pmap.c revision 1.221 1 /* $NetBSD: pmap.c,v 1.221 2011/03/10 07:47:14 bsh Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependant vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/pool.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <machine/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/arm32/katelib.h>
213
214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.221 2011/03/10 07:47:14 bsh Exp $");
215
216 #ifdef PMAP_DEBUG
217
218 /* XXX need to get rid of all refs to this */
219 int pmap_debug_level = 0;
220
221 /*
222 * for switching to potentially finer grained debugging
223 */
224 #define PDB_FOLLOW 0x0001
225 #define PDB_INIT 0x0002
226 #define PDB_ENTER 0x0004
227 #define PDB_REMOVE 0x0008
228 #define PDB_CREATE 0x0010
229 #define PDB_PTPAGE 0x0020
230 #define PDB_GROWKERN 0x0040
231 #define PDB_BITS 0x0080
232 #define PDB_COLLECT 0x0100
233 #define PDB_PROTECT 0x0200
234 #define PDB_MAP_L1 0x0400
235 #define PDB_BOOTSTRAP 0x1000
236 #define PDB_PARANOIA 0x2000
237 #define PDB_WIRING 0x4000
238 #define PDB_PVDUMP 0x8000
239 #define PDB_VAC 0x10000
240 #define PDB_KENTER 0x20000
241 #define PDB_KREMOVE 0x40000
242 #define PDB_EXEC 0x80000
243
244 int debugmap = 1;
245 int pmapdebug = 0;
246 #define NPDEBUG(_lev_,_stat_) \
247 if (pmapdebug & (_lev_)) \
248 ((_stat_))
249
250 #else /* PMAP_DEBUG */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif /* PMAP_DEBUG */
253
254 /*
255 * pmap_kernel() points here
256 */
257 static struct pmap kernel_pmap_store;
258 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
259
260 /*
261 * Which pmap is currently 'live' in the cache
262 *
263 * XXXSCW: Fix for SMP ...
264 */
265 static pmap_t pmap_recent_user;
266
267 /*
268 * Pointer to last active lwp, or NULL if it exited.
269 */
270 struct lwp *pmap_previous_active_lwp;
271
272 /*
273 * Pool and cache that pmap structures are allocated from.
274 * We use a cache to avoid clearing the pm_l2[] array (1KB)
275 * in pmap_create().
276 */
277 static struct pool_cache pmap_cache;
278 static LIST_HEAD(, pmap) pmap_pmaps;
279
280 /*
281 * Pool of PV structures
282 */
283 static struct pool pmap_pv_pool;
284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
287 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
288 };
289
290 /*
291 * Pool and cache of l2_dtable structures.
292 * We use a cache to avoid clearing the structures when they're
293 * allocated. (196 bytes)
294 */
295 static struct pool_cache pmap_l2dtable_cache;
296 static vaddr_t pmap_kernel_l2dtable_kva;
297
298 /*
299 * Pool and cache of L2 page descriptors.
300 * We use a cache to avoid clearing the descriptor table
301 * when they're allocated. (1KB)
302 */
303 static struct pool_cache pmap_l2ptp_cache;
304 static vaddr_t pmap_kernel_l2ptp_kva;
305 static paddr_t pmap_kernel_l2ptp_phys;
306
307 #ifdef PMAPCOUNTERS
308 #define PMAP_EVCNT_INITIALIZER(name) \
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
310
311 #ifdef PMAP_CACHE_VIPT
312 static struct evcnt pmap_ev_vac_clean_one =
313 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
314 static struct evcnt pmap_ev_vac_flush_one =
315 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
316 static struct evcnt pmap_ev_vac_flush_lots =
317 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
318 static struct evcnt pmap_ev_vac_flush_lots2 =
319 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
324
325 static struct evcnt pmap_ev_vac_color_new =
326 PMAP_EVCNT_INITIALIZER("new page color");
327 static struct evcnt pmap_ev_vac_color_reuse =
328 PMAP_EVCNT_INITIALIZER("ok first page color");
329 static struct evcnt pmap_ev_vac_color_ok =
330 PMAP_EVCNT_INITIALIZER("ok page color");
331 static struct evcnt pmap_ev_vac_color_blind =
332 PMAP_EVCNT_INITIALIZER("blind page color");
333 static struct evcnt pmap_ev_vac_color_change =
334 PMAP_EVCNT_INITIALIZER("change page color");
335 static struct evcnt pmap_ev_vac_color_erase =
336 PMAP_EVCNT_INITIALIZER("erase page color");
337 static struct evcnt pmap_ev_vac_color_none =
338 PMAP_EVCNT_INITIALIZER("no page color");
339 static struct evcnt pmap_ev_vac_color_restore =
340 PMAP_EVCNT_INITIALIZER("restore page color");
341
342 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
350 #endif
351
352 static struct evcnt pmap_ev_mappings =
353 PMAP_EVCNT_INITIALIZER("pages mapped");
354 static struct evcnt pmap_ev_unmappings =
355 PMAP_EVCNT_INITIALIZER("pages unmapped");
356 static struct evcnt pmap_ev_remappings =
357 PMAP_EVCNT_INITIALIZER("pages remapped");
358
359 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
360 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
361 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
362
363 static struct evcnt pmap_ev_kernel_mappings =
364 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
365 static struct evcnt pmap_ev_kernel_unmappings =
366 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
367 static struct evcnt pmap_ev_kernel_remappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
369
370 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
373
374 static struct evcnt pmap_ev_kenter_mappings =
375 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
376 static struct evcnt pmap_ev_kenter_unmappings =
377 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
378 static struct evcnt pmap_ev_kenter_remappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
380 static struct evcnt pmap_ev_pt_mappings =
381 PMAP_EVCNT_INITIALIZER("page table pages mapped");
382
383 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
386 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
387
388 #ifdef PMAP_CACHE_VIPT
389 static struct evcnt pmap_ev_exec_mappings =
390 PMAP_EVCNT_INITIALIZER("exec pages mapped");
391 static struct evcnt pmap_ev_exec_cached =
392 PMAP_EVCNT_INITIALIZER("exec pages cached");
393
394 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
395 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
396
397 static struct evcnt pmap_ev_exec_synced =
398 PMAP_EVCNT_INITIALIZER("exec pages synced");
399 static struct evcnt pmap_ev_exec_synced_map =
400 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
401 static struct evcnt pmap_ev_exec_synced_unmap =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
403 static struct evcnt pmap_ev_exec_synced_remap =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
405 static struct evcnt pmap_ev_exec_synced_clearbit =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
407 static struct evcnt pmap_ev_exec_synced_kremove =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
409
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
416
417 static struct evcnt pmap_ev_exec_discarded_unmap =
418 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
419 static struct evcnt pmap_ev_exec_discarded_zero =
420 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
421 static struct evcnt pmap_ev_exec_discarded_copy =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
423 static struct evcnt pmap_ev_exec_discarded_page_protect =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
425 static struct evcnt pmap_ev_exec_discarded_clearbit =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
427 static struct evcnt pmap_ev_exec_discarded_kremove =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
429
430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
436 #endif /* PMAP_CACHE_VIPT */
437
438 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
439 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
440 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
441
442 EVCNT_ATTACH_STATIC(pmap_ev_updates);
443 EVCNT_ATTACH_STATIC(pmap_ev_collects);
444 EVCNT_ATTACH_STATIC(pmap_ev_activations);
445
446 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
447 #else
448 #define PMAPCOUNT(x) ((void)0)
449 #endif
450
451 /*
452 * pmap copy/zero page, and mem(5) hook point
453 */
454 static pt_entry_t *csrc_pte, *cdst_pte;
455 static vaddr_t csrcp, cdstp;
456 vaddr_t memhook; /* used by mem.c */
457 kmutex_t memlock; /* used by mem.c */
458 void *zeropage; /* used by mem.c */
459 extern void *msgbufaddr;
460 int pmap_kmpages;
461 /*
462 * Flag to indicate if pmap_init() has done its thing
463 */
464 bool pmap_initialized;
465
466 /*
467 * Misc. locking data structures
468 */
469
470 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
471 static struct lock pmap_main_lock;
472
473 #define PMAP_MAP_TO_HEAD_LOCK() \
474 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
475 #define PMAP_MAP_TO_HEAD_UNLOCK() \
476 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
477 #define PMAP_HEAD_TO_MAP_LOCK() \
478 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
479 #define PMAP_HEAD_TO_MAP_UNLOCK() \
480 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
481 #else
482 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
483 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
484 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
485 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
486 #endif
487
488 #define pmap_acquire_pmap_lock(pm) \
489 do { \
490 if ((pm) != pmap_kernel()) \
491 mutex_enter(&(pm)->pm_lock); \
492 } while (/*CONSTCOND*/0)
493
494 #define pmap_release_pmap_lock(pm) \
495 do { \
496 if ((pm) != pmap_kernel()) \
497 mutex_exit(&(pm)->pm_lock); \
498 } while (/*CONSTCOND*/0)
499
500
501 /*
502 * Metadata for L1 translation tables.
503 */
504 struct l1_ttable {
505 /* Entry on the L1 Table list */
506 SLIST_ENTRY(l1_ttable) l1_link;
507
508 /* Entry on the L1 Least Recently Used list */
509 TAILQ_ENTRY(l1_ttable) l1_lru;
510
511 /* Track how many domains are allocated from this L1 */
512 volatile u_int l1_domain_use_count;
513
514 /*
515 * A free-list of domain numbers for this L1.
516 * We avoid using ffs() and a bitmap to track domains since ffs()
517 * is slow on ARM.
518 */
519 u_int8_t l1_domain_first;
520 u_int8_t l1_domain_free[PMAP_DOMAINS];
521
522 /* Physical address of this L1 page table */
523 paddr_t l1_physaddr;
524
525 /* KVA of this L1 page table */
526 pd_entry_t *l1_kva;
527 };
528
529 /*
530 * Convert a virtual address into its L1 table index. That is, the
531 * index used to locate the L2 descriptor table pointer in an L1 table.
532 * This is basically used to index l1->l1_kva[].
533 *
534 * Each L2 descriptor table represents 1MB of VA space.
535 */
536 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
537
538 /*
539 * L1 Page Tables are tracked using a Least Recently Used list.
540 * - New L1s are allocated from the HEAD.
541 * - Freed L1s are added to the TAIl.
542 * - Recently accessed L1s (where an 'access' is some change to one of
543 * the userland pmaps which owns this L1) are moved to the TAIL.
544 */
545 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
546 static struct simplelock l1_lru_lock;
547
548 /*
549 * A list of all L1 tables
550 */
551 static SLIST_HEAD(, l1_ttable) l1_list;
552
553 /*
554 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
555 *
556 * This is normally 16MB worth L2 page descriptors for any given pmap.
557 * Reference counts are maintained for L2 descriptors so they can be
558 * freed when empty.
559 */
560 struct l2_dtable {
561 /* The number of L2 page descriptors allocated to this l2_dtable */
562 u_int l2_occupancy;
563
564 /* List of L2 page descriptors */
565 struct l2_bucket {
566 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
567 paddr_t l2b_phys; /* Physical address of same */
568 u_short l2b_l1idx; /* This L2 table's L1 index */
569 u_short l2b_occupancy; /* How many active descriptors */
570 } l2_bucket[L2_BUCKET_SIZE];
571 };
572
573 /*
574 * Given an L1 table index, calculate the corresponding l2_dtable index
575 * and bucket index within the l2_dtable.
576 */
577 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
578 (L2_SIZE - 1))
579 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
580
581 /*
582 * Given a virtual address, this macro returns the
583 * virtual address required to drop into the next L2 bucket.
584 */
585 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
586
587 /*
588 * L2 allocation.
589 */
590 #define pmap_alloc_l2_dtable() \
591 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
592 #define pmap_free_l2_dtable(l2) \
593 pool_cache_put(&pmap_l2dtable_cache, (l2))
594 #define pmap_alloc_l2_ptp(pap) \
595 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
596 PR_NOWAIT, (pap)))
597
598 /*
599 * We try to map the page tables write-through, if possible. However, not
600 * all CPUs have a write-through cache mode, so on those we have to sync
601 * the cache when we frob page tables.
602 *
603 * We try to evaluate this at compile time, if possible. However, it's
604 * not always possible to do that, hence this run-time var.
605 */
606 int pmap_needs_pte_sync;
607
608 /*
609 * Real definition of pv_entry.
610 */
611 struct pv_entry {
612 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
613 pmap_t pv_pmap; /* pmap where mapping lies */
614 vaddr_t pv_va; /* virtual address for mapping */
615 u_int pv_flags; /* flags */
616 };
617
618 /*
619 * Macro to determine if a mapping might be resident in the
620 * instruction cache and/or TLB
621 */
622 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
623 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
624
625 /*
626 * Macro to determine if a mapping might be resident in the
627 * data cache and/or TLB
628 */
629 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
630
631 /*
632 * Local prototypes
633 */
634 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
635 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
636 pt_entry_t **);
637 static bool pmap_is_current(pmap_t);
638 static bool pmap_is_cached(pmap_t);
639 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
640 pmap_t, vaddr_t, u_int);
641 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
642 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
643 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
644 u_int, u_int);
645
646 static void pmap_pinit(pmap_t);
647 static int pmap_pmap_ctor(void *, void *, int);
648
649 static void pmap_alloc_l1(pmap_t);
650 static void pmap_free_l1(pmap_t);
651 static void pmap_use_l1(pmap_t);
652
653 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
654 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
655 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
656 static int pmap_l2ptp_ctor(void *, void *, int);
657 static int pmap_l2dtable_ctor(void *, void *, int);
658
659 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
660 #ifdef PMAP_CACHE_VIVT
661 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
662 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
663 #endif
664
665 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
666 #ifdef PMAP_CACHE_VIVT
667 static int pmap_clean_page(struct pv_entry *, bool);
668 #endif
669 #ifdef PMAP_CACHE_VIPT
670 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
671 enum pmap_flush_op {
672 PMAP_FLUSH_PRIMARY,
673 PMAP_FLUSH_SECONDARY,
674 PMAP_CLEAN_PRIMARY
675 };
676 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
677 #endif
678 static void pmap_page_remove(struct vm_page_md *, paddr_t);
679
680 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
681 static vaddr_t kernel_pt_lookup(paddr_t);
682
683
684 /*
685 * External function prototypes
686 */
687 extern void bzero_page(vaddr_t);
688 extern void bcopy_page(vaddr_t, vaddr_t);
689
690 /*
691 * Misc variables
692 */
693 vaddr_t virtual_avail;
694 vaddr_t virtual_end;
695 vaddr_t pmap_curmaxkvaddr;
696
697 paddr_t avail_start;
698 paddr_t avail_end;
699
700 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
701 pv_addr_t kernelpages;
702 pv_addr_t kernel_l1pt;
703 pv_addr_t systempage;
704
705 /* Function to set the debug level of the pmap code */
706
707 #ifdef PMAP_DEBUG
708 void
709 pmap_debug(int level)
710 {
711 pmap_debug_level = level;
712 printf("pmap_debug: level=%d\n", pmap_debug_level);
713 }
714 #endif /* PMAP_DEBUG */
715
716 /*
717 * A bunch of routines to conditionally flush the caches/TLB depending
718 * on whether the specified pmap actually needs to be flushed at any
719 * given time.
720 */
721 static inline void
722 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
723 {
724
725 if (pm->pm_cstate.cs_tlb_id)
726 cpu_tlb_flushID_SE(va);
727 }
728
729 static inline void
730 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
731 {
732
733 if (pm->pm_cstate.cs_tlb_d)
734 cpu_tlb_flushD_SE(va);
735 }
736
737 static inline void
738 pmap_tlb_flushID(pmap_t pm)
739 {
740
741 if (pm->pm_cstate.cs_tlb_id) {
742 cpu_tlb_flushID();
743 pm->pm_cstate.cs_tlb = 0;
744 }
745 }
746
747 static inline void
748 pmap_tlb_flushD(pmap_t pm)
749 {
750
751 if (pm->pm_cstate.cs_tlb_d) {
752 cpu_tlb_flushD();
753 pm->pm_cstate.cs_tlb_d = 0;
754 }
755 }
756
757 #ifdef PMAP_CACHE_VIVT
758 static inline void
759 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
760 {
761 if (pm->pm_cstate.cs_cache_id) {
762 cpu_idcache_wbinv_range(va, len);
763 }
764 }
765
766 static inline void
767 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
768 bool do_inv, bool rd_only)
769 {
770
771 if (pm->pm_cstate.cs_cache_d) {
772 if (do_inv) {
773 if (rd_only)
774 cpu_dcache_inv_range(va, len);
775 else
776 cpu_dcache_wbinv_range(va, len);
777 } else
778 if (!rd_only)
779 cpu_dcache_wb_range(va, len);
780 }
781 }
782
783 static inline void
784 pmap_idcache_wbinv_all(pmap_t pm)
785 {
786 if (pm->pm_cstate.cs_cache_id) {
787 cpu_idcache_wbinv_all();
788 pm->pm_cstate.cs_cache = 0;
789 }
790 }
791
792 static inline void
793 pmap_dcache_wbinv_all(pmap_t pm)
794 {
795 if (pm->pm_cstate.cs_cache_d) {
796 cpu_dcache_wbinv_all();
797 pm->pm_cstate.cs_cache_d = 0;
798 }
799 }
800 #endif /* PMAP_CACHE_VIVT */
801
802 static inline bool
803 pmap_is_current(pmap_t pm)
804 {
805
806 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
807 return true;
808
809 return false;
810 }
811
812 static inline bool
813 pmap_is_cached(pmap_t pm)
814 {
815
816 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
817 pmap_recent_user == pm)
818 return (true);
819
820 return false;
821 }
822
823 /*
824 * PTE_SYNC_CURRENT:
825 *
826 * Make sure the pte is written out to RAM.
827 * We need to do this for one of two cases:
828 * - We're dealing with the kernel pmap
829 * - There is no pmap active in the cache/tlb.
830 * - The specified pmap is 'active' in the cache/tlb.
831 */
832 #ifdef PMAP_INCLUDE_PTE_SYNC
833 #define PTE_SYNC_CURRENT(pm, ptep) \
834 do { \
835 if (PMAP_NEEDS_PTE_SYNC && \
836 pmap_is_cached(pm)) \
837 PTE_SYNC(ptep); \
838 } while (/*CONSTCOND*/0)
839 #else
840 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
841 #endif
842
843 /*
844 * main pv_entry manipulation functions:
845 * pmap_enter_pv: enter a mapping onto a vm_page list
846 * pmap_remove_pv: remove a mappiing from a vm_page list
847 *
848 * NOTE: pmap_enter_pv expects to lock the pvh itself
849 * pmap_remove_pv expects te caller to lock the pvh before calling
850 */
851
852 /*
853 * pmap_enter_pv: enter a mapping onto a vm_page lst
854 *
855 * => caller should hold the proper lock on pmap_main_lock
856 * => caller should have pmap locked
857 * => we will gain the lock on the vm_page and allocate the new pv_entry
858 * => caller should adjust ptp's wire_count before calling
859 * => caller should not adjust pmap's wire_count
860 */
861 static void
862 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
863 vaddr_t va, u_int flags)
864 {
865 struct pv_entry **pvp;
866
867 NPDEBUG(PDB_PVDUMP,
868 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
869
870 pv->pv_pmap = pm;
871 pv->pv_va = va;
872 pv->pv_flags = flags;
873
874 simple_lock(&md->pvh_slock); /* lock vm_page */
875 pvp = &SLIST_FIRST(&md->pvh_list);
876 #ifdef PMAP_CACHE_VIPT
877 /*
878 * Insert unmanaged entries, writeable first, at the head of
879 * the pv list.
880 */
881 if (__predict_true((flags & PVF_KENTRY) == 0)) {
882 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
883 pvp = &SLIST_NEXT(*pvp, pv_link);
884 } else if ((flags & PVF_WRITE) == 0) {
885 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
886 pvp = &SLIST_NEXT(*pvp, pv_link);
887 }
888 #endif
889 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
890 *pvp = pv; /* ... locked list */
891 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
892 #ifdef PMAP_CACHE_VIPT
893 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
894 md->pvh_attrs |= PVF_KMOD;
895 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
896 md->pvh_attrs |= PVF_DIRTY;
897 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
898 #endif
899 if (pm == pmap_kernel()) {
900 PMAPCOUNT(kernel_mappings);
901 if (flags & PVF_WRITE)
902 md->krw_mappings++;
903 else
904 md->kro_mappings++;
905 } else {
906 if (flags & PVF_WRITE)
907 md->urw_mappings++;
908 else
909 md->uro_mappings++;
910 }
911
912 #ifdef PMAP_CACHE_VIPT
913 /*
914 * If this is an exec mapping and its the first exec mapping
915 * for this page, make sure to sync the I-cache.
916 */
917 if (PV_IS_EXEC_P(flags)) {
918 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
919 pmap_syncicache_page(md, pa);
920 PMAPCOUNT(exec_synced_map);
921 }
922 PMAPCOUNT(exec_mappings);
923 }
924 #endif
925
926 PMAPCOUNT(mappings);
927 simple_unlock(&md->pvh_slock); /* unlock, done! */
928
929 if (pv->pv_flags & PVF_WIRED)
930 ++pm->pm_stats.wired_count;
931 }
932
933 /*
934 *
935 * pmap_find_pv: Find a pv entry
936 *
937 * => caller should hold lock on vm_page
938 */
939 static inline struct pv_entry *
940 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
941 {
942 struct pv_entry *pv;
943
944 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
945 if (pm == pv->pv_pmap && va == pv->pv_va)
946 break;
947 }
948
949 return (pv);
950 }
951
952 /*
953 * pmap_remove_pv: try to remove a mapping from a pv_list
954 *
955 * => caller should hold proper lock on pmap_main_lock
956 * => pmap should be locked
957 * => caller should hold lock on vm_page [so that attrs can be adjusted]
958 * => caller should adjust ptp's wire_count and free PTP if needed
959 * => caller should NOT adjust pmap's wire_count
960 * => we return the removed pv
961 */
962 static struct pv_entry *
963 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
964 {
965 struct pv_entry *pv, **prevptr;
966
967 NPDEBUG(PDB_PVDUMP,
968 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
969
970 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
971 pv = *prevptr;
972
973 while (pv) {
974 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
975 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
976 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
977 if (pv->pv_flags & PVF_WIRED) {
978 --pm->pm_stats.wired_count;
979 }
980 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
981 if (pm == pmap_kernel()) {
982 PMAPCOUNT(kernel_unmappings);
983 if (pv->pv_flags & PVF_WRITE)
984 md->krw_mappings--;
985 else
986 md->kro_mappings--;
987 } else {
988 if (pv->pv_flags & PVF_WRITE)
989 md->urw_mappings--;
990 else
991 md->uro_mappings--;
992 }
993
994 PMAPCOUNT(unmappings);
995 #ifdef PMAP_CACHE_VIPT
996 if (!(pv->pv_flags & PVF_WRITE))
997 break;
998 /*
999 * If this page has had an exec mapping, then if
1000 * this was the last mapping, discard the contents,
1001 * otherwise sync the i-cache for this page.
1002 */
1003 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1004 if (SLIST_EMPTY(&md->pvh_list)) {
1005 md->pvh_attrs &= ~PVF_EXEC;
1006 PMAPCOUNT(exec_discarded_unmap);
1007 } else {
1008 pmap_syncicache_page(md, pa);
1009 PMAPCOUNT(exec_synced_unmap);
1010 }
1011 }
1012 #endif /* PMAP_CACHE_VIPT */
1013 break;
1014 }
1015 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1016 pv = *prevptr; /* advance */
1017 }
1018
1019 #ifdef PMAP_CACHE_VIPT
1020 /*
1021 * If we no longer have a WRITEABLE KENTRY at the head of list,
1022 * clear the KMOD attribute from the page.
1023 */
1024 if (SLIST_FIRST(&md->pvh_list) == NULL
1025 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1026 md->pvh_attrs &= ~PVF_KMOD;
1027
1028 /*
1029 * If this was a writeable page and there are no more writeable
1030 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1031 * the contents to memory.
1032 */
1033 if (md->krw_mappings + md->urw_mappings == 0)
1034 md->pvh_attrs &= ~PVF_WRITE;
1035 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1036 #endif /* PMAP_CACHE_VIPT */
1037
1038 return(pv); /* return removed pv */
1039 }
1040
1041 /*
1042 *
1043 * pmap_modify_pv: Update pv flags
1044 *
1045 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1046 * => caller should NOT adjust pmap's wire_count
1047 * => caller must call pmap_vac_me_harder() if writable status of a page
1048 * may have changed.
1049 * => we return the old flags
1050 *
1051 * Modify a physical-virtual mapping in the pv table
1052 */
1053 static u_int
1054 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1055 u_int clr_mask, u_int set_mask)
1056 {
1057 struct pv_entry *npv;
1058 u_int flags, oflags;
1059
1060 KASSERT((clr_mask & PVF_KENTRY) == 0);
1061 KASSERT((set_mask & PVF_KENTRY) == 0);
1062
1063 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1064 return (0);
1065
1066 NPDEBUG(PDB_PVDUMP,
1067 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1068
1069 /*
1070 * There is at least one VA mapping this page.
1071 */
1072
1073 if (clr_mask & (PVF_REF | PVF_MOD)) {
1074 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1075 #ifdef PMAP_CACHE_VIPT
1076 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1077 md->pvh_attrs |= PVF_DIRTY;
1078 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1079 #endif
1080 }
1081
1082 oflags = npv->pv_flags;
1083 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1084
1085 if ((flags ^ oflags) & PVF_WIRED) {
1086 if (flags & PVF_WIRED)
1087 ++pm->pm_stats.wired_count;
1088 else
1089 --pm->pm_stats.wired_count;
1090 }
1091
1092 if ((flags ^ oflags) & PVF_WRITE) {
1093 if (pm == pmap_kernel()) {
1094 if (flags & PVF_WRITE) {
1095 md->krw_mappings++;
1096 md->kro_mappings--;
1097 } else {
1098 md->kro_mappings++;
1099 md->krw_mappings--;
1100 }
1101 } else {
1102 if (flags & PVF_WRITE) {
1103 md->urw_mappings++;
1104 md->uro_mappings--;
1105 } else {
1106 md->uro_mappings++;
1107 md->urw_mappings--;
1108 }
1109 }
1110 }
1111 #ifdef PMAP_CACHE_VIPT
1112 if (md->urw_mappings + md->krw_mappings == 0)
1113 md->pvh_attrs &= ~PVF_WRITE;
1114 /*
1115 * We have two cases here: the first is from enter_pv (new exec
1116 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1117 * Since in latter, pmap_enter_pv won't do anything, we just have
1118 * to do what pmap_remove_pv would do.
1119 */
1120 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1121 || (PV_IS_EXEC_P(md->pvh_attrs)
1122 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1123 pmap_syncicache_page(md, pa);
1124 PMAPCOUNT(exec_synced_remap);
1125 }
1126 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1127 #endif
1128
1129 PMAPCOUNT(remappings);
1130
1131 return (oflags);
1132 }
1133
1134 /*
1135 * Allocate an L1 translation table for the specified pmap.
1136 * This is called at pmap creation time.
1137 */
1138 static void
1139 pmap_alloc_l1(pmap_t pm)
1140 {
1141 struct l1_ttable *l1;
1142 u_int8_t domain;
1143
1144 /*
1145 * Remove the L1 at the head of the LRU list
1146 */
1147 simple_lock(&l1_lru_lock);
1148 l1 = TAILQ_FIRST(&l1_lru_list);
1149 KDASSERT(l1 != NULL);
1150 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1151
1152 /*
1153 * Pick the first available domain number, and update
1154 * the link to the next number.
1155 */
1156 domain = l1->l1_domain_first;
1157 l1->l1_domain_first = l1->l1_domain_free[domain];
1158
1159 /*
1160 * If there are still free domain numbers in this L1,
1161 * put it back on the TAIL of the LRU list.
1162 */
1163 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1164 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1165
1166 simple_unlock(&l1_lru_lock);
1167
1168 /*
1169 * Fix up the relevant bits in the pmap structure
1170 */
1171 pm->pm_l1 = l1;
1172 pm->pm_domain = domain;
1173 }
1174
1175 /*
1176 * Free an L1 translation table.
1177 * This is called at pmap destruction time.
1178 */
1179 static void
1180 pmap_free_l1(pmap_t pm)
1181 {
1182 struct l1_ttable *l1 = pm->pm_l1;
1183
1184 simple_lock(&l1_lru_lock);
1185
1186 /*
1187 * If this L1 is currently on the LRU list, remove it.
1188 */
1189 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1190 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1191
1192 /*
1193 * Free up the domain number which was allocated to the pmap
1194 */
1195 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1196 l1->l1_domain_first = pm->pm_domain;
1197 l1->l1_domain_use_count--;
1198
1199 /*
1200 * The L1 now must have at least 1 free domain, so add
1201 * it back to the LRU list. If the use count is zero,
1202 * put it at the head of the list, otherwise it goes
1203 * to the tail.
1204 */
1205 if (l1->l1_domain_use_count == 0)
1206 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1207 else
1208 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1209
1210 simple_unlock(&l1_lru_lock);
1211 }
1212
1213 static inline void
1214 pmap_use_l1(pmap_t pm)
1215 {
1216 struct l1_ttable *l1;
1217
1218 /*
1219 * Do nothing if we're in interrupt context.
1220 * Access to an L1 by the kernel pmap must not affect
1221 * the LRU list.
1222 */
1223 if (cpu_intr_p() || pm == pmap_kernel())
1224 return;
1225
1226 l1 = pm->pm_l1;
1227
1228 /*
1229 * If the L1 is not currently on the LRU list, just return
1230 */
1231 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1232 return;
1233
1234 simple_lock(&l1_lru_lock);
1235
1236 /*
1237 * Check the use count again, now that we've acquired the lock
1238 */
1239 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1240 simple_unlock(&l1_lru_lock);
1241 return;
1242 }
1243
1244 /*
1245 * Move the L1 to the back of the LRU list
1246 */
1247 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1248 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1249
1250 simple_unlock(&l1_lru_lock);
1251 }
1252
1253 /*
1254 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1255 *
1256 * Free an L2 descriptor table.
1257 */
1258 static inline void
1259 #ifndef PMAP_INCLUDE_PTE_SYNC
1260 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1261 #else
1262 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1263 #endif
1264 {
1265 #ifdef PMAP_INCLUDE_PTE_SYNC
1266 #ifdef PMAP_CACHE_VIVT
1267 /*
1268 * Note: With a write-back cache, we may need to sync this
1269 * L2 table before re-using it.
1270 * This is because it may have belonged to a non-current
1271 * pmap, in which case the cache syncs would have been
1272 * skipped for the pages that were being unmapped. If the
1273 * L2 table were then to be immediately re-allocated to
1274 * the *current* pmap, it may well contain stale mappings
1275 * which have not yet been cleared by a cache write-back
1276 * and so would still be visible to the mmu.
1277 */
1278 if (need_sync)
1279 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1280 #endif /* PMAP_CACHE_VIVT */
1281 #endif /* PMAP_INCLUDE_PTE_SYNC */
1282 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1283 }
1284
1285 /*
1286 * Returns a pointer to the L2 bucket associated with the specified pmap
1287 * and VA, or NULL if no L2 bucket exists for the address.
1288 */
1289 static inline struct l2_bucket *
1290 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1291 {
1292 struct l2_dtable *l2;
1293 struct l2_bucket *l2b;
1294 u_short l1idx;
1295
1296 l1idx = L1_IDX(va);
1297
1298 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1299 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1300 return (NULL);
1301
1302 return (l2b);
1303 }
1304
1305 /*
1306 * Returns a pointer to the L2 bucket associated with the specified pmap
1307 * and VA.
1308 *
1309 * If no L2 bucket exists, perform the necessary allocations to put an L2
1310 * bucket/page table in place.
1311 *
1312 * Note that if a new L2 bucket/page was allocated, the caller *must*
1313 * increment the bucket occupancy counter appropriately *before*
1314 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1315 * the bucket/page in the meantime.
1316 */
1317 static struct l2_bucket *
1318 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1319 {
1320 struct l2_dtable *l2;
1321 struct l2_bucket *l2b;
1322 u_short l1idx;
1323
1324 l1idx = L1_IDX(va);
1325
1326 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1327 /*
1328 * No mapping at this address, as there is
1329 * no entry in the L1 table.
1330 * Need to allocate a new l2_dtable.
1331 */
1332 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1333 return (NULL);
1334
1335 /*
1336 * Link it into the parent pmap
1337 */
1338 pm->pm_l2[L2_IDX(l1idx)] = l2;
1339 }
1340
1341 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1342
1343 /*
1344 * Fetch pointer to the L2 page table associated with the address.
1345 */
1346 if (l2b->l2b_kva == NULL) {
1347 pt_entry_t *ptep;
1348
1349 /*
1350 * No L2 page table has been allocated. Chances are, this
1351 * is because we just allocated the l2_dtable, above.
1352 */
1353 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1354 /*
1355 * Oops, no more L2 page tables available at this
1356 * time. We may need to deallocate the l2_dtable
1357 * if we allocated a new one above.
1358 */
1359 if (l2->l2_occupancy == 0) {
1360 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1361 pmap_free_l2_dtable(l2);
1362 }
1363 return (NULL);
1364 }
1365
1366 l2->l2_occupancy++;
1367 l2b->l2b_kva = ptep;
1368 l2b->l2b_l1idx = l1idx;
1369 }
1370
1371 return (l2b);
1372 }
1373
1374 /*
1375 * One or more mappings in the specified L2 descriptor table have just been
1376 * invalidated.
1377 *
1378 * Garbage collect the metadata and descriptor table itself if necessary.
1379 *
1380 * The pmap lock must be acquired when this is called (not necessary
1381 * for the kernel pmap).
1382 */
1383 static void
1384 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1385 {
1386 struct l2_dtable *l2;
1387 pd_entry_t *pl1pd, l1pd;
1388 pt_entry_t *ptep;
1389 u_short l1idx;
1390
1391 KDASSERT(count <= l2b->l2b_occupancy);
1392
1393 /*
1394 * Update the bucket's reference count according to how many
1395 * PTEs the caller has just invalidated.
1396 */
1397 l2b->l2b_occupancy -= count;
1398
1399 /*
1400 * Note:
1401 *
1402 * Level 2 page tables allocated to the kernel pmap are never freed
1403 * as that would require checking all Level 1 page tables and
1404 * removing any references to the Level 2 page table. See also the
1405 * comment elsewhere about never freeing bootstrap L2 descriptors.
1406 *
1407 * We make do with just invalidating the mapping in the L2 table.
1408 *
1409 * This isn't really a big deal in practice and, in fact, leads
1410 * to a performance win over time as we don't need to continually
1411 * alloc/free.
1412 */
1413 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1414 return;
1415
1416 /*
1417 * There are no more valid mappings in this level 2 page table.
1418 * Go ahead and NULL-out the pointer in the bucket, then
1419 * free the page table.
1420 */
1421 l1idx = l2b->l2b_l1idx;
1422 ptep = l2b->l2b_kva;
1423 l2b->l2b_kva = NULL;
1424
1425 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1426
1427 /*
1428 * If the L1 slot matches the pmap's domain
1429 * number, then invalidate it.
1430 */
1431 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1432 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1433 *pl1pd = 0;
1434 PTE_SYNC(pl1pd);
1435 }
1436
1437 /*
1438 * Release the L2 descriptor table back to the pool cache.
1439 */
1440 #ifndef PMAP_INCLUDE_PTE_SYNC
1441 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1442 #else
1443 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1444 #endif
1445
1446 /*
1447 * Update the reference count in the associated l2_dtable
1448 */
1449 l2 = pm->pm_l2[L2_IDX(l1idx)];
1450 if (--l2->l2_occupancy > 0)
1451 return;
1452
1453 /*
1454 * There are no more valid mappings in any of the Level 1
1455 * slots managed by this l2_dtable. Go ahead and NULL-out
1456 * the pointer in the parent pmap and free the l2_dtable.
1457 */
1458 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1459 pmap_free_l2_dtable(l2);
1460 }
1461
1462 /*
1463 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1464 * structures.
1465 */
1466 static int
1467 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1468 {
1469 #ifndef PMAP_INCLUDE_PTE_SYNC
1470 struct l2_bucket *l2b;
1471 pt_entry_t *ptep, pte;
1472 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1473
1474 /*
1475 * The mappings for these page tables were initially made using
1476 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1477 * mode will not be right for page table mappings. To avoid
1478 * polluting the pmap_kenter_pa() code with a special case for
1479 * page tables, we simply fix up the cache-mode here if it's not
1480 * correct.
1481 */
1482 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1483 KDASSERT(l2b != NULL);
1484 ptep = &l2b->l2b_kva[l2pte_index(va)];
1485 pte = *ptep;
1486
1487 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1488 /*
1489 * Page tables must have the cache-mode set to Write-Thru.
1490 */
1491 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1492 PTE_SYNC(ptep);
1493 cpu_tlb_flushD_SE(va);
1494 cpu_cpwait();
1495 }
1496 #endif
1497
1498 memset(v, 0, L2_TABLE_SIZE_REAL);
1499 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1500 return (0);
1501 }
1502
1503 static int
1504 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1505 {
1506
1507 memset(v, 0, sizeof(struct l2_dtable));
1508 return (0);
1509 }
1510
1511 static int
1512 pmap_pmap_ctor(void *arg, void *v, int flags)
1513 {
1514
1515 memset(v, 0, sizeof(struct pmap));
1516 return (0);
1517 }
1518
1519 static void
1520 pmap_pinit(pmap_t pm)
1521 {
1522 struct l2_bucket *l2b;
1523
1524 if (vector_page < KERNEL_BASE) {
1525 /*
1526 * Map the vector page.
1527 */
1528 pmap_enter(pm, vector_page, systempage.pv_pa,
1529 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1530 pmap_update(pm);
1531
1532 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1533 l2b = pmap_get_l2_bucket(pm, vector_page);
1534 KDASSERT(l2b != NULL);
1535 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1536 L1_C_DOM(pm->pm_domain);
1537 } else
1538 pm->pm_pl1vec = NULL;
1539 }
1540
1541 #ifdef PMAP_CACHE_VIVT
1542 /*
1543 * Since we have a virtually indexed cache, we may need to inhibit caching if
1544 * there is more than one mapping and at least one of them is writable.
1545 * Since we purge the cache on every context switch, we only need to check for
1546 * other mappings within the same pmap, or kernel_pmap.
1547 * This function is also called when a page is unmapped, to possibly reenable
1548 * caching on any remaining mappings.
1549 *
1550 * The code implements the following logic, where:
1551 *
1552 * KW = # of kernel read/write pages
1553 * KR = # of kernel read only pages
1554 * UW = # of user read/write pages
1555 * UR = # of user read only pages
1556 *
1557 * KC = kernel mapping is cacheable
1558 * UC = user mapping is cacheable
1559 *
1560 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1561 * +---------------------------------------------
1562 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1563 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1564 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1565 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1566 */
1567
1568 static const int pmap_vac_flags[4][4] = {
1569 {-1, 0, 0, PVF_KNC},
1570 {0, 0, PVF_NC, PVF_NC},
1571 {0, PVF_NC, PVF_NC, PVF_NC},
1572 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1573 };
1574
1575 static inline int
1576 pmap_get_vac_flags(const struct vm_page_md *md)
1577 {
1578 int kidx, uidx;
1579
1580 kidx = 0;
1581 if (md->kro_mappings || md->krw_mappings > 1)
1582 kidx |= 1;
1583 if (md->krw_mappings)
1584 kidx |= 2;
1585
1586 uidx = 0;
1587 if (md->uro_mappings || md->urw_mappings > 1)
1588 uidx |= 1;
1589 if (md->urw_mappings)
1590 uidx |= 2;
1591
1592 return (pmap_vac_flags[uidx][kidx]);
1593 }
1594
1595 static inline void
1596 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1597 {
1598 int nattr;
1599
1600 nattr = pmap_get_vac_flags(md);
1601
1602 if (nattr < 0) {
1603 md->pvh_attrs &= ~PVF_NC;
1604 return;
1605 }
1606
1607 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1608 return;
1609
1610 if (pm == pmap_kernel())
1611 pmap_vac_me_kpmap(md, pa, pm, va);
1612 else
1613 pmap_vac_me_user(md, pa, pm, va);
1614
1615 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1616 }
1617
1618 static void
1619 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1620 {
1621 u_int u_cacheable, u_entries;
1622 struct pv_entry *pv;
1623 pmap_t last_pmap = pm;
1624
1625 /*
1626 * Pass one, see if there are both kernel and user pmaps for
1627 * this page. Calculate whether there are user-writable or
1628 * kernel-writable pages.
1629 */
1630 u_cacheable = 0;
1631 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1632 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1633 u_cacheable++;
1634 }
1635
1636 u_entries = md->urw_mappings + md->uro_mappings;
1637
1638 /*
1639 * We know we have just been updating a kernel entry, so if
1640 * all user pages are already cacheable, then there is nothing
1641 * further to do.
1642 */
1643 if (md->k_mappings == 0 && u_cacheable == u_entries)
1644 return;
1645
1646 if (u_entries) {
1647 /*
1648 * Scan over the list again, for each entry, if it
1649 * might not be set correctly, call pmap_vac_me_user
1650 * to recalculate the settings.
1651 */
1652 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1653 /*
1654 * We know kernel mappings will get set
1655 * correctly in other calls. We also know
1656 * that if the pmap is the same as last_pmap
1657 * then we've just handled this entry.
1658 */
1659 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1660 continue;
1661
1662 /*
1663 * If there are kernel entries and this page
1664 * is writable but non-cacheable, then we can
1665 * skip this entry also.
1666 */
1667 if (md->k_mappings &&
1668 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1669 (PVF_NC | PVF_WRITE))
1670 continue;
1671
1672 /*
1673 * Similarly if there are no kernel-writable
1674 * entries and the page is already
1675 * read-only/cacheable.
1676 */
1677 if (md->krw_mappings == 0 &&
1678 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1679 continue;
1680
1681 /*
1682 * For some of the remaining cases, we know
1683 * that we must recalculate, but for others we
1684 * can't tell if they are correct or not, so
1685 * we recalculate anyway.
1686 */
1687 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1688 }
1689
1690 if (md->k_mappings == 0)
1691 return;
1692 }
1693
1694 pmap_vac_me_user(md, pa, pm, va);
1695 }
1696
1697 static void
1698 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1699 {
1700 pmap_t kpmap = pmap_kernel();
1701 struct pv_entry *pv, *npv = NULL;
1702 struct l2_bucket *l2b;
1703 pt_entry_t *ptep, pte;
1704 u_int entries = 0;
1705 u_int writable = 0;
1706 u_int cacheable_entries = 0;
1707 u_int kern_cacheable = 0;
1708 u_int other_writable = 0;
1709
1710 /*
1711 * Count mappings and writable mappings in this pmap.
1712 * Include kernel mappings as part of our own.
1713 * Keep a pointer to the first one.
1714 */
1715 npv = NULL;
1716 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1717 /* Count mappings in the same pmap */
1718 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1719 if (entries++ == 0)
1720 npv = pv;
1721
1722 /* Cacheable mappings */
1723 if ((pv->pv_flags & PVF_NC) == 0) {
1724 cacheable_entries++;
1725 if (kpmap == pv->pv_pmap)
1726 kern_cacheable++;
1727 }
1728
1729 /* Writable mappings */
1730 if (pv->pv_flags & PVF_WRITE)
1731 ++writable;
1732 } else
1733 if (pv->pv_flags & PVF_WRITE)
1734 other_writable = 1;
1735 }
1736
1737 /*
1738 * Enable or disable caching as necessary.
1739 * Note: the first entry might be part of the kernel pmap,
1740 * so we can't assume this is indicative of the state of the
1741 * other (maybe non-kpmap) entries.
1742 */
1743 if ((entries > 1 && writable) ||
1744 (entries > 0 && pm == kpmap && other_writable)) {
1745 if (cacheable_entries == 0)
1746 return;
1747
1748 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1749 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1750 (pv->pv_flags & PVF_NC))
1751 continue;
1752
1753 pv->pv_flags |= PVF_NC;
1754
1755 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1756 KDASSERT(l2b != NULL);
1757 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1758 pte = *ptep & ~L2_S_CACHE_MASK;
1759
1760 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1761 l2pte_valid(pte)) {
1762 if (PV_BEEN_EXECD(pv->pv_flags)) {
1763 #ifdef PMAP_CACHE_VIVT
1764 pmap_idcache_wbinv_range(pv->pv_pmap,
1765 pv->pv_va, PAGE_SIZE);
1766 #endif
1767 pmap_tlb_flushID_SE(pv->pv_pmap,
1768 pv->pv_va);
1769 } else
1770 if (PV_BEEN_REFD(pv->pv_flags)) {
1771 #ifdef PMAP_CACHE_VIVT
1772 pmap_dcache_wb_range(pv->pv_pmap,
1773 pv->pv_va, PAGE_SIZE, true,
1774 (pv->pv_flags & PVF_WRITE) == 0);
1775 #endif
1776 pmap_tlb_flushD_SE(pv->pv_pmap,
1777 pv->pv_va);
1778 }
1779 }
1780
1781 *ptep = pte;
1782 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1783 }
1784 cpu_cpwait();
1785 } else
1786 if (entries > cacheable_entries) {
1787 /*
1788 * Turn cacheing back on for some pages. If it is a kernel
1789 * page, only do so if there are no other writable pages.
1790 */
1791 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1792 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1793 (kpmap != pv->pv_pmap || other_writable)))
1794 continue;
1795
1796 pv->pv_flags &= ~PVF_NC;
1797
1798 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1799 KDASSERT(l2b != NULL);
1800 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1801 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1802
1803 if (l2pte_valid(pte)) {
1804 if (PV_BEEN_EXECD(pv->pv_flags)) {
1805 pmap_tlb_flushID_SE(pv->pv_pmap,
1806 pv->pv_va);
1807 } else
1808 if (PV_BEEN_REFD(pv->pv_flags)) {
1809 pmap_tlb_flushD_SE(pv->pv_pmap,
1810 pv->pv_va);
1811 }
1812 }
1813
1814 *ptep = pte;
1815 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1816 }
1817 }
1818 }
1819 #endif
1820
1821 #ifdef PMAP_CACHE_VIPT
1822 static void
1823 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1824 {
1825 struct pv_entry *pv;
1826 vaddr_t tst_mask;
1827 bool bad_alias;
1828 struct l2_bucket *l2b;
1829 pt_entry_t *ptep, pte, opte;
1830 const u_int
1831 rw_mappings = md->urw_mappings + md->krw_mappings,
1832 ro_mappings = md->uro_mappings + md->kro_mappings;
1833
1834 /* do we need to do anything? */
1835 if (arm_cache_prefer_mask == 0)
1836 return;
1837
1838 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1839 md, pm, va));
1840
1841 KASSERT(!va || pm);
1842 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1843
1844 /* Already a conflict? */
1845 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1846 /* just an add, things are already non-cached */
1847 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1848 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1849 bad_alias = false;
1850 if (va) {
1851 PMAPCOUNT(vac_color_none);
1852 bad_alias = true;
1853 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1854 goto fixup;
1855 }
1856 pv = SLIST_FIRST(&md->pvh_list);
1857 /* the list can't be empty because it would be cachable */
1858 if (md->pvh_attrs & PVF_KMPAGE) {
1859 tst_mask = md->pvh_attrs;
1860 } else {
1861 KASSERT(pv);
1862 tst_mask = pv->pv_va;
1863 pv = SLIST_NEXT(pv, pv_link);
1864 }
1865 /*
1866 * Only check for a bad alias if we have writable mappings.
1867 */
1868 tst_mask &= arm_cache_prefer_mask;
1869 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1870 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1871 /* if there's a bad alias, stop checking. */
1872 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1873 bad_alias = true;
1874 }
1875 md->pvh_attrs |= PVF_WRITE;
1876 if (!bad_alias)
1877 md->pvh_attrs |= PVF_DIRTY;
1878 } else {
1879 /*
1880 * We have only read-only mappings. Let's see if there
1881 * are multiple colors in use or if we mapped a KMPAGE.
1882 * If the latter, we have a bad alias. If the former,
1883 * we need to remember that.
1884 */
1885 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1886 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1887 if (md->pvh_attrs & PVF_KMPAGE)
1888 bad_alias = true;
1889 break;
1890 }
1891 }
1892 md->pvh_attrs &= ~PVF_WRITE;
1893 /*
1894 * No KMPAGE and we exited early, so we must have
1895 * multiple color mappings.
1896 */
1897 if (!bad_alias && pv != NULL)
1898 md->pvh_attrs |= PVF_MULTCLR;
1899 }
1900
1901 /* If no conflicting colors, set everything back to cached */
1902 if (!bad_alias) {
1903 #ifdef DEBUG
1904 if ((md->pvh_attrs & PVF_WRITE)
1905 || ro_mappings < 2) {
1906 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1907 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1908 }
1909 #endif
1910 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1911 md->pvh_attrs |= tst_mask | PVF_COLORED;
1912 /*
1913 * Restore DIRTY bit if page is modified
1914 */
1915 if (md->pvh_attrs & PVF_DMOD)
1916 md->pvh_attrs |= PVF_DIRTY;
1917 PMAPCOUNT(vac_color_restore);
1918 } else {
1919 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1920 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1921 }
1922 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1923 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1924 } else if (!va) {
1925 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
1926 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1927 || (md->pvh_attrs & PVF_DIRTY));
1928 if (rw_mappings == 0) {
1929 md->pvh_attrs &= ~PVF_WRITE;
1930 if (ro_mappings == 1
1931 && (md->pvh_attrs & PVF_MULTCLR)) {
1932 /*
1933 * If this is the last readonly mapping
1934 * but it doesn't match the current color
1935 * for the page, change the current color
1936 * to match this last readonly mapping.
1937 */
1938 pv = SLIST_FIRST(&md->pvh_list);
1939 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1940 & arm_cache_prefer_mask;
1941 if (tst_mask) {
1942 md->pvh_attrs ^= tst_mask;
1943 PMAPCOUNT(vac_color_change);
1944 }
1945 }
1946 }
1947 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1948 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1949 return;
1950 } else if (!pmap_is_page_colored_p(md)) {
1951 /* not colored so we just use its color */
1952 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1953 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1954 PMAPCOUNT(vac_color_new);
1955 md->pvh_attrs &= PAGE_SIZE - 1;
1956 md->pvh_attrs |= PVF_COLORED
1957 | (va & arm_cache_prefer_mask)
1958 | (rw_mappings > 0 ? PVF_WRITE : 0);
1959 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1960 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1961 return;
1962 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1963 bad_alias = false;
1964 if (rw_mappings > 0) {
1965 /*
1966 * We now have writeable mappings and if we have
1967 * readonly mappings in more than once color, we have
1968 * an aliasing problem. Regardless mark the page as
1969 * writeable.
1970 */
1971 if (md->pvh_attrs & PVF_MULTCLR) {
1972 if (ro_mappings < 2) {
1973 /*
1974 * If we only have less than two
1975 * read-only mappings, just flush the
1976 * non-primary colors from the cache.
1977 */
1978 pmap_flush_page(md, pa,
1979 PMAP_FLUSH_SECONDARY);
1980 } else {
1981 bad_alias = true;
1982 }
1983 }
1984 md->pvh_attrs |= PVF_WRITE;
1985 }
1986 /* If no conflicting colors, set everything back to cached */
1987 if (!bad_alias) {
1988 #ifdef DEBUG
1989 if (rw_mappings > 0
1990 || (md->pvh_attrs & PMAP_KMPAGE)) {
1991 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
1992 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1993 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1994 }
1995 #endif
1996 if (SLIST_EMPTY(&md->pvh_list))
1997 PMAPCOUNT(vac_color_reuse);
1998 else
1999 PMAPCOUNT(vac_color_ok);
2000
2001 /* matching color, just return */
2002 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2003 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2004 return;
2005 }
2006 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2007 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2008
2009 /* color conflict. evict from cache. */
2010
2011 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2012 md->pvh_attrs &= ~PVF_COLORED;
2013 md->pvh_attrs |= PVF_NC;
2014 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2015 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2016 PMAPCOUNT(vac_color_erase);
2017 } else if (rw_mappings == 0
2018 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2019 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2020
2021 /*
2022 * If the page has dirty cache lines, clean it.
2023 */
2024 if (md->pvh_attrs & PVF_DIRTY)
2025 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2026
2027 /*
2028 * If this is the first remapping (we know that there are no
2029 * writeable mappings), then this is a simple color change.
2030 * Otherwise this is a seconary r/o mapping, which means
2031 * we don't have to do anything.
2032 */
2033 if (ro_mappings == 1) {
2034 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2035 md->pvh_attrs &= PAGE_SIZE - 1;
2036 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2037 PMAPCOUNT(vac_color_change);
2038 } else {
2039 PMAPCOUNT(vac_color_blind);
2040 }
2041 md->pvh_attrs |= PVF_MULTCLR;
2042 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2043 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2044 return;
2045 } else {
2046 if (rw_mappings > 0)
2047 md->pvh_attrs |= PVF_WRITE;
2048
2049 /* color conflict. evict from cache. */
2050 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2051
2052 /* the list can't be empty because this was a enter/modify */
2053 pv = SLIST_FIRST(&md->pvh_list);
2054 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2055 KASSERT(pv);
2056 /*
2057 * If there's only one mapped page, change color to the
2058 * page's new color and return. Restore the DIRTY bit
2059 * that was erased by pmap_flush_page.
2060 */
2061 if (SLIST_NEXT(pv, pv_link) == NULL) {
2062 md->pvh_attrs &= PAGE_SIZE - 1;
2063 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2064 if (md->pvh_attrs & PVF_DMOD)
2065 md->pvh_attrs |= PVF_DIRTY;
2066 PMAPCOUNT(vac_color_change);
2067 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2068 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2069 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2070 return;
2071 }
2072 }
2073 bad_alias = true;
2074 md->pvh_attrs &= ~PVF_COLORED;
2075 md->pvh_attrs |= PVF_NC;
2076 PMAPCOUNT(vac_color_erase);
2077 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2078 }
2079
2080 fixup:
2081 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2082
2083 /*
2084 * Turn cacheing on/off for all pages.
2085 */
2086 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2087 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2088 KDASSERT(l2b != NULL);
2089 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2090 opte = *ptep;
2091 pte = opte & ~L2_S_CACHE_MASK;
2092 if (bad_alias) {
2093 pv->pv_flags |= PVF_NC;
2094 } else {
2095 pv->pv_flags &= ~PVF_NC;
2096 pte |= pte_l2_s_cache_mode;
2097 }
2098
2099 if (opte == pte) /* only update is there's a change */
2100 continue;
2101
2102 if (l2pte_valid(pte)) {
2103 if (PV_BEEN_EXECD(pv->pv_flags)) {
2104 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2105 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2106 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2107 }
2108 }
2109
2110 *ptep = pte;
2111 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2112 }
2113 }
2114 #endif /* PMAP_CACHE_VIPT */
2115
2116
2117 /*
2118 * Modify pte bits for all ptes corresponding to the given physical address.
2119 * We use `maskbits' rather than `clearbits' because we're always passing
2120 * constants and the latter would require an extra inversion at run-time.
2121 */
2122 static void
2123 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2124 {
2125 struct l2_bucket *l2b;
2126 struct pv_entry *pv;
2127 pt_entry_t *ptep, npte, opte;
2128 pmap_t pm;
2129 vaddr_t va;
2130 u_int oflags;
2131 #ifdef PMAP_CACHE_VIPT
2132 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2133 bool need_syncicache = false;
2134 bool did_syncicache = false;
2135 bool need_vac_me_harder = false;
2136 #endif
2137
2138 NPDEBUG(PDB_BITS,
2139 printf("pmap_clearbit: md %p mask 0x%x\n",
2140 md, maskbits));
2141
2142 PMAP_HEAD_TO_MAP_LOCK();
2143 simple_lock(&md->pvh_slock);
2144
2145 #ifdef PMAP_CACHE_VIPT
2146 /*
2147 * If we might want to sync the I-cache and we've modified it,
2148 * then we know we definitely need to sync or discard it.
2149 */
2150 if (want_syncicache)
2151 need_syncicache = md->pvh_attrs & PVF_MOD;
2152 #endif
2153 /*
2154 * Clear saved attributes (modify, reference)
2155 */
2156 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2157
2158 if (SLIST_EMPTY(&md->pvh_list)) {
2159 #ifdef PMAP_CACHE_VIPT
2160 if (need_syncicache) {
2161 /*
2162 * No one has it mapped, so just discard it. The next
2163 * exec remapping will cause it to be synced.
2164 */
2165 md->pvh_attrs &= ~PVF_EXEC;
2166 PMAPCOUNT(exec_discarded_clearbit);
2167 }
2168 #endif
2169 simple_unlock(&md->pvh_slock);
2170 PMAP_HEAD_TO_MAP_UNLOCK();
2171 return;
2172 }
2173
2174 /*
2175 * Loop over all current mappings setting/clearing as appropos
2176 */
2177 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2178 va = pv->pv_va;
2179 pm = pv->pv_pmap;
2180 oflags = pv->pv_flags;
2181 /*
2182 * Kernel entries are unmanaged and as such not to be changed.
2183 */
2184 if (oflags & PVF_KENTRY)
2185 continue;
2186 pv->pv_flags &= ~maskbits;
2187
2188 pmap_acquire_pmap_lock(pm);
2189
2190 l2b = pmap_get_l2_bucket(pm, va);
2191 KDASSERT(l2b != NULL);
2192
2193 ptep = &l2b->l2b_kva[l2pte_index(va)];
2194 npte = opte = *ptep;
2195
2196 NPDEBUG(PDB_BITS,
2197 printf(
2198 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2199 pv, pv->pv_pmap, pv->pv_va, oflags));
2200
2201 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2202 #ifdef PMAP_CACHE_VIVT
2203 if ((pv->pv_flags & PVF_NC)) {
2204 /*
2205 * Entry is not cacheable:
2206 *
2207 * Don't turn caching on again if this is a
2208 * modified emulation. This would be
2209 * inconsitent with the settings created by
2210 * pmap_vac_me_harder(). Otherwise, it's safe
2211 * to re-enable cacheing.
2212 *
2213 * There's no need to call pmap_vac_me_harder()
2214 * here: all pages are losing their write
2215 * permission.
2216 */
2217 if (maskbits & PVF_WRITE) {
2218 npte |= pte_l2_s_cache_mode;
2219 pv->pv_flags &= ~PVF_NC;
2220 }
2221 } else
2222 if (l2pte_writable_p(opte)) {
2223 /*
2224 * Entry is writable/cacheable: check if pmap
2225 * is current if it is flush it, otherwise it
2226 * won't be in the cache
2227 */
2228 if (PV_BEEN_EXECD(oflags))
2229 pmap_idcache_wbinv_range(pm, pv->pv_va,
2230 PAGE_SIZE);
2231 else
2232 if (PV_BEEN_REFD(oflags))
2233 pmap_dcache_wb_range(pm, pv->pv_va,
2234 PAGE_SIZE,
2235 (maskbits & PVF_REF) != 0, false);
2236 }
2237 #endif
2238
2239 /* make the pte read only */
2240 npte = l2pte_set_readonly(npte);
2241
2242 if (maskbits & oflags & PVF_WRITE) {
2243 /*
2244 * Keep alias accounting up to date
2245 */
2246 if (pv->pv_pmap == pmap_kernel()) {
2247 md->krw_mappings--;
2248 md->kro_mappings++;
2249 } else {
2250 md->urw_mappings--;
2251 md->uro_mappings++;
2252 }
2253 #ifdef PMAP_CACHE_VIPT
2254 if (md->urw_mappings + md->krw_mappings == 0)
2255 md->pvh_attrs &= ~PVF_WRITE;
2256 if (want_syncicache)
2257 need_syncicache = true;
2258 need_vac_me_harder = true;
2259 #endif
2260 }
2261 }
2262
2263 if (maskbits & PVF_REF) {
2264 if ((pv->pv_flags & PVF_NC) == 0 &&
2265 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2266 l2pte_valid(npte)) {
2267 #ifdef PMAP_CACHE_VIVT
2268 /*
2269 * Check npte here; we may have already
2270 * done the wbinv above, and the validity
2271 * of the PTE is the same for opte and
2272 * npte.
2273 */
2274 /* XXXJRT need idcache_inv_range */
2275 if (PV_BEEN_EXECD(oflags))
2276 pmap_idcache_wbinv_range(pm,
2277 pv->pv_va, PAGE_SIZE);
2278 else
2279 if (PV_BEEN_REFD(oflags))
2280 pmap_dcache_wb_range(pm,
2281 pv->pv_va, PAGE_SIZE,
2282 true, true);
2283 #endif
2284 }
2285
2286 /*
2287 * Make the PTE invalid so that we will take a
2288 * page fault the next time the mapping is
2289 * referenced.
2290 */
2291 npte &= ~L2_TYPE_MASK;
2292 npte |= L2_TYPE_INV;
2293 }
2294
2295 if (npte != opte) {
2296 *ptep = npte;
2297 PTE_SYNC(ptep);
2298 /* Flush the TLB entry if a current pmap. */
2299 if (PV_BEEN_EXECD(oflags))
2300 pmap_tlb_flushID_SE(pm, pv->pv_va);
2301 else
2302 if (PV_BEEN_REFD(oflags))
2303 pmap_tlb_flushD_SE(pm, pv->pv_va);
2304 }
2305
2306 pmap_release_pmap_lock(pm);
2307
2308 NPDEBUG(PDB_BITS,
2309 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2310 pm, va, opte, npte));
2311 }
2312
2313 #ifdef PMAP_CACHE_VIPT
2314 /*
2315 * If we need to sync the I-cache and we haven't done it yet, do it.
2316 */
2317 if (need_syncicache && !did_syncicache) {
2318 pmap_syncicache_page(md, pa);
2319 PMAPCOUNT(exec_synced_clearbit);
2320 }
2321 /*
2322 * If we are changing this to read-only, we need to call vac_me_harder
2323 * so we can change all the read-only pages to cacheable. We pretend
2324 * this as a page deletion.
2325 */
2326 if (need_vac_me_harder) {
2327 if (md->pvh_attrs & PVF_NC)
2328 pmap_vac_me_harder(md, pa, NULL, 0);
2329 }
2330 #endif
2331
2332 simple_unlock(&md->pvh_slock);
2333 PMAP_HEAD_TO_MAP_UNLOCK();
2334 }
2335
2336 /*
2337 * pmap_clean_page()
2338 *
2339 * This is a local function used to work out the best strategy to clean
2340 * a single page referenced by its entry in the PV table. It's used by
2341 * pmap_copy_page, pmap_zero page and maybe some others later on.
2342 *
2343 * Its policy is effectively:
2344 * o If there are no mappings, we don't bother doing anything with the cache.
2345 * o If there is one mapping, we clean just that page.
2346 * o If there are multiple mappings, we clean the entire cache.
2347 *
2348 * So that some functions can be further optimised, it returns 0 if it didn't
2349 * clean the entire cache, or 1 if it did.
2350 *
2351 * XXX One bug in this routine is that if the pv_entry has a single page
2352 * mapped at 0x00000000 a whole cache clean will be performed rather than
2353 * just the 1 page. Since this should not occur in everyday use and if it does
2354 * it will just result in not the most efficient clean for the page.
2355 */
2356 #ifdef PMAP_CACHE_VIVT
2357 static int
2358 pmap_clean_page(struct pv_entry *pv, bool is_src)
2359 {
2360 pmap_t pm_to_clean = NULL;
2361 struct pv_entry *npv;
2362 u_int cache_needs_cleaning = 0;
2363 u_int flags = 0;
2364 vaddr_t page_to_clean = 0;
2365
2366 if (pv == NULL) {
2367 /* nothing mapped in so nothing to flush */
2368 return (0);
2369 }
2370
2371 /*
2372 * Since we flush the cache each time we change to a different
2373 * user vmspace, we only need to flush the page if it is in the
2374 * current pmap.
2375 */
2376
2377 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2378 if (pmap_is_current(npv->pv_pmap)) {
2379 flags |= npv->pv_flags;
2380 /*
2381 * The page is mapped non-cacheable in
2382 * this map. No need to flush the cache.
2383 */
2384 if (npv->pv_flags & PVF_NC) {
2385 #ifdef DIAGNOSTIC
2386 if (cache_needs_cleaning)
2387 panic("pmap_clean_page: "
2388 "cache inconsistency");
2389 #endif
2390 break;
2391 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2392 continue;
2393 if (cache_needs_cleaning) {
2394 page_to_clean = 0;
2395 break;
2396 } else {
2397 page_to_clean = npv->pv_va;
2398 pm_to_clean = npv->pv_pmap;
2399 }
2400 cache_needs_cleaning = 1;
2401 }
2402 }
2403
2404 if (page_to_clean) {
2405 if (PV_BEEN_EXECD(flags))
2406 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2407 PAGE_SIZE);
2408 else
2409 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2410 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2411 } else if (cache_needs_cleaning) {
2412 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2413
2414 if (PV_BEEN_EXECD(flags))
2415 pmap_idcache_wbinv_all(pm);
2416 else
2417 pmap_dcache_wbinv_all(pm);
2418 return (1);
2419 }
2420 return (0);
2421 }
2422 #endif
2423
2424 #ifdef PMAP_CACHE_VIPT
2425 /*
2426 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2427 * right cache alias to make sure we flush the right stuff.
2428 */
2429 void
2430 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2431 {
2432 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2433 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2434
2435 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2436 md, md->pvh_attrs));
2437 /*
2438 * No need to clean the page if it's non-cached.
2439 */
2440 if (md->pvh_attrs & PVF_NC)
2441 return;
2442 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2443
2444 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2445 /*
2446 * Set up a PTE with the right coloring to flush existing cache lines.
2447 */
2448 *ptep = L2_S_PROTO |
2449 pa
2450 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2451 | pte_l2_s_cache_mode;
2452 PTE_SYNC(ptep);
2453
2454 /*
2455 * Flush it.
2456 */
2457 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2458 /*
2459 * Unmap the page.
2460 */
2461 *ptep = 0;
2462 PTE_SYNC(ptep);
2463 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2464
2465 md->pvh_attrs |= PVF_EXEC;
2466 PMAPCOUNT(exec_synced);
2467 }
2468
2469 void
2470 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2471 {
2472 vsize_t va_offset, end_va;
2473 void (*cf)(vaddr_t, vsize_t);
2474
2475 if (arm_cache_prefer_mask == 0)
2476 return;
2477
2478 switch (flush) {
2479 case PMAP_FLUSH_PRIMARY:
2480 if (md->pvh_attrs & PVF_MULTCLR) {
2481 va_offset = 0;
2482 end_va = arm_cache_prefer_mask;
2483 md->pvh_attrs &= ~PVF_MULTCLR;
2484 PMAPCOUNT(vac_flush_lots);
2485 } else {
2486 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2487 end_va = va_offset;
2488 PMAPCOUNT(vac_flush_one);
2489 }
2490 /*
2491 * Mark that the page is no longer dirty.
2492 */
2493 md->pvh_attrs &= ~PVF_DIRTY;
2494 cf = cpufuncs.cf_idcache_wbinv_range;
2495 break;
2496 case PMAP_FLUSH_SECONDARY:
2497 va_offset = 0;
2498 end_va = arm_cache_prefer_mask;
2499 cf = cpufuncs.cf_idcache_wbinv_range;
2500 md->pvh_attrs &= ~PVF_MULTCLR;
2501 PMAPCOUNT(vac_flush_lots);
2502 break;
2503 case PMAP_CLEAN_PRIMARY:
2504 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2505 end_va = va_offset;
2506 cf = cpufuncs.cf_dcache_wb_range;
2507 /*
2508 * Mark that the page is no longer dirty.
2509 */
2510 if ((md->pvh_attrs & PVF_DMOD) == 0)
2511 md->pvh_attrs &= ~PVF_DIRTY;
2512 PMAPCOUNT(vac_clean_one);
2513 break;
2514 default:
2515 return;
2516 }
2517
2518 KASSERT(!(md->pvh_attrs & PVF_NC));
2519
2520 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2521 md, md->pvh_attrs));
2522
2523 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2524 const size_t pte_offset = va_offset >> PGSHIFT;
2525 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2526 const pt_entry_t oldpte = *ptep;
2527
2528 if (flush == PMAP_FLUSH_SECONDARY
2529 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2530 continue;
2531
2532 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2533 /*
2534 * Set up a PTE with the right coloring to flush
2535 * existing cache entries.
2536 */
2537 *ptep = L2_S_PROTO
2538 | pa
2539 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2540 | pte_l2_s_cache_mode;
2541 PTE_SYNC(ptep);
2542
2543 /*
2544 * Flush it.
2545 */
2546 (*cf)(cdstp + va_offset, PAGE_SIZE);
2547
2548 /*
2549 * Restore the page table entry since we might have interrupted
2550 * pmap_zero_page or pmap_copy_page which was already using
2551 * this pte.
2552 */
2553 *ptep = oldpte;
2554 PTE_SYNC(ptep);
2555 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2556 }
2557 }
2558 #endif /* PMAP_CACHE_VIPT */
2559
2560 /*
2561 * Routine: pmap_page_remove
2562 * Function:
2563 * Removes this physical page from
2564 * all physical maps in which it resides.
2565 * Reflects back modify bits to the pager.
2566 */
2567 static void
2568 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2569 {
2570 struct l2_bucket *l2b;
2571 struct pv_entry *pv, *npv, **pvp;
2572 pmap_t pm;
2573 pt_entry_t *ptep;
2574 bool flush;
2575 u_int flags;
2576
2577 NPDEBUG(PDB_FOLLOW,
2578 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2579 pa));
2580
2581 PMAP_HEAD_TO_MAP_LOCK();
2582 simple_lock(&md->pvh_slock);
2583
2584 pv = SLIST_FIRST(&md->pvh_list);
2585 if (pv == NULL) {
2586 #ifdef PMAP_CACHE_VIPT
2587 /*
2588 * We *know* the page contents are about to be replaced.
2589 * Discard the exec contents
2590 */
2591 if (PV_IS_EXEC_P(md->pvh_attrs))
2592 PMAPCOUNT(exec_discarded_page_protect);
2593 md->pvh_attrs &= ~PVF_EXEC;
2594 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2595 #endif
2596 simple_unlock(&md->pvh_slock);
2597 PMAP_HEAD_TO_MAP_UNLOCK();
2598 return;
2599 }
2600 #ifdef PMAP_CACHE_VIPT
2601 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2602 #endif
2603
2604 /*
2605 * Clear alias counts
2606 */
2607 #ifdef PMAP_CACHE_VIVT
2608 md->k_mappings = 0;
2609 #endif
2610 md->urw_mappings = md->uro_mappings = 0;
2611
2612 flush = false;
2613 flags = 0;
2614
2615 #ifdef PMAP_CACHE_VIVT
2616 pmap_clean_page(pv, false);
2617 #endif
2618
2619 pvp = &SLIST_FIRST(&md->pvh_list);
2620 while (pv) {
2621 pm = pv->pv_pmap;
2622 npv = SLIST_NEXT(pv, pv_link);
2623 if (flush == false && pmap_is_current(pm))
2624 flush = true;
2625
2626 if (pm == pmap_kernel()) {
2627 #ifdef PMAP_CACHE_VIPT
2628 /*
2629 * If this was unmanaged mapping, it must be preserved.
2630 * Move it back on the list and advance the end-of-list
2631 * pointer.
2632 */
2633 if (pv->pv_flags & PVF_KENTRY) {
2634 *pvp = pv;
2635 pvp = &SLIST_NEXT(pv, pv_link);
2636 pv = npv;
2637 continue;
2638 }
2639 if (pv->pv_flags & PVF_WRITE)
2640 md->krw_mappings--;
2641 else
2642 md->kro_mappings--;
2643 #endif
2644 PMAPCOUNT(kernel_unmappings);
2645 }
2646 PMAPCOUNT(unmappings);
2647
2648 pmap_acquire_pmap_lock(pm);
2649
2650 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2651 KDASSERT(l2b != NULL);
2652
2653 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2654
2655 /*
2656 * Update statistics
2657 */
2658 --pm->pm_stats.resident_count;
2659
2660 /* Wired bit */
2661 if (pv->pv_flags & PVF_WIRED)
2662 --pm->pm_stats.wired_count;
2663
2664 flags |= pv->pv_flags;
2665
2666 /*
2667 * Invalidate the PTEs.
2668 */
2669 *ptep = 0;
2670 PTE_SYNC_CURRENT(pm, ptep);
2671 pmap_free_l2_bucket(pm, l2b, 1);
2672
2673 pool_put(&pmap_pv_pool, pv);
2674 pv = npv;
2675 /*
2676 * if we reach the end of the list and there are still
2677 * mappings, they might be able to be cached now.
2678 */
2679 if (pv == NULL) {
2680 *pvp = NULL;
2681 if (!SLIST_EMPTY(&md->pvh_list))
2682 pmap_vac_me_harder(md, pa, pm, 0);
2683 }
2684 pmap_release_pmap_lock(pm);
2685 }
2686 #ifdef PMAP_CACHE_VIPT
2687 /*
2688 * Its EXEC cache is now gone.
2689 */
2690 if (PV_IS_EXEC_P(md->pvh_attrs))
2691 PMAPCOUNT(exec_discarded_page_protect);
2692 md->pvh_attrs &= ~PVF_EXEC;
2693 KASSERT(md->urw_mappings == 0);
2694 KASSERT(md->uro_mappings == 0);
2695 if (md->krw_mappings == 0)
2696 md->pvh_attrs &= ~PVF_WRITE;
2697 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2698 #endif
2699 simple_unlock(&md->pvh_slock);
2700 PMAP_HEAD_TO_MAP_UNLOCK();
2701
2702 if (flush) {
2703 /*
2704 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2705 * would need a subsequent call to pmap_update() to ensure
2706 * curpm->pm_cstate.cs_all is reset. Our callers are not
2707 * required to do that (see pmap(9)), so we can't modify
2708 * the current pmap's state.
2709 */
2710 if (PV_BEEN_EXECD(flags))
2711 cpu_tlb_flushID();
2712 else
2713 cpu_tlb_flushD();
2714 }
2715 cpu_cpwait();
2716 }
2717
2718 /*
2719 * pmap_t pmap_create(void)
2720 *
2721 * Create a new pmap structure from scratch.
2722 */
2723 pmap_t
2724 pmap_create(void)
2725 {
2726 pmap_t pm;
2727
2728 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2729
2730 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2731 pm->pm_stats.wired_count = 0;
2732 pm->pm_stats.resident_count = 1;
2733 pm->pm_cstate.cs_all = 0;
2734 pmap_alloc_l1(pm);
2735
2736 /*
2737 * Note: The pool cache ensures that the pm_l2[] array is already
2738 * initialised to zero.
2739 */
2740
2741 pmap_pinit(pm);
2742
2743 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2744
2745 return (pm);
2746 }
2747
2748 u_int
2749 arm32_mmap_flags(paddr_t pa)
2750 {
2751 /*
2752 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2753 * and we're using the upper bits in page numbers to pass flags around
2754 * so we might as well use the same bits
2755 */
2756 return (u_int)pa & PMAP_MD_MASK;
2757 }
2758 /*
2759 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2760 * u_int flags)
2761 *
2762 * Insert the given physical page (p) at
2763 * the specified virtual address (v) in the
2764 * target physical map with the protection requested.
2765 *
2766 * NB: This is the only routine which MAY NOT lazy-evaluate
2767 * or lose information. That is, this routine must actually
2768 * insert this page into the given map NOW.
2769 */
2770 int
2771 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2772 {
2773 struct l2_bucket *l2b;
2774 struct vm_page *pg, *opg;
2775 struct pv_entry *pv;
2776 pt_entry_t *ptep, npte, opte;
2777 u_int nflags;
2778 u_int oflags;
2779
2780 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2781
2782 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2783 KDASSERT(((va | pa) & PGOFSET) == 0);
2784
2785 /*
2786 * Get a pointer to the page. Later on in this function, we
2787 * test for a managed page by checking pg != NULL.
2788 */
2789 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2790
2791 nflags = 0;
2792 if (prot & VM_PROT_WRITE)
2793 nflags |= PVF_WRITE;
2794 if (prot & VM_PROT_EXECUTE)
2795 nflags |= PVF_EXEC;
2796 if (flags & PMAP_WIRED)
2797 nflags |= PVF_WIRED;
2798
2799 PMAP_MAP_TO_HEAD_LOCK();
2800 pmap_acquire_pmap_lock(pm);
2801
2802 /*
2803 * Fetch the L2 bucket which maps this page, allocating one if
2804 * necessary for user pmaps.
2805 */
2806 if (pm == pmap_kernel())
2807 l2b = pmap_get_l2_bucket(pm, va);
2808 else
2809 l2b = pmap_alloc_l2_bucket(pm, va);
2810 if (l2b == NULL) {
2811 if (flags & PMAP_CANFAIL) {
2812 pmap_release_pmap_lock(pm);
2813 PMAP_MAP_TO_HEAD_UNLOCK();
2814 return (ENOMEM);
2815 }
2816 panic("pmap_enter: failed to allocate L2 bucket");
2817 }
2818 ptep = &l2b->l2b_kva[l2pte_index(va)];
2819 opte = *ptep;
2820 npte = pa;
2821 oflags = 0;
2822
2823 if (opte) {
2824 /*
2825 * There is already a mapping at this address.
2826 * If the physical address is different, lookup the
2827 * vm_page.
2828 */
2829 if (l2pte_pa(opte) != pa)
2830 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2831 else
2832 opg = pg;
2833 } else
2834 opg = NULL;
2835
2836 if (pg) {
2837 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2838
2839 /*
2840 * This is to be a managed mapping.
2841 */
2842 if ((flags & VM_PROT_ALL) ||
2843 (md->pvh_attrs & PVF_REF)) {
2844 /*
2845 * - The access type indicates that we don't need
2846 * to do referenced emulation.
2847 * OR
2848 * - The physical page has already been referenced
2849 * so no need to re-do referenced emulation here.
2850 */
2851 npte |= l2pte_set_readonly(L2_S_PROTO);
2852
2853 nflags |= PVF_REF;
2854
2855 if ((prot & VM_PROT_WRITE) != 0 &&
2856 ((flags & VM_PROT_WRITE) != 0 ||
2857 (md->pvh_attrs & PVF_MOD) != 0)) {
2858 /*
2859 * This is a writable mapping, and the
2860 * page's mod state indicates it has
2861 * already been modified. Make it
2862 * writable from the outset.
2863 */
2864 npte = l2pte_set_writable(npte);
2865 nflags |= PVF_MOD;
2866 }
2867 } else {
2868 /*
2869 * Need to do page referenced emulation.
2870 */
2871 npte |= L2_TYPE_INV;
2872 }
2873
2874 npte |= pte_l2_s_cache_mode;
2875
2876 if (pg == opg) {
2877 /*
2878 * We're changing the attrs of an existing mapping.
2879 */
2880 simple_lock(&md->pvh_slock);
2881 oflags = pmap_modify_pv(md, pa, pm, va,
2882 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2883 PVF_MOD | PVF_REF, nflags);
2884 simple_unlock(&md->pvh_slock);
2885
2886 #ifdef PMAP_CACHE_VIVT
2887 /*
2888 * We may need to flush the cache if we're
2889 * doing rw-ro...
2890 */
2891 if (pm->pm_cstate.cs_cache_d &&
2892 (oflags & PVF_NC) == 0 &&
2893 l2pte_writable_p(opte) &&
2894 (prot & VM_PROT_WRITE) == 0)
2895 cpu_dcache_wb_range(va, PAGE_SIZE);
2896 #endif
2897 } else {
2898 /*
2899 * New mapping, or changing the backing page
2900 * of an existing mapping.
2901 */
2902 if (opg) {
2903 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2904 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2905
2906 /*
2907 * Replacing an existing mapping with a new one.
2908 * It is part of our managed memory so we
2909 * must remove it from the PV list
2910 */
2911 simple_lock(&omd->pvh_slock);
2912 pv = pmap_remove_pv(omd, opa, pm, va);
2913 pmap_vac_me_harder(omd, opa, pm, 0);
2914 simple_unlock(&omd->pvh_slock);
2915 oflags = pv->pv_flags;
2916
2917 #ifdef PMAP_CACHE_VIVT
2918 /*
2919 * If the old mapping was valid (ref/mod
2920 * emulation creates 'invalid' mappings
2921 * initially) then make sure to frob
2922 * the cache.
2923 */
2924 if ((oflags & PVF_NC) == 0 &&
2925 l2pte_valid(opte)) {
2926 if (PV_BEEN_EXECD(oflags)) {
2927 pmap_idcache_wbinv_range(pm, va,
2928 PAGE_SIZE);
2929 } else
2930 if (PV_BEEN_REFD(oflags)) {
2931 pmap_dcache_wb_range(pm, va,
2932 PAGE_SIZE, true,
2933 (oflags & PVF_WRITE) == 0);
2934 }
2935 }
2936 #endif
2937 } else
2938 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2939 if ((flags & PMAP_CANFAIL) == 0)
2940 panic("pmap_enter: no pv entries");
2941
2942 if (pm != pmap_kernel())
2943 pmap_free_l2_bucket(pm, l2b, 0);
2944 pmap_release_pmap_lock(pm);
2945 PMAP_MAP_TO_HEAD_UNLOCK();
2946 NPDEBUG(PDB_ENTER,
2947 printf("pmap_enter: ENOMEM\n"));
2948 return (ENOMEM);
2949 }
2950
2951 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2952 }
2953 } else {
2954 /*
2955 * We're mapping an unmanaged page.
2956 * These are always readable, and possibly writable, from
2957 * the get go as we don't need to track ref/mod status.
2958 */
2959 npte |= l2pte_set_readonly(L2_S_PROTO);
2960 if (prot & VM_PROT_WRITE)
2961 npte = l2pte_set_writable(npte);
2962
2963 /*
2964 * Make sure the vector table is mapped cacheable
2965 */
2966 if ((pm != pmap_kernel() && va == vector_page) ||
2967 (flags & ARM32_MMAP_CACHEABLE)) {
2968 npte |= pte_l2_s_cache_mode;
2969 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
2970 npte |= pte_l2_s_wc_mode;
2971 }
2972 if (opg) {
2973 /*
2974 * Looks like there's an existing 'managed' mapping
2975 * at this address.
2976 */
2977 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2978 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2979
2980 simple_lock(&omd->pvh_slock);
2981 pv = pmap_remove_pv(omd, opa, pm, va);
2982 pmap_vac_me_harder(omd, opa, pm, 0);
2983 simple_unlock(&omd->pvh_slock);
2984 oflags = pv->pv_flags;
2985
2986 #ifdef PMAP_CACHE_VIVT
2987 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2988 if (PV_BEEN_EXECD(oflags))
2989 pmap_idcache_wbinv_range(pm, va,
2990 PAGE_SIZE);
2991 else
2992 if (PV_BEEN_REFD(oflags))
2993 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2994 true, (oflags & PVF_WRITE) == 0);
2995 }
2996 #endif
2997 pool_put(&pmap_pv_pool, pv);
2998 }
2999 }
3000
3001 /*
3002 * Make sure userland mappings get the right permissions
3003 */
3004 if (pm != pmap_kernel() && va != vector_page)
3005 npte |= L2_S_PROT_U;
3006
3007 /*
3008 * Keep the stats up to date
3009 */
3010 if (opte == 0) {
3011 l2b->l2b_occupancy++;
3012 pm->pm_stats.resident_count++;
3013 }
3014
3015 NPDEBUG(PDB_ENTER,
3016 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3017
3018 /*
3019 * If this is just a wiring change, the two PTEs will be
3020 * identical, so there's no need to update the page table.
3021 */
3022 if (npte != opte) {
3023 bool is_cached = pmap_is_cached(pm);
3024
3025 *ptep = npte;
3026 if (is_cached) {
3027 /*
3028 * We only need to frob the cache/tlb if this pmap
3029 * is current
3030 */
3031 PTE_SYNC(ptep);
3032 if (va != vector_page && l2pte_valid(npte)) {
3033 /*
3034 * This mapping is likely to be accessed as
3035 * soon as we return to userland. Fix up the
3036 * L1 entry to avoid taking another
3037 * page/domain fault.
3038 */
3039 pd_entry_t *pl1pd, l1pd;
3040
3041 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3042 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3043 L1_C_PROTO;
3044 if (*pl1pd != l1pd) {
3045 *pl1pd = l1pd;
3046 PTE_SYNC(pl1pd);
3047 }
3048 }
3049 }
3050
3051 if (PV_BEEN_EXECD(oflags))
3052 pmap_tlb_flushID_SE(pm, va);
3053 else
3054 if (PV_BEEN_REFD(oflags))
3055 pmap_tlb_flushD_SE(pm, va);
3056
3057 NPDEBUG(PDB_ENTER,
3058 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3059 is_cached, pm->pm_cstate.cs_all));
3060
3061 if (pg != NULL) {
3062 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3063
3064 simple_lock(&md->pvh_slock);
3065 pmap_vac_me_harder(md, pa, pm, va);
3066 simple_unlock(&md->pvh_slock);
3067 }
3068 }
3069 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3070 if (pg) {
3071 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3072
3073 simple_lock(&md->pvh_slock);
3074 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3075 KASSERT(((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0));
3076 simple_unlock(&md->pvh_slock);
3077 }
3078 #endif
3079
3080 pmap_release_pmap_lock(pm);
3081 PMAP_MAP_TO_HEAD_UNLOCK();
3082
3083 return (0);
3084 }
3085
3086 /*
3087 * pmap_remove()
3088 *
3089 * pmap_remove is responsible for nuking a number of mappings for a range
3090 * of virtual address space in the current pmap. To do this efficiently
3091 * is interesting, because in a number of cases a wide virtual address
3092 * range may be supplied that contains few actual mappings. So, the
3093 * optimisations are:
3094 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3095 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3096 * maybe do just a partial cache clean. This path of execution is
3097 * complicated by the fact that the cache must be flushed _before_
3098 * the PTE is nuked, being a VAC :-)
3099 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3100 * all invalidations until pmap_update(), since pmap_remove_all() has
3101 * already flushed the cache.
3102 * 4. Maybe later fast-case a single page, but I don't think this is
3103 * going to make _that_ much difference overall.
3104 */
3105
3106 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3107
3108 void
3109 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3110 {
3111 struct l2_bucket *l2b;
3112 vaddr_t next_bucket;
3113 pt_entry_t *ptep;
3114 u_int cleanlist_idx, total, cnt;
3115 struct {
3116 vaddr_t va;
3117 pt_entry_t *ptep;
3118 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3119 u_int mappings, is_exec, is_refd;
3120
3121 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3122 "eva=%08lx\n", pm, sva, eva));
3123
3124 /*
3125 * we lock in the pmap => pv_head direction
3126 */
3127 PMAP_MAP_TO_HEAD_LOCK();
3128 pmap_acquire_pmap_lock(pm);
3129
3130 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3131 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3132 if (pm->pm_cstate.cs_tlb == 0)
3133 pm->pm_remove_all = true;
3134 } else
3135 cleanlist_idx = 0;
3136
3137 total = 0;
3138
3139 while (sva < eva) {
3140 /*
3141 * Do one L2 bucket's worth at a time.
3142 */
3143 next_bucket = L2_NEXT_BUCKET(sva);
3144 if (next_bucket > eva)
3145 next_bucket = eva;
3146
3147 l2b = pmap_get_l2_bucket(pm, sva);
3148 if (l2b == NULL) {
3149 sva = next_bucket;
3150 continue;
3151 }
3152
3153 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3154
3155 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3156 struct vm_page *pg;
3157 pt_entry_t pte;
3158 paddr_t pa;
3159
3160 pte = *ptep;
3161
3162 if (pte == 0) {
3163 /* Nothing here, move along */
3164 continue;
3165 }
3166
3167 pa = l2pte_pa(pte);
3168 is_exec = 0;
3169 is_refd = 1;
3170
3171 /*
3172 * Update flags. In a number of circumstances,
3173 * we could cluster a lot of these and do a
3174 * number of sequential pages in one go.
3175 */
3176 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3177 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3178 struct pv_entry *pv;
3179
3180 simple_lock(&md->pvh_slock);
3181 pv = pmap_remove_pv(md, pa, pm, sva);
3182 pmap_vac_me_harder(md, pa, pm, 0);
3183 simple_unlock(&md->pvh_slock);
3184 if (pv != NULL) {
3185 if (pm->pm_remove_all == false) {
3186 is_exec =
3187 PV_BEEN_EXECD(pv->pv_flags);
3188 is_refd =
3189 PV_BEEN_REFD(pv->pv_flags);
3190 }
3191 pool_put(&pmap_pv_pool, pv);
3192 }
3193 }
3194 mappings++;
3195
3196 if (!l2pte_valid(pte)) {
3197 /*
3198 * Ref/Mod emulation is still active for this
3199 * mapping, therefore it is has not yet been
3200 * accessed. No need to frob the cache/tlb.
3201 */
3202 *ptep = 0;
3203 PTE_SYNC_CURRENT(pm, ptep);
3204 continue;
3205 }
3206
3207 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3208 /* Add to the clean list. */
3209 cleanlist[cleanlist_idx].ptep = ptep;
3210 cleanlist[cleanlist_idx].va =
3211 sva | (is_exec & 1);
3212 cleanlist_idx++;
3213 } else
3214 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3215 /* Nuke everything if needed. */
3216 #ifdef PMAP_CACHE_VIVT
3217 pmap_idcache_wbinv_all(pm);
3218 #endif
3219 pmap_tlb_flushID(pm);
3220
3221 /*
3222 * Roll back the previous PTE list,
3223 * and zero out the current PTE.
3224 */
3225 for (cnt = 0;
3226 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3227 *cleanlist[cnt].ptep = 0;
3228 PTE_SYNC(cleanlist[cnt].ptep);
3229 }
3230 *ptep = 0;
3231 PTE_SYNC(ptep);
3232 cleanlist_idx++;
3233 pm->pm_remove_all = true;
3234 } else {
3235 *ptep = 0;
3236 PTE_SYNC(ptep);
3237 if (pm->pm_remove_all == false) {
3238 if (is_exec)
3239 pmap_tlb_flushID_SE(pm, sva);
3240 else
3241 if (is_refd)
3242 pmap_tlb_flushD_SE(pm, sva);
3243 }
3244 }
3245 }
3246
3247 /*
3248 * Deal with any left overs
3249 */
3250 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3251 total += cleanlist_idx;
3252 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3253 if (pm->pm_cstate.cs_all != 0) {
3254 vaddr_t clva = cleanlist[cnt].va & ~1;
3255 if (cleanlist[cnt].va & 1) {
3256 #ifdef PMAP_CACHE_VIVT
3257 pmap_idcache_wbinv_range(pm,
3258 clva, PAGE_SIZE);
3259 #endif
3260 pmap_tlb_flushID_SE(pm, clva);
3261 } else {
3262 #ifdef PMAP_CACHE_VIVT
3263 pmap_dcache_wb_range(pm,
3264 clva, PAGE_SIZE, true,
3265 false);
3266 #endif
3267 pmap_tlb_flushD_SE(pm, clva);
3268 }
3269 }
3270 *cleanlist[cnt].ptep = 0;
3271 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3272 }
3273
3274 /*
3275 * If it looks like we're removing a whole bunch
3276 * of mappings, it's faster to just write-back
3277 * the whole cache now and defer TLB flushes until
3278 * pmap_update() is called.
3279 */
3280 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3281 cleanlist_idx = 0;
3282 else {
3283 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3284 #ifdef PMAP_CACHE_VIVT
3285 pmap_idcache_wbinv_all(pm);
3286 #endif
3287 pm->pm_remove_all = true;
3288 }
3289 }
3290
3291 pmap_free_l2_bucket(pm, l2b, mappings);
3292 pm->pm_stats.resident_count -= mappings;
3293 }
3294
3295 pmap_release_pmap_lock(pm);
3296 PMAP_MAP_TO_HEAD_UNLOCK();
3297 }
3298
3299 #ifdef PMAP_CACHE_VIPT
3300 static struct pv_entry *
3301 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3302 {
3303 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3304 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3305 struct pv_entry *pv;
3306
3307 simple_lock(&md->pvh_slock);
3308 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3309 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3310
3311 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3312 KASSERT(pv);
3313 KASSERT(pv->pv_flags & PVF_KENTRY);
3314
3315 /*
3316 * If we are removing a writeable mapping to a cached exec page,
3317 * if it's the last mapping then clear it execness other sync
3318 * the page to the icache.
3319 */
3320 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3321 && (pv->pv_flags & PVF_WRITE) != 0) {
3322 if (SLIST_EMPTY(&md->pvh_list)) {
3323 md->pvh_attrs &= ~PVF_EXEC;
3324 PMAPCOUNT(exec_discarded_kremove);
3325 } else {
3326 pmap_syncicache_page(md, pa);
3327 PMAPCOUNT(exec_synced_kremove);
3328 }
3329 }
3330 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3331 simple_unlock(&md->pvh_slock);
3332
3333 return pv;
3334 }
3335 #endif /* PMAP_CACHE_VIPT */
3336
3337 /*
3338 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3339 *
3340 * We assume there is already sufficient KVM space available
3341 * to do this, as we can't allocate L2 descriptor tables/metadata
3342 * from here.
3343 */
3344 void
3345 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3346 {
3347 struct l2_bucket *l2b;
3348 pt_entry_t *ptep, opte;
3349 #ifdef PMAP_CACHE_VIVT
3350 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3351 #endif
3352 #ifdef PMAP_CACHE_VIPT
3353 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3354 struct vm_page *opg;
3355 struct pv_entry *pv = NULL;
3356 #endif
3357 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3358
3359 NPDEBUG(PDB_KENTER,
3360 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3361 va, pa, prot));
3362
3363 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3364 KDASSERT(l2b != NULL);
3365
3366 ptep = &l2b->l2b_kva[l2pte_index(va)];
3367 opte = *ptep;
3368
3369 if (opte == 0) {
3370 PMAPCOUNT(kenter_mappings);
3371 l2b->l2b_occupancy++;
3372 } else {
3373 PMAPCOUNT(kenter_remappings);
3374 #ifdef PMAP_CACHE_VIPT
3375 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3376 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3377 if (opg) {
3378 KASSERT(opg != pg);
3379 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3380 KASSERT((flags & PMAP_KMPAGE) == 0);
3381 simple_lock(&omd->pvh_slock);
3382 pv = pmap_kremove_pg(opg, va);
3383 simple_unlock(&omd->pvh_slock);
3384 }
3385 #endif
3386 if (l2pte_valid(opte)) {
3387 #ifdef PMAP_CACHE_VIVT
3388 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3389 #endif
3390 cpu_tlb_flushD_SE(va);
3391 cpu_cpwait();
3392 }
3393 }
3394
3395 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3396 pte_l2_s_cache_mode;
3397 PTE_SYNC(ptep);
3398
3399 if (pg) {
3400 if (flags & PMAP_KMPAGE) {
3401 simple_lock(&md->pvh_slock);
3402 KASSERT(md->urw_mappings == 0);
3403 KASSERT(md->uro_mappings == 0);
3404 KASSERT(md->krw_mappings == 0);
3405 KASSERT(md->kro_mappings == 0);
3406 #ifdef PMAP_CACHE_VIPT
3407 KASSERT(pv == NULL);
3408 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3409 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3410 /* if there is a color conflict, evict from cache. */
3411 if (pmap_is_page_colored_p(md)
3412 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3413 PMAPCOUNT(vac_color_change);
3414 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3415 } else if (md->pvh_attrs & PVF_MULTCLR) {
3416 /*
3417 * If this page has multiple colors, expunge
3418 * them.
3419 */
3420 PMAPCOUNT(vac_flush_lots2);
3421 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3422 }
3423 md->pvh_attrs &= PAGE_SIZE - 1;
3424 md->pvh_attrs |= PVF_KMPAGE
3425 | PVF_COLORED | PVF_DIRTY
3426 | (va & arm_cache_prefer_mask);
3427 #endif
3428 #ifdef PMAP_CACHE_VIVT
3429 md->pvh_attrs |= PVF_KMPAGE;
3430 #endif
3431 pmap_kmpages++;
3432 simple_unlock(&md->pvh_slock);
3433 #ifdef PMAP_CACHE_VIPT
3434 } else {
3435 if (pv == NULL) {
3436 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3437 KASSERT(pv != NULL);
3438 }
3439 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3440 PVF_WIRED | PVF_KENTRY
3441 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3442 if ((prot & VM_PROT_WRITE)
3443 && !(md->pvh_attrs & PVF_NC))
3444 md->pvh_attrs |= PVF_DIRTY;
3445 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3446 simple_lock(&md->pvh_slock);
3447 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3448 simple_unlock(&md->pvh_slock);
3449 #endif
3450 }
3451 #ifdef PMAP_CACHE_VIPT
3452 } else {
3453 if (pv != NULL)
3454 pool_put(&pmap_pv_pool, pv);
3455 #endif
3456 }
3457 }
3458
3459 void
3460 pmap_kremove(vaddr_t va, vsize_t len)
3461 {
3462 struct l2_bucket *l2b;
3463 pt_entry_t *ptep, *sptep, opte;
3464 vaddr_t next_bucket, eva;
3465 u_int mappings;
3466 struct vm_page *opg;
3467
3468 PMAPCOUNT(kenter_unmappings);
3469
3470 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3471 va, len));
3472
3473 eva = va + len;
3474
3475 while (va < eva) {
3476 next_bucket = L2_NEXT_BUCKET(va);
3477 if (next_bucket > eva)
3478 next_bucket = eva;
3479
3480 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3481 KDASSERT(l2b != NULL);
3482
3483 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3484 mappings = 0;
3485
3486 while (va < next_bucket) {
3487 opte = *ptep;
3488 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3489 if (opg) {
3490 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3491
3492 if (omd->pvh_attrs & PVF_KMPAGE) {
3493 simple_lock(&omd->pvh_slock);
3494 KASSERT(omd->urw_mappings == 0);
3495 KASSERT(omd->uro_mappings == 0);
3496 KASSERT(omd->krw_mappings == 0);
3497 KASSERT(omd->kro_mappings == 0);
3498 omd->pvh_attrs &= ~PVF_KMPAGE;
3499 #ifdef PMAP_CACHE_VIPT
3500 omd->pvh_attrs &= ~PVF_WRITE;
3501 #endif
3502 pmap_kmpages--;
3503 simple_unlock(&omd->pvh_slock);
3504 #ifdef PMAP_CACHE_VIPT
3505 } else {
3506 pool_put(&pmap_pv_pool,
3507 pmap_kremove_pg(opg, va));
3508 #endif
3509 }
3510 }
3511 if (l2pte_valid(opte)) {
3512 #ifdef PMAP_CACHE_VIVT
3513 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3514 #endif
3515 cpu_tlb_flushD_SE(va);
3516 }
3517 if (opte) {
3518 *ptep = 0;
3519 mappings++;
3520 }
3521 va += PAGE_SIZE;
3522 ptep++;
3523 }
3524 KDASSERT(mappings <= l2b->l2b_occupancy);
3525 l2b->l2b_occupancy -= mappings;
3526 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3527 }
3528 cpu_cpwait();
3529 }
3530
3531 bool
3532 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3533 {
3534 struct l2_dtable *l2;
3535 pd_entry_t *pl1pd, l1pd;
3536 pt_entry_t *ptep, pte;
3537 paddr_t pa;
3538 u_int l1idx;
3539
3540 pmap_acquire_pmap_lock(pm);
3541
3542 l1idx = L1_IDX(va);
3543 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3544 l1pd = *pl1pd;
3545
3546 if (l1pte_section_p(l1pd)) {
3547 /*
3548 * These should only happen for pmap_kernel()
3549 */
3550 KDASSERT(pm == pmap_kernel());
3551 pmap_release_pmap_lock(pm);
3552 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3553 } else {
3554 /*
3555 * Note that we can't rely on the validity of the L1
3556 * descriptor as an indication that a mapping exists.
3557 * We have to look it up in the L2 dtable.
3558 */
3559 l2 = pm->pm_l2[L2_IDX(l1idx)];
3560
3561 if (l2 == NULL ||
3562 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3563 pmap_release_pmap_lock(pm);
3564 return false;
3565 }
3566
3567 ptep = &ptep[l2pte_index(va)];
3568 pte = *ptep;
3569 pmap_release_pmap_lock(pm);
3570
3571 if (pte == 0)
3572 return false;
3573
3574 switch (pte & L2_TYPE_MASK) {
3575 case L2_TYPE_L:
3576 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3577 break;
3578
3579 default:
3580 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3581 break;
3582 }
3583 }
3584
3585 if (pap != NULL)
3586 *pap = pa;
3587
3588 return true;
3589 }
3590
3591 void
3592 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3593 {
3594 struct l2_bucket *l2b;
3595 pt_entry_t *ptep, pte;
3596 vaddr_t next_bucket;
3597 u_int flags;
3598 u_int clr_mask;
3599 int flush;
3600
3601 NPDEBUG(PDB_PROTECT,
3602 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3603 pm, sva, eva, prot));
3604
3605 if ((prot & VM_PROT_READ) == 0) {
3606 pmap_remove(pm, sva, eva);
3607 return;
3608 }
3609
3610 if (prot & VM_PROT_WRITE) {
3611 /*
3612 * If this is a read->write transition, just ignore it and let
3613 * uvm_fault() take care of it later.
3614 */
3615 return;
3616 }
3617
3618 PMAP_MAP_TO_HEAD_LOCK();
3619 pmap_acquire_pmap_lock(pm);
3620
3621 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3622 flags = 0;
3623 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3624
3625 while (sva < eva) {
3626 next_bucket = L2_NEXT_BUCKET(sva);
3627 if (next_bucket > eva)
3628 next_bucket = eva;
3629
3630 l2b = pmap_get_l2_bucket(pm, sva);
3631 if (l2b == NULL) {
3632 sva = next_bucket;
3633 continue;
3634 }
3635
3636 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3637
3638 while (sva < next_bucket) {
3639 pte = *ptep;
3640 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3641 struct vm_page *pg;
3642 u_int f;
3643
3644 #ifdef PMAP_CACHE_VIVT
3645 /*
3646 * OK, at this point, we know we're doing
3647 * write-protect operation. If the pmap is
3648 * active, write-back the page.
3649 */
3650 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3651 false, false);
3652 #endif
3653
3654 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3655 pte = l2pte_set_readonly(pte);
3656 *ptep = pte;
3657 PTE_SYNC(ptep);
3658
3659 if (pg != NULL) {
3660 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3661 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3662
3663 simple_lock(&md->pvh_slock);
3664 f = pmap_modify_pv(md, pa, pm, sva,
3665 clr_mask, 0);
3666 pmap_vac_me_harder(md, pa, pm, sva);
3667 simple_unlock(&md->pvh_slock);
3668 } else
3669 f = PVF_REF | PVF_EXEC;
3670
3671 if (flush >= 0) {
3672 flush++;
3673 flags |= f;
3674 } else
3675 if (PV_BEEN_EXECD(f))
3676 pmap_tlb_flushID_SE(pm, sva);
3677 else
3678 if (PV_BEEN_REFD(f))
3679 pmap_tlb_flushD_SE(pm, sva);
3680 }
3681
3682 sva += PAGE_SIZE;
3683 ptep++;
3684 }
3685 }
3686
3687 pmap_release_pmap_lock(pm);
3688 PMAP_MAP_TO_HEAD_UNLOCK();
3689
3690 if (flush) {
3691 if (PV_BEEN_EXECD(flags))
3692 pmap_tlb_flushID(pm);
3693 else
3694 if (PV_BEEN_REFD(flags))
3695 pmap_tlb_flushD(pm);
3696 }
3697 }
3698
3699 void
3700 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3701 {
3702 struct l2_bucket *l2b;
3703 pt_entry_t *ptep;
3704 vaddr_t next_bucket;
3705 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3706
3707 NPDEBUG(PDB_EXEC,
3708 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3709 pm, sva, eva));
3710
3711 PMAP_MAP_TO_HEAD_LOCK();
3712 pmap_acquire_pmap_lock(pm);
3713
3714 while (sva < eva) {
3715 next_bucket = L2_NEXT_BUCKET(sva);
3716 if (next_bucket > eva)
3717 next_bucket = eva;
3718
3719 l2b = pmap_get_l2_bucket(pm, sva);
3720 if (l2b == NULL) {
3721 sva = next_bucket;
3722 continue;
3723 }
3724
3725 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3726 sva < next_bucket;
3727 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3728 if (l2pte_valid(*ptep)) {
3729 cpu_icache_sync_range(sva,
3730 min(page_size, eva - sva));
3731 }
3732 }
3733 }
3734
3735 pmap_release_pmap_lock(pm);
3736 PMAP_MAP_TO_HEAD_UNLOCK();
3737 }
3738
3739 void
3740 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3741 {
3742 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3743 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3744
3745 NPDEBUG(PDB_PROTECT,
3746 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3747 md, pa, prot));
3748
3749 switch(prot) {
3750 case VM_PROT_READ|VM_PROT_WRITE:
3751 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3752 pmap_clearbit(md, pa, PVF_EXEC);
3753 break;
3754 #endif
3755 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3756 break;
3757
3758 case VM_PROT_READ:
3759 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3760 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3761 break;
3762 #endif
3763 case VM_PROT_READ|VM_PROT_EXECUTE:
3764 pmap_clearbit(md, pa, PVF_WRITE);
3765 break;
3766
3767 default:
3768 pmap_page_remove(md, pa);
3769 break;
3770 }
3771 }
3772
3773 /*
3774 * pmap_clear_modify:
3775 *
3776 * Clear the "modified" attribute for a page.
3777 */
3778 bool
3779 pmap_clear_modify(struct vm_page *pg)
3780 {
3781 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3782 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3783 bool rv;
3784
3785 if (md->pvh_attrs & PVF_MOD) {
3786 rv = true;
3787 #ifdef PMAP_CACHE_VIPT
3788 /*
3789 * If we are going to clear the modified bit and there are
3790 * no other modified bits set, flush the page to memory and
3791 * mark it clean.
3792 */
3793 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3794 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3795 #endif
3796 pmap_clearbit(md, pa, PVF_MOD);
3797 } else
3798 rv = false;
3799
3800 return (rv);
3801 }
3802
3803 /*
3804 * pmap_clear_reference:
3805 *
3806 * Clear the "referenced" attribute for a page.
3807 */
3808 bool
3809 pmap_clear_reference(struct vm_page *pg)
3810 {
3811 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3812 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3813 bool rv;
3814
3815 if (md->pvh_attrs & PVF_REF) {
3816 rv = true;
3817 pmap_clearbit(md, pa, PVF_REF);
3818 } else
3819 rv = false;
3820
3821 return (rv);
3822 }
3823
3824 /*
3825 * pmap_is_modified:
3826 *
3827 * Test if a page has the "modified" attribute.
3828 */
3829 /* See <arm/arm32/pmap.h> */
3830
3831 /*
3832 * pmap_is_referenced:
3833 *
3834 * Test if a page has the "referenced" attribute.
3835 */
3836 /* See <arm/arm32/pmap.h> */
3837
3838 int
3839 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3840 {
3841 struct l2_dtable *l2;
3842 struct l2_bucket *l2b;
3843 pd_entry_t *pl1pd, l1pd;
3844 pt_entry_t *ptep, pte;
3845 paddr_t pa;
3846 u_int l1idx;
3847 int rv = 0;
3848
3849 PMAP_MAP_TO_HEAD_LOCK();
3850 pmap_acquire_pmap_lock(pm);
3851
3852 l1idx = L1_IDX(va);
3853
3854 /*
3855 * If there is no l2_dtable for this address, then the process
3856 * has no business accessing it.
3857 *
3858 * Note: This will catch userland processes trying to access
3859 * kernel addresses.
3860 */
3861 l2 = pm->pm_l2[L2_IDX(l1idx)];
3862 if (l2 == NULL)
3863 goto out;
3864
3865 /*
3866 * Likewise if there is no L2 descriptor table
3867 */
3868 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3869 if (l2b->l2b_kva == NULL)
3870 goto out;
3871
3872 /*
3873 * Check the PTE itself.
3874 */
3875 ptep = &l2b->l2b_kva[l2pte_index(va)];
3876 pte = *ptep;
3877 if (pte == 0)
3878 goto out;
3879
3880 /*
3881 * Catch a userland access to the vector page mapped at 0x0
3882 */
3883 if (user && (pte & L2_S_PROT_U) == 0)
3884 goto out;
3885
3886 pa = l2pte_pa(pte);
3887
3888 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3889 /*
3890 * This looks like a good candidate for "page modified"
3891 * emulation...
3892 */
3893 struct pv_entry *pv;
3894 struct vm_page *pg;
3895
3896 /* Extract the physical address of the page */
3897 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3898 goto out;
3899
3900 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3901
3902 /* Get the current flags for this page. */
3903 simple_lock(&md->pvh_slock);
3904
3905 pv = pmap_find_pv(md, pm, va);
3906 if (pv == NULL) {
3907 simple_unlock(&md->pvh_slock);
3908 goto out;
3909 }
3910
3911 /*
3912 * Do the flags say this page is writable? If not then it
3913 * is a genuine write fault. If yes then the write fault is
3914 * our fault as we did not reflect the write access in the
3915 * PTE. Now we know a write has occurred we can correct this
3916 * and also set the modified bit
3917 */
3918 if ((pv->pv_flags & PVF_WRITE) == 0) {
3919 simple_unlock(&md->pvh_slock);
3920 goto out;
3921 }
3922
3923 NPDEBUG(PDB_FOLLOW,
3924 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3925 pm, va, pa));
3926
3927 md->pvh_attrs |= PVF_REF | PVF_MOD;
3928 pv->pv_flags |= PVF_REF | PVF_MOD;
3929 #ifdef PMAP_CACHE_VIPT
3930 /*
3931 * If there are cacheable mappings for this page, mark it dirty.
3932 */
3933 if ((md->pvh_attrs & PVF_NC) == 0)
3934 md->pvh_attrs |= PVF_DIRTY;
3935 #endif
3936 simple_unlock(&md->pvh_slock);
3937
3938 /*
3939 * Re-enable write permissions for the page. No need to call
3940 * pmap_vac_me_harder(), since this is just a
3941 * modified-emulation fault, and the PVF_WRITE bit isn't
3942 * changing. We've already set the cacheable bits based on
3943 * the assumption that we can write to this page.
3944 */
3945 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3946 PTE_SYNC(ptep);
3947 rv = 1;
3948 } else
3949 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3950 /*
3951 * This looks like a good candidate for "page referenced"
3952 * emulation.
3953 */
3954 struct pv_entry *pv;
3955 struct vm_page *pg;
3956
3957 /* Extract the physical address of the page */
3958 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3959 goto out;
3960
3961 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3962
3963 /* Get the current flags for this page. */
3964 simple_lock(&md->pvh_slock);
3965
3966 pv = pmap_find_pv(md, pm, va);
3967 if (pv == NULL) {
3968 simple_unlock(&md->pvh_slock);
3969 goto out;
3970 }
3971
3972 md->pvh_attrs |= PVF_REF;
3973 pv->pv_flags |= PVF_REF;
3974 simple_unlock(&md->pvh_slock);
3975
3976 NPDEBUG(PDB_FOLLOW,
3977 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3978 pm, va, pa));
3979
3980 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3981 PTE_SYNC(ptep);
3982 rv = 1;
3983 }
3984
3985 /*
3986 * We know there is a valid mapping here, so simply
3987 * fix up the L1 if necessary.
3988 */
3989 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3990 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3991 if (*pl1pd != l1pd) {
3992 *pl1pd = l1pd;
3993 PTE_SYNC(pl1pd);
3994 rv = 1;
3995 }
3996
3997 #ifdef CPU_SA110
3998 /*
3999 * There are bugs in the rev K SA110. This is a check for one
4000 * of them.
4001 */
4002 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4003 curcpu()->ci_arm_cpurev < 3) {
4004 /* Always current pmap */
4005 if (l2pte_valid(pte)) {
4006 extern int kernel_debug;
4007 if (kernel_debug & 1) {
4008 struct proc *p = curlwp->l_proc;
4009 printf("prefetch_abort: page is already "
4010 "mapped - pte=%p *pte=%08x\n", ptep, pte);
4011 printf("prefetch_abort: pc=%08lx proc=%p "
4012 "process=%s\n", va, p, p->p_comm);
4013 printf("prefetch_abort: far=%08x fs=%x\n",
4014 cpu_faultaddress(), cpu_faultstatus());
4015 }
4016 #ifdef DDB
4017 if (kernel_debug & 2)
4018 Debugger();
4019 #endif
4020 rv = 1;
4021 }
4022 }
4023 #endif /* CPU_SA110 */
4024
4025 #ifdef DEBUG
4026 /*
4027 * If 'rv == 0' at this point, it generally indicates that there is a
4028 * stale TLB entry for the faulting address. This happens when two or
4029 * more processes are sharing an L1. Since we don't flush the TLB on
4030 * a context switch between such processes, we can take domain faults
4031 * for mappings which exist at the same VA in both processes. EVEN IF
4032 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4033 * example.
4034 *
4035 * This is extremely likely to happen if pmap_enter() updated the L1
4036 * entry for a recently entered mapping. In this case, the TLB is
4037 * flushed for the new mapping, but there may still be TLB entries for
4038 * other mappings belonging to other processes in the 1MB range
4039 * covered by the L1 entry.
4040 *
4041 * Since 'rv == 0', we know that the L1 already contains the correct
4042 * value, so the fault must be due to a stale TLB entry.
4043 *
4044 * Since we always need to flush the TLB anyway in the case where we
4045 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4046 * stale TLB entries dynamically.
4047 *
4048 * However, the above condition can ONLY happen if the current L1 is
4049 * being shared. If it happens when the L1 is unshared, it indicates
4050 * that other parts of the pmap are not doing their job WRT managing
4051 * the TLB.
4052 */
4053 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4054 extern int last_fault_code;
4055 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4056 pm, va, ftype);
4057 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4058 l2, l2b, ptep, pl1pd);
4059 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4060 pte, l1pd, last_fault_code);
4061 #ifdef DDB
4062 Debugger();
4063 #endif
4064 }
4065 #endif
4066
4067 cpu_tlb_flushID_SE(va);
4068 cpu_cpwait();
4069
4070 rv = 1;
4071
4072 out:
4073 pmap_release_pmap_lock(pm);
4074 PMAP_MAP_TO_HEAD_UNLOCK();
4075
4076 return (rv);
4077 }
4078
4079 /*
4080 * Routine: pmap_procwr
4081 *
4082 * Function:
4083 * Synchronize caches corresponding to [addr, addr+len) in p.
4084 *
4085 */
4086 void
4087 pmap_procwr(struct proc *p, vaddr_t va, int len)
4088 {
4089 /* We only need to do anything if it is the current process. */
4090 if (p == curproc)
4091 cpu_icache_sync_range(va, len);
4092 }
4093
4094 /*
4095 * Routine: pmap_unwire
4096 * Function: Clear the wired attribute for a map/virtual-address pair.
4097 *
4098 * In/out conditions:
4099 * The mapping must already exist in the pmap.
4100 */
4101 void
4102 pmap_unwire(pmap_t pm, vaddr_t va)
4103 {
4104 struct l2_bucket *l2b;
4105 pt_entry_t *ptep, pte;
4106 struct vm_page *pg;
4107 paddr_t pa;
4108
4109 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4110
4111 PMAP_MAP_TO_HEAD_LOCK();
4112 pmap_acquire_pmap_lock(pm);
4113
4114 l2b = pmap_get_l2_bucket(pm, va);
4115 KDASSERT(l2b != NULL);
4116
4117 ptep = &l2b->l2b_kva[l2pte_index(va)];
4118 pte = *ptep;
4119
4120 /* Extract the physical address of the page */
4121 pa = l2pte_pa(pte);
4122
4123 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4124 /* Update the wired bit in the pv entry for this page. */
4125 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4126
4127 simple_lock(&md->pvh_slock);
4128 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4129 simple_unlock(&md->pvh_slock);
4130 }
4131
4132 pmap_release_pmap_lock(pm);
4133 PMAP_MAP_TO_HEAD_UNLOCK();
4134 }
4135
4136 void
4137 pmap_activate(struct lwp *l)
4138 {
4139 extern int block_userspace_access;
4140 pmap_t opm, npm, rpm;
4141 uint32_t odacr, ndacr;
4142 int oldirqstate;
4143
4144 /*
4145 * If activating a non-current lwp or the current lwp is
4146 * already active, just return.
4147 */
4148 if (l != curlwp ||
4149 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4150 return;
4151
4152 npm = l->l_proc->p_vmspace->vm_map.pmap;
4153 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4154 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4155
4156 /*
4157 * If TTB and DACR are unchanged, short-circuit all the
4158 * TLB/cache management stuff.
4159 */
4160 if (pmap_previous_active_lwp != NULL) {
4161 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4162 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4163 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4164
4165 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4166 goto all_done;
4167 } else
4168 opm = NULL;
4169
4170 PMAPCOUNT(activations);
4171 block_userspace_access = 1;
4172
4173 /*
4174 * If switching to a user vmspace which is different to the
4175 * most recent one, and the most recent one is potentially
4176 * live in the cache, we must write-back and invalidate the
4177 * entire cache.
4178 */
4179 rpm = pmap_recent_user;
4180
4181 /*
4182 * XXXSCW: There's a corner case here which can leave turds in the cache as
4183 * reported in kern/41058. They're probably left over during tear-down and
4184 * switching away from an exiting process. Until the root cause is identified
4185 * and fixed, zap the cache when switching pmaps. This will result in a few
4186 * unnecessary cache flushes, but that's better than silently corrupting data.
4187 */
4188 #if 0
4189 if (npm != pmap_kernel() && rpm && npm != rpm &&
4190 rpm->pm_cstate.cs_cache) {
4191 rpm->pm_cstate.cs_cache = 0;
4192 #ifdef PMAP_CACHE_VIVT
4193 cpu_idcache_wbinv_all();
4194 #endif
4195 }
4196 #else
4197 if (rpm) {
4198 rpm->pm_cstate.cs_cache = 0;
4199 if (npm == pmap_kernel())
4200 pmap_recent_user = NULL;
4201 #ifdef PMAP_CACHE_VIVT
4202 cpu_idcache_wbinv_all();
4203 #endif
4204 }
4205 #endif
4206
4207 /* No interrupts while we frob the TTB/DACR */
4208 oldirqstate = disable_interrupts(IF32_bits);
4209
4210 /*
4211 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4212 * entry corresponding to 'vector_page' in the incoming L1 table
4213 * before switching to it otherwise subsequent interrupts/exceptions
4214 * (including domain faults!) will jump into hyperspace.
4215 */
4216 if (npm->pm_pl1vec != NULL) {
4217 cpu_tlb_flushID_SE((u_int)vector_page);
4218 cpu_cpwait();
4219 *npm->pm_pl1vec = npm->pm_l1vec;
4220 PTE_SYNC(npm->pm_pl1vec);
4221 }
4222
4223 cpu_domains(ndacr);
4224
4225 if (npm == pmap_kernel() || npm == rpm) {
4226 /*
4227 * Switching to a kernel thread, or back to the
4228 * same user vmspace as before... Simply update
4229 * the TTB (no TLB flush required)
4230 */
4231 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4232 "r"(npm->pm_l1->l1_physaddr));
4233 cpu_cpwait();
4234 } else {
4235 /*
4236 * Otherwise, update TTB and flush TLB
4237 */
4238 cpu_context_switch(npm->pm_l1->l1_physaddr);
4239 if (rpm != NULL)
4240 rpm->pm_cstate.cs_tlb = 0;
4241 }
4242
4243 restore_interrupts(oldirqstate);
4244
4245 block_userspace_access = 0;
4246
4247 all_done:
4248 /*
4249 * The new pmap is resident. Make sure it's marked
4250 * as resident in the cache/TLB.
4251 */
4252 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4253 if (npm != pmap_kernel())
4254 pmap_recent_user = npm;
4255
4256 /* The old pmap is not longer active */
4257 if (opm != NULL)
4258 opm->pm_activated = false;
4259
4260 /* But the new one is */
4261 npm->pm_activated = true;
4262 }
4263
4264 void
4265 pmap_deactivate(struct lwp *l)
4266 {
4267
4268 /*
4269 * If the process is exiting, make sure pmap_activate() does
4270 * a full MMU context-switch and cache flush, which we might
4271 * otherwise skip. See PR port-arm/38950.
4272 */
4273 if (l->l_proc->p_sflag & PS_WEXIT)
4274 pmap_previous_active_lwp = NULL;
4275
4276 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4277 }
4278
4279 void
4280 pmap_update(pmap_t pm)
4281 {
4282
4283 if (pm->pm_remove_all) {
4284 /*
4285 * Finish up the pmap_remove_all() optimisation by flushing
4286 * the TLB.
4287 */
4288 pmap_tlb_flushID(pm);
4289 pm->pm_remove_all = false;
4290 }
4291
4292 if (pmap_is_current(pm)) {
4293 /*
4294 * If we're dealing with a current userland pmap, move its L1
4295 * to the end of the LRU.
4296 */
4297 if (pm != pmap_kernel())
4298 pmap_use_l1(pm);
4299
4300 /*
4301 * We can assume we're done with frobbing the cache/tlb for
4302 * now. Make sure any future pmap ops don't skip cache/tlb
4303 * flushes.
4304 */
4305 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4306 }
4307
4308 PMAPCOUNT(updates);
4309
4310 /*
4311 * make sure TLB/cache operations have completed.
4312 */
4313 cpu_cpwait();
4314 }
4315
4316 void
4317 pmap_remove_all(pmap_t pm)
4318 {
4319
4320 /*
4321 * The vmspace described by this pmap is about to be torn down.
4322 * Until pmap_update() is called, UVM will only make calls
4323 * to pmap_remove(). We can make life much simpler by flushing
4324 * the cache now, and deferring TLB invalidation to pmap_update().
4325 */
4326 #ifdef PMAP_CACHE_VIVT
4327 pmap_idcache_wbinv_all(pm);
4328 #endif
4329 pm->pm_remove_all = true;
4330 }
4331
4332 /*
4333 * Retire the given physical map from service.
4334 * Should only be called if the map contains no valid mappings.
4335 */
4336 void
4337 pmap_destroy(pmap_t pm)
4338 {
4339 u_int count;
4340
4341 if (pm == NULL)
4342 return;
4343
4344 if (pm->pm_remove_all) {
4345 pmap_tlb_flushID(pm);
4346 pm->pm_remove_all = false;
4347 }
4348
4349 /*
4350 * Drop reference count
4351 */
4352 mutex_enter(&pm->pm_lock);
4353 count = --pm->pm_obj.uo_refs;
4354 mutex_exit(&pm->pm_lock);
4355 if (count > 0) {
4356 if (pmap_is_current(pm)) {
4357 if (pm != pmap_kernel())
4358 pmap_use_l1(pm);
4359 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4360 }
4361 return;
4362 }
4363
4364 /*
4365 * reference count is zero, free pmap resources and then free pmap.
4366 */
4367
4368 if (vector_page < KERNEL_BASE) {
4369 KDASSERT(!pmap_is_current(pm));
4370
4371 /* Remove the vector page mapping */
4372 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4373 pmap_update(pm);
4374 }
4375
4376 LIST_REMOVE(pm, pm_list);
4377
4378 pmap_free_l1(pm);
4379
4380 if (pmap_recent_user == pm)
4381 pmap_recent_user = NULL;
4382
4383 UVM_OBJ_DESTROY(&pm->pm_obj);
4384
4385 /* return the pmap to the pool */
4386 pool_cache_put(&pmap_cache, pm);
4387 }
4388
4389
4390 /*
4391 * void pmap_reference(pmap_t pm)
4392 *
4393 * Add a reference to the specified pmap.
4394 */
4395 void
4396 pmap_reference(pmap_t pm)
4397 {
4398
4399 if (pm == NULL)
4400 return;
4401
4402 pmap_use_l1(pm);
4403
4404 mutex_enter(&pm->pm_lock);
4405 pm->pm_obj.uo_refs++;
4406 mutex_exit(&pm->pm_lock);
4407 }
4408
4409 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4410
4411 static struct evcnt pmap_prefer_nochange_ev =
4412 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4413 static struct evcnt pmap_prefer_change_ev =
4414 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4415
4416 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4417 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4418
4419 void
4420 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4421 {
4422 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4423 vaddr_t va = *vap;
4424 vaddr_t diff = (hint - va) & mask;
4425 if (diff == 0) {
4426 pmap_prefer_nochange_ev.ev_count++;
4427 } else {
4428 pmap_prefer_change_ev.ev_count++;
4429 if (__predict_false(td))
4430 va -= mask + 1;
4431 *vap = va + diff;
4432 }
4433 }
4434 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4435
4436 /*
4437 * pmap_zero_page()
4438 *
4439 * Zero a given physical page by mapping it at a page hook point.
4440 * In doing the zero page op, the page we zero is mapped cachable, as with
4441 * StrongARM accesses to non-cached pages are non-burst making writing
4442 * _any_ bulk data very slow.
4443 */
4444 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4445 void
4446 pmap_zero_page_generic(paddr_t phys)
4447 {
4448 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4449 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4450 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4451 #endif
4452 #ifdef PMAP_CACHE_VIPT
4453 /* Choose the last page color it had, if any */
4454 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4455 #else
4456 const vsize_t va_offset = 0;
4457 #endif
4458 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4459
4460 #ifdef DEBUG
4461 if (!SLIST_EMPTY(&md->pvh_list))
4462 panic("pmap_zero_page: page has mappings");
4463 #endif
4464
4465 KDASSERT((phys & PGOFSET) == 0);
4466
4467 /*
4468 * Hook in the page, zero it, and purge the cache for that
4469 * zeroed page. Invalidate the TLB as needed.
4470 */
4471 *ptep = L2_S_PROTO | phys |
4472 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4473 PTE_SYNC(ptep);
4474 cpu_tlb_flushD_SE(cdstp + va_offset);
4475 cpu_cpwait();
4476 bzero_page(cdstp + va_offset);
4477 /*
4478 * Unmap the page.
4479 */
4480 *ptep = 0;
4481 PTE_SYNC(ptep);
4482 cpu_tlb_flushD_SE(cdstp + va_offset);
4483 #ifdef PMAP_CACHE_VIVT
4484 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4485 #endif
4486 #ifdef PMAP_CACHE_VIPT
4487 /*
4488 * This page is now cache resident so it now has a page color.
4489 * Any contents have been obliterated so clear the EXEC flag.
4490 */
4491 if (!pmap_is_page_colored_p(md)) {
4492 PMAPCOUNT(vac_color_new);
4493 md->pvh_attrs |= PVF_COLORED;
4494 }
4495 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4496 md->pvh_attrs &= ~PVF_EXEC;
4497 PMAPCOUNT(exec_discarded_zero);
4498 }
4499 md->pvh_attrs |= PVF_DIRTY;
4500 #endif
4501 }
4502 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4503
4504 #if ARM_MMU_XSCALE == 1
4505 void
4506 pmap_zero_page_xscale(paddr_t phys)
4507 {
4508 #ifdef DEBUG
4509 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4510 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4511
4512 if (!SLIST_EMPTY(&md->pvh_list))
4513 panic("pmap_zero_page: page has mappings");
4514 #endif
4515
4516 KDASSERT((phys & PGOFSET) == 0);
4517
4518 /*
4519 * Hook in the page, zero it, and purge the cache for that
4520 * zeroed page. Invalidate the TLB as needed.
4521 */
4522 *cdst_pte = L2_S_PROTO | phys |
4523 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4524 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4525 PTE_SYNC(cdst_pte);
4526 cpu_tlb_flushD_SE(cdstp);
4527 cpu_cpwait();
4528 bzero_page(cdstp);
4529 xscale_cache_clean_minidata();
4530 }
4531 #endif /* ARM_MMU_XSCALE == 1 */
4532
4533 /* pmap_pageidlezero()
4534 *
4535 * The same as above, except that we assume that the page is not
4536 * mapped. This means we never have to flush the cache first. Called
4537 * from the idle loop.
4538 */
4539 bool
4540 pmap_pageidlezero(paddr_t phys)
4541 {
4542 unsigned int i;
4543 int *ptr;
4544 bool rv = true;
4545 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4546 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4547 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4548 #endif
4549 #ifdef PMAP_CACHE_VIPT
4550 /* Choose the last page color it had, if any */
4551 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4552 #else
4553 const vsize_t va_offset = 0;
4554 #endif
4555 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4556
4557
4558 #ifdef DEBUG
4559 if (!SLIST_EMPTY(&md->pvh_list))
4560 panic("pmap_pageidlezero: page has mappings");
4561 #endif
4562
4563 KDASSERT((phys & PGOFSET) == 0);
4564
4565 /*
4566 * Hook in the page, zero it, and purge the cache for that
4567 * zeroed page. Invalidate the TLB as needed.
4568 */
4569 *ptep = L2_S_PROTO | phys |
4570 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4571 PTE_SYNC(ptep);
4572 cpu_tlb_flushD_SE(cdstp + va_offset);
4573 cpu_cpwait();
4574
4575 for (i = 0, ptr = (int *)(cdstp + va_offset);
4576 i < (PAGE_SIZE / sizeof(int)); i++) {
4577 if (sched_curcpu_runnable_p() != 0) {
4578 /*
4579 * A process has become ready. Abort now,
4580 * so we don't keep it waiting while we
4581 * do slow memory access to finish this
4582 * page.
4583 */
4584 rv = false;
4585 break;
4586 }
4587 *ptr++ = 0;
4588 }
4589
4590 #ifdef PMAP_CACHE_VIVT
4591 if (rv)
4592 /*
4593 * if we aborted we'll rezero this page again later so don't
4594 * purge it unless we finished it
4595 */
4596 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4597 #elif defined(PMAP_CACHE_VIPT)
4598 /*
4599 * This page is now cache resident so it now has a page color.
4600 * Any contents have been obliterated so clear the EXEC flag.
4601 */
4602 if (!pmap_is_page_colored_p(md)) {
4603 PMAPCOUNT(vac_color_new);
4604 md->pvh_attrs |= PVF_COLORED;
4605 }
4606 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4607 md->pvh_attrs &= ~PVF_EXEC;
4608 PMAPCOUNT(exec_discarded_zero);
4609 }
4610 #endif
4611 /*
4612 * Unmap the page.
4613 */
4614 *ptep = 0;
4615 PTE_SYNC(ptep);
4616 cpu_tlb_flushD_SE(cdstp + va_offset);
4617
4618 return (rv);
4619 }
4620
4621 /*
4622 * pmap_copy_page()
4623 *
4624 * Copy one physical page into another, by mapping the pages into
4625 * hook points. The same comment regarding cachability as in
4626 * pmap_zero_page also applies here.
4627 */
4628 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4629 void
4630 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4631 {
4632 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4633 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4634 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4635 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4636 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4637 #endif
4638 #ifdef PMAP_CACHE_VIPT
4639 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4640 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4641 #else
4642 const vsize_t src_va_offset = 0;
4643 const vsize_t dst_va_offset = 0;
4644 #endif
4645 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4646 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4647
4648 #ifdef DEBUG
4649 if (!SLIST_EMPTY(&dst_md->pvh_list))
4650 panic("pmap_copy_page: dst page has mappings");
4651 #endif
4652
4653 #ifdef PMAP_CACHE_VIPT
4654 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4655 #endif
4656 KDASSERT((src & PGOFSET) == 0);
4657 KDASSERT((dst & PGOFSET) == 0);
4658
4659 /*
4660 * Clean the source page. Hold the source page's lock for
4661 * the duration of the copy so that no other mappings can
4662 * be created while we have a potentially aliased mapping.
4663 */
4664 simple_lock(&src_md->pvh_slock);
4665 #ifdef PMAP_CACHE_VIVT
4666 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4667 #endif
4668
4669 /*
4670 * Map the pages into the page hook points, copy them, and purge
4671 * the cache for the appropriate page. Invalidate the TLB
4672 * as required.
4673 */
4674 *src_ptep = L2_S_PROTO
4675 | src
4676 #ifdef PMAP_CACHE_VIPT
4677 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4678 #endif
4679 #ifdef PMAP_CACHE_VIVT
4680 | pte_l2_s_cache_mode
4681 #endif
4682 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4683 *dst_ptep = L2_S_PROTO | dst |
4684 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4685 PTE_SYNC(src_ptep);
4686 PTE_SYNC(dst_ptep);
4687 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4688 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4689 cpu_cpwait();
4690 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4691 #ifdef PMAP_CACHE_VIVT
4692 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4693 #endif
4694 simple_unlock(&src_md->pvh_slock); /* cache is safe again */
4695 #ifdef PMAP_CACHE_VIVT
4696 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4697 #endif
4698 /*
4699 * Unmap the pages.
4700 */
4701 *src_ptep = 0;
4702 *dst_ptep = 0;
4703 PTE_SYNC(src_ptep);
4704 PTE_SYNC(dst_ptep);
4705 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4706 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4707 #ifdef PMAP_CACHE_VIPT
4708 /*
4709 * Now that the destination page is in the cache, mark it as colored.
4710 * If this was an exec page, discard it.
4711 */
4712 if (!pmap_is_page_colored_p(dst_md)) {
4713 PMAPCOUNT(vac_color_new);
4714 dst_md->pvh_attrs |= PVF_COLORED;
4715 }
4716 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4717 dst_md->pvh_attrs &= ~PVF_EXEC;
4718 PMAPCOUNT(exec_discarded_copy);
4719 }
4720 dst_md->pvh_attrs |= PVF_DIRTY;
4721 #endif
4722 }
4723 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4724
4725 #if ARM_MMU_XSCALE == 1
4726 void
4727 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4728 {
4729 struct vm_page_md *src_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(src));
4730 #ifdef DEBUG
4731 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4732
4733 if (!SLIST_EMPTY(&dst_md->pvh_list))
4734 panic("pmap_copy_page: dst page has mappings");
4735 #endif
4736
4737 KDASSERT((src & PGOFSET) == 0);
4738 KDASSERT((dst & PGOFSET) == 0);
4739
4740 /*
4741 * Clean the source page. Hold the source page's lock for
4742 * the duration of the copy so that no other mappings can
4743 * be created while we have a potentially aliased mapping.
4744 */
4745 simple_lock(&src_md->pvh_slock);
4746 #ifdef PMAP_CACHE_VIVT
4747 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4748 #endif
4749
4750 /*
4751 * Map the pages into the page hook points, copy them, and purge
4752 * the cache for the appropriate page. Invalidate the TLB
4753 * as required.
4754 */
4755 *csrc_pte = L2_S_PROTO | src |
4756 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4757 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4758 PTE_SYNC(csrc_pte);
4759 *cdst_pte = L2_S_PROTO | dst |
4760 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4761 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4762 PTE_SYNC(cdst_pte);
4763 cpu_tlb_flushD_SE(csrcp);
4764 cpu_tlb_flushD_SE(cdstp);
4765 cpu_cpwait();
4766 bcopy_page(csrcp, cdstp);
4767 simple_unlock(&src_md->pvh_slock); /* cache is safe again */
4768 xscale_cache_clean_minidata();
4769 }
4770 #endif /* ARM_MMU_XSCALE == 1 */
4771
4772 /*
4773 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4774 *
4775 * Return the start and end addresses of the kernel's virtual space.
4776 * These values are setup in pmap_bootstrap and are updated as pages
4777 * are allocated.
4778 */
4779 void
4780 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4781 {
4782 *start = virtual_avail;
4783 *end = virtual_end;
4784 }
4785
4786 /*
4787 * Helper function for pmap_grow_l2_bucket()
4788 */
4789 static inline int
4790 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4791 {
4792 struct l2_bucket *l2b;
4793 pt_entry_t *ptep;
4794 paddr_t pa;
4795
4796 if (uvm.page_init_done == false) {
4797 #ifdef PMAP_STEAL_MEMORY
4798 pv_addr_t pv;
4799 pmap_boot_pagealloc(PAGE_SIZE,
4800 #ifdef PMAP_CACHE_VIPT
4801 arm_cache_prefer_mask,
4802 va & arm_cache_prefer_mask,
4803 #else
4804 0, 0,
4805 #endif
4806 &pv);
4807 pa = pv.pv_pa;
4808 #else
4809 if (uvm_page_physget(&pa) == false)
4810 return (1);
4811 #endif /* PMAP_STEAL_MEMORY */
4812 } else {
4813 struct vm_page *pg;
4814 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4815 if (pg == NULL)
4816 return (1);
4817 pa = VM_PAGE_TO_PHYS(pg);
4818 #ifdef PMAP_CACHE_VIPT
4819 #ifdef DIAGNOSTIC
4820 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4821 #endif
4822 /*
4823 * This new page must not have any mappings. Enter it via
4824 * pmap_kenter_pa and let that routine do the hard work.
4825 */
4826 KASSERT(SLIST_EMPTY(&md->pvh_list));
4827 pmap_kenter_pa(va, pa,
4828 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4829 #endif
4830 }
4831
4832 if (pap)
4833 *pap = pa;
4834
4835 PMAPCOUNT(pt_mappings);
4836 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4837 KDASSERT(l2b != NULL);
4838
4839 ptep = &l2b->l2b_kva[l2pte_index(va)];
4840 *ptep = L2_S_PROTO | pa | cache_mode |
4841 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4842 PTE_SYNC(ptep);
4843 memset((void *)va, 0, PAGE_SIZE);
4844 return (0);
4845 }
4846
4847 /*
4848 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4849 * used by pmap_growkernel().
4850 */
4851 static inline struct l2_bucket *
4852 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4853 {
4854 struct l2_dtable *l2;
4855 struct l2_bucket *l2b;
4856 u_short l1idx;
4857 vaddr_t nva;
4858
4859 l1idx = L1_IDX(va);
4860
4861 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4862 /*
4863 * No mapping at this address, as there is
4864 * no entry in the L1 table.
4865 * Need to allocate a new l2_dtable.
4866 */
4867 nva = pmap_kernel_l2dtable_kva;
4868 if ((nva & PGOFSET) == 0) {
4869 /*
4870 * Need to allocate a backing page
4871 */
4872 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4873 return (NULL);
4874 }
4875
4876 l2 = (struct l2_dtable *)nva;
4877 nva += sizeof(struct l2_dtable);
4878
4879 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4880 /*
4881 * The new l2_dtable straddles a page boundary.
4882 * Map in another page to cover it.
4883 */
4884 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4885 return (NULL);
4886 }
4887
4888 pmap_kernel_l2dtable_kva = nva;
4889
4890 /*
4891 * Link it into the parent pmap
4892 */
4893 pm->pm_l2[L2_IDX(l1idx)] = l2;
4894 }
4895
4896 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4897
4898 /*
4899 * Fetch pointer to the L2 page table associated with the address.
4900 */
4901 if (l2b->l2b_kva == NULL) {
4902 pt_entry_t *ptep;
4903
4904 /*
4905 * No L2 page table has been allocated. Chances are, this
4906 * is because we just allocated the l2_dtable, above.
4907 */
4908 nva = pmap_kernel_l2ptp_kva;
4909 ptep = (pt_entry_t *)nva;
4910 if ((nva & PGOFSET) == 0) {
4911 /*
4912 * Need to allocate a backing page
4913 */
4914 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4915 &pmap_kernel_l2ptp_phys))
4916 return (NULL);
4917 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4918 }
4919
4920 l2->l2_occupancy++;
4921 l2b->l2b_kva = ptep;
4922 l2b->l2b_l1idx = l1idx;
4923 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4924
4925 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4926 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4927 }
4928
4929 return (l2b);
4930 }
4931
4932 vaddr_t
4933 pmap_growkernel(vaddr_t maxkvaddr)
4934 {
4935 pmap_t kpm = pmap_kernel();
4936 struct l1_ttable *l1;
4937 struct l2_bucket *l2b;
4938 pd_entry_t *pl1pd;
4939 int s;
4940
4941 if (maxkvaddr <= pmap_curmaxkvaddr)
4942 goto out; /* we are OK */
4943
4944 NPDEBUG(PDB_GROWKERN,
4945 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4946 pmap_curmaxkvaddr, maxkvaddr));
4947
4948 KDASSERT(maxkvaddr <= virtual_end);
4949
4950 /*
4951 * whoops! we need to add kernel PTPs
4952 */
4953
4954 s = splhigh(); /* to be safe */
4955 mutex_enter(&kpm->pm_lock);
4956
4957 /* Map 1MB at a time */
4958 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4959
4960 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4961 KDASSERT(l2b != NULL);
4962
4963 /* Distribute new L1 entry to all other L1s */
4964 SLIST_FOREACH(l1, &l1_list, l1_link) {
4965 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4966 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4967 L1_C_PROTO;
4968 PTE_SYNC(pl1pd);
4969 }
4970 }
4971
4972 /*
4973 * flush out the cache, expensive but growkernel will happen so
4974 * rarely
4975 */
4976 cpu_dcache_wbinv_all();
4977 cpu_tlb_flushD();
4978 cpu_cpwait();
4979
4980 mutex_exit(&kpm->pm_lock);
4981 splx(s);
4982
4983 out:
4984 return (pmap_curmaxkvaddr);
4985 }
4986
4987 /************************ Utility routines ****************************/
4988
4989 /*
4990 * vector_page_setprot:
4991 *
4992 * Manipulate the protection of the vector page.
4993 */
4994 void
4995 vector_page_setprot(int prot)
4996 {
4997 struct l2_bucket *l2b;
4998 pt_entry_t *ptep;
4999
5000 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5001 KDASSERT(l2b != NULL);
5002
5003 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5004
5005 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5006 PTE_SYNC(ptep);
5007 cpu_tlb_flushD_SE(vector_page);
5008 cpu_cpwait();
5009 }
5010
5011 /*
5012 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5013 * Returns true if the mapping exists, else false.
5014 *
5015 * NOTE: This function is only used by a couple of arm-specific modules.
5016 * It is not safe to take any pmap locks here, since we could be right
5017 * in the middle of debugging the pmap anyway...
5018 *
5019 * It is possible for this routine to return false even though a valid
5020 * mapping does exist. This is because we don't lock, so the metadata
5021 * state may be inconsistent.
5022 *
5023 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5024 * a "section" mapping.
5025 */
5026 bool
5027 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5028 {
5029 struct l2_dtable *l2;
5030 pd_entry_t *pl1pd, l1pd;
5031 pt_entry_t *ptep;
5032 u_short l1idx;
5033
5034 if (pm->pm_l1 == NULL)
5035 return false;
5036
5037 l1idx = L1_IDX(va);
5038 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
5039 l1pd = *pl1pd;
5040
5041 if (l1pte_section_p(l1pd)) {
5042 *ptp = NULL;
5043 return true;
5044 }
5045
5046 if (pm->pm_l2 == NULL)
5047 return false;
5048
5049 l2 = pm->pm_l2[L2_IDX(l1idx)];
5050
5051 if (l2 == NULL ||
5052 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5053 return false;
5054 }
5055
5056 *ptp = &ptep[l2pte_index(va)];
5057 return true;
5058 }
5059
5060 bool
5061 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5062 {
5063 u_short l1idx;
5064
5065 if (pm->pm_l1 == NULL)
5066 return false;
5067
5068 l1idx = L1_IDX(va);
5069 *pdp = &pm->pm_l1->l1_kva[l1idx];
5070
5071 return true;
5072 }
5073
5074 /************************ Bootstrapping routines ****************************/
5075
5076 static void
5077 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5078 {
5079 int i;
5080
5081 l1->l1_kva = l1pt;
5082 l1->l1_domain_use_count = 0;
5083 l1->l1_domain_first = 0;
5084
5085 for (i = 0; i < PMAP_DOMAINS; i++)
5086 l1->l1_domain_free[i] = i + 1;
5087
5088 /*
5089 * Copy the kernel's L1 entries to each new L1.
5090 */
5091 if (pmap_initialized)
5092 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5093
5094 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5095 &l1->l1_physaddr) == false)
5096 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5097
5098 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5099 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5100 }
5101
5102 /*
5103 * pmap_bootstrap() is called from the board-specific initarm() routine
5104 * once the kernel L1/L2 descriptors tables have been set up.
5105 *
5106 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5107 * spread over a number of disparate files/functions.
5108 *
5109 * We are passed the following parameters
5110 * - kernel_l1pt
5111 * This is a pointer to the base of the kernel's L1 translation table.
5112 * - vstart
5113 * 1MB-aligned start of managed kernel virtual memory.
5114 * - vend
5115 * 1MB-aligned end of managed kernel virtual memory.
5116 *
5117 * We use the first parameter to build the metadata (struct l1_ttable and
5118 * struct l2_dtable) necessary to track kernel mappings.
5119 */
5120 #define PMAP_STATIC_L2_SIZE 16
5121 void
5122 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5123 {
5124 static struct l1_ttable static_l1;
5125 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5126 struct l1_ttable *l1 = &static_l1;
5127 struct l2_dtable *l2;
5128 struct l2_bucket *l2b;
5129 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5130 pmap_t pm = pmap_kernel();
5131 pd_entry_t pde;
5132 pt_entry_t *ptep;
5133 paddr_t pa;
5134 vaddr_t va;
5135 vsize_t size;
5136 int nptes, l1idx, l2idx, l2next = 0;
5137
5138 /*
5139 * Initialise the kernel pmap object
5140 */
5141 pm->pm_l1 = l1;
5142 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5143 pm->pm_activated = true;
5144 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5145 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5146
5147 /*
5148 * Scan the L1 translation table created by initarm() and create
5149 * the required metadata for all valid mappings found in it.
5150 */
5151 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5152 pde = l1pt[l1idx];
5153
5154 /*
5155 * We're only interested in Coarse mappings.
5156 * pmap_extract() can deal with section mappings without
5157 * recourse to checking L2 metadata.
5158 */
5159 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5160 continue;
5161
5162 /*
5163 * Lookup the KVA of this L2 descriptor table
5164 */
5165 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5166 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5167 if (ptep == NULL) {
5168 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5169 (u_int)l1idx << L1_S_SHIFT, pa);
5170 }
5171
5172 /*
5173 * Fetch the associated L2 metadata structure.
5174 * Allocate a new one if necessary.
5175 */
5176 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5177 if (l2next == PMAP_STATIC_L2_SIZE)
5178 panic("pmap_bootstrap: out of static L2s");
5179 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5180 }
5181
5182 /*
5183 * One more L1 slot tracked...
5184 */
5185 l2->l2_occupancy++;
5186
5187 /*
5188 * Fill in the details of the L2 descriptor in the
5189 * appropriate bucket.
5190 */
5191 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5192 l2b->l2b_kva = ptep;
5193 l2b->l2b_phys = pa;
5194 l2b->l2b_l1idx = l1idx;
5195
5196 /*
5197 * Establish an initial occupancy count for this descriptor
5198 */
5199 for (l2idx = 0;
5200 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5201 l2idx++) {
5202 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5203 l2b->l2b_occupancy++;
5204 }
5205 }
5206
5207 /*
5208 * Make sure the descriptor itself has the correct cache mode.
5209 * If not, fix it, but whine about the problem. Port-meisters
5210 * should consider this a clue to fix up their initarm()
5211 * function. :)
5212 */
5213 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5214 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5215 "L2 pte @ %p\n", ptep);
5216 }
5217 }
5218
5219 /*
5220 * Ensure the primary (kernel) L1 has the correct cache mode for
5221 * a page table. Bitch if it is not correctly set.
5222 */
5223 for (va = (vaddr_t)l1pt;
5224 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5225 if (pmap_set_pt_cache_mode(l1pt, va))
5226 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5227 "primary L1 @ 0x%lx\n", va);
5228 }
5229
5230 cpu_dcache_wbinv_all();
5231 cpu_tlb_flushID();
5232 cpu_cpwait();
5233
5234 /*
5235 * now we allocate the "special" VAs which are used for tmp mappings
5236 * by the pmap (and other modules). we allocate the VAs by advancing
5237 * virtual_avail (note that there are no pages mapped at these VAs).
5238 *
5239 * Managed KVM space start from wherever initarm() tells us.
5240 */
5241 virtual_avail = vstart;
5242 virtual_end = vend;
5243
5244 #ifdef PMAP_CACHE_VIPT
5245 /*
5246 * If we have a VIPT cache, we need one page/pte per possible alias
5247 * page so we won't violate cache aliasing rules.
5248 */
5249 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5250 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5251 #else
5252 nptes = 1;
5253 #endif
5254 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5255 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5256 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5257 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5258 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5259 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5260 (void *)&msgbufaddr, NULL);
5261
5262 /*
5263 * Allocate a range of kernel virtual address space to be used
5264 * for L2 descriptor tables and metadata allocation in
5265 * pmap_growkernel().
5266 */
5267 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5268 pmap_alloc_specials(&virtual_avail,
5269 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5270 &pmap_kernel_l2ptp_kva, NULL);
5271
5272 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5273 pmap_alloc_specials(&virtual_avail,
5274 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5275 &pmap_kernel_l2dtable_kva, NULL);
5276
5277 /*
5278 * init the static-global locks and global pmap list.
5279 */
5280 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5281
5282 /*
5283 * We can now initialise the first L1's metadata.
5284 */
5285 SLIST_INIT(&l1_list);
5286 TAILQ_INIT(&l1_lru_list);
5287 simple_lock_init(&l1_lru_lock);
5288 pmap_init_l1(l1, l1pt);
5289
5290 /* Set up vector page L1 details, if necessary */
5291 if (vector_page < KERNEL_BASE) {
5292 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5293 l2b = pmap_get_l2_bucket(pm, vector_page);
5294 KDASSERT(l2b != NULL);
5295 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5296 L1_C_DOM(pm->pm_domain);
5297 } else
5298 pm->pm_pl1vec = NULL;
5299
5300 /*
5301 * Initialize the pmap cache
5302 */
5303 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5304 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5305 LIST_INIT(&pmap_pmaps);
5306 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5307
5308 /*
5309 * Initialize the pv pool.
5310 */
5311 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5312 &pmap_bootstrap_pv_allocator, IPL_NONE);
5313
5314 /*
5315 * Initialize the L2 dtable pool and cache.
5316 */
5317 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5318 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5319
5320 /*
5321 * Initialise the L2 descriptor table pool and cache
5322 */
5323 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5324 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5325 pmap_l2ptp_ctor, NULL, NULL);
5326
5327 cpu_dcache_wbinv_all();
5328 }
5329
5330 static int
5331 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5332 {
5333 pd_entry_t *pdep, pde;
5334 pt_entry_t *ptep, pte;
5335 vaddr_t pa;
5336 int rv = 0;
5337
5338 /*
5339 * Make sure the descriptor itself has the correct cache mode
5340 */
5341 pdep = &kl1[L1_IDX(va)];
5342 pde = *pdep;
5343
5344 if (l1pte_section_p(pde)) {
5345 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5346 *pdep = (pde & ~L1_S_CACHE_MASK) |
5347 pte_l1_s_cache_mode_pt;
5348 PTE_SYNC(pdep);
5349 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5350 rv = 1;
5351 }
5352 } else {
5353 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5354 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5355 if (ptep == NULL)
5356 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5357
5358 ptep = &ptep[l2pte_index(va)];
5359 pte = *ptep;
5360 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5361 *ptep = (pte & ~L2_S_CACHE_MASK) |
5362 pte_l2_s_cache_mode_pt;
5363 PTE_SYNC(ptep);
5364 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5365 rv = 1;
5366 }
5367 }
5368
5369 return (rv);
5370 }
5371
5372 static void
5373 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5374 {
5375 vaddr_t va = *availp;
5376 struct l2_bucket *l2b;
5377
5378 if (ptep) {
5379 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5380 if (l2b == NULL)
5381 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5382
5383 if (ptep)
5384 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5385 }
5386
5387 *vap = va;
5388 *availp = va + (PAGE_SIZE * pages);
5389 }
5390
5391 void
5392 pmap_init(void)
5393 {
5394
5395 /*
5396 * Set the available memory vars - These do not map to real memory
5397 * addresses and cannot as the physical memory is fragmented.
5398 * They are used by ps for %mem calculations.
5399 * One could argue whether this should be the entire memory or just
5400 * the memory that is useable in a user process.
5401 */
5402 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5403 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5404
5405 /*
5406 * Now we need to free enough pv_entry structures to allow us to get
5407 * the kmem_map/kmem_object allocated and inited (done after this
5408 * function is finished). to do this we allocate one bootstrap page out
5409 * of kernel_map and use it to provide an initial pool of pv_entry
5410 * structures. we never free this page.
5411 */
5412 pool_setlowat(&pmap_pv_pool,
5413 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5414
5415 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5416 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5417 UVM_KMF_WIRED|UVM_KMF_ZERO);
5418
5419 pmap_initialized = true;
5420 }
5421
5422 static vaddr_t last_bootstrap_page = 0;
5423 static void *free_bootstrap_pages = NULL;
5424
5425 static void *
5426 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5427 {
5428 extern void *pool_page_alloc(struct pool *, int);
5429 vaddr_t new_page;
5430 void *rv;
5431
5432 if (pmap_initialized)
5433 return (pool_page_alloc(pp, flags));
5434
5435 if (free_bootstrap_pages) {
5436 rv = free_bootstrap_pages;
5437 free_bootstrap_pages = *((void **)rv);
5438 return (rv);
5439 }
5440
5441 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5442 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5443
5444 KASSERT(new_page > last_bootstrap_page);
5445 last_bootstrap_page = new_page;
5446 return ((void *)new_page);
5447 }
5448
5449 static void
5450 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5451 {
5452 extern void pool_page_free(struct pool *, void *);
5453
5454 if ((vaddr_t)v <= last_bootstrap_page) {
5455 *((void **)v) = free_bootstrap_pages;
5456 free_bootstrap_pages = v;
5457 return;
5458 }
5459
5460 if (pmap_initialized) {
5461 pool_page_free(pp, v);
5462 return;
5463 }
5464 }
5465
5466 /*
5467 * pmap_postinit()
5468 *
5469 * This routine is called after the vm and kmem subsystems have been
5470 * initialised. This allows the pmap code to perform any initialisation
5471 * that can only be done one the memory allocation is in place.
5472 */
5473 void
5474 pmap_postinit(void)
5475 {
5476 extern paddr_t physical_start, physical_end;
5477 struct l2_bucket *l2b;
5478 struct l1_ttable *l1;
5479 struct pglist plist;
5480 struct vm_page *m;
5481 pd_entry_t *pl1pt;
5482 pt_entry_t *ptep, pte;
5483 vaddr_t va, eva;
5484 u_int loop, needed;
5485 int error;
5486
5487 pool_cache_setlowat(&pmap_l2ptp_cache,
5488 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5489 pool_cache_setlowat(&pmap_l2dtable_cache,
5490 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5491
5492 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5493 needed -= 1;
5494
5495 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5496
5497 for (loop = 0; loop < needed; loop++, l1++) {
5498 /* Allocate a L1 page table */
5499 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5500 if (va == 0)
5501 panic("Cannot allocate L1 KVM");
5502
5503 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5504 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5505 if (error)
5506 panic("Cannot allocate L1 physical pages");
5507
5508 m = TAILQ_FIRST(&plist);
5509 eva = va + L1_TABLE_SIZE;
5510 pl1pt = (pd_entry_t *)va;
5511
5512 while (m && va < eva) {
5513 paddr_t pa = VM_PAGE_TO_PHYS(m);
5514
5515 pmap_kenter_pa(va, pa,
5516 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5517
5518 /*
5519 * Make sure the L1 descriptor table is mapped
5520 * with the cache-mode set to write-through.
5521 */
5522 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5523 KDASSERT(l2b != NULL);
5524 ptep = &l2b->l2b_kva[l2pte_index(va)];
5525 pte = *ptep;
5526 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5527 *ptep = pte;
5528 PTE_SYNC(ptep);
5529 cpu_tlb_flushD_SE(va);
5530
5531 va += PAGE_SIZE;
5532 m = TAILQ_NEXT(m, pageq.queue);
5533 }
5534
5535 #ifdef DIAGNOSTIC
5536 if (m)
5537 panic("pmap_alloc_l1pt: pglist not empty");
5538 #endif /* DIAGNOSTIC */
5539
5540 pmap_init_l1(l1, pl1pt);
5541 }
5542
5543 #ifdef DEBUG
5544 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5545 needed);
5546 #endif
5547 }
5548
5549 /*
5550 * Note that the following routines are used by board-specific initialisation
5551 * code to configure the initial kernel page tables.
5552 *
5553 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5554 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5555 * behaviour of the old pmap, and provides an easy migration path for
5556 * initial bring-up of the new pmap on existing ports. Fortunately,
5557 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5558 * will be deprecated.
5559 *
5560 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5561 * tables.
5562 */
5563
5564 /*
5565 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5566 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5567 * find them as necessary.
5568 *
5569 * Note that the data on this list MUST remain valid after initarm() returns,
5570 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5571 */
5572 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5573
5574 static vaddr_t
5575 kernel_pt_lookup(paddr_t pa)
5576 {
5577 pv_addr_t *pv;
5578
5579 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5580 #ifndef ARM32_NEW_VM_LAYOUT
5581 if (pv->pv_pa == (pa & ~PGOFSET))
5582 return (pv->pv_va | (pa & PGOFSET));
5583 #else
5584 if (pv->pv_pa == pa)
5585 return (pv->pv_va);
5586 #endif
5587 }
5588 return (0);
5589 }
5590
5591 /*
5592 * pmap_map_section:
5593 *
5594 * Create a single section mapping.
5595 */
5596 void
5597 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5598 {
5599 pd_entry_t *pde = (pd_entry_t *) l1pt;
5600 pd_entry_t fl;
5601
5602 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5603
5604 switch (cache) {
5605 case PTE_NOCACHE:
5606 default:
5607 fl = 0;
5608 break;
5609
5610 case PTE_CACHE:
5611 fl = pte_l1_s_cache_mode;
5612 break;
5613
5614 case PTE_PAGETABLE:
5615 fl = pte_l1_s_cache_mode_pt;
5616 break;
5617 }
5618
5619 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5620 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5621 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5622 }
5623
5624 /*
5625 * pmap_map_entry:
5626 *
5627 * Create a single page mapping.
5628 */
5629 void
5630 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5631 {
5632 pd_entry_t *pde = (pd_entry_t *) l1pt;
5633 pt_entry_t fl;
5634 pt_entry_t *pte;
5635
5636 KASSERT(((va | pa) & PGOFSET) == 0);
5637
5638 switch (cache) {
5639 case PTE_NOCACHE:
5640 default:
5641 fl = 0;
5642 break;
5643
5644 case PTE_CACHE:
5645 fl = pte_l2_s_cache_mode;
5646 break;
5647
5648 case PTE_PAGETABLE:
5649 fl = pte_l2_s_cache_mode_pt;
5650 break;
5651 }
5652
5653 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5654 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5655
5656 #ifndef ARM32_NEW_VM_LAYOUT
5657 pte = (pt_entry_t *)
5658 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5659 #else
5660 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5661 #endif
5662 if (pte == NULL)
5663 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5664
5665 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5666 #ifndef ARM32_NEW_VM_LAYOUT
5667 pte += (va >> PGSHIFT) & 0x3ff;
5668 #else
5669 pte += l2pte_index(va);
5670 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5671 #endif
5672 *pte = fl;
5673 PTE_SYNC(pte);
5674 }
5675
5676 /*
5677 * pmap_link_l2pt:
5678 *
5679 * Link the L2 page table specified by "l2pv" into the L1
5680 * page table at the slot for "va".
5681 */
5682 void
5683 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5684 {
5685 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5686 u_int slot = va >> L1_S_SHIFT;
5687
5688 #ifndef ARM32_NEW_VM_LAYOUT
5689 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5690 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5691 #endif
5692
5693 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5694
5695 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5696 #ifdef ARM32_NEW_VM_LAYOUT
5697 PTE_SYNC(&pde[slot]);
5698 #else
5699 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5700 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5701 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5702 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5703 #endif
5704
5705 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5706 }
5707
5708 /*
5709 * pmap_map_chunk:
5710 *
5711 * Map a chunk of memory using the most efficient mappings
5712 * possible (section, large page, small page) into the
5713 * provided L1 and L2 tables at the specified virtual address.
5714 */
5715 vsize_t
5716 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5717 int prot, int cache)
5718 {
5719 pd_entry_t *pde = (pd_entry_t *) l1pt;
5720 pt_entry_t *pte, f1, f2s, f2l;
5721 vsize_t resid;
5722 int i;
5723
5724 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5725
5726 if (l1pt == 0)
5727 panic("pmap_map_chunk: no L1 table provided");
5728
5729 #ifdef VERBOSE_INIT_ARM
5730 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5731 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5732 #endif
5733
5734 switch (cache) {
5735 case PTE_NOCACHE:
5736 default:
5737 f1 = 0;
5738 f2l = 0;
5739 f2s = 0;
5740 break;
5741
5742 case PTE_CACHE:
5743 f1 = pte_l1_s_cache_mode;
5744 f2l = pte_l2_l_cache_mode;
5745 f2s = pte_l2_s_cache_mode;
5746 break;
5747
5748 case PTE_PAGETABLE:
5749 f1 = pte_l1_s_cache_mode_pt;
5750 f2l = pte_l2_l_cache_mode_pt;
5751 f2s = pte_l2_s_cache_mode_pt;
5752 break;
5753 }
5754
5755 size = resid;
5756
5757 while (resid > 0) {
5758 /* See if we can use a section mapping. */
5759 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5760 #ifdef VERBOSE_INIT_ARM
5761 printf("S");
5762 #endif
5763 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5764 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5765 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5766 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5767 va += L1_S_SIZE;
5768 pa += L1_S_SIZE;
5769 resid -= L1_S_SIZE;
5770 continue;
5771 }
5772
5773 /*
5774 * Ok, we're going to use an L2 table. Make sure
5775 * one is actually in the corresponding L1 slot
5776 * for the current VA.
5777 */
5778 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5779 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5780
5781 #ifndef ARM32_NEW_VM_LAYOUT
5782 pte = (pt_entry_t *)
5783 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5784 #else
5785 pte = (pt_entry_t *) kernel_pt_lookup(
5786 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5787 #endif
5788 if (pte == NULL)
5789 panic("pmap_map_chunk: can't find L2 table for VA"
5790 "0x%08lx", va);
5791
5792 /* See if we can use a L2 large page mapping. */
5793 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5794 #ifdef VERBOSE_INIT_ARM
5795 printf("L");
5796 #endif
5797 for (i = 0; i < 16; i++) {
5798 #ifndef ARM32_NEW_VM_LAYOUT
5799 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5800 L2_L_PROTO | pa |
5801 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5802 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5803 #else
5804 pte[l2pte_index(va) + i] =
5805 L2_L_PROTO | pa |
5806 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5807 PTE_SYNC(&pte[l2pte_index(va) + i]);
5808 #endif
5809 }
5810 va += L2_L_SIZE;
5811 pa += L2_L_SIZE;
5812 resid -= L2_L_SIZE;
5813 continue;
5814 }
5815
5816 /* Use a small page mapping. */
5817 #ifdef VERBOSE_INIT_ARM
5818 printf("P");
5819 #endif
5820 #ifndef ARM32_NEW_VM_LAYOUT
5821 pte[(va >> PGSHIFT) & 0x3ff] =
5822 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5823 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5824 #else
5825 pte[l2pte_index(va)] =
5826 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5827 PTE_SYNC(&pte[l2pte_index(va)]);
5828 #endif
5829 va += PAGE_SIZE;
5830 pa += PAGE_SIZE;
5831 resid -= PAGE_SIZE;
5832 }
5833 #ifdef VERBOSE_INIT_ARM
5834 printf("\n");
5835 #endif
5836 return (size);
5837 }
5838
5839 /********************** Static device map routines ***************************/
5840
5841 static const struct pmap_devmap *pmap_devmap_table;
5842
5843 /*
5844 * Register the devmap table. This is provided in case early console
5845 * initialization needs to register mappings created by bootstrap code
5846 * before pmap_devmap_bootstrap() is called.
5847 */
5848 void
5849 pmap_devmap_register(const struct pmap_devmap *table)
5850 {
5851
5852 pmap_devmap_table = table;
5853 }
5854
5855 /*
5856 * Map all of the static regions in the devmap table, and remember
5857 * the devmap table so other parts of the kernel can look up entries
5858 * later.
5859 */
5860 void
5861 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5862 {
5863 int i;
5864
5865 pmap_devmap_table = table;
5866
5867 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5868 #ifdef VERBOSE_INIT_ARM
5869 printf("devmap: %08lx -> %08lx @ %08lx\n",
5870 pmap_devmap_table[i].pd_pa,
5871 pmap_devmap_table[i].pd_pa +
5872 pmap_devmap_table[i].pd_size - 1,
5873 pmap_devmap_table[i].pd_va);
5874 #endif
5875 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5876 pmap_devmap_table[i].pd_pa,
5877 pmap_devmap_table[i].pd_size,
5878 pmap_devmap_table[i].pd_prot,
5879 pmap_devmap_table[i].pd_cache);
5880 }
5881 }
5882
5883 const struct pmap_devmap *
5884 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5885 {
5886 uint64_t endpa;
5887 int i;
5888
5889 if (pmap_devmap_table == NULL)
5890 return (NULL);
5891
5892 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5893
5894 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5895 if (pa >= pmap_devmap_table[i].pd_pa &&
5896 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5897 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5898 return (&pmap_devmap_table[i]);
5899 }
5900
5901 return (NULL);
5902 }
5903
5904 const struct pmap_devmap *
5905 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5906 {
5907 int i;
5908
5909 if (pmap_devmap_table == NULL)
5910 return (NULL);
5911
5912 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5913 if (va >= pmap_devmap_table[i].pd_va &&
5914 va + size - 1 <= pmap_devmap_table[i].pd_va +
5915 pmap_devmap_table[i].pd_size - 1)
5916 return (&pmap_devmap_table[i]);
5917 }
5918
5919 return (NULL);
5920 }
5921
5922 /********************** PTE initialization routines **************************/
5923
5924 /*
5925 * These routines are called when the CPU type is identified to set up
5926 * the PTE prototypes, cache modes, etc.
5927 *
5928 * The variables are always here, just in case modules need to reference
5929 * them (though, they shouldn't).
5930 */
5931
5932 pt_entry_t pte_l1_s_cache_mode;
5933 pt_entry_t pte_l1_s_wc_mode;
5934 pt_entry_t pte_l1_s_cache_mode_pt;
5935 pt_entry_t pte_l1_s_cache_mask;
5936
5937 pt_entry_t pte_l2_l_cache_mode;
5938 pt_entry_t pte_l2_l_wc_mode;
5939 pt_entry_t pte_l2_l_cache_mode_pt;
5940 pt_entry_t pte_l2_l_cache_mask;
5941
5942 pt_entry_t pte_l2_s_cache_mode;
5943 pt_entry_t pte_l2_s_wc_mode;
5944 pt_entry_t pte_l2_s_cache_mode_pt;
5945 pt_entry_t pte_l2_s_cache_mask;
5946
5947 pt_entry_t pte_l1_s_prot_u;
5948 pt_entry_t pte_l1_s_prot_w;
5949 pt_entry_t pte_l1_s_prot_ro;
5950 pt_entry_t pte_l1_s_prot_mask;
5951
5952 pt_entry_t pte_l2_s_prot_u;
5953 pt_entry_t pte_l2_s_prot_w;
5954 pt_entry_t pte_l2_s_prot_ro;
5955 pt_entry_t pte_l2_s_prot_mask;
5956
5957 pt_entry_t pte_l2_l_prot_u;
5958 pt_entry_t pte_l2_l_prot_w;
5959 pt_entry_t pte_l2_l_prot_ro;
5960 pt_entry_t pte_l2_l_prot_mask;
5961
5962 pt_entry_t pte_l1_s_proto;
5963 pt_entry_t pte_l1_c_proto;
5964 pt_entry_t pte_l2_s_proto;
5965
5966 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5967 void (*pmap_zero_page_func)(paddr_t);
5968
5969 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5970 void
5971 pmap_pte_init_generic(void)
5972 {
5973
5974 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5975 pte_l1_s_wc_mode = L1_S_B;
5976 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5977
5978 pte_l2_l_cache_mode = L2_B|L2_C;
5979 pte_l2_l_wc_mode = L2_B;
5980 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5981
5982 pte_l2_s_cache_mode = L2_B|L2_C;
5983 pte_l2_s_wc_mode = L2_B;
5984 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5985
5986 /*
5987 * If we have a write-through cache, set B and C. If
5988 * we have a write-back cache, then we assume setting
5989 * only C will make those pages write-through.
5990 */
5991 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5992 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5993 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5994 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5995 } else {
5996 #if ARM_MMU_V6 > 1
5997 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5998 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5999 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
6000 #else
6001 pte_l1_s_cache_mode_pt = L1_S_C;
6002 pte_l2_l_cache_mode_pt = L2_C;
6003 pte_l2_s_cache_mode_pt = L2_C;
6004 #endif
6005 }
6006
6007 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6008 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6009 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6010 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6011
6012 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6013 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6014 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6015 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6016
6017 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6018 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6019 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6020 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6021
6022 pte_l1_s_proto = L1_S_PROTO_generic;
6023 pte_l1_c_proto = L1_C_PROTO_generic;
6024 pte_l2_s_proto = L2_S_PROTO_generic;
6025
6026 pmap_copy_page_func = pmap_copy_page_generic;
6027 pmap_zero_page_func = pmap_zero_page_generic;
6028 }
6029
6030 #if defined(CPU_ARM8)
6031 void
6032 pmap_pte_init_arm8(void)
6033 {
6034
6035 /*
6036 * ARM8 is compatible with generic, but we need to use
6037 * the page tables uncached.
6038 */
6039 pmap_pte_init_generic();
6040
6041 pte_l1_s_cache_mode_pt = 0;
6042 pte_l2_l_cache_mode_pt = 0;
6043 pte_l2_s_cache_mode_pt = 0;
6044 }
6045 #endif /* CPU_ARM8 */
6046
6047 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6048 void
6049 pmap_pte_init_arm9(void)
6050 {
6051
6052 /*
6053 * ARM9 is compatible with generic, but we want to use
6054 * write-through caching for now.
6055 */
6056 pmap_pte_init_generic();
6057
6058 pte_l1_s_cache_mode = L1_S_C;
6059 pte_l2_l_cache_mode = L2_C;
6060 pte_l2_s_cache_mode = L2_C;
6061
6062 pte_l1_s_wc_mode = L1_S_B;
6063 pte_l2_l_wc_mode = L2_B;
6064 pte_l2_s_wc_mode = L2_B;
6065
6066 pte_l1_s_cache_mode_pt = L1_S_C;
6067 pte_l2_l_cache_mode_pt = L2_C;
6068 pte_l2_s_cache_mode_pt = L2_C;
6069 }
6070 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6071 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6072
6073 #if defined(CPU_ARM10)
6074 void
6075 pmap_pte_init_arm10(void)
6076 {
6077
6078 /*
6079 * ARM10 is compatible with generic, but we want to use
6080 * write-through caching for now.
6081 */
6082 pmap_pte_init_generic();
6083
6084 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6085 pte_l2_l_cache_mode = L2_B | L2_C;
6086 pte_l2_s_cache_mode = L2_B | L2_C;
6087
6088 pte_l1_s_cache_mode = L1_S_B;
6089 pte_l2_l_cache_mode = L2_B;
6090 pte_l2_s_cache_mode = L2_B;
6091
6092 pte_l1_s_cache_mode_pt = L1_S_C;
6093 pte_l2_l_cache_mode_pt = L2_C;
6094 pte_l2_s_cache_mode_pt = L2_C;
6095
6096 }
6097 #endif /* CPU_ARM10 */
6098
6099 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6100 void
6101 pmap_pte_init_arm11(void)
6102 {
6103
6104 /*
6105 * ARM11 is compatible with generic, but we want to use
6106 * write-through caching for now.
6107 */
6108 pmap_pte_init_generic();
6109
6110 pte_l1_s_cache_mode = L1_S_C;
6111 pte_l2_l_cache_mode = L2_C;
6112 pte_l2_s_cache_mode = L2_C;
6113
6114 pte_l1_s_wc_mode = L1_S_B;
6115 pte_l2_l_wc_mode = L2_B;
6116 pte_l2_s_wc_mode = L2_B;
6117
6118 pte_l1_s_cache_mode_pt = L1_S_C;
6119 pte_l2_l_cache_mode_pt = L2_C;
6120 pte_l2_s_cache_mode_pt = L2_C;
6121 }
6122 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6123
6124 #if ARM_MMU_SA1 == 1
6125 void
6126 pmap_pte_init_sa1(void)
6127 {
6128
6129 /*
6130 * The StrongARM SA-1 cache does not have a write-through
6131 * mode. So, do the generic initialization, then reset
6132 * the page table cache mode to B=1,C=1, and note that
6133 * the PTEs need to be sync'd.
6134 */
6135 pmap_pte_init_generic();
6136
6137 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6138 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6139 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6140
6141 pmap_needs_pte_sync = 1;
6142 }
6143 #endif /* ARM_MMU_SA1 == 1*/
6144
6145 #if ARM_MMU_XSCALE == 1
6146 #if (ARM_NMMUS > 1)
6147 static u_int xscale_use_minidata;
6148 #endif
6149
6150 void
6151 pmap_pte_init_xscale(void)
6152 {
6153 uint32_t auxctl;
6154 int write_through = 0;
6155
6156 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6157 pte_l1_s_wc_mode = L1_S_B;
6158 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6159
6160 pte_l2_l_cache_mode = L2_B|L2_C;
6161 pte_l2_l_wc_mode = L2_B;
6162 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6163
6164 pte_l2_s_cache_mode = L2_B|L2_C;
6165 pte_l2_s_wc_mode = L2_B;
6166 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6167
6168 pte_l1_s_cache_mode_pt = L1_S_C;
6169 pte_l2_l_cache_mode_pt = L2_C;
6170 pte_l2_s_cache_mode_pt = L2_C;
6171
6172 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6173 /*
6174 * The XScale core has an enhanced mode where writes that
6175 * miss the cache cause a cache line to be allocated. This
6176 * is significantly faster than the traditional, write-through
6177 * behavior of this case.
6178 */
6179 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6180 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6181 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6182 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6183
6184 #ifdef XSCALE_CACHE_WRITE_THROUGH
6185 /*
6186 * Some versions of the XScale core have various bugs in
6187 * their cache units, the work-around for which is to run
6188 * the cache in write-through mode. Unfortunately, this
6189 * has a major (negative) impact on performance. So, we
6190 * go ahead and run fast-and-loose, in the hopes that we
6191 * don't line up the planets in a way that will trip the
6192 * bugs.
6193 *
6194 * However, we give you the option to be slow-but-correct.
6195 */
6196 write_through = 1;
6197 #elif defined(XSCALE_CACHE_WRITE_BACK)
6198 /* force write back cache mode */
6199 write_through = 0;
6200 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6201 /*
6202 * Intel PXA2[15]0 processors are known to have a bug in
6203 * write-back cache on revision 4 and earlier (stepping
6204 * A[01] and B[012]). Fixed for C0 and later.
6205 */
6206 {
6207 uint32_t id, type;
6208
6209 id = cpufunc_id();
6210 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6211
6212 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6213 if ((id & CPU_ID_REVISION_MASK) < 5) {
6214 /* write through for stepping A0-1 and B0-2 */
6215 write_through = 1;
6216 }
6217 }
6218 }
6219 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6220
6221 if (write_through) {
6222 pte_l1_s_cache_mode = L1_S_C;
6223 pte_l2_l_cache_mode = L2_C;
6224 pte_l2_s_cache_mode = L2_C;
6225 }
6226
6227 #if (ARM_NMMUS > 1)
6228 xscale_use_minidata = 1;
6229 #endif
6230
6231 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6232 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6233 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6234 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6235
6236 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6237 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6238 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6239 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6240
6241 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6242 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6243 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6244 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6245
6246 pte_l1_s_proto = L1_S_PROTO_xscale;
6247 pte_l1_c_proto = L1_C_PROTO_xscale;
6248 pte_l2_s_proto = L2_S_PROTO_xscale;
6249
6250 pmap_copy_page_func = pmap_copy_page_xscale;
6251 pmap_zero_page_func = pmap_zero_page_xscale;
6252
6253 /*
6254 * Disable ECC protection of page table access, for now.
6255 */
6256 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6257 auxctl &= ~XSCALE_AUXCTL_P;
6258 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6259 }
6260
6261 /*
6262 * xscale_setup_minidata:
6263 *
6264 * Set up the mini-data cache clean area. We require the
6265 * caller to allocate the right amount of physically and
6266 * virtually contiguous space.
6267 */
6268 void
6269 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6270 {
6271 extern vaddr_t xscale_minidata_clean_addr;
6272 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6273 pd_entry_t *pde = (pd_entry_t *) l1pt;
6274 pt_entry_t *pte;
6275 vsize_t size;
6276 uint32_t auxctl;
6277
6278 xscale_minidata_clean_addr = va;
6279
6280 /* Round it to page size. */
6281 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6282
6283 for (; size != 0;
6284 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6285 #ifndef ARM32_NEW_VM_LAYOUT
6286 pte = (pt_entry_t *)
6287 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6288 #else
6289 pte = (pt_entry_t *) kernel_pt_lookup(
6290 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6291 #endif
6292 if (pte == NULL)
6293 panic("xscale_setup_minidata: can't find L2 table for "
6294 "VA 0x%08lx", va);
6295 #ifndef ARM32_NEW_VM_LAYOUT
6296 pte[(va >> PGSHIFT) & 0x3ff] =
6297 #else
6298 pte[l2pte_index(va)] =
6299 #endif
6300 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6301 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6302 }
6303
6304 /*
6305 * Configure the mini-data cache for write-back with
6306 * read/write-allocate.
6307 *
6308 * NOTE: In order to reconfigure the mini-data cache, we must
6309 * make sure it contains no valid data! In order to do that,
6310 * we must issue a global data cache invalidate command!
6311 *
6312 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6313 * THIS IS VERY IMPORTANT!
6314 */
6315
6316 /* Invalidate data and mini-data. */
6317 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6318 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6319 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6320 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6321 }
6322
6323 /*
6324 * Change the PTEs for the specified kernel mappings such that they
6325 * will use the mini data cache instead of the main data cache.
6326 */
6327 void
6328 pmap_uarea(vaddr_t va)
6329 {
6330 struct l2_bucket *l2b;
6331 pt_entry_t *ptep, *sptep, pte;
6332 vaddr_t next_bucket, eva;
6333
6334 #if (ARM_NMMUS > 1)
6335 if (xscale_use_minidata == 0)
6336 return;
6337 #endif
6338
6339 eva = va + USPACE;
6340
6341 while (va < eva) {
6342 next_bucket = L2_NEXT_BUCKET(va);
6343 if (next_bucket > eva)
6344 next_bucket = eva;
6345
6346 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6347 KDASSERT(l2b != NULL);
6348
6349 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6350
6351 while (va < next_bucket) {
6352 pte = *ptep;
6353 if (!l2pte_minidata(pte)) {
6354 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6355 cpu_tlb_flushD_SE(va);
6356 *ptep = pte & ~L2_B;
6357 }
6358 ptep++;
6359 va += PAGE_SIZE;
6360 }
6361 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6362 }
6363 cpu_cpwait();
6364 }
6365 #endif /* ARM_MMU_XSCALE == 1 */
6366
6367
6368 #if defined(CPU_ARM11MPCORE)
6369
6370 void
6371 pmap_pte_init_arm11mpcore(void)
6372 {
6373
6374 /* cache mode is controlled by 5 bits (B, C, TEX) */
6375 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6376 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6377 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6378 /* use extended small page (without APn, with TEX) */
6379 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6380 #else
6381 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6382 #endif
6383
6384 /* write-back, write-allocate */
6385 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6386 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6387 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6388 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6389 #else
6390 /* no TEX. read-allocate */
6391 pte_l2_s_cache_mode = L2_C | L2_B;
6392 #endif
6393 /*
6394 * write-back, write-allocate for page tables.
6395 */
6396 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6397 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6398 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6399 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6400 #else
6401 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6402 #endif
6403
6404 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6405 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6406 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6407 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6408
6409 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6410 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6411 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6412 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6413 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6414
6415 #else
6416 /* with AP[0..3] */
6417 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6418 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6419 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6420 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6421 #endif
6422
6423 #ifdef ARM11MPCORE_COMPAT_MMU
6424 /* with AP[0..3] */
6425 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6426 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6427 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6428 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6429
6430 pte_l1_s_proto = L1_S_PROTO_armv6;
6431 pte_l1_c_proto = L1_C_PROTO_armv6;
6432 pte_l2_s_proto = L2_S_PROTO_armv6c;
6433 #else
6434 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6435 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6436 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6437 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6438
6439 pte_l1_s_proto = L1_S_PROTO_armv6;
6440 pte_l1_c_proto = L1_C_PROTO_armv6;
6441 pte_l2_s_proto = L2_S_PROTO_armv6n;
6442 #endif
6443
6444 pmap_copy_page_func = pmap_copy_page_generic;
6445 pmap_zero_page_func = pmap_zero_page_generic;
6446 pmap_needs_pte_sync = 1;
6447 }
6448 #endif /* CPU_ARM11MPCORE */
6449
6450
6451 #if ARM_MMU_V7 == 1
6452 void
6453 pmap_pte_init_armv7(void)
6454 {
6455 /*
6456 * The ARMv7-A MMU is mostly compatible with generic. If the
6457 * AP field is zero, that now means "no access" rather than
6458 * read-only. The prototypes are a little different because of
6459 * the XN bit.
6460 */
6461 pmap_pte_init_generic();
6462
6463 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6464 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6465 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6466
6467 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6468 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6469 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6470 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6471
6472 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6473 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6474 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6475 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6476
6477 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6478 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6479 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6480 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6481
6482 pte_l1_s_proto = L1_S_PROTO_armv7;
6483 pte_l1_c_proto = L1_C_PROTO_armv7;
6484 pte_l2_s_proto = L2_S_PROTO_armv7;
6485 }
6486 #endif /* ARM_MMU_V7 */
6487
6488 /*
6489 * return the PA of the current L1 table, for use when handling a crash dump
6490 */
6491 uint32_t pmap_kernel_L1_addr(void)
6492 {
6493 return pmap_kernel()->pm_l1->l1_physaddr;
6494 }
6495
6496 #if defined(DDB)
6497 /*
6498 * A couple of ddb-callable functions for dumping pmaps
6499 */
6500 void pmap_dump_all(void);
6501 void pmap_dump(pmap_t);
6502
6503 void
6504 pmap_dump_all(void)
6505 {
6506 pmap_t pm;
6507
6508 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6509 if (pm == pmap_kernel())
6510 continue;
6511 pmap_dump(pm);
6512 printf("\n");
6513 }
6514 }
6515
6516 static pt_entry_t ncptes[64];
6517 static void pmap_dump_ncpg(pmap_t);
6518
6519 void
6520 pmap_dump(pmap_t pm)
6521 {
6522 struct l2_dtable *l2;
6523 struct l2_bucket *l2b;
6524 pt_entry_t *ptep, pte;
6525 vaddr_t l2_va, l2b_va, va;
6526 int i, j, k, occ, rows = 0;
6527
6528 if (pm == pmap_kernel())
6529 printf("pmap_kernel (%p): ", pm);
6530 else
6531 printf("user pmap (%p): ", pm);
6532
6533 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6534
6535 l2_va = 0;
6536 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6537 l2 = pm->pm_l2[i];
6538
6539 if (l2 == NULL || l2->l2_occupancy == 0)
6540 continue;
6541
6542 l2b_va = l2_va;
6543 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6544 l2b = &l2->l2_bucket[j];
6545
6546 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6547 continue;
6548
6549 ptep = l2b->l2b_kva;
6550
6551 for (k = 0; k < 256 && ptep[k] == 0; k++)
6552 ;
6553
6554 k &= ~63;
6555 occ = l2b->l2b_occupancy;
6556 va = l2b_va + (k * 4096);
6557 for (; k < 256; k++, va += 0x1000) {
6558 char ch = ' ';
6559 if ((k % 64) == 0) {
6560 if ((rows % 8) == 0) {
6561 printf(
6562 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6563 }
6564 printf("%08lx: ", va);
6565 }
6566
6567 ncptes[k & 63] = 0;
6568 pte = ptep[k];
6569 if (pte == 0) {
6570 ch = '.';
6571 } else {
6572 occ--;
6573 switch (pte & 0x0c) {
6574 case 0x00:
6575 ch = 'D'; /* No cache No buff */
6576 break;
6577 case 0x04:
6578 ch = 'B'; /* No cache buff */
6579 break;
6580 case 0x08:
6581 if (pte & 0x40)
6582 ch = 'm';
6583 else
6584 ch = 'C'; /* Cache No buff */
6585 break;
6586 case 0x0c:
6587 ch = 'F'; /* Cache Buff */
6588 break;
6589 }
6590
6591 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6592 ch += 0x20;
6593
6594 if ((pte & 0xc) == 0)
6595 ncptes[k & 63] = pte;
6596 }
6597
6598 if ((k % 64) == 63) {
6599 rows++;
6600 printf("%c\n", ch);
6601 pmap_dump_ncpg(pm);
6602 if (occ == 0)
6603 break;
6604 } else
6605 printf("%c", ch);
6606 }
6607 }
6608 }
6609 }
6610
6611 static void
6612 pmap_dump_ncpg(pmap_t pm)
6613 {
6614 struct vm_page *pg;
6615 struct vm_page_md *md;
6616 struct pv_entry *pv;
6617 int i;
6618
6619 for (i = 0; i < 63; i++) {
6620 if (ncptes[i] == 0)
6621 continue;
6622
6623 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6624 if (pg == NULL)
6625 continue;
6626 md = VM_PAGE_TO_MD(pg);
6627
6628 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6629 VM_PAGE_TO_PHYS(pg),
6630 md->krw_mappings, md->kro_mappings,
6631 md->urw_mappings, md->uro_mappings);
6632
6633 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6634 printf(" %c va 0x%08lx, flags 0x%x\n",
6635 (pm == pv->pv_pmap) ? '*' : ' ',
6636 pv->pv_va, pv->pv_flags);
6637 }
6638 }
6639 }
6640 #endif
6641
6642 #ifdef PMAP_STEAL_MEMORY
6643 void
6644 pmap_boot_pageadd(pv_addr_t *newpv)
6645 {
6646 pv_addr_t *pv, *npv;
6647
6648 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6649 if (newpv->pv_pa < pv->pv_va) {
6650 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6651 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6652 newpv->pv_size += pv->pv_size;
6653 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6654 }
6655 pv = NULL;
6656 } else {
6657 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6658 pv = npv) {
6659 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6660 KASSERT(pv->pv_pa < newpv->pv_pa);
6661 if (newpv->pv_pa > npv->pv_pa)
6662 continue;
6663 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6664 pv->pv_size += newpv->pv_size;
6665 return;
6666 }
6667 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6668 break;
6669 newpv->pv_size += npv->pv_size;
6670 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6671 SLIST_REMOVE_AFTER(newpv, pv_list);
6672 return;
6673 }
6674 }
6675 }
6676
6677 if (pv) {
6678 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6679 } else {
6680 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6681 }
6682 }
6683
6684 void
6685 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6686 pv_addr_t *rpv)
6687 {
6688 pv_addr_t *pv, **pvp;
6689 struct vm_physseg *ps;
6690 size_t i;
6691
6692 KASSERT(amount & PGOFSET);
6693 KASSERT((mask & PGOFSET) == 0);
6694 KASSERT((match & PGOFSET) == 0);
6695 KASSERT(amount != 0);
6696
6697 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6698 (pv = *pvp) != NULL;
6699 pvp = &SLIST_NEXT(pv, pv_list)) {
6700 pv_addr_t *newpv;
6701 psize_t off;
6702 /*
6703 * If this entry is too small to satify the request...
6704 */
6705 KASSERT(pv->pv_size > 0);
6706 if (pv->pv_size < amount)
6707 continue;
6708
6709 for (off = 0; off <= mask; off += PAGE_SIZE) {
6710 if (((pv->pv_pa + off) & mask) == match
6711 && off + amount <= pv->pv_size)
6712 break;
6713 }
6714 if (off > mask)
6715 continue;
6716
6717 rpv->pv_va = pv->pv_va + off;
6718 rpv->pv_pa = pv->pv_pa + off;
6719 rpv->pv_size = amount;
6720 pv->pv_size -= amount;
6721 if (pv->pv_size == 0) {
6722 KASSERT(off == 0);
6723 KASSERT((vaddr_t) pv == rpv->pv_va);
6724 *pvp = SLIST_NEXT(pv, pv_list);
6725 } else if (off == 0) {
6726 KASSERT((vaddr_t) pv == rpv->pv_va);
6727 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6728 *newpv = *pv;
6729 newpv->pv_pa += amount;
6730 newpv->pv_va += amount;
6731 *pvp = newpv;
6732 } else if (off < pv->pv_size) {
6733 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6734 *newpv = *pv;
6735 newpv->pv_size -= off;
6736 newpv->pv_pa += off + amount;
6737 newpv->pv_va += off + amount;
6738
6739 SLIST_NEXT(pv, pv_list) = newpv;
6740 pv->pv_size = off;
6741 } else {
6742 KASSERT((vaddr_t) pv != rpv->pv_va);
6743 }
6744 memset((void *)rpv->pv_va, 0, amount);
6745 return;
6746 }
6747
6748 if (vm_nphysseg == 0)
6749 panic("pmap_boot_pagealloc: couldn't allocate memory");
6750
6751 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6752 (pv = *pvp) != NULL;
6753 pvp = &SLIST_NEXT(pv, pv_list)) {
6754 if (SLIST_NEXT(pv, pv_list) == NULL)
6755 break;
6756 }
6757 KASSERT(mask == 0);
6758 for (i = 0; i < vm_nphysseg; i++) {
6759 ps = VM_PHYSMEM_PTR(i);
6760 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6761 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6762 rpv->pv_va = pv->pv_va;
6763 rpv->pv_pa = pv->pv_pa;
6764 rpv->pv_size = amount;
6765 *pvp = NULL;
6766 pmap_map_chunk(kernel_l1pt.pv_va,
6767 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6768 ptoa(ps->avail_start),
6769 amount - pv->pv_size,
6770 VM_PROT_READ|VM_PROT_WRITE,
6771 PTE_CACHE);
6772 ps->avail_start += atop(amount - pv->pv_size);
6773 /*
6774 * If we consumed the entire physseg, remove it.
6775 */
6776 if (ps->avail_start == ps->avail_end) {
6777 for (--vm_nphysseg; i < vm_nphysseg; i++)
6778 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6779 }
6780 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6781 return;
6782 }
6783 }
6784
6785 panic("pmap_boot_pagealloc: couldn't allocate memory");
6786 }
6787
6788 vaddr_t
6789 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6790 {
6791 pv_addr_t pv;
6792
6793 pmap_boot_pagealloc(size, 0, 0, &pv);
6794
6795 return pv.pv_va;
6796 }
6797 #endif /* PMAP_STEAL_MEMORY */
6798
6799 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6800 {
6801 sysctl_createv(clog, 0, NULL, NULL,
6802 CTLFLAG_PERMANENT,
6803 CTLTYPE_NODE, "machdep", NULL,
6804 NULL, 0, NULL, 0,
6805 CTL_MACHDEP, CTL_EOL);
6806
6807 sysctl_createv(clog, 0, NULL, NULL,
6808 CTLFLAG_PERMANENT,
6809 CTLTYPE_INT, "kmpages",
6810 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6811 NULL, 0, &pmap_kmpages, 0,
6812 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6813 }
6814