_stats.resident_count++;
3005 }
3006
3007 NPDEBUG(PDB_ENTER,
3008 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3009
3010 /*
3011 * If this is just a wiring change, the two PTEs will be
3012 * identical, so there's no need to update the page table.
3013 */
3014 if (npte != opte) {
3015 bool is_cached = pmap_is_cached(pm);
3016
3017 *ptep = npte;
3018 if (is_cached) {
3019 /*
3020 * We only need to frob the cache/tlb if this pmap
3021 * is current
3022 */
3023 PTE_SYNC(ptep);
3024 if (va != vector_page && l2pte_valid(npte)) {
3025 /*
3026 * This mapping is likely to be accessed as
3027 * soon as we return to userland. Fix up the
3028 * L1 entry to avoid taking another
3029 * page/domain fault.
3030 */
3031 pd_entry_t *pl1pd, l1pd;
3032
3033 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3034 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3035 L1_C_PROTO;
3036 if (*pl1pd != l1pd) {
3037 *pl1pd = l1pd;
3038 PTE_SYNC(pl1pd);
3039 }
3040 }
3041 }
3042
3043 if (PV_BEEN_EXECD(oflags))
3044 pmap_tlb_flushID_SE(pm, va);
3045 else
3046 if (PV_BEEN_REFD(oflags))
3047 pmap_tlb_flushD_SE(pm, va);
3048
3049 NPDEBUG(PDB_ENTER,
3050 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3051 is_cached, pm->pm_cstate.cs_all));
3052
3053 if (pg != NULL) {
3054 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3055 simple_lock(&md->pvh_slock);
3056 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, va);
3057 simple_unlock(&md->pvh_slock);
3058 }
3059 }
3060 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3061 if (pg) {
3062 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3063 simple_lock(&md->pvh_slock);
3064 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3065 KASSERT(((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0));
3066 simple_unlock(&md->pvh_slock);
3067 }
3068 #endif
3069
3070 pmap_release_pmap_lock(pm);
3071 PMAP_MAP_TO_HEAD_UNLOCK();
3072
3073 return (0);
3074 }
3075
3076 /*
3077 * pmap_remove()
3078 *
3079 * pmap_remove is responsible for nuking a number of mappings for a range
3080 * of virtual address space in the current pmap. To do this efficiently
3081 * is interesting, because in a number of cases a wide virtual address
3082 * range may be supplied that contains few actual mappings. So, the
3083 * optimisations are:
3084 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3085 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3086 * maybe do just a partial cache clean. This path of execution is
3087 * complicated by the fact that the cache must be flushed _before_
3088 * the PTE is nuked, being a VAC :-)
3089 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3090 * all invalidations until pmap_update(), since pmap_remove_all() has
3091 * already flushed the cache.
3092 * 4. Maybe later fast-case a single page, but I don't think this is
3093 * going to make _that_ much difference overall.
3094 */
3095
3096 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3097
3098 void
3099 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3100 {
3101 struct l2_bucket *l2b;
3102 vaddr_t next_bucket;
3103 pt_entry_t *ptep;
3104 u_int cleanlist_idx, total, cnt;
3105 struct {
3106 vaddr_t va;
3107 pt_entry_t *ptep;
3108 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3109 u_int mappings, is_exec, is_refd;
3110
3111 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3112 "eva=%08lx\n", pm, sva, eva));
3113
3114 /*
3115 * we lock in the pmap => pv_head direction
3116 */
3117 PMAP_MAP_TO_HEAD_LOCK();
3118 pmap_acquire_pmap_lock(pm);
3119
3120 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3121 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3122 if (pm->pm_cstate.cs_tlb == 0)
3123 pm->pm_remove_all = true;
3124 } else
3125 cleanlist_idx = 0;
3126
3127 total = 0;
3128
3129 while (sva < eva) {
3130 /*
3131 * Do one L2 bucket's worth at a time.
3132 */
3133 next_bucket = L2_NEXT_BUCKET(sva);
3134 if (next_bucket > eva)
3135 next_bucket = eva;
3136
3137 l2b = pmap_get_l2_bucket(pm, sva);
3138 if (l2b == NULL) {
3139 sva = next_bucket;
3140 continue;
3141 }
3142
3143 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3144
3145 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3146 struct vm_page *pg;
3147 pt_entry_t pte;
3148 paddr_t pa;
3149
3150 pte = *ptep;
3151
3152 if (pte == 0) {
3153 /* Nothing here, move along */
3154 continue;
3155 }
3156
3157 pa = l2pte_pa(pte);
3158 is_exec = 0;
3159 is_refd = 1;
3160
3161 /*
3162 * Update flags. In a number of circumstances,
3163 * we could cluster a lot of these and do a
3164 * number of sequential pages in one go.
3165 */
3166 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3167 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3168 struct pv_entry *pv;
3169 simple_lock(&md->pvh_slock);
3170 pv = pmap_remove_pv(md, VM_PAGE_TO_PHYS(pg), pm, sva);
3171 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, 0);
3172 simple_unlock(&md->pvh_slock);
3173 if (pv != NULL) {
3174 if (pm->pm_remove_all == false) {
3175 is_exec =
3176 PV_BEEN_EXECD(pv->pv_flags);
3177 is_refd =
3178 PV_BEEN_REFD(pv->pv_flags);
3179 }
3180 pool_put(&pmap_pv_pool, pv);
3181 }
3182 }
3183 mappings++;
3184
3185 if (!l2pte_valid(pte)) {
3186 /*
3187 * Ref/Mod emulation is still active for this
3188 * mapping, therefore it is has not yet been
3189 * accessed. No need to frob the cache/tlb.
3190 */
3191 *ptep = 0;
3192 PTE_SYNC_CURRENT(pm, ptep);
3193 continue;
3194 }
3195
3196 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3197 /* Add to the clean list. */
3198 cleanlist[cleanlist_idx].ptep = ptep;
3199 cleanlist[cleanlist_idx].va =
3200 sva | (is_exec & 1);
3201 cleanlist_idx++;
3202 } else
3203 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3204 /* Nuke everything if needed. */
3205 #ifdef PMAP_CACHE_VIVT
3206 pmap_idcache_wbinv_all(pm);
3207 #endif
3208 pmap_tlb_flushID(pm);
3209
3210 /*
3211 * Roll back the previous PTE list,
3212 * and zero out the current PTE.
3213 */
3214 for (cnt = 0;
3215 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3216 *cleanlist[cnt].ptep = 0;
3217 PTE_SYNC(cleanlist[cnt].ptep);
3218 }
3219 *ptep = 0;
3220 PTE_SYNC(ptep);
3221 cleanlist_idx++;
3222 pm->pm_remove_all = true;
3223 } else {
3224 *ptep = 0;
3225 PTE_SYNC(ptep);
3226 if (pm->pm_remove_all == false) {
3227 if (is_exec)
3228 pmap_tlb_flushID_SE(pm, sva);
3229 else
3230 if (is_refd)
3231 pmap_tlb_flushD_SE(pm, sva);
3232 }
3233 }
3234 }
3235
3236 /*
3237 * Deal with any left overs
3238 */
3239 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3240 total += cleanlist_idx;
3241 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3242 if (pm->pm_cstate.cs_all != 0) {
3243 vaddr_t clva = cleanlist[cnt].va & ~1;
3244 if (cleanlist[cnt].va & 1) {
3245 #ifdef PMAP_CACHE_VIVT
3246 pmap_idcache_wbinv_range(pm,
3247 clva, PAGE_SIZE);
3248 #endif
3249 pmap_tlb_flushID_SE(pm, clva);
3250 } else {
3251 #ifdef PMAP_CACHE_VIVT
3252 pmap_dcache_wb_range(pm,
3253 clva, PAGE_SIZE, true,
3254 false);
3255 #endif
3256 pmap_tlb_flushD_SE(pm, clva);
3257 }
3258 }
3259 *cleanlist[cnt].ptep = 0;
3260 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3261 }
3262
3263 /*
3264 * If it looks like we're removing a whole bunch
3265 * of mappings, it's faster to just write-back
3266 * the whole cache now and defer TLB flushes until
3267 * pmap_update() is called.
3268 */
3269 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3270 cleanlist_idx = 0;
3271 else {
3272 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3273 #ifdef PMAP_CACHE_VIVT
3274 pmap_idcache_wbinv_all(pm);
3275 #endif
3276 pm->pm_remove_all = true;
3277 }
3278 }
3279
3280 pmap_free_l2_bucket(pm, l2b, mappings);
3281 pm->pm_stats.resident_count -= mappings;
3282 }
3283
3284 pmap_release_pmap_lock(pm);
3285 PMAP_MAP_TO_HEAD_UNLOCK();
3286 }
3287
3288 #ifdef PMAP_CACHE_VIPT
3289 static struct pv_entry *
3290 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3291 {
3292 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3293 struct pv_entry *pv;
3294
3295 simple_lock(&md->pvh_slock);
3296 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3297 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3298
3299 pv = pmap_remove_pv(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), va);
3300 KASSERT(pv);
3301 KASSERT(pv->pv_flags & PVF_KENTRY);
3302
3303 /*
3304 * If we are removing a writeable mapping to a cached exec page,
3305 * if it's the last mapping then clear it execness other sync
3306 * the page to the icache.
3307 */
3308 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3309 && (pv->pv_flags & PVF_WRITE) != 0) {
3310 if (SLIST_EMPTY(&md->pvh_list)) {
3311 md->pvh_attrs &= ~PVF_EXEC;
3312 PMAPCOUNT(exec_discarded_kremove);
3313 } else {
3314 pmap_syncicache_page(md, VM_PAGE_TO_PHYS(pg));
3315 PMAPCOUNT(exec_synced_kremove);
3316 }
3317 }
3318 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), 0);
3319 simple_unlock(&md->pvh_slock);
3320
3321 return pv;
3322 }
3323 #endif /* PMAP_CACHE_VIPT */
3324
3325 /*
3326 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3327 *
3328 * We assume there is already sufficient KVM space available
3329 * to do this, as we can't allocate L2 descriptor tables/metadata
3330 * from here.
3331 */
3332 void
3333 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3334 {
3335 struct l2_bucket *l2b;
3336 pt_entry_t *ptep, opte;
3337 #ifdef PMAP_CACHE_VIVT
3338 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3339 #endif
3340 #ifdef PMAP_CACHE_VIPT
3341 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3342 struct vm_page *opg;
3343 struct pv_entry *pv = NULL;
3344 #endif
3345 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3346
3347 NPDEBUG(PDB_KENTER,
3348 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x pg %p md %p\n",
3349 va, pa, prot, pg, md));
3350
3351 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3352 KDASSERT(l2b != NULL);
3353
3354 ptep = &l2b->l2b_kva[l2pte_index(va)];
3355 opte = *ptep;
3356
3357 if (opte == 0) {
3358 PMAPCOUNT(kenter_mappings);
3359 l2b->l2b_occupancy++;
3360 } else {
3361 PMAPCOUNT(kenter_remappings);
3362 #ifdef PMAP_CACHE_VIPT
3363 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3364 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3365 if (opg) {
3366 KASSERT(opg != pg);
3367 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3368 KASSERT((flags & PMAP_KMPAGE) == 0);
3369 simple_lock(&omd->pvh_slock);
3370 pv = pmap_kremove_pg(opg, va);
3371 simple_unlock(&omd->pvh_slock);
3372 }
3373 #endif
3374 if (l2pte_valid(opte)) {
3375 #ifdef PMAP_CACHE_VIVT
3376 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3377 #endif
3378 cpu_tlb_flushD_SE(va);
3379 cpu_cpwait();
3380 }
3381 }
3382
3383 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3384 pte_l2_s_cache_mode;
3385 PTE_SYNC(ptep);
3386
3387 if (pg) {
3388 if (flags & PMAP_KMPAGE) {
3389 simple_lock(&md->pvh_slock);
3390 KASSERT(md->urw_mappings == 0);
3391 KASSERT(md->uro_mappings == 0);
3392 KASSERT(md->krw_mappings == 0);
3393 KASSERT(md->kro_mappings == 0);
3394 #ifdef PMAP_CACHE_VIPT
3395 KASSERT(pv == NULL);
3396 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3397 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3398 /* if there is a color conflict, evict from cache. */
3399 if (pmap_is_page_colored_p(md)
3400 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3401 PMAPCOUNT(vac_color_change);
3402 pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_FLUSH_PRIMARY);
3403 } else if (md->pvh_attrs & PVF_MULTCLR) {
3404 /*
3405 * If this page has multiple colors, expunge
3406 * them.
3407 */
3408 PMAPCOUNT(vac_flush_lots2);
3409 pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_FLUSH_SECONDARY);
3410 }
3411 md->pvh_attrs &= PAGE_SIZE - 1;
3412 md->pvh_attrs |= PVF_KMPAGE
3413 | PVF_COLORED | PVF_DIRTY
3414 | (va & arm_cache_prefer_mask);
3415 #endif
3416 #ifdef PMAP_CACHE_VIVT
3417 md->pvh_attrs |= PVF_KMPAGE;
3418 #endif
3419 pmap_kmpages++;
3420 simple_unlock(&md->pvh_slock);
3421 #ifdef PMAP_CACHE_VIPT
3422 } else {
3423 if (pv == NULL) {
3424 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3425 KASSERT(pv != NULL);
3426 }
3427 pmap_enter_pv(md, VM_PAGE_TO_PHYS(pg), pv, pmap_kernel(), va,
3428 PVF_WIRED | PVF_KENTRY
3429 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3430 if ((prot & VM_PROT_WRITE)
3431 && !(md->pvh_attrs & PVF_NC))
3432 md->pvh_attrs |= PVF_DIRTY;
3433 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3434 simple_lock(&md->pvh_slock);
3435 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), va);
3436 simple_unlock(&md->pvh_slock);
3437 #endif
3438 }
3439 #ifdef PMAP_CACHE_VIPT
3440 } else {
3441 if (pv != NULL)
3442 pool_put(&pmap_pv_pool, pv);
3443 #endif
3444 }
3445 }
3446
3447 void
3448 pmap_kremove(vaddr_t va, vsize_t len)
3449 {
3450 struct l2_bucket *l2b;
3451 pt_entry_t *ptep, *sptep, opte;
3452 vaddr_t next_bucket, eva;
3453 u_int mappings;
3454 struct vm_page *opg;
3455
3456 PMAPCOUNT(kenter_unmappings);
3457
3458 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3459 va, len));
3460
3461 eva = va + len;
3462
3463 while (va < eva) {
3464 next_bucket = L2_NEXT_BUCKET(va);
3465 if (next_bucket > eva)
3466 next_bucket = eva;
3467
3468 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3469 KDASSERT(l2b != NULL);
3470
3471 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3472 mappings = 0;
3473
3474 while (va < next_bucket) {
3475 opte = *ptep;
3476 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3477 if (opg) {
3478 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3479 if (omd->pvh_attrs & PVF_KMPAGE) {
3480 simple_lock(&omd->pvh_slock);
3481 KASSERT(omd->urw_mappings == 0);
3482 KASSERT(omd->uro_mappings == 0);
3483 KASSERT(omd->krw_mappings == 0);
3484 KASSERT(omd->kro_mappings == 0);
3485 omd->pvh_attrs &= ~PVF_KMPAGE;
3486 #ifdef PMAP_CACHE_VIPT
3487 omd->pvh_attrs &= ~PVF_WRITE;
3488 #endif
3489 pmap_kmpages--;
3490 simple_unlock(&omd->pvh_slock);
3491 #ifdef PMAP_CACHE_VIPT
3492 } else {
3493 pool_put(&pmap_pv_pool,
3494 pmap_kremove_pg(opg, va));
3495 #endif
3496 }
3497 }
3498 if (l2pte_valid(opte)) {
3499 #ifdef PMAP_CACHE_VIVT
3500 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3501 #endif
3502 cpu_tlb_flushD_SE(va);
3503 }
3504 if (opte) {
3505 *ptep = 0;
3506 mappings++;
3507 }
3508 va += PAGE_SIZE;
3509 ptep++;
3510 }
3511 KDASSERT(mappings <= l2b->l2b_occupancy);
3512 l2b->l2b_occupancy -= mappings;
3513 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3514 }
3515 cpu_cpwait();
3516 }
3517
3518 bool
3519 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3520 {
3521 struct l2_dtable *l2;
3522 pd_entry_t *pl1pd, l1pd;
3523 pt_entry_t *ptep, pte;
3524 paddr_t pa;
3525 u_int l1idx;
3526
3527 pmap_acquire_pmap_lock(pm);
3528
3529 l1idx = L1_IDX(va);
3530 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3531 l1pd = *pl1pd;
3532
3533 if (l1pte_section_p(l1pd)) {
3534 /*
3535 * These should only happen for pmap_kernel()
3536 */
3537 KDASSERT(pm == pmap_kernel());
3538 pmap_release_pmap_lock(pm);
3539 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3540 } else {
3541 /*
3542 * Note that we can't rely on the validity of the L1
3543 * descriptor as an indication that a mapping exists.
3544 * We have to look it up in the L2 dtable.
3545 */
3546 l2 = pm->pm_l2[L2_IDX(l1idx)];
3547
3548 if (l2 == NULL ||
3549 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3550 pmap_release_pmap_lock(pm);
3551 return false;
3552 }
3553
3554 ptep = &ptep[l2pte_index(va)];
3555 pte = *ptep;
3556 pmap_release_pmap_lock(pm);
3557
3558 if (pte == 0)
3559 return false;
3560
3561 switch (pte & L2_TYPE_MASK) {
3562 case L2_TYPE_L:
3563 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3564 break;
3565
3566 default:
3567 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3568 break;
3569 }
3570 }
3571
3572 if (pap != NULL)
3573 *pap = pa;
3574
3575 return true;
3576 }
3577
3578 void
3579 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3580 {
3581 struct l2_bucket *l2b;
3582 pt_entry_t *ptep, pte;
3583 vaddr_t next_bucket;
3584 u_int flags;
3585 u_int clr_mask;
3586 int flush;
3587
3588 NPDEBUG(PDB_PROTECT,
3589 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3590 pm, sva, eva, prot));
3591
3592 if ((prot & VM_PROT_READ) == 0) {
3593 pmap_remove(pm, sva, eva);
3594 return;
3595 }
3596
3597 if (prot & VM_PROT_WRITE) {
3598 /*
3599 * If this is a read->write transition, just ignore it and let
3600 * uvm_fault() take care of it later.
3601 */
3602 return;
3603 }
3604
3605 PMAP_MAP_TO_HEAD_LOCK();
3606 pmap_acquire_pmap_lock(pm);
3607
3608 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3609 flags = 0;
3610 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3611
3612 while (sva < eva) {
3613 next_bucket = L2_NEXT_BUCKET(sva);
3614 if (next_bucket > eva)
3615 next_bucket = eva;
3616
3617 l2b = pmap_get_l2_bucket(pm, sva);
3618 if (l2b == NULL) {
3619 sva = next_bucket;
3620 continue;
3621 }
3622
3623 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3624
3625 while (sva < next_bucket) {
3626 pte = *ptep;
3627 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3628 struct vm_page *pg;
3629 u_int f;
3630
3631 #ifdef PMAP_CACHE_VIVT
3632 /*
3633 * OK, at this point, we know we're doing
3634 * write-protect operation. If the pmap is
3635 * active, write-back the page.
3636 */
3637 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3638 false, false);
3639 #endif
3640
3641 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3642 pte = l2pte_set_readonly(pte);
3643 *ptep = pte;
3644 PTE_SYNC(ptep);
3645
3646 if (pg != NULL) {
3647 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3648 simple_lock(&md->pvh_slock);
3649 f = pmap_modify_pv(md, VM_PAGE_TO_PHYS(pg), pm, sva,
3650 clr_mask, 0);
3651 pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, sva);
3652 simple_unlock(&md->pvh_slock);
3653 } else
3654 f = PVF_REF | PVF_EXEC;
3655
3656 if (flush >= 0) {
3657 flush++;
3658 flags |= f;
3659 } else
3660 if (PV_BEEN_EXECD(f))
3661 pmap_tlb_flushID_SE(pm, sva);
3662 else
3663 if (PV_BEEN_REFD(f))
3664 pmap_tlb_flushD_SE(pm, sva);
3665 }
3666
3667 sva += PAGE_SIZE;
3668 ptep++;
3669 }
3670 }
3671
3672 pmap_release_pmap_lock(pm);
3673 PMAP_MAP_TO_HEAD_UNLOCK();
3674
3675 if (flush) {
3676 if (PV_BEEN_EXECD(flags))
3677 pmap_tlb_flushID(pm);
3678 else
3679 if (PV_BEEN_REFD(flags))
3680 pmap_tlb_flushD(pm);
3681 }
3682 }
3683
3684 void
3685 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3686 {
3687 struct l2_bucket *l2b;
3688 pt_entry_t *ptep;
3689 vaddr_t next_bucket;
3690 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3691
3692 NPDEBUG(PDB_EXEC,
3693 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3694 pm, sva, eva));
3695
3696 PMAP_MAP_TO_HEAD_LOCK();
3697 pmap_acquire_pmap_lock(pm);
3698
3699 while (sva < eva) {
3700 next_bucket = L2_NEXT_BUCKET(sva);
3701 if (next_bucket > eva)
3702 next_bucket = eva;
3703
3704 l2b = pmap_get_l2_bucket(pm, sva);
3705 if (l2b == NULL) {
3706 sva = next_bucket;
3707 continue;
3708 }
3709
3710 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3711 sva < next_bucket;
3712 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3713 if (l2pte_valid(*ptep)) {
3714 cpu_icache_sync_range(sva,
3715 min(page_size, eva - sva));
3716 }
3717 }
3718 }
3719
3720 pmap_release_pmap_lock(pm);
3721 PMAP_MAP_TO_HEAD_UNLOCK();
3722 }
3723
3724 void
3725 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3726 {
3727
3728 NPDEBUG(PDB_PROTECT,
3729 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3730 pg, VM_PAGE_TO_PHYS(pg), prot));
3731
3732 switch(prot) {
3733 case VM_PROT_READ|VM_PROT_WRITE:
3734 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3735 pmap_clearbit(pg, PVF_EXEC);
3736 break;
3737 #endif
3738 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3739 break;
3740
3741 case VM_PROT_READ:
3742 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3743 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3744 break;
3745 #endif
3746 case VM_PROT_READ|VM_PROT_EXECUTE:
3747 pmap_clearbit(pg, PVF_WRITE);
3748 break;
3749
3750 default:
3751 pmap_page_remove(pg);
3752 break;
3753 }
3754 }
3755
3756 /*
3757 * pmap_clear_modify:
3758 *
3759 * Clear the "modified" attribute for a page.
3760 */
3761 bool
3762 pmap_clear_modify(struct vm_page *pg)
3763 {
3764 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3765 bool rv;
3766
3767 if (md->pvh_attrs & PVF_MOD) {
3768 rv = true;
3769 #ifdef PMAP_CACHE_VIPT
3770 /*
3771 * If we are going to clear the modified bit and there are
3772 * no other modified bits set, flush the page to memory and
3773 * mark it clean.
3774 */
3775 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3776 pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_CLEAN_PRIMARY);
3777 #endif
3778 pmap_clearbit(pg, PVF_MOD);
3779 } else
3780 rv = false;
3781
3782 return (rv);
3783 }
3784
3785 /*
3786 * pmap_clear_reference:
3787 *
3788 * Clear the "referenced" attribute for a page.
3789 */
3790 bool
3791 pmap_clear_reference(struct vm_page *pg)
3792 {
3793 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3794 bool rv;
3795
3796 if (md->pvh_attrs & PVF_REF) {
3797 rv = true;
3798 pmap_clearbit(pg, PVF_REF);
3799 } else
3800 rv = false;
3801
3802 return (rv);
3803 }
3804
3805 /*
3806 * pmap_is_modified:
3807 *
3808 * Test if a page has the "modified" attribute.
3809 */
3810 /* See <arm/arm32/pmap.h> */
3811
3812 /*
3813 * pmap_is_referenced:
3814 *
3815 * Test if a page has the "referenced" attribute.
3816 */
3817 /* See <arm/arm32/pmap.h> */
3818
3819 int
3820 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3821 {
3822 struct l2_dtable *l2;
3823 struct l2_bucket *l2b;
3824 pd_entry_t *pl1pd, l1pd;
3825 pt_entry_t *ptep, pte;
3826 paddr_t pa;
3827 u_int l1idx;
3828 int rv = 0;
3829
3830 PMAP_MAP_TO_HEAD_LOCK();
3831 pmap_acquire_pmap_lock(pm);
3832
3833 l1idx = L1_IDX(va);
3834
3835 /*
3836 * If there is no l2_dtable for this address, then the process
3837 * has no business accessing it.
3838 *
3839 * Note: This will catch userland processes trying to access
3840 * kernel addresses.
3841 */
3842 l2 = pm->pm_l2[L2_IDX(l1idx)];
3843 if (l2 == NULL)
3844 goto out;
3845
3846 /*
3847 * Likewise if there is no L2 descriptor table
3848 */
3849 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3850 if (l2b->l2b_kva == NULL)
3851 goto out;
3852
3853 /*
3854 * Check the PTE itself.
3855 */
3856 ptep = &l2b->l2b_kva[l2pte_index(va)];
3857 pte = *ptep;
3858 if (pte == 0)
3859 goto out;
3860
3861 /*
3862 * Catch a userland access to the vector page mapped at 0x0
3863 */
3864 if (user && (pte & L2_S_PROT_U) == 0)
3865 goto out;
3866
3867 pa = l2pte_pa(pte);
3868
3869 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3870 /*
3871 * This looks like a good candidate for "page modified"
3872 * emulation...
3873 */
3874 struct pv_entry *pv;
3875 struct vm_page *pg;
3876
3877 /* Extract the physical address of the page */
3878 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3879 goto out;
3880
3881 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3882
3883 /* Get the current flags for this page. */
3884 simple_lock(&md->pvh_slock);
3885
3886 pv = pmap_find_pv(md, pm, va);
3887 if (pv == NULL) {
3888 simple_unlock(&md->pvh_slock);
3889 goto out;
3890 }
3891
3892 /*
3893 * Do the flags say this page is writable? If not then it
3894 * is a genuine write fault. If yes then the write fault is
3895 * our fault as we did not reflect the write access in the
3896 * PTE. Now we know a write has occurred we can correct this
3897 * and also set the modified bit
3898 */
3899 if ((pv->pv_flags & PVF_WRITE) == 0) {
3900 simple_unlock(&md->pvh_slock);
3901 goto out;
3902 }
3903
3904 NPDEBUG(PDB_FOLLOW,
3905 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3906 pm, va, VM_PAGE_TO_PHYS(pg)));
3907
3908 md->pvh_attrs |= PVF_REF | PVF_MOD;
3909 pv->pv_flags |= PVF_REF | PVF_MOD;
3910 #ifdef PMAP_CACHE_VIPT
3911 /*
3912 * If there are cacheable mappings for this page, mark it dirty.
3913 */
3914 if ((md->pvh_attrs & PVF_NC) == 0)
3915 md->pvh_attrs |= PVF_DIRTY;
3916 #endif
3917 simple_unlock(&md->pvh_slock);
3918
3919 /*
3920 * Re-enable write permissions for the page. No need to call
3921 * pmap_vac_me_harder(), since this is just a
3922 * modified-emulation fault, and the PVF_WRITE bit isn't
3923 * changing. We've already set the cacheable bits based on
3924 * the assumption that we can write to this page.
3925 */
3926 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3927 PTE_SYNC(ptep);
3928 rv = 1;
3929 } else
3930 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3931 /*
3932 * This looks like a good candidate for "page referenced"
3933 * emulation.
3934 */
3935 struct pv_entry *pv;
3936 struct vm_page *pg;
3937
3938 /* Extract the physical address of the page */
3939 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3940 goto out;
3941
3942 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3943
3944 /* Get the current flags for this page. */
3945 simple_lock(&md->pvh_slock);
3946
3947 pv = pmap_find_pv(md, pm, va);
3948 if (pv == NULL) {
3949 simple_unlock(&md->pvh_slock);
3950 goto out;
3951 }
3952
3953 md->pvh_attrs |= PVF_REF;
3954 pv->pv_flags |= PVF_REF;
3955 simple_unlock(&md->pvh_slock);
3956
3957 NPDEBUG(PDB_FOLLOW,
3958 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3959 pm, va, VM_PAGE_TO_PHYS(pg)));
3960
3961 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3962 PTE_SYNC(ptep);
3963 rv = 1;
3964 }
3965
3966 /*
3967 * We know there is a valid mapping here, so simply
3968 * fix up the L1 if necessary.
3969 */
3970 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3971 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3972 if (*pl1pd != l1pd) {
3973 *pl1pd = l1pd;
3974 PTE_SYNC(pl1pd);
3975 rv = 1;
3976 }
3977
3978 #ifdef CPU_SA110
3979 /*
3980 * There are bugs in the rev K SA110. This is a check for one
3981 * of them.
3982 */
3983 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3984 curcpu()->ci_arm_cpurev < 3) {
3985 /* Always current pmap */
3986 if (l2pte_valid(pte)) {
3987 extern int kernel_debug;
3988 if (kernel_debug & 1) {
3989 struct proc *p = curlwp->l_proc;
3990 printf("prefetch_abort: page is already "
3991 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3992 printf("prefetch_abort: pc=%08lx proc=%p "
3993 "process=%s\n", va, p, p->p_comm);
3994 printf("prefetch_abort: far=%08x fs=%x\n",
3995 cpu_faultaddress(), cpu_faultstatus());
3996 }
3997 #ifdef DDB
3998 if (kernel_debug & 2)
3999 Debugger();
4000 #endif
4001 rv = 1;
4002 }
4003 }
4004 #endif /* CPU_SA110 */
4005
4006 #ifdef DEBUG
4007 /*
4008 * If 'rv == 0' at this point, it generally indicates that there is a
4009 * stale TLB entry for the faulting address. This happens when two or
4010 * more processes are sharing an L1. Since we don't flush the TLB on
4011 * a context switch between such processes, we can take domain faults
4012 * for mappings which exist at the same VA in both processes. EVEN IF
4013 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4014 * example.
4015 *
4016 * This is extremely likely to happen if pmap_enter() updated the L1
4017 * entry for a recently entered mapping. In this case, the TLB is
4018 * flushed for the new mapping, but there may still be TLB entries for
4019 * other mappings belonging to other processes in the 1MB range
4020 * covered by the L1 entry.
4021 *
4022 * Since 'rv == 0', we know that the L1 already contains the correct
4023 * value, so the fault must be due to a stale TLB entry.
4024 *
4025 * Since we always need to flush the TLB anyway in the case where we
4026 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4027 * stale TLB entries dynamically.
4028 *
4029 * However, the above condition can ONLY happen if the current L1 is
4030 * being shared. If it happens when the L1 is unshared, it indicates
4031 * that other parts of the pmap are not doing their job WRT managing
4032 * the TLB.
4033 */
4034 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4035 extern int last_fault_code;
4036 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4037 pm, va, ftype);
4038 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4039 l2, l2b, ptep, pl1pd);
4040 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4041 pte, l1pd, last_fault_code);
4042 #ifdef DDB
4043 Debugger();
4044 #endif
4045 }
4046 #endif
4047
4048 cpu_tlb_flushID_SE(va);
4049 cpu_cpwait();
4050
4051 rv = 1;
4052
4053 out:
4054 pmap_release_pmap_lock(pm);
4055 PMAP_MAP_TO_HEAD_UNLOCK();
4056
4057 return (rv);
4058 }
4059
4060 /*
4061 * Routine: pmap_procwr
4062 *
4063 * Function:
4064 * Synchronize caches corresponding to [addr, addr+len) in p.
4065 *
4066 */
4067 void
4068 pmap_procwr(struct proc *p, vaddr_t va, int len)
4069 {
4070 /* We only need to do anything if it is the current process. */
4071 if (p == curproc)
4072 cpu_icache_sync_range(va, len);
4073 }
4074
4075 /*
4076 * Routine: pmap_unwire
4077 * Function: Clear the wired attribute for a map/virtual-address pair.
4078 *
4079 * In/out conditions:
4080 * The mapping must already exist in the pmap.
4081 */
4082 void
4083 pmap_unwire(pmap_t pm, vaddr_t va)
4084 {
4085 struct l2_bucket *l2b;
4086 pt_entry_t *ptep, pte;
4087 struct vm_page *pg;
4088 paddr_t pa;
4089
4090 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4091
4092 PMAP_MAP_TO_HEAD_LOCK();
4093 pmap_acquire_pmap_lock(pm);
4094
4095 l2b = pmap_get_l2_bucket(pm, va);
4096 KDASSERT(l2b != NULL);
4097
4098 ptep = &l2b->l2b_kva[l2pte_index(va)];
4099 pte = *ptep;
4100
4101 /* Extract the physical address of the page */
4102 pa = l2pte_pa(pte);
4103
4104 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4105 /* Update the wired bit in the pv entry for this page. */
4106 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4107 simple_lock(&md->pvh_slock);
4108 (void) pmap_modify_pv(md, VM_PAGE_TO_PHYS(pg), pm, va, PVF_WIRED, 0);
4109 simple_unlock(&md->pvh_slock);
4110 }
4111
4112 pmap_release_pmap_lock(pm);
4113 PMAP_MAP_TO_HEAD_UNLOCK();
4114 }
4115
4116 void
4117 pmap_activate(struct lwp *l)
4118 {
4119 extern int block_userspace_access;
4120 pmap_t opm, npm, rpm;
4121 uint32_t odacr, ndacr;
4122 int oldirqstate;
4123
4124 /*
4125 * If activating a non-current lwp or the current lwp is
4126 * already active, just return.
4127 */
4128 if (l != curlwp ||
4129 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4130 return;
4131
4132 npm = l->l_proc->p_vmspace->vm_map.pmap;
4133 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4134 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4135
4136 /*
4137 * If TTB and DACR are unchanged, short-circuit all the
4138 * TLB/cache management stuff.
4139 */
4140 if (pmap_previous_active_lwp != NULL) {
4141 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4142 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4143 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4144
4145 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4146 goto all_done;
4147 } else
4148 opm = NULL;
4149
4150 PMAPCOUNT(activations);
4151 block_userspace_access = 1;
4152
4153 /*
4154 * If switching to a user vmspace which is different to the
4155 * most recent one, and the most recent one is potentially
4156 * live in the cache, we must write-back and invalidate the
4157 * entire cache.
4158 */
4159 rpm = pmap_recent_user;
4160
4161 /*
4162 * XXXSCW: There's a corner case here which can leave turds in the cache as
4163 * reported in kern/41058. They're probably left over during tear-down and
4164 * switching away from an exiting process. Until the root cause is identified
4165 * and fixed, zap the cache when switching pmaps. This will result in a few
4166 * unnecessary cache flushes, but that's better than silently corrupting data.
4167 */
4168 #if 0
4169 if (npm != pmap_kernel() && rpm && npm != rpm &&
4170 rpm->pm_cstate.cs_cache) {
4171 rpm->pm_cstate.cs_cache = 0;
4172 #ifdef PMAP_CACHE_VIVT
4173 cpu_idcache_wbinv_all();
4174 #endif
4175 }
4176 #else
4177 if (rpm) {
4178 rpm->pm_cstate.cs_cache = 0;
4179 if (npm == pmap_kernel())
4180 pmap_recent_user = NULL;
4181 #ifdef PMAP_CACHE_VIVT
4182 cpu_idcache_wbinv_all();
4183 #endif
4184 }
4185 #endif
4186
4187 /* No interrupts while we frob the TTB/DACR */
4188 oldirqstate = disable_interrupts(IF32_bits);
4189
4190 /*
4191 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4192 * entry corresponding to 'vector_page' in the incoming L1 table
4193 * before switching to it otherwise subsequent interrupts/exceptions
4194 * (including domain faults!) will jump into hyperspace.
4195 */
4196 if (npm->pm_pl1vec != NULL) {
4197 cpu_tlb_flushID_SE((u_int)vector_page);
4198 cpu_cpwait();
4199 *npm->pm_pl1vec = npm->pm_l1vec;
4200 PTE_SYNC(npm->pm_pl1vec);
4201 }
4202
4203 cpu_domains(ndacr);
4204
4205 if (npm == pmap_kernel() || npm == rpm) {
4206 /*
4207 * Switching to a kernel thread, or back to the
4208 * same user vmspace as before... Simply update
4209 * the TTB (no TLB flush required)
4210 */
4211 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4212 "r"(npm->pm_l1->l1_physaddr));
4213 cpu_cpwait();
4214 } else {
4215 /*
4216 * Otherwise, update TTB and flush TLB
4217 */
4218 cpu_context_switch(npm->pm_l1->l1_physaddr);
4219 if (rpm != NULL)
4220 rpm->pm_cstate.cs_tlb = 0;
4221 }
4222
4223 restore_interrupts(oldirqstate);
4224
4225 block_userspace_access = 0;
4226
4227 all_done:
4228 /*
4229 * The new pmap is resident. Make sure it's marked
4230 * as resident in the cache/TLB.
4231 */
4232 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4233 if (npm != pmap_kernel())
4234 pmap_recent_user = npm;
4235
4236 /* The old pmap is not longer active */
4237 if (opm != NULL)
4238 opm->pm_activated = false;
4239
4240 /* But the new one is */
4241 npm->pm_activated = true;
4242 }
4243
4244 void
4245 pmap_deactivate(struct lwp *l)
4246 {
4247
4248 /*
4249 * If the process is exiting, make sure pmap_activate() does
4250 * a full MMU context-switch and cache flush, which we might
4251 * otherwise skip. See PR port-arm/38950.
4252 */
4253 if (l->l_proc->p_sflag & PS_WEXIT)
4254 pmap_previous_active_lwp = NULL;
4255
4256 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4257 }
4258
4259 void
4260 pmap_update(pmap_t pm)
4261 {
4262
4263 if (pm->pm_remove_all) {
4264 /*
4265 * Finish up the pmap_remove_all() optimisation by flushing
4266 * the TLB.
4267 */
4268 pmap_tlb_flushID(pm);
4269 pm->pm_remove_all = false;
4270 }
4271
4272 if (pmap_is_current(pm)) {
4273 /*
4274 * If we're dealing with a current userland pmap, move its L1
4275 * to the end of the LRU.
4276 */
4277 if (pm != pmap_kernel())
4278 pmap_use_l1(pm);
4279
4280 /*
4281 * We can assume we're done with frobbing the cache/tlb for
4282 * now. Make sure any future pmap ops don't skip cache/tlb
4283 * flushes.
4284 */
4285 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4286 }
4287
4288 PMAPCOUNT(updates);
4289
4290 /*
4291 * make sure TLB/cache operations have completed.
4292 */
4293 cpu_cpwait();
4294 }
4295
4296 void
4297 pmap_remove_all(pmap_t pm)
4298 {
4299
4300 /*
4301 * The vmspace described by this pmap is about to be torn down.
4302 * Until pmap_update() is called, UVM will only make calls
4303 * to pmap_remove(). We can make life much simpler by flushing
4304 * the cache now, and deferring TLB invalidation to pmap_update().
4305 */
4306 #ifdef PMAP_CACHE_VIVT
4307 pmap_idcache_wbinv_all(pm);
4308 #endif
4309 pm->pm_remove_all = true;
4310 }
4311
4312 /*
4313 * Retire the given physical map from service.
4314 * Should only be called if the map contains no valid mappings.
4315 */
4316 void
4317 pmap_destroy(pmap_t pm)
4318 {
4319 u_int count;
4320
4321 if (pm == NULL)
4322 return;
4323
4324 if (pm->pm_remove_all) {
4325 pmap_tlb_flushID(pm);
4326 pm->pm_remove_all = false;
4327 }
4328
4329 /*
4330 * Drop reference count
4331 */
4332 mutex_enter(&pm->pm_lock);
4333 count = --pm->pm_obj.uo_refs;
4334 mutex_exit(&pm->pm_lock);
4335 if (count > 0) {
4336 if (pmap_is_current(pm)) {
4337 if (pm != pmap_kernel())
4338 pmap_use_l1(pm);
4339 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4340 }
4341 return;
4342 }
4343
4344 /*
4345 * reference count is zero, free pmap resources and then free pmap.
4346 */
4347
4348 if (vector_page < KERNEL_BASE) {
4349 KDASSERT(!pmap_is_current(pm));
4350
4351 /* Remove the vector page mapping */
4352 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4353 pmap_update(pm);
4354 }
4355
4356 LIST_REMOVE(pm, pm_list);
4357
4358 pmap_free_l1(pm);
4359
4360 if (pmap_recent_user == pm)
4361 pmap_recent_user = NULL;
4362
4363 UVM_OBJ_DESTROY(&pm->pm_obj);
4364
4365 /* return the pmap to the pool */
4366 pool_cache_put(&pmap_cache, pm);
4367 }
4368
4369
4370 /*
4371 * void pmap_reference(pmap_t pm)
4372 *
4373 * Add a reference to the specified pmap.
4374 */
4375 void
4376 pmap_reference(pmap_t pm)
4377 {
4378
4379 if (pm == NULL)
4380 return;
4381
4382 pmap_use_l1(pm);
4383
4384 mutex_enter(&pm->pm_lock);
4385 pm->pm_obj.uo_refs++;
4386 mutex_exit(&pm->pm_lock);
4387 }
4388
4389 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4390
4391 static struct evcnt pmap_prefer_nochange_ev =
4392 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4393 static struct evcnt pmap_prefer_change_ev =
4394 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4395
4396 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4397 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4398
4399 void
4400 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4401 {
4402 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4403 vaddr_t va = *vap;
4404 vaddr_t diff = (hint - va) & mask;
4405 if (diff == 0) {
4406 pmap_prefer_nochange_ev.ev_count++;
4407 } else {
4408 pmap_prefer_change_ev.ev_count++;
4409 if (__predict_false(td))
4410 va -= mask + 1;
4411 *vap = va + diff;
4412 }
4413 }
4414 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4415
4416 /*
4417 * pmap_zero_page()
4418 *
4419 * Zero a given physical page by mapping it at a page hook point.
4420 * In doing the zero page op, the page we zero is mapped cachable, as with
4421 * StrongARM accesses to non-cached pages are non-burst making writing
4422 * _any_ bulk data very slow.
4423 */
4424 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4425 void
4426 pmap_zero_page_generic(paddr_t phys)
4427 {
4428 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4429 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4430 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4431 #endif
4432 #ifdef PMAP_CACHE_VIPT
4433 /* Choose the last page color it had, if any */
4434 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4435 #else
4436 const vsize_t va_offset = 0;
4437 #endif
4438 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4439
4440 #ifdef DEBUG
4441 if (!SLIST_EMPTY(&md->pvh_list))
4442 panic("pmap_zero_page: page has mappings");
4443 #endif
4444
4445 KDASSERT((phys & PGOFSET) == 0);
4446
4447 /*
4448 * Hook in the page, zero it, and purge the cache for that
4449 * zeroed page. Invalidate the TLB as needed.
4450 */
4451 *ptep = L2_S_PROTO | phys |
4452 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4453 PTE_SYNC(ptep);
4454 cpu_tlb_flushD_SE(cdstp + va_offset);
4455 cpu_cpwait();
4456 bzero_page(cdstp + va_offset);
4457 /*
4458 * Unmap the page.
4459 */
4460 *ptep = 0;
4461 PTE_SYNC(ptep);
4462 cpu_tlb_flushD_SE(cdstp + va_offset);
4463 #ifdef PMAP_CACHE_VIVT
4464 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4465 #endif
4466 #ifdef PMAP_CACHE_VIPT
4467 /*
4468 * This page is now cache resident so it now has a page color.
4469 * Any contents have been obliterated so clear the EXEC flag.
4470 */
4471 if (!pmap_is_page_colored_p(md)) {
4472 PMAPCOUNT(vac_color_new);
4473 md->pvh_attrs |= PVF_COLORED;
4474 }
4475 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4476 md->pvh_attrs &= ~PVF_EXEC;
4477 PMAPCOUNT(exec_discarded_zero);
4478 }
4479 md->pvh_attrs |= PVF_DIRTY;
4480 #endif
4481 }
4482 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4483
4484 #if ARM_MMU_XSCALE == 1
4485 void
4486 pmap_zero_page_xscale(paddr_t phys)
4487 {
4488 #ifdef DEBUG
4489 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4490 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4491
4492 if (!SLIST_EMPTY(&md->pvh_list))
4493 panic("pmap_zero_page: page has mappings");
4494 #endif
4495
4496 KDASSERT((phys & PGOFSET) == 0);
4497
4498 /*
4499 * Hook in the page, zero it, and purge the cache for that
4500 * zeroed page. Invalidate the TLB as needed.
4501 */
4502 *cdst_pte = L2_S_PROTO | phys |
4503 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4504 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4505 PTE_SYNC(cdst_pte);
4506 cpu_tlb_flushD_SE(cdstp);
4507 cpu_cpwait();
4508 bzero_page(cdstp);
4509 xscale_cache_clean_minidata();
4510 }
4511 #endif /* ARM_MMU_XSCALE == 1 */
4512
4513 /* pmap_pageidlezero()
4514 *
4515 * The same as above, except that we assume that the page is not
4516 * mapped. This means we never have to flush the cache first. Called
4517 * from the idle loop.
4518 */
4519 bool
4520 pmap_pageidlezero(paddr_t phys)
4521 {
4522 unsigned int i;
4523 int *ptr;
4524 bool rv = true;
4525 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4526 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4527 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4528 #endif
4529 #ifdef PMAP_CACHE_VIPT
4530 /* Choose the last page color it had, if any */
4531 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4532 #else
4533 const vsize_t va_offset = 0;
4534 #endif
4535 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4536
4537
4538 #ifdef DEBUG
4539 if (!SLIST_EMPTY(&md->pvh_list))
4540 panic("pmap_pageidlezero: page has mappings");
4541 #endif
4542
4543 KDASSERT((phys & PGOFSET) == 0);
4544
4545 /*
4546 * Hook in the page, zero it, and purge the cache for that
4547 * zeroed page. Invalidate the TLB as needed.
4548 */
4549 *ptep = L2_S_PROTO | phys |
4550 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4551 PTE_SYNC(ptep);
4552 cpu_tlb_flushD_SE(cdstp + va_offset);
4553 cpu_cpwait();
4554
4555 for (i = 0, ptr = (int *)(cdstp + va_offset);
4556 i < (PAGE_SIZE / sizeof(int)); i++) {
4557 if (sched_curcpu_runnable_p() != 0) {
4558 /*
4559 * A process has become ready. Abort now,
4560 * so we don't keep it waiting while we
4561 * do slow memory access to finish this
4562 * page.
4563 */
4564 rv = false;
4565 break;
4566 }
4567 *ptr++ = 0;
4568 }
4569
4570 #ifdef PMAP_CACHE_VIVT
4571 if (rv)
4572 /*
4573 * if we aborted we'll rezero this page again later so don't
4574 * purge it unless we finished it
4575 */
4576 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4577 #elif defined(PMAP_CACHE_VIPT)
4578 /*
4579 * This page is now cache resident so it now has a page color.
4580 * Any contents have been obliterated so clear the EXEC flag.
4581 */
4582 if (!pmap_is_page_colored_p(md)) {
4583 PMAPCOUNT(vac_color_new);
4584 md->pvh_attrs |= PVF_COLORED;
4585 }
4586 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4587 md->pvh_attrs &= ~PVF_EXEC;
4588 PMAPCOUNT(exec_discarded_zero);
4589 }
4590 #endif
4591 /*
4592 * Unmap the page.
4593 */
4594 *ptep = 0;
4595 PTE_SYNC(ptep);
4596 cpu_tlb_flushD_SE(cdstp + va_offset);
4597
4598 return (rv);
4599 }
4600
4601 /*
4602 * pmap_copy_page()
4603 *
4604 * Copy one physical page into another, by mapping the pages into
4605 * hook points. The same comment regarding cachability as in
4606 * pmap_zero_page also applies here.
4607 */
4608 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4609 void
4610 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4611 {
4612 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4613 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4614 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4615 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4616 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4617 #endif
4618 #ifdef PMAP_CACHE_VIPT
4619 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4620 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4621 #else
4622 const vsize_t src_va_offset = 0;
4623 const vsize_t dst_va_offset = 0;
4624 #endif
4625 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4626 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4627
4628 #ifdef DEBUG
4629 if (!SLIST_EMPTY(&dst_md->pvh_list))
4630 panic("pmap_copy_page: dst page has mappings");
4631 #endif
4632
4633 #ifdef PMAP_CACHE_VIPT
4634 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4635 #endif
4636 KDASSERT((src & PGOFSET) == 0);
4637 KDASSERT((dst & PGOFSET) == 0);
4638
4639 /*
4640 * Clean the source page. Hold the source page's lock for
4641 * the duration of the copy so that no other mappings can
4642 * be created while we have a potentially aliased mapping.
4643 */
4644 simple_lock(&src_md->pvh_slock);
4645 #ifdef PMAP_CACHE_VIVT
4646 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4647 #endif
4648
4649 /*
4650 * Map the pages into the page hook points, copy them, and purge
4651 * the cache for the appropriate page. Invalidate the TLB
4652 * as required.
4653 */
4654 *src_ptep = L2_S_PROTO
4655 | src
4656 #ifdef PMAP_CACHE_VIPT
4657 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4658 #endif
4659 #ifdef PMAP_CACHE_VIVT
4660 | pte_l2_s_cache_mode
4661 #endif
4662 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4663 *dst_ptep = L2_S_PROTO | dst |
4664 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4665 PTE_SYNC(src_ptep);
4666 PTE_SYNC(dst_ptep);
4667 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4668 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4669 cpu_cpwait();
4670 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4671 #ifdef PMAP_CACHE_VIVT
4672 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4673 #endif
4674 simple_unlock(&src_md->pvh_slock); /* cache is safe again */
4675 #ifdef PMAP_CACHE_VIVT
4676 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4677 #endif
4678 /*
4679 * Unmap the pages.
4680 */
4681 *src_ptep = 0;
4682 *dst_ptep = 0;
4683 PTE_SYNC(src_ptep);
4684 PTE_SYNC(dst_ptep);
4685 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4686 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4687 #ifdef PMAP_CACHE_VIPT
4688 /*
4689 * Now that the destination page is in the cache, mark it as colored.
4690 * If this was an exec page, discard it.
4691 */
4692 if (!pmap_is_page_colored_p(dst_md)) {
4693 PMAPCOUNT(vac_color_new);
4694 dst_md->pvh_attrs |= PVF_COLORED;
4695 }
4696 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4697 dst_md->pvh_attrs &= ~PVF_EXEC;
4698 PMAPCOUNT(exec_discarded_copy);
4699 }
4700 dst_md->pvh_attrs |= PVF_DIRTY;
4701 #endif
4702 }
4703 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4704
4705 #if ARM_MMU_XSCALE == 1
4706 void
4707 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4708 {
4709 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4710 #ifdef DEBUG
4711 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4712
4713 if (!SLIST_EMPTY(&dst_md->pvh_list))
4714 panic("pmap_copy_page: dst page has mappings");
4715 #endif
4716
4717 KDASSERT((src & PGOFSET) == 0);
4718 KDASSERT((dst & PGOFSET) == 0);
4719
4720 /*
4721 * Clean the source page. Hold the source page's lock for
4722 * the duration of the copy so that no other mappings can
4723 * be created while we have a potentially aliased mapping.
4724 */
4725 simple_lock(&src_md->pvh_slock);
4726 #ifdef PMAP_CACHE_VIVT
4727 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4728 #endif
4729
4730 /*
4731 * Map the pages into the page hook points, copy them, and purge
4732 * the cache for the appropriate page. Invalidate the TLB
4733 * as required.
4734 */
4735 *csrc_pte = L2_S_PROTO | src |
4736 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4737 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4738 PTE_SYNC(csrc_pte);
4739 *cdst_pte = L2_S_PROTO | dst |
4740 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4741 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4742 PTE_SYNC(cdst_pte);
4743 cpu_tlb_flushD_SE(csrcp);
4744 cpu_tlb_flushD_SE(cdstp);
4745 cpu_cpwait();
4746 bcopy_page(csrcp, cdstp);
4747 simple_unlock(&src_md->pvh_slock); /* cache is safe again */
4748 xscale_cache_clean_minidata();
4749 }
4750 #endif /* ARM_MMU_XSCALE == 1 */
4751
4752 /*
4753 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4754 *
4755 * Return the start and end addresses of the kernel's virtual space.
4756 * These values are setup in pmap_bootstrap and are updated as pages
4757 * are allocated.
4758 */
4759 void
4760 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4761 {
4762 *start = virtual_avail;
4763 *end = virtual_end;
4764 }
4765
4766 /*
4767 * Helper function for pmap_grow_l2_bucket()
4768 */
4769 static inline int
4770 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4771 {
4772 struct l2_bucket *l2b;
4773 pt_entry_t *ptep;
4774 paddr_t pa;
4775
4776 if (uvm.page_init_done == false) {
4777 #ifdef PMAP_STEAL_MEMORY
4778 pv_addr_t pv;
4779 pmap_boot_pagealloc(PAGE_SIZE,
4780 #ifdef PMAP_CACHE_VIPT
4781 arm_cache_prefer_mask,
4782 va & arm_cache_prefer_mask,
4783 #else
4784 0, 0,
4785 #endif
4786 &pv);
4787 pa = pv.pv_pa;
4788 #else
4789 if (uvm_page_physget(&pa) == false)
4790 return (1);
4791 #endif /* PMAP_STEAL_MEMORY */
4792 } else {
4793 struct vm_page *pg;
4794 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4795 if (pg == NULL)
4796 return (1);
4797 pa = VM_PAGE_TO_PHYS(pg);
4798 #ifdef PMAP_CACHE_VIPT
4799 #ifdef DIAGNOSTIC
4800 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4801 #endif
4802 /*
4803 * This new page must not have any mappings. Enter it via
4804 * pmap_kenter_pa and let that routine do the hard work.
4805 */
4806 KASSERT(SLIST_EMPTY(&md->pvh_list));
4807 pmap_kenter_pa(va, pa,
4808 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4809 #endif
4810 }
4811
4812 if (pap)
4813 *pap = pa;
4814
4815 PMAPCOUNT(pt_mappings);
4816 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4817 KDASSERT(l2b != NULL);
4818
4819 ptep = &l2b->l2b_kva[l2pte_index(va)];
4820 *ptep = L2_S_PROTO | pa | cache_mode |
4821 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4822 PTE_SYNC(ptep);
4823 memset((void *)va, 0, PAGE_SIZE);
4824 return (0);
4825 }
4826
4827 /*
4828 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4829 * used by pmap_growkernel().
4830 */
4831 static inline struct l2_bucket *
4832 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4833 {
4834 struct l2_dtable *l2;
4835 struct l2_bucket *l2b;
4836 u_short l1idx;
4837 vaddr_t nva;
4838
4839 l1idx = L1_IDX(va);
4840
4841 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4842 /*
4843 * No mapping at this address, as there is
4844 * no entry in the L1 table.
4845 * Need to allocate a new l2_dtable.
4846 */
4847 nva = pmap_kernel_l2dtable_kva;
4848 if ((nva & PGOFSET) == 0) {
4849 /*
4850 * Need to allocate a backing page
4851 */
4852 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4853 return (NULL);
4854 }
4855
4856 l2 = (struct l2_dtable *)nva;
4857 nva += sizeof(struct l2_dtable);
4858
4859 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4860 /*
4861 * The new l2_dtable straddles a page boundary.
4862 * Map in another page to cover it.
4863 */
4864 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4865 return (NULL);
4866 }
4867
4868 pmap_kernel_l2dtable_kva = nva;
4869
4870 /*
4871 * Link it into the parent pmap
4872 */
4873 pm->pm_l2[L2_IDX(l1idx)] = l2;
4874 }
4875
4876 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4877
4878 /*
4879 * Fetch pointer to the L2 page table associated with the address.
4880 */
4881 if (l2b->l2b_kva == NULL) {
4882 pt_entry_t *ptep;
4883
4884 /*
4885 * No L2 page table has been allocated. Chances are, this
4886 * is because we just allocated the l2_dtable, above.
4887 */
4888 nva = pmap_kernel_l2ptp_kva;
4889 ptep = (pt_entry_t *)nva;
4890 if ((nva & PGOFSET) == 0) {
4891 /*
4892 * Need to allocate a backing page
4893 */
4894 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4895 &pmap_kernel_l2ptp_phys))
4896 return (NULL);
4897 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4898 }
4899
4900 l2->l2_occupancy++;
4901 l2b->l2b_kva = ptep;
4902 l2b->l2b_l1idx = l1idx;
4903 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4904
4905 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4906 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4907 }
4908
4909 return (l2b);
4910 }
4911
4912 vaddr_t
4913 pmap_growkernel(vaddr_t maxkvaddr)
4914 {
4915 pmap_t kpm = pmap_kernel();
4916 struct l1_ttable *l1;
4917 struct l2_bucket *l2b;
4918 pd_entry_t *pl1pd;
4919 int s;
4920
4921 if (maxkvaddr <= pmap_curmaxkvaddr)
4922 goto out; /* we are OK */
4923
4924 NPDEBUG(PDB_GROWKERN,
4925 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4926 pmap_curmaxkvaddr, maxkvaddr));
4927
4928 KDASSERT(maxkvaddr <= virtual_end);
4929
4930 /*
4931 * whoops! we need to add kernel PTPs
4932 */
4933
4934 s = splhigh(); /* to be safe */
4935 mutex_enter(&kpm->pm_lock);
4936
4937 /* Map 1MB at a time */
4938 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4939
4940 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4941 KDASSERT(l2b != NULL);
4942
4943 /* Distribute new L1 entry to all other L1s */
4944 SLIST_FOREACH(l1, &l1_list, l1_link) {
4945 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4946 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4947 L1_C_PROTO;
4948 PTE_SYNC(pl1pd);
4949 }
4950 }
4951
4952 /*
4953 * flush out the cache, expensive but growkernel will happen so
4954 * rarely
4955 */
4956 cpu_dcache_wbinv_all();
4957 cpu_tlb_flushD();
4958 cpu_cpwait();
4959
4960 mutex_exit(&kpm->pm_lock);
4961 splx(s);
4962
4963 out:
4964 return (pmap_curmaxkvaddr);
4965 }
4966
4967 /************************ Utility routines ****************************/
4968
4969 /*
4970 * vector_page_setprot:
4971 *
4972 * Manipulate the protection of the vector page.
4973 */
4974 void
4975 vector_page_setprot(int prot)
4976 {
4977 struct l2_bucket *l2b;
4978 pt_entry_t *ptep;
4979
4980 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4981 KDASSERT(l2b != NULL);
4982
4983 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4984
4985 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4986 PTE_SYNC(ptep);
4987 cpu_tlb_flushD_SE(vector_page);
4988 cpu_cpwait();
4989 }
4990
4991 /*
4992 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4993 * Returns true if the mapping exists, else false.
4994 *
4995 * NOTE: This function is only used by a couple of arm-specific modules.
4996 * It is not safe to take any pmap locks here, since we could be right
4997 * in the middle of debugging the pmap anyway...
4998 *
4999 * It is possible for this routine to return false even though a valid
5000 * mapping does exist. This is because we don't lock, so the metadata
5001 * state may be inconsistent.
5002 *
5003 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5004 * a "section" mapping.
5005 */
5006 bool
5007 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5008 {
5009 struct l2_dtable *l2;
5010 pd_entry_t *pl1pd, l1pd;
5011 pt_entry_t *ptep;
5012 u_short l1idx;
5013
5014 if (pm->pm_l1 == NULL)
5015 return false;
5016
5017 l1idx = L1_IDX(va);
5018 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
5019 l1pd = *pl1pd;
5020
5021 if (l1pte_section_p(l1pd)) {
5022 *ptp = NULL;
5023 return true;
5024 }
5025
5026 if (pm->pm_l2 == NULL)
5027 return false;
5028
5029 l2 = pm->pm_l2[L2_IDX(l1idx)];
5030
5031 if (l2 == NULL ||
5032 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5033 return false;
5034 }
5035
5036 *ptp = &ptep[l2pte_index(va)];
5037 return true;
5038 }
5039
5040 bool
5041 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5042 {
5043 u_short l1idx;
5044
5045 if (pm->pm_l1 == NULL)
5046 return false;
5047
5048 l1idx = L1_IDX(va);
5049 *pdp = &pm->pm_l1->l1_kva[l1idx];
5050
5051 return true;
5052 }
5053
5054 /************************ Bootstrapping routines ****************************/
5055
5056 static void
5057 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5058 {
5059 int i;
5060
5061 l1->l1_kva = l1pt;
5062 l1->l1_domain_use_count = 0;
5063 l1->l1_domain_first = 0;
5064
5065 for (i = 0; i < PMAP_DOMAINS; i++)
5066 l1->l1_domain_free[i] = i + 1;
5067
5068 /*
5069 * Copy the kernel's L1 entries to each new L1.
5070 */
5071 if (pmap_initialized)
5072 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5073
5074 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5075 &l1->l1_physaddr) == false)
5076 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5077
5078 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5079 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5080 }
5081
5082 /*
5083 * pmap_bootstrap() is called from the board-specific initarm() routine
5084 * once the kernel L1/L2 descriptors tables have been set up.
5085 *
5086 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5087 * spread over a number of disparate files/functions.
5088 *
5089 * We are passed the following parameters
5090 * - kernel_l1pt
5091 * This is a pointer to the base of the kernel's L1 translation table.
5092 * - vstart
5093 * 1MB-aligned start of managed kernel virtual memory.
5094 * - vend
5095 * 1MB-aligned end of managed kernel virtual memory.
5096 *
5097 * We use the first parameter to build the metadata (struct l1_ttable and
5098 * struct l2_dtable) necessary to track kernel mappings.
5099 */
5100 #define PMAP_STATIC_L2_SIZE 16
5101 void
5102 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5103 {
5104 static struct l1_ttable static_l1;
5105 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5106 struct l1_ttable *l1 = &static_l1;
5107 struct l2_dtable *l2;
5108 struct l2_bucket *l2b;
5109 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5110 pmap_t pm = pmap_kernel();
5111 pd_entry_t pde;
5112 pt_entry_t *ptep;
5113 paddr_t pa;
5114 vaddr_t va;
5115 vsize_t size;
5116 int nptes, l1idx, l2idx, l2next = 0;
5117
5118 /*
5119 * Initialise the kernel pmap object
5120 */
5121 pm->pm_l1 = l1;
5122 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5123 pm->pm_activated = true;
5124 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5125 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5126
5127 /*
5128 * Scan the L1 translation table created by initarm() and create
5129 * the required metadata for all valid mappings found in it.
5130 */
5131 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5132 pde = l1pt[l1idx];
5133
5134 /*
5135 * We're only interested in Coarse mappings.
5136 * pmap_extract() can deal with section mappings without
5137 * recourse to checking L2 metadata.
5138 */
5139 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5140 continue;
5141
5142 /*
5143 * Lookup the KVA of this L2 descriptor table
5144 */
5145 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5146 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5147 if (ptep == NULL) {
5148 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5149 (u_int)l1idx << L1_S_SHIFT, pa);
5150 }
5151
5152 /*
5153 * Fetch the associated L2 metadata structure.
5154 * Allocate a new one if necessary.
5155 */
5156 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5157 if (l2next == PMAP_STATIC_L2_SIZE)
5158 panic("pmap_bootstrap: out of static L2s");
5159 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5160 }
5161
5162 /*
5163 * One more L1 slot tracked...
5164 */
5165 l2->l2_occupancy++;
5166
5167 /*
5168 * Fill in the details of the L2 descriptor in the
5169 * appropriate bucket.
5170 */
5171 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5172 l2b->l2b_kva = ptep;
5173 l2b->l2b_phys = pa;
5174 l2b->l2b_l1idx = l1idx;
5175
5176 /*
5177 * Establish an initial occupancy count for this descriptor
5178 */
5179 for (l2idx = 0;
5180 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5181 l2idx++) {
5182 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5183 l2b->l2b_occupancy++;
5184 }
5185 }
5186
5187 /*
5188 * Make sure the descriptor itself has the correct cache mode.
5189 * If not, fix it, but whine about the problem. Port-meisters
5190 * should consider this a clue to fix up their initarm()
5191 * function. :)
5192 */
5193 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5194 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5195 "L2 pte @ %p\n", ptep);
5196 }
5197 }
5198
5199 /*
5200 * Ensure the primary (kernel) L1 has the correct cache mode for
5201 * a page table. Bitch if it is not correctly set.
5202 */
5203 for (va = (vaddr_t)l1pt;
5204 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5205 if (pmap_set_pt_cache_mode(l1pt, va))
5206 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5207 "primary L1 @ 0x%lx\n", va);
5208 }
5209
5210 cpu_dcache_wbinv_all();
5211 cpu_tlb_flushID();
5212 cpu_cpwait();
5213
5214 /*
5215 * now we allocate the "special" VAs which are used for tmp mappings
5216 * by the pmap (and other modules). we allocate the VAs by advancing
5217 * virtual_avail (note that there are no pages mapped at these VAs).
5218 *
5219 * Managed KVM space start from wherever initarm() tells us.
5220 */
5221 virtual_avail = vstart;
5222 virtual_end = vend;
5223
5224 #ifdef PMAP_CACHE_VIPT
5225 /*
5226 * If we have a VIPT cache, we need one page/pte per possible alias
5227 * page so we won't violate cache aliasing rules.
5228 */
5229 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5230 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5231 #else
5232 nptes = 1;
5233 #endif
5234 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5235 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5236 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5237 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5238 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5239 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5240 (void *)&msgbufaddr, NULL);
5241
5242 /*
5243 * Allocate a range of kernel virtual address space to be used
5244 * for L2 descriptor tables and metadata allocation in
5245 * pmap_growkernel().
5246 */
5247 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5248 pmap_alloc_specials(&virtual_avail,
5249 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5250 &pmap_kernel_l2ptp_kva, NULL);
5251
5252 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5253 pmap_alloc_specials(&virtual_avail,
5254 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5255 &pmap_kernel_l2dtable_kva, NULL);
5256
5257 /*
5258 * init the static-global locks and global pmap list.
5259 */
5260 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5261
5262 /*
5263 * We can now initialise the first L1's metadata.
5264 */
5265 SLIST_INIT(&l1_list);
5266 TAILQ_INIT(&l1_lru_list);
5267 simple_lock_init(&l1_lru_lock);
5268 pmap_init_l1(l1, l1pt);
5269
5270 /* Set up vector page L1 details, if necessary */
5271 if (vector_page < KERNEL_BASE) {
5272 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5273 l2b = pmap_get_l2_bucket(pm, vector_page);
5274 KDASSERT(l2b != NULL);
5275 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5276 L1_C_DOM(pm->pm_domain);
5277 } else
5278 pm->pm_pl1vec = NULL;
5279
5280 /*
5281 * Initialize the pmap cache
5282 */
5283 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5284 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5285 LIST_INIT(&pmap_pmaps);
5286 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5287
5288 /*
5289 * Initialize the pv pool.
5290 */
5291 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5292 &pmap_bootstrap_pv_allocator, IPL_NONE);
5293
5294 /*
5295 * Initialize the L2 dtable pool and cache.
5296 */
5297 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5298 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5299
5300 /*
5301 * Initialise the L2 descriptor table pool and cache
5302 */
5303 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5304 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5305 pmap_l2ptp_ctor, NULL, NULL);
5306
5307 cpu_dcache_wbinv_all();
5308 }
5309
5310 static int
5311 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5312 {
5313 pd_entry_t *pdep, pde;
5314 pt_entry_t *ptep, pte;
5315 vaddr_t pa;
5316 int rv = 0;
5317
5318 /*
5319 * Make sure the descriptor itself has the correct cache mode
5320 */
5321 pdep = &kl1[L1_IDX(va)];
5322 pde = *pdep;
5323
5324 if (l1pte_section_p(pde)) {
5325 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5326 *pdep = (pde & ~L1_S_CACHE_MASK) |
5327 pte_l1_s_cache_mode_pt;
5328 PTE_SYNC(pdep);
5329 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5330 rv = 1;
5331 }
5332 } else {
5333 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5334 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5335 if (ptep == NULL)
5336 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5337
5338 ptep = &ptep[l2pte_index(va)];
5339 pte = *ptep;
5340 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5341 *ptep = (pte & ~L2_S_CACHE_MASK) |
5342 pte_l2_s_cache_mode_pt;
5343 PTE_SYNC(ptep);
5344 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5345 rv = 1;
5346 }
5347 }
5348
5349 return (rv);
5350 }
5351
5352 static void
5353 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5354 {
5355 vaddr_t va = *availp;
5356 struct l2_bucket *l2b;
5357
5358 if (ptep) {
5359 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5360 if (l2b == NULL)
5361 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5362
5363 if (ptep)
5364 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5365 }
5366
5367 *vap = va;
5368 *availp = va + (PAGE_SIZE * pages);
5369 }
5370
5371 void
5372 pmap_init(void)
5373 {
5374
5375 /*
5376 * Set the available memory vars - These do not map to real memory
5377 * addresses and cannot as the physical memory is fragmented.
5378 * They are used by ps for %mem calculations.
5379 * One could argue whether this should be the entire memory or just
5380 * the memory that is useable in a user process.
5381 */
5382 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5383 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5384
5385 /*
5386 * Now we need to free enough pv_entry structures to allow us to get
5387 * the kmem_map/kmem_object allocated and inited (done after this
5388 * function is finished). to do this we allocate one bootstrap page out
5389 * of kernel_map and use it to provide an initial pool of pv_entry
5390 * structures. we never free this page.
5391 */
5392 pool_setlowat(&pmap_pv_pool,
5393 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5394
5395 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5396 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5397 UVM_KMF_WIRED|UVM_KMF_ZERO);
5398
5399 pmap_initialized = true;
5400 }
5401
5402 static vaddr_t last_bootstrap_page = 0;
5403 static void *free_bootstrap_pages = NULL;
5404
5405 static void *
5406 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5407 {
5408 extern void *pool_page_alloc(struct pool *, int);
5409 vaddr_t new_page;
5410 void *rv;
5411
5412 if (pmap_initialized)
5413 return (pool_page_alloc(pp, flags));
5414
5415 if (free_bootstrap_pages) {
5416 rv = free_bootstrap_pages;
5417 free_bootstrap_pages = *((void **)rv);
5418 return (rv);
5419 }
5420
5421 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5422 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5423
5424 KASSERT(new_page > last_bootstrap_page);
5425 last_bootstrap_page = new_page;
5426 return ((void *)new_page);
5427 }
5428
5429 static void
5430 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5431 {
5432 extern void pool_page_free(struct pool *, void *);
5433
5434 if ((vaddr_t)v <= last_bootstrap_page) {
5435 *((void **)v) = free_bootstrap_pages;
5436 free_bootstrap_pages = v;
5437 return;
5438 }
5439
5440 if (pmap_initialized) {
5441 pool_page_free(pp, v);
5442 return;
5443 }
5444 }
5445
5446 /*
5447 * pmap_postinit()
5448 *
5449 * This routine is called after the vm and kmem subsystems have been
5450 * initialised. This allows the pmap code to perform any initialisation
5451 * that can only be done one the memory allocation is in place.
5452 */
5453 void
5454 pmap_postinit(void)
5455 {
5456 extern paddr_t physical_start, physical_end;
5457 struct l2_bucket *l2b;
5458 struct l1_ttable *l1;
5459 struct pglist plist;
5460 struct vm_page *m;
5461 pd_entry_t *pl1pt;
5462 pt_entry_t *ptep, pte;
5463 vaddr_t va, eva;
5464 u_int loop, needed;
5465 int error;
5466
5467 pool_cache_setlowat(&pmap_l2ptp_cache,
5468 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5469 pool_cache_setlowat(&pmap_l2dtable_cache,
5470 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5471
5472 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5473 needed -= 1;
5474
5475 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5476
5477 for (loop = 0; loop < needed; loop++, l1++) {
5478 /* Allocate a L1 page table */
5479 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5480 if (va == 0)
5481 panic("Cannot allocate L1 KVM");
5482
5483 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5484 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5485 if (error)
5486 panic("Cannot allocate L1 physical pages");
5487
5488 m = TAILQ_FIRST(&plist);
5489 eva = va + L1_TABLE_SIZE;
5490 pl1pt = (pd_entry_t *)va;
5491
5492 while (m && va < eva) {
5493 paddr_t pa = VM_PAGE_TO_PHYS(m);
5494
5495 pmap_kenter_pa(va, pa,
5496 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5497
5498 /*
5499 * Make sure the L1 descriptor table is mapped
5500 * with the cache-mode set to write-through.
5501 */
5502 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5503 KDASSERT(l2b != NULL);
5504 ptep = &l2b->l2b_kva[l2pte_index(va)];
5505 pte = *ptep;
5506 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5507 *ptep = pte;
5508 PTE_SYNC(ptep);
5509 cpu_tlb_flushD_SE(va);
5510
5511 va += PAGE_SIZE;
5512 m = TAILQ_NEXT(m, pageq.queue);
5513 }
5514
5515 #ifdef DIAGNOSTIC
5516 if (m)
5517 panic("pmap_alloc_l1pt: pglist not empty");
5518 #endif /* DIAGNOSTIC */
5519
5520 pmap_init_l1(l1, pl1pt);
5521 }
5522
5523 #ifdef DEBUG
5524 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5525 needed);
5526 #endif
5527 }
5528
5529 /*
5530 * Note that the following routines are used by board-specific initialisation
5531 * code to configure the initial kernel page tables.
5532 *
5533 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5534 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5535 * behaviour of the old pmap, and provides an easy migration path for
5536 * initial bring-up of the new pmap on existing ports. Fortunately,
5537 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5538 * will be deprecated.
5539 *
5540 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5541 * tables.
5542 */
5543
5544 /*
5545 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5546 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5547 * find them as necessary.
5548 *
5549 * Note that the data on this list MUST remain valid after initarm() returns,
5550 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5551 */
5552 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5553
5554 static vaddr_t
5555 kernel_pt_lookup(paddr_t pa)
5556 {
5557 pv_addr_t *pv;
5558
5559 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5560 #ifndef ARM32_NEW_VM_LAYOUT
5561 if (pv->pv_pa == (pa & ~PGOFSET))
5562 return (pv->pv_va | (pa & PGOFSET));
5563 #else
5564 if (pv->pv_pa == pa)
5565 return (pv->pv_va);
5566 #endif
5567 }
5568 return (0);
5569 }
5570
5571 /*
5572 * pmap_map_section:
5573 *
5574 * Create a single section mapping.
5575 */
5576 void
5577 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5578 {
5579 pd_entry_t *pde = (pd_entry_t *) l1pt;
5580 pd_entry_t fl;
5581
5582 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5583
5584 switch (cache) {
5585 case PTE_NOCACHE:
5586 default:
5587 fl = 0;
5588 break;
5589
5590 case PTE_CACHE:
5591 fl = pte_l1_s_cache_mode;
5592 break;
5593
5594 case PTE_PAGETABLE:
5595 fl = pte_l1_s_cache_mode_pt;
5596 break;
5597 }
5598
5599 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5600 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5601 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5602 }
5603
5604 /*
5605 * pmap_map_entry:
5606 *
5607 * Create a single page mapping.
5608 */
5609 void
5610 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5611 {
5612 pd_entry_t *pde = (pd_entry_t *) l1pt;
5613 pt_entry_t fl;
5614 pt_entry_t *pte;
5615
5616 KASSERT(((va | pa) & PGOFSET) == 0);
5617
5618 switch (cache) {
5619 case PTE_NOCACHE:
5620 default:
5621 fl = 0;
5622 break;
5623
5624 case PTE_CACHE:
5625 fl = pte_l2_s_cache_mode;
5626 break;
5627
5628 case PTE_PAGETABLE:
5629 fl = pte_l2_s_cache_mode_pt;
5630 break;
5631 }
5632
5633 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5634 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5635
5636 #ifndef ARM32_NEW_VM_LAYOUT
5637 pte = (pt_entry_t *)
5638 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5639 #else
5640 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5641 #endif
5642 if (pte == NULL)
5643 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5644
5645 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5646 #ifndef ARM32_NEW_VM_LAYOUT
5647 pte += (va >> PGSHIFT) & 0x3ff;
5648 #else
5649 pte += l2pte_index(va);
5650 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5651 #endif
5652 *pte = fl;
5653 PTE_SYNC(pte);
5654 }
5655
5656 /*
5657 * pmap_link_l2pt:
5658 *
5659 * Link the L2 page table specified by "l2pv" into the L1
5660 * page table at the slot for "va".
5661 */
5662 void
5663 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5664 {
5665 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5666 u_int slot = va >> L1_S_SHIFT;
5667
5668 #ifndef ARM32_NEW_VM_LAYOUT
5669 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5670 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5671 #endif
5672
5673 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5674
5675 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5676 #ifdef ARM32_NEW_VM_LAYOUT
5677 PTE_SYNC(&pde[slot]);
5678 #else
5679 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5680 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5681 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5682 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5683 #endif
5684
5685 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5686 }
5687
5688 /*
5689 * pmap_map_chunk:
5690 *
5691 * Map a chunk of memory using the most efficient mappings
5692 * possible (section, large page, small page) into the
5693 * provided L1 and L2 tables at the specified virtual address.
5694 */
5695 vsize_t
5696 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5697 int prot, int cache)
5698 {
5699 pd_entry_t *pde = (pd_entry_t *) l1pt;
5700 pt_entry_t *pte, f1, f2s, f2l;
5701 vsize_t resid;
5702 int i;
5703
5704 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5705
5706 if (l1pt == 0)
5707 panic("pmap_map_chunk: no L1 table provided");
5708
5709 #ifdef VERBOSE_INIT_ARM
5710 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5711 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5712 #endif
5713
5714 switch (cache) {
5715 case PTE_NOCACHE:
5716 default:
5717 f1 = 0;
5718 f2l = 0;
5719 f2s = 0;
5720 break;
5721
5722 case PTE_CACHE:
5723 f1 = pte_l1_s_cache_mode;
5724 f2l = pte_l2_l_cache_mode;
5725 f2s = pte_l2_s_cache_mode;
5726 break;
5727
5728 case PTE_PAGETABLE:
5729 f1 = pte_l1_s_cache_mode_pt;
5730 f2l = pte_l2_l_cache_mode_pt;
5731 f2s = pte_l2_s_cache_mode_pt;
5732 break;
5733 }
5734
5735 size = resid;
5736
5737 while (resid > 0) {
5738 /* See if we can use a section mapping. */
5739 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5740 #ifdef VERBOSE_INIT_ARM
5741 printf("S");
5742 #endif
5743 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5744 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5745 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5746 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5747 va += L1_S_SIZE;
5748 pa += L1_S_SIZE;
5749 resid -= L1_S_SIZE;
5750 continue;
5751 }
5752
5753 /*
5754 * Ok, we're going to use an L2 table. Make sure
5755 * one is actually in the corresponding L1 slot
5756 * for the current VA.
5757 */
5758 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5759 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5760
5761 #ifndef ARM32_NEW_VM_LAYOUT
5762 pte = (pt_entry_t *)
5763 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5764 #else
5765 pte = (pt_entry_t *) kernel_pt_lookup(
5766 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5767 #endif
5768 if (pte == NULL)
5769 panic("pmap_map_chunk: can't find L2 table for VA"
5770 "0x%08lx", va);
5771
5772 /* See if we can use a L2 large page mapping. */
5773 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5774 #ifdef VERBOSE_INIT_ARM
5775 printf("L");
5776 #endif
5777 for (i = 0; i < 16; i++) {
5778 #ifndef ARM32_NEW_VM_LAYOUT
5779 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5780 L2_L_PROTO | pa |
5781 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5782 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5783 #else
5784 pte[l2pte_index(va) + i] =
5785 L2_L_PROTO | pa |
5786 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5787 PTE_SYNC(&pte[l2pte_index(va) + i]);
5788 #endif
5789 }
5790 va += L2_L_SIZE;
5791 pa += L2_L_SIZE;
5792 resid -= L2_L_SIZE;
5793 continue;
5794 }
5795
5796 /* Use a small page mapping. */
5797 #ifdef VERBOSE_INIT_ARM
5798 printf("P");
5799 #endif
5800 #ifndef ARM32_NEW_VM_LAYOUT
5801 pte[(va >> PGSHIFT) & 0x3ff] =
5802 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5803 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5804 #else
5805 pte[l2pte_index(va)] =
5806 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5807 PTE_SYNC(&pte[l2pte_index(va)]);
5808 #endif
5809 va += PAGE_SIZE;
5810 pa += PAGE_SIZE;
5811 resid -= PAGE_SIZE;
5812 }
5813 #ifdef VERBOSE_INIT_ARM
5814 printf("\n");
5815 #endif
5816 return (size);
5817 }
5818
5819 /********************** Static device map routines ***************************/
5820
5821 static const struct pmap_devmap *pmap_devmap_table;
5822
5823 /*
5824 * Register the devmap table. This is provided in case early console
5825 * initialization needs to register mappings created by bootstrap code
5826 * before pmap_devmap_bootstrap() is called.
5827 */
5828 void
5829 pmap_devmap_register(const struct pmap_devmap *table)
5830 {
5831
5832 pmap_devmap_table = table;
5833 }
5834
5835 /*
5836 * Map all of the static regions in the devmap table, and remember
5837 * the devmap table so other parts of the kernel can look up entries
5838 * later.
5839 */
5840 void
5841 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5842 {
5843 int i;
5844
5845 pmap_devmap_table = table;
5846
5847 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5848 #ifdef VERBOSE_INIT_ARM
5849 printf("devmap: %08lx -> %08lx @ %08lx\n",
5850 pmap_devmap_table[i].pd_pa,
5851 pmap_devmap_table[i].pd_pa +
5852 pmap_devmap_table[i].pd_size - 1,
5853 pmap_devmap_table[i].pd_va);
5854 #endif
5855 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5856 pmap_devmap_table[i].pd_pa,
5857 pmap_devmap_table[i].pd_size,
5858 pmap_devmap_table[i].pd_prot,
5859 pmap_devmap_table[i].pd_cache);
5860 }
5861 }
5862
5863 const struct pmap_devmap *
5864 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5865 {
5866 uint64_t endpa;
5867 int i;
5868
5869 if (pmap_devmap_table == NULL)
5870 return (NULL);
5871
5872 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5873
5874 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5875 if (pa >= pmap_devmap_table[i].pd_pa &&
5876 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5877 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5878 return (&pmap_devmap_table[i]);
5879 }
5880
5881 return (NULL);
5882 }
5883
5884 const struct pmap_devmap *
5885 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5886 {
5887 int i;
5888
5889 if (pmap_devmap_table == NULL)
5890 return (NULL);
5891
5892 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5893 if (va >= pmap_devmap_table[i].pd_va &&
5894 va + size - 1 <= pmap_devmap_table[i].pd_va +
5895 pmap_devmap_table[i].pd_size - 1)
5896 return (&pmap_devmap_table[i]);
5897 }
5898
5899 return (NULL);
5900 }
5901
5902 /********************** PTE initialization routines **************************/
5903
5904 /*
5905 * These routines are called when the CPU type is identified to set up
5906 * the PTE prototypes, cache modes, etc.
5907 *
5908 * The variables are always here, just in case modules need to reference
5909 * them (though, they shouldn't).
5910 */
5911
5912 pt_entry_t pte_l1_s_cache_mode;
5913 pt_entry_t pte_l1_s_cache_mode_pt;
5914 pt_entry_t pte_l1_s_cache_mask;
5915
5916 pt_entry_t pte_l2_l_cache_mode;
5917 pt_entry_t pte_l2_l_cache_mode_pt;
5918 pt_entry_t pte_l2_l_cache_mask;
5919
5920 pt_entry_t pte_l2_s_cache_mode;
5921 pt_entry_t pte_l2_s_cache_mode_pt;
5922 pt_entry_t pte_l2_s_cache_mask;
5923
5924 pt_entry_t pte_l1_s_prot_u;
5925 pt_entry_t pte_l1_s_prot_w;
5926 pt_entry_t pte_l1_s_prot_ro;
5927 pt_entry_t pte_l1_s_prot_mask;
5928
5929 pt_entry_t pte_l2_s_prot_u;
5930 pt_entry_t pte_l2_s_prot_w;
5931 pt_entry_t pte_l2_s_prot_ro;
5932 pt_entry_t pte_l2_s_prot_mask;
5933
5934 pt_entry_t pte_l2_l_prot_u;
5935 pt_entry_t pte_l2_l_prot_w;
5936 pt_entry_t pte_l2_l_prot_ro;
5937 pt_entry_t pte_l2_l_prot_mask;
5938
5939 pt_entry_t pte_l1_s_proto;
5940 pt_entry_t pte_l1_c_proto;
5941 pt_entry_t pte_l2_s_proto;
5942
5943 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5944 void (*pmap_zero_page_func)(paddr_t);
5945
5946 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5947 void
5948 pmap_pte_init_generic(void)
5949 {
5950
5951 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5952 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5953
5954 pte_l2_l_cache_mode = L2_B|L2_C;
5955 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5956
5957 pte_l2_s_cache_mode = L2_B|L2_C;
5958 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5959
5960 /*
5961 * If we have a write-through cache, set B and C. If
5962 * we have a write-back cache, then we assume setting
5963 * only C will make those pages write-through.
5964 */
5965 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5966 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5967 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5968 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5969 } else {
5970 #if ARM_MMU_V6 > 1
5971 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5972 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5973 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5974 #else
5975 pte_l1_s_cache_mode_pt = L1_S_C;
5976 pte_l2_l_cache_mode_pt = L2_C;
5977 pte_l2_s_cache_mode_pt = L2_C;
5978 #endif
5979 }
5980
5981 pte_l1_s_prot_u = L1_S_PROT_U_generic;
5982 pte_l1_s_prot_w = L1_S_PROT_W_generic;
5983 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
5984 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
5985
5986 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5987 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5988 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
5989 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5990
5991 pte_l2_l_prot_u = L2_L_PROT_U_generic;
5992 pte_l2_l_prot_w = L2_L_PROT_W_generic;
5993 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
5994 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
5995
5996 pte_l1_s_proto = L1_S_PROTO_generic;
5997 pte_l1_c_proto = L1_C_PROTO_generic;
5998 pte_l2_s_proto = L2_S_PROTO_generic;
5999
6000 pmap_copy_page_func = pmap_copy_page_generic;
6001 pmap_zero_page_func = pmap_zero_page_generic;
6002 }
6003
6004 #if defined(CPU_ARM8)
6005 void
6006 pmap_pte_init_arm8(void)
6007 {
6008
6009 /*
6010 * ARM8 is compatible with generic, but we need to use
6011 * the page tables uncached.
6012 */
6013 pmap_pte_init_generic();
6014
6015 pte_l1_s_cache_mode_pt = 0;
6016 pte_l2_l_cache_mode_pt = 0;
6017 pte_l2_s_cache_mode_pt = 0;
6018 }
6019 #endif /* CPU_ARM8 */
6020
6021 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6022 void
6023 pmap_pte_init_arm9(void)
6024 {
6025
6026 /*
6027 * ARM9 is compatible with generic, but we want to use
6028 * write-through caching for now.
6029 */
6030 pmap_pte_init_generic();
6031
6032 pte_l1_s_cache_mode = L1_S_C;
6033 pte_l2_l_cache_mode = L2_C;
6034 pte_l2_s_cache_mode = L2_C;
6035
6036 pte_l1_s_cache_mode_pt = L1_S_C;
6037 pte_l2_l_cache_mode_pt = L2_C;
6038 pte_l2_s_cache_mode_pt = L2_C;
6039 }
6040 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6041 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6042
6043 #if defined(CPU_ARM10)
6044 void
6045 pmap_pte_init_arm10(void)
6046 {
6047
6048 /*
6049 * ARM10 is compatible with generic, but we want to use
6050 * write-through caching for now.
6051 */
6052 pmap_pte_init_generic();
6053
6054 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6055 pte_l2_l_cache_mode = L2_B | L2_C;
6056 pte_l2_s_cache_mode = L2_B | L2_C;
6057
6058 pte_l1_s_cache_mode_pt = L1_S_C;
6059 pte_l2_l_cache_mode_pt = L2_C;
6060 pte_l2_s_cache_mode_pt = L2_C;
6061
6062 }
6063 #endif /* CPU_ARM10 */
6064
6065 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6066 void
6067 pmap_pte_init_arm11(void)
6068 {
6069
6070 /*
6071 * ARM11 is compatible with generic, but we want to use
6072 * write-through caching for now.
6073 */
6074 pmap_pte_init_generic();
6075
6076 pte_l1_s_cache_mode = L1_S_C;
6077 pte_l2_l_cache_mode = L2_C;
6078 pte_l2_s_cache_mode = L2_C;
6079
6080 pte_l1_s_cache_mode_pt = L1_S_C;
6081 pte_l2_l_cache_mode_pt = L2_C;
6082 pte_l2_s_cache_mode_pt = L2_C;
6083 }
6084 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6085
6086 #if ARM_MMU_SA1 == 1
6087 void
6088 pmap_pte_init_sa1(void)
6089 {
6090
6091 /*
6092 * The StrongARM SA-1 cache does not have a write-through
6093 * mode. So, do the generic initialization, then reset
6094 * the page table cache mode to B=1,C=1, and note that
6095 * the PTEs need to be sync'd.
6096 */
6097 pmap_pte_init_generic();
6098
6099 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6100 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6101 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6102
6103 pmap_needs_pte_sync = 1;
6104 }
6105 #endif /* ARM_MMU_SA1 == 1*/
6106
6107 #if ARM_MMU_XSCALE == 1
6108 #if (ARM_NMMUS > 1)
6109 static u_int xscale_use_minidata;
6110 #endif
6111
6112 void
6113 pmap_pte_init_xscale(void)
6114 {
6115 uint32_t auxctl;
6116 int write_through = 0;
6117
6118 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6119 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6120
6121 pte_l2_l_cache_mode = L2_B|L2_C;
6122 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6123
6124 pte_l2_s_cache_mode = L2_B|L2_C;
6125 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6126
6127 pte_l1_s_cache_mode_pt = L1_S_C;
6128 pte_l2_l_cache_mode_pt = L2_C;
6129 pte_l2_s_cache_mode_pt = L2_C;
6130
6131 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6132 /*
6133 * The XScale core has an enhanced mode where writes that
6134 * miss the cache cause a cache line to be allocated. This
6135 * is significantly faster than the traditional, write-through
6136 * behavior of this case.
6137 */
6138 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6139 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6140 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6141 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6142
6143 #ifdef XSCALE_CACHE_WRITE_THROUGH
6144 /*
6145 * Some versions of the XScale core have various bugs in
6146 * their cache units, the work-around for which is to run
6147 * the cache in write-through mode. Unfortunately, this
6148 * has a major (negative) impact on performance. So, we
6149 * go ahead and run fast-and-loose, in the hopes that we
6150 * don't line up the planets in a way that will trip the
6151 * bugs.
6152 *
6153 * However, we give you the option to be slow-but-correct.
6154 */
6155 write_through = 1;
6156 #elif defined(XSCALE_CACHE_WRITE_BACK)
6157 /* force write back cache mode */
6158 write_through = 0;
6159 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6160 /*
6161 * Intel PXA2[15]0 processors are known to have a bug in
6162 * write-back cache on revision 4 and earlier (stepping
6163 * A[01] and B[012]). Fixed for C0 and later.
6164 */
6165 {
6166 uint32_t id, type;
6167
6168 id = cpufunc_id();
6169 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6170
6171 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6172 if ((id & CPU_ID_REVISION_MASK) < 5) {
6173 /* write through for stepping A0-1 and B0-2 */
6174 write_through = 1;
6175 }
6176 }
6177 }
6178 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6179
6180 if (write_through) {
6181 pte_l1_s_cache_mode = L1_S_C;
6182 pte_l2_l_cache_mode = L2_C;
6183 pte_l2_s_cache_mode = L2_C;
6184 }
6185
6186 #if (ARM_NMMUS > 1)
6187 xscale_use_minidata = 1;
6188 #endif
6189
6190 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6191 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6192 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6193 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6194
6195 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6196 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6197 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6198 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6199
6200 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6201 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6202 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6203 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6204
6205 pte_l1_s_proto = L1_S_PROTO_xscale;
6206 pte_l1_c_proto = L1_C_PROTO_xscale;
6207 pte_l2_s_proto = L2_S_PROTO_xscale;
6208
6209 pmap_copy_page_func = pmap_copy_page_xscale;
6210 pmap_zero_page_func = pmap_zero_page_xscale;
6211
6212 /*
6213 * Disable ECC protection of page table access, for now.
6214 */
6215 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6216 auxctl &= ~XSCALE_AUXCTL_P;
6217 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6218 }
6219
6220 /*
6221 * xscale_setup_minidata:
6222 *
6223 * Set up the mini-data cache clean area. We require the
6224 * caller to allocate the right amount of physically and
6225 * virtually contiguous space.
6226 */
6227 void
6228 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6229 {
6230 extern vaddr_t xscale_minidata_clean_addr;
6231 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6232 pd_entry_t *pde = (pd_entry_t *) l1pt;
6233 pt_entry_t *pte;
6234 vsize_t size;
6235 uint32_t auxctl;
6236
6237 xscale_minidata_clean_addr = va;
6238
6239 /* Round it to page size. */
6240 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6241
6242 for (; size != 0;
6243 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6244 #ifndef ARM32_NEW_VM_LAYOUT
6245 pte = (pt_entry_t *)
6246 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6247 #else
6248 pte = (pt_entry_t *) kernel_pt_lookup(
6249 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6250 #endif
6251 if (pte == NULL)
6252 panic("xscale_setup_minidata: can't find L2 table for "
6253 "VA 0x%08lx", va);
6254 #ifndef ARM32_NEW_VM_LAYOUT
6255 pte[(va >> PGSHIFT) & 0x3ff] =
6256 #else
6257 pte[l2pte_index(va)] =
6258 #endif
6259 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6260 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6261 }
6262
6263 /*
6264 * Configure the mini-data cache for write-back with
6265 * read/write-allocate.
6266 *
6267 * NOTE: In order to reconfigure the mini-data cache, we must
6268 * make sure it contains no valid data! In order to do that,
6269 * we must issue a global data cache invalidate command!
6270 *
6271 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6272 * THIS IS VERY IMPORTANT!
6273 */
6274
6275 /* Invalidate data and mini-data. */
6276 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6277 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6278 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6279 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6280 }
6281
6282 /*
6283 * Change the PTEs for the specified kernel mappings such that they
6284 * will use the mini data cache instead of the main data cache.
6285 */
6286 void
6287 pmap_uarea(vaddr_t va)
6288 {
6289 struct l2_bucket *l2b;
6290 pt_entry_t *ptep, *sptep, pte;
6291 vaddr_t next_bucket, eva;
6292
6293 #if (ARM_NMMUS > 1)
6294 if (xscale_use_minidata == 0)
6295 return;
6296 #endif
6297
6298 eva = va + USPACE;
6299
6300 while (va < eva) {
6301 next_bucket = L2_NEXT_BUCKET(va);
6302 if (next_bucket > eva)
6303 next_bucket = eva;
6304
6305 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6306 KDASSERT(l2b != NULL);
6307
6308 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6309
6310 while (va < next_bucket) {
6311 pte = *ptep;
6312 if (!l2pte_minidata(pte)) {
6313 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6314 cpu_tlb_flushD_SE(va);
6315 *ptep = pte & ~L2_B;
6316 }
6317 ptep++;
6318 va += PAGE_SIZE;
6319 }
6320 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6321 }
6322 cpu_cpwait();
6323 }
6324 #endif /* ARM_MMU_XSCALE == 1 */
6325
6326 #if ARM_MMU_V7 == 1
6327 void
6328 pmap_pte_init_armv7(void)
6329 {
6330 /*
6331 * The ARMv7-A MMU is mostly compatible with generic. If the
6332 * AP field is zero, that now means "no access" rather than
6333 * read-only. The prototypes are a little different because of
6334 * the XN bit.
6335 */
6336 pmap_pte_init_generic();
6337
6338 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6339 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6340 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6341
6342 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6343 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6344 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6345 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6346
6347 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6348 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6349 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6350 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6351
6352 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6353 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6354 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6355 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6356
6357 pte_l1_s_proto = L1_S_PROTO_armv7;
6358 pte_l1_c_proto = L1_C_PROTO_armv7;
6359 pte_l2_s_proto = L2_S_PROTO_armv7;
6360 }
6361 #endif /* ARM_MMU_V7 */
6362
6363 /*
6364 * return the PA of the current L1 table, for use when handling a crash dump
6365 */
6366 uint32_t pmap_kernel_L1_addr(void)
6367 {
6368 return pmap_kernel()->pm_l1->l1_physaddr;
6369 }
6370
6371 #if defined(DDB)
6372 /*
6373 * A couple of ddb-callable functions for dumping pmaps
6374 */
6375 void pmap_dump_all(void);
6376 void pmap_dump(pmap_t);
6377
6378 void
6379 pmap_dump_all(void)
6380 {
6381 pmap_t pm;
6382
6383 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6384 if (pm == pmap_kernel())
6385 continue;
6386 pmap_dump(pm);
6387 printf("\n");
6388 }
6389 }
6390
6391 static pt_entry_t ncptes[64];
6392 static void pmap_dump_ncpg(pmap_t);
6393
6394 void
6395 pmap_dump(pmap_t pm)
6396 {
6397 struct l2_dtable *l2;
6398 struct l2_bucket *l2b;
6399 pt_entry_t *ptep, pte;
6400 vaddr_t l2_va, l2b_va, va;
6401 int i, j, k, occ, rows = 0;
6402
6403 if (pm == pmap_kernel())
6404 printf("pmap_kernel (%p): ", pm);
6405 else
6406 printf("user pmap (%p): ", pm);
6407
6408 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6409
6410 l2_va = 0;
6411 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6412 l2 = pm->pm_l2[i];
6413
6414 if (l2 == NULL || l2->l2_occupancy == 0)
6415 continue;
6416
6417 l2b_va = l2_va;
6418 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6419 l2b = &l2->l2_bucket[j];
6420
6421 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6422 continue;
6423
6424 ptep = l2b->l2b_kva;
6425
6426 for (k = 0; k < 256 && ptep[k] == 0; k++)
6427 ;
6428
6429 k &= ~63;
6430 occ = l2b->l2b_occupancy;
6431 va = l2b_va + (k * 4096);
6432 for (; k < 256; k++, va += 0x1000) {
6433 char ch = ' ';
6434 if ((k % 64) == 0) {
6435 if ((rows % 8) == 0) {
6436 printf(
6437 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6438 }
6439 printf("%08lx: ", va);
6440 }
6441
6442 ncptes[k & 63] = 0;
6443 pte = ptep[k];
6444 if (pte == 0) {
6445 ch = '.';
6446 } else {
6447 occ--;
6448 switch (pte & 0x0c) {
6449 case 0x00:
6450 ch = 'D'; /* No cache No buff */
6451 break;
6452 case 0x04:
6453 ch = 'B'; /* No cache buff */
6454 break;
6455 case 0x08:
6456 if (pte & 0x40)
6457 ch = 'm';
6458 else
6459 ch = 'C'; /* Cache No buff */
6460 break;
6461 case 0x0c:
6462 ch = 'F'; /* Cache Buff */
6463 break;
6464 }
6465
6466 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6467 ch += 0x20;
6468
6469 if ((pte & 0xc) == 0)
6470 ncptes[k & 63] = pte;
6471 }
6472
6473 if ((k % 64) == 63) {
6474 rows++;
6475 printf("%c\n", ch);
6476 pmap_dump_ncpg(pm);
6477 if (occ == 0)
6478 break;
6479 } else
6480 printf("%c", ch);
6481 }
6482 }
6483 }
6484 }
6485
6486 static void
6487 pmap_dump_ncpg(pmap_t pm)
6488 {
6489 struct vm_page *pg;
6490 struct vm_page_md *md;
6491 struct pv_entry *pv;
6492 int i;
6493
6494 for (i = 0; i < 63; i++) {
6495 if (ncptes[i] == 0)
6496 continue;
6497
6498 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6499 if (pg == NULL)
6500 continue;
6501 md = VM_PAGE_TO_MD(pg);
6502
6503 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6504 VM_PAGE_TO_PHYS(pg),
6505 md->krw_mappings, md->kro_mappings,
6506 md->urw_mappings, md->uro_mappings);
6507
6508 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6509 printf(" %c va 0x%08lx, flags 0x%x\n",
6510 (pm == pv->pv_pmap) ? '*' : ' ',
6511 pv->pv_va, pv->pv_flags);
6512 }
6513 }
6514 }
6515 #endif
6516
6517 #ifdef PMAP_STEAL_MEMORY
6518 void
6519 pmap_boot_pageadd(pv_addr_t *newpv)
6520 {
6521 pv_addr_t *pv, *npv;
6522
6523 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6524 if (newpv->pv_pa < pv->pv_va) {
6525 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6526 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6527 newpv->pv_size += pv->pv_size;
6528 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6529 }
6530 pv = NULL;
6531 } else {
6532 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6533 pv = npv) {
6534 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6535 KASSERT(pv->pv_pa < newpv->pv_pa);
6536 if (newpv->pv_pa > npv->pv_pa)
6537 continue;
6538 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6539 pv->pv_size += newpv->pv_size;
6540 return;
6541 }
6542 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6543 break;
6544 newpv->pv_size += npv->pv_size;
6545 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6546 SLIST_REMOVE_AFTER(newpv, pv_list);
6547 return;
6548 }
6549 }
6550 }
6551
6552 if (pv) {
6553 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6554 } else {
6555 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6556 }
6557 }
6558
6559 void
6560 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6561 pv_addr_t *rpv)
6562 {
6563 pv_addr_t *pv, **pvp;
6564 struct vm_physseg *ps;
6565 size_t i;
6566
6567 KASSERT(amount & PGOFSET);
6568 KASSERT((mask & PGOFSET) == 0);
6569 KASSERT((match & PGOFSET) == 0);
6570 KASSERT(amount != 0);
6571
6572 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6573 (pv = *pvp) != NULL;
6574 pvp = &SLIST_NEXT(pv, pv_list)) {
6575 pv_addr_t *newpv;
6576 psize_t off;
6577 /*
6578 * If this entry is too small to satify the request...
6579 */
6580 KASSERT(pv->pv_size > 0);
6581 if (pv->pv_size < amount)
6582 continue;
6583
6584 for (off = 0; off <= mask; off += PAGE_SIZE) {
6585 if (((pv->pv_pa + off) & mask) == match
6586 && off + amount <= pv->pv_size)
6587 break;
6588 }
6589 if (off > mask)
6590 continue;
6591
6592 rpv->pv_va = pv->pv_va + off;
6593 rpv->pv_pa = pv->pv_pa + off;
6594 rpv->pv_size = amount;
6595 pv->pv_size -= amount;
6596 if (pv->pv_size == 0) {
6597 KASSERT(off == 0);
6598 KASSERT((vaddr_t) pv == rpv->pv_va);
6599 *pvp = SLIST_NEXT(pv, pv_list);
6600 } else if (off == 0) {
6601 KASSERT((vaddr_t) pv == rpv->pv_va);
6602 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6603 *newpv = *pv;
6604 newpv->pv_pa += amount;
6605 newpv->pv_va += amount;
6606 *pvp = newpv;
6607 } else if (off < pv->pv_size) {
6608 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6609 *newpv = *pv;
6610 newpv->pv_size -= off;
6611 newpv->pv_pa += off + amount;
6612 newpv->pv_va += off + amount;
6613
6614 SLIST_NEXT(pv, pv_list) = newpv;
6615 pv->pv_size = off;
6616 } else {
6617 KASSERT((vaddr_t) pv != rpv->pv_va);
6618 }
6619 memset((void *)rpv->pv_va, 0, amount);
6620 return;
6621 }
6622
6623 if (vm_nphysseg == 0)
6624 panic("pmap_boot_pagealloc: couldn't allocate memory");
6625
6626 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6627 (pv = *pvp) != NULL;
6628 pvp = &SLIST_NEXT(pv, pv_list)) {
6629 if (SLIST_NEXT(pv, pv_list) == NULL)
6630 break;
6631 }
6632 KASSERT(mask == 0);
6633 for (i = 0; i < vm_nphysseg; i++) {
6634 ps = vm_physmem_ptrs[i];
6635 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6636 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6637 rpv->pv_va = pv->pv_va;
6638 rpv->pv_pa = pv->pv_pa;
6639 rpv->pv_size = amount;
6640 *pvp = NULL;
6641 pmap_map_chunk(kernel_l1pt.pv_va,
6642 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6643 ptoa(ps->avail_start),
6644 amount - pv->pv_size,
6645 VM_PROT_READ|VM_PROT_WRITE,
6646 PTE_CACHE);
6647 ps->avail_start += atop(amount - pv->pv_size);
6648 /*
6649 * If we consumed the entire physseg, remove it.
6650 */
6651 if (ps->avail_start == ps->avail_end) {
6652 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6653 ps[0] = ps[1];
6654 }
6655 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6656 return;
6657 }
6658 }
6659
6660 panic("pmap_boot_pagealloc: couldn't allocate memory");
6661 }
6662
6663 vaddr_t
6664 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6665 {
6666 pv_addr_t pv;
6667
6668 pmap_boot_pagealloc(size, 0, 0, &pv);
6669
6670 return pv.pv_va;
6671 }
6672 #endif /* PMAP_STEAL_MEMORY */
6673
6674 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6675 {
6676 sysctl_createv(clog, 0, NULL, NULL,
6677 CTLFLAG_PERMANENT,
6678 CTLTYPE_NODE, "machdep", NULL,
6679 NULL, 0, NULL, 0,
6680 CTL_MACHDEP, CTL_EOL);
6681
6682 sysctl_createv(clog, 0, NULL, NULL,
6683 CTLFLAG_PERMANENT,
6684 CTLTYPE_INT, "kmpages",
6685 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6686 NULL, 0, &pmap_kmpages, 0,
6687 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6688 }
6689