pmap.c revision 1.243 1 /* $NetBSD: pmap.c,v 1.243 2012/12/10 06:54:23 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <sys/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/cpuconf.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.243 2012/12/10 06:54:23 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
261 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
262 #endif
263
264 /*
265 * Which pmap is currently 'live' in the cache
266 *
267 * XXXSCW: Fix for SMP ...
268 */
269 static pmap_t pmap_recent_user;
270
271 /*
272 * Pointer to last active lwp, or NULL if it exited.
273 */
274 struct lwp *pmap_previous_active_lwp;
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #ifdef PMAP_CACHE_VIPT
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 #ifdef PMAP_CACHE_VIPT
393 static struct evcnt pmap_ev_exec_mappings =
394 PMAP_EVCNT_INITIALIZER("exec pages mapped");
395 static struct evcnt pmap_ev_exec_cached =
396 PMAP_EVCNT_INITIALIZER("exec pages cached");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
400
401 static struct evcnt pmap_ev_exec_synced =
402 PMAP_EVCNT_INITIALIZER("exec pages synced");
403 static struct evcnt pmap_ev_exec_synced_map =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
405 static struct evcnt pmap_ev_exec_synced_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
407 static struct evcnt pmap_ev_exec_synced_remap =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
409 static struct evcnt pmap_ev_exec_synced_clearbit =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
411 static struct evcnt pmap_ev_exec_synced_kremove =
412 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
413
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
420
421 static struct evcnt pmap_ev_exec_discarded_unmap =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
423 static struct evcnt pmap_ev_exec_discarded_zero =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
425 static struct evcnt pmap_ev_exec_discarded_copy =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
427 static struct evcnt pmap_ev_exec_discarded_page_protect =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
429 static struct evcnt pmap_ev_exec_discarded_clearbit =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
431 static struct evcnt pmap_ev_exec_discarded_kremove =
432 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
433
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 /*
456 * pmap copy/zero page, and mem(5) hook point
457 */
458 static pt_entry_t *csrc_pte, *cdst_pte;
459 static vaddr_t csrcp, cdstp;
460 vaddr_t memhook; /* used by mem.c */
461 kmutex_t memlock; /* used by mem.c */
462 void *zeropage; /* used by mem.c */
463 extern void *msgbufaddr;
464 int pmap_kmpages;
465 /*
466 * Flag to indicate if pmap_init() has done its thing
467 */
468 bool pmap_initialized;
469
470 /*
471 * Misc. locking data structures
472 */
473
474 #define pmap_acquire_pmap_lock(pm) \
475 do { \
476 if ((pm) != pmap_kernel()) \
477 mutex_enter((pm)->pm_lock); \
478 } while (/*CONSTCOND*/0)
479
480 #define pmap_release_pmap_lock(pm) \
481 do { \
482 if ((pm) != pmap_kernel()) \
483 mutex_exit((pm)->pm_lock); \
484 } while (/*CONSTCOND*/0)
485
486
487 /*
488 * Metadata for L1 translation tables.
489 */
490 struct l1_ttable {
491 /* Entry on the L1 Table list */
492 SLIST_ENTRY(l1_ttable) l1_link;
493
494 /* Entry on the L1 Least Recently Used list */
495 TAILQ_ENTRY(l1_ttable) l1_lru;
496
497 /* Track how many domains are allocated from this L1 */
498 volatile u_int l1_domain_use_count;
499
500 /*
501 * A free-list of domain numbers for this L1.
502 * We avoid using ffs() and a bitmap to track domains since ffs()
503 * is slow on ARM.
504 */
505 uint8_t l1_domain_first;
506 uint8_t l1_domain_free[PMAP_DOMAINS];
507
508 /* Physical address of this L1 page table */
509 paddr_t l1_physaddr;
510
511 /* KVA of this L1 page table */
512 pd_entry_t *l1_kva;
513 };
514
515 /*
516 * Convert a virtual address into its L1 table index. That is, the
517 * index used to locate the L2 descriptor table pointer in an L1 table.
518 * This is basically used to index l1->l1_kva[].
519 *
520 * Each L2 descriptor table represents 1MB of VA space.
521 */
522 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
523
524 /*
525 * L1 Page Tables are tracked using a Least Recently Used list.
526 * - New L1s are allocated from the HEAD.
527 * - Freed L1s are added to the TAIl.
528 * - Recently accessed L1s (where an 'access' is some change to one of
529 * the userland pmaps which owns this L1) are moved to the TAIL.
530 */
531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
532 static kmutex_t l1_lru_lock __cacheline_aligned;
533
534 /*
535 * A list of all L1 tables
536 */
537 static SLIST_HEAD(, l1_ttable) l1_list;
538
539 /*
540 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
541 *
542 * This is normally 16MB worth L2 page descriptors for any given pmap.
543 * Reference counts are maintained for L2 descriptors so they can be
544 * freed when empty.
545 */
546 struct l2_dtable {
547 /* The number of L2 page descriptors allocated to this l2_dtable */
548 u_int l2_occupancy;
549
550 /* List of L2 page descriptors */
551 struct l2_bucket {
552 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
553 paddr_t l2b_phys; /* Physical address of same */
554 u_short l2b_l1idx; /* This L2 table's L1 index */
555 u_short l2b_occupancy; /* How many active descriptors */
556 } l2_bucket[L2_BUCKET_SIZE];
557 };
558
559 /*
560 * Given an L1 table index, calculate the corresponding l2_dtable index
561 * and bucket index within the l2_dtable.
562 */
563 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
564 (L2_SIZE - 1))
565 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
566
567 /*
568 * Given a virtual address, this macro returns the
569 * virtual address required to drop into the next L2 bucket.
570 */
571 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
572
573 /*
574 * L2 allocation.
575 */
576 #define pmap_alloc_l2_dtable() \
577 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
578 #define pmap_free_l2_dtable(l2) \
579 pool_cache_put(&pmap_l2dtable_cache, (l2))
580 #define pmap_alloc_l2_ptp(pap) \
581 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
582 PR_NOWAIT, (pap)))
583
584 /*
585 * We try to map the page tables write-through, if possible. However, not
586 * all CPUs have a write-through cache mode, so on those we have to sync
587 * the cache when we frob page tables.
588 *
589 * We try to evaluate this at compile time, if possible. However, it's
590 * not always possible to do that, hence this run-time var.
591 */
592 int pmap_needs_pte_sync;
593
594 /*
595 * Real definition of pv_entry.
596 */
597 struct pv_entry {
598 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
599 pmap_t pv_pmap; /* pmap where mapping lies */
600 vaddr_t pv_va; /* virtual address for mapping */
601 u_int pv_flags; /* flags */
602 };
603
604 /*
605 * Macro to determine if a mapping might be resident in the
606 * instruction cache and/or TLB
607 */
608 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
609 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
610
611 /*
612 * Macro to determine if a mapping might be resident in the
613 * data cache and/or TLB
614 */
615 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
616
617 /*
618 * Local prototypes
619 */
620 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
621 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
622 pt_entry_t **);
623 static bool pmap_is_current(pmap_t);
624 static bool pmap_is_cached(pmap_t);
625 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
626 pmap_t, vaddr_t, u_int);
627 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
628 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
629 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
630 u_int, u_int);
631
632 static void pmap_pinit(pmap_t);
633 static int pmap_pmap_ctor(void *, void *, int);
634
635 static void pmap_alloc_l1(pmap_t);
636 static void pmap_free_l1(pmap_t);
637 static void pmap_use_l1(pmap_t);
638
639 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
640 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
641 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
642 static int pmap_l2ptp_ctor(void *, void *, int);
643 static int pmap_l2dtable_ctor(void *, void *, int);
644
645 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
646 #ifdef PMAP_CACHE_VIVT
647 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
648 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
649 #endif
650
651 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
652 #ifdef PMAP_CACHE_VIVT
653 static int pmap_clean_page(struct pv_entry *, bool);
654 #endif
655 #ifdef PMAP_CACHE_VIPT
656 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
657 enum pmap_flush_op {
658 PMAP_FLUSH_PRIMARY,
659 PMAP_FLUSH_SECONDARY,
660 PMAP_CLEAN_PRIMARY
661 };
662 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
663 #endif
664 static void pmap_page_remove(struct vm_page_md *, paddr_t);
665
666 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
667 static vaddr_t kernel_pt_lookup(paddr_t);
668
669
670 /*
671 * External function prototypes
672 */
673 extern void bzero_page(vaddr_t);
674 extern void bcopy_page(vaddr_t, vaddr_t);
675
676 /*
677 * Misc variables
678 */
679 vaddr_t virtual_avail;
680 vaddr_t virtual_end;
681 vaddr_t pmap_curmaxkvaddr;
682
683 paddr_t avail_start;
684 paddr_t avail_end;
685
686 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
687 pv_addr_t kernelpages;
688 pv_addr_t kernel_l1pt;
689 pv_addr_t systempage;
690
691 /* Function to set the debug level of the pmap code */
692
693 #ifdef PMAP_DEBUG
694 void
695 pmap_debug(int level)
696 {
697 pmap_debug_level = level;
698 printf("pmap_debug: level=%d\n", pmap_debug_level);
699 }
700 #endif /* PMAP_DEBUG */
701
702 /*
703 * A bunch of routines to conditionally flush the caches/TLB depending
704 * on whether the specified pmap actually needs to be flushed at any
705 * given time.
706 */
707 static inline void
708 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
709 {
710
711 if (pm->pm_cstate.cs_tlb_id)
712 cpu_tlb_flushID_SE(va);
713 }
714
715 static inline void
716 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
717 {
718
719 if (pm->pm_cstate.cs_tlb_d)
720 cpu_tlb_flushD_SE(va);
721 }
722
723 static inline void
724 pmap_tlb_flushID(pmap_t pm)
725 {
726
727 if (pm->pm_cstate.cs_tlb_id) {
728 cpu_tlb_flushID();
729 pm->pm_cstate.cs_tlb = 0;
730 }
731 }
732
733 static inline void
734 pmap_tlb_flushD(pmap_t pm)
735 {
736
737 if (pm->pm_cstate.cs_tlb_d) {
738 cpu_tlb_flushD();
739 pm->pm_cstate.cs_tlb_d = 0;
740 }
741 }
742
743 #ifdef PMAP_CACHE_VIVT
744 static inline void
745 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
746 {
747 if (pm->pm_cstate.cs_cache_id) {
748 cpu_idcache_wbinv_range(va, len);
749 }
750 }
751
752 static inline void
753 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
754 bool do_inv, bool rd_only)
755 {
756
757 if (pm->pm_cstate.cs_cache_d) {
758 if (do_inv) {
759 if (rd_only)
760 cpu_dcache_inv_range(va, len);
761 else
762 cpu_dcache_wbinv_range(va, len);
763 } else
764 if (!rd_only)
765 cpu_dcache_wb_range(va, len);
766 }
767 }
768
769 static inline void
770 pmap_idcache_wbinv_all(pmap_t pm)
771 {
772 if (pm->pm_cstate.cs_cache_id) {
773 cpu_idcache_wbinv_all();
774 pm->pm_cstate.cs_cache = 0;
775 }
776 }
777
778 static inline void
779 pmap_dcache_wbinv_all(pmap_t pm)
780 {
781 if (pm->pm_cstate.cs_cache_d) {
782 cpu_dcache_wbinv_all();
783 pm->pm_cstate.cs_cache_d = 0;
784 }
785 }
786 #endif /* PMAP_CACHE_VIVT */
787
788 static inline bool
789 pmap_is_current(pmap_t pm)
790 {
791
792 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
793 return true;
794
795 return false;
796 }
797
798 static inline bool
799 pmap_is_cached(pmap_t pm)
800 {
801
802 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
803 pmap_recent_user == pm)
804 return (true);
805
806 return false;
807 }
808
809 /*
810 * PTE_SYNC_CURRENT:
811 *
812 * Make sure the pte is written out to RAM.
813 * We need to do this for one of two cases:
814 * - We're dealing with the kernel pmap
815 * - There is no pmap active in the cache/tlb.
816 * - The specified pmap is 'active' in the cache/tlb.
817 */
818 #ifdef PMAP_INCLUDE_PTE_SYNC
819 #define PTE_SYNC_CURRENT(pm, ptep) \
820 do { \
821 if (PMAP_NEEDS_PTE_SYNC && \
822 pmap_is_cached(pm)) \
823 PTE_SYNC(ptep); \
824 } while (/*CONSTCOND*/0)
825 #else
826 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
827 #endif
828
829 /*
830 * main pv_entry manipulation functions:
831 * pmap_enter_pv: enter a mapping onto a vm_page list
832 * pmap_remove_pv: remove a mappiing from a vm_page list
833 *
834 * NOTE: pmap_enter_pv expects to lock the pvh itself
835 * pmap_remove_pv expects te caller to lock the pvh before calling
836 */
837
838 /*
839 * pmap_enter_pv: enter a mapping onto a vm_page lst
840 *
841 * => caller should hold the proper lock on pmap_main_lock
842 * => caller should have pmap locked
843 * => we will gain the lock on the vm_page and allocate the new pv_entry
844 * => caller should adjust ptp's wire_count before calling
845 * => caller should not adjust pmap's wire_count
846 */
847 static void
848 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
849 vaddr_t va, u_int flags)
850 {
851 struct pv_entry **pvp;
852
853 NPDEBUG(PDB_PVDUMP,
854 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
855
856 pv->pv_pmap = pm;
857 pv->pv_va = va;
858 pv->pv_flags = flags;
859
860 pvp = &SLIST_FIRST(&md->pvh_list);
861 #ifdef PMAP_CACHE_VIPT
862 /*
863 * Insert unmanaged entries, writeable first, at the head of
864 * the pv list.
865 */
866 if (__predict_true((flags & PVF_KENTRY) == 0)) {
867 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
868 pvp = &SLIST_NEXT(*pvp, pv_link);
869 } else if ((flags & PVF_WRITE) == 0) {
870 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
871 pvp = &SLIST_NEXT(*pvp, pv_link);
872 }
873 #endif
874 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
875 *pvp = pv; /* ... locked list */
876 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
877 #ifdef PMAP_CACHE_VIPT
878 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
879 md->pvh_attrs |= PVF_KMOD;
880 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
881 md->pvh_attrs |= PVF_DIRTY;
882 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
883 #endif
884 if (pm == pmap_kernel()) {
885 PMAPCOUNT(kernel_mappings);
886 if (flags & PVF_WRITE)
887 md->krw_mappings++;
888 else
889 md->kro_mappings++;
890 } else {
891 if (flags & PVF_WRITE)
892 md->urw_mappings++;
893 else
894 md->uro_mappings++;
895 }
896
897 #ifdef PMAP_CACHE_VIPT
898 /*
899 * If this is an exec mapping and its the first exec mapping
900 * for this page, make sure to sync the I-cache.
901 */
902 if (PV_IS_EXEC_P(flags)) {
903 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
904 pmap_syncicache_page(md, pa);
905 PMAPCOUNT(exec_synced_map);
906 }
907 PMAPCOUNT(exec_mappings);
908 }
909 #endif
910
911 PMAPCOUNT(mappings);
912
913 if (pv->pv_flags & PVF_WIRED)
914 ++pm->pm_stats.wired_count;
915 }
916
917 /*
918 *
919 * pmap_find_pv: Find a pv entry
920 *
921 * => caller should hold lock on vm_page
922 */
923 static inline struct pv_entry *
924 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
925 {
926 struct pv_entry *pv;
927
928 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
929 if (pm == pv->pv_pmap && va == pv->pv_va)
930 break;
931 }
932
933 return (pv);
934 }
935
936 /*
937 * pmap_remove_pv: try to remove a mapping from a pv_list
938 *
939 * => caller should hold proper lock on pmap_main_lock
940 * => pmap should be locked
941 * => caller should hold lock on vm_page [so that attrs can be adjusted]
942 * => caller should adjust ptp's wire_count and free PTP if needed
943 * => caller should NOT adjust pmap's wire_count
944 * => we return the removed pv
945 */
946 static struct pv_entry *
947 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
948 {
949 struct pv_entry *pv, **prevptr;
950
951 NPDEBUG(PDB_PVDUMP,
952 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
953
954 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
955 pv = *prevptr;
956
957 while (pv) {
958 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
959 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
960 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
961 if (pv->pv_flags & PVF_WIRED) {
962 --pm->pm_stats.wired_count;
963 }
964 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
965 if (pm == pmap_kernel()) {
966 PMAPCOUNT(kernel_unmappings);
967 if (pv->pv_flags & PVF_WRITE)
968 md->krw_mappings--;
969 else
970 md->kro_mappings--;
971 } else {
972 if (pv->pv_flags & PVF_WRITE)
973 md->urw_mappings--;
974 else
975 md->uro_mappings--;
976 }
977
978 PMAPCOUNT(unmappings);
979 #ifdef PMAP_CACHE_VIPT
980 if (!(pv->pv_flags & PVF_WRITE))
981 break;
982 /*
983 * If this page has had an exec mapping, then if
984 * this was the last mapping, discard the contents,
985 * otherwise sync the i-cache for this page.
986 */
987 if (PV_IS_EXEC_P(md->pvh_attrs)) {
988 if (SLIST_EMPTY(&md->pvh_list)) {
989 md->pvh_attrs &= ~PVF_EXEC;
990 PMAPCOUNT(exec_discarded_unmap);
991 } else {
992 pmap_syncicache_page(md, pa);
993 PMAPCOUNT(exec_synced_unmap);
994 }
995 }
996 #endif /* PMAP_CACHE_VIPT */
997 break;
998 }
999 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1000 pv = *prevptr; /* advance */
1001 }
1002
1003 #ifdef PMAP_CACHE_VIPT
1004 /*
1005 * If we no longer have a WRITEABLE KENTRY at the head of list,
1006 * clear the KMOD attribute from the page.
1007 */
1008 if (SLIST_FIRST(&md->pvh_list) == NULL
1009 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1010 md->pvh_attrs &= ~PVF_KMOD;
1011
1012 /*
1013 * If this was a writeable page and there are no more writeable
1014 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1015 * the contents to memory.
1016 */
1017 if (md->krw_mappings + md->urw_mappings == 0)
1018 md->pvh_attrs &= ~PVF_WRITE;
1019 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1020 #endif /* PMAP_CACHE_VIPT */
1021
1022 return(pv); /* return removed pv */
1023 }
1024
1025 /*
1026 *
1027 * pmap_modify_pv: Update pv flags
1028 *
1029 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1030 * => caller should NOT adjust pmap's wire_count
1031 * => caller must call pmap_vac_me_harder() if writable status of a page
1032 * may have changed.
1033 * => we return the old flags
1034 *
1035 * Modify a physical-virtual mapping in the pv table
1036 */
1037 static u_int
1038 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1039 u_int clr_mask, u_int set_mask)
1040 {
1041 struct pv_entry *npv;
1042 u_int flags, oflags;
1043
1044 KASSERT((clr_mask & PVF_KENTRY) == 0);
1045 KASSERT((set_mask & PVF_KENTRY) == 0);
1046
1047 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1048 return (0);
1049
1050 NPDEBUG(PDB_PVDUMP,
1051 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1052
1053 /*
1054 * There is at least one VA mapping this page.
1055 */
1056
1057 if (clr_mask & (PVF_REF | PVF_MOD)) {
1058 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1059 #ifdef PMAP_CACHE_VIPT
1060 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1061 md->pvh_attrs |= PVF_DIRTY;
1062 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1063 #endif
1064 }
1065
1066 oflags = npv->pv_flags;
1067 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1068
1069 if ((flags ^ oflags) & PVF_WIRED) {
1070 if (flags & PVF_WIRED)
1071 ++pm->pm_stats.wired_count;
1072 else
1073 --pm->pm_stats.wired_count;
1074 }
1075
1076 if ((flags ^ oflags) & PVF_WRITE) {
1077 if (pm == pmap_kernel()) {
1078 if (flags & PVF_WRITE) {
1079 md->krw_mappings++;
1080 md->kro_mappings--;
1081 } else {
1082 md->kro_mappings++;
1083 md->krw_mappings--;
1084 }
1085 } else {
1086 if (flags & PVF_WRITE) {
1087 md->urw_mappings++;
1088 md->uro_mappings--;
1089 } else {
1090 md->uro_mappings++;
1091 md->urw_mappings--;
1092 }
1093 }
1094 }
1095 #ifdef PMAP_CACHE_VIPT
1096 if (md->urw_mappings + md->krw_mappings == 0)
1097 md->pvh_attrs &= ~PVF_WRITE;
1098 /*
1099 * We have two cases here: the first is from enter_pv (new exec
1100 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1101 * Since in latter, pmap_enter_pv won't do anything, we just have
1102 * to do what pmap_remove_pv would do.
1103 */
1104 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1105 || (PV_IS_EXEC_P(md->pvh_attrs)
1106 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1107 pmap_syncicache_page(md, pa);
1108 PMAPCOUNT(exec_synced_remap);
1109 }
1110 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1111 #endif
1112
1113 PMAPCOUNT(remappings);
1114
1115 return (oflags);
1116 }
1117
1118 /*
1119 * Allocate an L1 translation table for the specified pmap.
1120 * This is called at pmap creation time.
1121 */
1122 static void
1123 pmap_alloc_l1(pmap_t pm)
1124 {
1125 struct l1_ttable *l1;
1126 uint8_t domain;
1127
1128 /*
1129 * Remove the L1 at the head of the LRU list
1130 */
1131 mutex_spin_enter(&l1_lru_lock);
1132 l1 = TAILQ_FIRST(&l1_lru_list);
1133 KDASSERT(l1 != NULL);
1134 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1135
1136 /*
1137 * Pick the first available domain number, and update
1138 * the link to the next number.
1139 */
1140 domain = l1->l1_domain_first;
1141 l1->l1_domain_first = l1->l1_domain_free[domain];
1142
1143 /*
1144 * If there are still free domain numbers in this L1,
1145 * put it back on the TAIL of the LRU list.
1146 */
1147 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1148 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1149
1150 mutex_spin_exit(&l1_lru_lock);
1151
1152 /*
1153 * Fix up the relevant bits in the pmap structure
1154 */
1155 pm->pm_l1 = l1;
1156 pm->pm_domain = domain + 1;
1157 }
1158
1159 /*
1160 * Free an L1 translation table.
1161 * This is called at pmap destruction time.
1162 */
1163 static void
1164 pmap_free_l1(pmap_t pm)
1165 {
1166 struct l1_ttable *l1 = pm->pm_l1;
1167
1168 mutex_spin_enter(&l1_lru_lock);
1169
1170 /*
1171 * If this L1 is currently on the LRU list, remove it.
1172 */
1173 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1174 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1175
1176 /*
1177 * Free up the domain number which was allocated to the pmap
1178 */
1179 l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
1180 l1->l1_domain_first = pm->pm_domain - 1;
1181 l1->l1_domain_use_count--;
1182
1183 /*
1184 * The L1 now must have at least 1 free domain, so add
1185 * it back to the LRU list. If the use count is zero,
1186 * put it at the head of the list, otherwise it goes
1187 * to the tail.
1188 */
1189 if (l1->l1_domain_use_count == 0)
1190 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1191 else
1192 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1193
1194 mutex_spin_exit(&l1_lru_lock);
1195 }
1196
1197 static inline void
1198 pmap_use_l1(pmap_t pm)
1199 {
1200 struct l1_ttable *l1;
1201
1202 /*
1203 * Do nothing if we're in interrupt context.
1204 * Access to an L1 by the kernel pmap must not affect
1205 * the LRU list.
1206 */
1207 if (cpu_intr_p() || pm == pmap_kernel())
1208 return;
1209
1210 l1 = pm->pm_l1;
1211
1212 /*
1213 * If the L1 is not currently on the LRU list, just return
1214 */
1215 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1216 return;
1217
1218 mutex_spin_enter(&l1_lru_lock);
1219
1220 /*
1221 * Check the use count again, now that we've acquired the lock
1222 */
1223 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1224 mutex_spin_exit(&l1_lru_lock);
1225 return;
1226 }
1227
1228 /*
1229 * Move the L1 to the back of the LRU list
1230 */
1231 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1232 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1233
1234 mutex_spin_exit(&l1_lru_lock);
1235 }
1236
1237 /*
1238 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1239 *
1240 * Free an L2 descriptor table.
1241 */
1242 static inline void
1243 #ifndef PMAP_INCLUDE_PTE_SYNC
1244 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1245 #else
1246 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1247 #endif
1248 {
1249 #ifdef PMAP_INCLUDE_PTE_SYNC
1250 #ifdef PMAP_CACHE_VIVT
1251 /*
1252 * Note: With a write-back cache, we may need to sync this
1253 * L2 table before re-using it.
1254 * This is because it may have belonged to a non-current
1255 * pmap, in which case the cache syncs would have been
1256 * skipped for the pages that were being unmapped. If the
1257 * L2 table were then to be immediately re-allocated to
1258 * the *current* pmap, it may well contain stale mappings
1259 * which have not yet been cleared by a cache write-back
1260 * and so would still be visible to the mmu.
1261 */
1262 if (need_sync)
1263 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1264 #endif /* PMAP_CACHE_VIVT */
1265 #endif /* PMAP_INCLUDE_PTE_SYNC */
1266 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1267 }
1268
1269 /*
1270 * Returns a pointer to the L2 bucket associated with the specified pmap
1271 * and VA, or NULL if no L2 bucket exists for the address.
1272 */
1273 static inline struct l2_bucket *
1274 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1275 {
1276 struct l2_dtable *l2;
1277 struct l2_bucket *l2b;
1278 u_short l1idx;
1279
1280 l1idx = L1_IDX(va);
1281
1282 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1283 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1284 return (NULL);
1285
1286 return (l2b);
1287 }
1288
1289 /*
1290 * Returns a pointer to the L2 bucket associated with the specified pmap
1291 * and VA.
1292 *
1293 * If no L2 bucket exists, perform the necessary allocations to put an L2
1294 * bucket/page table in place.
1295 *
1296 * Note that if a new L2 bucket/page was allocated, the caller *must*
1297 * increment the bucket occupancy counter appropriately *before*
1298 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1299 * the bucket/page in the meantime.
1300 */
1301 static struct l2_bucket *
1302 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1303 {
1304 struct l2_dtable *l2;
1305 struct l2_bucket *l2b;
1306 u_short l1idx;
1307
1308 l1idx = L1_IDX(va);
1309
1310 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1311 /*
1312 * No mapping at this address, as there is
1313 * no entry in the L1 table.
1314 * Need to allocate a new l2_dtable.
1315 */
1316 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1317 return (NULL);
1318
1319 /*
1320 * Link it into the parent pmap
1321 */
1322 pm->pm_l2[L2_IDX(l1idx)] = l2;
1323 }
1324
1325 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1326
1327 /*
1328 * Fetch pointer to the L2 page table associated with the address.
1329 */
1330 if (l2b->l2b_kva == NULL) {
1331 pt_entry_t *ptep;
1332
1333 /*
1334 * No L2 page table has been allocated. Chances are, this
1335 * is because we just allocated the l2_dtable, above.
1336 */
1337 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1338 /*
1339 * Oops, no more L2 page tables available at this
1340 * time. We may need to deallocate the l2_dtable
1341 * if we allocated a new one above.
1342 */
1343 if (l2->l2_occupancy == 0) {
1344 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1345 pmap_free_l2_dtable(l2);
1346 }
1347 return (NULL);
1348 }
1349
1350 l2->l2_occupancy++;
1351 l2b->l2b_kva = ptep;
1352 l2b->l2b_l1idx = l1idx;
1353 }
1354
1355 return (l2b);
1356 }
1357
1358 /*
1359 * One or more mappings in the specified L2 descriptor table have just been
1360 * invalidated.
1361 *
1362 * Garbage collect the metadata and descriptor table itself if necessary.
1363 *
1364 * The pmap lock must be acquired when this is called (not necessary
1365 * for the kernel pmap).
1366 */
1367 static void
1368 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1369 {
1370 struct l2_dtable *l2;
1371 pd_entry_t *pl1pd, l1pd;
1372 pt_entry_t *ptep;
1373 u_short l1idx;
1374
1375 KDASSERT(count <= l2b->l2b_occupancy);
1376
1377 /*
1378 * Update the bucket's reference count according to how many
1379 * PTEs the caller has just invalidated.
1380 */
1381 l2b->l2b_occupancy -= count;
1382
1383 /*
1384 * Note:
1385 *
1386 * Level 2 page tables allocated to the kernel pmap are never freed
1387 * as that would require checking all Level 1 page tables and
1388 * removing any references to the Level 2 page table. See also the
1389 * comment elsewhere about never freeing bootstrap L2 descriptors.
1390 *
1391 * We make do with just invalidating the mapping in the L2 table.
1392 *
1393 * This isn't really a big deal in practice and, in fact, leads
1394 * to a performance win over time as we don't need to continually
1395 * alloc/free.
1396 */
1397 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1398 return;
1399
1400 /*
1401 * There are no more valid mappings in this level 2 page table.
1402 * Go ahead and NULL-out the pointer in the bucket, then
1403 * free the page table.
1404 */
1405 l1idx = l2b->l2b_l1idx;
1406 ptep = l2b->l2b_kva;
1407 l2b->l2b_kva = NULL;
1408
1409 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1410
1411 /*
1412 * If the L1 slot matches the pmap's domain
1413 * number, then invalidate it.
1414 */
1415 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1416 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1417 *pl1pd = 0;
1418 PTE_SYNC(pl1pd);
1419 }
1420
1421 /*
1422 * Release the L2 descriptor table back to the pool cache.
1423 */
1424 #ifndef PMAP_INCLUDE_PTE_SYNC
1425 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1426 #else
1427 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1428 #endif
1429
1430 /*
1431 * Update the reference count in the associated l2_dtable
1432 */
1433 l2 = pm->pm_l2[L2_IDX(l1idx)];
1434 if (--l2->l2_occupancy > 0)
1435 return;
1436
1437 /*
1438 * There are no more valid mappings in any of the Level 1
1439 * slots managed by this l2_dtable. Go ahead and NULL-out
1440 * the pointer in the parent pmap and free the l2_dtable.
1441 */
1442 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1443 pmap_free_l2_dtable(l2);
1444 }
1445
1446 /*
1447 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1448 * structures.
1449 */
1450 static int
1451 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1452 {
1453 #ifndef PMAP_INCLUDE_PTE_SYNC
1454 struct l2_bucket *l2b;
1455 pt_entry_t *ptep, pte;
1456 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1457
1458 /*
1459 * The mappings for these page tables were initially made using
1460 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1461 * mode will not be right for page table mappings. To avoid
1462 * polluting the pmap_kenter_pa() code with a special case for
1463 * page tables, we simply fix up the cache-mode here if it's not
1464 * correct.
1465 */
1466 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1467 KDASSERT(l2b != NULL);
1468 ptep = &l2b->l2b_kva[l2pte_index(va)];
1469 pte = *ptep;
1470
1471 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1472 /*
1473 * Page tables must have the cache-mode set to Write-Thru.
1474 */
1475 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1476 PTE_SYNC(ptep);
1477 cpu_tlb_flushD_SE(va);
1478 cpu_cpwait();
1479 }
1480 #endif
1481
1482 memset(v, 0, L2_TABLE_SIZE_REAL);
1483 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1484 return (0);
1485 }
1486
1487 static int
1488 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1489 {
1490
1491 memset(v, 0, sizeof(struct l2_dtable));
1492 return (0);
1493 }
1494
1495 static int
1496 pmap_pmap_ctor(void *arg, void *v, int flags)
1497 {
1498
1499 memset(v, 0, sizeof(struct pmap));
1500 return (0);
1501 }
1502
1503 static void
1504 pmap_pinit(pmap_t pm)
1505 {
1506 struct l2_bucket *l2b;
1507
1508 if (vector_page < KERNEL_BASE) {
1509 /*
1510 * Map the vector page.
1511 */
1512 pmap_enter(pm, vector_page, systempage.pv_pa,
1513 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1514 pmap_update(pm);
1515
1516 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1517 l2b = pmap_get_l2_bucket(pm, vector_page);
1518 KDASSERT(l2b != NULL);
1519 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1520 L1_C_DOM(pm->pm_domain);
1521 } else
1522 pm->pm_pl1vec = NULL;
1523 }
1524
1525 #ifdef PMAP_CACHE_VIVT
1526 /*
1527 * Since we have a virtually indexed cache, we may need to inhibit caching if
1528 * there is more than one mapping and at least one of them is writable.
1529 * Since we purge the cache on every context switch, we only need to check for
1530 * other mappings within the same pmap, or kernel_pmap.
1531 * This function is also called when a page is unmapped, to possibly reenable
1532 * caching on any remaining mappings.
1533 *
1534 * The code implements the following logic, where:
1535 *
1536 * KW = # of kernel read/write pages
1537 * KR = # of kernel read only pages
1538 * UW = # of user read/write pages
1539 * UR = # of user read only pages
1540 *
1541 * KC = kernel mapping is cacheable
1542 * UC = user mapping is cacheable
1543 *
1544 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1545 * +---------------------------------------------
1546 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1547 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1548 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1549 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1550 */
1551
1552 static const int pmap_vac_flags[4][4] = {
1553 {-1, 0, 0, PVF_KNC},
1554 {0, 0, PVF_NC, PVF_NC},
1555 {0, PVF_NC, PVF_NC, PVF_NC},
1556 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1557 };
1558
1559 static inline int
1560 pmap_get_vac_flags(const struct vm_page_md *md)
1561 {
1562 int kidx, uidx;
1563
1564 kidx = 0;
1565 if (md->kro_mappings || md->krw_mappings > 1)
1566 kidx |= 1;
1567 if (md->krw_mappings)
1568 kidx |= 2;
1569
1570 uidx = 0;
1571 if (md->uro_mappings || md->urw_mappings > 1)
1572 uidx |= 1;
1573 if (md->urw_mappings)
1574 uidx |= 2;
1575
1576 return (pmap_vac_flags[uidx][kidx]);
1577 }
1578
1579 static inline void
1580 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1581 {
1582 int nattr;
1583
1584 nattr = pmap_get_vac_flags(md);
1585
1586 if (nattr < 0) {
1587 md->pvh_attrs &= ~PVF_NC;
1588 return;
1589 }
1590
1591 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1592 return;
1593
1594 if (pm == pmap_kernel())
1595 pmap_vac_me_kpmap(md, pa, pm, va);
1596 else
1597 pmap_vac_me_user(md, pa, pm, va);
1598
1599 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1600 }
1601
1602 static void
1603 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1604 {
1605 u_int u_cacheable, u_entries;
1606 struct pv_entry *pv;
1607 pmap_t last_pmap = pm;
1608
1609 /*
1610 * Pass one, see if there are both kernel and user pmaps for
1611 * this page. Calculate whether there are user-writable or
1612 * kernel-writable pages.
1613 */
1614 u_cacheable = 0;
1615 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1616 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1617 u_cacheable++;
1618 }
1619
1620 u_entries = md->urw_mappings + md->uro_mappings;
1621
1622 /*
1623 * We know we have just been updating a kernel entry, so if
1624 * all user pages are already cacheable, then there is nothing
1625 * further to do.
1626 */
1627 if (md->k_mappings == 0 && u_cacheable == u_entries)
1628 return;
1629
1630 if (u_entries) {
1631 /*
1632 * Scan over the list again, for each entry, if it
1633 * might not be set correctly, call pmap_vac_me_user
1634 * to recalculate the settings.
1635 */
1636 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1637 /*
1638 * We know kernel mappings will get set
1639 * correctly in other calls. We also know
1640 * that if the pmap is the same as last_pmap
1641 * then we've just handled this entry.
1642 */
1643 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1644 continue;
1645
1646 /*
1647 * If there are kernel entries and this page
1648 * is writable but non-cacheable, then we can
1649 * skip this entry also.
1650 */
1651 if (md->k_mappings &&
1652 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1653 (PVF_NC | PVF_WRITE))
1654 continue;
1655
1656 /*
1657 * Similarly if there are no kernel-writable
1658 * entries and the page is already
1659 * read-only/cacheable.
1660 */
1661 if (md->krw_mappings == 0 &&
1662 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1663 continue;
1664
1665 /*
1666 * For some of the remaining cases, we know
1667 * that we must recalculate, but for others we
1668 * can't tell if they are correct or not, so
1669 * we recalculate anyway.
1670 */
1671 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1672 }
1673
1674 if (md->k_mappings == 0)
1675 return;
1676 }
1677
1678 pmap_vac_me_user(md, pa, pm, va);
1679 }
1680
1681 static void
1682 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1683 {
1684 pmap_t kpmap = pmap_kernel();
1685 struct pv_entry *pv, *npv = NULL;
1686 struct l2_bucket *l2b;
1687 pt_entry_t *ptep, pte;
1688 u_int entries = 0;
1689 u_int writable = 0;
1690 u_int cacheable_entries = 0;
1691 u_int kern_cacheable = 0;
1692 u_int other_writable = 0;
1693
1694 /*
1695 * Count mappings and writable mappings in this pmap.
1696 * Include kernel mappings as part of our own.
1697 * Keep a pointer to the first one.
1698 */
1699 npv = NULL;
1700 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1701 /* Count mappings in the same pmap */
1702 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1703 if (entries++ == 0)
1704 npv = pv;
1705
1706 /* Cacheable mappings */
1707 if ((pv->pv_flags & PVF_NC) == 0) {
1708 cacheable_entries++;
1709 if (kpmap == pv->pv_pmap)
1710 kern_cacheable++;
1711 }
1712
1713 /* Writable mappings */
1714 if (pv->pv_flags & PVF_WRITE)
1715 ++writable;
1716 } else
1717 if (pv->pv_flags & PVF_WRITE)
1718 other_writable = 1;
1719 }
1720
1721 /*
1722 * Enable or disable caching as necessary.
1723 * Note: the first entry might be part of the kernel pmap,
1724 * so we can't assume this is indicative of the state of the
1725 * other (maybe non-kpmap) entries.
1726 */
1727 if ((entries > 1 && writable) ||
1728 (entries > 0 && pm == kpmap && other_writable)) {
1729 if (cacheable_entries == 0)
1730 return;
1731
1732 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1733 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1734 (pv->pv_flags & PVF_NC))
1735 continue;
1736
1737 pv->pv_flags |= PVF_NC;
1738
1739 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1740 KDASSERT(l2b != NULL);
1741 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1742 pte = *ptep & ~L2_S_CACHE_MASK;
1743
1744 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1745 l2pte_valid(pte)) {
1746 if (PV_BEEN_EXECD(pv->pv_flags)) {
1747 #ifdef PMAP_CACHE_VIVT
1748 pmap_idcache_wbinv_range(pv->pv_pmap,
1749 pv->pv_va, PAGE_SIZE);
1750 #endif
1751 pmap_tlb_flushID_SE(pv->pv_pmap,
1752 pv->pv_va);
1753 } else
1754 if (PV_BEEN_REFD(pv->pv_flags)) {
1755 #ifdef PMAP_CACHE_VIVT
1756 pmap_dcache_wb_range(pv->pv_pmap,
1757 pv->pv_va, PAGE_SIZE, true,
1758 (pv->pv_flags & PVF_WRITE) == 0);
1759 #endif
1760 pmap_tlb_flushD_SE(pv->pv_pmap,
1761 pv->pv_va);
1762 }
1763 }
1764
1765 *ptep = pte;
1766 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1767 }
1768 cpu_cpwait();
1769 } else
1770 if (entries > cacheable_entries) {
1771 /*
1772 * Turn cacheing back on for some pages. If it is a kernel
1773 * page, only do so if there are no other writable pages.
1774 */
1775 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1776 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1777 (kpmap != pv->pv_pmap || other_writable)))
1778 continue;
1779
1780 pv->pv_flags &= ~PVF_NC;
1781
1782 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1783 KDASSERT(l2b != NULL);
1784 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1785 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1786
1787 if (l2pte_valid(pte)) {
1788 if (PV_BEEN_EXECD(pv->pv_flags)) {
1789 pmap_tlb_flushID_SE(pv->pv_pmap,
1790 pv->pv_va);
1791 } else
1792 if (PV_BEEN_REFD(pv->pv_flags)) {
1793 pmap_tlb_flushD_SE(pv->pv_pmap,
1794 pv->pv_va);
1795 }
1796 }
1797
1798 *ptep = pte;
1799 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1800 }
1801 }
1802 }
1803 #endif
1804
1805 #ifdef PMAP_CACHE_VIPT
1806 static void
1807 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1808 {
1809 struct pv_entry *pv;
1810 vaddr_t tst_mask;
1811 bool bad_alias;
1812 struct l2_bucket *l2b;
1813 pt_entry_t *ptep, pte, opte;
1814 const u_int
1815 rw_mappings = md->urw_mappings + md->krw_mappings,
1816 ro_mappings = md->uro_mappings + md->kro_mappings;
1817
1818 /* do we need to do anything? */
1819 if (arm_cache_prefer_mask == 0)
1820 return;
1821
1822 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1823 md, pm, va));
1824
1825 KASSERT(!va || pm);
1826 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1827
1828 /* Already a conflict? */
1829 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1830 /* just an add, things are already non-cached */
1831 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1832 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1833 bad_alias = false;
1834 if (va) {
1835 PMAPCOUNT(vac_color_none);
1836 bad_alias = true;
1837 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1838 goto fixup;
1839 }
1840 pv = SLIST_FIRST(&md->pvh_list);
1841 /* the list can't be empty because it would be cachable */
1842 if (md->pvh_attrs & PVF_KMPAGE) {
1843 tst_mask = md->pvh_attrs;
1844 } else {
1845 KASSERT(pv);
1846 tst_mask = pv->pv_va;
1847 pv = SLIST_NEXT(pv, pv_link);
1848 }
1849 /*
1850 * Only check for a bad alias if we have writable mappings.
1851 */
1852 tst_mask &= arm_cache_prefer_mask;
1853 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1854 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1855 /* if there's a bad alias, stop checking. */
1856 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1857 bad_alias = true;
1858 }
1859 md->pvh_attrs |= PVF_WRITE;
1860 if (!bad_alias)
1861 md->pvh_attrs |= PVF_DIRTY;
1862 } else {
1863 /*
1864 * We have only read-only mappings. Let's see if there
1865 * are multiple colors in use or if we mapped a KMPAGE.
1866 * If the latter, we have a bad alias. If the former,
1867 * we need to remember that.
1868 */
1869 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1870 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1871 if (md->pvh_attrs & PVF_KMPAGE)
1872 bad_alias = true;
1873 break;
1874 }
1875 }
1876 md->pvh_attrs &= ~PVF_WRITE;
1877 /*
1878 * No KMPAGE and we exited early, so we must have
1879 * multiple color mappings.
1880 */
1881 if (!bad_alias && pv != NULL)
1882 md->pvh_attrs |= PVF_MULTCLR;
1883 }
1884
1885 /* If no conflicting colors, set everything back to cached */
1886 if (!bad_alias) {
1887 #ifdef DEBUG
1888 if ((md->pvh_attrs & PVF_WRITE)
1889 || ro_mappings < 2) {
1890 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1891 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1892 }
1893 #endif
1894 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1895 md->pvh_attrs |= tst_mask | PVF_COLORED;
1896 /*
1897 * Restore DIRTY bit if page is modified
1898 */
1899 if (md->pvh_attrs & PVF_DMOD)
1900 md->pvh_attrs |= PVF_DIRTY;
1901 PMAPCOUNT(vac_color_restore);
1902 } else {
1903 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1904 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1905 }
1906 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1907 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1908 } else if (!va) {
1909 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
1910 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1911 || (md->pvh_attrs & PVF_DIRTY));
1912 if (rw_mappings == 0) {
1913 md->pvh_attrs &= ~PVF_WRITE;
1914 if (ro_mappings == 1
1915 && (md->pvh_attrs & PVF_MULTCLR)) {
1916 /*
1917 * If this is the last readonly mapping
1918 * but it doesn't match the current color
1919 * for the page, change the current color
1920 * to match this last readonly mapping.
1921 */
1922 pv = SLIST_FIRST(&md->pvh_list);
1923 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1924 & arm_cache_prefer_mask;
1925 if (tst_mask) {
1926 md->pvh_attrs ^= tst_mask;
1927 PMAPCOUNT(vac_color_change);
1928 }
1929 }
1930 }
1931 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1932 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1933 return;
1934 } else if (!pmap_is_page_colored_p(md)) {
1935 /* not colored so we just use its color */
1936 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1937 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1938 PMAPCOUNT(vac_color_new);
1939 md->pvh_attrs &= PAGE_SIZE - 1;
1940 md->pvh_attrs |= PVF_COLORED
1941 | (va & arm_cache_prefer_mask)
1942 | (rw_mappings > 0 ? PVF_WRITE : 0);
1943 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1944 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1945 return;
1946 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1947 bad_alias = false;
1948 if (rw_mappings > 0) {
1949 /*
1950 * We now have writeable mappings and if we have
1951 * readonly mappings in more than once color, we have
1952 * an aliasing problem. Regardless mark the page as
1953 * writeable.
1954 */
1955 if (md->pvh_attrs & PVF_MULTCLR) {
1956 if (ro_mappings < 2) {
1957 /*
1958 * If we only have less than two
1959 * read-only mappings, just flush the
1960 * non-primary colors from the cache.
1961 */
1962 pmap_flush_page(md, pa,
1963 PMAP_FLUSH_SECONDARY);
1964 } else {
1965 bad_alias = true;
1966 }
1967 }
1968 md->pvh_attrs |= PVF_WRITE;
1969 }
1970 /* If no conflicting colors, set everything back to cached */
1971 if (!bad_alias) {
1972 #ifdef DEBUG
1973 if (rw_mappings > 0
1974 || (md->pvh_attrs & PMAP_KMPAGE)) {
1975 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
1976 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1977 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1978 }
1979 #endif
1980 if (SLIST_EMPTY(&md->pvh_list))
1981 PMAPCOUNT(vac_color_reuse);
1982 else
1983 PMAPCOUNT(vac_color_ok);
1984
1985 /* matching color, just return */
1986 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1987 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1988 return;
1989 }
1990 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1991 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1992
1993 /* color conflict. evict from cache. */
1994
1995 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
1996 md->pvh_attrs &= ~PVF_COLORED;
1997 md->pvh_attrs |= PVF_NC;
1998 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1999 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2000 PMAPCOUNT(vac_color_erase);
2001 } else if (rw_mappings == 0
2002 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2003 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2004
2005 /*
2006 * If the page has dirty cache lines, clean it.
2007 */
2008 if (md->pvh_attrs & PVF_DIRTY)
2009 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2010
2011 /*
2012 * If this is the first remapping (we know that there are no
2013 * writeable mappings), then this is a simple color change.
2014 * Otherwise this is a seconary r/o mapping, which means
2015 * we don't have to do anything.
2016 */
2017 if (ro_mappings == 1) {
2018 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2019 md->pvh_attrs &= PAGE_SIZE - 1;
2020 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2021 PMAPCOUNT(vac_color_change);
2022 } else {
2023 PMAPCOUNT(vac_color_blind);
2024 }
2025 md->pvh_attrs |= PVF_MULTCLR;
2026 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2027 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2028 return;
2029 } else {
2030 if (rw_mappings > 0)
2031 md->pvh_attrs |= PVF_WRITE;
2032
2033 /* color conflict. evict from cache. */
2034 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2035
2036 /* the list can't be empty because this was a enter/modify */
2037 pv = SLIST_FIRST(&md->pvh_list);
2038 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2039 KASSERT(pv);
2040 /*
2041 * If there's only one mapped page, change color to the
2042 * page's new color and return. Restore the DIRTY bit
2043 * that was erased by pmap_flush_page.
2044 */
2045 if (SLIST_NEXT(pv, pv_link) == NULL) {
2046 md->pvh_attrs &= PAGE_SIZE - 1;
2047 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2048 if (md->pvh_attrs & PVF_DMOD)
2049 md->pvh_attrs |= PVF_DIRTY;
2050 PMAPCOUNT(vac_color_change);
2051 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2052 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2053 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2054 return;
2055 }
2056 }
2057 bad_alias = true;
2058 md->pvh_attrs &= ~PVF_COLORED;
2059 md->pvh_attrs |= PVF_NC;
2060 PMAPCOUNT(vac_color_erase);
2061 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2062 }
2063
2064 fixup:
2065 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2066
2067 /*
2068 * Turn cacheing on/off for all pages.
2069 */
2070 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2071 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2072 KDASSERT(l2b != NULL);
2073 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2074 opte = *ptep;
2075 pte = opte & ~L2_S_CACHE_MASK;
2076 if (bad_alias) {
2077 pv->pv_flags |= PVF_NC;
2078 } else {
2079 pv->pv_flags &= ~PVF_NC;
2080 pte |= pte_l2_s_cache_mode;
2081 }
2082
2083 if (opte == pte) /* only update is there's a change */
2084 continue;
2085
2086 if (l2pte_valid(pte)) {
2087 if (PV_BEEN_EXECD(pv->pv_flags)) {
2088 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2089 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2090 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2091 }
2092 }
2093
2094 *ptep = pte;
2095 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2096 }
2097 }
2098 #endif /* PMAP_CACHE_VIPT */
2099
2100
2101 /*
2102 * Modify pte bits for all ptes corresponding to the given physical address.
2103 * We use `maskbits' rather than `clearbits' because we're always passing
2104 * constants and the latter would require an extra inversion at run-time.
2105 */
2106 static void
2107 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2108 {
2109 struct l2_bucket *l2b;
2110 struct pv_entry *pv;
2111 pt_entry_t *ptep, npte, opte;
2112 pmap_t pm;
2113 vaddr_t va;
2114 u_int oflags;
2115 #ifdef PMAP_CACHE_VIPT
2116 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2117 bool need_syncicache = false;
2118 bool did_syncicache = false;
2119 bool need_vac_me_harder = false;
2120 #endif
2121
2122 NPDEBUG(PDB_BITS,
2123 printf("pmap_clearbit: md %p mask 0x%x\n",
2124 md, maskbits));
2125
2126 #ifdef PMAP_CACHE_VIPT
2127 /*
2128 * If we might want to sync the I-cache and we've modified it,
2129 * then we know we definitely need to sync or discard it.
2130 */
2131 if (want_syncicache)
2132 need_syncicache = md->pvh_attrs & PVF_MOD;
2133 #endif
2134 /*
2135 * Clear saved attributes (modify, reference)
2136 */
2137 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2138
2139 if (SLIST_EMPTY(&md->pvh_list)) {
2140 #ifdef PMAP_CACHE_VIPT
2141 if (need_syncicache) {
2142 /*
2143 * No one has it mapped, so just discard it. The next
2144 * exec remapping will cause it to be synced.
2145 */
2146 md->pvh_attrs &= ~PVF_EXEC;
2147 PMAPCOUNT(exec_discarded_clearbit);
2148 }
2149 #endif
2150 return;
2151 }
2152
2153 /*
2154 * Loop over all current mappings setting/clearing as appropos
2155 */
2156 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2157 va = pv->pv_va;
2158 pm = pv->pv_pmap;
2159 oflags = pv->pv_flags;
2160 /*
2161 * Kernel entries are unmanaged and as such not to be changed.
2162 */
2163 if (oflags & PVF_KENTRY)
2164 continue;
2165 pv->pv_flags &= ~maskbits;
2166
2167 pmap_acquire_pmap_lock(pm);
2168
2169 l2b = pmap_get_l2_bucket(pm, va);
2170 KDASSERT(l2b != NULL);
2171
2172 ptep = &l2b->l2b_kva[l2pte_index(va)];
2173 npte = opte = *ptep;
2174
2175 NPDEBUG(PDB_BITS,
2176 printf(
2177 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2178 pv, pv->pv_pmap, pv->pv_va, oflags));
2179
2180 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2181 #ifdef PMAP_CACHE_VIVT
2182 if ((pv->pv_flags & PVF_NC)) {
2183 /*
2184 * Entry is not cacheable:
2185 *
2186 * Don't turn caching on again if this is a
2187 * modified emulation. This would be
2188 * inconsitent with the settings created by
2189 * pmap_vac_me_harder(). Otherwise, it's safe
2190 * to re-enable cacheing.
2191 *
2192 * There's no need to call pmap_vac_me_harder()
2193 * here: all pages are losing their write
2194 * permission.
2195 */
2196 if (maskbits & PVF_WRITE) {
2197 npte |= pte_l2_s_cache_mode;
2198 pv->pv_flags &= ~PVF_NC;
2199 }
2200 } else
2201 if (l2pte_writable_p(opte)) {
2202 /*
2203 * Entry is writable/cacheable: check if pmap
2204 * is current if it is flush it, otherwise it
2205 * won't be in the cache
2206 */
2207 if (PV_BEEN_EXECD(oflags))
2208 pmap_idcache_wbinv_range(pm, pv->pv_va,
2209 PAGE_SIZE);
2210 else
2211 if (PV_BEEN_REFD(oflags))
2212 pmap_dcache_wb_range(pm, pv->pv_va,
2213 PAGE_SIZE,
2214 (maskbits & PVF_REF) != 0, false);
2215 }
2216 #endif
2217
2218 /* make the pte read only */
2219 npte = l2pte_set_readonly(npte);
2220
2221 if (maskbits & oflags & PVF_WRITE) {
2222 /*
2223 * Keep alias accounting up to date
2224 */
2225 if (pv->pv_pmap == pmap_kernel()) {
2226 md->krw_mappings--;
2227 md->kro_mappings++;
2228 } else {
2229 md->urw_mappings--;
2230 md->uro_mappings++;
2231 }
2232 #ifdef PMAP_CACHE_VIPT
2233 if (md->urw_mappings + md->krw_mappings == 0)
2234 md->pvh_attrs &= ~PVF_WRITE;
2235 if (want_syncicache)
2236 need_syncicache = true;
2237 need_vac_me_harder = true;
2238 #endif
2239 }
2240 }
2241
2242 if (maskbits & PVF_REF) {
2243 if ((pv->pv_flags & PVF_NC) == 0 &&
2244 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2245 l2pte_valid(npte)) {
2246 #ifdef PMAP_CACHE_VIVT
2247 /*
2248 * Check npte here; we may have already
2249 * done the wbinv above, and the validity
2250 * of the PTE is the same for opte and
2251 * npte.
2252 */
2253 /* XXXJRT need idcache_inv_range */
2254 if (PV_BEEN_EXECD(oflags))
2255 pmap_idcache_wbinv_range(pm,
2256 pv->pv_va, PAGE_SIZE);
2257 else
2258 if (PV_BEEN_REFD(oflags))
2259 pmap_dcache_wb_range(pm,
2260 pv->pv_va, PAGE_SIZE,
2261 true, true);
2262 #endif
2263 }
2264
2265 /*
2266 * Make the PTE invalid so that we will take a
2267 * page fault the next time the mapping is
2268 * referenced.
2269 */
2270 npte &= ~L2_TYPE_MASK;
2271 npte |= L2_TYPE_INV;
2272 }
2273
2274 if (npte != opte) {
2275 *ptep = npte;
2276 PTE_SYNC(ptep);
2277 /* Flush the TLB entry if a current pmap. */
2278 if (PV_BEEN_EXECD(oflags))
2279 pmap_tlb_flushID_SE(pm, pv->pv_va);
2280 else
2281 if (PV_BEEN_REFD(oflags))
2282 pmap_tlb_flushD_SE(pm, pv->pv_va);
2283 }
2284
2285 pmap_release_pmap_lock(pm);
2286
2287 NPDEBUG(PDB_BITS,
2288 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2289 pm, va, opte, npte));
2290 }
2291
2292 #ifdef PMAP_CACHE_VIPT
2293 /*
2294 * If we need to sync the I-cache and we haven't done it yet, do it.
2295 */
2296 if (need_syncicache && !did_syncicache) {
2297 pmap_syncicache_page(md, pa);
2298 PMAPCOUNT(exec_synced_clearbit);
2299 }
2300 /*
2301 * If we are changing this to read-only, we need to call vac_me_harder
2302 * so we can change all the read-only pages to cacheable. We pretend
2303 * this as a page deletion.
2304 */
2305 if (need_vac_me_harder) {
2306 if (md->pvh_attrs & PVF_NC)
2307 pmap_vac_me_harder(md, pa, NULL, 0);
2308 }
2309 #endif
2310 }
2311
2312 /*
2313 * pmap_clean_page()
2314 *
2315 * This is a local function used to work out the best strategy to clean
2316 * a single page referenced by its entry in the PV table. It's used by
2317 * pmap_copy_page, pmap_zero page and maybe some others later on.
2318 *
2319 * Its policy is effectively:
2320 * o If there are no mappings, we don't bother doing anything with the cache.
2321 * o If there is one mapping, we clean just that page.
2322 * o If there are multiple mappings, we clean the entire cache.
2323 *
2324 * So that some functions can be further optimised, it returns 0 if it didn't
2325 * clean the entire cache, or 1 if it did.
2326 *
2327 * XXX One bug in this routine is that if the pv_entry has a single page
2328 * mapped at 0x00000000 a whole cache clean will be performed rather than
2329 * just the 1 page. Since this should not occur in everyday use and if it does
2330 * it will just result in not the most efficient clean for the page.
2331 */
2332 #ifdef PMAP_CACHE_VIVT
2333 static int
2334 pmap_clean_page(struct pv_entry *pv, bool is_src)
2335 {
2336 pmap_t pm_to_clean = NULL;
2337 struct pv_entry *npv;
2338 u_int cache_needs_cleaning = 0;
2339 u_int flags = 0;
2340 vaddr_t page_to_clean = 0;
2341
2342 if (pv == NULL) {
2343 /* nothing mapped in so nothing to flush */
2344 return (0);
2345 }
2346
2347 /*
2348 * Since we flush the cache each time we change to a different
2349 * user vmspace, we only need to flush the page if it is in the
2350 * current pmap.
2351 */
2352
2353 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2354 if (pmap_is_current(npv->pv_pmap)) {
2355 flags |= npv->pv_flags;
2356 /*
2357 * The page is mapped non-cacheable in
2358 * this map. No need to flush the cache.
2359 */
2360 if (npv->pv_flags & PVF_NC) {
2361 #ifdef DIAGNOSTIC
2362 if (cache_needs_cleaning)
2363 panic("pmap_clean_page: "
2364 "cache inconsistency");
2365 #endif
2366 break;
2367 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2368 continue;
2369 if (cache_needs_cleaning) {
2370 page_to_clean = 0;
2371 break;
2372 } else {
2373 page_to_clean = npv->pv_va;
2374 pm_to_clean = npv->pv_pmap;
2375 }
2376 cache_needs_cleaning = 1;
2377 }
2378 }
2379
2380 if (page_to_clean) {
2381 if (PV_BEEN_EXECD(flags))
2382 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2383 PAGE_SIZE);
2384 else
2385 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2386 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2387 } else if (cache_needs_cleaning) {
2388 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2389
2390 if (PV_BEEN_EXECD(flags))
2391 pmap_idcache_wbinv_all(pm);
2392 else
2393 pmap_dcache_wbinv_all(pm);
2394 return (1);
2395 }
2396 return (0);
2397 }
2398 #endif
2399
2400 #ifdef PMAP_CACHE_VIPT
2401 /*
2402 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2403 * right cache alias to make sure we flush the right stuff.
2404 */
2405 void
2406 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2407 {
2408 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2409 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2410
2411 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2412 md, md->pvh_attrs));
2413 /*
2414 * No need to clean the page if it's non-cached.
2415 */
2416 if (md->pvh_attrs & PVF_NC)
2417 return;
2418 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2419
2420 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2421 /*
2422 * Set up a PTE with the right coloring to flush existing cache lines.
2423 */
2424 *ptep = L2_S_PROTO |
2425 pa
2426 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2427 | pte_l2_s_cache_mode;
2428 PTE_SYNC(ptep);
2429
2430 /*
2431 * Flush it.
2432 */
2433 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2434 /*
2435 * Unmap the page.
2436 */
2437 *ptep = 0;
2438 PTE_SYNC(ptep);
2439 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2440
2441 md->pvh_attrs |= PVF_EXEC;
2442 PMAPCOUNT(exec_synced);
2443 }
2444
2445 void
2446 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2447 {
2448 vsize_t va_offset, end_va;
2449 void (*cf)(vaddr_t, vsize_t);
2450
2451 if (arm_cache_prefer_mask == 0)
2452 return;
2453
2454 switch (flush) {
2455 case PMAP_FLUSH_PRIMARY:
2456 if (md->pvh_attrs & PVF_MULTCLR) {
2457 va_offset = 0;
2458 end_va = arm_cache_prefer_mask;
2459 md->pvh_attrs &= ~PVF_MULTCLR;
2460 PMAPCOUNT(vac_flush_lots);
2461 } else {
2462 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2463 end_va = va_offset;
2464 PMAPCOUNT(vac_flush_one);
2465 }
2466 /*
2467 * Mark that the page is no longer dirty.
2468 */
2469 md->pvh_attrs &= ~PVF_DIRTY;
2470 cf = cpufuncs.cf_idcache_wbinv_range;
2471 break;
2472 case PMAP_FLUSH_SECONDARY:
2473 va_offset = 0;
2474 end_va = arm_cache_prefer_mask;
2475 cf = cpufuncs.cf_idcache_wbinv_range;
2476 md->pvh_attrs &= ~PVF_MULTCLR;
2477 PMAPCOUNT(vac_flush_lots);
2478 break;
2479 case PMAP_CLEAN_PRIMARY:
2480 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2481 end_va = va_offset;
2482 cf = cpufuncs.cf_dcache_wb_range;
2483 /*
2484 * Mark that the page is no longer dirty.
2485 */
2486 if ((md->pvh_attrs & PVF_DMOD) == 0)
2487 md->pvh_attrs &= ~PVF_DIRTY;
2488 PMAPCOUNT(vac_clean_one);
2489 break;
2490 default:
2491 return;
2492 }
2493
2494 KASSERT(!(md->pvh_attrs & PVF_NC));
2495
2496 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2497 md, md->pvh_attrs));
2498
2499 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2500 const size_t pte_offset = va_offset >> PGSHIFT;
2501 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2502 const pt_entry_t oldpte = *ptep;
2503
2504 if (flush == PMAP_FLUSH_SECONDARY
2505 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2506 continue;
2507
2508 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2509 /*
2510 * Set up a PTE with the right coloring to flush
2511 * existing cache entries.
2512 */
2513 *ptep = L2_S_PROTO
2514 | pa
2515 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2516 | pte_l2_s_cache_mode;
2517 PTE_SYNC(ptep);
2518
2519 /*
2520 * Flush it.
2521 */
2522 (*cf)(cdstp + va_offset, PAGE_SIZE);
2523
2524 /*
2525 * Restore the page table entry since we might have interrupted
2526 * pmap_zero_page or pmap_copy_page which was already using
2527 * this pte.
2528 */
2529 *ptep = oldpte;
2530 PTE_SYNC(ptep);
2531 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2532 }
2533 }
2534 #endif /* PMAP_CACHE_VIPT */
2535
2536 /*
2537 * Routine: pmap_page_remove
2538 * Function:
2539 * Removes this physical page from
2540 * all physical maps in which it resides.
2541 * Reflects back modify bits to the pager.
2542 */
2543 static void
2544 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2545 {
2546 struct l2_bucket *l2b;
2547 struct pv_entry *pv, *npv, **pvp;
2548 pmap_t pm;
2549 pt_entry_t *ptep;
2550 bool flush;
2551 u_int flags;
2552
2553 NPDEBUG(PDB_FOLLOW,
2554 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2555 pa));
2556
2557 pv = SLIST_FIRST(&md->pvh_list);
2558 if (pv == NULL) {
2559 #ifdef PMAP_CACHE_VIPT
2560 /*
2561 * We *know* the page contents are about to be replaced.
2562 * Discard the exec contents
2563 */
2564 if (PV_IS_EXEC_P(md->pvh_attrs))
2565 PMAPCOUNT(exec_discarded_page_protect);
2566 md->pvh_attrs &= ~PVF_EXEC;
2567 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2568 #endif
2569 return;
2570 }
2571 #ifdef PMAP_CACHE_VIPT
2572 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2573 #endif
2574
2575 /*
2576 * Clear alias counts
2577 */
2578 #ifdef PMAP_CACHE_VIVT
2579 md->k_mappings = 0;
2580 #endif
2581 md->urw_mappings = md->uro_mappings = 0;
2582
2583 flush = false;
2584 flags = 0;
2585
2586 #ifdef PMAP_CACHE_VIVT
2587 pmap_clean_page(pv, false);
2588 #endif
2589
2590 pvp = &SLIST_FIRST(&md->pvh_list);
2591 while (pv) {
2592 pm = pv->pv_pmap;
2593 npv = SLIST_NEXT(pv, pv_link);
2594 if (flush == false && pmap_is_current(pm))
2595 flush = true;
2596
2597 if (pm == pmap_kernel()) {
2598 #ifdef PMAP_CACHE_VIPT
2599 /*
2600 * If this was unmanaged mapping, it must be preserved.
2601 * Move it back on the list and advance the end-of-list
2602 * pointer.
2603 */
2604 if (pv->pv_flags & PVF_KENTRY) {
2605 *pvp = pv;
2606 pvp = &SLIST_NEXT(pv, pv_link);
2607 pv = npv;
2608 continue;
2609 }
2610 if (pv->pv_flags & PVF_WRITE)
2611 md->krw_mappings--;
2612 else
2613 md->kro_mappings--;
2614 #endif
2615 PMAPCOUNT(kernel_unmappings);
2616 }
2617 PMAPCOUNT(unmappings);
2618
2619 pmap_acquire_pmap_lock(pm);
2620
2621 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2622 KDASSERT(l2b != NULL);
2623
2624 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2625
2626 /*
2627 * Update statistics
2628 */
2629 --pm->pm_stats.resident_count;
2630
2631 /* Wired bit */
2632 if (pv->pv_flags & PVF_WIRED)
2633 --pm->pm_stats.wired_count;
2634
2635 flags |= pv->pv_flags;
2636
2637 /*
2638 * Invalidate the PTEs.
2639 */
2640 *ptep = 0;
2641 PTE_SYNC_CURRENT(pm, ptep);
2642 pmap_free_l2_bucket(pm, l2b, 1);
2643
2644 pool_put(&pmap_pv_pool, pv);
2645 pv = npv;
2646 /*
2647 * if we reach the end of the list and there are still
2648 * mappings, they might be able to be cached now.
2649 */
2650 if (pv == NULL) {
2651 *pvp = NULL;
2652 if (!SLIST_EMPTY(&md->pvh_list))
2653 pmap_vac_me_harder(md, pa, pm, 0);
2654 }
2655 pmap_release_pmap_lock(pm);
2656 }
2657 #ifdef PMAP_CACHE_VIPT
2658 /*
2659 * Its EXEC cache is now gone.
2660 */
2661 if (PV_IS_EXEC_P(md->pvh_attrs))
2662 PMAPCOUNT(exec_discarded_page_protect);
2663 md->pvh_attrs &= ~PVF_EXEC;
2664 KASSERT(md->urw_mappings == 0);
2665 KASSERT(md->uro_mappings == 0);
2666 if (md->krw_mappings == 0)
2667 md->pvh_attrs &= ~PVF_WRITE;
2668 KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2669 #endif
2670
2671 if (flush) {
2672 /*
2673 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2674 * would need a subsequent call to pmap_update() to ensure
2675 * curpm->pm_cstate.cs_all is reset. Our callers are not
2676 * required to do that (see pmap(9)), so we can't modify
2677 * the current pmap's state.
2678 */
2679 if (PV_BEEN_EXECD(flags))
2680 cpu_tlb_flushID();
2681 else
2682 cpu_tlb_flushD();
2683 }
2684 cpu_cpwait();
2685 }
2686
2687 /*
2688 * pmap_t pmap_create(void)
2689 *
2690 * Create a new pmap structure from scratch.
2691 */
2692 pmap_t
2693 pmap_create(void)
2694 {
2695 pmap_t pm;
2696
2697 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2698
2699 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2700 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2701 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2702
2703 pm->pm_stats.wired_count = 0;
2704 pm->pm_stats.resident_count = 1;
2705 pm->pm_cstate.cs_all = 0;
2706 pmap_alloc_l1(pm);
2707
2708 /*
2709 * Note: The pool cache ensures that the pm_l2[] array is already
2710 * initialised to zero.
2711 */
2712
2713 pmap_pinit(pm);
2714
2715 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2716
2717 return (pm);
2718 }
2719
2720 u_int
2721 arm32_mmap_flags(paddr_t pa)
2722 {
2723 /*
2724 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2725 * and we're using the upper bits in page numbers to pass flags around
2726 * so we might as well use the same bits
2727 */
2728 return (u_int)pa & PMAP_MD_MASK;
2729 }
2730 /*
2731 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2732 * u_int flags)
2733 *
2734 * Insert the given physical page (p) at
2735 * the specified virtual address (v) in the
2736 * target physical map with the protection requested.
2737 *
2738 * NB: This is the only routine which MAY NOT lazy-evaluate
2739 * or lose information. That is, this routine must actually
2740 * insert this page into the given map NOW.
2741 */
2742 int
2743 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2744 {
2745 struct l2_bucket *l2b;
2746 struct vm_page *pg, *opg;
2747 struct pv_entry *pv;
2748 pt_entry_t *ptep, npte, opte;
2749 u_int nflags;
2750 u_int oflags;
2751
2752 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2753
2754 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2755 KDASSERT(((va | pa) & PGOFSET) == 0);
2756
2757 /*
2758 * Get a pointer to the page. Later on in this function, we
2759 * test for a managed page by checking pg != NULL.
2760 */
2761 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2762
2763 nflags = 0;
2764 if (prot & VM_PROT_WRITE)
2765 nflags |= PVF_WRITE;
2766 if (prot & VM_PROT_EXECUTE)
2767 nflags |= PVF_EXEC;
2768 if (flags & PMAP_WIRED)
2769 nflags |= PVF_WIRED;
2770
2771 pmap_acquire_pmap_lock(pm);
2772
2773 /*
2774 * Fetch the L2 bucket which maps this page, allocating one if
2775 * necessary for user pmaps.
2776 */
2777 if (pm == pmap_kernel())
2778 l2b = pmap_get_l2_bucket(pm, va);
2779 else
2780 l2b = pmap_alloc_l2_bucket(pm, va);
2781 if (l2b == NULL) {
2782 if (flags & PMAP_CANFAIL) {
2783 pmap_release_pmap_lock(pm);
2784 return (ENOMEM);
2785 }
2786 panic("pmap_enter: failed to allocate L2 bucket");
2787 }
2788 ptep = &l2b->l2b_kva[l2pte_index(va)];
2789 opte = *ptep;
2790 npte = pa;
2791 oflags = 0;
2792
2793 if (opte) {
2794 /*
2795 * There is already a mapping at this address.
2796 * If the physical address is different, lookup the
2797 * vm_page.
2798 */
2799 if (l2pte_pa(opte) != pa)
2800 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2801 else
2802 opg = pg;
2803 } else
2804 opg = NULL;
2805
2806 if (pg) {
2807 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2808
2809 /*
2810 * This is to be a managed mapping.
2811 */
2812 if ((flags & VM_PROT_ALL) ||
2813 (md->pvh_attrs & PVF_REF)) {
2814 /*
2815 * - The access type indicates that we don't need
2816 * to do referenced emulation.
2817 * OR
2818 * - The physical page has already been referenced
2819 * so no need to re-do referenced emulation here.
2820 */
2821 npte |= l2pte_set_readonly(L2_S_PROTO);
2822
2823 nflags |= PVF_REF;
2824
2825 if ((prot & VM_PROT_WRITE) != 0 &&
2826 ((flags & VM_PROT_WRITE) != 0 ||
2827 (md->pvh_attrs & PVF_MOD) != 0)) {
2828 /*
2829 * This is a writable mapping, and the
2830 * page's mod state indicates it has
2831 * already been modified. Make it
2832 * writable from the outset.
2833 */
2834 npte = l2pte_set_writable(npte);
2835 nflags |= PVF_MOD;
2836 }
2837 } else {
2838 /*
2839 * Need to do page referenced emulation.
2840 */
2841 npte |= L2_TYPE_INV;
2842 }
2843
2844 npte |= pte_l2_s_cache_mode;
2845
2846 if (pg == opg) {
2847 /*
2848 * We're changing the attrs of an existing mapping.
2849 */
2850 #ifdef MULTIPROCESSOR
2851 KASSERT(uvm_page_locked_p(pg));
2852 #endif
2853 oflags = pmap_modify_pv(md, pa, pm, va,
2854 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2855 PVF_MOD | PVF_REF, nflags);
2856
2857 #ifdef PMAP_CACHE_VIVT
2858 /*
2859 * We may need to flush the cache if we're
2860 * doing rw-ro...
2861 */
2862 if (pm->pm_cstate.cs_cache_d &&
2863 (oflags & PVF_NC) == 0 &&
2864 l2pte_writable_p(opte) &&
2865 (prot & VM_PROT_WRITE) == 0)
2866 cpu_dcache_wb_range(va, PAGE_SIZE);
2867 #endif
2868 } else {
2869 /*
2870 * New mapping, or changing the backing page
2871 * of an existing mapping.
2872 */
2873 if (opg) {
2874 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2875 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2876
2877 /*
2878 * Replacing an existing mapping with a new one.
2879 * It is part of our managed memory so we
2880 * must remove it from the PV list
2881 */
2882 #ifdef MULTIPROCESSOR
2883 KASSERT(uvm_page_locked_p(opg));
2884 #endif
2885 pv = pmap_remove_pv(omd, opa, pm, va);
2886 pmap_vac_me_harder(omd, opa, pm, 0);
2887 oflags = pv->pv_flags;
2888
2889 #ifdef PMAP_CACHE_VIVT
2890 /*
2891 * If the old mapping was valid (ref/mod
2892 * emulation creates 'invalid' mappings
2893 * initially) then make sure to frob
2894 * the cache.
2895 */
2896 if ((oflags & PVF_NC) == 0 &&
2897 l2pte_valid(opte)) {
2898 if (PV_BEEN_EXECD(oflags)) {
2899 pmap_idcache_wbinv_range(pm, va,
2900 PAGE_SIZE);
2901 } else
2902 if (PV_BEEN_REFD(oflags)) {
2903 pmap_dcache_wb_range(pm, va,
2904 PAGE_SIZE, true,
2905 (oflags & PVF_WRITE) == 0);
2906 }
2907 }
2908 #endif
2909 } else
2910 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2911 if ((flags & PMAP_CANFAIL) == 0)
2912 panic("pmap_enter: no pv entries");
2913
2914 if (pm != pmap_kernel())
2915 pmap_free_l2_bucket(pm, l2b, 0);
2916 pmap_release_pmap_lock(pm);
2917 NPDEBUG(PDB_ENTER,
2918 printf("pmap_enter: ENOMEM\n"));
2919 return (ENOMEM);
2920 }
2921
2922 #ifdef MULTIPROCESSOR
2923 KASSERT(uvm_page_locked_p(pg));
2924 #endif
2925 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2926 }
2927 } else {
2928 /*
2929 * We're mapping an unmanaged page.
2930 * These are always readable, and possibly writable, from
2931 * the get go as we don't need to track ref/mod status.
2932 */
2933 npte |= l2pte_set_readonly(L2_S_PROTO);
2934 if (prot & VM_PROT_WRITE)
2935 npte = l2pte_set_writable(npte);
2936
2937 /*
2938 * Make sure the vector table is mapped cacheable
2939 */
2940 if ((pm != pmap_kernel() && va == vector_page) ||
2941 (flags & ARM32_MMAP_CACHEABLE)) {
2942 npte |= pte_l2_s_cache_mode;
2943 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
2944 npte |= pte_l2_s_wc_mode;
2945 }
2946 if (opg) {
2947 /*
2948 * Looks like there's an existing 'managed' mapping
2949 * at this address.
2950 */
2951 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2952 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2953
2954 #ifdef MULTIPROCESSOR
2955 KASSERT(uvm_page_locked_p(opg));
2956 #endif
2957 pv = pmap_remove_pv(omd, opa, pm, va);
2958 pmap_vac_me_harder(omd, opa, pm, 0);
2959 oflags = pv->pv_flags;
2960
2961 #ifdef PMAP_CACHE_VIVT
2962 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2963 if (PV_BEEN_EXECD(oflags))
2964 pmap_idcache_wbinv_range(pm, va,
2965 PAGE_SIZE);
2966 else
2967 if (PV_BEEN_REFD(oflags))
2968 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2969 true, (oflags & PVF_WRITE) == 0);
2970 }
2971 #endif
2972 pool_put(&pmap_pv_pool, pv);
2973 }
2974 }
2975
2976 /*
2977 * Make sure userland mappings get the right permissions
2978 */
2979 if (pm != pmap_kernel() && va != vector_page)
2980 npte |= L2_S_PROT_U;
2981
2982 /*
2983 * Keep the stats up to date
2984 */
2985 if (opte == 0) {
2986 l2b->l2b_occupancy++;
2987 pm->pm_stats.resident_count++;
2988 }
2989
2990 NPDEBUG(PDB_ENTER,
2991 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2992
2993 /*
2994 * If this is just a wiring change, the two PTEs will be
2995 * identical, so there's no need to update the page table.
2996 */
2997 if (npte != opte) {
2998 bool is_cached = pmap_is_cached(pm);
2999
3000 *ptep = npte;
3001 PTE_SYNC(ptep);
3002 if (is_cached) {
3003 /*
3004 * We only need to frob the cache/tlb if this pmap
3005 * is current
3006 */
3007 if (va != vector_page && l2pte_valid(npte)) {
3008 /*
3009 * This mapping is likely to be accessed as
3010 * soon as we return to userland. Fix up the
3011 * L1 entry to avoid taking another
3012 * page/domain fault.
3013 */
3014 pd_entry_t *pl1pd, l1pd;
3015
3016 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3017 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3018 L1_C_PROTO;
3019 if (*pl1pd != l1pd) {
3020 *pl1pd = l1pd;
3021 PTE_SYNC(pl1pd);
3022 }
3023 }
3024 }
3025
3026 if (PV_BEEN_EXECD(oflags))
3027 pmap_tlb_flushID_SE(pm, va);
3028 else
3029 if (PV_BEEN_REFD(oflags))
3030 pmap_tlb_flushD_SE(pm, va);
3031
3032 NPDEBUG(PDB_ENTER,
3033 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3034 is_cached, pm->pm_cstate.cs_all));
3035
3036 if (pg != NULL) {
3037 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3038
3039 #ifdef MULTIPROCESSOR
3040 KASSERT(uvm_page_locked_p(pg));
3041 #endif
3042 pmap_vac_me_harder(md, pa, pm, va);
3043 }
3044 }
3045 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3046 if (pg) {
3047 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3048
3049 #ifdef MULTIPROCESSOR
3050 KASSERT(uvm_page_locked_p(pg));
3051 #endif
3052 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3053 KASSERTMSG(arm_cache_prefer_mask == 0 || ((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0),
3054 "pg %p: attrs=%#x urw=%u krw=%u", pg,
3055 md->pvh_attrs, md->urw_mappings, md->krw_mappings);
3056 }
3057 #endif
3058
3059 pmap_release_pmap_lock(pm);
3060
3061 return (0);
3062 }
3063
3064 /*
3065 * pmap_remove()
3066 *
3067 * pmap_remove is responsible for nuking a number of mappings for a range
3068 * of virtual address space in the current pmap. To do this efficiently
3069 * is interesting, because in a number of cases a wide virtual address
3070 * range may be supplied that contains few actual mappings. So, the
3071 * optimisations are:
3072 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3073 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3074 * maybe do just a partial cache clean. This path of execution is
3075 * complicated by the fact that the cache must be flushed _before_
3076 * the PTE is nuked, being a VAC :-)
3077 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3078 * all invalidations until pmap_update(), since pmap_remove_all() has
3079 * already flushed the cache.
3080 * 4. Maybe later fast-case a single page, but I don't think this is
3081 * going to make _that_ much difference overall.
3082 */
3083
3084 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3085
3086 void
3087 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3088 {
3089 struct l2_bucket *l2b;
3090 vaddr_t next_bucket;
3091 pt_entry_t *ptep;
3092 u_int cleanlist_idx, total, cnt;
3093 struct {
3094 vaddr_t va;
3095 pt_entry_t *ptep;
3096 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3097 u_int mappings, is_exec, is_refd;
3098
3099 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3100 "eva=%08lx\n", pm, sva, eva));
3101
3102 /*
3103 * we lock in the pmap => pv_head direction
3104 */
3105 pmap_acquire_pmap_lock(pm);
3106
3107 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3108 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3109 if (pm->pm_cstate.cs_tlb == 0)
3110 pm->pm_remove_all = true;
3111 } else
3112 cleanlist_idx = 0;
3113
3114 total = 0;
3115
3116 while (sva < eva) {
3117 /*
3118 * Do one L2 bucket's worth at a time.
3119 */
3120 next_bucket = L2_NEXT_BUCKET(sva);
3121 if (next_bucket > eva)
3122 next_bucket = eva;
3123
3124 l2b = pmap_get_l2_bucket(pm, sva);
3125 if (l2b == NULL) {
3126 sva = next_bucket;
3127 continue;
3128 }
3129
3130 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3131
3132 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3133 struct vm_page *pg;
3134 pt_entry_t pte;
3135 paddr_t pa;
3136
3137 pte = *ptep;
3138
3139 if (pte == 0) {
3140 /* Nothing here, move along */
3141 continue;
3142 }
3143
3144 pa = l2pte_pa(pte);
3145 is_exec = 0;
3146 is_refd = 1;
3147
3148 /*
3149 * Update flags. In a number of circumstances,
3150 * we could cluster a lot of these and do a
3151 * number of sequential pages in one go.
3152 */
3153 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3154 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3155 struct pv_entry *pv;
3156
3157 #ifdef MULTIPROCESSOR
3158 KASSERT(uvm_page_locked_p(pg));
3159 #endif
3160 pv = pmap_remove_pv(md, pa, pm, sva);
3161 pmap_vac_me_harder(md, pa, pm, 0);
3162 if (pv != NULL) {
3163 if (pm->pm_remove_all == false) {
3164 is_exec =
3165 PV_BEEN_EXECD(pv->pv_flags);
3166 is_refd =
3167 PV_BEEN_REFD(pv->pv_flags);
3168 }
3169 pool_put(&pmap_pv_pool, pv);
3170 }
3171 }
3172 mappings++;
3173
3174 if (!l2pte_valid(pte)) {
3175 /*
3176 * Ref/Mod emulation is still active for this
3177 * mapping, therefore it is has not yet been
3178 * accessed. No need to frob the cache/tlb.
3179 */
3180 *ptep = 0;
3181 PTE_SYNC_CURRENT(pm, ptep);
3182 continue;
3183 }
3184
3185 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3186 /* Add to the clean list. */
3187 cleanlist[cleanlist_idx].ptep = ptep;
3188 cleanlist[cleanlist_idx].va =
3189 sva | (is_exec & 1);
3190 cleanlist_idx++;
3191 } else
3192 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3193 /* Nuke everything if needed. */
3194 #ifdef PMAP_CACHE_VIVT
3195 pmap_idcache_wbinv_all(pm);
3196 #endif
3197 pmap_tlb_flushID(pm);
3198
3199 /*
3200 * Roll back the previous PTE list,
3201 * and zero out the current PTE.
3202 */
3203 for (cnt = 0;
3204 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3205 *cleanlist[cnt].ptep = 0;
3206 PTE_SYNC(cleanlist[cnt].ptep);
3207 }
3208 *ptep = 0;
3209 PTE_SYNC(ptep);
3210 cleanlist_idx++;
3211 pm->pm_remove_all = true;
3212 } else {
3213 *ptep = 0;
3214 PTE_SYNC(ptep);
3215 if (pm->pm_remove_all == false) {
3216 if (is_exec)
3217 pmap_tlb_flushID_SE(pm, sva);
3218 else
3219 if (is_refd)
3220 pmap_tlb_flushD_SE(pm, sva);
3221 }
3222 }
3223 }
3224
3225 /*
3226 * Deal with any left overs
3227 */
3228 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3229 total += cleanlist_idx;
3230 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3231 if (pm->pm_cstate.cs_all != 0) {
3232 vaddr_t clva = cleanlist[cnt].va & ~1;
3233 if (cleanlist[cnt].va & 1) {
3234 #ifdef PMAP_CACHE_VIVT
3235 pmap_idcache_wbinv_range(pm,
3236 clva, PAGE_SIZE);
3237 #endif
3238 pmap_tlb_flushID_SE(pm, clva);
3239 } else {
3240 #ifdef PMAP_CACHE_VIVT
3241 pmap_dcache_wb_range(pm,
3242 clva, PAGE_SIZE, true,
3243 false);
3244 #endif
3245 pmap_tlb_flushD_SE(pm, clva);
3246 }
3247 }
3248 *cleanlist[cnt].ptep = 0;
3249 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3250 }
3251
3252 /*
3253 * If it looks like we're removing a whole bunch
3254 * of mappings, it's faster to just write-back
3255 * the whole cache now and defer TLB flushes until
3256 * pmap_update() is called.
3257 */
3258 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3259 cleanlist_idx = 0;
3260 else {
3261 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3262 #ifdef PMAP_CACHE_VIVT
3263 pmap_idcache_wbinv_all(pm);
3264 #endif
3265 pm->pm_remove_all = true;
3266 }
3267 }
3268
3269 pmap_free_l2_bucket(pm, l2b, mappings);
3270 pm->pm_stats.resident_count -= mappings;
3271 }
3272
3273 pmap_release_pmap_lock(pm);
3274 }
3275
3276 #ifdef PMAP_CACHE_VIPT
3277 static struct pv_entry *
3278 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3279 {
3280 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3281 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3282 struct pv_entry *pv;
3283
3284 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3285 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3286
3287 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3288 KASSERT(pv);
3289 KASSERT(pv->pv_flags & PVF_KENTRY);
3290
3291 /*
3292 * If we are removing a writeable mapping to a cached exec page,
3293 * if it's the last mapping then clear it execness other sync
3294 * the page to the icache.
3295 */
3296 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3297 && (pv->pv_flags & PVF_WRITE) != 0) {
3298 if (SLIST_EMPTY(&md->pvh_list)) {
3299 md->pvh_attrs &= ~PVF_EXEC;
3300 PMAPCOUNT(exec_discarded_kremove);
3301 } else {
3302 pmap_syncicache_page(md, pa);
3303 PMAPCOUNT(exec_synced_kremove);
3304 }
3305 }
3306 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3307
3308 return pv;
3309 }
3310 #endif /* PMAP_CACHE_VIPT */
3311
3312 /*
3313 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3314 *
3315 * We assume there is already sufficient KVM space available
3316 * to do this, as we can't allocate L2 descriptor tables/metadata
3317 * from here.
3318 */
3319 void
3320 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3321 {
3322 struct l2_bucket *l2b;
3323 pt_entry_t *ptep, opte;
3324 #ifdef PMAP_CACHE_VIVT
3325 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3326 #endif
3327 #ifdef PMAP_CACHE_VIPT
3328 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3329 struct vm_page *opg;
3330 struct pv_entry *pv = NULL;
3331 #endif
3332 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3333
3334 NPDEBUG(PDB_KENTER,
3335 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3336 va, pa, prot));
3337
3338 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3339 KDASSERT(l2b != NULL);
3340
3341 ptep = &l2b->l2b_kva[l2pte_index(va)];
3342 opte = *ptep;
3343
3344 if (opte == 0) {
3345 PMAPCOUNT(kenter_mappings);
3346 l2b->l2b_occupancy++;
3347 } else {
3348 PMAPCOUNT(kenter_remappings);
3349 #ifdef PMAP_CACHE_VIPT
3350 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3351 #ifdef DIAGNOSTIC
3352 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3353 #endif
3354 if (opg) {
3355 KASSERT(opg != pg);
3356 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3357 KASSERT((flags & PMAP_KMPAGE) == 0);
3358 pv = pmap_kremove_pg(opg, va);
3359 }
3360 #endif
3361 if (l2pte_valid(opte)) {
3362 #ifdef PMAP_CACHE_VIVT
3363 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3364 #endif
3365 cpu_tlb_flushD_SE(va);
3366 cpu_cpwait();
3367 }
3368 }
3369
3370 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3371 | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
3372 PTE_SYNC(ptep);
3373
3374 if (pg) {
3375 #ifdef MULTIPROCESSOR
3376 KASSERT(uvm_page_locked_p(pg));
3377 #endif
3378 if (flags & PMAP_KMPAGE) {
3379 KASSERT(md->urw_mappings == 0);
3380 KASSERT(md->uro_mappings == 0);
3381 KASSERT(md->krw_mappings == 0);
3382 KASSERT(md->kro_mappings == 0);
3383 #ifdef PMAP_CACHE_VIPT
3384 KASSERT(pv == NULL);
3385 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3386 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3387 /* if there is a color conflict, evict from cache. */
3388 if (pmap_is_page_colored_p(md)
3389 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3390 PMAPCOUNT(vac_color_change);
3391 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3392 } else if (md->pvh_attrs & PVF_MULTCLR) {
3393 /*
3394 * If this page has multiple colors, expunge
3395 * them.
3396 */
3397 PMAPCOUNT(vac_flush_lots2);
3398 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3399 }
3400 md->pvh_attrs &= PAGE_SIZE - 1;
3401 md->pvh_attrs |= PVF_KMPAGE
3402 | PVF_COLORED | PVF_DIRTY
3403 | (va & arm_cache_prefer_mask);
3404 #endif
3405 #ifdef PMAP_CACHE_VIVT
3406 md->pvh_attrs |= PVF_KMPAGE;
3407 #endif
3408 pmap_kmpages++;
3409 #ifdef PMAP_CACHE_VIPT
3410 } else {
3411 if (pv == NULL) {
3412 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3413 KASSERT(pv != NULL);
3414 }
3415 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3416 PVF_WIRED | PVF_KENTRY
3417 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3418 if ((prot & VM_PROT_WRITE)
3419 && !(md->pvh_attrs & PVF_NC))
3420 md->pvh_attrs |= PVF_DIRTY;
3421 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3422 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3423 #endif
3424 }
3425 #ifdef PMAP_CACHE_VIPT
3426 } else {
3427 if (pv != NULL)
3428 pool_put(&pmap_pv_pool, pv);
3429 #endif
3430 }
3431 }
3432
3433 void
3434 pmap_kremove(vaddr_t va, vsize_t len)
3435 {
3436 struct l2_bucket *l2b;
3437 pt_entry_t *ptep, *sptep, opte;
3438 vaddr_t next_bucket, eva;
3439 u_int mappings;
3440 struct vm_page *opg;
3441
3442 PMAPCOUNT(kenter_unmappings);
3443
3444 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3445 va, len));
3446
3447 eva = va + len;
3448
3449 while (va < eva) {
3450 next_bucket = L2_NEXT_BUCKET(va);
3451 if (next_bucket > eva)
3452 next_bucket = eva;
3453
3454 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3455 KDASSERT(l2b != NULL);
3456
3457 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3458 mappings = 0;
3459
3460 while (va < next_bucket) {
3461 opte = *ptep;
3462 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3463 if (opg) {
3464 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3465
3466 if (omd->pvh_attrs & PVF_KMPAGE) {
3467 KASSERT(omd->urw_mappings == 0);
3468 KASSERT(omd->uro_mappings == 0);
3469 KASSERT(omd->krw_mappings == 0);
3470 KASSERT(omd->kro_mappings == 0);
3471 omd->pvh_attrs &= ~PVF_KMPAGE;
3472 #ifdef PMAP_CACHE_VIPT
3473 omd->pvh_attrs &= ~PVF_WRITE;
3474 #endif
3475 pmap_kmpages--;
3476 #ifdef PMAP_CACHE_VIPT
3477 } else {
3478 pool_put(&pmap_pv_pool,
3479 pmap_kremove_pg(opg, va));
3480 #endif
3481 }
3482 }
3483 if (l2pte_valid(opte)) {
3484 #ifdef PMAP_CACHE_VIVT
3485 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3486 #endif
3487 cpu_tlb_flushD_SE(va);
3488 }
3489 if (opte) {
3490 *ptep = 0;
3491 mappings++;
3492 }
3493 va += PAGE_SIZE;
3494 ptep++;
3495 }
3496 KDASSERT(mappings <= l2b->l2b_occupancy);
3497 l2b->l2b_occupancy -= mappings;
3498 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3499 }
3500 cpu_cpwait();
3501 }
3502
3503 bool
3504 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3505 {
3506 struct l2_dtable *l2;
3507 pd_entry_t *pl1pd, l1pd;
3508 pt_entry_t *ptep, pte;
3509 paddr_t pa;
3510 u_int l1idx;
3511
3512 pmap_acquire_pmap_lock(pm);
3513
3514 l1idx = L1_IDX(va);
3515 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3516 l1pd = *pl1pd;
3517
3518 if (l1pte_section_p(l1pd)) {
3519 /*
3520 * These should only happen for pmap_kernel()
3521 */
3522 KDASSERT(pm == pmap_kernel());
3523 pmap_release_pmap_lock(pm);
3524 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3525 if (l1pte_supersection_p(l1pd)) {
3526 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3527 } else
3528 #endif
3529 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3530 } else {
3531 /*
3532 * Note that we can't rely on the validity of the L1
3533 * descriptor as an indication that a mapping exists.
3534 * We have to look it up in the L2 dtable.
3535 */
3536 l2 = pm->pm_l2[L2_IDX(l1idx)];
3537
3538 if (l2 == NULL ||
3539 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3540 pmap_release_pmap_lock(pm);
3541 return false;
3542 }
3543
3544 ptep = &ptep[l2pte_index(va)];
3545 pte = *ptep;
3546 pmap_release_pmap_lock(pm);
3547
3548 if (pte == 0)
3549 return false;
3550
3551 switch (pte & L2_TYPE_MASK) {
3552 case L2_TYPE_L:
3553 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3554 break;
3555
3556 default:
3557 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3558 break;
3559 }
3560 }
3561
3562 if (pap != NULL)
3563 *pap = pa;
3564
3565 return true;
3566 }
3567
3568 void
3569 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3570 {
3571 struct l2_bucket *l2b;
3572 pt_entry_t *ptep, pte;
3573 vaddr_t next_bucket;
3574 u_int flags;
3575 u_int clr_mask;
3576 int flush;
3577
3578 NPDEBUG(PDB_PROTECT,
3579 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3580 pm, sva, eva, prot));
3581
3582 if ((prot & VM_PROT_READ) == 0) {
3583 pmap_remove(pm, sva, eva);
3584 return;
3585 }
3586
3587 if (prot & VM_PROT_WRITE) {
3588 /*
3589 * If this is a read->write transition, just ignore it and let
3590 * uvm_fault() take care of it later.
3591 */
3592 return;
3593 }
3594
3595 pmap_acquire_pmap_lock(pm);
3596
3597 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3598 flags = 0;
3599 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3600
3601 while (sva < eva) {
3602 next_bucket = L2_NEXT_BUCKET(sva);
3603 if (next_bucket > eva)
3604 next_bucket = eva;
3605
3606 l2b = pmap_get_l2_bucket(pm, sva);
3607 if (l2b == NULL) {
3608 sva = next_bucket;
3609 continue;
3610 }
3611
3612 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3613
3614 while (sva < next_bucket) {
3615 pte = *ptep;
3616 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3617 struct vm_page *pg;
3618 u_int f;
3619
3620 #ifdef PMAP_CACHE_VIVT
3621 /*
3622 * OK, at this point, we know we're doing
3623 * write-protect operation. If the pmap is
3624 * active, write-back the page.
3625 */
3626 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3627 false, false);
3628 #endif
3629
3630 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3631 pte = l2pte_set_readonly(pte);
3632 *ptep = pte;
3633 PTE_SYNC(ptep);
3634
3635 if (pg != NULL) {
3636 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3637 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3638
3639 #ifdef MULTIPROCESSOR
3640 KASSERT(uvm_page_locked_p(pg));
3641 #endif
3642 f = pmap_modify_pv(md, pa, pm, sva,
3643 clr_mask, 0);
3644 pmap_vac_me_harder(md, pa, pm, sva);
3645 } else {
3646 f = PVF_REF | PVF_EXEC;
3647 }
3648
3649 if (flush >= 0) {
3650 flush++;
3651 flags |= f;
3652 } else
3653 if (PV_BEEN_EXECD(f))
3654 pmap_tlb_flushID_SE(pm, sva);
3655 else
3656 if (PV_BEEN_REFD(f))
3657 pmap_tlb_flushD_SE(pm, sva);
3658 }
3659
3660 sva += PAGE_SIZE;
3661 ptep++;
3662 }
3663 }
3664
3665 pmap_release_pmap_lock(pm);
3666
3667 if (flush) {
3668 if (PV_BEEN_EXECD(flags))
3669 pmap_tlb_flushID(pm);
3670 else
3671 if (PV_BEEN_REFD(flags))
3672 pmap_tlb_flushD(pm);
3673 }
3674 }
3675
3676 void
3677 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3678 {
3679 struct l2_bucket *l2b;
3680 pt_entry_t *ptep;
3681 vaddr_t next_bucket;
3682 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3683
3684 NPDEBUG(PDB_EXEC,
3685 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3686 pm, sva, eva));
3687
3688 pmap_acquire_pmap_lock(pm);
3689
3690 while (sva < eva) {
3691 next_bucket = L2_NEXT_BUCKET(sva);
3692 if (next_bucket > eva)
3693 next_bucket = eva;
3694
3695 l2b = pmap_get_l2_bucket(pm, sva);
3696 if (l2b == NULL) {
3697 sva = next_bucket;
3698 continue;
3699 }
3700
3701 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3702 sva < next_bucket;
3703 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3704 if (l2pte_valid(*ptep)) {
3705 cpu_icache_sync_range(sva,
3706 min(page_size, eva - sva));
3707 }
3708 }
3709 }
3710
3711 pmap_release_pmap_lock(pm);
3712 }
3713
3714 void
3715 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3716 {
3717 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3718 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3719
3720 NPDEBUG(PDB_PROTECT,
3721 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3722 md, pa, prot));
3723
3724 #ifdef MULTIPROCESSOR
3725 KASSERT(uvm_page_locked_p(pg));
3726 #endif
3727
3728 switch(prot) {
3729 case VM_PROT_READ|VM_PROT_WRITE:
3730 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3731 pmap_clearbit(md, pa, PVF_EXEC);
3732 break;
3733 #endif
3734 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3735 break;
3736
3737 case VM_PROT_READ:
3738 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3739 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3740 break;
3741 #endif
3742 case VM_PROT_READ|VM_PROT_EXECUTE:
3743 pmap_clearbit(md, pa, PVF_WRITE);
3744 break;
3745
3746 default:
3747 pmap_page_remove(md, pa);
3748 break;
3749 }
3750 }
3751
3752 /*
3753 * pmap_clear_modify:
3754 *
3755 * Clear the "modified" attribute for a page.
3756 */
3757 bool
3758 pmap_clear_modify(struct vm_page *pg)
3759 {
3760 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3761 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3762 bool rv;
3763
3764 #ifdef MULTIPROCESSOR
3765 KASSERT(uvm_page_locked_p(pg));
3766 #endif
3767
3768 if (md->pvh_attrs & PVF_MOD) {
3769 rv = true;
3770 #ifdef PMAP_CACHE_VIPT
3771 /*
3772 * If we are going to clear the modified bit and there are
3773 * no other modified bits set, flush the page to memory and
3774 * mark it clean.
3775 */
3776 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3777 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3778 #endif
3779 pmap_clearbit(md, pa, PVF_MOD);
3780 } else
3781 rv = false;
3782
3783 return (rv);
3784 }
3785
3786 /*
3787 * pmap_clear_reference:
3788 *
3789 * Clear the "referenced" attribute for a page.
3790 */
3791 bool
3792 pmap_clear_reference(struct vm_page *pg)
3793 {
3794 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3795 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3796 bool rv;
3797
3798 #ifdef MULTIPROCESSOR
3799 KASSERT(uvm_page_locked_p(pg));
3800 #endif
3801
3802 if (md->pvh_attrs & PVF_REF) {
3803 rv = true;
3804 pmap_clearbit(md, pa, PVF_REF);
3805 } else
3806 rv = false;
3807
3808 return (rv);
3809 }
3810
3811 /*
3812 * pmap_is_modified:
3813 *
3814 * Test if a page has the "modified" attribute.
3815 */
3816 /* See <arm/arm32/pmap.h> */
3817
3818 /*
3819 * pmap_is_referenced:
3820 *
3821 * Test if a page has the "referenced" attribute.
3822 */
3823 /* See <arm/arm32/pmap.h> */
3824
3825 int
3826 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3827 {
3828 struct l2_dtable *l2;
3829 struct l2_bucket *l2b;
3830 pd_entry_t *pl1pd, l1pd;
3831 pt_entry_t *ptep, pte;
3832 paddr_t pa;
3833 u_int l1idx;
3834 int rv = 0;
3835
3836 pmap_acquire_pmap_lock(pm);
3837
3838 l1idx = L1_IDX(va);
3839
3840 /*
3841 * If there is no l2_dtable for this address, then the process
3842 * has no business accessing it.
3843 *
3844 * Note: This will catch userland processes trying to access
3845 * kernel addresses.
3846 */
3847 l2 = pm->pm_l2[L2_IDX(l1idx)];
3848 if (l2 == NULL)
3849 goto out;
3850
3851 /*
3852 * Likewise if there is no L2 descriptor table
3853 */
3854 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3855 if (l2b->l2b_kva == NULL)
3856 goto out;
3857
3858 /*
3859 * Check the PTE itself.
3860 */
3861 ptep = &l2b->l2b_kva[l2pte_index(va)];
3862 pte = *ptep;
3863 if (pte == 0)
3864 goto out;
3865
3866 /*
3867 * Catch a userland access to the vector page mapped at 0x0
3868 */
3869 if (user && (pte & L2_S_PROT_U) == 0)
3870 goto out;
3871
3872 pa = l2pte_pa(pte);
3873
3874 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3875 /*
3876 * This looks like a good candidate for "page modified"
3877 * emulation...
3878 */
3879 struct pv_entry *pv;
3880 struct vm_page *pg;
3881
3882 /* Extract the physical address of the page */
3883 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3884 goto out;
3885
3886 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3887
3888 /* Get the current flags for this page. */
3889 #ifdef MULTIPROCESSOR
3890 KASSERT(uvm_page_locked_p(pg));
3891 #endif
3892
3893 pv = pmap_find_pv(md, pm, va);
3894 if (pv == NULL) {
3895 goto out;
3896 }
3897
3898 /*
3899 * Do the flags say this page is writable? If not then it
3900 * is a genuine write fault. If yes then the write fault is
3901 * our fault as we did not reflect the write access in the
3902 * PTE. Now we know a write has occurred we can correct this
3903 * and also set the modified bit
3904 */
3905 if ((pv->pv_flags & PVF_WRITE) == 0) {
3906 goto out;
3907 }
3908
3909 NPDEBUG(PDB_FOLLOW,
3910 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3911 pm, va, pa));
3912
3913 md->pvh_attrs |= PVF_REF | PVF_MOD;
3914 pv->pv_flags |= PVF_REF | PVF_MOD;
3915 #ifdef PMAP_CACHE_VIPT
3916 /*
3917 * If there are cacheable mappings for this page, mark it dirty.
3918 */
3919 if ((md->pvh_attrs & PVF_NC) == 0)
3920 md->pvh_attrs |= PVF_DIRTY;
3921 #endif
3922
3923 /*
3924 * Re-enable write permissions for the page. No need to call
3925 * pmap_vac_me_harder(), since this is just a
3926 * modified-emulation fault, and the PVF_WRITE bit isn't
3927 * changing. We've already set the cacheable bits based on
3928 * the assumption that we can write to this page.
3929 */
3930 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3931 PTE_SYNC(ptep);
3932 rv = 1;
3933 } else
3934 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3935 /*
3936 * This looks like a good candidate for "page referenced"
3937 * emulation.
3938 */
3939 struct pv_entry *pv;
3940 struct vm_page *pg;
3941
3942 /* Extract the physical address of the page */
3943 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3944 goto out;
3945
3946 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3947
3948 /* Get the current flags for this page. */
3949 #ifdef MULTIPROCESSOR
3950 KASSERT(uvm_page_locked_p(pg));
3951 #endif
3952
3953 pv = pmap_find_pv(md, pm, va);
3954 if (pv == NULL) {
3955 goto out;
3956 }
3957
3958 md->pvh_attrs |= PVF_REF;
3959 pv->pv_flags |= PVF_REF;
3960
3961 NPDEBUG(PDB_FOLLOW,
3962 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3963 pm, va, pa));
3964
3965 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3966 PTE_SYNC(ptep);
3967 rv = 1;
3968 }
3969
3970 /*
3971 * We know there is a valid mapping here, so simply
3972 * fix up the L1 if necessary.
3973 */
3974 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3975 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3976 if (*pl1pd != l1pd) {
3977 *pl1pd = l1pd;
3978 PTE_SYNC(pl1pd);
3979 rv = 1;
3980 }
3981
3982 #ifdef CPU_SA110
3983 /*
3984 * There are bugs in the rev K SA110. This is a check for one
3985 * of them.
3986 */
3987 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3988 curcpu()->ci_arm_cpurev < 3) {
3989 /* Always current pmap */
3990 if (l2pte_valid(pte)) {
3991 extern int kernel_debug;
3992 if (kernel_debug & 1) {
3993 struct proc *p = curlwp->l_proc;
3994 printf("prefetch_abort: page is already "
3995 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3996 printf("prefetch_abort: pc=%08lx proc=%p "
3997 "process=%s\n", va, p, p->p_comm);
3998 printf("prefetch_abort: far=%08x fs=%x\n",
3999 cpu_faultaddress(), cpu_faultstatus());
4000 }
4001 #ifdef DDB
4002 if (kernel_debug & 2)
4003 Debugger();
4004 #endif
4005 rv = 1;
4006 }
4007 }
4008 #endif /* CPU_SA110 */
4009
4010 /*
4011 * If 'rv == 0' at this point, it generally indicates that there is a
4012 * stale TLB entry for the faulting address. That might be due to a
4013 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4014 */
4015 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4016 && pmap_needs_pte_sync == 0) {
4017 pmap_needs_pte_sync = 1;
4018 PTE_SYNC(ptep);
4019 rv = 1;
4020 }
4021
4022 #ifdef DEBUG
4023 /*
4024 * If 'rv == 0' at this point, it generally indicates that there is a
4025 * stale TLB entry for the faulting address. This happens when two or
4026 * more processes are sharing an L1. Since we don't flush the TLB on
4027 * a context switch between such processes, we can take domain faults
4028 * for mappings which exist at the same VA in both processes. EVEN IF
4029 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4030 * example.
4031 *
4032 * This is extremely likely to happen if pmap_enter() updated the L1
4033 * entry for a recently entered mapping. In this case, the TLB is
4034 * flushed for the new mapping, but there may still be TLB entries for
4035 * other mappings belonging to other processes in the 1MB range
4036 * covered by the L1 entry.
4037 *
4038 * Since 'rv == 0', we know that the L1 already contains the correct
4039 * value, so the fault must be due to a stale TLB entry.
4040 *
4041 * Since we always need to flush the TLB anyway in the case where we
4042 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4043 * stale TLB entries dynamically.
4044 *
4045 * However, the above condition can ONLY happen if the current L1 is
4046 * being shared. If it happens when the L1 is unshared, it indicates
4047 * that other parts of the pmap are not doing their job WRT managing
4048 * the TLB.
4049 */
4050 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4051 extern int last_fault_code;
4052 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4053 pm, va, ftype);
4054 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4055 l2, l2b, ptep, pl1pd);
4056 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4057 pte, l1pd, last_fault_code);
4058 #ifdef DDB
4059 Debugger();
4060 #endif
4061 }
4062 #endif
4063
4064 cpu_tlb_flushID_SE(va);
4065 cpu_cpwait();
4066
4067 rv = 1;
4068
4069 out:
4070 pmap_release_pmap_lock(pm);
4071
4072 return (rv);
4073 }
4074
4075 /*
4076 * Routine: pmap_procwr
4077 *
4078 * Function:
4079 * Synchronize caches corresponding to [addr, addr+len) in p.
4080 *
4081 */
4082 void
4083 pmap_procwr(struct proc *p, vaddr_t va, int len)
4084 {
4085 /* We only need to do anything if it is the current process. */
4086 if (p == curproc)
4087 cpu_icache_sync_range(va, len);
4088 }
4089
4090 /*
4091 * Routine: pmap_unwire
4092 * Function: Clear the wired attribute for a map/virtual-address pair.
4093 *
4094 * In/out conditions:
4095 * The mapping must already exist in the pmap.
4096 */
4097 void
4098 pmap_unwire(pmap_t pm, vaddr_t va)
4099 {
4100 struct l2_bucket *l2b;
4101 pt_entry_t *ptep, pte;
4102 struct vm_page *pg;
4103 paddr_t pa;
4104
4105 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4106
4107 pmap_acquire_pmap_lock(pm);
4108
4109 l2b = pmap_get_l2_bucket(pm, va);
4110 KDASSERT(l2b != NULL);
4111
4112 ptep = &l2b->l2b_kva[l2pte_index(va)];
4113 pte = *ptep;
4114
4115 /* Extract the physical address of the page */
4116 pa = l2pte_pa(pte);
4117
4118 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4119 /* Update the wired bit in the pv entry for this page. */
4120 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4121
4122 #ifdef MULTIPROCESSOR
4123 KASSERT(uvm_page_locked_p(pg));
4124 #endif
4125 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4126 }
4127
4128 pmap_release_pmap_lock(pm);
4129 }
4130
4131 void
4132 pmap_activate(struct lwp *l)
4133 {
4134 extern int block_userspace_access;
4135 pmap_t opm, npm, rpm;
4136 uint32_t odacr, ndacr;
4137 int oldirqstate;
4138
4139 /*
4140 * If activating a non-current lwp or the current lwp is
4141 * already active, just return.
4142 */
4143 if (l != curlwp ||
4144 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4145 return;
4146
4147 npm = l->l_proc->p_vmspace->vm_map.pmap;
4148 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4149 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4150
4151 /*
4152 * If TTB and DACR are unchanged, short-circuit all the
4153 * TLB/cache management stuff.
4154 */
4155 if (pmap_previous_active_lwp != NULL) {
4156 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4157 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4158 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4159
4160 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4161 goto all_done;
4162 } else
4163 opm = NULL;
4164
4165 PMAPCOUNT(activations);
4166 block_userspace_access = 1;
4167
4168 /*
4169 * If switching to a user vmspace which is different to the
4170 * most recent one, and the most recent one is potentially
4171 * live in the cache, we must write-back and invalidate the
4172 * entire cache.
4173 */
4174 rpm = pmap_recent_user;
4175
4176 /*
4177 * XXXSCW: There's a corner case here which can leave turds in the cache as
4178 * reported in kern/41058. They're probably left over during tear-down and
4179 * switching away from an exiting process. Until the root cause is identified
4180 * and fixed, zap the cache when switching pmaps. This will result in a few
4181 * unnecessary cache flushes, but that's better than silently corrupting data.
4182 */
4183 #if 0
4184 if (npm != pmap_kernel() && rpm && npm != rpm &&
4185 rpm->pm_cstate.cs_cache) {
4186 rpm->pm_cstate.cs_cache = 0;
4187 #ifdef PMAP_CACHE_VIVT
4188 cpu_idcache_wbinv_all();
4189 #endif
4190 }
4191 #else
4192 if (rpm) {
4193 rpm->pm_cstate.cs_cache = 0;
4194 if (npm == pmap_kernel())
4195 pmap_recent_user = NULL;
4196 #ifdef PMAP_CACHE_VIVT
4197 cpu_idcache_wbinv_all();
4198 #endif
4199 }
4200 #endif
4201
4202 /* No interrupts while we frob the TTB/DACR */
4203 oldirqstate = disable_interrupts(IF32_bits);
4204
4205 /*
4206 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4207 * entry corresponding to 'vector_page' in the incoming L1 table
4208 * before switching to it otherwise subsequent interrupts/exceptions
4209 * (including domain faults!) will jump into hyperspace.
4210 */
4211 if (npm->pm_pl1vec != NULL) {
4212 cpu_tlb_flushID_SE((u_int)vector_page);
4213 cpu_cpwait();
4214 *npm->pm_pl1vec = npm->pm_l1vec;
4215 PTE_SYNC(npm->pm_pl1vec);
4216 }
4217
4218 cpu_domains(ndacr);
4219
4220 if (npm == pmap_kernel() || npm == rpm) {
4221 /*
4222 * Switching to a kernel thread, or back to the
4223 * same user vmspace as before... Simply update
4224 * the TTB (no TLB flush required)
4225 */
4226 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4227 cpu_cpwait();
4228 } else {
4229 /*
4230 * Otherwise, update TTB and flush TLB
4231 */
4232 cpu_context_switch(npm->pm_l1->l1_physaddr);
4233 if (rpm != NULL)
4234 rpm->pm_cstate.cs_tlb = 0;
4235 }
4236
4237 restore_interrupts(oldirqstate);
4238
4239 block_userspace_access = 0;
4240
4241 all_done:
4242 /*
4243 * The new pmap is resident. Make sure it's marked
4244 * as resident in the cache/TLB.
4245 */
4246 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4247 if (npm != pmap_kernel())
4248 pmap_recent_user = npm;
4249
4250 /* The old pmap is not longer active */
4251 if (opm != NULL)
4252 opm->pm_activated = false;
4253
4254 /* But the new one is */
4255 npm->pm_activated = true;
4256 }
4257
4258 void
4259 pmap_deactivate(struct lwp *l)
4260 {
4261
4262 /*
4263 * If the process is exiting, make sure pmap_activate() does
4264 * a full MMU context-switch and cache flush, which we might
4265 * otherwise skip. See PR port-arm/38950.
4266 */
4267 if (l->l_proc->p_sflag & PS_WEXIT)
4268 pmap_previous_active_lwp = NULL;
4269
4270 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4271 }
4272
4273 void
4274 pmap_update(pmap_t pm)
4275 {
4276
4277 if (pm->pm_remove_all) {
4278 /*
4279 * Finish up the pmap_remove_all() optimisation by flushing
4280 * the TLB.
4281 */
4282 pmap_tlb_flushID(pm);
4283 pm->pm_remove_all = false;
4284 }
4285
4286 if (pmap_is_current(pm)) {
4287 /*
4288 * If we're dealing with a current userland pmap, move its L1
4289 * to the end of the LRU.
4290 */
4291 if (pm != pmap_kernel())
4292 pmap_use_l1(pm);
4293
4294 /*
4295 * We can assume we're done with frobbing the cache/tlb for
4296 * now. Make sure any future pmap ops don't skip cache/tlb
4297 * flushes.
4298 */
4299 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4300 }
4301
4302 PMAPCOUNT(updates);
4303
4304 /*
4305 * make sure TLB/cache operations have completed.
4306 */
4307 cpu_cpwait();
4308 }
4309
4310 void
4311 pmap_remove_all(pmap_t pm)
4312 {
4313
4314 /*
4315 * The vmspace described by this pmap is about to be torn down.
4316 * Until pmap_update() is called, UVM will only make calls
4317 * to pmap_remove(). We can make life much simpler by flushing
4318 * the cache now, and deferring TLB invalidation to pmap_update().
4319 */
4320 #ifdef PMAP_CACHE_VIVT
4321 pmap_idcache_wbinv_all(pm);
4322 #endif
4323 pm->pm_remove_all = true;
4324 }
4325
4326 /*
4327 * Retire the given physical map from service.
4328 * Should only be called if the map contains no valid mappings.
4329 */
4330 void
4331 pmap_destroy(pmap_t pm)
4332 {
4333 u_int count;
4334
4335 if (pm == NULL)
4336 return;
4337
4338 if (pm->pm_remove_all) {
4339 pmap_tlb_flushID(pm);
4340 pm->pm_remove_all = false;
4341 }
4342
4343 /*
4344 * Drop reference count
4345 */
4346 mutex_enter(pm->pm_lock);
4347 count = --pm->pm_obj.uo_refs;
4348 mutex_exit(pm->pm_lock);
4349 if (count > 0) {
4350 if (pmap_is_current(pm)) {
4351 if (pm != pmap_kernel())
4352 pmap_use_l1(pm);
4353 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4354 }
4355 return;
4356 }
4357
4358 /*
4359 * reference count is zero, free pmap resources and then free pmap.
4360 */
4361
4362 if (vector_page < KERNEL_BASE) {
4363 KDASSERT(!pmap_is_current(pm));
4364
4365 /* Remove the vector page mapping */
4366 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4367 pmap_update(pm);
4368 }
4369
4370 LIST_REMOVE(pm, pm_list);
4371
4372 pmap_free_l1(pm);
4373
4374 if (pmap_recent_user == pm)
4375 pmap_recent_user = NULL;
4376
4377 uvm_obj_destroy(&pm->pm_obj, false);
4378 mutex_destroy(&pm->pm_obj_lock);
4379 pool_cache_put(&pmap_cache, pm);
4380 }
4381
4382
4383 /*
4384 * void pmap_reference(pmap_t pm)
4385 *
4386 * Add a reference to the specified pmap.
4387 */
4388 void
4389 pmap_reference(pmap_t pm)
4390 {
4391
4392 if (pm == NULL)
4393 return;
4394
4395 pmap_use_l1(pm);
4396
4397 mutex_enter(pm->pm_lock);
4398 pm->pm_obj.uo_refs++;
4399 mutex_exit(pm->pm_lock);
4400 }
4401
4402 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4403
4404 static struct evcnt pmap_prefer_nochange_ev =
4405 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4406 static struct evcnt pmap_prefer_change_ev =
4407 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4408
4409 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4410 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4411
4412 void
4413 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4414 {
4415 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4416 vaddr_t va = *vap;
4417 vaddr_t diff = (hint - va) & mask;
4418 if (diff == 0) {
4419 pmap_prefer_nochange_ev.ev_count++;
4420 } else {
4421 pmap_prefer_change_ev.ev_count++;
4422 if (__predict_false(td))
4423 va -= mask + 1;
4424 *vap = va + diff;
4425 }
4426 }
4427 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4428
4429 /*
4430 * pmap_zero_page()
4431 *
4432 * Zero a given physical page by mapping it at a page hook point.
4433 * In doing the zero page op, the page we zero is mapped cachable, as with
4434 * StrongARM accesses to non-cached pages are non-burst making writing
4435 * _any_ bulk data very slow.
4436 */
4437 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4438 void
4439 pmap_zero_page_generic(paddr_t phys)
4440 {
4441 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4442 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4443 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4444 #endif
4445 #ifdef PMAP_CACHE_VIPT
4446 /* Choose the last page color it had, if any */
4447 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4448 #else
4449 const vsize_t va_offset = 0;
4450 #endif
4451 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4452
4453 #ifdef DEBUG
4454 if (!SLIST_EMPTY(&md->pvh_list))
4455 panic("pmap_zero_page: page has mappings");
4456 #endif
4457
4458 KDASSERT((phys & PGOFSET) == 0);
4459
4460 /*
4461 * Hook in the page, zero it, and purge the cache for that
4462 * zeroed page. Invalidate the TLB as needed.
4463 */
4464 *ptep = L2_S_PROTO | phys |
4465 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4466 PTE_SYNC(ptep);
4467 cpu_tlb_flushD_SE(cdstp + va_offset);
4468 cpu_cpwait();
4469 bzero_page(cdstp + va_offset);
4470 /*
4471 * Unmap the page.
4472 */
4473 *ptep = 0;
4474 PTE_SYNC(ptep);
4475 cpu_tlb_flushD_SE(cdstp + va_offset);
4476 #ifdef PMAP_CACHE_VIVT
4477 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4478 #endif
4479 #ifdef PMAP_CACHE_VIPT
4480 /*
4481 * This page is now cache resident so it now has a page color.
4482 * Any contents have been obliterated so clear the EXEC flag.
4483 */
4484 if (!pmap_is_page_colored_p(md)) {
4485 PMAPCOUNT(vac_color_new);
4486 md->pvh_attrs |= PVF_COLORED;
4487 }
4488 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4489 md->pvh_attrs &= ~PVF_EXEC;
4490 PMAPCOUNT(exec_discarded_zero);
4491 }
4492 md->pvh_attrs |= PVF_DIRTY;
4493 #endif
4494 }
4495 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4496
4497 #if ARM_MMU_XSCALE == 1
4498 void
4499 pmap_zero_page_xscale(paddr_t phys)
4500 {
4501 #ifdef DEBUG
4502 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4503 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4504
4505 if (!SLIST_EMPTY(&md->pvh_list))
4506 panic("pmap_zero_page: page has mappings");
4507 #endif
4508
4509 KDASSERT((phys & PGOFSET) == 0);
4510
4511 /*
4512 * Hook in the page, zero it, and purge the cache for that
4513 * zeroed page. Invalidate the TLB as needed.
4514 */
4515 *cdst_pte = L2_S_PROTO | phys |
4516 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4517 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4518 PTE_SYNC(cdst_pte);
4519 cpu_tlb_flushD_SE(cdstp);
4520 cpu_cpwait();
4521 bzero_page(cdstp);
4522 xscale_cache_clean_minidata();
4523 }
4524 #endif /* ARM_MMU_XSCALE == 1 */
4525
4526 /* pmap_pageidlezero()
4527 *
4528 * The same as above, except that we assume that the page is not
4529 * mapped. This means we never have to flush the cache first. Called
4530 * from the idle loop.
4531 */
4532 bool
4533 pmap_pageidlezero(paddr_t phys)
4534 {
4535 unsigned int i;
4536 int *ptr;
4537 bool rv = true;
4538 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4539 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4540 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4541 #endif
4542 #ifdef PMAP_CACHE_VIPT
4543 /* Choose the last page color it had, if any */
4544 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4545 #else
4546 const vsize_t va_offset = 0;
4547 #endif
4548 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4549
4550
4551 #ifdef DEBUG
4552 if (!SLIST_EMPTY(&md->pvh_list))
4553 panic("pmap_pageidlezero: page has mappings");
4554 #endif
4555
4556 KDASSERT((phys & PGOFSET) == 0);
4557
4558 /*
4559 * Hook in the page, zero it, and purge the cache for that
4560 * zeroed page. Invalidate the TLB as needed.
4561 */
4562 *ptep = L2_S_PROTO | phys |
4563 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4564 PTE_SYNC(ptep);
4565 cpu_tlb_flushD_SE(cdstp + va_offset);
4566 cpu_cpwait();
4567
4568 for (i = 0, ptr = (int *)(cdstp + va_offset);
4569 i < (PAGE_SIZE / sizeof(int)); i++) {
4570 if (sched_curcpu_runnable_p() != 0) {
4571 /*
4572 * A process has become ready. Abort now,
4573 * so we don't keep it waiting while we
4574 * do slow memory access to finish this
4575 * page.
4576 */
4577 rv = false;
4578 break;
4579 }
4580 *ptr++ = 0;
4581 }
4582
4583 #ifdef PMAP_CACHE_VIVT
4584 if (rv)
4585 /*
4586 * if we aborted we'll rezero this page again later so don't
4587 * purge it unless we finished it
4588 */
4589 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4590 #elif defined(PMAP_CACHE_VIPT)
4591 /*
4592 * This page is now cache resident so it now has a page color.
4593 * Any contents have been obliterated so clear the EXEC flag.
4594 */
4595 if (!pmap_is_page_colored_p(md)) {
4596 PMAPCOUNT(vac_color_new);
4597 md->pvh_attrs |= PVF_COLORED;
4598 }
4599 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4600 md->pvh_attrs &= ~PVF_EXEC;
4601 PMAPCOUNT(exec_discarded_zero);
4602 }
4603 #endif
4604 /*
4605 * Unmap the page.
4606 */
4607 *ptep = 0;
4608 PTE_SYNC(ptep);
4609 cpu_tlb_flushD_SE(cdstp + va_offset);
4610
4611 return (rv);
4612 }
4613
4614 /*
4615 * pmap_copy_page()
4616 *
4617 * Copy one physical page into another, by mapping the pages into
4618 * hook points. The same comment regarding cachability as in
4619 * pmap_zero_page also applies here.
4620 */
4621 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4622 void
4623 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4624 {
4625 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4626 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4627 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4628 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4629 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4630 #endif
4631 #ifdef PMAP_CACHE_VIPT
4632 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4633 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4634 #else
4635 const vsize_t src_va_offset = 0;
4636 const vsize_t dst_va_offset = 0;
4637 #endif
4638 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4639 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4640
4641 #ifdef DEBUG
4642 if (!SLIST_EMPTY(&dst_md->pvh_list))
4643 panic("pmap_copy_page: dst page has mappings");
4644 #endif
4645
4646 #ifdef PMAP_CACHE_VIPT
4647 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4648 #endif
4649 KDASSERT((src & PGOFSET) == 0);
4650 KDASSERT((dst & PGOFSET) == 0);
4651
4652 /*
4653 * Clean the source page. Hold the source page's lock for
4654 * the duration of the copy so that no other mappings can
4655 * be created while we have a potentially aliased mapping.
4656 */
4657 #ifdef MULTIPROCESSOR
4658 KASSERT(uvm_page_locked_p(src_pg));
4659 #endif
4660 #ifdef PMAP_CACHE_VIVT
4661 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4662 #endif
4663
4664 /*
4665 * Map the pages into the page hook points, copy them, and purge
4666 * the cache for the appropriate page. Invalidate the TLB
4667 * as required.
4668 */
4669 *src_ptep = L2_S_PROTO
4670 | src
4671 #ifdef PMAP_CACHE_VIPT
4672 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4673 #endif
4674 #ifdef PMAP_CACHE_VIVT
4675 | pte_l2_s_cache_mode
4676 #endif
4677 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4678 *dst_ptep = L2_S_PROTO | dst |
4679 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4680 PTE_SYNC(src_ptep);
4681 PTE_SYNC(dst_ptep);
4682 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4683 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4684 cpu_cpwait();
4685 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4686 #ifdef PMAP_CACHE_VIVT
4687 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4688 #endif
4689 #ifdef PMAP_CACHE_VIVT
4690 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4691 #endif
4692 /*
4693 * Unmap the pages.
4694 */
4695 *src_ptep = 0;
4696 *dst_ptep = 0;
4697 PTE_SYNC(src_ptep);
4698 PTE_SYNC(dst_ptep);
4699 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4700 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4701 #ifdef PMAP_CACHE_VIPT
4702 /*
4703 * Now that the destination page is in the cache, mark it as colored.
4704 * If this was an exec page, discard it.
4705 */
4706 if (!pmap_is_page_colored_p(dst_md)) {
4707 PMAPCOUNT(vac_color_new);
4708 dst_md->pvh_attrs |= PVF_COLORED;
4709 }
4710 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4711 dst_md->pvh_attrs &= ~PVF_EXEC;
4712 PMAPCOUNT(exec_discarded_copy);
4713 }
4714 dst_md->pvh_attrs |= PVF_DIRTY;
4715 #endif
4716 }
4717 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4718
4719 #if ARM_MMU_XSCALE == 1
4720 void
4721 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4722 {
4723 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4724 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4725 #ifdef DEBUG
4726 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4727
4728 if (!SLIST_EMPTY(&dst_md->pvh_list))
4729 panic("pmap_copy_page: dst page has mappings");
4730 #endif
4731
4732 KDASSERT((src & PGOFSET) == 0);
4733 KDASSERT((dst & PGOFSET) == 0);
4734
4735 /*
4736 * Clean the source page. Hold the source page's lock for
4737 * the duration of the copy so that no other mappings can
4738 * be created while we have a potentially aliased mapping.
4739 */
4740 #ifdef MULTIPROCESSOR
4741 KASSERT(uvm_page_locked_p(src_pg));
4742 #endif
4743 #ifdef PMAP_CACHE_VIVT
4744 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4745 #endif
4746
4747 /*
4748 * Map the pages into the page hook points, copy them, and purge
4749 * the cache for the appropriate page. Invalidate the TLB
4750 * as required.
4751 */
4752 *csrc_pte = L2_S_PROTO | src |
4753 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4754 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4755 PTE_SYNC(csrc_pte);
4756 *cdst_pte = L2_S_PROTO | dst |
4757 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4758 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4759 PTE_SYNC(cdst_pte);
4760 cpu_tlb_flushD_SE(csrcp);
4761 cpu_tlb_flushD_SE(cdstp);
4762 cpu_cpwait();
4763 bcopy_page(csrcp, cdstp);
4764 xscale_cache_clean_minidata();
4765 }
4766 #endif /* ARM_MMU_XSCALE == 1 */
4767
4768 /*
4769 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4770 *
4771 * Return the start and end addresses of the kernel's virtual space.
4772 * These values are setup in pmap_bootstrap and are updated as pages
4773 * are allocated.
4774 */
4775 void
4776 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4777 {
4778 *start = virtual_avail;
4779 *end = virtual_end;
4780 }
4781
4782 /*
4783 * Helper function for pmap_grow_l2_bucket()
4784 */
4785 static inline int
4786 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4787 {
4788 struct l2_bucket *l2b;
4789 pt_entry_t *ptep;
4790 paddr_t pa;
4791
4792 if (uvm.page_init_done == false) {
4793 #ifdef PMAP_STEAL_MEMORY
4794 pv_addr_t pv;
4795 pmap_boot_pagealloc(PAGE_SIZE,
4796 #ifdef PMAP_CACHE_VIPT
4797 arm_cache_prefer_mask,
4798 va & arm_cache_prefer_mask,
4799 #else
4800 0, 0,
4801 #endif
4802 &pv);
4803 pa = pv.pv_pa;
4804 #else
4805 if (uvm_page_physget(&pa) == false)
4806 return (1);
4807 #endif /* PMAP_STEAL_MEMORY */
4808 } else {
4809 struct vm_page *pg;
4810 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4811 if (pg == NULL)
4812 return (1);
4813 pa = VM_PAGE_TO_PHYS(pg);
4814 #ifdef PMAP_CACHE_VIPT
4815 #ifdef DIAGNOSTIC
4816 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4817 #endif
4818 /*
4819 * This new page must not have any mappings. Enter it via
4820 * pmap_kenter_pa and let that routine do the hard work.
4821 */
4822 KASSERT(SLIST_EMPTY(&md->pvh_list));
4823 pmap_kenter_pa(va, pa,
4824 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4825 #endif
4826 }
4827
4828 if (pap)
4829 *pap = pa;
4830
4831 PMAPCOUNT(pt_mappings);
4832 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4833 KDASSERT(l2b != NULL);
4834
4835 ptep = &l2b->l2b_kva[l2pte_index(va)];
4836 *ptep = L2_S_PROTO | pa | cache_mode |
4837 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4838 PTE_SYNC(ptep);
4839 memset((void *)va, 0, PAGE_SIZE);
4840 return (0);
4841 }
4842
4843 /*
4844 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4845 * used by pmap_growkernel().
4846 */
4847 static inline struct l2_bucket *
4848 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4849 {
4850 struct l2_dtable *l2;
4851 struct l2_bucket *l2b;
4852 u_short l1idx;
4853 vaddr_t nva;
4854
4855 l1idx = L1_IDX(va);
4856
4857 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4858 /*
4859 * No mapping at this address, as there is
4860 * no entry in the L1 table.
4861 * Need to allocate a new l2_dtable.
4862 */
4863 nva = pmap_kernel_l2dtable_kva;
4864 if ((nva & PGOFSET) == 0) {
4865 /*
4866 * Need to allocate a backing page
4867 */
4868 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4869 return (NULL);
4870 }
4871
4872 l2 = (struct l2_dtable *)nva;
4873 nva += sizeof(struct l2_dtable);
4874
4875 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4876 /*
4877 * The new l2_dtable straddles a page boundary.
4878 * Map in another page to cover it.
4879 */
4880 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4881 return (NULL);
4882 }
4883
4884 pmap_kernel_l2dtable_kva = nva;
4885
4886 /*
4887 * Link it into the parent pmap
4888 */
4889 pm->pm_l2[L2_IDX(l1idx)] = l2;
4890 }
4891
4892 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4893
4894 /*
4895 * Fetch pointer to the L2 page table associated with the address.
4896 */
4897 if (l2b->l2b_kva == NULL) {
4898 pt_entry_t *ptep;
4899
4900 /*
4901 * No L2 page table has been allocated. Chances are, this
4902 * is because we just allocated the l2_dtable, above.
4903 */
4904 nva = pmap_kernel_l2ptp_kva;
4905 ptep = (pt_entry_t *)nva;
4906 if ((nva & PGOFSET) == 0) {
4907 /*
4908 * Need to allocate a backing page
4909 */
4910 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4911 &pmap_kernel_l2ptp_phys))
4912 return (NULL);
4913 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4914 }
4915
4916 l2->l2_occupancy++;
4917 l2b->l2b_kva = ptep;
4918 l2b->l2b_l1idx = l1idx;
4919 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4920
4921 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4922 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4923 }
4924
4925 return (l2b);
4926 }
4927
4928 vaddr_t
4929 pmap_growkernel(vaddr_t maxkvaddr)
4930 {
4931 pmap_t kpm = pmap_kernel();
4932 struct l1_ttable *l1;
4933 struct l2_bucket *l2b;
4934 pd_entry_t *pl1pd;
4935 int s;
4936
4937 if (maxkvaddr <= pmap_curmaxkvaddr)
4938 goto out; /* we are OK */
4939
4940 NPDEBUG(PDB_GROWKERN,
4941 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4942 pmap_curmaxkvaddr, maxkvaddr));
4943
4944 KDASSERT(maxkvaddr <= virtual_end);
4945
4946 /*
4947 * whoops! we need to add kernel PTPs
4948 */
4949
4950 s = splhigh(); /* to be safe */
4951 mutex_enter(kpm->pm_lock);
4952
4953 /* Map 1MB at a time */
4954 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4955
4956 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4957 KDASSERT(l2b != NULL);
4958
4959 /* Distribute new L1 entry to all other L1s */
4960 SLIST_FOREACH(l1, &l1_list, l1_link) {
4961 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4962 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4963 L1_C_PROTO;
4964 PTE_SYNC(pl1pd);
4965 }
4966 }
4967
4968 /*
4969 * flush out the cache, expensive but growkernel will happen so
4970 * rarely
4971 */
4972 cpu_dcache_wbinv_all();
4973 cpu_tlb_flushD();
4974 cpu_cpwait();
4975
4976 mutex_exit(kpm->pm_lock);
4977 splx(s);
4978
4979 out:
4980 return (pmap_curmaxkvaddr);
4981 }
4982
4983 /************************ Utility routines ****************************/
4984
4985 /*
4986 * vector_page_setprot:
4987 *
4988 * Manipulate the protection of the vector page.
4989 */
4990 void
4991 vector_page_setprot(int prot)
4992 {
4993 struct l2_bucket *l2b;
4994 pt_entry_t *ptep;
4995
4996 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4997 KDASSERT(l2b != NULL);
4998
4999 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5000
5001 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5002 PTE_SYNC(ptep);
5003 cpu_tlb_flushD_SE(vector_page);
5004 cpu_cpwait();
5005 }
5006
5007 /*
5008 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5009 * Returns true if the mapping exists, else false.
5010 *
5011 * NOTE: This function is only used by a couple of arm-specific modules.
5012 * It is not safe to take any pmap locks here, since we could be right
5013 * in the middle of debugging the pmap anyway...
5014 *
5015 * It is possible for this routine to return false even though a valid
5016 * mapping does exist. This is because we don't lock, so the metadata
5017 * state may be inconsistent.
5018 *
5019 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5020 * a "section" mapping.
5021 */
5022 bool
5023 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5024 {
5025 struct l2_dtable *l2;
5026 pd_entry_t *pl1pd, l1pd;
5027 pt_entry_t *ptep;
5028 u_short l1idx;
5029
5030 if (pm->pm_l1 == NULL)
5031 return false;
5032
5033 l1idx = L1_IDX(va);
5034 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
5035 l1pd = *pl1pd;
5036
5037 if (l1pte_section_p(l1pd)) {
5038 *ptp = NULL;
5039 return true;
5040 }
5041
5042 if (pm->pm_l2 == NULL)
5043 return false;
5044
5045 l2 = pm->pm_l2[L2_IDX(l1idx)];
5046
5047 if (l2 == NULL ||
5048 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5049 return false;
5050 }
5051
5052 *ptp = &ptep[l2pte_index(va)];
5053 return true;
5054 }
5055
5056 bool
5057 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5058 {
5059 u_short l1idx;
5060
5061 if (pm->pm_l1 == NULL)
5062 return false;
5063
5064 l1idx = L1_IDX(va);
5065 *pdp = &pm->pm_l1->l1_kva[l1idx];
5066
5067 return true;
5068 }
5069
5070 /************************ Bootstrapping routines ****************************/
5071
5072 static void
5073 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5074 {
5075 int i;
5076
5077 l1->l1_kva = l1pt;
5078 l1->l1_domain_use_count = 0;
5079 l1->l1_domain_first = 0;
5080
5081 for (i = 0; i < PMAP_DOMAINS; i++)
5082 l1->l1_domain_free[i] = i + 1;
5083
5084 /*
5085 * Copy the kernel's L1 entries to each new L1.
5086 */
5087 if (pmap_initialized)
5088 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5089
5090 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5091 &l1->l1_physaddr) == false)
5092 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5093
5094 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5095 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5096 }
5097
5098 /*
5099 * pmap_bootstrap() is called from the board-specific initarm() routine
5100 * once the kernel L1/L2 descriptors tables have been set up.
5101 *
5102 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5103 * spread over a number of disparate files/functions.
5104 *
5105 * We are passed the following parameters
5106 * - kernel_l1pt
5107 * This is a pointer to the base of the kernel's L1 translation table.
5108 * - vstart
5109 * 1MB-aligned start of managed kernel virtual memory.
5110 * - vend
5111 * 1MB-aligned end of managed kernel virtual memory.
5112 *
5113 * We use the first parameter to build the metadata (struct l1_ttable and
5114 * struct l2_dtable) necessary to track kernel mappings.
5115 */
5116 #define PMAP_STATIC_L2_SIZE 16
5117 void
5118 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5119 {
5120 static struct l1_ttable static_l1;
5121 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5122 struct l1_ttable *l1 = &static_l1;
5123 struct l2_dtable *l2;
5124 struct l2_bucket *l2b;
5125 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5126 pmap_t pm = pmap_kernel();
5127 pd_entry_t pde;
5128 pt_entry_t *ptep;
5129 paddr_t pa;
5130 vaddr_t va;
5131 vsize_t size;
5132 int nptes, l1idx, l2idx, l2next = 0;
5133
5134 /*
5135 * Initialise the kernel pmap object
5136 */
5137 pm->pm_l1 = l1;
5138 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5139 pm->pm_activated = true;
5140 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5141
5142 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5143 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5144 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5145
5146 /*
5147 * Scan the L1 translation table created by initarm() and create
5148 * the required metadata for all valid mappings found in it.
5149 */
5150 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5151 pde = l1pt[l1idx];
5152
5153 /*
5154 * We're only interested in Coarse mappings.
5155 * pmap_extract() can deal with section mappings without
5156 * recourse to checking L2 metadata.
5157 */
5158 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5159 continue;
5160
5161 /*
5162 * Lookup the KVA of this L2 descriptor table
5163 */
5164 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5165 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5166 if (ptep == NULL) {
5167 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5168 (u_int)l1idx << L1_S_SHIFT, pa);
5169 }
5170
5171 /*
5172 * Fetch the associated L2 metadata structure.
5173 * Allocate a new one if necessary.
5174 */
5175 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5176 if (l2next == PMAP_STATIC_L2_SIZE)
5177 panic("pmap_bootstrap: out of static L2s");
5178 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5179 }
5180
5181 /*
5182 * One more L1 slot tracked...
5183 */
5184 l2->l2_occupancy++;
5185
5186 /*
5187 * Fill in the details of the L2 descriptor in the
5188 * appropriate bucket.
5189 */
5190 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5191 l2b->l2b_kva = ptep;
5192 l2b->l2b_phys = pa;
5193 l2b->l2b_l1idx = l1idx;
5194
5195 /*
5196 * Establish an initial occupancy count for this descriptor
5197 */
5198 for (l2idx = 0;
5199 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5200 l2idx++) {
5201 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5202 l2b->l2b_occupancy++;
5203 }
5204 }
5205
5206 /*
5207 * Make sure the descriptor itself has the correct cache mode.
5208 * If not, fix it, but whine about the problem. Port-meisters
5209 * should consider this a clue to fix up their initarm()
5210 * function. :)
5211 */
5212 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5213 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5214 "L2 pte @ %p\n", ptep);
5215 }
5216 }
5217
5218 /*
5219 * Ensure the primary (kernel) L1 has the correct cache mode for
5220 * a page table. Bitch if it is not correctly set.
5221 */
5222 for (va = (vaddr_t)l1pt;
5223 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5224 if (pmap_set_pt_cache_mode(l1pt, va))
5225 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5226 "primary L1 @ 0x%lx\n", va);
5227 }
5228
5229 cpu_dcache_wbinv_all();
5230 cpu_tlb_flushID();
5231 cpu_cpwait();
5232
5233 /*
5234 * now we allocate the "special" VAs which are used for tmp mappings
5235 * by the pmap (and other modules). we allocate the VAs by advancing
5236 * virtual_avail (note that there are no pages mapped at these VAs).
5237 *
5238 * Managed KVM space start from wherever initarm() tells us.
5239 */
5240 virtual_avail = vstart;
5241 virtual_end = vend;
5242
5243 #ifdef PMAP_CACHE_VIPT
5244 /*
5245 * If we have a VIPT cache, we need one page/pte per possible alias
5246 * page so we won't violate cache aliasing rules.
5247 */
5248 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5249 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5250 #else
5251 nptes = 1;
5252 #endif
5253 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5254 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5255 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5256 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5257 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5258 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5259 (void *)&msgbufaddr, NULL);
5260
5261 /*
5262 * Allocate a range of kernel virtual address space to be used
5263 * for L2 descriptor tables and metadata allocation in
5264 * pmap_growkernel().
5265 */
5266 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5267 pmap_alloc_specials(&virtual_avail,
5268 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5269 &pmap_kernel_l2ptp_kva, NULL);
5270
5271 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5272 pmap_alloc_specials(&virtual_avail,
5273 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5274 &pmap_kernel_l2dtable_kva, NULL);
5275
5276 /*
5277 * init the static-global locks and global pmap list.
5278 */
5279 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5280
5281 /*
5282 * We can now initialise the first L1's metadata.
5283 */
5284 SLIST_INIT(&l1_list);
5285 TAILQ_INIT(&l1_lru_list);
5286 pmap_init_l1(l1, l1pt);
5287
5288 /* Set up vector page L1 details, if necessary */
5289 if (vector_page < KERNEL_BASE) {
5290 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5291 l2b = pmap_get_l2_bucket(pm, vector_page);
5292 KDASSERT(l2b != NULL);
5293 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5294 L1_C_DOM(pm->pm_domain);
5295 } else
5296 pm->pm_pl1vec = NULL;
5297
5298 /*
5299 * Initialize the pmap cache
5300 */
5301 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5302 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5303 LIST_INIT(&pmap_pmaps);
5304 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5305
5306 /*
5307 * Initialize the pv pool.
5308 */
5309 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5310 &pmap_bootstrap_pv_allocator, IPL_NONE);
5311
5312 /*
5313 * Initialize the L2 dtable pool and cache.
5314 */
5315 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5316 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5317
5318 /*
5319 * Initialise the L2 descriptor table pool and cache
5320 */
5321 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5322 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5323 pmap_l2ptp_ctor, NULL, NULL);
5324
5325 cpu_dcache_wbinv_all();
5326 }
5327
5328 static int
5329 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5330 {
5331 pd_entry_t *pdep, pde;
5332 pt_entry_t *ptep, pte;
5333 vaddr_t pa;
5334 int rv = 0;
5335
5336 /*
5337 * Make sure the descriptor itself has the correct cache mode
5338 */
5339 pdep = &kl1[L1_IDX(va)];
5340 pde = *pdep;
5341
5342 if (l1pte_section_p(pde)) {
5343 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5344 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5345 *pdep = (pde & ~L1_S_CACHE_MASK) |
5346 pte_l1_s_cache_mode_pt;
5347 PTE_SYNC(pdep);
5348 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5349 rv = 1;
5350 }
5351 } else {
5352 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5353 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5354 if (ptep == NULL)
5355 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5356
5357 ptep = &ptep[l2pte_index(va)];
5358 pte = *ptep;
5359 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5360 *ptep = (pte & ~L2_S_CACHE_MASK) |
5361 pte_l2_s_cache_mode_pt;
5362 PTE_SYNC(ptep);
5363 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5364 rv = 1;
5365 }
5366 }
5367
5368 return (rv);
5369 }
5370
5371 static void
5372 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5373 {
5374 vaddr_t va = *availp;
5375 struct l2_bucket *l2b;
5376
5377 if (ptep) {
5378 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5379 if (l2b == NULL)
5380 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5381
5382 if (ptep)
5383 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5384 }
5385
5386 *vap = va;
5387 *availp = va + (PAGE_SIZE * pages);
5388 }
5389
5390 void
5391 pmap_init(void)
5392 {
5393
5394 /*
5395 * Set the available memory vars - These do not map to real memory
5396 * addresses and cannot as the physical memory is fragmented.
5397 * They are used by ps for %mem calculations.
5398 * One could argue whether this should be the entire memory or just
5399 * the memory that is useable in a user process.
5400 */
5401 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5402 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5403
5404 /*
5405 * Now we need to free enough pv_entry structures to allow us to get
5406 * the kmem_map/kmem_object allocated and inited (done after this
5407 * function is finished). to do this we allocate one bootstrap page out
5408 * of kernel_map and use it to provide an initial pool of pv_entry
5409 * structures. we never free this page.
5410 */
5411 pool_setlowat(&pmap_pv_pool,
5412 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5413
5414 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5415 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5416 UVM_KMF_WIRED|UVM_KMF_ZERO);
5417
5418 pmap_initialized = true;
5419 }
5420
5421 static vaddr_t last_bootstrap_page = 0;
5422 static void *free_bootstrap_pages = NULL;
5423
5424 static void *
5425 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5426 {
5427 extern void *pool_page_alloc(struct pool *, int);
5428 vaddr_t new_page;
5429 void *rv;
5430
5431 if (pmap_initialized)
5432 return (pool_page_alloc(pp, flags));
5433
5434 if (free_bootstrap_pages) {
5435 rv = free_bootstrap_pages;
5436 free_bootstrap_pages = *((void **)rv);
5437 return (rv);
5438 }
5439
5440 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5441 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5442
5443 KASSERT(new_page > last_bootstrap_page);
5444 last_bootstrap_page = new_page;
5445 return ((void *)new_page);
5446 }
5447
5448 static void
5449 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5450 {
5451 extern void pool_page_free(struct pool *, void *);
5452
5453 if ((vaddr_t)v <= last_bootstrap_page) {
5454 *((void **)v) = free_bootstrap_pages;
5455 free_bootstrap_pages = v;
5456 return;
5457 }
5458
5459 if (pmap_initialized) {
5460 pool_page_free(pp, v);
5461 return;
5462 }
5463 }
5464
5465 /*
5466 * pmap_postinit()
5467 *
5468 * This routine is called after the vm and kmem subsystems have been
5469 * initialised. This allows the pmap code to perform any initialisation
5470 * that can only be done one the memory allocation is in place.
5471 */
5472 void
5473 pmap_postinit(void)
5474 {
5475 extern paddr_t physical_start, physical_end;
5476 struct l2_bucket *l2b;
5477 struct l1_ttable *l1;
5478 struct pglist plist;
5479 struct vm_page *m;
5480 pd_entry_t *pl1pt;
5481 pt_entry_t *ptep, pte;
5482 vaddr_t va, eva;
5483 u_int loop, needed;
5484 int error;
5485
5486 pool_cache_setlowat(&pmap_l2ptp_cache,
5487 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5488 pool_cache_setlowat(&pmap_l2dtable_cache,
5489 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5490
5491 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5492 needed -= 1;
5493
5494 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5495
5496 for (loop = 0; loop < needed; loop++, l1++) {
5497 /* Allocate a L1 page table */
5498 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5499 if (va == 0)
5500 panic("Cannot allocate L1 KVM");
5501
5502 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5503 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5504 if (error)
5505 panic("Cannot allocate L1 physical pages");
5506
5507 m = TAILQ_FIRST(&plist);
5508 eva = va + L1_TABLE_SIZE;
5509 pl1pt = (pd_entry_t *)va;
5510
5511 while (m && va < eva) {
5512 paddr_t pa = VM_PAGE_TO_PHYS(m);
5513
5514 pmap_kenter_pa(va, pa,
5515 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5516
5517 /*
5518 * Make sure the L1 descriptor table is mapped
5519 * with the cache-mode set to write-through.
5520 */
5521 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5522 KDASSERT(l2b != NULL);
5523 ptep = &l2b->l2b_kva[l2pte_index(va)];
5524 pte = *ptep;
5525 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5526 *ptep = pte;
5527 PTE_SYNC(ptep);
5528 cpu_tlb_flushD_SE(va);
5529
5530 va += PAGE_SIZE;
5531 m = TAILQ_NEXT(m, pageq.queue);
5532 }
5533
5534 #ifdef DIAGNOSTIC
5535 if (m)
5536 panic("pmap_alloc_l1pt: pglist not empty");
5537 #endif /* DIAGNOSTIC */
5538
5539 pmap_init_l1(l1, pl1pt);
5540 }
5541
5542 #ifdef DEBUG
5543 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5544 needed);
5545 #endif
5546 }
5547
5548 /*
5549 * Note that the following routines are used by board-specific initialisation
5550 * code to configure the initial kernel page tables.
5551 *
5552 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5553 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5554 * behaviour of the old pmap, and provides an easy migration path for
5555 * initial bring-up of the new pmap on existing ports. Fortunately,
5556 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5557 * will be deprecated.
5558 *
5559 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5560 * tables.
5561 */
5562
5563 /*
5564 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5565 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5566 * find them as necessary.
5567 *
5568 * Note that the data on this list MUST remain valid after initarm() returns,
5569 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5570 */
5571 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5572
5573 static vaddr_t
5574 kernel_pt_lookup(paddr_t pa)
5575 {
5576 pv_addr_t *pv;
5577
5578 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5579 #ifndef ARM32_NEW_VM_LAYOUT
5580 if (pv->pv_pa == (pa & ~PGOFSET))
5581 return (pv->pv_va | (pa & PGOFSET));
5582 #else
5583 if (pv->pv_pa == pa)
5584 return (pv->pv_va);
5585 #endif
5586 }
5587 return (0);
5588 }
5589
5590 /*
5591 * pmap_map_section:
5592 *
5593 * Create a single section mapping.
5594 */
5595 void
5596 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5597 {
5598 pd_entry_t *pde = (pd_entry_t *) l1pt;
5599 pd_entry_t fl;
5600
5601 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5602
5603 switch (cache) {
5604 case PTE_NOCACHE:
5605 default:
5606 fl = 0;
5607 break;
5608
5609 case PTE_CACHE:
5610 fl = pte_l1_s_cache_mode;
5611 break;
5612
5613 case PTE_PAGETABLE:
5614 fl = pte_l1_s_cache_mode_pt;
5615 break;
5616 }
5617
5618 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5619 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5620 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5621 }
5622
5623 /*
5624 * pmap_map_entry:
5625 *
5626 * Create a single page mapping.
5627 */
5628 void
5629 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5630 {
5631 pd_entry_t *pde = (pd_entry_t *) l1pt;
5632 pt_entry_t fl;
5633 pt_entry_t *pte;
5634
5635 KASSERT(((va | pa) & PGOFSET) == 0);
5636
5637 switch (cache) {
5638 case PTE_NOCACHE:
5639 default:
5640 fl = 0;
5641 break;
5642
5643 case PTE_CACHE:
5644 fl = pte_l2_s_cache_mode;
5645 break;
5646
5647 case PTE_PAGETABLE:
5648 fl = pte_l2_s_cache_mode_pt;
5649 break;
5650 }
5651
5652 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5653 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5654
5655 #ifndef ARM32_NEW_VM_LAYOUT
5656 pte = (pt_entry_t *)
5657 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5658 #else
5659 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5660 #endif
5661 if (pte == NULL)
5662 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5663
5664 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5665 #ifndef ARM32_NEW_VM_LAYOUT
5666 pte += (va >> PGSHIFT) & 0x3ff;
5667 #else
5668 pte += l2pte_index(va);
5669 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5670 #endif
5671 *pte = fl;
5672 PTE_SYNC(pte);
5673 }
5674
5675 /*
5676 * pmap_link_l2pt:
5677 *
5678 * Link the L2 page table specified by "l2pv" into the L1
5679 * page table at the slot for "va".
5680 */
5681 void
5682 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5683 {
5684 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5685 u_int slot = va >> L1_S_SHIFT;
5686
5687 #ifndef ARM32_NEW_VM_LAYOUT
5688 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5689 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5690 #endif
5691
5692 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5693
5694 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5695 #ifdef ARM32_NEW_VM_LAYOUT
5696 PTE_SYNC(&pde[slot]);
5697 #else
5698 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5699 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5700 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5701 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5702 #endif
5703
5704 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5705 }
5706
5707 /*
5708 * pmap_map_chunk:
5709 *
5710 * Map a chunk of memory using the most efficient mappings
5711 * possible (section, large page, small page) into the
5712 * provided L1 and L2 tables at the specified virtual address.
5713 */
5714 vsize_t
5715 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5716 int prot, int cache)
5717 {
5718 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5719 pt_entry_t *pte, f1, f2s, f2l;
5720 vsize_t resid;
5721 int i;
5722
5723 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5724
5725 if (l1pt == 0)
5726 panic("pmap_map_chunk: no L1 table provided");
5727
5728 #ifdef VERBOSE_INIT_ARM
5729 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5730 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5731 #endif
5732
5733 switch (cache) {
5734 case PTE_NOCACHE:
5735 default:
5736 f1 = 0;
5737 f2l = 0;
5738 f2s = 0;
5739 break;
5740
5741 case PTE_CACHE:
5742 f1 = pte_l1_s_cache_mode;
5743 f2l = pte_l2_l_cache_mode;
5744 f2s = pte_l2_s_cache_mode;
5745 break;
5746
5747 case PTE_PAGETABLE:
5748 f1 = pte_l1_s_cache_mode_pt;
5749 f2l = pte_l2_l_cache_mode_pt;
5750 f2s = pte_l2_s_cache_mode_pt;
5751 break;
5752 }
5753
5754 size = resid;
5755
5756 while (resid > 0) {
5757 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5758 /* See if we can use a supersection mapping. */
5759 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5760 /* Supersection are always domain 0 */
5761 pd_entry_t pde = L1_SS_PROTO | pa |
5762 L1_S_PROT(PTE_KERNEL, prot) | f1;
5763 #ifdef VERBOSE_INIT_ARM
5764 printf("sS");
5765 #endif
5766 for (size_t s = va >> L1_S_SHIFT,
5767 e = s + L1_SS_SIZE / L1_S_SIZE;
5768 s < e;
5769 s++) {
5770 pdep[s] = pde;
5771 PTE_SYNC(&pdep[s]);
5772 }
5773 va += L1_SS_SIZE;
5774 pa += L1_SS_SIZE;
5775 resid -= L1_SS_SIZE;
5776 continue;
5777 }
5778 #endif
5779 /* See if we can use a section mapping. */
5780 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5781 #ifdef VERBOSE_INIT_ARM
5782 printf("S");
5783 #endif
5784 pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5785 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5786 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5787 PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
5788 va += L1_S_SIZE;
5789 pa += L1_S_SIZE;
5790 resid -= L1_S_SIZE;
5791 continue;
5792 }
5793
5794 /*
5795 * Ok, we're going to use an L2 table. Make sure
5796 * one is actually in the corresponding L1 slot
5797 * for the current VA.
5798 */
5799 if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5800 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5801
5802 #ifndef ARM32_NEW_VM_LAYOUT
5803 pte = (pt_entry_t *)
5804 kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
5805 #else
5806 pte = (pt_entry_t *) kernel_pt_lookup(
5807 pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
5808 #endif
5809 if (pte == NULL)
5810 panic("pmap_map_chunk: can't find L2 table for VA"
5811 "0x%08lx", va);
5812
5813 /* See if we can use a L2 large page mapping. */
5814 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5815 #ifdef VERBOSE_INIT_ARM
5816 printf("L");
5817 #endif
5818 for (i = 0; i < 16; i++) {
5819 #ifndef ARM32_NEW_VM_LAYOUT
5820 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5821 L2_L_PROTO | pa |
5822 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5823 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5824 #else
5825 pte[l2pte_index(va) + i] =
5826 L2_L_PROTO | pa |
5827 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5828 PTE_SYNC(&pte[l2pte_index(va) + i]);
5829 #endif
5830 }
5831 va += L2_L_SIZE;
5832 pa += L2_L_SIZE;
5833 resid -= L2_L_SIZE;
5834 continue;
5835 }
5836
5837 /* Use a small page mapping. */
5838 #ifdef VERBOSE_INIT_ARM
5839 printf("P");
5840 #endif
5841 #ifndef ARM32_NEW_VM_LAYOUT
5842 pte[(va >> PGSHIFT) & 0x3ff] =
5843 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5844 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5845 #else
5846 pte[l2pte_index(va)] =
5847 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5848 PTE_SYNC(&pte[l2pte_index(va)]);
5849 #endif
5850 va += PAGE_SIZE;
5851 pa += PAGE_SIZE;
5852 resid -= PAGE_SIZE;
5853 }
5854 #ifdef VERBOSE_INIT_ARM
5855 printf("\n");
5856 #endif
5857 return (size);
5858 }
5859
5860 /********************** Static device map routines ***************************/
5861
5862 static const struct pmap_devmap *pmap_devmap_table;
5863
5864 /*
5865 * Register the devmap table. This is provided in case early console
5866 * initialization needs to register mappings created by bootstrap code
5867 * before pmap_devmap_bootstrap() is called.
5868 */
5869 void
5870 pmap_devmap_register(const struct pmap_devmap *table)
5871 {
5872
5873 pmap_devmap_table = table;
5874 }
5875
5876 /*
5877 * Map all of the static regions in the devmap table, and remember
5878 * the devmap table so other parts of the kernel can look up entries
5879 * later.
5880 */
5881 void
5882 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5883 {
5884 int i;
5885
5886 pmap_devmap_table = table;
5887
5888 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5889 #ifdef VERBOSE_INIT_ARM
5890 printf("devmap: %08lx -> %08lx @ %08lx\n",
5891 pmap_devmap_table[i].pd_pa,
5892 pmap_devmap_table[i].pd_pa +
5893 pmap_devmap_table[i].pd_size - 1,
5894 pmap_devmap_table[i].pd_va);
5895 #endif
5896 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5897 pmap_devmap_table[i].pd_pa,
5898 pmap_devmap_table[i].pd_size,
5899 pmap_devmap_table[i].pd_prot,
5900 pmap_devmap_table[i].pd_cache);
5901 }
5902 }
5903
5904 const struct pmap_devmap *
5905 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5906 {
5907 uint64_t endpa;
5908 int i;
5909
5910 if (pmap_devmap_table == NULL)
5911 return (NULL);
5912
5913 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5914
5915 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5916 if (pa >= pmap_devmap_table[i].pd_pa &&
5917 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5918 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5919 return (&pmap_devmap_table[i]);
5920 }
5921
5922 return (NULL);
5923 }
5924
5925 const struct pmap_devmap *
5926 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5927 {
5928 int i;
5929
5930 if (pmap_devmap_table == NULL)
5931 return (NULL);
5932
5933 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5934 if (va >= pmap_devmap_table[i].pd_va &&
5935 va + size - 1 <= pmap_devmap_table[i].pd_va +
5936 pmap_devmap_table[i].pd_size - 1)
5937 return (&pmap_devmap_table[i]);
5938 }
5939
5940 return (NULL);
5941 }
5942
5943 /********************** PTE initialization routines **************************/
5944
5945 /*
5946 * These routines are called when the CPU type is identified to set up
5947 * the PTE prototypes, cache modes, etc.
5948 *
5949 * The variables are always here, just in case modules need to reference
5950 * them (though, they shouldn't).
5951 */
5952
5953 pt_entry_t pte_l1_s_cache_mode;
5954 pt_entry_t pte_l1_s_wc_mode;
5955 pt_entry_t pte_l1_s_cache_mode_pt;
5956 pt_entry_t pte_l1_s_cache_mask;
5957
5958 pt_entry_t pte_l2_l_cache_mode;
5959 pt_entry_t pte_l2_l_wc_mode;
5960 pt_entry_t pte_l2_l_cache_mode_pt;
5961 pt_entry_t pte_l2_l_cache_mask;
5962
5963 pt_entry_t pte_l2_s_cache_mode;
5964 pt_entry_t pte_l2_s_wc_mode;
5965 pt_entry_t pte_l2_s_cache_mode_pt;
5966 pt_entry_t pte_l2_s_cache_mask;
5967
5968 pt_entry_t pte_l1_s_prot_u;
5969 pt_entry_t pte_l1_s_prot_w;
5970 pt_entry_t pte_l1_s_prot_ro;
5971 pt_entry_t pte_l1_s_prot_mask;
5972
5973 pt_entry_t pte_l2_s_prot_u;
5974 pt_entry_t pte_l2_s_prot_w;
5975 pt_entry_t pte_l2_s_prot_ro;
5976 pt_entry_t pte_l2_s_prot_mask;
5977
5978 pt_entry_t pte_l2_l_prot_u;
5979 pt_entry_t pte_l2_l_prot_w;
5980 pt_entry_t pte_l2_l_prot_ro;
5981 pt_entry_t pte_l2_l_prot_mask;
5982
5983 pt_entry_t pte_l1_ss_proto;
5984 pt_entry_t pte_l1_s_proto;
5985 pt_entry_t pte_l1_c_proto;
5986 pt_entry_t pte_l2_s_proto;
5987
5988 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5989 void (*pmap_zero_page_func)(paddr_t);
5990
5991 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
5992 void
5993 pmap_pte_init_generic(void)
5994 {
5995
5996 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5997 pte_l1_s_wc_mode = L1_S_B;
5998 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5999
6000 pte_l2_l_cache_mode = L2_B|L2_C;
6001 pte_l2_l_wc_mode = L2_B;
6002 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6003
6004 pte_l2_s_cache_mode = L2_B|L2_C;
6005 pte_l2_s_wc_mode = L2_B;
6006 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6007
6008 /*
6009 * If we have a write-through cache, set B and C. If
6010 * we have a write-back cache, then we assume setting
6011 * only C will make those pages write-through (except for those
6012 * Cortex CPUs which can read the L1 caches).
6013 */
6014 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6015 #if ARM_MMU_V7 > 0
6016 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6017 #endif
6018 #if ARM_MMU_V6 > 0
6019 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6020 #endif
6021 || false) {
6022 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6023 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6024 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6025 } else {
6026 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6027 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6028 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6029 }
6030
6031 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6032 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6033 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6034 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6035
6036 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6037 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6038 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6039 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6040
6041 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6042 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6043 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6044 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6045
6046 pte_l1_ss_proto = L1_SS_PROTO_generic;
6047 pte_l1_s_proto = L1_S_PROTO_generic;
6048 pte_l1_c_proto = L1_C_PROTO_generic;
6049 pte_l2_s_proto = L2_S_PROTO_generic;
6050
6051 pmap_copy_page_func = pmap_copy_page_generic;
6052 pmap_zero_page_func = pmap_zero_page_generic;
6053 }
6054
6055 #if defined(CPU_ARM8)
6056 void
6057 pmap_pte_init_arm8(void)
6058 {
6059
6060 /*
6061 * ARM8 is compatible with generic, but we need to use
6062 * the page tables uncached.
6063 */
6064 pmap_pte_init_generic();
6065
6066 pte_l1_s_cache_mode_pt = 0;
6067 pte_l2_l_cache_mode_pt = 0;
6068 pte_l2_s_cache_mode_pt = 0;
6069 }
6070 #endif /* CPU_ARM8 */
6071
6072 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6073 void
6074 pmap_pte_init_arm9(void)
6075 {
6076
6077 /*
6078 * ARM9 is compatible with generic, but we want to use
6079 * write-through caching for now.
6080 */
6081 pmap_pte_init_generic();
6082
6083 pte_l1_s_cache_mode = L1_S_C;
6084 pte_l2_l_cache_mode = L2_C;
6085 pte_l2_s_cache_mode = L2_C;
6086
6087 pte_l1_s_wc_mode = L1_S_B;
6088 pte_l2_l_wc_mode = L2_B;
6089 pte_l2_s_wc_mode = L2_B;
6090
6091 pte_l1_s_cache_mode_pt = L1_S_C;
6092 pte_l2_l_cache_mode_pt = L2_C;
6093 pte_l2_s_cache_mode_pt = L2_C;
6094 }
6095 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6096 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6097
6098 #if defined(CPU_ARM10)
6099 void
6100 pmap_pte_init_arm10(void)
6101 {
6102
6103 /*
6104 * ARM10 is compatible with generic, but we want to use
6105 * write-through caching for now.
6106 */
6107 pmap_pte_init_generic();
6108
6109 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6110 pte_l2_l_cache_mode = L2_B | L2_C;
6111 pte_l2_s_cache_mode = L2_B | L2_C;
6112
6113 pte_l1_s_cache_mode = L1_S_B;
6114 pte_l2_l_cache_mode = L2_B;
6115 pte_l2_s_cache_mode = L2_B;
6116
6117 pte_l1_s_cache_mode_pt = L1_S_C;
6118 pte_l2_l_cache_mode_pt = L2_C;
6119 pte_l2_s_cache_mode_pt = L2_C;
6120
6121 }
6122 #endif /* CPU_ARM10 */
6123
6124 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6125 void
6126 pmap_pte_init_arm11(void)
6127 {
6128
6129 /*
6130 * ARM11 is compatible with generic, but we want to use
6131 * write-through caching for now.
6132 */
6133 pmap_pte_init_generic();
6134
6135 pte_l1_s_cache_mode = L1_S_C;
6136 pte_l2_l_cache_mode = L2_C;
6137 pte_l2_s_cache_mode = L2_C;
6138
6139 pte_l1_s_wc_mode = L1_S_B;
6140 pte_l2_l_wc_mode = L2_B;
6141 pte_l2_s_wc_mode = L2_B;
6142
6143 pte_l1_s_cache_mode_pt = L1_S_C;
6144 pte_l2_l_cache_mode_pt = L2_C;
6145 pte_l2_s_cache_mode_pt = L2_C;
6146 }
6147 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6148
6149 #if ARM_MMU_SA1 == 1
6150 void
6151 pmap_pte_init_sa1(void)
6152 {
6153
6154 /*
6155 * The StrongARM SA-1 cache does not have a write-through
6156 * mode. So, do the generic initialization, then reset
6157 * the page table cache mode to B=1,C=1, and note that
6158 * the PTEs need to be sync'd.
6159 */
6160 pmap_pte_init_generic();
6161
6162 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6163 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6164 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6165
6166 pmap_needs_pte_sync = 1;
6167 }
6168 #endif /* ARM_MMU_SA1 == 1*/
6169
6170 #if ARM_MMU_XSCALE == 1
6171 #if (ARM_NMMUS > 1)
6172 static u_int xscale_use_minidata;
6173 #endif
6174
6175 void
6176 pmap_pte_init_xscale(void)
6177 {
6178 uint32_t auxctl;
6179 int write_through = 0;
6180
6181 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6182 pte_l1_s_wc_mode = L1_S_B;
6183 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6184
6185 pte_l2_l_cache_mode = L2_B|L2_C;
6186 pte_l2_l_wc_mode = L2_B;
6187 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6188
6189 pte_l2_s_cache_mode = L2_B|L2_C;
6190 pte_l2_s_wc_mode = L2_B;
6191 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6192
6193 pte_l1_s_cache_mode_pt = L1_S_C;
6194 pte_l2_l_cache_mode_pt = L2_C;
6195 pte_l2_s_cache_mode_pt = L2_C;
6196
6197 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6198 /*
6199 * The XScale core has an enhanced mode where writes that
6200 * miss the cache cause a cache line to be allocated. This
6201 * is significantly faster than the traditional, write-through
6202 * behavior of this case.
6203 */
6204 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6205 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6206 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6207 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6208
6209 #ifdef XSCALE_CACHE_WRITE_THROUGH
6210 /*
6211 * Some versions of the XScale core have various bugs in
6212 * their cache units, the work-around for which is to run
6213 * the cache in write-through mode. Unfortunately, this
6214 * has a major (negative) impact on performance. So, we
6215 * go ahead and run fast-and-loose, in the hopes that we
6216 * don't line up the planets in a way that will trip the
6217 * bugs.
6218 *
6219 * However, we give you the option to be slow-but-correct.
6220 */
6221 write_through = 1;
6222 #elif defined(XSCALE_CACHE_WRITE_BACK)
6223 /* force write back cache mode */
6224 write_through = 0;
6225 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6226 /*
6227 * Intel PXA2[15]0 processors are known to have a bug in
6228 * write-back cache on revision 4 and earlier (stepping
6229 * A[01] and B[012]). Fixed for C0 and later.
6230 */
6231 {
6232 uint32_t id, type;
6233
6234 id = cpufunc_id();
6235 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6236
6237 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6238 if ((id & CPU_ID_REVISION_MASK) < 5) {
6239 /* write through for stepping A0-1 and B0-2 */
6240 write_through = 1;
6241 }
6242 }
6243 }
6244 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6245
6246 if (write_through) {
6247 pte_l1_s_cache_mode = L1_S_C;
6248 pte_l2_l_cache_mode = L2_C;
6249 pte_l2_s_cache_mode = L2_C;
6250 }
6251
6252 #if (ARM_NMMUS > 1)
6253 xscale_use_minidata = 1;
6254 #endif
6255
6256 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6257 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6258 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6259 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6260
6261 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6262 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6263 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6264 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6265
6266 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6267 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6268 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6269 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6270
6271 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6272 pte_l1_s_proto = L1_S_PROTO_xscale;
6273 pte_l1_c_proto = L1_C_PROTO_xscale;
6274 pte_l2_s_proto = L2_S_PROTO_xscale;
6275
6276 pmap_copy_page_func = pmap_copy_page_xscale;
6277 pmap_zero_page_func = pmap_zero_page_xscale;
6278
6279 /*
6280 * Disable ECC protection of page table access, for now.
6281 */
6282 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6283 auxctl &= ~XSCALE_AUXCTL_P;
6284 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6285 }
6286
6287 /*
6288 * xscale_setup_minidata:
6289 *
6290 * Set up the mini-data cache clean area. We require the
6291 * caller to allocate the right amount of physically and
6292 * virtually contiguous space.
6293 */
6294 void
6295 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6296 {
6297 extern vaddr_t xscale_minidata_clean_addr;
6298 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6299 pd_entry_t *pde = (pd_entry_t *) l1pt;
6300 pt_entry_t *pte;
6301 vsize_t size;
6302 uint32_t auxctl;
6303
6304 xscale_minidata_clean_addr = va;
6305
6306 /* Round it to page size. */
6307 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6308
6309 for (; size != 0;
6310 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6311 #ifndef ARM32_NEW_VM_LAYOUT
6312 pte = (pt_entry_t *)
6313 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6314 #else
6315 pte = (pt_entry_t *) kernel_pt_lookup(
6316 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6317 #endif
6318 if (pte == NULL)
6319 panic("xscale_setup_minidata: can't find L2 table for "
6320 "VA 0x%08lx", va);
6321 #ifndef ARM32_NEW_VM_LAYOUT
6322 pte[(va >> PGSHIFT) & 0x3ff] =
6323 #else
6324 pte[l2pte_index(va)] =
6325 #endif
6326 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6327 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6328 }
6329
6330 /*
6331 * Configure the mini-data cache for write-back with
6332 * read/write-allocate.
6333 *
6334 * NOTE: In order to reconfigure the mini-data cache, we must
6335 * make sure it contains no valid data! In order to do that,
6336 * we must issue a global data cache invalidate command!
6337 *
6338 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6339 * THIS IS VERY IMPORTANT!
6340 */
6341
6342 /* Invalidate data and mini-data. */
6343 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6344 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6345 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6346 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6347 }
6348
6349 /*
6350 * Change the PTEs for the specified kernel mappings such that they
6351 * will use the mini data cache instead of the main data cache.
6352 */
6353 void
6354 pmap_uarea(vaddr_t va)
6355 {
6356 struct l2_bucket *l2b;
6357 pt_entry_t *ptep, *sptep, pte;
6358 vaddr_t next_bucket, eva;
6359
6360 #if (ARM_NMMUS > 1)
6361 if (xscale_use_minidata == 0)
6362 return;
6363 #endif
6364
6365 eva = va + USPACE;
6366
6367 while (va < eva) {
6368 next_bucket = L2_NEXT_BUCKET(va);
6369 if (next_bucket > eva)
6370 next_bucket = eva;
6371
6372 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6373 KDASSERT(l2b != NULL);
6374
6375 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6376
6377 while (va < next_bucket) {
6378 pte = *ptep;
6379 if (!l2pte_minidata(pte)) {
6380 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6381 cpu_tlb_flushD_SE(va);
6382 *ptep = pte & ~L2_B;
6383 }
6384 ptep++;
6385 va += PAGE_SIZE;
6386 }
6387 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6388 }
6389 cpu_cpwait();
6390 }
6391 #endif /* ARM_MMU_XSCALE == 1 */
6392
6393
6394 #if defined(CPU_ARM11MPCORE)
6395
6396 void
6397 pmap_pte_init_arm11mpcore(void)
6398 {
6399
6400 /* cache mode is controlled by 5 bits (B, C, TEX) */
6401 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6402 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6403 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6404 /* use extended small page (without APn, with TEX) */
6405 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6406 #else
6407 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6408 #endif
6409
6410 /* write-back, write-allocate */
6411 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6412 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6413 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6414 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6415 #else
6416 /* no TEX. read-allocate */
6417 pte_l2_s_cache_mode = L2_C | L2_B;
6418 #endif
6419 /*
6420 * write-back, write-allocate for page tables.
6421 */
6422 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6423 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6424 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6425 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6426 #else
6427 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6428 #endif
6429
6430 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6431 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6432 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6433 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6434
6435 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6436 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6437 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6438 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6439 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6440
6441 #else
6442 /* with AP[0..3] */
6443 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6444 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6445 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6446 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6447 #endif
6448
6449 #ifdef ARM11MPCORE_COMPAT_MMU
6450 /* with AP[0..3] */
6451 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6452 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6453 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6454 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6455
6456 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6457 pte_l1_s_proto = L1_S_PROTO_armv6;
6458 pte_l1_c_proto = L1_C_PROTO_armv6;
6459 pte_l2_s_proto = L2_S_PROTO_armv6c;
6460 #else
6461 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6462 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6463 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6464 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6465
6466 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6467 pte_l1_s_proto = L1_S_PROTO_armv6;
6468 pte_l1_c_proto = L1_C_PROTO_armv6;
6469 pte_l2_s_proto = L2_S_PROTO_armv6n;
6470 #endif
6471
6472 pmap_copy_page_func = pmap_copy_page_generic;
6473 pmap_zero_page_func = pmap_zero_page_generic;
6474 pmap_needs_pte_sync = 1;
6475 }
6476 #endif /* CPU_ARM11MPCORE */
6477
6478
6479 #if ARM_MMU_V7 == 1
6480 void
6481 pmap_pte_init_armv7(void)
6482 {
6483 /*
6484 * The ARMv7-A MMU is mostly compatible with generic. If the
6485 * AP field is zero, that now means "no access" rather than
6486 * read-only. The prototypes are a little different because of
6487 * the XN bit.
6488 */
6489 pmap_pte_init_generic();
6490
6491 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6492 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6493 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6494
6495 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6496 /*
6497 * write-back, no write-allocate, shareable for normal pages.
6498 */
6499 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6500 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6501 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6502
6503 /*
6504 * write-back, no write-allocate, shareable for page tables.
6505 */
6506 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6507 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6508 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6509 }
6510
6511 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6512 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6513 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6514 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6515
6516 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6517 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6518 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6519 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6520
6521 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6522 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6523 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6524 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6525
6526 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6527 pte_l1_s_proto = L1_S_PROTO_armv7;
6528 pte_l1_c_proto = L1_C_PROTO_armv7;
6529 pte_l2_s_proto = L2_S_PROTO_armv7;
6530
6531 pmap_needs_pte_sync = 1;
6532 }
6533 #endif /* ARM_MMU_V7 */
6534
6535 /*
6536 * return the PA of the current L1 table, for use when handling a crash dump
6537 */
6538 uint32_t pmap_kernel_L1_addr(void)
6539 {
6540 return pmap_kernel()->pm_l1->l1_physaddr;
6541 }
6542
6543 #if defined(DDB)
6544 /*
6545 * A couple of ddb-callable functions for dumping pmaps
6546 */
6547 void pmap_dump_all(void);
6548 void pmap_dump(pmap_t);
6549
6550 void
6551 pmap_dump_all(void)
6552 {
6553 pmap_t pm;
6554
6555 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6556 if (pm == pmap_kernel())
6557 continue;
6558 pmap_dump(pm);
6559 printf("\n");
6560 }
6561 }
6562
6563 static pt_entry_t ncptes[64];
6564 static void pmap_dump_ncpg(pmap_t);
6565
6566 void
6567 pmap_dump(pmap_t pm)
6568 {
6569 struct l2_dtable *l2;
6570 struct l2_bucket *l2b;
6571 pt_entry_t *ptep, pte;
6572 vaddr_t l2_va, l2b_va, va;
6573 int i, j, k, occ, rows = 0;
6574
6575 if (pm == pmap_kernel())
6576 printf("pmap_kernel (%p): ", pm);
6577 else
6578 printf("user pmap (%p): ", pm);
6579
6580 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6581
6582 l2_va = 0;
6583 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6584 l2 = pm->pm_l2[i];
6585
6586 if (l2 == NULL || l2->l2_occupancy == 0)
6587 continue;
6588
6589 l2b_va = l2_va;
6590 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6591 l2b = &l2->l2_bucket[j];
6592
6593 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6594 continue;
6595
6596 ptep = l2b->l2b_kva;
6597
6598 for (k = 0; k < 256 && ptep[k] == 0; k++)
6599 ;
6600
6601 k &= ~63;
6602 occ = l2b->l2b_occupancy;
6603 va = l2b_va + (k * 4096);
6604 for (; k < 256; k++, va += 0x1000) {
6605 char ch = ' ';
6606 if ((k % 64) == 0) {
6607 if ((rows % 8) == 0) {
6608 printf(
6609 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6610 }
6611 printf("%08lx: ", va);
6612 }
6613
6614 ncptes[k & 63] = 0;
6615 pte = ptep[k];
6616 if (pte == 0) {
6617 ch = '.';
6618 } else {
6619 occ--;
6620 switch (pte & 0x0c) {
6621 case 0x00:
6622 ch = 'D'; /* No cache No buff */
6623 break;
6624 case 0x04:
6625 ch = 'B'; /* No cache buff */
6626 break;
6627 case 0x08:
6628 if (pte & 0x40)
6629 ch = 'm';
6630 else
6631 ch = 'C'; /* Cache No buff */
6632 break;
6633 case 0x0c:
6634 ch = 'F'; /* Cache Buff */
6635 break;
6636 }
6637
6638 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6639 ch += 0x20;
6640
6641 if ((pte & 0xc) == 0)
6642 ncptes[k & 63] = pte;
6643 }
6644
6645 if ((k % 64) == 63) {
6646 rows++;
6647 printf("%c\n", ch);
6648 pmap_dump_ncpg(pm);
6649 if (occ == 0)
6650 break;
6651 } else
6652 printf("%c", ch);
6653 }
6654 }
6655 }
6656 }
6657
6658 static void
6659 pmap_dump_ncpg(pmap_t pm)
6660 {
6661 struct vm_page *pg;
6662 struct vm_page_md *md;
6663 struct pv_entry *pv;
6664 int i;
6665
6666 for (i = 0; i < 63; i++) {
6667 if (ncptes[i] == 0)
6668 continue;
6669
6670 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6671 if (pg == NULL)
6672 continue;
6673 md = VM_PAGE_TO_MD(pg);
6674
6675 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6676 VM_PAGE_TO_PHYS(pg),
6677 md->krw_mappings, md->kro_mappings,
6678 md->urw_mappings, md->uro_mappings);
6679
6680 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6681 printf(" %c va 0x%08lx, flags 0x%x\n",
6682 (pm == pv->pv_pmap) ? '*' : ' ',
6683 pv->pv_va, pv->pv_flags);
6684 }
6685 }
6686 }
6687 #endif
6688
6689 #ifdef PMAP_STEAL_MEMORY
6690 void
6691 pmap_boot_pageadd(pv_addr_t *newpv)
6692 {
6693 pv_addr_t *pv, *npv;
6694
6695 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6696 if (newpv->pv_pa < pv->pv_va) {
6697 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6698 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6699 newpv->pv_size += pv->pv_size;
6700 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6701 }
6702 pv = NULL;
6703 } else {
6704 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6705 pv = npv) {
6706 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6707 KASSERT(pv->pv_pa < newpv->pv_pa);
6708 if (newpv->pv_pa > npv->pv_pa)
6709 continue;
6710 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6711 pv->pv_size += newpv->pv_size;
6712 return;
6713 }
6714 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6715 break;
6716 newpv->pv_size += npv->pv_size;
6717 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6718 SLIST_REMOVE_AFTER(newpv, pv_list);
6719 return;
6720 }
6721 }
6722 }
6723
6724 if (pv) {
6725 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6726 } else {
6727 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6728 }
6729 }
6730
6731 void
6732 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6733 pv_addr_t *rpv)
6734 {
6735 pv_addr_t *pv, **pvp;
6736 struct vm_physseg *ps;
6737 size_t i;
6738
6739 KASSERT(amount & PGOFSET);
6740 KASSERT((mask & PGOFSET) == 0);
6741 KASSERT((match & PGOFSET) == 0);
6742 KASSERT(amount != 0);
6743
6744 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6745 (pv = *pvp) != NULL;
6746 pvp = &SLIST_NEXT(pv, pv_list)) {
6747 pv_addr_t *newpv;
6748 psize_t off;
6749 /*
6750 * If this entry is too small to satify the request...
6751 */
6752 KASSERT(pv->pv_size > 0);
6753 if (pv->pv_size < amount)
6754 continue;
6755
6756 for (off = 0; off <= mask; off += PAGE_SIZE) {
6757 if (((pv->pv_pa + off) & mask) == match
6758 && off + amount <= pv->pv_size)
6759 break;
6760 }
6761 if (off > mask)
6762 continue;
6763
6764 rpv->pv_va = pv->pv_va + off;
6765 rpv->pv_pa = pv->pv_pa + off;
6766 rpv->pv_size = amount;
6767 pv->pv_size -= amount;
6768 if (pv->pv_size == 0) {
6769 KASSERT(off == 0);
6770 KASSERT((vaddr_t) pv == rpv->pv_va);
6771 *pvp = SLIST_NEXT(pv, pv_list);
6772 } else if (off == 0) {
6773 KASSERT((vaddr_t) pv == rpv->pv_va);
6774 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6775 *newpv = *pv;
6776 newpv->pv_pa += amount;
6777 newpv->pv_va += amount;
6778 *pvp = newpv;
6779 } else if (off < pv->pv_size) {
6780 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6781 *newpv = *pv;
6782 newpv->pv_size -= off;
6783 newpv->pv_pa += off + amount;
6784 newpv->pv_va += off + amount;
6785
6786 SLIST_NEXT(pv, pv_list) = newpv;
6787 pv->pv_size = off;
6788 } else {
6789 KASSERT((vaddr_t) pv != rpv->pv_va);
6790 }
6791 memset((void *)rpv->pv_va, 0, amount);
6792 return;
6793 }
6794
6795 if (vm_nphysseg == 0)
6796 panic("pmap_boot_pagealloc: couldn't allocate memory");
6797
6798 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6799 (pv = *pvp) != NULL;
6800 pvp = &SLIST_NEXT(pv, pv_list)) {
6801 if (SLIST_NEXT(pv, pv_list) == NULL)
6802 break;
6803 }
6804 KASSERT(mask == 0);
6805 for (i = 0; i < vm_nphysseg; i++) {
6806 ps = VM_PHYSMEM_PTR(i);
6807 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6808 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6809 rpv->pv_va = pv->pv_va;
6810 rpv->pv_pa = pv->pv_pa;
6811 rpv->pv_size = amount;
6812 *pvp = NULL;
6813 pmap_map_chunk(kernel_l1pt.pv_va,
6814 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6815 ptoa(ps->avail_start),
6816 amount - pv->pv_size,
6817 VM_PROT_READ|VM_PROT_WRITE,
6818 PTE_CACHE);
6819 ps->avail_start += atop(amount - pv->pv_size);
6820 /*
6821 * If we consumed the entire physseg, remove it.
6822 */
6823 if (ps->avail_start == ps->avail_end) {
6824 for (--vm_nphysseg; i < vm_nphysseg; i++)
6825 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6826 }
6827 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6828 return;
6829 }
6830 }
6831
6832 panic("pmap_boot_pagealloc: couldn't allocate memory");
6833 }
6834
6835 vaddr_t
6836 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6837 {
6838 pv_addr_t pv;
6839
6840 pmap_boot_pagealloc(size, 0, 0, &pv);
6841
6842 return pv.pv_va;
6843 }
6844 #endif /* PMAP_STEAL_MEMORY */
6845
6846 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6847 {
6848 sysctl_createv(clog, 0, NULL, NULL,
6849 CTLFLAG_PERMANENT,
6850 CTLTYPE_NODE, "machdep", NULL,
6851 NULL, 0, NULL, 0,
6852 CTL_MACHDEP, CTL_EOL);
6853
6854 sysctl_createv(clog, 0, NULL, NULL,
6855 CTLFLAG_PERMANENT,
6856 CTLTYPE_INT, "kmpages",
6857 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6858 NULL, 0, &pmap_kmpages, 0,
6859 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6860 }
6861
6862 #ifdef PMAP_NEED_ALLOC_POOLPAGE
6863 struct vm_page *
6864 arm_pmap_alloc_poolpage(int flags)
6865 {
6866 /*
6867 * On some systems, only some pages may be "coherent" for dma and we
6868 * want to use those for pool pages (think mbufs).
6869 */
6870 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT)
6871 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
6872 UVM_PGA_STRAT_ONLY, arm_poolpage_vmfreelist);
6873
6874 return uvm_pagealloc(NULL, 0, NULL, flags);
6875 }
6876 #endif
6877