Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.24
      1 /*	$NetBSD: pmap.c,v 1.24 2001/09/29 09:39:12 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Richard Earnshaw
      5  * Copyright (c) 2001 Christopher Gilbert
      6  * All rights reserved.
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. The name of the company nor the name of the author may be used to
     14  *    endorse or promote products derived from this software without specific
     15  *    prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     21  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     23  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 
     30 /*-
     31  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     32  * All rights reserved.
     33  *
     34  * This code is derived from software contributed to The NetBSD Foundation
     35  * by Charles M. Hannum.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *        This product includes software developed by the NetBSD
     48  *        Foundation, Inc. and its contributors.
     49  * 4. Neither the name of The NetBSD Foundation nor the names of its
     50  *    contributors may be used to endorse or promote products derived
     51  *    from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 /*
     67  * Copyright (c) 1994-1998 Mark Brinicombe.
     68  * Copyright (c) 1994 Brini.
     69  * All rights reserved.
     70  *
     71  * This code is derived from software written for Brini by Mark Brinicombe
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by Mark Brinicombe.
     84  * 4. The name of the author may not be used to endorse or promote products
     85  *    derived from this software without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     88  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     89  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     90  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     91  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     92  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     93  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     94  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     95  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     96  *
     97  * RiscBSD kernel project
     98  *
     99  * pmap.c
    100  *
    101  * Machine dependant vm stuff
    102  *
    103  * Created      : 20/09/94
    104  */
    105 
    106 /*
    107  * Performance improvements, UVM changes, overhauls and part-rewrites
    108  * were contributed by Neil A. Carson <neil (at) causality.com>.
    109  */
    110 
    111 /*
    112  * The dram block info is currently referenced from the bootconfig.
    113  * This should be placed in a separate structure.
    114  */
    115 
    116 /*
    117  * Special compilation symbols
    118  * PMAP_DEBUG		- Build in pmap_debug_level code
    119  */
    120 
    121 /* Include header files */
    122 
    123 #include "opt_pmap_debug.h"
    124 #include "opt_ddb.h"
    125 
    126 #include <sys/types.h>
    127 #include <sys/param.h>
    128 #include <sys/kernel.h>
    129 #include <sys/systm.h>
    130 #include <sys/proc.h>
    131 #include <sys/malloc.h>
    132 #include <sys/user.h>
    133 #include <sys/pool.h>
    134 #include <sys/cdefs.h>
    135 
    136 #include <uvm/uvm.h>
    137 
    138 #include <machine/bootconfig.h>
    139 #include <machine/bus.h>
    140 #include <machine/pmap.h>
    141 #include <machine/pcb.h>
    142 #include <machine/param.h>
    143 #include <machine/katelib.h>
    144 
    145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.24 2001/09/29 09:39:12 chris Exp $");
    146 #ifdef PMAP_DEBUG
    147 #define	PDEBUG(_lev_,_stat_) \
    148 	if (pmap_debug_level >= (_lev_)) \
    149         	((_stat_))
    150 int pmap_debug_level = -2;
    151 
    152 /*
    153  * for switching to potentially finer grained debugging
    154  */
    155 #define	PDB_FOLLOW	0x0001
    156 #define	PDB_INIT	0x0002
    157 #define	PDB_ENTER	0x0004
    158 #define	PDB_REMOVE	0x0008
    159 #define	PDB_CREATE	0x0010
    160 #define	PDB_PTPAGE	0x0020
    161 #define	PDB_ASN		0x0040
    162 #define	PDB_BITS	0x0080
    163 #define	PDB_COLLECT	0x0100
    164 #define	PDB_PROTECT	0x0200
    165 #define	PDB_BOOTSTRAP	0x1000
    166 #define	PDB_PARANOIA	0x2000
    167 #define	PDB_WIRING	0x4000
    168 #define	PDB_PVDUMP	0x8000
    169 
    170 int debugmap = 0;
    171 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    172 #define	NPDEBUG(_lev_,_stat_) \
    173 	if (pmapdebug & (_lev_)) \
    174         	((_stat_))
    175 
    176 #else	/* PMAP_DEBUG */
    177 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    178 #define PDEBUG(_lev_,_stat_) /* Nothing */
    179 #endif	/* PMAP_DEBUG */
    180 
    181 struct pmap     kernel_pmap_store;
    182 
    183 /*
    184  * pool that pmap structures are allocated from
    185  */
    186 
    187 struct pool pmap_pmap_pool;
    188 
    189 pagehook_t page_hook0;
    190 pagehook_t page_hook1;
    191 char *memhook;
    192 pt_entry_t msgbufpte;
    193 extern caddr_t msgbufaddr;
    194 
    195 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    196 /*
    197  * locking data structures
    198  */
    199 
    200 static struct lock pmap_main_lock;
    201 static struct simplelock pvalloc_lock;
    202 #ifdef LOCKDEBUG
    203 #define PMAP_MAP_TO_HEAD_LOCK() \
    204      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    205 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    206      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    207 
    208 #define PMAP_HEAD_TO_MAP_LOCK() \
    209      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    210 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    211      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    212 #else
    213 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    214 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    215 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    216 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    217 #endif /* LOCKDEBUG */
    218 
    219 /*
    220  * pv_page management structures: locked by pvalloc_lock
    221  */
    222 
    223 TAILQ_HEAD(pv_pagelist, pv_page);
    224 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    225 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    226 static int pv_nfpvents;			/* # of free pv entries */
    227 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    228 static vaddr_t pv_cachedva;		/* cached VA for later use */
    229 
    230 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    231 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    232 					/* high water mark */
    233 
    234 /*
    235  * local prototypes
    236  */
    237 
    238 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    239 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    240 #define ALLOCPV_NEED	0	/* need PV now */
    241 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    242 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    243 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    244 static void		 pmap_enter_pv __P((struct pv_head *,
    245 					    struct pv_entry *, struct pmap *,
    246 					    vaddr_t, struct vm_page *, int));
    247 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    248 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    249 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    250 static void		 pmap_free_pvpage __P((void));
    251 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    252 static struct pv_entry	*pmap_remove_pv __P((struct pv_head *, struct pmap *,
    253 			vaddr_t));
    254 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    255 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    256 
    257 vsize_t npages;
    258 
    259 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
    260 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
    261 __inline static void pmap_clearbit __P((paddr_t, unsigned int));
    262 __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
    263 
    264 extern paddr_t physical_start;
    265 extern paddr_t physical_freestart;
    266 extern paddr_t physical_end;
    267 extern paddr_t physical_freeend;
    268 extern unsigned int free_pages;
    269 extern int max_processes;
    270 
    271 vaddr_t virtual_start;
    272 vaddr_t virtual_end;
    273 
    274 vaddr_t avail_start;
    275 vaddr_t avail_end;
    276 
    277 extern pv_addr_t systempage;
    278 
    279 #define ALLOC_PAGE_HOOK(x, s) \
    280 	x.va = virtual_start; \
    281 	x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
    282 	virtual_start += s;
    283 
    284 /* Variables used by the L1 page table queue code */
    285 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    286 struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    287 int l1pt_static_queue_count;		/* items in the static l1 queue */
    288 int l1pt_static_create_count;		/* static l1 items created */
    289 struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    290 int l1pt_queue_count;			/* items in the l1 queue */
    291 int l1pt_create_count;			/* stat - L1's create count */
    292 int l1pt_reuse_count;			/* stat - L1's reused count */
    293 
    294 /* Local function prototypes (not used outside this file) */
    295 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    296 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
    297     paddr_t pa, unsigned int flags));
    298 void pmap_copy_on_write __P((paddr_t pa));
    299 void pmap_pinit __P((struct pmap *));
    300 void pmap_freepagedir __P((struct pmap *));
    301 
    302 /* Other function prototypes */
    303 extern void bzero_page __P((vaddr_t));
    304 extern void bcopy_page __P((vaddr_t, vaddr_t));
    305 
    306 struct l1pt *pmap_alloc_l1pt __P((void));
    307 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    308      vaddr_t l2pa, boolean_t));
    309 
    310 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    311 static void pmap_unmap_ptes __P((struct pmap *));
    312 
    313 void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
    314 	    pt_entry_t *, boolean_t));
    315 
    316 /*
    317  * real definition of pv_entry.
    318  */
    319 
    320 struct pv_entry {
    321 	struct pv_entry *pv_next;       /* next pv_entry */
    322 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    323 	vaddr_t         pv_va;          /* virtual address for mapping */
    324 	int             pv_flags;       /* flags */
    325 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    326 };
    327 
    328 /*
    329  * pv_entrys are dynamically allocated in chunks from a single page.
    330  * we keep track of how many pv_entrys are in use for each page and
    331  * we can free pv_entry pages if needed.  there is one lock for the
    332  * entire allocation system.
    333  */
    334 
    335 struct pv_page_info {
    336 	TAILQ_ENTRY(pv_page) pvpi_list;
    337 	struct pv_entry *pvpi_pvfree;
    338 	int pvpi_nfree;
    339 };
    340 
    341 /*
    342  * number of pv_entry's in a pv_page
    343  * (note: won't work on systems where NPBG isn't a constant)
    344  */
    345 
    346 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    347 			sizeof(struct pv_entry))
    348 
    349 /*
    350  * a pv_page: where pv_entrys are allocated from
    351  */
    352 
    353 struct pv_page {
    354 	struct pv_page_info pvinfo;
    355 	struct pv_entry pvents[PVE_PER_PVPAGE];
    356 };
    357 
    358 #ifdef MYCROFT_HACK
    359 int mycroft_hack = 0;
    360 #endif
    361 
    362 /* Function to set the debug level of the pmap code */
    363 
    364 #ifdef PMAP_DEBUG
    365 void
    366 pmap_debug(level)
    367 	int level;
    368 {
    369 	pmap_debug_level = level;
    370 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    371 }
    372 #endif	/* PMAP_DEBUG */
    373 
    374 __inline static boolean_t
    375 pmap_is_curpmap(struct pmap *pmap)
    376 {
    377     if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
    378 	    || (pmap == pmap_kernel()))
    379 	return (TRUE);
    380     return (FALSE);
    381 }
    382 #include "isadma.h"
    383 
    384 #if NISADMA > 0
    385 /*
    386  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    387  * pages into the system, memory intersects with any of these ranges,
    388  * the intersecting memory will be loaded into a lower-priority free list.
    389  */
    390 bus_dma_segment_t *pmap_isa_dma_ranges;
    391 int pmap_isa_dma_nranges;
    392 
    393 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    394 	    paddr_t *, psize_t *));
    395 
    396 /*
    397  * Check if a memory range intersects with an ISA DMA range, and
    398  * return the page-rounded intersection if it does.  The intersection
    399  * will be placed on a lower-priority free list.
    400  */
    401 boolean_t
    402 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    403 	paddr_t pa;
    404 	psize_t size;
    405 	paddr_t *pap;
    406 	psize_t *sizep;
    407 {
    408 	bus_dma_segment_t *ds;
    409 	int i;
    410 
    411 	if (pmap_isa_dma_ranges == NULL)
    412 		return (FALSE);
    413 
    414 	for (i = 0, ds = pmap_isa_dma_ranges;
    415 	     i < pmap_isa_dma_nranges; i++, ds++) {
    416 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    417 			/*
    418 			 * Beginning of region intersects with this range.
    419 			 */
    420 			*pap = trunc_page(pa);
    421 			*sizep = round_page(min(pa + size,
    422 			    ds->ds_addr + ds->ds_len) - pa);
    423 			return (TRUE);
    424 		}
    425 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    426 			/*
    427 			 * End of region intersects with this range.
    428 			 */
    429 			*pap = trunc_page(ds->ds_addr);
    430 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    431 			    ds->ds_len));
    432 			return (TRUE);
    433 		}
    434 	}
    435 
    436 	/*
    437 	 * No intersection found.
    438 	 */
    439 	return (FALSE);
    440 }
    441 #endif /* NISADMA > 0 */
    442 
    443 /*
    444  * p v _ e n t r y   f u n c t i o n s
    445  */
    446 
    447 /*
    448  * pv_entry allocation functions:
    449  *   the main pv_entry allocation functions are:
    450  *     pmap_alloc_pv: allocate a pv_entry structure
    451  *     pmap_free_pv: free one pv_entry
    452  *     pmap_free_pvs: free a list of pv_entrys
    453  *
    454  * the rest are helper functions
    455  */
    456 
    457 /*
    458  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    459  * => we lock pvalloc_lock
    460  * => if we fail, we call out to pmap_alloc_pvpage
    461  * => 3 modes:
    462  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    463  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    464  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    465  *			one now
    466  *
    467  * "try" is for optional functions like pmap_copy().
    468  */
    469 
    470 __inline static struct pv_entry *
    471 pmap_alloc_pv(pmap, mode)
    472 	struct pmap *pmap;
    473 	int mode;
    474 {
    475 	struct pv_page *pvpage;
    476 	struct pv_entry *pv;
    477 
    478 	simple_lock(&pvalloc_lock);
    479 
    480 	if (pv_freepages.tqh_first != NULL) {
    481 		pvpage = pv_freepages.tqh_first;
    482 		pvpage->pvinfo.pvpi_nfree--;
    483 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    484 			/* nothing left in this one? */
    485 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    486 		}
    487 		pv = pvpage->pvinfo.pvpi_pvfree;
    488 #ifdef DIAGNOSTIC
    489 		if (pv == NULL)
    490 			panic("pmap_alloc_pv: pvpi_nfree off");
    491 #endif
    492 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    493 		pv_nfpvents--;  /* took one from pool */
    494 	} else {
    495 		pv = NULL;		/* need more of them */
    496 	}
    497 
    498 	/*
    499 	 * if below low water mark or we didn't get a pv_entry we try and
    500 	 * create more pv_entrys ...
    501 	 */
    502 
    503 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    504 		if (pv == NULL)
    505 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    506 					       mode : ALLOCPV_NEED);
    507 		else
    508 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    509 	}
    510 
    511 	simple_unlock(&pvalloc_lock);
    512 	return(pv);
    513 }
    514 
    515 /*
    516  * pmap_alloc_pvpage: maybe allocate a new pvpage
    517  *
    518  * if need_entry is false: try and allocate a new pv_page
    519  * if need_entry is true: try and allocate a new pv_page and return a
    520  *	new pv_entry from it.   if we are unable to allocate a pv_page
    521  *	we make a last ditch effort to steal a pv_page from some other
    522  *	mapping.    if that fails, we panic...
    523  *
    524  * => we assume that the caller holds pvalloc_lock
    525  */
    526 
    527 static struct pv_entry *
    528 pmap_alloc_pvpage(pmap, mode)
    529 	struct pmap *pmap;
    530 	int mode;
    531 {
    532 	struct vm_page *pg;
    533 	struct pv_page *pvpage;
    534 	struct pv_entry *pv;
    535 	int s;
    536 
    537 	/*
    538 	 * if we need_entry and we've got unused pv_pages, allocate from there
    539 	 */
    540 
    541 	if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
    542 
    543 		/* move it to pv_freepages list */
    544 		pvpage = pv_unusedpgs.tqh_first;
    545 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    546 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    547 
    548 		/* allocate a pv_entry */
    549 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    550 		pv = pvpage->pvinfo.pvpi_pvfree;
    551 #ifdef DIAGNOSTIC
    552 		if (pv == NULL)
    553 			panic("pmap_alloc_pvpage: pvpi_nfree off");
    554 #endif
    555 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    556 
    557 		pv_nfpvents--;  /* took one from pool */
    558 		return(pv);
    559 	}
    560 
    561 	/*
    562 	 *  see if we've got a cached unmapped VA that we can map a page in.
    563 	 * if not, try to allocate one.
    564 	 */
    565 
    566 
    567 	if (pv_cachedva == 0) {
    568 		s = splvm();
    569 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    570 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    571 		splx(s);
    572 		if (pv_cachedva == 0) {
    573 			return (NULL);
    574 		}
    575 	}
    576 
    577 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    578 	    UVM_PGA_USERESERVE);
    579 	if (pg)
    580 		pg->flags &= ~PG_BUSY;	/* never busy */
    581 
    582 	if (pg == NULL)
    583 		return (NULL);
    584 
    585 	/*
    586 	 * add a mapping for our new pv_page and free its entrys (save one!)
    587 	 *
    588 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    589 	 * pmap is already locked!  (...but entering the mapping is safe...)
    590 	 */
    591 
    592 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    593 	pmap_update(pmap_kernel());
    594 	pvpage = (struct pv_page *) pv_cachedva;
    595 	pv_cachedva = 0;
    596 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    597 }
    598 
    599 /*
    600  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    601  *
    602  * => caller must hold pvalloc_lock
    603  * => if need_entry is true, we allocate and return one pv_entry
    604  */
    605 
    606 static struct pv_entry *
    607 pmap_add_pvpage(pvp, need_entry)
    608 	struct pv_page *pvp;
    609 	boolean_t need_entry;
    610 {
    611 	int tofree, lcv;
    612 
    613 	/* do we need to return one? */
    614 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    615 
    616 	pvp->pvinfo.pvpi_pvfree = NULL;
    617 	pvp->pvinfo.pvpi_nfree = tofree;
    618 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    619 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    620 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    621 	}
    622 	if (need_entry)
    623 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    624 	else
    625 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    626 	pv_nfpvents += tofree;
    627 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    628 }
    629 
    630 /*
    631  * pmap_free_pv_doit: actually free a pv_entry
    632  *
    633  * => do not call this directly!  instead use either
    634  *    1. pmap_free_pv ==> free a single pv_entry
    635  *    2. pmap_free_pvs => free a list of pv_entrys
    636  * => we must be holding pvalloc_lock
    637  */
    638 
    639 __inline static void
    640 pmap_free_pv_doit(pv)
    641 	struct pv_entry *pv;
    642 {
    643 	struct pv_page *pvp;
    644 
    645 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    646 	pv_nfpvents++;
    647 	pvp->pvinfo.pvpi_nfree++;
    648 
    649 	/* nfree == 1 => fully allocated page just became partly allocated */
    650 	if (pvp->pvinfo.pvpi_nfree == 1) {
    651 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    652 	}
    653 
    654 	/* free it */
    655 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    656 	pvp->pvinfo.pvpi_pvfree = pv;
    657 
    658 	/*
    659 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    660 	 */
    661 
    662 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    663 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    664 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    665 	}
    666 }
    667 
    668 /*
    669  * pmap_free_pv: free a single pv_entry
    670  *
    671  * => we gain the pvalloc_lock
    672  */
    673 
    674 __inline static void
    675 pmap_free_pv(pmap, pv)
    676 	struct pmap *pmap;
    677 	struct pv_entry *pv;
    678 {
    679 	simple_lock(&pvalloc_lock);
    680 	pmap_free_pv_doit(pv);
    681 
    682 	/*
    683 	 * Can't free the PV page if the PV entries were associated with
    684 	 * the kernel pmap; the pmap is already locked.
    685 	 */
    686 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    687 	    pmap != pmap_kernel())
    688 		pmap_free_pvpage();
    689 
    690 	simple_unlock(&pvalloc_lock);
    691 }
    692 
    693 /*
    694  * pmap_free_pvs: free a list of pv_entrys
    695  *
    696  * => we gain the pvalloc_lock
    697  */
    698 
    699 __inline static void
    700 pmap_free_pvs(pmap, pvs)
    701 	struct pmap *pmap;
    702 	struct pv_entry *pvs;
    703 {
    704 	struct pv_entry *nextpv;
    705 
    706 	simple_lock(&pvalloc_lock);
    707 
    708 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    709 		nextpv = pvs->pv_next;
    710 		pmap_free_pv_doit(pvs);
    711 	}
    712 
    713 	/*
    714 	 * Can't free the PV page if the PV entries were associated with
    715 	 * the kernel pmap; the pmap is already locked.
    716 	 */
    717 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    718 	    pmap != pmap_kernel())
    719 		pmap_free_pvpage();
    720 
    721 	simple_unlock(&pvalloc_lock);
    722 }
    723 
    724 
    725 /*
    726  * pmap_free_pvpage: try and free an unused pv_page structure
    727  *
    728  * => assume caller is holding the pvalloc_lock and that
    729  *	there is a page on the pv_unusedpgs list
    730  * => if we can't get a lock on the kmem_map we try again later
    731  * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
    732  *	that if we can lock the kmem_map then we are not already
    733  *	holding kmem_object's lock.
    734  */
    735 
    736 static void
    737 pmap_free_pvpage()
    738 {
    739 	int s;
    740 	struct vm_map *map;
    741 	struct vm_map_entry *dead_entries;
    742 	struct pv_page *pvp;
    743 
    744 	s = splvm(); /* protect kmem_map */
    745 
    746 	pvp = pv_unusedpgs.tqh_first;
    747 
    748 	/*
    749 	 * note: watch out for pv_initpage which is allocated out of
    750 	 * kernel_map rather than kmem_map.
    751 	 */
    752 	if (pvp == pv_initpage)
    753 		map = kernel_map;
    754 	else
    755 		map = kmem_map;
    756 
    757 	if (vm_map_lock_try(map)) {
    758 
    759 		/* remove pvp from pv_unusedpgs */
    760 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    761 
    762 		/* unmap the page */
    763 		dead_entries = NULL;
    764 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    765 		    &dead_entries);
    766 		vm_map_unlock(map);
    767 
    768 		if (dead_entries != NULL)
    769 			uvm_unmap_detach(dead_entries, 0);
    770 
    771 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    772 	}
    773 
    774 	if (pvp == pv_initpage)
    775 		/* no more initpage, we've freed it */
    776 		pv_initpage = NULL;
    777 
    778 	splx(s);
    779 }
    780 
    781 /*
    782  * main pv_entry manipulation functions:
    783  *   pmap_enter_pv: enter a mapping onto a pv_head list
    784  *   pmap_remove_pv: remove a mappiing from a pv_head list
    785  *
    786  * NOTE: pmap_enter_pv expects to lock the pvh itself
    787  *       pmap_remove_pv expects te caller to lock the pvh before calling
    788  */
    789 
    790 /*
    791  * pmap_enter_pv: enter a mapping onto a pv_head lst
    792  *
    793  * => caller should hold the proper lock on pmap_main_lock
    794  * => caller should have pmap locked
    795  * => we will gain the lock on the pv_head and allocate the new pv_entry
    796  * => caller should adjust ptp's wire_count before calling
    797  * => caller should not adjust pmap's wire_count
    798  */
    799 
    800 __inline static void
    801 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
    802 	struct pv_head *pvh;
    803 	struct pv_entry *pve;	/* preallocated pve for us to use */
    804 	struct pmap *pmap;
    805 	vaddr_t va;
    806 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    807 	int flags;
    808 {
    809 	pve->pv_pmap = pmap;
    810 	pve->pv_va = va;
    811 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    812 	pve->pv_flags = flags;
    813 	simple_lock(&pvh->pvh_lock);		/* lock pv_head */
    814 	pve->pv_next = pvh->pvh_list;		/* add to ... */
    815 	pvh->pvh_list = pve;			/* ... locked list */
    816 	simple_unlock(&pvh->pvh_lock);		/* unlock, done! */
    817 	if (pve->pv_flags & PT_W)
    818 		++pmap->pm_stats.wired_count;
    819 }
    820 
    821 /*
    822  * pmap_remove_pv: try to remove a mapping from a pv_list
    823  *
    824  * => caller should hold proper lock on pmap_main_lock
    825  * => pmap should be locked
    826  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    827  * => caller should adjust ptp's wire_count and free PTP if needed
    828  * => caller should NOT adjust pmap's wire_count
    829  * => we return the removed pve
    830  */
    831 
    832 __inline static struct pv_entry *
    833 pmap_remove_pv(pvh, pmap, va)
    834 	struct pv_head *pvh;
    835 	struct pmap *pmap;
    836 	vaddr_t va;
    837 {
    838 	struct pv_entry *pve, **prevptr;
    839 
    840 	prevptr = &pvh->pvh_list;		/* previous pv_entry pointer */
    841 	pve = *prevptr;
    842 	while (pve) {
    843 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    844 			*prevptr = pve->pv_next;		/* remove it! */
    845 			if (pve->pv_flags & PT_W)
    846 			    --pmap->pm_stats.wired_count;
    847 			break;
    848 		}
    849 		prevptr = &pve->pv_next;		/* previous pointer */
    850 		pve = pve->pv_next;			/* advance */
    851 	}
    852 	return(pve);				/* return removed pve */
    853 }
    854 
    855 /*
    856  *
    857  * pmap_modify_pv: Update pv flags
    858  *
    859  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    860  * => caller should NOT adjust pmap's wire_count
    861  * => we return the old flags
    862  *
    863  * Modify a physical-virtual mapping in the pv table
    864  */
    865 
    866 /*__inline */ u_int
    867 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
    868 	struct pmap *pmap;
    869 	vaddr_t va;
    870 	struct pv_head *pvh;
    871 	u_int bic_mask;
    872 	u_int eor_mask;
    873 {
    874 	struct pv_entry *npv;
    875 	u_int flags, oflags;
    876 
    877 	/*
    878 	 * There is at least one VA mapping this page.
    879 	 */
    880 
    881 	for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
    882 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    883 			oflags = npv->pv_flags;
    884 			npv->pv_flags = flags =
    885 			    ((oflags & ~bic_mask) ^ eor_mask);
    886 			if ((flags ^ oflags) & PT_W) {
    887 				if (flags & PT_W)
    888 					++pmap->pm_stats.wired_count;
    889 				else
    890 					--pmap->pm_stats.wired_count;
    891 			}
    892 			return (oflags);
    893 		}
    894 	}
    895 	return (0);
    896 }
    897 
    898 
    899 /*
    900  * Map the specified level 2 pagetable into the level 1 page table for
    901  * the given pmap to cover a chunk of virtual address space starting from the
    902  * address specified.
    903  */
    904 static /*__inline*/ void
    905 pmap_map_in_l1(pmap, va, l2pa, selfref)
    906 	struct pmap *pmap;
    907 	vaddr_t va, l2pa;
    908 	boolean_t selfref;
    909 {
    910 	vaddr_t ptva;
    911 
    912 	/* Calculate the index into the L1 page table. */
    913 	ptva = (va >> PDSHIFT) & ~3;
    914 
    915 	PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    916 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    917 
    918 	/* Map page table into the L1. */
    919 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    920 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    921 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    922 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    923 
    924 	PDEBUG(0, printf("pt self reference %lx in %lx\n",
    925 	    L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    926 
    927 	/* Map the page table into the page table area. */
    928 	if (selfref) {
    929 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    930 			L2_PTE_NC_NB(l2pa, AP_KRW);
    931 	}
    932 	/* XXX should be a purge */
    933 /*	cpu_tlb_flushD();*/
    934 }
    935 
    936 #if 0
    937 static /*__inline*/ void
    938 pmap_unmap_in_l1(pmap, va)
    939 	struct pmap *pmap;
    940 	vaddr_t va;
    941 {
    942 	vaddr_t ptva;
    943 
    944 	/* Calculate the index into the L1 page table. */
    945 	ptva = (va >> PDSHIFT) & ~3;
    946 
    947 	/* Unmap page table from the L1. */
    948 	pmap->pm_pdir[ptva + 0] = 0;
    949 	pmap->pm_pdir[ptva + 1] = 0;
    950 	pmap->pm_pdir[ptva + 2] = 0;
    951 	pmap->pm_pdir[ptva + 3] = 0;
    952 
    953 	/* Unmap the page table from the page table area. */
    954 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    955 
    956 	/* XXX should be a purge */
    957 /*	cpu_tlb_flushD();*/
    958 }
    959 #endif
    960 
    961 
    962 /*
    963  *	Used to map a range of physical addresses into kernel
    964  *	virtual address space.
    965  *
    966  *	For now, VM is already on, we only need to map the
    967  *	specified memory.
    968  */
    969 vaddr_t
    970 pmap_map(va, spa, epa, prot)
    971 	vaddr_t va, spa, epa;
    972 	int prot;
    973 {
    974 	while (spa < epa) {
    975 		pmap_kenter_pa(va, spa, prot);
    976 		va += NBPG;
    977 		spa += NBPG;
    978 	}
    979 	pmap_update(pmap_kernel());
    980 	return(va);
    981 }
    982 
    983 
    984 /*
    985  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    986  *
    987  * bootstrap the pmap system. This is called from initarm and allows
    988  * the pmap system to initailise any structures it requires.
    989  *
    990  * Currently this sets up the kernel_pmap that is statically allocated
    991  * and also allocated virtual addresses for certain page hooks.
    992  * Currently the only one page hook is allocated that is used
    993  * to zero physical pages of memory.
    994  * It also initialises the start and end address of the kernel data space.
    995  */
    996 extern paddr_t physical_freestart;
    997 extern paddr_t physical_freeend;
    998 
    999 char *boot_head;
   1000 
   1001 void
   1002 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1003 	pd_entry_t *kernel_l1pt;
   1004 	pv_addr_t kernel_ptpt;
   1005 {
   1006 	int loop;
   1007 	paddr_t start, end;
   1008 #if NISADMA > 0
   1009 	paddr_t istart;
   1010 	psize_t isize;
   1011 #endif
   1012 
   1013 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1014 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1015 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1016 	simple_lock_init(&pmap_kernel()->pm_lock);
   1017 	pmap_kernel()->pm_obj.pgops = NULL;
   1018 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1019 	pmap_kernel()->pm_obj.uo_npages = 0;
   1020 	pmap_kernel()->pm_obj.uo_refs = 1;
   1021 
   1022 	/*
   1023 	 * Initialize PAGE_SIZE-dependent variables.
   1024 	 */
   1025 	uvm_setpagesize();
   1026 
   1027 	npages = 0;
   1028 	loop = 0;
   1029 	while (loop < bootconfig.dramblocks) {
   1030 		start = (paddr_t)bootconfig.dram[loop].address;
   1031 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1032 		if (start < physical_freestart)
   1033 			start = physical_freestart;
   1034 		if (end > physical_freeend)
   1035 			end = physical_freeend;
   1036 #if 0
   1037 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1038 #endif
   1039 #if NISADMA > 0
   1040 		if (pmap_isa_dma_range_intersect(start, end - start,
   1041 		    &istart, &isize)) {
   1042 			/*
   1043 			 * Place the pages that intersect with the
   1044 			 * ISA DMA range onto the ISA DMA free list.
   1045 			 */
   1046 #if 0
   1047 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1048 			    istart + isize - 1);
   1049 #endif
   1050 			uvm_page_physload(atop(istart),
   1051 			    atop(istart + isize), atop(istart),
   1052 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1053 			npages += atop(istart + isize) - atop(istart);
   1054 
   1055 			/*
   1056 			 * Load the pieces that come before
   1057 			 * the intersection into the default
   1058 			 * free list.
   1059 			 */
   1060 			if (start < istart) {
   1061 #if 0
   1062 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1063 				    start, istart - 1);
   1064 #endif
   1065 				uvm_page_physload(atop(start),
   1066 				    atop(istart), atop(start),
   1067 				    atop(istart), VM_FREELIST_DEFAULT);
   1068 				npages += atop(istart) - atop(start);
   1069 			}
   1070 
   1071 			/*
   1072 			 * Load the pieces that come after
   1073 			 * the intersection into the default
   1074 			 * free list.
   1075 			 */
   1076 			if ((istart + isize) < end) {
   1077 #if 0
   1078 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1079 				    (istart + isize), end - 1);
   1080 #endif
   1081 				uvm_page_physload(atop(istart + isize),
   1082 				    atop(end), atop(istart + isize),
   1083 				    atop(end), VM_FREELIST_DEFAULT);
   1084 				npages += atop(end) - atop(istart + isize);
   1085 			}
   1086 		} else {
   1087 			uvm_page_physload(atop(start), atop(end),
   1088 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1089 			npages += atop(end) - atop(start);
   1090 		}
   1091 #else	/* NISADMA > 0 */
   1092 		uvm_page_physload(atop(start), atop(end),
   1093 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1094 		npages += atop(end) - atop(start);
   1095 #endif /* NISADMA > 0 */
   1096 		++loop;
   1097 	}
   1098 
   1099 #ifdef MYCROFT_HACK
   1100 	printf("npages = %ld\n", npages);
   1101 #endif
   1102 
   1103 	virtual_start = KERNEL_VM_BASE;
   1104 	virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
   1105 
   1106 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
   1107 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
   1108 
   1109 	/*
   1110 	 * The mem special device needs a virtual hook but we don't
   1111 	 * need a pte
   1112 	 */
   1113 	memhook = (char *)virtual_start;
   1114 	virtual_start += NBPG;
   1115 
   1116 	msgbufaddr = (caddr_t)virtual_start;
   1117 	msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
   1118 	virtual_start += round_page(MSGBUFSIZE);
   1119 
   1120 	/*
   1121 	 * init the static-global locks and global lists.
   1122 	 */
   1123 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1124 	simple_lock_init(&pvalloc_lock);
   1125 	TAILQ_INIT(&pv_freepages);
   1126 	TAILQ_INIT(&pv_unusedpgs);
   1127 
   1128 	/*
   1129 	 * compute the number of pages we have and then allocate RAM
   1130 	 * for each pages' pv_head and saved attributes.
   1131 	 */
   1132 	{
   1133 	       	int npages, lcv;
   1134 		vsize_t s;
   1135 
   1136 		npages = 0;
   1137 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
   1138 			npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
   1139 		s = (vsize_t) (sizeof(struct pv_head) * npages +
   1140 				sizeof(char) * npages);
   1141 		s = round_page(s); /* round up */
   1142 		boot_head = (char *)uvm_pageboot_alloc(s);
   1143 		bzero((char *)boot_head, s);
   1144 		if (boot_head == 0)
   1145 			panic("pmap_init: unable to allocate pv_heads");
   1146 	}
   1147 
   1148 	/*
   1149 	 * initialize the pmap pool.
   1150 	 */
   1151 
   1152 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1153 		  0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
   1154 
   1155 	cpu_cache_cleanD();
   1156 }
   1157 
   1158 /*
   1159  * void pmap_init(void)
   1160  *
   1161  * Initialize the pmap module.
   1162  * Called by vm_init() in vm/vm_init.c in order to initialise
   1163  * any structures that the pmap system needs to map virtual memory.
   1164  */
   1165 
   1166 extern int physmem;
   1167 
   1168 void
   1169 pmap_init()
   1170 {
   1171 	int lcv, i;
   1172 
   1173 #ifdef MYCROFT_HACK
   1174 	printf("physmem = %d\n", physmem);
   1175 #endif
   1176 
   1177 	/*
   1178 	 * Set the available memory vars - These do not map to real memory
   1179 	 * addresses and cannot as the physical memory is fragmented.
   1180 	 * They are used by ps for %mem calculations.
   1181 	 * One could argue whether this should be the entire memory or just
   1182 	 * the memory that is useable in a user process.
   1183 	 */
   1184 	avail_start = 0;
   1185 	avail_end = physmem * NBPG;
   1186 
   1187 	/* allocate pv_head stuff first */
   1188 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1189 		vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
   1190 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
   1191 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1192 		for (i = 0;
   1193 		     i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
   1194 			simple_lock_init(
   1195 			    &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
   1196 		}
   1197 	}
   1198 
   1199 	/* now allocate attrs */
   1200 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1201 		vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
   1202 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
   1203 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1204 	}
   1205 
   1206 	/*
   1207 	 * now we need to free enough pv_entry structures to allow us to get
   1208 	 * the kmem_map/kmem_object allocated and inited (done after this
   1209 	 * function is finished).  to do this we allocate one bootstrap page out
   1210 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1211 	 * structures.   we never free this page.
   1212 	 */
   1213 
   1214 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1215 	if (pv_initpage == NULL)
   1216 		panic("pmap_init: pv_initpage");
   1217 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1218 	pv_nfpvents = 0;
   1219 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1220 
   1221 #ifdef MYCROFT_HACK
   1222 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1223 		printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
   1224 		    lcv,
   1225 		    vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
   1226 		    vm_physmem[lcv].start, vm_physmem[lcv].end);
   1227 	}
   1228 #endif
   1229 	pmap_initialized = TRUE;
   1230 
   1231 	/* Initialise our L1 page table queues and counters */
   1232 	SIMPLEQ_INIT(&l1pt_static_queue);
   1233 	l1pt_static_queue_count = 0;
   1234 	l1pt_static_create_count = 0;
   1235 	SIMPLEQ_INIT(&l1pt_queue);
   1236 	l1pt_queue_count = 0;
   1237 	l1pt_create_count = 0;
   1238 	l1pt_reuse_count = 0;
   1239 }
   1240 
   1241 /*
   1242  * pmap_postinit()
   1243  *
   1244  * This routine is called after the vm and kmem subsystems have been
   1245  * initialised. This allows the pmap code to perform any initialisation
   1246  * that can only be done one the memory allocation is in place.
   1247  */
   1248 
   1249 void
   1250 pmap_postinit()
   1251 {
   1252 	int loop;
   1253 	struct l1pt *pt;
   1254 
   1255 #ifdef PMAP_STATIC_L1S
   1256 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1257 #else	/* PMAP_STATIC_L1S */
   1258 	for (loop = 0; loop < max_processes; ++loop) {
   1259 #endif	/* PMAP_STATIC_L1S */
   1260 		/* Allocate a L1 page table */
   1261 		pt = pmap_alloc_l1pt();
   1262 		if (!pt)
   1263 			panic("Cannot allocate static L1 page tables\n");
   1264 
   1265 		/* Clean it */
   1266 		bzero((void *)pt->pt_va, PD_SIZE);
   1267 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1268 		/* Add the page table to the queue */
   1269 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1270 		++l1pt_static_queue_count;
   1271 		++l1pt_static_create_count;
   1272 	}
   1273 }
   1274 
   1275 
   1276 /*
   1277  * Create and return a physical map.
   1278  *
   1279  * If the size specified for the map is zero, the map is an actual physical
   1280  * map, and may be referenced by the hardware.
   1281  *
   1282  * If the size specified is non-zero, the map will be used in software only,
   1283  * and is bounded by that size.
   1284  */
   1285 
   1286 pmap_t
   1287 pmap_create()
   1288 {
   1289 	struct pmap *pmap;
   1290 
   1291 	/*
   1292 	 * Fetch pmap entry from the pool
   1293 	 */
   1294 
   1295 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1296 	/* XXX is this really needed! */
   1297 	memset(pmap, 0, sizeof(*pmap));
   1298 
   1299 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1300 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1301 	TAILQ_INIT(&pmap->pm_obj.memq);
   1302 	pmap->pm_obj.uo_npages = 0;
   1303 	pmap->pm_obj.uo_refs = 1;
   1304 	pmap->pm_stats.wired_count = 0;
   1305 	pmap->pm_stats.resident_count = 1;
   1306 
   1307 	/* Now init the machine part of the pmap */
   1308 	pmap_pinit(pmap);
   1309 	return(pmap);
   1310 }
   1311 
   1312 /*
   1313  * pmap_alloc_l1pt()
   1314  *
   1315  * This routine allocates physical and virtual memory for a L1 page table
   1316  * and wires it.
   1317  * A l1pt structure is returned to describe the allocated page table.
   1318  *
   1319  * This routine is allowed to fail if the required memory cannot be allocated.
   1320  * In this case NULL is returned.
   1321  */
   1322 
   1323 struct l1pt *
   1324 pmap_alloc_l1pt(void)
   1325 {
   1326 	paddr_t pa;
   1327 	vaddr_t va;
   1328 	struct l1pt *pt;
   1329 	int error;
   1330 	struct vm_page *m;
   1331 	pt_entry_t *ptes;
   1332 
   1333 	/* Allocate virtual address space for the L1 page table */
   1334 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1335 	if (va == 0) {
   1336 #ifdef DIAGNOSTIC
   1337 		printf("pmap: Cannot allocate pageable memory for L1\n");
   1338 #endif	/* DIAGNOSTIC */
   1339 		return(NULL);
   1340 	}
   1341 
   1342 	/* Allocate memory for the l1pt structure */
   1343 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1344 
   1345 	/*
   1346 	 * Allocate pages from the VM system.
   1347 	 */
   1348 	TAILQ_INIT(&pt->pt_plist);
   1349 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1350 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1351 	if (error) {
   1352 #ifdef DIAGNOSTIC
   1353 		printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
   1354 		    error);
   1355 #endif	/* DIAGNOSTIC */
   1356 		/* Release the resources we already have claimed */
   1357 		free(pt, M_VMPMAP);
   1358 		uvm_km_free(kernel_map, va, PD_SIZE);
   1359 		return(NULL);
   1360 	}
   1361 
   1362 	/* Map our physical pages into our virtual space */
   1363 	pt->pt_va = va;
   1364 	m = pt->pt_plist.tqh_first;
   1365 	ptes = pmap_map_ptes(pmap_kernel());
   1366 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1367 		pa = VM_PAGE_TO_PHYS(m);
   1368 
   1369 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1370 
   1371 		/* Revoke cacheability and bufferability */
   1372 		/* XXX should be done better than this */
   1373 		ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
   1374 
   1375 		va += NBPG;
   1376 		m = m->pageq.tqe_next;
   1377 	}
   1378 	pmap_unmap_ptes(pmap_kernel());
   1379 	pmap_update(pmap_kernel());
   1380 
   1381 #ifdef DIAGNOSTIC
   1382 	if (m)
   1383 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1384 #endif	/* DIAGNOSTIC */
   1385 
   1386 	pt->pt_flags = 0;
   1387 	return(pt);
   1388 }
   1389 
   1390 /*
   1391  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1392  */
   1393 void
   1394 pmap_free_l1pt(pt)
   1395 	struct l1pt *pt;
   1396 {
   1397 	/* Separate the physical memory for the virtual space */
   1398 	pmap_kremove(pt->pt_va, PD_SIZE);
   1399 	pmap_update(pmap_kernel());
   1400 
   1401 	/* Return the physical memory */
   1402 	uvm_pglistfree(&pt->pt_plist);
   1403 
   1404 	/* Free the virtual space */
   1405 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1406 
   1407 	/* Free the l1pt structure */
   1408 	free(pt, M_VMPMAP);
   1409 }
   1410 
   1411 /*
   1412  * Allocate a page directory.
   1413  * This routine will either allocate a new page directory from the pool
   1414  * of L1 page tables currently held by the kernel or it will allocate
   1415  * a new one via pmap_alloc_l1pt().
   1416  * It will then initialise the l1 page table for use.
   1417  */
   1418 int
   1419 pmap_allocpagedir(pmap)
   1420 	struct pmap *pmap;
   1421 {
   1422 	paddr_t pa;
   1423 	struct l1pt *pt;
   1424 	pt_entry_t *pte;
   1425 
   1426 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1427 
   1428 	/* Do we have any spare L1's lying around ? */
   1429 	if (l1pt_static_queue_count) {
   1430 		--l1pt_static_queue_count;
   1431 		pt = l1pt_static_queue.sqh_first;
   1432 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1433 	} else if (l1pt_queue_count) {
   1434 		--l1pt_queue_count;
   1435 		pt = l1pt_queue.sqh_first;
   1436 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1437 		++l1pt_reuse_count;
   1438 	} else {
   1439 		pt = pmap_alloc_l1pt();
   1440 		if (!pt)
   1441 			return(ENOMEM);
   1442 		++l1pt_create_count;
   1443 	}
   1444 
   1445 	/* Store the pointer to the l1 descriptor in the pmap. */
   1446 	pmap->pm_l1pt = pt;
   1447 
   1448 	/* Get the physical address of the start of the l1 */
   1449 	pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
   1450 
   1451 	/* Store the virtual address of the l1 in the pmap. */
   1452 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1453 
   1454 	/* Clean the L1 if it is dirty */
   1455 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1456 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1457 
   1458 	/* Do we already have the kernel mappings ? */
   1459 	if (!(pt->pt_flags & PTFLAG_KPT)) {
   1460 		/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1461 
   1462 		bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1463 		    (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1464 		    KERNEL_PD_SIZE);
   1465 		pt->pt_flags |= PTFLAG_KPT;
   1466 	}
   1467 
   1468 	/* Allocate a page table to map all the page tables for this pmap */
   1469 
   1470 #ifdef DIAGNOSTIC
   1471 	if (pmap->pm_vptpt) {
   1472 		/* XXX What if we have one already ? */
   1473 		panic("pmap_allocpagedir: have pt already\n");
   1474 	}
   1475 #endif	/* DIAGNOSTIC */
   1476 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1477 	if (pmap->pm_vptpt == 0) {
   1478 		pmap_freepagedir(pmap);
   1479 		return(ENOMEM);
   1480 	}
   1481 
   1482 	(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
   1483 	pmap->pm_pptpt &= PG_FRAME;
   1484 	/* Revoke cacheability and bufferability */
   1485 	/* XXX should be done better than this */
   1486 	pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
   1487 	*pte = *pte & ~(PT_C | PT_B);
   1488 
   1489 	/* Wire in this page table */
   1490 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
   1491 
   1492 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1493 
   1494 	/*
   1495 	 * Map the kernel page tables for 0xf0000000 +
   1496 	 * into the page table used to map the
   1497 	 * pmap's page tables
   1498 	 */
   1499 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1500 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1501 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1502 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1503 	    (KERNEL_PD_SIZE >> 2));
   1504 
   1505 	return(0);
   1506 }
   1507 
   1508 
   1509 /*
   1510  * Initialize a preallocated and zeroed pmap structure,
   1511  * such as one in a vmspace structure.
   1512  */
   1513 
   1514 void
   1515 pmap_pinit(pmap)
   1516 	struct pmap *pmap;
   1517 {
   1518 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1519 
   1520 	/* Keep looping until we succeed in allocating a page directory */
   1521 	while (pmap_allocpagedir(pmap) != 0) {
   1522 		/*
   1523 		 * Ok we failed to allocate a suitable block of memory for an
   1524 		 * L1 page table. This means that either:
   1525 		 * 1. 16KB of virtual address space could not be allocated
   1526 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1527 		 *    could not be allocated.
   1528 		 *
   1529 		 * Since we cannot fail we will sleep for a while and try
   1530 		 * again.
   1531 		 */
   1532 		(void) ltsleep(&lbolt, PVM, "l1ptwait", hz >> 3, NULL);
   1533 	}
   1534 
   1535 	/* Map zero page for the pmap. This will also map the L2 for it */
   1536 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1537 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1538 	pmap_update(pmap);
   1539 }
   1540 
   1541 
   1542 void
   1543 pmap_freepagedir(pmap)
   1544 	struct pmap *pmap;
   1545 {
   1546 	/* Free the memory used for the page table mapping */
   1547 	if (pmap->pm_vptpt != 0)
   1548 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1549 
   1550 	/* junk the L1 page table */
   1551 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1552 		/* Add the page table to the queue */
   1553 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1554 		++l1pt_static_queue_count;
   1555 	} else if (l1pt_queue_count < 8) {
   1556 		/* Add the page table to the queue */
   1557 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1558 		++l1pt_queue_count;
   1559 	} else
   1560 		pmap_free_l1pt(pmap->pm_l1pt);
   1561 }
   1562 
   1563 
   1564 /*
   1565  * Retire the given physical map from service.
   1566  * Should only be called if the map contains no valid mappings.
   1567  */
   1568 
   1569 void
   1570 pmap_destroy(pmap)
   1571 	struct pmap *pmap;
   1572 {
   1573 	struct vm_page *page;
   1574 	int count;
   1575 
   1576 	if (pmap == NULL)
   1577 		return;
   1578 
   1579 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1580 
   1581 	/*
   1582 	 * Drop reference count
   1583 	 */
   1584 	simple_lock(&pmap->pm_obj.vmobjlock);
   1585 	count = --pmap->pm_obj.uo_refs;
   1586 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1587 	if (count > 0) {
   1588 		return;
   1589 	}
   1590 
   1591 	/*
   1592 	 * reference count is zero, free pmap resources and then free pmap.
   1593 	 */
   1594 
   1595 	/* Remove the zero page mapping */
   1596 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1597 	pmap_update(pmap);
   1598 
   1599 	/*
   1600 	 * Free any page tables still mapped
   1601 	 * This is only temporay until pmap_enter can count the number
   1602 	 * of mappings made in a page table. Then pmap_remove() can
   1603 	 * reduce the count and free the pagetable when the count
   1604 	 * reaches zero.  Note that entries in this list should match the
   1605 	 * contents of the ptpt, however this is faster than walking a 1024
   1606 	 * entries looking for pt's
   1607 	 * taken from i386 pmap.c
   1608 	 */
   1609 	while (pmap->pm_obj.memq.tqh_first != NULL) {
   1610 		page = pmap->pm_obj.memq.tqh_first;
   1611 #ifdef DIAGNOSTIC
   1612 		if (page->flags & PG_BUSY)
   1613 			panic("pmap_release: busy page table page");
   1614 #endif
   1615 		/* pmap_page_protect?  currently no need for it. */
   1616 
   1617 		page->wire_count = 0;
   1618 		uvm_pagefree(page);
   1619 	}
   1620 
   1621 	/* Free the page dir */
   1622 	pmap_freepagedir(pmap);
   1623 
   1624 	/* return the pmap to the pool */
   1625 	pool_put(&pmap_pmap_pool, pmap);
   1626 }
   1627 
   1628 
   1629 /*
   1630  * void pmap_reference(struct pmap *pmap)
   1631  *
   1632  * Add a reference to the specified pmap.
   1633  */
   1634 
   1635 void
   1636 pmap_reference(pmap)
   1637 	struct pmap *pmap;
   1638 {
   1639 	if (pmap == NULL)
   1640 		return;
   1641 
   1642 	simple_lock(&pmap->pm_lock);
   1643 	pmap->pm_obj.uo_refs++;
   1644 	simple_unlock(&pmap->pm_lock);
   1645 }
   1646 
   1647 /*
   1648  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1649  *
   1650  * Return the start and end addresses of the kernel's virtual space.
   1651  * These values are setup in pmap_bootstrap and are updated as pages
   1652  * are allocated.
   1653  */
   1654 
   1655 void
   1656 pmap_virtual_space(start, end)
   1657 	vaddr_t *start;
   1658 	vaddr_t *end;
   1659 {
   1660 	*start = virtual_start;
   1661 	*end = virtual_end;
   1662 }
   1663 
   1664 
   1665 /*
   1666  * Activate the address space for the specified process.  If the process
   1667  * is the current process, load the new MMU context.
   1668  */
   1669 void
   1670 pmap_activate(p)
   1671 	struct proc *p;
   1672 {
   1673 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1674 	struct pcb *pcb = &p->p_addr->u_pcb;
   1675 
   1676 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1677 	    (paddr_t *)&pcb->pcb_pagedir);
   1678 
   1679 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1680 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1681 
   1682 	if (p == curproc) {
   1683 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1684 		setttb((u_int)pcb->pcb_pagedir);
   1685 	}
   1686 #if 0
   1687 	pmap->pm_pdchanged = FALSE;
   1688 #endif
   1689 }
   1690 
   1691 
   1692 /*
   1693  * Deactivate the address space of the specified process.
   1694  */
   1695 void
   1696 pmap_deactivate(p)
   1697 	struct proc *p;
   1698 {
   1699 }
   1700 
   1701 
   1702 /*
   1703  * pmap_clean_page()
   1704  *
   1705  * This is a local function used to work out the best strategy to clean
   1706  * a single page referenced by its entry in the PV table. It's used by
   1707  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1708  *
   1709  * Its policy is effectively:
   1710  *  o If there are no mappings, we don't bother doing anything with the cache.
   1711  *  o If there is one mapping, we clean just that page.
   1712  *  o If there are multiple mappings, we clean the entire cache.
   1713  *
   1714  * So that some functions can be further optimised, it returns 0 if it didn't
   1715  * clean the entire cache, or 1 if it did.
   1716  *
   1717  * XXX One bug in this routine is that if the pv_entry has a single page
   1718  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1719  * just the 1 page. Since this should not occur in everyday use and if it does
   1720  * it will just result in not the most efficient clean for the page.
   1721  */
   1722 static int
   1723 pmap_clean_page(pv, is_src)
   1724 	struct pv_entry *pv;
   1725 	boolean_t is_src;
   1726 {
   1727 	struct pmap *pmap;
   1728 	struct pv_entry *npv;
   1729 	int cache_needs_cleaning = 0;
   1730 	vaddr_t page_to_clean = 0;
   1731 
   1732 	if (pv == NULL)
   1733 		/* nothing mapped in so nothing to flush */
   1734 		return (0);
   1735 
   1736 	/* Since we flush the cache each time we change curproc, we
   1737 	 * only need to flush the page if it is in the current pmap.
   1738 	 */
   1739 	if (curproc)
   1740 		pmap = curproc->p_vmspace->vm_map.pmap;
   1741 	else
   1742 		pmap = pmap_kernel();
   1743 
   1744 	for (npv = pv; npv; npv = npv->pv_next) {
   1745 		if (npv->pv_pmap == pmap) {
   1746 			/* The page is mapped non-cacheable in
   1747 			 * this map.  No need to flush the cache.
   1748 			 */
   1749 			if (npv->pv_flags & PT_NC) {
   1750 #ifdef DIAGNOSTIC
   1751 				if (cache_needs_cleaning)
   1752 					panic("pmap_clean_page: "
   1753 							"cache inconsistency");
   1754 #endif
   1755 				break;
   1756 			}
   1757 #if 0
   1758 			/* This doesn't work, because pmap_protect
   1759 			   doesn't flush changes on pages that it
   1760 			   has write-protected.  */
   1761 
   1762 			/* If the page is not writeable and this
   1763 			   is the source, then there is no need
   1764 			   to flush it from the cache.  */
   1765 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1766 				continue;
   1767 #endif
   1768 			if (cache_needs_cleaning){
   1769 				page_to_clean = 0;
   1770 				break;
   1771 			}
   1772 			else
   1773 				page_to_clean = npv->pv_va;
   1774 			cache_needs_cleaning = 1;
   1775 		}
   1776 	}
   1777 
   1778 	if (page_to_clean)
   1779 		cpu_cache_purgeID_rng(page_to_clean, NBPG);
   1780 	else if (cache_needs_cleaning) {
   1781 		cpu_cache_purgeID();
   1782 		return (1);
   1783 	}
   1784 	return (0);
   1785 }
   1786 
   1787 /*
   1788  * pmap_find_pv()
   1789  *
   1790  * This is a local function that finds a PV head for a given physical page.
   1791  * This is a common op, and this function removes loads of ifdefs in the code.
   1792  */
   1793 static __inline struct pv_head *
   1794 pmap_find_pvh(phys)
   1795 	paddr_t phys;
   1796 {
   1797 	int bank, off;
   1798 	struct pv_head *pvh;
   1799 
   1800 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
   1801 		panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
   1802 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   1803 	return (pvh);
   1804 }
   1805 
   1806 /*
   1807  * pmap_zero_page()
   1808  *
   1809  * Zero a given physical page by mapping it at a page hook point.
   1810  * In doing the zero page op, the page we zero is mapped cachable, as with
   1811  * StrongARM accesses to non-cached pages are non-burst making writing
   1812  * _any_ bulk data very slow.
   1813  */
   1814 void
   1815 pmap_zero_page(phys)
   1816 	paddr_t phys;
   1817 {
   1818 	struct pv_head *pvh;
   1819 
   1820 	/* Get an entry for this page, and clean it it. */
   1821 	pvh = pmap_find_pvh(phys);
   1822 	simple_lock(&pvh->pvh_lock);
   1823 	pmap_clean_page(pvh->pvh_list, FALSE);
   1824 	simple_unlock(&pvh->pvh_lock);
   1825 
   1826 	/*
   1827 	 * Hook in the page, zero it, and purge the cache for that
   1828 	 * zeroed page. Invalidate the TLB as needed.
   1829 	 */
   1830 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1831 	cpu_tlb_flushD_SE(page_hook0.va);
   1832 	bzero_page(page_hook0.va);
   1833 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1834 }
   1835 
   1836 /* pmap_pageidlezero()
   1837  *
   1838  * The same as above, except that we assume that the page is not
   1839  * mapped.  This means we never have to flush the cache first.  Called
   1840  * from the idle loop.
   1841  */
   1842 boolean_t
   1843 pmap_pageidlezero(phys)
   1844     paddr_t phys;
   1845 {
   1846 	int i, *ptr;
   1847 	boolean_t rv = TRUE;
   1848 
   1849 #ifdef DIAGNOSTIC
   1850 	struct pv_head *pvh;
   1851 
   1852 	pvh = pmap_find_pvh(phys);
   1853 	if (pvh->pvh_list != NULL)
   1854 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1855 #endif
   1856 
   1857 	/*
   1858 	 * Hook in the page, zero it, and purge the cache for that
   1859 	 * zeroed page. Invalidate the TLB as needed.
   1860 	 */
   1861 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1862 	cpu_tlb_flushD_SE(page_hook0.va);
   1863 
   1864 	for (i = 0, ptr = (int *)page_hook0.va;
   1865 			i < (NBPG / sizeof(int)); i++) {
   1866 		if (sched_whichqs != 0) {
   1867 			/*
   1868 			 * A process has become ready.  Abort now,
   1869 			 * so we don't keep it waiting while we
   1870 			 * do slow memory access to finish this
   1871 			 * page.
   1872 			 */
   1873 			rv = FALSE;
   1874 			break;
   1875 		}
   1876 		*ptr++ = 0;
   1877 	}
   1878 
   1879 	if (rv)
   1880 		/*
   1881 		 * if we aborted we'll rezero this page again later so don't
   1882 		 * purge it unless we finished it
   1883 		 */
   1884 		cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1885 	return (rv);
   1886 }
   1887 
   1888 /*
   1889  * pmap_copy_page()
   1890  *
   1891  * Copy one physical page into another, by mapping the pages into
   1892  * hook points. The same comment regarding cachability as in
   1893  * pmap_zero_page also applies here.
   1894  */
   1895 void
   1896 pmap_copy_page(src, dest)
   1897 	paddr_t src;
   1898 	paddr_t dest;
   1899 {
   1900 	struct pv_head *src_pvh, *dest_pvh;
   1901 	boolean_t cleanedcache;
   1902 
   1903 	/* Get PV entries for the pages, and clean them if needed. */
   1904 	src_pvh = pmap_find_pvh(src);
   1905 
   1906 	simple_lock(&src_pvh->pvh_lock);
   1907 	cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
   1908 	simple_unlock(&src_pvh->pvh_lock);
   1909 
   1910 	if (cleanedcache == 0) {
   1911 		dest_pvh = pmap_find_pvh(dest);
   1912 		simple_lock(&dest_pvh->pvh_lock);
   1913 		pmap_clean_page(dest_pvh->pvh_list, FALSE);
   1914 		simple_unlock(&dest_pvh->pvh_lock);
   1915 	}
   1916 	/*
   1917 	 * Map the pages into the page hook points, copy them, and purge
   1918 	 * the cache for the appropriate page. Invalidate the TLB
   1919 	 * as required.
   1920 	 */
   1921 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1922 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1923 	cpu_tlb_flushD_SE(page_hook0.va);
   1924 	cpu_tlb_flushD_SE(page_hook1.va);
   1925 	bcopy_page(page_hook0.va, page_hook1.va);
   1926 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1927 	cpu_cache_purgeD_rng(page_hook1.va, NBPG);
   1928 }
   1929 
   1930 /*
   1931  * int pmap_next_phys_page(paddr_t *addr)
   1932  *
   1933  * Allocate another physical page returning true or false depending
   1934  * on whether a page could be allocated.
   1935  */
   1936 
   1937 paddr_t
   1938 pmap_next_phys_page(addr)
   1939 	paddr_t addr;
   1940 
   1941 {
   1942 	int loop;
   1943 
   1944 	if (addr < bootconfig.dram[0].address)
   1945 		return(bootconfig.dram[0].address);
   1946 
   1947 	loop = 0;
   1948 
   1949 	while (bootconfig.dram[loop].address != 0
   1950 	    && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
   1951 		++loop;
   1952 
   1953 	if (bootconfig.dram[loop].address == 0)
   1954 		return(0);
   1955 
   1956 	addr += NBPG;
   1957 
   1958 	if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
   1959 		if (bootconfig.dram[loop + 1].address == 0)
   1960 			return(0);
   1961 		addr = bootconfig.dram[loop + 1].address;
   1962 	}
   1963 
   1964 	return(addr);
   1965 }
   1966 
   1967 #if 0
   1968 void
   1969 pmap_pte_addref(pmap, va)
   1970 	struct pmap *pmap;
   1971 	vaddr_t va;
   1972 {
   1973 	pd_entry_t *pde;
   1974 	paddr_t pa;
   1975 	struct vm_page *m;
   1976 
   1977 	if (pmap == pmap_kernel())
   1978 		return;
   1979 
   1980 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1981 	pa = pmap_pte_pa(pde);
   1982 	m = PHYS_TO_VM_PAGE(pa);
   1983 	++m->wire_count;
   1984 #ifdef MYCROFT_HACK
   1985 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1986 	    pmap, va, pde, pa, m, m->wire_count);
   1987 #endif
   1988 }
   1989 
   1990 void
   1991 pmap_pte_delref(pmap, va)
   1992 	struct pmap *pmap;
   1993 	vaddr_t va;
   1994 {
   1995 	pd_entry_t *pde;
   1996 	paddr_t pa;
   1997 	struct vm_page *m;
   1998 
   1999 	if (pmap == pmap_kernel())
   2000 		return;
   2001 
   2002 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   2003 	pa = pmap_pte_pa(pde);
   2004 	m = PHYS_TO_VM_PAGE(pa);
   2005 	--m->wire_count;
   2006 #ifdef MYCROFT_HACK
   2007 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2008 	    pmap, va, pde, pa, m, m->wire_count);
   2009 #endif
   2010 	if (m->wire_count == 0) {
   2011 #ifdef MYCROFT_HACK
   2012 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2013 		    pmap, va, pde, pa, m);
   2014 #endif
   2015 		pmap_unmap_in_l1(pmap, va);
   2016 		uvm_pagefree(m);
   2017 		--pmap->pm_stats.resident_count;
   2018 	}
   2019 }
   2020 #else
   2021 #define	pmap_pte_addref(pmap, va)
   2022 #define	pmap_pte_delref(pmap, va)
   2023 #endif
   2024 
   2025 /*
   2026  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2027  * there is more than one mapping and at least one of them is writable.
   2028  * Since we purge the cache on every context switch, we only need to check for
   2029  * other mappings within the same pmap, or kernel_pmap.
   2030  * This function is also called when a page is unmapped, to possibly reenable
   2031  * caching on any remaining mappings.
   2032  *
   2033  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2034  */
   2035 void
   2036 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2037 	boolean_t clear_cache)
   2038 {
   2039 	struct pv_entry *pv, *npv;
   2040 	pt_entry_t *pte;
   2041 	int entries = 0;
   2042 	int writeable = 0;
   2043 	int cacheable_entries = 0;
   2044 
   2045 	pv = pvh->pvh_list;
   2046 	KASSERT(ptes != NULL);
   2047 
   2048 	/*
   2049 	 * Count mappings and writable mappings in this pmap.
   2050 	 * Keep a pointer to the first one.
   2051 	 */
   2052 	for (npv = pv; npv; npv = npv->pv_next) {
   2053 		/* Count mappings in the same pmap */
   2054 		if (pmap == npv->pv_pmap) {
   2055 			if (entries++ == 0)
   2056 				pv = npv;
   2057 			/* Cacheable mappings */
   2058 			if ((npv->pv_flags & PT_NC) == 0)
   2059 				cacheable_entries++;
   2060 			/* Writeable mappings */
   2061 			if (npv->pv_flags & PT_Wr)
   2062 				++writeable;
   2063 		}
   2064 	}
   2065 
   2066 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2067 		"writeable %d cacheable %d %s\n", pmap, entries, writeable,
   2068 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2069 
   2070 	/*
   2071 	 * Enable or disable caching as necessary.
   2072 	 * We do a quick check of the first PTE to avoid walking the list if
   2073 	 * we're already in the right state.
   2074 	 */
   2075 	if (entries > 1 && writeable) {
   2076 		if (cacheable_entries == 0)
   2077 		    return;
   2078 		if (pv->pv_flags & PT_NC) {
   2079 #ifdef DIAGNOSTIC
   2080     			/* We have cacheable entries, but the first one
   2081  			isn't among them. Something is wrong.  */
   2082     			if (cacheable_entries)
   2083 				panic("pmap_vac_me_harder: "
   2084 	    				"cacheable inconsistent");
   2085 #endif
   2086 			return;
   2087 		}
   2088 		pte =  &ptes[arm_byte_to_page(pv->pv_va)];
   2089 		*pte &= ~(PT_C | PT_B);
   2090 		pv->pv_flags |= PT_NC;
   2091 		if (clear_cache && cacheable_entries < 4) {
   2092 			cpu_cache_purgeID_rng(pv->pv_va, NBPG);
   2093 			cpu_tlb_flushID_SE(pv->pv_va);
   2094 		}
   2095 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   2096 			if (pmap == npv->pv_pmap &&
   2097 			    (npv->pv_flags & PT_NC) == 0) {
   2098 				ptes[arm_byte_to_page(npv->pv_va)] &=
   2099 				    ~(PT_C | PT_B);
   2100  				npv->pv_flags |= PT_NC;
   2101 				if (clear_cache && cacheable_entries < 4) {
   2102 					cpu_cache_purgeID_rng(npv->pv_va,
   2103 					    NBPG);
   2104 					cpu_tlb_flushID_SE(npv->pv_va);
   2105 				}
   2106 			}
   2107 		}
   2108 		if (clear_cache && cacheable_entries >= 4) {
   2109 			cpu_cache_purgeID();
   2110 			cpu_tlb_flushID();
   2111 		}
   2112 	} else if (entries > 0) {
   2113 		if ((pv->pv_flags & PT_NC) == 0)
   2114 			return;
   2115 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   2116 		*pte |= (PT_C | PT_B);
   2117 		pv->pv_flags &= ~PT_NC;
   2118 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   2119 			if (pmap == npv->pv_pmap &&
   2120 				(npv->pv_flags & PT_NC)) {
   2121 				ptes[arm_byte_to_page(npv->pv_va)] |=
   2122 				    (PT_C | PT_B);
   2123 				npv->pv_flags &= ~PT_NC;
   2124 			}
   2125 		}
   2126 	}
   2127 }
   2128 
   2129 /*
   2130  * pmap_remove()
   2131  *
   2132  * pmap_remove is responsible for nuking a number of mappings for a range
   2133  * of virtual address space in the current pmap. To do this efficiently
   2134  * is interesting, because in a number of cases a wide virtual address
   2135  * range may be supplied that contains few actual mappings. So, the
   2136  * optimisations are:
   2137  *  1. Try and skip over hunks of address space for which an L1 entry
   2138  *     does not exist.
   2139  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2140  *     maybe do just a partial cache clean. This path of execution is
   2141  *     complicated by the fact that the cache must be flushed _before_
   2142  *     the PTE is nuked, being a VAC :-)
   2143  *  3. Maybe later fast-case a single page, but I don't think this is
   2144  *     going to make _that_ much difference overall.
   2145  */
   2146 
   2147 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2148 
   2149 void
   2150 pmap_remove(pmap, sva, eva)
   2151 	struct pmap *pmap;
   2152 	vaddr_t sva;
   2153 	vaddr_t eva;
   2154 {
   2155 	int cleanlist_idx = 0;
   2156 	struct pagelist {
   2157 		vaddr_t va;
   2158 		pt_entry_t *pte;
   2159 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2160 	pt_entry_t *pte = 0, *ptes;
   2161 	paddr_t pa;
   2162 	int pmap_active;
   2163 	struct pv_head *pvh;
   2164 
   2165 	/* Exit quick if there is no pmap */
   2166 	if (!pmap)
   2167 		return;
   2168 
   2169 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2170 
   2171 	sva &= PG_FRAME;
   2172 	eva &= PG_FRAME;
   2173 
   2174 	/*
   2175 	 * we lock in the pmap => pv_head direction
   2176 	 */
   2177 	PMAP_MAP_TO_HEAD_LOCK();
   2178 
   2179 	ptes = pmap_map_ptes(pmap);
   2180 	/* Get a page table pointer */
   2181 	while (sva < eva) {
   2182 		if (pmap_pde_v(pmap_pde(pmap, sva)))
   2183 			break;
   2184 		sva = (sva & PD_MASK) + NBPD;
   2185 	}
   2186 
   2187 	pte = &ptes[arm_byte_to_page(sva)];
   2188 	/* Note if the pmap is active thus require cache and tlb cleans */
   2189 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2190 	    || (pmap == pmap_kernel()))
   2191 		pmap_active = 1;
   2192 	else
   2193 		pmap_active = 0;
   2194 
   2195 	/* Now loop along */
   2196 	while (sva < eva) {
   2197 		/* Check if we can move to the next PDE (l1 chunk) */
   2198 		if (!(sva & PT_MASK))
   2199 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   2200 				sva += NBPD;
   2201 				pte += arm_byte_to_page(NBPD);
   2202 				continue;
   2203 			}
   2204 
   2205 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2206 		if (pmap_pte_v(pte)) {
   2207 			int bank, off;
   2208 
   2209 			/* Update statistics */
   2210 			--pmap->pm_stats.resident_count;
   2211 
   2212 			/*
   2213 			 * Add this page to our cache remove list, if we can.
   2214 			 * If, however the cache remove list is totally full,
   2215 			 * then do a complete cache invalidation taking note
   2216 			 * to backtrack the PTE table beforehand, and ignore
   2217 			 * the lists in future because there's no longer any
   2218 			 * point in bothering with them (we've paid the
   2219 			 * penalty, so will carry on unhindered). Otherwise,
   2220 			 * when we fall out, we just clean the list.
   2221 			 */
   2222 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2223 			pa = pmap_pte_pa(pte);
   2224 
   2225 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2226 				/* Add to the clean list. */
   2227 				cleanlist[cleanlist_idx].pte = pte;
   2228 				cleanlist[cleanlist_idx].va = sva;
   2229 				cleanlist_idx++;
   2230 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2231 				int cnt;
   2232 
   2233 				/* Nuke everything if needed. */
   2234 				if (pmap_active) {
   2235 					cpu_cache_purgeID();
   2236 					cpu_tlb_flushID();
   2237 				}
   2238 
   2239 				/*
   2240 				 * Roll back the previous PTE list,
   2241 				 * and zero out the current PTE.
   2242 				 */
   2243 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2244 					*cleanlist[cnt].pte = 0;
   2245 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2246 				}
   2247 				*pte = 0;
   2248 				pmap_pte_delref(pmap, sva);
   2249 				cleanlist_idx++;
   2250 			} else {
   2251 				/*
   2252 				 * We've already nuked the cache and
   2253 				 * TLB, so just carry on regardless,
   2254 				 * and we won't need to do it again
   2255 				 */
   2256 				*pte = 0;
   2257 				pmap_pte_delref(pmap, sva);
   2258 			}
   2259 
   2260 			/*
   2261 			 * Update flags. In a number of circumstances,
   2262 			 * we could cluster a lot of these and do a
   2263 			 * number of sequential pages in one go.
   2264 			 */
   2265 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2266 				struct pv_entry *pve;
   2267 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2268 				simple_lock(&pvh->pvh_lock);
   2269 				pve = pmap_remove_pv(pvh, pmap, sva);
   2270 				pmap_free_pv(pmap, pve);
   2271 				pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2272 				simple_unlock(&pvh->pvh_lock);
   2273 			}
   2274 		}
   2275 		sva += NBPG;
   2276 		pte++;
   2277 	}
   2278 
   2279 	pmap_unmap_ptes(pmap);
   2280 	/*
   2281 	 * Now, if we've fallen through down to here, chances are that there
   2282 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2283 	 */
   2284 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2285 		u_int cnt;
   2286 
   2287 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2288 			if (pmap_active) {
   2289 				cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
   2290 				*cleanlist[cnt].pte = 0;
   2291 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2292 			} else
   2293 				*cleanlist[cnt].pte = 0;
   2294 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2295 		}
   2296 	}
   2297 	PMAP_MAP_TO_HEAD_UNLOCK();
   2298 }
   2299 
   2300 /*
   2301  * Routine:	pmap_remove_all
   2302  * Function:
   2303  *		Removes this physical page from
   2304  *		all physical maps in which it resides.
   2305  *		Reflects back modify bits to the pager.
   2306  */
   2307 
   2308 void
   2309 pmap_remove_all(pa)
   2310 	paddr_t pa;
   2311 {
   2312 	struct pv_entry *pv, *npv;
   2313 	struct pv_head *pvh;
   2314 	struct pmap *pmap;
   2315 	pt_entry_t *pte, *ptes;
   2316 
   2317 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
   2318 
   2319 	/* set pv_head => pmap locking */
   2320 	PMAP_HEAD_TO_MAP_LOCK();
   2321 
   2322 	pvh = pmap_find_pvh(pa);
   2323 	simple_lock(&pvh->pvh_lock);
   2324 
   2325 	pv = pvh->pvh_list;
   2326 	if (pv == NULL)
   2327 	{
   2328 	    PDEBUG(0, printf("free page\n"));
   2329 	    simple_unlock(&pvh->pvh_lock);
   2330 	    PMAP_HEAD_TO_MAP_UNLOCK();
   2331 	    return;
   2332 	}
   2333 	pmap_clean_page(pv, FALSE);
   2334 
   2335 	while (pv) {
   2336 		pmap = pv->pv_pmap;
   2337 		ptes = pmap_map_ptes(pmap);
   2338 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   2339 
   2340 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2341 		    pv->pv_va, pv->pv_flags));
   2342 #ifdef DEBUG
   2343 		if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
   2344 			    || pmap_pte_pa(pte) != pa)
   2345 			panic("pmap_remove_all: bad mapping");
   2346 #endif	/* DEBUG */
   2347 
   2348 		/*
   2349 		 * Update statistics
   2350 		 */
   2351 		--pmap->pm_stats.resident_count;
   2352 
   2353 		/* Wired bit */
   2354 		if (pv->pv_flags & PT_W)
   2355 			--pmap->pm_stats.wired_count;
   2356 
   2357 		/*
   2358 		 * Invalidate the PTEs.
   2359 		 * XXX: should cluster them up and invalidate as many
   2360 		 * as possible at once.
   2361 		 */
   2362 
   2363 #ifdef needednotdone
   2364 reduce wiring count on page table pages as references drop
   2365 #endif
   2366 
   2367 		*pte = 0;
   2368 		pmap_pte_delref(pmap, pv->pv_va);
   2369 
   2370 		npv = pv->pv_next;
   2371 		pmap_free_pv(pmap, pv);
   2372 		pv = npv;
   2373 		pmap_unmap_ptes(pmap);
   2374 	}
   2375 	pvh->pvh_list = NULL;
   2376 	simple_unlock(&pvh->pvh_lock);
   2377 	PMAP_HEAD_TO_MAP_UNLOCK();
   2378 
   2379 	PDEBUG(0, printf("done\n"));
   2380 	cpu_tlb_flushID();
   2381 }
   2382 
   2383 
   2384 /*
   2385  * Set the physical protection on the specified range of this map as requested.
   2386  */
   2387 
   2388 void
   2389 pmap_protect(pmap, sva, eva, prot)
   2390 	struct pmap *pmap;
   2391 	vaddr_t sva;
   2392 	vaddr_t eva;
   2393 	vm_prot_t prot;
   2394 {
   2395 	pt_entry_t *pte = NULL, *ptes;
   2396 	int armprot;
   2397 	int flush = 0;
   2398 	paddr_t pa;
   2399 	int bank, off;
   2400 	struct pv_head *pvh;
   2401 
   2402 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2403 	    pmap, sva, eva, prot));
   2404 
   2405 	if (~prot & VM_PROT_READ) {
   2406 		/* Just remove the mappings. */
   2407 		pmap_remove(pmap, sva, eva);
   2408 		return;
   2409 	}
   2410 	if (prot & VM_PROT_WRITE) {
   2411 		/*
   2412 		 * If this is a read->write transition, just ignore it and let
   2413 		 * uvm_fault() take care of it later.
   2414 		 */
   2415 		return;
   2416 	}
   2417 
   2418 	sva &= PG_FRAME;
   2419 	eva &= PG_FRAME;
   2420 
   2421 	/* Need to lock map->head */
   2422 	PMAP_MAP_TO_HEAD_LOCK();
   2423 
   2424 	ptes = pmap_map_ptes(pmap);
   2425 	/*
   2426 	 * We need to acquire a pointer to a page table page before entering
   2427 	 * the following loop.
   2428 	 */
   2429 	while (sva < eva) {
   2430 		if (pmap_pde_v(pmap_pde(pmap, sva)))
   2431 			break;
   2432 		sva = (sva & PD_MASK) + NBPD;
   2433 	}
   2434 
   2435 	pte = &ptes[arm_byte_to_page(sva)];
   2436 
   2437 	while (sva < eva) {
   2438 		/* only check once in a while */
   2439 		if ((sva & PT_MASK) == 0) {
   2440 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   2441 				/* We can race ahead here, to the next pde. */
   2442 				sva += NBPD;
   2443 				pte += arm_byte_to_page(NBPD);
   2444 				continue;
   2445 			}
   2446 		}
   2447 
   2448 		if (!pmap_pte_v(pte))
   2449 			goto next;
   2450 
   2451 		flush = 1;
   2452 
   2453 		armprot = 0;
   2454 		if (sva < VM_MAXUSER_ADDRESS)
   2455 			armprot |= PT_AP(AP_U);
   2456 		else if (sva < VM_MAX_ADDRESS)
   2457 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2458 		*pte = (*pte & 0xfffff00f) | armprot;
   2459 
   2460 		pa = pmap_pte_pa(pte);
   2461 
   2462 		/* Get the physical page index */
   2463 
   2464 		/* Clear write flag */
   2465 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2466 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2467 			simple_lock(&pvh->pvh_lock);
   2468 			(void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
   2469 			pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2470 			simple_unlock(&pvh->pvh_lock);
   2471 		}
   2472 
   2473 next:
   2474 		sva += NBPG;
   2475 		pte++;
   2476 	}
   2477 	pmap_unmap_ptes(pmap);
   2478 	PMAP_MAP_TO_HEAD_UNLOCK();
   2479 	if (flush)
   2480 		cpu_tlb_flushID();
   2481 }
   2482 
   2483 /*
   2484  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2485  * int flags)
   2486  *
   2487  *      Insert the given physical page (p) at
   2488  *      the specified virtual address (v) in the
   2489  *      target physical map with the protection requested.
   2490  *
   2491  *      If specified, the page will be wired down, meaning
   2492  *      that the related pte can not be reclaimed.
   2493  *
   2494  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2495  *      or lose information.  That is, this routine must actually
   2496  *      insert this page into the given map NOW.
   2497  */
   2498 
   2499 int
   2500 pmap_enter(pmap, va, pa, prot, flags)
   2501 	struct pmap *pmap;
   2502 	vaddr_t va;
   2503 	paddr_t pa;
   2504 	vm_prot_t prot;
   2505 	int flags;
   2506 {
   2507 	pt_entry_t *pte, *ptes;
   2508 	u_int npte;
   2509 	int bank, off;
   2510 	paddr_t opa;
   2511 	int nflags;
   2512 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2513 	struct pv_entry *pve;
   2514 	struct pv_head	*pvh;
   2515 	int error;
   2516 
   2517 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2518 	    va, pa, pmap, prot, wired));
   2519 
   2520 #ifdef DIAGNOSTIC
   2521 	/* Valid address ? */
   2522 	if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
   2523 		panic("pmap_enter: too big");
   2524 	if (pmap != pmap_kernel() && va != 0) {
   2525 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2526 			panic("pmap_enter: kernel page in user map");
   2527 	} else {
   2528 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2529 			panic("pmap_enter: user page in kernel map");
   2530 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2531 			panic("pmap_enter: entering PT page");
   2532 	}
   2533 #endif
   2534 	/* get lock */
   2535 	PMAP_MAP_TO_HEAD_LOCK();
   2536 	/*
   2537 	 * Get a pointer to the pte for this virtual address. If the
   2538 	 * pte pointer is NULL then we are missing the L2 page table
   2539 	 * so we need to create one.
   2540 	 */
   2541 	/* XXX horrible hack to get us working with lockdebug */
   2542 	simple_lock(&pmap->pm_obj.vmobjlock);
   2543 	pte = pmap_pte(pmap, va);
   2544 	if (!pte) {
   2545 		struct vm_page *ptp;
   2546 
   2547 		/* if failure is allowed then don't try too hard */
   2548 		ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
   2549 		if (ptp == NULL) {
   2550 			if (flags & PMAP_CANFAIL) {
   2551 				error = ENOMEM;
   2552 				goto out;
   2553 			}
   2554 			panic("pmap_enter: get ptp failed");
   2555 		}
   2556 
   2557 		pte = pmap_pte(pmap, va);
   2558 #ifdef DIAGNOSTIC
   2559 		if (!pte)
   2560 			panic("pmap_enter: no pte");
   2561 #endif
   2562 	}
   2563 
   2564 	nflags = 0;
   2565 	if (prot & VM_PROT_WRITE)
   2566 		nflags |= PT_Wr;
   2567 	if (wired)
   2568 		nflags |= PT_W;
   2569 
   2570 	/* More debugging info */
   2571 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2572 	    *pte));
   2573 
   2574 	/* Is the pte valid ? If so then this page is already mapped */
   2575 	if (pmap_pte_v(pte)) {
   2576 		/* Get the physical address of the current page mapped */
   2577 		opa = pmap_pte_pa(pte);
   2578 
   2579 #ifdef MYCROFT_HACK
   2580 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2581 #endif
   2582 
   2583 		/* Are we mapping the same page ? */
   2584 		if (opa == pa) {
   2585 			/* All we must be doing is changing the protection */
   2586 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2587 			    va, pa));
   2588 
   2589 			/* Has the wiring changed ? */
   2590 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2591 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2592 				simple_lock(&pvh->pvh_lock);
   2593 				(void) pmap_modify_pv(pmap, va, pvh,
   2594 				    PT_Wr | PT_W, nflags);
   2595 				simple_unlock(&pvh->pvh_lock);
   2596  			} else {
   2597 				pvh = NULL;
   2598 			}
   2599 		} else {
   2600 			/* We are replacing the page with a new one. */
   2601 			cpu_cache_purgeID_rng(va, NBPG);
   2602 
   2603 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2604 			    va, pa, opa));
   2605 
   2606 			/*
   2607 			 * If it is part of our managed memory then we
   2608 			 * must remove it from the PV list
   2609 			 */
   2610 			if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
   2611 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2612 				simple_lock(&pvh->pvh_lock);
   2613 				pve = pmap_remove_pv(pvh, pmap, va);
   2614 				simple_unlock(&pvh->pvh_lock);
   2615 			} else {
   2616 				pve = NULL;
   2617 			}
   2618 
   2619 			goto enter;
   2620 		}
   2621 	} else {
   2622 		opa = 0;
   2623 		pve = NULL;
   2624 		pmap_pte_addref(pmap, va);
   2625 
   2626 		/* pte is not valid so we must be hooking in a new page */
   2627 		++pmap->pm_stats.resident_count;
   2628 
   2629 	enter:
   2630 		/*
   2631 		 * Enter on the PV list if part of our managed memory
   2632 		 */
   2633 		bank = vm_physseg_find(atop(pa), &off);
   2634 
   2635 		if (pmap_initialized && (bank != -1)) {
   2636 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2637 			if (pve == NULL) {
   2638 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2639 				if (pve == NULL) {
   2640 					if (flags & PMAP_CANFAIL) {
   2641 						error = ENOMEM;
   2642 						goto out;
   2643 					}
   2644 					panic("pmap_enter: no pv entries available");
   2645 				}
   2646 			}
   2647 			/* enter_pv locks pvh when adding */
   2648 			pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
   2649 		} else {
   2650 			pvh = NULL;
   2651 			if (pve != NULL)
   2652 				pmap_free_pv(pmap, pve);
   2653 		}
   2654 	}
   2655 
   2656 #ifdef MYCROFT_HACK
   2657 	if (mycroft_hack)
   2658 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2659 #endif
   2660 
   2661 	/* Construct the pte, giving the correct access. */
   2662 	npte = (pa & PG_FRAME);
   2663 
   2664 	/* VA 0 is magic. */
   2665 	if (pmap != pmap_kernel() && va != 0)
   2666 		npte |= PT_AP(AP_U);
   2667 
   2668 	if (pmap_initialized && bank != -1) {
   2669 #ifdef DIAGNOSTIC
   2670 		if ((flags & VM_PROT_ALL) & ~prot)
   2671 			panic("pmap_enter: access_type exceeds prot");
   2672 #endif
   2673 		npte |= PT_C | PT_B;
   2674 		if (flags & VM_PROT_WRITE) {
   2675 			npte |= L2_SPAGE | PT_AP(AP_W);
   2676 			vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2677 		} else if (flags & VM_PROT_ALL) {
   2678 			npte |= L2_SPAGE;
   2679 			vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2680 		} else
   2681 			npte |= L2_INVAL;
   2682 	} else {
   2683 		if (prot & VM_PROT_WRITE)
   2684 			npte |= L2_SPAGE | PT_AP(AP_W);
   2685 		else if (prot & VM_PROT_ALL)
   2686 			npte |= L2_SPAGE;
   2687 		else
   2688 			npte |= L2_INVAL;
   2689 	}
   2690 
   2691 #ifdef MYCROFT_HACK
   2692 	if (mycroft_hack)
   2693 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2694 #endif
   2695 
   2696 	*pte = npte;
   2697 
   2698 	if (pmap_initialized && bank != -1)
   2699 	{
   2700 		boolean_t pmap_active = FALSE;
   2701 		/* XXX this will change once the whole of pmap_enter uses
   2702 		 * map_ptes
   2703 		 */
   2704 		ptes = pmap_map_ptes(pmap);
   2705 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2706 		    || (pmap == pmap_kernel()))
   2707 			pmap_active = TRUE;
   2708 		simple_lock(&pvh->pvh_lock);
   2709  		pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
   2710 		simple_unlock(&pvh->pvh_lock);
   2711 		pmap_unmap_ptes(pmap);
   2712 	}
   2713 
   2714 	/* Better flush the TLB ... */
   2715 	cpu_tlb_flushID_SE(va);
   2716 	error = 0;
   2717 out:
   2718 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2719 	PMAP_MAP_TO_HEAD_UNLOCK();
   2720 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2721 
   2722 	return error;
   2723 }
   2724 
   2725 void
   2726 pmap_kenter_pa(va, pa, prot)
   2727 	vaddr_t va;
   2728 	paddr_t pa;
   2729 	vm_prot_t prot;
   2730 {
   2731 	struct pmap *pmap = pmap_kernel();
   2732 	pt_entry_t *pte;
   2733 	struct vm_page *pg;
   2734 
   2735 	if (!pmap_pde_v(pmap_pde(pmap, va))) {
   2736 
   2737 		/*
   2738 		 * For the kernel pmaps it would be better to ensure
   2739 		 * that they are always present, and to grow the
   2740 		 * kernel as required.
   2741 		 */
   2742 
   2743 	    	/* must lock the pmap */
   2744 	    	simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
   2745 		/* Allocate a page table */
   2746 		pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
   2747 		    UVM_PGA_USERESERVE | UVM_PGA_ZERO);
   2748 		if (pg == NULL) {
   2749 			panic("pmap_kenter_pa: no free pages");
   2750 		}
   2751 		pg->flags &= ~PG_BUSY;	/* never busy */
   2752 
   2753 		/* Wire this page table into the L1. */
   2754 		pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
   2755 		simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
   2756 	}
   2757 	pte = vtopte(va);
   2758 	KASSERT(!pmap_pte_v(pte));
   2759 	*pte = L2_PTE(pa, AP_KRW);
   2760 }
   2761 
   2762 void
   2763 pmap_kremove(va, len)
   2764 	vaddr_t va;
   2765 	vsize_t len;
   2766 {
   2767 	pt_entry_t *pte;
   2768 
   2769 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2770 
   2771 		/*
   2772 		 * We assume that we will only be called with small
   2773 		 * regions of memory.
   2774 		 */
   2775 
   2776 		KASSERT(pmap_pde_v(pmap_pde(pmap_kernel(), va)));
   2777 		pte = vtopte(va);
   2778 		cpu_cache_purgeID_rng(va, PAGE_SIZE);
   2779 		*pte = 0;
   2780 		cpu_tlb_flushID_SE(va);
   2781 	}
   2782 }
   2783 
   2784 /*
   2785  * pmap_page_protect:
   2786  *
   2787  * Lower the permission for all mappings to a given page.
   2788  */
   2789 
   2790 void
   2791 pmap_page_protect(pg, prot)
   2792 	struct vm_page *pg;
   2793 	vm_prot_t prot;
   2794 {
   2795 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2796 
   2797 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
   2798 
   2799 	switch(prot) {
   2800 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2801 	case VM_PROT_READ|VM_PROT_WRITE:
   2802 		return;
   2803 
   2804 	case VM_PROT_READ:
   2805 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2806 		pmap_copy_on_write(pa);
   2807 		break;
   2808 
   2809 	default:
   2810 		pmap_remove_all(pa);
   2811 		break;
   2812 	}
   2813 }
   2814 
   2815 
   2816 /*
   2817  * Routine:	pmap_unwire
   2818  * Function:	Clear the wired attribute for a map/virtual-address
   2819  *		pair.
   2820  * In/out conditions:
   2821  *		The mapping must already exist in the pmap.
   2822  */
   2823 
   2824 void
   2825 pmap_unwire(pmap, va)
   2826 	struct pmap *pmap;
   2827 	vaddr_t va;
   2828 {
   2829 	pt_entry_t *pte;
   2830 	paddr_t pa;
   2831 	int bank, off;
   2832 	struct pv_head *pvh;
   2833 
   2834 	/*
   2835 	 * Make sure pmap is valid. -dct
   2836 	 */
   2837 	if (pmap == NULL)
   2838 		return;
   2839 
   2840 	/* Get the pte */
   2841 	pte = pmap_pte(pmap, va);
   2842 	if (!pte)
   2843 		return;
   2844 
   2845 	/* Extract the physical address of the page */
   2846 	pa = pmap_pte_pa(pte);
   2847 
   2848 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2849 		return;
   2850 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2851 	simple_lock(&pvh->pvh_lock);
   2852 	/* Update the wired bit in the pv entry for this page. */
   2853 	(void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
   2854 	simple_unlock(&pvh->pvh_lock);
   2855 }
   2856 
   2857 /*
   2858  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   2859  *
   2860  * Return the pointer to a page table entry corresponding to the supplied
   2861  * virtual address.
   2862  *
   2863  * The page directory is first checked to make sure that a page table
   2864  * for the address in question exists and if it does a pointer to the
   2865  * entry is returned.
   2866  *
   2867  * The way this works is that that the kernel page tables are mapped
   2868  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   2869  * This allows page tables to be located quickly.
   2870  */
   2871 pt_entry_t *
   2872 pmap_pte(pmap, va)
   2873 	struct pmap *pmap;
   2874 	vaddr_t va;
   2875 {
   2876 	pt_entry_t *ptp;
   2877 	pt_entry_t *result;
   2878 
   2879 	/* The pmap must be valid */
   2880 	if (!pmap)
   2881 		return(NULL);
   2882 
   2883 	/* Return the address of the pte */
   2884 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2885 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2886 
   2887 	/* Do we have a valid pde ? If not we don't have a page table */
   2888 	if (!pmap_pde_v(pmap_pde(pmap, va))) {
   2889 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2890 		    pmap_pde(pmap, va)));
   2891 		return(NULL);
   2892 	}
   2893 
   2894 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2895 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2896 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2897 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   2898 
   2899 	/*
   2900 	 * If the pmap is the kernel pmap or the pmap is the active one
   2901 	 * then we can just return a pointer to entry relative to
   2902 	 * PROCESS_PAGE_TBLS_BASE.
   2903 	 * Otherwise we need to map the page tables to an alternative
   2904 	 * address and reference them there.
   2905 	 */
   2906 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   2907 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2908 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   2909 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2910 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   2911 	} else {
   2912 		struct proc *p = curproc;
   2913 
   2914 		/* If we don't have a valid curproc use proc0 */
   2915 		/* Perhaps we should just use kernel_pmap instead */
   2916 		if (p == NULL)
   2917 			p = &proc0;
   2918 #ifdef DIAGNOSTIC
   2919 		/*
   2920 		 * The pmap should always be valid for the process so
   2921 		 * panic if it is not.
   2922 		 */
   2923 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2924 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2925 			    va, p, p->p_vmspace);
   2926 			console_debugger();
   2927 		}
   2928 		/*
   2929 		 * The pmap for the current process should be mapped. If it
   2930 		 * is not then we have a problem.
   2931 		 */
   2932 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   2933 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2934 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2935 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2936 			printf("pmap pagetable = P%08lx current = P%08x ",
   2937 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2938 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2939 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   2940 			    PG_FRAME));
   2941 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   2942 			panic("pmap_pte: current and pmap mismatch\n");
   2943 		}
   2944 #endif
   2945 
   2946 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   2947 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   2948 		    pmap->pm_pptpt, FALSE);
   2949 		cpu_tlb_flushD();
   2950 	}
   2951 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   2952 	    ((va >> (PGSHIFT-2)) & ~3)));
   2953 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   2954 	return(result);
   2955 }
   2956 
   2957 /*
   2958  * Routine:  pmap_extract
   2959  * Function:
   2960  *           Extract the physical page address associated
   2961  *           with the given map/virtual_address pair.
   2962  */
   2963 boolean_t
   2964 pmap_extract(pmap, va, pap)
   2965 	struct pmap *pmap;
   2966 	vaddr_t va;
   2967 	paddr_t *pap;
   2968 {
   2969 	pt_entry_t *pte, *ptes;
   2970 	paddr_t pa;
   2971 
   2972 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   2973 
   2974 	/*
   2975 	 * Get the pte for this virtual address.
   2976 	 */
   2977 	ptes = pmap_map_ptes(pmap);
   2978 	pte = &ptes[arm_byte_to_page(va)];
   2979 
   2980 	/*
   2981 	 * If there is no pte then there is no page table etc.
   2982 	 * Is the pte valid ? If not then no paged is actually mapped here
   2983 	 */
   2984 	if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
   2985 	    pmap_unmap_ptes(pmap);
   2986     	    return (FALSE);
   2987 	}
   2988 
   2989 	/* Return the physical address depending on the PTE type */
   2990 	/* XXX What about L1 section mappings ? */
   2991 	if ((*(pte) & L2_MASK) == L2_LPAGE) {
   2992 		/* Extract the physical address from the pte */
   2993 		pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
   2994 
   2995 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   2996 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   2997 
   2998 		if (pap != NULL)
   2999 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3000 	} else {
   3001 		/* Extract the physical address from the pte */
   3002 		pa = pmap_pte_pa(pte);
   3003 
   3004 		PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3005 		    (pa | (va & ~PG_FRAME))));
   3006 
   3007 		if (pap != NULL)
   3008 			*pap = pa | (va & ~PG_FRAME);
   3009 	}
   3010 	pmap_unmap_ptes(pmap);
   3011 	return (TRUE);
   3012 }
   3013 
   3014 
   3015 /*
   3016  * Copy the range specified by src_addr/len from the source map to the
   3017  * range dst_addr/len in the destination map.
   3018  *
   3019  * This routine is only advisory and need not do anything.
   3020  */
   3021 
   3022 void
   3023 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3024 	struct pmap *dst_pmap;
   3025 	struct pmap *src_pmap;
   3026 	vaddr_t dst_addr;
   3027 	vsize_t len;
   3028 	vaddr_t src_addr;
   3029 {
   3030 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3031 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3032 }
   3033 
   3034 #if defined(PMAP_DEBUG)
   3035 void
   3036 pmap_dump_pvlist(phys, m)
   3037 	vaddr_t phys;
   3038 	char *m;
   3039 {
   3040 	struct pv_head *pvh;
   3041 	struct pv_entry *pv;
   3042 	int bank, off;
   3043 
   3044 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
   3045 		printf("INVALID PA\n");
   3046 		return;
   3047 	}
   3048 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3049 	simple_lock(&pvh->pvh_lock);
   3050 	printf("%s %08lx:", m, phys);
   3051 	if (pvh->pvh_list == NULL) {
   3052 		printf(" no mappings\n");
   3053 		return;
   3054 	}
   3055 
   3056 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
   3057 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3058 		    pv->pv_va, pv->pv_flags);
   3059 
   3060 	printf("\n");
   3061 	simple_unlock(&pvh->pvh_lock);
   3062 }
   3063 
   3064 #endif	/* PMAP_DEBUG */
   3065 
   3066 __inline static boolean_t
   3067 pmap_testbit(pa, setbits)
   3068 	paddr_t pa;
   3069 	unsigned int setbits;
   3070 {
   3071 	int bank, off;
   3072 
   3073 	PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
   3074 
   3075 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3076 		return(FALSE);
   3077 
   3078 	/*
   3079 	 * Check saved info only
   3080 	 */
   3081 	if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
   3082 		PDEBUG(0, printf("pmap_attributes = %02x\n",
   3083 		    vm_physmem[bank].pmseg.attrs[off]));
   3084 		return(TRUE);
   3085 	}
   3086 
   3087 	return(FALSE);
   3088 }
   3089 
   3090 static pt_entry_t *
   3091 pmap_map_ptes(struct pmap *pmap)
   3092 {
   3093     	struct proc *p;
   3094 
   3095     	/* the kernel's pmap is always accessible */
   3096 	if (pmap == pmap_kernel()) {
   3097 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
   3098 	}
   3099 
   3100 	if (pmap_is_curpmap(pmap)) {
   3101 		simple_lock(&pmap->pm_obj.vmobjlock);
   3102 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3103 	}
   3104 
   3105 	p = curproc;
   3106 
   3107 	if (p == NULL)
   3108 		p = &proc0;
   3109 
   3110 	/* need to lock both curpmap and pmap: use ordered locking */
   3111 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3112 		simple_lock(&pmap->pm_obj.vmobjlock);
   3113 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3114 	} else {
   3115 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3116 		simple_lock(&pmap->pm_obj.vmobjlock);
   3117 	}
   3118 
   3119 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3120 			pmap->pm_pptpt, FALSE);
   3121 	cpu_tlb_flushD();
   3122 	return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3123 }
   3124 
   3125 /*
   3126  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3127  */
   3128 
   3129 static void
   3130 pmap_unmap_ptes(pmap)
   3131 	struct pmap *pmap;
   3132 {
   3133 	if (pmap == pmap_kernel()) {
   3134 		return;
   3135 	}
   3136 	if (pmap_is_curpmap(pmap)) {
   3137 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3138 	} else {
   3139 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3140 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3141 	}
   3142 }
   3143 
   3144 /*
   3145  * Modify pte bits for all ptes corresponding to the given physical address.
   3146  * We use `maskbits' rather than `clearbits' because we're always passing
   3147  * constants and the latter would require an extra inversion at run-time.
   3148  */
   3149 
   3150 static void
   3151 pmap_clearbit(pa, maskbits)
   3152 	paddr_t pa;
   3153 	unsigned int maskbits;
   3154 {
   3155 	struct pv_entry *pv;
   3156 	struct pv_head *pvh;
   3157 	pt_entry_t *pte;
   3158 	vaddr_t va;
   3159 	int bank, off, tlbentry;
   3160 
   3161 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3162 	    pa, maskbits));
   3163 
   3164 	tlbentry = 0;
   3165 
   3166 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3167 		return;
   3168 	PMAP_HEAD_TO_MAP_LOCK();
   3169 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3170 	simple_lock(&pvh->pvh_lock);
   3171 
   3172 	/*
   3173 	 * Clear saved attributes (modify, reference)
   3174 	 */
   3175 	vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
   3176 
   3177 	if (pvh->pvh_list == NULL) {
   3178 		simple_unlock(&pvh->pvh_lock);
   3179 		PMAP_HEAD_TO_MAP_UNLOCK();
   3180 		return;
   3181 	}
   3182 
   3183 	/*
   3184 	 * Loop over all current mappings setting/clearing as appropos
   3185 	 */
   3186 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
   3187 		va = pv->pv_va;
   3188 		pv->pv_flags &= ~maskbits;
   3189 		pte = pmap_pte(pv->pv_pmap, va);
   3190 		KASSERT(pte != NULL);
   3191 		if (maskbits & (PT_Wr|PT_M))
   3192 		{
   3193 		    if ((pv->pv_flags & PT_NC))
   3194 		    {
   3195 			/*
   3196 			 * entry is not cacheable, so reenable the cache,
   3197 			 * nothing to flush
   3198 			 */
   3199 			*pte |= (PT_C | PT_B);
   3200 			pv->pv_flags &= ~PT_NC;
   3201 		    } else {
   3202 			/*
   3203 			 * entry is cacheable check if pmap is current if it
   3204 			 * is flush it, otherwise it won't be in the cache
   3205 			 */
   3206 			if (pmap_is_curpmap(pv->pv_pmap))
   3207 			{
   3208 			    /* entry is in current pmap purge it */
   3209 			    cpu_cache_purgeID_rng(pv->pv_va, NBPG);
   3210 			}
   3211 		    }
   3212 
   3213 		    /* make the pte read only */
   3214 	    	    *pte &= ~PT_AP(AP_W);
   3215 
   3216 	    	    if (pmap_is_curpmap(pv->pv_pmap))
   3217 			/*
   3218 			 * if we had cacheable pte's we'd clean the pte out to
   3219 			 * memory here
   3220 			 */
   3221     			/*
   3222 			 * flush tlb entry as it's in the current pmap
   3223 			 */
   3224 			cpu_tlb_flushID_SE(pv->pv_va);
   3225 
   3226 		}
   3227 		if (maskbits & PT_H)
   3228 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   3229 	}
   3230 	simple_unlock(&pvh->pvh_lock);
   3231 	PMAP_HEAD_TO_MAP_UNLOCK();
   3232 }
   3233 
   3234 
   3235 boolean_t
   3236 pmap_clear_modify(pg)
   3237 	struct vm_page *pg;
   3238 {
   3239 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3240 	boolean_t rv;
   3241 
   3242 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
   3243 	rv = pmap_testbit(pa, PT_M);
   3244 	pmap_clearbit(pa, PT_M);
   3245 	return rv;
   3246 }
   3247 
   3248 
   3249 boolean_t
   3250 pmap_clear_reference(pg)
   3251 	struct vm_page *pg;
   3252 {
   3253 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3254 	boolean_t rv;
   3255 
   3256 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
   3257 	rv = pmap_testbit(pa, PT_H);
   3258 	pmap_clearbit(pa, PT_H);
   3259 	return rv;
   3260 }
   3261 
   3262 
   3263 void
   3264 pmap_copy_on_write(pa)
   3265 	paddr_t pa;
   3266 {
   3267 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
   3268 	pmap_clearbit(pa, PT_Wr);
   3269 }
   3270 
   3271 
   3272 boolean_t
   3273 pmap_is_modified(pg)
   3274 	struct vm_page *pg;
   3275 {
   3276 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3277 	boolean_t result;
   3278 
   3279 	result = pmap_testbit(pa, PT_M);
   3280 	PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
   3281 	return (result);
   3282 }
   3283 
   3284 
   3285 boolean_t
   3286 pmap_is_referenced(pg)
   3287 	struct vm_page *pg;
   3288 {
   3289 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3290 	boolean_t result;
   3291 
   3292 	result = pmap_testbit(pa, PT_H);
   3293 	PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
   3294 	return (result);
   3295 }
   3296 
   3297 
   3298 int
   3299 pmap_modified_emulation(pmap, va)
   3300 	struct pmap *pmap;
   3301 	vaddr_t va;
   3302 {
   3303 	pt_entry_t *pte;
   3304 	paddr_t pa;
   3305 	int bank, off;
   3306 	struct pv_head *pvh;
   3307 	u_int flags;
   3308 
   3309 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3310 
   3311 	/* Get the pte */
   3312 	pte = pmap_pte(pmap, va);
   3313 	if (!pte) {
   3314 		PDEBUG(2, printf("no pte\n"));
   3315 		return(0);
   3316 	}
   3317 
   3318 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3319 
   3320 	/* Check for a zero pte */
   3321 	if (*pte == 0)
   3322 		return(0);
   3323 
   3324 	/* This can happen if user code tries to access kernel memory. */
   3325 	if ((*pte & PT_AP(AP_W)) != 0)
   3326 		return (0);
   3327 
   3328 	/* Extract the physical address of the page */
   3329 	pa = pmap_pte_pa(pte);
   3330 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3331 		return(0);
   3332 
   3333 	PMAP_HEAD_TO_MAP_LOCK();
   3334 	/* Get the current flags for this page. */
   3335 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3336 	/* XXX: needed if we hold head->map lock? */
   3337 	simple_lock(&pvh->pvh_lock);
   3338 
   3339 	flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
   3340 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3341 
   3342 	/*
   3343 	 * Do the flags say this page is writable ? If not then it is a
   3344 	 * genuine write fault. If yes then the write fault is our fault
   3345 	 * as we did not reflect the write access in the PTE. Now we know
   3346 	 * a write has occurred we can correct this and also set the
   3347 	 * modified bit
   3348 	 */
   3349 	if (~flags & PT_Wr) {
   3350 	    	simple_unlock(&pvh->pvh_lock);
   3351 		PMAP_HEAD_TO_MAP_UNLOCK();
   3352 		return(0);
   3353 	}
   3354 
   3355 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   3356 	    va, pte, *pte));
   3357 	vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   3358 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3359 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3360 
   3361 	simple_unlock(&pvh->pvh_lock);
   3362 	PMAP_HEAD_TO_MAP_UNLOCK();
   3363 	/* Return, indicating the problem has been dealt with */
   3364 	cpu_tlb_flushID_SE(va);
   3365 	return(1);
   3366 }
   3367 
   3368 
   3369 int
   3370 pmap_handled_emulation(pmap, va)
   3371 	struct pmap *pmap;
   3372 	vaddr_t va;
   3373 {
   3374 	pt_entry_t *pte;
   3375 	paddr_t pa;
   3376 	int bank, off;
   3377 
   3378 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3379 
   3380 	/* Get the pte */
   3381 	pte = pmap_pte(pmap, va);
   3382 	if (!pte) {
   3383 		PDEBUG(2, printf("no pte\n"));
   3384 		return(0);
   3385 	}
   3386 
   3387 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3388 
   3389 	/* Check for a zero pte */
   3390 	if (*pte == 0)
   3391 		return(0);
   3392 
   3393 	/* This can happen if user code tries to access kernel memory. */
   3394 	if ((*pte & L2_MASK) != L2_INVAL)
   3395 		return (0);
   3396 
   3397 	/* Extract the physical address of the page */
   3398 	pa = pmap_pte_pa(pte);
   3399 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3400 		return(0);
   3401 
   3402 	/*
   3403 	 * Ok we just enable the pte and mark the attibs as handled
   3404 	 */
   3405 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   3406 	    va, pte, *pte));
   3407 	vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   3408 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   3409 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3410 
   3411 	/* Return, indicating the problem has been dealt with */
   3412 	cpu_tlb_flushID_SE(va);
   3413 	return(1);
   3414 }
   3415 
   3416 
   3417 
   3418 
   3419 /*
   3420  * pmap_collect: free resources held by a pmap
   3421  *
   3422  * => optional function.
   3423  * => called when a process is swapped out to free memory.
   3424  */
   3425 
   3426 void
   3427 pmap_collect(pmap)
   3428 	struct pmap *pmap;
   3429 {
   3430 }
   3431 
   3432 /*
   3433  * Routine:	pmap_procwr
   3434  *
   3435  * Function:
   3436  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3437  *
   3438  */
   3439 void
   3440 pmap_procwr(p, va, len)
   3441 	struct proc	*p;
   3442 	vaddr_t		va;
   3443 	int		len;
   3444 {
   3445 	/* We only need to do anything if it is the current process. */
   3446 	if (p == curproc)
   3447 		cpu_cache_syncI_rng(va, len);
   3448 }
   3449 /*
   3450  * PTP functions
   3451  */
   3452 
   3453 /*
   3454  * pmap_steal_ptp: Steal a PTP from somewhere else.
   3455  *
   3456  * This is just a placeholder, for now we never steal.
   3457  */
   3458 
   3459 static struct vm_page *
   3460 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
   3461 {
   3462     return (NULL);
   3463 }
   3464 
   3465 /*
   3466  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3467  *
   3468  * => pmap should NOT be pmap_kernel()
   3469  * => pmap should be locked
   3470  */
   3471 
   3472 static struct vm_page *
   3473 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3474 {
   3475     struct vm_page *ptp;
   3476 
   3477     if (pmap_pde_v(pmap_pde(pmap, va))) {
   3478 
   3479 	/* valid... check hint (saves us a PA->PG lookup) */
   3480 #if 0
   3481 	if (pmap->pm_ptphint &&
   3482     		((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3483 		VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3484 	    return (pmap->pm_ptphint);
   3485 #endif
   3486 	ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3487 #ifdef DIAGNOSTIC
   3488 	if (ptp == NULL)
   3489     	    panic("pmap_get_ptp: unmanaged user PTP");
   3490 #endif
   3491 //	pmap->pm_ptphint = ptp;
   3492 	return(ptp);
   3493     }
   3494 
   3495     /* allocate a new PTP (updates ptphint) */
   3496     return(pmap_alloc_ptp(pmap, va, just_try));
   3497 }
   3498 
   3499 /*
   3500  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3501  *
   3502  * => pmap should already be locked by caller
   3503  * => we use the ptp's wire_count to count the number of active mappings
   3504  *	in the PTP (we start it at one to prevent any chance this PTP
   3505  *	will ever leak onto the active/inactive queues)
   3506  */
   3507 
   3508 /*__inline */ static struct vm_page *
   3509 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3510 {
   3511 	struct vm_page *ptp;
   3512 
   3513 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3514 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3515 	if (ptp == NULL) {
   3516 	    if (just_try)
   3517 		return (NULL);
   3518 
   3519 	    ptp = pmap_steal_ptp(pmap, va);
   3520 
   3521 	    if (ptp == NULL)
   3522 		return (NULL);
   3523 	    /* Stole a page, zero it.  */
   3524 	    pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
   3525 	}
   3526 
   3527 	/* got one! */
   3528 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3529 	ptp->wire_count = 1;	/* no mappings yet */
   3530 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3531 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3532 //	pmap->pm_ptphint = ptp;
   3533 	return (ptp);
   3534 }
   3535 
   3536 /* End of pmap.c */
   3537