Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.242
      1 /*	$NetBSD: pmap.c,v 1.242 2012/11/12 18:00:35 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/pool.h>
    201 #include <sys/kmem.h>
    202 #include <sys/cdefs.h>
    203 #include <sys/cpu.h>
    204 #include <sys/sysctl.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <sys/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/cpuconf.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.242 2012/11/12 18:00:35 skrll Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 static struct pmap	kernel_pmap_store;
    259 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    261 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    262 #endif
    263 
    264 /*
    265  * Which pmap is currently 'live' in the cache
    266  *
    267  * XXXSCW: Fix for SMP ...
    268  */
    269 static pmap_t pmap_recent_user;
    270 
    271 /*
    272  * Pointer to last active lwp, or NULL if it exited.
    273  */
    274 struct lwp *pmap_previous_active_lwp;
    275 
    276 /*
    277  * Pool and cache that pmap structures are allocated from.
    278  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    279  * in pmap_create().
    280  */
    281 static struct pool_cache pmap_cache;
    282 static LIST_HEAD(, pmap) pmap_pmaps;
    283 
    284 /*
    285  * Pool of PV structures
    286  */
    287 static struct pool pmap_pv_pool;
    288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    291 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    292 };
    293 
    294 /*
    295  * Pool and cache of l2_dtable structures.
    296  * We use a cache to avoid clearing the structures when they're
    297  * allocated. (196 bytes)
    298  */
    299 static struct pool_cache pmap_l2dtable_cache;
    300 static vaddr_t pmap_kernel_l2dtable_kva;
    301 
    302 /*
    303  * Pool and cache of L2 page descriptors.
    304  * We use a cache to avoid clearing the descriptor table
    305  * when they're allocated. (1KB)
    306  */
    307 static struct pool_cache pmap_l2ptp_cache;
    308 static vaddr_t pmap_kernel_l2ptp_kva;
    309 static paddr_t pmap_kernel_l2ptp_phys;
    310 
    311 #ifdef PMAPCOUNTERS
    312 #define	PMAP_EVCNT_INITIALIZER(name) \
    313 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    314 
    315 #ifdef PMAP_CACHE_VIPT
    316 static struct evcnt pmap_ev_vac_clean_one =
    317    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    318 static struct evcnt pmap_ev_vac_flush_one =
    319    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    320 static struct evcnt pmap_ev_vac_flush_lots =
    321    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    322 static struct evcnt pmap_ev_vac_flush_lots2 =
    323    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    328 
    329 static struct evcnt pmap_ev_vac_color_new =
    330    PMAP_EVCNT_INITIALIZER("new page color");
    331 static struct evcnt pmap_ev_vac_color_reuse =
    332    PMAP_EVCNT_INITIALIZER("ok first page color");
    333 static struct evcnt pmap_ev_vac_color_ok =
    334    PMAP_EVCNT_INITIALIZER("ok page color");
    335 static struct evcnt pmap_ev_vac_color_blind =
    336    PMAP_EVCNT_INITIALIZER("blind page color");
    337 static struct evcnt pmap_ev_vac_color_change =
    338    PMAP_EVCNT_INITIALIZER("change page color");
    339 static struct evcnt pmap_ev_vac_color_erase =
    340    PMAP_EVCNT_INITIALIZER("erase page color");
    341 static struct evcnt pmap_ev_vac_color_none =
    342    PMAP_EVCNT_INITIALIZER("no page color");
    343 static struct evcnt pmap_ev_vac_color_restore =
    344    PMAP_EVCNT_INITIALIZER("restore page color");
    345 
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    354 #endif
    355 
    356 static struct evcnt pmap_ev_mappings =
    357    PMAP_EVCNT_INITIALIZER("pages mapped");
    358 static struct evcnt pmap_ev_unmappings =
    359    PMAP_EVCNT_INITIALIZER("pages unmapped");
    360 static struct evcnt pmap_ev_remappings =
    361    PMAP_EVCNT_INITIALIZER("pages remapped");
    362 
    363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    366 
    367 static struct evcnt pmap_ev_kernel_mappings =
    368    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    369 static struct evcnt pmap_ev_kernel_unmappings =
    370    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    371 static struct evcnt pmap_ev_kernel_remappings =
    372    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    373 
    374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    377 
    378 static struct evcnt pmap_ev_kenter_mappings =
    379    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    380 static struct evcnt pmap_ev_kenter_unmappings =
    381    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    382 static struct evcnt pmap_ev_kenter_remappings =
    383    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    384 static struct evcnt pmap_ev_pt_mappings =
    385    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    386 
    387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    391 
    392 #ifdef PMAP_CACHE_VIPT
    393 static struct evcnt pmap_ev_exec_mappings =
    394    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    395 static struct evcnt pmap_ev_exec_cached =
    396    PMAP_EVCNT_INITIALIZER("exec pages cached");
    397 
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    400 
    401 static struct evcnt pmap_ev_exec_synced =
    402    PMAP_EVCNT_INITIALIZER("exec pages synced");
    403 static struct evcnt pmap_ev_exec_synced_map =
    404    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    405 static struct evcnt pmap_ev_exec_synced_unmap =
    406    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    407 static struct evcnt pmap_ev_exec_synced_remap =
    408    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    409 static struct evcnt pmap_ev_exec_synced_clearbit =
    410    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    411 static struct evcnt pmap_ev_exec_synced_kremove =
    412    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    413 
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    420 
    421 static struct evcnt pmap_ev_exec_discarded_unmap =
    422    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    423 static struct evcnt pmap_ev_exec_discarded_zero =
    424    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    425 static struct evcnt pmap_ev_exec_discarded_copy =
    426    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    427 static struct evcnt pmap_ev_exec_discarded_page_protect =
    428    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    429 static struct evcnt pmap_ev_exec_discarded_clearbit =
    430    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    431 static struct evcnt pmap_ev_exec_discarded_kremove =
    432    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    433 
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    440 #endif /* PMAP_CACHE_VIPT */
    441 
    442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    445 
    446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    449 
    450 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    451 #else
    452 #define	PMAPCOUNT(x)	((void)0)
    453 #endif
    454 
    455 /*
    456  * pmap copy/zero page, and mem(5) hook point
    457  */
    458 static pt_entry_t *csrc_pte, *cdst_pte;
    459 static vaddr_t csrcp, cdstp;
    460 vaddr_t memhook;			/* used by mem.c */
    461 kmutex_t memlock;			/* used by mem.c */
    462 void *zeropage;				/* used by mem.c */
    463 extern void *msgbufaddr;
    464 int pmap_kmpages;
    465 /*
    466  * Flag to indicate if pmap_init() has done its thing
    467  */
    468 bool pmap_initialized;
    469 
    470 /*
    471  * Misc. locking data structures
    472  */
    473 
    474 #define	pmap_acquire_pmap_lock(pm)			\
    475 	do {						\
    476 		if ((pm) != pmap_kernel())		\
    477 			mutex_enter((pm)->pm_lock);	\
    478 	} while (/*CONSTCOND*/0)
    479 
    480 #define	pmap_release_pmap_lock(pm)			\
    481 	do {						\
    482 		if ((pm) != pmap_kernel())		\
    483 			mutex_exit((pm)->pm_lock);	\
    484 	} while (/*CONSTCOND*/0)
    485 
    486 
    487 /*
    488  * Metadata for L1 translation tables.
    489  */
    490 struct l1_ttable {
    491 	/* Entry on the L1 Table list */
    492 	SLIST_ENTRY(l1_ttable) l1_link;
    493 
    494 	/* Entry on the L1 Least Recently Used list */
    495 	TAILQ_ENTRY(l1_ttable) l1_lru;
    496 
    497 	/* Track how many domains are allocated from this L1 */
    498 	volatile u_int l1_domain_use_count;
    499 
    500 	/*
    501 	 * A free-list of domain numbers for this L1.
    502 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    503 	 * is slow on ARM.
    504 	 */
    505 	uint8_t l1_domain_first;
    506 	uint8_t l1_domain_free[PMAP_DOMAINS];
    507 
    508 	/* Physical address of this L1 page table */
    509 	paddr_t l1_physaddr;
    510 
    511 	/* KVA of this L1 page table */
    512 	pd_entry_t *l1_kva;
    513 };
    514 
    515 /*
    516  * Convert a virtual address into its L1 table index. That is, the
    517  * index used to locate the L2 descriptor table pointer in an L1 table.
    518  * This is basically used to index l1->l1_kva[].
    519  *
    520  * Each L2 descriptor table represents 1MB of VA space.
    521  */
    522 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    523 
    524 /*
    525  * L1 Page Tables are tracked using a Least Recently Used list.
    526  *  - New L1s are allocated from the HEAD.
    527  *  - Freed L1s are added to the TAIl.
    528  *  - Recently accessed L1s (where an 'access' is some change to one of
    529  *    the userland pmaps which owns this L1) are moved to the TAIL.
    530  */
    531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    532 static kmutex_t l1_lru_lock __cacheline_aligned;
    533 
    534 /*
    535  * A list of all L1 tables
    536  */
    537 static SLIST_HEAD(, l1_ttable) l1_list;
    538 
    539 /*
    540  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    541  *
    542  * This is normally 16MB worth L2 page descriptors for any given pmap.
    543  * Reference counts are maintained for L2 descriptors so they can be
    544  * freed when empty.
    545  */
    546 struct l2_dtable {
    547 	/* The number of L2 page descriptors allocated to this l2_dtable */
    548 	u_int l2_occupancy;
    549 
    550 	/* List of L2 page descriptors */
    551 	struct l2_bucket {
    552 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    553 		paddr_t l2b_phys;	/* Physical address of same */
    554 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    555 		u_short l2b_occupancy;	/* How many active descriptors */
    556 	} l2_bucket[L2_BUCKET_SIZE];
    557 };
    558 
    559 /*
    560  * Given an L1 table index, calculate the corresponding l2_dtable index
    561  * and bucket index within the l2_dtable.
    562  */
    563 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    564 				 (L2_SIZE - 1))
    565 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    566 
    567 /*
    568  * Given a virtual address, this macro returns the
    569  * virtual address required to drop into the next L2 bucket.
    570  */
    571 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    572 
    573 /*
    574  * L2 allocation.
    575  */
    576 #define	pmap_alloc_l2_dtable()		\
    577 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    578 #define	pmap_free_l2_dtable(l2)		\
    579 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    580 #define pmap_alloc_l2_ptp(pap)		\
    581 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    582 	    PR_NOWAIT, (pap)))
    583 
    584 /*
    585  * We try to map the page tables write-through, if possible.  However, not
    586  * all CPUs have a write-through cache mode, so on those we have to sync
    587  * the cache when we frob page tables.
    588  *
    589  * We try to evaluate this at compile time, if possible.  However, it's
    590  * not always possible to do that, hence this run-time var.
    591  */
    592 int	pmap_needs_pte_sync;
    593 
    594 /*
    595  * Real definition of pv_entry.
    596  */
    597 struct pv_entry {
    598 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    599 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    600 	vaddr_t		pv_va;          /* virtual address for mapping */
    601 	u_int		pv_flags;       /* flags */
    602 };
    603 
    604 /*
    605  * Macro to determine if a mapping might be resident in the
    606  * instruction cache and/or TLB
    607  */
    608 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    609 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    610 
    611 /*
    612  * Macro to determine if a mapping might be resident in the
    613  * data cache and/or TLB
    614  */
    615 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    616 
    617 /*
    618  * Local prototypes
    619  */
    620 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    621 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    622 			    pt_entry_t **);
    623 static bool		pmap_is_current(pmap_t);
    624 static bool		pmap_is_cached(pmap_t);
    625 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    626 			    pmap_t, vaddr_t, u_int);
    627 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    628 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    629 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    630 			    u_int, u_int);
    631 
    632 static void		pmap_pinit(pmap_t);
    633 static int		pmap_pmap_ctor(void *, void *, int);
    634 
    635 static void		pmap_alloc_l1(pmap_t);
    636 static void		pmap_free_l1(pmap_t);
    637 static void		pmap_use_l1(pmap_t);
    638 
    639 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    640 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    641 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    642 static int		pmap_l2ptp_ctor(void *, void *, int);
    643 static int		pmap_l2dtable_ctor(void *, void *, int);
    644 
    645 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    646 #ifdef PMAP_CACHE_VIVT
    647 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    648 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    649 #endif
    650 
    651 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    652 #ifdef PMAP_CACHE_VIVT
    653 static int		pmap_clean_page(struct pv_entry *, bool);
    654 #endif
    655 #ifdef PMAP_CACHE_VIPT
    656 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    657 enum pmap_flush_op {
    658 	PMAP_FLUSH_PRIMARY,
    659 	PMAP_FLUSH_SECONDARY,
    660 	PMAP_CLEAN_PRIMARY
    661 };
    662 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    663 #endif
    664 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    665 
    666 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    667 static vaddr_t		kernel_pt_lookup(paddr_t);
    668 
    669 
    670 /*
    671  * External function prototypes
    672  */
    673 extern void bzero_page(vaddr_t);
    674 extern void bcopy_page(vaddr_t, vaddr_t);
    675 
    676 /*
    677  * Misc variables
    678  */
    679 vaddr_t virtual_avail;
    680 vaddr_t virtual_end;
    681 vaddr_t pmap_curmaxkvaddr;
    682 
    683 paddr_t avail_start;
    684 paddr_t avail_end;
    685 
    686 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    687 pv_addr_t kernelpages;
    688 pv_addr_t kernel_l1pt;
    689 pv_addr_t systempage;
    690 
    691 /* Function to set the debug level of the pmap code */
    692 
    693 #ifdef PMAP_DEBUG
    694 void
    695 pmap_debug(int level)
    696 {
    697 	pmap_debug_level = level;
    698 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    699 }
    700 #endif	/* PMAP_DEBUG */
    701 
    702 /*
    703  * A bunch of routines to conditionally flush the caches/TLB depending
    704  * on whether the specified pmap actually needs to be flushed at any
    705  * given time.
    706  */
    707 static inline void
    708 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    709 {
    710 
    711 	if (pm->pm_cstate.cs_tlb_id)
    712 		cpu_tlb_flushID_SE(va);
    713 }
    714 
    715 static inline void
    716 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    717 {
    718 
    719 	if (pm->pm_cstate.cs_tlb_d)
    720 		cpu_tlb_flushD_SE(va);
    721 }
    722 
    723 static inline void
    724 pmap_tlb_flushID(pmap_t pm)
    725 {
    726 
    727 	if (pm->pm_cstate.cs_tlb_id) {
    728 		cpu_tlb_flushID();
    729 		pm->pm_cstate.cs_tlb = 0;
    730 	}
    731 }
    732 
    733 static inline void
    734 pmap_tlb_flushD(pmap_t pm)
    735 {
    736 
    737 	if (pm->pm_cstate.cs_tlb_d) {
    738 		cpu_tlb_flushD();
    739 		pm->pm_cstate.cs_tlb_d = 0;
    740 	}
    741 }
    742 
    743 #ifdef PMAP_CACHE_VIVT
    744 static inline void
    745 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    746 {
    747 	if (pm->pm_cstate.cs_cache_id) {
    748 		cpu_idcache_wbinv_range(va, len);
    749 	}
    750 }
    751 
    752 static inline void
    753 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    754     bool do_inv, bool rd_only)
    755 {
    756 
    757 	if (pm->pm_cstate.cs_cache_d) {
    758 		if (do_inv) {
    759 			if (rd_only)
    760 				cpu_dcache_inv_range(va, len);
    761 			else
    762 				cpu_dcache_wbinv_range(va, len);
    763 		} else
    764 		if (!rd_only)
    765 			cpu_dcache_wb_range(va, len);
    766 	}
    767 }
    768 
    769 static inline void
    770 pmap_idcache_wbinv_all(pmap_t pm)
    771 {
    772 	if (pm->pm_cstate.cs_cache_id) {
    773 		cpu_idcache_wbinv_all();
    774 		pm->pm_cstate.cs_cache = 0;
    775 	}
    776 }
    777 
    778 static inline void
    779 pmap_dcache_wbinv_all(pmap_t pm)
    780 {
    781 	if (pm->pm_cstate.cs_cache_d) {
    782 		cpu_dcache_wbinv_all();
    783 		pm->pm_cstate.cs_cache_d = 0;
    784 	}
    785 }
    786 #endif /* PMAP_CACHE_VIVT */
    787 
    788 static inline bool
    789 pmap_is_current(pmap_t pm)
    790 {
    791 
    792 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    793 		return true;
    794 
    795 	return false;
    796 }
    797 
    798 static inline bool
    799 pmap_is_cached(pmap_t pm)
    800 {
    801 
    802 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    803 	    pmap_recent_user == pm)
    804 		return (true);
    805 
    806 	return false;
    807 }
    808 
    809 /*
    810  * PTE_SYNC_CURRENT:
    811  *
    812  *     Make sure the pte is written out to RAM.
    813  *     We need to do this for one of two cases:
    814  *       - We're dealing with the kernel pmap
    815  *       - There is no pmap active in the cache/tlb.
    816  *       - The specified pmap is 'active' in the cache/tlb.
    817  */
    818 #ifdef PMAP_INCLUDE_PTE_SYNC
    819 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    820 do {					\
    821 	if (PMAP_NEEDS_PTE_SYNC && 	\
    822 	    pmap_is_cached(pm))		\
    823 		PTE_SYNC(ptep);		\
    824 } while (/*CONSTCOND*/0)
    825 #else
    826 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    827 #endif
    828 
    829 /*
    830  * main pv_entry manipulation functions:
    831  *   pmap_enter_pv: enter a mapping onto a vm_page list
    832  *   pmap_remove_pv: remove a mappiing from a vm_page list
    833  *
    834  * NOTE: pmap_enter_pv expects to lock the pvh itself
    835  *       pmap_remove_pv expects te caller to lock the pvh before calling
    836  */
    837 
    838 /*
    839  * pmap_enter_pv: enter a mapping onto a vm_page lst
    840  *
    841  * => caller should hold the proper lock on pmap_main_lock
    842  * => caller should have pmap locked
    843  * => we will gain the lock on the vm_page and allocate the new pv_entry
    844  * => caller should adjust ptp's wire_count before calling
    845  * => caller should not adjust pmap's wire_count
    846  */
    847 static void
    848 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    849     vaddr_t va, u_int flags)
    850 {
    851 	struct pv_entry **pvp;
    852 
    853 	NPDEBUG(PDB_PVDUMP,
    854 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    855 
    856 	pv->pv_pmap = pm;
    857 	pv->pv_va = va;
    858 	pv->pv_flags = flags;
    859 
    860 	pvp = &SLIST_FIRST(&md->pvh_list);
    861 #ifdef PMAP_CACHE_VIPT
    862 	/*
    863 	 * Insert unmanaged entries, writeable first, at the head of
    864 	 * the pv list.
    865 	 */
    866 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    867 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    868 			pvp = &SLIST_NEXT(*pvp, pv_link);
    869 	} else if ((flags & PVF_WRITE) == 0) {
    870 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    871 			pvp = &SLIST_NEXT(*pvp, pv_link);
    872 	}
    873 #endif
    874 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
    875 	*pvp = pv;				/* ... locked list */
    876 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    877 #ifdef PMAP_CACHE_VIPT
    878 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    879 		md->pvh_attrs |= PVF_KMOD;
    880 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    881 		md->pvh_attrs |= PVF_DIRTY;
    882 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
    883 #endif
    884 	if (pm == pmap_kernel()) {
    885 		PMAPCOUNT(kernel_mappings);
    886 		if (flags & PVF_WRITE)
    887 			md->krw_mappings++;
    888 		else
    889 			md->kro_mappings++;
    890 	} else {
    891 		if (flags & PVF_WRITE)
    892 			md->urw_mappings++;
    893 		else
    894 			md->uro_mappings++;
    895 	}
    896 
    897 #ifdef PMAP_CACHE_VIPT
    898 	/*
    899 	 * If this is an exec mapping and its the first exec mapping
    900 	 * for this page, make sure to sync the I-cache.
    901 	 */
    902 	if (PV_IS_EXEC_P(flags)) {
    903 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
    904 			pmap_syncicache_page(md, pa);
    905 			PMAPCOUNT(exec_synced_map);
    906 		}
    907 		PMAPCOUNT(exec_mappings);
    908 	}
    909 #endif
    910 
    911 	PMAPCOUNT(mappings);
    912 
    913 	if (pv->pv_flags & PVF_WIRED)
    914 		++pm->pm_stats.wired_count;
    915 }
    916 
    917 /*
    918  *
    919  * pmap_find_pv: Find a pv entry
    920  *
    921  * => caller should hold lock on vm_page
    922  */
    923 static inline struct pv_entry *
    924 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
    925 {
    926 	struct pv_entry *pv;
    927 
    928 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
    929 		if (pm == pv->pv_pmap && va == pv->pv_va)
    930 			break;
    931 	}
    932 
    933 	return (pv);
    934 }
    935 
    936 /*
    937  * pmap_remove_pv: try to remove a mapping from a pv_list
    938  *
    939  * => caller should hold proper lock on pmap_main_lock
    940  * => pmap should be locked
    941  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    942  * => caller should adjust ptp's wire_count and free PTP if needed
    943  * => caller should NOT adjust pmap's wire_count
    944  * => we return the removed pv
    945  */
    946 static struct pv_entry *
    947 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
    948 {
    949 	struct pv_entry *pv, **prevptr;
    950 
    951 	NPDEBUG(PDB_PVDUMP,
    952 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
    953 
    954 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
    955 	pv = *prevptr;
    956 
    957 	while (pv) {
    958 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
    959 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
    960 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
    961 			if (pv->pv_flags & PVF_WIRED) {
    962 				--pm->pm_stats.wired_count;
    963 			}
    964 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
    965 			if (pm == pmap_kernel()) {
    966 				PMAPCOUNT(kernel_unmappings);
    967 				if (pv->pv_flags & PVF_WRITE)
    968 					md->krw_mappings--;
    969 				else
    970 					md->kro_mappings--;
    971 			} else {
    972 				if (pv->pv_flags & PVF_WRITE)
    973 					md->urw_mappings--;
    974 				else
    975 					md->uro_mappings--;
    976 			}
    977 
    978 			PMAPCOUNT(unmappings);
    979 #ifdef PMAP_CACHE_VIPT
    980 			if (!(pv->pv_flags & PVF_WRITE))
    981 				break;
    982 			/*
    983 			 * If this page has had an exec mapping, then if
    984 			 * this was the last mapping, discard the contents,
    985 			 * otherwise sync the i-cache for this page.
    986 			 */
    987 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
    988 				if (SLIST_EMPTY(&md->pvh_list)) {
    989 					md->pvh_attrs &= ~PVF_EXEC;
    990 					PMAPCOUNT(exec_discarded_unmap);
    991 				} else {
    992 					pmap_syncicache_page(md, pa);
    993 					PMAPCOUNT(exec_synced_unmap);
    994 				}
    995 			}
    996 #endif /* PMAP_CACHE_VIPT */
    997 			break;
    998 		}
    999 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1000 		pv = *prevptr;				/* advance */
   1001 	}
   1002 
   1003 #ifdef PMAP_CACHE_VIPT
   1004 	/*
   1005 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1006 	 * clear the KMOD attribute from the page.
   1007 	 */
   1008 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1009 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1010 		md->pvh_attrs &= ~PVF_KMOD;
   1011 
   1012 	/*
   1013 	 * If this was a writeable page and there are no more writeable
   1014 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1015 	 * the contents to memory.
   1016 	 */
   1017 	if (md->krw_mappings + md->urw_mappings == 0)
   1018 		md->pvh_attrs &= ~PVF_WRITE;
   1019 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1020 #endif /* PMAP_CACHE_VIPT */
   1021 
   1022 	return(pv);				/* return removed pv */
   1023 }
   1024 
   1025 /*
   1026  *
   1027  * pmap_modify_pv: Update pv flags
   1028  *
   1029  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1030  * => caller should NOT adjust pmap's wire_count
   1031  * => caller must call pmap_vac_me_harder() if writable status of a page
   1032  *    may have changed.
   1033  * => we return the old flags
   1034  *
   1035  * Modify a physical-virtual mapping in the pv table
   1036  */
   1037 static u_int
   1038 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1039     u_int clr_mask, u_int set_mask)
   1040 {
   1041 	struct pv_entry *npv;
   1042 	u_int flags, oflags;
   1043 
   1044 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1045 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1046 
   1047 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1048 		return (0);
   1049 
   1050 	NPDEBUG(PDB_PVDUMP,
   1051 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1052 
   1053 	/*
   1054 	 * There is at least one VA mapping this page.
   1055 	 */
   1056 
   1057 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1058 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1059 #ifdef PMAP_CACHE_VIPT
   1060 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1061 			md->pvh_attrs |= PVF_DIRTY;
   1062 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1063 #endif
   1064 	}
   1065 
   1066 	oflags = npv->pv_flags;
   1067 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1068 
   1069 	if ((flags ^ oflags) & PVF_WIRED) {
   1070 		if (flags & PVF_WIRED)
   1071 			++pm->pm_stats.wired_count;
   1072 		else
   1073 			--pm->pm_stats.wired_count;
   1074 	}
   1075 
   1076 	if ((flags ^ oflags) & PVF_WRITE) {
   1077 		if (pm == pmap_kernel()) {
   1078 			if (flags & PVF_WRITE) {
   1079 				md->krw_mappings++;
   1080 				md->kro_mappings--;
   1081 			} else {
   1082 				md->kro_mappings++;
   1083 				md->krw_mappings--;
   1084 			}
   1085 		} else {
   1086 			if (flags & PVF_WRITE) {
   1087 				md->urw_mappings++;
   1088 				md->uro_mappings--;
   1089 			} else {
   1090 				md->uro_mappings++;
   1091 				md->urw_mappings--;
   1092 			}
   1093 		}
   1094 	}
   1095 #ifdef PMAP_CACHE_VIPT
   1096 	if (md->urw_mappings + md->krw_mappings == 0)
   1097 		md->pvh_attrs &= ~PVF_WRITE;
   1098 	/*
   1099 	 * We have two cases here: the first is from enter_pv (new exec
   1100 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1101 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1102 	 * to do what pmap_remove_pv would do.
   1103 	 */
   1104 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1105 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1106 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1107 		pmap_syncicache_page(md, pa);
   1108 		PMAPCOUNT(exec_synced_remap);
   1109 	}
   1110 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1111 #endif
   1112 
   1113 	PMAPCOUNT(remappings);
   1114 
   1115 	return (oflags);
   1116 }
   1117 
   1118 /*
   1119  * Allocate an L1 translation table for the specified pmap.
   1120  * This is called at pmap creation time.
   1121  */
   1122 static void
   1123 pmap_alloc_l1(pmap_t pm)
   1124 {
   1125 	struct l1_ttable *l1;
   1126 	uint8_t domain;
   1127 
   1128 	/*
   1129 	 * Remove the L1 at the head of the LRU list
   1130 	 */
   1131 	mutex_spin_enter(&l1_lru_lock);
   1132 	l1 = TAILQ_FIRST(&l1_lru_list);
   1133 	KDASSERT(l1 != NULL);
   1134 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1135 
   1136 	/*
   1137 	 * Pick the first available domain number, and update
   1138 	 * the link to the next number.
   1139 	 */
   1140 	domain = l1->l1_domain_first;
   1141 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1142 
   1143 	/*
   1144 	 * If there are still free domain numbers in this L1,
   1145 	 * put it back on the TAIL of the LRU list.
   1146 	 */
   1147 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1148 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1149 
   1150 	mutex_spin_exit(&l1_lru_lock);
   1151 
   1152 	/*
   1153 	 * Fix up the relevant bits in the pmap structure
   1154 	 */
   1155 	pm->pm_l1 = l1;
   1156 	pm->pm_domain = domain + 1;
   1157 }
   1158 
   1159 /*
   1160  * Free an L1 translation table.
   1161  * This is called at pmap destruction time.
   1162  */
   1163 static void
   1164 pmap_free_l1(pmap_t pm)
   1165 {
   1166 	struct l1_ttable *l1 = pm->pm_l1;
   1167 
   1168 	mutex_spin_enter(&l1_lru_lock);
   1169 
   1170 	/*
   1171 	 * If this L1 is currently on the LRU list, remove it.
   1172 	 */
   1173 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1174 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1175 
   1176 	/*
   1177 	 * Free up the domain number which was allocated to the pmap
   1178 	 */
   1179 	l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
   1180 	l1->l1_domain_first = pm->pm_domain - 1;
   1181 	l1->l1_domain_use_count--;
   1182 
   1183 	/*
   1184 	 * The L1 now must have at least 1 free domain, so add
   1185 	 * it back to the LRU list. If the use count is zero,
   1186 	 * put it at the head of the list, otherwise it goes
   1187 	 * to the tail.
   1188 	 */
   1189 	if (l1->l1_domain_use_count == 0)
   1190 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1191 	else
   1192 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1193 
   1194 	mutex_spin_exit(&l1_lru_lock);
   1195 }
   1196 
   1197 static inline void
   1198 pmap_use_l1(pmap_t pm)
   1199 {
   1200 	struct l1_ttable *l1;
   1201 
   1202 	/*
   1203 	 * Do nothing if we're in interrupt context.
   1204 	 * Access to an L1 by the kernel pmap must not affect
   1205 	 * the LRU list.
   1206 	 */
   1207 	if (cpu_intr_p() || pm == pmap_kernel())
   1208 		return;
   1209 
   1210 	l1 = pm->pm_l1;
   1211 
   1212 	/*
   1213 	 * If the L1 is not currently on the LRU list, just return
   1214 	 */
   1215 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1216 		return;
   1217 
   1218 	mutex_spin_enter(&l1_lru_lock);
   1219 
   1220 	/*
   1221 	 * Check the use count again, now that we've acquired the lock
   1222 	 */
   1223 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1224 		mutex_spin_exit(&l1_lru_lock);
   1225 		return;
   1226 	}
   1227 
   1228 	/*
   1229 	 * Move the L1 to the back of the LRU list
   1230 	 */
   1231 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1232 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1233 
   1234 	mutex_spin_exit(&l1_lru_lock);
   1235 }
   1236 
   1237 /*
   1238  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1239  *
   1240  * Free an L2 descriptor table.
   1241  */
   1242 static inline void
   1243 #ifndef PMAP_INCLUDE_PTE_SYNC
   1244 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1245 #else
   1246 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1247 #endif
   1248 {
   1249 #ifdef PMAP_INCLUDE_PTE_SYNC
   1250 #ifdef PMAP_CACHE_VIVT
   1251 	/*
   1252 	 * Note: With a write-back cache, we may need to sync this
   1253 	 * L2 table before re-using it.
   1254 	 * This is because it may have belonged to a non-current
   1255 	 * pmap, in which case the cache syncs would have been
   1256 	 * skipped for the pages that were being unmapped. If the
   1257 	 * L2 table were then to be immediately re-allocated to
   1258 	 * the *current* pmap, it may well contain stale mappings
   1259 	 * which have not yet been cleared by a cache write-back
   1260 	 * and so would still be visible to the mmu.
   1261 	 */
   1262 	if (need_sync)
   1263 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1264 #endif /* PMAP_CACHE_VIVT */
   1265 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1266 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1267 }
   1268 
   1269 /*
   1270  * Returns a pointer to the L2 bucket associated with the specified pmap
   1271  * and VA, or NULL if no L2 bucket exists for the address.
   1272  */
   1273 static inline struct l2_bucket *
   1274 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1275 {
   1276 	struct l2_dtable *l2;
   1277 	struct l2_bucket *l2b;
   1278 	u_short l1idx;
   1279 
   1280 	l1idx = L1_IDX(va);
   1281 
   1282 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1283 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1284 		return (NULL);
   1285 
   1286 	return (l2b);
   1287 }
   1288 
   1289 /*
   1290  * Returns a pointer to the L2 bucket associated with the specified pmap
   1291  * and VA.
   1292  *
   1293  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1294  * bucket/page table in place.
   1295  *
   1296  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1297  * increment the bucket occupancy counter appropriately *before*
   1298  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1299  * the bucket/page in the meantime.
   1300  */
   1301 static struct l2_bucket *
   1302 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1303 {
   1304 	struct l2_dtable *l2;
   1305 	struct l2_bucket *l2b;
   1306 	u_short l1idx;
   1307 
   1308 	l1idx = L1_IDX(va);
   1309 
   1310 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1311 		/*
   1312 		 * No mapping at this address, as there is
   1313 		 * no entry in the L1 table.
   1314 		 * Need to allocate a new l2_dtable.
   1315 		 */
   1316 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1317 			return (NULL);
   1318 
   1319 		/*
   1320 		 * Link it into the parent pmap
   1321 		 */
   1322 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1323 	}
   1324 
   1325 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1326 
   1327 	/*
   1328 	 * Fetch pointer to the L2 page table associated with the address.
   1329 	 */
   1330 	if (l2b->l2b_kva == NULL) {
   1331 		pt_entry_t *ptep;
   1332 
   1333 		/*
   1334 		 * No L2 page table has been allocated. Chances are, this
   1335 		 * is because we just allocated the l2_dtable, above.
   1336 		 */
   1337 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1338 			/*
   1339 			 * Oops, no more L2 page tables available at this
   1340 			 * time. We may need to deallocate the l2_dtable
   1341 			 * if we allocated a new one above.
   1342 			 */
   1343 			if (l2->l2_occupancy == 0) {
   1344 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1345 				pmap_free_l2_dtable(l2);
   1346 			}
   1347 			return (NULL);
   1348 		}
   1349 
   1350 		l2->l2_occupancy++;
   1351 		l2b->l2b_kva = ptep;
   1352 		l2b->l2b_l1idx = l1idx;
   1353 	}
   1354 
   1355 	return (l2b);
   1356 }
   1357 
   1358 /*
   1359  * One or more mappings in the specified L2 descriptor table have just been
   1360  * invalidated.
   1361  *
   1362  * Garbage collect the metadata and descriptor table itself if necessary.
   1363  *
   1364  * The pmap lock must be acquired when this is called (not necessary
   1365  * for the kernel pmap).
   1366  */
   1367 static void
   1368 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1369 {
   1370 	struct l2_dtable *l2;
   1371 	pd_entry_t *pl1pd, l1pd;
   1372 	pt_entry_t *ptep;
   1373 	u_short l1idx;
   1374 
   1375 	KDASSERT(count <= l2b->l2b_occupancy);
   1376 
   1377 	/*
   1378 	 * Update the bucket's reference count according to how many
   1379 	 * PTEs the caller has just invalidated.
   1380 	 */
   1381 	l2b->l2b_occupancy -= count;
   1382 
   1383 	/*
   1384 	 * Note:
   1385 	 *
   1386 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1387 	 * as that would require checking all Level 1 page tables and
   1388 	 * removing any references to the Level 2 page table. See also the
   1389 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1390 	 *
   1391 	 * We make do with just invalidating the mapping in the L2 table.
   1392 	 *
   1393 	 * This isn't really a big deal in practice and, in fact, leads
   1394 	 * to a performance win over time as we don't need to continually
   1395 	 * alloc/free.
   1396 	 */
   1397 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1398 		return;
   1399 
   1400 	/*
   1401 	 * There are no more valid mappings in this level 2 page table.
   1402 	 * Go ahead and NULL-out the pointer in the bucket, then
   1403 	 * free the page table.
   1404 	 */
   1405 	l1idx = l2b->l2b_l1idx;
   1406 	ptep = l2b->l2b_kva;
   1407 	l2b->l2b_kva = NULL;
   1408 
   1409 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1410 
   1411 	/*
   1412 	 * If the L1 slot matches the pmap's domain
   1413 	 * number, then invalidate it.
   1414 	 */
   1415 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1416 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1417 		*pl1pd = 0;
   1418 		PTE_SYNC(pl1pd);
   1419 	}
   1420 
   1421 	/*
   1422 	 * Release the L2 descriptor table back to the pool cache.
   1423 	 */
   1424 #ifndef PMAP_INCLUDE_PTE_SYNC
   1425 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1426 #else
   1427 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1428 #endif
   1429 
   1430 	/*
   1431 	 * Update the reference count in the associated l2_dtable
   1432 	 */
   1433 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1434 	if (--l2->l2_occupancy > 0)
   1435 		return;
   1436 
   1437 	/*
   1438 	 * There are no more valid mappings in any of the Level 1
   1439 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1440 	 * the pointer in the parent pmap and free the l2_dtable.
   1441 	 */
   1442 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1443 	pmap_free_l2_dtable(l2);
   1444 }
   1445 
   1446 /*
   1447  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1448  * structures.
   1449  */
   1450 static int
   1451 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1452 {
   1453 #ifndef PMAP_INCLUDE_PTE_SYNC
   1454 	struct l2_bucket *l2b;
   1455 	pt_entry_t *ptep, pte;
   1456 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1457 
   1458 	/*
   1459 	 * The mappings for these page tables were initially made using
   1460 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1461 	 * mode will not be right for page table mappings. To avoid
   1462 	 * polluting the pmap_kenter_pa() code with a special case for
   1463 	 * page tables, we simply fix up the cache-mode here if it's not
   1464 	 * correct.
   1465 	 */
   1466 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1467 	KDASSERT(l2b != NULL);
   1468 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1469 	pte = *ptep;
   1470 
   1471 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1472 		/*
   1473 		 * Page tables must have the cache-mode set to Write-Thru.
   1474 		 */
   1475 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1476 		PTE_SYNC(ptep);
   1477 		cpu_tlb_flushD_SE(va);
   1478 		cpu_cpwait();
   1479 	}
   1480 #endif
   1481 
   1482 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1483 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1484 	return (0);
   1485 }
   1486 
   1487 static int
   1488 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1489 {
   1490 
   1491 	memset(v, 0, sizeof(struct l2_dtable));
   1492 	return (0);
   1493 }
   1494 
   1495 static int
   1496 pmap_pmap_ctor(void *arg, void *v, int flags)
   1497 {
   1498 
   1499 	memset(v, 0, sizeof(struct pmap));
   1500 	return (0);
   1501 }
   1502 
   1503 static void
   1504 pmap_pinit(pmap_t pm)
   1505 {
   1506 	struct l2_bucket *l2b;
   1507 
   1508 	if (vector_page < KERNEL_BASE) {
   1509 		/*
   1510 		 * Map the vector page.
   1511 		 */
   1512 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1513 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1514 		pmap_update(pm);
   1515 
   1516 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1517 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1518 		KDASSERT(l2b != NULL);
   1519 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1520 		    L1_C_DOM(pm->pm_domain);
   1521 	} else
   1522 		pm->pm_pl1vec = NULL;
   1523 }
   1524 
   1525 #ifdef PMAP_CACHE_VIVT
   1526 /*
   1527  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1528  * there is more than one mapping and at least one of them is writable.
   1529  * Since we purge the cache on every context switch, we only need to check for
   1530  * other mappings within the same pmap, or kernel_pmap.
   1531  * This function is also called when a page is unmapped, to possibly reenable
   1532  * caching on any remaining mappings.
   1533  *
   1534  * The code implements the following logic, where:
   1535  *
   1536  * KW = # of kernel read/write pages
   1537  * KR = # of kernel read only pages
   1538  * UW = # of user read/write pages
   1539  * UR = # of user read only pages
   1540  *
   1541  * KC = kernel mapping is cacheable
   1542  * UC = user mapping is cacheable
   1543  *
   1544  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1545  *             +---------------------------------------------
   1546  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1547  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1548  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1549  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1550  */
   1551 
   1552 static const int pmap_vac_flags[4][4] = {
   1553 	{-1,		0,		0,		PVF_KNC},
   1554 	{0,		0,		PVF_NC,		PVF_NC},
   1555 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1556 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1557 };
   1558 
   1559 static inline int
   1560 pmap_get_vac_flags(const struct vm_page_md *md)
   1561 {
   1562 	int kidx, uidx;
   1563 
   1564 	kidx = 0;
   1565 	if (md->kro_mappings || md->krw_mappings > 1)
   1566 		kidx |= 1;
   1567 	if (md->krw_mappings)
   1568 		kidx |= 2;
   1569 
   1570 	uidx = 0;
   1571 	if (md->uro_mappings || md->urw_mappings > 1)
   1572 		uidx |= 1;
   1573 	if (md->urw_mappings)
   1574 		uidx |= 2;
   1575 
   1576 	return (pmap_vac_flags[uidx][kidx]);
   1577 }
   1578 
   1579 static inline void
   1580 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1581 {
   1582 	int nattr;
   1583 
   1584 	nattr = pmap_get_vac_flags(md);
   1585 
   1586 	if (nattr < 0) {
   1587 		md->pvh_attrs &= ~PVF_NC;
   1588 		return;
   1589 	}
   1590 
   1591 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1592 		return;
   1593 
   1594 	if (pm == pmap_kernel())
   1595 		pmap_vac_me_kpmap(md, pa, pm, va);
   1596 	else
   1597 		pmap_vac_me_user(md, pa, pm, va);
   1598 
   1599 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1600 }
   1601 
   1602 static void
   1603 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1604 {
   1605 	u_int u_cacheable, u_entries;
   1606 	struct pv_entry *pv;
   1607 	pmap_t last_pmap = pm;
   1608 
   1609 	/*
   1610 	 * Pass one, see if there are both kernel and user pmaps for
   1611 	 * this page.  Calculate whether there are user-writable or
   1612 	 * kernel-writable pages.
   1613 	 */
   1614 	u_cacheable = 0;
   1615 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1616 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1617 			u_cacheable++;
   1618 	}
   1619 
   1620 	u_entries = md->urw_mappings + md->uro_mappings;
   1621 
   1622 	/*
   1623 	 * We know we have just been updating a kernel entry, so if
   1624 	 * all user pages are already cacheable, then there is nothing
   1625 	 * further to do.
   1626 	 */
   1627 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1628 		return;
   1629 
   1630 	if (u_entries) {
   1631 		/*
   1632 		 * Scan over the list again, for each entry, if it
   1633 		 * might not be set correctly, call pmap_vac_me_user
   1634 		 * to recalculate the settings.
   1635 		 */
   1636 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1637 			/*
   1638 			 * We know kernel mappings will get set
   1639 			 * correctly in other calls.  We also know
   1640 			 * that if the pmap is the same as last_pmap
   1641 			 * then we've just handled this entry.
   1642 			 */
   1643 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1644 				continue;
   1645 
   1646 			/*
   1647 			 * If there are kernel entries and this page
   1648 			 * is writable but non-cacheable, then we can
   1649 			 * skip this entry also.
   1650 			 */
   1651 			if (md->k_mappings &&
   1652 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1653 			    (PVF_NC | PVF_WRITE))
   1654 				continue;
   1655 
   1656 			/*
   1657 			 * Similarly if there are no kernel-writable
   1658 			 * entries and the page is already
   1659 			 * read-only/cacheable.
   1660 			 */
   1661 			if (md->krw_mappings == 0 &&
   1662 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1663 				continue;
   1664 
   1665 			/*
   1666 			 * For some of the remaining cases, we know
   1667 			 * that we must recalculate, but for others we
   1668 			 * can't tell if they are correct or not, so
   1669 			 * we recalculate anyway.
   1670 			 */
   1671 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1672 		}
   1673 
   1674 		if (md->k_mappings == 0)
   1675 			return;
   1676 	}
   1677 
   1678 	pmap_vac_me_user(md, pa, pm, va);
   1679 }
   1680 
   1681 static void
   1682 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1683 {
   1684 	pmap_t kpmap = pmap_kernel();
   1685 	struct pv_entry *pv, *npv = NULL;
   1686 	struct l2_bucket *l2b;
   1687 	pt_entry_t *ptep, pte;
   1688 	u_int entries = 0;
   1689 	u_int writable = 0;
   1690 	u_int cacheable_entries = 0;
   1691 	u_int kern_cacheable = 0;
   1692 	u_int other_writable = 0;
   1693 
   1694 	/*
   1695 	 * Count mappings and writable mappings in this pmap.
   1696 	 * Include kernel mappings as part of our own.
   1697 	 * Keep a pointer to the first one.
   1698 	 */
   1699 	npv = NULL;
   1700 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1701 		/* Count mappings in the same pmap */
   1702 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1703 			if (entries++ == 0)
   1704 				npv = pv;
   1705 
   1706 			/* Cacheable mappings */
   1707 			if ((pv->pv_flags & PVF_NC) == 0) {
   1708 				cacheable_entries++;
   1709 				if (kpmap == pv->pv_pmap)
   1710 					kern_cacheable++;
   1711 			}
   1712 
   1713 			/* Writable mappings */
   1714 			if (pv->pv_flags & PVF_WRITE)
   1715 				++writable;
   1716 		} else
   1717 		if (pv->pv_flags & PVF_WRITE)
   1718 			other_writable = 1;
   1719 	}
   1720 
   1721 	/*
   1722 	 * Enable or disable caching as necessary.
   1723 	 * Note: the first entry might be part of the kernel pmap,
   1724 	 * so we can't assume this is indicative of the state of the
   1725 	 * other (maybe non-kpmap) entries.
   1726 	 */
   1727 	if ((entries > 1 && writable) ||
   1728 	    (entries > 0 && pm == kpmap && other_writable)) {
   1729 		if (cacheable_entries == 0)
   1730 			return;
   1731 
   1732 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1733 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1734 			    (pv->pv_flags & PVF_NC))
   1735 				continue;
   1736 
   1737 			pv->pv_flags |= PVF_NC;
   1738 
   1739 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1740 			KDASSERT(l2b != NULL);
   1741 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1742 			pte = *ptep & ~L2_S_CACHE_MASK;
   1743 
   1744 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1745 			    l2pte_valid(pte)) {
   1746 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1747 #ifdef PMAP_CACHE_VIVT
   1748 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1749 					    pv->pv_va, PAGE_SIZE);
   1750 #endif
   1751 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1752 					    pv->pv_va);
   1753 				} else
   1754 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1755 #ifdef PMAP_CACHE_VIVT
   1756 					pmap_dcache_wb_range(pv->pv_pmap,
   1757 					    pv->pv_va, PAGE_SIZE, true,
   1758 					    (pv->pv_flags & PVF_WRITE) == 0);
   1759 #endif
   1760 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1761 					    pv->pv_va);
   1762 				}
   1763 			}
   1764 
   1765 			*ptep = pte;
   1766 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1767 		}
   1768 		cpu_cpwait();
   1769 	} else
   1770 	if (entries > cacheable_entries) {
   1771 		/*
   1772 		 * Turn cacheing back on for some pages.  If it is a kernel
   1773 		 * page, only do so if there are no other writable pages.
   1774 		 */
   1775 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1776 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1777 			    (kpmap != pv->pv_pmap || other_writable)))
   1778 				continue;
   1779 
   1780 			pv->pv_flags &= ~PVF_NC;
   1781 
   1782 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1783 			KDASSERT(l2b != NULL);
   1784 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1785 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1786 
   1787 			if (l2pte_valid(pte)) {
   1788 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1789 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1790 					    pv->pv_va);
   1791 				} else
   1792 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1793 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1794 					    pv->pv_va);
   1795 				}
   1796 			}
   1797 
   1798 			*ptep = pte;
   1799 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1800 		}
   1801 	}
   1802 }
   1803 #endif
   1804 
   1805 #ifdef PMAP_CACHE_VIPT
   1806 static void
   1807 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1808 {
   1809 	struct pv_entry *pv;
   1810 	vaddr_t tst_mask;
   1811 	bool bad_alias;
   1812 	struct l2_bucket *l2b;
   1813 	pt_entry_t *ptep, pte, opte;
   1814 	const u_int
   1815 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   1816 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   1817 
   1818 	/* do we need to do anything? */
   1819 	if (arm_cache_prefer_mask == 0)
   1820 		return;
   1821 
   1822 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   1823 	    md, pm, va));
   1824 
   1825 	KASSERT(!va || pm);
   1826 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1827 
   1828 	/* Already a conflict? */
   1829 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   1830 		/* just an add, things are already non-cached */
   1831 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   1832 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1833 		bad_alias = false;
   1834 		if (va) {
   1835 			PMAPCOUNT(vac_color_none);
   1836 			bad_alias = true;
   1837 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1838 			goto fixup;
   1839 		}
   1840 		pv = SLIST_FIRST(&md->pvh_list);
   1841 		/* the list can't be empty because it would be cachable */
   1842 		if (md->pvh_attrs & PVF_KMPAGE) {
   1843 			tst_mask = md->pvh_attrs;
   1844 		} else {
   1845 			KASSERT(pv);
   1846 			tst_mask = pv->pv_va;
   1847 			pv = SLIST_NEXT(pv, pv_link);
   1848 		}
   1849 		/*
   1850 		 * Only check for a bad alias if we have writable mappings.
   1851 		 */
   1852 		tst_mask &= arm_cache_prefer_mask;
   1853 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1854 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1855 				/* if there's a bad alias, stop checking. */
   1856 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1857 					bad_alias = true;
   1858 			}
   1859 			md->pvh_attrs |= PVF_WRITE;
   1860 			if (!bad_alias)
   1861 				md->pvh_attrs |= PVF_DIRTY;
   1862 		} else {
   1863 			/*
   1864 			 * We have only read-only mappings.  Let's see if there
   1865 			 * are multiple colors in use or if we mapped a KMPAGE.
   1866 			 * If the latter, we have a bad alias.  If the former,
   1867 			 * we need to remember that.
   1868 			 */
   1869 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1870 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1871 					if (md->pvh_attrs & PVF_KMPAGE)
   1872 						bad_alias = true;
   1873 					break;
   1874 				}
   1875 			}
   1876 			md->pvh_attrs &= ~PVF_WRITE;
   1877 			/*
   1878 			 * No KMPAGE and we exited early, so we must have
   1879 			 * multiple color mappings.
   1880 			 */
   1881 			if (!bad_alias && pv != NULL)
   1882 				md->pvh_attrs |= PVF_MULTCLR;
   1883 		}
   1884 
   1885 		/* If no conflicting colors, set everything back to cached */
   1886 		if (!bad_alias) {
   1887 #ifdef DEBUG
   1888 			if ((md->pvh_attrs & PVF_WRITE)
   1889 			    || ro_mappings < 2) {
   1890 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1891 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1892 			}
   1893 #endif
   1894 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1895 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   1896 			/*
   1897 			 * Restore DIRTY bit if page is modified
   1898 			 */
   1899 			if (md->pvh_attrs & PVF_DMOD)
   1900 				md->pvh_attrs |= PVF_DIRTY;
   1901 			PMAPCOUNT(vac_color_restore);
   1902 		} else {
   1903 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1904 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1905 		}
   1906 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1907 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1908 	} else if (!va) {
   1909 		KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   1910 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   1911 		    || (md->pvh_attrs & PVF_DIRTY));
   1912 		if (rw_mappings == 0) {
   1913 			md->pvh_attrs &= ~PVF_WRITE;
   1914 			if (ro_mappings == 1
   1915 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   1916 				/*
   1917 				 * If this is the last readonly mapping
   1918 				 * but it doesn't match the current color
   1919 				 * for the page, change the current color
   1920 				 * to match this last readonly mapping.
   1921 				 */
   1922 				pv = SLIST_FIRST(&md->pvh_list);
   1923 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   1924 				    & arm_cache_prefer_mask;
   1925 				if (tst_mask) {
   1926 					md->pvh_attrs ^= tst_mask;
   1927 					PMAPCOUNT(vac_color_change);
   1928 				}
   1929 			}
   1930 		}
   1931 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1932 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1933 		return;
   1934 	} else if (!pmap_is_page_colored_p(md)) {
   1935 		/* not colored so we just use its color */
   1936 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1937 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1938 		PMAPCOUNT(vac_color_new);
   1939 		md->pvh_attrs &= PAGE_SIZE - 1;
   1940 		md->pvh_attrs |= PVF_COLORED
   1941 		    | (va & arm_cache_prefer_mask)
   1942 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1943 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1944 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1945 		return;
   1946 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1947 		bad_alias = false;
   1948 		if (rw_mappings > 0) {
   1949 			/*
   1950 			 * We now have writeable mappings and if we have
   1951 			 * readonly mappings in more than once color, we have
   1952 			 * an aliasing problem.  Regardless mark the page as
   1953 			 * writeable.
   1954 			 */
   1955 			if (md->pvh_attrs & PVF_MULTCLR) {
   1956 				if (ro_mappings < 2) {
   1957 					/*
   1958 					 * If we only have less than two
   1959 					 * read-only mappings, just flush the
   1960 					 * non-primary colors from the cache.
   1961 					 */
   1962 					pmap_flush_page(md, pa,
   1963 					    PMAP_FLUSH_SECONDARY);
   1964 				} else {
   1965 					bad_alias = true;
   1966 				}
   1967 			}
   1968 			md->pvh_attrs |= PVF_WRITE;
   1969 		}
   1970 		/* If no conflicting colors, set everything back to cached */
   1971 		if (!bad_alias) {
   1972 #ifdef DEBUG
   1973 			if (rw_mappings > 0
   1974 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   1975 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   1976 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1977 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1978 			}
   1979 #endif
   1980 			if (SLIST_EMPTY(&md->pvh_list))
   1981 				PMAPCOUNT(vac_color_reuse);
   1982 			else
   1983 				PMAPCOUNT(vac_color_ok);
   1984 
   1985 			/* matching color, just return */
   1986 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1987 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1988 			return;
   1989 		}
   1990 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1991 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1992 
   1993 		/* color conflict.  evict from cache. */
   1994 
   1995 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   1996 		md->pvh_attrs &= ~PVF_COLORED;
   1997 		md->pvh_attrs |= PVF_NC;
   1998 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1999 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2000 		PMAPCOUNT(vac_color_erase);
   2001 	} else if (rw_mappings == 0
   2002 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2003 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2004 
   2005 		/*
   2006 		 * If the page has dirty cache lines, clean it.
   2007 		 */
   2008 		if (md->pvh_attrs & PVF_DIRTY)
   2009 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2010 
   2011 		/*
   2012 		 * If this is the first remapping (we know that there are no
   2013 		 * writeable mappings), then this is a simple color change.
   2014 		 * Otherwise this is a seconary r/o mapping, which means
   2015 		 * we don't have to do anything.
   2016 		 */
   2017 		if (ro_mappings == 1) {
   2018 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2019 			md->pvh_attrs &= PAGE_SIZE - 1;
   2020 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2021 			PMAPCOUNT(vac_color_change);
   2022 		} else {
   2023 			PMAPCOUNT(vac_color_blind);
   2024 		}
   2025 		md->pvh_attrs |= PVF_MULTCLR;
   2026 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2027 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2028 		return;
   2029 	} else {
   2030 		if (rw_mappings > 0)
   2031 			md->pvh_attrs |= PVF_WRITE;
   2032 
   2033 		/* color conflict.  evict from cache. */
   2034 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2035 
   2036 		/* the list can't be empty because this was a enter/modify */
   2037 		pv = SLIST_FIRST(&md->pvh_list);
   2038 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2039 			KASSERT(pv);
   2040 			/*
   2041 			 * If there's only one mapped page, change color to the
   2042 			 * page's new color and return.  Restore the DIRTY bit
   2043 			 * that was erased by pmap_flush_page.
   2044 			 */
   2045 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2046 				md->pvh_attrs &= PAGE_SIZE - 1;
   2047 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2048 				if (md->pvh_attrs & PVF_DMOD)
   2049 					md->pvh_attrs |= PVF_DIRTY;
   2050 				PMAPCOUNT(vac_color_change);
   2051 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2052 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2053 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2054 				return;
   2055 			}
   2056 		}
   2057 		bad_alias = true;
   2058 		md->pvh_attrs &= ~PVF_COLORED;
   2059 		md->pvh_attrs |= PVF_NC;
   2060 		PMAPCOUNT(vac_color_erase);
   2061 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2062 	}
   2063 
   2064   fixup:
   2065 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2066 
   2067 	/*
   2068 	 * Turn cacheing on/off for all pages.
   2069 	 */
   2070 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2071 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2072 		KDASSERT(l2b != NULL);
   2073 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2074 		opte = *ptep;
   2075 		pte = opte & ~L2_S_CACHE_MASK;
   2076 		if (bad_alias) {
   2077 			pv->pv_flags |= PVF_NC;
   2078 		} else {
   2079 			pv->pv_flags &= ~PVF_NC;
   2080 			pte |= pte_l2_s_cache_mode;
   2081 		}
   2082 
   2083 		if (opte == pte)	/* only update is there's a change */
   2084 			continue;
   2085 
   2086 		if (l2pte_valid(pte)) {
   2087 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2088 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2089 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2090 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2091 			}
   2092 		}
   2093 
   2094 		*ptep = pte;
   2095 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2096 	}
   2097 }
   2098 #endif	/* PMAP_CACHE_VIPT */
   2099 
   2100 
   2101 /*
   2102  * Modify pte bits for all ptes corresponding to the given physical address.
   2103  * We use `maskbits' rather than `clearbits' because we're always passing
   2104  * constants and the latter would require an extra inversion at run-time.
   2105  */
   2106 static void
   2107 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2108 {
   2109 	struct l2_bucket *l2b;
   2110 	struct pv_entry *pv;
   2111 	pt_entry_t *ptep, npte, opte;
   2112 	pmap_t pm;
   2113 	vaddr_t va;
   2114 	u_int oflags;
   2115 #ifdef PMAP_CACHE_VIPT
   2116 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2117 	bool need_syncicache = false;
   2118 	bool did_syncicache = false;
   2119 	bool need_vac_me_harder = false;
   2120 #endif
   2121 
   2122 	NPDEBUG(PDB_BITS,
   2123 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2124 	    md, maskbits));
   2125 
   2126 #ifdef PMAP_CACHE_VIPT
   2127 	/*
   2128 	 * If we might want to sync the I-cache and we've modified it,
   2129 	 * then we know we definitely need to sync or discard it.
   2130 	 */
   2131 	if (want_syncicache)
   2132 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2133 #endif
   2134 	/*
   2135 	 * Clear saved attributes (modify, reference)
   2136 	 */
   2137 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2138 
   2139 	if (SLIST_EMPTY(&md->pvh_list)) {
   2140 #ifdef PMAP_CACHE_VIPT
   2141 		if (need_syncicache) {
   2142 			/*
   2143 			 * No one has it mapped, so just discard it.  The next
   2144 			 * exec remapping will cause it to be synced.
   2145 			 */
   2146 			md->pvh_attrs &= ~PVF_EXEC;
   2147 			PMAPCOUNT(exec_discarded_clearbit);
   2148 		}
   2149 #endif
   2150 		return;
   2151 	}
   2152 
   2153 	/*
   2154 	 * Loop over all current mappings setting/clearing as appropos
   2155 	 */
   2156 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2157 		va = pv->pv_va;
   2158 		pm = pv->pv_pmap;
   2159 		oflags = pv->pv_flags;
   2160 		/*
   2161 		 * Kernel entries are unmanaged and as such not to be changed.
   2162 		 */
   2163 		if (oflags & PVF_KENTRY)
   2164 			continue;
   2165 		pv->pv_flags &= ~maskbits;
   2166 
   2167 		pmap_acquire_pmap_lock(pm);
   2168 
   2169 		l2b = pmap_get_l2_bucket(pm, va);
   2170 		KDASSERT(l2b != NULL);
   2171 
   2172 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2173 		npte = opte = *ptep;
   2174 
   2175 		NPDEBUG(PDB_BITS,
   2176 		    printf(
   2177 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2178 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2179 
   2180 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2181 #ifdef PMAP_CACHE_VIVT
   2182 			if ((pv->pv_flags & PVF_NC)) {
   2183 				/*
   2184 				 * Entry is not cacheable:
   2185 				 *
   2186 				 * Don't turn caching on again if this is a
   2187 				 * modified emulation. This would be
   2188 				 * inconsitent with the settings created by
   2189 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2190 				 * to re-enable cacheing.
   2191 				 *
   2192 				 * There's no need to call pmap_vac_me_harder()
   2193 				 * here: all pages are losing their write
   2194 				 * permission.
   2195 				 */
   2196 				if (maskbits & PVF_WRITE) {
   2197 					npte |= pte_l2_s_cache_mode;
   2198 					pv->pv_flags &= ~PVF_NC;
   2199 				}
   2200 			} else
   2201 			if (l2pte_writable_p(opte)) {
   2202 				/*
   2203 				 * Entry is writable/cacheable: check if pmap
   2204 				 * is current if it is flush it, otherwise it
   2205 				 * won't be in the cache
   2206 				 */
   2207 				if (PV_BEEN_EXECD(oflags))
   2208 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2209 					    PAGE_SIZE);
   2210 				else
   2211 				if (PV_BEEN_REFD(oflags))
   2212 					pmap_dcache_wb_range(pm, pv->pv_va,
   2213 					    PAGE_SIZE,
   2214 					    (maskbits & PVF_REF) != 0, false);
   2215 			}
   2216 #endif
   2217 
   2218 			/* make the pte read only */
   2219 			npte = l2pte_set_readonly(npte);
   2220 
   2221 			if (maskbits & oflags & PVF_WRITE) {
   2222 				/*
   2223 				 * Keep alias accounting up to date
   2224 				 */
   2225 				if (pv->pv_pmap == pmap_kernel()) {
   2226 					md->krw_mappings--;
   2227 					md->kro_mappings++;
   2228 				} else {
   2229 					md->urw_mappings--;
   2230 					md->uro_mappings++;
   2231 				}
   2232 #ifdef PMAP_CACHE_VIPT
   2233 				if (md->urw_mappings + md->krw_mappings == 0)
   2234 					md->pvh_attrs &= ~PVF_WRITE;
   2235 				if (want_syncicache)
   2236 					need_syncicache = true;
   2237 				need_vac_me_harder = true;
   2238 #endif
   2239 			}
   2240 		}
   2241 
   2242 		if (maskbits & PVF_REF) {
   2243 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2244 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2245 			    l2pte_valid(npte)) {
   2246 #ifdef PMAP_CACHE_VIVT
   2247 				/*
   2248 				 * Check npte here; we may have already
   2249 				 * done the wbinv above, and the validity
   2250 				 * of the PTE is the same for opte and
   2251 				 * npte.
   2252 				 */
   2253 				/* XXXJRT need idcache_inv_range */
   2254 				if (PV_BEEN_EXECD(oflags))
   2255 					pmap_idcache_wbinv_range(pm,
   2256 					    pv->pv_va, PAGE_SIZE);
   2257 				else
   2258 				if (PV_BEEN_REFD(oflags))
   2259 					pmap_dcache_wb_range(pm,
   2260 					    pv->pv_va, PAGE_SIZE,
   2261 					    true, true);
   2262 #endif
   2263 			}
   2264 
   2265 			/*
   2266 			 * Make the PTE invalid so that we will take a
   2267 			 * page fault the next time the mapping is
   2268 			 * referenced.
   2269 			 */
   2270 			npte &= ~L2_TYPE_MASK;
   2271 			npte |= L2_TYPE_INV;
   2272 		}
   2273 
   2274 		if (npte != opte) {
   2275 			*ptep = npte;
   2276 			PTE_SYNC(ptep);
   2277 			/* Flush the TLB entry if a current pmap. */
   2278 			if (PV_BEEN_EXECD(oflags))
   2279 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2280 			else
   2281 			if (PV_BEEN_REFD(oflags))
   2282 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2283 		}
   2284 
   2285 		pmap_release_pmap_lock(pm);
   2286 
   2287 		NPDEBUG(PDB_BITS,
   2288 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2289 		    pm, va, opte, npte));
   2290 	}
   2291 
   2292 #ifdef PMAP_CACHE_VIPT
   2293 	/*
   2294 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2295 	 */
   2296 	if (need_syncicache && !did_syncicache) {
   2297 		pmap_syncicache_page(md, pa);
   2298 		PMAPCOUNT(exec_synced_clearbit);
   2299 	}
   2300 	/*
   2301 	 * If we are changing this to read-only, we need to call vac_me_harder
   2302 	 * so we can change all the read-only pages to cacheable.  We pretend
   2303 	 * this as a page deletion.
   2304 	 */
   2305 	if (need_vac_me_harder) {
   2306 		if (md->pvh_attrs & PVF_NC)
   2307 			pmap_vac_me_harder(md, pa, NULL, 0);
   2308 	}
   2309 #endif
   2310 }
   2311 
   2312 /*
   2313  * pmap_clean_page()
   2314  *
   2315  * This is a local function used to work out the best strategy to clean
   2316  * a single page referenced by its entry in the PV table. It's used by
   2317  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2318  *
   2319  * Its policy is effectively:
   2320  *  o If there are no mappings, we don't bother doing anything with the cache.
   2321  *  o If there is one mapping, we clean just that page.
   2322  *  o If there are multiple mappings, we clean the entire cache.
   2323  *
   2324  * So that some functions can be further optimised, it returns 0 if it didn't
   2325  * clean the entire cache, or 1 if it did.
   2326  *
   2327  * XXX One bug in this routine is that if the pv_entry has a single page
   2328  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2329  * just the 1 page. Since this should not occur in everyday use and if it does
   2330  * it will just result in not the most efficient clean for the page.
   2331  */
   2332 #ifdef PMAP_CACHE_VIVT
   2333 static int
   2334 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2335 {
   2336 	pmap_t pm_to_clean = NULL;
   2337 	struct pv_entry *npv;
   2338 	u_int cache_needs_cleaning = 0;
   2339 	u_int flags = 0;
   2340 	vaddr_t page_to_clean = 0;
   2341 
   2342 	if (pv == NULL) {
   2343 		/* nothing mapped in so nothing to flush */
   2344 		return (0);
   2345 	}
   2346 
   2347 	/*
   2348 	 * Since we flush the cache each time we change to a different
   2349 	 * user vmspace, we only need to flush the page if it is in the
   2350 	 * current pmap.
   2351 	 */
   2352 
   2353 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2354 		if (pmap_is_current(npv->pv_pmap)) {
   2355 			flags |= npv->pv_flags;
   2356 			/*
   2357 			 * The page is mapped non-cacheable in
   2358 			 * this map.  No need to flush the cache.
   2359 			 */
   2360 			if (npv->pv_flags & PVF_NC) {
   2361 #ifdef DIAGNOSTIC
   2362 				if (cache_needs_cleaning)
   2363 					panic("pmap_clean_page: "
   2364 					    "cache inconsistency");
   2365 #endif
   2366 				break;
   2367 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2368 				continue;
   2369 			if (cache_needs_cleaning) {
   2370 				page_to_clean = 0;
   2371 				break;
   2372 			} else {
   2373 				page_to_clean = npv->pv_va;
   2374 				pm_to_clean = npv->pv_pmap;
   2375 			}
   2376 			cache_needs_cleaning = 1;
   2377 		}
   2378 	}
   2379 
   2380 	if (page_to_clean) {
   2381 		if (PV_BEEN_EXECD(flags))
   2382 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2383 			    PAGE_SIZE);
   2384 		else
   2385 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2386 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2387 	} else if (cache_needs_cleaning) {
   2388 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2389 
   2390 		if (PV_BEEN_EXECD(flags))
   2391 			pmap_idcache_wbinv_all(pm);
   2392 		else
   2393 			pmap_dcache_wbinv_all(pm);
   2394 		return (1);
   2395 	}
   2396 	return (0);
   2397 }
   2398 #endif
   2399 
   2400 #ifdef PMAP_CACHE_VIPT
   2401 /*
   2402  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2403  * right cache alias to make sure we flush the right stuff.
   2404  */
   2405 void
   2406 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2407 {
   2408 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2409 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2410 
   2411 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2412 	    md, md->pvh_attrs));
   2413 	/*
   2414 	 * No need to clean the page if it's non-cached.
   2415 	 */
   2416 	if (md->pvh_attrs & PVF_NC)
   2417 		return;
   2418 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2419 
   2420 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2421 	/*
   2422 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2423 	 */
   2424 	*ptep = L2_S_PROTO |
   2425 	    pa
   2426 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2427 	    | pte_l2_s_cache_mode;
   2428 	PTE_SYNC(ptep);
   2429 
   2430 	/*
   2431 	 * Flush it.
   2432 	 */
   2433 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2434 	/*
   2435 	 * Unmap the page.
   2436 	 */
   2437 	*ptep = 0;
   2438 	PTE_SYNC(ptep);
   2439 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2440 
   2441 	md->pvh_attrs |= PVF_EXEC;
   2442 	PMAPCOUNT(exec_synced);
   2443 }
   2444 
   2445 void
   2446 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2447 {
   2448 	vsize_t va_offset, end_va;
   2449 	void (*cf)(vaddr_t, vsize_t);
   2450 
   2451 	if (arm_cache_prefer_mask == 0)
   2452 		return;
   2453 
   2454 	switch (flush) {
   2455 	case PMAP_FLUSH_PRIMARY:
   2456 		if (md->pvh_attrs & PVF_MULTCLR) {
   2457 			va_offset = 0;
   2458 			end_va = arm_cache_prefer_mask;
   2459 			md->pvh_attrs &= ~PVF_MULTCLR;
   2460 			PMAPCOUNT(vac_flush_lots);
   2461 		} else {
   2462 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2463 			end_va = va_offset;
   2464 			PMAPCOUNT(vac_flush_one);
   2465 		}
   2466 		/*
   2467 		 * Mark that the page is no longer dirty.
   2468 		 */
   2469 		md->pvh_attrs &= ~PVF_DIRTY;
   2470 		cf = cpufuncs.cf_idcache_wbinv_range;
   2471 		break;
   2472 	case PMAP_FLUSH_SECONDARY:
   2473 		va_offset = 0;
   2474 		end_va = arm_cache_prefer_mask;
   2475 		cf = cpufuncs.cf_idcache_wbinv_range;
   2476 		md->pvh_attrs &= ~PVF_MULTCLR;
   2477 		PMAPCOUNT(vac_flush_lots);
   2478 		break;
   2479 	case PMAP_CLEAN_PRIMARY:
   2480 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2481 		end_va = va_offset;
   2482 		cf = cpufuncs.cf_dcache_wb_range;
   2483 		/*
   2484 		 * Mark that the page is no longer dirty.
   2485 		 */
   2486 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2487 			md->pvh_attrs &= ~PVF_DIRTY;
   2488 		PMAPCOUNT(vac_clean_one);
   2489 		break;
   2490 	default:
   2491 		return;
   2492 	}
   2493 
   2494 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2495 
   2496 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2497 	    md, md->pvh_attrs));
   2498 
   2499 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2500 		const size_t pte_offset = va_offset >> PGSHIFT;
   2501 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2502 		const pt_entry_t oldpte = *ptep;
   2503 
   2504 		if (flush == PMAP_FLUSH_SECONDARY
   2505 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2506 			continue;
   2507 
   2508 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2509 		/*
   2510 		 * Set up a PTE with the right coloring to flush
   2511 		 * existing cache entries.
   2512 		 */
   2513 		*ptep = L2_S_PROTO
   2514 		    | pa
   2515 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2516 		    | pte_l2_s_cache_mode;
   2517 		PTE_SYNC(ptep);
   2518 
   2519 		/*
   2520 		 * Flush it.
   2521 		 */
   2522 		(*cf)(cdstp + va_offset, PAGE_SIZE);
   2523 
   2524 		/*
   2525 		 * Restore the page table entry since we might have interrupted
   2526 		 * pmap_zero_page or pmap_copy_page which was already using
   2527 		 * this pte.
   2528 		 */
   2529 		*ptep = oldpte;
   2530 		PTE_SYNC(ptep);
   2531 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2532 	}
   2533 }
   2534 #endif /* PMAP_CACHE_VIPT */
   2535 
   2536 /*
   2537  * Routine:	pmap_page_remove
   2538  * Function:
   2539  *		Removes this physical page from
   2540  *		all physical maps in which it resides.
   2541  *		Reflects back modify bits to the pager.
   2542  */
   2543 static void
   2544 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2545 {
   2546 	struct l2_bucket *l2b;
   2547 	struct pv_entry *pv, *npv, **pvp;
   2548 	pmap_t pm;
   2549 	pt_entry_t *ptep;
   2550 	bool flush;
   2551 	u_int flags;
   2552 
   2553 	NPDEBUG(PDB_FOLLOW,
   2554 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2555 	    pa));
   2556 
   2557 	pv = SLIST_FIRST(&md->pvh_list);
   2558 	if (pv == NULL) {
   2559 #ifdef PMAP_CACHE_VIPT
   2560 		/*
   2561 		 * We *know* the page contents are about to be replaced.
   2562 		 * Discard the exec contents
   2563 		 */
   2564 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2565 			PMAPCOUNT(exec_discarded_page_protect);
   2566 		md->pvh_attrs &= ~PVF_EXEC;
   2567 		KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2568 #endif
   2569 		return;
   2570 	}
   2571 #ifdef PMAP_CACHE_VIPT
   2572 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2573 #endif
   2574 
   2575 	/*
   2576 	 * Clear alias counts
   2577 	 */
   2578 #ifdef PMAP_CACHE_VIVT
   2579 	md->k_mappings = 0;
   2580 #endif
   2581 	md->urw_mappings = md->uro_mappings = 0;
   2582 
   2583 	flush = false;
   2584 	flags = 0;
   2585 
   2586 #ifdef PMAP_CACHE_VIVT
   2587 	pmap_clean_page(pv, false);
   2588 #endif
   2589 
   2590 	pvp = &SLIST_FIRST(&md->pvh_list);
   2591 	while (pv) {
   2592 		pm = pv->pv_pmap;
   2593 		npv = SLIST_NEXT(pv, pv_link);
   2594 		if (flush == false && pmap_is_current(pm))
   2595 			flush = true;
   2596 
   2597 		if (pm == pmap_kernel()) {
   2598 #ifdef PMAP_CACHE_VIPT
   2599 			/*
   2600 			 * If this was unmanaged mapping, it must be preserved.
   2601 			 * Move it back on the list and advance the end-of-list
   2602 			 * pointer.
   2603 			 */
   2604 			if (pv->pv_flags & PVF_KENTRY) {
   2605 				*pvp = pv;
   2606 				pvp = &SLIST_NEXT(pv, pv_link);
   2607 				pv = npv;
   2608 				continue;
   2609 			}
   2610 			if (pv->pv_flags & PVF_WRITE)
   2611 				md->krw_mappings--;
   2612 			else
   2613 				md->kro_mappings--;
   2614 #endif
   2615 			PMAPCOUNT(kernel_unmappings);
   2616 		}
   2617 		PMAPCOUNT(unmappings);
   2618 
   2619 		pmap_acquire_pmap_lock(pm);
   2620 
   2621 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2622 		KDASSERT(l2b != NULL);
   2623 
   2624 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2625 
   2626 		/*
   2627 		 * Update statistics
   2628 		 */
   2629 		--pm->pm_stats.resident_count;
   2630 
   2631 		/* Wired bit */
   2632 		if (pv->pv_flags & PVF_WIRED)
   2633 			--pm->pm_stats.wired_count;
   2634 
   2635 		flags |= pv->pv_flags;
   2636 
   2637 		/*
   2638 		 * Invalidate the PTEs.
   2639 		 */
   2640 		*ptep = 0;
   2641 		PTE_SYNC_CURRENT(pm, ptep);
   2642 		pmap_free_l2_bucket(pm, l2b, 1);
   2643 
   2644 		pool_put(&pmap_pv_pool, pv);
   2645 		pv = npv;
   2646 		/*
   2647 		 * if we reach the end of the list and there are still
   2648 		 * mappings, they might be able to be cached now.
   2649 		 */
   2650 		if (pv == NULL) {
   2651 			*pvp = NULL;
   2652 			if (!SLIST_EMPTY(&md->pvh_list))
   2653 				pmap_vac_me_harder(md, pa, pm, 0);
   2654 		}
   2655 		pmap_release_pmap_lock(pm);
   2656 	}
   2657 #ifdef PMAP_CACHE_VIPT
   2658 	/*
   2659 	 * Its EXEC cache is now gone.
   2660 	 */
   2661 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2662 		PMAPCOUNT(exec_discarded_page_protect);
   2663 	md->pvh_attrs &= ~PVF_EXEC;
   2664 	KASSERT(md->urw_mappings == 0);
   2665 	KASSERT(md->uro_mappings == 0);
   2666 	if (md->krw_mappings == 0)
   2667 		md->pvh_attrs &= ~PVF_WRITE;
   2668 	KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2669 #endif
   2670 
   2671 	if (flush) {
   2672 		/*
   2673 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2674 		 * would need a subsequent call to pmap_update() to ensure
   2675 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2676 		 * required to do that (see pmap(9)), so we can't modify
   2677 		 * the current pmap's state.
   2678 		 */
   2679 		if (PV_BEEN_EXECD(flags))
   2680 			cpu_tlb_flushID();
   2681 		else
   2682 			cpu_tlb_flushD();
   2683 	}
   2684 	cpu_cpwait();
   2685 }
   2686 
   2687 /*
   2688  * pmap_t pmap_create(void)
   2689  *
   2690  *      Create a new pmap structure from scratch.
   2691  */
   2692 pmap_t
   2693 pmap_create(void)
   2694 {
   2695 	pmap_t pm;
   2696 
   2697 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2698 
   2699 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2700 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2701 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2702 
   2703 	pm->pm_stats.wired_count = 0;
   2704 	pm->pm_stats.resident_count = 1;
   2705 	pm->pm_cstate.cs_all = 0;
   2706 	pmap_alloc_l1(pm);
   2707 
   2708 	/*
   2709 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2710 	 * initialised to zero.
   2711 	 */
   2712 
   2713 	pmap_pinit(pm);
   2714 
   2715 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2716 
   2717 	return (pm);
   2718 }
   2719 
   2720 u_int
   2721 arm32_mmap_flags(paddr_t pa)
   2722 {
   2723 	/*
   2724 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   2725 	 * and we're using the upper bits in page numbers to pass flags around
   2726 	 * so we might as well use the same bits
   2727 	 */
   2728 	return (u_int)pa & PMAP_MD_MASK;
   2729 }
   2730 /*
   2731  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2732  *      u_int flags)
   2733  *
   2734  *      Insert the given physical page (p) at
   2735  *      the specified virtual address (v) in the
   2736  *      target physical map with the protection requested.
   2737  *
   2738  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2739  *      or lose information.  That is, this routine must actually
   2740  *      insert this page into the given map NOW.
   2741  */
   2742 int
   2743 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2744 {
   2745 	struct l2_bucket *l2b;
   2746 	struct vm_page *pg, *opg;
   2747 	struct pv_entry *pv;
   2748 	pt_entry_t *ptep, npte, opte;
   2749 	u_int nflags;
   2750 	u_int oflags;
   2751 
   2752 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2753 
   2754 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2755 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2756 
   2757 	/*
   2758 	 * Get a pointer to the page.  Later on in this function, we
   2759 	 * test for a managed page by checking pg != NULL.
   2760 	 */
   2761 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2762 
   2763 	nflags = 0;
   2764 	if (prot & VM_PROT_WRITE)
   2765 		nflags |= PVF_WRITE;
   2766 	if (prot & VM_PROT_EXECUTE)
   2767 		nflags |= PVF_EXEC;
   2768 	if (flags & PMAP_WIRED)
   2769 		nflags |= PVF_WIRED;
   2770 
   2771 	pmap_acquire_pmap_lock(pm);
   2772 
   2773 	/*
   2774 	 * Fetch the L2 bucket which maps this page, allocating one if
   2775 	 * necessary for user pmaps.
   2776 	 */
   2777 	if (pm == pmap_kernel())
   2778 		l2b = pmap_get_l2_bucket(pm, va);
   2779 	else
   2780 		l2b = pmap_alloc_l2_bucket(pm, va);
   2781 	if (l2b == NULL) {
   2782 		if (flags & PMAP_CANFAIL) {
   2783 			pmap_release_pmap_lock(pm);
   2784 			return (ENOMEM);
   2785 		}
   2786 		panic("pmap_enter: failed to allocate L2 bucket");
   2787 	}
   2788 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2789 	opte = *ptep;
   2790 	npte = pa;
   2791 	oflags = 0;
   2792 
   2793 	if (opte) {
   2794 		/*
   2795 		 * There is already a mapping at this address.
   2796 		 * If the physical address is different, lookup the
   2797 		 * vm_page.
   2798 		 */
   2799 		if (l2pte_pa(opte) != pa)
   2800 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2801 		else
   2802 			opg = pg;
   2803 	} else
   2804 		opg = NULL;
   2805 
   2806 	if (pg) {
   2807 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2808 
   2809 		/*
   2810 		 * This is to be a managed mapping.
   2811 		 */
   2812 		if ((flags & VM_PROT_ALL) ||
   2813 		    (md->pvh_attrs & PVF_REF)) {
   2814 			/*
   2815 			 * - The access type indicates that we don't need
   2816 			 *   to do referenced emulation.
   2817 			 * OR
   2818 			 * - The physical page has already been referenced
   2819 			 *   so no need to re-do referenced emulation here.
   2820 			 */
   2821 			npte |= l2pte_set_readonly(L2_S_PROTO);
   2822 
   2823 			nflags |= PVF_REF;
   2824 
   2825 			if ((prot & VM_PROT_WRITE) != 0 &&
   2826 			    ((flags & VM_PROT_WRITE) != 0 ||
   2827 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   2828 				/*
   2829 				 * This is a writable mapping, and the
   2830 				 * page's mod state indicates it has
   2831 				 * already been modified. Make it
   2832 				 * writable from the outset.
   2833 				 */
   2834 				npte = l2pte_set_writable(npte);
   2835 				nflags |= PVF_MOD;
   2836 			}
   2837 		} else {
   2838 			/*
   2839 			 * Need to do page referenced emulation.
   2840 			 */
   2841 			npte |= L2_TYPE_INV;
   2842 		}
   2843 
   2844 		npte |= pte_l2_s_cache_mode;
   2845 
   2846 		if (pg == opg) {
   2847 			/*
   2848 			 * We're changing the attrs of an existing mapping.
   2849 			 */
   2850 #ifdef MULTIPROCESSOR
   2851 			KASSERT(uvm_page_locked_p(pg));
   2852 #endif
   2853 			oflags = pmap_modify_pv(md, pa, pm, va,
   2854 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2855 			    PVF_MOD | PVF_REF, nflags);
   2856 
   2857 #ifdef PMAP_CACHE_VIVT
   2858 			/*
   2859 			 * We may need to flush the cache if we're
   2860 			 * doing rw-ro...
   2861 			 */
   2862 			if (pm->pm_cstate.cs_cache_d &&
   2863 			    (oflags & PVF_NC) == 0 &&
   2864 			    l2pte_writable_p(opte) &&
   2865 			    (prot & VM_PROT_WRITE) == 0)
   2866 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2867 #endif
   2868 		} else {
   2869 			/*
   2870 			 * New mapping, or changing the backing page
   2871 			 * of an existing mapping.
   2872 			 */
   2873 			if (opg) {
   2874 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2875 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2876 
   2877 				/*
   2878 				 * Replacing an existing mapping with a new one.
   2879 				 * It is part of our managed memory so we
   2880 				 * must remove it from the PV list
   2881 				 */
   2882 #ifdef MULTIPROCESSOR
   2883 				KASSERT(uvm_page_locked_p(opg));
   2884 #endif
   2885 				pv = pmap_remove_pv(omd, opa, pm, va);
   2886 				pmap_vac_me_harder(omd, opa, pm, 0);
   2887 				oflags = pv->pv_flags;
   2888 
   2889 #ifdef PMAP_CACHE_VIVT
   2890 				/*
   2891 				 * If the old mapping was valid (ref/mod
   2892 				 * emulation creates 'invalid' mappings
   2893 				 * initially) then make sure to frob
   2894 				 * the cache.
   2895 				 */
   2896 				if ((oflags & PVF_NC) == 0 &&
   2897 				    l2pte_valid(opte)) {
   2898 					if (PV_BEEN_EXECD(oflags)) {
   2899 						pmap_idcache_wbinv_range(pm, va,
   2900 						    PAGE_SIZE);
   2901 					} else
   2902 					if (PV_BEEN_REFD(oflags)) {
   2903 						pmap_dcache_wb_range(pm, va,
   2904 						    PAGE_SIZE, true,
   2905 						    (oflags & PVF_WRITE) == 0);
   2906 					}
   2907 				}
   2908 #endif
   2909 			} else
   2910 			if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2911 				if ((flags & PMAP_CANFAIL) == 0)
   2912 					panic("pmap_enter: no pv entries");
   2913 
   2914 				if (pm != pmap_kernel())
   2915 					pmap_free_l2_bucket(pm, l2b, 0);
   2916 				pmap_release_pmap_lock(pm);
   2917 				NPDEBUG(PDB_ENTER,
   2918 				    printf("pmap_enter: ENOMEM\n"));
   2919 				return (ENOMEM);
   2920 			}
   2921 
   2922 #ifdef MULTIPROCESSOR
   2923 			KASSERT(uvm_page_locked_p(pg));
   2924 #endif
   2925 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   2926 		}
   2927 	} else {
   2928 		/*
   2929 		 * We're mapping an unmanaged page.
   2930 		 * These are always readable, and possibly writable, from
   2931 		 * the get go as we don't need to track ref/mod status.
   2932 		 */
   2933 		npte |= l2pte_set_readonly(L2_S_PROTO);
   2934 		if (prot & VM_PROT_WRITE)
   2935 			npte = l2pte_set_writable(npte);
   2936 
   2937 		/*
   2938 		 * Make sure the vector table is mapped cacheable
   2939 		 */
   2940 		if ((pm != pmap_kernel() && va == vector_page) ||
   2941 		    (flags & ARM32_MMAP_CACHEABLE)) {
   2942 			npte |= pte_l2_s_cache_mode;
   2943 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   2944 			npte |= pte_l2_s_wc_mode;
   2945 		}
   2946 		if (opg) {
   2947 			/*
   2948 			 * Looks like there's an existing 'managed' mapping
   2949 			 * at this address.
   2950 			 */
   2951 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2952 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2953 
   2954 #ifdef MULTIPROCESSOR
   2955 			KASSERT(uvm_page_locked_p(opg));
   2956 #endif
   2957 			pv = pmap_remove_pv(omd, opa, pm, va);
   2958 			pmap_vac_me_harder(omd, opa, pm, 0);
   2959 			oflags = pv->pv_flags;
   2960 
   2961 #ifdef PMAP_CACHE_VIVT
   2962 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2963 				if (PV_BEEN_EXECD(oflags))
   2964 					pmap_idcache_wbinv_range(pm, va,
   2965 					    PAGE_SIZE);
   2966 				else
   2967 				if (PV_BEEN_REFD(oflags))
   2968 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2969 					    true, (oflags & PVF_WRITE) == 0);
   2970 			}
   2971 #endif
   2972 			pool_put(&pmap_pv_pool, pv);
   2973 		}
   2974 	}
   2975 
   2976 	/*
   2977 	 * Make sure userland mappings get the right permissions
   2978 	 */
   2979 	if (pm != pmap_kernel() && va != vector_page)
   2980 		npte |= L2_S_PROT_U;
   2981 
   2982 	/*
   2983 	 * Keep the stats up to date
   2984 	 */
   2985 	if (opte == 0) {
   2986 		l2b->l2b_occupancy++;
   2987 		pm->pm_stats.resident_count++;
   2988 	}
   2989 
   2990 	NPDEBUG(PDB_ENTER,
   2991 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2992 
   2993 	/*
   2994 	 * If this is just a wiring change, the two PTEs will be
   2995 	 * identical, so there's no need to update the page table.
   2996 	 */
   2997 	if (npte != opte) {
   2998 		bool is_cached = pmap_is_cached(pm);
   2999 
   3000 		*ptep = npte;
   3001 		PTE_SYNC(ptep);
   3002 		if (is_cached) {
   3003 			/*
   3004 			 * We only need to frob the cache/tlb if this pmap
   3005 			 * is current
   3006 			 */
   3007 			if (va != vector_page && l2pte_valid(npte)) {
   3008 				/*
   3009 				 * This mapping is likely to be accessed as
   3010 				 * soon as we return to userland. Fix up the
   3011 				 * L1 entry to avoid taking another
   3012 				 * page/domain fault.
   3013 				 */
   3014 				pd_entry_t *pl1pd, l1pd;
   3015 
   3016 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   3017 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   3018 				    L1_C_PROTO;
   3019 				if (*pl1pd != l1pd) {
   3020 					*pl1pd = l1pd;
   3021 					PTE_SYNC(pl1pd);
   3022 				}
   3023 			}
   3024 		}
   3025 
   3026 		if (PV_BEEN_EXECD(oflags))
   3027 			pmap_tlb_flushID_SE(pm, va);
   3028 		else
   3029 		if (PV_BEEN_REFD(oflags))
   3030 			pmap_tlb_flushD_SE(pm, va);
   3031 
   3032 		NPDEBUG(PDB_ENTER,
   3033 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3034 		    is_cached, pm->pm_cstate.cs_all));
   3035 
   3036 		if (pg != NULL) {
   3037 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3038 
   3039 #ifdef MULTIPROCESSOR
   3040 			KASSERT(uvm_page_locked_p(pg));
   3041 #endif
   3042 			pmap_vac_me_harder(md, pa, pm, va);
   3043 		}
   3044 	}
   3045 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3046 	if (pg) {
   3047 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3048 
   3049 #ifdef MULTIPROCESSOR
   3050 		KASSERT(uvm_page_locked_p(pg));
   3051 #endif
   3052 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3053 		KASSERT(arm_cache_prefer_mask == 0 || ((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0));
   3054 	}
   3055 #endif
   3056 
   3057 	pmap_release_pmap_lock(pm);
   3058 
   3059 	return (0);
   3060 }
   3061 
   3062 /*
   3063  * pmap_remove()
   3064  *
   3065  * pmap_remove is responsible for nuking a number of mappings for a range
   3066  * of virtual address space in the current pmap. To do this efficiently
   3067  * is interesting, because in a number of cases a wide virtual address
   3068  * range may be supplied that contains few actual mappings. So, the
   3069  * optimisations are:
   3070  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3071  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3072  *     maybe do just a partial cache clean. This path of execution is
   3073  *     complicated by the fact that the cache must be flushed _before_
   3074  *     the PTE is nuked, being a VAC :-)
   3075  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3076  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3077  *     already flushed the cache.
   3078  *  4. Maybe later fast-case a single page, but I don't think this is
   3079  *     going to make _that_ much difference overall.
   3080  */
   3081 
   3082 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3083 
   3084 void
   3085 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3086 {
   3087 	struct l2_bucket *l2b;
   3088 	vaddr_t next_bucket;
   3089 	pt_entry_t *ptep;
   3090 	u_int cleanlist_idx, total, cnt;
   3091 	struct {
   3092 		vaddr_t va;
   3093 		pt_entry_t *ptep;
   3094 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3095 	u_int mappings, is_exec, is_refd;
   3096 
   3097 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3098 	    "eva=%08lx\n", pm, sva, eva));
   3099 
   3100 	/*
   3101 	 * we lock in the pmap => pv_head direction
   3102 	 */
   3103 	pmap_acquire_pmap_lock(pm);
   3104 
   3105 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3106 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3107 		if (pm->pm_cstate.cs_tlb == 0)
   3108 			pm->pm_remove_all = true;
   3109 	} else
   3110 		cleanlist_idx = 0;
   3111 
   3112 	total = 0;
   3113 
   3114 	while (sva < eva) {
   3115 		/*
   3116 		 * Do one L2 bucket's worth at a time.
   3117 		 */
   3118 		next_bucket = L2_NEXT_BUCKET(sva);
   3119 		if (next_bucket > eva)
   3120 			next_bucket = eva;
   3121 
   3122 		l2b = pmap_get_l2_bucket(pm, sva);
   3123 		if (l2b == NULL) {
   3124 			sva = next_bucket;
   3125 			continue;
   3126 		}
   3127 
   3128 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3129 
   3130 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3131 			struct vm_page *pg;
   3132 			pt_entry_t pte;
   3133 			paddr_t pa;
   3134 
   3135 			pte = *ptep;
   3136 
   3137 			if (pte == 0) {
   3138 				/* Nothing here, move along */
   3139 				continue;
   3140 			}
   3141 
   3142 			pa = l2pte_pa(pte);
   3143 			is_exec = 0;
   3144 			is_refd = 1;
   3145 
   3146 			/*
   3147 			 * Update flags. In a number of circumstances,
   3148 			 * we could cluster a lot of these and do a
   3149 			 * number of sequential pages in one go.
   3150 			 */
   3151 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3152 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3153 				struct pv_entry *pv;
   3154 
   3155 #ifdef MULTIPROCESSOR
   3156 				KASSERT(uvm_page_locked_p(pg));
   3157 #endif
   3158 				pv = pmap_remove_pv(md, pa, pm, sva);
   3159 				pmap_vac_me_harder(md, pa, pm, 0);
   3160 				if (pv != NULL) {
   3161 					if (pm->pm_remove_all == false) {
   3162 						is_exec =
   3163 						   PV_BEEN_EXECD(pv->pv_flags);
   3164 						is_refd =
   3165 						   PV_BEEN_REFD(pv->pv_flags);
   3166 					}
   3167 					pool_put(&pmap_pv_pool, pv);
   3168 				}
   3169 			}
   3170 			mappings++;
   3171 
   3172 			if (!l2pte_valid(pte)) {
   3173 				/*
   3174 				 * Ref/Mod emulation is still active for this
   3175 				 * mapping, therefore it is has not yet been
   3176 				 * accessed. No need to frob the cache/tlb.
   3177 				 */
   3178 				*ptep = 0;
   3179 				PTE_SYNC_CURRENT(pm, ptep);
   3180 				continue;
   3181 			}
   3182 
   3183 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3184 				/* Add to the clean list. */
   3185 				cleanlist[cleanlist_idx].ptep = ptep;
   3186 				cleanlist[cleanlist_idx].va =
   3187 				    sva | (is_exec & 1);
   3188 				cleanlist_idx++;
   3189 			} else
   3190 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3191 				/* Nuke everything if needed. */
   3192 #ifdef PMAP_CACHE_VIVT
   3193 				pmap_idcache_wbinv_all(pm);
   3194 #endif
   3195 				pmap_tlb_flushID(pm);
   3196 
   3197 				/*
   3198 				 * Roll back the previous PTE list,
   3199 				 * and zero out the current PTE.
   3200 				 */
   3201 				for (cnt = 0;
   3202 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3203 					*cleanlist[cnt].ptep = 0;
   3204 					PTE_SYNC(cleanlist[cnt].ptep);
   3205 				}
   3206 				*ptep = 0;
   3207 				PTE_SYNC(ptep);
   3208 				cleanlist_idx++;
   3209 				pm->pm_remove_all = true;
   3210 			} else {
   3211 				*ptep = 0;
   3212 				PTE_SYNC(ptep);
   3213 				if (pm->pm_remove_all == false) {
   3214 					if (is_exec)
   3215 						pmap_tlb_flushID_SE(pm, sva);
   3216 					else
   3217 					if (is_refd)
   3218 						pmap_tlb_flushD_SE(pm, sva);
   3219 				}
   3220 			}
   3221 		}
   3222 
   3223 		/*
   3224 		 * Deal with any left overs
   3225 		 */
   3226 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3227 			total += cleanlist_idx;
   3228 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3229 				if (pm->pm_cstate.cs_all != 0) {
   3230 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3231 					if (cleanlist[cnt].va & 1) {
   3232 #ifdef PMAP_CACHE_VIVT
   3233 						pmap_idcache_wbinv_range(pm,
   3234 						    clva, PAGE_SIZE);
   3235 #endif
   3236 						pmap_tlb_flushID_SE(pm, clva);
   3237 					} else {
   3238 #ifdef PMAP_CACHE_VIVT
   3239 						pmap_dcache_wb_range(pm,
   3240 						    clva, PAGE_SIZE, true,
   3241 						    false);
   3242 #endif
   3243 						pmap_tlb_flushD_SE(pm, clva);
   3244 					}
   3245 				}
   3246 				*cleanlist[cnt].ptep = 0;
   3247 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3248 			}
   3249 
   3250 			/*
   3251 			 * If it looks like we're removing a whole bunch
   3252 			 * of mappings, it's faster to just write-back
   3253 			 * the whole cache now and defer TLB flushes until
   3254 			 * pmap_update() is called.
   3255 			 */
   3256 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3257 				cleanlist_idx = 0;
   3258 			else {
   3259 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3260 #ifdef PMAP_CACHE_VIVT
   3261 				pmap_idcache_wbinv_all(pm);
   3262 #endif
   3263 				pm->pm_remove_all = true;
   3264 			}
   3265 		}
   3266 
   3267 		pmap_free_l2_bucket(pm, l2b, mappings);
   3268 		pm->pm_stats.resident_count -= mappings;
   3269 	}
   3270 
   3271 	pmap_release_pmap_lock(pm);
   3272 }
   3273 
   3274 #ifdef PMAP_CACHE_VIPT
   3275 static struct pv_entry *
   3276 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3277 {
   3278 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3279 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3280 	struct pv_entry *pv;
   3281 
   3282 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3283 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3284 
   3285 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3286 	KASSERT(pv);
   3287 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3288 
   3289 	/*
   3290 	 * If we are removing a writeable mapping to a cached exec page,
   3291 	 * if it's the last mapping then clear it execness other sync
   3292 	 * the page to the icache.
   3293 	 */
   3294 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3295 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3296 		if (SLIST_EMPTY(&md->pvh_list)) {
   3297 			md->pvh_attrs &= ~PVF_EXEC;
   3298 			PMAPCOUNT(exec_discarded_kremove);
   3299 		} else {
   3300 			pmap_syncicache_page(md, pa);
   3301 			PMAPCOUNT(exec_synced_kremove);
   3302 		}
   3303 	}
   3304 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3305 
   3306 	return pv;
   3307 }
   3308 #endif /* PMAP_CACHE_VIPT */
   3309 
   3310 /*
   3311  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3312  *
   3313  * We assume there is already sufficient KVM space available
   3314  * to do this, as we can't allocate L2 descriptor tables/metadata
   3315  * from here.
   3316  */
   3317 void
   3318 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3319 {
   3320 	struct l2_bucket *l2b;
   3321 	pt_entry_t *ptep, opte;
   3322 #ifdef PMAP_CACHE_VIVT
   3323 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3324 #endif
   3325 #ifdef PMAP_CACHE_VIPT
   3326 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3327 	struct vm_page *opg;
   3328 	struct pv_entry *pv = NULL;
   3329 #endif
   3330 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3331 
   3332 	NPDEBUG(PDB_KENTER,
   3333 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3334 	    va, pa, prot));
   3335 
   3336 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3337 	KDASSERT(l2b != NULL);
   3338 
   3339 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3340 	opte = *ptep;
   3341 
   3342 	if (opte == 0) {
   3343 		PMAPCOUNT(kenter_mappings);
   3344 		l2b->l2b_occupancy++;
   3345 	} else {
   3346 		PMAPCOUNT(kenter_remappings);
   3347 #ifdef PMAP_CACHE_VIPT
   3348 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3349 #ifdef DIAGNOSTIC
   3350 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3351 #endif
   3352 		if (opg) {
   3353 			KASSERT(opg != pg);
   3354 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3355 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3356 			pv = pmap_kremove_pg(opg, va);
   3357 		}
   3358 #endif
   3359 		if (l2pte_valid(opte)) {
   3360 #ifdef PMAP_CACHE_VIVT
   3361 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3362 #endif
   3363 			cpu_tlb_flushD_SE(va);
   3364 			cpu_cpwait();
   3365 		}
   3366 	}
   3367 
   3368 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3369 	    | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
   3370 	PTE_SYNC(ptep);
   3371 
   3372 	if (pg) {
   3373 #ifdef MULTIPROCESSOR
   3374 		KASSERT(uvm_page_locked_p(pg));
   3375 #endif
   3376 		if (flags & PMAP_KMPAGE) {
   3377 			KASSERT(md->urw_mappings == 0);
   3378 			KASSERT(md->uro_mappings == 0);
   3379 			KASSERT(md->krw_mappings == 0);
   3380 			KASSERT(md->kro_mappings == 0);
   3381 #ifdef PMAP_CACHE_VIPT
   3382 			KASSERT(pv == NULL);
   3383 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3384 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3385 			/* if there is a color conflict, evict from cache. */
   3386 			if (pmap_is_page_colored_p(md)
   3387 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3388 				PMAPCOUNT(vac_color_change);
   3389 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3390 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3391 				/*
   3392 				 * If this page has multiple colors, expunge
   3393 				 * them.
   3394 				 */
   3395 				PMAPCOUNT(vac_flush_lots2);
   3396 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3397 			}
   3398 			md->pvh_attrs &= PAGE_SIZE - 1;
   3399 			md->pvh_attrs |= PVF_KMPAGE
   3400 			    | PVF_COLORED | PVF_DIRTY
   3401 			    | (va & arm_cache_prefer_mask);
   3402 #endif
   3403 #ifdef PMAP_CACHE_VIVT
   3404 			md->pvh_attrs |= PVF_KMPAGE;
   3405 #endif
   3406 			pmap_kmpages++;
   3407 #ifdef PMAP_CACHE_VIPT
   3408 		} else {
   3409 			if (pv == NULL) {
   3410 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3411 				KASSERT(pv != NULL);
   3412 			}
   3413 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3414 			    PVF_WIRED | PVF_KENTRY
   3415 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3416 			if ((prot & VM_PROT_WRITE)
   3417 			    && !(md->pvh_attrs & PVF_NC))
   3418 				md->pvh_attrs |= PVF_DIRTY;
   3419 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3420 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3421 #endif
   3422 		}
   3423 #ifdef PMAP_CACHE_VIPT
   3424 	} else {
   3425 		if (pv != NULL)
   3426 			pool_put(&pmap_pv_pool, pv);
   3427 #endif
   3428 	}
   3429 }
   3430 
   3431 void
   3432 pmap_kremove(vaddr_t va, vsize_t len)
   3433 {
   3434 	struct l2_bucket *l2b;
   3435 	pt_entry_t *ptep, *sptep, opte;
   3436 	vaddr_t next_bucket, eva;
   3437 	u_int mappings;
   3438 	struct vm_page *opg;
   3439 
   3440 	PMAPCOUNT(kenter_unmappings);
   3441 
   3442 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3443 	    va, len));
   3444 
   3445 	eva = va + len;
   3446 
   3447 	while (va < eva) {
   3448 		next_bucket = L2_NEXT_BUCKET(va);
   3449 		if (next_bucket > eva)
   3450 			next_bucket = eva;
   3451 
   3452 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3453 		KDASSERT(l2b != NULL);
   3454 
   3455 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3456 		mappings = 0;
   3457 
   3458 		while (va < next_bucket) {
   3459 			opte = *ptep;
   3460 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3461 			if (opg) {
   3462 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3463 
   3464 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3465 					KASSERT(omd->urw_mappings == 0);
   3466 					KASSERT(omd->uro_mappings == 0);
   3467 					KASSERT(omd->krw_mappings == 0);
   3468 					KASSERT(omd->kro_mappings == 0);
   3469 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3470 #ifdef PMAP_CACHE_VIPT
   3471 					omd->pvh_attrs &= ~PVF_WRITE;
   3472 #endif
   3473 					pmap_kmpages--;
   3474 #ifdef PMAP_CACHE_VIPT
   3475 				} else {
   3476 					pool_put(&pmap_pv_pool,
   3477 					    pmap_kremove_pg(opg, va));
   3478 #endif
   3479 				}
   3480 			}
   3481 			if (l2pte_valid(opte)) {
   3482 #ifdef PMAP_CACHE_VIVT
   3483 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3484 #endif
   3485 				cpu_tlb_flushD_SE(va);
   3486 			}
   3487 			if (opte) {
   3488 				*ptep = 0;
   3489 				mappings++;
   3490 			}
   3491 			va += PAGE_SIZE;
   3492 			ptep++;
   3493 		}
   3494 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3495 		l2b->l2b_occupancy -= mappings;
   3496 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3497 	}
   3498 	cpu_cpwait();
   3499 }
   3500 
   3501 bool
   3502 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3503 {
   3504 	struct l2_dtable *l2;
   3505 	pd_entry_t *pl1pd, l1pd;
   3506 	pt_entry_t *ptep, pte;
   3507 	paddr_t pa;
   3508 	u_int l1idx;
   3509 
   3510 	pmap_acquire_pmap_lock(pm);
   3511 
   3512 	l1idx = L1_IDX(va);
   3513 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3514 	l1pd = *pl1pd;
   3515 
   3516 	if (l1pte_section_p(l1pd)) {
   3517 		/*
   3518 		 * These should only happen for pmap_kernel()
   3519 		 */
   3520 		KDASSERT(pm == pmap_kernel());
   3521 		pmap_release_pmap_lock(pm);
   3522 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3523 		if (l1pte_supersection_p(l1pd)) {
   3524 			pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3525 		} else
   3526 #endif
   3527 			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3528 	} else {
   3529 		/*
   3530 		 * Note that we can't rely on the validity of the L1
   3531 		 * descriptor as an indication that a mapping exists.
   3532 		 * We have to look it up in the L2 dtable.
   3533 		 */
   3534 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3535 
   3536 		if (l2 == NULL ||
   3537 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3538 			pmap_release_pmap_lock(pm);
   3539 			return false;
   3540 		}
   3541 
   3542 		ptep = &ptep[l2pte_index(va)];
   3543 		pte = *ptep;
   3544 		pmap_release_pmap_lock(pm);
   3545 
   3546 		if (pte == 0)
   3547 			return false;
   3548 
   3549 		switch (pte & L2_TYPE_MASK) {
   3550 		case L2_TYPE_L:
   3551 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3552 			break;
   3553 
   3554 		default:
   3555 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3556 			break;
   3557 		}
   3558 	}
   3559 
   3560 	if (pap != NULL)
   3561 		*pap = pa;
   3562 
   3563 	return true;
   3564 }
   3565 
   3566 void
   3567 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3568 {
   3569 	struct l2_bucket *l2b;
   3570 	pt_entry_t *ptep, pte;
   3571 	vaddr_t next_bucket;
   3572 	u_int flags;
   3573 	u_int clr_mask;
   3574 	int flush;
   3575 
   3576 	NPDEBUG(PDB_PROTECT,
   3577 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3578 	    pm, sva, eva, prot));
   3579 
   3580 	if ((prot & VM_PROT_READ) == 0) {
   3581 		pmap_remove(pm, sva, eva);
   3582 		return;
   3583 	}
   3584 
   3585 	if (prot & VM_PROT_WRITE) {
   3586 		/*
   3587 		 * If this is a read->write transition, just ignore it and let
   3588 		 * uvm_fault() take care of it later.
   3589 		 */
   3590 		return;
   3591 	}
   3592 
   3593 	pmap_acquire_pmap_lock(pm);
   3594 
   3595 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3596 	flags = 0;
   3597 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3598 
   3599 	while (sva < eva) {
   3600 		next_bucket = L2_NEXT_BUCKET(sva);
   3601 		if (next_bucket > eva)
   3602 			next_bucket = eva;
   3603 
   3604 		l2b = pmap_get_l2_bucket(pm, sva);
   3605 		if (l2b == NULL) {
   3606 			sva = next_bucket;
   3607 			continue;
   3608 		}
   3609 
   3610 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3611 
   3612 		while (sva < next_bucket) {
   3613 			pte = *ptep;
   3614 			if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
   3615 				struct vm_page *pg;
   3616 				u_int f;
   3617 
   3618 #ifdef PMAP_CACHE_VIVT
   3619 				/*
   3620 				 * OK, at this point, we know we're doing
   3621 				 * write-protect operation.  If the pmap is
   3622 				 * active, write-back the page.
   3623 				 */
   3624 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3625 				    false, false);
   3626 #endif
   3627 
   3628 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3629 				pte = l2pte_set_readonly(pte);
   3630 				*ptep = pte;
   3631 				PTE_SYNC(ptep);
   3632 
   3633 				if (pg != NULL) {
   3634 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3635 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3636 
   3637 #ifdef MULTIPROCESSOR
   3638 					KASSERT(uvm_page_locked_p(pg));
   3639 #endif
   3640 					f = pmap_modify_pv(md, pa, pm, sva,
   3641 					    clr_mask, 0);
   3642 					pmap_vac_me_harder(md, pa, pm, sva);
   3643 				} else {
   3644 					f = PVF_REF | PVF_EXEC;
   3645 				}
   3646 
   3647 				if (flush >= 0) {
   3648 					flush++;
   3649 					flags |= f;
   3650 				} else
   3651 				if (PV_BEEN_EXECD(f))
   3652 					pmap_tlb_flushID_SE(pm, sva);
   3653 				else
   3654 				if (PV_BEEN_REFD(f))
   3655 					pmap_tlb_flushD_SE(pm, sva);
   3656 			}
   3657 
   3658 			sva += PAGE_SIZE;
   3659 			ptep++;
   3660 		}
   3661 	}
   3662 
   3663 	pmap_release_pmap_lock(pm);
   3664 
   3665 	if (flush) {
   3666 		if (PV_BEEN_EXECD(flags))
   3667 			pmap_tlb_flushID(pm);
   3668 		else
   3669 		if (PV_BEEN_REFD(flags))
   3670 			pmap_tlb_flushD(pm);
   3671 	}
   3672 }
   3673 
   3674 void
   3675 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3676 {
   3677 	struct l2_bucket *l2b;
   3678 	pt_entry_t *ptep;
   3679 	vaddr_t next_bucket;
   3680 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3681 
   3682 	NPDEBUG(PDB_EXEC,
   3683 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3684 	    pm, sva, eva));
   3685 
   3686 	pmap_acquire_pmap_lock(pm);
   3687 
   3688 	while (sva < eva) {
   3689 		next_bucket = L2_NEXT_BUCKET(sva);
   3690 		if (next_bucket > eva)
   3691 			next_bucket = eva;
   3692 
   3693 		l2b = pmap_get_l2_bucket(pm, sva);
   3694 		if (l2b == NULL) {
   3695 			sva = next_bucket;
   3696 			continue;
   3697 		}
   3698 
   3699 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3700 		     sva < next_bucket;
   3701 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3702 			if (l2pte_valid(*ptep)) {
   3703 				cpu_icache_sync_range(sva,
   3704 				    min(page_size, eva - sva));
   3705 			}
   3706 		}
   3707 	}
   3708 
   3709 	pmap_release_pmap_lock(pm);
   3710 }
   3711 
   3712 void
   3713 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3714 {
   3715 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3716 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3717 
   3718 	NPDEBUG(PDB_PROTECT,
   3719 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   3720 	    md, pa, prot));
   3721 
   3722 #ifdef MULTIPROCESSOR
   3723 	KASSERT(uvm_page_locked_p(pg));
   3724 #endif
   3725 
   3726 	switch(prot) {
   3727 	case VM_PROT_READ|VM_PROT_WRITE:
   3728 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3729 		pmap_clearbit(md, pa, PVF_EXEC);
   3730 		break;
   3731 #endif
   3732 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3733 		break;
   3734 
   3735 	case VM_PROT_READ:
   3736 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3737 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   3738 		break;
   3739 #endif
   3740 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3741 		pmap_clearbit(md, pa, PVF_WRITE);
   3742 		break;
   3743 
   3744 	default:
   3745 		pmap_page_remove(md, pa);
   3746 		break;
   3747 	}
   3748 }
   3749 
   3750 /*
   3751  * pmap_clear_modify:
   3752  *
   3753  *	Clear the "modified" attribute for a page.
   3754  */
   3755 bool
   3756 pmap_clear_modify(struct vm_page *pg)
   3757 {
   3758 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3759 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3760 	bool rv;
   3761 
   3762 #ifdef MULTIPROCESSOR
   3763 	KASSERT(uvm_page_locked_p(pg));
   3764 #endif
   3765 
   3766 	if (md->pvh_attrs & PVF_MOD) {
   3767 		rv = true;
   3768 #ifdef PMAP_CACHE_VIPT
   3769 		/*
   3770 		 * If we are going to clear the modified bit and there are
   3771 		 * no other modified bits set, flush the page to memory and
   3772 		 * mark it clean.
   3773 		 */
   3774 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3775 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   3776 #endif
   3777 		pmap_clearbit(md, pa, PVF_MOD);
   3778 	} else
   3779 		rv = false;
   3780 
   3781 	return (rv);
   3782 }
   3783 
   3784 /*
   3785  * pmap_clear_reference:
   3786  *
   3787  *	Clear the "referenced" attribute for a page.
   3788  */
   3789 bool
   3790 pmap_clear_reference(struct vm_page *pg)
   3791 {
   3792 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3793 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3794 	bool rv;
   3795 
   3796 #ifdef MULTIPROCESSOR
   3797 	KASSERT(uvm_page_locked_p(pg));
   3798 #endif
   3799 
   3800 	if (md->pvh_attrs & PVF_REF) {
   3801 		rv = true;
   3802 		pmap_clearbit(md, pa, PVF_REF);
   3803 	} else
   3804 		rv = false;
   3805 
   3806 	return (rv);
   3807 }
   3808 
   3809 /*
   3810  * pmap_is_modified:
   3811  *
   3812  *	Test if a page has the "modified" attribute.
   3813  */
   3814 /* See <arm/arm32/pmap.h> */
   3815 
   3816 /*
   3817  * pmap_is_referenced:
   3818  *
   3819  *	Test if a page has the "referenced" attribute.
   3820  */
   3821 /* See <arm/arm32/pmap.h> */
   3822 
   3823 int
   3824 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3825 {
   3826 	struct l2_dtable *l2;
   3827 	struct l2_bucket *l2b;
   3828 	pd_entry_t *pl1pd, l1pd;
   3829 	pt_entry_t *ptep, pte;
   3830 	paddr_t pa;
   3831 	u_int l1idx;
   3832 	int rv = 0;
   3833 
   3834 	pmap_acquire_pmap_lock(pm);
   3835 
   3836 	l1idx = L1_IDX(va);
   3837 
   3838 	/*
   3839 	 * If there is no l2_dtable for this address, then the process
   3840 	 * has no business accessing it.
   3841 	 *
   3842 	 * Note: This will catch userland processes trying to access
   3843 	 * kernel addresses.
   3844 	 */
   3845 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3846 	if (l2 == NULL)
   3847 		goto out;
   3848 
   3849 	/*
   3850 	 * Likewise if there is no L2 descriptor table
   3851 	 */
   3852 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3853 	if (l2b->l2b_kva == NULL)
   3854 		goto out;
   3855 
   3856 	/*
   3857 	 * Check the PTE itself.
   3858 	 */
   3859 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3860 	pte = *ptep;
   3861 	if (pte == 0)
   3862 		goto out;
   3863 
   3864 	/*
   3865 	 * Catch a userland access to the vector page mapped at 0x0
   3866 	 */
   3867 	if (user && (pte & L2_S_PROT_U) == 0)
   3868 		goto out;
   3869 
   3870 	pa = l2pte_pa(pte);
   3871 
   3872 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
   3873 		/*
   3874 		 * This looks like a good candidate for "page modified"
   3875 		 * emulation...
   3876 		 */
   3877 		struct pv_entry *pv;
   3878 		struct vm_page *pg;
   3879 
   3880 		/* Extract the physical address of the page */
   3881 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3882 			goto out;
   3883 
   3884 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3885 
   3886 		/* Get the current flags for this page. */
   3887 #ifdef MULTIPROCESSOR
   3888 		KASSERT(uvm_page_locked_p(pg));
   3889 #endif
   3890 
   3891 		pv = pmap_find_pv(md, pm, va);
   3892 		if (pv == NULL) {
   3893 			goto out;
   3894 		}
   3895 
   3896 		/*
   3897 		 * Do the flags say this page is writable? If not then it
   3898 		 * is a genuine write fault. If yes then the write fault is
   3899 		 * our fault as we did not reflect the write access in the
   3900 		 * PTE. Now we know a write has occurred we can correct this
   3901 		 * and also set the modified bit
   3902 		 */
   3903 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3904 			goto out;
   3905 		}
   3906 
   3907 		NPDEBUG(PDB_FOLLOW,
   3908 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3909 		    pm, va, pa));
   3910 
   3911 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   3912 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3913 #ifdef PMAP_CACHE_VIPT
   3914 		/*
   3915 		 * If there are cacheable mappings for this page, mark it dirty.
   3916 		 */
   3917 		if ((md->pvh_attrs & PVF_NC) == 0)
   3918 			md->pvh_attrs |= PVF_DIRTY;
   3919 #endif
   3920 
   3921 		/*
   3922 		 * Re-enable write permissions for the page.  No need to call
   3923 		 * pmap_vac_me_harder(), since this is just a
   3924 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3925 		 * changing. We've already set the cacheable bits based on
   3926 		 * the assumption that we can write to this page.
   3927 		 */
   3928 		*ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3929 		PTE_SYNC(ptep);
   3930 		rv = 1;
   3931 	} else
   3932 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3933 		/*
   3934 		 * This looks like a good candidate for "page referenced"
   3935 		 * emulation.
   3936 		 */
   3937 		struct pv_entry *pv;
   3938 		struct vm_page *pg;
   3939 
   3940 		/* Extract the physical address of the page */
   3941 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3942 			goto out;
   3943 
   3944 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3945 
   3946 		/* Get the current flags for this page. */
   3947 #ifdef MULTIPROCESSOR
   3948 		KASSERT(uvm_page_locked_p(pg));
   3949 #endif
   3950 
   3951 		pv = pmap_find_pv(md, pm, va);
   3952 		if (pv == NULL) {
   3953 			goto out;
   3954 		}
   3955 
   3956 		md->pvh_attrs |= PVF_REF;
   3957 		pv->pv_flags |= PVF_REF;
   3958 
   3959 		NPDEBUG(PDB_FOLLOW,
   3960 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3961 		    pm, va, pa));
   3962 
   3963 		*ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3964 		PTE_SYNC(ptep);
   3965 		rv = 1;
   3966 	}
   3967 
   3968 	/*
   3969 	 * We know there is a valid mapping here, so simply
   3970 	 * fix up the L1 if necessary.
   3971 	 */
   3972 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3973 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3974 	if (*pl1pd != l1pd) {
   3975 		*pl1pd = l1pd;
   3976 		PTE_SYNC(pl1pd);
   3977 		rv = 1;
   3978 	}
   3979 
   3980 #ifdef CPU_SA110
   3981 	/*
   3982 	 * There are bugs in the rev K SA110.  This is a check for one
   3983 	 * of them.
   3984 	 */
   3985 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3986 	    curcpu()->ci_arm_cpurev < 3) {
   3987 		/* Always current pmap */
   3988 		if (l2pte_valid(pte)) {
   3989 			extern int kernel_debug;
   3990 			if (kernel_debug & 1) {
   3991 				struct proc *p = curlwp->l_proc;
   3992 				printf("prefetch_abort: page is already "
   3993 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3994 				printf("prefetch_abort: pc=%08lx proc=%p "
   3995 				    "process=%s\n", va, p, p->p_comm);
   3996 				printf("prefetch_abort: far=%08x fs=%x\n",
   3997 				    cpu_faultaddress(), cpu_faultstatus());
   3998 			}
   3999 #ifdef DDB
   4000 			if (kernel_debug & 2)
   4001 				Debugger();
   4002 #endif
   4003 			rv = 1;
   4004 		}
   4005 	}
   4006 #endif /* CPU_SA110 */
   4007 
   4008 	/*
   4009 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4010 	 * stale TLB entry for the faulting address.  That might be due to a
   4011 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4012 	 */
   4013 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
   4014 	    && pmap_needs_pte_sync == 0) {
   4015 		pmap_needs_pte_sync = 1;
   4016 		PTE_SYNC(ptep);
   4017 		rv = 1;
   4018 	}
   4019 
   4020 #ifdef DEBUG
   4021 	/*
   4022 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4023 	 * stale TLB entry for the faulting address. This happens when two or
   4024 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4025 	 * a context switch between such processes, we can take domain faults
   4026 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4027 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4028 	 * example.
   4029 	 *
   4030 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4031 	 * entry for a recently entered mapping. In this case, the TLB is
   4032 	 * flushed for the new mapping, but there may still be TLB entries for
   4033 	 * other mappings belonging to other processes in the 1MB range
   4034 	 * covered by the L1 entry.
   4035 	 *
   4036 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4037 	 * value, so the fault must be due to a stale TLB entry.
   4038 	 *
   4039 	 * Since we always need to flush the TLB anyway in the case where we
   4040 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4041 	 * stale TLB entries dynamically.
   4042 	 *
   4043 	 * However, the above condition can ONLY happen if the current L1 is
   4044 	 * being shared. If it happens when the L1 is unshared, it indicates
   4045 	 * that other parts of the pmap are not doing their job WRT managing
   4046 	 * the TLB.
   4047 	 */
   4048 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4049 		extern int last_fault_code;
   4050 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4051 		    pm, va, ftype);
   4052 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4053 		    l2, l2b, ptep, pl1pd);
   4054 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4055 		    pte, l1pd, last_fault_code);
   4056 #ifdef DDB
   4057 		Debugger();
   4058 #endif
   4059 	}
   4060 #endif
   4061 
   4062 	cpu_tlb_flushID_SE(va);
   4063 	cpu_cpwait();
   4064 
   4065 	rv = 1;
   4066 
   4067 out:
   4068 	pmap_release_pmap_lock(pm);
   4069 
   4070 	return (rv);
   4071 }
   4072 
   4073 /*
   4074  * Routine:	pmap_procwr
   4075  *
   4076  * Function:
   4077  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4078  *
   4079  */
   4080 void
   4081 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4082 {
   4083 	/* We only need to do anything if it is the current process. */
   4084 	if (p == curproc)
   4085 		cpu_icache_sync_range(va, len);
   4086 }
   4087 
   4088 /*
   4089  * Routine:	pmap_unwire
   4090  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4091  *
   4092  * In/out conditions:
   4093  *		The mapping must already exist in the pmap.
   4094  */
   4095 void
   4096 pmap_unwire(pmap_t pm, vaddr_t va)
   4097 {
   4098 	struct l2_bucket *l2b;
   4099 	pt_entry_t *ptep, pte;
   4100 	struct vm_page *pg;
   4101 	paddr_t pa;
   4102 
   4103 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4104 
   4105 	pmap_acquire_pmap_lock(pm);
   4106 
   4107 	l2b = pmap_get_l2_bucket(pm, va);
   4108 	KDASSERT(l2b != NULL);
   4109 
   4110 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4111 	pte = *ptep;
   4112 
   4113 	/* Extract the physical address of the page */
   4114 	pa = l2pte_pa(pte);
   4115 
   4116 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4117 		/* Update the wired bit in the pv entry for this page. */
   4118 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4119 
   4120 #ifdef MULTIPROCESSOR
   4121 		KASSERT(uvm_page_locked_p(pg));
   4122 #endif
   4123 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4124 	}
   4125 
   4126 	pmap_release_pmap_lock(pm);
   4127 }
   4128 
   4129 void
   4130 pmap_activate(struct lwp *l)
   4131 {
   4132 	extern int block_userspace_access;
   4133 	pmap_t opm, npm, rpm;
   4134 	uint32_t odacr, ndacr;
   4135 	int oldirqstate;
   4136 
   4137 	/*
   4138 	 * If activating a non-current lwp or the current lwp is
   4139 	 * already active, just return.
   4140 	 */
   4141 	if (l != curlwp ||
   4142 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4143 		return;
   4144 
   4145 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4146 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4147 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4148 
   4149 	/*
   4150 	 * If TTB and DACR are unchanged, short-circuit all the
   4151 	 * TLB/cache management stuff.
   4152 	 */
   4153 	if (pmap_previous_active_lwp != NULL) {
   4154 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4155 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4156 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4157 
   4158 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4159 			goto all_done;
   4160 	} else
   4161 		opm = NULL;
   4162 
   4163 	PMAPCOUNT(activations);
   4164 	block_userspace_access = 1;
   4165 
   4166 	/*
   4167 	 * If switching to a user vmspace which is different to the
   4168 	 * most recent one, and the most recent one is potentially
   4169 	 * live in the cache, we must write-back and invalidate the
   4170 	 * entire cache.
   4171 	 */
   4172 	rpm = pmap_recent_user;
   4173 
   4174 /*
   4175  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4176  * reported in kern/41058. They're probably left over during tear-down and
   4177  * switching away from an exiting process. Until the root cause is identified
   4178  * and fixed, zap the cache when switching pmaps. This will result in a few
   4179  * unnecessary cache flushes, but that's better than silently corrupting data.
   4180  */
   4181 #if 0
   4182 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4183 	    rpm->pm_cstate.cs_cache) {
   4184 		rpm->pm_cstate.cs_cache = 0;
   4185 #ifdef PMAP_CACHE_VIVT
   4186 		cpu_idcache_wbinv_all();
   4187 #endif
   4188 	}
   4189 #else
   4190 	if (rpm) {
   4191 		rpm->pm_cstate.cs_cache = 0;
   4192 		if (npm == pmap_kernel())
   4193 			pmap_recent_user = NULL;
   4194 #ifdef PMAP_CACHE_VIVT
   4195 		cpu_idcache_wbinv_all();
   4196 #endif
   4197 	}
   4198 #endif
   4199 
   4200 	/* No interrupts while we frob the TTB/DACR */
   4201 	oldirqstate = disable_interrupts(IF32_bits);
   4202 
   4203 	/*
   4204 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4205 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4206 	 * before switching to it otherwise subsequent interrupts/exceptions
   4207 	 * (including domain faults!) will jump into hyperspace.
   4208 	 */
   4209 	if (npm->pm_pl1vec != NULL) {
   4210 		cpu_tlb_flushID_SE((u_int)vector_page);
   4211 		cpu_cpwait();
   4212 		*npm->pm_pl1vec = npm->pm_l1vec;
   4213 		PTE_SYNC(npm->pm_pl1vec);
   4214 	}
   4215 
   4216 	cpu_domains(ndacr);
   4217 
   4218 	if (npm == pmap_kernel() || npm == rpm) {
   4219 		/*
   4220 		 * Switching to a kernel thread, or back to the
   4221 		 * same user vmspace as before... Simply update
   4222 		 * the TTB (no TLB flush required)
   4223 		 */
   4224 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4225 		cpu_cpwait();
   4226 	} else {
   4227 		/*
   4228 		 * Otherwise, update TTB and flush TLB
   4229 		 */
   4230 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4231 		if (rpm != NULL)
   4232 			rpm->pm_cstate.cs_tlb = 0;
   4233 	}
   4234 
   4235 	restore_interrupts(oldirqstate);
   4236 
   4237 	block_userspace_access = 0;
   4238 
   4239  all_done:
   4240 	/*
   4241 	 * The new pmap is resident. Make sure it's marked
   4242 	 * as resident in the cache/TLB.
   4243 	 */
   4244 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4245 	if (npm != pmap_kernel())
   4246 		pmap_recent_user = npm;
   4247 
   4248 	/* The old pmap is not longer active */
   4249 	if (opm != NULL)
   4250 		opm->pm_activated = false;
   4251 
   4252 	/* But the new one is */
   4253 	npm->pm_activated = true;
   4254 }
   4255 
   4256 void
   4257 pmap_deactivate(struct lwp *l)
   4258 {
   4259 
   4260 	/*
   4261 	 * If the process is exiting, make sure pmap_activate() does
   4262 	 * a full MMU context-switch and cache flush, which we might
   4263 	 * otherwise skip. See PR port-arm/38950.
   4264 	 */
   4265 	if (l->l_proc->p_sflag & PS_WEXIT)
   4266 		pmap_previous_active_lwp = NULL;
   4267 
   4268 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4269 }
   4270 
   4271 void
   4272 pmap_update(pmap_t pm)
   4273 {
   4274 
   4275 	if (pm->pm_remove_all) {
   4276 		/*
   4277 		 * Finish up the pmap_remove_all() optimisation by flushing
   4278 		 * the TLB.
   4279 		 */
   4280 		pmap_tlb_flushID(pm);
   4281 		pm->pm_remove_all = false;
   4282 	}
   4283 
   4284 	if (pmap_is_current(pm)) {
   4285 		/*
   4286 		 * If we're dealing with a current userland pmap, move its L1
   4287 		 * to the end of the LRU.
   4288 		 */
   4289 		if (pm != pmap_kernel())
   4290 			pmap_use_l1(pm);
   4291 
   4292 		/*
   4293 		 * We can assume we're done with frobbing the cache/tlb for
   4294 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4295 		 * flushes.
   4296 		 */
   4297 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4298 	}
   4299 
   4300 	PMAPCOUNT(updates);
   4301 
   4302 	/*
   4303 	 * make sure TLB/cache operations have completed.
   4304 	 */
   4305 	cpu_cpwait();
   4306 }
   4307 
   4308 void
   4309 pmap_remove_all(pmap_t pm)
   4310 {
   4311 
   4312 	/*
   4313 	 * The vmspace described by this pmap is about to be torn down.
   4314 	 * Until pmap_update() is called, UVM will only make calls
   4315 	 * to pmap_remove(). We can make life much simpler by flushing
   4316 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4317 	 */
   4318 #ifdef PMAP_CACHE_VIVT
   4319 	pmap_idcache_wbinv_all(pm);
   4320 #endif
   4321 	pm->pm_remove_all = true;
   4322 }
   4323 
   4324 /*
   4325  * Retire the given physical map from service.
   4326  * Should only be called if the map contains no valid mappings.
   4327  */
   4328 void
   4329 pmap_destroy(pmap_t pm)
   4330 {
   4331 	u_int count;
   4332 
   4333 	if (pm == NULL)
   4334 		return;
   4335 
   4336 	if (pm->pm_remove_all) {
   4337 		pmap_tlb_flushID(pm);
   4338 		pm->pm_remove_all = false;
   4339 	}
   4340 
   4341 	/*
   4342 	 * Drop reference count
   4343 	 */
   4344 	mutex_enter(pm->pm_lock);
   4345 	count = --pm->pm_obj.uo_refs;
   4346 	mutex_exit(pm->pm_lock);
   4347 	if (count > 0) {
   4348 		if (pmap_is_current(pm)) {
   4349 			if (pm != pmap_kernel())
   4350 				pmap_use_l1(pm);
   4351 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4352 		}
   4353 		return;
   4354 	}
   4355 
   4356 	/*
   4357 	 * reference count is zero, free pmap resources and then free pmap.
   4358 	 */
   4359 
   4360 	if (vector_page < KERNEL_BASE) {
   4361 		KDASSERT(!pmap_is_current(pm));
   4362 
   4363 		/* Remove the vector page mapping */
   4364 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4365 		pmap_update(pm);
   4366 	}
   4367 
   4368 	LIST_REMOVE(pm, pm_list);
   4369 
   4370 	pmap_free_l1(pm);
   4371 
   4372 	if (pmap_recent_user == pm)
   4373 		pmap_recent_user = NULL;
   4374 
   4375 	uvm_obj_destroy(&pm->pm_obj, false);
   4376 	mutex_destroy(&pm->pm_obj_lock);
   4377 	pool_cache_put(&pmap_cache, pm);
   4378 }
   4379 
   4380 
   4381 /*
   4382  * void pmap_reference(pmap_t pm)
   4383  *
   4384  * Add a reference to the specified pmap.
   4385  */
   4386 void
   4387 pmap_reference(pmap_t pm)
   4388 {
   4389 
   4390 	if (pm == NULL)
   4391 		return;
   4392 
   4393 	pmap_use_l1(pm);
   4394 
   4395 	mutex_enter(pm->pm_lock);
   4396 	pm->pm_obj.uo_refs++;
   4397 	mutex_exit(pm->pm_lock);
   4398 }
   4399 
   4400 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   4401 
   4402 static struct evcnt pmap_prefer_nochange_ev =
   4403     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4404 static struct evcnt pmap_prefer_change_ev =
   4405     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4406 
   4407 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4408 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4409 
   4410 void
   4411 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4412 {
   4413 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4414 	vaddr_t va = *vap;
   4415 	vaddr_t diff = (hint - va) & mask;
   4416 	if (diff == 0) {
   4417 		pmap_prefer_nochange_ev.ev_count++;
   4418 	} else {
   4419 		pmap_prefer_change_ev.ev_count++;
   4420 		if (__predict_false(td))
   4421 			va -= mask + 1;
   4422 		*vap = va + diff;
   4423 	}
   4424 }
   4425 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   4426 
   4427 /*
   4428  * pmap_zero_page()
   4429  *
   4430  * Zero a given physical page by mapping it at a page hook point.
   4431  * In doing the zero page op, the page we zero is mapped cachable, as with
   4432  * StrongARM accesses to non-cached pages are non-burst making writing
   4433  * _any_ bulk data very slow.
   4434  */
   4435 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4436 void
   4437 pmap_zero_page_generic(paddr_t phys)
   4438 {
   4439 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4440 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4441 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4442 #endif
   4443 #ifdef PMAP_CACHE_VIPT
   4444 	/* Choose the last page color it had, if any */
   4445 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4446 #else
   4447 	const vsize_t va_offset = 0;
   4448 #endif
   4449 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4450 
   4451 #ifdef DEBUG
   4452 	if (!SLIST_EMPTY(&md->pvh_list))
   4453 		panic("pmap_zero_page: page has mappings");
   4454 #endif
   4455 
   4456 	KDASSERT((phys & PGOFSET) == 0);
   4457 
   4458 	/*
   4459 	 * Hook in the page, zero it, and purge the cache for that
   4460 	 * zeroed page. Invalidate the TLB as needed.
   4461 	 */
   4462 	*ptep = L2_S_PROTO | phys |
   4463 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4464 	PTE_SYNC(ptep);
   4465 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4466 	cpu_cpwait();
   4467 	bzero_page(cdstp + va_offset);
   4468 	/*
   4469 	 * Unmap the page.
   4470 	 */
   4471 	*ptep = 0;
   4472 	PTE_SYNC(ptep);
   4473 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4474 #ifdef PMAP_CACHE_VIVT
   4475 	cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4476 #endif
   4477 #ifdef PMAP_CACHE_VIPT
   4478 	/*
   4479 	 * This page is now cache resident so it now has a page color.
   4480 	 * Any contents have been obliterated so clear the EXEC flag.
   4481 	 */
   4482 	if (!pmap_is_page_colored_p(md)) {
   4483 		PMAPCOUNT(vac_color_new);
   4484 		md->pvh_attrs |= PVF_COLORED;
   4485 	}
   4486 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4487 		md->pvh_attrs &= ~PVF_EXEC;
   4488 		PMAPCOUNT(exec_discarded_zero);
   4489 	}
   4490 	md->pvh_attrs |= PVF_DIRTY;
   4491 #endif
   4492 }
   4493 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4494 
   4495 #if ARM_MMU_XSCALE == 1
   4496 void
   4497 pmap_zero_page_xscale(paddr_t phys)
   4498 {
   4499 #ifdef DEBUG
   4500 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4501 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4502 
   4503 	if (!SLIST_EMPTY(&md->pvh_list))
   4504 		panic("pmap_zero_page: page has mappings");
   4505 #endif
   4506 
   4507 	KDASSERT((phys & PGOFSET) == 0);
   4508 
   4509 	/*
   4510 	 * Hook in the page, zero it, and purge the cache for that
   4511 	 * zeroed page. Invalidate the TLB as needed.
   4512 	 */
   4513 	*cdst_pte = L2_S_PROTO | phys |
   4514 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4515 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4516 	PTE_SYNC(cdst_pte);
   4517 	cpu_tlb_flushD_SE(cdstp);
   4518 	cpu_cpwait();
   4519 	bzero_page(cdstp);
   4520 	xscale_cache_clean_minidata();
   4521 }
   4522 #endif /* ARM_MMU_XSCALE == 1 */
   4523 
   4524 /* pmap_pageidlezero()
   4525  *
   4526  * The same as above, except that we assume that the page is not
   4527  * mapped.  This means we never have to flush the cache first.  Called
   4528  * from the idle loop.
   4529  */
   4530 bool
   4531 pmap_pageidlezero(paddr_t phys)
   4532 {
   4533 	unsigned int i;
   4534 	int *ptr;
   4535 	bool rv = true;
   4536 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4537 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4538 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4539 #endif
   4540 #ifdef PMAP_CACHE_VIPT
   4541 	/* Choose the last page color it had, if any */
   4542 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4543 #else
   4544 	const vsize_t va_offset = 0;
   4545 #endif
   4546 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4547 
   4548 
   4549 #ifdef DEBUG
   4550 	if (!SLIST_EMPTY(&md->pvh_list))
   4551 		panic("pmap_pageidlezero: page has mappings");
   4552 #endif
   4553 
   4554 	KDASSERT((phys & PGOFSET) == 0);
   4555 
   4556 	/*
   4557 	 * Hook in the page, zero it, and purge the cache for that
   4558 	 * zeroed page. Invalidate the TLB as needed.
   4559 	 */
   4560 	*ptep = L2_S_PROTO | phys |
   4561 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4562 	PTE_SYNC(ptep);
   4563 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4564 	cpu_cpwait();
   4565 
   4566 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4567 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4568 		if (sched_curcpu_runnable_p() != 0) {
   4569 			/*
   4570 			 * A process has become ready.  Abort now,
   4571 			 * so we don't keep it waiting while we
   4572 			 * do slow memory access to finish this
   4573 			 * page.
   4574 			 */
   4575 			rv = false;
   4576 			break;
   4577 		}
   4578 		*ptr++ = 0;
   4579 	}
   4580 
   4581 #ifdef PMAP_CACHE_VIVT
   4582 	if (rv)
   4583 		/*
   4584 		 * if we aborted we'll rezero this page again later so don't
   4585 		 * purge it unless we finished it
   4586 		 */
   4587 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4588 #elif defined(PMAP_CACHE_VIPT)
   4589 	/*
   4590 	 * This page is now cache resident so it now has a page color.
   4591 	 * Any contents have been obliterated so clear the EXEC flag.
   4592 	 */
   4593 	if (!pmap_is_page_colored_p(md)) {
   4594 		PMAPCOUNT(vac_color_new);
   4595 		md->pvh_attrs |= PVF_COLORED;
   4596 	}
   4597 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4598 		md->pvh_attrs &= ~PVF_EXEC;
   4599 		PMAPCOUNT(exec_discarded_zero);
   4600 	}
   4601 #endif
   4602 	/*
   4603 	 * Unmap the page.
   4604 	 */
   4605 	*ptep = 0;
   4606 	PTE_SYNC(ptep);
   4607 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4608 
   4609 	return (rv);
   4610 }
   4611 
   4612 /*
   4613  * pmap_copy_page()
   4614  *
   4615  * Copy one physical page into another, by mapping the pages into
   4616  * hook points. The same comment regarding cachability as in
   4617  * pmap_zero_page also applies here.
   4618  */
   4619 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4620 void
   4621 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4622 {
   4623 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4624 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4625 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4626 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4627 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   4628 #endif
   4629 #ifdef PMAP_CACHE_VIPT
   4630 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   4631 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   4632 #else
   4633 	const vsize_t src_va_offset = 0;
   4634 	const vsize_t dst_va_offset = 0;
   4635 #endif
   4636 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4637 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4638 
   4639 #ifdef DEBUG
   4640 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4641 		panic("pmap_copy_page: dst page has mappings");
   4642 #endif
   4643 
   4644 #ifdef PMAP_CACHE_VIPT
   4645 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   4646 #endif
   4647 	KDASSERT((src & PGOFSET) == 0);
   4648 	KDASSERT((dst & PGOFSET) == 0);
   4649 
   4650 	/*
   4651 	 * Clean the source page.  Hold the source page's lock for
   4652 	 * the duration of the copy so that no other mappings can
   4653 	 * be created while we have a potentially aliased mapping.
   4654 	 */
   4655 #ifdef MULTIPROCESSOR
   4656 	KASSERT(uvm_page_locked_p(src_pg));
   4657 #endif
   4658 #ifdef PMAP_CACHE_VIVT
   4659 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4660 #endif
   4661 
   4662 	/*
   4663 	 * Map the pages into the page hook points, copy them, and purge
   4664 	 * the cache for the appropriate page. Invalidate the TLB
   4665 	 * as required.
   4666 	 */
   4667 	*src_ptep = L2_S_PROTO
   4668 	    | src
   4669 #ifdef PMAP_CACHE_VIPT
   4670 	    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4671 #endif
   4672 #ifdef PMAP_CACHE_VIVT
   4673 	    | pte_l2_s_cache_mode
   4674 #endif
   4675 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4676 	*dst_ptep = L2_S_PROTO | dst |
   4677 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4678 	PTE_SYNC(src_ptep);
   4679 	PTE_SYNC(dst_ptep);
   4680 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4681 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4682 	cpu_cpwait();
   4683 	bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
   4684 #ifdef PMAP_CACHE_VIVT
   4685 	cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
   4686 #endif
   4687 #ifdef PMAP_CACHE_VIVT
   4688 	cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4689 #endif
   4690 	/*
   4691 	 * Unmap the pages.
   4692 	 */
   4693 	*src_ptep = 0;
   4694 	*dst_ptep = 0;
   4695 	PTE_SYNC(src_ptep);
   4696 	PTE_SYNC(dst_ptep);
   4697 	cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4698 	cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4699 #ifdef PMAP_CACHE_VIPT
   4700 	/*
   4701 	 * Now that the destination page is in the cache, mark it as colored.
   4702 	 * If this was an exec page, discard it.
   4703 	 */
   4704 	if (!pmap_is_page_colored_p(dst_md)) {
   4705 		PMAPCOUNT(vac_color_new);
   4706 		dst_md->pvh_attrs |= PVF_COLORED;
   4707 	}
   4708 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   4709 		dst_md->pvh_attrs &= ~PVF_EXEC;
   4710 		PMAPCOUNT(exec_discarded_copy);
   4711 	}
   4712 	dst_md->pvh_attrs |= PVF_DIRTY;
   4713 #endif
   4714 }
   4715 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4716 
   4717 #if ARM_MMU_XSCALE == 1
   4718 void
   4719 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4720 {
   4721 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4722 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4723 #ifdef DEBUG
   4724 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   4725 
   4726 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4727 		panic("pmap_copy_page: dst page has mappings");
   4728 #endif
   4729 
   4730 	KDASSERT((src & PGOFSET) == 0);
   4731 	KDASSERT((dst & PGOFSET) == 0);
   4732 
   4733 	/*
   4734 	 * Clean the source page.  Hold the source page's lock for
   4735 	 * the duration of the copy so that no other mappings can
   4736 	 * be created while we have a potentially aliased mapping.
   4737 	 */
   4738 #ifdef MULTIPROCESSOR
   4739 	KASSERT(uvm_page_locked_p(src_pg));
   4740 #endif
   4741 #ifdef PMAP_CACHE_VIVT
   4742 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4743 #endif
   4744 
   4745 	/*
   4746 	 * Map the pages into the page hook points, copy them, and purge
   4747 	 * the cache for the appropriate page. Invalidate the TLB
   4748 	 * as required.
   4749 	 */
   4750 	*csrc_pte = L2_S_PROTO | src |
   4751 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4752 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4753 	PTE_SYNC(csrc_pte);
   4754 	*cdst_pte = L2_S_PROTO | dst |
   4755 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4756 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4757 	PTE_SYNC(cdst_pte);
   4758 	cpu_tlb_flushD_SE(csrcp);
   4759 	cpu_tlb_flushD_SE(cdstp);
   4760 	cpu_cpwait();
   4761 	bcopy_page(csrcp, cdstp);
   4762 	xscale_cache_clean_minidata();
   4763 }
   4764 #endif /* ARM_MMU_XSCALE == 1 */
   4765 
   4766 /*
   4767  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4768  *
   4769  * Return the start and end addresses of the kernel's virtual space.
   4770  * These values are setup in pmap_bootstrap and are updated as pages
   4771  * are allocated.
   4772  */
   4773 void
   4774 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4775 {
   4776 	*start = virtual_avail;
   4777 	*end = virtual_end;
   4778 }
   4779 
   4780 /*
   4781  * Helper function for pmap_grow_l2_bucket()
   4782  */
   4783 static inline int
   4784 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4785 {
   4786 	struct l2_bucket *l2b;
   4787 	pt_entry_t *ptep;
   4788 	paddr_t pa;
   4789 
   4790 	if (uvm.page_init_done == false) {
   4791 #ifdef PMAP_STEAL_MEMORY
   4792 		pv_addr_t pv;
   4793 		pmap_boot_pagealloc(PAGE_SIZE,
   4794 #ifdef PMAP_CACHE_VIPT
   4795 		    arm_cache_prefer_mask,
   4796 		    va & arm_cache_prefer_mask,
   4797 #else
   4798 		    0, 0,
   4799 #endif
   4800 		    &pv);
   4801 		pa = pv.pv_pa;
   4802 #else
   4803 		if (uvm_page_physget(&pa) == false)
   4804 			return (1);
   4805 #endif	/* PMAP_STEAL_MEMORY */
   4806 	} else {
   4807 		struct vm_page *pg;
   4808 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4809 		if (pg == NULL)
   4810 			return (1);
   4811 		pa = VM_PAGE_TO_PHYS(pg);
   4812 #ifdef PMAP_CACHE_VIPT
   4813 #ifdef DIAGNOSTIC
   4814 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4815 #endif
   4816 		/*
   4817 		 * This new page must not have any mappings.  Enter it via
   4818 		 * pmap_kenter_pa and let that routine do the hard work.
   4819 		 */
   4820 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   4821 		pmap_kenter_pa(va, pa,
   4822 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   4823 #endif
   4824 	}
   4825 
   4826 	if (pap)
   4827 		*pap = pa;
   4828 
   4829 	PMAPCOUNT(pt_mappings);
   4830 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4831 	KDASSERT(l2b != NULL);
   4832 
   4833 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4834 	*ptep = L2_S_PROTO | pa | cache_mode |
   4835 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4836 	PTE_SYNC(ptep);
   4837 	memset((void *)va, 0, PAGE_SIZE);
   4838 	return (0);
   4839 }
   4840 
   4841 /*
   4842  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4843  * used by pmap_growkernel().
   4844  */
   4845 static inline struct l2_bucket *
   4846 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4847 {
   4848 	struct l2_dtable *l2;
   4849 	struct l2_bucket *l2b;
   4850 	u_short l1idx;
   4851 	vaddr_t nva;
   4852 
   4853 	l1idx = L1_IDX(va);
   4854 
   4855 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4856 		/*
   4857 		 * No mapping at this address, as there is
   4858 		 * no entry in the L1 table.
   4859 		 * Need to allocate a new l2_dtable.
   4860 		 */
   4861 		nva = pmap_kernel_l2dtable_kva;
   4862 		if ((nva & PGOFSET) == 0) {
   4863 			/*
   4864 			 * Need to allocate a backing page
   4865 			 */
   4866 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4867 				return (NULL);
   4868 		}
   4869 
   4870 		l2 = (struct l2_dtable *)nva;
   4871 		nva += sizeof(struct l2_dtable);
   4872 
   4873 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4874 			/*
   4875 			 * The new l2_dtable straddles a page boundary.
   4876 			 * Map in another page to cover it.
   4877 			 */
   4878 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4879 				return (NULL);
   4880 		}
   4881 
   4882 		pmap_kernel_l2dtable_kva = nva;
   4883 
   4884 		/*
   4885 		 * Link it into the parent pmap
   4886 		 */
   4887 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4888 	}
   4889 
   4890 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4891 
   4892 	/*
   4893 	 * Fetch pointer to the L2 page table associated with the address.
   4894 	 */
   4895 	if (l2b->l2b_kva == NULL) {
   4896 		pt_entry_t *ptep;
   4897 
   4898 		/*
   4899 		 * No L2 page table has been allocated. Chances are, this
   4900 		 * is because we just allocated the l2_dtable, above.
   4901 		 */
   4902 		nva = pmap_kernel_l2ptp_kva;
   4903 		ptep = (pt_entry_t *)nva;
   4904 		if ((nva & PGOFSET) == 0) {
   4905 			/*
   4906 			 * Need to allocate a backing page
   4907 			 */
   4908 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4909 			    &pmap_kernel_l2ptp_phys))
   4910 				return (NULL);
   4911 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4912 		}
   4913 
   4914 		l2->l2_occupancy++;
   4915 		l2b->l2b_kva = ptep;
   4916 		l2b->l2b_l1idx = l1idx;
   4917 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4918 
   4919 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4920 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4921 	}
   4922 
   4923 	return (l2b);
   4924 }
   4925 
   4926 vaddr_t
   4927 pmap_growkernel(vaddr_t maxkvaddr)
   4928 {
   4929 	pmap_t kpm = pmap_kernel();
   4930 	struct l1_ttable *l1;
   4931 	struct l2_bucket *l2b;
   4932 	pd_entry_t *pl1pd;
   4933 	int s;
   4934 
   4935 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4936 		goto out;		/* we are OK */
   4937 
   4938 	NPDEBUG(PDB_GROWKERN,
   4939 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4940 	    pmap_curmaxkvaddr, maxkvaddr));
   4941 
   4942 	KDASSERT(maxkvaddr <= virtual_end);
   4943 
   4944 	/*
   4945 	 * whoops!   we need to add kernel PTPs
   4946 	 */
   4947 
   4948 	s = splhigh();	/* to be safe */
   4949 	mutex_enter(kpm->pm_lock);
   4950 
   4951 	/* Map 1MB at a time */
   4952 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   4953 
   4954 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   4955 		KDASSERT(l2b != NULL);
   4956 
   4957 		/* Distribute new L1 entry to all other L1s */
   4958 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   4959 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   4960 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   4961 			    L1_C_PROTO;
   4962 			PTE_SYNC(pl1pd);
   4963 		}
   4964 	}
   4965 
   4966 	/*
   4967 	 * flush out the cache, expensive but growkernel will happen so
   4968 	 * rarely
   4969 	 */
   4970 	cpu_dcache_wbinv_all();
   4971 	cpu_tlb_flushD();
   4972 	cpu_cpwait();
   4973 
   4974 	mutex_exit(kpm->pm_lock);
   4975 	splx(s);
   4976 
   4977 out:
   4978 	return (pmap_curmaxkvaddr);
   4979 }
   4980 
   4981 /************************ Utility routines ****************************/
   4982 
   4983 /*
   4984  * vector_page_setprot:
   4985  *
   4986  *	Manipulate the protection of the vector page.
   4987  */
   4988 void
   4989 vector_page_setprot(int prot)
   4990 {
   4991 	struct l2_bucket *l2b;
   4992 	pt_entry_t *ptep;
   4993 
   4994 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   4995 	KDASSERT(l2b != NULL);
   4996 
   4997 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   4998 
   4999 	*ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   5000 	PTE_SYNC(ptep);
   5001 	cpu_tlb_flushD_SE(vector_page);
   5002 	cpu_cpwait();
   5003 }
   5004 
   5005 /*
   5006  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5007  * Returns true if the mapping exists, else false.
   5008  *
   5009  * NOTE: This function is only used by a couple of arm-specific modules.
   5010  * It is not safe to take any pmap locks here, since we could be right
   5011  * in the middle of debugging the pmap anyway...
   5012  *
   5013  * It is possible for this routine to return false even though a valid
   5014  * mapping does exist. This is because we don't lock, so the metadata
   5015  * state may be inconsistent.
   5016  *
   5017  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5018  * a "section" mapping.
   5019  */
   5020 bool
   5021 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5022 {
   5023 	struct l2_dtable *l2;
   5024 	pd_entry_t *pl1pd, l1pd;
   5025 	pt_entry_t *ptep;
   5026 	u_short l1idx;
   5027 
   5028 	if (pm->pm_l1 == NULL)
   5029 		return false;
   5030 
   5031 	l1idx = L1_IDX(va);
   5032 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   5033 	l1pd = *pl1pd;
   5034 
   5035 	if (l1pte_section_p(l1pd)) {
   5036 		*ptp = NULL;
   5037 		return true;
   5038 	}
   5039 
   5040 	if (pm->pm_l2 == NULL)
   5041 		return false;
   5042 
   5043 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5044 
   5045 	if (l2 == NULL ||
   5046 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5047 		return false;
   5048 	}
   5049 
   5050 	*ptp = &ptep[l2pte_index(va)];
   5051 	return true;
   5052 }
   5053 
   5054 bool
   5055 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5056 {
   5057 	u_short l1idx;
   5058 
   5059 	if (pm->pm_l1 == NULL)
   5060 		return false;
   5061 
   5062 	l1idx = L1_IDX(va);
   5063 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   5064 
   5065 	return true;
   5066 }
   5067 
   5068 /************************ Bootstrapping routines ****************************/
   5069 
   5070 static void
   5071 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5072 {
   5073 	int i;
   5074 
   5075 	l1->l1_kva = l1pt;
   5076 	l1->l1_domain_use_count = 0;
   5077 	l1->l1_domain_first = 0;
   5078 
   5079 	for (i = 0; i < PMAP_DOMAINS; i++)
   5080 		l1->l1_domain_free[i] = i + 1;
   5081 
   5082 	/*
   5083 	 * Copy the kernel's L1 entries to each new L1.
   5084 	 */
   5085 	if (pmap_initialized)
   5086 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   5087 
   5088 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5089 	    &l1->l1_physaddr) == false)
   5090 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5091 
   5092 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5093 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5094 }
   5095 
   5096 /*
   5097  * pmap_bootstrap() is called from the board-specific initarm() routine
   5098  * once the kernel L1/L2 descriptors tables have been set up.
   5099  *
   5100  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5101  * spread over a number of disparate files/functions.
   5102  *
   5103  * We are passed the following parameters
   5104  *  - kernel_l1pt
   5105  *    This is a pointer to the base of the kernel's L1 translation table.
   5106  *  - vstart
   5107  *    1MB-aligned start of managed kernel virtual memory.
   5108  *  - vend
   5109  *    1MB-aligned end of managed kernel virtual memory.
   5110  *
   5111  * We use the first parameter to build the metadata (struct l1_ttable and
   5112  * struct l2_dtable) necessary to track kernel mappings.
   5113  */
   5114 #define	PMAP_STATIC_L2_SIZE 16
   5115 void
   5116 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5117 {
   5118 	static struct l1_ttable static_l1;
   5119 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5120 	struct l1_ttable *l1 = &static_l1;
   5121 	struct l2_dtable *l2;
   5122 	struct l2_bucket *l2b;
   5123 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5124 	pmap_t pm = pmap_kernel();
   5125 	pd_entry_t pde;
   5126 	pt_entry_t *ptep;
   5127 	paddr_t pa;
   5128 	vaddr_t va;
   5129 	vsize_t size;
   5130 	int nptes, l1idx, l2idx, l2next = 0;
   5131 
   5132 	/*
   5133 	 * Initialise the kernel pmap object
   5134 	 */
   5135 	pm->pm_l1 = l1;
   5136 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5137 	pm->pm_activated = true;
   5138 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5139 
   5140 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5141 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5142 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5143 
   5144 	/*
   5145 	 * Scan the L1 translation table created by initarm() and create
   5146 	 * the required metadata for all valid mappings found in it.
   5147 	 */
   5148 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5149 		pde = l1pt[l1idx];
   5150 
   5151 		/*
   5152 		 * We're only interested in Coarse mappings.
   5153 		 * pmap_extract() can deal with section mappings without
   5154 		 * recourse to checking L2 metadata.
   5155 		 */
   5156 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5157 			continue;
   5158 
   5159 		/*
   5160 		 * Lookup the KVA of this L2 descriptor table
   5161 		 */
   5162 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5163 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5164 		if (ptep == NULL) {
   5165 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5166 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5167 		}
   5168 
   5169 		/*
   5170 		 * Fetch the associated L2 metadata structure.
   5171 		 * Allocate a new one if necessary.
   5172 		 */
   5173 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5174 			if (l2next == PMAP_STATIC_L2_SIZE)
   5175 				panic("pmap_bootstrap: out of static L2s");
   5176 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5177 		}
   5178 
   5179 		/*
   5180 		 * One more L1 slot tracked...
   5181 		 */
   5182 		l2->l2_occupancy++;
   5183 
   5184 		/*
   5185 		 * Fill in the details of the L2 descriptor in the
   5186 		 * appropriate bucket.
   5187 		 */
   5188 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5189 		l2b->l2b_kva = ptep;
   5190 		l2b->l2b_phys = pa;
   5191 		l2b->l2b_l1idx = l1idx;
   5192 
   5193 		/*
   5194 		 * Establish an initial occupancy count for this descriptor
   5195 		 */
   5196 		for (l2idx = 0;
   5197 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5198 		    l2idx++) {
   5199 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5200 				l2b->l2b_occupancy++;
   5201 			}
   5202 		}
   5203 
   5204 		/*
   5205 		 * Make sure the descriptor itself has the correct cache mode.
   5206 		 * If not, fix it, but whine about the problem. Port-meisters
   5207 		 * should consider this a clue to fix up their initarm()
   5208 		 * function. :)
   5209 		 */
   5210 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5211 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5212 			    "L2 pte @ %p\n", ptep);
   5213 		}
   5214 	}
   5215 
   5216 	/*
   5217 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5218 	 * a page table. Bitch if it is not correctly set.
   5219 	 */
   5220 	for (va = (vaddr_t)l1pt;
   5221 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5222 		if (pmap_set_pt_cache_mode(l1pt, va))
   5223 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5224 			    "primary L1 @ 0x%lx\n", va);
   5225 	}
   5226 
   5227 	cpu_dcache_wbinv_all();
   5228 	cpu_tlb_flushID();
   5229 	cpu_cpwait();
   5230 
   5231 	/*
   5232 	 * now we allocate the "special" VAs which are used for tmp mappings
   5233 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5234 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5235 	 *
   5236 	 * Managed KVM space start from wherever initarm() tells us.
   5237 	 */
   5238 	virtual_avail = vstart;
   5239 	virtual_end = vend;
   5240 
   5241 #ifdef PMAP_CACHE_VIPT
   5242 	/*
   5243 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5244 	 * page so we won't violate cache aliasing rules.
   5245 	 */
   5246 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5247 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5248 #else
   5249 	nptes = 1;
   5250 #endif
   5251 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5252 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5253 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5254 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5255 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5256 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5257 	    (void *)&msgbufaddr, NULL);
   5258 
   5259 	/*
   5260 	 * Allocate a range of kernel virtual address space to be used
   5261 	 * for L2 descriptor tables and metadata allocation in
   5262 	 * pmap_growkernel().
   5263 	 */
   5264 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5265 	pmap_alloc_specials(&virtual_avail,
   5266 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5267 	    &pmap_kernel_l2ptp_kva, NULL);
   5268 
   5269 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5270 	pmap_alloc_specials(&virtual_avail,
   5271 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5272 	    &pmap_kernel_l2dtable_kva, NULL);
   5273 
   5274 	/*
   5275 	 * init the static-global locks and global pmap list.
   5276 	 */
   5277 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   5278 
   5279 	/*
   5280 	 * We can now initialise the first L1's metadata.
   5281 	 */
   5282 	SLIST_INIT(&l1_list);
   5283 	TAILQ_INIT(&l1_lru_list);
   5284 	pmap_init_l1(l1, l1pt);
   5285 
   5286 	/* Set up vector page L1 details, if necessary */
   5287 	if (vector_page < KERNEL_BASE) {
   5288 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5289 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5290 		KDASSERT(l2b != NULL);
   5291 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5292 		    L1_C_DOM(pm->pm_domain);
   5293 	} else
   5294 		pm->pm_pl1vec = NULL;
   5295 
   5296 	/*
   5297 	 * Initialize the pmap cache
   5298 	 */
   5299 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5300 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5301 	LIST_INIT(&pmap_pmaps);
   5302 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5303 
   5304 	/*
   5305 	 * Initialize the pv pool.
   5306 	 */
   5307 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5308 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5309 
   5310 	/*
   5311 	 * Initialize the L2 dtable pool and cache.
   5312 	 */
   5313 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5314 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5315 
   5316 	/*
   5317 	 * Initialise the L2 descriptor table pool and cache
   5318 	 */
   5319 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5320 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5321 	    pmap_l2ptp_ctor, NULL, NULL);
   5322 
   5323 	cpu_dcache_wbinv_all();
   5324 }
   5325 
   5326 static int
   5327 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5328 {
   5329 	pd_entry_t *pdep, pde;
   5330 	pt_entry_t *ptep, pte;
   5331 	vaddr_t pa;
   5332 	int rv = 0;
   5333 
   5334 	/*
   5335 	 * Make sure the descriptor itself has the correct cache mode
   5336 	 */
   5337 	pdep = &kl1[L1_IDX(va)];
   5338 	pde = *pdep;
   5339 
   5340 	if (l1pte_section_p(pde)) {
   5341 		__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   5342 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5343 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5344 			    pte_l1_s_cache_mode_pt;
   5345 			PTE_SYNC(pdep);
   5346 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5347 			rv = 1;
   5348 		}
   5349 	} else {
   5350 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5351 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5352 		if (ptep == NULL)
   5353 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5354 
   5355 		ptep = &ptep[l2pte_index(va)];
   5356 		pte = *ptep;
   5357 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5358 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5359 			    pte_l2_s_cache_mode_pt;
   5360 			PTE_SYNC(ptep);
   5361 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5362 			rv = 1;
   5363 		}
   5364 	}
   5365 
   5366 	return (rv);
   5367 }
   5368 
   5369 static void
   5370 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5371 {
   5372 	vaddr_t va = *availp;
   5373 	struct l2_bucket *l2b;
   5374 
   5375 	if (ptep) {
   5376 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5377 		if (l2b == NULL)
   5378 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5379 
   5380 		if (ptep)
   5381 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5382 	}
   5383 
   5384 	*vap = va;
   5385 	*availp = va + (PAGE_SIZE * pages);
   5386 }
   5387 
   5388 void
   5389 pmap_init(void)
   5390 {
   5391 
   5392 	/*
   5393 	 * Set the available memory vars - These do not map to real memory
   5394 	 * addresses and cannot as the physical memory is fragmented.
   5395 	 * They are used by ps for %mem calculations.
   5396 	 * One could argue whether this should be the entire memory or just
   5397 	 * the memory that is useable in a user process.
   5398 	 */
   5399 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   5400 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   5401 
   5402 	/*
   5403 	 * Now we need to free enough pv_entry structures to allow us to get
   5404 	 * the kmem_map/kmem_object allocated and inited (done after this
   5405 	 * function is finished).  to do this we allocate one bootstrap page out
   5406 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5407 	 * structures.   we never free this page.
   5408 	 */
   5409 	pool_setlowat(&pmap_pv_pool,
   5410 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5411 
   5412 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5413 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5414 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5415 
   5416 	pmap_initialized = true;
   5417 }
   5418 
   5419 static vaddr_t last_bootstrap_page = 0;
   5420 static void *free_bootstrap_pages = NULL;
   5421 
   5422 static void *
   5423 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5424 {
   5425 	extern void *pool_page_alloc(struct pool *, int);
   5426 	vaddr_t new_page;
   5427 	void *rv;
   5428 
   5429 	if (pmap_initialized)
   5430 		return (pool_page_alloc(pp, flags));
   5431 
   5432 	if (free_bootstrap_pages) {
   5433 		rv = free_bootstrap_pages;
   5434 		free_bootstrap_pages = *((void **)rv);
   5435 		return (rv);
   5436 	}
   5437 
   5438 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5439 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5440 
   5441 	KASSERT(new_page > last_bootstrap_page);
   5442 	last_bootstrap_page = new_page;
   5443 	return ((void *)new_page);
   5444 }
   5445 
   5446 static void
   5447 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5448 {
   5449 	extern void pool_page_free(struct pool *, void *);
   5450 
   5451 	if ((vaddr_t)v <= last_bootstrap_page) {
   5452 		*((void **)v) = free_bootstrap_pages;
   5453 		free_bootstrap_pages = v;
   5454 		return;
   5455 	}
   5456 
   5457 	if (pmap_initialized) {
   5458 		pool_page_free(pp, v);
   5459 		return;
   5460 	}
   5461 }
   5462 
   5463 /*
   5464  * pmap_postinit()
   5465  *
   5466  * This routine is called after the vm and kmem subsystems have been
   5467  * initialised. This allows the pmap code to perform any initialisation
   5468  * that can only be done one the memory allocation is in place.
   5469  */
   5470 void
   5471 pmap_postinit(void)
   5472 {
   5473 	extern paddr_t physical_start, physical_end;
   5474 	struct l2_bucket *l2b;
   5475 	struct l1_ttable *l1;
   5476 	struct pglist plist;
   5477 	struct vm_page *m;
   5478 	pd_entry_t *pl1pt;
   5479 	pt_entry_t *ptep, pte;
   5480 	vaddr_t va, eva;
   5481 	u_int loop, needed;
   5482 	int error;
   5483 
   5484 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5485 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5486 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5487 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5488 
   5489 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5490 	needed -= 1;
   5491 
   5492 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   5493 
   5494 	for (loop = 0; loop < needed; loop++, l1++) {
   5495 		/* Allocate a L1 page table */
   5496 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5497 		if (va == 0)
   5498 			panic("Cannot allocate L1 KVM");
   5499 
   5500 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5501 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   5502 		if (error)
   5503 			panic("Cannot allocate L1 physical pages");
   5504 
   5505 		m = TAILQ_FIRST(&plist);
   5506 		eva = va + L1_TABLE_SIZE;
   5507 		pl1pt = (pd_entry_t *)va;
   5508 
   5509 		while (m && va < eva) {
   5510 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5511 
   5512 			pmap_kenter_pa(va, pa,
   5513 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   5514 
   5515 			/*
   5516 			 * Make sure the L1 descriptor table is mapped
   5517 			 * with the cache-mode set to write-through.
   5518 			 */
   5519 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5520 			KDASSERT(l2b != NULL);
   5521 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5522 			pte = *ptep;
   5523 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5524 			*ptep = pte;
   5525 			PTE_SYNC(ptep);
   5526 			cpu_tlb_flushD_SE(va);
   5527 
   5528 			va += PAGE_SIZE;
   5529 			m = TAILQ_NEXT(m, pageq.queue);
   5530 		}
   5531 
   5532 #ifdef DIAGNOSTIC
   5533 		if (m)
   5534 			panic("pmap_alloc_l1pt: pglist not empty");
   5535 #endif	/* DIAGNOSTIC */
   5536 
   5537 		pmap_init_l1(l1, pl1pt);
   5538 	}
   5539 
   5540 #ifdef DEBUG
   5541 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5542 	    needed);
   5543 #endif
   5544 }
   5545 
   5546 /*
   5547  * Note that the following routines are used by board-specific initialisation
   5548  * code to configure the initial kernel page tables.
   5549  *
   5550  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5551  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5552  * behaviour of the old pmap, and provides an easy migration path for
   5553  * initial bring-up of the new pmap on existing ports. Fortunately,
   5554  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5555  * will be deprecated.
   5556  *
   5557  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5558  * tables.
   5559  */
   5560 
   5561 /*
   5562  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5563  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5564  * find them as necessary.
   5565  *
   5566  * Note that the data on this list MUST remain valid after initarm() returns,
   5567  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5568  */
   5569 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5570 
   5571 static vaddr_t
   5572 kernel_pt_lookup(paddr_t pa)
   5573 {
   5574 	pv_addr_t *pv;
   5575 
   5576 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5577 #ifndef ARM32_NEW_VM_LAYOUT
   5578 		if (pv->pv_pa == (pa & ~PGOFSET))
   5579 			return (pv->pv_va | (pa & PGOFSET));
   5580 #else
   5581 		if (pv->pv_pa == pa)
   5582 			return (pv->pv_va);
   5583 #endif
   5584 	}
   5585 	return (0);
   5586 }
   5587 
   5588 /*
   5589  * pmap_map_section:
   5590  *
   5591  *	Create a single section mapping.
   5592  */
   5593 void
   5594 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5595 {
   5596 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5597 	pd_entry_t fl;
   5598 
   5599 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5600 
   5601 	switch (cache) {
   5602 	case PTE_NOCACHE:
   5603 	default:
   5604 		fl = 0;
   5605 		break;
   5606 
   5607 	case PTE_CACHE:
   5608 		fl = pte_l1_s_cache_mode;
   5609 		break;
   5610 
   5611 	case PTE_PAGETABLE:
   5612 		fl = pte_l1_s_cache_mode_pt;
   5613 		break;
   5614 	}
   5615 
   5616 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5617 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5618 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5619 }
   5620 
   5621 /*
   5622  * pmap_map_entry:
   5623  *
   5624  *	Create a single page mapping.
   5625  */
   5626 void
   5627 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5628 {
   5629 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5630 	pt_entry_t fl;
   5631 	pt_entry_t *pte;
   5632 
   5633 	KASSERT(((va | pa) & PGOFSET) == 0);
   5634 
   5635 	switch (cache) {
   5636 	case PTE_NOCACHE:
   5637 	default:
   5638 		fl = 0;
   5639 		break;
   5640 
   5641 	case PTE_CACHE:
   5642 		fl = pte_l2_s_cache_mode;
   5643 		break;
   5644 
   5645 	case PTE_PAGETABLE:
   5646 		fl = pte_l2_s_cache_mode_pt;
   5647 		break;
   5648 	}
   5649 
   5650 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5651 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5652 
   5653 #ifndef ARM32_NEW_VM_LAYOUT
   5654 	pte = (pt_entry_t *)
   5655 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5656 #else
   5657 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5658 #endif
   5659 	if (pte == NULL)
   5660 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5661 
   5662 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5663 #ifndef ARM32_NEW_VM_LAYOUT
   5664 	pte += (va >> PGSHIFT) & 0x3ff;
   5665 #else
   5666 	pte += l2pte_index(va);
   5667 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5668 #endif
   5669 	*pte = fl;
   5670 	PTE_SYNC(pte);
   5671 }
   5672 
   5673 /*
   5674  * pmap_link_l2pt:
   5675  *
   5676  *	Link the L2 page table specified by "l2pv" into the L1
   5677  *	page table at the slot for "va".
   5678  */
   5679 void
   5680 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5681 {
   5682 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5683 	u_int slot = va >> L1_S_SHIFT;
   5684 
   5685 #ifndef ARM32_NEW_VM_LAYOUT
   5686 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5687 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5688 #endif
   5689 
   5690 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5691 
   5692 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5693 #ifdef ARM32_NEW_VM_LAYOUT
   5694 	PTE_SYNC(&pde[slot]);
   5695 #else
   5696 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5697 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5698 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5699 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5700 #endif
   5701 
   5702 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5703 }
   5704 
   5705 /*
   5706  * pmap_map_chunk:
   5707  *
   5708  *	Map a chunk of memory using the most efficient mappings
   5709  *	possible (section, large page, small page) into the
   5710  *	provided L1 and L2 tables at the specified virtual address.
   5711  */
   5712 vsize_t
   5713 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5714     int prot, int cache)
   5715 {
   5716 	pd_entry_t *pdep = (pd_entry_t *) l1pt;
   5717 	pt_entry_t *pte, f1, f2s, f2l;
   5718 	vsize_t resid;
   5719 	int i;
   5720 
   5721 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5722 
   5723 	if (l1pt == 0)
   5724 		panic("pmap_map_chunk: no L1 table provided");
   5725 
   5726 #ifdef VERBOSE_INIT_ARM
   5727 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5728 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5729 #endif
   5730 
   5731 	switch (cache) {
   5732 	case PTE_NOCACHE:
   5733 	default:
   5734 		f1 = 0;
   5735 		f2l = 0;
   5736 		f2s = 0;
   5737 		break;
   5738 
   5739 	case PTE_CACHE:
   5740 		f1 = pte_l1_s_cache_mode;
   5741 		f2l = pte_l2_l_cache_mode;
   5742 		f2s = pte_l2_s_cache_mode;
   5743 		break;
   5744 
   5745 	case PTE_PAGETABLE:
   5746 		f1 = pte_l1_s_cache_mode_pt;
   5747 		f2l = pte_l2_l_cache_mode_pt;
   5748 		f2s = pte_l2_s_cache_mode_pt;
   5749 		break;
   5750 	}
   5751 
   5752 	size = resid;
   5753 
   5754 	while (resid > 0) {
   5755 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5756 		/* See if we can use a supersection mapping. */
   5757 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   5758 			/* Supersection are always domain 0 */
   5759 			pd_entry_t pde = L1_SS_PROTO | pa |
   5760 			    L1_S_PROT(PTE_KERNEL, prot) | f1;
   5761 #ifdef VERBOSE_INIT_ARM
   5762 			printf("sS");
   5763 #endif
   5764 			for (size_t s = va >> L1_S_SHIFT,
   5765 			     e = s + L1_SS_SIZE / L1_S_SIZE;
   5766 			     s < e;
   5767 			     s++) {
   5768 				pdep[s] = pde;
   5769 				PTE_SYNC(&pdep[s]);
   5770 			}
   5771 			va += L1_SS_SIZE;
   5772 			pa += L1_SS_SIZE;
   5773 			resid -= L1_SS_SIZE;
   5774 			continue;
   5775 		}
   5776 #endif
   5777 		/* See if we can use a section mapping. */
   5778 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5779 #ifdef VERBOSE_INIT_ARM
   5780 			printf("S");
   5781 #endif
   5782 			pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5783 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5784 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5785 			PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
   5786 			va += L1_S_SIZE;
   5787 			pa += L1_S_SIZE;
   5788 			resid -= L1_S_SIZE;
   5789 			continue;
   5790 		}
   5791 
   5792 		/*
   5793 		 * Ok, we're going to use an L2 table.  Make sure
   5794 		 * one is actually in the corresponding L1 slot
   5795 		 * for the current VA.
   5796 		 */
   5797 		if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5798 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5799 
   5800 #ifndef ARM32_NEW_VM_LAYOUT
   5801 		pte = (pt_entry_t *)
   5802 		    kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
   5803 #else
   5804 		pte = (pt_entry_t *) kernel_pt_lookup(
   5805 		    pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
   5806 #endif
   5807 		if (pte == NULL)
   5808 			panic("pmap_map_chunk: can't find L2 table for VA"
   5809 			    "0x%08lx", va);
   5810 
   5811 		/* See if we can use a L2 large page mapping. */
   5812 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5813 #ifdef VERBOSE_INIT_ARM
   5814 			printf("L");
   5815 #endif
   5816 			for (i = 0; i < 16; i++) {
   5817 #ifndef ARM32_NEW_VM_LAYOUT
   5818 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5819 				    L2_L_PROTO | pa |
   5820 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5821 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5822 #else
   5823 				pte[l2pte_index(va) + i] =
   5824 				    L2_L_PROTO | pa |
   5825 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5826 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5827 #endif
   5828 			}
   5829 			va += L2_L_SIZE;
   5830 			pa += L2_L_SIZE;
   5831 			resid -= L2_L_SIZE;
   5832 			continue;
   5833 		}
   5834 
   5835 		/* Use a small page mapping. */
   5836 #ifdef VERBOSE_INIT_ARM
   5837 		printf("P");
   5838 #endif
   5839 #ifndef ARM32_NEW_VM_LAYOUT
   5840 		pte[(va >> PGSHIFT) & 0x3ff] =
   5841 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5842 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5843 #else
   5844 		pte[l2pte_index(va)] =
   5845 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5846 		PTE_SYNC(&pte[l2pte_index(va)]);
   5847 #endif
   5848 		va += PAGE_SIZE;
   5849 		pa += PAGE_SIZE;
   5850 		resid -= PAGE_SIZE;
   5851 	}
   5852 #ifdef VERBOSE_INIT_ARM
   5853 	printf("\n");
   5854 #endif
   5855 	return (size);
   5856 }
   5857 
   5858 /********************** Static device map routines ***************************/
   5859 
   5860 static const struct pmap_devmap *pmap_devmap_table;
   5861 
   5862 /*
   5863  * Register the devmap table.  This is provided in case early console
   5864  * initialization needs to register mappings created by bootstrap code
   5865  * before pmap_devmap_bootstrap() is called.
   5866  */
   5867 void
   5868 pmap_devmap_register(const struct pmap_devmap *table)
   5869 {
   5870 
   5871 	pmap_devmap_table = table;
   5872 }
   5873 
   5874 /*
   5875  * Map all of the static regions in the devmap table, and remember
   5876  * the devmap table so other parts of the kernel can look up entries
   5877  * later.
   5878  */
   5879 void
   5880 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5881 {
   5882 	int i;
   5883 
   5884 	pmap_devmap_table = table;
   5885 
   5886 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5887 #ifdef VERBOSE_INIT_ARM
   5888 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5889 		    pmap_devmap_table[i].pd_pa,
   5890 		    pmap_devmap_table[i].pd_pa +
   5891 			pmap_devmap_table[i].pd_size - 1,
   5892 		    pmap_devmap_table[i].pd_va);
   5893 #endif
   5894 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5895 		    pmap_devmap_table[i].pd_pa,
   5896 		    pmap_devmap_table[i].pd_size,
   5897 		    pmap_devmap_table[i].pd_prot,
   5898 		    pmap_devmap_table[i].pd_cache);
   5899 	}
   5900 }
   5901 
   5902 const struct pmap_devmap *
   5903 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5904 {
   5905 	uint64_t endpa;
   5906 	int i;
   5907 
   5908 	if (pmap_devmap_table == NULL)
   5909 		return (NULL);
   5910 
   5911 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5912 
   5913 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5914 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5915 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5916 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5917 			return (&pmap_devmap_table[i]);
   5918 	}
   5919 
   5920 	return (NULL);
   5921 }
   5922 
   5923 const struct pmap_devmap *
   5924 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5925 {
   5926 	int i;
   5927 
   5928 	if (pmap_devmap_table == NULL)
   5929 		return (NULL);
   5930 
   5931 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5932 		if (va >= pmap_devmap_table[i].pd_va &&
   5933 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5934 				     pmap_devmap_table[i].pd_size - 1)
   5935 			return (&pmap_devmap_table[i]);
   5936 	}
   5937 
   5938 	return (NULL);
   5939 }
   5940 
   5941 /********************** PTE initialization routines **************************/
   5942 
   5943 /*
   5944  * These routines are called when the CPU type is identified to set up
   5945  * the PTE prototypes, cache modes, etc.
   5946  *
   5947  * The variables are always here, just in case modules need to reference
   5948  * them (though, they shouldn't).
   5949  */
   5950 
   5951 pt_entry_t	pte_l1_s_cache_mode;
   5952 pt_entry_t	pte_l1_s_wc_mode;
   5953 pt_entry_t	pte_l1_s_cache_mode_pt;
   5954 pt_entry_t	pte_l1_s_cache_mask;
   5955 
   5956 pt_entry_t	pte_l2_l_cache_mode;
   5957 pt_entry_t	pte_l2_l_wc_mode;
   5958 pt_entry_t	pte_l2_l_cache_mode_pt;
   5959 pt_entry_t	pte_l2_l_cache_mask;
   5960 
   5961 pt_entry_t	pte_l2_s_cache_mode;
   5962 pt_entry_t	pte_l2_s_wc_mode;
   5963 pt_entry_t	pte_l2_s_cache_mode_pt;
   5964 pt_entry_t	pte_l2_s_cache_mask;
   5965 
   5966 pt_entry_t	pte_l1_s_prot_u;
   5967 pt_entry_t	pte_l1_s_prot_w;
   5968 pt_entry_t	pte_l1_s_prot_ro;
   5969 pt_entry_t	pte_l1_s_prot_mask;
   5970 
   5971 pt_entry_t	pte_l2_s_prot_u;
   5972 pt_entry_t	pte_l2_s_prot_w;
   5973 pt_entry_t	pte_l2_s_prot_ro;
   5974 pt_entry_t	pte_l2_s_prot_mask;
   5975 
   5976 pt_entry_t	pte_l2_l_prot_u;
   5977 pt_entry_t	pte_l2_l_prot_w;
   5978 pt_entry_t	pte_l2_l_prot_ro;
   5979 pt_entry_t	pte_l2_l_prot_mask;
   5980 
   5981 pt_entry_t	pte_l1_ss_proto;
   5982 pt_entry_t	pte_l1_s_proto;
   5983 pt_entry_t	pte_l1_c_proto;
   5984 pt_entry_t	pte_l2_s_proto;
   5985 
   5986 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   5987 void		(*pmap_zero_page_func)(paddr_t);
   5988 
   5989 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5990 void
   5991 pmap_pte_init_generic(void)
   5992 {
   5993 
   5994 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   5995 	pte_l1_s_wc_mode = L1_S_B;
   5996 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   5997 
   5998 	pte_l2_l_cache_mode = L2_B|L2_C;
   5999 	pte_l2_l_wc_mode = L2_B;
   6000 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6001 
   6002 	pte_l2_s_cache_mode = L2_B|L2_C;
   6003 	pte_l2_s_wc_mode = L2_B;
   6004 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6005 
   6006 	/*
   6007 	 * If we have a write-through cache, set B and C.  If
   6008 	 * we have a write-back cache, then we assume setting
   6009 	 * only C will make those pages write-through (except for those
   6010 	 * Cortex CPUs which can read the L1 caches).
   6011 	 */
   6012 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6013 #if ARM_MMU_V7 > 0
   6014 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6015 #endif
   6016 #if ARM_MMU_V6 > 0
   6017 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6018 #endif
   6019 	    || false) {
   6020 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6021 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6022 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6023 	} else {
   6024 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6025 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6026 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6027 	}
   6028 
   6029 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6030 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6031 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6032 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6033 
   6034 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6035 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6036 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6037 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6038 
   6039 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6040 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6041 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6042 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6043 
   6044 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6045 	pte_l1_s_proto = L1_S_PROTO_generic;
   6046 	pte_l1_c_proto = L1_C_PROTO_generic;
   6047 	pte_l2_s_proto = L2_S_PROTO_generic;
   6048 
   6049 	pmap_copy_page_func = pmap_copy_page_generic;
   6050 	pmap_zero_page_func = pmap_zero_page_generic;
   6051 }
   6052 
   6053 #if defined(CPU_ARM8)
   6054 void
   6055 pmap_pte_init_arm8(void)
   6056 {
   6057 
   6058 	/*
   6059 	 * ARM8 is compatible with generic, but we need to use
   6060 	 * the page tables uncached.
   6061 	 */
   6062 	pmap_pte_init_generic();
   6063 
   6064 	pte_l1_s_cache_mode_pt = 0;
   6065 	pte_l2_l_cache_mode_pt = 0;
   6066 	pte_l2_s_cache_mode_pt = 0;
   6067 }
   6068 #endif /* CPU_ARM8 */
   6069 
   6070 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6071 void
   6072 pmap_pte_init_arm9(void)
   6073 {
   6074 
   6075 	/*
   6076 	 * ARM9 is compatible with generic, but we want to use
   6077 	 * write-through caching for now.
   6078 	 */
   6079 	pmap_pte_init_generic();
   6080 
   6081 	pte_l1_s_cache_mode = L1_S_C;
   6082 	pte_l2_l_cache_mode = L2_C;
   6083 	pte_l2_s_cache_mode = L2_C;
   6084 
   6085 	pte_l1_s_wc_mode = L1_S_B;
   6086 	pte_l2_l_wc_mode = L2_B;
   6087 	pte_l2_s_wc_mode = L2_B;
   6088 
   6089 	pte_l1_s_cache_mode_pt = L1_S_C;
   6090 	pte_l2_l_cache_mode_pt = L2_C;
   6091 	pte_l2_s_cache_mode_pt = L2_C;
   6092 }
   6093 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6094 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6095 
   6096 #if defined(CPU_ARM10)
   6097 void
   6098 pmap_pte_init_arm10(void)
   6099 {
   6100 
   6101 	/*
   6102 	 * ARM10 is compatible with generic, but we want to use
   6103 	 * write-through caching for now.
   6104 	 */
   6105 	pmap_pte_init_generic();
   6106 
   6107 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6108 	pte_l2_l_cache_mode = L2_B | L2_C;
   6109 	pte_l2_s_cache_mode = L2_B | L2_C;
   6110 
   6111 	pte_l1_s_cache_mode = L1_S_B;
   6112 	pte_l2_l_cache_mode = L2_B;
   6113 	pte_l2_s_cache_mode = L2_B;
   6114 
   6115 	pte_l1_s_cache_mode_pt = L1_S_C;
   6116 	pte_l2_l_cache_mode_pt = L2_C;
   6117 	pte_l2_s_cache_mode_pt = L2_C;
   6118 
   6119 }
   6120 #endif /* CPU_ARM10 */
   6121 
   6122 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6123 void
   6124 pmap_pte_init_arm11(void)
   6125 {
   6126 
   6127 	/*
   6128 	 * ARM11 is compatible with generic, but we want to use
   6129 	 * write-through caching for now.
   6130 	 */
   6131 	pmap_pte_init_generic();
   6132 
   6133 	pte_l1_s_cache_mode = L1_S_C;
   6134 	pte_l2_l_cache_mode = L2_C;
   6135 	pte_l2_s_cache_mode = L2_C;
   6136 
   6137 	pte_l1_s_wc_mode = L1_S_B;
   6138 	pte_l2_l_wc_mode = L2_B;
   6139 	pte_l2_s_wc_mode = L2_B;
   6140 
   6141 	pte_l1_s_cache_mode_pt = L1_S_C;
   6142 	pte_l2_l_cache_mode_pt = L2_C;
   6143 	pte_l2_s_cache_mode_pt = L2_C;
   6144 }
   6145 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6146 
   6147 #if ARM_MMU_SA1 == 1
   6148 void
   6149 pmap_pte_init_sa1(void)
   6150 {
   6151 
   6152 	/*
   6153 	 * The StrongARM SA-1 cache does not have a write-through
   6154 	 * mode.  So, do the generic initialization, then reset
   6155 	 * the page table cache mode to B=1,C=1, and note that
   6156 	 * the PTEs need to be sync'd.
   6157 	 */
   6158 	pmap_pte_init_generic();
   6159 
   6160 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6161 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6162 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6163 
   6164 	pmap_needs_pte_sync = 1;
   6165 }
   6166 #endif /* ARM_MMU_SA1 == 1*/
   6167 
   6168 #if ARM_MMU_XSCALE == 1
   6169 #if (ARM_NMMUS > 1)
   6170 static u_int xscale_use_minidata;
   6171 #endif
   6172 
   6173 void
   6174 pmap_pte_init_xscale(void)
   6175 {
   6176 	uint32_t auxctl;
   6177 	int write_through = 0;
   6178 
   6179 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6180 	pte_l1_s_wc_mode = L1_S_B;
   6181 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6182 
   6183 	pte_l2_l_cache_mode = L2_B|L2_C;
   6184 	pte_l2_l_wc_mode = L2_B;
   6185 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6186 
   6187 	pte_l2_s_cache_mode = L2_B|L2_C;
   6188 	pte_l2_s_wc_mode = L2_B;
   6189 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6190 
   6191 	pte_l1_s_cache_mode_pt = L1_S_C;
   6192 	pte_l2_l_cache_mode_pt = L2_C;
   6193 	pte_l2_s_cache_mode_pt = L2_C;
   6194 
   6195 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6196 	/*
   6197 	 * The XScale core has an enhanced mode where writes that
   6198 	 * miss the cache cause a cache line to be allocated.  This
   6199 	 * is significantly faster than the traditional, write-through
   6200 	 * behavior of this case.
   6201 	 */
   6202 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6203 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6204 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6205 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6206 
   6207 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6208 	/*
   6209 	 * Some versions of the XScale core have various bugs in
   6210 	 * their cache units, the work-around for which is to run
   6211 	 * the cache in write-through mode.  Unfortunately, this
   6212 	 * has a major (negative) impact on performance.  So, we
   6213 	 * go ahead and run fast-and-loose, in the hopes that we
   6214 	 * don't line up the planets in a way that will trip the
   6215 	 * bugs.
   6216 	 *
   6217 	 * However, we give you the option to be slow-but-correct.
   6218 	 */
   6219 	write_through = 1;
   6220 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6221 	/* force write back cache mode */
   6222 	write_through = 0;
   6223 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6224 	/*
   6225 	 * Intel PXA2[15]0 processors are known to have a bug in
   6226 	 * write-back cache on revision 4 and earlier (stepping
   6227 	 * A[01] and B[012]).  Fixed for C0 and later.
   6228 	 */
   6229 	{
   6230 		uint32_t id, type;
   6231 
   6232 		id = cpufunc_id();
   6233 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6234 
   6235 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6236 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6237 				/* write through for stepping A0-1 and B0-2 */
   6238 				write_through = 1;
   6239 			}
   6240 		}
   6241 	}
   6242 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6243 
   6244 	if (write_through) {
   6245 		pte_l1_s_cache_mode = L1_S_C;
   6246 		pte_l2_l_cache_mode = L2_C;
   6247 		pte_l2_s_cache_mode = L2_C;
   6248 	}
   6249 
   6250 #if (ARM_NMMUS > 1)
   6251 	xscale_use_minidata = 1;
   6252 #endif
   6253 
   6254 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   6255 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   6256 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   6257 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   6258 
   6259 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6260 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6261 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   6262 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6263 
   6264 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   6265 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   6266 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   6267 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   6268 
   6269 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   6270 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6271 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6272 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6273 
   6274 	pmap_copy_page_func = pmap_copy_page_xscale;
   6275 	pmap_zero_page_func = pmap_zero_page_xscale;
   6276 
   6277 	/*
   6278 	 * Disable ECC protection of page table access, for now.
   6279 	 */
   6280 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6281 	auxctl &= ~XSCALE_AUXCTL_P;
   6282 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6283 }
   6284 
   6285 /*
   6286  * xscale_setup_minidata:
   6287  *
   6288  *	Set up the mini-data cache clean area.  We require the
   6289  *	caller to allocate the right amount of physically and
   6290  *	virtually contiguous space.
   6291  */
   6292 void
   6293 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6294 {
   6295 	extern vaddr_t xscale_minidata_clean_addr;
   6296 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6297 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6298 	pt_entry_t *pte;
   6299 	vsize_t size;
   6300 	uint32_t auxctl;
   6301 
   6302 	xscale_minidata_clean_addr = va;
   6303 
   6304 	/* Round it to page size. */
   6305 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6306 
   6307 	for (; size != 0;
   6308 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6309 #ifndef ARM32_NEW_VM_LAYOUT
   6310 		pte = (pt_entry_t *)
   6311 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6312 #else
   6313 		pte = (pt_entry_t *) kernel_pt_lookup(
   6314 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6315 #endif
   6316 		if (pte == NULL)
   6317 			panic("xscale_setup_minidata: can't find L2 table for "
   6318 			    "VA 0x%08lx", va);
   6319 #ifndef ARM32_NEW_VM_LAYOUT
   6320 		pte[(va >> PGSHIFT) & 0x3ff] =
   6321 #else
   6322 		pte[l2pte_index(va)] =
   6323 #endif
   6324 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6325 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6326 	}
   6327 
   6328 	/*
   6329 	 * Configure the mini-data cache for write-back with
   6330 	 * read/write-allocate.
   6331 	 *
   6332 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6333 	 * make sure it contains no valid data!  In order to do that,
   6334 	 * we must issue a global data cache invalidate command!
   6335 	 *
   6336 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6337 	 * THIS IS VERY IMPORTANT!
   6338 	 */
   6339 
   6340 	/* Invalidate data and mini-data. */
   6341 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6342 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6343 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6344 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6345 }
   6346 
   6347 /*
   6348  * Change the PTEs for the specified kernel mappings such that they
   6349  * will use the mini data cache instead of the main data cache.
   6350  */
   6351 void
   6352 pmap_uarea(vaddr_t va)
   6353 {
   6354 	struct l2_bucket *l2b;
   6355 	pt_entry_t *ptep, *sptep, pte;
   6356 	vaddr_t next_bucket, eva;
   6357 
   6358 #if (ARM_NMMUS > 1)
   6359 	if (xscale_use_minidata == 0)
   6360 		return;
   6361 #endif
   6362 
   6363 	eva = va + USPACE;
   6364 
   6365 	while (va < eva) {
   6366 		next_bucket = L2_NEXT_BUCKET(va);
   6367 		if (next_bucket > eva)
   6368 			next_bucket = eva;
   6369 
   6370 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6371 		KDASSERT(l2b != NULL);
   6372 
   6373 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6374 
   6375 		while (va < next_bucket) {
   6376 			pte = *ptep;
   6377 			if (!l2pte_minidata(pte)) {
   6378 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6379 				cpu_tlb_flushD_SE(va);
   6380 				*ptep = pte & ~L2_B;
   6381 			}
   6382 			ptep++;
   6383 			va += PAGE_SIZE;
   6384 		}
   6385 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6386 	}
   6387 	cpu_cpwait();
   6388 }
   6389 #endif /* ARM_MMU_XSCALE == 1 */
   6390 
   6391 
   6392 #if defined(CPU_ARM11MPCORE)
   6393 
   6394 void
   6395 pmap_pte_init_arm11mpcore(void)
   6396 {
   6397 
   6398 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   6399 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   6400 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   6401 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6402 	/* use extended small page (without APn, with TEX) */
   6403 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   6404 #else
   6405 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   6406 #endif
   6407 
   6408 	/* write-back, write-allocate */
   6409 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6410 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6411 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6412 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6413 #else
   6414 	/* no TEX. read-allocate */
   6415 	pte_l2_s_cache_mode = L2_C | L2_B;
   6416 #endif
   6417 	/*
   6418 	 * write-back, write-allocate for page tables.
   6419 	 */
   6420 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6421 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6422 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6423 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6424 #else
   6425 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   6426 #endif
   6427 
   6428 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   6429 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   6430 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   6431 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   6432 
   6433 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6434 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   6435 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   6436 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   6437 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   6438 
   6439 #else
   6440 	/* with AP[0..3] */
   6441 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6442 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6443 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6444 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6445 #endif
   6446 
   6447 #ifdef	ARM11MPCORE_COMPAT_MMU
   6448 	/* with AP[0..3] */
   6449 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6450 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6451 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6452 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6453 
   6454 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6455 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6456 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6457 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   6458 #else
   6459 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   6460 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   6461 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   6462 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   6463 
   6464 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6465 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6466 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6467 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   6468 #endif
   6469 
   6470 	pmap_copy_page_func = pmap_copy_page_generic;
   6471 	pmap_zero_page_func = pmap_zero_page_generic;
   6472 	pmap_needs_pte_sync = 1;
   6473 }
   6474 #endif	/* CPU_ARM11MPCORE */
   6475 
   6476 
   6477 #if ARM_MMU_V7 == 1
   6478 void
   6479 pmap_pte_init_armv7(void)
   6480 {
   6481 	/*
   6482 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   6483 	 * AP field is zero, that now means "no access" rather than
   6484 	 * read-only. The prototypes are a little different because of
   6485 	 * the XN bit.
   6486 	 */
   6487 	pmap_pte_init_generic();
   6488 
   6489 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   6490 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   6491 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   6492 
   6493 	if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
   6494 		/*
   6495 		 * write-back, no write-allocate, shareable for normal pages.
   6496 		 */
   6497 		pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
   6498 		pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
   6499 		pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
   6500 
   6501 		/*
   6502 		 * write-back, no write-allocate, shareable for page tables.
   6503 		 */
   6504 		pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
   6505 		pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6506 		pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6507 	}
   6508 
   6509 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   6510 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   6511 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   6512 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   6513 
   6514 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   6515 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   6516 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   6517 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   6518 
   6519 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   6520 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   6521 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   6522 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   6523 
   6524 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   6525 	pte_l1_s_proto = L1_S_PROTO_armv7;
   6526 	pte_l1_c_proto = L1_C_PROTO_armv7;
   6527 	pte_l2_s_proto = L2_S_PROTO_armv7;
   6528 
   6529 	pmap_needs_pte_sync = 1;
   6530 }
   6531 #endif /* ARM_MMU_V7 */
   6532 
   6533 /*
   6534  * return the PA of the current L1 table, for use when handling a crash dump
   6535  */
   6536 uint32_t pmap_kernel_L1_addr(void)
   6537 {
   6538 	return pmap_kernel()->pm_l1->l1_physaddr;
   6539 }
   6540 
   6541 #if defined(DDB)
   6542 /*
   6543  * A couple of ddb-callable functions for dumping pmaps
   6544  */
   6545 void pmap_dump_all(void);
   6546 void pmap_dump(pmap_t);
   6547 
   6548 void
   6549 pmap_dump_all(void)
   6550 {
   6551 	pmap_t pm;
   6552 
   6553 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6554 		if (pm == pmap_kernel())
   6555 			continue;
   6556 		pmap_dump(pm);
   6557 		printf("\n");
   6558 	}
   6559 }
   6560 
   6561 static pt_entry_t ncptes[64];
   6562 static void pmap_dump_ncpg(pmap_t);
   6563 
   6564 void
   6565 pmap_dump(pmap_t pm)
   6566 {
   6567 	struct l2_dtable *l2;
   6568 	struct l2_bucket *l2b;
   6569 	pt_entry_t *ptep, pte;
   6570 	vaddr_t l2_va, l2b_va, va;
   6571 	int i, j, k, occ, rows = 0;
   6572 
   6573 	if (pm == pmap_kernel())
   6574 		printf("pmap_kernel (%p): ", pm);
   6575 	else
   6576 		printf("user pmap (%p): ", pm);
   6577 
   6578 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6579 
   6580 	l2_va = 0;
   6581 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6582 		l2 = pm->pm_l2[i];
   6583 
   6584 		if (l2 == NULL || l2->l2_occupancy == 0)
   6585 			continue;
   6586 
   6587 		l2b_va = l2_va;
   6588 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6589 			l2b = &l2->l2_bucket[j];
   6590 
   6591 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6592 				continue;
   6593 
   6594 			ptep = l2b->l2b_kva;
   6595 
   6596 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6597 				;
   6598 
   6599 			k &= ~63;
   6600 			occ = l2b->l2b_occupancy;
   6601 			va = l2b_va + (k * 4096);
   6602 			for (; k < 256; k++, va += 0x1000) {
   6603 				char ch = ' ';
   6604 				if ((k % 64) == 0) {
   6605 					if ((rows % 8) == 0) {
   6606 						printf(
   6607 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6608 					}
   6609 					printf("%08lx: ", va);
   6610 				}
   6611 
   6612 				ncptes[k & 63] = 0;
   6613 				pte = ptep[k];
   6614 				if (pte == 0) {
   6615 					ch = '.';
   6616 				} else {
   6617 					occ--;
   6618 					switch (pte & 0x0c) {
   6619 					case 0x00:
   6620 						ch = 'D'; /* No cache No buff */
   6621 						break;
   6622 					case 0x04:
   6623 						ch = 'B'; /* No cache buff */
   6624 						break;
   6625 					case 0x08:
   6626 						if (pte & 0x40)
   6627 							ch = 'm';
   6628 						else
   6629 						   ch = 'C'; /* Cache No buff */
   6630 						break;
   6631 					case 0x0c:
   6632 						ch = 'F'; /* Cache Buff */
   6633 						break;
   6634 					}
   6635 
   6636 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6637 						ch += 0x20;
   6638 
   6639 					if ((pte & 0xc) == 0)
   6640 						ncptes[k & 63] = pte;
   6641 				}
   6642 
   6643 				if ((k % 64) == 63) {
   6644 					rows++;
   6645 					printf("%c\n", ch);
   6646 					pmap_dump_ncpg(pm);
   6647 					if (occ == 0)
   6648 						break;
   6649 				} else
   6650 					printf("%c", ch);
   6651 			}
   6652 		}
   6653 	}
   6654 }
   6655 
   6656 static void
   6657 pmap_dump_ncpg(pmap_t pm)
   6658 {
   6659 	struct vm_page *pg;
   6660 	struct vm_page_md *md;
   6661 	struct pv_entry *pv;
   6662 	int i;
   6663 
   6664 	for (i = 0; i < 63; i++) {
   6665 		if (ncptes[i] == 0)
   6666 			continue;
   6667 
   6668 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6669 		if (pg == NULL)
   6670 			continue;
   6671 		md = VM_PAGE_TO_MD(pg);
   6672 
   6673 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6674 		    VM_PAGE_TO_PHYS(pg),
   6675 		    md->krw_mappings, md->kro_mappings,
   6676 		    md->urw_mappings, md->uro_mappings);
   6677 
   6678 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   6679 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6680 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6681 			    pv->pv_va, pv->pv_flags);
   6682 		}
   6683 	}
   6684 }
   6685 #endif
   6686 
   6687 #ifdef PMAP_STEAL_MEMORY
   6688 void
   6689 pmap_boot_pageadd(pv_addr_t *newpv)
   6690 {
   6691 	pv_addr_t *pv, *npv;
   6692 
   6693 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6694 		if (newpv->pv_pa < pv->pv_va) {
   6695 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6696 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6697 				newpv->pv_size += pv->pv_size;
   6698 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6699 			}
   6700 			pv = NULL;
   6701 		} else {
   6702 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6703 			     pv = npv) {
   6704 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6705 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6706 				if (newpv->pv_pa > npv->pv_pa)
   6707 					continue;
   6708 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6709 					pv->pv_size += newpv->pv_size;
   6710 					return;
   6711 				}
   6712 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6713 					break;
   6714 				newpv->pv_size += npv->pv_size;
   6715 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6716 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6717 				return;
   6718 			}
   6719 		}
   6720 	}
   6721 
   6722 	if (pv) {
   6723 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6724 	} else {
   6725 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6726 	}
   6727 }
   6728 
   6729 void
   6730 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6731 	pv_addr_t *rpv)
   6732 {
   6733 	pv_addr_t *pv, **pvp;
   6734 	struct vm_physseg *ps;
   6735 	size_t i;
   6736 
   6737 	KASSERT(amount & PGOFSET);
   6738 	KASSERT((mask & PGOFSET) == 0);
   6739 	KASSERT((match & PGOFSET) == 0);
   6740 	KASSERT(amount != 0);
   6741 
   6742 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6743 	     (pv = *pvp) != NULL;
   6744 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6745 		pv_addr_t *newpv;
   6746 		psize_t off;
   6747 		/*
   6748 		 * If this entry is too small to satify the request...
   6749 		 */
   6750 		KASSERT(pv->pv_size > 0);
   6751 		if (pv->pv_size < amount)
   6752 			continue;
   6753 
   6754 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6755 			if (((pv->pv_pa + off) & mask) == match
   6756 			    && off + amount <= pv->pv_size)
   6757 				break;
   6758 		}
   6759 		if (off > mask)
   6760 			continue;
   6761 
   6762 		rpv->pv_va = pv->pv_va + off;
   6763 		rpv->pv_pa = pv->pv_pa + off;
   6764 		rpv->pv_size = amount;
   6765 		pv->pv_size -= amount;
   6766 		if (pv->pv_size == 0) {
   6767 			KASSERT(off == 0);
   6768 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6769 			*pvp = SLIST_NEXT(pv, pv_list);
   6770 		} else if (off == 0) {
   6771 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6772 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6773 			*newpv = *pv;
   6774 			newpv->pv_pa += amount;
   6775 			newpv->pv_va += amount;
   6776 			*pvp = newpv;
   6777 		} else if (off < pv->pv_size) {
   6778 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6779 			*newpv = *pv;
   6780 			newpv->pv_size -= off;
   6781 			newpv->pv_pa += off + amount;
   6782 			newpv->pv_va += off + amount;
   6783 
   6784 			SLIST_NEXT(pv, pv_list) = newpv;
   6785 			pv->pv_size = off;
   6786 		} else {
   6787 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6788 		}
   6789 		memset((void *)rpv->pv_va, 0, amount);
   6790 		return;
   6791 	}
   6792 
   6793 	if (vm_nphysseg == 0)
   6794 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6795 
   6796 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6797 	     (pv = *pvp) != NULL;
   6798 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6799 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6800 			break;
   6801 	}
   6802 	KASSERT(mask == 0);
   6803 	for (i = 0; i < vm_nphysseg; i++) {
   6804 		ps = VM_PHYSMEM_PTR(i);
   6805 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6806 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6807 			rpv->pv_va = pv->pv_va;
   6808 			rpv->pv_pa = pv->pv_pa;
   6809 			rpv->pv_size = amount;
   6810 			*pvp = NULL;
   6811 			pmap_map_chunk(kernel_l1pt.pv_va,
   6812 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6813 			     ptoa(ps->avail_start),
   6814 			     amount - pv->pv_size,
   6815 			     VM_PROT_READ|VM_PROT_WRITE,
   6816 			     PTE_CACHE);
   6817 			ps->avail_start += atop(amount - pv->pv_size);
   6818 			/*
   6819 			 * If we consumed the entire physseg, remove it.
   6820 			 */
   6821 			if (ps->avail_start == ps->avail_end) {
   6822 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   6823 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   6824 			}
   6825 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6826 			return;
   6827 		}
   6828 	}
   6829 
   6830 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6831 }
   6832 
   6833 vaddr_t
   6834 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6835 {
   6836 	pv_addr_t pv;
   6837 
   6838 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6839 
   6840 	return pv.pv_va;
   6841 }
   6842 #endif /* PMAP_STEAL_MEMORY */
   6843 
   6844 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6845 {
   6846 	sysctl_createv(clog, 0, NULL, NULL,
   6847 			CTLFLAG_PERMANENT,
   6848 			CTLTYPE_NODE, "machdep", NULL,
   6849 			NULL, 0, NULL, 0,
   6850 			CTL_MACHDEP, CTL_EOL);
   6851 
   6852 	sysctl_createv(clog, 0, NULL, NULL,
   6853 			CTLFLAG_PERMANENT,
   6854 			CTLTYPE_INT, "kmpages",
   6855 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6856 			NULL, 0, &pmap_kmpages, 0,
   6857 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6858 }
   6859 
   6860 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   6861 struct vm_page *
   6862 arm_pmap_alloc_poolpage(int flags)
   6863 {
   6864 	/*
   6865 	 * On some systems, only some pages may be "coherent" for dma and we
   6866 	 * want to use those for pool pages (think mbufs).
   6867 	 */
   6868 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT)
   6869 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   6870 		    UVM_PGA_STRAT_ONLY, arm_poolpage_vmfreelist);
   6871 
   6872 	return uvm_pagealloc(NULL, 0, NULL, flags);
   6873 }
   6874 #endif
   6875