Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.211.2.7
      1 /*	$NetBSD: pmap.c,v 1.211.2.7 2010/02/10 15:48:28 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependant vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/malloc.h>
    201 #include <sys/pool.h>
    202 #include <sys/cdefs.h>
    203 #include <sys/cpu.h>
    204 #include <sys/sysctl.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <machine/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/arm32/katelib.h>
    213 
    214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.211.2.7 2010/02/10 15:48:28 uebayasi Exp $");
    215 
    216 #ifdef PMAP_DEBUG
    217 
    218 /* XXX need to get rid of all refs to this */
    219 int pmap_debug_level = 0;
    220 
    221 /*
    222  * for switching to potentially finer grained debugging
    223  */
    224 #define	PDB_FOLLOW	0x0001
    225 #define	PDB_INIT	0x0002
    226 #define	PDB_ENTER	0x0004
    227 #define	PDB_REMOVE	0x0008
    228 #define	PDB_CREATE	0x0010
    229 #define	PDB_PTPAGE	0x0020
    230 #define	PDB_GROWKERN	0x0040
    231 #define	PDB_BITS	0x0080
    232 #define	PDB_COLLECT	0x0100
    233 #define	PDB_PROTECT	0x0200
    234 #define	PDB_MAP_L1	0x0400
    235 #define	PDB_BOOTSTRAP	0x1000
    236 #define	PDB_PARANOIA	0x2000
    237 #define	PDB_WIRING	0x4000
    238 #define	PDB_PVDUMP	0x8000
    239 #define	PDB_VAC		0x10000
    240 #define	PDB_KENTER	0x20000
    241 #define	PDB_KREMOVE	0x40000
    242 #define	PDB_EXEC	0x80000
    243 
    244 int debugmap = 1;
    245 int pmapdebug = 0;
    246 #define	NPDEBUG(_lev_,_stat_) \
    247 	if (pmapdebug & (_lev_)) \
    248         	((_stat_))
    249 
    250 #else	/* PMAP_DEBUG */
    251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    252 #endif	/* PMAP_DEBUG */
    253 
    254 /*
    255  * pmap_kernel() points here
    256  */
    257 static struct pmap	kernel_pmap_store;
    258 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    259 
    260 /*
    261  * Which pmap is currently 'live' in the cache
    262  *
    263  * XXXSCW: Fix for SMP ...
    264  */
    265 static pmap_t pmap_recent_user;
    266 
    267 /*
    268  * Pointer to last active lwp, or NULL if it exited.
    269  */
    270 struct lwp *pmap_previous_active_lwp;
    271 
    272 /*
    273  * Pool and cache that pmap structures are allocated from.
    274  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    275  * in pmap_create().
    276  */
    277 static struct pool_cache pmap_cache;
    278 static LIST_HEAD(, pmap) pmap_pmaps;
    279 
    280 /*
    281  * Pool of PV structures
    282  */
    283 static struct pool pmap_pv_pool;
    284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    287 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    288 };
    289 
    290 /*
    291  * Pool and cache of l2_dtable structures.
    292  * We use a cache to avoid clearing the structures when they're
    293  * allocated. (196 bytes)
    294  */
    295 static struct pool_cache pmap_l2dtable_cache;
    296 static vaddr_t pmap_kernel_l2dtable_kva;
    297 
    298 /*
    299  * Pool and cache of L2 page descriptors.
    300  * We use a cache to avoid clearing the descriptor table
    301  * when they're allocated. (1KB)
    302  */
    303 static struct pool_cache pmap_l2ptp_cache;
    304 static vaddr_t pmap_kernel_l2ptp_kva;
    305 static paddr_t pmap_kernel_l2ptp_phys;
    306 
    307 #ifdef PMAPCOUNTERS
    308 #define	PMAP_EVCNT_INITIALIZER(name) \
    309 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    310 
    311 #ifdef PMAP_CACHE_VIPT
    312 static struct evcnt pmap_ev_vac_clean_one =
    313    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    314 static struct evcnt pmap_ev_vac_flush_one =
    315    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    316 static struct evcnt pmap_ev_vac_flush_lots =
    317    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    318 static struct evcnt pmap_ev_vac_flush_lots2 =
    319    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    320 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    321 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    324 
    325 static struct evcnt pmap_ev_vac_color_new =
    326    PMAP_EVCNT_INITIALIZER("new page color");
    327 static struct evcnt pmap_ev_vac_color_reuse =
    328    PMAP_EVCNT_INITIALIZER("ok first page color");
    329 static struct evcnt pmap_ev_vac_color_ok =
    330    PMAP_EVCNT_INITIALIZER("ok page color");
    331 static struct evcnt pmap_ev_vac_color_blind =
    332    PMAP_EVCNT_INITIALIZER("blind page color");
    333 static struct evcnt pmap_ev_vac_color_change =
    334    PMAP_EVCNT_INITIALIZER("change page color");
    335 static struct evcnt pmap_ev_vac_color_erase =
    336    PMAP_EVCNT_INITIALIZER("erase page color");
    337 static struct evcnt pmap_ev_vac_color_none =
    338    PMAP_EVCNT_INITIALIZER("no page color");
    339 static struct evcnt pmap_ev_vac_color_restore =
    340    PMAP_EVCNT_INITIALIZER("restore page color");
    341 
    342 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    350 #endif
    351 
    352 static struct evcnt pmap_ev_mappings =
    353    PMAP_EVCNT_INITIALIZER("pages mapped");
    354 static struct evcnt pmap_ev_unmappings =
    355    PMAP_EVCNT_INITIALIZER("pages unmapped");
    356 static struct evcnt pmap_ev_remappings =
    357    PMAP_EVCNT_INITIALIZER("pages remapped");
    358 
    359 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    360 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    361 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    362 
    363 static struct evcnt pmap_ev_kernel_mappings =
    364    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    365 static struct evcnt pmap_ev_kernel_unmappings =
    366    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    367 static struct evcnt pmap_ev_kernel_remappings =
    368    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    369 
    370 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    373 
    374 static struct evcnt pmap_ev_kenter_mappings =
    375    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    376 static struct evcnt pmap_ev_kenter_unmappings =
    377    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    378 static struct evcnt pmap_ev_kenter_remappings =
    379    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    380 static struct evcnt pmap_ev_pt_mappings =
    381    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    382 
    383 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    386 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    387 
    388 #ifdef PMAP_CACHE_VIPT
    389 static struct evcnt pmap_ev_exec_mappings =
    390    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    391 static struct evcnt pmap_ev_exec_cached =
    392    PMAP_EVCNT_INITIALIZER("exec pages cached");
    393 
    394 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    396 
    397 static struct evcnt pmap_ev_exec_synced =
    398    PMAP_EVCNT_INITIALIZER("exec pages synced");
    399 static struct evcnt pmap_ev_exec_synced_map =
    400    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    401 static struct evcnt pmap_ev_exec_synced_unmap =
    402    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    403 static struct evcnt pmap_ev_exec_synced_remap =
    404    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    405 static struct evcnt pmap_ev_exec_synced_clearbit =
    406    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    407 static struct evcnt pmap_ev_exec_synced_kremove =
    408    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    409 
    410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    416 
    417 static struct evcnt pmap_ev_exec_discarded_unmap =
    418    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    419 static struct evcnt pmap_ev_exec_discarded_zero =
    420    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    421 static struct evcnt pmap_ev_exec_discarded_copy =
    422    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    423 static struct evcnt pmap_ev_exec_discarded_page_protect =
    424    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    425 static struct evcnt pmap_ev_exec_discarded_clearbit =
    426    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    427 static struct evcnt pmap_ev_exec_discarded_kremove =
    428    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    429 
    430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    436 #endif /* PMAP_CACHE_VIPT */
    437 
    438 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    439 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    440 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    441 
    442 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    443 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    444 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    445 
    446 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    447 #else
    448 #define	PMAPCOUNT(x)	((void)0)
    449 #endif
    450 
    451 /*
    452  * pmap copy/zero page, and mem(5) hook point
    453  */
    454 static pt_entry_t *csrc_pte, *cdst_pte;
    455 static vaddr_t csrcp, cdstp;
    456 vaddr_t memhook;			/* used by mem.c */
    457 kmutex_t memlock;			/* used by mem.c */
    458 void *zeropage;				/* used by mem.c */
    459 extern void *msgbufaddr;
    460 int pmap_kmpages;
    461 /*
    462  * Flag to indicate if pmap_init() has done its thing
    463  */
    464 bool pmap_initialized;
    465 
    466 /*
    467  * Misc. locking data structures
    468  */
    469 
    470 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
    471 static struct lock pmap_main_lock;
    472 
    473 #define PMAP_MAP_TO_HEAD_LOCK() \
    474      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    475 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    476      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    477 #define PMAP_HEAD_TO_MAP_LOCK() \
    478      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    479 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    480      spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
    481 #else
    482 #define PMAP_MAP_TO_HEAD_LOCK()		/* null */
    483 #define PMAP_MAP_TO_HEAD_UNLOCK()	/* null */
    484 #define PMAP_HEAD_TO_MAP_LOCK()		/* null */
    485 #define PMAP_HEAD_TO_MAP_UNLOCK()	/* null */
    486 #endif
    487 
    488 #define	pmap_acquire_pmap_lock(pm)			\
    489 	do {						\
    490 		if ((pm) != pmap_kernel())		\
    491 			mutex_enter(&(pm)->pm_lock);	\
    492 	} while (/*CONSTCOND*/0)
    493 
    494 #define	pmap_release_pmap_lock(pm)			\
    495 	do {						\
    496 		if ((pm) != pmap_kernel())		\
    497 			mutex_exit(&(pm)->pm_lock);	\
    498 	} while (/*CONSTCOND*/0)
    499 
    500 
    501 /*
    502  * Metadata for L1 translation tables.
    503  */
    504 struct l1_ttable {
    505 	/* Entry on the L1 Table list */
    506 	SLIST_ENTRY(l1_ttable) l1_link;
    507 
    508 	/* Entry on the L1 Least Recently Used list */
    509 	TAILQ_ENTRY(l1_ttable) l1_lru;
    510 
    511 	/* Track how many domains are allocated from this L1 */
    512 	volatile u_int l1_domain_use_count;
    513 
    514 	/*
    515 	 * A free-list of domain numbers for this L1.
    516 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    517 	 * is slow on ARM.
    518 	 */
    519 	u_int8_t l1_domain_first;
    520 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    521 
    522 	/* Physical address of this L1 page table */
    523 	paddr_t l1_physaddr;
    524 
    525 	/* KVA of this L1 page table */
    526 	pd_entry_t *l1_kva;
    527 };
    528 
    529 /*
    530  * Convert a virtual address into its L1 table index. That is, the
    531  * index used to locate the L2 descriptor table pointer in an L1 table.
    532  * This is basically used to index l1->l1_kva[].
    533  *
    534  * Each L2 descriptor table represents 1MB of VA space.
    535  */
    536 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    537 
    538 /*
    539  * L1 Page Tables are tracked using a Least Recently Used list.
    540  *  - New L1s are allocated from the HEAD.
    541  *  - Freed L1s are added to the TAIl.
    542  *  - Recently accessed L1s (where an 'access' is some change to one of
    543  *    the userland pmaps which owns this L1) are moved to the TAIL.
    544  */
    545 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    546 static struct simplelock l1_lru_lock;
    547 
    548 /*
    549  * A list of all L1 tables
    550  */
    551 static SLIST_HEAD(, l1_ttable) l1_list;
    552 
    553 /*
    554  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    555  *
    556  * This is normally 16MB worth L2 page descriptors for any given pmap.
    557  * Reference counts are maintained for L2 descriptors so they can be
    558  * freed when empty.
    559  */
    560 struct l2_dtable {
    561 	/* The number of L2 page descriptors allocated to this l2_dtable */
    562 	u_int l2_occupancy;
    563 
    564 	/* List of L2 page descriptors */
    565 	struct l2_bucket {
    566 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    567 		paddr_t l2b_phys;	/* Physical address of same */
    568 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    569 		u_short l2b_occupancy;	/* How many active descriptors */
    570 	} l2_bucket[L2_BUCKET_SIZE];
    571 };
    572 
    573 /*
    574  * Given an L1 table index, calculate the corresponding l2_dtable index
    575  * and bucket index within the l2_dtable.
    576  */
    577 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    578 				 (L2_SIZE - 1))
    579 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    580 
    581 /*
    582  * Given a virtual address, this macro returns the
    583  * virtual address required to drop into the next L2 bucket.
    584  */
    585 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    586 
    587 /*
    588  * L2 allocation.
    589  */
    590 #define	pmap_alloc_l2_dtable()		\
    591 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    592 #define	pmap_free_l2_dtable(l2)		\
    593 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    594 #define pmap_alloc_l2_ptp(pap)		\
    595 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    596 	    PR_NOWAIT, (pap)))
    597 
    598 /*
    599  * We try to map the page tables write-through, if possible.  However, not
    600  * all CPUs have a write-through cache mode, so on those we have to sync
    601  * the cache when we frob page tables.
    602  *
    603  * We try to evaluate this at compile time, if possible.  However, it's
    604  * not always possible to do that, hence this run-time var.
    605  */
    606 int	pmap_needs_pte_sync;
    607 
    608 /*
    609  * Real definition of pv_entry.
    610  */
    611 struct pv_entry {
    612 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    613 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    614 	vaddr_t		pv_va;          /* virtual address for mapping */
    615 	u_int		pv_flags;       /* flags */
    616 };
    617 
    618 /*
    619  * Macro to determine if a mapping might be resident in the
    620  * instruction cache and/or TLB
    621  */
    622 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    623 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    624 
    625 /*
    626  * Macro to determine if a mapping might be resident in the
    627  * data cache and/or TLB
    628  */
    629 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    630 
    631 /*
    632  * Local prototypes
    633  */
    634 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    635 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    636 			    pt_entry_t **);
    637 static bool		pmap_is_current(pmap_t);
    638 static bool		pmap_is_cached(pmap_t);
    639 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    640 			    pmap_t, vaddr_t, u_int);
    641 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    642 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    643 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    644 			    u_int, u_int);
    645 
    646 static void		pmap_pinit(pmap_t);
    647 static int		pmap_pmap_ctor(void *, void *, int);
    648 
    649 static void		pmap_alloc_l1(pmap_t);
    650 static void		pmap_free_l1(pmap_t);
    651 static void		pmap_use_l1(pmap_t);
    652 
    653 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    654 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    655 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    656 static int		pmap_l2ptp_ctor(void *, void *, int);
    657 static int		pmap_l2dtable_ctor(void *, void *, int);
    658 
    659 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    660 #ifdef PMAP_CACHE_VIVT
    661 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    662 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    663 #endif
    664 
    665 static void		pmap_clearbit(struct vm_page *, u_int);
    666 #ifdef PMAP_CACHE_VIVT
    667 static int		pmap_clean_page(struct pv_entry *, bool);
    668 #endif
    669 #ifdef PMAP_CACHE_VIPT
    670 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    671 enum pmap_flush_op {
    672 	PMAP_FLUSH_PRIMARY,
    673 	PMAP_FLUSH_SECONDARY,
    674 	PMAP_CLEAN_PRIMARY
    675 };
    676 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    677 #endif
    678 static void		pmap_page_remove(struct vm_page *);
    679 
    680 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    681 static vaddr_t		kernel_pt_lookup(paddr_t);
    682 
    683 
    684 /*
    685  * External function prototypes
    686  */
    687 extern void bzero_page(vaddr_t);
    688 extern void bcopy_page(vaddr_t, vaddr_t);
    689 
    690 /*
    691  * Misc variables
    692  */
    693 vaddr_t virtual_avail;
    694 vaddr_t virtual_end;
    695 vaddr_t pmap_curmaxkvaddr;
    696 
    697 paddr_t avail_start;
    698 paddr_t avail_end;
    699 
    700 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    701 pv_addr_t kernelpages;
    702 pv_addr_t kernel_l1pt;
    703 pv_addr_t systempage;
    704 
    705 /* Function to set the debug level of the pmap code */
    706 
    707 #ifdef PMAP_DEBUG
    708 void
    709 pmap_debug(int level)
    710 {
    711 	pmap_debug_level = level;
    712 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    713 }
    714 #endif	/* PMAP_DEBUG */
    715 
    716 /*
    717  * A bunch of routines to conditionally flush the caches/TLB depending
    718  * on whether the specified pmap actually needs to be flushed at any
    719  * given time.
    720  */
    721 static inline void
    722 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    723 {
    724 
    725 	if (pm->pm_cstate.cs_tlb_id)
    726 		cpu_tlb_flushID_SE(va);
    727 }
    728 
    729 static inline void
    730 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    731 {
    732 
    733 	if (pm->pm_cstate.cs_tlb_d)
    734 		cpu_tlb_flushD_SE(va);
    735 }
    736 
    737 static inline void
    738 pmap_tlb_flushID(pmap_t pm)
    739 {
    740 
    741 	if (pm->pm_cstate.cs_tlb_id) {
    742 		cpu_tlb_flushID();
    743 		pm->pm_cstate.cs_tlb = 0;
    744 	}
    745 }
    746 
    747 static inline void
    748 pmap_tlb_flushD(pmap_t pm)
    749 {
    750 
    751 	if (pm->pm_cstate.cs_tlb_d) {
    752 		cpu_tlb_flushD();
    753 		pm->pm_cstate.cs_tlb_d = 0;
    754 	}
    755 }
    756 
    757 #ifdef PMAP_CACHE_VIVT
    758 static inline void
    759 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    760 {
    761 	if (pm->pm_cstate.cs_cache_id) {
    762 		cpu_idcache_wbinv_range(va, len);
    763 	}
    764 }
    765 
    766 static inline void
    767 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    768     bool do_inv, bool rd_only)
    769 {
    770 
    771 	if (pm->pm_cstate.cs_cache_d) {
    772 		if (do_inv) {
    773 			if (rd_only)
    774 				cpu_dcache_inv_range(va, len);
    775 			else
    776 				cpu_dcache_wbinv_range(va, len);
    777 		} else
    778 		if (!rd_only)
    779 			cpu_dcache_wb_range(va, len);
    780 	}
    781 }
    782 
    783 static inline void
    784 pmap_idcache_wbinv_all(pmap_t pm)
    785 {
    786 	if (pm->pm_cstate.cs_cache_id) {
    787 		cpu_idcache_wbinv_all();
    788 		pm->pm_cstate.cs_cache = 0;
    789 	}
    790 }
    791 
    792 static inline void
    793 pmap_dcache_wbinv_all(pmap_t pm)
    794 {
    795 	if (pm->pm_cstate.cs_cache_d) {
    796 		cpu_dcache_wbinv_all();
    797 		pm->pm_cstate.cs_cache_d = 0;
    798 	}
    799 }
    800 #endif /* PMAP_CACHE_VIVT */
    801 
    802 static inline bool
    803 pmap_is_current(pmap_t pm)
    804 {
    805 
    806 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    807 		return true;
    808 
    809 	return false;
    810 }
    811 
    812 static inline bool
    813 pmap_is_cached(pmap_t pm)
    814 {
    815 
    816 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    817 	    pmap_recent_user == pm)
    818 		return (true);
    819 
    820 	return false;
    821 }
    822 
    823 /*
    824  * PTE_SYNC_CURRENT:
    825  *
    826  *     Make sure the pte is written out to RAM.
    827  *     We need to do this for one of two cases:
    828  *       - We're dealing with the kernel pmap
    829  *       - There is no pmap active in the cache/tlb.
    830  *       - The specified pmap is 'active' in the cache/tlb.
    831  */
    832 #ifdef PMAP_INCLUDE_PTE_SYNC
    833 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    834 do {					\
    835 	if (PMAP_NEEDS_PTE_SYNC && 	\
    836 	    pmap_is_cached(pm))		\
    837 		PTE_SYNC(ptep);		\
    838 } while (/*CONSTCOND*/0)
    839 #else
    840 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    841 #endif
    842 
    843 /*
    844  * main pv_entry manipulation functions:
    845  *   pmap_enter_pv: enter a mapping onto a vm_page list
    846  *   pmap_remove_pv: remove a mappiing from a vm_page list
    847  *
    848  * NOTE: pmap_enter_pv expects to lock the pvh itself
    849  *       pmap_remove_pv expects te caller to lock the pvh before calling
    850  */
    851 
    852 /*
    853  * pmap_enter_pv: enter a mapping onto a vm_page lst
    854  *
    855  * => caller should hold the proper lock on pmap_main_lock
    856  * => caller should have pmap locked
    857  * => we will gain the lock on the vm_page and allocate the new pv_entry
    858  * => caller should adjust ptp's wire_count before calling
    859  * => caller should not adjust pmap's wire_count
    860  */
    861 static void
    862 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    863     vaddr_t va, u_int flags)
    864 {
    865 	struct pv_entry **pvp;
    866 
    867 	NPDEBUG(PDB_PVDUMP,
    868 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    869 
    870 	pv->pv_pmap = pm;
    871 	pv->pv_va = va;
    872 	pv->pv_flags = flags;
    873 
    874 	simple_lock(&md->pvh_slock);	/* lock vm_page */
    875 	pvp = &SLIST_FIRST(&md->pvh_list);
    876 #ifdef PMAP_CACHE_VIPT
    877 	/*
    878 	 * Insert unmanaged entries, writeable first, at the head of
    879 	 * the pv list.
    880 	 */
    881 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    882 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    883 			pvp = &SLIST_NEXT(*pvp, pv_link);
    884 	} else if ((flags & PVF_WRITE) == 0) {
    885 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    886 			pvp = &SLIST_NEXT(*pvp, pv_link);
    887 	}
    888 #endif
    889 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
    890 	*pvp = pv;				/* ... locked list */
    891 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    892 #ifdef PMAP_CACHE_VIPT
    893 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    894 		md->pvh_attrs |= PVF_KMOD;
    895 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    896 		md->pvh_attrs |= PVF_DIRTY;
    897 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
    898 #endif
    899 	if (pm == pmap_kernel()) {
    900 		PMAPCOUNT(kernel_mappings);
    901 		if (flags & PVF_WRITE)
    902 			md->krw_mappings++;
    903 		else
    904 			md->kro_mappings++;
    905 	} else {
    906 		if (flags & PVF_WRITE)
    907 			md->urw_mappings++;
    908 		else
    909 			md->uro_mappings++;
    910 	}
    911 
    912 #ifdef PMAP_CACHE_VIPT
    913 	/*
    914 	 * If this is an exec mapping and its the first exec mapping
    915 	 * for this page, make sure to sync the I-cache.
    916 	 */
    917 	if (PV_IS_EXEC_P(flags)) {
    918 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
    919 			pmap_syncicache_page(md, pa);
    920 			PMAPCOUNT(exec_synced_map);
    921 		}
    922 		PMAPCOUNT(exec_mappings);
    923 	}
    924 #endif
    925 
    926 	PMAPCOUNT(mappings);
    927 	simple_unlock(&md->pvh_slock);	/* unlock, done! */
    928 
    929 	if (pv->pv_flags & PVF_WIRED)
    930 		++pm->pm_stats.wired_count;
    931 }
    932 
    933 /*
    934  *
    935  * pmap_find_pv: Find a pv entry
    936  *
    937  * => caller should hold lock on vm_page
    938  */
    939 static inline struct pv_entry *
    940 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
    941 {
    942 	struct pv_entry *pv;
    943 
    944 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
    945 		if (pm == pv->pv_pmap && va == pv->pv_va)
    946 			break;
    947 	}
    948 
    949 	return (pv);
    950 }
    951 
    952 /*
    953  * pmap_remove_pv: try to remove a mapping from a pv_list
    954  *
    955  * => caller should hold proper lock on pmap_main_lock
    956  * => pmap should be locked
    957  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    958  * => caller should adjust ptp's wire_count and free PTP if needed
    959  * => caller should NOT adjust pmap's wire_count
    960  * => we return the removed pv
    961  */
    962 static struct pv_entry *
    963 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
    964 {
    965 	struct pv_entry *pv, **prevptr;
    966 
    967 	NPDEBUG(PDB_PVDUMP,
    968 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
    969 
    970 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
    971 	pv = *prevptr;
    972 
    973 	while (pv) {
    974 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
    975 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
    976 			    "%p\n", pm, md));
    977 			if (pv->pv_flags & PVF_WIRED) {
    978 				--pm->pm_stats.wired_count;
    979 			}
    980 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
    981 			if (pm == pmap_kernel()) {
    982 				PMAPCOUNT(kernel_unmappings);
    983 				if (pv->pv_flags & PVF_WRITE)
    984 					md->krw_mappings--;
    985 				else
    986 					md->kro_mappings--;
    987 			} else {
    988 				if (pv->pv_flags & PVF_WRITE)
    989 					md->urw_mappings--;
    990 				else
    991 					md->uro_mappings--;
    992 			}
    993 
    994 			PMAPCOUNT(unmappings);
    995 #ifdef PMAP_CACHE_VIPT
    996 			if (!(pv->pv_flags & PVF_WRITE))
    997 				break;
    998 			/*
    999 			 * If this page has had an exec mapping, then if
   1000 			 * this was the last mapping, discard the contents,
   1001 			 * otherwise sync the i-cache for this page.
   1002 			 */
   1003 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1004 				if (SLIST_EMPTY(&md->pvh_list)) {
   1005 					md->pvh_attrs &= ~PVF_EXEC;
   1006 					PMAPCOUNT(exec_discarded_unmap);
   1007 				} else {
   1008 					pmap_syncicache_page(md, pa);
   1009 					PMAPCOUNT(exec_synced_unmap);
   1010 				}
   1011 			}
   1012 #endif /* PMAP_CACHE_VIPT */
   1013 			break;
   1014 		}
   1015 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1016 		pv = *prevptr;				/* advance */
   1017 	}
   1018 
   1019 #ifdef PMAP_CACHE_VIPT
   1020 	/*
   1021 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1022 	 * clear the KMOD attribute from the page.
   1023 	 */
   1024 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1025 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1026 		md->pvh_attrs &= ~PVF_KMOD;
   1027 
   1028 	/*
   1029 	 * If this was a writeable page and there are no more writeable
   1030 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1031 	 * the contents to memory.
   1032 	 */
   1033 	if (md->krw_mappings + md->urw_mappings == 0)
   1034 		md->pvh_attrs &= ~PVF_WRITE;
   1035 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1036 #endif /* PMAP_CACHE_VIPT */
   1037 
   1038 	return(pv);				/* return removed pv */
   1039 }
   1040 
   1041 /*
   1042  *
   1043  * pmap_modify_pv: Update pv flags
   1044  *
   1045  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1046  * => caller should NOT adjust pmap's wire_count
   1047  * => caller must call pmap_vac_me_harder() if writable status of a page
   1048  *    may have changed.
   1049  * => we return the old flags
   1050  *
   1051  * Modify a physical-virtual mapping in the pv table
   1052  */
   1053 static u_int
   1054 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1055     u_int clr_mask, u_int set_mask)
   1056 {
   1057 	struct pv_entry *npv;
   1058 	u_int flags, oflags;
   1059 
   1060 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1061 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1062 
   1063 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1064 		return (0);
   1065 
   1066 	NPDEBUG(PDB_PVDUMP,
   1067 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1068 
   1069 	/*
   1070 	 * There is at least one VA mapping this page.
   1071 	 */
   1072 
   1073 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1074 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1075 #ifdef PMAP_CACHE_VIPT
   1076 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1077 			md->pvh_attrs |= PVF_DIRTY;
   1078 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1079 #endif
   1080 	}
   1081 
   1082 	oflags = npv->pv_flags;
   1083 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1084 
   1085 	if ((flags ^ oflags) & PVF_WIRED) {
   1086 		if (flags & PVF_WIRED)
   1087 			++pm->pm_stats.wired_count;
   1088 		else
   1089 			--pm->pm_stats.wired_count;
   1090 	}
   1091 
   1092 	if ((flags ^ oflags) & PVF_WRITE) {
   1093 		if (pm == pmap_kernel()) {
   1094 			if (flags & PVF_WRITE) {
   1095 				md->krw_mappings++;
   1096 				md->kro_mappings--;
   1097 			} else {
   1098 				md->kro_mappings++;
   1099 				md->krw_mappings--;
   1100 			}
   1101 		} else {
   1102 			if (flags & PVF_WRITE) {
   1103 				md->urw_mappings++;
   1104 				md->uro_mappings--;
   1105 			} else {
   1106 				md->uro_mappings++;
   1107 				md->urw_mappings--;
   1108 			}
   1109 		}
   1110 	}
   1111 #ifdef PMAP_CACHE_VIPT
   1112 	if (md->urw_mappings + md->krw_mappings == 0)
   1113 		md->pvh_attrs &= ~PVF_WRITE;
   1114 	/*
   1115 	 * We have two cases here: the first is from enter_pv (new exec
   1116 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1117 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1118 	 * to do what pmap_remove_pv would do.
   1119 	 */
   1120 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1121 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1122 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1123 		pmap_syncicache_page(md, pa);
   1124 		PMAPCOUNT(exec_synced_remap);
   1125 	}
   1126 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1127 #endif
   1128 
   1129 	PMAPCOUNT(remappings);
   1130 
   1131 	return (oflags);
   1132 }
   1133 
   1134 /*
   1135  * Allocate an L1 translation table for the specified pmap.
   1136  * This is called at pmap creation time.
   1137  */
   1138 static void
   1139 pmap_alloc_l1(pmap_t pm)
   1140 {
   1141 	struct l1_ttable *l1;
   1142 	u_int8_t domain;
   1143 
   1144 	/*
   1145 	 * Remove the L1 at the head of the LRU list
   1146 	 */
   1147 	simple_lock(&l1_lru_lock);
   1148 	l1 = TAILQ_FIRST(&l1_lru_list);
   1149 	KDASSERT(l1 != NULL);
   1150 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1151 
   1152 	/*
   1153 	 * Pick the first available domain number, and update
   1154 	 * the link to the next number.
   1155 	 */
   1156 	domain = l1->l1_domain_first;
   1157 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1158 
   1159 	/*
   1160 	 * If there are still free domain numbers in this L1,
   1161 	 * put it back on the TAIL of the LRU list.
   1162 	 */
   1163 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1164 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1165 
   1166 	simple_unlock(&l1_lru_lock);
   1167 
   1168 	/*
   1169 	 * Fix up the relevant bits in the pmap structure
   1170 	 */
   1171 	pm->pm_l1 = l1;
   1172 	pm->pm_domain = domain;
   1173 }
   1174 
   1175 /*
   1176  * Free an L1 translation table.
   1177  * This is called at pmap destruction time.
   1178  */
   1179 static void
   1180 pmap_free_l1(pmap_t pm)
   1181 {
   1182 	struct l1_ttable *l1 = pm->pm_l1;
   1183 
   1184 	simple_lock(&l1_lru_lock);
   1185 
   1186 	/*
   1187 	 * If this L1 is currently on the LRU list, remove it.
   1188 	 */
   1189 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1190 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1191 
   1192 	/*
   1193 	 * Free up the domain number which was allocated to the pmap
   1194 	 */
   1195 	l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
   1196 	l1->l1_domain_first = pm->pm_domain;
   1197 	l1->l1_domain_use_count--;
   1198 
   1199 	/*
   1200 	 * The L1 now must have at least 1 free domain, so add
   1201 	 * it back to the LRU list. If the use count is zero,
   1202 	 * put it at the head of the list, otherwise it goes
   1203 	 * to the tail.
   1204 	 */
   1205 	if (l1->l1_domain_use_count == 0)
   1206 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1207 	else
   1208 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1209 
   1210 	simple_unlock(&l1_lru_lock);
   1211 }
   1212 
   1213 static inline void
   1214 pmap_use_l1(pmap_t pm)
   1215 {
   1216 	struct l1_ttable *l1;
   1217 
   1218 	/*
   1219 	 * Do nothing if we're in interrupt context.
   1220 	 * Access to an L1 by the kernel pmap must not affect
   1221 	 * the LRU list.
   1222 	 */
   1223 	if (cpu_intr_p() || pm == pmap_kernel())
   1224 		return;
   1225 
   1226 	l1 = pm->pm_l1;
   1227 
   1228 	/*
   1229 	 * If the L1 is not currently on the LRU list, just return
   1230 	 */
   1231 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1232 		return;
   1233 
   1234 	simple_lock(&l1_lru_lock);
   1235 
   1236 	/*
   1237 	 * Check the use count again, now that we've acquired the lock
   1238 	 */
   1239 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1240 		simple_unlock(&l1_lru_lock);
   1241 		return;
   1242 	}
   1243 
   1244 	/*
   1245 	 * Move the L1 to the back of the LRU list
   1246 	 */
   1247 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1248 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1249 
   1250 	simple_unlock(&l1_lru_lock);
   1251 }
   1252 
   1253 /*
   1254  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1255  *
   1256  * Free an L2 descriptor table.
   1257  */
   1258 static inline void
   1259 #ifndef PMAP_INCLUDE_PTE_SYNC
   1260 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1261 #else
   1262 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1263 #endif
   1264 {
   1265 #ifdef PMAP_INCLUDE_PTE_SYNC
   1266 #ifdef PMAP_CACHE_VIVT
   1267 	/*
   1268 	 * Note: With a write-back cache, we may need to sync this
   1269 	 * L2 table before re-using it.
   1270 	 * This is because it may have belonged to a non-current
   1271 	 * pmap, in which case the cache syncs would have been
   1272 	 * skipped for the pages that were being unmapped. If the
   1273 	 * L2 table were then to be immediately re-allocated to
   1274 	 * the *current* pmap, it may well contain stale mappings
   1275 	 * which have not yet been cleared by a cache write-back
   1276 	 * and so would still be visible to the mmu.
   1277 	 */
   1278 	if (need_sync)
   1279 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1280 #endif /* PMAP_CACHE_VIVT */
   1281 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1282 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1283 }
   1284 
   1285 /*
   1286  * Returns a pointer to the L2 bucket associated with the specified pmap
   1287  * and VA, or NULL if no L2 bucket exists for the address.
   1288  */
   1289 static inline struct l2_bucket *
   1290 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1291 {
   1292 	struct l2_dtable *l2;
   1293 	struct l2_bucket *l2b;
   1294 	u_short l1idx;
   1295 
   1296 	l1idx = L1_IDX(va);
   1297 
   1298 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1299 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1300 		return (NULL);
   1301 
   1302 	return (l2b);
   1303 }
   1304 
   1305 /*
   1306  * Returns a pointer to the L2 bucket associated with the specified pmap
   1307  * and VA.
   1308  *
   1309  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1310  * bucket/page table in place.
   1311  *
   1312  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1313  * increment the bucket occupancy counter appropriately *before*
   1314  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1315  * the bucket/page in the meantime.
   1316  */
   1317 static struct l2_bucket *
   1318 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1319 {
   1320 	struct l2_dtable *l2;
   1321 	struct l2_bucket *l2b;
   1322 	u_short l1idx;
   1323 
   1324 	l1idx = L1_IDX(va);
   1325 
   1326 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1327 		/*
   1328 		 * No mapping at this address, as there is
   1329 		 * no entry in the L1 table.
   1330 		 * Need to allocate a new l2_dtable.
   1331 		 */
   1332 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1333 			return (NULL);
   1334 
   1335 		/*
   1336 		 * Link it into the parent pmap
   1337 		 */
   1338 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1339 	}
   1340 
   1341 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1342 
   1343 	/*
   1344 	 * Fetch pointer to the L2 page table associated with the address.
   1345 	 */
   1346 	if (l2b->l2b_kva == NULL) {
   1347 		pt_entry_t *ptep;
   1348 
   1349 		/*
   1350 		 * No L2 page table has been allocated. Chances are, this
   1351 		 * is because we just allocated the l2_dtable, above.
   1352 		 */
   1353 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1354 			/*
   1355 			 * Oops, no more L2 page tables available at this
   1356 			 * time. We may need to deallocate the l2_dtable
   1357 			 * if we allocated a new one above.
   1358 			 */
   1359 			if (l2->l2_occupancy == 0) {
   1360 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1361 				pmap_free_l2_dtable(l2);
   1362 			}
   1363 			return (NULL);
   1364 		}
   1365 
   1366 		l2->l2_occupancy++;
   1367 		l2b->l2b_kva = ptep;
   1368 		l2b->l2b_l1idx = l1idx;
   1369 	}
   1370 
   1371 	return (l2b);
   1372 }
   1373 
   1374 /*
   1375  * One or more mappings in the specified L2 descriptor table have just been
   1376  * invalidated.
   1377  *
   1378  * Garbage collect the metadata and descriptor table itself if necessary.
   1379  *
   1380  * The pmap lock must be acquired when this is called (not necessary
   1381  * for the kernel pmap).
   1382  */
   1383 static void
   1384 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1385 {
   1386 	struct l2_dtable *l2;
   1387 	pd_entry_t *pl1pd, l1pd;
   1388 	pt_entry_t *ptep;
   1389 	u_short l1idx;
   1390 
   1391 	KDASSERT(count <= l2b->l2b_occupancy);
   1392 
   1393 	/*
   1394 	 * Update the bucket's reference count according to how many
   1395 	 * PTEs the caller has just invalidated.
   1396 	 */
   1397 	l2b->l2b_occupancy -= count;
   1398 
   1399 	/*
   1400 	 * Note:
   1401 	 *
   1402 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1403 	 * as that would require checking all Level 1 page tables and
   1404 	 * removing any references to the Level 2 page table. See also the
   1405 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1406 	 *
   1407 	 * We make do with just invalidating the mapping in the L2 table.
   1408 	 *
   1409 	 * This isn't really a big deal in practice and, in fact, leads
   1410 	 * to a performance win over time as we don't need to continually
   1411 	 * alloc/free.
   1412 	 */
   1413 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1414 		return;
   1415 
   1416 	/*
   1417 	 * There are no more valid mappings in this level 2 page table.
   1418 	 * Go ahead and NULL-out the pointer in the bucket, then
   1419 	 * free the page table.
   1420 	 */
   1421 	l1idx = l2b->l2b_l1idx;
   1422 	ptep = l2b->l2b_kva;
   1423 	l2b->l2b_kva = NULL;
   1424 
   1425 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1426 
   1427 	/*
   1428 	 * If the L1 slot matches the pmap's domain
   1429 	 * number, then invalidate it.
   1430 	 */
   1431 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1432 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1433 		*pl1pd = 0;
   1434 		PTE_SYNC(pl1pd);
   1435 	}
   1436 
   1437 	/*
   1438 	 * Release the L2 descriptor table back to the pool cache.
   1439 	 */
   1440 #ifndef PMAP_INCLUDE_PTE_SYNC
   1441 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1442 #else
   1443 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1444 #endif
   1445 
   1446 	/*
   1447 	 * Update the reference count in the associated l2_dtable
   1448 	 */
   1449 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1450 	if (--l2->l2_occupancy > 0)
   1451 		return;
   1452 
   1453 	/*
   1454 	 * There are no more valid mappings in any of the Level 1
   1455 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1456 	 * the pointer in the parent pmap and free the l2_dtable.
   1457 	 */
   1458 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1459 	pmap_free_l2_dtable(l2);
   1460 }
   1461 
   1462 /*
   1463  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1464  * structures.
   1465  */
   1466 static int
   1467 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1468 {
   1469 #ifndef PMAP_INCLUDE_PTE_SYNC
   1470 	struct l2_bucket *l2b;
   1471 	pt_entry_t *ptep, pte;
   1472 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1473 
   1474 	/*
   1475 	 * The mappings for these page tables were initially made using
   1476 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1477 	 * mode will not be right for page table mappings. To avoid
   1478 	 * polluting the pmap_kenter_pa() code with a special case for
   1479 	 * page tables, we simply fix up the cache-mode here if it's not
   1480 	 * correct.
   1481 	 */
   1482 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1483 	KDASSERT(l2b != NULL);
   1484 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1485 	pte = *ptep;
   1486 
   1487 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1488 		/*
   1489 		 * Page tables must have the cache-mode set to Write-Thru.
   1490 		 */
   1491 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1492 		PTE_SYNC(ptep);
   1493 		cpu_tlb_flushD_SE(va);
   1494 		cpu_cpwait();
   1495 	}
   1496 #endif
   1497 
   1498 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1499 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1500 	return (0);
   1501 }
   1502 
   1503 static int
   1504 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1505 {
   1506 
   1507 	memset(v, 0, sizeof(struct l2_dtable));
   1508 	return (0);
   1509 }
   1510 
   1511 static int
   1512 pmap_pmap_ctor(void *arg, void *v, int flags)
   1513 {
   1514 
   1515 	memset(v, 0, sizeof(struct pmap));
   1516 	return (0);
   1517 }
   1518 
   1519 static void
   1520 pmap_pinit(pmap_t pm)
   1521 {
   1522 	struct l2_bucket *l2b;
   1523 
   1524 	if (vector_page < KERNEL_BASE) {
   1525 		/*
   1526 		 * Map the vector page.
   1527 		 */
   1528 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1529 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1530 		pmap_update(pm);
   1531 
   1532 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1533 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1534 		KDASSERT(l2b != NULL);
   1535 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1536 		    L1_C_DOM(pm->pm_domain);
   1537 	} else
   1538 		pm->pm_pl1vec = NULL;
   1539 }
   1540 
   1541 #ifdef PMAP_CACHE_VIVT
   1542 /*
   1543  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1544  * there is more than one mapping and at least one of them is writable.
   1545  * Since we purge the cache on every context switch, we only need to check for
   1546  * other mappings within the same pmap, or kernel_pmap.
   1547  * This function is also called when a page is unmapped, to possibly reenable
   1548  * caching on any remaining mappings.
   1549  *
   1550  * The code implements the following logic, where:
   1551  *
   1552  * KW = # of kernel read/write pages
   1553  * KR = # of kernel read only pages
   1554  * UW = # of user read/write pages
   1555  * UR = # of user read only pages
   1556  *
   1557  * KC = kernel mapping is cacheable
   1558  * UC = user mapping is cacheable
   1559  *
   1560  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1561  *             +---------------------------------------------
   1562  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1563  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1564  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1565  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1566  */
   1567 
   1568 static const int pmap_vac_flags[4][4] = {
   1569 	{-1,		0,		0,		PVF_KNC},
   1570 	{0,		0,		PVF_NC,		PVF_NC},
   1571 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1572 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1573 };
   1574 
   1575 static inline int
   1576 pmap_get_vac_flags(const struct vm_page_md *md)
   1577 {
   1578 	int kidx, uidx;
   1579 
   1580 	kidx = 0;
   1581 	if (md->kro_mappings || md->krw_mappings > 1)
   1582 		kidx |= 1;
   1583 	if (md->krw_mappings)
   1584 		kidx |= 2;
   1585 
   1586 	uidx = 0;
   1587 	if (md->uro_mappings || md->urw_mappings > 1)
   1588 		uidx |= 1;
   1589 	if (md->urw_mappings)
   1590 		uidx |= 2;
   1591 
   1592 	return (pmap_vac_flags[uidx][kidx]);
   1593 }
   1594 
   1595 static inline void
   1596 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1597 {
   1598 	int nattr;
   1599 
   1600 	nattr = pmap_get_vac_flags(md);
   1601 
   1602 	if (nattr < 0) {
   1603 		md->pvh_attrs &= ~PVF_NC;
   1604 		return;
   1605 	}
   1606 
   1607 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1608 		return;
   1609 
   1610 	if (pm == pmap_kernel())
   1611 		pmap_vac_me_kpmap(md, pa, pm, va);
   1612 	else
   1613 		pmap_vac_me_user(md, pa, pm, va);
   1614 
   1615 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1616 }
   1617 
   1618 static void
   1619 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1620 {
   1621 	u_int u_cacheable, u_entries;
   1622 	struct pv_entry *pv;
   1623 	pmap_t last_pmap = pm;
   1624 
   1625 	/*
   1626 	 * Pass one, see if there are both kernel and user pmaps for
   1627 	 * this page.  Calculate whether there are user-writable or
   1628 	 * kernel-writable pages.
   1629 	 */
   1630 	u_cacheable = 0;
   1631 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1632 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1633 			u_cacheable++;
   1634 	}
   1635 
   1636 	u_entries = md->urw_mappings + md->uro_mappings;
   1637 
   1638 	/*
   1639 	 * We know we have just been updating a kernel entry, so if
   1640 	 * all user pages are already cacheable, then there is nothing
   1641 	 * further to do.
   1642 	 */
   1643 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1644 		return;
   1645 
   1646 	if (u_entries) {
   1647 		/*
   1648 		 * Scan over the list again, for each entry, if it
   1649 		 * might not be set correctly, call pmap_vac_me_user
   1650 		 * to recalculate the settings.
   1651 		 */
   1652 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1653 			/*
   1654 			 * We know kernel mappings will get set
   1655 			 * correctly in other calls.  We also know
   1656 			 * that if the pmap is the same as last_pmap
   1657 			 * then we've just handled this entry.
   1658 			 */
   1659 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1660 				continue;
   1661 
   1662 			/*
   1663 			 * If there are kernel entries and this page
   1664 			 * is writable but non-cacheable, then we can
   1665 			 * skip this entry also.
   1666 			 */
   1667 			if (md->k_mappings &&
   1668 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1669 			    (PVF_NC | PVF_WRITE))
   1670 				continue;
   1671 
   1672 			/*
   1673 			 * Similarly if there are no kernel-writable
   1674 			 * entries and the page is already
   1675 			 * read-only/cacheable.
   1676 			 */
   1677 			if (md->krw_mappings == 0 &&
   1678 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1679 				continue;
   1680 
   1681 			/*
   1682 			 * For some of the remaining cases, we know
   1683 			 * that we must recalculate, but for others we
   1684 			 * can't tell if they are correct or not, so
   1685 			 * we recalculate anyway.
   1686 			 */
   1687 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1688 		}
   1689 
   1690 		if (md->k_mappings == 0)
   1691 			return;
   1692 	}
   1693 
   1694 	pmap_vac_me_user(md, pa, pm, va);
   1695 }
   1696 
   1697 static void
   1698 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1699 {
   1700 	pmap_t kpmap = pmap_kernel();
   1701 	struct pv_entry *pv, *npv = NULL;
   1702 	struct l2_bucket *l2b;
   1703 	pt_entry_t *ptep, pte;
   1704 	u_int entries = 0;
   1705 	u_int writable = 0;
   1706 	u_int cacheable_entries = 0;
   1707 	u_int kern_cacheable = 0;
   1708 	u_int other_writable = 0;
   1709 
   1710 	/*
   1711 	 * Count mappings and writable mappings in this pmap.
   1712 	 * Include kernel mappings as part of our own.
   1713 	 * Keep a pointer to the first one.
   1714 	 */
   1715 	npv = NULL;
   1716 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1717 		/* Count mappings in the same pmap */
   1718 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1719 			if (entries++ == 0)
   1720 				npv = pv;
   1721 
   1722 			/* Cacheable mappings */
   1723 			if ((pv->pv_flags & PVF_NC) == 0) {
   1724 				cacheable_entries++;
   1725 				if (kpmap == pv->pv_pmap)
   1726 					kern_cacheable++;
   1727 			}
   1728 
   1729 			/* Writable mappings */
   1730 			if (pv->pv_flags & PVF_WRITE)
   1731 				++writable;
   1732 		} else
   1733 		if (pv->pv_flags & PVF_WRITE)
   1734 			other_writable = 1;
   1735 	}
   1736 
   1737 	/*
   1738 	 * Enable or disable caching as necessary.
   1739 	 * Note: the first entry might be part of the kernel pmap,
   1740 	 * so we can't assume this is indicative of the state of the
   1741 	 * other (maybe non-kpmap) entries.
   1742 	 */
   1743 	if ((entries > 1 && writable) ||
   1744 	    (entries > 0 && pm == kpmap && other_writable)) {
   1745 		if (cacheable_entries == 0)
   1746 			return;
   1747 
   1748 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1749 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1750 			    (pv->pv_flags & PVF_NC))
   1751 				continue;
   1752 
   1753 			pv->pv_flags |= PVF_NC;
   1754 
   1755 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1756 			KDASSERT(l2b != NULL);
   1757 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1758 			pte = *ptep & ~L2_S_CACHE_MASK;
   1759 
   1760 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1761 			    l2pte_valid(pte)) {
   1762 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1763 #ifdef PMAP_CACHE_VIVT
   1764 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1765 					    pv->pv_va, PAGE_SIZE);
   1766 #endif
   1767 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1768 					    pv->pv_va);
   1769 				} else
   1770 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1771 #ifdef PMAP_CACHE_VIVT
   1772 					pmap_dcache_wb_range(pv->pv_pmap,
   1773 					    pv->pv_va, PAGE_SIZE, true,
   1774 					    (pv->pv_flags & PVF_WRITE) == 0);
   1775 #endif
   1776 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1777 					    pv->pv_va);
   1778 				}
   1779 			}
   1780 
   1781 			*ptep = pte;
   1782 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1783 		}
   1784 		cpu_cpwait();
   1785 	} else
   1786 	if (entries > cacheable_entries) {
   1787 		/*
   1788 		 * Turn cacheing back on for some pages.  If it is a kernel
   1789 		 * page, only do so if there are no other writable pages.
   1790 		 */
   1791 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1792 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1793 			    (kpmap != pv->pv_pmap || other_writable)))
   1794 				continue;
   1795 
   1796 			pv->pv_flags &= ~PVF_NC;
   1797 
   1798 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1799 			KDASSERT(l2b != NULL);
   1800 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1801 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1802 
   1803 			if (l2pte_valid(pte)) {
   1804 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1805 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1806 					    pv->pv_va);
   1807 				} else
   1808 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1809 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1810 					    pv->pv_va);
   1811 				}
   1812 			}
   1813 
   1814 			*ptep = pte;
   1815 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1816 		}
   1817 	}
   1818 }
   1819 #endif
   1820 
   1821 #ifdef PMAP_CACHE_VIPT
   1822 static void
   1823 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1824 {
   1825 	struct pv_entry *pv;
   1826 	vaddr_t tst_mask;
   1827 	bool bad_alias;
   1828 	struct l2_bucket *l2b;
   1829 	pt_entry_t *ptep, pte, opte;
   1830 	const u_int
   1831 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   1832 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   1833 
   1834 	/* do we need to do anything? */
   1835 	if (arm_cache_prefer_mask == 0)
   1836 		return;
   1837 
   1838 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   1839 	    md, pm, va));
   1840 
   1841 	KASSERT(!va || pm);
   1842 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1843 
   1844 	/* Already a conflict? */
   1845 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   1846 		/* just an add, things are already non-cached */
   1847 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   1848 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1849 		bad_alias = false;
   1850 		if (va) {
   1851 			PMAPCOUNT(vac_color_none);
   1852 			bad_alias = true;
   1853 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1854 			goto fixup;
   1855 		}
   1856 		pv = SLIST_FIRST(&md->pvh_list);
   1857 		/* the list can't be empty because it would be cachable */
   1858 		if (md->pvh_attrs & PVF_KMPAGE) {
   1859 			tst_mask = md->pvh_attrs;
   1860 		} else {
   1861 			KASSERT(pv);
   1862 			tst_mask = pv->pv_va;
   1863 			pv = SLIST_NEXT(pv, pv_link);
   1864 		}
   1865 		/*
   1866 		 * Only check for a bad alias if we have writable mappings.
   1867 		 */
   1868 		tst_mask &= arm_cache_prefer_mask;
   1869 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1870 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1871 				/* if there's a bad alias, stop checking. */
   1872 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1873 					bad_alias = true;
   1874 			}
   1875 			md->pvh_attrs |= PVF_WRITE;
   1876 			if (!bad_alias)
   1877 				md->pvh_attrs |= PVF_DIRTY;
   1878 		} else {
   1879 			/*
   1880 			 * We have only read-only mappings.  Let's see if there
   1881 			 * are multiple colors in use or if we mapped a KMPAGE.
   1882 			 * If the latter, we have a bad alias.  If the former,
   1883 			 * we need to remember that.
   1884 			 */
   1885 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1886 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1887 					if (md->pvh_attrs & PVF_KMPAGE)
   1888 						bad_alias = true;
   1889 					break;
   1890 				}
   1891 			}
   1892 			md->pvh_attrs &= ~PVF_WRITE;
   1893 			/*
   1894 			 * No KMPAGE and we exited early, so we must have
   1895 			 * multiple color mappings.
   1896 			 */
   1897 			if (!bad_alias && pv != NULL)
   1898 				md->pvh_attrs |= PVF_MULTCLR;
   1899 		}
   1900 
   1901 		/* If no conflicting colors, set everything back to cached */
   1902 		if (!bad_alias) {
   1903 #ifdef DEBUG
   1904 			if ((md->pvh_attrs & PVF_WRITE)
   1905 			    || ro_mappings < 2) {
   1906 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1907 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1908 			}
   1909 #endif
   1910 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1911 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   1912 			/*
   1913 			 * Restore DIRTY bit if page is modified
   1914 			 */
   1915 			if (md->pvh_attrs & PVF_DMOD)
   1916 				md->pvh_attrs |= PVF_DIRTY;
   1917 			PMAPCOUNT(vac_color_restore);
   1918 		} else {
   1919 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1920 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1921 		}
   1922 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1923 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1924 	} else if (!va) {
   1925 		KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   1926 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   1927 		    || (md->pvh_attrs & PVF_DIRTY));
   1928 		if (rw_mappings == 0) {
   1929 			md->pvh_attrs &= ~PVF_WRITE;
   1930 			if (ro_mappings == 1
   1931 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   1932 				/*
   1933 				 * If this is the last readonly mapping
   1934 				 * but it doesn't match the current color
   1935 				 * for the page, change the current color
   1936 				 * to match this last readonly mapping.
   1937 				 */
   1938 				pv = SLIST_FIRST(&md->pvh_list);
   1939 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   1940 				    & arm_cache_prefer_mask;
   1941 				if (tst_mask) {
   1942 					md->pvh_attrs ^= tst_mask;
   1943 					PMAPCOUNT(vac_color_change);
   1944 				}
   1945 			}
   1946 		}
   1947 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1948 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1949 		return;
   1950 	} else if (!pmap_is_page_colored_p(md)) {
   1951 		/* not colored so we just use its color */
   1952 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1953 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1954 		PMAPCOUNT(vac_color_new);
   1955 		md->pvh_attrs &= PAGE_SIZE - 1;
   1956 		md->pvh_attrs |= PVF_COLORED
   1957 		    | (va & arm_cache_prefer_mask)
   1958 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1959 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1960 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1961 		return;
   1962 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1963 		bad_alias = false;
   1964 		if (rw_mappings > 0) {
   1965 			/*
   1966 			 * We now have writeable mappings and if we have
   1967 			 * readonly mappings in more than once color, we have
   1968 			 * an aliasing problem.  Regardless mark the page as
   1969 			 * writeable.
   1970 			 */
   1971 			if (md->pvh_attrs & PVF_MULTCLR) {
   1972 				if (ro_mappings < 2) {
   1973 					/*
   1974 					 * If we only have less than two
   1975 					 * read-only mappings, just flush the
   1976 					 * non-primary colors from the cache.
   1977 					 */
   1978 					pmap_flush_page(md, pa,
   1979 					    PMAP_FLUSH_SECONDARY);
   1980 				} else {
   1981 					bad_alias = true;
   1982 				}
   1983 			}
   1984 			md->pvh_attrs |= PVF_WRITE;
   1985 		}
   1986 		/* If no conflicting colors, set everything back to cached */
   1987 		if (!bad_alias) {
   1988 #ifdef DEBUG
   1989 			if (rw_mappings > 0
   1990 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   1991 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   1992 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1993 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1994 			}
   1995 #endif
   1996 			if (SLIST_EMPTY(&md->pvh_list))
   1997 				PMAPCOUNT(vac_color_reuse);
   1998 			else
   1999 				PMAPCOUNT(vac_color_ok);
   2000 
   2001 			/* matching color, just return */
   2002 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2003 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2004 			return;
   2005 		}
   2006 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2007 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2008 
   2009 		/* color conflict.  evict from cache. */
   2010 
   2011 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2012 		md->pvh_attrs &= ~PVF_COLORED;
   2013 		md->pvh_attrs |= PVF_NC;
   2014 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2015 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2016 		PMAPCOUNT(vac_color_erase);
   2017 	} else if (rw_mappings == 0
   2018 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2019 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2020 
   2021 		/*
   2022 		 * If the page has dirty cache lines, clean it.
   2023 		 */
   2024 		if (md->pvh_attrs & PVF_DIRTY)
   2025 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2026 
   2027 		/*
   2028 		 * If this is the first remapping (we know that there are no
   2029 		 * writeable mappings), then this is a simple color change.
   2030 		 * Otherwise this is a seconary r/o mapping, which means
   2031 		 * we don't have to do anything.
   2032 		 */
   2033 		if (ro_mappings == 1) {
   2034 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2035 			md->pvh_attrs &= PAGE_SIZE - 1;
   2036 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2037 			PMAPCOUNT(vac_color_change);
   2038 		} else {
   2039 			PMAPCOUNT(vac_color_blind);
   2040 		}
   2041 		md->pvh_attrs |= PVF_MULTCLR;
   2042 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2043 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2044 		return;
   2045 	} else {
   2046 		if (rw_mappings > 0)
   2047 			md->pvh_attrs |= PVF_WRITE;
   2048 
   2049 		/* color conflict.  evict from cache. */
   2050 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2051 
   2052 		/* the list can't be empty because this was a enter/modify */
   2053 		pv = SLIST_FIRST(&md->pvh_list);
   2054 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2055 			KASSERT(pv);
   2056 			/*
   2057 			 * If there's only one mapped page, change color to the
   2058 			 * page's new color and return.  Restore the DIRTY bit
   2059 			 * that was erased by pmap_flush_page.
   2060 			 */
   2061 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2062 				md->pvh_attrs &= PAGE_SIZE - 1;
   2063 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2064 				if (md->pvh_attrs & PVF_DMOD)
   2065 					md->pvh_attrs |= PVF_DIRTY;
   2066 				PMAPCOUNT(vac_color_change);
   2067 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2068 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2069 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2070 				return;
   2071 			}
   2072 		}
   2073 		bad_alias = true;
   2074 		md->pvh_attrs &= ~PVF_COLORED;
   2075 		md->pvh_attrs |= PVF_NC;
   2076 		PMAPCOUNT(vac_color_erase);
   2077 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2078 	}
   2079 
   2080   fixup:
   2081 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2082 
   2083 	/*
   2084 	 * Turn cacheing on/off for all pages.
   2085 	 */
   2086 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2087 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2088 		KDASSERT(l2b != NULL);
   2089 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2090 		opte = *ptep;
   2091 		pte = opte & ~L2_S_CACHE_MASK;
   2092 		if (bad_alias) {
   2093 			pv->pv_flags |= PVF_NC;
   2094 		} else {
   2095 			pv->pv_flags &= ~PVF_NC;
   2096 			pte |= pte_l2_s_cache_mode;
   2097 		}
   2098 
   2099 		if (opte == pte)	/* only update is there's a change */
   2100 			continue;
   2101 
   2102 		if (l2pte_valid(pte)) {
   2103 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2104 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2105 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2106 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2107 			}
   2108 		}
   2109 
   2110 		*ptep = pte;
   2111 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2112 	}
   2113 }
   2114 #endif	/* PMAP_CACHE_VIPT */
   2115 
   2116 
   2117 /*
   2118  * Modify pte bits for all ptes corresponding to the given physical address.
   2119  * We use `maskbits' rather than `clearbits' because we're always passing
   2120  * constants and the latter would require an extra inversion at run-time.
   2121  */
   2122 static void
   2123 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2124 {
   2125 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2126 	struct l2_bucket *l2b;
   2127 	struct pv_entry *pv;
   2128 	pt_entry_t *ptep, npte, opte;
   2129 	pmap_t pm;
   2130 	vaddr_t va;
   2131 	u_int oflags;
   2132 #ifdef PMAP_CACHE_VIPT
   2133 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2134 	bool need_syncicache = false;
   2135 	bool did_syncicache = false;
   2136 	bool need_vac_me_harder = false;
   2137 #endif
   2138 
   2139 	NPDEBUG(PDB_BITS,
   2140 	    printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
   2141 	    pg, VM_PAGE_TO_PHYS(pg), maskbits));
   2142 
   2143 	PMAP_HEAD_TO_MAP_LOCK();
   2144 	simple_lock(&md->pvh_slock);
   2145 
   2146 #ifdef PMAP_CACHE_VIPT
   2147 	/*
   2148 	 * If we might want to sync the I-cache and we've modified it,
   2149 	 * then we know we definitely need to sync or discard it.
   2150 	 */
   2151 	if (want_syncicache)
   2152 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2153 #endif
   2154 	/*
   2155 	 * Clear saved attributes (modify, reference)
   2156 	 */
   2157 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2158 
   2159 	if (SLIST_EMPTY(&md->pvh_list)) {
   2160 #ifdef PMAP_CACHE_VIPT
   2161 		if (need_syncicache) {
   2162 			/*
   2163 			 * No one has it mapped, so just discard it.  The next
   2164 			 * exec remapping will cause it to be synced.
   2165 			 */
   2166 			md->pvh_attrs &= ~PVF_EXEC;
   2167 			PMAPCOUNT(exec_discarded_clearbit);
   2168 		}
   2169 #endif
   2170 		simple_unlock(&md->pvh_slock);
   2171 		PMAP_HEAD_TO_MAP_UNLOCK();
   2172 		return;
   2173 	}
   2174 
   2175 	/*
   2176 	 * Loop over all current mappings setting/clearing as appropos
   2177 	 */
   2178 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2179 		va = pv->pv_va;
   2180 		pm = pv->pv_pmap;
   2181 		oflags = pv->pv_flags;
   2182 		/*
   2183 		 * Kernel entries are unmanaged and as such not to be changed.
   2184 		 */
   2185 		if (oflags & PVF_KENTRY)
   2186 			continue;
   2187 		pv->pv_flags &= ~maskbits;
   2188 
   2189 		pmap_acquire_pmap_lock(pm);
   2190 
   2191 		l2b = pmap_get_l2_bucket(pm, va);
   2192 		KDASSERT(l2b != NULL);
   2193 
   2194 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2195 		npte = opte = *ptep;
   2196 
   2197 		NPDEBUG(PDB_BITS,
   2198 		    printf(
   2199 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2200 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2201 
   2202 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2203 #ifdef PMAP_CACHE_VIVT
   2204 			if ((pv->pv_flags & PVF_NC)) {
   2205 				/*
   2206 				 * Entry is not cacheable:
   2207 				 *
   2208 				 * Don't turn caching on again if this is a
   2209 				 * modified emulation. This would be
   2210 				 * inconsitent with the settings created by
   2211 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2212 				 * to re-enable cacheing.
   2213 				 *
   2214 				 * There's no need to call pmap_vac_me_harder()
   2215 				 * here: all pages are losing their write
   2216 				 * permission.
   2217 				 */
   2218 				if (maskbits & PVF_WRITE) {
   2219 					npte |= pte_l2_s_cache_mode;
   2220 					pv->pv_flags &= ~PVF_NC;
   2221 				}
   2222 			} else
   2223 			if (opte & L2_S_PROT_W) {
   2224 				/*
   2225 				 * Entry is writable/cacheable: check if pmap
   2226 				 * is current if it is flush it, otherwise it
   2227 				 * won't be in the cache
   2228 				 */
   2229 				if (PV_BEEN_EXECD(oflags))
   2230 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2231 					    PAGE_SIZE);
   2232 				else
   2233 				if (PV_BEEN_REFD(oflags))
   2234 					pmap_dcache_wb_range(pm, pv->pv_va,
   2235 					    PAGE_SIZE,
   2236 					    (maskbits & PVF_REF) != 0, false);
   2237 			}
   2238 #endif
   2239 
   2240 			/* make the pte read only */
   2241 			npte &= ~L2_S_PROT_W;
   2242 
   2243 			if (maskbits & oflags & PVF_WRITE) {
   2244 				/*
   2245 				 * Keep alias accounting up to date
   2246 				 */
   2247 				if (pv->pv_pmap == pmap_kernel()) {
   2248 					md->krw_mappings--;
   2249 					md->kro_mappings++;
   2250 				} else {
   2251 					md->urw_mappings--;
   2252 					md->uro_mappings++;
   2253 				}
   2254 #ifdef PMAP_CACHE_VIPT
   2255 				if (md->urw_mappings + md->krw_mappings == 0)
   2256 					md->pvh_attrs &= ~PVF_WRITE;
   2257 				if (want_syncicache)
   2258 					need_syncicache = true;
   2259 				need_vac_me_harder = true;
   2260 #endif
   2261 			}
   2262 		}
   2263 
   2264 		if (maskbits & PVF_REF) {
   2265 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2266 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2267 			    l2pte_valid(npte)) {
   2268 #ifdef PMAP_CACHE_VIVT
   2269 				/*
   2270 				 * Check npte here; we may have already
   2271 				 * done the wbinv above, and the validity
   2272 				 * of the PTE is the same for opte and
   2273 				 * npte.
   2274 				 */
   2275 				/* XXXJRT need idcache_inv_range */
   2276 				if (PV_BEEN_EXECD(oflags))
   2277 					pmap_idcache_wbinv_range(pm,
   2278 					    pv->pv_va, PAGE_SIZE);
   2279 				else
   2280 				if (PV_BEEN_REFD(oflags))
   2281 					pmap_dcache_wb_range(pm,
   2282 					    pv->pv_va, PAGE_SIZE,
   2283 					    true, true);
   2284 #endif
   2285 			}
   2286 
   2287 			/*
   2288 			 * Make the PTE invalid so that we will take a
   2289 			 * page fault the next time the mapping is
   2290 			 * referenced.
   2291 			 */
   2292 			npte &= ~L2_TYPE_MASK;
   2293 			npte |= L2_TYPE_INV;
   2294 		}
   2295 
   2296 		if (npte != opte) {
   2297 			*ptep = npte;
   2298 			PTE_SYNC(ptep);
   2299 			/* Flush the TLB entry if a current pmap. */
   2300 			if (PV_BEEN_EXECD(oflags))
   2301 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2302 			else
   2303 			if (PV_BEEN_REFD(oflags))
   2304 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2305 		}
   2306 
   2307 		pmap_release_pmap_lock(pm);
   2308 
   2309 		NPDEBUG(PDB_BITS,
   2310 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2311 		    pm, va, opte, npte));
   2312 	}
   2313 
   2314 #ifdef PMAP_CACHE_VIPT
   2315 	/*
   2316 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2317 	 */
   2318 	if (need_syncicache && !did_syncicache) {
   2319 		pmap_syncicache_page(md, VM_PAGE_TO_PHYS(pg));
   2320 		PMAPCOUNT(exec_synced_clearbit);
   2321 	}
   2322 	/*
   2323 	 * If we are changing this to read-only, we need to call vac_me_harder
   2324 	 * so we can change all the read-only pages to cacheable.  We pretend
   2325 	 * this as a page deletion.
   2326 	 */
   2327 	if (need_vac_me_harder) {
   2328 		if (md->pvh_attrs & PVF_NC)
   2329 			pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), NULL, 0);
   2330 	}
   2331 #endif
   2332 
   2333 	simple_unlock(&md->pvh_slock);
   2334 	PMAP_HEAD_TO_MAP_UNLOCK();
   2335 }
   2336 
   2337 /*
   2338  * pmap_clean_page()
   2339  *
   2340  * This is a local function used to work out the best strategy to clean
   2341  * a single page referenced by its entry in the PV table. It's used by
   2342  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2343  *
   2344  * Its policy is effectively:
   2345  *  o If there are no mappings, we don't bother doing anything with the cache.
   2346  *  o If there is one mapping, we clean just that page.
   2347  *  o If there are multiple mappings, we clean the entire cache.
   2348  *
   2349  * So that some functions can be further optimised, it returns 0 if it didn't
   2350  * clean the entire cache, or 1 if it did.
   2351  *
   2352  * XXX One bug in this routine is that if the pv_entry has a single page
   2353  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2354  * just the 1 page. Since this should not occur in everyday use and if it does
   2355  * it will just result in not the most efficient clean for the page.
   2356  */
   2357 #ifdef PMAP_CACHE_VIVT
   2358 static int
   2359 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2360 {
   2361 	pmap_t pm_to_clean = NULL;
   2362 	struct pv_entry *npv;
   2363 	u_int cache_needs_cleaning = 0;
   2364 	u_int flags = 0;
   2365 	vaddr_t page_to_clean = 0;
   2366 
   2367 	if (pv == NULL) {
   2368 		/* nothing mapped in so nothing to flush */
   2369 		return (0);
   2370 	}
   2371 
   2372 	/*
   2373 	 * Since we flush the cache each time we change to a different
   2374 	 * user vmspace, we only need to flush the page if it is in the
   2375 	 * current pmap.
   2376 	 */
   2377 
   2378 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2379 		if (pmap_is_current(npv->pv_pmap)) {
   2380 			flags |= npv->pv_flags;
   2381 			/*
   2382 			 * The page is mapped non-cacheable in
   2383 			 * this map.  No need to flush the cache.
   2384 			 */
   2385 			if (npv->pv_flags & PVF_NC) {
   2386 #ifdef DIAGNOSTIC
   2387 				if (cache_needs_cleaning)
   2388 					panic("pmap_clean_page: "
   2389 					    "cache inconsistency");
   2390 #endif
   2391 				break;
   2392 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2393 				continue;
   2394 			if (cache_needs_cleaning) {
   2395 				page_to_clean = 0;
   2396 				break;
   2397 			} else {
   2398 				page_to_clean = npv->pv_va;
   2399 				pm_to_clean = npv->pv_pmap;
   2400 			}
   2401 			cache_needs_cleaning = 1;
   2402 		}
   2403 	}
   2404 
   2405 	if (page_to_clean) {
   2406 		if (PV_BEEN_EXECD(flags))
   2407 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2408 			    PAGE_SIZE);
   2409 		else
   2410 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2411 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2412 	} else if (cache_needs_cleaning) {
   2413 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2414 
   2415 		if (PV_BEEN_EXECD(flags))
   2416 			pmap_idcache_wbinv_all(pm);
   2417 		else
   2418 			pmap_dcache_wbinv_all(pm);
   2419 		return (1);
   2420 	}
   2421 	return (0);
   2422 }
   2423 #endif
   2424 
   2425 #ifdef PMAP_CACHE_VIPT
   2426 /*
   2427  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2428  * right cache alias to make sure we flush the right stuff.
   2429  */
   2430 void
   2431 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2432 {
   2433 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2434 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2435 
   2436 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2437 	    md, md->pvh_attrs));
   2438 	/*
   2439 	 * No need to clean the page if it's non-cached.
   2440 	 */
   2441 	if (md->pvh_attrs & PVF_NC)
   2442 		return;
   2443 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2444 
   2445 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2446 	/*
   2447 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2448 	 */
   2449 	*ptep = L2_S_PROTO |
   2450 	    pa
   2451 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2452 	    | pte_l2_s_cache_mode;
   2453 	PTE_SYNC(ptep);
   2454 
   2455 	/*
   2456 	 * Flush it.
   2457 	 */
   2458 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2459 	/*
   2460 	 * Unmap the page.
   2461 	 */
   2462 	*ptep = 0;
   2463 	PTE_SYNC(ptep);
   2464 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2465 
   2466 	md->pvh_attrs |= PVF_EXEC;
   2467 	PMAPCOUNT(exec_synced);
   2468 }
   2469 
   2470 void
   2471 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2472 {
   2473 	vsize_t va_offset, end_va;
   2474 	void (*cf)(vaddr_t, vsize_t);
   2475 
   2476 	if (arm_cache_prefer_mask == 0)
   2477 		return;
   2478 
   2479 	switch (flush) {
   2480 	case PMAP_FLUSH_PRIMARY:
   2481 		if (md->pvh_attrs & PVF_MULTCLR) {
   2482 			va_offset = 0;
   2483 			end_va = arm_cache_prefer_mask;
   2484 			md->pvh_attrs &= ~PVF_MULTCLR;
   2485 			PMAPCOUNT(vac_flush_lots);
   2486 		} else {
   2487 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2488 			end_va = va_offset;
   2489 			PMAPCOUNT(vac_flush_one);
   2490 		}
   2491 		/*
   2492 		 * Mark that the page is no longer dirty.
   2493 		 */
   2494 		md->pvh_attrs &= ~PVF_DIRTY;
   2495 		cf = cpufuncs.cf_idcache_wbinv_range;
   2496 		break;
   2497 	case PMAP_FLUSH_SECONDARY:
   2498 		va_offset = 0;
   2499 		end_va = arm_cache_prefer_mask;
   2500 		cf = cpufuncs.cf_idcache_wbinv_range;
   2501 		md->pvh_attrs &= ~PVF_MULTCLR;
   2502 		PMAPCOUNT(vac_flush_lots);
   2503 		break;
   2504 	case PMAP_CLEAN_PRIMARY:
   2505 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2506 		end_va = va_offset;
   2507 		cf = cpufuncs.cf_dcache_wb_range;
   2508 		/*
   2509 		 * Mark that the page is no longer dirty.
   2510 		 */
   2511 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2512 			md->pvh_attrs &= ~PVF_DIRTY;
   2513 		PMAPCOUNT(vac_clean_one);
   2514 		break;
   2515 	default:
   2516 		return;
   2517 	}
   2518 
   2519 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2520 
   2521 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2522 	    md, md->pvh_attrs));
   2523 
   2524 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2525 		const size_t pte_offset = va_offset >> PGSHIFT;
   2526 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2527 		const pt_entry_t oldpte = *ptep;
   2528 
   2529 		if (flush == PMAP_FLUSH_SECONDARY
   2530 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2531 			continue;
   2532 
   2533 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2534 		/*
   2535 		 * Set up a PTE with the right coloring to flush
   2536 		 * existing cache entries.
   2537 		 */
   2538 		*ptep = L2_S_PROTO
   2539 		    | pa
   2540 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2541 		    | pte_l2_s_cache_mode;
   2542 		PTE_SYNC(ptep);
   2543 
   2544 		/*
   2545 		 * Flush it.
   2546 		 */
   2547 		(*cf)(cdstp + va_offset, PAGE_SIZE);
   2548 
   2549 		/*
   2550 		 * Restore the page table entry since we might have interrupted
   2551 		 * pmap_zero_page or pmap_copy_page which was already using
   2552 		 * this pte.
   2553 		 */
   2554 		*ptep = oldpte;
   2555 		PTE_SYNC(ptep);
   2556 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2557 	}
   2558 }
   2559 #endif /* PMAP_CACHE_VIPT */
   2560 
   2561 /*
   2562  * Routine:	pmap_page_remove
   2563  * Function:
   2564  *		Removes this physical page from
   2565  *		all physical maps in which it resides.
   2566  *		Reflects back modify bits to the pager.
   2567  */
   2568 static void
   2569 pmap_page_remove(struct vm_page *pg)
   2570 {
   2571 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2572 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2573 	struct l2_bucket *l2b;
   2574 	struct pv_entry *pv, *npv, **pvp;
   2575 	pmap_t pm;
   2576 	pt_entry_t *ptep;
   2577 	bool flush;
   2578 	u_int flags;
   2579 
   2580 	NPDEBUG(PDB_FOLLOW,
   2581 	    printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
   2582 	    pa));
   2583 
   2584 	PMAP_HEAD_TO_MAP_LOCK();
   2585 	simple_lock(&md->pvh_slock);
   2586 
   2587 	pv = SLIST_FIRST(&md->pvh_list);
   2588 	if (pv == NULL) {
   2589 #ifdef PMAP_CACHE_VIPT
   2590 		/*
   2591 		 * We *know* the page contents are about to be replaced.
   2592 		 * Discard the exec contents
   2593 		 */
   2594 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2595 			PMAPCOUNT(exec_discarded_page_protect);
   2596 		md->pvh_attrs &= ~PVF_EXEC;
   2597 		KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2598 #endif
   2599 		simple_unlock(&md->pvh_slock);
   2600 		PMAP_HEAD_TO_MAP_UNLOCK();
   2601 		return;
   2602 	}
   2603 #ifdef PMAP_CACHE_VIPT
   2604 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2605 #endif
   2606 
   2607 	/*
   2608 	 * Clear alias counts
   2609 	 */
   2610 #ifdef PMAP_CACHE_VIVT
   2611 	md->k_mappings = 0;
   2612 #endif
   2613 	md->urw_mappings = md->uro_mappings = 0;
   2614 
   2615 	flush = false;
   2616 	flags = 0;
   2617 
   2618 #ifdef PMAP_CACHE_VIVT
   2619 	pmap_clean_page(pv, false);
   2620 #endif
   2621 
   2622 	pvp = &SLIST_FIRST(&md->pvh_list);
   2623 	while (pv) {
   2624 		pm = pv->pv_pmap;
   2625 		npv = SLIST_NEXT(pv, pv_link);
   2626 		if (flush == false && pmap_is_current(pm))
   2627 			flush = true;
   2628 
   2629 		if (pm == pmap_kernel()) {
   2630 #ifdef PMAP_CACHE_VIPT
   2631 			/*
   2632 			 * If this was unmanaged mapping, it must be preserved.
   2633 			 * Move it back on the list and advance the end-of-list
   2634 			 * pointer.
   2635 			 */
   2636 			if (pv->pv_flags & PVF_KENTRY) {
   2637 				*pvp = pv;
   2638 				pvp = &SLIST_NEXT(pv, pv_link);
   2639 				pv = npv;
   2640 				continue;
   2641 			}
   2642 			if (pv->pv_flags & PVF_WRITE)
   2643 				md->krw_mappings--;
   2644 			else
   2645 				md->kro_mappings--;
   2646 #endif
   2647 			PMAPCOUNT(kernel_unmappings);
   2648 		}
   2649 		PMAPCOUNT(unmappings);
   2650 
   2651 		pmap_acquire_pmap_lock(pm);
   2652 
   2653 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2654 		KDASSERT(l2b != NULL);
   2655 
   2656 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2657 
   2658 		/*
   2659 		 * Update statistics
   2660 		 */
   2661 		--pm->pm_stats.resident_count;
   2662 
   2663 		/* Wired bit */
   2664 		if (pv->pv_flags & PVF_WIRED)
   2665 			--pm->pm_stats.wired_count;
   2666 
   2667 		flags |= pv->pv_flags;
   2668 
   2669 		/*
   2670 		 * Invalidate the PTEs.
   2671 		 */
   2672 		*ptep = 0;
   2673 		PTE_SYNC_CURRENT(pm, ptep);
   2674 		pmap_free_l2_bucket(pm, l2b, 1);
   2675 
   2676 		pool_put(&pmap_pv_pool, pv);
   2677 		pv = npv;
   2678 		/*
   2679 		 * if we reach the end of the list and there are still
   2680 		 * mappings, they might be able to be cached now.
   2681 		 */
   2682 		if (pv == NULL) {
   2683 			*pvp = NULL;
   2684 			if (!SLIST_EMPTY(&md->pvh_list))
   2685 				pmap_vac_me_harder(md, pa, pm, 0);
   2686 		}
   2687 		pmap_release_pmap_lock(pm);
   2688 	}
   2689 #ifdef PMAP_CACHE_VIPT
   2690 	/*
   2691 	 * Its EXEC cache is now gone.
   2692 	 */
   2693 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2694 		PMAPCOUNT(exec_discarded_page_protect);
   2695 	md->pvh_attrs &= ~PVF_EXEC;
   2696 	KASSERT(md->urw_mappings == 0);
   2697 	KASSERT(md->uro_mappings == 0);
   2698 	if (md->krw_mappings == 0)
   2699 		md->pvh_attrs &= ~PVF_WRITE;
   2700 	KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2701 #endif
   2702 	simple_unlock(&md->pvh_slock);
   2703 	PMAP_HEAD_TO_MAP_UNLOCK();
   2704 
   2705 	if (flush) {
   2706 		/*
   2707 		 * Note: We can't use pmap_tlb_flush{I,}D() here since that
   2708 		 * would need a subsequent call to pmap_update() to ensure
   2709 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2710 		 * required to do that (see pmap(9)), so we can't modify
   2711 		 * the current pmap's state.
   2712 		 */
   2713 		if (PV_BEEN_EXECD(flags))
   2714 			cpu_tlb_flushID();
   2715 		else
   2716 			cpu_tlb_flushD();
   2717 	}
   2718 	cpu_cpwait();
   2719 }
   2720 
   2721 /*
   2722  * pmap_t pmap_create(void)
   2723  *
   2724  *      Create a new pmap structure from scratch.
   2725  */
   2726 pmap_t
   2727 pmap_create(void)
   2728 {
   2729 	pmap_t pm;
   2730 
   2731 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2732 
   2733 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   2734 	pm->pm_stats.wired_count = 0;
   2735 	pm->pm_stats.resident_count = 1;
   2736 	pm->pm_cstate.cs_all = 0;
   2737 	pmap_alloc_l1(pm);
   2738 
   2739 	/*
   2740 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2741 	 * initialised to zero.
   2742 	 */
   2743 
   2744 	pmap_pinit(pm);
   2745 
   2746 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2747 
   2748 	return (pm);
   2749 }
   2750 
   2751 /*
   2752  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2753  *      u_int flags)
   2754  *
   2755  *      Insert the given physical page (p) at
   2756  *      the specified virtual address (v) in the
   2757  *      target physical map with the protection requested.
   2758  *
   2759  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2760  *      or lose information.  That is, this routine must actually
   2761  *      insert this page into the given map NOW.
   2762  */
   2763 int
   2764 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2765 {
   2766 	struct l2_bucket *l2b;
   2767 	struct vm_page *pg, *opg;
   2768 	struct pv_entry *pv;
   2769 	pt_entry_t *ptep, npte, opte;
   2770 	u_int nflags;
   2771 	u_int oflags;
   2772 
   2773 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2774 
   2775 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2776 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2777 
   2778 	/*
   2779 	 * Get a pointer to the page.  Later on in this function, we
   2780 	 * test for a managed page by checking pg != NULL.
   2781 	 */
   2782 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2783 
   2784 	nflags = 0;
   2785 	if (prot & VM_PROT_WRITE)
   2786 		nflags |= PVF_WRITE;
   2787 	if (prot & VM_PROT_EXECUTE)
   2788 		nflags |= PVF_EXEC;
   2789 	if (flags & PMAP_WIRED)
   2790 		nflags |= PVF_WIRED;
   2791 
   2792 	PMAP_MAP_TO_HEAD_LOCK();
   2793 	pmap_acquire_pmap_lock(pm);
   2794 
   2795 	/*
   2796 	 * Fetch the L2 bucket which maps this page, allocating one if
   2797 	 * necessary for user pmaps.
   2798 	 */
   2799 	if (pm == pmap_kernel())
   2800 		l2b = pmap_get_l2_bucket(pm, va);
   2801 	else
   2802 		l2b = pmap_alloc_l2_bucket(pm, va);
   2803 	if (l2b == NULL) {
   2804 		if (flags & PMAP_CANFAIL) {
   2805 			pmap_release_pmap_lock(pm);
   2806 			PMAP_MAP_TO_HEAD_UNLOCK();
   2807 			return (ENOMEM);
   2808 		}
   2809 		panic("pmap_enter: failed to allocate L2 bucket");
   2810 	}
   2811 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2812 	opte = *ptep;
   2813 	npte = pa;
   2814 	oflags = 0;
   2815 
   2816 	if (opte) {
   2817 		/*
   2818 		 * There is already a mapping at this address.
   2819 		 * If the physical address is different, lookup the
   2820 		 * vm_page.
   2821 		 */
   2822 		if (l2pte_pa(opte) != pa)
   2823 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2824 		else
   2825 			opg = pg;
   2826 	} else
   2827 		opg = NULL;
   2828 
   2829 	if (pg) {
   2830 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2831 
   2832 		/*
   2833 		 * This is to be a managed mapping.
   2834 		 */
   2835 		if ((flags & VM_PROT_ALL) ||
   2836 		    (md->pvh_attrs & PVF_REF)) {
   2837 			/*
   2838 			 * - The access type indicates that we don't need
   2839 			 *   to do referenced emulation.
   2840 			 * OR
   2841 			 * - The physical page has already been referenced
   2842 			 *   so no need to re-do referenced emulation here.
   2843 			 */
   2844 			npte |= L2_S_PROTO;
   2845 
   2846 			nflags |= PVF_REF;
   2847 
   2848 			if ((prot & VM_PROT_WRITE) != 0 &&
   2849 			    ((flags & VM_PROT_WRITE) != 0 ||
   2850 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   2851 				/*
   2852 				 * This is a writable mapping, and the
   2853 				 * page's mod state indicates it has
   2854 				 * already been modified. Make it
   2855 				 * writable from the outset.
   2856 				 */
   2857 				npte |= L2_S_PROT_W;
   2858 				nflags |= PVF_MOD;
   2859 			}
   2860 		} else {
   2861 			/*
   2862 			 * Need to do page referenced emulation.
   2863 			 */
   2864 			npte |= L2_TYPE_INV;
   2865 		}
   2866 
   2867 		npte |= pte_l2_s_cache_mode;
   2868 
   2869 		if (pg == opg) {
   2870 			/*
   2871 			 * We're changing the attrs of an existing mapping.
   2872 			 */
   2873 			simple_lock(&md->pvh_slock);
   2874 			oflags = pmap_modify_pv(md, pa, pm, va,
   2875 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2876 			    PVF_MOD | PVF_REF, nflags);
   2877 			simple_unlock(&md->pvh_slock);
   2878 
   2879 #ifdef PMAP_CACHE_VIVT
   2880 			/*
   2881 			 * We may need to flush the cache if we're
   2882 			 * doing rw-ro...
   2883 			 */
   2884 			if (pm->pm_cstate.cs_cache_d &&
   2885 			    (oflags & PVF_NC) == 0 &&
   2886 			    (opte & L2_S_PROT_W) != 0 &&
   2887 			    (prot & VM_PROT_WRITE) == 0)
   2888 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2889 #endif
   2890 		} else {
   2891 			/*
   2892 			 * New mapping, or changing the backing page
   2893 			 * of an existing mapping.
   2894 			 */
   2895 			if (opg) {
   2896 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2897 				paddr_t opa;
   2898 
   2899 				opa = VM_PAGE_TO_PHYS(opg);
   2900 
   2901 				/*
   2902 				 * Replacing an existing mapping with a new one.
   2903 				 * It is part of our managed memory so we
   2904 				 * must remove it from the PV list
   2905 				 */
   2906 				simple_lock(&omd->pvh_slock);
   2907 				pv = pmap_remove_pv(omd, opa, pm, va);
   2908 				pmap_vac_me_harder(omd, opa, pm, 0);
   2909 				simple_unlock(&omd->pvh_slock);
   2910 				oflags = pv->pv_flags;
   2911 
   2912 #ifdef PMAP_CACHE_VIVT
   2913 				/*
   2914 				 * If the old mapping was valid (ref/mod
   2915 				 * emulation creates 'invalid' mappings
   2916 				 * initially) then make sure to frob
   2917 				 * the cache.
   2918 				 */
   2919 				if ((oflags & PVF_NC) == 0 &&
   2920 				    l2pte_valid(opte)) {
   2921 					if (PV_BEEN_EXECD(oflags)) {
   2922 						pmap_idcache_wbinv_range(pm, va,
   2923 						    PAGE_SIZE);
   2924 					} else
   2925 					if (PV_BEEN_REFD(oflags)) {
   2926 						pmap_dcache_wb_range(pm, va,
   2927 						    PAGE_SIZE, true,
   2928 						    (oflags & PVF_WRITE) == 0);
   2929 					}
   2930 				}
   2931 #endif
   2932 			} else
   2933 			if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2934 				if ((flags & PMAP_CANFAIL) == 0)
   2935 					panic("pmap_enter: no pv entries");
   2936 
   2937 				if (pm != pmap_kernel())
   2938 					pmap_free_l2_bucket(pm, l2b, 0);
   2939 				pmap_release_pmap_lock(pm);
   2940 				PMAP_MAP_TO_HEAD_UNLOCK();
   2941 				NPDEBUG(PDB_ENTER,
   2942 				    printf("pmap_enter: ENOMEM\n"));
   2943 				return (ENOMEM);
   2944 			}
   2945 
   2946 			pmap_enter_pv(md, VM_PAGE_TO_PHYS(pg), pv, pm, va, nflags);
   2947 		}
   2948 	} else {
   2949 		/*
   2950 		 * We're mapping an unmanaged page.
   2951 		 * These are always readable, and possibly writable, from
   2952 		 * the get go as we don't need to track ref/mod status.
   2953 		 */
   2954 		npte |= L2_S_PROTO;
   2955 		if (prot & VM_PROT_WRITE)
   2956 			npte |= L2_S_PROT_W;
   2957 
   2958 		/*
   2959 		 * Make sure the vector table is mapped cacheable
   2960 		 */
   2961 		if (pm != pmap_kernel() && va == vector_page)
   2962 			npte |= pte_l2_s_cache_mode;
   2963 
   2964 		if (opg) {
   2965 			/*
   2966 			 * Looks like there's an existing 'managed' mapping
   2967 			 * at this address.
   2968 			 */
   2969 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2970 			simple_lock(&omd->pvh_slock);
   2971 			pv = pmap_remove_pv(omd, VM_PAGE_TO_PHYS(opg), pm, va);
   2972 			pmap_vac_me_harder(omd, VM_PAGE_TO_PHYS(opg), pm, 0);
   2973 			simple_unlock(&omd->pvh_slock);
   2974 			oflags = pv->pv_flags;
   2975 
   2976 #ifdef PMAP_CACHE_VIVT
   2977 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2978 				if (PV_BEEN_EXECD(oflags))
   2979 					pmap_idcache_wbinv_range(pm, va,
   2980 					    PAGE_SIZE);
   2981 				else
   2982 				if (PV_BEEN_REFD(oflags))
   2983 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2984 					    true, (oflags & PVF_WRITE) == 0);
   2985 			}
   2986 #endif
   2987 			pool_put(&pmap_pv_pool, pv);
   2988 		}
   2989 	}
   2990 
   2991 	/*
   2992 	 * Make sure userland mappings get the right permissions
   2993 	 */
   2994 	if (pm != pmap_kernel() && va != vector_page)
   2995 		npte |= L2_S_PROT_U;
   2996 
   2997 	/*
   2998 	 * Keep the stats up to date
   2999 	 */
   3000 	if (opte == 0) {
   3001 		l2b->l2b_occupancy++;
   3002 		pm->pm_stats.resident_count++;
   3003 	}
   3004 
   3005 	NPDEBUG(PDB_ENTER,
   3006 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   3007 
   3008 	/*
   3009 	 * If this is just a wiring change, the two PTEs will be
   3010 	 * identical, so there's no need to update the page table.
   3011 	 */
   3012 	if (npte != opte) {
   3013 		bool is_cached = pmap_is_cached(pm);
   3014 
   3015 		*ptep = npte;
   3016 		if (is_cached) {
   3017 			/*
   3018 			 * We only need to frob the cache/tlb if this pmap
   3019 			 * is current
   3020 			 */
   3021 			PTE_SYNC(ptep);
   3022 			if (va != vector_page && l2pte_valid(npte)) {
   3023 				/*
   3024 				 * This mapping is likely to be accessed as
   3025 				 * soon as we return to userland. Fix up the
   3026 				 * L1 entry to avoid taking another
   3027 				 * page/domain fault.
   3028 				 */
   3029 				pd_entry_t *pl1pd, l1pd;
   3030 
   3031 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   3032 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   3033 				    L1_C_PROTO;
   3034 				if (*pl1pd != l1pd) {
   3035 					*pl1pd = l1pd;
   3036 					PTE_SYNC(pl1pd);
   3037 				}
   3038 			}
   3039 		}
   3040 
   3041 		if (PV_BEEN_EXECD(oflags))
   3042 			pmap_tlb_flushID_SE(pm, va);
   3043 		else
   3044 		if (PV_BEEN_REFD(oflags))
   3045 			pmap_tlb_flushD_SE(pm, va);
   3046 
   3047 		NPDEBUG(PDB_ENTER,
   3048 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3049 		    is_cached, pm->pm_cstate.cs_all));
   3050 
   3051 		if (pg != NULL) {
   3052 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3053 			simple_lock(&md->pvh_slock);
   3054 			pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, va);
   3055 			simple_unlock(&md->pvh_slock);
   3056 		}
   3057 	}
   3058 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3059 	if (pg) {
   3060 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3061 		simple_lock(&md->pvh_slock);
   3062 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3063 		KASSERT(((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0));
   3064 		simple_unlock(&md->pvh_slock);
   3065 	}
   3066 #endif
   3067 
   3068 	pmap_release_pmap_lock(pm);
   3069 	PMAP_MAP_TO_HEAD_UNLOCK();
   3070 
   3071 	return (0);
   3072 }
   3073 
   3074 /*
   3075  * pmap_remove()
   3076  *
   3077  * pmap_remove is responsible for nuking a number of mappings for a range
   3078  * of virtual address space in the current pmap. To do this efficiently
   3079  * is interesting, because in a number of cases a wide virtual address
   3080  * range may be supplied that contains few actual mappings. So, the
   3081  * optimisations are:
   3082  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3083  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3084  *     maybe do just a partial cache clean. This path of execution is
   3085  *     complicated by the fact that the cache must be flushed _before_
   3086  *     the PTE is nuked, being a VAC :-)
   3087  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3088  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3089  *     already flushed the cache.
   3090  *  4. Maybe later fast-case a single page, but I don't think this is
   3091  *     going to make _that_ much difference overall.
   3092  */
   3093 
   3094 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3095 
   3096 void
   3097 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3098 {
   3099 	struct l2_bucket *l2b;
   3100 	vaddr_t next_bucket;
   3101 	pt_entry_t *ptep;
   3102 	u_int cleanlist_idx, total, cnt;
   3103 	struct {
   3104 		vaddr_t va;
   3105 		pt_entry_t *ptep;
   3106 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3107 	u_int mappings, is_exec, is_refd;
   3108 
   3109 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3110 	    "eva=%08lx\n", pm, sva, eva));
   3111 
   3112 	/*
   3113 	 * we lock in the pmap => pv_head direction
   3114 	 */
   3115 	PMAP_MAP_TO_HEAD_LOCK();
   3116 	pmap_acquire_pmap_lock(pm);
   3117 
   3118 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3119 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3120 		if (pm->pm_cstate.cs_tlb == 0)
   3121 			pm->pm_remove_all = true;
   3122 	} else
   3123 		cleanlist_idx = 0;
   3124 
   3125 	total = 0;
   3126 
   3127 	while (sva < eva) {
   3128 		/*
   3129 		 * Do one L2 bucket's worth at a time.
   3130 		 */
   3131 		next_bucket = L2_NEXT_BUCKET(sva);
   3132 		if (next_bucket > eva)
   3133 			next_bucket = eva;
   3134 
   3135 		l2b = pmap_get_l2_bucket(pm, sva);
   3136 		if (l2b == NULL) {
   3137 			sva = next_bucket;
   3138 			continue;
   3139 		}
   3140 
   3141 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3142 
   3143 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3144 			struct vm_page *pg;
   3145 			pt_entry_t pte;
   3146 			paddr_t pa;
   3147 
   3148 			pte = *ptep;
   3149 
   3150 			if (pte == 0) {
   3151 				/* Nothing here, move along */
   3152 				continue;
   3153 			}
   3154 
   3155 			pa = l2pte_pa(pte);
   3156 			is_exec = 0;
   3157 			is_refd = 1;
   3158 
   3159 			/*
   3160 			 * Update flags. In a number of circumstances,
   3161 			 * we could cluster a lot of these and do a
   3162 			 * number of sequential pages in one go.
   3163 			 */
   3164 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3165 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3166 				struct pv_entry *pv;
   3167 				simple_lock(&md->pvh_slock);
   3168 				pv = pmap_remove_pv(md, VM_PAGE_TO_PHYS(pg), pm, sva);
   3169 				pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, 0);
   3170 				simple_unlock(&md->pvh_slock);
   3171 				if (pv != NULL) {
   3172 					if (pm->pm_remove_all == false) {
   3173 						is_exec =
   3174 						   PV_BEEN_EXECD(pv->pv_flags);
   3175 						is_refd =
   3176 						   PV_BEEN_REFD(pv->pv_flags);
   3177 					}
   3178 					pool_put(&pmap_pv_pool, pv);
   3179 				}
   3180 			}
   3181 			mappings++;
   3182 
   3183 			if (!l2pte_valid(pte)) {
   3184 				/*
   3185 				 * Ref/Mod emulation is still active for this
   3186 				 * mapping, therefore it is has not yet been
   3187 				 * accessed. No need to frob the cache/tlb.
   3188 				 */
   3189 				*ptep = 0;
   3190 				PTE_SYNC_CURRENT(pm, ptep);
   3191 				continue;
   3192 			}
   3193 
   3194 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3195 				/* Add to the clean list. */
   3196 				cleanlist[cleanlist_idx].ptep = ptep;
   3197 				cleanlist[cleanlist_idx].va =
   3198 				    sva | (is_exec & 1);
   3199 				cleanlist_idx++;
   3200 			} else
   3201 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3202 				/* Nuke everything if needed. */
   3203 #ifdef PMAP_CACHE_VIVT
   3204 				pmap_idcache_wbinv_all(pm);
   3205 #endif
   3206 				pmap_tlb_flushID(pm);
   3207 
   3208 				/*
   3209 				 * Roll back the previous PTE list,
   3210 				 * and zero out the current PTE.
   3211 				 */
   3212 				for (cnt = 0;
   3213 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3214 					*cleanlist[cnt].ptep = 0;
   3215 					PTE_SYNC(cleanlist[cnt].ptep);
   3216 				}
   3217 				*ptep = 0;
   3218 				PTE_SYNC(ptep);
   3219 				cleanlist_idx++;
   3220 				pm->pm_remove_all = true;
   3221 			} else {
   3222 				*ptep = 0;
   3223 				PTE_SYNC(ptep);
   3224 				if (pm->pm_remove_all == false) {
   3225 					if (is_exec)
   3226 						pmap_tlb_flushID_SE(pm, sva);
   3227 					else
   3228 					if (is_refd)
   3229 						pmap_tlb_flushD_SE(pm, sva);
   3230 				}
   3231 			}
   3232 		}
   3233 
   3234 		/*
   3235 		 * Deal with any left overs
   3236 		 */
   3237 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3238 			total += cleanlist_idx;
   3239 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3240 				if (pm->pm_cstate.cs_all != 0) {
   3241 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3242 					if (cleanlist[cnt].va & 1) {
   3243 #ifdef PMAP_CACHE_VIVT
   3244 						pmap_idcache_wbinv_range(pm,
   3245 						    clva, PAGE_SIZE);
   3246 #endif
   3247 						pmap_tlb_flushID_SE(pm, clva);
   3248 					} else {
   3249 #ifdef PMAP_CACHE_VIVT
   3250 						pmap_dcache_wb_range(pm,
   3251 						    clva, PAGE_SIZE, true,
   3252 						    false);
   3253 #endif
   3254 						pmap_tlb_flushD_SE(pm, clva);
   3255 					}
   3256 				}
   3257 				*cleanlist[cnt].ptep = 0;
   3258 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3259 			}
   3260 
   3261 			/*
   3262 			 * If it looks like we're removing a whole bunch
   3263 			 * of mappings, it's faster to just write-back
   3264 			 * the whole cache now and defer TLB flushes until
   3265 			 * pmap_update() is called.
   3266 			 */
   3267 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3268 				cleanlist_idx = 0;
   3269 			else {
   3270 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3271 #ifdef PMAP_CACHE_VIVT
   3272 				pmap_idcache_wbinv_all(pm);
   3273 #endif
   3274 				pm->pm_remove_all = true;
   3275 			}
   3276 		}
   3277 
   3278 		pmap_free_l2_bucket(pm, l2b, mappings);
   3279 		pm->pm_stats.resident_count -= mappings;
   3280 	}
   3281 
   3282 	pmap_release_pmap_lock(pm);
   3283 	PMAP_MAP_TO_HEAD_UNLOCK();
   3284 }
   3285 
   3286 #ifdef PMAP_CACHE_VIPT
   3287 static struct pv_entry *
   3288 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3289 {
   3290 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3291 	struct pv_entry *pv;
   3292 
   3293 	simple_lock(&md->pvh_slock);
   3294 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3295 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3296 
   3297 	pv = pmap_remove_pv(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), va);
   3298 	KASSERT(pv);
   3299 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3300 
   3301 	/*
   3302 	 * If we are removing a writeable mapping to a cached exec page,
   3303 	 * if it's the last mapping then clear it execness other sync
   3304 	 * the page to the icache.
   3305 	 */
   3306 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3307 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3308 		if (SLIST_EMPTY(&md->pvh_list)) {
   3309 			md->pvh_attrs &= ~PVF_EXEC;
   3310 			PMAPCOUNT(exec_discarded_kremove);
   3311 		} else {
   3312 			pmap_syncicache_page(md, VM_PAGE_TO_PHYS(pg));
   3313 			PMAPCOUNT(exec_synced_kremove);
   3314 		}
   3315 	}
   3316 	pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), 0);
   3317 	simple_unlock(&md->pvh_slock);
   3318 
   3319 	return pv;
   3320 }
   3321 #endif /* PMAP_CACHE_VIPT */
   3322 
   3323 /*
   3324  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3325  *
   3326  * We assume there is already sufficient KVM space available
   3327  * to do this, as we can't allocate L2 descriptor tables/metadata
   3328  * from here.
   3329  */
   3330 void
   3331 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3332 {
   3333 	struct l2_bucket *l2b;
   3334 	pt_entry_t *ptep, opte;
   3335 #ifdef PMAP_CACHE_VIVT
   3336 	struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3337 #endif
   3338 #ifdef PMAP_CACHE_VIPT
   3339 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3340 	struct vm_page *opg;
   3341 	struct pv_entry *pv = NULL;
   3342 #endif
   3343 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3344 
   3345 	NPDEBUG(PDB_KENTER,
   3346 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3347 	    va, pa, prot));
   3348 
   3349 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3350 	KDASSERT(l2b != NULL);
   3351 
   3352 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3353 	opte = *ptep;
   3354 
   3355 	if (opte == 0) {
   3356 		PMAPCOUNT(kenter_mappings);
   3357 		l2b->l2b_occupancy++;
   3358 	} else {
   3359 		PMAPCOUNT(kenter_remappings);
   3360 #ifdef PMAP_CACHE_VIPT
   3361 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3362 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3363 		if (opg) {
   3364 			KASSERT(opg != pg);
   3365 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3366 			KASSERT((prot & PMAP_KMPAGE) == 0);
   3367 			simple_lock(&omd->pvh_slock);
   3368 			pv = pmap_kremove_pg(opg, va);
   3369 			simple_unlock(&omd->pvh_slock);
   3370 		}
   3371 #endif
   3372 		if (l2pte_valid(opte)) {
   3373 #ifdef PMAP_CACHE_VIVT
   3374 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3375 #endif
   3376 			cpu_tlb_flushD_SE(va);
   3377 			cpu_cpwait();
   3378 		}
   3379 	}
   3380 
   3381 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
   3382 	    pte_l2_s_cache_mode;
   3383 	PTE_SYNC(ptep);
   3384 
   3385 	if (pg) {
   3386 		if (prot & PMAP_KMPAGE) {
   3387 			simple_lock(&md->pvh_slock);
   3388 			KASSERT(md->urw_mappings == 0);
   3389 			KASSERT(md->uro_mappings == 0);
   3390 			KASSERT(md->krw_mappings == 0);
   3391 			KASSERT(md->kro_mappings == 0);
   3392 #ifdef PMAP_CACHE_VIPT
   3393 			KASSERT(pv == NULL);
   3394 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3395 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3396 			/* if there is a color conflict, evict from cache. */
   3397 			if (pmap_is_page_colored_p(md)
   3398 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3399 				PMAPCOUNT(vac_color_change);
   3400 				pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_FLUSH_PRIMARY);
   3401 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3402 				/*
   3403 				 * If this page has multiple colors, expunge
   3404 				 * them.
   3405 				 */
   3406 				PMAPCOUNT(vac_flush_lots2);
   3407 				pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_FLUSH_SECONDARY);
   3408 			}
   3409 			md->pvh_attrs &= PAGE_SIZE - 1;
   3410 			md->pvh_attrs |= PVF_KMPAGE
   3411 			    | PVF_COLORED | PVF_DIRTY
   3412 			    | (va & arm_cache_prefer_mask);
   3413 #endif
   3414 #ifdef PMAP_CACHE_VIVT
   3415 			md->pvh_attrs |= PVF_KMPAGE;
   3416 #endif
   3417 			pmap_kmpages++;
   3418 			simple_unlock(&md->pvh_slock);
   3419 #ifdef PMAP_CACHE_VIPT
   3420 		} else {
   3421 			if (pv == NULL) {
   3422 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3423 				KASSERT(pv != NULL);
   3424 			}
   3425 			pmap_enter_pv(md, VM_PAGE_TO_PHYS(pg), pv, pmap_kernel(), va,
   3426 			    PVF_WIRED | PVF_KENTRY
   3427 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3428 			if ((prot & VM_PROT_WRITE)
   3429 			    && !(md->pvh_attrs & PVF_NC))
   3430 				md->pvh_attrs |= PVF_DIRTY;
   3431 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3432 			simple_lock(&md->pvh_slock);
   3433 			pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pmap_kernel(), va);
   3434 			simple_unlock(&md->pvh_slock);
   3435 #endif
   3436 		}
   3437 #ifdef PMAP_CACHE_VIPT
   3438 	} else {
   3439 		if (pv != NULL)
   3440 			pool_put(&pmap_pv_pool, pv);
   3441 #endif
   3442 	}
   3443 }
   3444 
   3445 void
   3446 pmap_kremove(vaddr_t va, vsize_t len)
   3447 {
   3448 	struct l2_bucket *l2b;
   3449 	pt_entry_t *ptep, *sptep, opte;
   3450 	vaddr_t next_bucket, eva;
   3451 	u_int mappings;
   3452 	struct vm_page *opg;
   3453 
   3454 	PMAPCOUNT(kenter_unmappings);
   3455 
   3456 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3457 	    va, len));
   3458 
   3459 	eva = va + len;
   3460 
   3461 	while (va < eva) {
   3462 		next_bucket = L2_NEXT_BUCKET(va);
   3463 		if (next_bucket > eva)
   3464 			next_bucket = eva;
   3465 
   3466 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3467 		KDASSERT(l2b != NULL);
   3468 
   3469 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3470 		mappings = 0;
   3471 
   3472 		while (va < next_bucket) {
   3473 			opte = *ptep;
   3474 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3475 			if (opg) {
   3476 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3477 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3478 					simple_lock(&omd->pvh_slock);
   3479 					KASSERT(omd->urw_mappings == 0);
   3480 					KASSERT(omd->uro_mappings == 0);
   3481 					KASSERT(omd->krw_mappings == 0);
   3482 					KASSERT(omd->kro_mappings == 0);
   3483 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3484 #ifdef PMAP_CACHE_VIPT
   3485 					omd->pvh_attrs &= ~PVF_WRITE;
   3486 #endif
   3487 					pmap_kmpages--;
   3488 					simple_unlock(&omd->pvh_slock);
   3489 #ifdef PMAP_CACHE_VIPT
   3490 				} else {
   3491 					pool_put(&pmap_pv_pool,
   3492 					    pmap_kremove_pg(opg, va));
   3493 #endif
   3494 				}
   3495 			}
   3496 			if (l2pte_valid(opte)) {
   3497 #ifdef PMAP_CACHE_VIVT
   3498 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3499 #endif
   3500 				cpu_tlb_flushD_SE(va);
   3501 			}
   3502 			if (opte) {
   3503 				*ptep = 0;
   3504 				mappings++;
   3505 			}
   3506 			va += PAGE_SIZE;
   3507 			ptep++;
   3508 		}
   3509 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3510 		l2b->l2b_occupancy -= mappings;
   3511 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3512 	}
   3513 	cpu_cpwait();
   3514 }
   3515 
   3516 bool
   3517 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3518 {
   3519 	struct l2_dtable *l2;
   3520 	pd_entry_t *pl1pd, l1pd;
   3521 	pt_entry_t *ptep, pte;
   3522 	paddr_t pa;
   3523 	u_int l1idx;
   3524 
   3525 	pmap_acquire_pmap_lock(pm);
   3526 
   3527 	l1idx = L1_IDX(va);
   3528 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3529 	l1pd = *pl1pd;
   3530 
   3531 	if (l1pte_section_p(l1pd)) {
   3532 		/*
   3533 		 * These should only happen for pmap_kernel()
   3534 		 */
   3535 		KDASSERT(pm == pmap_kernel());
   3536 		pmap_release_pmap_lock(pm);
   3537 		pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3538 	} else {
   3539 		/*
   3540 		 * Note that we can't rely on the validity of the L1
   3541 		 * descriptor as an indication that a mapping exists.
   3542 		 * We have to look it up in the L2 dtable.
   3543 		 */
   3544 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3545 
   3546 		if (l2 == NULL ||
   3547 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3548 			pmap_release_pmap_lock(pm);
   3549 			return false;
   3550 		}
   3551 
   3552 		ptep = &ptep[l2pte_index(va)];
   3553 		pte = *ptep;
   3554 		pmap_release_pmap_lock(pm);
   3555 
   3556 		if (pte == 0)
   3557 			return false;
   3558 
   3559 		switch (pte & L2_TYPE_MASK) {
   3560 		case L2_TYPE_L:
   3561 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3562 			break;
   3563 
   3564 		default:
   3565 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3566 			break;
   3567 		}
   3568 	}
   3569 
   3570 	if (pap != NULL)
   3571 		*pap = pa;
   3572 
   3573 	return true;
   3574 }
   3575 
   3576 void
   3577 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3578 {
   3579 	struct l2_bucket *l2b;
   3580 	pt_entry_t *ptep, pte;
   3581 	vaddr_t next_bucket;
   3582 	u_int flags;
   3583 	u_int clr_mask;
   3584 	int flush;
   3585 
   3586 	NPDEBUG(PDB_PROTECT,
   3587 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3588 	    pm, sva, eva, prot));
   3589 
   3590 	if ((prot & VM_PROT_READ) == 0) {
   3591 		pmap_remove(pm, sva, eva);
   3592 		return;
   3593 	}
   3594 
   3595 	if (prot & VM_PROT_WRITE) {
   3596 		/*
   3597 		 * If this is a read->write transition, just ignore it and let
   3598 		 * uvm_fault() take care of it later.
   3599 		 */
   3600 		return;
   3601 	}
   3602 
   3603 	PMAP_MAP_TO_HEAD_LOCK();
   3604 	pmap_acquire_pmap_lock(pm);
   3605 
   3606 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3607 	flags = 0;
   3608 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3609 
   3610 	while (sva < eva) {
   3611 		next_bucket = L2_NEXT_BUCKET(sva);
   3612 		if (next_bucket > eva)
   3613 			next_bucket = eva;
   3614 
   3615 		l2b = pmap_get_l2_bucket(pm, sva);
   3616 		if (l2b == NULL) {
   3617 			sva = next_bucket;
   3618 			continue;
   3619 		}
   3620 
   3621 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3622 
   3623 		while (sva < next_bucket) {
   3624 			pte = *ptep;
   3625 			if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
   3626 				struct vm_page *pg;
   3627 				u_int f;
   3628 
   3629 #ifdef PMAP_CACHE_VIVT
   3630 				/*
   3631 				 * OK, at this point, we know we're doing
   3632 				 * write-protect operation.  If the pmap is
   3633 				 * active, write-back the page.
   3634 				 */
   3635 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3636 				    false, false);
   3637 #endif
   3638 
   3639 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3640 				pte &= ~L2_S_PROT_W;
   3641 				*ptep = pte;
   3642 				PTE_SYNC(ptep);
   3643 
   3644 				if (pg != NULL) {
   3645 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3646 					simple_lock(&md->pvh_slock);
   3647 					f = pmap_modify_pv(md, VM_PAGE_TO_PHYS(pg), pm, sva,
   3648 					    clr_mask, 0);
   3649 					pmap_vac_me_harder(md, VM_PAGE_TO_PHYS(pg), pm, sva);
   3650 					simple_unlock(&md->pvh_slock);
   3651 				} else
   3652 					f = PVF_REF | PVF_EXEC;
   3653 
   3654 				if (flush >= 0) {
   3655 					flush++;
   3656 					flags |= f;
   3657 				} else
   3658 				if (PV_BEEN_EXECD(f))
   3659 					pmap_tlb_flushID_SE(pm, sva);
   3660 				else
   3661 				if (PV_BEEN_REFD(f))
   3662 					pmap_tlb_flushD_SE(pm, sva);
   3663 			}
   3664 
   3665 			sva += PAGE_SIZE;
   3666 			ptep++;
   3667 		}
   3668 	}
   3669 
   3670 	pmap_release_pmap_lock(pm);
   3671 	PMAP_MAP_TO_HEAD_UNLOCK();
   3672 
   3673 	if (flush) {
   3674 		if (PV_BEEN_EXECD(flags))
   3675 			pmap_tlb_flushID(pm);
   3676 		else
   3677 		if (PV_BEEN_REFD(flags))
   3678 			pmap_tlb_flushD(pm);
   3679 	}
   3680 }
   3681 
   3682 void
   3683 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3684 {
   3685 	struct l2_bucket *l2b;
   3686 	pt_entry_t *ptep;
   3687 	vaddr_t next_bucket;
   3688 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3689 
   3690 	NPDEBUG(PDB_EXEC,
   3691 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3692 	    pm, sva, eva));
   3693 
   3694 	PMAP_MAP_TO_HEAD_LOCK();
   3695 	pmap_acquire_pmap_lock(pm);
   3696 
   3697 	while (sva < eva) {
   3698 		next_bucket = L2_NEXT_BUCKET(sva);
   3699 		if (next_bucket > eva)
   3700 			next_bucket = eva;
   3701 
   3702 		l2b = pmap_get_l2_bucket(pm, sva);
   3703 		if (l2b == NULL) {
   3704 			sva = next_bucket;
   3705 			continue;
   3706 		}
   3707 
   3708 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3709 		     sva < next_bucket;
   3710 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3711 			if (l2pte_valid(*ptep)) {
   3712 				cpu_icache_sync_range(sva,
   3713 				    min(page_size, eva - sva));
   3714 			}
   3715 		}
   3716 	}
   3717 
   3718 	pmap_release_pmap_lock(pm);
   3719 	PMAP_MAP_TO_HEAD_UNLOCK();
   3720 }
   3721 
   3722 void
   3723 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3724 {
   3725 
   3726 	NPDEBUG(PDB_PROTECT,
   3727 	    printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
   3728 	    pg, VM_PAGE_TO_PHYS(pg), prot));
   3729 
   3730 	switch(prot) {
   3731 	case VM_PROT_READ|VM_PROT_WRITE:
   3732 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3733 		pmap_clearbit(pg, PVF_EXEC);
   3734 		break;
   3735 #endif
   3736 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3737 		break;
   3738 
   3739 	case VM_PROT_READ:
   3740 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3741 		pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
   3742 		break;
   3743 #endif
   3744 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3745 		pmap_clearbit(pg, PVF_WRITE);
   3746 		break;
   3747 
   3748 	default:
   3749 		pmap_page_remove(pg);
   3750 		break;
   3751 	}
   3752 }
   3753 
   3754 /*
   3755  * pmap_clear_modify:
   3756  *
   3757  *	Clear the "modified" attribute for a page.
   3758  */
   3759 bool
   3760 pmap_clear_modify(struct vm_page *pg)
   3761 {
   3762 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3763 	bool rv;
   3764 
   3765 	if (md->pvh_attrs & PVF_MOD) {
   3766 		rv = true;
   3767 #ifdef PMAP_CACHE_VIPT
   3768 		/*
   3769 		 * If we are going to clear the modified bit and there are
   3770 		 * no other modified bits set, flush the page to memory and
   3771 		 * mark it clean.
   3772 		 */
   3773 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3774 			pmap_flush_page(md, VM_PAGE_TO_PHYS(pg), PMAP_CLEAN_PRIMARY);
   3775 #endif
   3776 		pmap_clearbit(pg, PVF_MOD);
   3777 	} else
   3778 		rv = false;
   3779 
   3780 	return (rv);
   3781 }
   3782 
   3783 /*
   3784  * pmap_clear_reference:
   3785  *
   3786  *	Clear the "referenced" attribute for a page.
   3787  */
   3788 bool
   3789 pmap_clear_reference(struct vm_page *pg)
   3790 {
   3791 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3792 	bool rv;
   3793 
   3794 	if (md->pvh_attrs & PVF_REF) {
   3795 		rv = true;
   3796 		pmap_clearbit(pg, PVF_REF);
   3797 	} else
   3798 		rv = false;
   3799 
   3800 	return (rv);
   3801 }
   3802 
   3803 /*
   3804  * pmap_is_modified:
   3805  *
   3806  *	Test if a page has the "modified" attribute.
   3807  */
   3808 /* See <arm/arm32/pmap.h> */
   3809 
   3810 /*
   3811  * pmap_is_referenced:
   3812  *
   3813  *	Test if a page has the "referenced" attribute.
   3814  */
   3815 /* See <arm/arm32/pmap.h> */
   3816 
   3817 int
   3818 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3819 {
   3820 	struct l2_dtable *l2;
   3821 	struct l2_bucket *l2b;
   3822 	pd_entry_t *pl1pd, l1pd;
   3823 	pt_entry_t *ptep, pte;
   3824 	paddr_t pa;
   3825 	u_int l1idx;
   3826 	int rv = 0;
   3827 
   3828 	PMAP_MAP_TO_HEAD_LOCK();
   3829 	pmap_acquire_pmap_lock(pm);
   3830 
   3831 	l1idx = L1_IDX(va);
   3832 
   3833 	/*
   3834 	 * If there is no l2_dtable for this address, then the process
   3835 	 * has no business accessing it.
   3836 	 *
   3837 	 * Note: This will catch userland processes trying to access
   3838 	 * kernel addresses.
   3839 	 */
   3840 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3841 	if (l2 == NULL)
   3842 		goto out;
   3843 
   3844 	/*
   3845 	 * Likewise if there is no L2 descriptor table
   3846 	 */
   3847 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3848 	if (l2b->l2b_kva == NULL)
   3849 		goto out;
   3850 
   3851 	/*
   3852 	 * Check the PTE itself.
   3853 	 */
   3854 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3855 	pte = *ptep;
   3856 	if (pte == 0)
   3857 		goto out;
   3858 
   3859 	/*
   3860 	 * Catch a userland access to the vector page mapped at 0x0
   3861 	 */
   3862 	if (user && (pte & L2_S_PROT_U) == 0)
   3863 		goto out;
   3864 
   3865 	pa = l2pte_pa(pte);
   3866 
   3867 	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
   3868 		/*
   3869 		 * This looks like a good candidate for "page modified"
   3870 		 * emulation...
   3871 		 */
   3872 		struct pv_entry *pv;
   3873 		struct vm_page *pg;
   3874 
   3875 		/* Extract the physical address of the page */
   3876 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3877 			goto out;
   3878 
   3879 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3880 
   3881 		/* Get the current flags for this page. */
   3882 		simple_lock(&md->pvh_slock);
   3883 
   3884 		pv = pmap_find_pv(md, pm, va);
   3885 		if (pv == NULL) {
   3886 	    		simple_unlock(&md->pvh_slock);
   3887 			goto out;
   3888 		}
   3889 
   3890 		/*
   3891 		 * Do the flags say this page is writable? If not then it
   3892 		 * is a genuine write fault. If yes then the write fault is
   3893 		 * our fault as we did not reflect the write access in the
   3894 		 * PTE. Now we know a write has occurred we can correct this
   3895 		 * and also set the modified bit
   3896 		 */
   3897 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3898 		    	simple_unlock(&md->pvh_slock);
   3899 			goto out;
   3900 		}
   3901 
   3902 		NPDEBUG(PDB_FOLLOW,
   3903 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3904 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3905 
   3906 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   3907 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3908 #ifdef PMAP_CACHE_VIPT
   3909 		/*
   3910 		 * If there are cacheable mappings for this page, mark it dirty.
   3911 		 */
   3912 		if ((md->pvh_attrs & PVF_NC) == 0)
   3913 			md->pvh_attrs |= PVF_DIRTY;
   3914 #endif
   3915 		simple_unlock(&md->pvh_slock);
   3916 
   3917 		/*
   3918 		 * Re-enable write permissions for the page.  No need to call
   3919 		 * pmap_vac_me_harder(), since this is just a
   3920 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3921 		 * changing. We've already set the cacheable bits based on
   3922 		 * the assumption that we can write to this page.
   3923 		 */
   3924 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3925 		PTE_SYNC(ptep);
   3926 		rv = 1;
   3927 	} else
   3928 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3929 		/*
   3930 		 * This looks like a good candidate for "page referenced"
   3931 		 * emulation.
   3932 		 */
   3933 		struct pv_entry *pv;
   3934 		struct vm_page *pg;
   3935 
   3936 		/* Extract the physical address of the page */
   3937 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3938 			goto out;
   3939 
   3940 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3941 
   3942 		/* Get the current flags for this page. */
   3943 		simple_lock(&md->pvh_slock);
   3944 
   3945 		pv = pmap_find_pv(md, pm, va);
   3946 		if (pv == NULL) {
   3947 	    		simple_unlock(&md->pvh_slock);
   3948 			goto out;
   3949 		}
   3950 
   3951 		md->pvh_attrs |= PVF_REF;
   3952 		pv->pv_flags |= PVF_REF;
   3953 		simple_unlock(&md->pvh_slock);
   3954 
   3955 		NPDEBUG(PDB_FOLLOW,
   3956 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3957 		    pm, va, VM_PAGE_TO_PHYS(pg)));
   3958 
   3959 		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
   3960 		PTE_SYNC(ptep);
   3961 		rv = 1;
   3962 	}
   3963 
   3964 	/*
   3965 	 * We know there is a valid mapping here, so simply
   3966 	 * fix up the L1 if necessary.
   3967 	 */
   3968 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3969 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3970 	if (*pl1pd != l1pd) {
   3971 		*pl1pd = l1pd;
   3972 		PTE_SYNC(pl1pd);
   3973 		rv = 1;
   3974 	}
   3975 
   3976 #ifdef CPU_SA110
   3977 	/*
   3978 	 * There are bugs in the rev K SA110.  This is a check for one
   3979 	 * of them.
   3980 	 */
   3981 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3982 	    curcpu()->ci_arm_cpurev < 3) {
   3983 		/* Always current pmap */
   3984 		if (l2pte_valid(pte)) {
   3985 			extern int kernel_debug;
   3986 			if (kernel_debug & 1) {
   3987 				struct proc *p = curlwp->l_proc;
   3988 				printf("prefetch_abort: page is already "
   3989 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3990 				printf("prefetch_abort: pc=%08lx proc=%p "
   3991 				    "process=%s\n", va, p, p->p_comm);
   3992 				printf("prefetch_abort: far=%08x fs=%x\n",
   3993 				    cpu_faultaddress(), cpu_faultstatus());
   3994 			}
   3995 #ifdef DDB
   3996 			if (kernel_debug & 2)
   3997 				Debugger();
   3998 #endif
   3999 			rv = 1;
   4000 		}
   4001 	}
   4002 #endif /* CPU_SA110 */
   4003 
   4004 #ifdef DEBUG
   4005 	/*
   4006 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4007 	 * stale TLB entry for the faulting address. This happens when two or
   4008 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4009 	 * a context switch between such processes, we can take domain faults
   4010 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4011 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4012 	 * example.
   4013 	 *
   4014 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4015 	 * entry for a recently entered mapping. In this case, the TLB is
   4016 	 * flushed for the new mapping, but there may still be TLB entries for
   4017 	 * other mappings belonging to other processes in the 1MB range
   4018 	 * covered by the L1 entry.
   4019 	 *
   4020 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4021 	 * value, so the fault must be due to a stale TLB entry.
   4022 	 *
   4023 	 * Since we always need to flush the TLB anyway in the case where we
   4024 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4025 	 * stale TLB entries dynamically.
   4026 	 *
   4027 	 * However, the above condition can ONLY happen if the current L1 is
   4028 	 * being shared. If it happens when the L1 is unshared, it indicates
   4029 	 * that other parts of the pmap are not doing their job WRT managing
   4030 	 * the TLB.
   4031 	 */
   4032 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4033 		extern int last_fault_code;
   4034 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4035 		    pm, va, ftype);
   4036 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4037 		    l2, l2b, ptep, pl1pd);
   4038 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4039 		    pte, l1pd, last_fault_code);
   4040 #ifdef DDB
   4041 		Debugger();
   4042 #endif
   4043 	}
   4044 #endif
   4045 
   4046 	cpu_tlb_flushID_SE(va);
   4047 	cpu_cpwait();
   4048 
   4049 	rv = 1;
   4050 
   4051 out:
   4052 	pmap_release_pmap_lock(pm);
   4053 	PMAP_MAP_TO_HEAD_UNLOCK();
   4054 
   4055 	return (rv);
   4056 }
   4057 
   4058 /*
   4059  * Routine:	pmap_procwr
   4060  *
   4061  * Function:
   4062  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4063  *
   4064  */
   4065 void
   4066 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4067 {
   4068 	/* We only need to do anything if it is the current process. */
   4069 	if (p == curproc)
   4070 		cpu_icache_sync_range(va, len);
   4071 }
   4072 
   4073 /*
   4074  * Routine:	pmap_unwire
   4075  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4076  *
   4077  * In/out conditions:
   4078  *		The mapping must already exist in the pmap.
   4079  */
   4080 void
   4081 pmap_unwire(pmap_t pm, vaddr_t va)
   4082 {
   4083 	struct l2_bucket *l2b;
   4084 	pt_entry_t *ptep, pte;
   4085 	struct vm_page *pg;
   4086 	paddr_t pa;
   4087 
   4088 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4089 
   4090 	PMAP_MAP_TO_HEAD_LOCK();
   4091 	pmap_acquire_pmap_lock(pm);
   4092 
   4093 	l2b = pmap_get_l2_bucket(pm, va);
   4094 	KDASSERT(l2b != NULL);
   4095 
   4096 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4097 	pte = *ptep;
   4098 
   4099 	/* Extract the physical address of the page */
   4100 	pa = l2pte_pa(pte);
   4101 
   4102 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4103 		/* Update the wired bit in the pv entry for this page. */
   4104 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4105 		simple_lock(&md->pvh_slock);
   4106 		(void) pmap_modify_pv(md, VM_PAGE_TO_PHYS(pg), pm, va, PVF_WIRED, 0);
   4107 		simple_unlock(&md->pvh_slock);
   4108 	}
   4109 
   4110 	pmap_release_pmap_lock(pm);
   4111 	PMAP_MAP_TO_HEAD_UNLOCK();
   4112 }
   4113 
   4114 void
   4115 pmap_activate(struct lwp *l)
   4116 {
   4117 	extern int block_userspace_access;
   4118 	pmap_t opm, npm, rpm;
   4119 	uint32_t odacr, ndacr;
   4120 	int oldirqstate;
   4121 
   4122 	/*
   4123 	 * If activating a non-current lwp or the current lwp is
   4124 	 * already active, just return.
   4125 	 */
   4126 	if (l != curlwp ||
   4127 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4128 		return;
   4129 
   4130 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4131 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4132 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4133 
   4134 	/*
   4135 	 * If TTB and DACR are unchanged, short-circuit all the
   4136 	 * TLB/cache management stuff.
   4137 	 */
   4138 	if (pmap_previous_active_lwp != NULL) {
   4139 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4140 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4141 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4142 
   4143 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4144 			goto all_done;
   4145 	} else
   4146 		opm = NULL;
   4147 
   4148 	PMAPCOUNT(activations);
   4149 	block_userspace_access = 1;
   4150 
   4151 	/*
   4152 	 * If switching to a user vmspace which is different to the
   4153 	 * most recent one, and the most recent one is potentially
   4154 	 * live in the cache, we must write-back and invalidate the
   4155 	 * entire cache.
   4156 	 */
   4157 	rpm = pmap_recent_user;
   4158 
   4159 /*
   4160  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4161  * reported in kern/41058. They're probably left over during tear-down and
   4162  * switching away from an exiting process. Until the root cause is identified
   4163  * and fixed, zap the cache when switching pmaps. This will result in a few
   4164  * unnecessary cache flushes, but that's better than silently corrupting data.
   4165  */
   4166 #if 0
   4167 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4168 	    rpm->pm_cstate.cs_cache) {
   4169 		rpm->pm_cstate.cs_cache = 0;
   4170 #ifdef PMAP_CACHE_VIVT
   4171 		cpu_idcache_wbinv_all();
   4172 #endif
   4173 	}
   4174 #else
   4175 	if (rpm) {
   4176 		rpm->pm_cstate.cs_cache = 0;
   4177 		if (npm == pmap_kernel())
   4178 			pmap_recent_user = NULL;
   4179 #ifdef PMAP_CACHE_VIVT
   4180 		cpu_idcache_wbinv_all();
   4181 #endif
   4182 	}
   4183 #endif
   4184 
   4185 	/* No interrupts while we frob the TTB/DACR */
   4186 	oldirqstate = disable_interrupts(IF32_bits);
   4187 
   4188 	/*
   4189 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4190 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4191 	 * before switching to it otherwise subsequent interrupts/exceptions
   4192 	 * (including domain faults!) will jump into hyperspace.
   4193 	 */
   4194 	if (npm->pm_pl1vec != NULL) {
   4195 		cpu_tlb_flushID_SE((u_int)vector_page);
   4196 		cpu_cpwait();
   4197 		*npm->pm_pl1vec = npm->pm_l1vec;
   4198 		PTE_SYNC(npm->pm_pl1vec);
   4199 	}
   4200 
   4201 	cpu_domains(ndacr);
   4202 
   4203 	if (npm == pmap_kernel() || npm == rpm) {
   4204 		/*
   4205 		 * Switching to a kernel thread, or back to the
   4206 		 * same user vmspace as before... Simply update
   4207 		 * the TTB (no TLB flush required)
   4208 		 */
   4209 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4210 		    "r"(npm->pm_l1->l1_physaddr));
   4211 		cpu_cpwait();
   4212 	} else {
   4213 		/*
   4214 		 * Otherwise, update TTB and flush TLB
   4215 		 */
   4216 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4217 		if (rpm != NULL)
   4218 			rpm->pm_cstate.cs_tlb = 0;
   4219 	}
   4220 
   4221 	restore_interrupts(oldirqstate);
   4222 
   4223 	block_userspace_access = 0;
   4224 
   4225  all_done:
   4226 	/*
   4227 	 * The new pmap is resident. Make sure it's marked
   4228 	 * as resident in the cache/TLB.
   4229 	 */
   4230 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4231 	if (npm != pmap_kernel())
   4232 		pmap_recent_user = npm;
   4233 
   4234 	/* The old pmap is not longer active */
   4235 	if (opm != NULL)
   4236 		opm->pm_activated = false;
   4237 
   4238 	/* But the new one is */
   4239 	npm->pm_activated = true;
   4240 }
   4241 
   4242 void
   4243 pmap_deactivate(struct lwp *l)
   4244 {
   4245 
   4246 	/*
   4247 	 * If the process is exiting, make sure pmap_activate() does
   4248 	 * a full MMU context-switch and cache flush, which we might
   4249 	 * otherwise skip. See PR port-arm/38950.
   4250 	 */
   4251 	if (l->l_proc->p_sflag & PS_WEXIT)
   4252 		pmap_previous_active_lwp = NULL;
   4253 
   4254 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4255 }
   4256 
   4257 void
   4258 pmap_update(pmap_t pm)
   4259 {
   4260 
   4261 	if (pm->pm_remove_all) {
   4262 		/*
   4263 		 * Finish up the pmap_remove_all() optimisation by flushing
   4264 		 * the TLB.
   4265 		 */
   4266 		pmap_tlb_flushID(pm);
   4267 		pm->pm_remove_all = false;
   4268 	}
   4269 
   4270 	if (pmap_is_current(pm)) {
   4271 		/*
   4272 		 * If we're dealing with a current userland pmap, move its L1
   4273 		 * to the end of the LRU.
   4274 		 */
   4275 		if (pm != pmap_kernel())
   4276 			pmap_use_l1(pm);
   4277 
   4278 		/*
   4279 		 * We can assume we're done with frobbing the cache/tlb for
   4280 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4281 		 * flushes.
   4282 		 */
   4283 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4284 	}
   4285 
   4286 	PMAPCOUNT(updates);
   4287 
   4288 	/*
   4289 	 * make sure TLB/cache operations have completed.
   4290 	 */
   4291 	cpu_cpwait();
   4292 }
   4293 
   4294 void
   4295 pmap_remove_all(pmap_t pm)
   4296 {
   4297 
   4298 	/*
   4299 	 * The vmspace described by this pmap is about to be torn down.
   4300 	 * Until pmap_update() is called, UVM will only make calls
   4301 	 * to pmap_remove(). We can make life much simpler by flushing
   4302 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4303 	 */
   4304 #ifdef PMAP_CACHE_VIVT
   4305 	pmap_idcache_wbinv_all(pm);
   4306 #endif
   4307 	pm->pm_remove_all = true;
   4308 }
   4309 
   4310 /*
   4311  * Retire the given physical map from service.
   4312  * Should only be called if the map contains no valid mappings.
   4313  */
   4314 void
   4315 pmap_destroy(pmap_t pm)
   4316 {
   4317 	u_int count;
   4318 
   4319 	if (pm == NULL)
   4320 		return;
   4321 
   4322 	if (pm->pm_remove_all) {
   4323 		pmap_tlb_flushID(pm);
   4324 		pm->pm_remove_all = false;
   4325 	}
   4326 
   4327 	/*
   4328 	 * Drop reference count
   4329 	 */
   4330 	mutex_enter(&pm->pm_lock);
   4331 	count = --pm->pm_obj.uo_refs;
   4332 	mutex_exit(&pm->pm_lock);
   4333 	if (count > 0) {
   4334 		if (pmap_is_current(pm)) {
   4335 			if (pm != pmap_kernel())
   4336 				pmap_use_l1(pm);
   4337 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4338 		}
   4339 		return;
   4340 	}
   4341 
   4342 	/*
   4343 	 * reference count is zero, free pmap resources and then free pmap.
   4344 	 */
   4345 
   4346 	if (vector_page < KERNEL_BASE) {
   4347 		KDASSERT(!pmap_is_current(pm));
   4348 
   4349 		/* Remove the vector page mapping */
   4350 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4351 		pmap_update(pm);
   4352 	}
   4353 
   4354 	LIST_REMOVE(pm, pm_list);
   4355 
   4356 	pmap_free_l1(pm);
   4357 
   4358 	if (pmap_recent_user == pm)
   4359 		pmap_recent_user = NULL;
   4360 
   4361 	UVM_OBJ_DESTROY(&pm->pm_obj);
   4362 
   4363 	/* return the pmap to the pool */
   4364 	pool_cache_put(&pmap_cache, pm);
   4365 }
   4366 
   4367 
   4368 /*
   4369  * void pmap_reference(pmap_t pm)
   4370  *
   4371  * Add a reference to the specified pmap.
   4372  */
   4373 void
   4374 pmap_reference(pmap_t pm)
   4375 {
   4376 
   4377 	if (pm == NULL)
   4378 		return;
   4379 
   4380 	pmap_use_l1(pm);
   4381 
   4382 	mutex_enter(&pm->pm_lock);
   4383 	pm->pm_obj.uo_refs++;
   4384 	mutex_exit(&pm->pm_lock);
   4385 }
   4386 
   4387 #if ARM_MMU_V6 > 0
   4388 
   4389 static struct evcnt pmap_prefer_nochange_ev =
   4390     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4391 static struct evcnt pmap_prefer_change_ev =
   4392     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4393 
   4394 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4395 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4396 
   4397 void
   4398 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4399 {
   4400 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4401 	vaddr_t va = *vap;
   4402 	vaddr_t diff = (hint - va) & mask;
   4403 	if (diff == 0) {
   4404 		pmap_prefer_nochange_ev.ev_count++;
   4405 	} else {
   4406 		pmap_prefer_change_ev.ev_count++;
   4407 		if (__predict_false(td))
   4408 			va -= mask + 1;
   4409 		*vap = va + diff;
   4410 	}
   4411 }
   4412 #endif /* ARM_MMU_V6 */
   4413 
   4414 /*
   4415  * pmap_zero_page()
   4416  *
   4417  * Zero a given physical page by mapping it at a page hook point.
   4418  * In doing the zero page op, the page we zero is mapped cachable, as with
   4419  * StrongARM accesses to non-cached pages are non-burst making writing
   4420  * _any_ bulk data very slow.
   4421  */
   4422 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4423 void
   4424 pmap_zero_page_generic(paddr_t phys)
   4425 {
   4426 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4427 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4428 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4429 #endif
   4430 #ifdef PMAP_CACHE_VIPT
   4431 	/* Choose the last page color it had, if any */
   4432 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4433 #else
   4434 	const vsize_t va_offset = 0;
   4435 #endif
   4436 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4437 
   4438 #ifdef DEBUG
   4439 	if (!SLIST_EMPTY(&md->pvh_list))
   4440 		panic("pmap_zero_page: page has mappings");
   4441 #endif
   4442 
   4443 	KDASSERT((phys & PGOFSET) == 0);
   4444 
   4445 	/*
   4446 	 * Hook in the page, zero it, and purge the cache for that
   4447 	 * zeroed page. Invalidate the TLB as needed.
   4448 	 */
   4449 	*ptep = L2_S_PROTO | phys |
   4450 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4451 	PTE_SYNC(ptep);
   4452 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4453 	cpu_cpwait();
   4454 	bzero_page(cdstp + va_offset);
   4455 	/*
   4456 	 * Unmap the page.
   4457 	 */
   4458 	*ptep = 0;
   4459 	PTE_SYNC(ptep);
   4460 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4461 #ifdef PMAP_CACHE_VIVT
   4462 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4463 #endif
   4464 #ifdef PMAP_CACHE_VIPT
   4465 	/*
   4466 	 * This page is now cache resident so it now has a page color.
   4467 	 * Any contents have been obliterated so clear the EXEC flag.
   4468 	 */
   4469 	if (!pmap_is_page_colored_p(md)) {
   4470 		PMAPCOUNT(vac_color_new);
   4471 		md->pvh_attrs |= PVF_COLORED;
   4472 	}
   4473 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4474 		md->pvh_attrs &= ~PVF_EXEC;
   4475 		PMAPCOUNT(exec_discarded_zero);
   4476 	}
   4477 	md->pvh_attrs |= PVF_DIRTY;
   4478 #endif
   4479 }
   4480 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4481 
   4482 #if ARM_MMU_XSCALE == 1
   4483 void
   4484 pmap_zero_page_xscale(paddr_t phys)
   4485 {
   4486 #ifdef DEBUG
   4487 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4488 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4489 
   4490 	if (!SLIST_EMPTY(&md->pvh_list))
   4491 		panic("pmap_zero_page: page has mappings");
   4492 #endif
   4493 
   4494 	KDASSERT((phys & PGOFSET) == 0);
   4495 
   4496 	/*
   4497 	 * Hook in the page, zero it, and purge the cache for that
   4498 	 * zeroed page. Invalidate the TLB as needed.
   4499 	 */
   4500 	*cdst_pte = L2_S_PROTO | phys |
   4501 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4502 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4503 	PTE_SYNC(cdst_pte);
   4504 	cpu_tlb_flushD_SE(cdstp);
   4505 	cpu_cpwait();
   4506 	bzero_page(cdstp);
   4507 	xscale_cache_clean_minidata();
   4508 }
   4509 #endif /* ARM_MMU_XSCALE == 1 */
   4510 
   4511 /* pmap_pageidlezero()
   4512  *
   4513  * The same as above, except that we assume that the page is not
   4514  * mapped.  This means we never have to flush the cache first.  Called
   4515  * from the idle loop.
   4516  */
   4517 bool
   4518 pmap_pageidlezero(paddr_t phys)
   4519 {
   4520 	unsigned int i;
   4521 	int *ptr;
   4522 	bool rv = true;
   4523 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4524 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4525 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4526 #endif
   4527 #ifdef PMAP_CACHE_VIPT
   4528 	/* Choose the last page color it had, if any */
   4529 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4530 #else
   4531 	const vsize_t va_offset = 0;
   4532 #endif
   4533 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4534 
   4535 
   4536 #ifdef DEBUG
   4537 	if (!SLIST_EMPTY(&md->pvh_list))
   4538 		panic("pmap_pageidlezero: page has mappings");
   4539 #endif
   4540 
   4541 	KDASSERT((phys & PGOFSET) == 0);
   4542 
   4543 	/*
   4544 	 * Hook in the page, zero it, and purge the cache for that
   4545 	 * zeroed page. Invalidate the TLB as needed.
   4546 	 */
   4547 	*ptep = L2_S_PROTO | phys |
   4548 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4549 	PTE_SYNC(ptep);
   4550 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4551 	cpu_cpwait();
   4552 
   4553 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4554 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4555 		if (sched_curcpu_runnable_p() != 0) {
   4556 			/*
   4557 			 * A process has become ready.  Abort now,
   4558 			 * so we don't keep it waiting while we
   4559 			 * do slow memory access to finish this
   4560 			 * page.
   4561 			 */
   4562 			rv = false;
   4563 			break;
   4564 		}
   4565 		*ptr++ = 0;
   4566 	}
   4567 
   4568 #ifdef PMAP_CACHE_VIVT
   4569 	if (rv)
   4570 		/*
   4571 		 * if we aborted we'll rezero this page again later so don't
   4572 		 * purge it unless we finished it
   4573 		 */
   4574 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4575 #elif defined(PMAP_CACHE_VIPT)
   4576 	/*
   4577 	 * This page is now cache resident so it now has a page color.
   4578 	 * Any contents have been obliterated so clear the EXEC flag.
   4579 	 */
   4580 	if (!pmap_is_page_colored_p(md)) {
   4581 		PMAPCOUNT(vac_color_new);
   4582 		md->pvh_attrs |= PVF_COLORED;
   4583 	}
   4584 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4585 		md->pvh_attrs &= ~PVF_EXEC;
   4586 		PMAPCOUNT(exec_discarded_zero);
   4587 	}
   4588 #endif
   4589 	/*
   4590 	 * Unmap the page.
   4591 	 */
   4592 	*ptep = 0;
   4593 	PTE_SYNC(ptep);
   4594 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4595 
   4596 	return (rv);
   4597 }
   4598 
   4599 /*
   4600  * pmap_copy_page()
   4601  *
   4602  * Copy one physical page into another, by mapping the pages into
   4603  * hook points. The same comment regarding cachability as in
   4604  * pmap_zero_page also applies here.
   4605  */
   4606 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   4607 void
   4608 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4609 {
   4610 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4611 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4612 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4613 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4614 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   4615 #endif
   4616 #ifdef PMAP_CACHE_VIPT
   4617 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   4618 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   4619 #else
   4620 	const vsize_t src_va_offset = 0;
   4621 	const vsize_t dst_va_offset = 0;
   4622 #endif
   4623 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4624 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4625 
   4626 #ifdef DEBUG
   4627 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4628 		panic("pmap_copy_page: dst page has mappings");
   4629 #endif
   4630 
   4631 #ifdef PMAP_CACHE_VIPT
   4632 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   4633 #endif
   4634 	KDASSERT((src & PGOFSET) == 0);
   4635 	KDASSERT((dst & PGOFSET) == 0);
   4636 
   4637 	/*
   4638 	 * Clean the source page.  Hold the source page's lock for
   4639 	 * the duration of the copy so that no other mappings can
   4640 	 * be created while we have a potentially aliased mapping.
   4641 	 */
   4642 	simple_lock(&src_md->pvh_slock);
   4643 #ifdef PMAP_CACHE_VIVT
   4644 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4645 #endif
   4646 
   4647 	/*
   4648 	 * Map the pages into the page hook points, copy them, and purge
   4649 	 * the cache for the appropriate page. Invalidate the TLB
   4650 	 * as required.
   4651 	 */
   4652 	*src_ptep = L2_S_PROTO
   4653 	    | src
   4654 #ifdef PMAP_CACHE_VIPT
   4655 	    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4656 #endif
   4657 #ifdef PMAP_CACHE_VIVT
   4658 	    | pte_l2_s_cache_mode
   4659 #endif
   4660 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4661 	*dst_ptep = L2_S_PROTO | dst |
   4662 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4663 	PTE_SYNC(src_ptep);
   4664 	PTE_SYNC(dst_ptep);
   4665 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4666 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4667 	cpu_cpwait();
   4668 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4669 #ifdef PMAP_CACHE_VIVT
   4670 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4671 #endif
   4672 	simple_unlock(&src_md->pvh_slock); /* cache is safe again */
   4673 #ifdef PMAP_CACHE_VIVT
   4674 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4675 #endif
   4676 	/*
   4677 	 * Unmap the pages.
   4678 	 */
   4679 	*src_ptep = 0;
   4680 	*dst_ptep = 0;
   4681 	PTE_SYNC(src_ptep);
   4682 	PTE_SYNC(dst_ptep);
   4683 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4684 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4685 #ifdef PMAP_CACHE_VIPT
   4686 	/*
   4687 	 * Now that the destination page is in the cache, mark it as colored.
   4688 	 * If this was an exec page, discard it.
   4689 	 */
   4690 	if (!pmap_is_page_colored_p(dst_md)) {
   4691 		PMAPCOUNT(vac_color_new);
   4692 		dst_md->pvh_attrs |= PVF_COLORED;
   4693 	}
   4694 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   4695 		dst_md->pvh_attrs &= ~PVF_EXEC;
   4696 		PMAPCOUNT(exec_discarded_copy);
   4697 	}
   4698 	dst_md->pvh_attrs |= PVF_DIRTY;
   4699 #endif
   4700 }
   4701 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4702 
   4703 #if ARM_MMU_XSCALE == 1
   4704 void
   4705 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4706 {
   4707 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4708 #ifdef DEBUG
   4709 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   4710 
   4711 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4712 		panic("pmap_copy_page: dst page has mappings");
   4713 #endif
   4714 
   4715 	KDASSERT((src & PGOFSET) == 0);
   4716 	KDASSERT((dst & PGOFSET) == 0);
   4717 
   4718 	/*
   4719 	 * Clean the source page.  Hold the source page's lock for
   4720 	 * the duration of the copy so that no other mappings can
   4721 	 * be created while we have a potentially aliased mapping.
   4722 	 */
   4723 	simple_lock(&src_md->pvh_slock);
   4724 #ifdef PMAP_CACHE_VIVT
   4725 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4726 #endif
   4727 
   4728 	/*
   4729 	 * Map the pages into the page hook points, copy them, and purge
   4730 	 * the cache for the appropriate page. Invalidate the TLB
   4731 	 * as required.
   4732 	 */
   4733 	*csrc_pte = L2_S_PROTO | src |
   4734 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4735 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4736 	PTE_SYNC(csrc_pte);
   4737 	*cdst_pte = L2_S_PROTO | dst |
   4738 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4739 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4740 	PTE_SYNC(cdst_pte);
   4741 	cpu_tlb_flushD_SE(csrcp);
   4742 	cpu_tlb_flushD_SE(cdstp);
   4743 	cpu_cpwait();
   4744 	bcopy_page(csrcp, cdstp);
   4745 	simple_unlock(&src_md->pvh_slock); /* cache is safe again */
   4746 	xscale_cache_clean_minidata();
   4747 }
   4748 #endif /* ARM_MMU_XSCALE == 1 */
   4749 
   4750 /*
   4751  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4752  *
   4753  * Return the start and end addresses of the kernel's virtual space.
   4754  * These values are setup in pmap_bootstrap and are updated as pages
   4755  * are allocated.
   4756  */
   4757 void
   4758 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4759 {
   4760 	*start = virtual_avail;
   4761 	*end = virtual_end;
   4762 }
   4763 
   4764 /*
   4765  * Helper function for pmap_grow_l2_bucket()
   4766  */
   4767 static inline int
   4768 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4769 {
   4770 	struct l2_bucket *l2b;
   4771 	pt_entry_t *ptep;
   4772 	paddr_t pa;
   4773 
   4774 	if (uvm.page_init_done == false) {
   4775 #ifdef PMAP_STEAL_MEMORY
   4776 		pv_addr_t pv;
   4777 		pmap_boot_pagealloc(PAGE_SIZE,
   4778 #ifdef PMAP_CACHE_VIPT
   4779 		    arm_cache_prefer_mask,
   4780 		    va & arm_cache_prefer_mask,
   4781 #else
   4782 		    0, 0,
   4783 #endif
   4784 		    &pv);
   4785 		pa = pv.pv_pa;
   4786 #else
   4787 		if (uvm_page_physget(&pa) == false)
   4788 			return (1);
   4789 #endif	/* PMAP_STEAL_MEMORY */
   4790 	} else {
   4791 		struct vm_page *pg;
   4792 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4793 		if (pg == NULL)
   4794 			return (1);
   4795 		pa = VM_PAGE_TO_PHYS(pg);
   4796 #ifdef PMAP_CACHE_VIPT
   4797 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4798 		/*
   4799 		 * This new page must not have any mappings.  Enter it via
   4800 		 * pmap_kenter_pa and let that routine do the hard work.
   4801 		 */
   4802 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   4803 		pmap_kenter_pa(va, pa,
   4804 		    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
   4805 #endif
   4806 	}
   4807 
   4808 	if (pap)
   4809 		*pap = pa;
   4810 
   4811 	PMAPCOUNT(pt_mappings);
   4812 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4813 	KDASSERT(l2b != NULL);
   4814 
   4815 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4816 	*ptep = L2_S_PROTO | pa | cache_mode |
   4817 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4818 	PTE_SYNC(ptep);
   4819 	memset((void *)va, 0, PAGE_SIZE);
   4820 	return (0);
   4821 }
   4822 
   4823 /*
   4824  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4825  * used by pmap_growkernel().
   4826  */
   4827 static inline struct l2_bucket *
   4828 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4829 {
   4830 	struct l2_dtable *l2;
   4831 	struct l2_bucket *l2b;
   4832 	u_short l1idx;
   4833 	vaddr_t nva;
   4834 
   4835 	l1idx = L1_IDX(va);
   4836 
   4837 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4838 		/*
   4839 		 * No mapping at this address, as there is
   4840 		 * no entry in the L1 table.
   4841 		 * Need to allocate a new l2_dtable.
   4842 		 */
   4843 		nva = pmap_kernel_l2dtable_kva;
   4844 		if ((nva & PGOFSET) == 0) {
   4845 			/*
   4846 			 * Need to allocate a backing page
   4847 			 */
   4848 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4849 				return (NULL);
   4850 		}
   4851 
   4852 		l2 = (struct l2_dtable *)nva;
   4853 		nva += sizeof(struct l2_dtable);
   4854 
   4855 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4856 			/*
   4857 			 * The new l2_dtable straddles a page boundary.
   4858 			 * Map in another page to cover it.
   4859 			 */
   4860 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4861 				return (NULL);
   4862 		}
   4863 
   4864 		pmap_kernel_l2dtable_kva = nva;
   4865 
   4866 		/*
   4867 		 * Link it into the parent pmap
   4868 		 */
   4869 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4870 	}
   4871 
   4872 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4873 
   4874 	/*
   4875 	 * Fetch pointer to the L2 page table associated with the address.
   4876 	 */
   4877 	if (l2b->l2b_kva == NULL) {
   4878 		pt_entry_t *ptep;
   4879 
   4880 		/*
   4881 		 * No L2 page table has been allocated. Chances are, this
   4882 		 * is because we just allocated the l2_dtable, above.
   4883 		 */
   4884 		nva = pmap_kernel_l2ptp_kva;
   4885 		ptep = (pt_entry_t *)nva;
   4886 		if ((nva & PGOFSET) == 0) {
   4887 			/*
   4888 			 * Need to allocate a backing page
   4889 			 */
   4890 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4891 			    &pmap_kernel_l2ptp_phys))
   4892 				return (NULL);
   4893 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4894 		}
   4895 
   4896 		l2->l2_occupancy++;
   4897 		l2b->l2b_kva = ptep;
   4898 		l2b->l2b_l1idx = l1idx;
   4899 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4900 
   4901 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4902 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4903 	}
   4904 
   4905 	return (l2b);
   4906 }
   4907 
   4908 vaddr_t
   4909 pmap_growkernel(vaddr_t maxkvaddr)
   4910 {
   4911 	pmap_t kpm = pmap_kernel();
   4912 	struct l1_ttable *l1;
   4913 	struct l2_bucket *l2b;
   4914 	pd_entry_t *pl1pd;
   4915 	int s;
   4916 
   4917 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4918 		goto out;		/* we are OK */
   4919 
   4920 	NPDEBUG(PDB_GROWKERN,
   4921 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4922 	    pmap_curmaxkvaddr, maxkvaddr));
   4923 
   4924 	KDASSERT(maxkvaddr <= virtual_end);
   4925 
   4926 	/*
   4927 	 * whoops!   we need to add kernel PTPs
   4928 	 */
   4929 
   4930 	s = splhigh();	/* to be safe */
   4931 	mutex_enter(&kpm->pm_lock);
   4932 
   4933 	/* Map 1MB at a time */
   4934 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4935 
   4936 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4937 		KDASSERT(l2b != NULL);
   4938 
   4939 		/* Distribute new L1 entry to all other L1s */
   4940 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4941 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4942 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4943 			    L1_C_PROTO;
   4944 			PTE_SYNC(pl1pd);
   4945 		}
   4946 	}
   4947 
   4948 	/*
   4949 	 * flush out the cache, expensive but growkernel will happen so
   4950 	 * rarely
   4951 	 */
   4952 	cpu_dcache_wbinv_all();
   4953 	cpu_tlb_flushD();
   4954 	cpu_cpwait();
   4955 
   4956 	mutex_exit(&kpm->pm_lock);
   4957 	splx(s);
   4958 
   4959 out:
   4960 	return (pmap_curmaxkvaddr);
   4961 }
   4962 
   4963 /************************ Utility routines ****************************/
   4964 
   4965 /*
   4966  * vector_page_setprot:
   4967  *
   4968  *	Manipulate the protection of the vector page.
   4969  */
   4970 void
   4971 vector_page_setprot(int prot)
   4972 {
   4973 	struct l2_bucket *l2b;
   4974 	pt_entry_t *ptep;
   4975 
   4976 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4977 	KDASSERT(l2b != NULL);
   4978 
   4979 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4980 
   4981 	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4982 	PTE_SYNC(ptep);
   4983 	cpu_tlb_flushD_SE(vector_page);
   4984 	cpu_cpwait();
   4985 }
   4986 
   4987 /*
   4988  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4989  * Returns true if the mapping exists, else false.
   4990  *
   4991  * NOTE: This function is only used by a couple of arm-specific modules.
   4992  * It is not safe to take any pmap locks here, since we could be right
   4993  * in the middle of debugging the pmap anyway...
   4994  *
   4995  * It is possible for this routine to return false even though a valid
   4996  * mapping does exist. This is because we don't lock, so the metadata
   4997  * state may be inconsistent.
   4998  *
   4999  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5000  * a "section" mapping.
   5001  */
   5002 bool
   5003 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5004 {
   5005 	struct l2_dtable *l2;
   5006 	pd_entry_t *pl1pd, l1pd;
   5007 	pt_entry_t *ptep;
   5008 	u_short l1idx;
   5009 
   5010 	if (pm->pm_l1 == NULL)
   5011 		return false;
   5012 
   5013 	l1idx = L1_IDX(va);
   5014 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   5015 	l1pd = *pl1pd;
   5016 
   5017 	if (l1pte_section_p(l1pd)) {
   5018 		*ptp = NULL;
   5019 		return true;
   5020 	}
   5021 
   5022 	if (pm->pm_l2 == NULL)
   5023 		return false;
   5024 
   5025 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5026 
   5027 	if (l2 == NULL ||
   5028 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5029 		return false;
   5030 	}
   5031 
   5032 	*ptp = &ptep[l2pte_index(va)];
   5033 	return true;
   5034 }
   5035 
   5036 bool
   5037 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5038 {
   5039 	u_short l1idx;
   5040 
   5041 	if (pm->pm_l1 == NULL)
   5042 		return false;
   5043 
   5044 	l1idx = L1_IDX(va);
   5045 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   5046 
   5047 	return true;
   5048 }
   5049 
   5050 /************************ Bootstrapping routines ****************************/
   5051 
   5052 static void
   5053 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5054 {
   5055 	int i;
   5056 
   5057 	l1->l1_kva = l1pt;
   5058 	l1->l1_domain_use_count = 0;
   5059 	l1->l1_domain_first = 0;
   5060 
   5061 	for (i = 0; i < PMAP_DOMAINS; i++)
   5062 		l1->l1_domain_free[i] = i + 1;
   5063 
   5064 	/*
   5065 	 * Copy the kernel's L1 entries to each new L1.
   5066 	 */
   5067 	if (pmap_initialized)
   5068 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   5069 
   5070 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5071 	    &l1->l1_physaddr) == false)
   5072 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5073 
   5074 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5075 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5076 }
   5077 
   5078 /*
   5079  * pmap_bootstrap() is called from the board-specific initarm() routine
   5080  * once the kernel L1/L2 descriptors tables have been set up.
   5081  *
   5082  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5083  * spread over a number of disparate files/functions.
   5084  *
   5085  * We are passed the following parameters
   5086  *  - kernel_l1pt
   5087  *    This is a pointer to the base of the kernel's L1 translation table.
   5088  *  - vstart
   5089  *    1MB-aligned start of managed kernel virtual memory.
   5090  *  - vend
   5091  *    1MB-aligned end of managed kernel virtual memory.
   5092  *
   5093  * We use the first parameter to build the metadata (struct l1_ttable and
   5094  * struct l2_dtable) necessary to track kernel mappings.
   5095  */
   5096 #define	PMAP_STATIC_L2_SIZE 16
   5097 void
   5098 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5099 {
   5100 	static struct l1_ttable static_l1;
   5101 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5102 	struct l1_ttable *l1 = &static_l1;
   5103 	struct l2_dtable *l2;
   5104 	struct l2_bucket *l2b;
   5105 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5106 	pmap_t pm = pmap_kernel();
   5107 	pd_entry_t pde;
   5108 	pt_entry_t *ptep;
   5109 	paddr_t pa;
   5110 	vaddr_t va;
   5111 	vsize_t size;
   5112 	int nptes, l1idx, l2idx, l2next = 0;
   5113 
   5114 	/*
   5115 	 * Initialise the kernel pmap object
   5116 	 */
   5117 	pm->pm_l1 = l1;
   5118 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5119 	pm->pm_activated = true;
   5120 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5121 	UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
   5122 
   5123 	/*
   5124 	 * Scan the L1 translation table created by initarm() and create
   5125 	 * the required metadata for all valid mappings found in it.
   5126 	 */
   5127 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5128 		pde = l1pt[l1idx];
   5129 
   5130 		/*
   5131 		 * We're only interested in Coarse mappings.
   5132 		 * pmap_extract() can deal with section mappings without
   5133 		 * recourse to checking L2 metadata.
   5134 		 */
   5135 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5136 			continue;
   5137 
   5138 		/*
   5139 		 * Lookup the KVA of this L2 descriptor table
   5140 		 */
   5141 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5142 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5143 		if (ptep == NULL) {
   5144 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5145 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5146 		}
   5147 
   5148 		/*
   5149 		 * Fetch the associated L2 metadata structure.
   5150 		 * Allocate a new one if necessary.
   5151 		 */
   5152 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5153 			if (l2next == PMAP_STATIC_L2_SIZE)
   5154 				panic("pmap_bootstrap: out of static L2s");
   5155 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5156 		}
   5157 
   5158 		/*
   5159 		 * One more L1 slot tracked...
   5160 		 */
   5161 		l2->l2_occupancy++;
   5162 
   5163 		/*
   5164 		 * Fill in the details of the L2 descriptor in the
   5165 		 * appropriate bucket.
   5166 		 */
   5167 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5168 		l2b->l2b_kva = ptep;
   5169 		l2b->l2b_phys = pa;
   5170 		l2b->l2b_l1idx = l1idx;
   5171 
   5172 		/*
   5173 		 * Establish an initial occupancy count for this descriptor
   5174 		 */
   5175 		for (l2idx = 0;
   5176 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5177 		    l2idx++) {
   5178 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5179 				l2b->l2b_occupancy++;
   5180 			}
   5181 		}
   5182 
   5183 		/*
   5184 		 * Make sure the descriptor itself has the correct cache mode.
   5185 		 * If not, fix it, but whine about the problem. Port-meisters
   5186 		 * should consider this a clue to fix up their initarm()
   5187 		 * function. :)
   5188 		 */
   5189 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5190 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5191 			    "L2 pte @ %p\n", ptep);
   5192 		}
   5193 	}
   5194 
   5195 	/*
   5196 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5197 	 * a page table. Bitch if it is not correctly set.
   5198 	 */
   5199 	for (va = (vaddr_t)l1pt;
   5200 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5201 		if (pmap_set_pt_cache_mode(l1pt, va))
   5202 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5203 			    "primary L1 @ 0x%lx\n", va);
   5204 	}
   5205 
   5206 	cpu_dcache_wbinv_all();
   5207 	cpu_tlb_flushID();
   5208 	cpu_cpwait();
   5209 
   5210 	/*
   5211 	 * now we allocate the "special" VAs which are used for tmp mappings
   5212 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5213 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5214 	 *
   5215 	 * Managed KVM space start from wherever initarm() tells us.
   5216 	 */
   5217 	virtual_avail = vstart;
   5218 	virtual_end = vend;
   5219 
   5220 #ifdef PMAP_CACHE_VIPT
   5221 	/*
   5222 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5223 	 * page so we won't violate cache aliasing rules.
   5224 	 */
   5225 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5226 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5227 #else
   5228 	nptes = 1;
   5229 #endif
   5230 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5231 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5232 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5233 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5234 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5235 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5236 	    (void *)&msgbufaddr, NULL);
   5237 
   5238 	/*
   5239 	 * Allocate a range of kernel virtual address space to be used
   5240 	 * for L2 descriptor tables and metadata allocation in
   5241 	 * pmap_growkernel().
   5242 	 */
   5243 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5244 	pmap_alloc_specials(&virtual_avail,
   5245 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5246 	    &pmap_kernel_l2ptp_kva, NULL);
   5247 
   5248 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5249 	pmap_alloc_specials(&virtual_avail,
   5250 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5251 	    &pmap_kernel_l2dtable_kva, NULL);
   5252 
   5253 	/*
   5254 	 * init the static-global locks and global pmap list.
   5255 	 */
   5256 	/* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
   5257 
   5258 	/*
   5259 	 * We can now initialise the first L1's metadata.
   5260 	 */
   5261 	SLIST_INIT(&l1_list);
   5262 	TAILQ_INIT(&l1_lru_list);
   5263 	simple_lock_init(&l1_lru_lock);
   5264 	pmap_init_l1(l1, l1pt);
   5265 
   5266 	/* Set up vector page L1 details, if necessary */
   5267 	if (vector_page < KERNEL_BASE) {
   5268 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5269 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5270 		KDASSERT(l2b != NULL);
   5271 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5272 		    L1_C_DOM(pm->pm_domain);
   5273 	} else
   5274 		pm->pm_pl1vec = NULL;
   5275 
   5276 	/*
   5277 	 * Initialize the pmap cache
   5278 	 */
   5279 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5280 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5281 	LIST_INIT(&pmap_pmaps);
   5282 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5283 
   5284 	/*
   5285 	 * Initialize the pv pool.
   5286 	 */
   5287 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5288 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5289 
   5290 	/*
   5291 	 * Initialize the L2 dtable pool and cache.
   5292 	 */
   5293 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5294 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5295 
   5296 	/*
   5297 	 * Initialise the L2 descriptor table pool and cache
   5298 	 */
   5299 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5300 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5301 	    pmap_l2ptp_ctor, NULL, NULL);
   5302 
   5303 	cpu_dcache_wbinv_all();
   5304 }
   5305 
   5306 static int
   5307 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5308 {
   5309 	pd_entry_t *pdep, pde;
   5310 	pt_entry_t *ptep, pte;
   5311 	vaddr_t pa;
   5312 	int rv = 0;
   5313 
   5314 	/*
   5315 	 * Make sure the descriptor itself has the correct cache mode
   5316 	 */
   5317 	pdep = &kl1[L1_IDX(va)];
   5318 	pde = *pdep;
   5319 
   5320 	if (l1pte_section_p(pde)) {
   5321 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5322 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5323 			    pte_l1_s_cache_mode_pt;
   5324 			PTE_SYNC(pdep);
   5325 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5326 			rv = 1;
   5327 		}
   5328 	} else {
   5329 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5330 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5331 		if (ptep == NULL)
   5332 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5333 
   5334 		ptep = &ptep[l2pte_index(va)];
   5335 		pte = *ptep;
   5336 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5337 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5338 			    pte_l2_s_cache_mode_pt;
   5339 			PTE_SYNC(ptep);
   5340 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5341 			rv = 1;
   5342 		}
   5343 	}
   5344 
   5345 	return (rv);
   5346 }
   5347 
   5348 static void
   5349 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5350 {
   5351 	vaddr_t va = *availp;
   5352 	struct l2_bucket *l2b;
   5353 
   5354 	if (ptep) {
   5355 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5356 		if (l2b == NULL)
   5357 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5358 
   5359 		if (ptep)
   5360 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5361 	}
   5362 
   5363 	*vap = va;
   5364 	*availp = va + (PAGE_SIZE * pages);
   5365 }
   5366 
   5367 void
   5368 pmap_init(void)
   5369 {
   5370 
   5371 	/*
   5372 	 * Set the available memory vars - These do not map to real memory
   5373 	 * addresses and cannot as the physical memory is fragmented.
   5374 	 * They are used by ps for %mem calculations.
   5375 	 * One could argue whether this should be the entire memory or just
   5376 	 * the memory that is useable in a user process.
   5377 	 */
   5378 	avail_start = ptoa(vm_physmem[0].start);
   5379 	avail_end = ptoa(vm_physmem[vm_nphysseg - 1].end);
   5380 
   5381 	/*
   5382 	 * Now we need to free enough pv_entry structures to allow us to get
   5383 	 * the kmem_map/kmem_object allocated and inited (done after this
   5384 	 * function is finished).  to do this we allocate one bootstrap page out
   5385 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5386 	 * structures.   we never free this page.
   5387 	 */
   5388 	pool_setlowat(&pmap_pv_pool,
   5389 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5390 
   5391 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5392 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5393 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5394 
   5395 	pmap_initialized = true;
   5396 }
   5397 
   5398 static vaddr_t last_bootstrap_page = 0;
   5399 static void *free_bootstrap_pages = NULL;
   5400 
   5401 static void *
   5402 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5403 {
   5404 	extern void *pool_page_alloc(struct pool *, int);
   5405 	vaddr_t new_page;
   5406 	void *rv;
   5407 
   5408 	if (pmap_initialized)
   5409 		return (pool_page_alloc(pp, flags));
   5410 
   5411 	if (free_bootstrap_pages) {
   5412 		rv = free_bootstrap_pages;
   5413 		free_bootstrap_pages = *((void **)rv);
   5414 		return (rv);
   5415 	}
   5416 
   5417 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5418 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5419 
   5420 	KASSERT(new_page > last_bootstrap_page);
   5421 	last_bootstrap_page = new_page;
   5422 	return ((void *)new_page);
   5423 }
   5424 
   5425 static void
   5426 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5427 {
   5428 	extern void pool_page_free(struct pool *, void *);
   5429 
   5430 	if ((vaddr_t)v <= last_bootstrap_page) {
   5431 		*((void **)v) = free_bootstrap_pages;
   5432 		free_bootstrap_pages = v;
   5433 		return;
   5434 	}
   5435 
   5436 	if (pmap_initialized) {
   5437 		pool_page_free(pp, v);
   5438 		return;
   5439 	}
   5440 }
   5441 
   5442 /*
   5443  * pmap_postinit()
   5444  *
   5445  * This routine is called after the vm and kmem subsystems have been
   5446  * initialised. This allows the pmap code to perform any initialisation
   5447  * that can only be done one the memory allocation is in place.
   5448  */
   5449 void
   5450 pmap_postinit(void)
   5451 {
   5452 	extern paddr_t physical_start, physical_end;
   5453 	struct l2_bucket *l2b;
   5454 	struct l1_ttable *l1;
   5455 	struct pglist plist;
   5456 	struct vm_page *m;
   5457 	pd_entry_t *pl1pt;
   5458 	pt_entry_t *ptep, pte;
   5459 	vaddr_t va, eva;
   5460 	u_int loop, needed;
   5461 	int error;
   5462 
   5463 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5464 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5465 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5466 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5467 
   5468 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5469 	needed -= 1;
   5470 
   5471 	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
   5472 
   5473 	for (loop = 0; loop < needed; loop++, l1++) {
   5474 		/* Allocate a L1 page table */
   5475 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5476 		if (va == 0)
   5477 			panic("Cannot allocate L1 KVM");
   5478 
   5479 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5480 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
   5481 		if (error)
   5482 			panic("Cannot allocate L1 physical pages");
   5483 
   5484 		m = TAILQ_FIRST(&plist);
   5485 		eva = va + L1_TABLE_SIZE;
   5486 		pl1pt = (pd_entry_t *)va;
   5487 
   5488 		while (m && va < eva) {
   5489 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5490 
   5491 			pmap_kenter_pa(va, pa,
   5492 			    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
   5493 
   5494 			/*
   5495 			 * Make sure the L1 descriptor table is mapped
   5496 			 * with the cache-mode set to write-through.
   5497 			 */
   5498 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5499 			KDASSERT(l2b != NULL);
   5500 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5501 			pte = *ptep;
   5502 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5503 			*ptep = pte;
   5504 			PTE_SYNC(ptep);
   5505 			cpu_tlb_flushD_SE(va);
   5506 
   5507 			va += PAGE_SIZE;
   5508 			m = TAILQ_NEXT(m, pageq.queue);
   5509 		}
   5510 
   5511 #ifdef DIAGNOSTIC
   5512 		if (m)
   5513 			panic("pmap_alloc_l1pt: pglist not empty");
   5514 #endif	/* DIAGNOSTIC */
   5515 
   5516 		pmap_init_l1(l1, pl1pt);
   5517 	}
   5518 
   5519 #ifdef DEBUG
   5520 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5521 	    needed);
   5522 #endif
   5523 }
   5524 
   5525 /*
   5526  * Note that the following routines are used by board-specific initialisation
   5527  * code to configure the initial kernel page tables.
   5528  *
   5529  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5530  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5531  * behaviour of the old pmap, and provides an easy migration path for
   5532  * initial bring-up of the new pmap on existing ports. Fortunately,
   5533  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5534  * will be deprecated.
   5535  *
   5536  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5537  * tables.
   5538  */
   5539 
   5540 /*
   5541  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5542  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5543  * find them as necessary.
   5544  *
   5545  * Note that the data on this list MUST remain valid after initarm() returns,
   5546  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5547  */
   5548 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5549 
   5550 static vaddr_t
   5551 kernel_pt_lookup(paddr_t pa)
   5552 {
   5553 	pv_addr_t *pv;
   5554 
   5555 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5556 #ifndef ARM32_NEW_VM_LAYOUT
   5557 		if (pv->pv_pa == (pa & ~PGOFSET))
   5558 			return (pv->pv_va | (pa & PGOFSET));
   5559 #else
   5560 		if (pv->pv_pa == pa)
   5561 			return (pv->pv_va);
   5562 #endif
   5563 	}
   5564 	return (0);
   5565 }
   5566 
   5567 /*
   5568  * pmap_map_section:
   5569  *
   5570  *	Create a single section mapping.
   5571  */
   5572 void
   5573 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5574 {
   5575 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5576 	pd_entry_t fl;
   5577 
   5578 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5579 
   5580 	switch (cache) {
   5581 	case PTE_NOCACHE:
   5582 	default:
   5583 		fl = 0;
   5584 		break;
   5585 
   5586 	case PTE_CACHE:
   5587 		fl = pte_l1_s_cache_mode;
   5588 		break;
   5589 
   5590 	case PTE_PAGETABLE:
   5591 		fl = pte_l1_s_cache_mode_pt;
   5592 		break;
   5593 	}
   5594 
   5595 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5596 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5597 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5598 }
   5599 
   5600 /*
   5601  * pmap_map_entry:
   5602  *
   5603  *	Create a single page mapping.
   5604  */
   5605 void
   5606 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5607 {
   5608 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5609 	pt_entry_t fl;
   5610 	pt_entry_t *pte;
   5611 
   5612 	KASSERT(((va | pa) & PGOFSET) == 0);
   5613 
   5614 	switch (cache) {
   5615 	case PTE_NOCACHE:
   5616 	default:
   5617 		fl = 0;
   5618 		break;
   5619 
   5620 	case PTE_CACHE:
   5621 		fl = pte_l2_s_cache_mode;
   5622 		break;
   5623 
   5624 	case PTE_PAGETABLE:
   5625 		fl = pte_l2_s_cache_mode_pt;
   5626 		break;
   5627 	}
   5628 
   5629 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5630 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5631 
   5632 #ifndef ARM32_NEW_VM_LAYOUT
   5633 	pte = (pt_entry_t *)
   5634 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5635 #else
   5636 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5637 #endif
   5638 	if (pte == NULL)
   5639 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5640 
   5641 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5642 #ifndef ARM32_NEW_VM_LAYOUT
   5643 	pte += (va >> PGSHIFT) & 0x3ff;
   5644 #else
   5645 	pte += l2pte_index(va);
   5646 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5647 #endif
   5648 	*pte = fl;
   5649 	PTE_SYNC(pte);
   5650 }
   5651 
   5652 /*
   5653  * pmap_link_l2pt:
   5654  *
   5655  *	Link the L2 page table specified by "l2pv" into the L1
   5656  *	page table at the slot for "va".
   5657  */
   5658 void
   5659 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5660 {
   5661 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5662 	u_int slot = va >> L1_S_SHIFT;
   5663 
   5664 #ifndef ARM32_NEW_VM_LAYOUT
   5665 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5666 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5667 #endif
   5668 
   5669 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5670 
   5671 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5672 #ifdef ARM32_NEW_VM_LAYOUT
   5673 	PTE_SYNC(&pde[slot]);
   5674 #else
   5675 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5676 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5677 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5678 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5679 #endif
   5680 
   5681 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5682 }
   5683 
   5684 /*
   5685  * pmap_map_chunk:
   5686  *
   5687  *	Map a chunk of memory using the most efficient mappings
   5688  *	possible (section, large page, small page) into the
   5689  *	provided L1 and L2 tables at the specified virtual address.
   5690  */
   5691 vsize_t
   5692 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5693     int prot, int cache)
   5694 {
   5695 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5696 	pt_entry_t *pte, f1, f2s, f2l;
   5697 	vsize_t resid;
   5698 	int i;
   5699 
   5700 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5701 
   5702 	if (l1pt == 0)
   5703 		panic("pmap_map_chunk: no L1 table provided");
   5704 
   5705 #ifdef VERBOSE_INIT_ARM
   5706 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5707 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5708 #endif
   5709 
   5710 	switch (cache) {
   5711 	case PTE_NOCACHE:
   5712 	default:
   5713 		f1 = 0;
   5714 		f2l = 0;
   5715 		f2s = 0;
   5716 		break;
   5717 
   5718 	case PTE_CACHE:
   5719 		f1 = pte_l1_s_cache_mode;
   5720 		f2l = pte_l2_l_cache_mode;
   5721 		f2s = pte_l2_s_cache_mode;
   5722 		break;
   5723 
   5724 	case PTE_PAGETABLE:
   5725 		f1 = pte_l1_s_cache_mode_pt;
   5726 		f2l = pte_l2_l_cache_mode_pt;
   5727 		f2s = pte_l2_s_cache_mode_pt;
   5728 		break;
   5729 	}
   5730 
   5731 	size = resid;
   5732 
   5733 	while (resid > 0) {
   5734 		/* See if we can use a section mapping. */
   5735 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5736 #ifdef VERBOSE_INIT_ARM
   5737 			printf("S");
   5738 #endif
   5739 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5740 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5741 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5742 			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5743 			va += L1_S_SIZE;
   5744 			pa += L1_S_SIZE;
   5745 			resid -= L1_S_SIZE;
   5746 			continue;
   5747 		}
   5748 
   5749 		/*
   5750 		 * Ok, we're going to use an L2 table.  Make sure
   5751 		 * one is actually in the corresponding L1 slot
   5752 		 * for the current VA.
   5753 		 */
   5754 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5755 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5756 
   5757 #ifndef ARM32_NEW_VM_LAYOUT
   5758 		pte = (pt_entry_t *)
   5759 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5760 #else
   5761 		pte = (pt_entry_t *) kernel_pt_lookup(
   5762 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5763 #endif
   5764 		if (pte == NULL)
   5765 			panic("pmap_map_chunk: can't find L2 table for VA"
   5766 			    "0x%08lx", va);
   5767 
   5768 		/* See if we can use a L2 large page mapping. */
   5769 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5770 #ifdef VERBOSE_INIT_ARM
   5771 			printf("L");
   5772 #endif
   5773 			for (i = 0; i < 16; i++) {
   5774 #ifndef ARM32_NEW_VM_LAYOUT
   5775 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5776 				    L2_L_PROTO | pa |
   5777 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5778 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5779 #else
   5780 				pte[l2pte_index(va) + i] =
   5781 				    L2_L_PROTO | pa |
   5782 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5783 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5784 #endif
   5785 			}
   5786 			va += L2_L_SIZE;
   5787 			pa += L2_L_SIZE;
   5788 			resid -= L2_L_SIZE;
   5789 			continue;
   5790 		}
   5791 
   5792 		/* Use a small page mapping. */
   5793 #ifdef VERBOSE_INIT_ARM
   5794 		printf("P");
   5795 #endif
   5796 #ifndef ARM32_NEW_VM_LAYOUT
   5797 		pte[(va >> PGSHIFT) & 0x3ff] =
   5798 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5799 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5800 #else
   5801 		pte[l2pte_index(va)] =
   5802 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5803 		PTE_SYNC(&pte[l2pte_index(va)]);
   5804 #endif
   5805 		va += PAGE_SIZE;
   5806 		pa += PAGE_SIZE;
   5807 		resid -= PAGE_SIZE;
   5808 	}
   5809 #ifdef VERBOSE_INIT_ARM
   5810 	printf("\n");
   5811 #endif
   5812 	return (size);
   5813 }
   5814 
   5815 /********************** Static device map routines ***************************/
   5816 
   5817 static const struct pmap_devmap *pmap_devmap_table;
   5818 
   5819 /*
   5820  * Register the devmap table.  This is provided in case early console
   5821  * initialization needs to register mappings created by bootstrap code
   5822  * before pmap_devmap_bootstrap() is called.
   5823  */
   5824 void
   5825 pmap_devmap_register(const struct pmap_devmap *table)
   5826 {
   5827 
   5828 	pmap_devmap_table = table;
   5829 }
   5830 
   5831 /*
   5832  * Map all of the static regions in the devmap table, and remember
   5833  * the devmap table so other parts of the kernel can look up entries
   5834  * later.
   5835  */
   5836 void
   5837 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5838 {
   5839 	int i;
   5840 
   5841 	pmap_devmap_table = table;
   5842 
   5843 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5844 #ifdef VERBOSE_INIT_ARM
   5845 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5846 		    pmap_devmap_table[i].pd_pa,
   5847 		    pmap_devmap_table[i].pd_pa +
   5848 			pmap_devmap_table[i].pd_size - 1,
   5849 		    pmap_devmap_table[i].pd_va);
   5850 #endif
   5851 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5852 		    pmap_devmap_table[i].pd_pa,
   5853 		    pmap_devmap_table[i].pd_size,
   5854 		    pmap_devmap_table[i].pd_prot,
   5855 		    pmap_devmap_table[i].pd_cache);
   5856 	}
   5857 }
   5858 
   5859 const struct pmap_devmap *
   5860 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5861 {
   5862 	uint64_t endpa;
   5863 	int i;
   5864 
   5865 	if (pmap_devmap_table == NULL)
   5866 		return (NULL);
   5867 
   5868 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5869 
   5870 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5871 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5872 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5873 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5874 			return (&pmap_devmap_table[i]);
   5875 	}
   5876 
   5877 	return (NULL);
   5878 }
   5879 
   5880 const struct pmap_devmap *
   5881 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5882 {
   5883 	int i;
   5884 
   5885 	if (pmap_devmap_table == NULL)
   5886 		return (NULL);
   5887 
   5888 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5889 		if (va >= pmap_devmap_table[i].pd_va &&
   5890 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5891 				     pmap_devmap_table[i].pd_size - 1)
   5892 			return (&pmap_devmap_table[i]);
   5893 	}
   5894 
   5895 	return (NULL);
   5896 }
   5897 
   5898 /********************** PTE initialization routines **************************/
   5899 
   5900 /*
   5901  * These routines are called when the CPU type is identified to set up
   5902  * the PTE prototypes, cache modes, etc.
   5903  *
   5904  * The variables are always here, just in case modules need to reference
   5905  * them (though, they shouldn't).
   5906  */
   5907 
   5908 pt_entry_t	pte_l1_s_cache_mode;
   5909 pt_entry_t	pte_l1_s_cache_mode_pt;
   5910 pt_entry_t	pte_l1_s_cache_mask;
   5911 
   5912 pt_entry_t	pte_l2_l_cache_mode;
   5913 pt_entry_t	pte_l2_l_cache_mode_pt;
   5914 pt_entry_t	pte_l2_l_cache_mask;
   5915 
   5916 pt_entry_t	pte_l2_s_cache_mode;
   5917 pt_entry_t	pte_l2_s_cache_mode_pt;
   5918 pt_entry_t	pte_l2_s_cache_mask;
   5919 
   5920 pt_entry_t	pte_l2_s_prot_u;
   5921 pt_entry_t	pte_l2_s_prot_w;
   5922 pt_entry_t	pte_l2_s_prot_mask;
   5923 
   5924 pt_entry_t	pte_l1_s_proto;
   5925 pt_entry_t	pte_l1_c_proto;
   5926 pt_entry_t	pte_l2_s_proto;
   5927 
   5928 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5929 void		(*pmap_zero_page_func)(paddr_t);
   5930 
   5931 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
   5932 void
   5933 pmap_pte_init_generic(void)
   5934 {
   5935 
   5936 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5937 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5938 
   5939 	pte_l2_l_cache_mode = L2_B|L2_C;
   5940 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5941 
   5942 	pte_l2_s_cache_mode = L2_B|L2_C;
   5943 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5944 
   5945 	/*
   5946 	 * If we have a write-through cache, set B and C.  If
   5947 	 * we have a write-back cache, then we assume setting
   5948 	 * only C will make those pages write-through.
   5949 	 */
   5950 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
   5951 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   5952 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   5953 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   5954 	} else {
   5955 #if ARM_MMU_V6 > 1
   5956 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
   5957 		pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5958 		pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
   5959 #else
   5960 		pte_l1_s_cache_mode_pt = L1_S_C;
   5961 		pte_l2_l_cache_mode_pt = L2_C;
   5962 		pte_l2_s_cache_mode_pt = L2_C;
   5963 #endif
   5964 	}
   5965 
   5966 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   5967 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   5968 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   5969 
   5970 	pte_l1_s_proto = L1_S_PROTO_generic;
   5971 	pte_l1_c_proto = L1_C_PROTO_generic;
   5972 	pte_l2_s_proto = L2_S_PROTO_generic;
   5973 
   5974 	pmap_copy_page_func = pmap_copy_page_generic;
   5975 	pmap_zero_page_func = pmap_zero_page_generic;
   5976 }
   5977 
   5978 #if defined(CPU_ARM8)
   5979 void
   5980 pmap_pte_init_arm8(void)
   5981 {
   5982 
   5983 	/*
   5984 	 * ARM8 is compatible with generic, but we need to use
   5985 	 * the page tables uncached.
   5986 	 */
   5987 	pmap_pte_init_generic();
   5988 
   5989 	pte_l1_s_cache_mode_pt = 0;
   5990 	pte_l2_l_cache_mode_pt = 0;
   5991 	pte_l2_s_cache_mode_pt = 0;
   5992 }
   5993 #endif /* CPU_ARM8 */
   5994 
   5995 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   5996 void
   5997 pmap_pte_init_arm9(void)
   5998 {
   5999 
   6000 	/*
   6001 	 * ARM9 is compatible with generic, but we want to use
   6002 	 * write-through caching for now.
   6003 	 */
   6004 	pmap_pte_init_generic();
   6005 
   6006 	pte_l1_s_cache_mode = L1_S_C;
   6007 	pte_l2_l_cache_mode = L2_C;
   6008 	pte_l2_s_cache_mode = L2_C;
   6009 
   6010 	pte_l1_s_cache_mode_pt = L1_S_C;
   6011 	pte_l2_l_cache_mode_pt = L2_C;
   6012 	pte_l2_s_cache_mode_pt = L2_C;
   6013 }
   6014 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6015 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6016 
   6017 #if defined(CPU_ARM10)
   6018 void
   6019 pmap_pte_init_arm10(void)
   6020 {
   6021 
   6022 	/*
   6023 	 * ARM10 is compatible with generic, but we want to use
   6024 	 * write-through caching for now.
   6025 	 */
   6026 	pmap_pte_init_generic();
   6027 
   6028 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6029 	pte_l2_l_cache_mode = L2_B | L2_C;
   6030 	pte_l2_s_cache_mode = L2_B | L2_C;
   6031 
   6032 	pte_l1_s_cache_mode_pt = L1_S_C;
   6033 	pte_l2_l_cache_mode_pt = L2_C;
   6034 	pte_l2_s_cache_mode_pt = L2_C;
   6035 
   6036 }
   6037 #endif /* CPU_ARM10 */
   6038 
   6039 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6040 void
   6041 pmap_pte_init_arm11(void)
   6042 {
   6043 
   6044 	/*
   6045 	 * ARM11 is compatible with generic, but we want to use
   6046 	 * write-through caching for now.
   6047 	 */
   6048 	pmap_pte_init_generic();
   6049 
   6050 	pte_l1_s_cache_mode = L1_S_C;
   6051 	pte_l2_l_cache_mode = L2_C;
   6052 	pte_l2_s_cache_mode = L2_C;
   6053 
   6054 	pte_l1_s_cache_mode_pt = L1_S_C;
   6055 	pte_l2_l_cache_mode_pt = L2_C;
   6056 	pte_l2_s_cache_mode_pt = L2_C;
   6057 }
   6058 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6059 
   6060 #if ARM_MMU_SA1 == 1
   6061 void
   6062 pmap_pte_init_sa1(void)
   6063 {
   6064 
   6065 	/*
   6066 	 * The StrongARM SA-1 cache does not have a write-through
   6067 	 * mode.  So, do the generic initialization, then reset
   6068 	 * the page table cache mode to B=1,C=1, and note that
   6069 	 * the PTEs need to be sync'd.
   6070 	 */
   6071 	pmap_pte_init_generic();
   6072 
   6073 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6074 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6075 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6076 
   6077 	pmap_needs_pte_sync = 1;
   6078 }
   6079 #endif /* ARM_MMU_SA1 == 1*/
   6080 
   6081 #if ARM_MMU_XSCALE == 1
   6082 #if (ARM_NMMUS > 1)
   6083 static u_int xscale_use_minidata;
   6084 #endif
   6085 
   6086 void
   6087 pmap_pte_init_xscale(void)
   6088 {
   6089 	uint32_t auxctl;
   6090 	int write_through = 0;
   6091 
   6092 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6093 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6094 
   6095 	pte_l2_l_cache_mode = L2_B|L2_C;
   6096 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6097 
   6098 	pte_l2_s_cache_mode = L2_B|L2_C;
   6099 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6100 
   6101 	pte_l1_s_cache_mode_pt = L1_S_C;
   6102 	pte_l2_l_cache_mode_pt = L2_C;
   6103 	pte_l2_s_cache_mode_pt = L2_C;
   6104 
   6105 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6106 	/*
   6107 	 * The XScale core has an enhanced mode where writes that
   6108 	 * miss the cache cause a cache line to be allocated.  This
   6109 	 * is significantly faster than the traditional, write-through
   6110 	 * behavior of this case.
   6111 	 */
   6112 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6113 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6114 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6115 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6116 
   6117 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6118 	/*
   6119 	 * Some versions of the XScale core have various bugs in
   6120 	 * their cache units, the work-around for which is to run
   6121 	 * the cache in write-through mode.  Unfortunately, this
   6122 	 * has a major (negative) impact on performance.  So, we
   6123 	 * go ahead and run fast-and-loose, in the hopes that we
   6124 	 * don't line up the planets in a way that will trip the
   6125 	 * bugs.
   6126 	 *
   6127 	 * However, we give you the option to be slow-but-correct.
   6128 	 */
   6129 	write_through = 1;
   6130 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6131 	/* force write back cache mode */
   6132 	write_through = 0;
   6133 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6134 	/*
   6135 	 * Intel PXA2[15]0 processors are known to have a bug in
   6136 	 * write-back cache on revision 4 and earlier (stepping
   6137 	 * A[01] and B[012]).  Fixed for C0 and later.
   6138 	 */
   6139 	{
   6140 		uint32_t id, type;
   6141 
   6142 		id = cpufunc_id();
   6143 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6144 
   6145 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6146 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6147 				/* write through for stepping A0-1 and B0-2 */
   6148 				write_through = 1;
   6149 			}
   6150 		}
   6151 	}
   6152 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6153 
   6154 	if (write_through) {
   6155 		pte_l1_s_cache_mode = L1_S_C;
   6156 		pte_l2_l_cache_mode = L2_C;
   6157 		pte_l2_s_cache_mode = L2_C;
   6158 	}
   6159 
   6160 #if (ARM_NMMUS > 1)
   6161 	xscale_use_minidata = 1;
   6162 #endif
   6163 
   6164 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6165 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6166 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6167 
   6168 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6169 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6170 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6171 
   6172 	pmap_copy_page_func = pmap_copy_page_xscale;
   6173 	pmap_zero_page_func = pmap_zero_page_xscale;
   6174 
   6175 	/*
   6176 	 * Disable ECC protection of page table access, for now.
   6177 	 */
   6178 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6179 	auxctl &= ~XSCALE_AUXCTL_P;
   6180 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6181 }
   6182 
   6183 /*
   6184  * xscale_setup_minidata:
   6185  *
   6186  *	Set up the mini-data cache clean area.  We require the
   6187  *	caller to allocate the right amount of physically and
   6188  *	virtually contiguous space.
   6189  */
   6190 void
   6191 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6192 {
   6193 	extern vaddr_t xscale_minidata_clean_addr;
   6194 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6195 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6196 	pt_entry_t *pte;
   6197 	vsize_t size;
   6198 	uint32_t auxctl;
   6199 
   6200 	xscale_minidata_clean_addr = va;
   6201 
   6202 	/* Round it to page size. */
   6203 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6204 
   6205 	for (; size != 0;
   6206 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6207 #ifndef ARM32_NEW_VM_LAYOUT
   6208 		pte = (pt_entry_t *)
   6209 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6210 #else
   6211 		pte = (pt_entry_t *) kernel_pt_lookup(
   6212 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6213 #endif
   6214 		if (pte == NULL)
   6215 			panic("xscale_setup_minidata: can't find L2 table for "
   6216 			    "VA 0x%08lx", va);
   6217 #ifndef ARM32_NEW_VM_LAYOUT
   6218 		pte[(va >> PGSHIFT) & 0x3ff] =
   6219 #else
   6220 		pte[l2pte_index(va)] =
   6221 #endif
   6222 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6223 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6224 	}
   6225 
   6226 	/*
   6227 	 * Configure the mini-data cache for write-back with
   6228 	 * read/write-allocate.
   6229 	 *
   6230 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6231 	 * make sure it contains no valid data!  In order to do that,
   6232 	 * we must issue a global data cache invalidate command!
   6233 	 *
   6234 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6235 	 * THIS IS VERY IMPORTANT!
   6236 	 */
   6237 
   6238 	/* Invalidate data and mini-data. */
   6239 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6240 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6241 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6242 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6243 }
   6244 
   6245 /*
   6246  * Change the PTEs for the specified kernel mappings such that they
   6247  * will use the mini data cache instead of the main data cache.
   6248  */
   6249 void
   6250 pmap_uarea(vaddr_t va)
   6251 {
   6252 	struct l2_bucket *l2b;
   6253 	pt_entry_t *ptep, *sptep, pte;
   6254 	vaddr_t next_bucket, eva;
   6255 
   6256 #if (ARM_NMMUS > 1)
   6257 	if (xscale_use_minidata == 0)
   6258 		return;
   6259 #endif
   6260 
   6261 	eva = va + USPACE;
   6262 
   6263 	while (va < eva) {
   6264 		next_bucket = L2_NEXT_BUCKET(va);
   6265 		if (next_bucket > eva)
   6266 			next_bucket = eva;
   6267 
   6268 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6269 		KDASSERT(l2b != NULL);
   6270 
   6271 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6272 
   6273 		while (va < next_bucket) {
   6274 			pte = *ptep;
   6275 			if (!l2pte_minidata(pte)) {
   6276 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6277 				cpu_tlb_flushD_SE(va);
   6278 				*ptep = pte & ~L2_B;
   6279 			}
   6280 			ptep++;
   6281 			va += PAGE_SIZE;
   6282 		}
   6283 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6284 	}
   6285 	cpu_cpwait();
   6286 }
   6287 #endif /* ARM_MMU_XSCALE == 1 */
   6288 
   6289 /*
   6290  * return the PA of the current L1 table, for use when handling a crash dump
   6291  */
   6292 uint32_t pmap_kernel_L1_addr(void)
   6293 {
   6294 	return pmap_kernel()->pm_l1->l1_physaddr;
   6295 }
   6296 
   6297 #if defined(DDB)
   6298 /*
   6299  * A couple of ddb-callable functions for dumping pmaps
   6300  */
   6301 void pmap_dump_all(void);
   6302 void pmap_dump(pmap_t);
   6303 
   6304 void
   6305 pmap_dump_all(void)
   6306 {
   6307 	pmap_t pm;
   6308 
   6309 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6310 		if (pm == pmap_kernel())
   6311 			continue;
   6312 		pmap_dump(pm);
   6313 		printf("\n");
   6314 	}
   6315 }
   6316 
   6317 static pt_entry_t ncptes[64];
   6318 static void pmap_dump_ncpg(pmap_t);
   6319 
   6320 void
   6321 pmap_dump(pmap_t pm)
   6322 {
   6323 	struct l2_dtable *l2;
   6324 	struct l2_bucket *l2b;
   6325 	pt_entry_t *ptep, pte;
   6326 	vaddr_t l2_va, l2b_va, va;
   6327 	int i, j, k, occ, rows = 0;
   6328 
   6329 	if (pm == pmap_kernel())
   6330 		printf("pmap_kernel (%p): ", pm);
   6331 	else
   6332 		printf("user pmap (%p): ", pm);
   6333 
   6334 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6335 
   6336 	l2_va = 0;
   6337 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6338 		l2 = pm->pm_l2[i];
   6339 
   6340 		if (l2 == NULL || l2->l2_occupancy == 0)
   6341 			continue;
   6342 
   6343 		l2b_va = l2_va;
   6344 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6345 			l2b = &l2->l2_bucket[j];
   6346 
   6347 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6348 				continue;
   6349 
   6350 			ptep = l2b->l2b_kva;
   6351 
   6352 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6353 				;
   6354 
   6355 			k &= ~63;
   6356 			occ = l2b->l2b_occupancy;
   6357 			va = l2b_va + (k * 4096);
   6358 			for (; k < 256; k++, va += 0x1000) {
   6359 				char ch = ' ';
   6360 				if ((k % 64) == 0) {
   6361 					if ((rows % 8) == 0) {
   6362 						printf(
   6363 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6364 					}
   6365 					printf("%08lx: ", va);
   6366 				}
   6367 
   6368 				ncptes[k & 63] = 0;
   6369 				pte = ptep[k];
   6370 				if (pte == 0) {
   6371 					ch = '.';
   6372 				} else {
   6373 					occ--;
   6374 					switch (pte & 0x0c) {
   6375 					case 0x00:
   6376 						ch = 'D'; /* No cache No buff */
   6377 						break;
   6378 					case 0x04:
   6379 						ch = 'B'; /* No cache buff */
   6380 						break;
   6381 					case 0x08:
   6382 						if (pte & 0x40)
   6383 							ch = 'm';
   6384 						else
   6385 						   ch = 'C'; /* Cache No buff */
   6386 						break;
   6387 					case 0x0c:
   6388 						ch = 'F'; /* Cache Buff */
   6389 						break;
   6390 					}
   6391 
   6392 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6393 						ch += 0x20;
   6394 
   6395 					if ((pte & 0xc) == 0)
   6396 						ncptes[k & 63] = pte;
   6397 				}
   6398 
   6399 				if ((k % 64) == 63) {
   6400 					rows++;
   6401 					printf("%c\n", ch);
   6402 					pmap_dump_ncpg(pm);
   6403 					if (occ == 0)
   6404 						break;
   6405 				} else
   6406 					printf("%c", ch);
   6407 			}
   6408 		}
   6409 	}
   6410 }
   6411 
   6412 static void
   6413 pmap_dump_ncpg(pmap_t pm)
   6414 {
   6415 	struct vm_page *pg;
   6416 	struct vm_page_md *md;
   6417 	struct pv_entry *pv;
   6418 	int i;
   6419 
   6420 	for (i = 0; i < 63; i++) {
   6421 		if (ncptes[i] == 0)
   6422 			continue;
   6423 
   6424 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6425 		if (pg == NULL)
   6426 			continue;
   6427 		md = VM_PAGE_TO_MD(pg);
   6428 
   6429 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6430 		    VM_PAGE_TO_PHYS(pg),
   6431 		    md->krw_mappings, md->kro_mappings,
   6432 		    md->urw_mappings, md->uro_mappings);
   6433 
   6434 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   6435 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6436 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6437 			    pv->pv_va, pv->pv_flags);
   6438 		}
   6439 	}
   6440 }
   6441 #endif
   6442 
   6443 #ifdef PMAP_STEAL_MEMORY
   6444 void
   6445 pmap_boot_pageadd(pv_addr_t *newpv)
   6446 {
   6447 	pv_addr_t *pv, *npv;
   6448 
   6449 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6450 		if (newpv->pv_pa < pv->pv_va) {
   6451 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6452 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6453 				newpv->pv_size += pv->pv_size;
   6454 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6455 			}
   6456 			pv = NULL;
   6457 		} else {
   6458 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6459 			     pv = npv) {
   6460 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6461 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6462 				if (newpv->pv_pa > npv->pv_pa)
   6463 					continue;
   6464 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6465 					pv->pv_size += newpv->pv_size;
   6466 					return;
   6467 				}
   6468 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6469 					break;
   6470 				newpv->pv_size += npv->pv_size;
   6471 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6472 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6473 				return;
   6474 			}
   6475 		}
   6476 	}
   6477 
   6478 	if (pv) {
   6479 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6480 	} else {
   6481 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6482 	}
   6483 }
   6484 
   6485 void
   6486 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6487 	pv_addr_t *rpv)
   6488 {
   6489 	pv_addr_t *pv, **pvp;
   6490 	struct vm_physseg *ps;
   6491 	size_t i;
   6492 
   6493 	KASSERT(amount & PGOFSET);
   6494 	KASSERT((mask & PGOFSET) == 0);
   6495 	KASSERT((match & PGOFSET) == 0);
   6496 	KASSERT(amount != 0);
   6497 
   6498 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6499 	     (pv = *pvp) != NULL;
   6500 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6501 		pv_addr_t *newpv;
   6502 		psize_t off;
   6503 		/*
   6504 		 * If this entry is too small to satify the request...
   6505 		 */
   6506 		KASSERT(pv->pv_size > 0);
   6507 		if (pv->pv_size < amount)
   6508 			continue;
   6509 
   6510 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6511 			if (((pv->pv_pa + off) & mask) == match
   6512 			    && off + amount <= pv->pv_size)
   6513 				break;
   6514 		}
   6515 		if (off > mask)
   6516 			continue;
   6517 
   6518 		rpv->pv_va = pv->pv_va + off;
   6519 		rpv->pv_pa = pv->pv_pa + off;
   6520 		rpv->pv_size = amount;
   6521 		pv->pv_size -= amount;
   6522 		if (pv->pv_size == 0) {
   6523 			KASSERT(off == 0);
   6524 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6525 			*pvp = SLIST_NEXT(pv, pv_list);
   6526 		} else if (off == 0) {
   6527 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6528 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6529 			*newpv = *pv;
   6530 			newpv->pv_pa += amount;
   6531 			newpv->pv_va += amount;
   6532 			*pvp = newpv;
   6533 		} else if (off < pv->pv_size) {
   6534 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6535 			*newpv = *pv;
   6536 			newpv->pv_size -= off;
   6537 			newpv->pv_pa += off + amount;
   6538 			newpv->pv_va += off + amount;
   6539 
   6540 			SLIST_NEXT(pv, pv_list) = newpv;
   6541 			pv->pv_size = off;
   6542 		} else {
   6543 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6544 		}
   6545 		memset((void *)rpv->pv_va, 0, amount);
   6546 		return;
   6547 	}
   6548 
   6549 	if (vm_nphysseg == 0)
   6550 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6551 
   6552 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6553 	     (pv = *pvp) != NULL;
   6554 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6555 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6556 			break;
   6557 	}
   6558 	KASSERT(mask == 0);
   6559 	for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
   6560 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6561 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6562 			rpv->pv_va = pv->pv_va;
   6563 			rpv->pv_pa = pv->pv_pa;
   6564 			rpv->pv_size = amount;
   6565 			*pvp = NULL;
   6566 			pmap_map_chunk(kernel_l1pt.pv_va,
   6567 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6568 			     ptoa(ps->avail_start),
   6569 			     amount - pv->pv_size,
   6570 			     VM_PROT_READ|VM_PROT_WRITE,
   6571 			     PTE_CACHE);
   6572 			ps->avail_start += atop(amount - pv->pv_size);
   6573 			/*
   6574 			 * If we consumed the entire physseg, remove it.
   6575 			 */
   6576 			if (ps->avail_start == ps->avail_end) {
   6577 				for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
   6578 					ps[0] = ps[1];
   6579 			}
   6580 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6581 			return;
   6582 		}
   6583 	}
   6584 
   6585 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6586 }
   6587 
   6588 vaddr_t
   6589 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6590 {
   6591 	pv_addr_t pv;
   6592 
   6593 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6594 
   6595 	return pv.pv_va;
   6596 }
   6597 #endif /* PMAP_STEAL_MEMORY */
   6598 
   6599 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6600 {
   6601 	sysctl_createv(clog, 0, NULL, NULL,
   6602 			CTLFLAG_PERMANENT,
   6603 			CTLTYPE_NODE, "machdep", NULL,
   6604 			NULL, 0, NULL, 0,
   6605 			CTL_MACHDEP, CTL_EOL);
   6606 
   6607 	sysctl_createv(clog, 0, NULL, NULL,
   6608 			CTLFLAG_PERMANENT,
   6609 			CTLTYPE_INT, "kmpages",
   6610 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6611 			NULL, 0, &pmap_kmpages, 0,
   6612 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6613 }
   6614