pmap.c revision 1.236.2.3 1 /* $NetBSD: pmap.c,v 1.236.2.3 2013/06/23 06:19:59 tls Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of in kernel VA space,
166 * then MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <sys/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/cpuconf.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.236.2.3 2013/06/23 06:19:59 tls Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
261 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
262 #endif
263
264 /*
265 * Which pmap is currently 'live' in the cache
266 *
267 * XXXSCW: Fix for SMP ...
268 */
269 static pmap_t pmap_recent_user;
270
271 /*
272 * Pointer to last active lwp, or NULL if it exited.
273 */
274 struct lwp *pmap_previous_active_lwp;
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #ifdef PMAP_CACHE_VIPT
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 #ifdef PMAP_CACHE_VIPT
393 static struct evcnt pmap_ev_exec_mappings =
394 PMAP_EVCNT_INITIALIZER("exec pages mapped");
395 static struct evcnt pmap_ev_exec_cached =
396 PMAP_EVCNT_INITIALIZER("exec pages cached");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
400
401 static struct evcnt pmap_ev_exec_synced =
402 PMAP_EVCNT_INITIALIZER("exec pages synced");
403 static struct evcnt pmap_ev_exec_synced_map =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
405 static struct evcnt pmap_ev_exec_synced_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
407 static struct evcnt pmap_ev_exec_synced_remap =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
409 static struct evcnt pmap_ev_exec_synced_clearbit =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
411 static struct evcnt pmap_ev_exec_synced_kremove =
412 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
413
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
420
421 static struct evcnt pmap_ev_exec_discarded_unmap =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
423 static struct evcnt pmap_ev_exec_discarded_zero =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
425 static struct evcnt pmap_ev_exec_discarded_copy =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
427 static struct evcnt pmap_ev_exec_discarded_page_protect =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
429 static struct evcnt pmap_ev_exec_discarded_clearbit =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
431 static struct evcnt pmap_ev_exec_discarded_kremove =
432 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
433
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 /*
456 * pmap copy/zero page, and mem(5) hook point
457 */
458 static pt_entry_t *csrc_pte, *cdst_pte;
459 static vaddr_t csrcp, cdstp;
460 vaddr_t memhook; /* used by mem.c */
461 kmutex_t memlock; /* used by mem.c */
462 void *zeropage; /* used by mem.c */
463 extern void *msgbufaddr;
464 int pmap_kmpages;
465 /*
466 * Flag to indicate if pmap_init() has done its thing
467 */
468 bool pmap_initialized;
469
470 /*
471 * Misc. locking data structures
472 */
473
474 #define pmap_acquire_pmap_lock(pm) \
475 do { \
476 if ((pm) != pmap_kernel()) \
477 mutex_enter((pm)->pm_lock); \
478 } while (/*CONSTCOND*/0)
479
480 #define pmap_release_pmap_lock(pm) \
481 do { \
482 if ((pm) != pmap_kernel()) \
483 mutex_exit((pm)->pm_lock); \
484 } while (/*CONSTCOND*/0)
485
486
487 /*
488 * Metadata for L1 translation tables.
489 */
490 struct l1_ttable {
491 /* Entry on the L1 Table list */
492 SLIST_ENTRY(l1_ttable) l1_link;
493
494 /* Entry on the L1 Least Recently Used list */
495 TAILQ_ENTRY(l1_ttable) l1_lru;
496
497 /* Track how many domains are allocated from this L1 */
498 volatile u_int l1_domain_use_count;
499
500 /*
501 * A free-list of domain numbers for this L1.
502 * We avoid using ffs() and a bitmap to track domains since ffs()
503 * is slow on ARM.
504 */
505 uint8_t l1_domain_first;
506 uint8_t l1_domain_free[PMAP_DOMAINS];
507
508 /* Physical address of this L1 page table */
509 paddr_t l1_physaddr;
510
511 /* KVA of this L1 page table */
512 pd_entry_t *l1_kva;
513 };
514
515 /*
516 * Convert a virtual address into its L1 table index. That is, the
517 * index used to locate the L2 descriptor table pointer in an L1 table.
518 * This is basically used to index l1->l1_kva[].
519 *
520 * Each L2 descriptor table represents 1MB of VA space.
521 */
522 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
523
524 /*
525 * L1 Page Tables are tracked using a Least Recently Used list.
526 * - New L1s are allocated from the HEAD.
527 * - Freed L1s are added to the TAIl.
528 * - Recently accessed L1s (where an 'access' is some change to one of
529 * the userland pmaps which owns this L1) are moved to the TAIL.
530 */
531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
532 static kmutex_t l1_lru_lock __cacheline_aligned;
533
534 /*
535 * A list of all L1 tables
536 */
537 static SLIST_HEAD(, l1_ttable) l1_list;
538
539 /*
540 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
541 *
542 * This is normally 16MB worth L2 page descriptors for any given pmap.
543 * Reference counts are maintained for L2 descriptors so they can be
544 * freed when empty.
545 */
546 struct l2_dtable {
547 /* The number of L2 page descriptors allocated to this l2_dtable */
548 u_int l2_occupancy;
549
550 /* List of L2 page descriptors */
551 struct l2_bucket {
552 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
553 paddr_t l2b_phys; /* Physical address of same */
554 u_short l2b_l1idx; /* This L2 table's L1 index */
555 u_short l2b_occupancy; /* How many active descriptors */
556 } l2_bucket[L2_BUCKET_SIZE];
557 };
558
559 /*
560 * Given an L1 table index, calculate the corresponding l2_dtable index
561 * and bucket index within the l2_dtable.
562 */
563 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
564 (L2_SIZE - 1))
565 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
566
567 /*
568 * Given a virtual address, this macro returns the
569 * virtual address required to drop into the next L2 bucket.
570 */
571 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
572
573 /*
574 * L2 allocation.
575 */
576 #define pmap_alloc_l2_dtable() \
577 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
578 #define pmap_free_l2_dtable(l2) \
579 pool_cache_put(&pmap_l2dtable_cache, (l2))
580 #define pmap_alloc_l2_ptp(pap) \
581 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
582 PR_NOWAIT, (pap)))
583
584 /*
585 * We try to map the page tables write-through, if possible. However, not
586 * all CPUs have a write-through cache mode, so on those we have to sync
587 * the cache when we frob page tables.
588 *
589 * We try to evaluate this at compile time, if possible. However, it's
590 * not always possible to do that, hence this run-time var.
591 */
592 int pmap_needs_pte_sync;
593
594 /*
595 * Real definition of pv_entry.
596 */
597 struct pv_entry {
598 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
599 pmap_t pv_pmap; /* pmap where mapping lies */
600 vaddr_t pv_va; /* virtual address for mapping */
601 u_int pv_flags; /* flags */
602 };
603
604 /*
605 * Macro to determine if a mapping might be resident in the
606 * instruction cache and/or TLB
607 */
608 #if ARM_MMU_V7 > 0
609 /*
610 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
611 * there are no explicit accesses, so there may be always be TLB entries to
612 * flush. If we used ASIDs then this would not be a problem.
613 */
614 #define PV_BEEN_EXECD(f) (((f) & PVF_EXEC) == PVF_EXEC)
615 #else
616 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
617 #endif
618 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
619
620 /*
621 * Macro to determine if a mapping might be resident in the
622 * data cache and/or TLB
623 */
624 #if ARM_MMU_V7 > 0
625 /*
626 * Speculative loads by Cortex cores can cause TLB entries to be filled even if
627 * there are no explicit accesses, so there may be always be TLB entries to
628 * flush. If we used ASIDs then this would not be a problem.
629 */
630 #define PV_BEEN_REFD(f) (1)
631 #else
632 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
633 #endif
634
635 /*
636 * Local prototypes
637 */
638 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
639 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
640 pt_entry_t **);
641 static bool pmap_is_current(pmap_t);
642 static bool pmap_is_cached(pmap_t);
643 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
644 pmap_t, vaddr_t, u_int);
645 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
646 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
647 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
648 u_int, u_int);
649
650 static void pmap_pinit(pmap_t);
651 static int pmap_pmap_ctor(void *, void *, int);
652
653 static void pmap_alloc_l1(pmap_t);
654 static void pmap_free_l1(pmap_t);
655 static void pmap_use_l1(pmap_t);
656
657 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
658 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
659 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
660 static int pmap_l2ptp_ctor(void *, void *, int);
661 static int pmap_l2dtable_ctor(void *, void *, int);
662
663 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
664 #ifdef PMAP_CACHE_VIVT
665 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
666 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
667 #endif
668
669 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
670 #ifdef PMAP_CACHE_VIVT
671 static int pmap_clean_page(struct pv_entry *, bool);
672 #endif
673 #ifdef PMAP_CACHE_VIPT
674 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
675 enum pmap_flush_op {
676 PMAP_FLUSH_PRIMARY,
677 PMAP_FLUSH_SECONDARY,
678 PMAP_CLEAN_PRIMARY
679 };
680 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
681 #endif
682 static void pmap_page_remove(struct vm_page_md *, paddr_t);
683
684 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
685 static vaddr_t kernel_pt_lookup(paddr_t);
686
687
688 /*
689 * Misc variables
690 */
691 vaddr_t virtual_avail;
692 vaddr_t virtual_end;
693 vaddr_t pmap_curmaxkvaddr;
694
695 paddr_t avail_start;
696 paddr_t avail_end;
697
698 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
699 pv_addr_t kernelpages;
700 pv_addr_t kernel_l1pt;
701 pv_addr_t systempage;
702
703 /* Function to set the debug level of the pmap code */
704
705 #ifdef PMAP_DEBUG
706 void
707 pmap_debug(int level)
708 {
709 pmap_debug_level = level;
710 printf("pmap_debug: level=%d\n", pmap_debug_level);
711 }
712 #endif /* PMAP_DEBUG */
713
714 #ifdef PMAP_CACHE_VIPT
715 #define PMAP_VALIDATE_MD_PAGE(md) \
716 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
717 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
718 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
719 #endif /* PMAP_CACHE_VIPT */
720 /*
721 * A bunch of routines to conditionally flush the caches/TLB depending
722 * on whether the specified pmap actually needs to be flushed at any
723 * given time.
724 */
725 static inline void
726 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
727 {
728
729 if (pm->pm_cstate.cs_tlb_id)
730 cpu_tlb_flushID_SE(va);
731 }
732
733 static inline void
734 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
735 {
736
737 if (pm->pm_cstate.cs_tlb_d)
738 cpu_tlb_flushD_SE(va);
739 }
740
741 static inline void
742 pmap_tlb_flushID(pmap_t pm)
743 {
744
745 if (pm->pm_cstate.cs_tlb_id) {
746 cpu_tlb_flushID();
747 #if ARM_MMU_V7 == 0
748 /*
749 * Speculative loads by Cortex cores can cause TLB entries to
750 * be filled even if there are no explicit accesses, so there
751 * may be always be TLB entries to flush. If we used ASIDs
752 * then it would not be a problem.
753 * This is not true for other CPUs.
754 */
755 pm->pm_cstate.cs_tlb = 0;
756 #endif
757 }
758 }
759
760 static inline void
761 pmap_tlb_flushD(pmap_t pm)
762 {
763
764 if (pm->pm_cstate.cs_tlb_d) {
765 cpu_tlb_flushD();
766 #if ARM_MMU_V7 == 0
767 /*
768 * Speculative loads by Cortex cores can cause TLB entries to
769 * be filled even if there are no explicit accesses, so there
770 * may be always be TLB entries to flush. If we used ASIDs
771 * then it would not be a problem.
772 * This is not true for other CPUs.
773 */
774 pm->pm_cstate.cs_tlb_d = 0;
775 #endif
776 }
777 }
778
779 #ifdef PMAP_CACHE_VIVT
780 static inline void
781 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
782 {
783 if (pm->pm_cstate.cs_cache_id) {
784 cpu_idcache_wbinv_range(va, len);
785 }
786 }
787
788 static inline void
789 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
790 bool do_inv, bool rd_only)
791 {
792
793 if (pm->pm_cstate.cs_cache_d) {
794 if (do_inv) {
795 if (rd_only)
796 cpu_dcache_inv_range(va, len);
797 else
798 cpu_dcache_wbinv_range(va, len);
799 } else
800 if (!rd_only)
801 cpu_dcache_wb_range(va, len);
802 }
803 }
804
805 static inline void
806 pmap_idcache_wbinv_all(pmap_t pm)
807 {
808 if (pm->pm_cstate.cs_cache_id) {
809 cpu_idcache_wbinv_all();
810 pm->pm_cstate.cs_cache = 0;
811 }
812 }
813
814 static inline void
815 pmap_dcache_wbinv_all(pmap_t pm)
816 {
817 if (pm->pm_cstate.cs_cache_d) {
818 cpu_dcache_wbinv_all();
819 pm->pm_cstate.cs_cache_d = 0;
820 }
821 }
822 #endif /* PMAP_CACHE_VIVT */
823
824 static inline bool
825 pmap_is_current(pmap_t pm)
826 {
827
828 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
829 return true;
830
831 return false;
832 }
833
834 static inline bool
835 pmap_is_cached(pmap_t pm)
836 {
837
838 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
839 pmap_recent_user == pm)
840 return (true);
841
842 return false;
843 }
844
845 /*
846 * PTE_SYNC_CURRENT:
847 *
848 * Make sure the pte is written out to RAM.
849 * We need to do this for one of two cases:
850 * - We're dealing with the kernel pmap
851 * - There is no pmap active in the cache/tlb.
852 * - The specified pmap is 'active' in the cache/tlb.
853 */
854 #ifdef PMAP_INCLUDE_PTE_SYNC
855 #define PTE_SYNC_CURRENT(pm, ptep) \
856 do { \
857 if (PMAP_NEEDS_PTE_SYNC && \
858 pmap_is_cached(pm)) \
859 PTE_SYNC(ptep); \
860 } while (/*CONSTCOND*/0)
861 #else
862 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
863 #endif
864
865 /*
866 * main pv_entry manipulation functions:
867 * pmap_enter_pv: enter a mapping onto a vm_page list
868 * pmap_remove_pv: remove a mapping from a vm_page list
869 *
870 * NOTE: pmap_enter_pv expects to lock the pvh itself
871 * pmap_remove_pv expects the caller to lock the pvh before calling
872 */
873
874 /*
875 * pmap_enter_pv: enter a mapping onto a vm_page lst
876 *
877 * => caller should hold the proper lock on pmap_main_lock
878 * => caller should have pmap locked
879 * => we will gain the lock on the vm_page and allocate the new pv_entry
880 * => caller should adjust ptp's wire_count before calling
881 * => caller should not adjust pmap's wire_count
882 */
883 static void
884 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
885 vaddr_t va, u_int flags)
886 {
887 struct pv_entry **pvp;
888
889 NPDEBUG(PDB_PVDUMP,
890 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
891
892 pv->pv_pmap = pm;
893 pv->pv_va = va;
894 pv->pv_flags = flags;
895
896 pvp = &SLIST_FIRST(&md->pvh_list);
897 #ifdef PMAP_CACHE_VIPT
898 /*
899 * Insert unmanaged entries, writeable first, at the head of
900 * the pv list.
901 */
902 if (__predict_true((flags & PVF_KENTRY) == 0)) {
903 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
904 pvp = &SLIST_NEXT(*pvp, pv_link);
905 } else if ((flags & PVF_WRITE) == 0) {
906 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
907 pvp = &SLIST_NEXT(*pvp, pv_link);
908 }
909 #endif
910 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
911 *pvp = pv; /* ... locked list */
912 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
913 #ifdef PMAP_CACHE_VIPT
914 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
915 md->pvh_attrs |= PVF_KMOD;
916 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
917 md->pvh_attrs |= PVF_DIRTY;
918 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
919 #endif
920 if (pm == pmap_kernel()) {
921 PMAPCOUNT(kernel_mappings);
922 if (flags & PVF_WRITE)
923 md->krw_mappings++;
924 else
925 md->kro_mappings++;
926 } else {
927 if (flags & PVF_WRITE)
928 md->urw_mappings++;
929 else
930 md->uro_mappings++;
931 }
932
933 #ifdef PMAP_CACHE_VIPT
934 /*
935 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
936 * do it here as well to keep the mappings & KVF_WRITE consistent.
937 */
938 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
939 md->pvh_attrs |= PVF_WRITE;
940 }
941 /*
942 * If this is an exec mapping and its the first exec mapping
943 * for this page, make sure to sync the I-cache.
944 */
945 if (PV_IS_EXEC_P(flags)) {
946 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
947 pmap_syncicache_page(md, pa);
948 PMAPCOUNT(exec_synced_map);
949 }
950 PMAPCOUNT(exec_mappings);
951 }
952 #endif
953
954 PMAPCOUNT(mappings);
955
956 if (pv->pv_flags & PVF_WIRED)
957 ++pm->pm_stats.wired_count;
958 }
959
960 /*
961 *
962 * pmap_find_pv: Find a pv entry
963 *
964 * => caller should hold lock on vm_page
965 */
966 static inline struct pv_entry *
967 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
968 {
969 struct pv_entry *pv;
970
971 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
972 if (pm == pv->pv_pmap && va == pv->pv_va)
973 break;
974 }
975
976 return (pv);
977 }
978
979 /*
980 * pmap_remove_pv: try to remove a mapping from a pv_list
981 *
982 * => caller should hold proper lock on pmap_main_lock
983 * => pmap should be locked
984 * => caller should hold lock on vm_page [so that attrs can be adjusted]
985 * => caller should adjust ptp's wire_count and free PTP if needed
986 * => caller should NOT adjust pmap's wire_count
987 * => we return the removed pv
988 */
989 static struct pv_entry *
990 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
991 {
992 struct pv_entry *pv, **prevptr;
993
994 NPDEBUG(PDB_PVDUMP,
995 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
996
997 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
998 pv = *prevptr;
999
1000 while (pv) {
1001 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
1002 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
1003 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
1004 if (pv->pv_flags & PVF_WIRED) {
1005 --pm->pm_stats.wired_count;
1006 }
1007 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
1008 if (pm == pmap_kernel()) {
1009 PMAPCOUNT(kernel_unmappings);
1010 if (pv->pv_flags & PVF_WRITE)
1011 md->krw_mappings--;
1012 else
1013 md->kro_mappings--;
1014 } else {
1015 if (pv->pv_flags & PVF_WRITE)
1016 md->urw_mappings--;
1017 else
1018 md->uro_mappings--;
1019 }
1020
1021 PMAPCOUNT(unmappings);
1022 #ifdef PMAP_CACHE_VIPT
1023 if (!(pv->pv_flags & PVF_WRITE))
1024 break;
1025 /*
1026 * If this page has had an exec mapping, then if
1027 * this was the last mapping, discard the contents,
1028 * otherwise sync the i-cache for this page.
1029 */
1030 if (PV_IS_EXEC_P(md->pvh_attrs)) {
1031 if (SLIST_EMPTY(&md->pvh_list)) {
1032 md->pvh_attrs &= ~PVF_EXEC;
1033 PMAPCOUNT(exec_discarded_unmap);
1034 } else {
1035 pmap_syncicache_page(md, pa);
1036 PMAPCOUNT(exec_synced_unmap);
1037 }
1038 }
1039 #endif /* PMAP_CACHE_VIPT */
1040 break;
1041 }
1042 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1043 pv = *prevptr; /* advance */
1044 }
1045
1046 #ifdef PMAP_CACHE_VIPT
1047 /*
1048 * If we no longer have a WRITEABLE KENTRY at the head of list,
1049 * clear the KMOD attribute from the page.
1050 */
1051 if (SLIST_FIRST(&md->pvh_list) == NULL
1052 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1053 md->pvh_attrs &= ~PVF_KMOD;
1054
1055 /*
1056 * If this was a writeable page and there are no more writeable
1057 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1058 * the contents to memory.
1059 */
1060 if (arm_cache_prefer_mask != 0) {
1061 if (md->krw_mappings + md->urw_mappings == 0)
1062 md->pvh_attrs &= ~PVF_WRITE;
1063 PMAP_VALIDATE_MD_PAGE(md);
1064 }
1065 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1066 #endif /* PMAP_CACHE_VIPT */
1067
1068 return(pv); /* return removed pv */
1069 }
1070
1071 /*
1072 *
1073 * pmap_modify_pv: Update pv flags
1074 *
1075 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1076 * => caller should NOT adjust pmap's wire_count
1077 * => caller must call pmap_vac_me_harder() if writable status of a page
1078 * may have changed.
1079 * => we return the old flags
1080 *
1081 * Modify a physical-virtual mapping in the pv table
1082 */
1083 static u_int
1084 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1085 u_int clr_mask, u_int set_mask)
1086 {
1087 struct pv_entry *npv;
1088 u_int flags, oflags;
1089
1090 KASSERT((clr_mask & PVF_KENTRY) == 0);
1091 KASSERT((set_mask & PVF_KENTRY) == 0);
1092
1093 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1094 return (0);
1095
1096 NPDEBUG(PDB_PVDUMP,
1097 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1098
1099 /*
1100 * There is at least one VA mapping this page.
1101 */
1102
1103 if (clr_mask & (PVF_REF | PVF_MOD)) {
1104 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1105 #ifdef PMAP_CACHE_VIPT
1106 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1107 md->pvh_attrs |= PVF_DIRTY;
1108 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1109 #endif
1110 }
1111
1112 oflags = npv->pv_flags;
1113 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1114
1115 if ((flags ^ oflags) & PVF_WIRED) {
1116 if (flags & PVF_WIRED)
1117 ++pm->pm_stats.wired_count;
1118 else
1119 --pm->pm_stats.wired_count;
1120 }
1121
1122 if ((flags ^ oflags) & PVF_WRITE) {
1123 if (pm == pmap_kernel()) {
1124 if (flags & PVF_WRITE) {
1125 md->krw_mappings++;
1126 md->kro_mappings--;
1127 } else {
1128 md->kro_mappings++;
1129 md->krw_mappings--;
1130 }
1131 } else {
1132 if (flags & PVF_WRITE) {
1133 md->urw_mappings++;
1134 md->uro_mappings--;
1135 } else {
1136 md->uro_mappings++;
1137 md->urw_mappings--;
1138 }
1139 }
1140 }
1141 #ifdef PMAP_CACHE_VIPT
1142 if (arm_cache_prefer_mask != 0) {
1143 if (md->urw_mappings + md->krw_mappings == 0) {
1144 md->pvh_attrs &= ~PVF_WRITE;
1145 } else {
1146 md->pvh_attrs |= PVF_WRITE;
1147 }
1148 }
1149 /*
1150 * We have two cases here: the first is from enter_pv (new exec
1151 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1152 * Since in latter, pmap_enter_pv won't do anything, we just have
1153 * to do what pmap_remove_pv would do.
1154 */
1155 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1156 || (PV_IS_EXEC_P(md->pvh_attrs)
1157 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1158 pmap_syncicache_page(md, pa);
1159 PMAPCOUNT(exec_synced_remap);
1160 }
1161 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1162 #endif
1163
1164 PMAPCOUNT(remappings);
1165
1166 return (oflags);
1167 }
1168
1169 /*
1170 * Allocate an L1 translation table for the specified pmap.
1171 * This is called at pmap creation time.
1172 */
1173 static void
1174 pmap_alloc_l1(pmap_t pm)
1175 {
1176 struct l1_ttable *l1;
1177 uint8_t domain;
1178
1179 /*
1180 * Remove the L1 at the head of the LRU list
1181 */
1182 mutex_spin_enter(&l1_lru_lock);
1183 l1 = TAILQ_FIRST(&l1_lru_list);
1184 KDASSERT(l1 != NULL);
1185 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1186
1187 /*
1188 * Pick the first available domain number, and update
1189 * the link to the next number.
1190 */
1191 domain = l1->l1_domain_first;
1192 l1->l1_domain_first = l1->l1_domain_free[domain];
1193
1194 /*
1195 * If there are still free domain numbers in this L1,
1196 * put it back on the TAIL of the LRU list.
1197 */
1198 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1199 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1200
1201 mutex_spin_exit(&l1_lru_lock);
1202
1203 /*
1204 * Fix up the relevant bits in the pmap structure
1205 */
1206 pm->pm_l1 = l1;
1207 pm->pm_domain = domain + 1;
1208 }
1209
1210 /*
1211 * Free an L1 translation table.
1212 * This is called at pmap destruction time.
1213 */
1214 static void
1215 pmap_free_l1(pmap_t pm)
1216 {
1217 struct l1_ttable *l1 = pm->pm_l1;
1218
1219 mutex_spin_enter(&l1_lru_lock);
1220
1221 /*
1222 * If this L1 is currently on the LRU list, remove it.
1223 */
1224 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1225 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1226
1227 /*
1228 * Free up the domain number which was allocated to the pmap
1229 */
1230 l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
1231 l1->l1_domain_first = pm->pm_domain - 1;
1232 l1->l1_domain_use_count--;
1233
1234 /*
1235 * The L1 now must have at least 1 free domain, so add
1236 * it back to the LRU list. If the use count is zero,
1237 * put it at the head of the list, otherwise it goes
1238 * to the tail.
1239 */
1240 if (l1->l1_domain_use_count == 0)
1241 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1242 else
1243 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1244
1245 mutex_spin_exit(&l1_lru_lock);
1246 }
1247
1248 static inline void
1249 pmap_use_l1(pmap_t pm)
1250 {
1251 struct l1_ttable *l1;
1252
1253 /*
1254 * Do nothing if we're in interrupt context.
1255 * Access to an L1 by the kernel pmap must not affect
1256 * the LRU list.
1257 */
1258 if (cpu_intr_p() || pm == pmap_kernel())
1259 return;
1260
1261 l1 = pm->pm_l1;
1262
1263 /*
1264 * If the L1 is not currently on the LRU list, just return
1265 */
1266 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1267 return;
1268
1269 mutex_spin_enter(&l1_lru_lock);
1270
1271 /*
1272 * Check the use count again, now that we've acquired the lock
1273 */
1274 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1275 mutex_spin_exit(&l1_lru_lock);
1276 return;
1277 }
1278
1279 /*
1280 * Move the L1 to the back of the LRU list
1281 */
1282 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1283 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1284
1285 mutex_spin_exit(&l1_lru_lock);
1286 }
1287
1288 /*
1289 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1290 *
1291 * Free an L2 descriptor table.
1292 */
1293 static inline void
1294 #ifndef PMAP_INCLUDE_PTE_SYNC
1295 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1296 #else
1297 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1298 #endif
1299 {
1300 #ifdef PMAP_INCLUDE_PTE_SYNC
1301 #ifdef PMAP_CACHE_VIVT
1302 /*
1303 * Note: With a write-back cache, we may need to sync this
1304 * L2 table before re-using it.
1305 * This is because it may have belonged to a non-current
1306 * pmap, in which case the cache syncs would have been
1307 * skipped for the pages that were being unmapped. If the
1308 * L2 table were then to be immediately re-allocated to
1309 * the *current* pmap, it may well contain stale mappings
1310 * which have not yet been cleared by a cache write-back
1311 * and so would still be visible to the mmu.
1312 */
1313 if (need_sync)
1314 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1315 #endif /* PMAP_CACHE_VIVT */
1316 #endif /* PMAP_INCLUDE_PTE_SYNC */
1317 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1318 }
1319
1320 /*
1321 * Returns a pointer to the L2 bucket associated with the specified pmap
1322 * and VA, or NULL if no L2 bucket exists for the address.
1323 */
1324 static inline struct l2_bucket *
1325 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1326 {
1327 struct l2_dtable *l2;
1328 struct l2_bucket *l2b;
1329 u_short l1idx;
1330
1331 l1idx = L1_IDX(va);
1332
1333 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1334 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1335 return (NULL);
1336
1337 return (l2b);
1338 }
1339
1340 /*
1341 * Returns a pointer to the L2 bucket associated with the specified pmap
1342 * and VA.
1343 *
1344 * If no L2 bucket exists, perform the necessary allocations to put an L2
1345 * bucket/page table in place.
1346 *
1347 * Note that if a new L2 bucket/page was allocated, the caller *must*
1348 * increment the bucket occupancy counter appropriately *before*
1349 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1350 * the bucket/page in the meantime.
1351 */
1352 static struct l2_bucket *
1353 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1354 {
1355 struct l2_dtable *l2;
1356 struct l2_bucket *l2b;
1357 u_short l1idx;
1358
1359 l1idx = L1_IDX(va);
1360
1361 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1362 /*
1363 * No mapping at this address, as there is
1364 * no entry in the L1 table.
1365 * Need to allocate a new l2_dtable.
1366 */
1367 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1368 return (NULL);
1369
1370 /*
1371 * Link it into the parent pmap
1372 */
1373 pm->pm_l2[L2_IDX(l1idx)] = l2;
1374 }
1375
1376 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1377
1378 /*
1379 * Fetch pointer to the L2 page table associated with the address.
1380 */
1381 if (l2b->l2b_kva == NULL) {
1382 pt_entry_t *ptep;
1383
1384 /*
1385 * No L2 page table has been allocated. Chances are, this
1386 * is because we just allocated the l2_dtable, above.
1387 */
1388 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1389 /*
1390 * Oops, no more L2 page tables available at this
1391 * time. We may need to deallocate the l2_dtable
1392 * if we allocated a new one above.
1393 */
1394 if (l2->l2_occupancy == 0) {
1395 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1396 pmap_free_l2_dtable(l2);
1397 }
1398 return (NULL);
1399 }
1400
1401 l2->l2_occupancy++;
1402 l2b->l2b_kva = ptep;
1403 l2b->l2b_l1idx = l1idx;
1404 }
1405
1406 return (l2b);
1407 }
1408
1409 /*
1410 * One or more mappings in the specified L2 descriptor table have just been
1411 * invalidated.
1412 *
1413 * Garbage collect the metadata and descriptor table itself if necessary.
1414 *
1415 * The pmap lock must be acquired when this is called (not necessary
1416 * for the kernel pmap).
1417 */
1418 static void
1419 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1420 {
1421 struct l2_dtable *l2;
1422 pd_entry_t *pl1pd, l1pd;
1423 pt_entry_t *ptep;
1424 u_short l1idx;
1425
1426 KDASSERT(count <= l2b->l2b_occupancy);
1427
1428 /*
1429 * Update the bucket's reference count according to how many
1430 * PTEs the caller has just invalidated.
1431 */
1432 l2b->l2b_occupancy -= count;
1433
1434 /*
1435 * Note:
1436 *
1437 * Level 2 page tables allocated to the kernel pmap are never freed
1438 * as that would require checking all Level 1 page tables and
1439 * removing any references to the Level 2 page table. See also the
1440 * comment elsewhere about never freeing bootstrap L2 descriptors.
1441 *
1442 * We make do with just invalidating the mapping in the L2 table.
1443 *
1444 * This isn't really a big deal in practice and, in fact, leads
1445 * to a performance win over time as we don't need to continually
1446 * alloc/free.
1447 */
1448 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1449 return;
1450
1451 /*
1452 * There are no more valid mappings in this level 2 page table.
1453 * Go ahead and NULL-out the pointer in the bucket, then
1454 * free the page table.
1455 */
1456 l1idx = l2b->l2b_l1idx;
1457 ptep = l2b->l2b_kva;
1458 l2b->l2b_kva = NULL;
1459
1460 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1461
1462 /*
1463 * If the L1 slot matches the pmap's domain
1464 * number, then invalidate it.
1465 */
1466 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1467 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1468 *pl1pd = 0;
1469 PTE_SYNC(pl1pd);
1470 }
1471
1472 /*
1473 * Release the L2 descriptor table back to the pool cache.
1474 */
1475 #ifndef PMAP_INCLUDE_PTE_SYNC
1476 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1477 #else
1478 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1479 #endif
1480
1481 /*
1482 * Update the reference count in the associated l2_dtable
1483 */
1484 l2 = pm->pm_l2[L2_IDX(l1idx)];
1485 if (--l2->l2_occupancy > 0)
1486 return;
1487
1488 /*
1489 * There are no more valid mappings in any of the Level 1
1490 * slots managed by this l2_dtable. Go ahead and NULL-out
1491 * the pointer in the parent pmap and free the l2_dtable.
1492 */
1493 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1494 pmap_free_l2_dtable(l2);
1495 }
1496
1497 /*
1498 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1499 * structures.
1500 */
1501 static int
1502 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1503 {
1504 #ifndef PMAP_INCLUDE_PTE_SYNC
1505 struct l2_bucket *l2b;
1506 pt_entry_t *ptep, pte;
1507 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1508
1509 /*
1510 * The mappings for these page tables were initially made using
1511 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1512 * mode will not be right for page table mappings. To avoid
1513 * polluting the pmap_kenter_pa() code with a special case for
1514 * page tables, we simply fix up the cache-mode here if it's not
1515 * correct.
1516 */
1517 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1518 KDASSERT(l2b != NULL);
1519 ptep = &l2b->l2b_kva[l2pte_index(va)];
1520 pte = *ptep;
1521
1522 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1523 /*
1524 * Page tables must have the cache-mode set to Write-Thru.
1525 */
1526 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1527 PTE_SYNC(ptep);
1528 cpu_tlb_flushD_SE(va);
1529 cpu_cpwait();
1530 }
1531 #endif
1532
1533 memset(v, 0, L2_TABLE_SIZE_REAL);
1534 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1535 return (0);
1536 }
1537
1538 static int
1539 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1540 {
1541
1542 memset(v, 0, sizeof(struct l2_dtable));
1543 return (0);
1544 }
1545
1546 static int
1547 pmap_pmap_ctor(void *arg, void *v, int flags)
1548 {
1549
1550 memset(v, 0, sizeof(struct pmap));
1551 return (0);
1552 }
1553
1554 static void
1555 pmap_pinit(pmap_t pm)
1556 {
1557 #ifndef ARM_HAS_VBAR
1558 struct l2_bucket *l2b;
1559
1560 if (vector_page < KERNEL_BASE) {
1561 /*
1562 * Map the vector page.
1563 */
1564 pmap_enter(pm, vector_page, systempage.pv_pa,
1565 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1566 pmap_update(pm);
1567
1568 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1569 l2b = pmap_get_l2_bucket(pm, vector_page);
1570 KDASSERT(l2b != NULL);
1571 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1572 L1_C_DOM(pm->pm_domain);
1573 } else
1574 pm->pm_pl1vec = NULL;
1575 #endif
1576 }
1577
1578 #ifdef PMAP_CACHE_VIVT
1579 /*
1580 * Since we have a virtually indexed cache, we may need to inhibit caching if
1581 * there is more than one mapping and at least one of them is writable.
1582 * Since we purge the cache on every context switch, we only need to check for
1583 * other mappings within the same pmap, or kernel_pmap.
1584 * This function is also called when a page is unmapped, to possibly reenable
1585 * caching on any remaining mappings.
1586 *
1587 * The code implements the following logic, where:
1588 *
1589 * KW = # of kernel read/write pages
1590 * KR = # of kernel read only pages
1591 * UW = # of user read/write pages
1592 * UR = # of user read only pages
1593 *
1594 * KC = kernel mapping is cacheable
1595 * UC = user mapping is cacheable
1596 *
1597 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1598 * +---------------------------------------------
1599 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1600 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1601 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1602 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1603 */
1604
1605 static const int pmap_vac_flags[4][4] = {
1606 {-1, 0, 0, PVF_KNC},
1607 {0, 0, PVF_NC, PVF_NC},
1608 {0, PVF_NC, PVF_NC, PVF_NC},
1609 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1610 };
1611
1612 static inline int
1613 pmap_get_vac_flags(const struct vm_page_md *md)
1614 {
1615 int kidx, uidx;
1616
1617 kidx = 0;
1618 if (md->kro_mappings || md->krw_mappings > 1)
1619 kidx |= 1;
1620 if (md->krw_mappings)
1621 kidx |= 2;
1622
1623 uidx = 0;
1624 if (md->uro_mappings || md->urw_mappings > 1)
1625 uidx |= 1;
1626 if (md->urw_mappings)
1627 uidx |= 2;
1628
1629 return (pmap_vac_flags[uidx][kidx]);
1630 }
1631
1632 static inline void
1633 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1634 {
1635 int nattr;
1636
1637 nattr = pmap_get_vac_flags(md);
1638
1639 if (nattr < 0) {
1640 md->pvh_attrs &= ~PVF_NC;
1641 return;
1642 }
1643
1644 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1645 return;
1646
1647 if (pm == pmap_kernel())
1648 pmap_vac_me_kpmap(md, pa, pm, va);
1649 else
1650 pmap_vac_me_user(md, pa, pm, va);
1651
1652 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1653 }
1654
1655 static void
1656 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1657 {
1658 u_int u_cacheable, u_entries;
1659 struct pv_entry *pv;
1660 pmap_t last_pmap = pm;
1661
1662 /*
1663 * Pass one, see if there are both kernel and user pmaps for
1664 * this page. Calculate whether there are user-writable or
1665 * kernel-writable pages.
1666 */
1667 u_cacheable = 0;
1668 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1669 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1670 u_cacheable++;
1671 }
1672
1673 u_entries = md->urw_mappings + md->uro_mappings;
1674
1675 /*
1676 * We know we have just been updating a kernel entry, so if
1677 * all user pages are already cacheable, then there is nothing
1678 * further to do.
1679 */
1680 if (md->k_mappings == 0 && u_cacheable == u_entries)
1681 return;
1682
1683 if (u_entries) {
1684 /*
1685 * Scan over the list again, for each entry, if it
1686 * might not be set correctly, call pmap_vac_me_user
1687 * to recalculate the settings.
1688 */
1689 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1690 /*
1691 * We know kernel mappings will get set
1692 * correctly in other calls. We also know
1693 * that if the pmap is the same as last_pmap
1694 * then we've just handled this entry.
1695 */
1696 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1697 continue;
1698
1699 /*
1700 * If there are kernel entries and this page
1701 * is writable but non-cacheable, then we can
1702 * skip this entry also.
1703 */
1704 if (md->k_mappings &&
1705 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1706 (PVF_NC | PVF_WRITE))
1707 continue;
1708
1709 /*
1710 * Similarly if there are no kernel-writable
1711 * entries and the page is already
1712 * read-only/cacheable.
1713 */
1714 if (md->krw_mappings == 0 &&
1715 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1716 continue;
1717
1718 /*
1719 * For some of the remaining cases, we know
1720 * that we must recalculate, but for others we
1721 * can't tell if they are correct or not, so
1722 * we recalculate anyway.
1723 */
1724 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1725 }
1726
1727 if (md->k_mappings == 0)
1728 return;
1729 }
1730
1731 pmap_vac_me_user(md, pa, pm, va);
1732 }
1733
1734 static void
1735 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1736 {
1737 pmap_t kpmap = pmap_kernel();
1738 struct pv_entry *pv, *npv = NULL;
1739 struct l2_bucket *l2b;
1740 pt_entry_t *ptep, pte;
1741 u_int entries = 0;
1742 u_int writable = 0;
1743 u_int cacheable_entries = 0;
1744 u_int kern_cacheable = 0;
1745 u_int other_writable = 0;
1746
1747 /*
1748 * Count mappings and writable mappings in this pmap.
1749 * Include kernel mappings as part of our own.
1750 * Keep a pointer to the first one.
1751 */
1752 npv = NULL;
1753 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1754 /* Count mappings in the same pmap */
1755 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1756 if (entries++ == 0)
1757 npv = pv;
1758
1759 /* Cacheable mappings */
1760 if ((pv->pv_flags & PVF_NC) == 0) {
1761 cacheable_entries++;
1762 if (kpmap == pv->pv_pmap)
1763 kern_cacheable++;
1764 }
1765
1766 /* Writable mappings */
1767 if (pv->pv_flags & PVF_WRITE)
1768 ++writable;
1769 } else
1770 if (pv->pv_flags & PVF_WRITE)
1771 other_writable = 1;
1772 }
1773
1774 /*
1775 * Enable or disable caching as necessary.
1776 * Note: the first entry might be part of the kernel pmap,
1777 * so we can't assume this is indicative of the state of the
1778 * other (maybe non-kpmap) entries.
1779 */
1780 if ((entries > 1 && writable) ||
1781 (entries > 0 && pm == kpmap && other_writable)) {
1782 if (cacheable_entries == 0)
1783 return;
1784
1785 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1786 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1787 (pv->pv_flags & PVF_NC))
1788 continue;
1789
1790 pv->pv_flags |= PVF_NC;
1791
1792 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1793 KDASSERT(l2b != NULL);
1794 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1795 pte = *ptep & ~L2_S_CACHE_MASK;
1796
1797 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1798 l2pte_valid(pte)) {
1799 if (PV_BEEN_EXECD(pv->pv_flags)) {
1800 #ifdef PMAP_CACHE_VIVT
1801 pmap_idcache_wbinv_range(pv->pv_pmap,
1802 pv->pv_va, PAGE_SIZE);
1803 #endif
1804 pmap_tlb_flushID_SE(pv->pv_pmap,
1805 pv->pv_va);
1806 } else
1807 if (PV_BEEN_REFD(pv->pv_flags)) {
1808 #ifdef PMAP_CACHE_VIVT
1809 pmap_dcache_wb_range(pv->pv_pmap,
1810 pv->pv_va, PAGE_SIZE, true,
1811 (pv->pv_flags & PVF_WRITE) == 0);
1812 #endif
1813 pmap_tlb_flushD_SE(pv->pv_pmap,
1814 pv->pv_va);
1815 }
1816 }
1817
1818 *ptep = pte;
1819 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1820 }
1821 cpu_cpwait();
1822 } else
1823 if (entries > cacheable_entries) {
1824 /*
1825 * Turn cacheing back on for some pages. If it is a kernel
1826 * page, only do so if there are no other writable pages.
1827 */
1828 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1829 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1830 (kpmap != pv->pv_pmap || other_writable)))
1831 continue;
1832
1833 pv->pv_flags &= ~PVF_NC;
1834
1835 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1836 KDASSERT(l2b != NULL);
1837 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1838 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1839
1840 if (l2pte_valid(pte)) {
1841 if (PV_BEEN_EXECD(pv->pv_flags)) {
1842 pmap_tlb_flushID_SE(pv->pv_pmap,
1843 pv->pv_va);
1844 } else
1845 if (PV_BEEN_REFD(pv->pv_flags)) {
1846 pmap_tlb_flushD_SE(pv->pv_pmap,
1847 pv->pv_va);
1848 }
1849 }
1850
1851 *ptep = pte;
1852 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1853 }
1854 }
1855 }
1856 #endif
1857
1858 #ifdef PMAP_CACHE_VIPT
1859 static void
1860 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1861 {
1862 struct pv_entry *pv;
1863 vaddr_t tst_mask;
1864 bool bad_alias;
1865 struct l2_bucket *l2b;
1866 pt_entry_t *ptep, pte, opte;
1867 const u_int
1868 rw_mappings = md->urw_mappings + md->krw_mappings,
1869 ro_mappings = md->uro_mappings + md->kro_mappings;
1870
1871 /* do we need to do anything? */
1872 if (arm_cache_prefer_mask == 0)
1873 return;
1874
1875 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1876 md, pm, va));
1877
1878 KASSERT(!va || pm);
1879 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1880
1881 /* Already a conflict? */
1882 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1883 /* just an add, things are already non-cached */
1884 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1885 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1886 bad_alias = false;
1887 if (va) {
1888 PMAPCOUNT(vac_color_none);
1889 bad_alias = true;
1890 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1891 goto fixup;
1892 }
1893 pv = SLIST_FIRST(&md->pvh_list);
1894 /* the list can't be empty because it would be cachable */
1895 if (md->pvh_attrs & PVF_KMPAGE) {
1896 tst_mask = md->pvh_attrs;
1897 } else {
1898 KASSERT(pv);
1899 tst_mask = pv->pv_va;
1900 pv = SLIST_NEXT(pv, pv_link);
1901 }
1902 /*
1903 * Only check for a bad alias if we have writable mappings.
1904 */
1905 tst_mask &= arm_cache_prefer_mask;
1906 if (rw_mappings > 0) {
1907 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1908 /* if there's a bad alias, stop checking. */
1909 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1910 bad_alias = true;
1911 }
1912 md->pvh_attrs |= PVF_WRITE;
1913 if (!bad_alias)
1914 md->pvh_attrs |= PVF_DIRTY;
1915 } else {
1916 /*
1917 * We have only read-only mappings. Let's see if there
1918 * are multiple colors in use or if we mapped a KMPAGE.
1919 * If the latter, we have a bad alias. If the former,
1920 * we need to remember that.
1921 */
1922 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1923 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1924 if (md->pvh_attrs & PVF_KMPAGE)
1925 bad_alias = true;
1926 break;
1927 }
1928 }
1929 md->pvh_attrs &= ~PVF_WRITE;
1930 /*
1931 * No KMPAGE and we exited early, so we must have
1932 * multiple color mappings.
1933 */
1934 if (!bad_alias && pv != NULL)
1935 md->pvh_attrs |= PVF_MULTCLR;
1936 }
1937
1938 /* If no conflicting colors, set everything back to cached */
1939 if (!bad_alias) {
1940 #ifdef DEBUG
1941 if ((md->pvh_attrs & PVF_WRITE)
1942 || ro_mappings < 2) {
1943 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1944 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1945 }
1946 #endif
1947 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1948 md->pvh_attrs |= tst_mask | PVF_COLORED;
1949 /*
1950 * Restore DIRTY bit if page is modified
1951 */
1952 if (md->pvh_attrs & PVF_DMOD)
1953 md->pvh_attrs |= PVF_DIRTY;
1954 PMAPCOUNT(vac_color_restore);
1955 } else {
1956 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1957 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1958 }
1959 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1960 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1961 } else if (!va) {
1962 KASSERT(pmap_is_page_colored_p(md));
1963 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1964 || (md->pvh_attrs & PVF_DIRTY));
1965 if (rw_mappings == 0) {
1966 md->pvh_attrs &= ~PVF_WRITE;
1967 if (ro_mappings == 1
1968 && (md->pvh_attrs & PVF_MULTCLR)) {
1969 /*
1970 * If this is the last readonly mapping
1971 * but it doesn't match the current color
1972 * for the page, change the current color
1973 * to match this last readonly mapping.
1974 */
1975 pv = SLIST_FIRST(&md->pvh_list);
1976 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1977 & arm_cache_prefer_mask;
1978 if (tst_mask) {
1979 md->pvh_attrs ^= tst_mask;
1980 PMAPCOUNT(vac_color_change);
1981 }
1982 }
1983 }
1984 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1985 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1986 return;
1987 } else if (!pmap_is_page_colored_p(md)) {
1988 /* not colored so we just use its color */
1989 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1990 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1991 PMAPCOUNT(vac_color_new);
1992 md->pvh_attrs &= PAGE_SIZE - 1;
1993 md->pvh_attrs |= PVF_COLORED
1994 | (va & arm_cache_prefer_mask)
1995 | (rw_mappings > 0 ? PVF_WRITE : 0);
1996 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1997 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1998 return;
1999 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
2000 bad_alias = false;
2001 if (rw_mappings > 0) {
2002 /*
2003 * We now have writeable mappings and if we have
2004 * readonly mappings in more than once color, we have
2005 * an aliasing problem. Regardless mark the page as
2006 * writeable.
2007 */
2008 if (md->pvh_attrs & PVF_MULTCLR) {
2009 if (ro_mappings < 2) {
2010 /*
2011 * If we only have less than two
2012 * read-only mappings, just flush the
2013 * non-primary colors from the cache.
2014 */
2015 pmap_flush_page(md, pa,
2016 PMAP_FLUSH_SECONDARY);
2017 } else {
2018 bad_alias = true;
2019 }
2020 }
2021 md->pvh_attrs |= PVF_WRITE;
2022 }
2023 /* If no conflicting colors, set everything back to cached */
2024 if (!bad_alias) {
2025 #ifdef DEBUG
2026 if (rw_mappings > 0
2027 || (md->pvh_attrs & PMAP_KMPAGE)) {
2028 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
2029 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
2030 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
2031 }
2032 #endif
2033 if (SLIST_EMPTY(&md->pvh_list))
2034 PMAPCOUNT(vac_color_reuse);
2035 else
2036 PMAPCOUNT(vac_color_ok);
2037
2038 /* matching color, just return */
2039 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2040 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2041 return;
2042 }
2043 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2044 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2045
2046 /* color conflict. evict from cache. */
2047
2048 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2049 md->pvh_attrs &= ~PVF_COLORED;
2050 md->pvh_attrs |= PVF_NC;
2051 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2052 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2053 PMAPCOUNT(vac_color_erase);
2054 } else if (rw_mappings == 0
2055 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2056 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2057
2058 /*
2059 * If the page has dirty cache lines, clean it.
2060 */
2061 if (md->pvh_attrs & PVF_DIRTY)
2062 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2063
2064 /*
2065 * If this is the first remapping (we know that there are no
2066 * writeable mappings), then this is a simple color change.
2067 * Otherwise this is a seconary r/o mapping, which means
2068 * we don't have to do anything.
2069 */
2070 if (ro_mappings == 1) {
2071 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2072 md->pvh_attrs &= PAGE_SIZE - 1;
2073 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2074 PMAPCOUNT(vac_color_change);
2075 } else {
2076 PMAPCOUNT(vac_color_blind);
2077 }
2078 md->pvh_attrs |= PVF_MULTCLR;
2079 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2080 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2081 return;
2082 } else {
2083 if (rw_mappings > 0)
2084 md->pvh_attrs |= PVF_WRITE;
2085
2086 /* color conflict. evict from cache. */
2087 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2088
2089 /* the list can't be empty because this was a enter/modify */
2090 pv = SLIST_FIRST(&md->pvh_list);
2091 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2092 KASSERT(pv);
2093 /*
2094 * If there's only one mapped page, change color to the
2095 * page's new color and return. Restore the DIRTY bit
2096 * that was erased by pmap_flush_page.
2097 */
2098 if (SLIST_NEXT(pv, pv_link) == NULL) {
2099 md->pvh_attrs &= PAGE_SIZE - 1;
2100 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2101 if (md->pvh_attrs & PVF_DMOD)
2102 md->pvh_attrs |= PVF_DIRTY;
2103 PMAPCOUNT(vac_color_change);
2104 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2105 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2106 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2107 return;
2108 }
2109 }
2110 bad_alias = true;
2111 md->pvh_attrs &= ~PVF_COLORED;
2112 md->pvh_attrs |= PVF_NC;
2113 PMAPCOUNT(vac_color_erase);
2114 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2115 }
2116
2117 fixup:
2118 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2119
2120 /*
2121 * Turn cacheing on/off for all pages.
2122 */
2123 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2124 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2125 KDASSERT(l2b != NULL);
2126 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2127 opte = *ptep;
2128 pte = opte & ~L2_S_CACHE_MASK;
2129 if (bad_alias) {
2130 pv->pv_flags |= PVF_NC;
2131 } else {
2132 pv->pv_flags &= ~PVF_NC;
2133 pte |= pte_l2_s_cache_mode;
2134 }
2135
2136 if (opte == pte) /* only update is there's a change */
2137 continue;
2138
2139 if (l2pte_valid(pte)) {
2140 if (PV_BEEN_EXECD(pv->pv_flags)) {
2141 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2142 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2143 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2144 }
2145 }
2146
2147 *ptep = pte;
2148 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2149 }
2150 }
2151 #endif /* PMAP_CACHE_VIPT */
2152
2153
2154 /*
2155 * Modify pte bits for all ptes corresponding to the given physical address.
2156 * We use `maskbits' rather than `clearbits' because we're always passing
2157 * constants and the latter would require an extra inversion at run-time.
2158 */
2159 static void
2160 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2161 {
2162 struct l2_bucket *l2b;
2163 struct pv_entry *pv;
2164 pt_entry_t *ptep, npte, opte;
2165 pmap_t pm;
2166 vaddr_t va;
2167 u_int oflags;
2168 #ifdef PMAP_CACHE_VIPT
2169 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2170 bool need_syncicache = false;
2171 bool did_syncicache = false;
2172 bool need_vac_me_harder = false;
2173 #endif
2174
2175 NPDEBUG(PDB_BITS,
2176 printf("pmap_clearbit: md %p mask 0x%x\n",
2177 md, maskbits));
2178
2179 #ifdef PMAP_CACHE_VIPT
2180 /*
2181 * If we might want to sync the I-cache and we've modified it,
2182 * then we know we definitely need to sync or discard it.
2183 */
2184 if (want_syncicache)
2185 need_syncicache = md->pvh_attrs & PVF_MOD;
2186 #endif
2187 /*
2188 * Clear saved attributes (modify, reference)
2189 */
2190 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2191
2192 if (SLIST_EMPTY(&md->pvh_list)) {
2193 #ifdef PMAP_CACHE_VIPT
2194 if (need_syncicache) {
2195 /*
2196 * No one has it mapped, so just discard it. The next
2197 * exec remapping will cause it to be synced.
2198 */
2199 md->pvh_attrs &= ~PVF_EXEC;
2200 PMAPCOUNT(exec_discarded_clearbit);
2201 }
2202 #endif
2203 return;
2204 }
2205
2206 /*
2207 * Loop over all current mappings setting/clearing as appropos
2208 */
2209 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2210 va = pv->pv_va;
2211 pm = pv->pv_pmap;
2212 oflags = pv->pv_flags;
2213 /*
2214 * Kernel entries are unmanaged and as such not to be changed.
2215 */
2216 if (oflags & PVF_KENTRY)
2217 continue;
2218 pv->pv_flags &= ~maskbits;
2219
2220 pmap_acquire_pmap_lock(pm);
2221
2222 l2b = pmap_get_l2_bucket(pm, va);
2223 KDASSERT(l2b != NULL);
2224
2225 ptep = &l2b->l2b_kva[l2pte_index(va)];
2226 npte = opte = *ptep;
2227
2228 NPDEBUG(PDB_BITS,
2229 printf(
2230 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2231 pv, pv->pv_pmap, pv->pv_va, oflags));
2232
2233 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2234 #ifdef PMAP_CACHE_VIVT
2235 if ((pv->pv_flags & PVF_NC)) {
2236 /*
2237 * Entry is not cacheable:
2238 *
2239 * Don't turn caching on again if this is a
2240 * modified emulation. This would be
2241 * inconsitent with the settings created by
2242 * pmap_vac_me_harder(). Otherwise, it's safe
2243 * to re-enable cacheing.
2244 *
2245 * There's no need to call pmap_vac_me_harder()
2246 * here: all pages are losing their write
2247 * permission.
2248 */
2249 if (maskbits & PVF_WRITE) {
2250 npte |= pte_l2_s_cache_mode;
2251 pv->pv_flags &= ~PVF_NC;
2252 }
2253 } else
2254 if (l2pte_writable_p(opte)) {
2255 /*
2256 * Entry is writable/cacheable: check if pmap
2257 * is current if it is flush it, otherwise it
2258 * won't be in the cache
2259 */
2260 if (PV_BEEN_EXECD(oflags))
2261 pmap_idcache_wbinv_range(pm, pv->pv_va,
2262 PAGE_SIZE);
2263 else
2264 if (PV_BEEN_REFD(oflags))
2265 pmap_dcache_wb_range(pm, pv->pv_va,
2266 PAGE_SIZE,
2267 (maskbits & PVF_REF) != 0, false);
2268 }
2269 #endif
2270
2271 /* make the pte read only */
2272 npte = l2pte_set_readonly(npte);
2273
2274 if (maskbits & oflags & PVF_WRITE) {
2275 /*
2276 * Keep alias accounting up to date
2277 */
2278 if (pv->pv_pmap == pmap_kernel()) {
2279 md->krw_mappings--;
2280 md->kro_mappings++;
2281 } else {
2282 md->urw_mappings--;
2283 md->uro_mappings++;
2284 }
2285 #ifdef PMAP_CACHE_VIPT
2286 if (arm_cache_prefer_mask != 0) {
2287 if (md->urw_mappings + md->krw_mappings == 0) {
2288 md->pvh_attrs &= ~PVF_WRITE;
2289 } else {
2290 PMAP_VALIDATE_MD_PAGE(md);
2291 }
2292 }
2293 if (want_syncicache)
2294 need_syncicache = true;
2295 need_vac_me_harder = true;
2296 #endif
2297 }
2298 }
2299
2300 if (maskbits & PVF_REF) {
2301 if ((pv->pv_flags & PVF_NC) == 0 &&
2302 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2303 l2pte_valid(npte)) {
2304 #ifdef PMAP_CACHE_VIVT
2305 /*
2306 * Check npte here; we may have already
2307 * done the wbinv above, and the validity
2308 * of the PTE is the same for opte and
2309 * npte.
2310 */
2311 /* XXXJRT need idcache_inv_range */
2312 if (PV_BEEN_EXECD(oflags))
2313 pmap_idcache_wbinv_range(pm,
2314 pv->pv_va, PAGE_SIZE);
2315 else
2316 if (PV_BEEN_REFD(oflags))
2317 pmap_dcache_wb_range(pm,
2318 pv->pv_va, PAGE_SIZE,
2319 true, true);
2320 #endif
2321 }
2322
2323 /*
2324 * Make the PTE invalid so that we will take a
2325 * page fault the next time the mapping is
2326 * referenced.
2327 */
2328 npte &= ~L2_TYPE_MASK;
2329 npte |= L2_TYPE_INV;
2330 }
2331
2332 if (npte != opte) {
2333 *ptep = npte;
2334 PTE_SYNC(ptep);
2335 /* Flush the TLB entry if a current pmap. */
2336 if (PV_BEEN_EXECD(oflags))
2337 pmap_tlb_flushID_SE(pm, pv->pv_va);
2338 else
2339 if (PV_BEEN_REFD(oflags))
2340 pmap_tlb_flushD_SE(pm, pv->pv_va);
2341 }
2342
2343 pmap_release_pmap_lock(pm);
2344
2345 NPDEBUG(PDB_BITS,
2346 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2347 pm, va, opte, npte));
2348 }
2349
2350 #ifdef PMAP_CACHE_VIPT
2351 /*
2352 * If we need to sync the I-cache and we haven't done it yet, do it.
2353 */
2354 if (need_syncicache && !did_syncicache) {
2355 pmap_syncicache_page(md, pa);
2356 PMAPCOUNT(exec_synced_clearbit);
2357 }
2358 /*
2359 * If we are changing this to read-only, we need to call vac_me_harder
2360 * so we can change all the read-only pages to cacheable. We pretend
2361 * this as a page deletion.
2362 */
2363 if (need_vac_me_harder) {
2364 if (md->pvh_attrs & PVF_NC)
2365 pmap_vac_me_harder(md, pa, NULL, 0);
2366 }
2367 #endif
2368 }
2369
2370 /*
2371 * pmap_clean_page()
2372 *
2373 * This is a local function used to work out the best strategy to clean
2374 * a single page referenced by its entry in the PV table. It's used by
2375 * pmap_copy_page, pmap_zero page and maybe some others later on.
2376 *
2377 * Its policy is effectively:
2378 * o If there are no mappings, we don't bother doing anything with the cache.
2379 * o If there is one mapping, we clean just that page.
2380 * o If there are multiple mappings, we clean the entire cache.
2381 *
2382 * So that some functions can be further optimised, it returns 0 if it didn't
2383 * clean the entire cache, or 1 if it did.
2384 *
2385 * XXX One bug in this routine is that if the pv_entry has a single page
2386 * mapped at 0x00000000 a whole cache clean will be performed rather than
2387 * just the 1 page. Since this should not occur in everyday use and if it does
2388 * it will just result in not the most efficient clean for the page.
2389 */
2390 #ifdef PMAP_CACHE_VIVT
2391 static int
2392 pmap_clean_page(struct pv_entry *pv, bool is_src)
2393 {
2394 pmap_t pm_to_clean = NULL;
2395 struct pv_entry *npv;
2396 u_int cache_needs_cleaning = 0;
2397 u_int flags = 0;
2398 vaddr_t page_to_clean = 0;
2399
2400 if (pv == NULL) {
2401 /* nothing mapped in so nothing to flush */
2402 return (0);
2403 }
2404
2405 /*
2406 * Since we flush the cache each time we change to a different
2407 * user vmspace, we only need to flush the page if it is in the
2408 * current pmap.
2409 */
2410
2411 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2412 if (pmap_is_current(npv->pv_pmap)) {
2413 flags |= npv->pv_flags;
2414 /*
2415 * The page is mapped non-cacheable in
2416 * this map. No need to flush the cache.
2417 */
2418 if (npv->pv_flags & PVF_NC) {
2419 #ifdef DIAGNOSTIC
2420 if (cache_needs_cleaning)
2421 panic("pmap_clean_page: "
2422 "cache inconsistency");
2423 #endif
2424 break;
2425 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2426 continue;
2427 if (cache_needs_cleaning) {
2428 page_to_clean = 0;
2429 break;
2430 } else {
2431 page_to_clean = npv->pv_va;
2432 pm_to_clean = npv->pv_pmap;
2433 }
2434 cache_needs_cleaning = 1;
2435 }
2436 }
2437
2438 if (page_to_clean) {
2439 if (PV_BEEN_EXECD(flags))
2440 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2441 PAGE_SIZE);
2442 else
2443 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2444 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2445 } else if (cache_needs_cleaning) {
2446 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2447
2448 if (PV_BEEN_EXECD(flags))
2449 pmap_idcache_wbinv_all(pm);
2450 else
2451 pmap_dcache_wbinv_all(pm);
2452 return (1);
2453 }
2454 return (0);
2455 }
2456 #endif
2457
2458 #ifdef PMAP_CACHE_VIPT
2459 /*
2460 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2461 * right cache alias to make sure we flush the right stuff.
2462 */
2463 void
2464 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2465 {
2466 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2467 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2468
2469 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2470 md, md->pvh_attrs));
2471 /*
2472 * No need to clean the page if it's non-cached.
2473 */
2474 if (md->pvh_attrs & PVF_NC)
2475 return;
2476 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2477
2478 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2479 /*
2480 * Set up a PTE with the right coloring to flush existing cache lines.
2481 */
2482 *ptep = L2_S_PROTO |
2483 pa
2484 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2485 | pte_l2_s_cache_mode;
2486 PTE_SYNC(ptep);
2487
2488 /*
2489 * Flush it.
2490 */
2491 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2492 /*
2493 * Unmap the page.
2494 */
2495 *ptep = 0;
2496 PTE_SYNC(ptep);
2497 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2498
2499 md->pvh_attrs |= PVF_EXEC;
2500 PMAPCOUNT(exec_synced);
2501 }
2502
2503 void
2504 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2505 {
2506 vsize_t va_offset, end_va;
2507 bool wbinv_p;
2508
2509 if (arm_cache_prefer_mask == 0)
2510 return;
2511
2512 switch (flush) {
2513 case PMAP_FLUSH_PRIMARY:
2514 if (md->pvh_attrs & PVF_MULTCLR) {
2515 va_offset = 0;
2516 end_va = arm_cache_prefer_mask;
2517 md->pvh_attrs &= ~PVF_MULTCLR;
2518 PMAPCOUNT(vac_flush_lots);
2519 } else {
2520 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2521 end_va = va_offset;
2522 PMAPCOUNT(vac_flush_one);
2523 }
2524 /*
2525 * Mark that the page is no longer dirty.
2526 */
2527 md->pvh_attrs &= ~PVF_DIRTY;
2528 wbinv_p = true;
2529 break;
2530 case PMAP_FLUSH_SECONDARY:
2531 va_offset = 0;
2532 end_va = arm_cache_prefer_mask;
2533 wbinv_p = true;
2534 md->pvh_attrs &= ~PVF_MULTCLR;
2535 PMAPCOUNT(vac_flush_lots);
2536 break;
2537 case PMAP_CLEAN_PRIMARY:
2538 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2539 end_va = va_offset;
2540 wbinv_p = false;
2541 /*
2542 * Mark that the page is no longer dirty.
2543 */
2544 if ((md->pvh_attrs & PVF_DMOD) == 0)
2545 md->pvh_attrs &= ~PVF_DIRTY;
2546 PMAPCOUNT(vac_clean_one);
2547 break;
2548 default:
2549 return;
2550 }
2551
2552 KASSERT(!(md->pvh_attrs & PVF_NC));
2553
2554 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2555 md, md->pvh_attrs));
2556
2557 const size_t scache_line_size = arm_scache.dcache_line_size;
2558
2559 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2560 const size_t pte_offset = va_offset >> PGSHIFT;
2561 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2562 const pt_entry_t oldpte = *ptep;
2563
2564 if (flush == PMAP_FLUSH_SECONDARY
2565 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2566 continue;
2567
2568 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2569 /*
2570 * Set up a PTE with the right coloring to flush
2571 * existing cache entries.
2572 */
2573 *ptep = L2_S_PROTO
2574 | pa
2575 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2576 | pte_l2_s_cache_mode;
2577 PTE_SYNC(ptep);
2578
2579 /*
2580 * Flush it.
2581 */
2582 vaddr_t va = cdstp + va_offset;
2583 if (scache_line_size != 0) {
2584 cpu_dcache_wb_range(va, PAGE_SIZE);
2585 if (wbinv_p) {
2586 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
2587 cpu_dcache_inv_range(va, PAGE_SIZE);
2588 } else {
2589 cpu_sdcache_wb_range(va, pa, PAGE_SIZE);
2590 }
2591 } else {
2592 if (wbinv_p) {
2593 cpu_dcache_wbinv_range(va, PAGE_SIZE);
2594 } else {
2595 cpu_dcache_wb_range(va, PAGE_SIZE);
2596 }
2597 }
2598
2599 /*
2600 * Restore the page table entry since we might have interrupted
2601 * pmap_zero_page or pmap_copy_page which was already using
2602 * this pte.
2603 */
2604 *ptep = oldpte;
2605 PTE_SYNC(ptep);
2606 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2607 }
2608 }
2609 #endif /* PMAP_CACHE_VIPT */
2610
2611 /*
2612 * Routine: pmap_page_remove
2613 * Function:
2614 * Removes this physical page from
2615 * all physical maps in which it resides.
2616 * Reflects back modify bits to the pager.
2617 */
2618 static void
2619 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2620 {
2621 struct l2_bucket *l2b;
2622 struct pv_entry *pv, *npv, **pvp;
2623 pmap_t pm;
2624 pt_entry_t *ptep;
2625 bool flush;
2626 u_int flags;
2627
2628 NPDEBUG(PDB_FOLLOW,
2629 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2630 pa));
2631
2632 pv = SLIST_FIRST(&md->pvh_list);
2633 if (pv == NULL) {
2634 #ifdef PMAP_CACHE_VIPT
2635 /*
2636 * We *know* the page contents are about to be replaced.
2637 * Discard the exec contents
2638 */
2639 if (PV_IS_EXEC_P(md->pvh_attrs))
2640 PMAPCOUNT(exec_discarded_page_protect);
2641 md->pvh_attrs &= ~PVF_EXEC;
2642 PMAP_VALIDATE_MD_PAGE(md);
2643 #endif
2644 return;
2645 }
2646 #ifdef PMAP_CACHE_VIPT
2647 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2648 #endif
2649
2650 /*
2651 * Clear alias counts
2652 */
2653 #ifdef PMAP_CACHE_VIVT
2654 md->k_mappings = 0;
2655 #endif
2656 md->urw_mappings = md->uro_mappings = 0;
2657
2658 flush = false;
2659 flags = 0;
2660
2661 #ifdef PMAP_CACHE_VIVT
2662 pmap_clean_page(pv, false);
2663 #endif
2664
2665 pvp = &SLIST_FIRST(&md->pvh_list);
2666 while (pv) {
2667 pm = pv->pv_pmap;
2668 npv = SLIST_NEXT(pv, pv_link);
2669 if (flush == false && pmap_is_current(pm))
2670 flush = true;
2671
2672 if (pm == pmap_kernel()) {
2673 #ifdef PMAP_CACHE_VIPT
2674 /*
2675 * If this was unmanaged mapping, it must be preserved.
2676 * Move it back on the list and advance the end-of-list
2677 * pointer.
2678 */
2679 if (pv->pv_flags & PVF_KENTRY) {
2680 *pvp = pv;
2681 pvp = &SLIST_NEXT(pv, pv_link);
2682 pv = npv;
2683 continue;
2684 }
2685 if (pv->pv_flags & PVF_WRITE)
2686 md->krw_mappings--;
2687 else
2688 md->kro_mappings--;
2689 #endif
2690 PMAPCOUNT(kernel_unmappings);
2691 }
2692 PMAPCOUNT(unmappings);
2693
2694 pmap_acquire_pmap_lock(pm);
2695
2696 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2697 KDASSERT(l2b != NULL);
2698
2699 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2700
2701 /*
2702 * Update statistics
2703 */
2704 --pm->pm_stats.resident_count;
2705
2706 /* Wired bit */
2707 if (pv->pv_flags & PVF_WIRED)
2708 --pm->pm_stats.wired_count;
2709
2710 flags |= pv->pv_flags;
2711
2712 /*
2713 * Invalidate the PTEs.
2714 */
2715 *ptep = 0;
2716 PTE_SYNC_CURRENT(pm, ptep);
2717 pmap_free_l2_bucket(pm, l2b, 1);
2718
2719 pool_put(&pmap_pv_pool, pv);
2720 pv = npv;
2721 /*
2722 * if we reach the end of the list and there are still
2723 * mappings, they might be able to be cached now.
2724 */
2725 if (pv == NULL) {
2726 *pvp = NULL;
2727 if (!SLIST_EMPTY(&md->pvh_list))
2728 pmap_vac_me_harder(md, pa, pm, 0);
2729 }
2730 pmap_release_pmap_lock(pm);
2731 }
2732 #ifdef PMAP_CACHE_VIPT
2733 /*
2734 * Its EXEC cache is now gone.
2735 */
2736 if (PV_IS_EXEC_P(md->pvh_attrs))
2737 PMAPCOUNT(exec_discarded_page_protect);
2738 md->pvh_attrs &= ~PVF_EXEC;
2739 KASSERT(md->urw_mappings == 0);
2740 KASSERT(md->uro_mappings == 0);
2741 if (arm_cache_prefer_mask != 0) {
2742 if (md->krw_mappings == 0)
2743 md->pvh_attrs &= ~PVF_WRITE;
2744 PMAP_VALIDATE_MD_PAGE(md);
2745 }
2746 #endif
2747
2748 if (flush) {
2749 /*
2750 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2751 * would need a subsequent call to pmap_update() to ensure
2752 * curpm->pm_cstate.cs_all is reset. Our callers are not
2753 * required to do that (see pmap(9)), so we can't modify
2754 * the current pmap's state.
2755 */
2756 if (PV_BEEN_EXECD(flags))
2757 cpu_tlb_flushID();
2758 else
2759 cpu_tlb_flushD();
2760 }
2761 cpu_cpwait();
2762 }
2763
2764 /*
2765 * pmap_t pmap_create(void)
2766 *
2767 * Create a new pmap structure from scratch.
2768 */
2769 pmap_t
2770 pmap_create(void)
2771 {
2772 pmap_t pm;
2773
2774 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2775
2776 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2777 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2778 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2779
2780 pm->pm_stats.wired_count = 0;
2781 pm->pm_stats.resident_count = 1;
2782 pm->pm_cstate.cs_all = 0;
2783 pmap_alloc_l1(pm);
2784
2785 /*
2786 * Note: The pool cache ensures that the pm_l2[] array is already
2787 * initialised to zero.
2788 */
2789
2790 pmap_pinit(pm);
2791
2792 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2793
2794 return (pm);
2795 }
2796
2797 u_int
2798 arm32_mmap_flags(paddr_t pa)
2799 {
2800 /*
2801 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2802 * and we're using the upper bits in page numbers to pass flags around
2803 * so we might as well use the same bits
2804 */
2805 return (u_int)pa & PMAP_MD_MASK;
2806 }
2807 /*
2808 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2809 * u_int flags)
2810 *
2811 * Insert the given physical page (p) at
2812 * the specified virtual address (v) in the
2813 * target physical map with the protection requested.
2814 *
2815 * NB: This is the only routine which MAY NOT lazy-evaluate
2816 * or lose information. That is, this routine must actually
2817 * insert this page into the given map NOW.
2818 */
2819 int
2820 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2821 {
2822 struct l2_bucket *l2b;
2823 struct vm_page *pg, *opg;
2824 struct pv_entry *pv;
2825 pt_entry_t *ptep, npte, opte;
2826 u_int nflags;
2827 u_int oflags;
2828 #ifdef ARM_HAS_VBAR
2829 const bool vector_page_p = false;
2830 #else
2831 const bool vector_page_p = (va == vector_page);
2832 #endif
2833
2834 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2835
2836 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2837 KDASSERT(((va | pa) & PGOFSET) == 0);
2838
2839 /*
2840 * Get a pointer to the page. Later on in this function, we
2841 * test for a managed page by checking pg != NULL.
2842 */
2843 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2844
2845 nflags = 0;
2846 if (prot & VM_PROT_WRITE)
2847 nflags |= PVF_WRITE;
2848 if (prot & VM_PROT_EXECUTE)
2849 nflags |= PVF_EXEC;
2850 if (flags & PMAP_WIRED)
2851 nflags |= PVF_WIRED;
2852
2853 pmap_acquire_pmap_lock(pm);
2854
2855 /*
2856 * Fetch the L2 bucket which maps this page, allocating one if
2857 * necessary for user pmaps.
2858 */
2859 if (pm == pmap_kernel())
2860 l2b = pmap_get_l2_bucket(pm, va);
2861 else
2862 l2b = pmap_alloc_l2_bucket(pm, va);
2863 if (l2b == NULL) {
2864 if (flags & PMAP_CANFAIL) {
2865 pmap_release_pmap_lock(pm);
2866 return (ENOMEM);
2867 }
2868 panic("pmap_enter: failed to allocate L2 bucket");
2869 }
2870 ptep = &l2b->l2b_kva[l2pte_index(va)];
2871 opte = *ptep;
2872 npte = pa;
2873 oflags = 0;
2874
2875 if (opte) {
2876 /*
2877 * There is already a mapping at this address.
2878 * If the physical address is different, lookup the
2879 * vm_page.
2880 */
2881 if (l2pte_pa(opte) != pa)
2882 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2883 else
2884 opg = pg;
2885 } else
2886 opg = NULL;
2887
2888 if (pg) {
2889 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2890
2891 /*
2892 * This is to be a managed mapping.
2893 */
2894 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2895 /*
2896 * - The access type indicates that we don't need
2897 * to do referenced emulation.
2898 * OR
2899 * - The physical page has already been referenced
2900 * so no need to re-do referenced emulation here.
2901 */
2902 npte |= l2pte_set_readonly(L2_S_PROTO);
2903
2904 nflags |= PVF_REF;
2905
2906 if ((prot & VM_PROT_WRITE) != 0 &&
2907 ((flags & VM_PROT_WRITE) != 0 ||
2908 (md->pvh_attrs & PVF_MOD) != 0)) {
2909 /*
2910 * This is a writable mapping, and the
2911 * page's mod state indicates it has
2912 * already been modified. Make it
2913 * writable from the outset.
2914 */
2915 npte = l2pte_set_writable(npte);
2916 nflags |= PVF_MOD;
2917 }
2918 } else {
2919 /*
2920 * Need to do page referenced emulation.
2921 */
2922 npte |= L2_TYPE_INV;
2923 }
2924
2925 if (flags & ARM32_MMAP_WRITECOMBINE) {
2926 npte |= pte_l2_s_wc_mode;
2927 } else
2928 npte |= pte_l2_s_cache_mode;
2929
2930 if (pg == opg) {
2931 /*
2932 * We're changing the attrs of an existing mapping.
2933 */
2934 #ifdef MULTIPROCESSOR
2935 KASSERT(uvm_page_locked_p(pg));
2936 #endif
2937 oflags = pmap_modify_pv(md, pa, pm, va,
2938 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2939 PVF_MOD | PVF_REF, nflags);
2940
2941 #ifdef PMAP_CACHE_VIVT
2942 /*
2943 * We may need to flush the cache if we're
2944 * doing rw-ro...
2945 */
2946 if (pm->pm_cstate.cs_cache_d &&
2947 (oflags & PVF_NC) == 0 &&
2948 l2pte_writable_p(opte) &&
2949 (prot & VM_PROT_WRITE) == 0)
2950 cpu_dcache_wb_range(va, PAGE_SIZE);
2951 #endif
2952 } else {
2953 /*
2954 * New mapping, or changing the backing page
2955 * of an existing mapping.
2956 */
2957 if (opg) {
2958 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2959 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2960
2961 /*
2962 * Replacing an existing mapping with a new one.
2963 * It is part of our managed memory so we
2964 * must remove it from the PV list
2965 */
2966 #ifdef MULTIPROCESSOR
2967 KASSERT(uvm_page_locked_p(opg));
2968 #endif
2969 pv = pmap_remove_pv(omd, opa, pm, va);
2970 pmap_vac_me_harder(omd, opa, pm, 0);
2971 oflags = pv->pv_flags;
2972
2973 #ifdef PMAP_CACHE_VIVT
2974 /*
2975 * If the old mapping was valid (ref/mod
2976 * emulation creates 'invalid' mappings
2977 * initially) then make sure to frob
2978 * the cache.
2979 */
2980 if ((oflags & PVF_NC) == 0 &&
2981 l2pte_valid(opte)) {
2982 if (PV_BEEN_EXECD(oflags)) {
2983 pmap_idcache_wbinv_range(pm, va,
2984 PAGE_SIZE);
2985 } else
2986 if (PV_BEEN_REFD(oflags)) {
2987 pmap_dcache_wb_range(pm, va,
2988 PAGE_SIZE, true,
2989 (oflags & PVF_WRITE) == 0);
2990 }
2991 }
2992 #endif
2993 } else
2994 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2995 if ((flags & PMAP_CANFAIL) == 0)
2996 panic("pmap_enter: no pv entries");
2997
2998 if (pm != pmap_kernel())
2999 pmap_free_l2_bucket(pm, l2b, 0);
3000 pmap_release_pmap_lock(pm);
3001 NPDEBUG(PDB_ENTER,
3002 printf("pmap_enter: ENOMEM\n"));
3003 return (ENOMEM);
3004 }
3005
3006 #ifdef MULTIPROCESSOR
3007 KASSERT(uvm_page_locked_p(pg));
3008 #endif
3009 pmap_enter_pv(md, pa, pv, pm, va, nflags);
3010 }
3011 } else {
3012 /*
3013 * We're mapping an unmanaged page.
3014 * These are always readable, and possibly writable, from
3015 * the get go as we don't need to track ref/mod status.
3016 */
3017 npte |= l2pte_set_readonly(L2_S_PROTO);
3018 if (prot & VM_PROT_WRITE)
3019 npte = l2pte_set_writable(npte);
3020
3021 /*
3022 * Make sure the vector table is mapped cacheable
3023 */
3024 if ((vector_page_p && pm != pmap_kernel())
3025 || (flags & ARM32_MMAP_CACHEABLE)) {
3026 npte |= pte_l2_s_cache_mode;
3027 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
3028 npte |= pte_l2_s_wc_mode;
3029 }
3030 if (opg) {
3031 /*
3032 * Looks like there's an existing 'managed' mapping
3033 * at this address.
3034 */
3035 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3036 paddr_t opa = VM_PAGE_TO_PHYS(opg);
3037
3038 #ifdef MULTIPROCESSOR
3039 KASSERT(uvm_page_locked_p(opg));
3040 #endif
3041 pv = pmap_remove_pv(omd, opa, pm, va);
3042 pmap_vac_me_harder(omd, opa, pm, 0);
3043 oflags = pv->pv_flags;
3044
3045 #ifdef PMAP_CACHE_VIVT
3046 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
3047 if (PV_BEEN_EXECD(oflags))
3048 pmap_idcache_wbinv_range(pm, va,
3049 PAGE_SIZE);
3050 else
3051 if (PV_BEEN_REFD(oflags))
3052 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
3053 true, (oflags & PVF_WRITE) == 0);
3054 }
3055 #endif
3056 pool_put(&pmap_pv_pool, pv);
3057 }
3058 }
3059
3060 /*
3061 * Make sure userland mappings get the right permissions
3062 */
3063 if (!vector_page_p && pm != pmap_kernel()) {
3064 npte |= L2_S_PROT_U;
3065 }
3066
3067 /*
3068 * Keep the stats up to date
3069 */
3070 if (opte == 0) {
3071 l2b->l2b_occupancy++;
3072 pm->pm_stats.resident_count++;
3073 }
3074
3075 NPDEBUG(PDB_ENTER,
3076 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3077
3078 /*
3079 * If this is just a wiring change, the two PTEs will be
3080 * identical, so there's no need to update the page table.
3081 */
3082 if (npte != opte) {
3083 bool is_cached = pmap_is_cached(pm);
3084
3085 *ptep = npte;
3086 PTE_SYNC(ptep);
3087 if (is_cached) {
3088 /*
3089 * We only need to frob the cache/tlb if this pmap
3090 * is current
3091 */
3092 if (!vector_page_p && l2pte_valid(npte)) {
3093 /*
3094 * This mapping is likely to be accessed as
3095 * soon as we return to userland. Fix up the
3096 * L1 entry to avoid taking another
3097 * page/domain fault.
3098 */
3099 pd_entry_t *pl1pd, l1pd;
3100
3101 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3102 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3103 L1_C_PROTO;
3104 if (*pl1pd != l1pd) {
3105 *pl1pd = l1pd;
3106 PTE_SYNC(pl1pd);
3107 }
3108 }
3109 }
3110
3111 if (PV_BEEN_EXECD(oflags))
3112 pmap_tlb_flushID_SE(pm, va);
3113 else
3114 if (PV_BEEN_REFD(oflags))
3115 pmap_tlb_flushD_SE(pm, va);
3116
3117 NPDEBUG(PDB_ENTER,
3118 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3119 is_cached, pm->pm_cstate.cs_all));
3120
3121 if (pg != NULL) {
3122 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3123
3124 #ifdef MULTIPROCESSOR
3125 KASSERT(uvm_page_locked_p(pg));
3126 #endif
3127 pmap_vac_me_harder(md, pa, pm, va);
3128 }
3129 }
3130 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3131 if (pg) {
3132 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3133
3134 #ifdef MULTIPROCESSOR
3135 KASSERT(uvm_page_locked_p(pg));
3136 #endif
3137 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3138 PMAP_VALIDATE_MD_PAGE(md);
3139 }
3140 #endif
3141
3142 pmap_release_pmap_lock(pm);
3143
3144 return (0);
3145 }
3146
3147 /*
3148 * pmap_remove()
3149 *
3150 * pmap_remove is responsible for nuking a number of mappings for a range
3151 * of virtual address space in the current pmap. To do this efficiently
3152 * is interesting, because in a number of cases a wide virtual address
3153 * range may be supplied that contains few actual mappings. So, the
3154 * optimisations are:
3155 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3156 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3157 * maybe do just a partial cache clean. This path of execution is
3158 * complicated by the fact that the cache must be flushed _before_
3159 * the PTE is nuked, being a VAC :-)
3160 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3161 * all invalidations until pmap_update(), since pmap_remove_all() has
3162 * already flushed the cache.
3163 * 4. Maybe later fast-case a single page, but I don't think this is
3164 * going to make _that_ much difference overall.
3165 */
3166
3167 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3168
3169 void
3170 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3171 {
3172 struct l2_bucket *l2b;
3173 vaddr_t next_bucket;
3174 pt_entry_t *ptep;
3175 u_int cleanlist_idx, total, cnt;
3176 struct {
3177 vaddr_t va;
3178 pt_entry_t *ptep;
3179 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3180 u_int mappings, is_exec, is_refd;
3181
3182 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3183 "eva=%08lx\n", pm, sva, eva));
3184
3185 /*
3186 * we lock in the pmap => pv_head direction
3187 */
3188 pmap_acquire_pmap_lock(pm);
3189
3190 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3191 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3192 if (pm->pm_cstate.cs_tlb == 0)
3193 pm->pm_remove_all = true;
3194 } else
3195 cleanlist_idx = 0;
3196
3197 total = 0;
3198
3199 while (sva < eva) {
3200 /*
3201 * Do one L2 bucket's worth at a time.
3202 */
3203 next_bucket = L2_NEXT_BUCKET(sva);
3204 if (next_bucket > eva)
3205 next_bucket = eva;
3206
3207 l2b = pmap_get_l2_bucket(pm, sva);
3208 if (l2b == NULL) {
3209 sva = next_bucket;
3210 continue;
3211 }
3212
3213 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3214
3215 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3216 struct vm_page *pg;
3217 pt_entry_t pte;
3218 paddr_t pa;
3219
3220 pte = *ptep;
3221
3222 if (pte == 0) {
3223 /* Nothing here, move along */
3224 continue;
3225 }
3226
3227 pa = l2pte_pa(pte);
3228 is_exec = 0;
3229 is_refd = 1;
3230
3231 /*
3232 * Update flags. In a number of circumstances,
3233 * we could cluster a lot of these and do a
3234 * number of sequential pages in one go.
3235 */
3236 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3237 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3238 struct pv_entry *pv;
3239
3240 #ifdef MULTIPROCESSOR
3241 KASSERT(uvm_page_locked_p(pg));
3242 #endif
3243 pv = pmap_remove_pv(md, pa, pm, sva);
3244 pmap_vac_me_harder(md, pa, pm, 0);
3245 if (pv != NULL) {
3246 if (pm->pm_remove_all == false) {
3247 is_exec =
3248 PV_BEEN_EXECD(pv->pv_flags);
3249 is_refd =
3250 PV_BEEN_REFD(pv->pv_flags);
3251 }
3252 pool_put(&pmap_pv_pool, pv);
3253 }
3254 }
3255 mappings++;
3256
3257 if (!l2pte_valid(pte)) {
3258 /*
3259 * Ref/Mod emulation is still active for this
3260 * mapping, therefore it is has not yet been
3261 * accessed. No need to frob the cache/tlb.
3262 */
3263 *ptep = 0;
3264 PTE_SYNC_CURRENT(pm, ptep);
3265 continue;
3266 }
3267
3268 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3269 /* Add to the clean list. */
3270 cleanlist[cleanlist_idx].ptep = ptep;
3271 cleanlist[cleanlist_idx].va =
3272 sva | (is_exec & 1);
3273 cleanlist_idx++;
3274 } else
3275 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3276 /* Nuke everything if needed. */
3277 #ifdef PMAP_CACHE_VIVT
3278 pmap_idcache_wbinv_all(pm);
3279 #endif
3280 pmap_tlb_flushID(pm);
3281
3282 /*
3283 * Roll back the previous PTE list,
3284 * and zero out the current PTE.
3285 */
3286 for (cnt = 0;
3287 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3288 *cleanlist[cnt].ptep = 0;
3289 PTE_SYNC(cleanlist[cnt].ptep);
3290 }
3291 *ptep = 0;
3292 PTE_SYNC(ptep);
3293 cleanlist_idx++;
3294 pm->pm_remove_all = true;
3295 } else {
3296 *ptep = 0;
3297 PTE_SYNC(ptep);
3298 if (pm->pm_remove_all == false) {
3299 if (is_exec)
3300 pmap_tlb_flushID_SE(pm, sva);
3301 else
3302 if (is_refd)
3303 pmap_tlb_flushD_SE(pm, sva);
3304 }
3305 }
3306 }
3307
3308 /*
3309 * Deal with any left overs
3310 */
3311 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3312 total += cleanlist_idx;
3313 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3314 if (pm->pm_cstate.cs_all != 0) {
3315 vaddr_t clva = cleanlist[cnt].va & ~1;
3316 if (cleanlist[cnt].va & 1) {
3317 #ifdef PMAP_CACHE_VIVT
3318 pmap_idcache_wbinv_range(pm,
3319 clva, PAGE_SIZE);
3320 #endif
3321 pmap_tlb_flushID_SE(pm, clva);
3322 } else {
3323 #ifdef PMAP_CACHE_VIVT
3324 pmap_dcache_wb_range(pm,
3325 clva, PAGE_SIZE, true,
3326 false);
3327 #endif
3328 pmap_tlb_flushD_SE(pm, clva);
3329 }
3330 }
3331 *cleanlist[cnt].ptep = 0;
3332 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3333 }
3334
3335 /*
3336 * If it looks like we're removing a whole bunch
3337 * of mappings, it's faster to just write-back
3338 * the whole cache now and defer TLB flushes until
3339 * pmap_update() is called.
3340 */
3341 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3342 cleanlist_idx = 0;
3343 else {
3344 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3345 #ifdef PMAP_CACHE_VIVT
3346 pmap_idcache_wbinv_all(pm);
3347 #endif
3348 pm->pm_remove_all = true;
3349 }
3350 }
3351
3352 pmap_free_l2_bucket(pm, l2b, mappings);
3353 pm->pm_stats.resident_count -= mappings;
3354 }
3355
3356 pmap_release_pmap_lock(pm);
3357 }
3358
3359 #ifdef PMAP_CACHE_VIPT
3360 static struct pv_entry *
3361 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3362 {
3363 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3364 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3365 struct pv_entry *pv;
3366
3367 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3368 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3369
3370 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3371 KASSERT(pv);
3372 KASSERT(pv->pv_flags & PVF_KENTRY);
3373
3374 /*
3375 * If we are removing a writeable mapping to a cached exec page,
3376 * if it's the last mapping then clear it execness other sync
3377 * the page to the icache.
3378 */
3379 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3380 && (pv->pv_flags & PVF_WRITE) != 0) {
3381 if (SLIST_EMPTY(&md->pvh_list)) {
3382 md->pvh_attrs &= ~PVF_EXEC;
3383 PMAPCOUNT(exec_discarded_kremove);
3384 } else {
3385 pmap_syncicache_page(md, pa);
3386 PMAPCOUNT(exec_synced_kremove);
3387 }
3388 }
3389 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3390
3391 return pv;
3392 }
3393 #endif /* PMAP_CACHE_VIPT */
3394
3395 /*
3396 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3397 *
3398 * We assume there is already sufficient KVM space available
3399 * to do this, as we can't allocate L2 descriptor tables/metadata
3400 * from here.
3401 */
3402 void
3403 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3404 {
3405 struct l2_bucket *l2b;
3406 pt_entry_t *ptep, opte;
3407 #ifdef PMAP_CACHE_VIVT
3408 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3409 #endif
3410 #ifdef PMAP_CACHE_VIPT
3411 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3412 struct vm_page *opg;
3413 struct pv_entry *pv = NULL;
3414 #endif
3415 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3416
3417 NPDEBUG(PDB_KENTER,
3418 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3419 va, pa, prot));
3420
3421 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3422 KDASSERT(l2b != NULL);
3423
3424 ptep = &l2b->l2b_kva[l2pte_index(va)];
3425 opte = *ptep;
3426
3427 if (opte == 0) {
3428 PMAPCOUNT(kenter_mappings);
3429 l2b->l2b_occupancy++;
3430 } else {
3431 PMAPCOUNT(kenter_remappings);
3432 #ifdef PMAP_CACHE_VIPT
3433 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3434 #ifdef DIAGNOSTIC
3435 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3436 #endif
3437 if (opg) {
3438 KASSERT(opg != pg);
3439 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3440 KASSERT((flags & PMAP_KMPAGE) == 0);
3441 pv = pmap_kremove_pg(opg, va);
3442 }
3443 #endif
3444 if (l2pte_valid(opte)) {
3445 #ifdef PMAP_CACHE_VIVT
3446 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3447 #endif
3448 cpu_tlb_flushD_SE(va);
3449 cpu_cpwait();
3450 }
3451 }
3452
3453 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3454 | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
3455 PTE_SYNC(ptep);
3456
3457 if (pg) {
3458 #ifdef MULTIPROCESSOR
3459 KASSERT(uvm_page_locked_p(pg));
3460 #endif
3461 if (flags & PMAP_KMPAGE) {
3462 KASSERT(md->urw_mappings == 0);
3463 KASSERT(md->uro_mappings == 0);
3464 KASSERT(md->krw_mappings == 0);
3465 KASSERT(md->kro_mappings == 0);
3466 #ifdef PMAP_CACHE_VIPT
3467 KASSERT(pv == NULL);
3468 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3469 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3470 /* if there is a color conflict, evict from cache. */
3471 if (pmap_is_page_colored_p(md)
3472 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3473 PMAPCOUNT(vac_color_change);
3474 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3475 } else if (md->pvh_attrs & PVF_MULTCLR) {
3476 /*
3477 * If this page has multiple colors, expunge
3478 * them.
3479 */
3480 PMAPCOUNT(vac_flush_lots2);
3481 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3482 }
3483 md->pvh_attrs &= PAGE_SIZE - 1;
3484 md->pvh_attrs |= PVF_KMPAGE
3485 | PVF_COLORED | PVF_DIRTY
3486 | (va & arm_cache_prefer_mask);
3487 #endif
3488 #ifdef PMAP_CACHE_VIVT
3489 md->pvh_attrs |= PVF_KMPAGE;
3490 #endif
3491 pmap_kmpages++;
3492 #ifdef PMAP_CACHE_VIPT
3493 } else {
3494 if (pv == NULL) {
3495 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3496 KASSERT(pv != NULL);
3497 }
3498 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3499 PVF_WIRED | PVF_KENTRY
3500 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3501 if ((prot & VM_PROT_WRITE)
3502 && !(md->pvh_attrs & PVF_NC))
3503 md->pvh_attrs |= PVF_DIRTY;
3504 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3505 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3506 #endif
3507 }
3508 #ifdef PMAP_CACHE_VIPT
3509 } else {
3510 if (pv != NULL)
3511 pool_put(&pmap_pv_pool, pv);
3512 #endif
3513 }
3514 }
3515
3516 void
3517 pmap_kremove(vaddr_t va, vsize_t len)
3518 {
3519 struct l2_bucket *l2b;
3520 pt_entry_t *ptep, *sptep, opte;
3521 vaddr_t next_bucket, eva;
3522 u_int mappings;
3523 struct vm_page *opg;
3524
3525 PMAPCOUNT(kenter_unmappings);
3526
3527 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3528 va, len));
3529
3530 eva = va + len;
3531
3532 while (va < eva) {
3533 next_bucket = L2_NEXT_BUCKET(va);
3534 if (next_bucket > eva)
3535 next_bucket = eva;
3536
3537 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3538 KDASSERT(l2b != NULL);
3539
3540 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3541 mappings = 0;
3542
3543 while (va < next_bucket) {
3544 opte = *ptep;
3545 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3546 if (opg) {
3547 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3548
3549 if (omd->pvh_attrs & PVF_KMPAGE) {
3550 KASSERT(omd->urw_mappings == 0);
3551 KASSERT(omd->uro_mappings == 0);
3552 KASSERT(omd->krw_mappings == 0);
3553 KASSERT(omd->kro_mappings == 0);
3554 omd->pvh_attrs &= ~PVF_KMPAGE;
3555 #ifdef PMAP_CACHE_VIPT
3556 if (arm_cache_prefer_mask != 0) {
3557 omd->pvh_attrs &= ~PVF_WRITE;
3558 }
3559 #endif
3560 pmap_kmpages--;
3561 #ifdef PMAP_CACHE_VIPT
3562 } else {
3563 pool_put(&pmap_pv_pool,
3564 pmap_kremove_pg(opg, va));
3565 #endif
3566 }
3567 }
3568 if (l2pte_valid(opte)) {
3569 #ifdef PMAP_CACHE_VIVT
3570 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3571 #endif
3572 cpu_tlb_flushD_SE(va);
3573 }
3574 if (opte) {
3575 *ptep = 0;
3576 mappings++;
3577 }
3578 va += PAGE_SIZE;
3579 ptep++;
3580 }
3581 KDASSERT(mappings <= l2b->l2b_occupancy);
3582 l2b->l2b_occupancy -= mappings;
3583 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3584 }
3585 cpu_cpwait();
3586 }
3587
3588 bool
3589 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3590 {
3591 struct l2_dtable *l2;
3592 pd_entry_t *pl1pd, l1pd;
3593 pt_entry_t *ptep, pte;
3594 paddr_t pa;
3595 u_int l1idx;
3596
3597 pmap_acquire_pmap_lock(pm);
3598
3599 l1idx = L1_IDX(va);
3600 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3601 l1pd = *pl1pd;
3602
3603 if (l1pte_section_p(l1pd)) {
3604 /*
3605 * These should only happen for pmap_kernel()
3606 */
3607 KDASSERT(pm == pmap_kernel());
3608 pmap_release_pmap_lock(pm);
3609 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3610 if (l1pte_supersection_p(l1pd)) {
3611 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3612 } else
3613 #endif
3614 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3615 } else {
3616 /*
3617 * Note that we can't rely on the validity of the L1
3618 * descriptor as an indication that a mapping exists.
3619 * We have to look it up in the L2 dtable.
3620 */
3621 l2 = pm->pm_l2[L2_IDX(l1idx)];
3622
3623 if (l2 == NULL ||
3624 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3625 pmap_release_pmap_lock(pm);
3626 return false;
3627 }
3628
3629 ptep = &ptep[l2pte_index(va)];
3630 pte = *ptep;
3631 pmap_release_pmap_lock(pm);
3632
3633 if (pte == 0)
3634 return false;
3635
3636 switch (pte & L2_TYPE_MASK) {
3637 case L2_TYPE_L:
3638 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3639 break;
3640
3641 default:
3642 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3643 break;
3644 }
3645 }
3646
3647 if (pap != NULL)
3648 *pap = pa;
3649
3650 return true;
3651 }
3652
3653 void
3654 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3655 {
3656 struct l2_bucket *l2b;
3657 pt_entry_t *ptep, pte;
3658 vaddr_t next_bucket;
3659 u_int flags;
3660 u_int clr_mask;
3661 int flush;
3662
3663 NPDEBUG(PDB_PROTECT,
3664 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3665 pm, sva, eva, prot));
3666
3667 if ((prot & VM_PROT_READ) == 0) {
3668 pmap_remove(pm, sva, eva);
3669 return;
3670 }
3671
3672 if (prot & VM_PROT_WRITE) {
3673 /*
3674 * If this is a read->write transition, just ignore it and let
3675 * uvm_fault() take care of it later.
3676 */
3677 return;
3678 }
3679
3680 pmap_acquire_pmap_lock(pm);
3681
3682 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3683 flags = 0;
3684 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3685
3686 while (sva < eva) {
3687 next_bucket = L2_NEXT_BUCKET(sva);
3688 if (next_bucket > eva)
3689 next_bucket = eva;
3690
3691 l2b = pmap_get_l2_bucket(pm, sva);
3692 if (l2b == NULL) {
3693 sva = next_bucket;
3694 continue;
3695 }
3696
3697 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3698
3699 while (sva < next_bucket) {
3700 pte = *ptep;
3701 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3702 struct vm_page *pg;
3703 u_int f;
3704
3705 #ifdef PMAP_CACHE_VIVT
3706 /*
3707 * OK, at this point, we know we're doing
3708 * write-protect operation. If the pmap is
3709 * active, write-back the page.
3710 */
3711 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3712 false, false);
3713 #endif
3714
3715 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3716 pte = l2pte_set_readonly(pte);
3717 *ptep = pte;
3718 PTE_SYNC(ptep);
3719
3720 if (pg != NULL) {
3721 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3722 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3723
3724 #ifdef MULTIPROCESSOR
3725 KASSERT(uvm_page_locked_p(pg));
3726 #endif
3727 f = pmap_modify_pv(md, pa, pm, sva,
3728 clr_mask, 0);
3729 pmap_vac_me_harder(md, pa, pm, sva);
3730 } else {
3731 f = PVF_REF | PVF_EXEC;
3732 }
3733
3734 if (flush >= 0) {
3735 flush++;
3736 flags |= f;
3737 } else
3738 if (PV_BEEN_EXECD(f))
3739 pmap_tlb_flushID_SE(pm, sva);
3740 else
3741 if (PV_BEEN_REFD(f))
3742 pmap_tlb_flushD_SE(pm, sva);
3743 }
3744
3745 sva += PAGE_SIZE;
3746 ptep++;
3747 }
3748 }
3749
3750 pmap_release_pmap_lock(pm);
3751
3752 if (flush) {
3753 if (PV_BEEN_EXECD(flags))
3754 pmap_tlb_flushID(pm);
3755 else
3756 if (PV_BEEN_REFD(flags))
3757 pmap_tlb_flushD(pm);
3758 }
3759 }
3760
3761 void
3762 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3763 {
3764 struct l2_bucket *l2b;
3765 pt_entry_t *ptep;
3766 vaddr_t next_bucket;
3767 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3768
3769 NPDEBUG(PDB_EXEC,
3770 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3771 pm, sva, eva));
3772
3773 pmap_acquire_pmap_lock(pm);
3774
3775 while (sva < eva) {
3776 next_bucket = L2_NEXT_BUCKET(sva);
3777 if (next_bucket > eva)
3778 next_bucket = eva;
3779
3780 l2b = pmap_get_l2_bucket(pm, sva);
3781 if (l2b == NULL) {
3782 sva = next_bucket;
3783 continue;
3784 }
3785
3786 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3787 sva < next_bucket;
3788 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3789 if (l2pte_valid(*ptep)) {
3790 cpu_icache_sync_range(sva,
3791 min(page_size, eva - sva));
3792 }
3793 }
3794 }
3795
3796 pmap_release_pmap_lock(pm);
3797 }
3798
3799 void
3800 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3801 {
3802 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3803 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3804
3805 NPDEBUG(PDB_PROTECT,
3806 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3807 md, pa, prot));
3808
3809 #ifdef MULTIPROCESSOR
3810 KASSERT(uvm_page_locked_p(pg));
3811 #endif
3812
3813 switch(prot) {
3814 case VM_PROT_READ|VM_PROT_WRITE:
3815 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3816 pmap_clearbit(md, pa, PVF_EXEC);
3817 break;
3818 #endif
3819 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3820 break;
3821
3822 case VM_PROT_READ:
3823 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3824 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3825 break;
3826 #endif
3827 case VM_PROT_READ|VM_PROT_EXECUTE:
3828 pmap_clearbit(md, pa, PVF_WRITE);
3829 break;
3830
3831 default:
3832 pmap_page_remove(md, pa);
3833 break;
3834 }
3835 }
3836
3837 /*
3838 * pmap_clear_modify:
3839 *
3840 * Clear the "modified" attribute for a page.
3841 */
3842 bool
3843 pmap_clear_modify(struct vm_page *pg)
3844 {
3845 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3846 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3847 bool rv;
3848
3849 #ifdef MULTIPROCESSOR
3850 KASSERT(uvm_page_locked_p(pg));
3851 #endif
3852
3853 if (md->pvh_attrs & PVF_MOD) {
3854 rv = true;
3855 #ifdef PMAP_CACHE_VIPT
3856 /*
3857 * If we are going to clear the modified bit and there are
3858 * no other modified bits set, flush the page to memory and
3859 * mark it clean.
3860 */
3861 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3862 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3863 #endif
3864 pmap_clearbit(md, pa, PVF_MOD);
3865 } else
3866 rv = false;
3867
3868 return (rv);
3869 }
3870
3871 /*
3872 * pmap_clear_reference:
3873 *
3874 * Clear the "referenced" attribute for a page.
3875 */
3876 bool
3877 pmap_clear_reference(struct vm_page *pg)
3878 {
3879 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3880 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3881 bool rv;
3882
3883 #ifdef MULTIPROCESSOR
3884 KASSERT(uvm_page_locked_p(pg));
3885 #endif
3886
3887 if (md->pvh_attrs & PVF_REF) {
3888 rv = true;
3889 pmap_clearbit(md, pa, PVF_REF);
3890 } else
3891 rv = false;
3892
3893 return (rv);
3894 }
3895
3896 /*
3897 * pmap_is_modified:
3898 *
3899 * Test if a page has the "modified" attribute.
3900 */
3901 /* See <arm/arm32/pmap.h> */
3902
3903 /*
3904 * pmap_is_referenced:
3905 *
3906 * Test if a page has the "referenced" attribute.
3907 */
3908 /* See <arm/arm32/pmap.h> */
3909
3910 int
3911 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3912 {
3913 struct l2_dtable *l2;
3914 struct l2_bucket *l2b;
3915 pd_entry_t *pl1pd, l1pd;
3916 pt_entry_t *ptep, pte;
3917 paddr_t pa;
3918 u_int l1idx;
3919 int rv = 0;
3920
3921 pmap_acquire_pmap_lock(pm);
3922
3923 l1idx = L1_IDX(va);
3924
3925 /*
3926 * If there is no l2_dtable for this address, then the process
3927 * has no business accessing it.
3928 *
3929 * Note: This will catch userland processes trying to access
3930 * kernel addresses.
3931 */
3932 l2 = pm->pm_l2[L2_IDX(l1idx)];
3933 if (l2 == NULL)
3934 goto out;
3935
3936 /*
3937 * Likewise if there is no L2 descriptor table
3938 */
3939 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3940 if (l2b->l2b_kva == NULL)
3941 goto out;
3942
3943 /*
3944 * Check the PTE itself.
3945 */
3946 ptep = &l2b->l2b_kva[l2pte_index(va)];
3947 pte = *ptep;
3948 if (pte == 0)
3949 goto out;
3950
3951 /*
3952 * Catch a userland access to the vector page mapped at 0x0
3953 */
3954 if (user && (pte & L2_S_PROT_U) == 0)
3955 goto out;
3956
3957 pa = l2pte_pa(pte);
3958
3959 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3960 /*
3961 * This looks like a good candidate for "page modified"
3962 * emulation...
3963 */
3964 struct pv_entry *pv;
3965 struct vm_page *pg;
3966
3967 /* Extract the physical address of the page */
3968 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3969 goto out;
3970
3971 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3972
3973 /* Get the current flags for this page. */
3974 #ifdef MULTIPROCESSOR
3975 KASSERT(uvm_page_locked_p(pg));
3976 #endif
3977
3978 pv = pmap_find_pv(md, pm, va);
3979 if (pv == NULL) {
3980 goto out;
3981 }
3982
3983 /*
3984 * Do the flags say this page is writable? If not then it
3985 * is a genuine write fault. If yes then the write fault is
3986 * our fault as we did not reflect the write access in the
3987 * PTE. Now we know a write has occurred we can correct this
3988 * and also set the modified bit
3989 */
3990 if ((pv->pv_flags & PVF_WRITE) == 0) {
3991 goto out;
3992 }
3993
3994 NPDEBUG(PDB_FOLLOW,
3995 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3996 pm, va, pa));
3997
3998 md->pvh_attrs |= PVF_REF | PVF_MOD;
3999 pv->pv_flags |= PVF_REF | PVF_MOD;
4000 #ifdef PMAP_CACHE_VIPT
4001 /*
4002 * If there are cacheable mappings for this page, mark it dirty.
4003 */
4004 if ((md->pvh_attrs & PVF_NC) == 0)
4005 md->pvh_attrs |= PVF_DIRTY;
4006 #endif
4007
4008 /*
4009 * Re-enable write permissions for the page. No need to call
4010 * pmap_vac_me_harder(), since this is just a
4011 * modified-emulation fault, and the PVF_WRITE bit isn't
4012 * changing. We've already set the cacheable bits based on
4013 * the assumption that we can write to this page.
4014 */
4015 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
4016 PTE_SYNC(ptep);
4017 rv = 1;
4018 } else
4019 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
4020 /*
4021 * This looks like a good candidate for "page referenced"
4022 * emulation.
4023 */
4024 struct pv_entry *pv;
4025 struct vm_page *pg;
4026
4027 /* Extract the physical address of the page */
4028 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
4029 goto out;
4030
4031 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4032
4033 /* Get the current flags for this page. */
4034 #ifdef MULTIPROCESSOR
4035 KASSERT(uvm_page_locked_p(pg));
4036 #endif
4037
4038 pv = pmap_find_pv(md, pm, va);
4039 if (pv == NULL) {
4040 goto out;
4041 }
4042
4043 md->pvh_attrs |= PVF_REF;
4044 pv->pv_flags |= PVF_REF;
4045
4046 NPDEBUG(PDB_FOLLOW,
4047 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
4048 pm, va, pa));
4049
4050 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
4051 PTE_SYNC(ptep);
4052 rv = 1;
4053 }
4054
4055 /*
4056 * We know there is a valid mapping here, so simply
4057 * fix up the L1 if necessary.
4058 */
4059 pl1pd = &pm->pm_l1->l1_kva[l1idx];
4060 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
4061 if (*pl1pd != l1pd) {
4062 *pl1pd = l1pd;
4063 PTE_SYNC(pl1pd);
4064 rv = 1;
4065 }
4066
4067 #ifdef CPU_SA110
4068 /*
4069 * There are bugs in the rev K SA110. This is a check for one
4070 * of them.
4071 */
4072 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4073 curcpu()->ci_arm_cpurev < 3) {
4074 /* Always current pmap */
4075 if (l2pte_valid(pte)) {
4076 extern int kernel_debug;
4077 if (kernel_debug & 1) {
4078 struct proc *p = curlwp->l_proc;
4079 printf("prefetch_abort: page is already "
4080 "mapped - pte=%p *pte=%08x\n", ptep, pte);
4081 printf("prefetch_abort: pc=%08lx proc=%p "
4082 "process=%s\n", va, p, p->p_comm);
4083 printf("prefetch_abort: far=%08x fs=%x\n",
4084 cpu_faultaddress(), cpu_faultstatus());
4085 }
4086 #ifdef DDB
4087 if (kernel_debug & 2)
4088 Debugger();
4089 #endif
4090 rv = 1;
4091 }
4092 }
4093 #endif /* CPU_SA110 */
4094
4095 /*
4096 * If 'rv == 0' at this point, it generally indicates that there is a
4097 * stale TLB entry for the faulting address. That might be due to a
4098 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4099 */
4100 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4101 && pmap_needs_pte_sync == 0) {
4102 pmap_needs_pte_sync = 1;
4103 PTE_SYNC(ptep);
4104 rv = 1;
4105 }
4106
4107 #ifdef DEBUG
4108 /*
4109 * If 'rv == 0' at this point, it generally indicates that there is a
4110 * stale TLB entry for the faulting address. This happens when two or
4111 * more processes are sharing an L1. Since we don't flush the TLB on
4112 * a context switch between such processes, we can take domain faults
4113 * for mappings which exist at the same VA in both processes. EVEN IF
4114 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4115 * example.
4116 *
4117 * This is extremely likely to happen if pmap_enter() updated the L1
4118 * entry for a recently entered mapping. In this case, the TLB is
4119 * flushed for the new mapping, but there may still be TLB entries for
4120 * other mappings belonging to other processes in the 1MB range
4121 * covered by the L1 entry.
4122 *
4123 * Since 'rv == 0', we know that the L1 already contains the correct
4124 * value, so the fault must be due to a stale TLB entry.
4125 *
4126 * Since we always need to flush the TLB anyway in the case where we
4127 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4128 * stale TLB entries dynamically.
4129 *
4130 * However, the above condition can ONLY happen if the current L1 is
4131 * being shared. If it happens when the L1 is unshared, it indicates
4132 * that other parts of the pmap are not doing their job WRT managing
4133 * the TLB.
4134 */
4135 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4136 extern int last_fault_code;
4137 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4138 pm, va, ftype);
4139 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4140 l2, l2b, ptep, pl1pd);
4141 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4142 pte, l1pd, last_fault_code);
4143 #ifdef DDB
4144 extern int kernel_debug;
4145
4146 if (kernel_debug & 2)
4147 Debugger();
4148 #endif
4149 }
4150 #endif
4151
4152 cpu_tlb_flushID_SE(va);
4153 cpu_cpwait();
4154
4155 rv = 1;
4156
4157 out:
4158 pmap_release_pmap_lock(pm);
4159
4160 return (rv);
4161 }
4162
4163 /*
4164 * Routine: pmap_procwr
4165 *
4166 * Function:
4167 * Synchronize caches corresponding to [addr, addr+len) in p.
4168 *
4169 */
4170 void
4171 pmap_procwr(struct proc *p, vaddr_t va, int len)
4172 {
4173 /* We only need to do anything if it is the current process. */
4174 if (p == curproc)
4175 cpu_icache_sync_range(va, len);
4176 }
4177
4178 /*
4179 * Routine: pmap_unwire
4180 * Function: Clear the wired attribute for a map/virtual-address pair.
4181 *
4182 * In/out conditions:
4183 * The mapping must already exist in the pmap.
4184 */
4185 void
4186 pmap_unwire(pmap_t pm, vaddr_t va)
4187 {
4188 struct l2_bucket *l2b;
4189 pt_entry_t *ptep, pte;
4190 struct vm_page *pg;
4191 paddr_t pa;
4192
4193 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4194
4195 pmap_acquire_pmap_lock(pm);
4196
4197 l2b = pmap_get_l2_bucket(pm, va);
4198 KDASSERT(l2b != NULL);
4199
4200 ptep = &l2b->l2b_kva[l2pte_index(va)];
4201 pte = *ptep;
4202
4203 /* Extract the physical address of the page */
4204 pa = l2pte_pa(pte);
4205
4206 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4207 /* Update the wired bit in the pv entry for this page. */
4208 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4209
4210 #ifdef MULTIPROCESSOR
4211 KASSERT(uvm_page_locked_p(pg));
4212 #endif
4213 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4214 }
4215
4216 pmap_release_pmap_lock(pm);
4217 }
4218
4219 void
4220 pmap_activate(struct lwp *l)
4221 {
4222 extern int block_userspace_access;
4223 pmap_t opm, npm, rpm;
4224 uint32_t odacr, ndacr;
4225 int oldirqstate;
4226
4227 /*
4228 * If activating a non-current lwp or the current lwp is
4229 * already active, just return.
4230 */
4231 if (l != curlwp ||
4232 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4233 return;
4234
4235 npm = l->l_proc->p_vmspace->vm_map.pmap;
4236 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4237 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4238
4239 /*
4240 * If TTB and DACR are unchanged, short-circuit all the
4241 * TLB/cache management stuff.
4242 */
4243 if (pmap_previous_active_lwp != NULL) {
4244 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4245 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4246 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4247
4248 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4249 goto all_done;
4250 } else
4251 opm = NULL;
4252
4253 PMAPCOUNT(activations);
4254 block_userspace_access = 1;
4255
4256 /*
4257 * If switching to a user vmspace which is different to the
4258 * most recent one, and the most recent one is potentially
4259 * live in the cache, we must write-back and invalidate the
4260 * entire cache.
4261 */
4262 rpm = pmap_recent_user;
4263
4264 /*
4265 * XXXSCW: There's a corner case here which can leave turds in the cache as
4266 * reported in kern/41058. They're probably left over during tear-down and
4267 * switching away from an exiting process. Until the root cause is identified
4268 * and fixed, zap the cache when switching pmaps. This will result in a few
4269 * unnecessary cache flushes, but that's better than silently corrupting data.
4270 */
4271 #if 0
4272 if (npm != pmap_kernel() && rpm && npm != rpm &&
4273 rpm->pm_cstate.cs_cache) {
4274 rpm->pm_cstate.cs_cache = 0;
4275 #ifdef PMAP_CACHE_VIVT
4276 cpu_idcache_wbinv_all();
4277 #endif
4278 }
4279 #else
4280 if (rpm) {
4281 rpm->pm_cstate.cs_cache = 0;
4282 if (npm == pmap_kernel())
4283 pmap_recent_user = NULL;
4284 #ifdef PMAP_CACHE_VIVT
4285 cpu_idcache_wbinv_all();
4286 #endif
4287 }
4288 #endif
4289
4290 /* No interrupts while we frob the TTB/DACR */
4291 oldirqstate = disable_interrupts(IF32_bits);
4292
4293 #ifndef ARM_HAS_VBAR
4294 /*
4295 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4296 * entry corresponding to 'vector_page' in the incoming L1 table
4297 * before switching to it otherwise subsequent interrupts/exceptions
4298 * (including domain faults!) will jump into hyperspace.
4299 */
4300 if (npm->pm_pl1vec != NULL) {
4301 cpu_tlb_flushID_SE((u_int)vector_page);
4302 cpu_cpwait();
4303 *npm->pm_pl1vec = npm->pm_l1vec;
4304 PTE_SYNC(npm->pm_pl1vec);
4305 }
4306 #endif
4307
4308 cpu_domains(ndacr);
4309
4310 if (npm == pmap_kernel() || npm == rpm) {
4311 /*
4312 * Switching to a kernel thread, or back to the
4313 * same user vmspace as before... Simply update
4314 * the TTB (no TLB flush required)
4315 */
4316 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4317 cpu_cpwait();
4318 } else {
4319 /*
4320 * Otherwise, update TTB and flush TLB
4321 */
4322 cpu_context_switch(npm->pm_l1->l1_physaddr);
4323 if (rpm != NULL)
4324 rpm->pm_cstate.cs_tlb = 0;
4325 }
4326
4327 restore_interrupts(oldirqstate);
4328
4329 block_userspace_access = 0;
4330
4331 all_done:
4332 /*
4333 * The new pmap is resident. Make sure it's marked
4334 * as resident in the cache/TLB.
4335 */
4336 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4337 if (npm != pmap_kernel())
4338 pmap_recent_user = npm;
4339
4340 /* The old pmap is not longer active */
4341 if (opm != NULL)
4342 opm->pm_activated = false;
4343
4344 /* But the new one is */
4345 npm->pm_activated = true;
4346 }
4347
4348 void
4349 pmap_deactivate(struct lwp *l)
4350 {
4351
4352 /*
4353 * If the process is exiting, make sure pmap_activate() does
4354 * a full MMU context-switch and cache flush, which we might
4355 * otherwise skip. See PR port-arm/38950.
4356 */
4357 if (l->l_proc->p_sflag & PS_WEXIT)
4358 pmap_previous_active_lwp = NULL;
4359
4360 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4361 }
4362
4363 void
4364 pmap_update(pmap_t pm)
4365 {
4366
4367 if (pm->pm_remove_all) {
4368 /*
4369 * Finish up the pmap_remove_all() optimisation by flushing
4370 * the TLB.
4371 */
4372 pmap_tlb_flushID(pm);
4373 pm->pm_remove_all = false;
4374 }
4375
4376 if (pmap_is_current(pm)) {
4377 /*
4378 * If we're dealing with a current userland pmap, move its L1
4379 * to the end of the LRU.
4380 */
4381 if (pm != pmap_kernel())
4382 pmap_use_l1(pm);
4383
4384 /*
4385 * We can assume we're done with frobbing the cache/tlb for
4386 * now. Make sure any future pmap ops don't skip cache/tlb
4387 * flushes.
4388 */
4389 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4390 }
4391
4392 PMAPCOUNT(updates);
4393
4394 /*
4395 * make sure TLB/cache operations have completed.
4396 */
4397 cpu_cpwait();
4398 }
4399
4400 void
4401 pmap_remove_all(pmap_t pm)
4402 {
4403
4404 /*
4405 * The vmspace described by this pmap is about to be torn down.
4406 * Until pmap_update() is called, UVM will only make calls
4407 * to pmap_remove(). We can make life much simpler by flushing
4408 * the cache now, and deferring TLB invalidation to pmap_update().
4409 */
4410 #ifdef PMAP_CACHE_VIVT
4411 pmap_idcache_wbinv_all(pm);
4412 #endif
4413 pm->pm_remove_all = true;
4414 }
4415
4416 /*
4417 * Retire the given physical map from service.
4418 * Should only be called if the map contains no valid mappings.
4419 */
4420 void
4421 pmap_destroy(pmap_t pm)
4422 {
4423 u_int count;
4424
4425 if (pm == NULL)
4426 return;
4427
4428 if (pm->pm_remove_all) {
4429 pmap_tlb_flushID(pm);
4430 pm->pm_remove_all = false;
4431 }
4432
4433 /*
4434 * Drop reference count
4435 */
4436 mutex_enter(pm->pm_lock);
4437 count = --pm->pm_obj.uo_refs;
4438 mutex_exit(pm->pm_lock);
4439 if (count > 0) {
4440 if (pmap_is_current(pm)) {
4441 if (pm != pmap_kernel())
4442 pmap_use_l1(pm);
4443 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4444 }
4445 return;
4446 }
4447
4448 /*
4449 * reference count is zero, free pmap resources and then free pmap.
4450 */
4451
4452 #ifndef ARM_HAS_VBAR
4453 if (vector_page < KERNEL_BASE) {
4454 KDASSERT(!pmap_is_current(pm));
4455
4456 /* Remove the vector page mapping */
4457 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4458 pmap_update(pm);
4459 }
4460 #endif
4461
4462 LIST_REMOVE(pm, pm_list);
4463
4464 pmap_free_l1(pm);
4465
4466 if (pmap_recent_user == pm)
4467 pmap_recent_user = NULL;
4468
4469 uvm_obj_destroy(&pm->pm_obj, false);
4470 mutex_destroy(&pm->pm_obj_lock);
4471 pool_cache_put(&pmap_cache, pm);
4472 }
4473
4474
4475 /*
4476 * void pmap_reference(pmap_t pm)
4477 *
4478 * Add a reference to the specified pmap.
4479 */
4480 void
4481 pmap_reference(pmap_t pm)
4482 {
4483
4484 if (pm == NULL)
4485 return;
4486
4487 pmap_use_l1(pm);
4488
4489 mutex_enter(pm->pm_lock);
4490 pm->pm_obj.uo_refs++;
4491 mutex_exit(pm->pm_lock);
4492 }
4493
4494 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4495
4496 static struct evcnt pmap_prefer_nochange_ev =
4497 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4498 static struct evcnt pmap_prefer_change_ev =
4499 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4500
4501 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4502 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4503
4504 void
4505 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4506 {
4507 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4508 vaddr_t va = *vap;
4509 vaddr_t diff = (hint - va) & mask;
4510 if (diff == 0) {
4511 pmap_prefer_nochange_ev.ev_count++;
4512 } else {
4513 pmap_prefer_change_ev.ev_count++;
4514 if (__predict_false(td))
4515 va -= mask + 1;
4516 *vap = va + diff;
4517 }
4518 }
4519 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4520
4521 /*
4522 * pmap_zero_page()
4523 *
4524 * Zero a given physical page by mapping it at a page hook point.
4525 * In doing the zero page op, the page we zero is mapped cachable, as with
4526 * StrongARM accesses to non-cached pages are non-burst making writing
4527 * _any_ bulk data very slow.
4528 */
4529 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4530 void
4531 pmap_zero_page_generic(paddr_t phys)
4532 {
4533 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4534 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4535 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4536 #endif
4537 #if defined(PMAP_CACHE_VIPT)
4538 /* Choose the last page color it had, if any */
4539 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4540 #else
4541 const vsize_t va_offset = 0;
4542 #endif
4543 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4544 /*
4545 * Is this page mapped at its natural color?
4546 * If we have all of memory mapped, then just convert PA to VA.
4547 */
4548 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4549 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4550 #else
4551 const bool okcolor = false;
4552 const vaddr_t vdstp = cdstp + va_offset;
4553 #endif
4554 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4555
4556
4557 #ifdef DEBUG
4558 if (!SLIST_EMPTY(&md->pvh_list))
4559 panic("pmap_zero_page: page has mappings");
4560 #endif
4561
4562 KDASSERT((phys & PGOFSET) == 0);
4563
4564 if (!okcolor) {
4565 /*
4566 * Hook in the page, zero it, and purge the cache for that
4567 * zeroed page. Invalidate the TLB as needed.
4568 */
4569 *ptep = L2_S_PROTO | phys |
4570 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4571 PTE_SYNC(ptep);
4572 cpu_tlb_flushD_SE(cdstp + va_offset);
4573 cpu_cpwait();
4574 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4575 /*
4576 * If we are direct-mapped and our color isn't ok, then before
4577 * we bzero the page invalidate its contents from the cache and
4578 * reset the color to its natural color.
4579 */
4580 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4581 md->pvh_attrs &= ~arm_cache_prefer_mask;
4582 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4583 #endif
4584 }
4585 bzero_page(vdstp);
4586 if (!okcolor) {
4587 /*
4588 * Unmap the page.
4589 */
4590 *ptep = 0;
4591 PTE_SYNC(ptep);
4592 cpu_tlb_flushD_SE(cdstp + va_offset);
4593 #ifdef PMAP_CACHE_VIVT
4594 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4595 #endif
4596 }
4597 #ifdef PMAP_CACHE_VIPT
4598 /*
4599 * This page is now cache resident so it now has a page color.
4600 * Any contents have been obliterated so clear the EXEC flag.
4601 */
4602 if (!pmap_is_page_colored_p(md)) {
4603 PMAPCOUNT(vac_color_new);
4604 md->pvh_attrs |= PVF_COLORED;
4605 }
4606 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4607 md->pvh_attrs &= ~PVF_EXEC;
4608 PMAPCOUNT(exec_discarded_zero);
4609 }
4610 md->pvh_attrs |= PVF_DIRTY;
4611 #endif
4612 }
4613 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4614
4615 #if ARM_MMU_XSCALE == 1
4616 void
4617 pmap_zero_page_xscale(paddr_t phys)
4618 {
4619 #ifdef DEBUG
4620 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4621 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4622
4623 if (!SLIST_EMPTY(&md->pvh_list))
4624 panic("pmap_zero_page: page has mappings");
4625 #endif
4626
4627 KDASSERT((phys & PGOFSET) == 0);
4628
4629 /*
4630 * Hook in the page, zero it, and purge the cache for that
4631 * zeroed page. Invalidate the TLB as needed.
4632 */
4633 *cdst_pte = L2_S_PROTO | phys |
4634 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4635 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4636 PTE_SYNC(cdst_pte);
4637 cpu_tlb_flushD_SE(cdstp);
4638 cpu_cpwait();
4639 bzero_page(cdstp);
4640 xscale_cache_clean_minidata();
4641 }
4642 #endif /* ARM_MMU_XSCALE == 1 */
4643
4644 /* pmap_pageidlezero()
4645 *
4646 * The same as above, except that we assume that the page is not
4647 * mapped. This means we never have to flush the cache first. Called
4648 * from the idle loop.
4649 */
4650 bool
4651 pmap_pageidlezero(paddr_t phys)
4652 {
4653 unsigned int i;
4654 int *ptr;
4655 bool rv = true;
4656 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4657 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4658 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4659 #endif
4660 #ifdef PMAP_CACHE_VIPT
4661 /* Choose the last page color it had, if any */
4662 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4663 #else
4664 const vsize_t va_offset = 0;
4665 #endif
4666 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4667
4668
4669 #ifdef DEBUG
4670 if (!SLIST_EMPTY(&md->pvh_list))
4671 panic("pmap_pageidlezero: page has mappings");
4672 #endif
4673
4674 KDASSERT((phys & PGOFSET) == 0);
4675
4676 /*
4677 * Hook in the page, zero it, and purge the cache for that
4678 * zeroed page. Invalidate the TLB as needed.
4679 */
4680 *ptep = L2_S_PROTO | phys |
4681 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4682 PTE_SYNC(ptep);
4683 cpu_tlb_flushD_SE(cdstp + va_offset);
4684 cpu_cpwait();
4685
4686 for (i = 0, ptr = (int *)(cdstp + va_offset);
4687 i < (PAGE_SIZE / sizeof(int)); i++) {
4688 if (sched_curcpu_runnable_p() != 0) {
4689 /*
4690 * A process has become ready. Abort now,
4691 * so we don't keep it waiting while we
4692 * do slow memory access to finish this
4693 * page.
4694 */
4695 rv = false;
4696 break;
4697 }
4698 *ptr++ = 0;
4699 }
4700
4701 #ifdef PMAP_CACHE_VIVT
4702 if (rv)
4703 /*
4704 * if we aborted we'll rezero this page again later so don't
4705 * purge it unless we finished it
4706 */
4707 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4708 #elif defined(PMAP_CACHE_VIPT)
4709 /*
4710 * This page is now cache resident so it now has a page color.
4711 * Any contents have been obliterated so clear the EXEC flag.
4712 */
4713 if (!pmap_is_page_colored_p(md)) {
4714 PMAPCOUNT(vac_color_new);
4715 md->pvh_attrs |= PVF_COLORED;
4716 }
4717 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4718 md->pvh_attrs &= ~PVF_EXEC;
4719 PMAPCOUNT(exec_discarded_zero);
4720 }
4721 #endif
4722 /*
4723 * Unmap the page.
4724 */
4725 *ptep = 0;
4726 PTE_SYNC(ptep);
4727 cpu_tlb_flushD_SE(cdstp + va_offset);
4728
4729 return (rv);
4730 }
4731
4732 /*
4733 * pmap_copy_page()
4734 *
4735 * Copy one physical page into another, by mapping the pages into
4736 * hook points. The same comment regarding cachability as in
4737 * pmap_zero_page also applies here.
4738 */
4739 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4740 void
4741 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4742 {
4743 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4744 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4745 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4746 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4747 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4748 #endif
4749 #ifdef PMAP_CACHE_VIPT
4750 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4751 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4752 #else
4753 const vsize_t src_va_offset = 0;
4754 const vsize_t dst_va_offset = 0;
4755 #endif
4756 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4757 /*
4758 * Is this page mapped at its natural color?
4759 * If we have all of memory mapped, then just convert PA to VA.
4760 */
4761 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4762 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4763 const vaddr_t vsrcp = src_okcolor
4764 ? KERNEL_BASE + (src - physical_start)
4765 : csrcp + src_va_offset;
4766 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4767 #else
4768 const bool src_okcolor = false;
4769 const bool dst_okcolor = false;
4770 const vaddr_t vsrcp = csrcp + src_va_offset;
4771 const vaddr_t vdstp = cdstp + dst_va_offset;
4772 #endif
4773 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4774 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4775
4776 #ifdef DEBUG
4777 if (!SLIST_EMPTY(&dst_md->pvh_list))
4778 panic("pmap_copy_page: dst page has mappings");
4779 #endif
4780
4781 #ifdef PMAP_CACHE_VIPT
4782 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4783 #endif
4784 KDASSERT((src & PGOFSET) == 0);
4785 KDASSERT((dst & PGOFSET) == 0);
4786
4787 /*
4788 * Clean the source page. Hold the source page's lock for
4789 * the duration of the copy so that no other mappings can
4790 * be created while we have a potentially aliased mapping.
4791 */
4792 #ifdef MULTIPROCESSOR
4793 KASSERT(uvm_page_locked_p(src_pg));
4794 #endif
4795 #ifdef PMAP_CACHE_VIVT
4796 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4797 #endif
4798
4799 /*
4800 * Map the pages into the page hook points, copy them, and purge
4801 * the cache for the appropriate page. Invalidate the TLB
4802 * as required.
4803 */
4804 if (!src_okcolor) {
4805 *src_ptep = L2_S_PROTO
4806 | src
4807 #ifdef PMAP_CACHE_VIPT
4808 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4809 #endif
4810 #ifdef PMAP_CACHE_VIVT
4811 | pte_l2_s_cache_mode
4812 #endif
4813 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4814 PTE_SYNC(src_ptep);
4815 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4816 cpu_cpwait();
4817 }
4818 if (!dst_okcolor) {
4819 *dst_ptep = L2_S_PROTO | dst |
4820 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4821 PTE_SYNC(dst_ptep);
4822 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4823 cpu_cpwait();
4824 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4825 /*
4826 * If we are direct-mapped and our color isn't ok, then before
4827 * we bcopy to the new page invalidate its contents from the
4828 * cache and reset its color to its natural color.
4829 */
4830 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4831 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4832 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4833 #endif
4834 }
4835 bcopy_page(vsrcp, vdstp);
4836 #ifdef PMAP_CACHE_VIVT
4837 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4838 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4839 #endif
4840 /*
4841 * Unmap the pages.
4842 */
4843 if (!src_okcolor) {
4844 *src_ptep = 0;
4845 PTE_SYNC(src_ptep);
4846 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4847 cpu_cpwait();
4848 }
4849 if (!dst_okcolor) {
4850 *dst_ptep = 0;
4851 PTE_SYNC(dst_ptep);
4852 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4853 cpu_cpwait();
4854 }
4855 #ifdef PMAP_CACHE_VIPT
4856 /*
4857 * Now that the destination page is in the cache, mark it as colored.
4858 * If this was an exec page, discard it.
4859 */
4860 if (!pmap_is_page_colored_p(dst_md)) {
4861 PMAPCOUNT(vac_color_new);
4862 dst_md->pvh_attrs |= PVF_COLORED;
4863 }
4864 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4865 dst_md->pvh_attrs &= ~PVF_EXEC;
4866 PMAPCOUNT(exec_discarded_copy);
4867 }
4868 dst_md->pvh_attrs |= PVF_DIRTY;
4869 #endif
4870 }
4871 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4872
4873 #if ARM_MMU_XSCALE == 1
4874 void
4875 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4876 {
4877 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4878 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4879 #ifdef DEBUG
4880 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4881
4882 if (!SLIST_EMPTY(&dst_md->pvh_list))
4883 panic("pmap_copy_page: dst page has mappings");
4884 #endif
4885
4886 KDASSERT((src & PGOFSET) == 0);
4887 KDASSERT((dst & PGOFSET) == 0);
4888
4889 /*
4890 * Clean the source page. Hold the source page's lock for
4891 * the duration of the copy so that no other mappings can
4892 * be created while we have a potentially aliased mapping.
4893 */
4894 #ifdef MULTIPROCESSOR
4895 KASSERT(uvm_page_locked_p(src_pg));
4896 #endif
4897 #ifdef PMAP_CACHE_VIVT
4898 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4899 #endif
4900
4901 /*
4902 * Map the pages into the page hook points, copy them, and purge
4903 * the cache for the appropriate page. Invalidate the TLB
4904 * as required.
4905 */
4906 *csrc_pte = L2_S_PROTO | src |
4907 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4908 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4909 PTE_SYNC(csrc_pte);
4910 *cdst_pte = L2_S_PROTO | dst |
4911 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4912 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4913 PTE_SYNC(cdst_pte);
4914 cpu_tlb_flushD_SE(csrcp);
4915 cpu_tlb_flushD_SE(cdstp);
4916 cpu_cpwait();
4917 bcopy_page(csrcp, cdstp);
4918 xscale_cache_clean_minidata();
4919 }
4920 #endif /* ARM_MMU_XSCALE == 1 */
4921
4922 /*
4923 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4924 *
4925 * Return the start and end addresses of the kernel's virtual space.
4926 * These values are setup in pmap_bootstrap and are updated as pages
4927 * are allocated.
4928 */
4929 void
4930 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4931 {
4932 *start = virtual_avail;
4933 *end = virtual_end;
4934 }
4935
4936 /*
4937 * Helper function for pmap_grow_l2_bucket()
4938 */
4939 static inline int
4940 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4941 {
4942 struct l2_bucket *l2b;
4943 pt_entry_t *ptep;
4944 paddr_t pa;
4945
4946 if (uvm.page_init_done == false) {
4947 #ifdef PMAP_STEAL_MEMORY
4948 pv_addr_t pv;
4949 pmap_boot_pagealloc(PAGE_SIZE,
4950 #ifdef PMAP_CACHE_VIPT
4951 arm_cache_prefer_mask,
4952 va & arm_cache_prefer_mask,
4953 #else
4954 0, 0,
4955 #endif
4956 &pv);
4957 pa = pv.pv_pa;
4958 #else
4959 if (uvm_page_physget(&pa) == false)
4960 return (1);
4961 #endif /* PMAP_STEAL_MEMORY */
4962 } else {
4963 struct vm_page *pg;
4964 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4965 if (pg == NULL)
4966 return (1);
4967 pa = VM_PAGE_TO_PHYS(pg);
4968 #ifdef PMAP_CACHE_VIPT
4969 #ifdef DIAGNOSTIC
4970 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4971 #endif
4972 /*
4973 * This new page must not have any mappings. Enter it via
4974 * pmap_kenter_pa and let that routine do the hard work.
4975 */
4976 KASSERT(SLIST_EMPTY(&md->pvh_list));
4977 pmap_kenter_pa(va, pa,
4978 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4979 #endif
4980 }
4981
4982 if (pap)
4983 *pap = pa;
4984
4985 PMAPCOUNT(pt_mappings);
4986 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4987 KDASSERT(l2b != NULL);
4988
4989 ptep = &l2b->l2b_kva[l2pte_index(va)];
4990 *ptep = L2_S_PROTO | pa | cache_mode |
4991 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4992 PTE_SYNC(ptep);
4993 memset((void *)va, 0, PAGE_SIZE);
4994 return (0);
4995 }
4996
4997 /*
4998 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4999 * used by pmap_growkernel().
5000 */
5001 static inline struct l2_bucket *
5002 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
5003 {
5004 struct l2_dtable *l2;
5005 struct l2_bucket *l2b;
5006 u_short l1idx;
5007 vaddr_t nva;
5008
5009 l1idx = L1_IDX(va);
5010
5011 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5012 /*
5013 * No mapping at this address, as there is
5014 * no entry in the L1 table.
5015 * Need to allocate a new l2_dtable.
5016 */
5017 nva = pmap_kernel_l2dtable_kva;
5018 if ((nva & PGOFSET) == 0) {
5019 /*
5020 * Need to allocate a backing page
5021 */
5022 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
5023 return (NULL);
5024 }
5025
5026 l2 = (struct l2_dtable *)nva;
5027 nva += sizeof(struct l2_dtable);
5028
5029 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
5030 /*
5031 * The new l2_dtable straddles a page boundary.
5032 * Map in another page to cover it.
5033 */
5034 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
5035 return (NULL);
5036 }
5037
5038 pmap_kernel_l2dtable_kva = nva;
5039
5040 /*
5041 * Link it into the parent pmap
5042 */
5043 pm->pm_l2[L2_IDX(l1idx)] = l2;
5044 }
5045
5046 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5047
5048 /*
5049 * Fetch pointer to the L2 page table associated with the address.
5050 */
5051 if (l2b->l2b_kva == NULL) {
5052 pt_entry_t *ptep;
5053
5054 /*
5055 * No L2 page table has been allocated. Chances are, this
5056 * is because we just allocated the l2_dtable, above.
5057 */
5058 nva = pmap_kernel_l2ptp_kva;
5059 ptep = (pt_entry_t *)nva;
5060 if ((nva & PGOFSET) == 0) {
5061 /*
5062 * Need to allocate a backing page
5063 */
5064 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
5065 &pmap_kernel_l2ptp_phys))
5066 return (NULL);
5067 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
5068 }
5069
5070 l2->l2_occupancy++;
5071 l2b->l2b_kva = ptep;
5072 l2b->l2b_l1idx = l1idx;
5073 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
5074
5075 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5076 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5077 }
5078
5079 return (l2b);
5080 }
5081
5082 vaddr_t
5083 pmap_growkernel(vaddr_t maxkvaddr)
5084 {
5085 pmap_t kpm = pmap_kernel();
5086 struct l1_ttable *l1;
5087 struct l2_bucket *l2b;
5088 pd_entry_t *pl1pd;
5089 int s;
5090
5091 if (maxkvaddr <= pmap_curmaxkvaddr)
5092 goto out; /* we are OK */
5093
5094 NPDEBUG(PDB_GROWKERN,
5095 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5096 pmap_curmaxkvaddr, maxkvaddr));
5097
5098 KDASSERT(maxkvaddr <= virtual_end);
5099
5100 /*
5101 * whoops! we need to add kernel PTPs
5102 */
5103
5104 s = splhigh(); /* to be safe */
5105 mutex_enter(kpm->pm_lock);
5106
5107 /* Map 1MB at a time */
5108 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5109
5110 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5111 KDASSERT(l2b != NULL);
5112
5113 /* Distribute new L1 entry to all other L1s */
5114 SLIST_FOREACH(l1, &l1_list, l1_link) {
5115 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5116 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5117 L1_C_PROTO;
5118 PTE_SYNC(pl1pd);
5119 }
5120 }
5121
5122 /*
5123 * flush out the cache, expensive but growkernel will happen so
5124 * rarely
5125 */
5126 cpu_dcache_wbinv_all();
5127 cpu_tlb_flushD();
5128 cpu_cpwait();
5129
5130 mutex_exit(kpm->pm_lock);
5131 splx(s);
5132
5133 out:
5134 return (pmap_curmaxkvaddr);
5135 }
5136
5137 /************************ Utility routines ****************************/
5138
5139 #ifndef ARM_HAS_VBAR
5140 /*
5141 * vector_page_setprot:
5142 *
5143 * Manipulate the protection of the vector page.
5144 */
5145 void
5146 vector_page_setprot(int prot)
5147 {
5148 struct l2_bucket *l2b;
5149 pt_entry_t *ptep;
5150
5151 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
5152 /*
5153 * If we are using VBAR to use the vectors in the kernel, then it's
5154 * already mapped in the kernel text so no need to anything here.
5155 */
5156 if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
5157 KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
5158 return;
5159 }
5160 #endif
5161
5162 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5163 KDASSERT(l2b != NULL);
5164
5165 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5166
5167 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5168 PTE_SYNC(ptep);
5169 cpu_tlb_flushD_SE(vector_page);
5170 cpu_cpwait();
5171 }
5172 #endif
5173
5174 /*
5175 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5176 * Returns true if the mapping exists, else false.
5177 *
5178 * NOTE: This function is only used by a couple of arm-specific modules.
5179 * It is not safe to take any pmap locks here, since we could be right
5180 * in the middle of debugging the pmap anyway...
5181 *
5182 * It is possible for this routine to return false even though a valid
5183 * mapping does exist. This is because we don't lock, so the metadata
5184 * state may be inconsistent.
5185 *
5186 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5187 * a "section" mapping.
5188 */
5189 bool
5190 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5191 {
5192 struct l2_dtable *l2;
5193 pd_entry_t *pl1pd, l1pd;
5194 pt_entry_t *ptep;
5195 u_short l1idx;
5196
5197 if (pm->pm_l1 == NULL)
5198 return false;
5199
5200 l1idx = L1_IDX(va);
5201 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
5202 l1pd = *pl1pd;
5203
5204 if (l1pte_section_p(l1pd)) {
5205 *ptp = NULL;
5206 return true;
5207 }
5208
5209 if (pm->pm_l2 == NULL)
5210 return false;
5211
5212 l2 = pm->pm_l2[L2_IDX(l1idx)];
5213
5214 if (l2 == NULL ||
5215 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5216 return false;
5217 }
5218
5219 *ptp = &ptep[l2pte_index(va)];
5220 return true;
5221 }
5222
5223 bool
5224 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5225 {
5226 u_short l1idx;
5227
5228 if (pm->pm_l1 == NULL)
5229 return false;
5230
5231 l1idx = L1_IDX(va);
5232 *pdp = &pm->pm_l1->l1_kva[l1idx];
5233
5234 return true;
5235 }
5236
5237 /************************ Bootstrapping routines ****************************/
5238
5239 static void
5240 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5241 {
5242 int i;
5243
5244 l1->l1_kva = l1pt;
5245 l1->l1_domain_use_count = 0;
5246 l1->l1_domain_first = 0;
5247
5248 for (i = 0; i < PMAP_DOMAINS; i++)
5249 l1->l1_domain_free[i] = i + 1;
5250
5251 /*
5252 * Copy the kernel's L1 entries to each new L1.
5253 */
5254 if (pmap_initialized)
5255 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5256
5257 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5258 &l1->l1_physaddr) == false)
5259 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5260
5261 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5262 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5263 }
5264
5265 /*
5266 * pmap_bootstrap() is called from the board-specific initarm() routine
5267 * once the kernel L1/L2 descriptors tables have been set up.
5268 *
5269 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5270 * spread over a number of disparate files/functions.
5271 *
5272 * We are passed the following parameters
5273 * - kernel_l1pt
5274 * This is a pointer to the base of the kernel's L1 translation table.
5275 * - vstart
5276 * 1MB-aligned start of managed kernel virtual memory.
5277 * - vend
5278 * 1MB-aligned end of managed kernel virtual memory.
5279 *
5280 * We use the first parameter to build the metadata (struct l1_ttable and
5281 * struct l2_dtable) necessary to track kernel mappings.
5282 */
5283 #define PMAP_STATIC_L2_SIZE 16
5284 void
5285 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5286 {
5287 static struct l1_ttable static_l1;
5288 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5289 struct l1_ttable *l1 = &static_l1;
5290 struct l2_dtable *l2;
5291 struct l2_bucket *l2b;
5292 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5293 pmap_t pm = pmap_kernel();
5294 pd_entry_t pde;
5295 pt_entry_t *ptep;
5296 paddr_t pa;
5297 vaddr_t va;
5298 vsize_t size;
5299 int nptes, l1idx, l2idx, l2next = 0;
5300
5301 /*
5302 * Initialise the kernel pmap object
5303 */
5304 pm->pm_l1 = l1;
5305 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5306 pm->pm_activated = true;
5307 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5308
5309 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5310 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5311 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5312
5313 /*
5314 * Scan the L1 translation table created by initarm() and create
5315 * the required metadata for all valid mappings found in it.
5316 */
5317 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5318 pde = l1pt[l1idx];
5319
5320 /*
5321 * We're only interested in Coarse mappings.
5322 * pmap_extract() can deal with section mappings without
5323 * recourse to checking L2 metadata.
5324 */
5325 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5326 continue;
5327
5328 /*
5329 * Lookup the KVA of this L2 descriptor table
5330 */
5331 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5332 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5333 if (ptep == NULL) {
5334 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5335 (u_int)l1idx << L1_S_SHIFT, pa);
5336 }
5337
5338 /*
5339 * Fetch the associated L2 metadata structure.
5340 * Allocate a new one if necessary.
5341 */
5342 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5343 if (l2next == PMAP_STATIC_L2_SIZE)
5344 panic("pmap_bootstrap: out of static L2s");
5345 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5346 }
5347
5348 /*
5349 * One more L1 slot tracked...
5350 */
5351 l2->l2_occupancy++;
5352
5353 /*
5354 * Fill in the details of the L2 descriptor in the
5355 * appropriate bucket.
5356 */
5357 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5358 l2b->l2b_kva = ptep;
5359 l2b->l2b_phys = pa;
5360 l2b->l2b_l1idx = l1idx;
5361
5362 /*
5363 * Establish an initial occupancy count for this descriptor
5364 */
5365 for (l2idx = 0;
5366 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5367 l2idx++) {
5368 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5369 l2b->l2b_occupancy++;
5370 }
5371 }
5372
5373 /*
5374 * Make sure the descriptor itself has the correct cache mode.
5375 * If not, fix it, but whine about the problem. Port-meisters
5376 * should consider this a clue to fix up their initarm()
5377 * function. :)
5378 */
5379 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5380 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5381 "L2 pte @ %p\n", ptep);
5382 }
5383 }
5384
5385 /*
5386 * Ensure the primary (kernel) L1 has the correct cache mode for
5387 * a page table. Bitch if it is not correctly set.
5388 */
5389 for (va = (vaddr_t)l1pt;
5390 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5391 if (pmap_set_pt_cache_mode(l1pt, va))
5392 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5393 "primary L1 @ 0x%lx\n", va);
5394 }
5395
5396 cpu_dcache_wbinv_all();
5397 cpu_tlb_flushID();
5398 cpu_cpwait();
5399
5400 /*
5401 * now we allocate the "special" VAs which are used for tmp mappings
5402 * by the pmap (and other modules). we allocate the VAs by advancing
5403 * virtual_avail (note that there are no pages mapped at these VAs).
5404 *
5405 * Managed KVM space start from wherever initarm() tells us.
5406 */
5407 virtual_avail = vstart;
5408 virtual_end = vend;
5409
5410 #ifdef PMAP_CACHE_VIPT
5411 /*
5412 * If we have a VIPT cache, we need one page/pte per possible alias
5413 * page so we won't violate cache aliasing rules.
5414 */
5415 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5416 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5417 #else
5418 nptes = 1;
5419 #endif
5420 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5421 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5422 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5423 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5424 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5425 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5426 (void *)&msgbufaddr, NULL);
5427
5428 /*
5429 * Allocate a range of kernel virtual address space to be used
5430 * for L2 descriptor tables and metadata allocation in
5431 * pmap_growkernel().
5432 */
5433 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5434 pmap_alloc_specials(&virtual_avail,
5435 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5436 &pmap_kernel_l2ptp_kva, NULL);
5437
5438 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5439 pmap_alloc_specials(&virtual_avail,
5440 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5441 &pmap_kernel_l2dtable_kva, NULL);
5442
5443 /*
5444 * init the static-global locks and global pmap list.
5445 */
5446 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5447
5448 /*
5449 * We can now initialise the first L1's metadata.
5450 */
5451 SLIST_INIT(&l1_list);
5452 TAILQ_INIT(&l1_lru_list);
5453 pmap_init_l1(l1, l1pt);
5454
5455 #ifndef ARM_HAS_VBAR
5456 /* Set up vector page L1 details, if necessary */
5457 if (vector_page < KERNEL_BASE) {
5458 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5459 l2b = pmap_get_l2_bucket(pm, vector_page);
5460 KDASSERT(l2b != NULL);
5461 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5462 L1_C_DOM(pm->pm_domain);
5463 } else
5464 pm->pm_pl1vec = NULL;
5465 #endif
5466
5467 /*
5468 * Initialize the pmap cache
5469 */
5470 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5471 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5472 LIST_INIT(&pmap_pmaps);
5473 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5474
5475 /*
5476 * Initialize the pv pool.
5477 */
5478 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5479 &pmap_bootstrap_pv_allocator, IPL_NONE);
5480
5481 /*
5482 * Initialize the L2 dtable pool and cache.
5483 */
5484 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5485 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5486
5487 /*
5488 * Initialise the L2 descriptor table pool and cache
5489 */
5490 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5491 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5492 pmap_l2ptp_ctor, NULL, NULL);
5493
5494 cpu_dcache_wbinv_all();
5495 }
5496
5497 static int
5498 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5499 {
5500 pd_entry_t *pdep, pde;
5501 pt_entry_t *ptep, pte;
5502 vaddr_t pa;
5503 int rv = 0;
5504
5505 /*
5506 * Make sure the descriptor itself has the correct cache mode
5507 */
5508 pdep = &kl1[L1_IDX(va)];
5509 pde = *pdep;
5510
5511 if (l1pte_section_p(pde)) {
5512 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5513 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5514 *pdep = (pde & ~L1_S_CACHE_MASK) |
5515 pte_l1_s_cache_mode_pt;
5516 PTE_SYNC(pdep);
5517 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5518 rv = 1;
5519 }
5520 } else {
5521 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5522 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5523 if (ptep == NULL)
5524 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5525
5526 ptep = &ptep[l2pte_index(va)];
5527 pte = *ptep;
5528 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5529 *ptep = (pte & ~L2_S_CACHE_MASK) |
5530 pte_l2_s_cache_mode_pt;
5531 PTE_SYNC(ptep);
5532 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5533 rv = 1;
5534 }
5535 }
5536
5537 return (rv);
5538 }
5539
5540 static void
5541 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5542 {
5543 vaddr_t va = *availp;
5544 struct l2_bucket *l2b;
5545
5546 if (ptep) {
5547 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5548 if (l2b == NULL)
5549 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5550
5551 if (ptep)
5552 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5553 }
5554
5555 *vap = va;
5556 *availp = va + (PAGE_SIZE * pages);
5557 }
5558
5559 void
5560 pmap_init(void)
5561 {
5562
5563 /*
5564 * Set the available memory vars - These do not map to real memory
5565 * addresses and cannot as the physical memory is fragmented.
5566 * They are used by ps for %mem calculations.
5567 * One could argue whether this should be the entire memory or just
5568 * the memory that is useable in a user process.
5569 */
5570 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5571 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5572
5573 /*
5574 * Now we need to free enough pv_entry structures to allow us to get
5575 * the kmem_map/kmem_object allocated and inited (done after this
5576 * function is finished). to do this we allocate one bootstrap page out
5577 * of kernel_map and use it to provide an initial pool of pv_entry
5578 * structures. we never free this page.
5579 */
5580 pool_setlowat(&pmap_pv_pool,
5581 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5582
5583 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5584 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5585 UVM_KMF_WIRED|UVM_KMF_ZERO);
5586
5587 pmap_initialized = true;
5588 }
5589
5590 static vaddr_t last_bootstrap_page = 0;
5591 static void *free_bootstrap_pages = NULL;
5592
5593 static void *
5594 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5595 {
5596 extern void *pool_page_alloc(struct pool *, int);
5597 vaddr_t new_page;
5598 void *rv;
5599
5600 if (pmap_initialized)
5601 return (pool_page_alloc(pp, flags));
5602
5603 if (free_bootstrap_pages) {
5604 rv = free_bootstrap_pages;
5605 free_bootstrap_pages = *((void **)rv);
5606 return (rv);
5607 }
5608
5609 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5610 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5611
5612 KASSERT(new_page > last_bootstrap_page);
5613 last_bootstrap_page = new_page;
5614 return ((void *)new_page);
5615 }
5616
5617 static void
5618 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5619 {
5620 extern void pool_page_free(struct pool *, void *);
5621
5622 if ((vaddr_t)v <= last_bootstrap_page) {
5623 *((void **)v) = free_bootstrap_pages;
5624 free_bootstrap_pages = v;
5625 return;
5626 }
5627
5628 if (pmap_initialized) {
5629 pool_page_free(pp, v);
5630 return;
5631 }
5632 }
5633
5634 /*
5635 * pmap_postinit()
5636 *
5637 * This routine is called after the vm and kmem subsystems have been
5638 * initialised. This allows the pmap code to perform any initialisation
5639 * that can only be done one the memory allocation is in place.
5640 */
5641 void
5642 pmap_postinit(void)
5643 {
5644 extern paddr_t physical_start, physical_end;
5645 struct l2_bucket *l2b;
5646 struct l1_ttable *l1;
5647 struct pglist plist;
5648 struct vm_page *m;
5649 pd_entry_t *pl1pt;
5650 pt_entry_t *ptep, pte;
5651 vaddr_t va, eva;
5652 u_int loop, needed;
5653 int error;
5654
5655 pool_cache_setlowat(&pmap_l2ptp_cache,
5656 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5657 pool_cache_setlowat(&pmap_l2dtable_cache,
5658 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5659
5660 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5661 needed -= 1;
5662
5663 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5664
5665 for (loop = 0; loop < needed; loop++, l1++) {
5666 /* Allocate a L1 page table */
5667 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5668 if (va == 0)
5669 panic("Cannot allocate L1 KVM");
5670
5671 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5672 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5673 if (error)
5674 panic("Cannot allocate L1 physical pages");
5675
5676 m = TAILQ_FIRST(&plist);
5677 eva = va + L1_TABLE_SIZE;
5678 pl1pt = (pd_entry_t *)va;
5679
5680 while (m && va < eva) {
5681 paddr_t pa = VM_PAGE_TO_PHYS(m);
5682
5683 pmap_kenter_pa(va, pa,
5684 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5685
5686 /*
5687 * Make sure the L1 descriptor table is mapped
5688 * with the cache-mode set to write-through.
5689 */
5690 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5691 KDASSERT(l2b != NULL);
5692 ptep = &l2b->l2b_kva[l2pte_index(va)];
5693 pte = *ptep;
5694 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5695 *ptep = pte;
5696 PTE_SYNC(ptep);
5697 cpu_tlb_flushD_SE(va);
5698
5699 va += PAGE_SIZE;
5700 m = TAILQ_NEXT(m, pageq.queue);
5701 }
5702
5703 #ifdef DIAGNOSTIC
5704 if (m)
5705 panic("pmap_alloc_l1pt: pglist not empty");
5706 #endif /* DIAGNOSTIC */
5707
5708 pmap_init_l1(l1, pl1pt);
5709 }
5710
5711 #ifdef DEBUG
5712 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5713 needed);
5714 #endif
5715 }
5716
5717 /*
5718 * Note that the following routines are used by board-specific initialisation
5719 * code to configure the initial kernel page tables.
5720 *
5721 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5722 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5723 * behaviour of the old pmap, and provides an easy migration path for
5724 * initial bring-up of the new pmap on existing ports. Fortunately,
5725 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5726 * will be deprecated.
5727 *
5728 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5729 * tables.
5730 */
5731
5732 /*
5733 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5734 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5735 * find them as necessary.
5736 *
5737 * Note that the data on this list MUST remain valid after initarm() returns,
5738 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5739 */
5740 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5741
5742 static vaddr_t
5743 kernel_pt_lookup(paddr_t pa)
5744 {
5745 pv_addr_t *pv;
5746
5747 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5748 #ifndef ARM32_NEW_VM_LAYOUT
5749 if (pv->pv_pa == (pa & ~PGOFSET))
5750 return (pv->pv_va | (pa & PGOFSET));
5751 #else
5752 if (pv->pv_pa == pa)
5753 return (pv->pv_va);
5754 #endif
5755 }
5756 return (0);
5757 }
5758
5759 /*
5760 * pmap_map_section:
5761 *
5762 * Create a single section mapping.
5763 */
5764 void
5765 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5766 {
5767 pd_entry_t *pde = (pd_entry_t *) l1pt;
5768 pd_entry_t fl;
5769
5770 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5771
5772 switch (cache) {
5773 case PTE_NOCACHE:
5774 default:
5775 fl = 0;
5776 break;
5777
5778 case PTE_CACHE:
5779 fl = pte_l1_s_cache_mode;
5780 break;
5781
5782 case PTE_PAGETABLE:
5783 fl = pte_l1_s_cache_mode_pt;
5784 break;
5785 }
5786
5787 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5788 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5789 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5790 }
5791
5792 /*
5793 * pmap_map_entry:
5794 *
5795 * Create a single page mapping.
5796 */
5797 void
5798 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5799 {
5800 pd_entry_t *pde = (pd_entry_t *) l1pt;
5801 pt_entry_t fl;
5802 pt_entry_t *pte;
5803
5804 KASSERT(((va | pa) & PGOFSET) == 0);
5805
5806 switch (cache) {
5807 case PTE_NOCACHE:
5808 default:
5809 fl = 0;
5810 break;
5811
5812 case PTE_CACHE:
5813 fl = pte_l2_s_cache_mode;
5814 break;
5815
5816 case PTE_PAGETABLE:
5817 fl = pte_l2_s_cache_mode_pt;
5818 break;
5819 }
5820
5821 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5822 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5823
5824 #ifndef ARM32_NEW_VM_LAYOUT
5825 pte = (pt_entry_t *)
5826 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5827 #else
5828 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5829 #endif
5830 if (pte == NULL)
5831 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5832
5833 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5834 #ifndef ARM32_NEW_VM_LAYOUT
5835 pte += (va >> PGSHIFT) & 0x3ff;
5836 #else
5837 pte += l2pte_index(va);
5838 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5839 #endif
5840 *pte = fl;
5841 PTE_SYNC(pte);
5842 }
5843
5844 /*
5845 * pmap_link_l2pt:
5846 *
5847 * Link the L2 page table specified by "l2pv" into the L1
5848 * page table at the slot for "va".
5849 */
5850 void
5851 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5852 {
5853 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5854 u_int slot = va >> L1_S_SHIFT;
5855
5856 #ifndef ARM32_NEW_VM_LAYOUT
5857 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5858 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5859 #endif
5860
5861 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5862
5863 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5864 #ifdef ARM32_NEW_VM_LAYOUT
5865 PTE_SYNC(&pde[slot]);
5866 #else
5867 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5868 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5869 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5870 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5871 #endif
5872
5873 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5874 }
5875
5876 /*
5877 * pmap_map_chunk:
5878 *
5879 * Map a chunk of memory using the most efficient mappings
5880 * possible (section, large page, small page) into the
5881 * provided L1 and L2 tables at the specified virtual address.
5882 */
5883 vsize_t
5884 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5885 int prot, int cache)
5886 {
5887 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5888 pt_entry_t *pte, f1, f2s, f2l;
5889 vsize_t resid;
5890 int i;
5891
5892 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5893
5894 if (l1pt == 0)
5895 panic("pmap_map_chunk: no L1 table provided");
5896
5897 #ifdef VERBOSE_INIT_ARM
5898 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5899 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5900 #endif
5901
5902 switch (cache) {
5903 case PTE_NOCACHE:
5904 default:
5905 f1 = 0;
5906 f2l = 0;
5907 f2s = 0;
5908 break;
5909
5910 case PTE_CACHE:
5911 f1 = pte_l1_s_cache_mode;
5912 f2l = pte_l2_l_cache_mode;
5913 f2s = pte_l2_s_cache_mode;
5914 break;
5915
5916 case PTE_PAGETABLE:
5917 f1 = pte_l1_s_cache_mode_pt;
5918 f2l = pte_l2_l_cache_mode_pt;
5919 f2s = pte_l2_s_cache_mode_pt;
5920 break;
5921 }
5922
5923 size = resid;
5924
5925 while (resid > 0) {
5926 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5927 /* See if we can use a supersection mapping. */
5928 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5929 /* Supersection are always domain 0 */
5930 pd_entry_t pde = L1_SS_PROTO | pa |
5931 L1_S_PROT(PTE_KERNEL, prot) | f1;
5932 #ifdef VERBOSE_INIT_ARM
5933 printf("sS");
5934 #endif
5935 for (size_t s = va >> L1_S_SHIFT,
5936 e = s + L1_SS_SIZE / L1_S_SIZE;
5937 s < e;
5938 s++) {
5939 pdep[s] = pde;
5940 PTE_SYNC(&pdep[s]);
5941 }
5942 va += L1_SS_SIZE;
5943 pa += L1_SS_SIZE;
5944 resid -= L1_SS_SIZE;
5945 continue;
5946 }
5947 #endif
5948 /* See if we can use a section mapping. */
5949 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5950 #ifdef VERBOSE_INIT_ARM
5951 printf("S");
5952 #endif
5953 pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5954 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5955 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5956 PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
5957 va += L1_S_SIZE;
5958 pa += L1_S_SIZE;
5959 resid -= L1_S_SIZE;
5960 continue;
5961 }
5962
5963 /*
5964 * Ok, we're going to use an L2 table. Make sure
5965 * one is actually in the corresponding L1 slot
5966 * for the current VA.
5967 */
5968 if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5969 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5970
5971 #ifndef ARM32_NEW_VM_LAYOUT
5972 pte = (pt_entry_t *)
5973 kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
5974 #else
5975 pte = (pt_entry_t *) kernel_pt_lookup(
5976 pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
5977 #endif
5978 if (pte == NULL)
5979 panic("pmap_map_chunk: can't find L2 table for VA"
5980 "0x%08lx", va);
5981
5982 /* See if we can use a L2 large page mapping. */
5983 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5984 #ifdef VERBOSE_INIT_ARM
5985 printf("L");
5986 #endif
5987 for (i = 0; i < 16; i++) {
5988 #ifndef ARM32_NEW_VM_LAYOUT
5989 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5990 L2_L_PROTO | pa |
5991 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5992 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5993 #else
5994 pte[l2pte_index(va) + i] =
5995 L2_L_PROTO | pa |
5996 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5997 PTE_SYNC(&pte[l2pte_index(va) + i]);
5998 #endif
5999 }
6000 va += L2_L_SIZE;
6001 pa += L2_L_SIZE;
6002 resid -= L2_L_SIZE;
6003 continue;
6004 }
6005
6006 /* Use a small page mapping. */
6007 #ifdef VERBOSE_INIT_ARM
6008 printf("P");
6009 #endif
6010 #ifndef ARM32_NEW_VM_LAYOUT
6011 pte[(va >> PGSHIFT) & 0x3ff] =
6012 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6013 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
6014 #else
6015 pte[l2pte_index(va)] =
6016 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
6017 PTE_SYNC(&pte[l2pte_index(va)]);
6018 #endif
6019 va += PAGE_SIZE;
6020 pa += PAGE_SIZE;
6021 resid -= PAGE_SIZE;
6022 }
6023 #ifdef VERBOSE_INIT_ARM
6024 printf("\n");
6025 #endif
6026 return (size);
6027 }
6028
6029 /********************** Static device map routines ***************************/
6030
6031 static const struct pmap_devmap *pmap_devmap_table;
6032
6033 /*
6034 * Register the devmap table. This is provided in case early console
6035 * initialization needs to register mappings created by bootstrap code
6036 * before pmap_devmap_bootstrap() is called.
6037 */
6038 void
6039 pmap_devmap_register(const struct pmap_devmap *table)
6040 {
6041
6042 pmap_devmap_table = table;
6043 }
6044
6045 /*
6046 * Map all of the static regions in the devmap table, and remember
6047 * the devmap table so other parts of the kernel can look up entries
6048 * later.
6049 */
6050 void
6051 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
6052 {
6053 int i;
6054
6055 pmap_devmap_table = table;
6056
6057 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6058 #ifdef VERBOSE_INIT_ARM
6059 printf("devmap: %08lx -> %08lx @ %08lx\n",
6060 pmap_devmap_table[i].pd_pa,
6061 pmap_devmap_table[i].pd_pa +
6062 pmap_devmap_table[i].pd_size - 1,
6063 pmap_devmap_table[i].pd_va);
6064 #endif
6065 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
6066 pmap_devmap_table[i].pd_pa,
6067 pmap_devmap_table[i].pd_size,
6068 pmap_devmap_table[i].pd_prot,
6069 pmap_devmap_table[i].pd_cache);
6070 }
6071 }
6072
6073 const struct pmap_devmap *
6074 pmap_devmap_find_pa(paddr_t pa, psize_t size)
6075 {
6076 uint64_t endpa;
6077 int i;
6078
6079 if (pmap_devmap_table == NULL)
6080 return (NULL);
6081
6082 endpa = (uint64_t)pa + (uint64_t)(size - 1);
6083
6084 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6085 if (pa >= pmap_devmap_table[i].pd_pa &&
6086 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6087 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6088 return (&pmap_devmap_table[i]);
6089 }
6090
6091 return (NULL);
6092 }
6093
6094 const struct pmap_devmap *
6095 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6096 {
6097 int i;
6098
6099 if (pmap_devmap_table == NULL)
6100 return (NULL);
6101
6102 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6103 if (va >= pmap_devmap_table[i].pd_va &&
6104 va + size - 1 <= pmap_devmap_table[i].pd_va +
6105 pmap_devmap_table[i].pd_size - 1)
6106 return (&pmap_devmap_table[i]);
6107 }
6108
6109 return (NULL);
6110 }
6111
6112 /********************** PTE initialization routines **************************/
6113
6114 /*
6115 * These routines are called when the CPU type is identified to set up
6116 * the PTE prototypes, cache modes, etc.
6117 *
6118 * The variables are always here, just in case modules need to reference
6119 * them (though, they shouldn't).
6120 */
6121
6122 pt_entry_t pte_l1_s_cache_mode;
6123 pt_entry_t pte_l1_s_wc_mode;
6124 pt_entry_t pte_l1_s_cache_mode_pt;
6125 pt_entry_t pte_l1_s_cache_mask;
6126
6127 pt_entry_t pte_l2_l_cache_mode;
6128 pt_entry_t pte_l2_l_wc_mode;
6129 pt_entry_t pte_l2_l_cache_mode_pt;
6130 pt_entry_t pte_l2_l_cache_mask;
6131
6132 pt_entry_t pte_l2_s_cache_mode;
6133 pt_entry_t pte_l2_s_wc_mode;
6134 pt_entry_t pte_l2_s_cache_mode_pt;
6135 pt_entry_t pte_l2_s_cache_mask;
6136
6137 pt_entry_t pte_l1_s_prot_u;
6138 pt_entry_t pte_l1_s_prot_w;
6139 pt_entry_t pte_l1_s_prot_ro;
6140 pt_entry_t pte_l1_s_prot_mask;
6141
6142 pt_entry_t pte_l2_s_prot_u;
6143 pt_entry_t pte_l2_s_prot_w;
6144 pt_entry_t pte_l2_s_prot_ro;
6145 pt_entry_t pte_l2_s_prot_mask;
6146
6147 pt_entry_t pte_l2_l_prot_u;
6148 pt_entry_t pte_l2_l_prot_w;
6149 pt_entry_t pte_l2_l_prot_ro;
6150 pt_entry_t pte_l2_l_prot_mask;
6151
6152 pt_entry_t pte_l1_ss_proto;
6153 pt_entry_t pte_l1_s_proto;
6154 pt_entry_t pte_l1_c_proto;
6155 pt_entry_t pte_l2_s_proto;
6156
6157 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6158 void (*pmap_zero_page_func)(paddr_t);
6159
6160 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6161 void
6162 pmap_pte_init_generic(void)
6163 {
6164
6165 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6166 pte_l1_s_wc_mode = L1_S_B;
6167 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6168
6169 pte_l2_l_cache_mode = L2_B|L2_C;
6170 pte_l2_l_wc_mode = L2_B;
6171 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6172
6173 pte_l2_s_cache_mode = L2_B|L2_C;
6174 pte_l2_s_wc_mode = L2_B;
6175 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6176
6177 /*
6178 * If we have a write-through cache, set B and C. If
6179 * we have a write-back cache, then we assume setting
6180 * only C will make those pages write-through (except for those
6181 * Cortex CPUs which can read the L1 caches).
6182 */
6183 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6184 #if ARM_MMU_V7 > 0
6185 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6186 #endif
6187 #if ARM_MMU_V6 > 0
6188 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6189 #endif
6190 || false) {
6191 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6192 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6193 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6194 } else {
6195 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6196 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6197 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6198 }
6199
6200 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6201 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6202 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6203 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6204
6205 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6206 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6207 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6208 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6209
6210 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6211 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6212 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6213 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6214
6215 pte_l1_ss_proto = L1_SS_PROTO_generic;
6216 pte_l1_s_proto = L1_S_PROTO_generic;
6217 pte_l1_c_proto = L1_C_PROTO_generic;
6218 pte_l2_s_proto = L2_S_PROTO_generic;
6219
6220 pmap_copy_page_func = pmap_copy_page_generic;
6221 pmap_zero_page_func = pmap_zero_page_generic;
6222 }
6223
6224 #if defined(CPU_ARM8)
6225 void
6226 pmap_pte_init_arm8(void)
6227 {
6228
6229 /*
6230 * ARM8 is compatible with generic, but we need to use
6231 * the page tables uncached.
6232 */
6233 pmap_pte_init_generic();
6234
6235 pte_l1_s_cache_mode_pt = 0;
6236 pte_l2_l_cache_mode_pt = 0;
6237 pte_l2_s_cache_mode_pt = 0;
6238 }
6239 #endif /* CPU_ARM8 */
6240
6241 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6242 void
6243 pmap_pte_init_arm9(void)
6244 {
6245
6246 /*
6247 * ARM9 is compatible with generic, but we want to use
6248 * write-through caching for now.
6249 */
6250 pmap_pte_init_generic();
6251
6252 pte_l1_s_cache_mode = L1_S_C;
6253 pte_l2_l_cache_mode = L2_C;
6254 pte_l2_s_cache_mode = L2_C;
6255
6256 pte_l1_s_wc_mode = L1_S_B;
6257 pte_l2_l_wc_mode = L2_B;
6258 pte_l2_s_wc_mode = L2_B;
6259
6260 pte_l1_s_cache_mode_pt = L1_S_C;
6261 pte_l2_l_cache_mode_pt = L2_C;
6262 pte_l2_s_cache_mode_pt = L2_C;
6263 }
6264 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6265 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6266
6267 #if defined(CPU_ARM10)
6268 void
6269 pmap_pte_init_arm10(void)
6270 {
6271
6272 /*
6273 * ARM10 is compatible with generic, but we want to use
6274 * write-through caching for now.
6275 */
6276 pmap_pte_init_generic();
6277
6278 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6279 pte_l2_l_cache_mode = L2_B | L2_C;
6280 pte_l2_s_cache_mode = L2_B | L2_C;
6281
6282 pte_l1_s_cache_mode = L1_S_B;
6283 pte_l2_l_cache_mode = L2_B;
6284 pte_l2_s_cache_mode = L2_B;
6285
6286 pte_l1_s_cache_mode_pt = L1_S_C;
6287 pte_l2_l_cache_mode_pt = L2_C;
6288 pte_l2_s_cache_mode_pt = L2_C;
6289
6290 }
6291 #endif /* CPU_ARM10 */
6292
6293 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6294 void
6295 pmap_pte_init_arm11(void)
6296 {
6297
6298 /*
6299 * ARM11 is compatible with generic, but we want to use
6300 * write-through caching for now.
6301 */
6302 pmap_pte_init_generic();
6303
6304 pte_l1_s_cache_mode = L1_S_C;
6305 pte_l2_l_cache_mode = L2_C;
6306 pte_l2_s_cache_mode = L2_C;
6307
6308 pte_l1_s_wc_mode = L1_S_B;
6309 pte_l2_l_wc_mode = L2_B;
6310 pte_l2_s_wc_mode = L2_B;
6311
6312 pte_l1_s_cache_mode_pt = L1_S_C;
6313 pte_l2_l_cache_mode_pt = L2_C;
6314 pte_l2_s_cache_mode_pt = L2_C;
6315 }
6316 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6317
6318 #if ARM_MMU_SA1 == 1
6319 void
6320 pmap_pte_init_sa1(void)
6321 {
6322
6323 /*
6324 * The StrongARM SA-1 cache does not have a write-through
6325 * mode. So, do the generic initialization, then reset
6326 * the page table cache mode to B=1,C=1, and note that
6327 * the PTEs need to be sync'd.
6328 */
6329 pmap_pte_init_generic();
6330
6331 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6332 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6333 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6334
6335 pmap_needs_pte_sync = 1;
6336 }
6337 #endif /* ARM_MMU_SA1 == 1*/
6338
6339 #if ARM_MMU_XSCALE == 1
6340 #if (ARM_NMMUS > 1)
6341 static u_int xscale_use_minidata;
6342 #endif
6343
6344 void
6345 pmap_pte_init_xscale(void)
6346 {
6347 uint32_t auxctl;
6348 int write_through = 0;
6349
6350 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6351 pte_l1_s_wc_mode = L1_S_B;
6352 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6353
6354 pte_l2_l_cache_mode = L2_B|L2_C;
6355 pte_l2_l_wc_mode = L2_B;
6356 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6357
6358 pte_l2_s_cache_mode = L2_B|L2_C;
6359 pte_l2_s_wc_mode = L2_B;
6360 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6361
6362 pte_l1_s_cache_mode_pt = L1_S_C;
6363 pte_l2_l_cache_mode_pt = L2_C;
6364 pte_l2_s_cache_mode_pt = L2_C;
6365
6366 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6367 /*
6368 * The XScale core has an enhanced mode where writes that
6369 * miss the cache cause a cache line to be allocated. This
6370 * is significantly faster than the traditional, write-through
6371 * behavior of this case.
6372 */
6373 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6374 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6375 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6376 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6377
6378 #ifdef XSCALE_CACHE_WRITE_THROUGH
6379 /*
6380 * Some versions of the XScale core have various bugs in
6381 * their cache units, the work-around for which is to run
6382 * the cache in write-through mode. Unfortunately, this
6383 * has a major (negative) impact on performance. So, we
6384 * go ahead and run fast-and-loose, in the hopes that we
6385 * don't line up the planets in a way that will trip the
6386 * bugs.
6387 *
6388 * However, we give you the option to be slow-but-correct.
6389 */
6390 write_through = 1;
6391 #elif defined(XSCALE_CACHE_WRITE_BACK)
6392 /* force write back cache mode */
6393 write_through = 0;
6394 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6395 /*
6396 * Intel PXA2[15]0 processors are known to have a bug in
6397 * write-back cache on revision 4 and earlier (stepping
6398 * A[01] and B[012]). Fixed for C0 and later.
6399 */
6400 {
6401 uint32_t id, type;
6402
6403 id = cpufunc_id();
6404 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6405
6406 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6407 if ((id & CPU_ID_REVISION_MASK) < 5) {
6408 /* write through for stepping A0-1 and B0-2 */
6409 write_through = 1;
6410 }
6411 }
6412 }
6413 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6414
6415 if (write_through) {
6416 pte_l1_s_cache_mode = L1_S_C;
6417 pte_l2_l_cache_mode = L2_C;
6418 pte_l2_s_cache_mode = L2_C;
6419 }
6420
6421 #if (ARM_NMMUS > 1)
6422 xscale_use_minidata = 1;
6423 #endif
6424
6425 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6426 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6427 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6428 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6429
6430 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6431 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6432 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6433 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6434
6435 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6436 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6437 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6438 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6439
6440 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6441 pte_l1_s_proto = L1_S_PROTO_xscale;
6442 pte_l1_c_proto = L1_C_PROTO_xscale;
6443 pte_l2_s_proto = L2_S_PROTO_xscale;
6444
6445 pmap_copy_page_func = pmap_copy_page_xscale;
6446 pmap_zero_page_func = pmap_zero_page_xscale;
6447
6448 /*
6449 * Disable ECC protection of page table access, for now.
6450 */
6451 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6452 auxctl &= ~XSCALE_AUXCTL_P;
6453 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6454 }
6455
6456 /*
6457 * xscale_setup_minidata:
6458 *
6459 * Set up the mini-data cache clean area. We require the
6460 * caller to allocate the right amount of physically and
6461 * virtually contiguous space.
6462 */
6463 void
6464 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6465 {
6466 extern vaddr_t xscale_minidata_clean_addr;
6467 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6468 pd_entry_t *pde = (pd_entry_t *) l1pt;
6469 pt_entry_t *pte;
6470 vsize_t size;
6471 uint32_t auxctl;
6472
6473 xscale_minidata_clean_addr = va;
6474
6475 /* Round it to page size. */
6476 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6477
6478 for (; size != 0;
6479 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6480 #ifndef ARM32_NEW_VM_LAYOUT
6481 pte = (pt_entry_t *)
6482 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6483 #else
6484 pte = (pt_entry_t *) kernel_pt_lookup(
6485 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6486 #endif
6487 if (pte == NULL)
6488 panic("xscale_setup_minidata: can't find L2 table for "
6489 "VA 0x%08lx", va);
6490 #ifndef ARM32_NEW_VM_LAYOUT
6491 pte[(va >> PGSHIFT) & 0x3ff] =
6492 #else
6493 pte[l2pte_index(va)] =
6494 #endif
6495 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6496 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6497 }
6498
6499 /*
6500 * Configure the mini-data cache for write-back with
6501 * read/write-allocate.
6502 *
6503 * NOTE: In order to reconfigure the mini-data cache, we must
6504 * make sure it contains no valid data! In order to do that,
6505 * we must issue a global data cache invalidate command!
6506 *
6507 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6508 * THIS IS VERY IMPORTANT!
6509 */
6510
6511 /* Invalidate data and mini-data. */
6512 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6513 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6514 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6515 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6516 }
6517
6518 /*
6519 * Change the PTEs for the specified kernel mappings such that they
6520 * will use the mini data cache instead of the main data cache.
6521 */
6522 void
6523 pmap_uarea(vaddr_t va)
6524 {
6525 struct l2_bucket *l2b;
6526 pt_entry_t *ptep, *sptep, pte;
6527 vaddr_t next_bucket, eva;
6528
6529 #if (ARM_NMMUS > 1)
6530 if (xscale_use_minidata == 0)
6531 return;
6532 #endif
6533
6534 eva = va + USPACE;
6535
6536 while (va < eva) {
6537 next_bucket = L2_NEXT_BUCKET(va);
6538 if (next_bucket > eva)
6539 next_bucket = eva;
6540
6541 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6542 KDASSERT(l2b != NULL);
6543
6544 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6545
6546 while (va < next_bucket) {
6547 pte = *ptep;
6548 if (!l2pte_minidata(pte)) {
6549 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6550 cpu_tlb_flushD_SE(va);
6551 *ptep = pte & ~L2_B;
6552 }
6553 ptep++;
6554 va += PAGE_SIZE;
6555 }
6556 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6557 }
6558 cpu_cpwait();
6559 }
6560 #endif /* ARM_MMU_XSCALE == 1 */
6561
6562
6563 #if defined(CPU_ARM11MPCORE)
6564
6565 void
6566 pmap_pte_init_arm11mpcore(void)
6567 {
6568
6569 /* cache mode is controlled by 5 bits (B, C, TEX) */
6570 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6571 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6572 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6573 /* use extended small page (without APn, with TEX) */
6574 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6575 #else
6576 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6577 #endif
6578
6579 /* write-back, write-allocate */
6580 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6581 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6582 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6583 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6584 #else
6585 /* no TEX. read-allocate */
6586 pte_l2_s_cache_mode = L2_C | L2_B;
6587 #endif
6588 /*
6589 * write-back, write-allocate for page tables.
6590 */
6591 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6592 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6593 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6594 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6595 #else
6596 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6597 #endif
6598
6599 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6600 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6601 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6602 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6603
6604 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6605 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6606 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6607 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6608 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6609
6610 #else
6611 /* with AP[0..3] */
6612 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6613 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6614 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6615 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6616 #endif
6617
6618 #ifdef ARM11MPCORE_COMPAT_MMU
6619 /* with AP[0..3] */
6620 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6621 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6622 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6623 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6624
6625 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6626 pte_l1_s_proto = L1_S_PROTO_armv6;
6627 pte_l1_c_proto = L1_C_PROTO_armv6;
6628 pte_l2_s_proto = L2_S_PROTO_armv6c;
6629 #else
6630 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6631 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6632 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6633 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6634
6635 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6636 pte_l1_s_proto = L1_S_PROTO_armv6;
6637 pte_l1_c_proto = L1_C_PROTO_armv6;
6638 pte_l2_s_proto = L2_S_PROTO_armv6n;
6639 #endif
6640
6641 pmap_copy_page_func = pmap_copy_page_generic;
6642 pmap_zero_page_func = pmap_zero_page_generic;
6643 pmap_needs_pte_sync = 1;
6644 }
6645 #endif /* CPU_ARM11MPCORE */
6646
6647
6648 #if ARM_MMU_V7 == 1
6649 void
6650 pmap_pte_init_armv7(void)
6651 {
6652 /*
6653 * The ARMv7-A MMU is mostly compatible with generic. If the
6654 * AP field is zero, that now means "no access" rather than
6655 * read-only. The prototypes are a little different because of
6656 * the XN bit.
6657 */
6658 pmap_pte_init_generic();
6659
6660 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6661 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6662 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6663
6664 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6665 /*
6666 * write-back, no write-allocate, shareable for normal pages.
6667 */
6668 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6669 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6670 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6671
6672 /*
6673 * write-back, no write-allocate, shareable for page tables.
6674 */
6675 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6676 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6677 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6678 }
6679
6680 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6681 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6682 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6683 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6684
6685 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6686 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6687 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6688 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6689
6690 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6691 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6692 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6693 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6694
6695 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6696 pte_l1_s_proto = L1_S_PROTO_armv7;
6697 pte_l1_c_proto = L1_C_PROTO_armv7;
6698 pte_l2_s_proto = L2_S_PROTO_armv7;
6699
6700 pmap_needs_pte_sync = 1;
6701 }
6702 #endif /* ARM_MMU_V7 */
6703
6704 /*
6705 * return the PA of the current L1 table, for use when handling a crash dump
6706 */
6707 uint32_t pmap_kernel_L1_addr(void)
6708 {
6709 return pmap_kernel()->pm_l1->l1_physaddr;
6710 }
6711
6712 #if defined(DDB)
6713 /*
6714 * A couple of ddb-callable functions for dumping pmaps
6715 */
6716 void pmap_dump_all(void);
6717 void pmap_dump(pmap_t);
6718
6719 void
6720 pmap_dump_all(void)
6721 {
6722 pmap_t pm;
6723
6724 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6725 if (pm == pmap_kernel())
6726 continue;
6727 pmap_dump(pm);
6728 printf("\n");
6729 }
6730 }
6731
6732 static pt_entry_t ncptes[64];
6733 static void pmap_dump_ncpg(pmap_t);
6734
6735 void
6736 pmap_dump(pmap_t pm)
6737 {
6738 struct l2_dtable *l2;
6739 struct l2_bucket *l2b;
6740 pt_entry_t *ptep, pte;
6741 vaddr_t l2_va, l2b_va, va;
6742 int i, j, k, occ, rows = 0;
6743
6744 if (pm == pmap_kernel())
6745 printf("pmap_kernel (%p): ", pm);
6746 else
6747 printf("user pmap (%p): ", pm);
6748
6749 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6750
6751 l2_va = 0;
6752 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6753 l2 = pm->pm_l2[i];
6754
6755 if (l2 == NULL || l2->l2_occupancy == 0)
6756 continue;
6757
6758 l2b_va = l2_va;
6759 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6760 l2b = &l2->l2_bucket[j];
6761
6762 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6763 continue;
6764
6765 ptep = l2b->l2b_kva;
6766
6767 for (k = 0; k < 256 && ptep[k] == 0; k++)
6768 ;
6769
6770 k &= ~63;
6771 occ = l2b->l2b_occupancy;
6772 va = l2b_va + (k * 4096);
6773 for (; k < 256; k++, va += 0x1000) {
6774 char ch = ' ';
6775 if ((k % 64) == 0) {
6776 if ((rows % 8) == 0) {
6777 printf(
6778 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6779 }
6780 printf("%08lx: ", va);
6781 }
6782
6783 ncptes[k & 63] = 0;
6784 pte = ptep[k];
6785 if (pte == 0) {
6786 ch = '.';
6787 } else {
6788 occ--;
6789 switch (pte & 0x0c) {
6790 case 0x00:
6791 ch = 'D'; /* No cache No buff */
6792 break;
6793 case 0x04:
6794 ch = 'B'; /* No cache buff */
6795 break;
6796 case 0x08:
6797 if (pte & 0x40)
6798 ch = 'm';
6799 else
6800 ch = 'C'; /* Cache No buff */
6801 break;
6802 case 0x0c:
6803 ch = 'F'; /* Cache Buff */
6804 break;
6805 }
6806
6807 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6808 ch += 0x20;
6809
6810 if ((pte & 0xc) == 0)
6811 ncptes[k & 63] = pte;
6812 }
6813
6814 if ((k % 64) == 63) {
6815 rows++;
6816 printf("%c\n", ch);
6817 pmap_dump_ncpg(pm);
6818 if (occ == 0)
6819 break;
6820 } else
6821 printf("%c", ch);
6822 }
6823 }
6824 }
6825 }
6826
6827 static void
6828 pmap_dump_ncpg(pmap_t pm)
6829 {
6830 struct vm_page *pg;
6831 struct vm_page_md *md;
6832 struct pv_entry *pv;
6833 int i;
6834
6835 for (i = 0; i < 63; i++) {
6836 if (ncptes[i] == 0)
6837 continue;
6838
6839 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6840 if (pg == NULL)
6841 continue;
6842 md = VM_PAGE_TO_MD(pg);
6843
6844 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6845 VM_PAGE_TO_PHYS(pg),
6846 md->krw_mappings, md->kro_mappings,
6847 md->urw_mappings, md->uro_mappings);
6848
6849 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6850 printf(" %c va 0x%08lx, flags 0x%x\n",
6851 (pm == pv->pv_pmap) ? '*' : ' ',
6852 pv->pv_va, pv->pv_flags);
6853 }
6854 }
6855 }
6856 #endif
6857
6858 #ifdef PMAP_STEAL_MEMORY
6859 void
6860 pmap_boot_pageadd(pv_addr_t *newpv)
6861 {
6862 pv_addr_t *pv, *npv;
6863
6864 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6865 if (newpv->pv_pa < pv->pv_va) {
6866 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6867 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6868 newpv->pv_size += pv->pv_size;
6869 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6870 }
6871 pv = NULL;
6872 } else {
6873 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6874 pv = npv) {
6875 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6876 KASSERT(pv->pv_pa < newpv->pv_pa);
6877 if (newpv->pv_pa > npv->pv_pa)
6878 continue;
6879 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6880 pv->pv_size += newpv->pv_size;
6881 return;
6882 }
6883 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6884 break;
6885 newpv->pv_size += npv->pv_size;
6886 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6887 SLIST_REMOVE_AFTER(newpv, pv_list);
6888 return;
6889 }
6890 }
6891 }
6892
6893 if (pv) {
6894 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6895 } else {
6896 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6897 }
6898 }
6899
6900 void
6901 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6902 pv_addr_t *rpv)
6903 {
6904 pv_addr_t *pv, **pvp;
6905 struct vm_physseg *ps;
6906 size_t i;
6907
6908 KASSERT(amount & PGOFSET);
6909 KASSERT((mask & PGOFSET) == 0);
6910 KASSERT((match & PGOFSET) == 0);
6911 KASSERT(amount != 0);
6912
6913 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6914 (pv = *pvp) != NULL;
6915 pvp = &SLIST_NEXT(pv, pv_list)) {
6916 pv_addr_t *newpv;
6917 psize_t off;
6918 /*
6919 * If this entry is too small to satify the request...
6920 */
6921 KASSERT(pv->pv_size > 0);
6922 if (pv->pv_size < amount)
6923 continue;
6924
6925 for (off = 0; off <= mask; off += PAGE_SIZE) {
6926 if (((pv->pv_pa + off) & mask) == match
6927 && off + amount <= pv->pv_size)
6928 break;
6929 }
6930 if (off > mask)
6931 continue;
6932
6933 rpv->pv_va = pv->pv_va + off;
6934 rpv->pv_pa = pv->pv_pa + off;
6935 rpv->pv_size = amount;
6936 pv->pv_size -= amount;
6937 if (pv->pv_size == 0) {
6938 KASSERT(off == 0);
6939 KASSERT((vaddr_t) pv == rpv->pv_va);
6940 *pvp = SLIST_NEXT(pv, pv_list);
6941 } else if (off == 0) {
6942 KASSERT((vaddr_t) pv == rpv->pv_va);
6943 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6944 *newpv = *pv;
6945 newpv->pv_pa += amount;
6946 newpv->pv_va += amount;
6947 *pvp = newpv;
6948 } else if (off < pv->pv_size) {
6949 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6950 *newpv = *pv;
6951 newpv->pv_size -= off;
6952 newpv->pv_pa += off + amount;
6953 newpv->pv_va += off + amount;
6954
6955 SLIST_NEXT(pv, pv_list) = newpv;
6956 pv->pv_size = off;
6957 } else {
6958 KASSERT((vaddr_t) pv != rpv->pv_va);
6959 }
6960 memset((void *)rpv->pv_va, 0, amount);
6961 return;
6962 }
6963
6964 if (vm_nphysseg == 0)
6965 panic("pmap_boot_pagealloc: couldn't allocate memory");
6966
6967 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6968 (pv = *pvp) != NULL;
6969 pvp = &SLIST_NEXT(pv, pv_list)) {
6970 if (SLIST_NEXT(pv, pv_list) == NULL)
6971 break;
6972 }
6973 KASSERT(mask == 0);
6974 for (i = 0; i < vm_nphysseg; i++) {
6975 ps = VM_PHYSMEM_PTR(i);
6976 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6977 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6978 rpv->pv_va = pv->pv_va;
6979 rpv->pv_pa = pv->pv_pa;
6980 rpv->pv_size = amount;
6981 *pvp = NULL;
6982 pmap_map_chunk(kernel_l1pt.pv_va,
6983 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6984 ptoa(ps->avail_start),
6985 amount - pv->pv_size,
6986 VM_PROT_READ|VM_PROT_WRITE,
6987 PTE_CACHE);
6988 ps->avail_start += atop(amount - pv->pv_size);
6989 /*
6990 * If we consumed the entire physseg, remove it.
6991 */
6992 if (ps->avail_start == ps->avail_end) {
6993 for (--vm_nphysseg; i < vm_nphysseg; i++)
6994 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6995 }
6996 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6997 return;
6998 }
6999 }
7000
7001 panic("pmap_boot_pagealloc: couldn't allocate memory");
7002 }
7003
7004 vaddr_t
7005 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
7006 {
7007 pv_addr_t pv;
7008
7009 pmap_boot_pagealloc(size, 0, 0, &pv);
7010
7011 return pv.pv_va;
7012 }
7013 #endif /* PMAP_STEAL_MEMORY */
7014
7015 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
7016 {
7017 sysctl_createv(clog, 0, NULL, NULL,
7018 CTLFLAG_PERMANENT,
7019 CTLTYPE_NODE, "machdep", NULL,
7020 NULL, 0, NULL, 0,
7021 CTL_MACHDEP, CTL_EOL);
7022
7023 sysctl_createv(clog, 0, NULL, NULL,
7024 CTLFLAG_PERMANENT,
7025 CTLTYPE_INT, "kmpages",
7026 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
7027 NULL, 0, &pmap_kmpages, 0,
7028 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
7029 }
7030
7031 #ifdef PMAP_NEED_ALLOC_POOLPAGE
7032 struct vm_page *
7033 arm_pmap_alloc_poolpage(int flags)
7034 {
7035 /*
7036 * On some systems, only some pages may be "coherent" for dma and we
7037 * want to prefer those for pool pages (think mbufs) but fallback to
7038 * any page if none is available.
7039 */
7040 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
7041 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
7042 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
7043 }
7044
7045 return uvm_pagealloc(NULL, 0, NULL, flags);
7046 }
7047 #endif
7048