Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.236
      1 /*	$NetBSD: pmap.c,v 1.236 2012/09/02 14:46:38 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/pool.h>
    201 #include <sys/kmem.h>
    202 #include <sys/cdefs.h>
    203 #include <sys/cpu.h>
    204 #include <sys/sysctl.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <sys/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/cpuconf.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.236 2012/09/02 14:46:38 matt Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 static struct pmap	kernel_pmap_store;
    259 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    260 
    261 /*
    262  * Which pmap is currently 'live' in the cache
    263  *
    264  * XXXSCW: Fix for SMP ...
    265  */
    266 static pmap_t pmap_recent_user;
    267 
    268 /*
    269  * Pointer to last active lwp, or NULL if it exited.
    270  */
    271 struct lwp *pmap_previous_active_lwp;
    272 
    273 /*
    274  * Pool and cache that pmap structures are allocated from.
    275  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    276  * in pmap_create().
    277  */
    278 static struct pool_cache pmap_cache;
    279 static LIST_HEAD(, pmap) pmap_pmaps;
    280 
    281 /*
    282  * Pool of PV structures
    283  */
    284 static struct pool pmap_pv_pool;
    285 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    286 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    287 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    288 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    289 };
    290 
    291 /*
    292  * Pool and cache of l2_dtable structures.
    293  * We use a cache to avoid clearing the structures when they're
    294  * allocated. (196 bytes)
    295  */
    296 static struct pool_cache pmap_l2dtable_cache;
    297 static vaddr_t pmap_kernel_l2dtable_kva;
    298 
    299 /*
    300  * Pool and cache of L2 page descriptors.
    301  * We use a cache to avoid clearing the descriptor table
    302  * when they're allocated. (1KB)
    303  */
    304 static struct pool_cache pmap_l2ptp_cache;
    305 static vaddr_t pmap_kernel_l2ptp_kva;
    306 static paddr_t pmap_kernel_l2ptp_phys;
    307 
    308 #ifdef PMAPCOUNTERS
    309 #define	PMAP_EVCNT_INITIALIZER(name) \
    310 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    311 
    312 #ifdef PMAP_CACHE_VIPT
    313 static struct evcnt pmap_ev_vac_clean_one =
    314    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    315 static struct evcnt pmap_ev_vac_flush_one =
    316    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    317 static struct evcnt pmap_ev_vac_flush_lots =
    318    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    319 static struct evcnt pmap_ev_vac_flush_lots2 =
    320    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    321 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    325 
    326 static struct evcnt pmap_ev_vac_color_new =
    327    PMAP_EVCNT_INITIALIZER("new page color");
    328 static struct evcnt pmap_ev_vac_color_reuse =
    329    PMAP_EVCNT_INITIALIZER("ok first page color");
    330 static struct evcnt pmap_ev_vac_color_ok =
    331    PMAP_EVCNT_INITIALIZER("ok page color");
    332 static struct evcnt pmap_ev_vac_color_blind =
    333    PMAP_EVCNT_INITIALIZER("blind page color");
    334 static struct evcnt pmap_ev_vac_color_change =
    335    PMAP_EVCNT_INITIALIZER("change page color");
    336 static struct evcnt pmap_ev_vac_color_erase =
    337    PMAP_EVCNT_INITIALIZER("erase page color");
    338 static struct evcnt pmap_ev_vac_color_none =
    339    PMAP_EVCNT_INITIALIZER("no page color");
    340 static struct evcnt pmap_ev_vac_color_restore =
    341    PMAP_EVCNT_INITIALIZER("restore page color");
    342 
    343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    351 #endif
    352 
    353 static struct evcnt pmap_ev_mappings =
    354    PMAP_EVCNT_INITIALIZER("pages mapped");
    355 static struct evcnt pmap_ev_unmappings =
    356    PMAP_EVCNT_INITIALIZER("pages unmapped");
    357 static struct evcnt pmap_ev_remappings =
    358    PMAP_EVCNT_INITIALIZER("pages remapped");
    359 
    360 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    361 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    362 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    363 
    364 static struct evcnt pmap_ev_kernel_mappings =
    365    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    366 static struct evcnt pmap_ev_kernel_unmappings =
    367    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    368 static struct evcnt pmap_ev_kernel_remappings =
    369    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    370 
    371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    373 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    374 
    375 static struct evcnt pmap_ev_kenter_mappings =
    376    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    377 static struct evcnt pmap_ev_kenter_unmappings =
    378    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    379 static struct evcnt pmap_ev_kenter_remappings =
    380    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    381 static struct evcnt pmap_ev_pt_mappings =
    382    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    383 
    384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    386 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    387 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    388 
    389 #ifdef PMAP_CACHE_VIPT
    390 static struct evcnt pmap_ev_exec_mappings =
    391    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    392 static struct evcnt pmap_ev_exec_cached =
    393    PMAP_EVCNT_INITIALIZER("exec pages cached");
    394 
    395 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    396 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    397 
    398 static struct evcnt pmap_ev_exec_synced =
    399    PMAP_EVCNT_INITIALIZER("exec pages synced");
    400 static struct evcnt pmap_ev_exec_synced_map =
    401    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    402 static struct evcnt pmap_ev_exec_synced_unmap =
    403    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    404 static struct evcnt pmap_ev_exec_synced_remap =
    405    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    406 static struct evcnt pmap_ev_exec_synced_clearbit =
    407    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    408 static struct evcnt pmap_ev_exec_synced_kremove =
    409    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    410 
    411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    417 
    418 static struct evcnt pmap_ev_exec_discarded_unmap =
    419    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    420 static struct evcnt pmap_ev_exec_discarded_zero =
    421    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    422 static struct evcnt pmap_ev_exec_discarded_copy =
    423    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    424 static struct evcnt pmap_ev_exec_discarded_page_protect =
    425    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    426 static struct evcnt pmap_ev_exec_discarded_clearbit =
    427    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    428 static struct evcnt pmap_ev_exec_discarded_kremove =
    429    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    430 
    431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    437 #endif /* PMAP_CACHE_VIPT */
    438 
    439 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    440 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    441 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    442 
    443 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    444 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    445 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    446 
    447 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    448 #else
    449 #define	PMAPCOUNT(x)	((void)0)
    450 #endif
    451 
    452 /*
    453  * pmap copy/zero page, and mem(5) hook point
    454  */
    455 static pt_entry_t *csrc_pte, *cdst_pte;
    456 static vaddr_t csrcp, cdstp;
    457 vaddr_t memhook;			/* used by mem.c */
    458 kmutex_t memlock;			/* used by mem.c */
    459 void *zeropage;				/* used by mem.c */
    460 extern void *msgbufaddr;
    461 int pmap_kmpages;
    462 /*
    463  * Flag to indicate if pmap_init() has done its thing
    464  */
    465 bool pmap_initialized;
    466 
    467 /*
    468  * Misc. locking data structures
    469  */
    470 
    471 #define	pmap_acquire_pmap_lock(pm)			\
    472 	do {						\
    473 		if ((pm) != pmap_kernel())		\
    474 			mutex_enter((pm)->pm_lock);	\
    475 	} while (/*CONSTCOND*/0)
    476 
    477 #define	pmap_release_pmap_lock(pm)			\
    478 	do {						\
    479 		if ((pm) != pmap_kernel())		\
    480 			mutex_exit((pm)->pm_lock);	\
    481 	} while (/*CONSTCOND*/0)
    482 
    483 
    484 /*
    485  * Metadata for L1 translation tables.
    486  */
    487 struct l1_ttable {
    488 	/* Entry on the L1 Table list */
    489 	SLIST_ENTRY(l1_ttable) l1_link;
    490 
    491 	/* Entry on the L1 Least Recently Used list */
    492 	TAILQ_ENTRY(l1_ttable) l1_lru;
    493 
    494 	/* Track how many domains are allocated from this L1 */
    495 	volatile u_int l1_domain_use_count;
    496 
    497 	/*
    498 	 * A free-list of domain numbers for this L1.
    499 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    500 	 * is slow on ARM.
    501 	 */
    502 	u_int8_t l1_domain_first;
    503 	u_int8_t l1_domain_free[PMAP_DOMAINS];
    504 
    505 	/* Physical address of this L1 page table */
    506 	paddr_t l1_physaddr;
    507 
    508 	/* KVA of this L1 page table */
    509 	pd_entry_t *l1_kva;
    510 };
    511 
    512 /*
    513  * Convert a virtual address into its L1 table index. That is, the
    514  * index used to locate the L2 descriptor table pointer in an L1 table.
    515  * This is basically used to index l1->l1_kva[].
    516  *
    517  * Each L2 descriptor table represents 1MB of VA space.
    518  */
    519 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    520 
    521 /*
    522  * L1 Page Tables are tracked using a Least Recently Used list.
    523  *  - New L1s are allocated from the HEAD.
    524  *  - Freed L1s are added to the TAIl.
    525  *  - Recently accessed L1s (where an 'access' is some change to one of
    526  *    the userland pmaps which owns this L1) are moved to the TAIL.
    527  */
    528 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    529 static kmutex_t l1_lru_lock __cacheline_aligned;
    530 
    531 /*
    532  * A list of all L1 tables
    533  */
    534 static SLIST_HEAD(, l1_ttable) l1_list;
    535 
    536 /*
    537  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    538  *
    539  * This is normally 16MB worth L2 page descriptors for any given pmap.
    540  * Reference counts are maintained for L2 descriptors so they can be
    541  * freed when empty.
    542  */
    543 struct l2_dtable {
    544 	/* The number of L2 page descriptors allocated to this l2_dtable */
    545 	u_int l2_occupancy;
    546 
    547 	/* List of L2 page descriptors */
    548 	struct l2_bucket {
    549 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    550 		paddr_t l2b_phys;	/* Physical address of same */
    551 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    552 		u_short l2b_occupancy;	/* How many active descriptors */
    553 	} l2_bucket[L2_BUCKET_SIZE];
    554 };
    555 
    556 /*
    557  * Given an L1 table index, calculate the corresponding l2_dtable index
    558  * and bucket index within the l2_dtable.
    559  */
    560 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    561 				 (L2_SIZE - 1))
    562 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    563 
    564 /*
    565  * Given a virtual address, this macro returns the
    566  * virtual address required to drop into the next L2 bucket.
    567  */
    568 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    569 
    570 /*
    571  * L2 allocation.
    572  */
    573 #define	pmap_alloc_l2_dtable()		\
    574 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    575 #define	pmap_free_l2_dtable(l2)		\
    576 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    577 #define pmap_alloc_l2_ptp(pap)		\
    578 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    579 	    PR_NOWAIT, (pap)))
    580 
    581 /*
    582  * We try to map the page tables write-through, if possible.  However, not
    583  * all CPUs have a write-through cache mode, so on those we have to sync
    584  * the cache when we frob page tables.
    585  *
    586  * We try to evaluate this at compile time, if possible.  However, it's
    587  * not always possible to do that, hence this run-time var.
    588  */
    589 int	pmap_needs_pte_sync;
    590 
    591 /*
    592  * Real definition of pv_entry.
    593  */
    594 struct pv_entry {
    595 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    596 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    597 	vaddr_t		pv_va;          /* virtual address for mapping */
    598 	u_int		pv_flags;       /* flags */
    599 };
    600 
    601 /*
    602  * Macro to determine if a mapping might be resident in the
    603  * instruction cache and/or TLB
    604  */
    605 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    606 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    607 
    608 /*
    609  * Macro to determine if a mapping might be resident in the
    610  * data cache and/or TLB
    611  */
    612 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    613 
    614 /*
    615  * Local prototypes
    616  */
    617 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    618 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    619 			    pt_entry_t **);
    620 static bool		pmap_is_current(pmap_t);
    621 static bool		pmap_is_cached(pmap_t);
    622 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    623 			    pmap_t, vaddr_t, u_int);
    624 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    625 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    626 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    627 			    u_int, u_int);
    628 
    629 static void		pmap_pinit(pmap_t);
    630 static int		pmap_pmap_ctor(void *, void *, int);
    631 
    632 static void		pmap_alloc_l1(pmap_t);
    633 static void		pmap_free_l1(pmap_t);
    634 static void		pmap_use_l1(pmap_t);
    635 
    636 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    637 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    638 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    639 static int		pmap_l2ptp_ctor(void *, void *, int);
    640 static int		pmap_l2dtable_ctor(void *, void *, int);
    641 
    642 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    643 #ifdef PMAP_CACHE_VIVT
    644 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    645 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    646 #endif
    647 
    648 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    649 #ifdef PMAP_CACHE_VIVT
    650 static int		pmap_clean_page(struct pv_entry *, bool);
    651 #endif
    652 #ifdef PMAP_CACHE_VIPT
    653 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    654 enum pmap_flush_op {
    655 	PMAP_FLUSH_PRIMARY,
    656 	PMAP_FLUSH_SECONDARY,
    657 	PMAP_CLEAN_PRIMARY
    658 };
    659 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    660 #endif
    661 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    662 
    663 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    664 static vaddr_t		kernel_pt_lookup(paddr_t);
    665 
    666 
    667 /*
    668  * External function prototypes
    669  */
    670 extern void bzero_page(vaddr_t);
    671 extern void bcopy_page(vaddr_t, vaddr_t);
    672 
    673 /*
    674  * Misc variables
    675  */
    676 vaddr_t virtual_avail;
    677 vaddr_t virtual_end;
    678 vaddr_t pmap_curmaxkvaddr;
    679 
    680 paddr_t avail_start;
    681 paddr_t avail_end;
    682 
    683 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    684 pv_addr_t kernelpages;
    685 pv_addr_t kernel_l1pt;
    686 pv_addr_t systempage;
    687 
    688 /* Function to set the debug level of the pmap code */
    689 
    690 #ifdef PMAP_DEBUG
    691 void
    692 pmap_debug(int level)
    693 {
    694 	pmap_debug_level = level;
    695 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    696 }
    697 #endif	/* PMAP_DEBUG */
    698 
    699 /*
    700  * A bunch of routines to conditionally flush the caches/TLB depending
    701  * on whether the specified pmap actually needs to be flushed at any
    702  * given time.
    703  */
    704 static inline void
    705 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    706 {
    707 
    708 	if (pm->pm_cstate.cs_tlb_id)
    709 		cpu_tlb_flushID_SE(va);
    710 }
    711 
    712 static inline void
    713 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    714 {
    715 
    716 	if (pm->pm_cstate.cs_tlb_d)
    717 		cpu_tlb_flushD_SE(va);
    718 }
    719 
    720 static inline void
    721 pmap_tlb_flushID(pmap_t pm)
    722 {
    723 
    724 	if (pm->pm_cstate.cs_tlb_id) {
    725 		cpu_tlb_flushID();
    726 		pm->pm_cstate.cs_tlb = 0;
    727 	}
    728 }
    729 
    730 static inline void
    731 pmap_tlb_flushD(pmap_t pm)
    732 {
    733 
    734 	if (pm->pm_cstate.cs_tlb_d) {
    735 		cpu_tlb_flushD();
    736 		pm->pm_cstate.cs_tlb_d = 0;
    737 	}
    738 }
    739 
    740 #ifdef PMAP_CACHE_VIVT
    741 static inline void
    742 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    743 {
    744 	if (pm->pm_cstate.cs_cache_id) {
    745 		cpu_idcache_wbinv_range(va, len);
    746 	}
    747 }
    748 
    749 static inline void
    750 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    751     bool do_inv, bool rd_only)
    752 {
    753 
    754 	if (pm->pm_cstate.cs_cache_d) {
    755 		if (do_inv) {
    756 			if (rd_only)
    757 				cpu_dcache_inv_range(va, len);
    758 			else
    759 				cpu_dcache_wbinv_range(va, len);
    760 		} else
    761 		if (!rd_only)
    762 			cpu_dcache_wb_range(va, len);
    763 	}
    764 }
    765 
    766 static inline void
    767 pmap_idcache_wbinv_all(pmap_t pm)
    768 {
    769 	if (pm->pm_cstate.cs_cache_id) {
    770 		cpu_idcache_wbinv_all();
    771 		pm->pm_cstate.cs_cache = 0;
    772 	}
    773 }
    774 
    775 static inline void
    776 pmap_dcache_wbinv_all(pmap_t pm)
    777 {
    778 	if (pm->pm_cstate.cs_cache_d) {
    779 		cpu_dcache_wbinv_all();
    780 		pm->pm_cstate.cs_cache_d = 0;
    781 	}
    782 }
    783 #endif /* PMAP_CACHE_VIVT */
    784 
    785 static inline bool
    786 pmap_is_current(pmap_t pm)
    787 {
    788 
    789 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    790 		return true;
    791 
    792 	return false;
    793 }
    794 
    795 static inline bool
    796 pmap_is_cached(pmap_t pm)
    797 {
    798 
    799 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    800 	    pmap_recent_user == pm)
    801 		return (true);
    802 
    803 	return false;
    804 }
    805 
    806 /*
    807  * PTE_SYNC_CURRENT:
    808  *
    809  *     Make sure the pte is written out to RAM.
    810  *     We need to do this for one of two cases:
    811  *       - We're dealing with the kernel pmap
    812  *       - There is no pmap active in the cache/tlb.
    813  *       - The specified pmap is 'active' in the cache/tlb.
    814  */
    815 #ifdef PMAP_INCLUDE_PTE_SYNC
    816 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    817 do {					\
    818 	if (PMAP_NEEDS_PTE_SYNC && 	\
    819 	    pmap_is_cached(pm))		\
    820 		PTE_SYNC(ptep);		\
    821 } while (/*CONSTCOND*/0)
    822 #else
    823 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    824 #endif
    825 
    826 /*
    827  * main pv_entry manipulation functions:
    828  *   pmap_enter_pv: enter a mapping onto a vm_page list
    829  *   pmap_remove_pv: remove a mappiing from a vm_page list
    830  *
    831  * NOTE: pmap_enter_pv expects to lock the pvh itself
    832  *       pmap_remove_pv expects te caller to lock the pvh before calling
    833  */
    834 
    835 /*
    836  * pmap_enter_pv: enter a mapping onto a vm_page lst
    837  *
    838  * => caller should hold the proper lock on pmap_main_lock
    839  * => caller should have pmap locked
    840  * => we will gain the lock on the vm_page and allocate the new pv_entry
    841  * => caller should adjust ptp's wire_count before calling
    842  * => caller should not adjust pmap's wire_count
    843  */
    844 static void
    845 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    846     vaddr_t va, u_int flags)
    847 {
    848 	struct pv_entry **pvp;
    849 
    850 	NPDEBUG(PDB_PVDUMP,
    851 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    852 
    853 	pv->pv_pmap = pm;
    854 	pv->pv_va = va;
    855 	pv->pv_flags = flags;
    856 
    857 	pvp = &SLIST_FIRST(&md->pvh_list);
    858 #ifdef PMAP_CACHE_VIPT
    859 	/*
    860 	 * Insert unmanaged entries, writeable first, at the head of
    861 	 * the pv list.
    862 	 */
    863 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    864 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    865 			pvp = &SLIST_NEXT(*pvp, pv_link);
    866 	} else if ((flags & PVF_WRITE) == 0) {
    867 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    868 			pvp = &SLIST_NEXT(*pvp, pv_link);
    869 	}
    870 #endif
    871 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
    872 	*pvp = pv;				/* ... locked list */
    873 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    874 #ifdef PMAP_CACHE_VIPT
    875 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    876 		md->pvh_attrs |= PVF_KMOD;
    877 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    878 		md->pvh_attrs |= PVF_DIRTY;
    879 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
    880 #endif
    881 	if (pm == pmap_kernel()) {
    882 		PMAPCOUNT(kernel_mappings);
    883 		if (flags & PVF_WRITE)
    884 			md->krw_mappings++;
    885 		else
    886 			md->kro_mappings++;
    887 	} else {
    888 		if (flags & PVF_WRITE)
    889 			md->urw_mappings++;
    890 		else
    891 			md->uro_mappings++;
    892 	}
    893 
    894 #ifdef PMAP_CACHE_VIPT
    895 	/*
    896 	 * If this is an exec mapping and its the first exec mapping
    897 	 * for this page, make sure to sync the I-cache.
    898 	 */
    899 	if (PV_IS_EXEC_P(flags)) {
    900 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
    901 			pmap_syncicache_page(md, pa);
    902 			PMAPCOUNT(exec_synced_map);
    903 		}
    904 		PMAPCOUNT(exec_mappings);
    905 	}
    906 #endif
    907 
    908 	PMAPCOUNT(mappings);
    909 
    910 	if (pv->pv_flags & PVF_WIRED)
    911 		++pm->pm_stats.wired_count;
    912 }
    913 
    914 /*
    915  *
    916  * pmap_find_pv: Find a pv entry
    917  *
    918  * => caller should hold lock on vm_page
    919  */
    920 static inline struct pv_entry *
    921 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
    922 {
    923 	struct pv_entry *pv;
    924 
    925 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
    926 		if (pm == pv->pv_pmap && va == pv->pv_va)
    927 			break;
    928 	}
    929 
    930 	return (pv);
    931 }
    932 
    933 /*
    934  * pmap_remove_pv: try to remove a mapping from a pv_list
    935  *
    936  * => caller should hold proper lock on pmap_main_lock
    937  * => pmap should be locked
    938  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    939  * => caller should adjust ptp's wire_count and free PTP if needed
    940  * => caller should NOT adjust pmap's wire_count
    941  * => we return the removed pv
    942  */
    943 static struct pv_entry *
    944 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
    945 {
    946 	struct pv_entry *pv, **prevptr;
    947 
    948 	NPDEBUG(PDB_PVDUMP,
    949 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
    950 
    951 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
    952 	pv = *prevptr;
    953 
    954 	while (pv) {
    955 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
    956 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
    957 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
    958 			if (pv->pv_flags & PVF_WIRED) {
    959 				--pm->pm_stats.wired_count;
    960 			}
    961 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
    962 			if (pm == pmap_kernel()) {
    963 				PMAPCOUNT(kernel_unmappings);
    964 				if (pv->pv_flags & PVF_WRITE)
    965 					md->krw_mappings--;
    966 				else
    967 					md->kro_mappings--;
    968 			} else {
    969 				if (pv->pv_flags & PVF_WRITE)
    970 					md->urw_mappings--;
    971 				else
    972 					md->uro_mappings--;
    973 			}
    974 
    975 			PMAPCOUNT(unmappings);
    976 #ifdef PMAP_CACHE_VIPT
    977 			if (!(pv->pv_flags & PVF_WRITE))
    978 				break;
    979 			/*
    980 			 * If this page has had an exec mapping, then if
    981 			 * this was the last mapping, discard the contents,
    982 			 * otherwise sync the i-cache for this page.
    983 			 */
    984 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
    985 				if (SLIST_EMPTY(&md->pvh_list)) {
    986 					md->pvh_attrs &= ~PVF_EXEC;
    987 					PMAPCOUNT(exec_discarded_unmap);
    988 				} else {
    989 					pmap_syncicache_page(md, pa);
    990 					PMAPCOUNT(exec_synced_unmap);
    991 				}
    992 			}
    993 #endif /* PMAP_CACHE_VIPT */
    994 			break;
    995 		}
    996 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
    997 		pv = *prevptr;				/* advance */
    998 	}
    999 
   1000 #ifdef PMAP_CACHE_VIPT
   1001 	/*
   1002 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1003 	 * clear the KMOD attribute from the page.
   1004 	 */
   1005 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1006 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1007 		md->pvh_attrs &= ~PVF_KMOD;
   1008 
   1009 	/*
   1010 	 * If this was a writeable page and there are no more writeable
   1011 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1012 	 * the contents to memory.
   1013 	 */
   1014 	if (md->krw_mappings + md->urw_mappings == 0)
   1015 		md->pvh_attrs &= ~PVF_WRITE;
   1016 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1017 #endif /* PMAP_CACHE_VIPT */
   1018 
   1019 	return(pv);				/* return removed pv */
   1020 }
   1021 
   1022 /*
   1023  *
   1024  * pmap_modify_pv: Update pv flags
   1025  *
   1026  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1027  * => caller should NOT adjust pmap's wire_count
   1028  * => caller must call pmap_vac_me_harder() if writable status of a page
   1029  *    may have changed.
   1030  * => we return the old flags
   1031  *
   1032  * Modify a physical-virtual mapping in the pv table
   1033  */
   1034 static u_int
   1035 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1036     u_int clr_mask, u_int set_mask)
   1037 {
   1038 	struct pv_entry *npv;
   1039 	u_int flags, oflags;
   1040 
   1041 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1042 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1043 
   1044 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1045 		return (0);
   1046 
   1047 	NPDEBUG(PDB_PVDUMP,
   1048 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1049 
   1050 	/*
   1051 	 * There is at least one VA mapping this page.
   1052 	 */
   1053 
   1054 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1055 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1056 #ifdef PMAP_CACHE_VIPT
   1057 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1058 			md->pvh_attrs |= PVF_DIRTY;
   1059 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1060 #endif
   1061 	}
   1062 
   1063 	oflags = npv->pv_flags;
   1064 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1065 
   1066 	if ((flags ^ oflags) & PVF_WIRED) {
   1067 		if (flags & PVF_WIRED)
   1068 			++pm->pm_stats.wired_count;
   1069 		else
   1070 			--pm->pm_stats.wired_count;
   1071 	}
   1072 
   1073 	if ((flags ^ oflags) & PVF_WRITE) {
   1074 		if (pm == pmap_kernel()) {
   1075 			if (flags & PVF_WRITE) {
   1076 				md->krw_mappings++;
   1077 				md->kro_mappings--;
   1078 			} else {
   1079 				md->kro_mappings++;
   1080 				md->krw_mappings--;
   1081 			}
   1082 		} else {
   1083 			if (flags & PVF_WRITE) {
   1084 				md->urw_mappings++;
   1085 				md->uro_mappings--;
   1086 			} else {
   1087 				md->uro_mappings++;
   1088 				md->urw_mappings--;
   1089 			}
   1090 		}
   1091 	}
   1092 #ifdef PMAP_CACHE_VIPT
   1093 	if (md->urw_mappings + md->krw_mappings == 0)
   1094 		md->pvh_attrs &= ~PVF_WRITE;
   1095 	/*
   1096 	 * We have two cases here: the first is from enter_pv (new exec
   1097 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1098 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1099 	 * to do what pmap_remove_pv would do.
   1100 	 */
   1101 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1102 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1103 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1104 		pmap_syncicache_page(md, pa);
   1105 		PMAPCOUNT(exec_synced_remap);
   1106 	}
   1107 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1108 #endif
   1109 
   1110 	PMAPCOUNT(remappings);
   1111 
   1112 	return (oflags);
   1113 }
   1114 
   1115 /*
   1116  * Allocate an L1 translation table for the specified pmap.
   1117  * This is called at pmap creation time.
   1118  */
   1119 static void
   1120 pmap_alloc_l1(pmap_t pm)
   1121 {
   1122 	struct l1_ttable *l1;
   1123 	u_int8_t domain;
   1124 
   1125 	/*
   1126 	 * Remove the L1 at the head of the LRU list
   1127 	 */
   1128 	mutex_spin_enter(&l1_lru_lock);
   1129 	l1 = TAILQ_FIRST(&l1_lru_list);
   1130 	KDASSERT(l1 != NULL);
   1131 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1132 
   1133 	/*
   1134 	 * Pick the first available domain number, and update
   1135 	 * the link to the next number.
   1136 	 */
   1137 	domain = l1->l1_domain_first;
   1138 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1139 
   1140 	/*
   1141 	 * If there are still free domain numbers in this L1,
   1142 	 * put it back on the TAIL of the LRU list.
   1143 	 */
   1144 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1145 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1146 
   1147 	mutex_spin_exit(&l1_lru_lock);
   1148 
   1149 	/*
   1150 	 * Fix up the relevant bits in the pmap structure
   1151 	 */
   1152 	pm->pm_l1 = l1;
   1153 	pm->pm_domain = domain + 1;
   1154 }
   1155 
   1156 /*
   1157  * Free an L1 translation table.
   1158  * This is called at pmap destruction time.
   1159  */
   1160 static void
   1161 pmap_free_l1(pmap_t pm)
   1162 {
   1163 	struct l1_ttable *l1 = pm->pm_l1;
   1164 
   1165 	mutex_spin_enter(&l1_lru_lock);
   1166 
   1167 	/*
   1168 	 * If this L1 is currently on the LRU list, remove it.
   1169 	 */
   1170 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1171 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1172 
   1173 	/*
   1174 	 * Free up the domain number which was allocated to the pmap
   1175 	 */
   1176 	l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
   1177 	l1->l1_domain_first = pm->pm_domain - 1;
   1178 	l1->l1_domain_use_count--;
   1179 
   1180 	/*
   1181 	 * The L1 now must have at least 1 free domain, so add
   1182 	 * it back to the LRU list. If the use count is zero,
   1183 	 * put it at the head of the list, otherwise it goes
   1184 	 * to the tail.
   1185 	 */
   1186 	if (l1->l1_domain_use_count == 0)
   1187 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1188 	else
   1189 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1190 
   1191 	mutex_spin_exit(&l1_lru_lock);
   1192 }
   1193 
   1194 static inline void
   1195 pmap_use_l1(pmap_t pm)
   1196 {
   1197 	struct l1_ttable *l1;
   1198 
   1199 	/*
   1200 	 * Do nothing if we're in interrupt context.
   1201 	 * Access to an L1 by the kernel pmap must not affect
   1202 	 * the LRU list.
   1203 	 */
   1204 	if (cpu_intr_p() || pm == pmap_kernel())
   1205 		return;
   1206 
   1207 	l1 = pm->pm_l1;
   1208 
   1209 	/*
   1210 	 * If the L1 is not currently on the LRU list, just return
   1211 	 */
   1212 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1213 		return;
   1214 
   1215 	mutex_spin_enter(&l1_lru_lock);
   1216 
   1217 	/*
   1218 	 * Check the use count again, now that we've acquired the lock
   1219 	 */
   1220 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1221 		mutex_spin_exit(&l1_lru_lock);
   1222 		return;
   1223 	}
   1224 
   1225 	/*
   1226 	 * Move the L1 to the back of the LRU list
   1227 	 */
   1228 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1229 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1230 
   1231 	mutex_spin_exit(&l1_lru_lock);
   1232 }
   1233 
   1234 /*
   1235  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1236  *
   1237  * Free an L2 descriptor table.
   1238  */
   1239 static inline void
   1240 #ifndef PMAP_INCLUDE_PTE_SYNC
   1241 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1242 #else
   1243 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1244 #endif
   1245 {
   1246 #ifdef PMAP_INCLUDE_PTE_SYNC
   1247 #ifdef PMAP_CACHE_VIVT
   1248 	/*
   1249 	 * Note: With a write-back cache, we may need to sync this
   1250 	 * L2 table before re-using it.
   1251 	 * This is because it may have belonged to a non-current
   1252 	 * pmap, in which case the cache syncs would have been
   1253 	 * skipped for the pages that were being unmapped. If the
   1254 	 * L2 table were then to be immediately re-allocated to
   1255 	 * the *current* pmap, it may well contain stale mappings
   1256 	 * which have not yet been cleared by a cache write-back
   1257 	 * and so would still be visible to the mmu.
   1258 	 */
   1259 	if (need_sync)
   1260 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1261 #endif /* PMAP_CACHE_VIVT */
   1262 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1263 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1264 }
   1265 
   1266 /*
   1267  * Returns a pointer to the L2 bucket associated with the specified pmap
   1268  * and VA, or NULL if no L2 bucket exists for the address.
   1269  */
   1270 static inline struct l2_bucket *
   1271 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1272 {
   1273 	struct l2_dtable *l2;
   1274 	struct l2_bucket *l2b;
   1275 	u_short l1idx;
   1276 
   1277 	l1idx = L1_IDX(va);
   1278 
   1279 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1280 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1281 		return (NULL);
   1282 
   1283 	return (l2b);
   1284 }
   1285 
   1286 /*
   1287  * Returns a pointer to the L2 bucket associated with the specified pmap
   1288  * and VA.
   1289  *
   1290  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1291  * bucket/page table in place.
   1292  *
   1293  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1294  * increment the bucket occupancy counter appropriately *before*
   1295  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1296  * the bucket/page in the meantime.
   1297  */
   1298 static struct l2_bucket *
   1299 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1300 {
   1301 	struct l2_dtable *l2;
   1302 	struct l2_bucket *l2b;
   1303 	u_short l1idx;
   1304 
   1305 	l1idx = L1_IDX(va);
   1306 
   1307 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1308 		/*
   1309 		 * No mapping at this address, as there is
   1310 		 * no entry in the L1 table.
   1311 		 * Need to allocate a new l2_dtable.
   1312 		 */
   1313 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1314 			return (NULL);
   1315 
   1316 		/*
   1317 		 * Link it into the parent pmap
   1318 		 */
   1319 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1320 	}
   1321 
   1322 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1323 
   1324 	/*
   1325 	 * Fetch pointer to the L2 page table associated with the address.
   1326 	 */
   1327 	if (l2b->l2b_kva == NULL) {
   1328 		pt_entry_t *ptep;
   1329 
   1330 		/*
   1331 		 * No L2 page table has been allocated. Chances are, this
   1332 		 * is because we just allocated the l2_dtable, above.
   1333 		 */
   1334 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1335 			/*
   1336 			 * Oops, no more L2 page tables available at this
   1337 			 * time. We may need to deallocate the l2_dtable
   1338 			 * if we allocated a new one above.
   1339 			 */
   1340 			if (l2->l2_occupancy == 0) {
   1341 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1342 				pmap_free_l2_dtable(l2);
   1343 			}
   1344 			return (NULL);
   1345 		}
   1346 
   1347 		l2->l2_occupancy++;
   1348 		l2b->l2b_kva = ptep;
   1349 		l2b->l2b_l1idx = l1idx;
   1350 	}
   1351 
   1352 	return (l2b);
   1353 }
   1354 
   1355 /*
   1356  * One or more mappings in the specified L2 descriptor table have just been
   1357  * invalidated.
   1358  *
   1359  * Garbage collect the metadata and descriptor table itself if necessary.
   1360  *
   1361  * The pmap lock must be acquired when this is called (not necessary
   1362  * for the kernel pmap).
   1363  */
   1364 static void
   1365 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1366 {
   1367 	struct l2_dtable *l2;
   1368 	pd_entry_t *pl1pd, l1pd;
   1369 	pt_entry_t *ptep;
   1370 	u_short l1idx;
   1371 
   1372 	KDASSERT(count <= l2b->l2b_occupancy);
   1373 
   1374 	/*
   1375 	 * Update the bucket's reference count according to how many
   1376 	 * PTEs the caller has just invalidated.
   1377 	 */
   1378 	l2b->l2b_occupancy -= count;
   1379 
   1380 	/*
   1381 	 * Note:
   1382 	 *
   1383 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1384 	 * as that would require checking all Level 1 page tables and
   1385 	 * removing any references to the Level 2 page table. See also the
   1386 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1387 	 *
   1388 	 * We make do with just invalidating the mapping in the L2 table.
   1389 	 *
   1390 	 * This isn't really a big deal in practice and, in fact, leads
   1391 	 * to a performance win over time as we don't need to continually
   1392 	 * alloc/free.
   1393 	 */
   1394 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1395 		return;
   1396 
   1397 	/*
   1398 	 * There are no more valid mappings in this level 2 page table.
   1399 	 * Go ahead and NULL-out the pointer in the bucket, then
   1400 	 * free the page table.
   1401 	 */
   1402 	l1idx = l2b->l2b_l1idx;
   1403 	ptep = l2b->l2b_kva;
   1404 	l2b->l2b_kva = NULL;
   1405 
   1406 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1407 
   1408 	/*
   1409 	 * If the L1 slot matches the pmap's domain
   1410 	 * number, then invalidate it.
   1411 	 */
   1412 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1413 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1414 		*pl1pd = 0;
   1415 		PTE_SYNC(pl1pd);
   1416 	}
   1417 
   1418 	/*
   1419 	 * Release the L2 descriptor table back to the pool cache.
   1420 	 */
   1421 #ifndef PMAP_INCLUDE_PTE_SYNC
   1422 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1423 #else
   1424 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1425 #endif
   1426 
   1427 	/*
   1428 	 * Update the reference count in the associated l2_dtable
   1429 	 */
   1430 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1431 	if (--l2->l2_occupancy > 0)
   1432 		return;
   1433 
   1434 	/*
   1435 	 * There are no more valid mappings in any of the Level 1
   1436 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1437 	 * the pointer in the parent pmap and free the l2_dtable.
   1438 	 */
   1439 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1440 	pmap_free_l2_dtable(l2);
   1441 }
   1442 
   1443 /*
   1444  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1445  * structures.
   1446  */
   1447 static int
   1448 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1449 {
   1450 #ifndef PMAP_INCLUDE_PTE_SYNC
   1451 	struct l2_bucket *l2b;
   1452 	pt_entry_t *ptep, pte;
   1453 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1454 
   1455 	/*
   1456 	 * The mappings for these page tables were initially made using
   1457 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1458 	 * mode will not be right for page table mappings. To avoid
   1459 	 * polluting the pmap_kenter_pa() code with a special case for
   1460 	 * page tables, we simply fix up the cache-mode here if it's not
   1461 	 * correct.
   1462 	 */
   1463 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1464 	KDASSERT(l2b != NULL);
   1465 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1466 	pte = *ptep;
   1467 
   1468 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1469 		/*
   1470 		 * Page tables must have the cache-mode set to Write-Thru.
   1471 		 */
   1472 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1473 		PTE_SYNC(ptep);
   1474 		cpu_tlb_flushD_SE(va);
   1475 		cpu_cpwait();
   1476 	}
   1477 #endif
   1478 
   1479 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1480 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1481 	return (0);
   1482 }
   1483 
   1484 static int
   1485 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1486 {
   1487 
   1488 	memset(v, 0, sizeof(struct l2_dtable));
   1489 	return (0);
   1490 }
   1491 
   1492 static int
   1493 pmap_pmap_ctor(void *arg, void *v, int flags)
   1494 {
   1495 
   1496 	memset(v, 0, sizeof(struct pmap));
   1497 	return (0);
   1498 }
   1499 
   1500 static void
   1501 pmap_pinit(pmap_t pm)
   1502 {
   1503 	struct l2_bucket *l2b;
   1504 
   1505 	if (vector_page < KERNEL_BASE) {
   1506 		/*
   1507 		 * Map the vector page.
   1508 		 */
   1509 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1510 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1511 		pmap_update(pm);
   1512 
   1513 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1514 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1515 		KDASSERT(l2b != NULL);
   1516 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1517 		    L1_C_DOM(pm->pm_domain);
   1518 	} else
   1519 		pm->pm_pl1vec = NULL;
   1520 }
   1521 
   1522 #ifdef PMAP_CACHE_VIVT
   1523 /*
   1524  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1525  * there is more than one mapping and at least one of them is writable.
   1526  * Since we purge the cache on every context switch, we only need to check for
   1527  * other mappings within the same pmap, or kernel_pmap.
   1528  * This function is also called when a page is unmapped, to possibly reenable
   1529  * caching on any remaining mappings.
   1530  *
   1531  * The code implements the following logic, where:
   1532  *
   1533  * KW = # of kernel read/write pages
   1534  * KR = # of kernel read only pages
   1535  * UW = # of user read/write pages
   1536  * UR = # of user read only pages
   1537  *
   1538  * KC = kernel mapping is cacheable
   1539  * UC = user mapping is cacheable
   1540  *
   1541  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1542  *             +---------------------------------------------
   1543  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1544  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1545  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1546  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1547  */
   1548 
   1549 static const int pmap_vac_flags[4][4] = {
   1550 	{-1,		0,		0,		PVF_KNC},
   1551 	{0,		0,		PVF_NC,		PVF_NC},
   1552 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1553 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1554 };
   1555 
   1556 static inline int
   1557 pmap_get_vac_flags(const struct vm_page_md *md)
   1558 {
   1559 	int kidx, uidx;
   1560 
   1561 	kidx = 0;
   1562 	if (md->kro_mappings || md->krw_mappings > 1)
   1563 		kidx |= 1;
   1564 	if (md->krw_mappings)
   1565 		kidx |= 2;
   1566 
   1567 	uidx = 0;
   1568 	if (md->uro_mappings || md->urw_mappings > 1)
   1569 		uidx |= 1;
   1570 	if (md->urw_mappings)
   1571 		uidx |= 2;
   1572 
   1573 	return (pmap_vac_flags[uidx][kidx]);
   1574 }
   1575 
   1576 static inline void
   1577 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1578 {
   1579 	int nattr;
   1580 
   1581 	nattr = pmap_get_vac_flags(md);
   1582 
   1583 	if (nattr < 0) {
   1584 		md->pvh_attrs &= ~PVF_NC;
   1585 		return;
   1586 	}
   1587 
   1588 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1589 		return;
   1590 
   1591 	if (pm == pmap_kernel())
   1592 		pmap_vac_me_kpmap(md, pa, pm, va);
   1593 	else
   1594 		pmap_vac_me_user(md, pa, pm, va);
   1595 
   1596 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1597 }
   1598 
   1599 static void
   1600 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1601 {
   1602 	u_int u_cacheable, u_entries;
   1603 	struct pv_entry *pv;
   1604 	pmap_t last_pmap = pm;
   1605 
   1606 	/*
   1607 	 * Pass one, see if there are both kernel and user pmaps for
   1608 	 * this page.  Calculate whether there are user-writable or
   1609 	 * kernel-writable pages.
   1610 	 */
   1611 	u_cacheable = 0;
   1612 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1613 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1614 			u_cacheable++;
   1615 	}
   1616 
   1617 	u_entries = md->urw_mappings + md->uro_mappings;
   1618 
   1619 	/*
   1620 	 * We know we have just been updating a kernel entry, so if
   1621 	 * all user pages are already cacheable, then there is nothing
   1622 	 * further to do.
   1623 	 */
   1624 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1625 		return;
   1626 
   1627 	if (u_entries) {
   1628 		/*
   1629 		 * Scan over the list again, for each entry, if it
   1630 		 * might not be set correctly, call pmap_vac_me_user
   1631 		 * to recalculate the settings.
   1632 		 */
   1633 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1634 			/*
   1635 			 * We know kernel mappings will get set
   1636 			 * correctly in other calls.  We also know
   1637 			 * that if the pmap is the same as last_pmap
   1638 			 * then we've just handled this entry.
   1639 			 */
   1640 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1641 				continue;
   1642 
   1643 			/*
   1644 			 * If there are kernel entries and this page
   1645 			 * is writable but non-cacheable, then we can
   1646 			 * skip this entry also.
   1647 			 */
   1648 			if (md->k_mappings &&
   1649 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1650 			    (PVF_NC | PVF_WRITE))
   1651 				continue;
   1652 
   1653 			/*
   1654 			 * Similarly if there are no kernel-writable
   1655 			 * entries and the page is already
   1656 			 * read-only/cacheable.
   1657 			 */
   1658 			if (md->krw_mappings == 0 &&
   1659 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1660 				continue;
   1661 
   1662 			/*
   1663 			 * For some of the remaining cases, we know
   1664 			 * that we must recalculate, but for others we
   1665 			 * can't tell if they are correct or not, so
   1666 			 * we recalculate anyway.
   1667 			 */
   1668 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1669 		}
   1670 
   1671 		if (md->k_mappings == 0)
   1672 			return;
   1673 	}
   1674 
   1675 	pmap_vac_me_user(md, pa, pm, va);
   1676 }
   1677 
   1678 static void
   1679 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1680 {
   1681 	pmap_t kpmap = pmap_kernel();
   1682 	struct pv_entry *pv, *npv = NULL;
   1683 	struct l2_bucket *l2b;
   1684 	pt_entry_t *ptep, pte;
   1685 	u_int entries = 0;
   1686 	u_int writable = 0;
   1687 	u_int cacheable_entries = 0;
   1688 	u_int kern_cacheable = 0;
   1689 	u_int other_writable = 0;
   1690 
   1691 	/*
   1692 	 * Count mappings and writable mappings in this pmap.
   1693 	 * Include kernel mappings as part of our own.
   1694 	 * Keep a pointer to the first one.
   1695 	 */
   1696 	npv = NULL;
   1697 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1698 		/* Count mappings in the same pmap */
   1699 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1700 			if (entries++ == 0)
   1701 				npv = pv;
   1702 
   1703 			/* Cacheable mappings */
   1704 			if ((pv->pv_flags & PVF_NC) == 0) {
   1705 				cacheable_entries++;
   1706 				if (kpmap == pv->pv_pmap)
   1707 					kern_cacheable++;
   1708 			}
   1709 
   1710 			/* Writable mappings */
   1711 			if (pv->pv_flags & PVF_WRITE)
   1712 				++writable;
   1713 		} else
   1714 		if (pv->pv_flags & PVF_WRITE)
   1715 			other_writable = 1;
   1716 	}
   1717 
   1718 	/*
   1719 	 * Enable or disable caching as necessary.
   1720 	 * Note: the first entry might be part of the kernel pmap,
   1721 	 * so we can't assume this is indicative of the state of the
   1722 	 * other (maybe non-kpmap) entries.
   1723 	 */
   1724 	if ((entries > 1 && writable) ||
   1725 	    (entries > 0 && pm == kpmap && other_writable)) {
   1726 		if (cacheable_entries == 0)
   1727 			return;
   1728 
   1729 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1730 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1731 			    (pv->pv_flags & PVF_NC))
   1732 				continue;
   1733 
   1734 			pv->pv_flags |= PVF_NC;
   1735 
   1736 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1737 			KDASSERT(l2b != NULL);
   1738 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1739 			pte = *ptep & ~L2_S_CACHE_MASK;
   1740 
   1741 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1742 			    l2pte_valid(pte)) {
   1743 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1744 #ifdef PMAP_CACHE_VIVT
   1745 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1746 					    pv->pv_va, PAGE_SIZE);
   1747 #endif
   1748 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1749 					    pv->pv_va);
   1750 				} else
   1751 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1752 #ifdef PMAP_CACHE_VIVT
   1753 					pmap_dcache_wb_range(pv->pv_pmap,
   1754 					    pv->pv_va, PAGE_SIZE, true,
   1755 					    (pv->pv_flags & PVF_WRITE) == 0);
   1756 #endif
   1757 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1758 					    pv->pv_va);
   1759 				}
   1760 			}
   1761 
   1762 			*ptep = pte;
   1763 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1764 		}
   1765 		cpu_cpwait();
   1766 	} else
   1767 	if (entries > cacheable_entries) {
   1768 		/*
   1769 		 * Turn cacheing back on for some pages.  If it is a kernel
   1770 		 * page, only do so if there are no other writable pages.
   1771 		 */
   1772 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1773 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1774 			    (kpmap != pv->pv_pmap || other_writable)))
   1775 				continue;
   1776 
   1777 			pv->pv_flags &= ~PVF_NC;
   1778 
   1779 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1780 			KDASSERT(l2b != NULL);
   1781 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1782 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1783 
   1784 			if (l2pte_valid(pte)) {
   1785 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1786 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1787 					    pv->pv_va);
   1788 				} else
   1789 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1790 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1791 					    pv->pv_va);
   1792 				}
   1793 			}
   1794 
   1795 			*ptep = pte;
   1796 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1797 		}
   1798 	}
   1799 }
   1800 #endif
   1801 
   1802 #ifdef PMAP_CACHE_VIPT
   1803 static void
   1804 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1805 {
   1806 	struct pv_entry *pv;
   1807 	vaddr_t tst_mask;
   1808 	bool bad_alias;
   1809 	struct l2_bucket *l2b;
   1810 	pt_entry_t *ptep, pte, opte;
   1811 	const u_int
   1812 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   1813 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   1814 
   1815 	/* do we need to do anything? */
   1816 	if (arm_cache_prefer_mask == 0)
   1817 		return;
   1818 
   1819 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   1820 	    md, pm, va));
   1821 
   1822 	KASSERT(!va || pm);
   1823 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1824 
   1825 	/* Already a conflict? */
   1826 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   1827 		/* just an add, things are already non-cached */
   1828 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   1829 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1830 		bad_alias = false;
   1831 		if (va) {
   1832 			PMAPCOUNT(vac_color_none);
   1833 			bad_alias = true;
   1834 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1835 			goto fixup;
   1836 		}
   1837 		pv = SLIST_FIRST(&md->pvh_list);
   1838 		/* the list can't be empty because it would be cachable */
   1839 		if (md->pvh_attrs & PVF_KMPAGE) {
   1840 			tst_mask = md->pvh_attrs;
   1841 		} else {
   1842 			KASSERT(pv);
   1843 			tst_mask = pv->pv_va;
   1844 			pv = SLIST_NEXT(pv, pv_link);
   1845 		}
   1846 		/*
   1847 		 * Only check for a bad alias if we have writable mappings.
   1848 		 */
   1849 		tst_mask &= arm_cache_prefer_mask;
   1850 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1851 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1852 				/* if there's a bad alias, stop checking. */
   1853 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1854 					bad_alias = true;
   1855 			}
   1856 			md->pvh_attrs |= PVF_WRITE;
   1857 			if (!bad_alias)
   1858 				md->pvh_attrs |= PVF_DIRTY;
   1859 		} else {
   1860 			/*
   1861 			 * We have only read-only mappings.  Let's see if there
   1862 			 * are multiple colors in use or if we mapped a KMPAGE.
   1863 			 * If the latter, we have a bad alias.  If the former,
   1864 			 * we need to remember that.
   1865 			 */
   1866 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1867 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1868 					if (md->pvh_attrs & PVF_KMPAGE)
   1869 						bad_alias = true;
   1870 					break;
   1871 				}
   1872 			}
   1873 			md->pvh_attrs &= ~PVF_WRITE;
   1874 			/*
   1875 			 * No KMPAGE and we exited early, so we must have
   1876 			 * multiple color mappings.
   1877 			 */
   1878 			if (!bad_alias && pv != NULL)
   1879 				md->pvh_attrs |= PVF_MULTCLR;
   1880 		}
   1881 
   1882 		/* If no conflicting colors, set everything back to cached */
   1883 		if (!bad_alias) {
   1884 #ifdef DEBUG
   1885 			if ((md->pvh_attrs & PVF_WRITE)
   1886 			    || ro_mappings < 2) {
   1887 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1888 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1889 			}
   1890 #endif
   1891 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1892 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   1893 			/*
   1894 			 * Restore DIRTY bit if page is modified
   1895 			 */
   1896 			if (md->pvh_attrs & PVF_DMOD)
   1897 				md->pvh_attrs |= PVF_DIRTY;
   1898 			PMAPCOUNT(vac_color_restore);
   1899 		} else {
   1900 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1901 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1902 		}
   1903 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1904 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1905 	} else if (!va) {
   1906 		KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   1907 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   1908 		    || (md->pvh_attrs & PVF_DIRTY));
   1909 		if (rw_mappings == 0) {
   1910 			md->pvh_attrs &= ~PVF_WRITE;
   1911 			if (ro_mappings == 1
   1912 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   1913 				/*
   1914 				 * If this is the last readonly mapping
   1915 				 * but it doesn't match the current color
   1916 				 * for the page, change the current color
   1917 				 * to match this last readonly mapping.
   1918 				 */
   1919 				pv = SLIST_FIRST(&md->pvh_list);
   1920 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   1921 				    & arm_cache_prefer_mask;
   1922 				if (tst_mask) {
   1923 					md->pvh_attrs ^= tst_mask;
   1924 					PMAPCOUNT(vac_color_change);
   1925 				}
   1926 			}
   1927 		}
   1928 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1929 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1930 		return;
   1931 	} else if (!pmap_is_page_colored_p(md)) {
   1932 		/* not colored so we just use its color */
   1933 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1934 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1935 		PMAPCOUNT(vac_color_new);
   1936 		md->pvh_attrs &= PAGE_SIZE - 1;
   1937 		md->pvh_attrs |= PVF_COLORED
   1938 		    | (va & arm_cache_prefer_mask)
   1939 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1940 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1941 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1942 		return;
   1943 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1944 		bad_alias = false;
   1945 		if (rw_mappings > 0) {
   1946 			/*
   1947 			 * We now have writeable mappings and if we have
   1948 			 * readonly mappings in more than once color, we have
   1949 			 * an aliasing problem.  Regardless mark the page as
   1950 			 * writeable.
   1951 			 */
   1952 			if (md->pvh_attrs & PVF_MULTCLR) {
   1953 				if (ro_mappings < 2) {
   1954 					/*
   1955 					 * If we only have less than two
   1956 					 * read-only mappings, just flush the
   1957 					 * non-primary colors from the cache.
   1958 					 */
   1959 					pmap_flush_page(md, pa,
   1960 					    PMAP_FLUSH_SECONDARY);
   1961 				} else {
   1962 					bad_alias = true;
   1963 				}
   1964 			}
   1965 			md->pvh_attrs |= PVF_WRITE;
   1966 		}
   1967 		/* If no conflicting colors, set everything back to cached */
   1968 		if (!bad_alias) {
   1969 #ifdef DEBUG
   1970 			if (rw_mappings > 0
   1971 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   1972 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   1973 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1974 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1975 			}
   1976 #endif
   1977 			if (SLIST_EMPTY(&md->pvh_list))
   1978 				PMAPCOUNT(vac_color_reuse);
   1979 			else
   1980 				PMAPCOUNT(vac_color_ok);
   1981 
   1982 			/* matching color, just return */
   1983 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1984 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1985 			return;
   1986 		}
   1987 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1988 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1989 
   1990 		/* color conflict.  evict from cache. */
   1991 
   1992 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   1993 		md->pvh_attrs &= ~PVF_COLORED;
   1994 		md->pvh_attrs |= PVF_NC;
   1995 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1996 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1997 		PMAPCOUNT(vac_color_erase);
   1998 	} else if (rw_mappings == 0
   1999 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2000 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2001 
   2002 		/*
   2003 		 * If the page has dirty cache lines, clean it.
   2004 		 */
   2005 		if (md->pvh_attrs & PVF_DIRTY)
   2006 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2007 
   2008 		/*
   2009 		 * If this is the first remapping (we know that there are no
   2010 		 * writeable mappings), then this is a simple color change.
   2011 		 * Otherwise this is a seconary r/o mapping, which means
   2012 		 * we don't have to do anything.
   2013 		 */
   2014 		if (ro_mappings == 1) {
   2015 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2016 			md->pvh_attrs &= PAGE_SIZE - 1;
   2017 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2018 			PMAPCOUNT(vac_color_change);
   2019 		} else {
   2020 			PMAPCOUNT(vac_color_blind);
   2021 		}
   2022 		md->pvh_attrs |= PVF_MULTCLR;
   2023 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2024 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2025 		return;
   2026 	} else {
   2027 		if (rw_mappings > 0)
   2028 			md->pvh_attrs |= PVF_WRITE;
   2029 
   2030 		/* color conflict.  evict from cache. */
   2031 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2032 
   2033 		/* the list can't be empty because this was a enter/modify */
   2034 		pv = SLIST_FIRST(&md->pvh_list);
   2035 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2036 			KASSERT(pv);
   2037 			/*
   2038 			 * If there's only one mapped page, change color to the
   2039 			 * page's new color and return.  Restore the DIRTY bit
   2040 			 * that was erased by pmap_flush_page.
   2041 			 */
   2042 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2043 				md->pvh_attrs &= PAGE_SIZE - 1;
   2044 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2045 				if (md->pvh_attrs & PVF_DMOD)
   2046 					md->pvh_attrs |= PVF_DIRTY;
   2047 				PMAPCOUNT(vac_color_change);
   2048 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2049 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2050 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2051 				return;
   2052 			}
   2053 		}
   2054 		bad_alias = true;
   2055 		md->pvh_attrs &= ~PVF_COLORED;
   2056 		md->pvh_attrs |= PVF_NC;
   2057 		PMAPCOUNT(vac_color_erase);
   2058 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2059 	}
   2060 
   2061   fixup:
   2062 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2063 
   2064 	/*
   2065 	 * Turn cacheing on/off for all pages.
   2066 	 */
   2067 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2068 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2069 		KDASSERT(l2b != NULL);
   2070 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2071 		opte = *ptep;
   2072 		pte = opte & ~L2_S_CACHE_MASK;
   2073 		if (bad_alias) {
   2074 			pv->pv_flags |= PVF_NC;
   2075 		} else {
   2076 			pv->pv_flags &= ~PVF_NC;
   2077 			pte |= pte_l2_s_cache_mode;
   2078 		}
   2079 
   2080 		if (opte == pte)	/* only update is there's a change */
   2081 			continue;
   2082 
   2083 		if (l2pte_valid(pte)) {
   2084 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2085 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2086 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2087 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2088 			}
   2089 		}
   2090 
   2091 		*ptep = pte;
   2092 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2093 	}
   2094 }
   2095 #endif	/* PMAP_CACHE_VIPT */
   2096 
   2097 
   2098 /*
   2099  * Modify pte bits for all ptes corresponding to the given physical address.
   2100  * We use `maskbits' rather than `clearbits' because we're always passing
   2101  * constants and the latter would require an extra inversion at run-time.
   2102  */
   2103 static void
   2104 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2105 {
   2106 	struct l2_bucket *l2b;
   2107 	struct pv_entry *pv;
   2108 	pt_entry_t *ptep, npte, opte;
   2109 	pmap_t pm;
   2110 	vaddr_t va;
   2111 	u_int oflags;
   2112 #ifdef PMAP_CACHE_VIPT
   2113 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2114 	bool need_syncicache = false;
   2115 	bool did_syncicache = false;
   2116 	bool need_vac_me_harder = false;
   2117 #endif
   2118 
   2119 	NPDEBUG(PDB_BITS,
   2120 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2121 	    md, maskbits));
   2122 
   2123 #ifdef PMAP_CACHE_VIPT
   2124 	/*
   2125 	 * If we might want to sync the I-cache and we've modified it,
   2126 	 * then we know we definitely need to sync or discard it.
   2127 	 */
   2128 	if (want_syncicache)
   2129 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2130 #endif
   2131 	/*
   2132 	 * Clear saved attributes (modify, reference)
   2133 	 */
   2134 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2135 
   2136 	if (SLIST_EMPTY(&md->pvh_list)) {
   2137 #ifdef PMAP_CACHE_VIPT
   2138 		if (need_syncicache) {
   2139 			/*
   2140 			 * No one has it mapped, so just discard it.  The next
   2141 			 * exec remapping will cause it to be synced.
   2142 			 */
   2143 			md->pvh_attrs &= ~PVF_EXEC;
   2144 			PMAPCOUNT(exec_discarded_clearbit);
   2145 		}
   2146 #endif
   2147 		return;
   2148 	}
   2149 
   2150 	/*
   2151 	 * Loop over all current mappings setting/clearing as appropos
   2152 	 */
   2153 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2154 		va = pv->pv_va;
   2155 		pm = pv->pv_pmap;
   2156 		oflags = pv->pv_flags;
   2157 		/*
   2158 		 * Kernel entries are unmanaged and as such not to be changed.
   2159 		 */
   2160 		if (oflags & PVF_KENTRY)
   2161 			continue;
   2162 		pv->pv_flags &= ~maskbits;
   2163 
   2164 		pmap_acquire_pmap_lock(pm);
   2165 
   2166 		l2b = pmap_get_l2_bucket(pm, va);
   2167 		KDASSERT(l2b != NULL);
   2168 
   2169 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2170 		npte = opte = *ptep;
   2171 
   2172 		NPDEBUG(PDB_BITS,
   2173 		    printf(
   2174 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2175 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2176 
   2177 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2178 #ifdef PMAP_CACHE_VIVT
   2179 			if ((pv->pv_flags & PVF_NC)) {
   2180 				/*
   2181 				 * Entry is not cacheable:
   2182 				 *
   2183 				 * Don't turn caching on again if this is a
   2184 				 * modified emulation. This would be
   2185 				 * inconsitent with the settings created by
   2186 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2187 				 * to re-enable cacheing.
   2188 				 *
   2189 				 * There's no need to call pmap_vac_me_harder()
   2190 				 * here: all pages are losing their write
   2191 				 * permission.
   2192 				 */
   2193 				if (maskbits & PVF_WRITE) {
   2194 					npte |= pte_l2_s_cache_mode;
   2195 					pv->pv_flags &= ~PVF_NC;
   2196 				}
   2197 			} else
   2198 			if (l2pte_writable_p(opte)) {
   2199 				/*
   2200 				 * Entry is writable/cacheable: check if pmap
   2201 				 * is current if it is flush it, otherwise it
   2202 				 * won't be in the cache
   2203 				 */
   2204 				if (PV_BEEN_EXECD(oflags))
   2205 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2206 					    PAGE_SIZE);
   2207 				else
   2208 				if (PV_BEEN_REFD(oflags))
   2209 					pmap_dcache_wb_range(pm, pv->pv_va,
   2210 					    PAGE_SIZE,
   2211 					    (maskbits & PVF_REF) != 0, false);
   2212 			}
   2213 #endif
   2214 
   2215 			/* make the pte read only */
   2216 			npte = l2pte_set_readonly(npte);
   2217 
   2218 			if (maskbits & oflags & PVF_WRITE) {
   2219 				/*
   2220 				 * Keep alias accounting up to date
   2221 				 */
   2222 				if (pv->pv_pmap == pmap_kernel()) {
   2223 					md->krw_mappings--;
   2224 					md->kro_mappings++;
   2225 				} else {
   2226 					md->urw_mappings--;
   2227 					md->uro_mappings++;
   2228 				}
   2229 #ifdef PMAP_CACHE_VIPT
   2230 				if (md->urw_mappings + md->krw_mappings == 0)
   2231 					md->pvh_attrs &= ~PVF_WRITE;
   2232 				if (want_syncicache)
   2233 					need_syncicache = true;
   2234 				need_vac_me_harder = true;
   2235 #endif
   2236 			}
   2237 		}
   2238 
   2239 		if (maskbits & PVF_REF) {
   2240 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2241 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2242 			    l2pte_valid(npte)) {
   2243 #ifdef PMAP_CACHE_VIVT
   2244 				/*
   2245 				 * Check npte here; we may have already
   2246 				 * done the wbinv above, and the validity
   2247 				 * of the PTE is the same for opte and
   2248 				 * npte.
   2249 				 */
   2250 				/* XXXJRT need idcache_inv_range */
   2251 				if (PV_BEEN_EXECD(oflags))
   2252 					pmap_idcache_wbinv_range(pm,
   2253 					    pv->pv_va, PAGE_SIZE);
   2254 				else
   2255 				if (PV_BEEN_REFD(oflags))
   2256 					pmap_dcache_wb_range(pm,
   2257 					    pv->pv_va, PAGE_SIZE,
   2258 					    true, true);
   2259 #endif
   2260 			}
   2261 
   2262 			/*
   2263 			 * Make the PTE invalid so that we will take a
   2264 			 * page fault the next time the mapping is
   2265 			 * referenced.
   2266 			 */
   2267 			npte &= ~L2_TYPE_MASK;
   2268 			npte |= L2_TYPE_INV;
   2269 		}
   2270 
   2271 		if (npte != opte) {
   2272 			*ptep = npte;
   2273 			PTE_SYNC(ptep);
   2274 			/* Flush the TLB entry if a current pmap. */
   2275 			if (PV_BEEN_EXECD(oflags))
   2276 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2277 			else
   2278 			if (PV_BEEN_REFD(oflags))
   2279 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2280 		}
   2281 
   2282 		pmap_release_pmap_lock(pm);
   2283 
   2284 		NPDEBUG(PDB_BITS,
   2285 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2286 		    pm, va, opte, npte));
   2287 	}
   2288 
   2289 #ifdef PMAP_CACHE_VIPT
   2290 	/*
   2291 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2292 	 */
   2293 	if (need_syncicache && !did_syncicache) {
   2294 		pmap_syncicache_page(md, pa);
   2295 		PMAPCOUNT(exec_synced_clearbit);
   2296 	}
   2297 	/*
   2298 	 * If we are changing this to read-only, we need to call vac_me_harder
   2299 	 * so we can change all the read-only pages to cacheable.  We pretend
   2300 	 * this as a page deletion.
   2301 	 */
   2302 	if (need_vac_me_harder) {
   2303 		if (md->pvh_attrs & PVF_NC)
   2304 			pmap_vac_me_harder(md, pa, NULL, 0);
   2305 	}
   2306 #endif
   2307 }
   2308 
   2309 /*
   2310  * pmap_clean_page()
   2311  *
   2312  * This is a local function used to work out the best strategy to clean
   2313  * a single page referenced by its entry in the PV table. It's used by
   2314  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2315  *
   2316  * Its policy is effectively:
   2317  *  o If there are no mappings, we don't bother doing anything with the cache.
   2318  *  o If there is one mapping, we clean just that page.
   2319  *  o If there are multiple mappings, we clean the entire cache.
   2320  *
   2321  * So that some functions can be further optimised, it returns 0 if it didn't
   2322  * clean the entire cache, or 1 if it did.
   2323  *
   2324  * XXX One bug in this routine is that if the pv_entry has a single page
   2325  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2326  * just the 1 page. Since this should not occur in everyday use and if it does
   2327  * it will just result in not the most efficient clean for the page.
   2328  */
   2329 #ifdef PMAP_CACHE_VIVT
   2330 static int
   2331 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2332 {
   2333 	pmap_t pm_to_clean = NULL;
   2334 	struct pv_entry *npv;
   2335 	u_int cache_needs_cleaning = 0;
   2336 	u_int flags = 0;
   2337 	vaddr_t page_to_clean = 0;
   2338 
   2339 	if (pv == NULL) {
   2340 		/* nothing mapped in so nothing to flush */
   2341 		return (0);
   2342 	}
   2343 
   2344 	/*
   2345 	 * Since we flush the cache each time we change to a different
   2346 	 * user vmspace, we only need to flush the page if it is in the
   2347 	 * current pmap.
   2348 	 */
   2349 
   2350 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2351 		if (pmap_is_current(npv->pv_pmap)) {
   2352 			flags |= npv->pv_flags;
   2353 			/*
   2354 			 * The page is mapped non-cacheable in
   2355 			 * this map.  No need to flush the cache.
   2356 			 */
   2357 			if (npv->pv_flags & PVF_NC) {
   2358 #ifdef DIAGNOSTIC
   2359 				if (cache_needs_cleaning)
   2360 					panic("pmap_clean_page: "
   2361 					    "cache inconsistency");
   2362 #endif
   2363 				break;
   2364 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2365 				continue;
   2366 			if (cache_needs_cleaning) {
   2367 				page_to_clean = 0;
   2368 				break;
   2369 			} else {
   2370 				page_to_clean = npv->pv_va;
   2371 				pm_to_clean = npv->pv_pmap;
   2372 			}
   2373 			cache_needs_cleaning = 1;
   2374 		}
   2375 	}
   2376 
   2377 	if (page_to_clean) {
   2378 		if (PV_BEEN_EXECD(flags))
   2379 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2380 			    PAGE_SIZE);
   2381 		else
   2382 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2383 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2384 	} else if (cache_needs_cleaning) {
   2385 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2386 
   2387 		if (PV_BEEN_EXECD(flags))
   2388 			pmap_idcache_wbinv_all(pm);
   2389 		else
   2390 			pmap_dcache_wbinv_all(pm);
   2391 		return (1);
   2392 	}
   2393 	return (0);
   2394 }
   2395 #endif
   2396 
   2397 #ifdef PMAP_CACHE_VIPT
   2398 /*
   2399  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2400  * right cache alias to make sure we flush the right stuff.
   2401  */
   2402 void
   2403 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2404 {
   2405 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2406 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2407 
   2408 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2409 	    md, md->pvh_attrs));
   2410 	/*
   2411 	 * No need to clean the page if it's non-cached.
   2412 	 */
   2413 	if (md->pvh_attrs & PVF_NC)
   2414 		return;
   2415 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2416 
   2417 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2418 	/*
   2419 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2420 	 */
   2421 	*ptep = L2_S_PROTO |
   2422 	    pa
   2423 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2424 	    | pte_l2_s_cache_mode;
   2425 	PTE_SYNC(ptep);
   2426 
   2427 	/*
   2428 	 * Flush it.
   2429 	 */
   2430 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2431 	/*
   2432 	 * Unmap the page.
   2433 	 */
   2434 	*ptep = 0;
   2435 	PTE_SYNC(ptep);
   2436 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2437 
   2438 	md->pvh_attrs |= PVF_EXEC;
   2439 	PMAPCOUNT(exec_synced);
   2440 }
   2441 
   2442 void
   2443 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2444 {
   2445 	vsize_t va_offset, end_va;
   2446 	void (*cf)(vaddr_t, vsize_t);
   2447 
   2448 	if (arm_cache_prefer_mask == 0)
   2449 		return;
   2450 
   2451 	switch (flush) {
   2452 	case PMAP_FLUSH_PRIMARY:
   2453 		if (md->pvh_attrs & PVF_MULTCLR) {
   2454 			va_offset = 0;
   2455 			end_va = arm_cache_prefer_mask;
   2456 			md->pvh_attrs &= ~PVF_MULTCLR;
   2457 			PMAPCOUNT(vac_flush_lots);
   2458 		} else {
   2459 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2460 			end_va = va_offset;
   2461 			PMAPCOUNT(vac_flush_one);
   2462 		}
   2463 		/*
   2464 		 * Mark that the page is no longer dirty.
   2465 		 */
   2466 		md->pvh_attrs &= ~PVF_DIRTY;
   2467 		cf = cpufuncs.cf_idcache_wbinv_range;
   2468 		break;
   2469 	case PMAP_FLUSH_SECONDARY:
   2470 		va_offset = 0;
   2471 		end_va = arm_cache_prefer_mask;
   2472 		cf = cpufuncs.cf_idcache_wbinv_range;
   2473 		md->pvh_attrs &= ~PVF_MULTCLR;
   2474 		PMAPCOUNT(vac_flush_lots);
   2475 		break;
   2476 	case PMAP_CLEAN_PRIMARY:
   2477 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2478 		end_va = va_offset;
   2479 		cf = cpufuncs.cf_dcache_wb_range;
   2480 		/*
   2481 		 * Mark that the page is no longer dirty.
   2482 		 */
   2483 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2484 			md->pvh_attrs &= ~PVF_DIRTY;
   2485 		PMAPCOUNT(vac_clean_one);
   2486 		break;
   2487 	default:
   2488 		return;
   2489 	}
   2490 
   2491 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2492 
   2493 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2494 	    md, md->pvh_attrs));
   2495 
   2496 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2497 		const size_t pte_offset = va_offset >> PGSHIFT;
   2498 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2499 		const pt_entry_t oldpte = *ptep;
   2500 
   2501 		if (flush == PMAP_FLUSH_SECONDARY
   2502 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2503 			continue;
   2504 
   2505 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2506 		/*
   2507 		 * Set up a PTE with the right coloring to flush
   2508 		 * existing cache entries.
   2509 		 */
   2510 		*ptep = L2_S_PROTO
   2511 		    | pa
   2512 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2513 		    | pte_l2_s_cache_mode;
   2514 		PTE_SYNC(ptep);
   2515 
   2516 		/*
   2517 		 * Flush it.
   2518 		 */
   2519 		(*cf)(cdstp + va_offset, PAGE_SIZE);
   2520 
   2521 		/*
   2522 		 * Restore the page table entry since we might have interrupted
   2523 		 * pmap_zero_page or pmap_copy_page which was already using
   2524 		 * this pte.
   2525 		 */
   2526 		*ptep = oldpte;
   2527 		PTE_SYNC(ptep);
   2528 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2529 	}
   2530 }
   2531 #endif /* PMAP_CACHE_VIPT */
   2532 
   2533 /*
   2534  * Routine:	pmap_page_remove
   2535  * Function:
   2536  *		Removes this physical page from
   2537  *		all physical maps in which it resides.
   2538  *		Reflects back modify bits to the pager.
   2539  */
   2540 static void
   2541 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2542 {
   2543 	struct l2_bucket *l2b;
   2544 	struct pv_entry *pv, *npv, **pvp;
   2545 	pmap_t pm;
   2546 	pt_entry_t *ptep;
   2547 	bool flush;
   2548 	u_int flags;
   2549 
   2550 	NPDEBUG(PDB_FOLLOW,
   2551 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2552 	    pa));
   2553 
   2554 	pv = SLIST_FIRST(&md->pvh_list);
   2555 	if (pv == NULL) {
   2556 #ifdef PMAP_CACHE_VIPT
   2557 		/*
   2558 		 * We *know* the page contents are about to be replaced.
   2559 		 * Discard the exec contents
   2560 		 */
   2561 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2562 			PMAPCOUNT(exec_discarded_page_protect);
   2563 		md->pvh_attrs &= ~PVF_EXEC;
   2564 		KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2565 #endif
   2566 		return;
   2567 	}
   2568 #ifdef PMAP_CACHE_VIPT
   2569 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2570 #endif
   2571 
   2572 	/*
   2573 	 * Clear alias counts
   2574 	 */
   2575 #ifdef PMAP_CACHE_VIVT
   2576 	md->k_mappings = 0;
   2577 #endif
   2578 	md->urw_mappings = md->uro_mappings = 0;
   2579 
   2580 	flush = false;
   2581 	flags = 0;
   2582 
   2583 #ifdef PMAP_CACHE_VIVT
   2584 	pmap_clean_page(pv, false);
   2585 #endif
   2586 
   2587 	pvp = &SLIST_FIRST(&md->pvh_list);
   2588 	while (pv) {
   2589 		pm = pv->pv_pmap;
   2590 		npv = SLIST_NEXT(pv, pv_link);
   2591 		if (flush == false && pmap_is_current(pm))
   2592 			flush = true;
   2593 
   2594 		if (pm == pmap_kernel()) {
   2595 #ifdef PMAP_CACHE_VIPT
   2596 			/*
   2597 			 * If this was unmanaged mapping, it must be preserved.
   2598 			 * Move it back on the list and advance the end-of-list
   2599 			 * pointer.
   2600 			 */
   2601 			if (pv->pv_flags & PVF_KENTRY) {
   2602 				*pvp = pv;
   2603 				pvp = &SLIST_NEXT(pv, pv_link);
   2604 				pv = npv;
   2605 				continue;
   2606 			}
   2607 			if (pv->pv_flags & PVF_WRITE)
   2608 				md->krw_mappings--;
   2609 			else
   2610 				md->kro_mappings--;
   2611 #endif
   2612 			PMAPCOUNT(kernel_unmappings);
   2613 		}
   2614 		PMAPCOUNT(unmappings);
   2615 
   2616 		pmap_acquire_pmap_lock(pm);
   2617 
   2618 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2619 		KDASSERT(l2b != NULL);
   2620 
   2621 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2622 
   2623 		/*
   2624 		 * Update statistics
   2625 		 */
   2626 		--pm->pm_stats.resident_count;
   2627 
   2628 		/* Wired bit */
   2629 		if (pv->pv_flags & PVF_WIRED)
   2630 			--pm->pm_stats.wired_count;
   2631 
   2632 		flags |= pv->pv_flags;
   2633 
   2634 		/*
   2635 		 * Invalidate the PTEs.
   2636 		 */
   2637 		*ptep = 0;
   2638 		PTE_SYNC_CURRENT(pm, ptep);
   2639 		pmap_free_l2_bucket(pm, l2b, 1);
   2640 
   2641 		pool_put(&pmap_pv_pool, pv);
   2642 		pv = npv;
   2643 		/*
   2644 		 * if we reach the end of the list and there are still
   2645 		 * mappings, they might be able to be cached now.
   2646 		 */
   2647 		if (pv == NULL) {
   2648 			*pvp = NULL;
   2649 			if (!SLIST_EMPTY(&md->pvh_list))
   2650 				pmap_vac_me_harder(md, pa, pm, 0);
   2651 		}
   2652 		pmap_release_pmap_lock(pm);
   2653 	}
   2654 #ifdef PMAP_CACHE_VIPT
   2655 	/*
   2656 	 * Its EXEC cache is now gone.
   2657 	 */
   2658 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2659 		PMAPCOUNT(exec_discarded_page_protect);
   2660 	md->pvh_attrs &= ~PVF_EXEC;
   2661 	KASSERT(md->urw_mappings == 0);
   2662 	KASSERT(md->uro_mappings == 0);
   2663 	if (md->krw_mappings == 0)
   2664 		md->pvh_attrs &= ~PVF_WRITE;
   2665 	KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2666 #endif
   2667 
   2668 	if (flush) {
   2669 		/*
   2670 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2671 		 * would need a subsequent call to pmap_update() to ensure
   2672 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2673 		 * required to do that (see pmap(9)), so we can't modify
   2674 		 * the current pmap's state.
   2675 		 */
   2676 		if (PV_BEEN_EXECD(flags))
   2677 			cpu_tlb_flushID();
   2678 		else
   2679 			cpu_tlb_flushD();
   2680 	}
   2681 	cpu_cpwait();
   2682 }
   2683 
   2684 /*
   2685  * pmap_t pmap_create(void)
   2686  *
   2687  *      Create a new pmap structure from scratch.
   2688  */
   2689 pmap_t
   2690 pmap_create(void)
   2691 {
   2692 	pmap_t pm;
   2693 
   2694 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2695 
   2696 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2697 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2698 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2699 
   2700 	pm->pm_stats.wired_count = 0;
   2701 	pm->pm_stats.resident_count = 1;
   2702 	pm->pm_cstate.cs_all = 0;
   2703 	pmap_alloc_l1(pm);
   2704 
   2705 	/*
   2706 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2707 	 * initialised to zero.
   2708 	 */
   2709 
   2710 	pmap_pinit(pm);
   2711 
   2712 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2713 
   2714 	return (pm);
   2715 }
   2716 
   2717 u_int
   2718 arm32_mmap_flags(paddr_t pa)
   2719 {
   2720 	/*
   2721 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   2722 	 * and we're using the upper bits in page numbers to pass flags around
   2723 	 * so we might as well use the same bits
   2724 	 */
   2725 	return (u_int)pa & PMAP_MD_MASK;
   2726 }
   2727 /*
   2728  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2729  *      u_int flags)
   2730  *
   2731  *      Insert the given physical page (p) at
   2732  *      the specified virtual address (v) in the
   2733  *      target physical map with the protection requested.
   2734  *
   2735  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2736  *      or lose information.  That is, this routine must actually
   2737  *      insert this page into the given map NOW.
   2738  */
   2739 int
   2740 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2741 {
   2742 	struct l2_bucket *l2b;
   2743 	struct vm_page *pg, *opg;
   2744 	struct pv_entry *pv;
   2745 	pt_entry_t *ptep, npte, opte;
   2746 	u_int nflags;
   2747 	u_int oflags;
   2748 
   2749 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2750 
   2751 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2752 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2753 
   2754 	/*
   2755 	 * Get a pointer to the page.  Later on in this function, we
   2756 	 * test for a managed page by checking pg != NULL.
   2757 	 */
   2758 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2759 
   2760 	nflags = 0;
   2761 	if (prot & VM_PROT_WRITE)
   2762 		nflags |= PVF_WRITE;
   2763 	if (prot & VM_PROT_EXECUTE)
   2764 		nflags |= PVF_EXEC;
   2765 	if (flags & PMAP_WIRED)
   2766 		nflags |= PVF_WIRED;
   2767 
   2768 	pmap_acquire_pmap_lock(pm);
   2769 
   2770 	/*
   2771 	 * Fetch the L2 bucket which maps this page, allocating one if
   2772 	 * necessary for user pmaps.
   2773 	 */
   2774 	if (pm == pmap_kernel())
   2775 		l2b = pmap_get_l2_bucket(pm, va);
   2776 	else
   2777 		l2b = pmap_alloc_l2_bucket(pm, va);
   2778 	if (l2b == NULL) {
   2779 		if (flags & PMAP_CANFAIL) {
   2780 			pmap_release_pmap_lock(pm);
   2781 			return (ENOMEM);
   2782 		}
   2783 		panic("pmap_enter: failed to allocate L2 bucket");
   2784 	}
   2785 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2786 	opte = *ptep;
   2787 	npte = pa;
   2788 	oflags = 0;
   2789 
   2790 	if (opte) {
   2791 		/*
   2792 		 * There is already a mapping at this address.
   2793 		 * If the physical address is different, lookup the
   2794 		 * vm_page.
   2795 		 */
   2796 		if (l2pte_pa(opte) != pa)
   2797 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2798 		else
   2799 			opg = pg;
   2800 	} else
   2801 		opg = NULL;
   2802 
   2803 	if (pg) {
   2804 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2805 
   2806 		/*
   2807 		 * This is to be a managed mapping.
   2808 		 */
   2809 		if ((flags & VM_PROT_ALL) ||
   2810 		    (md->pvh_attrs & PVF_REF)) {
   2811 			/*
   2812 			 * - The access type indicates that we don't need
   2813 			 *   to do referenced emulation.
   2814 			 * OR
   2815 			 * - The physical page has already been referenced
   2816 			 *   so no need to re-do referenced emulation here.
   2817 			 */
   2818 			npte |= l2pte_set_readonly(L2_S_PROTO);
   2819 
   2820 			nflags |= PVF_REF;
   2821 
   2822 			if ((prot & VM_PROT_WRITE) != 0 &&
   2823 			    ((flags & VM_PROT_WRITE) != 0 ||
   2824 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   2825 				/*
   2826 				 * This is a writable mapping, and the
   2827 				 * page's mod state indicates it has
   2828 				 * already been modified. Make it
   2829 				 * writable from the outset.
   2830 				 */
   2831 				npte = l2pte_set_writable(npte);
   2832 				nflags |= PVF_MOD;
   2833 			}
   2834 		} else {
   2835 			/*
   2836 			 * Need to do page referenced emulation.
   2837 			 */
   2838 			npte |= L2_TYPE_INV;
   2839 		}
   2840 
   2841 		npte |= pte_l2_s_cache_mode;
   2842 
   2843 		if (pg == opg) {
   2844 			/*
   2845 			 * We're changing the attrs of an existing mapping.
   2846 			 */
   2847 #ifdef MULTIPROCESSOR
   2848 			KASSERT(uvm_page_locked_p(pg));
   2849 #endif
   2850 			oflags = pmap_modify_pv(md, pa, pm, va,
   2851 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2852 			    PVF_MOD | PVF_REF, nflags);
   2853 
   2854 #ifdef PMAP_CACHE_VIVT
   2855 			/*
   2856 			 * We may need to flush the cache if we're
   2857 			 * doing rw-ro...
   2858 			 */
   2859 			if (pm->pm_cstate.cs_cache_d &&
   2860 			    (oflags & PVF_NC) == 0 &&
   2861 			    l2pte_writable_p(opte) &&
   2862 			    (prot & VM_PROT_WRITE) == 0)
   2863 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2864 #endif
   2865 		} else {
   2866 			/*
   2867 			 * New mapping, or changing the backing page
   2868 			 * of an existing mapping.
   2869 			 */
   2870 			if (opg) {
   2871 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2872 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2873 
   2874 				/*
   2875 				 * Replacing an existing mapping with a new one.
   2876 				 * It is part of our managed memory so we
   2877 				 * must remove it from the PV list
   2878 				 */
   2879 #ifdef MULTIPROCESSOR
   2880 				KASSERT(uvm_page_locked_p(opg));
   2881 #endif
   2882 				pv = pmap_remove_pv(omd, opa, pm, va);
   2883 				pmap_vac_me_harder(omd, opa, pm, 0);
   2884 				oflags = pv->pv_flags;
   2885 
   2886 #ifdef PMAP_CACHE_VIVT
   2887 				/*
   2888 				 * If the old mapping was valid (ref/mod
   2889 				 * emulation creates 'invalid' mappings
   2890 				 * initially) then make sure to frob
   2891 				 * the cache.
   2892 				 */
   2893 				if ((oflags & PVF_NC) == 0 &&
   2894 				    l2pte_valid(opte)) {
   2895 					if (PV_BEEN_EXECD(oflags)) {
   2896 						pmap_idcache_wbinv_range(pm, va,
   2897 						    PAGE_SIZE);
   2898 					} else
   2899 					if (PV_BEEN_REFD(oflags)) {
   2900 						pmap_dcache_wb_range(pm, va,
   2901 						    PAGE_SIZE, true,
   2902 						    (oflags & PVF_WRITE) == 0);
   2903 					}
   2904 				}
   2905 #endif
   2906 			} else
   2907 			if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2908 				if ((flags & PMAP_CANFAIL) == 0)
   2909 					panic("pmap_enter: no pv entries");
   2910 
   2911 				if (pm != pmap_kernel())
   2912 					pmap_free_l2_bucket(pm, l2b, 0);
   2913 				pmap_release_pmap_lock(pm);
   2914 				NPDEBUG(PDB_ENTER,
   2915 				    printf("pmap_enter: ENOMEM\n"));
   2916 				return (ENOMEM);
   2917 			}
   2918 
   2919 #ifdef MULTIPROCESSOR
   2920 			KASSERT(uvm_page_locked_p(pg));
   2921 #endif
   2922 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   2923 		}
   2924 	} else {
   2925 		/*
   2926 		 * We're mapping an unmanaged page.
   2927 		 * These are always readable, and possibly writable, from
   2928 		 * the get go as we don't need to track ref/mod status.
   2929 		 */
   2930 		npte |= l2pte_set_readonly(L2_S_PROTO);
   2931 		if (prot & VM_PROT_WRITE)
   2932 			npte = l2pte_set_writable(npte);
   2933 
   2934 		/*
   2935 		 * Make sure the vector table is mapped cacheable
   2936 		 */
   2937 		if ((pm != pmap_kernel() && va == vector_page) ||
   2938 		    (flags & ARM32_MMAP_CACHEABLE)) {
   2939 			npte |= pte_l2_s_cache_mode;
   2940 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   2941 			npte |= pte_l2_s_wc_mode;
   2942 		}
   2943 		if (opg) {
   2944 			/*
   2945 			 * Looks like there's an existing 'managed' mapping
   2946 			 * at this address.
   2947 			 */
   2948 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2949 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2950 
   2951 #ifdef MULTIPROCESSOR
   2952 			KASSERT(uvm_page_locked_p(opg));
   2953 #endif
   2954 			pv = pmap_remove_pv(omd, opa, pm, va);
   2955 			pmap_vac_me_harder(omd, opa, pm, 0);
   2956 			oflags = pv->pv_flags;
   2957 
   2958 #ifdef PMAP_CACHE_VIVT
   2959 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2960 				if (PV_BEEN_EXECD(oflags))
   2961 					pmap_idcache_wbinv_range(pm, va,
   2962 					    PAGE_SIZE);
   2963 				else
   2964 				if (PV_BEEN_REFD(oflags))
   2965 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2966 					    true, (oflags & PVF_WRITE) == 0);
   2967 			}
   2968 #endif
   2969 			pool_put(&pmap_pv_pool, pv);
   2970 		}
   2971 	}
   2972 
   2973 	/*
   2974 	 * Make sure userland mappings get the right permissions
   2975 	 */
   2976 	if (pm != pmap_kernel() && va != vector_page)
   2977 		npte |= L2_S_PROT_U;
   2978 
   2979 	/*
   2980 	 * Keep the stats up to date
   2981 	 */
   2982 	if (opte == 0) {
   2983 		l2b->l2b_occupancy++;
   2984 		pm->pm_stats.resident_count++;
   2985 	}
   2986 
   2987 	NPDEBUG(PDB_ENTER,
   2988 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2989 
   2990 	/*
   2991 	 * If this is just a wiring change, the two PTEs will be
   2992 	 * identical, so there's no need to update the page table.
   2993 	 */
   2994 	if (npte != opte) {
   2995 		bool is_cached = pmap_is_cached(pm);
   2996 
   2997 		*ptep = npte;
   2998 		if (is_cached) {
   2999 			/*
   3000 			 * We only need to frob the cache/tlb if this pmap
   3001 			 * is current
   3002 			 */
   3003 			PTE_SYNC(ptep);
   3004 			if (va != vector_page && l2pte_valid(npte)) {
   3005 				/*
   3006 				 * This mapping is likely to be accessed as
   3007 				 * soon as we return to userland. Fix up the
   3008 				 * L1 entry to avoid taking another
   3009 				 * page/domain fault.
   3010 				 */
   3011 				pd_entry_t *pl1pd, l1pd;
   3012 
   3013 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   3014 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   3015 				    L1_C_PROTO;
   3016 				if (*pl1pd != l1pd) {
   3017 					*pl1pd = l1pd;
   3018 					PTE_SYNC(pl1pd);
   3019 				}
   3020 			}
   3021 		}
   3022 
   3023 		if (PV_BEEN_EXECD(oflags))
   3024 			pmap_tlb_flushID_SE(pm, va);
   3025 		else
   3026 		if (PV_BEEN_REFD(oflags))
   3027 			pmap_tlb_flushD_SE(pm, va);
   3028 
   3029 		NPDEBUG(PDB_ENTER,
   3030 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3031 		    is_cached, pm->pm_cstate.cs_all));
   3032 
   3033 		if (pg != NULL) {
   3034 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3035 
   3036 #ifdef MULTIPROCESSOR
   3037 			KASSERT(uvm_page_locked_p(pg));
   3038 #endif
   3039 			pmap_vac_me_harder(md, pa, pm, va);
   3040 		}
   3041 	}
   3042 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3043 	if (pg) {
   3044 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3045 
   3046 #ifdef MULTIPROCESSOR
   3047 		KASSERT(uvm_page_locked_p(pg));
   3048 #endif
   3049 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3050 		KASSERT(arm_cache_prefer_mask == 0 || ((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0));
   3051 	}
   3052 #endif
   3053 
   3054 	pmap_release_pmap_lock(pm);
   3055 
   3056 	return (0);
   3057 }
   3058 
   3059 /*
   3060  * pmap_remove()
   3061  *
   3062  * pmap_remove is responsible for nuking a number of mappings for a range
   3063  * of virtual address space in the current pmap. To do this efficiently
   3064  * is interesting, because in a number of cases a wide virtual address
   3065  * range may be supplied that contains few actual mappings. So, the
   3066  * optimisations are:
   3067  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3068  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3069  *     maybe do just a partial cache clean. This path of execution is
   3070  *     complicated by the fact that the cache must be flushed _before_
   3071  *     the PTE is nuked, being a VAC :-)
   3072  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3073  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3074  *     already flushed the cache.
   3075  *  4. Maybe later fast-case a single page, but I don't think this is
   3076  *     going to make _that_ much difference overall.
   3077  */
   3078 
   3079 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3080 
   3081 void
   3082 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3083 {
   3084 	struct l2_bucket *l2b;
   3085 	vaddr_t next_bucket;
   3086 	pt_entry_t *ptep;
   3087 	u_int cleanlist_idx, total, cnt;
   3088 	struct {
   3089 		vaddr_t va;
   3090 		pt_entry_t *ptep;
   3091 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3092 	u_int mappings, is_exec, is_refd;
   3093 
   3094 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3095 	    "eva=%08lx\n", pm, sva, eva));
   3096 
   3097 	/*
   3098 	 * we lock in the pmap => pv_head direction
   3099 	 */
   3100 	pmap_acquire_pmap_lock(pm);
   3101 
   3102 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3103 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3104 		if (pm->pm_cstate.cs_tlb == 0)
   3105 			pm->pm_remove_all = true;
   3106 	} else
   3107 		cleanlist_idx = 0;
   3108 
   3109 	total = 0;
   3110 
   3111 	while (sva < eva) {
   3112 		/*
   3113 		 * Do one L2 bucket's worth at a time.
   3114 		 */
   3115 		next_bucket = L2_NEXT_BUCKET(sva);
   3116 		if (next_bucket > eva)
   3117 			next_bucket = eva;
   3118 
   3119 		l2b = pmap_get_l2_bucket(pm, sva);
   3120 		if (l2b == NULL) {
   3121 			sva = next_bucket;
   3122 			continue;
   3123 		}
   3124 
   3125 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3126 
   3127 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3128 			struct vm_page *pg;
   3129 			pt_entry_t pte;
   3130 			paddr_t pa;
   3131 
   3132 			pte = *ptep;
   3133 
   3134 			if (pte == 0) {
   3135 				/* Nothing here, move along */
   3136 				continue;
   3137 			}
   3138 
   3139 			pa = l2pte_pa(pte);
   3140 			is_exec = 0;
   3141 			is_refd = 1;
   3142 
   3143 			/*
   3144 			 * Update flags. In a number of circumstances,
   3145 			 * we could cluster a lot of these and do a
   3146 			 * number of sequential pages in one go.
   3147 			 */
   3148 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3149 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3150 				struct pv_entry *pv;
   3151 
   3152 #ifdef MULTIPROCESSOR
   3153 				KASSERT(uvm_page_locked_p(pg));
   3154 #endif
   3155 				pv = pmap_remove_pv(md, pa, pm, sva);
   3156 				pmap_vac_me_harder(md, pa, pm, 0);
   3157 				if (pv != NULL) {
   3158 					if (pm->pm_remove_all == false) {
   3159 						is_exec =
   3160 						   PV_BEEN_EXECD(pv->pv_flags);
   3161 						is_refd =
   3162 						   PV_BEEN_REFD(pv->pv_flags);
   3163 					}
   3164 					pool_put(&pmap_pv_pool, pv);
   3165 				}
   3166 			}
   3167 			mappings++;
   3168 
   3169 			if (!l2pte_valid(pte)) {
   3170 				/*
   3171 				 * Ref/Mod emulation is still active for this
   3172 				 * mapping, therefore it is has not yet been
   3173 				 * accessed. No need to frob the cache/tlb.
   3174 				 */
   3175 				*ptep = 0;
   3176 				PTE_SYNC_CURRENT(pm, ptep);
   3177 				continue;
   3178 			}
   3179 
   3180 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3181 				/* Add to the clean list. */
   3182 				cleanlist[cleanlist_idx].ptep = ptep;
   3183 				cleanlist[cleanlist_idx].va =
   3184 				    sva | (is_exec & 1);
   3185 				cleanlist_idx++;
   3186 			} else
   3187 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3188 				/* Nuke everything if needed. */
   3189 #ifdef PMAP_CACHE_VIVT
   3190 				pmap_idcache_wbinv_all(pm);
   3191 #endif
   3192 				pmap_tlb_flushID(pm);
   3193 
   3194 				/*
   3195 				 * Roll back the previous PTE list,
   3196 				 * and zero out the current PTE.
   3197 				 */
   3198 				for (cnt = 0;
   3199 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3200 					*cleanlist[cnt].ptep = 0;
   3201 					PTE_SYNC(cleanlist[cnt].ptep);
   3202 				}
   3203 				*ptep = 0;
   3204 				PTE_SYNC(ptep);
   3205 				cleanlist_idx++;
   3206 				pm->pm_remove_all = true;
   3207 			} else {
   3208 				*ptep = 0;
   3209 				PTE_SYNC(ptep);
   3210 				if (pm->pm_remove_all == false) {
   3211 					if (is_exec)
   3212 						pmap_tlb_flushID_SE(pm, sva);
   3213 					else
   3214 					if (is_refd)
   3215 						pmap_tlb_flushD_SE(pm, sva);
   3216 				}
   3217 			}
   3218 		}
   3219 
   3220 		/*
   3221 		 * Deal with any left overs
   3222 		 */
   3223 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3224 			total += cleanlist_idx;
   3225 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3226 				if (pm->pm_cstate.cs_all != 0) {
   3227 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3228 					if (cleanlist[cnt].va & 1) {
   3229 #ifdef PMAP_CACHE_VIVT
   3230 						pmap_idcache_wbinv_range(pm,
   3231 						    clva, PAGE_SIZE);
   3232 #endif
   3233 						pmap_tlb_flushID_SE(pm, clva);
   3234 					} else {
   3235 #ifdef PMAP_CACHE_VIVT
   3236 						pmap_dcache_wb_range(pm,
   3237 						    clva, PAGE_SIZE, true,
   3238 						    false);
   3239 #endif
   3240 						pmap_tlb_flushD_SE(pm, clva);
   3241 					}
   3242 				}
   3243 				*cleanlist[cnt].ptep = 0;
   3244 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3245 			}
   3246 
   3247 			/*
   3248 			 * If it looks like we're removing a whole bunch
   3249 			 * of mappings, it's faster to just write-back
   3250 			 * the whole cache now and defer TLB flushes until
   3251 			 * pmap_update() is called.
   3252 			 */
   3253 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3254 				cleanlist_idx = 0;
   3255 			else {
   3256 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3257 #ifdef PMAP_CACHE_VIVT
   3258 				pmap_idcache_wbinv_all(pm);
   3259 #endif
   3260 				pm->pm_remove_all = true;
   3261 			}
   3262 		}
   3263 
   3264 		pmap_free_l2_bucket(pm, l2b, mappings);
   3265 		pm->pm_stats.resident_count -= mappings;
   3266 	}
   3267 
   3268 	pmap_release_pmap_lock(pm);
   3269 }
   3270 
   3271 #ifdef PMAP_CACHE_VIPT
   3272 static struct pv_entry *
   3273 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3274 {
   3275 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3276 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3277 	struct pv_entry *pv;
   3278 
   3279 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3280 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3281 
   3282 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3283 	KASSERT(pv);
   3284 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3285 
   3286 	/*
   3287 	 * If we are removing a writeable mapping to a cached exec page,
   3288 	 * if it's the last mapping then clear it execness other sync
   3289 	 * the page to the icache.
   3290 	 */
   3291 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3292 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3293 		if (SLIST_EMPTY(&md->pvh_list)) {
   3294 			md->pvh_attrs &= ~PVF_EXEC;
   3295 			PMAPCOUNT(exec_discarded_kremove);
   3296 		} else {
   3297 			pmap_syncicache_page(md, pa);
   3298 			PMAPCOUNT(exec_synced_kremove);
   3299 		}
   3300 	}
   3301 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3302 
   3303 	return pv;
   3304 }
   3305 #endif /* PMAP_CACHE_VIPT */
   3306 
   3307 /*
   3308  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3309  *
   3310  * We assume there is already sufficient KVM space available
   3311  * to do this, as we can't allocate L2 descriptor tables/metadata
   3312  * from here.
   3313  */
   3314 void
   3315 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3316 {
   3317 	struct l2_bucket *l2b;
   3318 	pt_entry_t *ptep, opte;
   3319 #ifdef PMAP_CACHE_VIVT
   3320 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3321 #endif
   3322 #ifdef PMAP_CACHE_VIPT
   3323 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3324 	struct vm_page *opg;
   3325 	struct pv_entry *pv = NULL;
   3326 #endif
   3327 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3328 
   3329 	NPDEBUG(PDB_KENTER,
   3330 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3331 	    va, pa, prot));
   3332 
   3333 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3334 	KDASSERT(l2b != NULL);
   3335 
   3336 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3337 	opte = *ptep;
   3338 
   3339 	if (opte == 0) {
   3340 		PMAPCOUNT(kenter_mappings);
   3341 		l2b->l2b_occupancy++;
   3342 	} else {
   3343 		PMAPCOUNT(kenter_remappings);
   3344 #ifdef PMAP_CACHE_VIPT
   3345 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3346 #ifdef DIAGNOSTIC
   3347 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3348 #endif
   3349 		if (opg) {
   3350 			KASSERT(opg != pg);
   3351 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3352 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3353 			pv = pmap_kremove_pg(opg, va);
   3354 		}
   3355 #endif
   3356 		if (l2pte_valid(opte)) {
   3357 #ifdef PMAP_CACHE_VIVT
   3358 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3359 #endif
   3360 			cpu_tlb_flushD_SE(va);
   3361 			cpu_cpwait();
   3362 		}
   3363 	}
   3364 
   3365 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3366 	    | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
   3367 	PTE_SYNC(ptep);
   3368 
   3369 	if (pg) {
   3370 #ifdef MULTIPROCESSOR
   3371 		KASSERT(uvm_page_locked_p(pg));
   3372 #endif
   3373 		if (flags & PMAP_KMPAGE) {
   3374 			KASSERT(md->urw_mappings == 0);
   3375 			KASSERT(md->uro_mappings == 0);
   3376 			KASSERT(md->krw_mappings == 0);
   3377 			KASSERT(md->kro_mappings == 0);
   3378 #ifdef PMAP_CACHE_VIPT
   3379 			KASSERT(pv == NULL);
   3380 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3381 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3382 			/* if there is a color conflict, evict from cache. */
   3383 			if (pmap_is_page_colored_p(md)
   3384 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3385 				PMAPCOUNT(vac_color_change);
   3386 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3387 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3388 				/*
   3389 				 * If this page has multiple colors, expunge
   3390 				 * them.
   3391 				 */
   3392 				PMAPCOUNT(vac_flush_lots2);
   3393 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3394 			}
   3395 			md->pvh_attrs &= PAGE_SIZE - 1;
   3396 			md->pvh_attrs |= PVF_KMPAGE
   3397 			    | PVF_COLORED | PVF_DIRTY
   3398 			    | (va & arm_cache_prefer_mask);
   3399 #endif
   3400 #ifdef PMAP_CACHE_VIVT
   3401 			md->pvh_attrs |= PVF_KMPAGE;
   3402 #endif
   3403 			pmap_kmpages++;
   3404 #ifdef PMAP_CACHE_VIPT
   3405 		} else {
   3406 			if (pv == NULL) {
   3407 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3408 				KASSERT(pv != NULL);
   3409 			}
   3410 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3411 			    PVF_WIRED | PVF_KENTRY
   3412 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3413 			if ((prot & VM_PROT_WRITE)
   3414 			    && !(md->pvh_attrs & PVF_NC))
   3415 				md->pvh_attrs |= PVF_DIRTY;
   3416 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3417 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3418 #endif
   3419 		}
   3420 #ifdef PMAP_CACHE_VIPT
   3421 	} else {
   3422 		if (pv != NULL)
   3423 			pool_put(&pmap_pv_pool, pv);
   3424 #endif
   3425 	}
   3426 }
   3427 
   3428 void
   3429 pmap_kremove(vaddr_t va, vsize_t len)
   3430 {
   3431 	struct l2_bucket *l2b;
   3432 	pt_entry_t *ptep, *sptep, opte;
   3433 	vaddr_t next_bucket, eva;
   3434 	u_int mappings;
   3435 	struct vm_page *opg;
   3436 
   3437 	PMAPCOUNT(kenter_unmappings);
   3438 
   3439 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3440 	    va, len));
   3441 
   3442 	eva = va + len;
   3443 
   3444 	while (va < eva) {
   3445 		next_bucket = L2_NEXT_BUCKET(va);
   3446 		if (next_bucket > eva)
   3447 			next_bucket = eva;
   3448 
   3449 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3450 		KDASSERT(l2b != NULL);
   3451 
   3452 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3453 		mappings = 0;
   3454 
   3455 		while (va < next_bucket) {
   3456 			opte = *ptep;
   3457 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3458 			if (opg) {
   3459 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3460 
   3461 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3462 					KASSERT(omd->urw_mappings == 0);
   3463 					KASSERT(omd->uro_mappings == 0);
   3464 					KASSERT(omd->krw_mappings == 0);
   3465 					KASSERT(omd->kro_mappings == 0);
   3466 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3467 #ifdef PMAP_CACHE_VIPT
   3468 					omd->pvh_attrs &= ~PVF_WRITE;
   3469 #endif
   3470 					pmap_kmpages--;
   3471 #ifdef PMAP_CACHE_VIPT
   3472 				} else {
   3473 					pool_put(&pmap_pv_pool,
   3474 					    pmap_kremove_pg(opg, va));
   3475 #endif
   3476 				}
   3477 			}
   3478 			if (l2pte_valid(opte)) {
   3479 #ifdef PMAP_CACHE_VIVT
   3480 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3481 #endif
   3482 				cpu_tlb_flushD_SE(va);
   3483 			}
   3484 			if (opte) {
   3485 				*ptep = 0;
   3486 				mappings++;
   3487 			}
   3488 			va += PAGE_SIZE;
   3489 			ptep++;
   3490 		}
   3491 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3492 		l2b->l2b_occupancy -= mappings;
   3493 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3494 	}
   3495 	cpu_cpwait();
   3496 }
   3497 
   3498 bool
   3499 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3500 {
   3501 	struct l2_dtable *l2;
   3502 	pd_entry_t *pl1pd, l1pd;
   3503 	pt_entry_t *ptep, pte;
   3504 	paddr_t pa;
   3505 	u_int l1idx;
   3506 
   3507 	pmap_acquire_pmap_lock(pm);
   3508 
   3509 	l1idx = L1_IDX(va);
   3510 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3511 	l1pd = *pl1pd;
   3512 
   3513 	if (l1pte_section_p(l1pd)) {
   3514 		/*
   3515 		 * These should only happen for pmap_kernel()
   3516 		 */
   3517 		KDASSERT(pm == pmap_kernel());
   3518 		pmap_release_pmap_lock(pm);
   3519 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3520 		if (l1pte_supersection_p(l1pd)) {
   3521 			pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3522 		} else
   3523 #endif
   3524 			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3525 	} else {
   3526 		/*
   3527 		 * Note that we can't rely on the validity of the L1
   3528 		 * descriptor as an indication that a mapping exists.
   3529 		 * We have to look it up in the L2 dtable.
   3530 		 */
   3531 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3532 
   3533 		if (l2 == NULL ||
   3534 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3535 			pmap_release_pmap_lock(pm);
   3536 			return false;
   3537 		}
   3538 
   3539 		ptep = &ptep[l2pte_index(va)];
   3540 		pte = *ptep;
   3541 		pmap_release_pmap_lock(pm);
   3542 
   3543 		if (pte == 0)
   3544 			return false;
   3545 
   3546 		switch (pte & L2_TYPE_MASK) {
   3547 		case L2_TYPE_L:
   3548 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3549 			break;
   3550 
   3551 		default:
   3552 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3553 			break;
   3554 		}
   3555 	}
   3556 
   3557 	if (pap != NULL)
   3558 		*pap = pa;
   3559 
   3560 	return true;
   3561 }
   3562 
   3563 void
   3564 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3565 {
   3566 	struct l2_bucket *l2b;
   3567 	pt_entry_t *ptep, pte;
   3568 	vaddr_t next_bucket;
   3569 	u_int flags;
   3570 	u_int clr_mask;
   3571 	int flush;
   3572 
   3573 	NPDEBUG(PDB_PROTECT,
   3574 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3575 	    pm, sva, eva, prot));
   3576 
   3577 	if ((prot & VM_PROT_READ) == 0) {
   3578 		pmap_remove(pm, sva, eva);
   3579 		return;
   3580 	}
   3581 
   3582 	if (prot & VM_PROT_WRITE) {
   3583 		/*
   3584 		 * If this is a read->write transition, just ignore it and let
   3585 		 * uvm_fault() take care of it later.
   3586 		 */
   3587 		return;
   3588 	}
   3589 
   3590 	pmap_acquire_pmap_lock(pm);
   3591 
   3592 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3593 	flags = 0;
   3594 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3595 
   3596 	while (sva < eva) {
   3597 		next_bucket = L2_NEXT_BUCKET(sva);
   3598 		if (next_bucket > eva)
   3599 			next_bucket = eva;
   3600 
   3601 		l2b = pmap_get_l2_bucket(pm, sva);
   3602 		if (l2b == NULL) {
   3603 			sva = next_bucket;
   3604 			continue;
   3605 		}
   3606 
   3607 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3608 
   3609 		while (sva < next_bucket) {
   3610 			pte = *ptep;
   3611 			if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
   3612 				struct vm_page *pg;
   3613 				u_int f;
   3614 
   3615 #ifdef PMAP_CACHE_VIVT
   3616 				/*
   3617 				 * OK, at this point, we know we're doing
   3618 				 * write-protect operation.  If the pmap is
   3619 				 * active, write-back the page.
   3620 				 */
   3621 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3622 				    false, false);
   3623 #endif
   3624 
   3625 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3626 				pte = l2pte_set_readonly(pte);
   3627 				*ptep = pte;
   3628 				PTE_SYNC(ptep);
   3629 
   3630 				if (pg != NULL) {
   3631 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3632 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3633 
   3634 #ifdef MULTIPROCESSOR
   3635 					KASSERT(uvm_page_locked_p(pg));
   3636 #endif
   3637 					f = pmap_modify_pv(md, pa, pm, sva,
   3638 					    clr_mask, 0);
   3639 					pmap_vac_me_harder(md, pa, pm, sva);
   3640 				} else {
   3641 					f = PVF_REF | PVF_EXEC;
   3642 				}
   3643 
   3644 				if (flush >= 0) {
   3645 					flush++;
   3646 					flags |= f;
   3647 				} else
   3648 				if (PV_BEEN_EXECD(f))
   3649 					pmap_tlb_flushID_SE(pm, sva);
   3650 				else
   3651 				if (PV_BEEN_REFD(f))
   3652 					pmap_tlb_flushD_SE(pm, sva);
   3653 			}
   3654 
   3655 			sva += PAGE_SIZE;
   3656 			ptep++;
   3657 		}
   3658 	}
   3659 
   3660 	pmap_release_pmap_lock(pm);
   3661 
   3662 	if (flush) {
   3663 		if (PV_BEEN_EXECD(flags))
   3664 			pmap_tlb_flushID(pm);
   3665 		else
   3666 		if (PV_BEEN_REFD(flags))
   3667 			pmap_tlb_flushD(pm);
   3668 	}
   3669 }
   3670 
   3671 void
   3672 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3673 {
   3674 	struct l2_bucket *l2b;
   3675 	pt_entry_t *ptep;
   3676 	vaddr_t next_bucket;
   3677 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3678 
   3679 	NPDEBUG(PDB_EXEC,
   3680 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3681 	    pm, sva, eva));
   3682 
   3683 	pmap_acquire_pmap_lock(pm);
   3684 
   3685 	while (sva < eva) {
   3686 		next_bucket = L2_NEXT_BUCKET(sva);
   3687 		if (next_bucket > eva)
   3688 			next_bucket = eva;
   3689 
   3690 		l2b = pmap_get_l2_bucket(pm, sva);
   3691 		if (l2b == NULL) {
   3692 			sva = next_bucket;
   3693 			continue;
   3694 		}
   3695 
   3696 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3697 		     sva < next_bucket;
   3698 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3699 			if (l2pte_valid(*ptep)) {
   3700 				cpu_icache_sync_range(sva,
   3701 				    min(page_size, eva - sva));
   3702 			}
   3703 		}
   3704 	}
   3705 
   3706 	pmap_release_pmap_lock(pm);
   3707 }
   3708 
   3709 void
   3710 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3711 {
   3712 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3713 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3714 
   3715 	NPDEBUG(PDB_PROTECT,
   3716 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   3717 	    md, pa, prot));
   3718 
   3719 #ifdef MULTIPROCESSOR
   3720 	KASSERT(uvm_page_locked_p(pg));
   3721 #endif
   3722 
   3723 	switch(prot) {
   3724 	case VM_PROT_READ|VM_PROT_WRITE:
   3725 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3726 		pmap_clearbit(md, pa, PVF_EXEC);
   3727 		break;
   3728 #endif
   3729 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3730 		break;
   3731 
   3732 	case VM_PROT_READ:
   3733 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3734 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   3735 		break;
   3736 #endif
   3737 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3738 		pmap_clearbit(md, pa, PVF_WRITE);
   3739 		break;
   3740 
   3741 	default:
   3742 		pmap_page_remove(md, pa);
   3743 		break;
   3744 	}
   3745 }
   3746 
   3747 /*
   3748  * pmap_clear_modify:
   3749  *
   3750  *	Clear the "modified" attribute for a page.
   3751  */
   3752 bool
   3753 pmap_clear_modify(struct vm_page *pg)
   3754 {
   3755 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3756 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3757 	bool rv;
   3758 
   3759 #ifdef MULTIPROCESSOR
   3760 	KASSERT(uvm_page_locked_p(pg));
   3761 #endif
   3762 
   3763 	if (md->pvh_attrs & PVF_MOD) {
   3764 		rv = true;
   3765 #ifdef PMAP_CACHE_VIPT
   3766 		/*
   3767 		 * If we are going to clear the modified bit and there are
   3768 		 * no other modified bits set, flush the page to memory and
   3769 		 * mark it clean.
   3770 		 */
   3771 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3772 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   3773 #endif
   3774 		pmap_clearbit(md, pa, PVF_MOD);
   3775 	} else
   3776 		rv = false;
   3777 
   3778 	return (rv);
   3779 }
   3780 
   3781 /*
   3782  * pmap_clear_reference:
   3783  *
   3784  *	Clear the "referenced" attribute for a page.
   3785  */
   3786 bool
   3787 pmap_clear_reference(struct vm_page *pg)
   3788 {
   3789 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3790 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3791 	bool rv;
   3792 
   3793 #ifdef MULTIPROCESSOR
   3794 	KASSERT(uvm_page_locked_p(pg));
   3795 #endif
   3796 
   3797 	if (md->pvh_attrs & PVF_REF) {
   3798 		rv = true;
   3799 		pmap_clearbit(md, pa, PVF_REF);
   3800 	} else
   3801 		rv = false;
   3802 
   3803 	return (rv);
   3804 }
   3805 
   3806 /*
   3807  * pmap_is_modified:
   3808  *
   3809  *	Test if a page has the "modified" attribute.
   3810  */
   3811 /* See <arm/arm32/pmap.h> */
   3812 
   3813 /*
   3814  * pmap_is_referenced:
   3815  *
   3816  *	Test if a page has the "referenced" attribute.
   3817  */
   3818 /* See <arm/arm32/pmap.h> */
   3819 
   3820 int
   3821 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3822 {
   3823 	struct l2_dtable *l2;
   3824 	struct l2_bucket *l2b;
   3825 	pd_entry_t *pl1pd, l1pd;
   3826 	pt_entry_t *ptep, pte;
   3827 	paddr_t pa;
   3828 	u_int l1idx;
   3829 	int rv = 0;
   3830 
   3831 	pmap_acquire_pmap_lock(pm);
   3832 
   3833 	l1idx = L1_IDX(va);
   3834 
   3835 	/*
   3836 	 * If there is no l2_dtable for this address, then the process
   3837 	 * has no business accessing it.
   3838 	 *
   3839 	 * Note: This will catch userland processes trying to access
   3840 	 * kernel addresses.
   3841 	 */
   3842 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3843 	if (l2 == NULL)
   3844 		goto out;
   3845 
   3846 	/*
   3847 	 * Likewise if there is no L2 descriptor table
   3848 	 */
   3849 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3850 	if (l2b->l2b_kva == NULL)
   3851 		goto out;
   3852 
   3853 	/*
   3854 	 * Check the PTE itself.
   3855 	 */
   3856 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3857 	pte = *ptep;
   3858 	if (pte == 0)
   3859 		goto out;
   3860 
   3861 	/*
   3862 	 * Catch a userland access to the vector page mapped at 0x0
   3863 	 */
   3864 	if (user && (pte & L2_S_PROT_U) == 0)
   3865 		goto out;
   3866 
   3867 	pa = l2pte_pa(pte);
   3868 
   3869 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
   3870 		/*
   3871 		 * This looks like a good candidate for "page modified"
   3872 		 * emulation...
   3873 		 */
   3874 		struct pv_entry *pv;
   3875 		struct vm_page *pg;
   3876 
   3877 		/* Extract the physical address of the page */
   3878 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3879 			goto out;
   3880 
   3881 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3882 
   3883 		/* Get the current flags for this page. */
   3884 #ifdef MULTIPROCESSOR
   3885 		KASSERT(uvm_page_locked_p(pg));
   3886 #endif
   3887 
   3888 		pv = pmap_find_pv(md, pm, va);
   3889 		if (pv == NULL) {
   3890 			goto out;
   3891 		}
   3892 
   3893 		/*
   3894 		 * Do the flags say this page is writable? If not then it
   3895 		 * is a genuine write fault. If yes then the write fault is
   3896 		 * our fault as we did not reflect the write access in the
   3897 		 * PTE. Now we know a write has occurred we can correct this
   3898 		 * and also set the modified bit
   3899 		 */
   3900 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3901 			goto out;
   3902 		}
   3903 
   3904 		NPDEBUG(PDB_FOLLOW,
   3905 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3906 		    pm, va, pa));
   3907 
   3908 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   3909 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3910 #ifdef PMAP_CACHE_VIPT
   3911 		/*
   3912 		 * If there are cacheable mappings for this page, mark it dirty.
   3913 		 */
   3914 		if ((md->pvh_attrs & PVF_NC) == 0)
   3915 			md->pvh_attrs |= PVF_DIRTY;
   3916 #endif
   3917 
   3918 		/*
   3919 		 * Re-enable write permissions for the page.  No need to call
   3920 		 * pmap_vac_me_harder(), since this is just a
   3921 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3922 		 * changing. We've already set the cacheable bits based on
   3923 		 * the assumption that we can write to this page.
   3924 		 */
   3925 		*ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3926 		PTE_SYNC(ptep);
   3927 		rv = 1;
   3928 	} else
   3929 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3930 		/*
   3931 		 * This looks like a good candidate for "page referenced"
   3932 		 * emulation.
   3933 		 */
   3934 		struct pv_entry *pv;
   3935 		struct vm_page *pg;
   3936 
   3937 		/* Extract the physical address of the page */
   3938 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3939 			goto out;
   3940 
   3941 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3942 
   3943 		/* Get the current flags for this page. */
   3944 #ifdef MULTIPROCESSOR
   3945 		KASSERT(uvm_page_locked_p(pg));
   3946 #endif
   3947 
   3948 		pv = pmap_find_pv(md, pm, va);
   3949 		if (pv == NULL) {
   3950 			goto out;
   3951 		}
   3952 
   3953 		md->pvh_attrs |= PVF_REF;
   3954 		pv->pv_flags |= PVF_REF;
   3955 
   3956 		NPDEBUG(PDB_FOLLOW,
   3957 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3958 		    pm, va, pa));
   3959 
   3960 		*ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3961 		PTE_SYNC(ptep);
   3962 		rv = 1;
   3963 	}
   3964 
   3965 	/*
   3966 	 * We know there is a valid mapping here, so simply
   3967 	 * fix up the L1 if necessary.
   3968 	 */
   3969 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3970 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3971 	if (*pl1pd != l1pd) {
   3972 		*pl1pd = l1pd;
   3973 		PTE_SYNC(pl1pd);
   3974 		rv = 1;
   3975 	}
   3976 
   3977 #ifdef CPU_SA110
   3978 	/*
   3979 	 * There are bugs in the rev K SA110.  This is a check for one
   3980 	 * of them.
   3981 	 */
   3982 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3983 	    curcpu()->ci_arm_cpurev < 3) {
   3984 		/* Always current pmap */
   3985 		if (l2pte_valid(pte)) {
   3986 			extern int kernel_debug;
   3987 			if (kernel_debug & 1) {
   3988 				struct proc *p = curlwp->l_proc;
   3989 				printf("prefetch_abort: page is already "
   3990 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3991 				printf("prefetch_abort: pc=%08lx proc=%p "
   3992 				    "process=%s\n", va, p, p->p_comm);
   3993 				printf("prefetch_abort: far=%08x fs=%x\n",
   3994 				    cpu_faultaddress(), cpu_faultstatus());
   3995 			}
   3996 #ifdef DDB
   3997 			if (kernel_debug & 2)
   3998 				Debugger();
   3999 #endif
   4000 			rv = 1;
   4001 		}
   4002 	}
   4003 #endif /* CPU_SA110 */
   4004 
   4005 #ifdef DEBUG
   4006 	/*
   4007 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4008 	 * stale TLB entry for the faulting address. This happens when two or
   4009 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4010 	 * a context switch between such processes, we can take domain faults
   4011 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4012 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4013 	 * example.
   4014 	 *
   4015 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4016 	 * entry for a recently entered mapping. In this case, the TLB is
   4017 	 * flushed for the new mapping, but there may still be TLB entries for
   4018 	 * other mappings belonging to other processes in the 1MB range
   4019 	 * covered by the L1 entry.
   4020 	 *
   4021 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4022 	 * value, so the fault must be due to a stale TLB entry.
   4023 	 *
   4024 	 * Since we always need to flush the TLB anyway in the case where we
   4025 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4026 	 * stale TLB entries dynamically.
   4027 	 *
   4028 	 * However, the above condition can ONLY happen if the current L1 is
   4029 	 * being shared. If it happens when the L1 is unshared, it indicates
   4030 	 * that other parts of the pmap are not doing their job WRT managing
   4031 	 * the TLB.
   4032 	 */
   4033 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4034 		extern int last_fault_code;
   4035 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4036 		    pm, va, ftype);
   4037 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4038 		    l2, l2b, ptep, pl1pd);
   4039 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4040 		    pte, l1pd, last_fault_code);
   4041 #ifdef DDB
   4042 		Debugger();
   4043 #endif
   4044 	}
   4045 #endif
   4046 
   4047 	cpu_tlb_flushID_SE(va);
   4048 	cpu_cpwait();
   4049 
   4050 	rv = 1;
   4051 
   4052 out:
   4053 	pmap_release_pmap_lock(pm);
   4054 
   4055 	return (rv);
   4056 }
   4057 
   4058 /*
   4059  * Routine:	pmap_procwr
   4060  *
   4061  * Function:
   4062  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4063  *
   4064  */
   4065 void
   4066 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4067 {
   4068 	/* We only need to do anything if it is the current process. */
   4069 	if (p == curproc)
   4070 		cpu_icache_sync_range(va, len);
   4071 }
   4072 
   4073 /*
   4074  * Routine:	pmap_unwire
   4075  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4076  *
   4077  * In/out conditions:
   4078  *		The mapping must already exist in the pmap.
   4079  */
   4080 void
   4081 pmap_unwire(pmap_t pm, vaddr_t va)
   4082 {
   4083 	struct l2_bucket *l2b;
   4084 	pt_entry_t *ptep, pte;
   4085 	struct vm_page *pg;
   4086 	paddr_t pa;
   4087 
   4088 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4089 
   4090 	pmap_acquire_pmap_lock(pm);
   4091 
   4092 	l2b = pmap_get_l2_bucket(pm, va);
   4093 	KDASSERT(l2b != NULL);
   4094 
   4095 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4096 	pte = *ptep;
   4097 
   4098 	/* Extract the physical address of the page */
   4099 	pa = l2pte_pa(pte);
   4100 
   4101 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4102 		/* Update the wired bit in the pv entry for this page. */
   4103 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4104 
   4105 #ifdef MULTIPROCESSOR
   4106 		KASSERT(uvm_page_locked_p(pg));
   4107 #endif
   4108 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4109 	}
   4110 
   4111 	pmap_release_pmap_lock(pm);
   4112 }
   4113 
   4114 void
   4115 pmap_activate(struct lwp *l)
   4116 {
   4117 	extern int block_userspace_access;
   4118 	pmap_t opm, npm, rpm;
   4119 	uint32_t odacr, ndacr;
   4120 	int oldirqstate;
   4121 
   4122 	/*
   4123 	 * If activating a non-current lwp or the current lwp is
   4124 	 * already active, just return.
   4125 	 */
   4126 	if (l != curlwp ||
   4127 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4128 		return;
   4129 
   4130 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4131 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4132 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4133 
   4134 	/*
   4135 	 * If TTB and DACR are unchanged, short-circuit all the
   4136 	 * TLB/cache management stuff.
   4137 	 */
   4138 	if (pmap_previous_active_lwp != NULL) {
   4139 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4140 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4141 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4142 
   4143 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4144 			goto all_done;
   4145 	} else
   4146 		opm = NULL;
   4147 
   4148 	PMAPCOUNT(activations);
   4149 	block_userspace_access = 1;
   4150 
   4151 	/*
   4152 	 * If switching to a user vmspace which is different to the
   4153 	 * most recent one, and the most recent one is potentially
   4154 	 * live in the cache, we must write-back and invalidate the
   4155 	 * entire cache.
   4156 	 */
   4157 	rpm = pmap_recent_user;
   4158 
   4159 /*
   4160  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4161  * reported in kern/41058. They're probably left over during tear-down and
   4162  * switching away from an exiting process. Until the root cause is identified
   4163  * and fixed, zap the cache when switching pmaps. This will result in a few
   4164  * unnecessary cache flushes, but that's better than silently corrupting data.
   4165  */
   4166 #if 0
   4167 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4168 	    rpm->pm_cstate.cs_cache) {
   4169 		rpm->pm_cstate.cs_cache = 0;
   4170 #ifdef PMAP_CACHE_VIVT
   4171 		cpu_idcache_wbinv_all();
   4172 #endif
   4173 	}
   4174 #else
   4175 	if (rpm) {
   4176 		rpm->pm_cstate.cs_cache = 0;
   4177 		if (npm == pmap_kernel())
   4178 			pmap_recent_user = NULL;
   4179 #ifdef PMAP_CACHE_VIVT
   4180 		cpu_idcache_wbinv_all();
   4181 #endif
   4182 	}
   4183 #endif
   4184 
   4185 	/* No interrupts while we frob the TTB/DACR */
   4186 	oldirqstate = disable_interrupts(IF32_bits);
   4187 
   4188 	/*
   4189 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4190 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4191 	 * before switching to it otherwise subsequent interrupts/exceptions
   4192 	 * (including domain faults!) will jump into hyperspace.
   4193 	 */
   4194 	if (npm->pm_pl1vec != NULL) {
   4195 		cpu_tlb_flushID_SE((u_int)vector_page);
   4196 		cpu_cpwait();
   4197 		*npm->pm_pl1vec = npm->pm_l1vec;
   4198 		PTE_SYNC(npm->pm_pl1vec);
   4199 	}
   4200 
   4201 	cpu_domains(ndacr);
   4202 
   4203 	if (npm == pmap_kernel() || npm == rpm) {
   4204 		/*
   4205 		 * Switching to a kernel thread, or back to the
   4206 		 * same user vmspace as before... Simply update
   4207 		 * the TTB (no TLB flush required)
   4208 		 */
   4209 		__asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
   4210 		    "r"(npm->pm_l1->l1_physaddr));
   4211 		cpu_cpwait();
   4212 	} else {
   4213 		/*
   4214 		 * Otherwise, update TTB and flush TLB
   4215 		 */
   4216 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4217 		if (rpm != NULL)
   4218 			rpm->pm_cstate.cs_tlb = 0;
   4219 	}
   4220 
   4221 	restore_interrupts(oldirqstate);
   4222 
   4223 	block_userspace_access = 0;
   4224 
   4225  all_done:
   4226 	/*
   4227 	 * The new pmap is resident. Make sure it's marked
   4228 	 * as resident in the cache/TLB.
   4229 	 */
   4230 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4231 	if (npm != pmap_kernel())
   4232 		pmap_recent_user = npm;
   4233 
   4234 	/* The old pmap is not longer active */
   4235 	if (opm != NULL)
   4236 		opm->pm_activated = false;
   4237 
   4238 	/* But the new one is */
   4239 	npm->pm_activated = true;
   4240 }
   4241 
   4242 void
   4243 pmap_deactivate(struct lwp *l)
   4244 {
   4245 
   4246 	/*
   4247 	 * If the process is exiting, make sure pmap_activate() does
   4248 	 * a full MMU context-switch and cache flush, which we might
   4249 	 * otherwise skip. See PR port-arm/38950.
   4250 	 */
   4251 	if (l->l_proc->p_sflag & PS_WEXIT)
   4252 		pmap_previous_active_lwp = NULL;
   4253 
   4254 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4255 }
   4256 
   4257 void
   4258 pmap_update(pmap_t pm)
   4259 {
   4260 
   4261 	if (pm->pm_remove_all) {
   4262 		/*
   4263 		 * Finish up the pmap_remove_all() optimisation by flushing
   4264 		 * the TLB.
   4265 		 */
   4266 		pmap_tlb_flushID(pm);
   4267 		pm->pm_remove_all = false;
   4268 	}
   4269 
   4270 	if (pmap_is_current(pm)) {
   4271 		/*
   4272 		 * If we're dealing with a current userland pmap, move its L1
   4273 		 * to the end of the LRU.
   4274 		 */
   4275 		if (pm != pmap_kernel())
   4276 			pmap_use_l1(pm);
   4277 
   4278 		/*
   4279 		 * We can assume we're done with frobbing the cache/tlb for
   4280 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4281 		 * flushes.
   4282 		 */
   4283 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4284 	}
   4285 
   4286 	PMAPCOUNT(updates);
   4287 
   4288 	/*
   4289 	 * make sure TLB/cache operations have completed.
   4290 	 */
   4291 	cpu_cpwait();
   4292 }
   4293 
   4294 void
   4295 pmap_remove_all(pmap_t pm)
   4296 {
   4297 
   4298 	/*
   4299 	 * The vmspace described by this pmap is about to be torn down.
   4300 	 * Until pmap_update() is called, UVM will only make calls
   4301 	 * to pmap_remove(). We can make life much simpler by flushing
   4302 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4303 	 */
   4304 #ifdef PMAP_CACHE_VIVT
   4305 	pmap_idcache_wbinv_all(pm);
   4306 #endif
   4307 	pm->pm_remove_all = true;
   4308 }
   4309 
   4310 /*
   4311  * Retire the given physical map from service.
   4312  * Should only be called if the map contains no valid mappings.
   4313  */
   4314 void
   4315 pmap_destroy(pmap_t pm)
   4316 {
   4317 	u_int count;
   4318 
   4319 	if (pm == NULL)
   4320 		return;
   4321 
   4322 	if (pm->pm_remove_all) {
   4323 		pmap_tlb_flushID(pm);
   4324 		pm->pm_remove_all = false;
   4325 	}
   4326 
   4327 	/*
   4328 	 * Drop reference count
   4329 	 */
   4330 	mutex_enter(pm->pm_lock);
   4331 	count = --pm->pm_obj.uo_refs;
   4332 	mutex_exit(pm->pm_lock);
   4333 	if (count > 0) {
   4334 		if (pmap_is_current(pm)) {
   4335 			if (pm != pmap_kernel())
   4336 				pmap_use_l1(pm);
   4337 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4338 		}
   4339 		return;
   4340 	}
   4341 
   4342 	/*
   4343 	 * reference count is zero, free pmap resources and then free pmap.
   4344 	 */
   4345 
   4346 	if (vector_page < KERNEL_BASE) {
   4347 		KDASSERT(!pmap_is_current(pm));
   4348 
   4349 		/* Remove the vector page mapping */
   4350 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4351 		pmap_update(pm);
   4352 	}
   4353 
   4354 	LIST_REMOVE(pm, pm_list);
   4355 
   4356 	pmap_free_l1(pm);
   4357 
   4358 	if (pmap_recent_user == pm)
   4359 		pmap_recent_user = NULL;
   4360 
   4361 	uvm_obj_destroy(&pm->pm_obj, false);
   4362 	mutex_destroy(&pm->pm_obj_lock);
   4363 	pool_cache_put(&pmap_cache, pm);
   4364 }
   4365 
   4366 
   4367 /*
   4368  * void pmap_reference(pmap_t pm)
   4369  *
   4370  * Add a reference to the specified pmap.
   4371  */
   4372 void
   4373 pmap_reference(pmap_t pm)
   4374 {
   4375 
   4376 	if (pm == NULL)
   4377 		return;
   4378 
   4379 	pmap_use_l1(pm);
   4380 
   4381 	mutex_enter(pm->pm_lock);
   4382 	pm->pm_obj.uo_refs++;
   4383 	mutex_exit(pm->pm_lock);
   4384 }
   4385 
   4386 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   4387 
   4388 static struct evcnt pmap_prefer_nochange_ev =
   4389     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4390 static struct evcnt pmap_prefer_change_ev =
   4391     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4392 
   4393 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4394 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4395 
   4396 void
   4397 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4398 {
   4399 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4400 	vaddr_t va = *vap;
   4401 	vaddr_t diff = (hint - va) & mask;
   4402 	if (diff == 0) {
   4403 		pmap_prefer_nochange_ev.ev_count++;
   4404 	} else {
   4405 		pmap_prefer_change_ev.ev_count++;
   4406 		if (__predict_false(td))
   4407 			va -= mask + 1;
   4408 		*vap = va + diff;
   4409 	}
   4410 }
   4411 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   4412 
   4413 /*
   4414  * pmap_zero_page()
   4415  *
   4416  * Zero a given physical page by mapping it at a page hook point.
   4417  * In doing the zero page op, the page we zero is mapped cachable, as with
   4418  * StrongARM accesses to non-cached pages are non-burst making writing
   4419  * _any_ bulk data very slow.
   4420  */
   4421 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4422 void
   4423 pmap_zero_page_generic(paddr_t phys)
   4424 {
   4425 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4426 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4427 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4428 #endif
   4429 #ifdef PMAP_CACHE_VIPT
   4430 	/* Choose the last page color it had, if any */
   4431 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4432 #else
   4433 	const vsize_t va_offset = 0;
   4434 #endif
   4435 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4436 
   4437 #ifdef DEBUG
   4438 	if (!SLIST_EMPTY(&md->pvh_list))
   4439 		panic("pmap_zero_page: page has mappings");
   4440 #endif
   4441 
   4442 	KDASSERT((phys & PGOFSET) == 0);
   4443 
   4444 	/*
   4445 	 * Hook in the page, zero it, and purge the cache for that
   4446 	 * zeroed page. Invalidate the TLB as needed.
   4447 	 */
   4448 	*ptep = L2_S_PROTO | phys |
   4449 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4450 	PTE_SYNC(ptep);
   4451 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4452 	cpu_cpwait();
   4453 	bzero_page(cdstp + va_offset);
   4454 	/*
   4455 	 * Unmap the page.
   4456 	 */
   4457 	*ptep = 0;
   4458 	PTE_SYNC(ptep);
   4459 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4460 #ifdef PMAP_CACHE_VIVT
   4461 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4462 #endif
   4463 #ifdef PMAP_CACHE_VIPT
   4464 	/*
   4465 	 * This page is now cache resident so it now has a page color.
   4466 	 * Any contents have been obliterated so clear the EXEC flag.
   4467 	 */
   4468 	if (!pmap_is_page_colored_p(md)) {
   4469 		PMAPCOUNT(vac_color_new);
   4470 		md->pvh_attrs |= PVF_COLORED;
   4471 	}
   4472 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4473 		md->pvh_attrs &= ~PVF_EXEC;
   4474 		PMAPCOUNT(exec_discarded_zero);
   4475 	}
   4476 	md->pvh_attrs |= PVF_DIRTY;
   4477 #endif
   4478 }
   4479 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4480 
   4481 #if ARM_MMU_XSCALE == 1
   4482 void
   4483 pmap_zero_page_xscale(paddr_t phys)
   4484 {
   4485 #ifdef DEBUG
   4486 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4487 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4488 
   4489 	if (!SLIST_EMPTY(&md->pvh_list))
   4490 		panic("pmap_zero_page: page has mappings");
   4491 #endif
   4492 
   4493 	KDASSERT((phys & PGOFSET) == 0);
   4494 
   4495 	/*
   4496 	 * Hook in the page, zero it, and purge the cache for that
   4497 	 * zeroed page. Invalidate the TLB as needed.
   4498 	 */
   4499 	*cdst_pte = L2_S_PROTO | phys |
   4500 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4501 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4502 	PTE_SYNC(cdst_pte);
   4503 	cpu_tlb_flushD_SE(cdstp);
   4504 	cpu_cpwait();
   4505 	bzero_page(cdstp);
   4506 	xscale_cache_clean_minidata();
   4507 }
   4508 #endif /* ARM_MMU_XSCALE == 1 */
   4509 
   4510 /* pmap_pageidlezero()
   4511  *
   4512  * The same as above, except that we assume that the page is not
   4513  * mapped.  This means we never have to flush the cache first.  Called
   4514  * from the idle loop.
   4515  */
   4516 bool
   4517 pmap_pageidlezero(paddr_t phys)
   4518 {
   4519 	unsigned int i;
   4520 	int *ptr;
   4521 	bool rv = true;
   4522 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4523 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4524 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4525 #endif
   4526 #ifdef PMAP_CACHE_VIPT
   4527 	/* Choose the last page color it had, if any */
   4528 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4529 #else
   4530 	const vsize_t va_offset = 0;
   4531 #endif
   4532 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4533 
   4534 
   4535 #ifdef DEBUG
   4536 	if (!SLIST_EMPTY(&md->pvh_list))
   4537 		panic("pmap_pageidlezero: page has mappings");
   4538 #endif
   4539 
   4540 	KDASSERT((phys & PGOFSET) == 0);
   4541 
   4542 	/*
   4543 	 * Hook in the page, zero it, and purge the cache for that
   4544 	 * zeroed page. Invalidate the TLB as needed.
   4545 	 */
   4546 	*ptep = L2_S_PROTO | phys |
   4547 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4548 	PTE_SYNC(ptep);
   4549 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4550 	cpu_cpwait();
   4551 
   4552 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4553 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4554 		if (sched_curcpu_runnable_p() != 0) {
   4555 			/*
   4556 			 * A process has become ready.  Abort now,
   4557 			 * so we don't keep it waiting while we
   4558 			 * do slow memory access to finish this
   4559 			 * page.
   4560 			 */
   4561 			rv = false;
   4562 			break;
   4563 		}
   4564 		*ptr++ = 0;
   4565 	}
   4566 
   4567 #ifdef PMAP_CACHE_VIVT
   4568 	if (rv)
   4569 		/*
   4570 		 * if we aborted we'll rezero this page again later so don't
   4571 		 * purge it unless we finished it
   4572 		 */
   4573 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4574 #elif defined(PMAP_CACHE_VIPT)
   4575 	/*
   4576 	 * This page is now cache resident so it now has a page color.
   4577 	 * Any contents have been obliterated so clear the EXEC flag.
   4578 	 */
   4579 	if (!pmap_is_page_colored_p(md)) {
   4580 		PMAPCOUNT(vac_color_new);
   4581 		md->pvh_attrs |= PVF_COLORED;
   4582 	}
   4583 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4584 		md->pvh_attrs &= ~PVF_EXEC;
   4585 		PMAPCOUNT(exec_discarded_zero);
   4586 	}
   4587 #endif
   4588 	/*
   4589 	 * Unmap the page.
   4590 	 */
   4591 	*ptep = 0;
   4592 	PTE_SYNC(ptep);
   4593 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4594 
   4595 	return (rv);
   4596 }
   4597 
   4598 /*
   4599  * pmap_copy_page()
   4600  *
   4601  * Copy one physical page into another, by mapping the pages into
   4602  * hook points. The same comment regarding cachability as in
   4603  * pmap_zero_page also applies here.
   4604  */
   4605 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4606 void
   4607 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4608 {
   4609 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4610 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4611 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4612 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4613 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   4614 #endif
   4615 #ifdef PMAP_CACHE_VIPT
   4616 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   4617 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   4618 #else
   4619 	const vsize_t src_va_offset = 0;
   4620 	const vsize_t dst_va_offset = 0;
   4621 #endif
   4622 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4623 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4624 
   4625 #ifdef DEBUG
   4626 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4627 		panic("pmap_copy_page: dst page has mappings");
   4628 #endif
   4629 
   4630 #ifdef PMAP_CACHE_VIPT
   4631 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   4632 #endif
   4633 	KDASSERT((src & PGOFSET) == 0);
   4634 	KDASSERT((dst & PGOFSET) == 0);
   4635 
   4636 	/*
   4637 	 * Clean the source page.  Hold the source page's lock for
   4638 	 * the duration of the copy so that no other mappings can
   4639 	 * be created while we have a potentially aliased mapping.
   4640 	 */
   4641 #ifdef MULTIPROCESSOR
   4642 	KASSERT(uvm_page_locked_p(src_pg));
   4643 #endif
   4644 #ifdef PMAP_CACHE_VIVT
   4645 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4646 #endif
   4647 
   4648 	/*
   4649 	 * Map the pages into the page hook points, copy them, and purge
   4650 	 * the cache for the appropriate page. Invalidate the TLB
   4651 	 * as required.
   4652 	 */
   4653 	*src_ptep = L2_S_PROTO
   4654 	    | src
   4655 #ifdef PMAP_CACHE_VIPT
   4656 	    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4657 #endif
   4658 #ifdef PMAP_CACHE_VIVT
   4659 	    | pte_l2_s_cache_mode
   4660 #endif
   4661 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4662 	*dst_ptep = L2_S_PROTO | dst |
   4663 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4664 	PTE_SYNC(src_ptep);
   4665 	PTE_SYNC(dst_ptep);
   4666 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4667 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4668 	cpu_cpwait();
   4669 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4670 #ifdef PMAP_CACHE_VIVT
   4671 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4672 #endif
   4673 #ifdef PMAP_CACHE_VIVT
   4674 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4675 #endif
   4676 	/*
   4677 	 * Unmap the pages.
   4678 	 */
   4679 	*src_ptep = 0;
   4680 	*dst_ptep = 0;
   4681 	PTE_SYNC(src_ptep);
   4682 	PTE_SYNC(dst_ptep);
   4683 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4684 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4685 #ifdef PMAP_CACHE_VIPT
   4686 	/*
   4687 	 * Now that the destination page is in the cache, mark it as colored.
   4688 	 * If this was an exec page, discard it.
   4689 	 */
   4690 	if (!pmap_is_page_colored_p(dst_md)) {
   4691 		PMAPCOUNT(vac_color_new);
   4692 		dst_md->pvh_attrs |= PVF_COLORED;
   4693 	}
   4694 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   4695 		dst_md->pvh_attrs &= ~PVF_EXEC;
   4696 		PMAPCOUNT(exec_discarded_copy);
   4697 	}
   4698 	dst_md->pvh_attrs |= PVF_DIRTY;
   4699 #endif
   4700 }
   4701 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4702 
   4703 #if ARM_MMU_XSCALE == 1
   4704 void
   4705 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4706 {
   4707 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4708 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4709 #ifdef DEBUG
   4710 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   4711 
   4712 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4713 		panic("pmap_copy_page: dst page has mappings");
   4714 #endif
   4715 
   4716 	KDASSERT((src & PGOFSET) == 0);
   4717 	KDASSERT((dst & PGOFSET) == 0);
   4718 
   4719 	/*
   4720 	 * Clean the source page.  Hold the source page's lock for
   4721 	 * the duration of the copy so that no other mappings can
   4722 	 * be created while we have a potentially aliased mapping.
   4723 	 */
   4724 #ifdef MULTIPROCESSOR
   4725 	KASSERT(uvm_page_locked_p(src_pg));
   4726 #endif
   4727 #ifdef PMAP_CACHE_VIVT
   4728 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4729 #endif
   4730 
   4731 	/*
   4732 	 * Map the pages into the page hook points, copy them, and purge
   4733 	 * the cache for the appropriate page. Invalidate the TLB
   4734 	 * as required.
   4735 	 */
   4736 	*csrc_pte = L2_S_PROTO | src |
   4737 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4738 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4739 	PTE_SYNC(csrc_pte);
   4740 	*cdst_pte = L2_S_PROTO | dst |
   4741 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4742 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4743 	PTE_SYNC(cdst_pte);
   4744 	cpu_tlb_flushD_SE(csrcp);
   4745 	cpu_tlb_flushD_SE(cdstp);
   4746 	cpu_cpwait();
   4747 	bcopy_page(csrcp, cdstp);
   4748 	xscale_cache_clean_minidata();
   4749 }
   4750 #endif /* ARM_MMU_XSCALE == 1 */
   4751 
   4752 /*
   4753  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4754  *
   4755  * Return the start and end addresses of the kernel's virtual space.
   4756  * These values are setup in pmap_bootstrap and are updated as pages
   4757  * are allocated.
   4758  */
   4759 void
   4760 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4761 {
   4762 	*start = virtual_avail;
   4763 	*end = virtual_end;
   4764 }
   4765 
   4766 /*
   4767  * Helper function for pmap_grow_l2_bucket()
   4768  */
   4769 static inline int
   4770 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4771 {
   4772 	struct l2_bucket *l2b;
   4773 	pt_entry_t *ptep;
   4774 	paddr_t pa;
   4775 
   4776 	if (uvm.page_init_done == false) {
   4777 #ifdef PMAP_STEAL_MEMORY
   4778 		pv_addr_t pv;
   4779 		pmap_boot_pagealloc(PAGE_SIZE,
   4780 #ifdef PMAP_CACHE_VIPT
   4781 		    arm_cache_prefer_mask,
   4782 		    va & arm_cache_prefer_mask,
   4783 #else
   4784 		    0, 0,
   4785 #endif
   4786 		    &pv);
   4787 		pa = pv.pv_pa;
   4788 #else
   4789 		if (uvm_page_physget(&pa) == false)
   4790 			return (1);
   4791 #endif	/* PMAP_STEAL_MEMORY */
   4792 	} else {
   4793 		struct vm_page *pg;
   4794 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4795 		if (pg == NULL)
   4796 			return (1);
   4797 		pa = VM_PAGE_TO_PHYS(pg);
   4798 #ifdef PMAP_CACHE_VIPT
   4799 #ifdef DIAGNOSTIC
   4800 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4801 #endif
   4802 		/*
   4803 		 * This new page must not have any mappings.  Enter it via
   4804 		 * pmap_kenter_pa and let that routine do the hard work.
   4805 		 */
   4806 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   4807 		pmap_kenter_pa(va, pa,
   4808 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   4809 #endif
   4810 	}
   4811 
   4812 	if (pap)
   4813 		*pap = pa;
   4814 
   4815 	PMAPCOUNT(pt_mappings);
   4816 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4817 	KDASSERT(l2b != NULL);
   4818 
   4819 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4820 	*ptep = L2_S_PROTO | pa | cache_mode |
   4821 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4822 	PTE_SYNC(ptep);
   4823 	memset((void *)va, 0, PAGE_SIZE);
   4824 	return (0);
   4825 }
   4826 
   4827 /*
   4828  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4829  * used by pmap_growkernel().
   4830  */
   4831 static inline struct l2_bucket *
   4832 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4833 {
   4834 	struct l2_dtable *l2;
   4835 	struct l2_bucket *l2b;
   4836 	u_short l1idx;
   4837 	vaddr_t nva;
   4838 
   4839 	l1idx = L1_IDX(va);
   4840 
   4841 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4842 		/*
   4843 		 * No mapping at this address, as there is
   4844 		 * no entry in the L1 table.
   4845 		 * Need to allocate a new l2_dtable.
   4846 		 */
   4847 		nva = pmap_kernel_l2dtable_kva;
   4848 		if ((nva & PGOFSET) == 0) {
   4849 			/*
   4850 			 * Need to allocate a backing page
   4851 			 */
   4852 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4853 				return (NULL);
   4854 		}
   4855 
   4856 		l2 = (struct l2_dtable *)nva;
   4857 		nva += sizeof(struct l2_dtable);
   4858 
   4859 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4860 			/*
   4861 			 * The new l2_dtable straddles a page boundary.
   4862 			 * Map in another page to cover it.
   4863 			 */
   4864 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4865 				return (NULL);
   4866 		}
   4867 
   4868 		pmap_kernel_l2dtable_kva = nva;
   4869 
   4870 		/*
   4871 		 * Link it into the parent pmap
   4872 		 */
   4873 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4874 	}
   4875 
   4876 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4877 
   4878 	/*
   4879 	 * Fetch pointer to the L2 page table associated with the address.
   4880 	 */
   4881 	if (l2b->l2b_kva == NULL) {
   4882 		pt_entry_t *ptep;
   4883 
   4884 		/*
   4885 		 * No L2 page table has been allocated. Chances are, this
   4886 		 * is because we just allocated the l2_dtable, above.
   4887 		 */
   4888 		nva = pmap_kernel_l2ptp_kva;
   4889 		ptep = (pt_entry_t *)nva;
   4890 		if ((nva & PGOFSET) == 0) {
   4891 			/*
   4892 			 * Need to allocate a backing page
   4893 			 */
   4894 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4895 			    &pmap_kernel_l2ptp_phys))
   4896 				return (NULL);
   4897 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4898 		}
   4899 
   4900 		l2->l2_occupancy++;
   4901 		l2b->l2b_kva = ptep;
   4902 		l2b->l2b_l1idx = l1idx;
   4903 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4904 
   4905 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4906 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4907 	}
   4908 
   4909 	return (l2b);
   4910 }
   4911 
   4912 vaddr_t
   4913 pmap_growkernel(vaddr_t maxkvaddr)
   4914 {
   4915 	pmap_t kpm = pmap_kernel();
   4916 	struct l1_ttable *l1;
   4917 	struct l2_bucket *l2b;
   4918 	pd_entry_t *pl1pd;
   4919 	int s;
   4920 
   4921 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4922 		goto out;		/* we are OK */
   4923 
   4924 	NPDEBUG(PDB_GROWKERN,
   4925 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4926 	    pmap_curmaxkvaddr, maxkvaddr));
   4927 
   4928 	KDASSERT(maxkvaddr <= virtual_end);
   4929 
   4930 	/*
   4931 	 * whoops!   we need to add kernel PTPs
   4932 	 */
   4933 
   4934 	s = splhigh();	/* to be safe */
   4935 	mutex_enter(kpm->pm_lock);
   4936 
   4937 	/* Map 1MB at a time */
   4938 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4939 
   4940 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4941 		KDASSERT(l2b != NULL);
   4942 
   4943 		/* Distribute new L1 entry to all other L1s */
   4944 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4945 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4946 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4947 			    L1_C_PROTO;
   4948 			PTE_SYNC(pl1pd);
   4949 		}
   4950 	}
   4951 
   4952 	/*
   4953 	 * flush out the cache, expensive but growkernel will happen so
   4954 	 * rarely
   4955 	 */
   4956 	cpu_dcache_wbinv_all();
   4957 	cpu_tlb_flushD();
   4958 	cpu_cpwait();
   4959 
   4960 	mutex_exit(kpm->pm_lock);
   4961 	splx(s);
   4962 
   4963 out:
   4964 	return (pmap_curmaxkvaddr);
   4965 }
   4966 
   4967 /************************ Utility routines ****************************/
   4968 
   4969 /*
   4970  * vector_page_setprot:
   4971  *
   4972  *	Manipulate the protection of the vector page.
   4973  */
   4974 void
   4975 vector_page_setprot(int prot)
   4976 {
   4977 	struct l2_bucket *l2b;
   4978 	pt_entry_t *ptep;
   4979 
   4980 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4981 	KDASSERT(l2b != NULL);
   4982 
   4983 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4984 
   4985 	*ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   4986 	PTE_SYNC(ptep);
   4987 	cpu_tlb_flushD_SE(vector_page);
   4988 	cpu_cpwait();
   4989 }
   4990 
   4991 /*
   4992  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   4993  * Returns true if the mapping exists, else false.
   4994  *
   4995  * NOTE: This function is only used by a couple of arm-specific modules.
   4996  * It is not safe to take any pmap locks here, since we could be right
   4997  * in the middle of debugging the pmap anyway...
   4998  *
   4999  * It is possible for this routine to return false even though a valid
   5000  * mapping does exist. This is because we don't lock, so the metadata
   5001  * state may be inconsistent.
   5002  *
   5003  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5004  * a "section" mapping.
   5005  */
   5006 bool
   5007 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5008 {
   5009 	struct l2_dtable *l2;
   5010 	pd_entry_t *pl1pd, l1pd;
   5011 	pt_entry_t *ptep;
   5012 	u_short l1idx;
   5013 
   5014 	if (pm->pm_l1 == NULL)
   5015 		return false;
   5016 
   5017 	l1idx = L1_IDX(va);
   5018 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   5019 	l1pd = *pl1pd;
   5020 
   5021 	if (l1pte_section_p(l1pd)) {
   5022 		*ptp = NULL;
   5023 		return true;
   5024 	}
   5025 
   5026 	if (pm->pm_l2 == NULL)
   5027 		return false;
   5028 
   5029 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5030 
   5031 	if (l2 == NULL ||
   5032 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5033 		return false;
   5034 	}
   5035 
   5036 	*ptp = &ptep[l2pte_index(va)];
   5037 	return true;
   5038 }
   5039 
   5040 bool
   5041 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5042 {
   5043 	u_short l1idx;
   5044 
   5045 	if (pm->pm_l1 == NULL)
   5046 		return false;
   5047 
   5048 	l1idx = L1_IDX(va);
   5049 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   5050 
   5051 	return true;
   5052 }
   5053 
   5054 /************************ Bootstrapping routines ****************************/
   5055 
   5056 static void
   5057 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5058 {
   5059 	int i;
   5060 
   5061 	l1->l1_kva = l1pt;
   5062 	l1->l1_domain_use_count = 0;
   5063 	l1->l1_domain_first = 0;
   5064 
   5065 	for (i = 0; i < PMAP_DOMAINS; i++)
   5066 		l1->l1_domain_free[i] = i + 1;
   5067 
   5068 	/*
   5069 	 * Copy the kernel's L1 entries to each new L1.
   5070 	 */
   5071 	if (pmap_initialized)
   5072 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   5073 
   5074 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5075 	    &l1->l1_physaddr) == false)
   5076 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5077 
   5078 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5079 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5080 }
   5081 
   5082 /*
   5083  * pmap_bootstrap() is called from the board-specific initarm() routine
   5084  * once the kernel L1/L2 descriptors tables have been set up.
   5085  *
   5086  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5087  * spread over a number of disparate files/functions.
   5088  *
   5089  * We are passed the following parameters
   5090  *  - kernel_l1pt
   5091  *    This is a pointer to the base of the kernel's L1 translation table.
   5092  *  - vstart
   5093  *    1MB-aligned start of managed kernel virtual memory.
   5094  *  - vend
   5095  *    1MB-aligned end of managed kernel virtual memory.
   5096  *
   5097  * We use the first parameter to build the metadata (struct l1_ttable and
   5098  * struct l2_dtable) necessary to track kernel mappings.
   5099  */
   5100 #define	PMAP_STATIC_L2_SIZE 16
   5101 void
   5102 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5103 {
   5104 	static struct l1_ttable static_l1;
   5105 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5106 	struct l1_ttable *l1 = &static_l1;
   5107 	struct l2_dtable *l2;
   5108 	struct l2_bucket *l2b;
   5109 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5110 	pmap_t pm = pmap_kernel();
   5111 	pd_entry_t pde;
   5112 	pt_entry_t *ptep;
   5113 	paddr_t pa;
   5114 	vaddr_t va;
   5115 	vsize_t size;
   5116 	int nptes, l1idx, l2idx, l2next = 0;
   5117 
   5118 	/*
   5119 	 * Initialise the kernel pmap object
   5120 	 */
   5121 	pm->pm_l1 = l1;
   5122 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5123 	pm->pm_activated = true;
   5124 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5125 
   5126 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5127 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5128 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5129 
   5130 	/*
   5131 	 * Scan the L1 translation table created by initarm() and create
   5132 	 * the required metadata for all valid mappings found in it.
   5133 	 */
   5134 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5135 		pde = l1pt[l1idx];
   5136 
   5137 		/*
   5138 		 * We're only interested in Coarse mappings.
   5139 		 * pmap_extract() can deal with section mappings without
   5140 		 * recourse to checking L2 metadata.
   5141 		 */
   5142 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5143 			continue;
   5144 
   5145 		/*
   5146 		 * Lookup the KVA of this L2 descriptor table
   5147 		 */
   5148 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5149 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5150 		if (ptep == NULL) {
   5151 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5152 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5153 		}
   5154 
   5155 		/*
   5156 		 * Fetch the associated L2 metadata structure.
   5157 		 * Allocate a new one if necessary.
   5158 		 */
   5159 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5160 			if (l2next == PMAP_STATIC_L2_SIZE)
   5161 				panic("pmap_bootstrap: out of static L2s");
   5162 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5163 		}
   5164 
   5165 		/*
   5166 		 * One more L1 slot tracked...
   5167 		 */
   5168 		l2->l2_occupancy++;
   5169 
   5170 		/*
   5171 		 * Fill in the details of the L2 descriptor in the
   5172 		 * appropriate bucket.
   5173 		 */
   5174 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5175 		l2b->l2b_kva = ptep;
   5176 		l2b->l2b_phys = pa;
   5177 		l2b->l2b_l1idx = l1idx;
   5178 
   5179 		/*
   5180 		 * Establish an initial occupancy count for this descriptor
   5181 		 */
   5182 		for (l2idx = 0;
   5183 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5184 		    l2idx++) {
   5185 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5186 				l2b->l2b_occupancy++;
   5187 			}
   5188 		}
   5189 
   5190 		/*
   5191 		 * Make sure the descriptor itself has the correct cache mode.
   5192 		 * If not, fix it, but whine about the problem. Port-meisters
   5193 		 * should consider this a clue to fix up their initarm()
   5194 		 * function. :)
   5195 		 */
   5196 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5197 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5198 			    "L2 pte @ %p\n", ptep);
   5199 		}
   5200 	}
   5201 
   5202 	/*
   5203 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5204 	 * a page table. Bitch if it is not correctly set.
   5205 	 */
   5206 	for (va = (vaddr_t)l1pt;
   5207 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5208 		if (pmap_set_pt_cache_mode(l1pt, va))
   5209 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5210 			    "primary L1 @ 0x%lx\n", va);
   5211 	}
   5212 
   5213 	cpu_dcache_wbinv_all();
   5214 	cpu_tlb_flushID();
   5215 	cpu_cpwait();
   5216 
   5217 	/*
   5218 	 * now we allocate the "special" VAs which are used for tmp mappings
   5219 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5220 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5221 	 *
   5222 	 * Managed KVM space start from wherever initarm() tells us.
   5223 	 */
   5224 	virtual_avail = vstart;
   5225 	virtual_end = vend;
   5226 
   5227 #ifdef PMAP_CACHE_VIPT
   5228 	/*
   5229 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5230 	 * page so we won't violate cache aliasing rules.
   5231 	 */
   5232 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5233 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5234 #else
   5235 	nptes = 1;
   5236 #endif
   5237 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5238 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5239 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5240 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5241 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5242 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5243 	    (void *)&msgbufaddr, NULL);
   5244 
   5245 	/*
   5246 	 * Allocate a range of kernel virtual address space to be used
   5247 	 * for L2 descriptor tables and metadata allocation in
   5248 	 * pmap_growkernel().
   5249 	 */
   5250 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5251 	pmap_alloc_specials(&virtual_avail,
   5252 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5253 	    &pmap_kernel_l2ptp_kva, NULL);
   5254 
   5255 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5256 	pmap_alloc_specials(&virtual_avail,
   5257 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5258 	    &pmap_kernel_l2dtable_kva, NULL);
   5259 
   5260 	/*
   5261 	 * init the static-global locks and global pmap list.
   5262 	 */
   5263 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   5264 
   5265 	/*
   5266 	 * We can now initialise the first L1's metadata.
   5267 	 */
   5268 	SLIST_INIT(&l1_list);
   5269 	TAILQ_INIT(&l1_lru_list);
   5270 	pmap_init_l1(l1, l1pt);
   5271 
   5272 	/* Set up vector page L1 details, if necessary */
   5273 	if (vector_page < KERNEL_BASE) {
   5274 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5275 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5276 		KDASSERT(l2b != NULL);
   5277 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5278 		    L1_C_DOM(pm->pm_domain);
   5279 	} else
   5280 		pm->pm_pl1vec = NULL;
   5281 
   5282 	/*
   5283 	 * Initialize the pmap cache
   5284 	 */
   5285 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5286 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5287 	LIST_INIT(&pmap_pmaps);
   5288 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5289 
   5290 	/*
   5291 	 * Initialize the pv pool.
   5292 	 */
   5293 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5294 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5295 
   5296 	/*
   5297 	 * Initialize the L2 dtable pool and cache.
   5298 	 */
   5299 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5300 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5301 
   5302 	/*
   5303 	 * Initialise the L2 descriptor table pool and cache
   5304 	 */
   5305 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5306 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5307 	    pmap_l2ptp_ctor, NULL, NULL);
   5308 
   5309 	cpu_dcache_wbinv_all();
   5310 }
   5311 
   5312 static int
   5313 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5314 {
   5315 	pd_entry_t *pdep, pde;
   5316 	pt_entry_t *ptep, pte;
   5317 	vaddr_t pa;
   5318 	int rv = 0;
   5319 
   5320 	/*
   5321 	 * Make sure the descriptor itself has the correct cache mode
   5322 	 */
   5323 	pdep = &kl1[L1_IDX(va)];
   5324 	pde = *pdep;
   5325 
   5326 	if (l1pte_section_p(pde)) {
   5327 		__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   5328 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5329 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5330 			    pte_l1_s_cache_mode_pt;
   5331 			PTE_SYNC(pdep);
   5332 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5333 			rv = 1;
   5334 		}
   5335 	} else {
   5336 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5337 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5338 		if (ptep == NULL)
   5339 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5340 
   5341 		ptep = &ptep[l2pte_index(va)];
   5342 		pte = *ptep;
   5343 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5344 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5345 			    pte_l2_s_cache_mode_pt;
   5346 			PTE_SYNC(ptep);
   5347 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5348 			rv = 1;
   5349 		}
   5350 	}
   5351 
   5352 	return (rv);
   5353 }
   5354 
   5355 static void
   5356 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5357 {
   5358 	vaddr_t va = *availp;
   5359 	struct l2_bucket *l2b;
   5360 
   5361 	if (ptep) {
   5362 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5363 		if (l2b == NULL)
   5364 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5365 
   5366 		if (ptep)
   5367 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5368 	}
   5369 
   5370 	*vap = va;
   5371 	*availp = va + (PAGE_SIZE * pages);
   5372 }
   5373 
   5374 void
   5375 pmap_init(void)
   5376 {
   5377 
   5378 	/*
   5379 	 * Set the available memory vars - These do not map to real memory
   5380 	 * addresses and cannot as the physical memory is fragmented.
   5381 	 * They are used by ps for %mem calculations.
   5382 	 * One could argue whether this should be the entire memory or just
   5383 	 * the memory that is useable in a user process.
   5384 	 */
   5385 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   5386 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   5387 
   5388 	/*
   5389 	 * Now we need to free enough pv_entry structures to allow us to get
   5390 	 * the kmem_map/kmem_object allocated and inited (done after this
   5391 	 * function is finished).  to do this we allocate one bootstrap page out
   5392 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5393 	 * structures.   we never free this page.
   5394 	 */
   5395 	pool_setlowat(&pmap_pv_pool,
   5396 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5397 
   5398 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5399 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5400 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5401 
   5402 	pmap_initialized = true;
   5403 }
   5404 
   5405 static vaddr_t last_bootstrap_page = 0;
   5406 static void *free_bootstrap_pages = NULL;
   5407 
   5408 static void *
   5409 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5410 {
   5411 	extern void *pool_page_alloc(struct pool *, int);
   5412 	vaddr_t new_page;
   5413 	void *rv;
   5414 
   5415 	if (pmap_initialized)
   5416 		return (pool_page_alloc(pp, flags));
   5417 
   5418 	if (free_bootstrap_pages) {
   5419 		rv = free_bootstrap_pages;
   5420 		free_bootstrap_pages = *((void **)rv);
   5421 		return (rv);
   5422 	}
   5423 
   5424 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5425 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5426 
   5427 	KASSERT(new_page > last_bootstrap_page);
   5428 	last_bootstrap_page = new_page;
   5429 	return ((void *)new_page);
   5430 }
   5431 
   5432 static void
   5433 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5434 {
   5435 	extern void pool_page_free(struct pool *, void *);
   5436 
   5437 	if ((vaddr_t)v <= last_bootstrap_page) {
   5438 		*((void **)v) = free_bootstrap_pages;
   5439 		free_bootstrap_pages = v;
   5440 		return;
   5441 	}
   5442 
   5443 	if (pmap_initialized) {
   5444 		pool_page_free(pp, v);
   5445 		return;
   5446 	}
   5447 }
   5448 
   5449 /*
   5450  * pmap_postinit()
   5451  *
   5452  * This routine is called after the vm and kmem subsystems have been
   5453  * initialised. This allows the pmap code to perform any initialisation
   5454  * that can only be done one the memory allocation is in place.
   5455  */
   5456 void
   5457 pmap_postinit(void)
   5458 {
   5459 	extern paddr_t physical_start, physical_end;
   5460 	struct l2_bucket *l2b;
   5461 	struct l1_ttable *l1;
   5462 	struct pglist plist;
   5463 	struct vm_page *m;
   5464 	pd_entry_t *pl1pt;
   5465 	pt_entry_t *ptep, pte;
   5466 	vaddr_t va, eva;
   5467 	u_int loop, needed;
   5468 	int error;
   5469 
   5470 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5471 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5472 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5473 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5474 
   5475 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5476 	needed -= 1;
   5477 
   5478 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   5479 
   5480 	for (loop = 0; loop < needed; loop++, l1++) {
   5481 		/* Allocate a L1 page table */
   5482 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5483 		if (va == 0)
   5484 			panic("Cannot allocate L1 KVM");
   5485 
   5486 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5487 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   5488 		if (error)
   5489 			panic("Cannot allocate L1 physical pages");
   5490 
   5491 		m = TAILQ_FIRST(&plist);
   5492 		eva = va + L1_TABLE_SIZE;
   5493 		pl1pt = (pd_entry_t *)va;
   5494 
   5495 		while (m && va < eva) {
   5496 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5497 
   5498 			pmap_kenter_pa(va, pa,
   5499 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   5500 
   5501 			/*
   5502 			 * Make sure the L1 descriptor table is mapped
   5503 			 * with the cache-mode set to write-through.
   5504 			 */
   5505 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5506 			KDASSERT(l2b != NULL);
   5507 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5508 			pte = *ptep;
   5509 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5510 			*ptep = pte;
   5511 			PTE_SYNC(ptep);
   5512 			cpu_tlb_flushD_SE(va);
   5513 
   5514 			va += PAGE_SIZE;
   5515 			m = TAILQ_NEXT(m, pageq.queue);
   5516 		}
   5517 
   5518 #ifdef DIAGNOSTIC
   5519 		if (m)
   5520 			panic("pmap_alloc_l1pt: pglist not empty");
   5521 #endif	/* DIAGNOSTIC */
   5522 
   5523 		pmap_init_l1(l1, pl1pt);
   5524 	}
   5525 
   5526 #ifdef DEBUG
   5527 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5528 	    needed);
   5529 #endif
   5530 }
   5531 
   5532 /*
   5533  * Note that the following routines are used by board-specific initialisation
   5534  * code to configure the initial kernel page tables.
   5535  *
   5536  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5537  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5538  * behaviour of the old pmap, and provides an easy migration path for
   5539  * initial bring-up of the new pmap on existing ports. Fortunately,
   5540  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5541  * will be deprecated.
   5542  *
   5543  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5544  * tables.
   5545  */
   5546 
   5547 /*
   5548  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5549  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5550  * find them as necessary.
   5551  *
   5552  * Note that the data on this list MUST remain valid after initarm() returns,
   5553  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5554  */
   5555 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5556 
   5557 static vaddr_t
   5558 kernel_pt_lookup(paddr_t pa)
   5559 {
   5560 	pv_addr_t *pv;
   5561 
   5562 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5563 #ifndef ARM32_NEW_VM_LAYOUT
   5564 		if (pv->pv_pa == (pa & ~PGOFSET))
   5565 			return (pv->pv_va | (pa & PGOFSET));
   5566 #else
   5567 		if (pv->pv_pa == pa)
   5568 			return (pv->pv_va);
   5569 #endif
   5570 	}
   5571 	return (0);
   5572 }
   5573 
   5574 /*
   5575  * pmap_map_section:
   5576  *
   5577  *	Create a single section mapping.
   5578  */
   5579 void
   5580 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5581 {
   5582 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5583 	pd_entry_t fl;
   5584 
   5585 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5586 
   5587 	switch (cache) {
   5588 	case PTE_NOCACHE:
   5589 	default:
   5590 		fl = 0;
   5591 		break;
   5592 
   5593 	case PTE_CACHE:
   5594 		fl = pte_l1_s_cache_mode;
   5595 		break;
   5596 
   5597 	case PTE_PAGETABLE:
   5598 		fl = pte_l1_s_cache_mode_pt;
   5599 		break;
   5600 	}
   5601 
   5602 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5603 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5604 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5605 }
   5606 
   5607 /*
   5608  * pmap_map_entry:
   5609  *
   5610  *	Create a single page mapping.
   5611  */
   5612 void
   5613 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5614 {
   5615 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5616 	pt_entry_t fl;
   5617 	pt_entry_t *pte;
   5618 
   5619 	KASSERT(((va | pa) & PGOFSET) == 0);
   5620 
   5621 	switch (cache) {
   5622 	case PTE_NOCACHE:
   5623 	default:
   5624 		fl = 0;
   5625 		break;
   5626 
   5627 	case PTE_CACHE:
   5628 		fl = pte_l2_s_cache_mode;
   5629 		break;
   5630 
   5631 	case PTE_PAGETABLE:
   5632 		fl = pte_l2_s_cache_mode_pt;
   5633 		break;
   5634 	}
   5635 
   5636 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5637 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5638 
   5639 #ifndef ARM32_NEW_VM_LAYOUT
   5640 	pte = (pt_entry_t *)
   5641 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5642 #else
   5643 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5644 #endif
   5645 	if (pte == NULL)
   5646 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5647 
   5648 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5649 #ifndef ARM32_NEW_VM_LAYOUT
   5650 	pte += (va >> PGSHIFT) & 0x3ff;
   5651 #else
   5652 	pte += l2pte_index(va);
   5653 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5654 #endif
   5655 	*pte = fl;
   5656 	PTE_SYNC(pte);
   5657 }
   5658 
   5659 /*
   5660  * pmap_link_l2pt:
   5661  *
   5662  *	Link the L2 page table specified by "l2pv" into the L1
   5663  *	page table at the slot for "va".
   5664  */
   5665 void
   5666 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5667 {
   5668 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5669 	u_int slot = va >> L1_S_SHIFT;
   5670 
   5671 #ifndef ARM32_NEW_VM_LAYOUT
   5672 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5673 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5674 #endif
   5675 
   5676 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5677 
   5678 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5679 #ifdef ARM32_NEW_VM_LAYOUT
   5680 	PTE_SYNC(&pde[slot]);
   5681 #else
   5682 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5683 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5684 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5685 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5686 #endif
   5687 
   5688 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5689 }
   5690 
   5691 /*
   5692  * pmap_map_chunk:
   5693  *
   5694  *	Map a chunk of memory using the most efficient mappings
   5695  *	possible (section, large page, small page) into the
   5696  *	provided L1 and L2 tables at the specified virtual address.
   5697  */
   5698 vsize_t
   5699 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5700     int prot, int cache)
   5701 {
   5702 	pd_entry_t *pdep = (pd_entry_t *) l1pt;
   5703 	pt_entry_t *pte, f1, f2s, f2l;
   5704 	vsize_t resid;
   5705 	int i;
   5706 
   5707 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5708 
   5709 	if (l1pt == 0)
   5710 		panic("pmap_map_chunk: no L1 table provided");
   5711 
   5712 #ifdef VERBOSE_INIT_ARM
   5713 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5714 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5715 #endif
   5716 
   5717 	switch (cache) {
   5718 	case PTE_NOCACHE:
   5719 	default:
   5720 		f1 = 0;
   5721 		f2l = 0;
   5722 		f2s = 0;
   5723 		break;
   5724 
   5725 	case PTE_CACHE:
   5726 		f1 = pte_l1_s_cache_mode;
   5727 		f2l = pte_l2_l_cache_mode;
   5728 		f2s = pte_l2_s_cache_mode;
   5729 		break;
   5730 
   5731 	case PTE_PAGETABLE:
   5732 		f1 = pte_l1_s_cache_mode_pt;
   5733 		f2l = pte_l2_l_cache_mode_pt;
   5734 		f2s = pte_l2_s_cache_mode_pt;
   5735 		break;
   5736 	}
   5737 
   5738 	size = resid;
   5739 
   5740 	while (resid > 0) {
   5741 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5742 		/* See if we can use a supersection mapping. */
   5743 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   5744 			/* Supersection are always domain 0 */
   5745 			pd_entry_t pde = L1_SS_PROTO | pa |
   5746 			    L1_S_PROT(PTE_KERNEL, prot) | f1;
   5747 #ifdef VERBOSE_INIT_ARM
   5748 			printf("sS");
   5749 #endif
   5750 			for (size_t s = va >> L1_S_SHIFT,
   5751 			     e = s + L1_SS_SIZE / L1_S_SIZE;
   5752 			     s < e;
   5753 			     s++) {
   5754 				pdep[s] = pde;
   5755 				PTE_SYNC(&pdep[s]);
   5756 			}
   5757 			va += L1_SS_SIZE;
   5758 			pa += L1_SS_SIZE;
   5759 			resid -= L1_SS_SIZE;
   5760 			continue;
   5761 		}
   5762 #endif
   5763 		/* See if we can use a section mapping. */
   5764 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5765 #ifdef VERBOSE_INIT_ARM
   5766 			printf("S");
   5767 #endif
   5768 			pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5769 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5770 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5771 			PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
   5772 			va += L1_S_SIZE;
   5773 			pa += L1_S_SIZE;
   5774 			resid -= L1_S_SIZE;
   5775 			continue;
   5776 		}
   5777 
   5778 		/*
   5779 		 * Ok, we're going to use an L2 table.  Make sure
   5780 		 * one is actually in the corresponding L1 slot
   5781 		 * for the current VA.
   5782 		 */
   5783 		if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5784 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5785 
   5786 #ifndef ARM32_NEW_VM_LAYOUT
   5787 		pte = (pt_entry_t *)
   5788 		    kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
   5789 #else
   5790 		pte = (pt_entry_t *) kernel_pt_lookup(
   5791 		    pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
   5792 #endif
   5793 		if (pte == NULL)
   5794 			panic("pmap_map_chunk: can't find L2 table for VA"
   5795 			    "0x%08lx", va);
   5796 
   5797 		/* See if we can use a L2 large page mapping. */
   5798 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5799 #ifdef VERBOSE_INIT_ARM
   5800 			printf("L");
   5801 #endif
   5802 			for (i = 0; i < 16; i++) {
   5803 #ifndef ARM32_NEW_VM_LAYOUT
   5804 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5805 				    L2_L_PROTO | pa |
   5806 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5807 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5808 #else
   5809 				pte[l2pte_index(va) + i] =
   5810 				    L2_L_PROTO | pa |
   5811 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5812 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5813 #endif
   5814 			}
   5815 			va += L2_L_SIZE;
   5816 			pa += L2_L_SIZE;
   5817 			resid -= L2_L_SIZE;
   5818 			continue;
   5819 		}
   5820 
   5821 		/* Use a small page mapping. */
   5822 #ifdef VERBOSE_INIT_ARM
   5823 		printf("P");
   5824 #endif
   5825 #ifndef ARM32_NEW_VM_LAYOUT
   5826 		pte[(va >> PGSHIFT) & 0x3ff] =
   5827 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5828 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5829 #else
   5830 		pte[l2pte_index(va)] =
   5831 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5832 		PTE_SYNC(&pte[l2pte_index(va)]);
   5833 #endif
   5834 		va += PAGE_SIZE;
   5835 		pa += PAGE_SIZE;
   5836 		resid -= PAGE_SIZE;
   5837 	}
   5838 #ifdef VERBOSE_INIT_ARM
   5839 	printf("\n");
   5840 #endif
   5841 	return (size);
   5842 }
   5843 
   5844 /********************** Static device map routines ***************************/
   5845 
   5846 static const struct pmap_devmap *pmap_devmap_table;
   5847 
   5848 /*
   5849  * Register the devmap table.  This is provided in case early console
   5850  * initialization needs to register mappings created by bootstrap code
   5851  * before pmap_devmap_bootstrap() is called.
   5852  */
   5853 void
   5854 pmap_devmap_register(const struct pmap_devmap *table)
   5855 {
   5856 
   5857 	pmap_devmap_table = table;
   5858 }
   5859 
   5860 /*
   5861  * Map all of the static regions in the devmap table, and remember
   5862  * the devmap table so other parts of the kernel can look up entries
   5863  * later.
   5864  */
   5865 void
   5866 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5867 {
   5868 	int i;
   5869 
   5870 	pmap_devmap_table = table;
   5871 
   5872 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5873 #ifdef VERBOSE_INIT_ARM
   5874 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5875 		    pmap_devmap_table[i].pd_pa,
   5876 		    pmap_devmap_table[i].pd_pa +
   5877 			pmap_devmap_table[i].pd_size - 1,
   5878 		    pmap_devmap_table[i].pd_va);
   5879 #endif
   5880 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5881 		    pmap_devmap_table[i].pd_pa,
   5882 		    pmap_devmap_table[i].pd_size,
   5883 		    pmap_devmap_table[i].pd_prot,
   5884 		    pmap_devmap_table[i].pd_cache);
   5885 	}
   5886 }
   5887 
   5888 const struct pmap_devmap *
   5889 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5890 {
   5891 	uint64_t endpa;
   5892 	int i;
   5893 
   5894 	if (pmap_devmap_table == NULL)
   5895 		return (NULL);
   5896 
   5897 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5898 
   5899 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5900 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5901 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5902 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5903 			return (&pmap_devmap_table[i]);
   5904 	}
   5905 
   5906 	return (NULL);
   5907 }
   5908 
   5909 const struct pmap_devmap *
   5910 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5911 {
   5912 	int i;
   5913 
   5914 	if (pmap_devmap_table == NULL)
   5915 		return (NULL);
   5916 
   5917 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5918 		if (va >= pmap_devmap_table[i].pd_va &&
   5919 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5920 				     pmap_devmap_table[i].pd_size - 1)
   5921 			return (&pmap_devmap_table[i]);
   5922 	}
   5923 
   5924 	return (NULL);
   5925 }
   5926 
   5927 /********************** PTE initialization routines **************************/
   5928 
   5929 /*
   5930  * These routines are called when the CPU type is identified to set up
   5931  * the PTE prototypes, cache modes, etc.
   5932  *
   5933  * The variables are always here, just in case modules need to reference
   5934  * them (though, they shouldn't).
   5935  */
   5936 
   5937 pt_entry_t	pte_l1_s_cache_mode;
   5938 pt_entry_t	pte_l1_s_wc_mode;
   5939 pt_entry_t	pte_l1_s_cache_mode_pt;
   5940 pt_entry_t	pte_l1_s_cache_mask;
   5941 
   5942 pt_entry_t	pte_l2_l_cache_mode;
   5943 pt_entry_t	pte_l2_l_wc_mode;
   5944 pt_entry_t	pte_l2_l_cache_mode_pt;
   5945 pt_entry_t	pte_l2_l_cache_mask;
   5946 
   5947 pt_entry_t	pte_l2_s_cache_mode;
   5948 pt_entry_t	pte_l2_s_wc_mode;
   5949 pt_entry_t	pte_l2_s_cache_mode_pt;
   5950 pt_entry_t	pte_l2_s_cache_mask;
   5951 
   5952 pt_entry_t	pte_l1_s_prot_u;
   5953 pt_entry_t	pte_l1_s_prot_w;
   5954 pt_entry_t	pte_l1_s_prot_ro;
   5955 pt_entry_t	pte_l1_s_prot_mask;
   5956 
   5957 pt_entry_t	pte_l2_s_prot_u;
   5958 pt_entry_t	pte_l2_s_prot_w;
   5959 pt_entry_t	pte_l2_s_prot_ro;
   5960 pt_entry_t	pte_l2_s_prot_mask;
   5961 
   5962 pt_entry_t	pte_l2_l_prot_u;
   5963 pt_entry_t	pte_l2_l_prot_w;
   5964 pt_entry_t	pte_l2_l_prot_ro;
   5965 pt_entry_t	pte_l2_l_prot_mask;
   5966 
   5967 pt_entry_t	pte_l1_ss_proto;
   5968 pt_entry_t	pte_l1_s_proto;
   5969 pt_entry_t	pte_l1_c_proto;
   5970 pt_entry_t	pte_l2_s_proto;
   5971 
   5972 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5973 void		(*pmap_zero_page_func)(paddr_t);
   5974 
   5975 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5976 void
   5977 pmap_pte_init_generic(void)
   5978 {
   5979 
   5980 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5981 	pte_l1_s_wc_mode = L1_S_B;
   5982 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5983 
   5984 	pte_l2_l_cache_mode = L2_B|L2_C;
   5985 	pte_l2_l_wc_mode = L2_B;
   5986 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   5987 
   5988 	pte_l2_s_cache_mode = L2_B|L2_C;
   5989 	pte_l2_s_wc_mode = L2_B;
   5990 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   5991 
   5992 	/*
   5993 	 * If we have a write-through cache, set B and C.  If
   5994 	 * we have a write-back cache, then we assume setting
   5995 	 * only C will make those pages write-through (except for those
   5996 	 * Cortex CPUs which can read the L1 caches).
   5997 	 */
   5998 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   5999 #if ARM_MMU_V7 > 0
   6000 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6001 #endif
   6002 #if ARM_MMU_V6 > 0
   6003 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6004 #endif
   6005 	    || false) {
   6006 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6007 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6008 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6009 	} else {
   6010 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6011 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6012 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6013 	}
   6014 
   6015 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6016 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6017 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6018 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6019 
   6020 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6021 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6022 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6023 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6024 
   6025 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6026 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6027 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6028 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6029 
   6030 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6031 	pte_l1_s_proto = L1_S_PROTO_generic;
   6032 	pte_l1_c_proto = L1_C_PROTO_generic;
   6033 	pte_l2_s_proto = L2_S_PROTO_generic;
   6034 
   6035 	pmap_copy_page_func = pmap_copy_page_generic;
   6036 	pmap_zero_page_func = pmap_zero_page_generic;
   6037 }
   6038 
   6039 #if defined(CPU_ARM8)
   6040 void
   6041 pmap_pte_init_arm8(void)
   6042 {
   6043 
   6044 	/*
   6045 	 * ARM8 is compatible with generic, but we need to use
   6046 	 * the page tables uncached.
   6047 	 */
   6048 	pmap_pte_init_generic();
   6049 
   6050 	pte_l1_s_cache_mode_pt = 0;
   6051 	pte_l2_l_cache_mode_pt = 0;
   6052 	pte_l2_s_cache_mode_pt = 0;
   6053 }
   6054 #endif /* CPU_ARM8 */
   6055 
   6056 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6057 void
   6058 pmap_pte_init_arm9(void)
   6059 {
   6060 
   6061 	/*
   6062 	 * ARM9 is compatible with generic, but we want to use
   6063 	 * write-through caching for now.
   6064 	 */
   6065 	pmap_pte_init_generic();
   6066 
   6067 	pte_l1_s_cache_mode = L1_S_C;
   6068 	pte_l2_l_cache_mode = L2_C;
   6069 	pte_l2_s_cache_mode = L2_C;
   6070 
   6071 	pte_l1_s_wc_mode = L1_S_B;
   6072 	pte_l2_l_wc_mode = L2_B;
   6073 	pte_l2_s_wc_mode = L2_B;
   6074 
   6075 	pte_l1_s_cache_mode_pt = L1_S_C;
   6076 	pte_l2_l_cache_mode_pt = L2_C;
   6077 	pte_l2_s_cache_mode_pt = L2_C;
   6078 }
   6079 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6080 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6081 
   6082 #if defined(CPU_ARM10)
   6083 void
   6084 pmap_pte_init_arm10(void)
   6085 {
   6086 
   6087 	/*
   6088 	 * ARM10 is compatible with generic, but we want to use
   6089 	 * write-through caching for now.
   6090 	 */
   6091 	pmap_pte_init_generic();
   6092 
   6093 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6094 	pte_l2_l_cache_mode = L2_B | L2_C;
   6095 	pte_l2_s_cache_mode = L2_B | L2_C;
   6096 
   6097 	pte_l1_s_cache_mode = L1_S_B;
   6098 	pte_l2_l_cache_mode = L2_B;
   6099 	pte_l2_s_cache_mode = L2_B;
   6100 
   6101 	pte_l1_s_cache_mode_pt = L1_S_C;
   6102 	pte_l2_l_cache_mode_pt = L2_C;
   6103 	pte_l2_s_cache_mode_pt = L2_C;
   6104 
   6105 }
   6106 #endif /* CPU_ARM10 */
   6107 
   6108 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6109 void
   6110 pmap_pte_init_arm11(void)
   6111 {
   6112 
   6113 	/*
   6114 	 * ARM11 is compatible with generic, but we want to use
   6115 	 * write-through caching for now.
   6116 	 */
   6117 	pmap_pte_init_generic();
   6118 
   6119 	pte_l1_s_cache_mode = L1_S_C;
   6120 	pte_l2_l_cache_mode = L2_C;
   6121 	pte_l2_s_cache_mode = L2_C;
   6122 
   6123 	pte_l1_s_wc_mode = L1_S_B;
   6124 	pte_l2_l_wc_mode = L2_B;
   6125 	pte_l2_s_wc_mode = L2_B;
   6126 
   6127 	pte_l1_s_cache_mode_pt = L1_S_C;
   6128 	pte_l2_l_cache_mode_pt = L2_C;
   6129 	pte_l2_s_cache_mode_pt = L2_C;
   6130 }
   6131 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6132 
   6133 #if ARM_MMU_SA1 == 1
   6134 void
   6135 pmap_pte_init_sa1(void)
   6136 {
   6137 
   6138 	/*
   6139 	 * The StrongARM SA-1 cache does not have a write-through
   6140 	 * mode.  So, do the generic initialization, then reset
   6141 	 * the page table cache mode to B=1,C=1, and note that
   6142 	 * the PTEs need to be sync'd.
   6143 	 */
   6144 	pmap_pte_init_generic();
   6145 
   6146 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6147 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6148 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6149 
   6150 	pmap_needs_pte_sync = 1;
   6151 }
   6152 #endif /* ARM_MMU_SA1 == 1*/
   6153 
   6154 #if ARM_MMU_XSCALE == 1
   6155 #if (ARM_NMMUS > 1)
   6156 static u_int xscale_use_minidata;
   6157 #endif
   6158 
   6159 void
   6160 pmap_pte_init_xscale(void)
   6161 {
   6162 	uint32_t auxctl;
   6163 	int write_through = 0;
   6164 
   6165 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6166 	pte_l1_s_wc_mode = L1_S_B;
   6167 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6168 
   6169 	pte_l2_l_cache_mode = L2_B|L2_C;
   6170 	pte_l2_l_wc_mode = L2_B;
   6171 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6172 
   6173 	pte_l2_s_cache_mode = L2_B|L2_C;
   6174 	pte_l2_s_wc_mode = L2_B;
   6175 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6176 
   6177 	pte_l1_s_cache_mode_pt = L1_S_C;
   6178 	pte_l2_l_cache_mode_pt = L2_C;
   6179 	pte_l2_s_cache_mode_pt = L2_C;
   6180 
   6181 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6182 	/*
   6183 	 * The XScale core has an enhanced mode where writes that
   6184 	 * miss the cache cause a cache line to be allocated.  This
   6185 	 * is significantly faster than the traditional, write-through
   6186 	 * behavior of this case.
   6187 	 */
   6188 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6189 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6190 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6191 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6192 
   6193 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6194 	/*
   6195 	 * Some versions of the XScale core have various bugs in
   6196 	 * their cache units, the work-around for which is to run
   6197 	 * the cache in write-through mode.  Unfortunately, this
   6198 	 * has a major (negative) impact on performance.  So, we
   6199 	 * go ahead and run fast-and-loose, in the hopes that we
   6200 	 * don't line up the planets in a way that will trip the
   6201 	 * bugs.
   6202 	 *
   6203 	 * However, we give you the option to be slow-but-correct.
   6204 	 */
   6205 	write_through = 1;
   6206 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6207 	/* force write back cache mode */
   6208 	write_through = 0;
   6209 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6210 	/*
   6211 	 * Intel PXA2[15]0 processors are known to have a bug in
   6212 	 * write-back cache on revision 4 and earlier (stepping
   6213 	 * A[01] and B[012]).  Fixed for C0 and later.
   6214 	 */
   6215 	{
   6216 		uint32_t id, type;
   6217 
   6218 		id = cpufunc_id();
   6219 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6220 
   6221 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6222 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6223 				/* write through for stepping A0-1 and B0-2 */
   6224 				write_through = 1;
   6225 			}
   6226 		}
   6227 	}
   6228 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6229 
   6230 	if (write_through) {
   6231 		pte_l1_s_cache_mode = L1_S_C;
   6232 		pte_l2_l_cache_mode = L2_C;
   6233 		pte_l2_s_cache_mode = L2_C;
   6234 	}
   6235 
   6236 #if (ARM_NMMUS > 1)
   6237 	xscale_use_minidata = 1;
   6238 #endif
   6239 
   6240 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   6241 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   6242 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   6243 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   6244 
   6245 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6246 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6247 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   6248 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6249 
   6250 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   6251 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   6252 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   6253 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   6254 
   6255 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   6256 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6257 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6258 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6259 
   6260 	pmap_copy_page_func = pmap_copy_page_xscale;
   6261 	pmap_zero_page_func = pmap_zero_page_xscale;
   6262 
   6263 	/*
   6264 	 * Disable ECC protection of page table access, for now.
   6265 	 */
   6266 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6267 	auxctl &= ~XSCALE_AUXCTL_P;
   6268 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6269 }
   6270 
   6271 /*
   6272  * xscale_setup_minidata:
   6273  *
   6274  *	Set up the mini-data cache clean area.  We require the
   6275  *	caller to allocate the right amount of physically and
   6276  *	virtually contiguous space.
   6277  */
   6278 void
   6279 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6280 {
   6281 	extern vaddr_t xscale_minidata_clean_addr;
   6282 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6283 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6284 	pt_entry_t *pte;
   6285 	vsize_t size;
   6286 	uint32_t auxctl;
   6287 
   6288 	xscale_minidata_clean_addr = va;
   6289 
   6290 	/* Round it to page size. */
   6291 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6292 
   6293 	for (; size != 0;
   6294 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6295 #ifndef ARM32_NEW_VM_LAYOUT
   6296 		pte = (pt_entry_t *)
   6297 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6298 #else
   6299 		pte = (pt_entry_t *) kernel_pt_lookup(
   6300 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6301 #endif
   6302 		if (pte == NULL)
   6303 			panic("xscale_setup_minidata: can't find L2 table for "
   6304 			    "VA 0x%08lx", va);
   6305 #ifndef ARM32_NEW_VM_LAYOUT
   6306 		pte[(va >> PGSHIFT) & 0x3ff] =
   6307 #else
   6308 		pte[l2pte_index(va)] =
   6309 #endif
   6310 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6311 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6312 	}
   6313 
   6314 	/*
   6315 	 * Configure the mini-data cache for write-back with
   6316 	 * read/write-allocate.
   6317 	 *
   6318 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6319 	 * make sure it contains no valid data!  In order to do that,
   6320 	 * we must issue a global data cache invalidate command!
   6321 	 *
   6322 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6323 	 * THIS IS VERY IMPORTANT!
   6324 	 */
   6325 
   6326 	/* Invalidate data and mini-data. */
   6327 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6328 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6329 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6330 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6331 }
   6332 
   6333 /*
   6334  * Change the PTEs for the specified kernel mappings such that they
   6335  * will use the mini data cache instead of the main data cache.
   6336  */
   6337 void
   6338 pmap_uarea(vaddr_t va)
   6339 {
   6340 	struct l2_bucket *l2b;
   6341 	pt_entry_t *ptep, *sptep, pte;
   6342 	vaddr_t next_bucket, eva;
   6343 
   6344 #if (ARM_NMMUS > 1)
   6345 	if (xscale_use_minidata == 0)
   6346 		return;
   6347 #endif
   6348 
   6349 	eva = va + USPACE;
   6350 
   6351 	while (va < eva) {
   6352 		next_bucket = L2_NEXT_BUCKET(va);
   6353 		if (next_bucket > eva)
   6354 			next_bucket = eva;
   6355 
   6356 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6357 		KDASSERT(l2b != NULL);
   6358 
   6359 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6360 
   6361 		while (va < next_bucket) {
   6362 			pte = *ptep;
   6363 			if (!l2pte_minidata(pte)) {
   6364 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6365 				cpu_tlb_flushD_SE(va);
   6366 				*ptep = pte & ~L2_B;
   6367 			}
   6368 			ptep++;
   6369 			va += PAGE_SIZE;
   6370 		}
   6371 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6372 	}
   6373 	cpu_cpwait();
   6374 }
   6375 #endif /* ARM_MMU_XSCALE == 1 */
   6376 
   6377 
   6378 #if defined(CPU_ARM11MPCORE)
   6379 
   6380 void
   6381 pmap_pte_init_arm11mpcore(void)
   6382 {
   6383 
   6384 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   6385 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   6386 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   6387 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6388 	/* use extended small page (without APn, with TEX) */
   6389 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   6390 #else
   6391 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   6392 #endif
   6393 
   6394 	/* write-back, write-allocate */
   6395 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6396 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6397 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6398 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6399 #else
   6400 	/* no TEX. read-allocate */
   6401 	pte_l2_s_cache_mode = L2_C | L2_B;
   6402 #endif
   6403 	/*
   6404 	 * write-back, write-allocate for page tables.
   6405 	 */
   6406 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6407 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6408 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6409 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6410 #else
   6411 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   6412 #endif
   6413 
   6414 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   6415 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   6416 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   6417 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   6418 
   6419 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6420 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   6421 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   6422 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   6423 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   6424 
   6425 #else
   6426 	/* with AP[0..3] */
   6427 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6428 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6429 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6430 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6431 #endif
   6432 
   6433 #ifdef	ARM11MPCORE_COMPAT_MMU
   6434 	/* with AP[0..3] */
   6435 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6436 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6437 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6438 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6439 
   6440 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6441 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6442 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6443 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   6444 #else
   6445 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   6446 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   6447 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   6448 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   6449 
   6450 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6451 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6452 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6453 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   6454 #endif
   6455 
   6456 	pmap_copy_page_func = pmap_copy_page_generic;
   6457 	pmap_zero_page_func = pmap_zero_page_generic;
   6458 	pmap_needs_pte_sync = 1;
   6459 }
   6460 #endif	/* CPU_ARM11MPCORE */
   6461 
   6462 
   6463 #if ARM_MMU_V7 == 1
   6464 void
   6465 pmap_pte_init_armv7(void)
   6466 {
   6467 	/*
   6468 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   6469 	 * AP field is zero, that now means "no access" rather than
   6470 	 * read-only. The prototypes are a little different because of
   6471 	 * the XN bit.
   6472 	 */
   6473 	pmap_pte_init_generic();
   6474 
   6475 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   6476 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   6477 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   6478 
   6479 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   6480 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   6481 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   6482 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   6483 
   6484 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   6485 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   6486 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   6487 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   6488 
   6489 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   6490 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   6491 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   6492 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   6493 
   6494 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   6495 	pte_l1_s_proto = L1_S_PROTO_armv7;
   6496 	pte_l1_c_proto = L1_C_PROTO_armv7;
   6497 	pte_l2_s_proto = L2_S_PROTO_armv7;
   6498 }
   6499 #endif /* ARM_MMU_V7 */
   6500 
   6501 /*
   6502  * return the PA of the current L1 table, for use when handling a crash dump
   6503  */
   6504 uint32_t pmap_kernel_L1_addr(void)
   6505 {
   6506 	return pmap_kernel()->pm_l1->l1_physaddr;
   6507 }
   6508 
   6509 #if defined(DDB)
   6510 /*
   6511  * A couple of ddb-callable functions for dumping pmaps
   6512  */
   6513 void pmap_dump_all(void);
   6514 void pmap_dump(pmap_t);
   6515 
   6516 void
   6517 pmap_dump_all(void)
   6518 {
   6519 	pmap_t pm;
   6520 
   6521 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6522 		if (pm == pmap_kernel())
   6523 			continue;
   6524 		pmap_dump(pm);
   6525 		printf("\n");
   6526 	}
   6527 }
   6528 
   6529 static pt_entry_t ncptes[64];
   6530 static void pmap_dump_ncpg(pmap_t);
   6531 
   6532 void
   6533 pmap_dump(pmap_t pm)
   6534 {
   6535 	struct l2_dtable *l2;
   6536 	struct l2_bucket *l2b;
   6537 	pt_entry_t *ptep, pte;
   6538 	vaddr_t l2_va, l2b_va, va;
   6539 	int i, j, k, occ, rows = 0;
   6540 
   6541 	if (pm == pmap_kernel())
   6542 		printf("pmap_kernel (%p): ", pm);
   6543 	else
   6544 		printf("user pmap (%p): ", pm);
   6545 
   6546 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6547 
   6548 	l2_va = 0;
   6549 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6550 		l2 = pm->pm_l2[i];
   6551 
   6552 		if (l2 == NULL || l2->l2_occupancy == 0)
   6553 			continue;
   6554 
   6555 		l2b_va = l2_va;
   6556 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6557 			l2b = &l2->l2_bucket[j];
   6558 
   6559 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6560 				continue;
   6561 
   6562 			ptep = l2b->l2b_kva;
   6563 
   6564 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6565 				;
   6566 
   6567 			k &= ~63;
   6568 			occ = l2b->l2b_occupancy;
   6569 			va = l2b_va + (k * 4096);
   6570 			for (; k < 256; k++, va += 0x1000) {
   6571 				char ch = ' ';
   6572 				if ((k % 64) == 0) {
   6573 					if ((rows % 8) == 0) {
   6574 						printf(
   6575 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6576 					}
   6577 					printf("%08lx: ", va);
   6578 				}
   6579 
   6580 				ncptes[k & 63] = 0;
   6581 				pte = ptep[k];
   6582 				if (pte == 0) {
   6583 					ch = '.';
   6584 				} else {
   6585 					occ--;
   6586 					switch (pte & 0x0c) {
   6587 					case 0x00:
   6588 						ch = 'D'; /* No cache No buff */
   6589 						break;
   6590 					case 0x04:
   6591 						ch = 'B'; /* No cache buff */
   6592 						break;
   6593 					case 0x08:
   6594 						if (pte & 0x40)
   6595 							ch = 'm';
   6596 						else
   6597 						   ch = 'C'; /* Cache No buff */
   6598 						break;
   6599 					case 0x0c:
   6600 						ch = 'F'; /* Cache Buff */
   6601 						break;
   6602 					}
   6603 
   6604 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6605 						ch += 0x20;
   6606 
   6607 					if ((pte & 0xc) == 0)
   6608 						ncptes[k & 63] = pte;
   6609 				}
   6610 
   6611 				if ((k % 64) == 63) {
   6612 					rows++;
   6613 					printf("%c\n", ch);
   6614 					pmap_dump_ncpg(pm);
   6615 					if (occ == 0)
   6616 						break;
   6617 				} else
   6618 					printf("%c", ch);
   6619 			}
   6620 		}
   6621 	}
   6622 }
   6623 
   6624 static void
   6625 pmap_dump_ncpg(pmap_t pm)
   6626 {
   6627 	struct vm_page *pg;
   6628 	struct vm_page_md *md;
   6629 	struct pv_entry *pv;
   6630 	int i;
   6631 
   6632 	for (i = 0; i < 63; i++) {
   6633 		if (ncptes[i] == 0)
   6634 			continue;
   6635 
   6636 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6637 		if (pg == NULL)
   6638 			continue;
   6639 		md = VM_PAGE_TO_MD(pg);
   6640 
   6641 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6642 		    VM_PAGE_TO_PHYS(pg),
   6643 		    md->krw_mappings, md->kro_mappings,
   6644 		    md->urw_mappings, md->uro_mappings);
   6645 
   6646 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   6647 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6648 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6649 			    pv->pv_va, pv->pv_flags);
   6650 		}
   6651 	}
   6652 }
   6653 #endif
   6654 
   6655 #ifdef PMAP_STEAL_MEMORY
   6656 void
   6657 pmap_boot_pageadd(pv_addr_t *newpv)
   6658 {
   6659 	pv_addr_t *pv, *npv;
   6660 
   6661 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6662 		if (newpv->pv_pa < pv->pv_va) {
   6663 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6664 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6665 				newpv->pv_size += pv->pv_size;
   6666 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6667 			}
   6668 			pv = NULL;
   6669 		} else {
   6670 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6671 			     pv = npv) {
   6672 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6673 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6674 				if (newpv->pv_pa > npv->pv_pa)
   6675 					continue;
   6676 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6677 					pv->pv_size += newpv->pv_size;
   6678 					return;
   6679 				}
   6680 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6681 					break;
   6682 				newpv->pv_size += npv->pv_size;
   6683 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6684 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6685 				return;
   6686 			}
   6687 		}
   6688 	}
   6689 
   6690 	if (pv) {
   6691 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6692 	} else {
   6693 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6694 	}
   6695 }
   6696 
   6697 void
   6698 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6699 	pv_addr_t *rpv)
   6700 {
   6701 	pv_addr_t *pv, **pvp;
   6702 	struct vm_physseg *ps;
   6703 	size_t i;
   6704 
   6705 	KASSERT(amount & PGOFSET);
   6706 	KASSERT((mask & PGOFSET) == 0);
   6707 	KASSERT((match & PGOFSET) == 0);
   6708 	KASSERT(amount != 0);
   6709 
   6710 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6711 	     (pv = *pvp) != NULL;
   6712 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6713 		pv_addr_t *newpv;
   6714 		psize_t off;
   6715 		/*
   6716 		 * If this entry is too small to satify the request...
   6717 		 */
   6718 		KASSERT(pv->pv_size > 0);
   6719 		if (pv->pv_size < amount)
   6720 			continue;
   6721 
   6722 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6723 			if (((pv->pv_pa + off) & mask) == match
   6724 			    && off + amount <= pv->pv_size)
   6725 				break;
   6726 		}
   6727 		if (off > mask)
   6728 			continue;
   6729 
   6730 		rpv->pv_va = pv->pv_va + off;
   6731 		rpv->pv_pa = pv->pv_pa + off;
   6732 		rpv->pv_size = amount;
   6733 		pv->pv_size -= amount;
   6734 		if (pv->pv_size == 0) {
   6735 			KASSERT(off == 0);
   6736 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6737 			*pvp = SLIST_NEXT(pv, pv_list);
   6738 		} else if (off == 0) {
   6739 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6740 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6741 			*newpv = *pv;
   6742 			newpv->pv_pa += amount;
   6743 			newpv->pv_va += amount;
   6744 			*pvp = newpv;
   6745 		} else if (off < pv->pv_size) {
   6746 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6747 			*newpv = *pv;
   6748 			newpv->pv_size -= off;
   6749 			newpv->pv_pa += off + amount;
   6750 			newpv->pv_va += off + amount;
   6751 
   6752 			SLIST_NEXT(pv, pv_list) = newpv;
   6753 			pv->pv_size = off;
   6754 		} else {
   6755 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6756 		}
   6757 		memset((void *)rpv->pv_va, 0, amount);
   6758 		return;
   6759 	}
   6760 
   6761 	if (vm_nphysseg == 0)
   6762 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6763 
   6764 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6765 	     (pv = *pvp) != NULL;
   6766 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6767 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6768 			break;
   6769 	}
   6770 	KASSERT(mask == 0);
   6771 	for (i = 0; i < vm_nphysseg; i++) {
   6772 		ps = VM_PHYSMEM_PTR(i);
   6773 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6774 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6775 			rpv->pv_va = pv->pv_va;
   6776 			rpv->pv_pa = pv->pv_pa;
   6777 			rpv->pv_size = amount;
   6778 			*pvp = NULL;
   6779 			pmap_map_chunk(kernel_l1pt.pv_va,
   6780 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6781 			     ptoa(ps->avail_start),
   6782 			     amount - pv->pv_size,
   6783 			     VM_PROT_READ|VM_PROT_WRITE,
   6784 			     PTE_CACHE);
   6785 			ps->avail_start += atop(amount - pv->pv_size);
   6786 			/*
   6787 			 * If we consumed the entire physseg, remove it.
   6788 			 */
   6789 			if (ps->avail_start == ps->avail_end) {
   6790 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   6791 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   6792 			}
   6793 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6794 			return;
   6795 		}
   6796 	}
   6797 
   6798 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6799 }
   6800 
   6801 vaddr_t
   6802 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6803 {
   6804 	pv_addr_t pv;
   6805 
   6806 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6807 
   6808 	return pv.pv_va;
   6809 }
   6810 #endif /* PMAP_STEAL_MEMORY */
   6811 
   6812 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6813 {
   6814 	sysctl_createv(clog, 0, NULL, NULL,
   6815 			CTLFLAG_PERMANENT,
   6816 			CTLTYPE_NODE, "machdep", NULL,
   6817 			NULL, 0, NULL, 0,
   6818 			CTL_MACHDEP, CTL_EOL);
   6819 
   6820 	sysctl_createv(clog, 0, NULL, NULL,
   6821 			CTLFLAG_PERMANENT,
   6822 			CTLTYPE_INT, "kmpages",
   6823 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6824 			NULL, 0, &pmap_kmpages, 0,
   6825 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6826 }
   6827