pmap.c revision 1.228.2.1.2.3 1 /* $NetBSD: pmap.c,v 1.228.2.1.2.3 2013/02/13 23:52:02 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <sys/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/cpuconf.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.228.2.1.2.3 2013/02/13 23:52:02 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
261 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
262 #endif
263
264 /*
265 * Which pmap is currently 'live' in the cache
266 *
267 * XXXSCW: Fix for SMP ...
268 */
269 static pmap_t pmap_recent_user;
270
271 /*
272 * Pointer to last active lwp, or NULL if it exited.
273 */
274 struct lwp *pmap_previous_active_lwp;
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #ifdef PMAP_CACHE_VIPT
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 #ifdef PMAP_CACHE_VIPT
393 static struct evcnt pmap_ev_exec_mappings =
394 PMAP_EVCNT_INITIALIZER("exec pages mapped");
395 static struct evcnt pmap_ev_exec_cached =
396 PMAP_EVCNT_INITIALIZER("exec pages cached");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
400
401 static struct evcnt pmap_ev_exec_synced =
402 PMAP_EVCNT_INITIALIZER("exec pages synced");
403 static struct evcnt pmap_ev_exec_synced_map =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
405 static struct evcnt pmap_ev_exec_synced_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
407 static struct evcnt pmap_ev_exec_synced_remap =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
409 static struct evcnt pmap_ev_exec_synced_clearbit =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
411 static struct evcnt pmap_ev_exec_synced_kremove =
412 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
413
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
420
421 static struct evcnt pmap_ev_exec_discarded_unmap =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
423 static struct evcnt pmap_ev_exec_discarded_zero =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
425 static struct evcnt pmap_ev_exec_discarded_copy =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
427 static struct evcnt pmap_ev_exec_discarded_page_protect =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
429 static struct evcnt pmap_ev_exec_discarded_clearbit =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
431 static struct evcnt pmap_ev_exec_discarded_kremove =
432 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
433
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 /*
456 * pmap copy/zero page, and mem(5) hook point
457 */
458 static pt_entry_t *csrc_pte, *cdst_pte;
459 static vaddr_t csrcp, cdstp;
460 vaddr_t memhook; /* used by mem.c */
461 kmutex_t memlock; /* used by mem.c */
462 void *zeropage; /* used by mem.c */
463 extern void *msgbufaddr;
464 int pmap_kmpages;
465 /*
466 * Flag to indicate if pmap_init() has done its thing
467 */
468 bool pmap_initialized;
469
470 /*
471 * Misc. locking data structures
472 */
473
474 #define pmap_acquire_pmap_lock(pm) \
475 do { \
476 if ((pm) != pmap_kernel()) \
477 mutex_enter((pm)->pm_lock); \
478 } while (/*CONSTCOND*/0)
479
480 #define pmap_release_pmap_lock(pm) \
481 do { \
482 if ((pm) != pmap_kernel()) \
483 mutex_exit((pm)->pm_lock); \
484 } while (/*CONSTCOND*/0)
485
486
487 /*
488 * Metadata for L1 translation tables.
489 */
490 struct l1_ttable {
491 /* Entry on the L1 Table list */
492 SLIST_ENTRY(l1_ttable) l1_link;
493
494 /* Entry on the L1 Least Recently Used list */
495 TAILQ_ENTRY(l1_ttable) l1_lru;
496
497 /* Track how many domains are allocated from this L1 */
498 volatile u_int l1_domain_use_count;
499
500 /*
501 * A free-list of domain numbers for this L1.
502 * We avoid using ffs() and a bitmap to track domains since ffs()
503 * is slow on ARM.
504 */
505 uint8_t l1_domain_first;
506 uint8_t l1_domain_free[PMAP_DOMAINS];
507
508 /* Physical address of this L1 page table */
509 paddr_t l1_physaddr;
510
511 /* KVA of this L1 page table */
512 pd_entry_t *l1_kva;
513 };
514
515 /*
516 * Convert a virtual address into its L1 table index. That is, the
517 * index used to locate the L2 descriptor table pointer in an L1 table.
518 * This is basically used to index l1->l1_kva[].
519 *
520 * Each L2 descriptor table represents 1MB of VA space.
521 */
522 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
523
524 /*
525 * L1 Page Tables are tracked using a Least Recently Used list.
526 * - New L1s are allocated from the HEAD.
527 * - Freed L1s are added to the TAIl.
528 * - Recently accessed L1s (where an 'access' is some change to one of
529 * the userland pmaps which owns this L1) are moved to the TAIL.
530 */
531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
532 static kmutex_t l1_lru_lock __cacheline_aligned;
533
534 /*
535 * A list of all L1 tables
536 */
537 static SLIST_HEAD(, l1_ttable) l1_list;
538
539 /*
540 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
541 *
542 * This is normally 16MB worth L2 page descriptors for any given pmap.
543 * Reference counts are maintained for L2 descriptors so they can be
544 * freed when empty.
545 */
546 struct l2_dtable {
547 /* The number of L2 page descriptors allocated to this l2_dtable */
548 u_int l2_occupancy;
549
550 /* List of L2 page descriptors */
551 struct l2_bucket {
552 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
553 paddr_t l2b_phys; /* Physical address of same */
554 u_short l2b_l1idx; /* This L2 table's L1 index */
555 u_short l2b_occupancy; /* How many active descriptors */
556 } l2_bucket[L2_BUCKET_SIZE];
557 };
558
559 /*
560 * Given an L1 table index, calculate the corresponding l2_dtable index
561 * and bucket index within the l2_dtable.
562 */
563 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
564 (L2_SIZE - 1))
565 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
566
567 /*
568 * Given a virtual address, this macro returns the
569 * virtual address required to drop into the next L2 bucket.
570 */
571 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
572
573 /*
574 * L2 allocation.
575 */
576 #define pmap_alloc_l2_dtable() \
577 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
578 #define pmap_free_l2_dtable(l2) \
579 pool_cache_put(&pmap_l2dtable_cache, (l2))
580 #define pmap_alloc_l2_ptp(pap) \
581 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
582 PR_NOWAIT, (pap)))
583
584 /*
585 * We try to map the page tables write-through, if possible. However, not
586 * all CPUs have a write-through cache mode, so on those we have to sync
587 * the cache when we frob page tables.
588 *
589 * We try to evaluate this at compile time, if possible. However, it's
590 * not always possible to do that, hence this run-time var.
591 */
592 int pmap_needs_pte_sync;
593
594 /*
595 * Real definition of pv_entry.
596 */
597 struct pv_entry {
598 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
599 pmap_t pv_pmap; /* pmap where mapping lies */
600 vaddr_t pv_va; /* virtual address for mapping */
601 u_int pv_flags; /* flags */
602 };
603
604 /*
605 * Macro to determine if a mapping might be resident in the
606 * instruction cache and/or TLB
607 */
608 #if ARM_MMU_V7 > 0
609 /*
610 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
611 * there are no explicit accesses, so there may be always be TLB entries to
612 * flush. If we used ASIDs then this would not be a problem.
613 */
614 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
615 #else
616 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
617 #endif
618 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
619
620 /*
621 * Macro to determine if a mapping might be resident in the
622 * data cache and/or TLB
623 */
624 #if ARM_MMU_V7 > 0
625 /*
626 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
627 * there are no explicit accesses, so there may be always be TLB entries to
628 * flush. If we used ASIDs then this would not be a problem.
629 */
630 #define PV_BEEN_REFD(f) (1)
631 #else
632 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
633 #endif
634
635 /*
636 * Local prototypes
637 */
638 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
639 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
640 pt_entry_t **);
641 static bool pmap_is_current(pmap_t);
642 static bool pmap_is_cached(pmap_t);
643 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
644 pmap_t, vaddr_t, u_int);
645 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
646 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
647 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
648 u_int, u_int);
649
650 static void pmap_pinit(pmap_t);
651 static int pmap_pmap_ctor(void *, void *, int);
652
653 static void pmap_alloc_l1(pmap_t);
654 static void pmap_free_l1(pmap_t);
655 static void pmap_use_l1(pmap_t);
656
657 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
658 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
659 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
660 static int pmap_l2ptp_ctor(void *, void *, int);
661 static int pmap_l2dtable_ctor(void *, void *, int);
662
663 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 #ifdef PMAP_CACHE_VIVT
665 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
666 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
667 #endif
668
669 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
670 #ifdef PMAP_CACHE_VIVT
671 static int pmap_clean_page(struct pv_entry *, bool);
672 #endif
673 #ifdef PMAP_CACHE_VIPT
674 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
675 enum pmap_flush_op {
676 PMAP_FLUSH_PRIMARY,
677 PMAP_FLUSH_SECONDARY,
678 PMAP_CLEAN_PRIMARY
679 };
680 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
681 #endif
682 static void pmap_page_remove(struct vm_page_md *, paddr_t);
683
684 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
685 static vaddr_t kernel_pt_lookup(paddr_t);
686
687
688 /*
689 * Misc variables
690 */
691 vaddr_t virtual_avail;
692 vaddr_t virtual_end;
693 vaddr_t pmap_curmaxkvaddr;
694
695 paddr_t avail_start;
696 paddr_t avail_end;
697
698 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
699 pv_addr_t kernelpages;
700 pv_addr_t kernel_l1pt;
701 pv_addr_t systempage;
702
703 /* Function to set the debug level of the pmap code */
704
705 #ifdef PMAP_DEBUG
706 void
707 pmap_debug(int level)
708 {
709 pmap_debug_level = level;
710 printf("pmap_debug: level=%d\n", pmap_debug_level);
711 }
712 #endif /* PMAP_DEBUG */
713
714 #ifdef PMAP_CACHE_VIPT
715 #define PMAP_VALIDATE_MD_PAGE(md) \
716 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
717 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
718 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
719 #endif /* PMAP_CACHE_VIPT */
720 /*
721 * A bunch of routines to conditionally flush the caches/TLB depending
722 * on whether the specified pmap actually needs to be flushed at any
723 * given time.
724 */
725 static inline void
726 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
727 {
728
729 if (pm->pm_cstate.cs_tlb_id)
730 cpu_tlb_flushID_SE(va);
731 }
732
733 static inline void
734 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
735 {
736
737 if (pm->pm_cstate.cs_tlb_d)
738 cpu_tlb_flushD_SE(va);
739 }
740
741 static inline void
742 pmap_tlb_flushID(pmap_t pm)
743 {
744
745 if (pm->pm_cstate.cs_tlb_id) {
746 cpu_tlb_flushID();
747 #if ARM_MMU_V7 == 0
748 /*
749 * Speculative loads by Cortex cores can cause TLB entries to
750 * be filled even if there are no explicit accesses, so there
751 * may be always be TLB entries to flush. If we used ASIDs
752 * then it would not be a problem.
753 * This is not true for other CPUs.
754 */
755 pm->pm_cstate.cs_tlb = 0;
756 #endif
757 }
758 }
759
760 static inline void
761 pmap_tlb_flushD(pmap_t pm)
762 {
763
764 if (pm->pm_cstate.cs_tlb_d) {
765 cpu_tlb_flushD();
766 #if ARM_MMU_V7 == 0
767 /*
768 * Speculative loads by Cortex cores can cause TLB entries to
769 * be filled even if there are no explicit accesses, so there
770 * may be always be TLB entries to flush. If we used ASIDs
771 * then it would not be a problem.
772 * This is not true for other CPUs.
773 */
774 pm->pm_cstate.cs_tlb_d = 0;
775 #endif
776 }
777 }
778
779 #ifdef PMAP_CACHE_VIVT
780 static inline void
781 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
782 {
783 if (pm->pm_cstate.cs_cache_id) {
784 cpu_idcache_wbinv_range(va, len);
785 }
786 }
787
788 static inline void
789 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
790 bool do_inv, bool rd_only)
791 {
792
793 if (pm->pm_cstate.cs_cache_d) {
794 if (do_inv) {
795 if (rd_only)
796 cpu_dcache_inv_range(va, len);
797 else
798 cpu_dcache_wbinv_range(va, len);
799 } else
800 if (!rd_only)
801 cpu_dcache_wb_range(va, len);
802 }
803 }
804
805 static inline void
806 pmap_idcache_wbinv_all(pmap_t pm)
807 {
808 if (pm->pm_cstate.cs_cache_id) {
809 cpu_idcache_wbinv_all();
810 pm->pm_cstate.cs_cache = 0;
811 }
812 }
813
814 static inline void
815 pmap_dcache_wbinv_all(pmap_t pm)
816 {
817 if (pm->pm_cstate.cs_cache_d) {
818 cpu_dcache_wbinv_all();
819 pm->pm_cstate.cs_cache_d = 0;
820 }
821 }
822 #endif /* PMAP_CACHE_VIVT */
823
824 static inline bool
825 pmap_is_current(pmap_t pm)
826 {
827
828 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
829 return true;
830
831 return false;
832 }
833
834 static inline bool
835 pmap_is_cached(pmap_t pm)
836 {
837
838 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
839 pmap_recent_user == pm)
840 return (true);
841
842 return false;
843 }
844
845 /*
846 * PTE_SYNC_CURRENT:
847 *
848 * Make sure the pte is written out to RAM.
849 * We need to do this for one of two cases:
850 * - We're dealing with the kernel pmap
851 * - There is no pmap active in the cache/tlb.
852 * - The specified pmap is 'active' in the cache/tlb.
853 */
854 #ifdef PMAP_INCLUDE_PTE_SYNC
855 #define PTE_SYNC_CURRENT(pm, ptep) \
856 do { \
857 if (PMAP_NEEDS_PTE_SYNC && \
858 pmap_is_cached(pm)) \
859 PTE_SYNC(ptep); \
860 } while (/*CONSTCOND*/0)
861 #else
862 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
863 #endif
864
865 /*
866 * main pv_entry manipulation functions:
867 * pmap_enter_pv: enter a mapping onto a vm_page list
868 * pmap_remove_pv: remove a mapping from a vm_page list
869 *
870 * NOTE: pmap_enter_pv expects to lock the pvh itself
871 * pmap_remove_pv expects the caller to lock the pvh before calling
872 */
873
874 /*
875 * pmap_enter_pv: enter a mapping onto a vm_page lst
876 *
877 * => caller should hold the proper lock on pmap_main_lock
878 * => caller should have pmap locked
879 * => we will gain the lock on the vm_page and allocate the new pv_entry
880 * => caller should adjust ptp's wire_count before calling
881 * => caller should not adjust pmap's wire_count
882 */
883 static void
884 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
885 vaddr_t va, u_int flags)
886 {
887 struct pv_entry **pvp;
888
889 NPDEBUG(PDB_PVDUMP,
890 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
891
892 pv->pv_pmap = pm;
893 pv->pv_va = va;
894 pv->pv_flags = flags;
895
896 pvp = &SLIST_FIRST(&md->pvh_list);
897 #ifdef PMAP_CACHE_VIPT
898 /*
899 * Insert unmanaged entries, writeable first, at the head of
900 * the pv list.
901 */
902 if (__predict_true((flags & PVF_KENTRY) == 0)) {
903 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
904 pvp = &SLIST_NEXT(*pvp, pv_link);
905 } else if ((flags & PVF_WRITE) == 0) {
906 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
907 pvp = &SLIST_NEXT(*pvp, pv_link);
908 }
909 #endif
910 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
911 *pvp = pv; /* ... locked list */
912 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
913 #ifdef PMAP_CACHE_VIPT
914 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
915 md->pvh_attrs |= PVF_KMOD;
916 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
917 md->pvh_attrs |= PVF_DIRTY;
918 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
919 #endif
920 if (pm == pmap_kernel()) {
921 PMAPCOUNT(kernel_mappings);
922 if (flags & PVF_WRITE)
923 md->krw_mappings++;
924 else
925 md->kro_mappings++;
926 } else {
927 if (flags & PVF_WRITE)
928 md->urw_mappings++;
929 else
930 md->uro_mappings++;
931 }
932
933 #ifdef PMAP_CACHE_VIPT
934 /*
935 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
936 * do it here as well to keep the mappings & KVF_WRITE consistent.
937 */
938 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
939 md->pvh_attrs |= PVF_WRITE;
940 }
941 /*
942 * If this is an exec mapping and its the first exec mapping
943 * for this page, make sure to sync the I-cache.
944 */
945 if (PV_IS_EXEC_P(flags)) {
946 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
947 pmap_syncicache_page(md, pa);
948 PMAPCOUNT(exec_synced_map);
949 }
950 PMAPCOUNT(exec_mappings);
951 }
952 #endif
953
954 PMAPCOUNT(mappings);
955
956 if (pv->pv_flags & PVF_WIRED)
957 ++pm->pm_stats.wired_count;
958 }
959
960 /*
961 *
962 * pmap_find_pv: Find a pv entry
963 *
964 * => caller should hold lock on vm_page
965 */
966 static inline struct pv_entry *
967 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
968 {
969 struct pv_entry *pv;
970
971 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
972 if (pm == pv->pv_pmap && va == pv->pv_va)
973 break;
974 }
975
976 return (pv);
977 }
978
979 /*
980 * pmap_remove_pv: try to remove a mapping from a pv_list
981 *
982 * => caller should hold proper lock on pmap_main_lock
983 * => pmap should be locked
984 * => caller should hold lock on vm_page [so that attrs can be adjusted]
985 * => caller should adjust ptp's wire_count and free PTP if needed
986 * => caller should NOT adjust pmap's wire_count
987 * => we return the removed pv
988 */
989 static struct pv_entry *
990 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
991 {
992 struct pv_entry *pv, **prevptr;
993
994 NPDEBUG(PDB_PVDUMP,
995 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
996
997 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
998 pv = *prevptr;
999
1000 while (pv) {
1001 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1002 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1003 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1004 if (pv->pv_flags & PVF_WIRED) {
1005 --pm->pm_stats.wired_count;
1006 }
1007 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1008 if (pm == pmap_kernel()) {
1009 PMAPCOUNT(kernel_unmappings);
1010 if (pv->pv_flags & PVF_WRITE)
1011 md->krw_mappings--;
1012 else
1013 md->kro_mappings--;
1014 } else {
1015 if (pv->pv_flags & PVF_WRITE)
1016 md->urw_mappings--;
1017 else
1018 md->uro_mappings--;
1019 }
1020
1021 PMAPCOUNT(unmappings);
1022 #ifdef PMAP_CACHE_VIPT
1023 if (!(pv->pv_flags & PVF_WRITE))
1024 break;
1025 /*
1026 * If this page has had an exec mapping, then if
1027 * this was the last mapping, discard the contents,
1028 * otherwise sync the i-cache for this page.
1029 */
1030 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1031 if (SLIST_EMPTY(&md->pvh_list)) {
1032 md->pvh_attrs &= ~PVF_EXEC;
1033 PMAPCOUNT(exec_discarded_unmap);
1034 } else {
1035 pmap_syncicache_page(md, pa);
1036 PMAPCOUNT(exec_synced_unmap);
1037 }
1038 }
1039 #endif /* PMAP_CACHE_VIPT */
1040 break;
1041 }
1042 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1043 pv = *prevptr; /* advance */
1044 }
1045
1046 #ifdef PMAP_CACHE_VIPT
1047 /*
1048 * If we no longer have a WRITEABLE KENTRY at the head of list,
1049 * clear the KMOD attribute from the page.
1050 */
1051 if (SLIST_FIRST(&md->pvh_list) == NULL
1052 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1053 md->pvh_attrs &= ~PVF_KMOD;
1054
1055 /*
1056 * If this was a writeable page and there are no more writeable
1057 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1058 * the contents to memory.
1059 */
1060 if (arm_cache_prefer_mask != 0) {
1061 if (md->krw_mappings + md->urw_mappings == 0)
1062 md->pvh_attrs &= ~PVF_WRITE;
1063 PMAP_VALIDATE_MD_PAGE(md);
1064 }
1065 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1066 #endif /* PMAP_CACHE_VIPT */
1067
1068 return(pv); /* return removed pv */
1069 }
1070
1071 /*
1072 *
1073 * pmap_modify_pv: Update pv flags
1074 *
1075 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1076 * => caller should NOT adjust pmap's wire_count
1077 * => caller must call pmap_vac_me_harder() if writable status of a page
1078 * may have changed.
1079 * => we return the old flags
1080 *
1081 * Modify a physical-virtual mapping in the pv table
1082 */
1083 static u_int
1084 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1085 u_int clr_mask, u_int set_mask)
1086 {
1087 struct pv_entry *npv;
1088 u_int flags, oflags;
1089
1090 KASSERT((clr_mask & PVF_KENTRY) == 0);
1091 KASSERT((set_mask & PVF_KENTRY) == 0);
1092
1093 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1094 return (0);
1095
1096 NPDEBUG(PDB_PVDUMP,
1097 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1098
1099 /*
1100 * There is at least one VA mapping this page.
1101 */
1102
1103 if (clr_mask & (PVF_REF | PVF_MOD)) {
1104 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1105 #ifdef PMAP_CACHE_VIPT
1106 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1107 md->pvh_attrs |= PVF_DIRTY;
1108 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1109 #endif
1110 }
1111
1112 oflags = npv->pv_flags;
1113 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1114
1115 if ((flags ^ oflags) & PVF_WIRED) {
1116 if (flags & PVF_WIRED)
1117 ++pm->pm_stats.wired_count;
1118 else
1119 --pm->pm_stats.wired_count;
1120 }
1121
1122 if ((flags ^ oflags) & PVF_WRITE) {
1123 if (pm == pmap_kernel()) {
1124 if (flags & PVF_WRITE) {
1125 md->krw_mappings++;
1126 md->kro_mappings--;
1127 } else {
1128 md->kro_mappings++;
1129 md->krw_mappings--;
1130 }
1131 } else {
1132 if (flags & PVF_WRITE) {
1133 md->urw_mappings++;
1134 md->uro_mappings--;
1135 } else {
1136 md->uro_mappings++;
1137 md->urw_mappings--;
1138 }
1139 }
1140 }
1141 #ifdef PMAP_CACHE_VIPT
1142 if (arm_cache_prefer_mask != 0) {
1143 if (md->urw_mappings + md->krw_mappings == 0) {
1144 md->pvh_attrs &= ~PVF_WRITE;
1145 } else {
1146 md->pvh_attrs |= PVF_WRITE;
1147 }
1148 }
1149 /*
1150 * We have two cases here: the first is from enter_pv (new exec
1151 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1152 * Since in latter, pmap_enter_pv won't do anything, we just have
1153 * to do what pmap_remove_pv would do.
1154 */
1155 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1156 || (PV_IS_EXEC_P(md->pvh_attrs)
1157 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1158 pmap_syncicache_page(md, pa);
1159 PMAPCOUNT(exec_synced_remap);
1160 }
1161 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1162 #endif
1163
1164 PMAPCOUNT(remappings);
1165
1166 return (oflags);
1167 }
1168
1169 /*
1170 * Allocate an L1 translation table for the specified pmap.
1171 * This is called at pmap creation time.
1172 */
1173 static void
1174 pmap_alloc_l1(pmap_t pm)
1175 {
1176 struct l1_ttable *l1;
1177 uint8_t domain;
1178
1179 /*
1180 * Remove the L1 at the head of the LRU list
1181 */
1182 mutex_spin_enter(&l1_lru_lock);
1183 l1 = TAILQ_FIRST(&l1_lru_list);
1184 KDASSERT(l1 != NULL);
1185 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1186
1187 /*
1188 * Pick the first available domain number, and update
1189 * the link to the next number.
1190 */
1191 domain = l1->l1_domain_first;
1192 l1->l1_domain_first = l1->l1_domain_free[domain];
1193
1194 /*
1195 * If there are still free domain numbers in this L1,
1196 * put it back on the TAIL of the LRU list.
1197 */
1198 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1199 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1200
1201 mutex_spin_exit(&l1_lru_lock);
1202
1203 /*
1204 * Fix up the relevant bits in the pmap structure
1205 */
1206 pm->pm_l1 = l1;
1207 pm->pm_domain = domain + 1;
1208 }
1209
1210 /*
1211 * Free an L1 translation table.
1212 * This is called at pmap destruction time.
1213 */
1214 static void
1215 pmap_free_l1(pmap_t pm)
1216 {
1217 struct l1_ttable *l1 = pm->pm_l1;
1218
1219 mutex_spin_enter(&l1_lru_lock);
1220
1221 /*
1222 * If this L1 is currently on the LRU list, remove it.
1223 */
1224 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1225 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1226
1227 /*
1228 * Free up the domain number which was allocated to the pmap
1229 */
1230 l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
1231 l1->l1_domain_first = pm->pm_domain - 1;
1232 l1->l1_domain_use_count--;
1233
1234 /*
1235 * The L1 now must have at least 1 free domain, so add
1236 * it back to the LRU list. If the use count is zero,
1237 * put it at the head of the list, otherwise it goes
1238 * to the tail.
1239 */
1240 if (l1->l1_domain_use_count == 0)
1241 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1242 else
1243 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1244
1245 mutex_spin_exit(&l1_lru_lock);
1246 }
1247
1248 static inline void
1249 pmap_use_l1(pmap_t pm)
1250 {
1251 struct l1_ttable *l1;
1252
1253 /*
1254 * Do nothing if we're in interrupt context.
1255 * Access to an L1 by the kernel pmap must not affect
1256 * the LRU list.
1257 */
1258 if (cpu_intr_p() || pm == pmap_kernel())
1259 return;
1260
1261 l1 = pm->pm_l1;
1262
1263 /*
1264 * If the L1 is not currently on the LRU list, just return
1265 */
1266 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1267 return;
1268
1269 mutex_spin_enter(&l1_lru_lock);
1270
1271 /*
1272 * Check the use count again, now that we've acquired the lock
1273 */
1274 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1275 mutex_spin_exit(&l1_lru_lock);
1276 return;
1277 }
1278
1279 /*
1280 * Move the L1 to the back of the LRU list
1281 */
1282 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1283 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1284
1285 mutex_spin_exit(&l1_lru_lock);
1286 }
1287
1288 /*
1289 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1290 *
1291 * Free an L2 descriptor table.
1292 */
1293 static inline void
1294 #ifndef PMAP_INCLUDE_PTE_SYNC
1295 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1296 #else
1297 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1298 #endif
1299 {
1300 #ifdef PMAP_INCLUDE_PTE_SYNC
1301 #ifdef PMAP_CACHE_VIVT
1302 /*
1303 * Note: With a write-back cache, we may need to sync this
1304 * L2 table before re-using it.
1305 * This is because it may have belonged to a non-current
1306 * pmap, in which case the cache syncs would have been
1307 * skipped for the pages that were being unmapped. If the
1308 * L2 table were then to be immediately re-allocated to
1309 * the *current* pmap, it may well contain stale mappings
1310 * which have not yet been cleared by a cache write-back
1311 * and so would still be visible to the mmu.
1312 */
1313 if (need_sync)
1314 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1315 #endif /* PMAP_CACHE_VIVT */
1316 #endif /* PMAP_INCLUDE_PTE_SYNC */
1317 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1318 }
1319
1320 /*
1321 * Returns a pointer to the L2 bucket associated with the specified pmap
1322 * and VA, or NULL if no L2 bucket exists for the address.
1323 */
1324 static inline struct l2_bucket *
1325 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1326 {
1327 struct l2_dtable *l2;
1328 struct l2_bucket *l2b;
1329 u_short l1idx;
1330
1331 l1idx = L1_IDX(va);
1332
1333 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1334 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1335 return (NULL);
1336
1337 return (l2b);
1338 }
1339
1340 /*
1341 * Returns a pointer to the L2 bucket associated with the specified pmap
1342 * and VA.
1343 *
1344 * If no L2 bucket exists, perform the necessary allocations to put an L2
1345 * bucket/page table in place.
1346 *
1347 * Note that if a new L2 bucket/page was allocated, the caller *must*
1348 * increment the bucket occupancy counter appropriately *before*
1349 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1350 * the bucket/page in the meantime.
1351 */
1352 static struct l2_bucket *
1353 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1354 {
1355 struct l2_dtable *l2;
1356 struct l2_bucket *l2b;
1357 u_short l1idx;
1358
1359 l1idx = L1_IDX(va);
1360
1361 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1362 /*
1363 * No mapping at this address, as there is
1364 * no entry in the L1 table.
1365 * Need to allocate a new l2_dtable.
1366 */
1367 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1368 return (NULL);
1369
1370 /*
1371 * Link it into the parent pmap
1372 */
1373 pm->pm_l2[L2_IDX(l1idx)] = l2;
1374 }
1375
1376 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1377
1378 /*
1379 * Fetch pointer to the L2 page table associated with the address.
1380 */
1381 if (l2b->l2b_kva == NULL) {
1382 pt_entry_t *ptep;
1383
1384 /*
1385 * No L2 page table has been allocated. Chances are, this
1386 * is because we just allocated the l2_dtable, above.
1387 */
1388 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1389 /*
1390 * Oops, no more L2 page tables available at this
1391 * time. We may need to deallocate the l2_dtable
1392 * if we allocated a new one above.
1393 */
1394 if (l2->l2_occupancy == 0) {
1395 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1396 pmap_free_l2_dtable(l2);
1397 }
1398 return (NULL);
1399 }
1400
1401 l2->l2_occupancy++;
1402 l2b->l2b_kva = ptep;
1403 l2b->l2b_l1idx = l1idx;
1404 }
1405
1406 return (l2b);
1407 }
1408
1409 /*
1410 * One or more mappings in the specified L2 descriptor table have just been
1411 * invalidated.
1412 *
1413 * Garbage collect the metadata and descriptor table itself if necessary.
1414 *
1415 * The pmap lock must be acquired when this is called (not necessary
1416 * for the kernel pmap).
1417 */
1418 static void
1419 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1420 {
1421 struct l2_dtable *l2;
1422 pd_entry_t *pl1pd, l1pd;
1423 pt_entry_t *ptep;
1424 u_short l1idx;
1425
1426 KDASSERT(count <= l2b->l2b_occupancy);
1427
1428 /*
1429 * Update the bucket's reference count according to how many
1430 * PTEs the caller has just invalidated.
1431 */
1432 l2b->l2b_occupancy -= count;
1433
1434 /*
1435 * Note:
1436 *
1437 * Level 2 page tables allocated to the kernel pmap are never freed
1438 * as that would require checking all Level 1 page tables and
1439 * removing any references to the Level 2 page table. See also the
1440 * comment elsewhere about never freeing bootstrap L2 descriptors.
1441 *
1442 * We make do with just invalidating the mapping in the L2 table.
1443 *
1444 * This isn't really a big deal in practice and, in fact, leads
1445 * to a performance win over time as we don't need to continually
1446 * alloc/free.
1447 */
1448 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1449 return;
1450
1451 /*
1452 * There are no more valid mappings in this level 2 page table.
1453 * Go ahead and NULL-out the pointer in the bucket, then
1454 * free the page table.
1455 */
1456 l1idx = l2b->l2b_l1idx;
1457 ptep = l2b->l2b_kva;
1458 l2b->l2b_kva = NULL;
1459
1460 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1461
1462 /*
1463 * If the L1 slot matches the pmap's domain
1464 * number, then invalidate it.
1465 */
1466 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1467 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1468 *pl1pd = 0;
1469 PTE_SYNC(pl1pd);
1470 }
1471
1472 /*
1473 * Release the L2 descriptor table back to the pool cache.
1474 */
1475 #ifndef PMAP_INCLUDE_PTE_SYNC
1476 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1477 #else
1478 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1479 #endif
1480
1481 /*
1482 * Update the reference count in the associated l2_dtable
1483 */
1484 l2 = pm->pm_l2[L2_IDX(l1idx)];
1485 if (--l2->l2_occupancy > 0)
1486 return;
1487
1488 /*
1489 * There are no more valid mappings in any of the Level 1
1490 * slots managed by this l2_dtable. Go ahead and NULL-out
1491 * the pointer in the parent pmap and free the l2_dtable.
1492 */
1493 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1494 pmap_free_l2_dtable(l2);
1495 }
1496
1497 /*
1498 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1499 * structures.
1500 */
1501 static int
1502 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1503 {
1504 #ifndef PMAP_INCLUDE_PTE_SYNC
1505 struct l2_bucket *l2b;
1506 pt_entry_t *ptep, pte;
1507 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1508
1509 /*
1510 * The mappings for these page tables were initially made using
1511 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1512 * mode will not be right for page table mappings. To avoid
1513 * polluting the pmap_kenter_pa() code with a special case for
1514 * page tables, we simply fix up the cache-mode here if it's not
1515 * correct.
1516 */
1517 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1518 KDASSERT(l2b != NULL);
1519 ptep = &l2b->l2b_kva[l2pte_index(va)];
1520 pte = *ptep;
1521
1522 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1523 /*
1524 * Page tables must have the cache-mode set to Write-Thru.
1525 */
1526 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1527 PTE_SYNC(ptep);
1528 cpu_tlb_flushD_SE(va);
1529 cpu_cpwait();
1530 }
1531 #endif
1532
1533 memset(v, 0, L2_TABLE_SIZE_REAL);
1534 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1535 return (0);
1536 }
1537
1538 static int
1539 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1540 {
1541
1542 memset(v, 0, sizeof(struct l2_dtable));
1543 return (0);
1544 }
1545
1546 static int
1547 pmap_pmap_ctor(void *arg, void *v, int flags)
1548 {
1549
1550 memset(v, 0, sizeof(struct pmap));
1551 return (0);
1552 }
1553
1554 static void
1555 pmap_pinit(pmap_t pm)
1556 {
1557 struct l2_bucket *l2b;
1558
1559 if (vector_page < KERNEL_BASE) {
1560 /*
1561 * Map the vector page.
1562 */
1563 pmap_enter(pm, vector_page, systempage.pv_pa,
1564 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1565 pmap_update(pm);
1566
1567 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1568 l2b = pmap_get_l2_bucket(pm, vector_page);
1569 KDASSERT(l2b != NULL);
1570 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1571 L1_C_DOM(pm->pm_domain);
1572 } else
1573 pm->pm_pl1vec = NULL;
1574 }
1575
1576 #ifdef PMAP_CACHE_VIVT
1577 /*
1578 * Since we have a virtually indexed cache, we may need to inhibit caching if
1579 * there is more than one mapping and at least one of them is writable.
1580 * Since we purge the cache on every context switch, we only need to check for
1581 * other mappings within the same pmap, or kernel_pmap.
1582 * This function is also called when a page is unmapped, to possibly reenable
1583 * caching on any remaining mappings.
1584 *
1585 * The code implements the following logic, where:
1586 *
1587 * KW = # of kernel read/write pages
1588 * KR = # of kernel read only pages
1589 * UW = # of user read/write pages
1590 * UR = # of user read only pages
1591 *
1592 * KC = kernel mapping is cacheable
1593 * UC = user mapping is cacheable
1594 *
1595 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1596 * +---------------------------------------------
1597 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1598 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1599 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1600 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1601 */
1602
1603 static const int pmap_vac_flags[4][4] = {
1604 {-1, 0, 0, PVF_KNC},
1605 {0, 0, PVF_NC, PVF_NC},
1606 {0, PVF_NC, PVF_NC, PVF_NC},
1607 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1608 };
1609
1610 static inline int
1611 pmap_get_vac_flags(const struct vm_page_md *md)
1612 {
1613 int kidx, uidx;
1614
1615 kidx = 0;
1616 if (md->kro_mappings || md->krw_mappings > 1)
1617 kidx |= 1;
1618 if (md->krw_mappings)
1619 kidx |= 2;
1620
1621 uidx = 0;
1622 if (md->uro_mappings || md->urw_mappings > 1)
1623 uidx |= 1;
1624 if (md->urw_mappings)
1625 uidx |= 2;
1626
1627 return (pmap_vac_flags[uidx][kidx]);
1628 }
1629
1630 static inline void
1631 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1632 {
1633 int nattr;
1634
1635 nattr = pmap_get_vac_flags(md);
1636
1637 if (nattr < 0) {
1638 md->pvh_attrs &= ~PVF_NC;
1639 return;
1640 }
1641
1642 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1643 return;
1644
1645 if (pm == pmap_kernel())
1646 pmap_vac_me_kpmap(md, pa, pm, va);
1647 else
1648 pmap_vac_me_user(md, pa, pm, va);
1649
1650 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1651 }
1652
1653 static void
1654 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1655 {
1656 u_int u_cacheable, u_entries;
1657 struct pv_entry *pv;
1658 pmap_t last_pmap = pm;
1659
1660 /*
1661 * Pass one, see if there are both kernel and user pmaps for
1662 * this page. Calculate whether there are user-writable or
1663 * kernel-writable pages.
1664 */
1665 u_cacheable = 0;
1666 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1667 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1668 u_cacheable++;
1669 }
1670
1671 u_entries = md->urw_mappings + md->uro_mappings;
1672
1673 /*
1674 * We know we have just been updating a kernel entry, so if
1675 * all user pages are already cacheable, then there is nothing
1676 * further to do.
1677 */
1678 if (md->k_mappings == 0 && u_cacheable == u_entries)
1679 return;
1680
1681 if (u_entries) {
1682 /*
1683 * Scan over the list again, for each entry, if it
1684 * might not be set correctly, call pmap_vac_me_user
1685 * to recalculate the settings.
1686 */
1687 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1688 /*
1689 * We know kernel mappings will get set
1690 * correctly in other calls. We also know
1691 * that if the pmap is the same as last_pmap
1692 * then we've just handled this entry.
1693 */
1694 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1695 continue;
1696
1697 /*
1698 * If there are kernel entries and this page
1699 * is writable but non-cacheable, then we can
1700 * skip this entry also.
1701 */
1702 if (md->k_mappings &&
1703 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1704 (PVF_NC | PVF_WRITE))
1705 continue;
1706
1707 /*
1708 * Similarly if there are no kernel-writable
1709 * entries and the page is already
1710 * read-only/cacheable.
1711 */
1712 if (md->krw_mappings == 0 &&
1713 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1714 continue;
1715
1716 /*
1717 * For some of the remaining cases, we know
1718 * that we must recalculate, but for others we
1719 * can't tell if they are correct or not, so
1720 * we recalculate anyway.
1721 */
1722 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1723 }
1724
1725 if (md->k_mappings == 0)
1726 return;
1727 }
1728
1729 pmap_vac_me_user(md, pa, pm, va);
1730 }
1731
1732 static void
1733 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1734 {
1735 pmap_t kpmap = pmap_kernel();
1736 struct pv_entry *pv, *npv = NULL;
1737 struct l2_bucket *l2b;
1738 pt_entry_t *ptep, pte;
1739 u_int entries = 0;
1740 u_int writable = 0;
1741 u_int cacheable_entries = 0;
1742 u_int kern_cacheable = 0;
1743 u_int other_writable = 0;
1744
1745 /*
1746 * Count mappings and writable mappings in this pmap.
1747 * Include kernel mappings as part of our own.
1748 * Keep a pointer to the first one.
1749 */
1750 npv = NULL;
1751 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1752 /* Count mappings in the same pmap */
1753 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1754 if (entries++ == 0)
1755 npv = pv;
1756
1757 /* Cacheable mappings */
1758 if ((pv->pv_flags & PVF_NC) == 0) {
1759 cacheable_entries++;
1760 if (kpmap == pv->pv_pmap)
1761 kern_cacheable++;
1762 }
1763
1764 /* Writable mappings */
1765 if (pv->pv_flags & PVF_WRITE)
1766 ++writable;
1767 } else
1768 if (pv->pv_flags & PVF_WRITE)
1769 other_writable = 1;
1770 }
1771
1772 /*
1773 * Enable or disable caching as necessary.
1774 * Note: the first entry might be part of the kernel pmap,
1775 * so we can't assume this is indicative of the state of the
1776 * other (maybe non-kpmap) entries.
1777 */
1778 if ((entries > 1 && writable) ||
1779 (entries > 0 && pm == kpmap && other_writable)) {
1780 if (cacheable_entries == 0)
1781 return;
1782
1783 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1784 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1785 (pv->pv_flags & PVF_NC))
1786 continue;
1787
1788 pv->pv_flags |= PVF_NC;
1789
1790 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1791 KDASSERT(l2b != NULL);
1792 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1793 pte = *ptep & ~L2_S_CACHE_MASK;
1794
1795 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1796 l2pte_valid(pte)) {
1797 if (PV_BEEN_EXECD(pv->pv_flags)) {
1798 #ifdef PMAP_CACHE_VIVT
1799 pmap_idcache_wbinv_range(pv->pv_pmap,
1800 pv->pv_va, PAGE_SIZE);
1801 #endif
1802 pmap_tlb_flushID_SE(pv->pv_pmap,
1803 pv->pv_va);
1804 } else
1805 if (PV_BEEN_REFD(pv->pv_flags)) {
1806 #ifdef PMAP_CACHE_VIVT
1807 pmap_dcache_wb_range(pv->pv_pmap,
1808 pv->pv_va, PAGE_SIZE, true,
1809 (pv->pv_flags & PVF_WRITE) == 0);
1810 #endif
1811 pmap_tlb_flushD_SE(pv->pv_pmap,
1812 pv->pv_va);
1813 }
1814 }
1815
1816 *ptep = pte;
1817 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1818 }
1819 cpu_cpwait();
1820 } else
1821 if (entries > cacheable_entries) {
1822 /*
1823 * Turn cacheing back on for some pages. If it is a kernel
1824 * page, only do so if there are no other writable pages.
1825 */
1826 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1827 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1828 (kpmap != pv->pv_pmap || other_writable)))
1829 continue;
1830
1831 pv->pv_flags &= ~PVF_NC;
1832
1833 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1834 KDASSERT(l2b != NULL);
1835 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1836 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1837
1838 if (l2pte_valid(pte)) {
1839 if (PV_BEEN_EXECD(pv->pv_flags)) {
1840 pmap_tlb_flushID_SE(pv->pv_pmap,
1841 pv->pv_va);
1842 } else
1843 if (PV_BEEN_REFD(pv->pv_flags)) {
1844 pmap_tlb_flushD_SE(pv->pv_pmap,
1845 pv->pv_va);
1846 }
1847 }
1848
1849 *ptep = pte;
1850 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1851 }
1852 }
1853 }
1854 #endif
1855
1856 #ifdef PMAP_CACHE_VIPT
1857 static void
1858 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1859 {
1860 struct pv_entry *pv;
1861 vaddr_t tst_mask;
1862 bool bad_alias;
1863 struct l2_bucket *l2b;
1864 pt_entry_t *ptep, pte, opte;
1865 const u_int
1866 rw_mappings = md->urw_mappings + md->krw_mappings,
1867 ro_mappings = md->uro_mappings + md->kro_mappings;
1868
1869 /* do we need to do anything? */
1870 if (arm_cache_prefer_mask == 0)
1871 return;
1872
1873 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1874 md, pm, va));
1875
1876 KASSERT(!va || pm);
1877 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1878
1879 /* Already a conflict? */
1880 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1881 /* just an add, things are already non-cached */
1882 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1883 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1884 bad_alias = false;
1885 if (va) {
1886 PMAPCOUNT(vac_color_none);
1887 bad_alias = true;
1888 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1889 goto fixup;
1890 }
1891 pv = SLIST_FIRST(&md->pvh_list);
1892 /* the list can't be empty because it would be cachable */
1893 if (md->pvh_attrs & PVF_KMPAGE) {
1894 tst_mask = md->pvh_attrs;
1895 } else {
1896 KASSERT(pv);
1897 tst_mask = pv->pv_va;
1898 pv = SLIST_NEXT(pv, pv_link);
1899 }
1900 /*
1901 * Only check for a bad alias if we have writable mappings.
1902 */
1903 tst_mask &= arm_cache_prefer_mask;
1904 if (rw_mappings > 0) {
1905 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1906 /* if there's a bad alias, stop checking. */
1907 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1908 bad_alias = true;
1909 }
1910 md->pvh_attrs |= PVF_WRITE;
1911 if (!bad_alias)
1912 md->pvh_attrs |= PVF_DIRTY;
1913 } else {
1914 /*
1915 * We have only read-only mappings. Let's see if there
1916 * are multiple colors in use or if we mapped a KMPAGE.
1917 * If the latter, we have a bad alias. If the former,
1918 * we need to remember that.
1919 */
1920 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1921 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1922 if (md->pvh_attrs & PVF_KMPAGE)
1923 bad_alias = true;
1924 break;
1925 }
1926 }
1927 md->pvh_attrs &= ~PVF_WRITE;
1928 /*
1929 * No KMPAGE and we exited early, so we must have
1930 * multiple color mappings.
1931 */
1932 if (!bad_alias && pv != NULL)
1933 md->pvh_attrs |= PVF_MULTCLR;
1934 }
1935
1936 /* If no conflicting colors, set everything back to cached */
1937 if (!bad_alias) {
1938 #ifdef DEBUG
1939 if ((md->pvh_attrs & PVF_WRITE)
1940 || ro_mappings < 2) {
1941 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1942 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1943 }
1944 #endif
1945 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1946 md->pvh_attrs |= tst_mask | PVF_COLORED;
1947 /*
1948 * Restore DIRTY bit if page is modified
1949 */
1950 if (md->pvh_attrs & PVF_DMOD)
1951 md->pvh_attrs |= PVF_DIRTY;
1952 PMAPCOUNT(vac_color_restore);
1953 } else {
1954 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1955 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1956 }
1957 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1958 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1959 } else if (!va) {
1960 KASSERT(pmap_is_page_colored_p(md));
1961 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1962 || (md->pvh_attrs & PVF_DIRTY));
1963 if (rw_mappings == 0) {
1964 md->pvh_attrs &= ~PVF_WRITE;
1965 if (ro_mappings == 1
1966 && (md->pvh_attrs & PVF_MULTCLR)) {
1967 /*
1968 * If this is the last readonly mapping
1969 * but it doesn't match the current color
1970 * for the page, change the current color
1971 * to match this last readonly mapping.
1972 */
1973 pv = SLIST_FIRST(&md->pvh_list);
1974 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1975 & arm_cache_prefer_mask;
1976 if (tst_mask) {
1977 md->pvh_attrs ^= tst_mask;
1978 PMAPCOUNT(vac_color_change);
1979 }
1980 }
1981 }
1982 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1983 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1984 return;
1985 } else if (!pmap_is_page_colored_p(md)) {
1986 /* not colored so we just use its color */
1987 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1988 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1989 PMAPCOUNT(vac_color_new);
1990 md->pvh_attrs &= PAGE_SIZE - 1;
1991 md->pvh_attrs |= PVF_COLORED
1992 | (va & arm_cache_prefer_mask)
1993 | (rw_mappings > 0 ? PVF_WRITE : 0);
1994 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1995 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1996 return;
1997 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1998 bad_alias = false;
1999 if (rw_mappings > 0) {
2000 /*
2001 * We now have writeable mappings and if we have
2002 * readonly mappings in more than once color, we have
2003 * an aliasing problem. Regardless mark the page as
2004 * writeable.
2005 */
2006 if (md->pvh_attrs & PVF_MULTCLR) {
2007 if (ro_mappings < 2) {
2008 /*
2009 * If we only have less than two
2010 * read-only mappings, just flush the
2011 * non-primary colors from the cache.
2012 */
2013 pmap_flush_page(md, pa,
2014 PMAP_FLUSH_SECONDARY);
2015 } else {
2016 bad_alias = true;
2017 }
2018 }
2019 md->pvh_attrs |= PVF_WRITE;
2020 }
2021 /* If no conflicting colors, set everything back to cached */
2022 if (!bad_alias) {
2023 #ifdef DEBUG
2024 if (rw_mappings > 0
2025 || (md->pvh_attrs & PMAP_KMPAGE)) {
2026 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2027 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2028 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2029 }
2030 #endif
2031 if (SLIST_EMPTY(&md->pvh_list))
2032 PMAPCOUNT(vac_color_reuse);
2033 else
2034 PMAPCOUNT(vac_color_ok);
2035
2036 /* matching color, just return */
2037 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2038 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2039 return;
2040 }
2041 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2042 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2043
2044 /* color conflict. evict from cache. */
2045
2046 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2047 md->pvh_attrs &= ~PVF_COLORED;
2048 md->pvh_attrs |= PVF_NC;
2049 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2050 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2051 PMAPCOUNT(vac_color_erase);
2052 } else if (rw_mappings == 0
2053 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2054 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2055
2056 /*
2057 * If the page has dirty cache lines, clean it.
2058 */
2059 if (md->pvh_attrs & PVF_DIRTY)
2060 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2061
2062 /*
2063 * If this is the first remapping (we know that there are no
2064 * writeable mappings), then this is a simple color change.
2065 * Otherwise this is a seconary r/o mapping, which means
2066 * we don't have to do anything.
2067 */
2068 if (ro_mappings == 1) {
2069 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2070 md->pvh_attrs &= PAGE_SIZE - 1;
2071 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2072 PMAPCOUNT(vac_color_change);
2073 } else {
2074 PMAPCOUNT(vac_color_blind);
2075 }
2076 md->pvh_attrs |= PVF_MULTCLR;
2077 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2078 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2079 return;
2080 } else {
2081 if (rw_mappings > 0)
2082 md->pvh_attrs |= PVF_WRITE;
2083
2084 /* color conflict. evict from cache. */
2085 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2086
2087 /* the list can't be empty because this was a enter/modify */
2088 pv = SLIST_FIRST(&md->pvh_list);
2089 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2090 KASSERT(pv);
2091 /*
2092 * If there's only one mapped page, change color to the
2093 * page's new color and return. Restore the DIRTY bit
2094 * that was erased by pmap_flush_page.
2095 */
2096 if (SLIST_NEXT(pv, pv_link) == NULL) {
2097 md->pvh_attrs &= PAGE_SIZE - 1;
2098 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2099 if (md->pvh_attrs & PVF_DMOD)
2100 md->pvh_attrs |= PVF_DIRTY;
2101 PMAPCOUNT(vac_color_change);
2102 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2103 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2104 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2105 return;
2106 }
2107 }
2108 bad_alias = true;
2109 md->pvh_attrs &= ~PVF_COLORED;
2110 md->pvh_attrs |= PVF_NC;
2111 PMAPCOUNT(vac_color_erase);
2112 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2113 }
2114
2115 fixup:
2116 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2117
2118 /*
2119 * Turn cacheing on/off for all pages.
2120 */
2121 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2122 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2123 KDASSERT(l2b != NULL);
2124 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2125 opte = *ptep;
2126 pte = opte & ~L2_S_CACHE_MASK;
2127 if (bad_alias) {
2128 pv->pv_flags |= PVF_NC;
2129 } else {
2130 pv->pv_flags &= ~PVF_NC;
2131 pte |= pte_l2_s_cache_mode;
2132 }
2133
2134 if (opte == pte) /* only update is there's a change */
2135 continue;
2136
2137 if (l2pte_valid(pte)) {
2138 if (PV_BEEN_EXECD(pv->pv_flags)) {
2139 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2140 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2141 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2142 }
2143 }
2144
2145 *ptep = pte;
2146 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2147 }
2148 }
2149 #endif /* PMAP_CACHE_VIPT */
2150
2151
2152 /*
2153 * Modify pte bits for all ptes corresponding to the given physical address.
2154 * We use `maskbits' rather than `clearbits' because we're always passing
2155 * constants and the latter would require an extra inversion at run-time.
2156 */
2157 static void
2158 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2159 {
2160 struct l2_bucket *l2b;
2161 struct pv_entry *pv;
2162 pt_entry_t *ptep, npte, opte;
2163 pmap_t pm;
2164 vaddr_t va;
2165 u_int oflags;
2166 #ifdef PMAP_CACHE_VIPT
2167 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2168 bool need_syncicache = false;
2169 bool did_syncicache = false;
2170 bool need_vac_me_harder = false;
2171 #endif
2172
2173 NPDEBUG(PDB_BITS,
2174 printf("pmap_clearbit: md %p mask 0x%x\n",
2175 md, maskbits));
2176
2177 #ifdef PMAP_CACHE_VIPT
2178 /*
2179 * If we might want to sync the I-cache and we've modified it,
2180 * then we know we definitely need to sync or discard it.
2181 */
2182 if (want_syncicache)
2183 need_syncicache = md->pvh_attrs & PVF_MOD;
2184 #endif
2185 /*
2186 * Clear saved attributes (modify, reference)
2187 */
2188 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2189
2190 if (SLIST_EMPTY(&md->pvh_list)) {
2191 #ifdef PMAP_CACHE_VIPT
2192 if (need_syncicache) {
2193 /*
2194 * No one has it mapped, so just discard it. The next
2195 * exec remapping will cause it to be synced.
2196 */
2197 md->pvh_attrs &= ~PVF_EXEC;
2198 PMAPCOUNT(exec_discarded_clearbit);
2199 }
2200 #endif
2201 return;
2202 }
2203
2204 /*
2205 * Loop over all current mappings setting/clearing as appropos
2206 */
2207 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2208 va = pv->pv_va;
2209 pm = pv->pv_pmap;
2210 oflags = pv->pv_flags;
2211 /*
2212 * Kernel entries are unmanaged and as such not to be changed.
2213 */
2214 if (oflags & PVF_KENTRY)
2215 continue;
2216 pv->pv_flags &= ~maskbits;
2217
2218 pmap_acquire_pmap_lock(pm);
2219
2220 l2b = pmap_get_l2_bucket(pm, va);
2221 KDASSERT(l2b != NULL);
2222
2223 ptep = &l2b->l2b_kva[l2pte_index(va)];
2224 npte = opte = *ptep;
2225
2226 NPDEBUG(PDB_BITS,
2227 printf(
2228 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2229 pv, pv->pv_pmap, pv->pv_va, oflags));
2230
2231 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2232 #ifdef PMAP_CACHE_VIVT
2233 if ((pv->pv_flags & PVF_NC)) {
2234 /*
2235 * Entry is not cacheable:
2236 *
2237 * Don't turn caching on again if this is a
2238 * modified emulation. This would be
2239 * inconsitent with the settings created by
2240 * pmap_vac_me_harder(). Otherwise, it's safe
2241 * to re-enable cacheing.
2242 *
2243 * There's no need to call pmap_vac_me_harder()
2244 * here: all pages are losing their write
2245 * permission.
2246 */
2247 if (maskbits & PVF_WRITE) {
2248 npte |= pte_l2_s_cache_mode;
2249 pv->pv_flags &= ~PVF_NC;
2250 }
2251 } else
2252 if (l2pte_writable_p(opte)) {
2253 /*
2254 * Entry is writable/cacheable: check if pmap
2255 * is current if it is flush it, otherwise it
2256 * won't be in the cache
2257 */
2258 if (PV_BEEN_EXECD(oflags))
2259 pmap_idcache_wbinv_range(pm, pv->pv_va,
2260 PAGE_SIZE);
2261 else
2262 if (PV_BEEN_REFD(oflags))
2263 pmap_dcache_wb_range(pm, pv->pv_va,
2264 PAGE_SIZE,
2265 (maskbits & PVF_REF) != 0, false);
2266 }
2267 #endif
2268
2269 /* make the pte read only */
2270 npte = l2pte_set_readonly(npte);
2271
2272 if (maskbits & oflags & PVF_WRITE) {
2273 /*
2274 * Keep alias accounting up to date
2275 */
2276 if (pv->pv_pmap == pmap_kernel()) {
2277 md->krw_mappings--;
2278 md->kro_mappings++;
2279 } else {
2280 md->urw_mappings--;
2281 md->uro_mappings++;
2282 }
2283 #ifdef PMAP_CACHE_VIPT
2284 if (arm_cache_prefer_mask != 0) {
2285 if (md->urw_mappings + md->krw_mappings == 0) {
2286 md->pvh_attrs &= ~PVF_WRITE;
2287 } else {
2288 PMAP_VALIDATE_MD_PAGE(md);
2289 }
2290 }
2291 if (want_syncicache)
2292 need_syncicache = true;
2293 need_vac_me_harder = true;
2294 #endif
2295 }
2296 }
2297
2298 if (maskbits & PVF_REF) {
2299 if ((pv->pv_flags & PVF_NC) == 0 &&
2300 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2301 l2pte_valid(npte)) {
2302 #ifdef PMAP_CACHE_VIVT
2303 /*
2304 * Check npte here; we may have already
2305 * done the wbinv above, and the validity
2306 * of the PTE is the same for opte and
2307 * npte.
2308 */
2309 /* XXXJRT need idcache_inv_range */
2310 if (PV_BEEN_EXECD(oflags))
2311 pmap_idcache_wbinv_range(pm,
2312 pv->pv_va, PAGE_SIZE);
2313 else
2314 if (PV_BEEN_REFD(oflags))
2315 pmap_dcache_wb_range(pm,
2316 pv->pv_va, PAGE_SIZE,
2317 true, true);
2318 #endif
2319 }
2320
2321 /*
2322 * Make the PTE invalid so that we will take a
2323 * page fault the next time the mapping is
2324 * referenced.
2325 */
2326 npte &= ~L2_TYPE_MASK;
2327 npte |= L2_TYPE_INV;
2328 }
2329
2330 if (npte != opte) {
2331 *ptep = npte;
2332 PTE_SYNC(ptep);
2333 /* Flush the TLB entry if a current pmap. */
2334 if (PV_BEEN_EXECD(oflags))
2335 pmap_tlb_flushID_SE(pm, pv->pv_va);
2336 else
2337 if (PV_BEEN_REFD(oflags))
2338 pmap_tlb_flushD_SE(pm, pv->pv_va);
2339 }
2340
2341 pmap_release_pmap_lock(pm);
2342
2343 NPDEBUG(PDB_BITS,
2344 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2345 pm, va, opte, npte));
2346 }
2347
2348 #ifdef PMAP_CACHE_VIPT
2349 /*
2350 * If we need to sync the I-cache and we haven't done it yet, do it.
2351 */
2352 if (need_syncicache && !did_syncicache) {
2353 pmap_syncicache_page(md, pa);
2354 PMAPCOUNT(exec_synced_clearbit);
2355 }
2356 /*
2357 * If we are changing this to read-only, we need to call vac_me_harder
2358 * so we can change all the read-only pages to cacheable. We pretend
2359 * this as a page deletion.
2360 */
2361 if (need_vac_me_harder) {
2362 if (md->pvh_attrs & PVF_NC)
2363 pmap_vac_me_harder(md, pa, NULL, 0);
2364 }
2365 #endif
2366 }
2367
2368 /*
2369 * pmap_clean_page()
2370 *
2371 * This is a local function used to work out the best strategy to clean
2372 * a single page referenced by its entry in the PV table. It's used by
2373 * pmap_copy_page, pmap_zero page and maybe some others later on.
2374 *
2375 * Its policy is effectively:
2376 * o If there are no mappings, we don't bother doing anything with the cache.
2377 * o If there is one mapping, we clean just that page.
2378 * o If there are multiple mappings, we clean the entire cache.
2379 *
2380 * So that some functions can be further optimised, it returns 0 if it didn't
2381 * clean the entire cache, or 1 if it did.
2382 *
2383 * XXX One bug in this routine is that if the pv_entry has a single page
2384 * mapped at 0x00000000 a whole cache clean will be performed rather than
2385 * just the 1 page. Since this should not occur in everyday use and if it does
2386 * it will just result in not the most efficient clean for the page.
2387 */
2388 #ifdef PMAP_CACHE_VIVT
2389 static int
2390 pmap_clean_page(struct pv_entry *pv, bool is_src)
2391 {
2392 pmap_t pm_to_clean = NULL;
2393 struct pv_entry *npv;
2394 u_int cache_needs_cleaning = 0;
2395 u_int flags = 0;
2396 vaddr_t page_to_clean = 0;
2397
2398 if (pv == NULL) {
2399 /* nothing mapped in so nothing to flush */
2400 return (0);
2401 }
2402
2403 /*
2404 * Since we flush the cache each time we change to a different
2405 * user vmspace, we only need to flush the page if it is in the
2406 * current pmap.
2407 */
2408
2409 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2410 if (pmap_is_current(npv->pv_pmap)) {
2411 flags |= npv->pv_flags;
2412 /*
2413 * The page is mapped non-cacheable in
2414 * this map. No need to flush the cache.
2415 */
2416 if (npv->pv_flags & PVF_NC) {
2417 #ifdef DIAGNOSTIC
2418 if (cache_needs_cleaning)
2419 panic("pmap_clean_page: "
2420 "cache inconsistency");
2421 #endif
2422 break;
2423 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2424 continue;
2425 if (cache_needs_cleaning) {
2426 page_to_clean = 0;
2427 break;
2428 } else {
2429 page_to_clean = npv->pv_va;
2430 pm_to_clean = npv->pv_pmap;
2431 }
2432 cache_needs_cleaning = 1;
2433 }
2434 }
2435
2436 if (page_to_clean) {
2437 if (PV_BEEN_EXECD(flags))
2438 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2439 PAGE_SIZE);
2440 else
2441 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2442 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2443 } else if (cache_needs_cleaning) {
2444 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2445
2446 if (PV_BEEN_EXECD(flags))
2447 pmap_idcache_wbinv_all(pm);
2448 else
2449 pmap_dcache_wbinv_all(pm);
2450 return (1);
2451 }
2452 return (0);
2453 }
2454 #endif
2455
2456 #ifdef PMAP_CACHE_VIPT
2457 /*
2458 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2459 * right cache alias to make sure we flush the right stuff.
2460 */
2461 void
2462 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2463 {
2464 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2465 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2466
2467 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2468 md, md->pvh_attrs));
2469 /*
2470 * No need to clean the page if it's non-cached.
2471 */
2472 if (md->pvh_attrs & PVF_NC)
2473 return;
2474 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2475
2476 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2477 /*
2478 * Set up a PTE with the right coloring to flush existing cache lines.
2479 */
2480 *ptep = L2_S_PROTO |
2481 pa
2482 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2483 | pte_l2_s_cache_mode;
2484 PTE_SYNC(ptep);
2485
2486 /*
2487 * Flush it.
2488 */
2489 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2490 /*
2491 * Unmap the page.
2492 */
2493 *ptep = 0;
2494 PTE_SYNC(ptep);
2495 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2496
2497 md->pvh_attrs |= PVF_EXEC;
2498 PMAPCOUNT(exec_synced);
2499 }
2500
2501 void
2502 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2503 {
2504 vsize_t va_offset, end_va;
2505 void (*cf)(vaddr_t, vsize_t);
2506
2507 if (arm_cache_prefer_mask == 0)
2508 return;
2509
2510 switch (flush) {
2511 case PMAP_FLUSH_PRIMARY:
2512 if (md->pvh_attrs & PVF_MULTCLR) {
2513 va_offset = 0;
2514 end_va = arm_cache_prefer_mask;
2515 md->pvh_attrs &= ~PVF_MULTCLR;
2516 PMAPCOUNT(vac_flush_lots);
2517 } else {
2518 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2519 end_va = va_offset;
2520 PMAPCOUNT(vac_flush_one);
2521 }
2522 /*
2523 * Mark that the page is no longer dirty.
2524 */
2525 md->pvh_attrs &= ~PVF_DIRTY;
2526 cf = cpufuncs.cf_idcache_wbinv_range;
2527 break;
2528 case PMAP_FLUSH_SECONDARY:
2529 va_offset = 0;
2530 end_va = arm_cache_prefer_mask;
2531 cf = cpufuncs.cf_idcache_wbinv_range;
2532 md->pvh_attrs &= ~PVF_MULTCLR;
2533 PMAPCOUNT(vac_flush_lots);
2534 break;
2535 case PMAP_CLEAN_PRIMARY:
2536 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2537 end_va = va_offset;
2538 cf = cpufuncs.cf_dcache_wb_range;
2539 /*
2540 * Mark that the page is no longer dirty.
2541 */
2542 if ((md->pvh_attrs & PVF_DMOD) == 0)
2543 md->pvh_attrs &= ~PVF_DIRTY;
2544 PMAPCOUNT(vac_clean_one);
2545 break;
2546 default:
2547 return;
2548 }
2549
2550 KASSERT(!(md->pvh_attrs & PVF_NC));
2551
2552 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2553 md, md->pvh_attrs));
2554
2555 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2556 const size_t pte_offset = va_offset >> PGSHIFT;
2557 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2558 const pt_entry_t oldpte = *ptep;
2559
2560 if (flush == PMAP_FLUSH_SECONDARY
2561 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2562 continue;
2563
2564 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2565 /*
2566 * Set up a PTE with the right coloring to flush
2567 * existing cache entries.
2568 */
2569 *ptep = L2_S_PROTO
2570 | pa
2571 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2572 | pte_l2_s_cache_mode;
2573 PTE_SYNC(ptep);
2574
2575 /*
2576 * Flush it.
2577 */
2578 (*cf)(cdstp + va_offset, PAGE_SIZE);
2579
2580 /*
2581 * Restore the page table entry since we might have interrupted
2582 * pmap_zero_page or pmap_copy_page which was already using
2583 * this pte.
2584 */
2585 *ptep = oldpte;
2586 PTE_SYNC(ptep);
2587 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2588 }
2589 }
2590 #endif /* PMAP_CACHE_VIPT */
2591
2592 /*
2593 * Routine: pmap_page_remove
2594 * Function:
2595 * Removes this physical page from
2596 * all physical maps in which it resides.
2597 * Reflects back modify bits to the pager.
2598 */
2599 static void
2600 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2601 {
2602 struct l2_bucket *l2b;
2603 struct pv_entry *pv, *npv, **pvp;
2604 pmap_t pm;
2605 pt_entry_t *ptep;
2606 bool flush;
2607 u_int flags;
2608
2609 NPDEBUG(PDB_FOLLOW,
2610 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2611 pa));
2612
2613 pv = SLIST_FIRST(&md->pvh_list);
2614 if (pv == NULL) {
2615 #ifdef PMAP_CACHE_VIPT
2616 /*
2617 * We *know* the page contents are about to be replaced.
2618 * Discard the exec contents
2619 */
2620 if (PV_IS_EXEC_P(md->pvh_attrs))
2621 PMAPCOUNT(exec_discarded_page_protect);
2622 md->pvh_attrs &= ~PVF_EXEC;
2623 PMAP_VALIDATE_MD_PAGE(md);
2624 #endif
2625 return;
2626 }
2627 #ifdef PMAP_CACHE_VIPT
2628 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2629 #endif
2630
2631 /*
2632 * Clear alias counts
2633 */
2634 #ifdef PMAP_CACHE_VIVT
2635 md->k_mappings = 0;
2636 #endif
2637 md->urw_mappings = md->uro_mappings = 0;
2638
2639 flush = false;
2640 flags = 0;
2641
2642 #ifdef PMAP_CACHE_VIVT
2643 pmap_clean_page(pv, false);
2644 #endif
2645
2646 pvp = &SLIST_FIRST(&md->pvh_list);
2647 while (pv) {
2648 pm = pv->pv_pmap;
2649 npv = SLIST_NEXT(pv, pv_link);
2650 if (flush == false && pmap_is_current(pm))
2651 flush = true;
2652
2653 if (pm == pmap_kernel()) {
2654 #ifdef PMAP_CACHE_VIPT
2655 /*
2656 * If this was unmanaged mapping, it must be preserved.
2657 * Move it back on the list and advance the end-of-list
2658 * pointer.
2659 */
2660 if (pv->pv_flags & PVF_KENTRY) {
2661 *pvp = pv;
2662 pvp = &SLIST_NEXT(pv, pv_link);
2663 pv = npv;
2664 continue;
2665 }
2666 if (pv->pv_flags & PVF_WRITE)
2667 md->krw_mappings--;
2668 else
2669 md->kro_mappings--;
2670 #endif
2671 PMAPCOUNT(kernel_unmappings);
2672 }
2673 PMAPCOUNT(unmappings);
2674
2675 pmap_acquire_pmap_lock(pm);
2676
2677 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2678 KDASSERT(l2b != NULL);
2679
2680 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2681
2682 /*
2683 * Update statistics
2684 */
2685 --pm->pm_stats.resident_count;
2686
2687 /* Wired bit */
2688 if (pv->pv_flags & PVF_WIRED)
2689 --pm->pm_stats.wired_count;
2690
2691 flags |= pv->pv_flags;
2692
2693 /*
2694 * Invalidate the PTEs.
2695 */
2696 *ptep = 0;
2697 PTE_SYNC_CURRENT(pm, ptep);
2698 pmap_free_l2_bucket(pm, l2b, 1);
2699
2700 pool_put(&pmap_pv_pool, pv);
2701 pv = npv;
2702 /*
2703 * if we reach the end of the list and there are still
2704 * mappings, they might be able to be cached now.
2705 */
2706 if (pv == NULL) {
2707 *pvp = NULL;
2708 if (!SLIST_EMPTY(&md->pvh_list))
2709 pmap_vac_me_harder(md, pa, pm, 0);
2710 }
2711 pmap_release_pmap_lock(pm);
2712 }
2713 #ifdef PMAP_CACHE_VIPT
2714 /*
2715 * Its EXEC cache is now gone.
2716 */
2717 if (PV_IS_EXEC_P(md->pvh_attrs))
2718 PMAPCOUNT(exec_discarded_page_protect);
2719 md->pvh_attrs &= ~PVF_EXEC;
2720 KASSERT(md->urw_mappings == 0);
2721 KASSERT(md->uro_mappings == 0);
2722 if (arm_cache_prefer_mask != 0) {
2723 if (md->krw_mappings == 0)
2724 md->pvh_attrs &= ~PVF_WRITE;
2725 PMAP_VALIDATE_MD_PAGE(md);
2726 }
2727 #endif
2728
2729 if (flush) {
2730 /*
2731 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2732 * would need a subsequent call to pmap_update() to ensure
2733 * curpm->pm_cstate.cs_all is reset. Our callers are not
2734 * required to do that (see pmap(9)), so we can't modify
2735 * the current pmap's state.
2736 */
2737 if (PV_BEEN_EXECD(flags))
2738 cpu_tlb_flushID();
2739 else
2740 cpu_tlb_flushD();
2741 }
2742 cpu_cpwait();
2743 }
2744
2745 /*
2746 * pmap_t pmap_create(void)
2747 *
2748 * Create a new pmap structure from scratch.
2749 */
2750 pmap_t
2751 pmap_create(void)
2752 {
2753 pmap_t pm;
2754
2755 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2756
2757 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2758 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2759 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2760
2761 pm->pm_stats.wired_count = 0;
2762 pm->pm_stats.resident_count = 1;
2763 pm->pm_cstate.cs_all = 0;
2764 pmap_alloc_l1(pm);
2765
2766 /*
2767 * Note: The pool cache ensures that the pm_l2[] array is already
2768 * initialised to zero.
2769 */
2770
2771 pmap_pinit(pm);
2772
2773 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2774
2775 return (pm);
2776 }
2777
2778 u_int
2779 arm32_mmap_flags(paddr_t pa)
2780 {
2781 /*
2782 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2783 * and we're using the upper bits in page numbers to pass flags around
2784 * so we might as well use the same bits
2785 */
2786 return (u_int)pa & PMAP_MD_MASK;
2787 }
2788 /*
2789 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2790 * u_int flags)
2791 *
2792 * Insert the given physical page (p) at
2793 * the specified virtual address (v) in the
2794 * target physical map with the protection requested.
2795 *
2796 * NB: This is the only routine which MAY NOT lazy-evaluate
2797 * or lose information. That is, this routine must actually
2798 * insert this page into the given map NOW.
2799 */
2800 int
2801 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2802 {
2803 struct l2_bucket *l2b;
2804 struct vm_page *pg, *opg;
2805 struct pv_entry *pv;
2806 pt_entry_t *ptep, npte, opte;
2807 u_int nflags;
2808 u_int oflags;
2809
2810 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2811
2812 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2813 KDASSERT(((va | pa) & PGOFSET) == 0);
2814
2815 /*
2816 * Get a pointer to the page. Later on in this function, we
2817 * test for a managed page by checking pg != NULL.
2818 */
2819 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2820
2821 nflags = 0;
2822 if (prot & VM_PROT_WRITE)
2823 nflags |= PVF_WRITE;
2824 if (prot & VM_PROT_EXECUTE)
2825 nflags |= PVF_EXEC;
2826 if (flags & PMAP_WIRED)
2827 nflags |= PVF_WIRED;
2828
2829 pmap_acquire_pmap_lock(pm);
2830
2831 /*
2832 * Fetch the L2 bucket which maps this page, allocating one if
2833 * necessary for user pmaps.
2834 */
2835 if (pm == pmap_kernel())
2836 l2b = pmap_get_l2_bucket(pm, va);
2837 else
2838 l2b = pmap_alloc_l2_bucket(pm, va);
2839 if (l2b == NULL) {
2840 if (flags & PMAP_CANFAIL) {
2841 pmap_release_pmap_lock(pm);
2842 return (ENOMEM);
2843 }
2844 panic("pmap_enter: failed to allocate L2 bucket");
2845 }
2846 ptep = &l2b->l2b_kva[l2pte_index(va)];
2847 opte = *ptep;
2848 npte = pa;
2849 oflags = 0;
2850
2851 if (opte) {
2852 /*
2853 * There is already a mapping at this address.
2854 * If the physical address is different, lookup the
2855 * vm_page.
2856 */
2857 if (l2pte_pa(opte) != pa)
2858 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2859 else
2860 opg = pg;
2861 } else
2862 opg = NULL;
2863
2864 if (pg) {
2865 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2866
2867 /*
2868 * This is to be a managed mapping.
2869 */
2870 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2871 /*
2872 * - The access type indicates that we don't need
2873 * to do referenced emulation.
2874 * OR
2875 * - The physical page has already been referenced
2876 * so no need to re-do referenced emulation here.
2877 */
2878 npte |= l2pte_set_readonly(L2_S_PROTO);
2879
2880 nflags |= PVF_REF;
2881
2882 if ((prot & VM_PROT_WRITE) != 0 &&
2883 ((flags & VM_PROT_WRITE) != 0 ||
2884 (md->pvh_attrs & PVF_MOD) != 0)) {
2885 /*
2886 * This is a writable mapping, and the
2887 * page's mod state indicates it has
2888 * already been modified. Make it
2889 * writable from the outset.
2890 */
2891 npte = l2pte_set_writable(npte);
2892 nflags |= PVF_MOD;
2893 }
2894 } else {
2895 /*
2896 * Need to do page referenced emulation.
2897 */
2898 npte |= L2_TYPE_INV;
2899 }
2900
2901 if (flags & ARM32_MMAP_WRITECOMBINE) {
2902 npte |= pte_l2_s_wc_mode;
2903 } else
2904 npte |= pte_l2_s_cache_mode;
2905
2906 if (pg == opg) {
2907 /*
2908 * We're changing the attrs of an existing mapping.
2909 */
2910 #ifdef MULTIPROCESSOR
2911 KASSERT(uvm_page_locked_p(pg));
2912 #endif
2913 oflags = pmap_modify_pv(md, pa, pm, va,
2914 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2915 PVF_MOD | PVF_REF, nflags);
2916
2917 #ifdef PMAP_CACHE_VIVT
2918 /*
2919 * We may need to flush the cache if we're
2920 * doing rw-ro...
2921 */
2922 if (pm->pm_cstate.cs_cache_d &&
2923 (oflags & PVF_NC) == 0 &&
2924 l2pte_writable_p(opte) &&
2925 (prot & VM_PROT_WRITE) == 0)
2926 cpu_dcache_wb_range(va, PAGE_SIZE);
2927 #endif
2928 } else {
2929 /*
2930 * New mapping, or changing the backing page
2931 * of an existing mapping.
2932 */
2933 if (opg) {
2934 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2935 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2936
2937 /*
2938 * Replacing an existing mapping with a new one.
2939 * It is part of our managed memory so we
2940 * must remove it from the PV list
2941 */
2942 #ifdef MULTIPROCESSOR
2943 KASSERT(uvm_page_locked_p(opg));
2944 #endif
2945 pv = pmap_remove_pv(omd, opa, pm, va);
2946 pmap_vac_me_harder(omd, opa, pm, 0);
2947 oflags = pv->pv_flags;
2948
2949 #ifdef PMAP_CACHE_VIVT
2950 /*
2951 * If the old mapping was valid (ref/mod
2952 * emulation creates 'invalid' mappings
2953 * initially) then make sure to frob
2954 * the cache.
2955 */
2956 if ((oflags & PVF_NC) == 0 &&
2957 l2pte_valid(opte)) {
2958 if (PV_BEEN_EXECD(oflags)) {
2959 pmap_idcache_wbinv_range(pm, va,
2960 PAGE_SIZE);
2961 } else
2962 if (PV_BEEN_REFD(oflags)) {
2963 pmap_dcache_wb_range(pm, va,
2964 PAGE_SIZE, true,
2965 (oflags & PVF_WRITE) == 0);
2966 }
2967 }
2968 #endif
2969 } else
2970 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2971 if ((flags & PMAP_CANFAIL) == 0)
2972 panic("pmap_enter: no pv entries");
2973
2974 if (pm != pmap_kernel())
2975 pmap_free_l2_bucket(pm, l2b, 0);
2976 pmap_release_pmap_lock(pm);
2977 NPDEBUG(PDB_ENTER,
2978 printf("pmap_enter: ENOMEM\n"));
2979 return (ENOMEM);
2980 }
2981
2982 #ifdef MULTIPROCESSOR
2983 KASSERT(uvm_page_locked_p(pg));
2984 #endif
2985 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2986 }
2987 } else {
2988 /*
2989 * We're mapping an unmanaged page.
2990 * These are always readable, and possibly writable, from
2991 * the get go as we don't need to track ref/mod status.
2992 */
2993 npte |= l2pte_set_readonly(L2_S_PROTO);
2994 if (prot & VM_PROT_WRITE)
2995 npte = l2pte_set_writable(npte);
2996
2997 /*
2998 * Make sure the vector table is mapped cacheable
2999 */
3000 if ((pm != pmap_kernel() && va == vector_page) ||
3001 (flags & ARM32_MMAP_CACHEABLE)) {
3002 npte |= pte_l2_s_cache_mode;
3003 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3004 npte |= pte_l2_s_wc_mode;
3005 }
3006 if (opg) {
3007 /*
3008 * Looks like there's an existing 'managed' mapping
3009 * at this address.
3010 */
3011 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3012 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3013
3014 #ifdef MULTIPROCESSOR
3015 KASSERT(uvm_page_locked_p(opg));
3016 #endif
3017 pv = pmap_remove_pv(omd, opa, pm, va);
3018 pmap_vac_me_harder(omd, opa, pm, 0);
3019 oflags = pv->pv_flags;
3020
3021 #ifdef PMAP_CACHE_VIVT
3022 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
3023 if (PV_BEEN_EXECD(oflags))
3024 pmap_idcache_wbinv_range(pm, va,
3025 PAGE_SIZE);
3026 else
3027 if (PV_BEEN_REFD(oflags))
3028 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
3029 true, (oflags & PVF_WRITE) == 0);
3030 }
3031 #endif
3032 pool_put(&pmap_pv_pool, pv);
3033 }
3034 }
3035
3036 /*
3037 * Make sure userland mappings get the right permissions
3038 */
3039 if (pm != pmap_kernel() && va != vector_page)
3040 npte |= L2_S_PROT_U;
3041
3042 /*
3043 * Keep the stats up to date
3044 */
3045 if (opte == 0) {
3046 l2b->l2b_occupancy++;
3047 pm->pm_stats.resident_count++;
3048 }
3049
3050 NPDEBUG(PDB_ENTER,
3051 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3052
3053 /*
3054 * If this is just a wiring change, the two PTEs will be
3055 * identical, so there's no need to update the page table.
3056 */
3057 if (npte != opte) {
3058 bool is_cached = pmap_is_cached(pm);
3059
3060 *ptep = npte;
3061 PTE_SYNC(ptep);
3062 if (is_cached) {
3063 /*
3064 * We only need to frob the cache/tlb if this pmap
3065 * is current
3066 */
3067 if (va != vector_page && l2pte_valid(npte)) {
3068 /*
3069 * This mapping is likely to be accessed as
3070 * soon as we return to userland. Fix up the
3071 * L1 entry to avoid taking another
3072 * page/domain fault.
3073 */
3074 pd_entry_t *pl1pd, l1pd;
3075
3076 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3077 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3078 L1_C_PROTO;
3079 if (*pl1pd != l1pd) {
3080 *pl1pd = l1pd;
3081 PTE_SYNC(pl1pd);
3082 }
3083 }
3084 }
3085
3086 if (PV_BEEN_EXECD(oflags))
3087 pmap_tlb_flushID_SE(pm, va);
3088 else
3089 if (PV_BEEN_REFD(oflags))
3090 pmap_tlb_flushD_SE(pm, va);
3091
3092 NPDEBUG(PDB_ENTER,
3093 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3094 is_cached, pm->pm_cstate.cs_all));
3095
3096 if (pg != NULL) {
3097 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3098
3099 #ifdef MULTIPROCESSOR
3100 KASSERT(uvm_page_locked_p(pg));
3101 #endif
3102 pmap_vac_me_harder(md, pa, pm, va);
3103 }
3104 }
3105 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3106 if (pg) {
3107 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3108
3109 #ifdef MULTIPROCESSOR
3110 KASSERT(uvm_page_locked_p(pg));
3111 #endif
3112 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3113 PMAP_VALIDATE_MD_PAGE(md);
3114 }
3115 #endif
3116
3117 pmap_release_pmap_lock(pm);
3118
3119 return (0);
3120 }
3121
3122 /*
3123 * pmap_remove()
3124 *
3125 * pmap_remove is responsible for nuking a number of mappings for a range
3126 * of virtual address space in the current pmap. To do this efficiently
3127 * is interesting, because in a number of cases a wide virtual address
3128 * range may be supplied that contains few actual mappings. So, the
3129 * optimisations are:
3130 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3131 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3132 * maybe do just a partial cache clean. This path of execution is
3133 * complicated by the fact that the cache must be flushed _before_
3134 * the PTE is nuked, being a VAC :-)
3135 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3136 * all invalidations until pmap_update(), since pmap_remove_all() has
3137 * already flushed the cache.
3138 * 4. Maybe later fast-case a single page, but I don't think this is
3139 * going to make _that_ much difference overall.
3140 */
3141
3142 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3143
3144 void
3145 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3146 {
3147 struct l2_bucket *l2b;
3148 vaddr_t next_bucket;
3149 pt_entry_t *ptep;
3150 u_int cleanlist_idx, total, cnt;
3151 struct {
3152 vaddr_t va;
3153 pt_entry_t *ptep;
3154 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3155 u_int mappings, is_exec, is_refd;
3156
3157 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3158 "eva=%08lx\n", pm, sva, eva));
3159
3160 /*
3161 * we lock in the pmap => pv_head direction
3162 */
3163 pmap_acquire_pmap_lock(pm);
3164
3165 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3166 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3167 if (pm->pm_cstate.cs_tlb == 0)
3168 pm->pm_remove_all = true;
3169 } else
3170 cleanlist_idx = 0;
3171
3172 total = 0;
3173
3174 while (sva < eva) {
3175 /*
3176 * Do one L2 bucket's worth at a time.
3177 */
3178 next_bucket = L2_NEXT_BUCKET(sva);
3179 if (next_bucket > eva)
3180 next_bucket = eva;
3181
3182 l2b = pmap_get_l2_bucket(pm, sva);
3183 if (l2b == NULL) {
3184 sva = next_bucket;
3185 continue;
3186 }
3187
3188 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3189
3190 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3191 struct vm_page *pg;
3192 pt_entry_t pte;
3193 paddr_t pa;
3194
3195 pte = *ptep;
3196
3197 if (pte == 0) {
3198 /* Nothing here, move along */
3199 continue;
3200 }
3201
3202 pa = l2pte_pa(pte);
3203 is_exec = 0;
3204 is_refd = 1;
3205
3206 /*
3207 * Update flags. In a number of circumstances,
3208 * we could cluster a lot of these and do a
3209 * number of sequential pages in one go.
3210 */
3211 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3212 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3213 struct pv_entry *pv;
3214
3215 #ifdef MULTIPROCESSOR
3216 KASSERT(uvm_page_locked_p(pg));
3217 #endif
3218 pv = pmap_remove_pv(md, pa, pm, sva);
3219 pmap_vac_me_harder(md, pa, pm, 0);
3220 if (pv != NULL) {
3221 if (pm->pm_remove_all == false) {
3222 is_exec =
3223 PV_BEEN_EXECD(pv->pv_flags);
3224 is_refd =
3225 PV_BEEN_REFD(pv->pv_flags);
3226 }
3227 pool_put(&pmap_pv_pool, pv);
3228 }
3229 }
3230 mappings++;
3231
3232 if (!l2pte_valid(pte)) {
3233 /*
3234 * Ref/Mod emulation is still active for this
3235 * mapping, therefore it is has not yet been
3236 * accessed. No need to frob the cache/tlb.
3237 */
3238 *ptep = 0;
3239 PTE_SYNC_CURRENT(pm, ptep);
3240 continue;
3241 }
3242
3243 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3244 /* Add to the clean list. */
3245 cleanlist[cleanlist_idx].ptep = ptep;
3246 cleanlist[cleanlist_idx].va =
3247 sva | (is_exec & 1);
3248 cleanlist_idx++;
3249 } else
3250 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3251 /* Nuke everything if needed. */
3252 #ifdef PMAP_CACHE_VIVT
3253 pmap_idcache_wbinv_all(pm);
3254 #endif
3255 pmap_tlb_flushID(pm);
3256
3257 /*
3258 * Roll back the previous PTE list,
3259 * and zero out the current PTE.
3260 */
3261 for (cnt = 0;
3262 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3263 *cleanlist[cnt].ptep = 0;
3264 PTE_SYNC(cleanlist[cnt].ptep);
3265 }
3266 *ptep = 0;
3267 PTE_SYNC(ptep);
3268 cleanlist_idx++;
3269 pm->pm_remove_all = true;
3270 } else {
3271 *ptep = 0;
3272 PTE_SYNC(ptep);
3273 if (pm->pm_remove_all == false) {
3274 if (is_exec)
3275 pmap_tlb_flushID_SE(pm, sva);
3276 else
3277 if (is_refd)
3278 pmap_tlb_flushD_SE(pm, sva);
3279 }
3280 }
3281 }
3282
3283 /*
3284 * Deal with any left overs
3285 */
3286 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3287 total += cleanlist_idx;
3288 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3289 if (pm->pm_cstate.cs_all != 0) {
3290 vaddr_t clva = cleanlist[cnt].va & ~1;
3291 if (cleanlist[cnt].va & 1) {
3292 #ifdef PMAP_CACHE_VIVT
3293 pmap_idcache_wbinv_range(pm,
3294 clva, PAGE_SIZE);
3295 #endif
3296 pmap_tlb_flushID_SE(pm, clva);
3297 } else {
3298 #ifdef PMAP_CACHE_VIVT
3299 pmap_dcache_wb_range(pm,
3300 clva, PAGE_SIZE, true,
3301 false);
3302 #endif
3303 pmap_tlb_flushD_SE(pm, clva);
3304 }
3305 }
3306 *cleanlist[cnt].ptep = 0;
3307 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3308 }
3309
3310 /*
3311 * If it looks like we're removing a whole bunch
3312 * of mappings, it's faster to just write-back
3313 * the whole cache now and defer TLB flushes until
3314 * pmap_update() is called.
3315 */
3316 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3317 cleanlist_idx = 0;
3318 else {
3319 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3320 #ifdef PMAP_CACHE_VIVT
3321 pmap_idcache_wbinv_all(pm);
3322 #endif
3323 pm->pm_remove_all = true;
3324 }
3325 }
3326
3327 pmap_free_l2_bucket(pm, l2b, mappings);
3328 pm->pm_stats.resident_count -= mappings;
3329 }
3330
3331 pmap_release_pmap_lock(pm);
3332 }
3333
3334 #ifdef PMAP_CACHE_VIPT
3335 static struct pv_entry *
3336 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3337 {
3338 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3339 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3340 struct pv_entry *pv;
3341
3342 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3343 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3344
3345 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3346 KASSERT(pv);
3347 KASSERT(pv->pv_flags & PVF_KENTRY);
3348
3349 /*
3350 * If we are removing a writeable mapping to a cached exec page,
3351 * if it's the last mapping then clear it execness other sync
3352 * the page to the icache.
3353 */
3354 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3355 && (pv->pv_flags & PVF_WRITE) != 0) {
3356 if (SLIST_EMPTY(&md->pvh_list)) {
3357 md->pvh_attrs &= ~PVF_EXEC;
3358 PMAPCOUNT(exec_discarded_kremove);
3359 } else {
3360 pmap_syncicache_page(md, pa);
3361 PMAPCOUNT(exec_synced_kremove);
3362 }
3363 }
3364 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3365
3366 return pv;
3367 }
3368 #endif /* PMAP_CACHE_VIPT */
3369
3370 /*
3371 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3372 *
3373 * We assume there is already sufficient KVM space available
3374 * to do this, as we can't allocate L2 descriptor tables/metadata
3375 * from here.
3376 */
3377 void
3378 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3379 {
3380 struct l2_bucket *l2b;
3381 pt_entry_t *ptep, opte;
3382 #ifdef PMAP_CACHE_VIVT
3383 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3384 #endif
3385 #ifdef PMAP_CACHE_VIPT
3386 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3387 struct vm_page *opg;
3388 struct pv_entry *pv = NULL;
3389 #endif
3390 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3391
3392 NPDEBUG(PDB_KENTER,
3393 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3394 va, pa, prot));
3395
3396 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3397 KDASSERT(l2b != NULL);
3398
3399 ptep = &l2b->l2b_kva[l2pte_index(va)];
3400 opte = *ptep;
3401
3402 if (opte == 0) {
3403 PMAPCOUNT(kenter_mappings);
3404 l2b->l2b_occupancy++;
3405 } else {
3406 PMAPCOUNT(kenter_remappings);
3407 #ifdef PMAP_CACHE_VIPT
3408 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3409 #ifdef DIAGNOSTIC
3410 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3411 #endif
3412 if (opg) {
3413 KASSERT(opg != pg);
3414 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3415 KASSERT((flags & PMAP_KMPAGE) == 0);
3416 pv = pmap_kremove_pg(opg, va);
3417 }
3418 #endif
3419 if (l2pte_valid(opte)) {
3420 #ifdef PMAP_CACHE_VIVT
3421 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3422 #endif
3423 cpu_tlb_flushD_SE(va);
3424 cpu_cpwait();
3425 }
3426 }
3427
3428 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3429 | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
3430 PTE_SYNC(ptep);
3431
3432 if (pg) {
3433 #ifdef MULTIPROCESSOR
3434 KASSERT(uvm_page_locked_p(pg));
3435 #endif
3436 if (flags & PMAP_KMPAGE) {
3437 KASSERT(md->urw_mappings == 0);
3438 KASSERT(md->uro_mappings == 0);
3439 KASSERT(md->krw_mappings == 0);
3440 KASSERT(md->kro_mappings == 0);
3441 #ifdef PMAP_CACHE_VIPT
3442 KASSERT(pv == NULL);
3443 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3444 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3445 /* if there is a color conflict, evict from cache. */
3446 if (pmap_is_page_colored_p(md)
3447 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3448 PMAPCOUNT(vac_color_change);
3449 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3450 } else if (md->pvh_attrs & PVF_MULTCLR) {
3451 /*
3452 * If this page has multiple colors, expunge
3453 * them.
3454 */
3455 PMAPCOUNT(vac_flush_lots2);
3456 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3457 }
3458 md->pvh_attrs &= PAGE_SIZE - 1;
3459 md->pvh_attrs |= PVF_KMPAGE
3460 | PVF_COLORED | PVF_DIRTY
3461 | (va & arm_cache_prefer_mask);
3462 #endif
3463 #ifdef PMAP_CACHE_VIVT
3464 md->pvh_attrs |= PVF_KMPAGE;
3465 #endif
3466 pmap_kmpages++;
3467 #ifdef PMAP_CACHE_VIPT
3468 } else {
3469 if (pv == NULL) {
3470 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3471 KASSERT(pv != NULL);
3472 }
3473 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3474 PVF_WIRED | PVF_KENTRY
3475 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3476 if ((prot & VM_PROT_WRITE)
3477 && !(md->pvh_attrs & PVF_NC))
3478 md->pvh_attrs |= PVF_DIRTY;
3479 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3480 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3481 #endif
3482 }
3483 #ifdef PMAP_CACHE_VIPT
3484 } else {
3485 if (pv != NULL)
3486 pool_put(&pmap_pv_pool, pv);
3487 #endif
3488 }
3489 }
3490
3491 void
3492 pmap_kremove(vaddr_t va, vsize_t len)
3493 {
3494 struct l2_bucket *l2b;
3495 pt_entry_t *ptep, *sptep, opte;
3496 vaddr_t next_bucket, eva;
3497 u_int mappings;
3498 struct vm_page *opg;
3499
3500 PMAPCOUNT(kenter_unmappings);
3501
3502 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3503 va, len));
3504
3505 eva = va + len;
3506
3507 while (va < eva) {
3508 next_bucket = L2_NEXT_BUCKET(va);
3509 if (next_bucket > eva)
3510 next_bucket = eva;
3511
3512 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3513 KDASSERT(l2b != NULL);
3514
3515 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3516 mappings = 0;
3517
3518 while (va < next_bucket) {
3519 opte = *ptep;
3520 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3521 if (opg) {
3522 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3523
3524 if (omd->pvh_attrs & PVF_KMPAGE) {
3525 KASSERT(omd->urw_mappings == 0);
3526 KASSERT(omd->uro_mappings == 0);
3527 KASSERT(omd->krw_mappings == 0);
3528 KASSERT(omd->kro_mappings == 0);
3529 omd->pvh_attrs &= ~PVF_KMPAGE;
3530 #ifdef PMAP_CACHE_VIPT
3531 if (arm_cache_prefer_mask != 0) {
3532 omd->pvh_attrs &= ~PVF_WRITE;
3533 }
3534 #endif
3535 pmap_kmpages--;
3536 #ifdef PMAP_CACHE_VIPT
3537 } else {
3538 pool_put(&pmap_pv_pool,
3539 pmap_kremove_pg(opg, va));
3540 #endif
3541 }
3542 }
3543 if (l2pte_valid(opte)) {
3544 #ifdef PMAP_CACHE_VIVT
3545 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3546 #endif
3547 cpu_tlb_flushD_SE(va);
3548 }
3549 if (opte) {
3550 *ptep = 0;
3551 mappings++;
3552 }
3553 va += PAGE_SIZE;
3554 ptep++;
3555 }
3556 KDASSERT(mappings <= l2b->l2b_occupancy);
3557 l2b->l2b_occupancy -= mappings;
3558 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3559 }
3560 cpu_cpwait();
3561 }
3562
3563 bool
3564 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3565 {
3566 struct l2_dtable *l2;
3567 pd_entry_t *pl1pd, l1pd;
3568 pt_entry_t *ptep, pte;
3569 paddr_t pa;
3570 u_int l1idx;
3571
3572 pmap_acquire_pmap_lock(pm);
3573
3574 l1idx = L1_IDX(va);
3575 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3576 l1pd = *pl1pd;
3577
3578 if (l1pte_section_p(l1pd)) {
3579 /*
3580 * These should only happen for pmap_kernel()
3581 */
3582 KDASSERT(pm == pmap_kernel());
3583 pmap_release_pmap_lock(pm);
3584 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3585 if (l1pte_supersection_p(l1pd)) {
3586 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3587 } else
3588 #endif
3589 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3590 } else {
3591 /*
3592 * Note that we can't rely on the validity of the L1
3593 * descriptor as an indication that a mapping exists.
3594 * We have to look it up in the L2 dtable.
3595 */
3596 l2 = pm->pm_l2[L2_IDX(l1idx)];
3597
3598 if (l2 == NULL ||
3599 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3600 pmap_release_pmap_lock(pm);
3601 return false;
3602 }
3603
3604 ptep = &ptep[l2pte_index(va)];
3605 pte = *ptep;
3606 pmap_release_pmap_lock(pm);
3607
3608 if (pte == 0)
3609 return false;
3610
3611 switch (pte & L2_TYPE_MASK) {
3612 case L2_TYPE_L:
3613 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3614 break;
3615
3616 default:
3617 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3618 break;
3619 }
3620 }
3621
3622 if (pap != NULL)
3623 *pap = pa;
3624
3625 return true;
3626 }
3627
3628 void
3629 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3630 {
3631 struct l2_bucket *l2b;
3632 pt_entry_t *ptep, pte;
3633 vaddr_t next_bucket;
3634 u_int flags;
3635 u_int clr_mask;
3636 int flush;
3637
3638 NPDEBUG(PDB_PROTECT,
3639 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3640 pm, sva, eva, prot));
3641
3642 if ((prot & VM_PROT_READ) == 0) {
3643 pmap_remove(pm, sva, eva);
3644 return;
3645 }
3646
3647 if (prot & VM_PROT_WRITE) {
3648 /*
3649 * If this is a read->write transition, just ignore it and let
3650 * uvm_fault() take care of it later.
3651 */
3652 return;
3653 }
3654
3655 pmap_acquire_pmap_lock(pm);
3656
3657 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3658 flags = 0;
3659 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3660
3661 while (sva < eva) {
3662 next_bucket = L2_NEXT_BUCKET(sva);
3663 if (next_bucket > eva)
3664 next_bucket = eva;
3665
3666 l2b = pmap_get_l2_bucket(pm, sva);
3667 if (l2b == NULL) {
3668 sva = next_bucket;
3669 continue;
3670 }
3671
3672 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3673
3674 while (sva < next_bucket) {
3675 pte = *ptep;
3676 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3677 struct vm_page *pg;
3678 u_int f;
3679
3680 #ifdef PMAP_CACHE_VIVT
3681 /*
3682 * OK, at this point, we know we're doing
3683 * write-protect operation. If the pmap is
3684 * active, write-back the page.
3685 */
3686 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3687 false, false);
3688 #endif
3689
3690 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3691 pte = l2pte_set_readonly(pte);
3692 *ptep = pte;
3693 PTE_SYNC(ptep);
3694
3695 if (pg != NULL) {
3696 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3697 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3698
3699 #ifdef MULTIPROCESSOR
3700 KASSERT(uvm_page_locked_p(pg));
3701 #endif
3702 f = pmap_modify_pv(md, pa, pm, sva,
3703 clr_mask, 0);
3704 pmap_vac_me_harder(md, pa, pm, sva);
3705 } else {
3706 f = PVF_REF | PVF_EXEC;
3707 }
3708
3709 if (flush >= 0) {
3710 flush++;
3711 flags |= f;
3712 } else
3713 if (PV_BEEN_EXECD(f))
3714 pmap_tlb_flushID_SE(pm, sva);
3715 else
3716 if (PV_BEEN_REFD(f))
3717 pmap_tlb_flushD_SE(pm, sva);
3718 }
3719
3720 sva += PAGE_SIZE;
3721 ptep++;
3722 }
3723 }
3724
3725 pmap_release_pmap_lock(pm);
3726
3727 if (flush) {
3728 if (PV_BEEN_EXECD(flags))
3729 pmap_tlb_flushID(pm);
3730 else
3731 if (PV_BEEN_REFD(flags))
3732 pmap_tlb_flushD(pm);
3733 }
3734 }
3735
3736 void
3737 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3738 {
3739 struct l2_bucket *l2b;
3740 pt_entry_t *ptep;
3741 vaddr_t next_bucket;
3742 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3743
3744 NPDEBUG(PDB_EXEC,
3745 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3746 pm, sva, eva));
3747
3748 pmap_acquire_pmap_lock(pm);
3749
3750 while (sva < eva) {
3751 next_bucket = L2_NEXT_BUCKET(sva);
3752 if (next_bucket > eva)
3753 next_bucket = eva;
3754
3755 l2b = pmap_get_l2_bucket(pm, sva);
3756 if (l2b == NULL) {
3757 sva = next_bucket;
3758 continue;
3759 }
3760
3761 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3762 sva < next_bucket;
3763 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3764 if (l2pte_valid(*ptep)) {
3765 cpu_icache_sync_range(sva,
3766 min(page_size, eva - sva));
3767 }
3768 }
3769 }
3770
3771 pmap_release_pmap_lock(pm);
3772 }
3773
3774 void
3775 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3776 {
3777 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3778 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3779
3780 NPDEBUG(PDB_PROTECT,
3781 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3782 md, pa, prot));
3783
3784 #ifdef MULTIPROCESSOR
3785 KASSERT(uvm_page_locked_p(pg));
3786 #endif
3787
3788 switch(prot) {
3789 case VM_PROT_READ|VM_PROT_WRITE:
3790 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3791 pmap_clearbit(md, pa, PVF_EXEC);
3792 break;
3793 #endif
3794 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3795 break;
3796
3797 case VM_PROT_READ:
3798 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3799 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3800 break;
3801 #endif
3802 case VM_PROT_READ|VM_PROT_EXECUTE:
3803 pmap_clearbit(md, pa, PVF_WRITE);
3804 break;
3805
3806 default:
3807 pmap_page_remove(md, pa);
3808 break;
3809 }
3810 }
3811
3812 /*
3813 * pmap_clear_modify:
3814 *
3815 * Clear the "modified" attribute for a page.
3816 */
3817 bool
3818 pmap_clear_modify(struct vm_page *pg)
3819 {
3820 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3821 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3822 bool rv;
3823
3824 #ifdef MULTIPROCESSOR
3825 KASSERT(uvm_page_locked_p(pg));
3826 #endif
3827
3828 if (md->pvh_attrs & PVF_MOD) {
3829 rv = true;
3830 #ifdef PMAP_CACHE_VIPT
3831 /*
3832 * If we are going to clear the modified bit and there are
3833 * no other modified bits set, flush the page to memory and
3834 * mark it clean.
3835 */
3836 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3837 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3838 #endif
3839 pmap_clearbit(md, pa, PVF_MOD);
3840 } else
3841 rv = false;
3842
3843 return (rv);
3844 }
3845
3846 /*
3847 * pmap_clear_reference:
3848 *
3849 * Clear the "referenced" attribute for a page.
3850 */
3851 bool
3852 pmap_clear_reference(struct vm_page *pg)
3853 {
3854 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3855 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3856 bool rv;
3857
3858 #ifdef MULTIPROCESSOR
3859 KASSERT(uvm_page_locked_p(pg));
3860 #endif
3861
3862 if (md->pvh_attrs & PVF_REF) {
3863 rv = true;
3864 pmap_clearbit(md, pa, PVF_REF);
3865 } else
3866 rv = false;
3867
3868 return (rv);
3869 }
3870
3871 /*
3872 * pmap_is_modified:
3873 *
3874 * Test if a page has the "modified" attribute.
3875 */
3876 /* See <arm/arm32/pmap.h> */
3877
3878 /*
3879 * pmap_is_referenced:
3880 *
3881 * Test if a page has the "referenced" attribute.
3882 */
3883 /* See <arm/arm32/pmap.h> */
3884
3885 int
3886 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3887 {
3888 struct l2_dtable *l2;
3889 struct l2_bucket *l2b;
3890 pd_entry_t *pl1pd, l1pd;
3891 pt_entry_t *ptep, pte;
3892 paddr_t pa;
3893 u_int l1idx;
3894 int rv = 0;
3895
3896 pmap_acquire_pmap_lock(pm);
3897
3898 l1idx = L1_IDX(va);
3899
3900 /*
3901 * If there is no l2_dtable for this address, then the process
3902 * has no business accessing it.
3903 *
3904 * Note: This will catch userland processes trying to access
3905 * kernel addresses.
3906 */
3907 l2 = pm->pm_l2[L2_IDX(l1idx)];
3908 if (l2 == NULL)
3909 goto out;
3910
3911 /*
3912 * Likewise if there is no L2 descriptor table
3913 */
3914 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3915 if (l2b->l2b_kva == NULL)
3916 goto out;
3917
3918 /*
3919 * Check the PTE itself.
3920 */
3921 ptep = &l2b->l2b_kva[l2pte_index(va)];
3922 pte = *ptep;
3923 if (pte == 0)
3924 goto out;
3925
3926 /*
3927 * Catch a userland access to the vector page mapped at 0x0
3928 */
3929 if (user && (pte & L2_S_PROT_U) == 0)
3930 goto out;
3931
3932 pa = l2pte_pa(pte);
3933
3934 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3935 /*
3936 * This looks like a good candidate for "page modified"
3937 * emulation...
3938 */
3939 struct pv_entry *pv;
3940 struct vm_page *pg;
3941
3942 /* Extract the physical address of the page */
3943 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3944 goto out;
3945
3946 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3947
3948 /* Get the current flags for this page. */
3949 #ifdef MULTIPROCESSOR
3950 KASSERT(uvm_page_locked_p(pg));
3951 #endif
3952
3953 pv = pmap_find_pv(md, pm, va);
3954 if (pv == NULL) {
3955 goto out;
3956 }
3957
3958 /*
3959 * Do the flags say this page is writable? If not then it
3960 * is a genuine write fault. If yes then the write fault is
3961 * our fault as we did not reflect the write access in the
3962 * PTE. Now we know a write has occurred we can correct this
3963 * and also set the modified bit
3964 */
3965 if ((pv->pv_flags & PVF_WRITE) == 0) {
3966 goto out;
3967 }
3968
3969 NPDEBUG(PDB_FOLLOW,
3970 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3971 pm, va, pa));
3972
3973 md->pvh_attrs |= PVF_REF | PVF_MOD;
3974 pv->pv_flags |= PVF_REF | PVF_MOD;
3975 #ifdef PMAP_CACHE_VIPT
3976 /*
3977 * If there are cacheable mappings for this page, mark it dirty.
3978 */
3979 if ((md->pvh_attrs & PVF_NC) == 0)
3980 md->pvh_attrs |= PVF_DIRTY;
3981 #endif
3982
3983 /*
3984 * Re-enable write permissions for the page. No need to call
3985 * pmap_vac_me_harder(), since this is just a
3986 * modified-emulation fault, and the PVF_WRITE bit isn't
3987 * changing. We've already set the cacheable bits based on
3988 * the assumption that we can write to this page.
3989 */
3990 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3991 PTE_SYNC(ptep);
3992 rv = 1;
3993 } else
3994 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3995 /*
3996 * This looks like a good candidate for "page referenced"
3997 * emulation.
3998 */
3999 struct pv_entry *pv;
4000 struct vm_page *pg;
4001
4002 /* Extract the physical address of the page */
4003 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
4004 goto out;
4005
4006 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4007
4008 /* Get the current flags for this page. */
4009 #ifdef MULTIPROCESSOR
4010 KASSERT(uvm_page_locked_p(pg));
4011 #endif
4012
4013 pv = pmap_find_pv(md, pm, va);
4014 if (pv == NULL) {
4015 goto out;
4016 }
4017
4018 md->pvh_attrs |= PVF_REF;
4019 pv->pv_flags |= PVF_REF;
4020
4021 NPDEBUG(PDB_FOLLOW,
4022 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
4023 pm, va, pa));
4024
4025 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
4026 PTE_SYNC(ptep);
4027 rv = 1;
4028 }
4029
4030 /*
4031 * We know there is a valid mapping here, so simply
4032 * fix up the L1 if necessary.
4033 */
4034 pl1pd = &pm->pm_l1->l1_kva[l1idx];
4035 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
4036 if (*pl1pd != l1pd) {
4037 *pl1pd = l1pd;
4038 PTE_SYNC(pl1pd);
4039 rv = 1;
4040 }
4041
4042 #ifdef CPU_SA110
4043 /*
4044 * There are bugs in the rev K SA110. This is a check for one
4045 * of them.
4046 */
4047 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4048 curcpu()->ci_arm_cpurev < 3) {
4049 /* Always current pmap */
4050 if (l2pte_valid(pte)) {
4051 extern int kernel_debug;
4052 if (kernel_debug & 1) {
4053 struct proc *p = curlwp->l_proc;
4054 printf("prefetch_abort: page is already "
4055 "mapped - pte=%p *pte=%08x\n", ptep, pte);
4056 printf("prefetch_abort: pc=%08lx proc=%p "
4057 "process=%s\n", va, p, p->p_comm);
4058 printf("prefetch_abort: far=%08x fs=%x\n",
4059 cpu_faultaddress(), cpu_faultstatus());
4060 }
4061 #ifdef DDB
4062 if (kernel_debug & 2)
4063 Debugger();
4064 #endif
4065 rv = 1;
4066 }
4067 }
4068 #endif /* CPU_SA110 */
4069
4070 /*
4071 * If 'rv == 0' at this point, it generally indicates that there is a
4072 * stale TLB entry for the faulting address. That might be due to a
4073 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4074 */
4075 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4076 && pmap_needs_pte_sync == 0) {
4077 pmap_needs_pte_sync = 1;
4078 PTE_SYNC(ptep);
4079 rv = 1;
4080 }
4081
4082 #ifdef DEBUG
4083 /*
4084 * If 'rv == 0' at this point, it generally indicates that there is a
4085 * stale TLB entry for the faulting address. This happens when two or
4086 * more processes are sharing an L1. Since we don't flush the TLB on
4087 * a context switch between such processes, we can take domain faults
4088 * for mappings which exist at the same VA in both processes. EVEN IF
4089 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4090 * example.
4091 *
4092 * This is extremely likely to happen if pmap_enter() updated the L1
4093 * entry for a recently entered mapping. In this case, the TLB is
4094 * flushed for the new mapping, but there may still be TLB entries for
4095 * other mappings belonging to other processes in the 1MB range
4096 * covered by the L1 entry.
4097 *
4098 * Since 'rv == 0', we know that the L1 already contains the correct
4099 * value, so the fault must be due to a stale TLB entry.
4100 *
4101 * Since we always need to flush the TLB anyway in the case where we
4102 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4103 * stale TLB entries dynamically.
4104 *
4105 * However, the above condition can ONLY happen if the current L1 is
4106 * being shared. If it happens when the L1 is unshared, it indicates
4107 * that other parts of the pmap are not doing their job WRT managing
4108 * the TLB.
4109 */
4110 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4111 extern int last_fault_code;
4112 extern int kernel_debug;
4113 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4114 pm, va, ftype);
4115 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4116 l2, l2b, ptep, pl1pd);
4117 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4118 pte, l1pd, last_fault_code);
4119 #ifdef DDB
4120 if (kernel_debug & 2)
4121 Debugger();
4122 #endif
4123 }
4124 #endif
4125
4126 cpu_tlb_flushID_SE(va);
4127 cpu_cpwait();
4128
4129 rv = 1;
4130
4131 out:
4132 pmap_release_pmap_lock(pm);
4133
4134 return (rv);
4135 }
4136
4137 /*
4138 * Routine: pmap_procwr
4139 *
4140 * Function:
4141 * Synchronize caches corresponding to [addr, addr+len) in p.
4142 *
4143 */
4144 void
4145 pmap_procwr(struct proc *p, vaddr_t va, int len)
4146 {
4147 /* We only need to do anything if it is the current process. */
4148 if (p == curproc)
4149 cpu_icache_sync_range(va, len);
4150 }
4151
4152 /*
4153 * Routine: pmap_unwire
4154 * Function: Clear the wired attribute for a map/virtual-address pair.
4155 *
4156 * In/out conditions:
4157 * The mapping must already exist in the pmap.
4158 */
4159 void
4160 pmap_unwire(pmap_t pm, vaddr_t va)
4161 {
4162 struct l2_bucket *l2b;
4163 pt_entry_t *ptep, pte;
4164 struct vm_page *pg;
4165 paddr_t pa;
4166
4167 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4168
4169 pmap_acquire_pmap_lock(pm);
4170
4171 l2b = pmap_get_l2_bucket(pm, va);
4172 KDASSERT(l2b != NULL);
4173
4174 ptep = &l2b->l2b_kva[l2pte_index(va)];
4175 pte = *ptep;
4176
4177 /* Extract the physical address of the page */
4178 pa = l2pte_pa(pte);
4179
4180 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4181 /* Update the wired bit in the pv entry for this page. */
4182 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4183
4184 #ifdef MULTIPROCESSOR
4185 KASSERT(uvm_page_locked_p(pg));
4186 #endif
4187 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4188 }
4189
4190 pmap_release_pmap_lock(pm);
4191 }
4192
4193 void
4194 pmap_activate(struct lwp *l)
4195 {
4196 extern int block_userspace_access;
4197 pmap_t opm, npm, rpm;
4198 uint32_t odacr, ndacr;
4199 int oldirqstate;
4200
4201 /*
4202 * If activating a non-current lwp or the current lwp is
4203 * already active, just return.
4204 */
4205 if (l != curlwp ||
4206 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4207 return;
4208
4209 npm = l->l_proc->p_vmspace->vm_map.pmap;
4210 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4211 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4212
4213 /*
4214 * If TTB and DACR are unchanged, short-circuit all the
4215 * TLB/cache management stuff.
4216 */
4217 if (pmap_previous_active_lwp != NULL) {
4218 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4219 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4220 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4221
4222 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4223 goto all_done;
4224 } else
4225 opm = NULL;
4226
4227 PMAPCOUNT(activations);
4228 block_userspace_access = 1;
4229
4230 /*
4231 * If switching to a user vmspace which is different to the
4232 * most recent one, and the most recent one is potentially
4233 * live in the cache, we must write-back and invalidate the
4234 * entire cache.
4235 */
4236 rpm = pmap_recent_user;
4237
4238 /*
4239 * XXXSCW: There's a corner case here which can leave turds in the cache as
4240 * reported in kern/41058. They're probably left over during tear-down and
4241 * switching away from an exiting process. Until the root cause is identified
4242 * and fixed, zap the cache when switching pmaps. This will result in a few
4243 * unnecessary cache flushes, but that's better than silently corrupting data.
4244 */
4245 #if 0
4246 if (npm != pmap_kernel() && rpm && npm != rpm &&
4247 rpm->pm_cstate.cs_cache) {
4248 rpm->pm_cstate.cs_cache = 0;
4249 #ifdef PMAP_CACHE_VIVT
4250 cpu_idcache_wbinv_all();
4251 #endif
4252 }
4253 #else
4254 if (rpm) {
4255 rpm->pm_cstate.cs_cache = 0;
4256 if (npm == pmap_kernel())
4257 pmap_recent_user = NULL;
4258 #ifdef PMAP_CACHE_VIVT
4259 cpu_idcache_wbinv_all();
4260 #endif
4261 }
4262 #endif
4263
4264 /* No interrupts while we frob the TTB/DACR */
4265 oldirqstate = disable_interrupts(IF32_bits);
4266
4267 /*
4268 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4269 * entry corresponding to 'vector_page' in the incoming L1 table
4270 * before switching to it otherwise subsequent interrupts/exceptions
4271 * (including domain faults!) will jump into hyperspace.
4272 */
4273 if (npm->pm_pl1vec != NULL) {
4274 cpu_tlb_flushID_SE((u_int)vector_page);
4275 cpu_cpwait();
4276 *npm->pm_pl1vec = npm->pm_l1vec;
4277 PTE_SYNC(npm->pm_pl1vec);
4278 }
4279
4280 cpu_domains(ndacr);
4281
4282 if (npm == pmap_kernel() || npm == rpm) {
4283 /*
4284 * Switching to a kernel thread, or back to the
4285 * same user vmspace as before... Simply update
4286 * the TTB (no TLB flush required)
4287 */
4288 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4289 cpu_cpwait();
4290 } else {
4291 /*
4292 * Otherwise, update TTB and flush TLB
4293 */
4294 cpu_context_switch(npm->pm_l1->l1_physaddr);
4295 if (rpm != NULL)
4296 rpm->pm_cstate.cs_tlb = 0;
4297 }
4298
4299 restore_interrupts(oldirqstate);
4300
4301 block_userspace_access = 0;
4302
4303 all_done:
4304 /*
4305 * The new pmap is resident. Make sure it's marked
4306 * as resident in the cache/TLB.
4307 */
4308 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4309 if (npm != pmap_kernel())
4310 pmap_recent_user = npm;
4311
4312 /* The old pmap is not longer active */
4313 if (opm != NULL)
4314 opm->pm_activated = false;
4315
4316 /* But the new one is */
4317 npm->pm_activated = true;
4318 }
4319
4320 void
4321 pmap_deactivate(struct lwp *l)
4322 {
4323
4324 /*
4325 * If the process is exiting, make sure pmap_activate() does
4326 * a full MMU context-switch and cache flush, which we might
4327 * otherwise skip. See PR port-arm/38950.
4328 */
4329 if (l->l_proc->p_sflag & PS_WEXIT)
4330 pmap_previous_active_lwp = NULL;
4331
4332 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4333 }
4334
4335 void
4336 pmap_update(pmap_t pm)
4337 {
4338
4339 if (pm->pm_remove_all) {
4340 /*
4341 * Finish up the pmap_remove_all() optimisation by flushing
4342 * the TLB.
4343 */
4344 pmap_tlb_flushID(pm);
4345 pm->pm_remove_all = false;
4346 }
4347
4348 if (pmap_is_current(pm)) {
4349 /*
4350 * If we're dealing with a current userland pmap, move its L1
4351 * to the end of the LRU.
4352 */
4353 if (pm != pmap_kernel())
4354 pmap_use_l1(pm);
4355
4356 /*
4357 * We can assume we're done with frobbing the cache/tlb for
4358 * now. Make sure any future pmap ops don't skip cache/tlb
4359 * flushes.
4360 */
4361 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4362 }
4363
4364 PMAPCOUNT(updates);
4365
4366 /*
4367 * make sure TLB/cache operations have completed.
4368 */
4369 cpu_cpwait();
4370 }
4371
4372 void
4373 pmap_remove_all(pmap_t pm)
4374 {
4375
4376 /*
4377 * The vmspace described by this pmap is about to be torn down.
4378 * Until pmap_update() is called, UVM will only make calls
4379 * to pmap_remove(). We can make life much simpler by flushing
4380 * the cache now, and deferring TLB invalidation to pmap_update().
4381 */
4382 #ifdef PMAP_CACHE_VIVT
4383 pmap_idcache_wbinv_all(pm);
4384 #endif
4385 pm->pm_remove_all = true;
4386 }
4387
4388 /*
4389 * Retire the given physical map from service.
4390 * Should only be called if the map contains no valid mappings.
4391 */
4392 void
4393 pmap_destroy(pmap_t pm)
4394 {
4395 u_int count;
4396
4397 if (pm == NULL)
4398 return;
4399
4400 if (pm->pm_remove_all) {
4401 pmap_tlb_flushID(pm);
4402 pm->pm_remove_all = false;
4403 }
4404
4405 /*
4406 * Drop reference count
4407 */
4408 mutex_enter(pm->pm_lock);
4409 count = --pm->pm_obj.uo_refs;
4410 mutex_exit(pm->pm_lock);
4411 if (count > 0) {
4412 if (pmap_is_current(pm)) {
4413 if (pm != pmap_kernel())
4414 pmap_use_l1(pm);
4415 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4416 }
4417 return;
4418 }
4419
4420 /*
4421 * reference count is zero, free pmap resources and then free pmap.
4422 */
4423
4424 if (vector_page < KERNEL_BASE) {
4425 KDASSERT(!pmap_is_current(pm));
4426
4427 /* Remove the vector page mapping */
4428 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4429 pmap_update(pm);
4430 }
4431
4432 LIST_REMOVE(pm, pm_list);
4433
4434 pmap_free_l1(pm);
4435
4436 if (pmap_recent_user == pm)
4437 pmap_recent_user = NULL;
4438
4439 uvm_obj_destroy(&pm->pm_obj, false);
4440 mutex_destroy(&pm->pm_obj_lock);
4441 pool_cache_put(&pmap_cache, pm);
4442 }
4443
4444
4445 /*
4446 * void pmap_reference(pmap_t pm)
4447 *
4448 * Add a reference to the specified pmap.
4449 */
4450 void
4451 pmap_reference(pmap_t pm)
4452 {
4453
4454 if (pm == NULL)
4455 return;
4456
4457 pmap_use_l1(pm);
4458
4459 mutex_enter(pm->pm_lock);
4460 pm->pm_obj.uo_refs++;
4461 mutex_exit(pm->pm_lock);
4462 }
4463
4464 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4465
4466 static struct evcnt pmap_prefer_nochange_ev =
4467 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4468 static struct evcnt pmap_prefer_change_ev =
4469 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4470
4471 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4472 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4473
4474 void
4475 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4476 {
4477 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4478 vaddr_t va = *vap;
4479 vaddr_t diff = (hint - va) & mask;
4480 if (diff == 0) {
4481 pmap_prefer_nochange_ev.ev_count++;
4482 } else {
4483 pmap_prefer_change_ev.ev_count++;
4484 if (__predict_false(td))
4485 va -= mask + 1;
4486 *vap = va + diff;
4487 }
4488 }
4489 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4490
4491 /*
4492 * pmap_zero_page()
4493 *
4494 * Zero a given physical page by mapping it at a page hook point.
4495 * In doing the zero page op, the page we zero is mapped cachable, as with
4496 * StrongARM accesses to non-cached pages are non-burst making writing
4497 * _any_ bulk data very slow.
4498 */
4499 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4500 void
4501 pmap_zero_page_generic(paddr_t phys)
4502 {
4503 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4504 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4505 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4506 #endif
4507 #if defined(PMAP_CACHE_VIPT)
4508 /* Choose the last page color it had, if any */
4509 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4510 #else
4511 const vsize_t va_offset = 0;
4512 #endif
4513 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4514 /*
4515 * Is this page mapped at its natural color?
4516 * If we have all of memory mapped, then just convert PA to VA.
4517 */
4518 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4519 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4520 #else
4521 const bool okcolor = false;
4522 const vaddr_t vdstp = cdstp + va_offset;
4523 #endif
4524 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4525
4526
4527 #ifdef DEBUG
4528 if (!SLIST_EMPTY(&md->pvh_list))
4529 panic("pmap_zero_page: page has mappings");
4530 #endif
4531
4532 KDASSERT((phys & PGOFSET) == 0);
4533
4534 if (!okcolor) {
4535 /*
4536 * Hook in the page, zero it, and purge the cache for that
4537 * zeroed page. Invalidate the TLB as needed.
4538 */
4539 *ptep = L2_S_PROTO | phys |
4540 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4541 PTE_SYNC(ptep);
4542 cpu_tlb_flushD_SE(cdstp + va_offset);
4543 cpu_cpwait();
4544 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4545 /*
4546 * If we are direct-mapped and our color isn't ok, then before
4547 * we bzero the page invalidate its contents from the cache and
4548 * reset the color to its natural color.
4549 */
4550 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4551 md->pvh_attrs &= ~arm_cache_prefer_mask;
4552 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4553 #endif
4554 }
4555 bzero_page(vdstp);
4556 if (!okcolor) {
4557 /*
4558 * Unmap the page.
4559 */
4560 *ptep = 0;
4561 PTE_SYNC(ptep);
4562 cpu_tlb_flushD_SE(cdstp + va_offset);
4563 #ifdef PMAP_CACHE_VIVT
4564 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4565 #endif
4566 }
4567 #ifdef PMAP_CACHE_VIPT
4568 /*
4569 * This page is now cache resident so it now has a page color.
4570 * Any contents have been obliterated so clear the EXEC flag.
4571 */
4572 if (!pmap_is_page_colored_p(md)) {
4573 PMAPCOUNT(vac_color_new);
4574 md->pvh_attrs |= PVF_COLORED;
4575 }
4576 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4577 md->pvh_attrs &= ~PVF_EXEC;
4578 PMAPCOUNT(exec_discarded_zero);
4579 }
4580 md->pvh_attrs |= PVF_DIRTY;
4581 #endif
4582 }
4583 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4584
4585 #if ARM_MMU_XSCALE == 1
4586 void
4587 pmap_zero_page_xscale(paddr_t phys)
4588 {
4589 #ifdef DEBUG
4590 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4591 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4592
4593 if (!SLIST_EMPTY(&md->pvh_list))
4594 panic("pmap_zero_page: page has mappings");
4595 #endif
4596
4597 KDASSERT((phys & PGOFSET) == 0);
4598
4599 /*
4600 * Hook in the page, zero it, and purge the cache for that
4601 * zeroed page. Invalidate the TLB as needed.
4602 */
4603 *cdst_pte = L2_S_PROTO | phys |
4604 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4605 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4606 PTE_SYNC(cdst_pte);
4607 cpu_tlb_flushD_SE(cdstp);
4608 cpu_cpwait();
4609 bzero_page(cdstp);
4610 xscale_cache_clean_minidata();
4611 }
4612 #endif /* ARM_MMU_XSCALE == 1 */
4613
4614 /* pmap_pageidlezero()
4615 *
4616 * The same as above, except that we assume that the page is not
4617 * mapped. This means we never have to flush the cache first. Called
4618 * from the idle loop.
4619 */
4620 bool
4621 pmap_pageidlezero(paddr_t phys)
4622 {
4623 unsigned int i;
4624 int *ptr;
4625 bool rv = true;
4626 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4627 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4628 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4629 #endif
4630 #ifdef PMAP_CACHE_VIPT
4631 /* Choose the last page color it had, if any */
4632 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4633 #else
4634 const vsize_t va_offset = 0;
4635 #endif
4636 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4637
4638
4639 #ifdef DEBUG
4640 if (!SLIST_EMPTY(&md->pvh_list))
4641 panic("pmap_pageidlezero: page has mappings");
4642 #endif
4643
4644 KDASSERT((phys & PGOFSET) == 0);
4645
4646 /*
4647 * Hook in the page, zero it, and purge the cache for that
4648 * zeroed page. Invalidate the TLB as needed.
4649 */
4650 *ptep = L2_S_PROTO | phys |
4651 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4652 PTE_SYNC(ptep);
4653 cpu_tlb_flushD_SE(cdstp + va_offset);
4654 cpu_cpwait();
4655
4656 for (i = 0, ptr = (int *)(cdstp + va_offset);
4657 i < (PAGE_SIZE / sizeof(int)); i++) {
4658 if (sched_curcpu_runnable_p() != 0) {
4659 /*
4660 * A process has become ready. Abort now,
4661 * so we don't keep it waiting while we
4662 * do slow memory access to finish this
4663 * page.
4664 */
4665 rv = false;
4666 break;
4667 }
4668 *ptr++ = 0;
4669 }
4670
4671 #ifdef PMAP_CACHE_VIVT
4672 if (rv)
4673 /*
4674 * if we aborted we'll rezero this page again later so don't
4675 * purge it unless we finished it
4676 */
4677 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4678 #elif defined(PMAP_CACHE_VIPT)
4679 /*
4680 * This page is now cache resident so it now has a page color.
4681 * Any contents have been obliterated so clear the EXEC flag.
4682 */
4683 if (!pmap_is_page_colored_p(md)) {
4684 PMAPCOUNT(vac_color_new);
4685 md->pvh_attrs |= PVF_COLORED;
4686 }
4687 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4688 md->pvh_attrs &= ~PVF_EXEC;
4689 PMAPCOUNT(exec_discarded_zero);
4690 }
4691 #endif
4692 /*
4693 * Unmap the page.
4694 */
4695 *ptep = 0;
4696 PTE_SYNC(ptep);
4697 cpu_tlb_flushD_SE(cdstp + va_offset);
4698
4699 return (rv);
4700 }
4701
4702 /*
4703 * pmap_copy_page()
4704 *
4705 * Copy one physical page into another, by mapping the pages into
4706 * hook points. The same comment regarding cachability as in
4707 * pmap_zero_page also applies here.
4708 */
4709 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4710 void
4711 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4712 {
4713 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4714 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4715 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4716 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4717 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4718 #endif
4719 #ifdef PMAP_CACHE_VIPT
4720 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4721 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4722 #else
4723 const vsize_t src_va_offset = 0;
4724 const vsize_t dst_va_offset = 0;
4725 #endif
4726 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4727 /*
4728 * Is this page mapped at its natural color?
4729 * If we have all of memory mapped, then just convert PA to VA.
4730 */
4731 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4732 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4733 const vaddr_t vsrcp = src_okcolor
4734 ? KERNEL_BASE + (src - physical_start)
4735 : csrcp + src_va_offset;
4736 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4737 #else
4738 const bool src_okcolor = false;
4739 const bool dst_okcolor = false;
4740 const vaddr_t vsrcp = csrcp + src_va_offset;
4741 const vaddr_t vdstp = cdstp + dst_va_offset;
4742 #endif
4743 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4744 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4745
4746 #ifdef DEBUG
4747 if (!SLIST_EMPTY(&dst_md->pvh_list))
4748 panic("pmap_copy_page: dst page has mappings");
4749 #endif
4750
4751 #ifdef PMAP_CACHE_VIPT
4752 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4753 #endif
4754 KDASSERT((src & PGOFSET) == 0);
4755 KDASSERT((dst & PGOFSET) == 0);
4756
4757 /*
4758 * Clean the source page. Hold the source page's lock for
4759 * the duration of the copy so that no other mappings can
4760 * be created while we have a potentially aliased mapping.
4761 */
4762 #ifdef MULTIPROCESSOR
4763 KASSERT(uvm_page_locked_p(src_pg));
4764 #endif
4765 #ifdef PMAP_CACHE_VIVT
4766 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4767 #endif
4768
4769 /*
4770 * Map the pages into the page hook points, copy them, and purge
4771 * the cache for the appropriate page. Invalidate the TLB
4772 * as required.
4773 */
4774 if (!src_okcolor) {
4775 *src_ptep = L2_S_PROTO
4776 | src
4777 #ifdef PMAP_CACHE_VIPT
4778 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4779 #endif
4780 #ifdef PMAP_CACHE_VIVT
4781 | pte_l2_s_cache_mode
4782 #endif
4783 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4784 PTE_SYNC(src_ptep);
4785 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4786 cpu_cpwait();
4787 }
4788 if (!dst_okcolor) {
4789 *dst_ptep = L2_S_PROTO | dst |
4790 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4791 PTE_SYNC(dst_ptep);
4792 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4793 cpu_cpwait();
4794 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4795 /*
4796 * If we are direct-mapped and our color isn't ok, then before
4797 * we bcopy to the new page invalidate its contents from the
4798 * cache and reset its color to its natural color.
4799 */
4800 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4801 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4802 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4803 #endif
4804 }
4805 bcopy_page(vsrcp, vdstp);
4806 #ifdef PMAP_CACHE_VIVT
4807 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4808 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4809 #endif
4810 /*
4811 * Unmap the pages.
4812 */
4813 if (!src_okcolor) {
4814 *src_ptep = 0;
4815 PTE_SYNC(src_ptep);
4816 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4817 cpu_cpwait();
4818 }
4819 if (!dst_okcolor) {
4820 *dst_ptep = 0;
4821 PTE_SYNC(dst_ptep);
4822 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4823 cpu_cpwait();
4824 }
4825 #ifdef PMAP_CACHE_VIPT
4826 /*
4827 * Now that the destination page is in the cache, mark it as colored.
4828 * If this was an exec page, discard it.
4829 */
4830 if (!pmap_is_page_colored_p(dst_md)) {
4831 PMAPCOUNT(vac_color_new);
4832 dst_md->pvh_attrs |= PVF_COLORED;
4833 }
4834 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4835 dst_md->pvh_attrs &= ~PVF_EXEC;
4836 PMAPCOUNT(exec_discarded_copy);
4837 }
4838 dst_md->pvh_attrs |= PVF_DIRTY;
4839 #endif
4840 }
4841 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4842
4843 #if ARM_MMU_XSCALE == 1
4844 void
4845 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4846 {
4847 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4848 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4849 #ifdef DEBUG
4850 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4851
4852 if (!SLIST_EMPTY(&dst_md->pvh_list))
4853 panic("pmap_copy_page: dst page has mappings");
4854 #endif
4855
4856 KDASSERT((src & PGOFSET) == 0);
4857 KDASSERT((dst & PGOFSET) == 0);
4858
4859 /*
4860 * Clean the source page. Hold the source page's lock for
4861 * the duration of the copy so that no other mappings can
4862 * be created while we have a potentially aliased mapping.
4863 */
4864 #ifdef MULTIPROCESSOR
4865 KASSERT(uvm_page_locked_p(src_pg));
4866 #endif
4867 #ifdef PMAP_CACHE_VIVT
4868 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4869 #endif
4870
4871 /*
4872 * Map the pages into the page hook points, copy them, and purge
4873 * the cache for the appropriate page. Invalidate the TLB
4874 * as required.
4875 */
4876 *csrc_pte = L2_S_PROTO | src |
4877 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4878 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4879 PTE_SYNC(csrc_pte);
4880 *cdst_pte = L2_S_PROTO | dst |
4881 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4882 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4883 PTE_SYNC(cdst_pte);
4884 cpu_tlb_flushD_SE(csrcp);
4885 cpu_tlb_flushD_SE(cdstp);
4886 cpu_cpwait();
4887 bcopy_page(csrcp, cdstp);
4888 xscale_cache_clean_minidata();
4889 }
4890 #endif /* ARM_MMU_XSCALE == 1 */
4891
4892 /*
4893 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4894 *
4895 * Return the start and end addresses of the kernel's virtual space.
4896 * These values are setup in pmap_bootstrap and are updated as pages
4897 * are allocated.
4898 */
4899 void
4900 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4901 {
4902 *start = virtual_avail;
4903 *end = virtual_end;
4904 }
4905
4906 /*
4907 * Helper function for pmap_grow_l2_bucket()
4908 */
4909 static inline int
4910 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4911 {
4912 struct l2_bucket *l2b;
4913 pt_entry_t *ptep;
4914 paddr_t pa;
4915
4916 if (uvm.page_init_done == false) {
4917 #ifdef PMAP_STEAL_MEMORY
4918 pv_addr_t pv;
4919 pmap_boot_pagealloc(PAGE_SIZE,
4920 #ifdef PMAP_CACHE_VIPT
4921 arm_cache_prefer_mask,
4922 va & arm_cache_prefer_mask,
4923 #else
4924 0, 0,
4925 #endif
4926 &pv);
4927 pa = pv.pv_pa;
4928 #else
4929 if (uvm_page_physget(&pa) == false)
4930 return (1);
4931 #endif /* PMAP_STEAL_MEMORY */
4932 } else {
4933 struct vm_page *pg;
4934 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4935 if (pg == NULL)
4936 return (1);
4937 pa = VM_PAGE_TO_PHYS(pg);
4938 #ifdef PMAP_CACHE_VIPT
4939 #ifdef DIAGNOSTIC
4940 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4941 #endif
4942 /*
4943 * This new page must not have any mappings. Enter it via
4944 * pmap_kenter_pa and let that routine do the hard work.
4945 */
4946 KASSERT(SLIST_EMPTY(&md->pvh_list));
4947 pmap_kenter_pa(va, pa,
4948 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4949 #endif
4950 }
4951
4952 if (pap)
4953 *pap = pa;
4954
4955 PMAPCOUNT(pt_mappings);
4956 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4957 KDASSERT(l2b != NULL);
4958
4959 ptep = &l2b->l2b_kva[l2pte_index(va)];
4960 *ptep = L2_S_PROTO | pa | cache_mode |
4961 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4962 PTE_SYNC(ptep);
4963 memset((void *)va, 0, PAGE_SIZE);
4964 return (0);
4965 }
4966
4967 /*
4968 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4969 * used by pmap_growkernel().
4970 */
4971 static inline struct l2_bucket *
4972 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4973 {
4974 struct l2_dtable *l2;
4975 struct l2_bucket *l2b;
4976 u_short l1idx;
4977 vaddr_t nva;
4978
4979 l1idx = L1_IDX(va);
4980
4981 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4982 /*
4983 * No mapping at this address, as there is
4984 * no entry in the L1 table.
4985 * Need to allocate a new l2_dtable.
4986 */
4987 nva = pmap_kernel_l2dtable_kva;
4988 if ((nva & PGOFSET) == 0) {
4989 /*
4990 * Need to allocate a backing page
4991 */
4992 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4993 return (NULL);
4994 }
4995
4996 l2 = (struct l2_dtable *)nva;
4997 nva += sizeof(struct l2_dtable);
4998
4999 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5000 /*
5001 * The new l2_dtable straddles a page boundary.
5002 * Map in another page to cover it.
5003 */
5004 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
5005 return (NULL);
5006 }
5007
5008 pmap_kernel_l2dtable_kva = nva;
5009
5010 /*
5011 * Link it into the parent pmap
5012 */
5013 pm->pm_l2[L2_IDX(l1idx)] = l2;
5014 }
5015
5016 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5017
5018 /*
5019 * Fetch pointer to the L2 page table associated with the address.
5020 */
5021 if (l2b->l2b_kva == NULL) {
5022 pt_entry_t *ptep;
5023
5024 /*
5025 * No L2 page table has been allocated. Chances are, this
5026 * is because we just allocated the l2_dtable, above.
5027 */
5028 nva = pmap_kernel_l2ptp_kva;
5029 ptep = (pt_entry_t *)nva;
5030 if ((nva & PGOFSET) == 0) {
5031 /*
5032 * Need to allocate a backing page
5033 */
5034 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
5035 &pmap_kernel_l2ptp_phys))
5036 return (NULL);
5037 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5038 }
5039
5040 l2->l2_occupancy++;
5041 l2b->l2b_kva = ptep;
5042 l2b->l2b_l1idx = l1idx;
5043 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
5044
5045 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5046 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5047 }
5048
5049 return (l2b);
5050 }
5051
5052 vaddr_t
5053 pmap_growkernel(vaddr_t maxkvaddr)
5054 {
5055 pmap_t kpm = pmap_kernel();
5056 struct l1_ttable *l1;
5057 struct l2_bucket *l2b;
5058 pd_entry_t *pl1pd;
5059 int s;
5060
5061 if (maxkvaddr <= pmap_curmaxkvaddr)
5062 goto out; /* we are OK */
5063
5064 NPDEBUG(PDB_GROWKERN,
5065 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5066 pmap_curmaxkvaddr, maxkvaddr));
5067
5068 KDASSERT(maxkvaddr <= virtual_end);
5069
5070 /*
5071 * whoops! we need to add kernel PTPs
5072 */
5073
5074 s = splhigh(); /* to be safe */
5075 mutex_enter(kpm->pm_lock);
5076
5077 /* Map 1MB at a time */
5078 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5079
5080 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5081 KDASSERT(l2b != NULL);
5082
5083 /* Distribute new L1 entry to all other L1s */
5084 SLIST_FOREACH(l1, &l1_list, l1_link) {
5085 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5086 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5087 L1_C_PROTO;
5088 PTE_SYNC(pl1pd);
5089 }
5090 }
5091
5092 /*
5093 * flush out the cache, expensive but growkernel will happen so
5094 * rarely
5095 */
5096 cpu_dcache_wbinv_all();
5097 cpu_tlb_flushD();
5098 cpu_cpwait();
5099
5100 mutex_exit(kpm->pm_lock);
5101 splx(s);
5102
5103 out:
5104 return (pmap_curmaxkvaddr);
5105 }
5106
5107 /************************ Utility routines ****************************/
5108
5109 /*
5110 * vector_page_setprot:
5111 *
5112 * Manipulate the protection of the vector page.
5113 */
5114 void
5115 vector_page_setprot(int prot)
5116 {
5117 struct l2_bucket *l2b;
5118 pt_entry_t *ptep;
5119
5120 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5121 KDASSERT(l2b != NULL);
5122
5123 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5124
5125 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5126 PTE_SYNC(ptep);
5127 cpu_tlb_flushD_SE(vector_page);
5128 cpu_cpwait();
5129 }
5130
5131 /*
5132 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5133 * Returns true if the mapping exists, else false.
5134 *
5135 * NOTE: This function is only used by a couple of arm-specific modules.
5136 * It is not safe to take any pmap locks here, since we could be right
5137 * in the middle of debugging the pmap anyway...
5138 *
5139 * It is possible for this routine to return false even though a valid
5140 * mapping does exist. This is because we don't lock, so the metadata
5141 * state may be inconsistent.
5142 *
5143 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5144 * a "section" mapping.
5145 */
5146 bool
5147 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5148 {
5149 struct l2_dtable *l2;
5150 pd_entry_t *pl1pd, l1pd;
5151 pt_entry_t *ptep;
5152 u_short l1idx;
5153
5154 if (pm->pm_l1 == NULL)
5155 return false;
5156
5157 l1idx = L1_IDX(va);
5158 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
5159 l1pd = *pl1pd;
5160
5161 if (l1pte_section_p(l1pd)) {
5162 *ptp = NULL;
5163 return true;
5164 }
5165
5166 if (pm->pm_l2 == NULL)
5167 return false;
5168
5169 l2 = pm->pm_l2[L2_IDX(l1idx)];
5170
5171 if (l2 == NULL ||
5172 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5173 return false;
5174 }
5175
5176 *ptp = &ptep[l2pte_index(va)];
5177 return true;
5178 }
5179
5180 bool
5181 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5182 {
5183 u_short l1idx;
5184
5185 if (pm->pm_l1 == NULL)
5186 return false;
5187
5188 l1idx = L1_IDX(va);
5189 *pdp = &pm->pm_l1->l1_kva[l1idx];
5190
5191 return true;
5192 }
5193
5194 /************************ Bootstrapping routines ****************************/
5195
5196 static void
5197 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5198 {
5199 int i;
5200
5201 l1->l1_kva = l1pt;
5202 l1->l1_domain_use_count = 0;
5203 l1->l1_domain_first = 0;
5204
5205 for (i = 0; i < PMAP_DOMAINS; i++)
5206 l1->l1_domain_free[i] = i + 1;
5207
5208 /*
5209 * Copy the kernel's L1 entries to each new L1.
5210 */
5211 if (pmap_initialized)
5212 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5213
5214 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5215 &l1->l1_physaddr) == false)
5216 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5217
5218 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5219 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5220 }
5221
5222 /*
5223 * pmap_bootstrap() is called from the board-specific initarm() routine
5224 * once the kernel L1/L2 descriptors tables have been set up.
5225 *
5226 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5227 * spread over a number of disparate files/functions.
5228 *
5229 * We are passed the following parameters
5230 * - kernel_l1pt
5231 * This is a pointer to the base of the kernel's L1 translation table.
5232 * - vstart
5233 * 1MB-aligned start of managed kernel virtual memory.
5234 * - vend
5235 * 1MB-aligned end of managed kernel virtual memory.
5236 *
5237 * We use the first parameter to build the metadata (struct l1_ttable and
5238 * struct l2_dtable) necessary to track kernel mappings.
5239 */
5240 #define PMAP_STATIC_L2_SIZE 16
5241 void
5242 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5243 {
5244 static struct l1_ttable static_l1;
5245 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5246 struct l1_ttable *l1 = &static_l1;
5247 struct l2_dtable *l2;
5248 struct l2_bucket *l2b;
5249 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5250 pmap_t pm = pmap_kernel();
5251 pd_entry_t pde;
5252 pt_entry_t *ptep;
5253 paddr_t pa;
5254 vaddr_t va;
5255 vsize_t size;
5256 int nptes, l1idx, l2idx, l2next = 0;
5257
5258 /*
5259 * Initialise the kernel pmap object
5260 */
5261 pm->pm_l1 = l1;
5262 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5263 pm->pm_activated = true;
5264 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5265
5266 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5267 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5268 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5269
5270 /*
5271 * Scan the L1 translation table created by initarm() and create
5272 * the required metadata for all valid mappings found in it.
5273 */
5274 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5275 pde = l1pt[l1idx];
5276
5277 /*
5278 * We're only interested in Coarse mappings.
5279 * pmap_extract() can deal with section mappings without
5280 * recourse to checking L2 metadata.
5281 */
5282 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5283 continue;
5284
5285 /*
5286 * Lookup the KVA of this L2 descriptor table
5287 */
5288 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5289 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5290 if (ptep == NULL) {
5291 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5292 (u_int)l1idx << L1_S_SHIFT, pa);
5293 }
5294
5295 /*
5296 * Fetch the associated L2 metadata structure.
5297 * Allocate a new one if necessary.
5298 */
5299 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5300 if (l2next == PMAP_STATIC_L2_SIZE)
5301 panic("pmap_bootstrap: out of static L2s");
5302 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5303 }
5304
5305 /*
5306 * One more L1 slot tracked...
5307 */
5308 l2->l2_occupancy++;
5309
5310 /*
5311 * Fill in the details of the L2 descriptor in the
5312 * appropriate bucket.
5313 */
5314 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5315 l2b->l2b_kva = ptep;
5316 l2b->l2b_phys = pa;
5317 l2b->l2b_l1idx = l1idx;
5318
5319 /*
5320 * Establish an initial occupancy count for this descriptor
5321 */
5322 for (l2idx = 0;
5323 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5324 l2idx++) {
5325 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5326 l2b->l2b_occupancy++;
5327 }
5328 }
5329
5330 /*
5331 * Make sure the descriptor itself has the correct cache mode.
5332 * If not, fix it, but whine about the problem. Port-meisters
5333 * should consider this a clue to fix up their initarm()
5334 * function. :)
5335 */
5336 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5337 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5338 "L2 pte @ %p\n", ptep);
5339 }
5340 }
5341
5342 /*
5343 * Ensure the primary (kernel) L1 has the correct cache mode for
5344 * a page table. Bitch if it is not correctly set.
5345 */
5346 for (va = (vaddr_t)l1pt;
5347 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5348 if (pmap_set_pt_cache_mode(l1pt, va))
5349 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5350 "primary L1 @ 0x%lx\n", va);
5351 }
5352
5353 cpu_dcache_wbinv_all();
5354 cpu_tlb_flushID();
5355 cpu_cpwait();
5356
5357 /*
5358 * now we allocate the "special" VAs which are used for tmp mappings
5359 * by the pmap (and other modules). we allocate the VAs by advancing
5360 * virtual_avail (note that there are no pages mapped at these VAs).
5361 *
5362 * Managed KVM space start from wherever initarm() tells us.
5363 */
5364 virtual_avail = vstart;
5365 virtual_end = vend;
5366
5367 #ifdef PMAP_CACHE_VIPT
5368 /*
5369 * If we have a VIPT cache, we need one page/pte per possible alias
5370 * page so we won't violate cache aliasing rules.
5371 */
5372 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5373 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5374 #else
5375 nptes = 1;
5376 #endif
5377 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5378 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5379 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5380 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5381 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5382 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5383 (void *)&msgbufaddr, NULL);
5384
5385 /*
5386 * Allocate a range of kernel virtual address space to be used
5387 * for L2 descriptor tables and metadata allocation in
5388 * pmap_growkernel().
5389 */
5390 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5391 pmap_alloc_specials(&virtual_avail,
5392 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5393 &pmap_kernel_l2ptp_kva, NULL);
5394
5395 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5396 pmap_alloc_specials(&virtual_avail,
5397 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5398 &pmap_kernel_l2dtable_kva, NULL);
5399
5400 /*
5401 * init the static-global locks and global pmap list.
5402 */
5403 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5404
5405 /*
5406 * We can now initialise the first L1's metadata.
5407 */
5408 SLIST_INIT(&l1_list);
5409 TAILQ_INIT(&l1_lru_list);
5410 pmap_init_l1(l1, l1pt);
5411
5412 /* Set up vector page L1 details, if necessary */
5413 if (vector_page < KERNEL_BASE) {
5414 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5415 l2b = pmap_get_l2_bucket(pm, vector_page);
5416 KDASSERT(l2b != NULL);
5417 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5418 L1_C_DOM(pm->pm_domain);
5419 } else
5420 pm->pm_pl1vec = NULL;
5421
5422 /*
5423 * Initialize the pmap cache
5424 */
5425 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5426 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5427 LIST_INIT(&pmap_pmaps);
5428 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5429
5430 /*
5431 * Initialize the pv pool.
5432 */
5433 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5434 &pmap_bootstrap_pv_allocator, IPL_NONE);
5435
5436 /*
5437 * Initialize the L2 dtable pool and cache.
5438 */
5439 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5440 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5441
5442 /*
5443 * Initialise the L2 descriptor table pool and cache
5444 */
5445 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5446 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5447 pmap_l2ptp_ctor, NULL, NULL);
5448
5449 cpu_dcache_wbinv_all();
5450 }
5451
5452 static int
5453 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5454 {
5455 pd_entry_t *pdep, pde;
5456 pt_entry_t *ptep, pte;
5457 vaddr_t pa;
5458 int rv = 0;
5459
5460 /*
5461 * Make sure the descriptor itself has the correct cache mode
5462 */
5463 pdep = &kl1[L1_IDX(va)];
5464 pde = *pdep;
5465
5466 if (l1pte_section_p(pde)) {
5467 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5468 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5469 *pdep = (pde & ~L1_S_CACHE_MASK) |
5470 pte_l1_s_cache_mode_pt;
5471 PTE_SYNC(pdep);
5472 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5473 rv = 1;
5474 }
5475 } else {
5476 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5477 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5478 if (ptep == NULL)
5479 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5480
5481 ptep = &ptep[l2pte_index(va)];
5482 pte = *ptep;
5483 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5484 *ptep = (pte & ~L2_S_CACHE_MASK) |
5485 pte_l2_s_cache_mode_pt;
5486 PTE_SYNC(ptep);
5487 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5488 rv = 1;
5489 }
5490 }
5491
5492 return (rv);
5493 }
5494
5495 static void
5496 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5497 {
5498 vaddr_t va = *availp;
5499 struct l2_bucket *l2b;
5500
5501 if (ptep) {
5502 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5503 if (l2b == NULL)
5504 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5505
5506 if (ptep)
5507 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5508 }
5509
5510 *vap = va;
5511 *availp = va + (PAGE_SIZE * pages);
5512 }
5513
5514 void
5515 pmap_init(void)
5516 {
5517
5518 /*
5519 * Set the available memory vars - These do not map to real memory
5520 * addresses and cannot as the physical memory is fragmented.
5521 * They are used by ps for %mem calculations.
5522 * One could argue whether this should be the entire memory or just
5523 * the memory that is useable in a user process.
5524 */
5525 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5526 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5527
5528 /*
5529 * Now we need to free enough pv_entry structures to allow us to get
5530 * the kmem_map/kmem_object allocated and inited (done after this
5531 * function is finished). to do this we allocate one bootstrap page out
5532 * of kernel_map and use it to provide an initial pool of pv_entry
5533 * structures. we never free this page.
5534 */
5535 pool_setlowat(&pmap_pv_pool,
5536 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5537
5538 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5539 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5540 UVM_KMF_WIRED|UVM_KMF_ZERO);
5541
5542 pmap_initialized = true;
5543 }
5544
5545 static vaddr_t last_bootstrap_page = 0;
5546 static void *free_bootstrap_pages = NULL;
5547
5548 static void *
5549 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5550 {
5551 extern void *pool_page_alloc(struct pool *, int);
5552 vaddr_t new_page;
5553 void *rv;
5554
5555 if (pmap_initialized)
5556 return (pool_page_alloc(pp, flags));
5557
5558 if (free_bootstrap_pages) {
5559 rv = free_bootstrap_pages;
5560 free_bootstrap_pages = *((void **)rv);
5561 return (rv);
5562 }
5563
5564 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5565 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5566
5567 KASSERT(new_page > last_bootstrap_page);
5568 last_bootstrap_page = new_page;
5569 return ((void *)new_page);
5570 }
5571
5572 static void
5573 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5574 {
5575 extern void pool_page_free(struct pool *, void *);
5576
5577 if ((vaddr_t)v <= last_bootstrap_page) {
5578 *((void **)v) = free_bootstrap_pages;
5579 free_bootstrap_pages = v;
5580 return;
5581 }
5582
5583 if (pmap_initialized) {
5584 pool_page_free(pp, v);
5585 return;
5586 }
5587 }
5588
5589 /*
5590 * pmap_postinit()
5591 *
5592 * This routine is called after the vm and kmem subsystems have been
5593 * initialised. This allows the pmap code to perform any initialisation
5594 * that can only be done one the memory allocation is in place.
5595 */
5596 void
5597 pmap_postinit(void)
5598 {
5599 extern paddr_t physical_start, physical_end;
5600 struct l2_bucket *l2b;
5601 struct l1_ttable *l1;
5602 struct pglist plist;
5603 struct vm_page *m;
5604 pd_entry_t *pl1pt;
5605 pt_entry_t *ptep, pte;
5606 vaddr_t va, eva;
5607 u_int loop, needed;
5608 int error;
5609
5610 pool_cache_setlowat(&pmap_l2ptp_cache,
5611 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5612 pool_cache_setlowat(&pmap_l2dtable_cache,
5613 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5614
5615 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5616 needed -= 1;
5617
5618 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5619
5620 for (loop = 0; loop < needed; loop++, l1++) {
5621 /* Allocate a L1 page table */
5622 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5623 if (va == 0)
5624 panic("Cannot allocate L1 KVM");
5625
5626 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5627 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5628 if (error)
5629 panic("Cannot allocate L1 physical pages");
5630
5631 m = TAILQ_FIRST(&plist);
5632 eva = va + L1_TABLE_SIZE;
5633 pl1pt = (pd_entry_t *)va;
5634
5635 while (m && va < eva) {
5636 paddr_t pa = VM_PAGE_TO_PHYS(m);
5637
5638 pmap_kenter_pa(va, pa,
5639 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5640
5641 /*
5642 * Make sure the L1 descriptor table is mapped
5643 * with the cache-mode set to write-through.
5644 */
5645 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5646 KDASSERT(l2b != NULL);
5647 ptep = &l2b->l2b_kva[l2pte_index(va)];
5648 pte = *ptep;
5649 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5650 *ptep = pte;
5651 PTE_SYNC(ptep);
5652 cpu_tlb_flushD_SE(va);
5653
5654 va += PAGE_SIZE;
5655 m = TAILQ_NEXT(m, pageq.queue);
5656 }
5657
5658 #ifdef DIAGNOSTIC
5659 if (m)
5660 panic("pmap_alloc_l1pt: pglist not empty");
5661 #endif /* DIAGNOSTIC */
5662
5663 pmap_init_l1(l1, pl1pt);
5664 }
5665
5666 #ifdef DEBUG
5667 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5668 needed);
5669 #endif
5670 }
5671
5672 /*
5673 * Note that the following routines are used by board-specific initialisation
5674 * code to configure the initial kernel page tables.
5675 *
5676 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5677 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5678 * behaviour of the old pmap, and provides an easy migration path for
5679 * initial bring-up of the new pmap on existing ports. Fortunately,
5680 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5681 * will be deprecated.
5682 *
5683 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5684 * tables.
5685 */
5686
5687 /*
5688 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5689 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5690 * find them as necessary.
5691 *
5692 * Note that the data on this list MUST remain valid after initarm() returns,
5693 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5694 */
5695 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5696
5697 static vaddr_t
5698 kernel_pt_lookup(paddr_t pa)
5699 {
5700 pv_addr_t *pv;
5701
5702 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5703 #ifndef ARM32_NEW_VM_LAYOUT
5704 if (pv->pv_pa == (pa & ~PGOFSET))
5705 return (pv->pv_va | (pa & PGOFSET));
5706 #else
5707 if (pv->pv_pa == pa)
5708 return (pv->pv_va);
5709 #endif
5710 }
5711 return (0);
5712 }
5713
5714 /*
5715 * pmap_map_section:
5716 *
5717 * Create a single section mapping.
5718 */
5719 void
5720 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5721 {
5722 pd_entry_t *pde = (pd_entry_t *) l1pt;
5723 pd_entry_t fl;
5724
5725 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5726
5727 switch (cache) {
5728 case PTE_NOCACHE:
5729 default:
5730 fl = 0;
5731 break;
5732
5733 case PTE_CACHE:
5734 fl = pte_l1_s_cache_mode;
5735 break;
5736
5737 case PTE_PAGETABLE:
5738 fl = pte_l1_s_cache_mode_pt;
5739 break;
5740 }
5741
5742 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5743 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5744 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5745 }
5746
5747 /*
5748 * pmap_map_entry:
5749 *
5750 * Create a single page mapping.
5751 */
5752 void
5753 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5754 {
5755 pd_entry_t *pde = (pd_entry_t *) l1pt;
5756 pt_entry_t fl;
5757 pt_entry_t *pte;
5758
5759 KASSERT(((va | pa) & PGOFSET) == 0);
5760
5761 switch (cache) {
5762 case PTE_NOCACHE:
5763 default:
5764 fl = 0;
5765 break;
5766
5767 case PTE_CACHE:
5768 fl = pte_l2_s_cache_mode;
5769 break;
5770
5771 case PTE_PAGETABLE:
5772 fl = pte_l2_s_cache_mode_pt;
5773 break;
5774 }
5775
5776 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5777 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5778
5779 #ifndef ARM32_NEW_VM_LAYOUT
5780 pte = (pt_entry_t *)
5781 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5782 #else
5783 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5784 #endif
5785 if (pte == NULL)
5786 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5787
5788 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5789 #ifndef ARM32_NEW_VM_LAYOUT
5790 pte += (va >> PGSHIFT) & 0x3ff;
5791 #else
5792 pte += l2pte_index(va);
5793 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5794 #endif
5795 *pte = fl;
5796 PTE_SYNC(pte);
5797 }
5798
5799 /*
5800 * pmap_link_l2pt:
5801 *
5802 * Link the L2 page table specified by "l2pv" into the L1
5803 * page table at the slot for "va".
5804 */
5805 void
5806 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5807 {
5808 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5809 u_int slot = va >> L1_S_SHIFT;
5810
5811 #ifndef ARM32_NEW_VM_LAYOUT
5812 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5813 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5814 #endif
5815
5816 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5817
5818 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5819 #ifdef ARM32_NEW_VM_LAYOUT
5820 PTE_SYNC(&pde[slot]);
5821 #else
5822 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5823 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5824 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5825 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5826 #endif
5827
5828 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5829 }
5830
5831 /*
5832 * pmap_map_chunk:
5833 *
5834 * Map a chunk of memory using the most efficient mappings
5835 * possible (section, large page, small page) into the
5836 * provided L1 and L2 tables at the specified virtual address.
5837 */
5838 vsize_t
5839 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5840 int prot, int cache)
5841 {
5842 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5843 pt_entry_t *pte, f1, f2s, f2l;
5844 vsize_t resid;
5845 int i;
5846
5847 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5848
5849 if (l1pt == 0)
5850 panic("pmap_map_chunk: no L1 table provided");
5851
5852 #ifdef VERBOSE_INIT_ARM
5853 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5854 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5855 #endif
5856
5857 switch (cache) {
5858 case PTE_NOCACHE:
5859 default:
5860 f1 = 0;
5861 f2l = 0;
5862 f2s = 0;
5863 break;
5864
5865 case PTE_CACHE:
5866 f1 = pte_l1_s_cache_mode;
5867 f2l = pte_l2_l_cache_mode;
5868 f2s = pte_l2_s_cache_mode;
5869 break;
5870
5871 case PTE_PAGETABLE:
5872 f1 = pte_l1_s_cache_mode_pt;
5873 f2l = pte_l2_l_cache_mode_pt;
5874 f2s = pte_l2_s_cache_mode_pt;
5875 break;
5876 }
5877
5878 size = resid;
5879
5880 while (resid > 0) {
5881 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5882 /* See if we can use a supersection mapping. */
5883 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5884 /* Supersection are always domain 0 */
5885 pd_entry_t pde = L1_SS_PROTO | pa |
5886 L1_S_PROT(PTE_KERNEL, prot) | f1;
5887 #ifdef VERBOSE_INIT_ARM
5888 printf("sS");
5889 #endif
5890 for (size_t s = va >> L1_S_SHIFT,
5891 e = s + L1_SS_SIZE / L1_S_SIZE;
5892 s < e;
5893 s++) {
5894 pdep[s] = pde;
5895 PTE_SYNC(&pdep[s]);
5896 }
5897 va += L1_SS_SIZE;
5898 pa += L1_SS_SIZE;
5899 resid -= L1_SS_SIZE;
5900 continue;
5901 }
5902 #endif
5903 /* See if we can use a section mapping. */
5904 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5905 #ifdef VERBOSE_INIT_ARM
5906 printf("S");
5907 #endif
5908 pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5909 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5910 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5911 PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
5912 va += L1_S_SIZE;
5913 pa += L1_S_SIZE;
5914 resid -= L1_S_SIZE;
5915 continue;
5916 }
5917
5918 /*
5919 * Ok, we're going to use an L2 table. Make sure
5920 * one is actually in the corresponding L1 slot
5921 * for the current VA.
5922 */
5923 if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5924 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5925
5926 #ifndef ARM32_NEW_VM_LAYOUT
5927 pte = (pt_entry_t *)
5928 kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
5929 #else
5930 pte = (pt_entry_t *) kernel_pt_lookup(
5931 pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
5932 #endif
5933 if (pte == NULL)
5934 panic("pmap_map_chunk: can't find L2 table for VA"
5935 "0x%08lx", va);
5936
5937 /* See if we can use a L2 large page mapping. */
5938 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5939 #ifdef VERBOSE_INIT_ARM
5940 printf("L");
5941 #endif
5942 for (i = 0; i < 16; i++) {
5943 #ifndef ARM32_NEW_VM_LAYOUT
5944 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5945 L2_L_PROTO | pa |
5946 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5947 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5948 #else
5949 pte[l2pte_index(va) + i] =
5950 L2_L_PROTO | pa |
5951 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5952 PTE_SYNC(&pte[l2pte_index(va) + i]);
5953 #endif
5954 }
5955 va += L2_L_SIZE;
5956 pa += L2_L_SIZE;
5957 resid -= L2_L_SIZE;
5958 continue;
5959 }
5960
5961 /* Use a small page mapping. */
5962 #ifdef VERBOSE_INIT_ARM
5963 printf("P");
5964 #endif
5965 #ifndef ARM32_NEW_VM_LAYOUT
5966 pte[(va >> PGSHIFT) & 0x3ff] =
5967 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5968 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5969 #else
5970 pte[l2pte_index(va)] =
5971 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5972 PTE_SYNC(&pte[l2pte_index(va)]);
5973 #endif
5974 va += PAGE_SIZE;
5975 pa += PAGE_SIZE;
5976 resid -= PAGE_SIZE;
5977 }
5978 #ifdef VERBOSE_INIT_ARM
5979 printf("\n");
5980 #endif
5981 return (size);
5982 }
5983
5984 /********************** Static device map routines ***************************/
5985
5986 static const struct pmap_devmap *pmap_devmap_table;
5987
5988 /*
5989 * Register the devmap table. This is provided in case early console
5990 * initialization needs to register mappings created by bootstrap code
5991 * before pmap_devmap_bootstrap() is called.
5992 */
5993 void
5994 pmap_devmap_register(const struct pmap_devmap *table)
5995 {
5996
5997 pmap_devmap_table = table;
5998 }
5999
6000 /*
6001 * Map all of the static regions in the devmap table, and remember
6002 * the devmap table so other parts of the kernel can look up entries
6003 * later.
6004 */
6005 void
6006 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6007 {
6008 int i;
6009
6010 pmap_devmap_table = table;
6011
6012 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6013 #ifdef VERBOSE_INIT_ARM
6014 printf("devmap: %08lx -> %08lx @ %08lx\n",
6015 pmap_devmap_table[i].pd_pa,
6016 pmap_devmap_table[i].pd_pa +
6017 pmap_devmap_table[i].pd_size - 1,
6018 pmap_devmap_table[i].pd_va);
6019 #endif
6020 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6021 pmap_devmap_table[i].pd_pa,
6022 pmap_devmap_table[i].pd_size,
6023 pmap_devmap_table[i].pd_prot,
6024 pmap_devmap_table[i].pd_cache);
6025 }
6026 }
6027
6028 const struct pmap_devmap *
6029 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6030 {
6031 uint64_t endpa;
6032 int i;
6033
6034 if (pmap_devmap_table == NULL)
6035 return (NULL);
6036
6037 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6038
6039 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6040 if (pa >= pmap_devmap_table[i].pd_pa &&
6041 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6042 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6043 return (&pmap_devmap_table[i]);
6044 }
6045
6046 return (NULL);
6047 }
6048
6049 const struct pmap_devmap *
6050 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6051 {
6052 int i;
6053
6054 if (pmap_devmap_table == NULL)
6055 return (NULL);
6056
6057 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6058 if (va >= pmap_devmap_table[i].pd_va &&
6059 va + size - 1 <= pmap_devmap_table[i].pd_va +
6060 pmap_devmap_table[i].pd_size - 1)
6061 return (&pmap_devmap_table[i]);
6062 }
6063
6064 return (NULL);
6065 }
6066
6067 /********************** PTE initialization routines **************************/
6068
6069 /*
6070 * These routines are called when the CPU type is identified to set up
6071 * the PTE prototypes, cache modes, etc.
6072 *
6073 * The variables are always here, just in case modules need to reference
6074 * them (though, they shouldn't).
6075 */
6076
6077 pt_entry_t pte_l1_s_cache_mode;
6078 pt_entry_t pte_l1_s_wc_mode;
6079 pt_entry_t pte_l1_s_cache_mode_pt;
6080 pt_entry_t pte_l1_s_cache_mask;
6081
6082 pt_entry_t pte_l2_l_cache_mode;
6083 pt_entry_t pte_l2_l_wc_mode;
6084 pt_entry_t pte_l2_l_cache_mode_pt;
6085 pt_entry_t pte_l2_l_cache_mask;
6086
6087 pt_entry_t pte_l2_s_cache_mode;
6088 pt_entry_t pte_l2_s_wc_mode;
6089 pt_entry_t pte_l2_s_cache_mode_pt;
6090 pt_entry_t pte_l2_s_cache_mask;
6091
6092 pt_entry_t pte_l1_s_prot_u;
6093 pt_entry_t pte_l1_s_prot_w;
6094 pt_entry_t pte_l1_s_prot_ro;
6095 pt_entry_t pte_l1_s_prot_mask;
6096
6097 pt_entry_t pte_l2_s_prot_u;
6098 pt_entry_t pte_l2_s_prot_w;
6099 pt_entry_t pte_l2_s_prot_ro;
6100 pt_entry_t pte_l2_s_prot_mask;
6101
6102 pt_entry_t pte_l2_l_prot_u;
6103 pt_entry_t pte_l2_l_prot_w;
6104 pt_entry_t pte_l2_l_prot_ro;
6105 pt_entry_t pte_l2_l_prot_mask;
6106
6107 pt_entry_t pte_l1_ss_proto;
6108 pt_entry_t pte_l1_s_proto;
6109 pt_entry_t pte_l1_c_proto;
6110 pt_entry_t pte_l2_s_proto;
6111
6112 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6113 void (*pmap_zero_page_func)(paddr_t);
6114
6115 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6116 void
6117 pmap_pte_init_generic(void)
6118 {
6119
6120 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6121 pte_l1_s_wc_mode = L1_S_B;
6122 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6123
6124 pte_l2_l_cache_mode = L2_B|L2_C;
6125 pte_l2_l_wc_mode = L2_B;
6126 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6127
6128 pte_l2_s_cache_mode = L2_B|L2_C;
6129 pte_l2_s_wc_mode = L2_B;
6130 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6131
6132 /*
6133 * If we have a write-through cache, set B and C. If
6134 * we have a write-back cache, then we assume setting
6135 * only C will make those pages write-through (except for those
6136 * Cortex CPUs which can read the L1 caches).
6137 */
6138 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6139 #if ARM_MMU_V7 > 0
6140 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6141 #endif
6142 #if ARM_MMU_V6 > 0
6143 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6144 #endif
6145 || false) {
6146 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6147 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6148 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6149 } else {
6150 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6151 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6152 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6153 }
6154
6155 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6156 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6157 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6158 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6159
6160 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6161 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6162 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6163 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6164
6165 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6166 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6167 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6168 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6169
6170 pte_l1_ss_proto = L1_SS_PROTO_generic;
6171 pte_l1_s_proto = L1_S_PROTO_generic;
6172 pte_l1_c_proto = L1_C_PROTO_generic;
6173 pte_l2_s_proto = L2_S_PROTO_generic;
6174
6175 pmap_copy_page_func = pmap_copy_page_generic;
6176 pmap_zero_page_func = pmap_zero_page_generic;
6177 }
6178
6179 #if defined(CPU_ARM8)
6180 void
6181 pmap_pte_init_arm8(void)
6182 {
6183
6184 /*
6185 * ARM8 is compatible with generic, but we need to use
6186 * the page tables uncached.
6187 */
6188 pmap_pte_init_generic();
6189
6190 pte_l1_s_cache_mode_pt = 0;
6191 pte_l2_l_cache_mode_pt = 0;
6192 pte_l2_s_cache_mode_pt = 0;
6193 }
6194 #endif /* CPU_ARM8 */
6195
6196 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6197 void
6198 pmap_pte_init_arm9(void)
6199 {
6200
6201 /*
6202 * ARM9 is compatible with generic, but we want to use
6203 * write-through caching for now.
6204 */
6205 pmap_pte_init_generic();
6206
6207 pte_l1_s_cache_mode = L1_S_C;
6208 pte_l2_l_cache_mode = L2_C;
6209 pte_l2_s_cache_mode = L2_C;
6210
6211 pte_l1_s_wc_mode = L1_S_B;
6212 pte_l2_l_wc_mode = L2_B;
6213 pte_l2_s_wc_mode = L2_B;
6214
6215 pte_l1_s_cache_mode_pt = L1_S_C;
6216 pte_l2_l_cache_mode_pt = L2_C;
6217 pte_l2_s_cache_mode_pt = L2_C;
6218 }
6219 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6220 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6221
6222 #if defined(CPU_ARM10)
6223 void
6224 pmap_pte_init_arm10(void)
6225 {
6226
6227 /*
6228 * ARM10 is compatible with generic, but we want to use
6229 * write-through caching for now.
6230 */
6231 pmap_pte_init_generic();
6232
6233 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6234 pte_l2_l_cache_mode = L2_B | L2_C;
6235 pte_l2_s_cache_mode = L2_B | L2_C;
6236
6237 pte_l1_s_cache_mode = L1_S_B;
6238 pte_l2_l_cache_mode = L2_B;
6239 pte_l2_s_cache_mode = L2_B;
6240
6241 pte_l1_s_cache_mode_pt = L1_S_C;
6242 pte_l2_l_cache_mode_pt = L2_C;
6243 pte_l2_s_cache_mode_pt = L2_C;
6244
6245 }
6246 #endif /* CPU_ARM10 */
6247
6248 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6249 void
6250 pmap_pte_init_arm11(void)
6251 {
6252
6253 /*
6254 * ARM11 is compatible with generic, but we want to use
6255 * write-through caching for now.
6256 */
6257 pmap_pte_init_generic();
6258
6259 pte_l1_s_cache_mode = L1_S_C;
6260 pte_l2_l_cache_mode = L2_C;
6261 pte_l2_s_cache_mode = L2_C;
6262
6263 pte_l1_s_wc_mode = L1_S_B;
6264 pte_l2_l_wc_mode = L2_B;
6265 pte_l2_s_wc_mode = L2_B;
6266
6267 pte_l1_s_cache_mode_pt = L1_S_C;
6268 pte_l2_l_cache_mode_pt = L2_C;
6269 pte_l2_s_cache_mode_pt = L2_C;
6270 }
6271 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6272
6273 #if ARM_MMU_SA1 == 1
6274 void
6275 pmap_pte_init_sa1(void)
6276 {
6277
6278 /*
6279 * The StrongARM SA-1 cache does not have a write-through
6280 * mode. So, do the generic initialization, then reset
6281 * the page table cache mode to B=1,C=1, and note that
6282 * the PTEs need to be sync'd.
6283 */
6284 pmap_pte_init_generic();
6285
6286 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6287 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6288 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6289
6290 pmap_needs_pte_sync = 1;
6291 }
6292 #endif /* ARM_MMU_SA1 == 1*/
6293
6294 #if ARM_MMU_XSCALE == 1
6295 #if (ARM_NMMUS > 1)
6296 static u_int xscale_use_minidata;
6297 #endif
6298
6299 void
6300 pmap_pte_init_xscale(void)
6301 {
6302 uint32_t auxctl;
6303 int write_through = 0;
6304
6305 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6306 pte_l1_s_wc_mode = L1_S_B;
6307 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6308
6309 pte_l2_l_cache_mode = L2_B|L2_C;
6310 pte_l2_l_wc_mode = L2_B;
6311 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6312
6313 pte_l2_s_cache_mode = L2_B|L2_C;
6314 pte_l2_s_wc_mode = L2_B;
6315 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6316
6317 pte_l1_s_cache_mode_pt = L1_S_C;
6318 pte_l2_l_cache_mode_pt = L2_C;
6319 pte_l2_s_cache_mode_pt = L2_C;
6320
6321 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6322 /*
6323 * The XScale core has an enhanced mode where writes that
6324 * miss the cache cause a cache line to be allocated. This
6325 * is significantly faster than the traditional, write-through
6326 * behavior of this case.
6327 */
6328 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6329 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6330 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6331 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6332
6333 #ifdef XSCALE_CACHE_WRITE_THROUGH
6334 /*
6335 * Some versions of the XScale core have various bugs in
6336 * their cache units, the work-around for which is to run
6337 * the cache in write-through mode. Unfortunately, this
6338 * has a major (negative) impact on performance. So, we
6339 * go ahead and run fast-and-loose, in the hopes that we
6340 * don't line up the planets in a way that will trip the
6341 * bugs.
6342 *
6343 * However, we give you the option to be slow-but-correct.
6344 */
6345 write_through = 1;
6346 #elif defined(XSCALE_CACHE_WRITE_BACK)
6347 /* force write back cache mode */
6348 write_through = 0;
6349 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6350 /*
6351 * Intel PXA2[15]0 processors are known to have a bug in
6352 * write-back cache on revision 4 and earlier (stepping
6353 * A[01] and B[012]). Fixed for C0 and later.
6354 */
6355 {
6356 uint32_t id, type;
6357
6358 id = cpufunc_id();
6359 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6360
6361 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6362 if ((id & CPU_ID_REVISION_MASK) < 5) {
6363 /* write through for stepping A0-1 and B0-2 */
6364 write_through = 1;
6365 }
6366 }
6367 }
6368 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6369
6370 if (write_through) {
6371 pte_l1_s_cache_mode = L1_S_C;
6372 pte_l2_l_cache_mode = L2_C;
6373 pte_l2_s_cache_mode = L2_C;
6374 }
6375
6376 #if (ARM_NMMUS > 1)
6377 xscale_use_minidata = 1;
6378 #endif
6379
6380 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6381 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6382 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6383 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6384
6385 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6386 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6387 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6388 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6389
6390 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6391 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6392 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6393 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6394
6395 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6396 pte_l1_s_proto = L1_S_PROTO_xscale;
6397 pte_l1_c_proto = L1_C_PROTO_xscale;
6398 pte_l2_s_proto = L2_S_PROTO_xscale;
6399
6400 pmap_copy_page_func = pmap_copy_page_xscale;
6401 pmap_zero_page_func = pmap_zero_page_xscale;
6402
6403 /*
6404 * Disable ECC protection of page table access, for now.
6405 */
6406 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6407 auxctl &= ~XSCALE_AUXCTL_P;
6408 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6409 }
6410
6411 /*
6412 * xscale_setup_minidata:
6413 *
6414 * Set up the mini-data cache clean area. We require the
6415 * caller to allocate the right amount of physically and
6416 * virtually contiguous space.
6417 */
6418 void
6419 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6420 {
6421 extern vaddr_t xscale_minidata_clean_addr;
6422 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6423 pd_entry_t *pde = (pd_entry_t *) l1pt;
6424 pt_entry_t *pte;
6425 vsize_t size;
6426 uint32_t auxctl;
6427
6428 xscale_minidata_clean_addr = va;
6429
6430 /* Round it to page size. */
6431 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6432
6433 for (; size != 0;
6434 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6435 #ifndef ARM32_NEW_VM_LAYOUT
6436 pte = (pt_entry_t *)
6437 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6438 #else
6439 pte = (pt_entry_t *) kernel_pt_lookup(
6440 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6441 #endif
6442 if (pte == NULL)
6443 panic("xscale_setup_minidata: can't find L2 table for "
6444 "VA 0x%08lx", va);
6445 #ifndef ARM32_NEW_VM_LAYOUT
6446 pte[(va >> PGSHIFT) & 0x3ff] =
6447 #else
6448 pte[l2pte_index(va)] =
6449 #endif
6450 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6451 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6452 }
6453
6454 /*
6455 * Configure the mini-data cache for write-back with
6456 * read/write-allocate.
6457 *
6458 * NOTE: In order to reconfigure the mini-data cache, we must
6459 * make sure it contains no valid data! In order to do that,
6460 * we must issue a global data cache invalidate command!
6461 *
6462 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6463 * THIS IS VERY IMPORTANT!
6464 */
6465
6466 /* Invalidate data and mini-data. */
6467 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6468 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6469 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6470 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6471 }
6472
6473 /*
6474 * Change the PTEs for the specified kernel mappings such that they
6475 * will use the mini data cache instead of the main data cache.
6476 */
6477 void
6478 pmap_uarea(vaddr_t va)
6479 {
6480 struct l2_bucket *l2b;
6481 pt_entry_t *ptep, *sptep, pte;
6482 vaddr_t next_bucket, eva;
6483
6484 #if (ARM_NMMUS > 1)
6485 if (xscale_use_minidata == 0)
6486 return;
6487 #endif
6488
6489 eva = va + USPACE;
6490
6491 while (va < eva) {
6492 next_bucket = L2_NEXT_BUCKET(va);
6493 if (next_bucket > eva)
6494 next_bucket = eva;
6495
6496 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6497 KDASSERT(l2b != NULL);
6498
6499 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6500
6501 while (va < next_bucket) {
6502 pte = *ptep;
6503 if (!l2pte_minidata(pte)) {
6504 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6505 cpu_tlb_flushD_SE(va);
6506 *ptep = pte & ~L2_B;
6507 }
6508 ptep++;
6509 va += PAGE_SIZE;
6510 }
6511 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6512 }
6513 cpu_cpwait();
6514 }
6515 #endif /* ARM_MMU_XSCALE == 1 */
6516
6517
6518 #if defined(CPU_ARM11MPCORE)
6519
6520 void
6521 pmap_pte_init_arm11mpcore(void)
6522 {
6523
6524 /* cache mode is controlled by 5 bits (B, C, TEX) */
6525 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6526 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6527 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6528 /* use extended small page (without APn, with TEX) */
6529 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6530 #else
6531 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6532 #endif
6533
6534 /* write-back, write-allocate */
6535 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6536 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6537 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6538 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6539 #else
6540 /* no TEX. read-allocate */
6541 pte_l2_s_cache_mode = L2_C | L2_B;
6542 #endif
6543 /*
6544 * write-back, write-allocate for page tables.
6545 */
6546 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6547 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6548 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6549 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6550 #else
6551 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6552 #endif
6553
6554 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6555 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6556 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6557 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6558
6559 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6560 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6561 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6562 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6563 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6564
6565 #else
6566 /* with AP[0..3] */
6567 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6568 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6569 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6570 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6571 #endif
6572
6573 #ifdef ARM11MPCORE_COMPAT_MMU
6574 /* with AP[0..3] */
6575 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6576 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6577 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6578 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6579
6580 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6581 pte_l1_s_proto = L1_S_PROTO_armv6;
6582 pte_l1_c_proto = L1_C_PROTO_armv6;
6583 pte_l2_s_proto = L2_S_PROTO_armv6c;
6584 #else
6585 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6586 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6587 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6588 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6589
6590 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6591 pte_l1_s_proto = L1_S_PROTO_armv6;
6592 pte_l1_c_proto = L1_C_PROTO_armv6;
6593 pte_l2_s_proto = L2_S_PROTO_armv6n;
6594 #endif
6595
6596 pmap_copy_page_func = pmap_copy_page_generic;
6597 pmap_zero_page_func = pmap_zero_page_generic;
6598 pmap_needs_pte_sync = 1;
6599 }
6600 #endif /* CPU_ARM11MPCORE */
6601
6602
6603 #if ARM_MMU_V7 == 1
6604 void
6605 pmap_pte_init_armv7(void)
6606 {
6607 /*
6608 * The ARMv7-A MMU is mostly compatible with generic. If the
6609 * AP field is zero, that now means "no access" rather than
6610 * read-only. The prototypes are a little different because of
6611 * the XN bit.
6612 */
6613 pmap_pte_init_generic();
6614
6615 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6616 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6617 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6618
6619 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6620 /*
6621 * write-back, no write-allocate, shareable for normal pages.
6622 */
6623 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6624 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6625 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6626
6627 /*
6628 * write-back, no write-allocate, shareable for page tables.
6629 */
6630 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6631 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6632 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6633 }
6634
6635 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6636 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6637 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6638 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6639
6640 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6641 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6642 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6643 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6644
6645 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6646 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6647 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6648 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6649
6650 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6651 pte_l1_s_proto = L1_S_PROTO_armv7;
6652 pte_l1_c_proto = L1_C_PROTO_armv7;
6653 pte_l2_s_proto = L2_S_PROTO_armv7;
6654
6655 pmap_needs_pte_sync = 1;
6656 }
6657 #endif /* ARM_MMU_V7 */
6658
6659 /*
6660 * return the PA of the current L1 table, for use when handling a crash dump
6661 */
6662 uint32_t pmap_kernel_L1_addr(void)
6663 {
6664 return pmap_kernel()->pm_l1->l1_physaddr;
6665 }
6666
6667 #if defined(DDB)
6668 /*
6669 * A couple of ddb-callable functions for dumping pmaps
6670 */
6671 void pmap_dump_all(void);
6672 void pmap_dump(pmap_t);
6673
6674 void
6675 pmap_dump_all(void)
6676 {
6677 pmap_t pm;
6678
6679 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6680 if (pm == pmap_kernel())
6681 continue;
6682 pmap_dump(pm);
6683 printf("\n");
6684 }
6685 }
6686
6687 static pt_entry_t ncptes[64];
6688 static void pmap_dump_ncpg(pmap_t);
6689
6690 void
6691 pmap_dump(pmap_t pm)
6692 {
6693 struct l2_dtable *l2;
6694 struct l2_bucket *l2b;
6695 pt_entry_t *ptep, pte;
6696 vaddr_t l2_va, l2b_va, va;
6697 int i, j, k, occ, rows = 0;
6698
6699 if (pm == pmap_kernel())
6700 printf("pmap_kernel (%p): ", pm);
6701 else
6702 printf("user pmap (%p): ", pm);
6703
6704 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6705
6706 l2_va = 0;
6707 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6708 l2 = pm->pm_l2[i];
6709
6710 if (l2 == NULL || l2->l2_occupancy == 0)
6711 continue;
6712
6713 l2b_va = l2_va;
6714 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6715 l2b = &l2->l2_bucket[j];
6716
6717 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6718 continue;
6719
6720 ptep = l2b->l2b_kva;
6721
6722 for (k = 0; k < 256 && ptep[k] == 0; k++)
6723 ;
6724
6725 k &= ~63;
6726 occ = l2b->l2b_occupancy;
6727 va = l2b_va + (k * 4096);
6728 for (; k < 256; k++, va += 0x1000) {
6729 char ch = ' ';
6730 if ((k % 64) == 0) {
6731 if ((rows % 8) == 0) {
6732 printf(
6733 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6734 }
6735 printf("%08lx: ", va);
6736 }
6737
6738 ncptes[k & 63] = 0;
6739 pte = ptep[k];
6740 if (pte == 0) {
6741 ch = '.';
6742 } else {
6743 occ--;
6744 switch (pte & 0x0c) {
6745 case 0x00:
6746 ch = 'D'; /* No cache No buff */
6747 break;
6748 case 0x04:
6749 ch = 'B'; /* No cache buff */
6750 break;
6751 case 0x08:
6752 if (pte & 0x40)
6753 ch = 'm';
6754 else
6755 ch = 'C'; /* Cache No buff */
6756 break;
6757 case 0x0c:
6758 ch = 'F'; /* Cache Buff */
6759 break;
6760 }
6761
6762 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6763 ch += 0x20;
6764
6765 if ((pte & 0xc) == 0)
6766 ncptes[k & 63] = pte;
6767 }
6768
6769 if ((k % 64) == 63) {
6770 rows++;
6771 printf("%c\n", ch);
6772 pmap_dump_ncpg(pm);
6773 if (occ == 0)
6774 break;
6775 } else
6776 printf("%c", ch);
6777 }
6778 }
6779 }
6780 }
6781
6782 static void
6783 pmap_dump_ncpg(pmap_t pm)
6784 {
6785 struct vm_page *pg;
6786 struct vm_page_md *md;
6787 struct pv_entry *pv;
6788 int i;
6789
6790 for (i = 0; i < 63; i++) {
6791 if (ncptes[i] == 0)
6792 continue;
6793
6794 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6795 if (pg == NULL)
6796 continue;
6797 md = VM_PAGE_TO_MD(pg);
6798
6799 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6800 VM_PAGE_TO_PHYS(pg),
6801 md->krw_mappings, md->kro_mappings,
6802 md->urw_mappings, md->uro_mappings);
6803
6804 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6805 printf(" %c va 0x%08lx, flags 0x%x\n",
6806 (pm == pv->pv_pmap) ? '*' : ' ',
6807 pv->pv_va, pv->pv_flags);
6808 }
6809 }
6810 }
6811 #endif
6812
6813 #ifdef PMAP_STEAL_MEMORY
6814 void
6815 pmap_boot_pageadd(pv_addr_t *newpv)
6816 {
6817 pv_addr_t *pv, *npv;
6818
6819 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6820 if (newpv->pv_pa < pv->pv_va) {
6821 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6822 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6823 newpv->pv_size += pv->pv_size;
6824 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6825 }
6826 pv = NULL;
6827 } else {
6828 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6829 pv = npv) {
6830 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6831 KASSERT(pv->pv_pa < newpv->pv_pa);
6832 if (newpv->pv_pa > npv->pv_pa)
6833 continue;
6834 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6835 pv->pv_size += newpv->pv_size;
6836 return;
6837 }
6838 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6839 break;
6840 newpv->pv_size += npv->pv_size;
6841 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6842 SLIST_REMOVE_AFTER(newpv, pv_list);
6843 return;
6844 }
6845 }
6846 }
6847
6848 if (pv) {
6849 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6850 } else {
6851 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6852 }
6853 }
6854
6855 void
6856 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6857 pv_addr_t *rpv)
6858 {
6859 pv_addr_t *pv, **pvp;
6860 struct vm_physseg *ps;
6861 size_t i;
6862
6863 KASSERT(amount & PGOFSET);
6864 KASSERT((mask & PGOFSET) == 0);
6865 KASSERT((match & PGOFSET) == 0);
6866 KASSERT(amount != 0);
6867
6868 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6869 (pv = *pvp) != NULL;
6870 pvp = &SLIST_NEXT(pv, pv_list)) {
6871 pv_addr_t *newpv;
6872 psize_t off;
6873 /*
6874 * If this entry is too small to satify the request...
6875 */
6876 KASSERT(pv->pv_size > 0);
6877 if (pv->pv_size < amount)
6878 continue;
6879
6880 for (off = 0; off <= mask; off += PAGE_SIZE) {
6881 if (((pv->pv_pa + off) & mask) == match
6882 && off + amount <= pv->pv_size)
6883 break;
6884 }
6885 if (off > mask)
6886 continue;
6887
6888 rpv->pv_va = pv->pv_va + off;
6889 rpv->pv_pa = pv->pv_pa + off;
6890 rpv->pv_size = amount;
6891 pv->pv_size -= amount;
6892 if (pv->pv_size == 0) {
6893 KASSERT(off == 0);
6894 KASSERT((vaddr_t) pv == rpv->pv_va);
6895 *pvp = SLIST_NEXT(pv, pv_list);
6896 } else if (off == 0) {
6897 KASSERT((vaddr_t) pv == rpv->pv_va);
6898 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6899 *newpv = *pv;
6900 newpv->pv_pa += amount;
6901 newpv->pv_va += amount;
6902 *pvp = newpv;
6903 } else if (off < pv->pv_size) {
6904 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6905 *newpv = *pv;
6906 newpv->pv_size -= off;
6907 newpv->pv_pa += off + amount;
6908 newpv->pv_va += off + amount;
6909
6910 SLIST_NEXT(pv, pv_list) = newpv;
6911 pv->pv_size = off;
6912 } else {
6913 KASSERT((vaddr_t) pv != rpv->pv_va);
6914 }
6915 memset((void *)rpv->pv_va, 0, amount);
6916 return;
6917 }
6918
6919 if (vm_nphysseg == 0)
6920 panic("pmap_boot_pagealloc: couldn't allocate memory");
6921
6922 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6923 (pv = *pvp) != NULL;
6924 pvp = &SLIST_NEXT(pv, pv_list)) {
6925 if (SLIST_NEXT(pv, pv_list) == NULL)
6926 break;
6927 }
6928 KASSERT(mask == 0);
6929 for (i = 0; i < vm_nphysseg; i++) {
6930 ps = VM_PHYSMEM_PTR(i);
6931 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6932 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6933 rpv->pv_va = pv->pv_va;
6934 rpv->pv_pa = pv->pv_pa;
6935 rpv->pv_size = amount;
6936 *pvp = NULL;
6937 pmap_map_chunk(kernel_l1pt.pv_va,
6938 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6939 ptoa(ps->avail_start),
6940 amount - pv->pv_size,
6941 VM_PROT_READ|VM_PROT_WRITE,
6942 PTE_CACHE);
6943 ps->avail_start += atop(amount - pv->pv_size);
6944 /*
6945 * If we consumed the entire physseg, remove it.
6946 */
6947 if (ps->avail_start == ps->avail_end) {
6948 for (--vm_nphysseg; i < vm_nphysseg; i++)
6949 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6950 }
6951 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6952 return;
6953 }
6954 }
6955
6956 panic("pmap_boot_pagealloc: couldn't allocate memory");
6957 }
6958
6959 vaddr_t
6960 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6961 {
6962 pv_addr_t pv;
6963
6964 pmap_boot_pagealloc(size, 0, 0, &pv);
6965
6966 return pv.pv_va;
6967 }
6968 #endif /* PMAP_STEAL_MEMORY */
6969
6970 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6971 {
6972 sysctl_createv(clog, 0, NULL, NULL,
6973 CTLFLAG_PERMANENT,
6974 CTLTYPE_NODE, "machdep", NULL,
6975 NULL, 0, NULL, 0,
6976 CTL_MACHDEP, CTL_EOL);
6977
6978 sysctl_createv(clog, 0, NULL, NULL,
6979 CTLFLAG_PERMANENT,
6980 CTLTYPE_INT, "kmpages",
6981 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6982 NULL, 0, &pmap_kmpages, 0,
6983 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6984 }
6985
6986 #ifdef PMAP_NEED_ALLOC_POOLPAGE
6987 struct vm_page *
6988 arm_pmap_alloc_poolpage(int flags)
6989 {
6990 /*
6991 * On some systems, only some pages may be "coherent" for dma and we
6992 * want to prefer those for pool pages (think mbufs) but fallback to
6993 * any page if none is available.
6994 */
6995 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
6996 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
6997 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
6998 }
6999
7000 return uvm_pagealloc(NULL, 0, NULL, flags);
7001 }
7002 #endif
7003