Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.244
      1 /*	$NetBSD: pmap.c,v 1.244 2012/12/11 01:16:10 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of 0xffff0000, then
    166  *       MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /*
    183  * Special compilation symbols
    184  * PMAP_DEBUG		- Build in pmap_debug_level code
    185  */
    186 
    187 /* Include header files */
    188 
    189 #include "opt_cpuoptions.h"
    190 #include "opt_pmap_debug.h"
    191 #include "opt_ddb.h"
    192 #include "opt_lockdebug.h"
    193 #include "opt_multiprocessor.h"
    194 
    195 #include <sys/param.h>
    196 #include <sys/types.h>
    197 #include <sys/kernel.h>
    198 #include <sys/systm.h>
    199 #include <sys/proc.h>
    200 #include <sys/pool.h>
    201 #include <sys/kmem.h>
    202 #include <sys/cdefs.h>
    203 #include <sys/cpu.h>
    204 #include <sys/sysctl.h>
    205 
    206 #include <uvm/uvm.h>
    207 
    208 #include <sys/bus.h>
    209 #include <machine/pmap.h>
    210 #include <machine/pcb.h>
    211 #include <machine/param.h>
    212 #include <arm/cpuconf.h>
    213 #include <arm/arm32/katelib.h>
    214 
    215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.244 2012/12/11 01:16:10 matt Exp $");
    216 
    217 #ifdef PMAP_DEBUG
    218 
    219 /* XXX need to get rid of all refs to this */
    220 int pmap_debug_level = 0;
    221 
    222 /*
    223  * for switching to potentially finer grained debugging
    224  */
    225 #define	PDB_FOLLOW	0x0001
    226 #define	PDB_INIT	0x0002
    227 #define	PDB_ENTER	0x0004
    228 #define	PDB_REMOVE	0x0008
    229 #define	PDB_CREATE	0x0010
    230 #define	PDB_PTPAGE	0x0020
    231 #define	PDB_GROWKERN	0x0040
    232 #define	PDB_BITS	0x0080
    233 #define	PDB_COLLECT	0x0100
    234 #define	PDB_PROTECT	0x0200
    235 #define	PDB_MAP_L1	0x0400
    236 #define	PDB_BOOTSTRAP	0x1000
    237 #define	PDB_PARANOIA	0x2000
    238 #define	PDB_WIRING	0x4000
    239 #define	PDB_PVDUMP	0x8000
    240 #define	PDB_VAC		0x10000
    241 #define	PDB_KENTER	0x20000
    242 #define	PDB_KREMOVE	0x40000
    243 #define	PDB_EXEC	0x80000
    244 
    245 int debugmap = 1;
    246 int pmapdebug = 0;
    247 #define	NPDEBUG(_lev_,_stat_) \
    248 	if (pmapdebug & (_lev_)) \
    249         	((_stat_))
    250 
    251 #else	/* PMAP_DEBUG */
    252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    253 #endif	/* PMAP_DEBUG */
    254 
    255 /*
    256  * pmap_kernel() points here
    257  */
    258 static struct pmap	kernel_pmap_store;
    259 struct pmap		*const kernel_pmap_ptr = &kernel_pmap_store;
    260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    261 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    262 #endif
    263 
    264 /*
    265  * Which pmap is currently 'live' in the cache
    266  *
    267  * XXXSCW: Fix for SMP ...
    268  */
    269 static pmap_t pmap_recent_user;
    270 
    271 /*
    272  * Pointer to last active lwp, or NULL if it exited.
    273  */
    274 struct lwp *pmap_previous_active_lwp;
    275 
    276 /*
    277  * Pool and cache that pmap structures are allocated from.
    278  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    279  * in pmap_create().
    280  */
    281 static struct pool_cache pmap_cache;
    282 static LIST_HEAD(, pmap) pmap_pmaps;
    283 
    284 /*
    285  * Pool of PV structures
    286  */
    287 static struct pool pmap_pv_pool;
    288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    291 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    292 };
    293 
    294 /*
    295  * Pool and cache of l2_dtable structures.
    296  * We use a cache to avoid clearing the structures when they're
    297  * allocated. (196 bytes)
    298  */
    299 static struct pool_cache pmap_l2dtable_cache;
    300 static vaddr_t pmap_kernel_l2dtable_kva;
    301 
    302 /*
    303  * Pool and cache of L2 page descriptors.
    304  * We use a cache to avoid clearing the descriptor table
    305  * when they're allocated. (1KB)
    306  */
    307 static struct pool_cache pmap_l2ptp_cache;
    308 static vaddr_t pmap_kernel_l2ptp_kva;
    309 static paddr_t pmap_kernel_l2ptp_phys;
    310 
    311 #ifdef PMAPCOUNTERS
    312 #define	PMAP_EVCNT_INITIALIZER(name) \
    313 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    314 
    315 #ifdef PMAP_CACHE_VIPT
    316 static struct evcnt pmap_ev_vac_clean_one =
    317    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    318 static struct evcnt pmap_ev_vac_flush_one =
    319    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    320 static struct evcnt pmap_ev_vac_flush_lots =
    321    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    322 static struct evcnt pmap_ev_vac_flush_lots2 =
    323    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    328 
    329 static struct evcnt pmap_ev_vac_color_new =
    330    PMAP_EVCNT_INITIALIZER("new page color");
    331 static struct evcnt pmap_ev_vac_color_reuse =
    332    PMAP_EVCNT_INITIALIZER("ok first page color");
    333 static struct evcnt pmap_ev_vac_color_ok =
    334    PMAP_EVCNT_INITIALIZER("ok page color");
    335 static struct evcnt pmap_ev_vac_color_blind =
    336    PMAP_EVCNT_INITIALIZER("blind page color");
    337 static struct evcnt pmap_ev_vac_color_change =
    338    PMAP_EVCNT_INITIALIZER("change page color");
    339 static struct evcnt pmap_ev_vac_color_erase =
    340    PMAP_EVCNT_INITIALIZER("erase page color");
    341 static struct evcnt pmap_ev_vac_color_none =
    342    PMAP_EVCNT_INITIALIZER("no page color");
    343 static struct evcnt pmap_ev_vac_color_restore =
    344    PMAP_EVCNT_INITIALIZER("restore page color");
    345 
    346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    354 #endif
    355 
    356 static struct evcnt pmap_ev_mappings =
    357    PMAP_EVCNT_INITIALIZER("pages mapped");
    358 static struct evcnt pmap_ev_unmappings =
    359    PMAP_EVCNT_INITIALIZER("pages unmapped");
    360 static struct evcnt pmap_ev_remappings =
    361    PMAP_EVCNT_INITIALIZER("pages remapped");
    362 
    363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    366 
    367 static struct evcnt pmap_ev_kernel_mappings =
    368    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    369 static struct evcnt pmap_ev_kernel_unmappings =
    370    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    371 static struct evcnt pmap_ev_kernel_remappings =
    372    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    373 
    374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    377 
    378 static struct evcnt pmap_ev_kenter_mappings =
    379    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    380 static struct evcnt pmap_ev_kenter_unmappings =
    381    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    382 static struct evcnt pmap_ev_kenter_remappings =
    383    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    384 static struct evcnt pmap_ev_pt_mappings =
    385    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    386 
    387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    391 
    392 #ifdef PMAP_CACHE_VIPT
    393 static struct evcnt pmap_ev_exec_mappings =
    394    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    395 static struct evcnt pmap_ev_exec_cached =
    396    PMAP_EVCNT_INITIALIZER("exec pages cached");
    397 
    398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    400 
    401 static struct evcnt pmap_ev_exec_synced =
    402    PMAP_EVCNT_INITIALIZER("exec pages synced");
    403 static struct evcnt pmap_ev_exec_synced_map =
    404    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    405 static struct evcnt pmap_ev_exec_synced_unmap =
    406    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    407 static struct evcnt pmap_ev_exec_synced_remap =
    408    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    409 static struct evcnt pmap_ev_exec_synced_clearbit =
    410    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    411 static struct evcnt pmap_ev_exec_synced_kremove =
    412    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    413 
    414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    420 
    421 static struct evcnt pmap_ev_exec_discarded_unmap =
    422    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    423 static struct evcnt pmap_ev_exec_discarded_zero =
    424    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    425 static struct evcnt pmap_ev_exec_discarded_copy =
    426    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    427 static struct evcnt pmap_ev_exec_discarded_page_protect =
    428    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    429 static struct evcnt pmap_ev_exec_discarded_clearbit =
    430    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    431 static struct evcnt pmap_ev_exec_discarded_kremove =
    432    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    433 
    434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    440 #endif /* PMAP_CACHE_VIPT */
    441 
    442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    445 
    446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    449 
    450 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    451 #else
    452 #define	PMAPCOUNT(x)	((void)0)
    453 #endif
    454 
    455 /*
    456  * pmap copy/zero page, and mem(5) hook point
    457  */
    458 static pt_entry_t *csrc_pte, *cdst_pte;
    459 static vaddr_t csrcp, cdstp;
    460 vaddr_t memhook;			/* used by mem.c */
    461 kmutex_t memlock;			/* used by mem.c */
    462 void *zeropage;				/* used by mem.c */
    463 extern void *msgbufaddr;
    464 int pmap_kmpages;
    465 /*
    466  * Flag to indicate if pmap_init() has done its thing
    467  */
    468 bool pmap_initialized;
    469 
    470 /*
    471  * Misc. locking data structures
    472  */
    473 
    474 #define	pmap_acquire_pmap_lock(pm)			\
    475 	do {						\
    476 		if ((pm) != pmap_kernel())		\
    477 			mutex_enter((pm)->pm_lock);	\
    478 	} while (/*CONSTCOND*/0)
    479 
    480 #define	pmap_release_pmap_lock(pm)			\
    481 	do {						\
    482 		if ((pm) != pmap_kernel())		\
    483 			mutex_exit((pm)->pm_lock);	\
    484 	} while (/*CONSTCOND*/0)
    485 
    486 
    487 /*
    488  * Metadata for L1 translation tables.
    489  */
    490 struct l1_ttable {
    491 	/* Entry on the L1 Table list */
    492 	SLIST_ENTRY(l1_ttable) l1_link;
    493 
    494 	/* Entry on the L1 Least Recently Used list */
    495 	TAILQ_ENTRY(l1_ttable) l1_lru;
    496 
    497 	/* Track how many domains are allocated from this L1 */
    498 	volatile u_int l1_domain_use_count;
    499 
    500 	/*
    501 	 * A free-list of domain numbers for this L1.
    502 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    503 	 * is slow on ARM.
    504 	 */
    505 	uint8_t l1_domain_first;
    506 	uint8_t l1_domain_free[PMAP_DOMAINS];
    507 
    508 	/* Physical address of this L1 page table */
    509 	paddr_t l1_physaddr;
    510 
    511 	/* KVA of this L1 page table */
    512 	pd_entry_t *l1_kva;
    513 };
    514 
    515 /*
    516  * Convert a virtual address into its L1 table index. That is, the
    517  * index used to locate the L2 descriptor table pointer in an L1 table.
    518  * This is basically used to index l1->l1_kva[].
    519  *
    520  * Each L2 descriptor table represents 1MB of VA space.
    521  */
    522 #define	L1_IDX(va)		(((vaddr_t)(va)) >> L1_S_SHIFT)
    523 
    524 /*
    525  * L1 Page Tables are tracked using a Least Recently Used list.
    526  *  - New L1s are allocated from the HEAD.
    527  *  - Freed L1s are added to the TAIl.
    528  *  - Recently accessed L1s (where an 'access' is some change to one of
    529  *    the userland pmaps which owns this L1) are moved to the TAIL.
    530  */
    531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    532 static kmutex_t l1_lru_lock __cacheline_aligned;
    533 
    534 /*
    535  * A list of all L1 tables
    536  */
    537 static SLIST_HEAD(, l1_ttable) l1_list;
    538 
    539 /*
    540  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    541  *
    542  * This is normally 16MB worth L2 page descriptors for any given pmap.
    543  * Reference counts are maintained for L2 descriptors so they can be
    544  * freed when empty.
    545  */
    546 struct l2_dtable {
    547 	/* The number of L2 page descriptors allocated to this l2_dtable */
    548 	u_int l2_occupancy;
    549 
    550 	/* List of L2 page descriptors */
    551 	struct l2_bucket {
    552 		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
    553 		paddr_t l2b_phys;	/* Physical address of same */
    554 		u_short l2b_l1idx;	/* This L2 table's L1 index */
    555 		u_short l2b_occupancy;	/* How many active descriptors */
    556 	} l2_bucket[L2_BUCKET_SIZE];
    557 };
    558 
    559 /*
    560  * Given an L1 table index, calculate the corresponding l2_dtable index
    561  * and bucket index within the l2_dtable.
    562  */
    563 #define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
    564 				 (L2_SIZE - 1))
    565 #define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
    566 
    567 /*
    568  * Given a virtual address, this macro returns the
    569  * virtual address required to drop into the next L2 bucket.
    570  */
    571 #define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
    572 
    573 /*
    574  * L2 allocation.
    575  */
    576 #define	pmap_alloc_l2_dtable()		\
    577 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    578 #define	pmap_free_l2_dtable(l2)		\
    579 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    580 #define pmap_alloc_l2_ptp(pap)		\
    581 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    582 	    PR_NOWAIT, (pap)))
    583 
    584 /*
    585  * We try to map the page tables write-through, if possible.  However, not
    586  * all CPUs have a write-through cache mode, so on those we have to sync
    587  * the cache when we frob page tables.
    588  *
    589  * We try to evaluate this at compile time, if possible.  However, it's
    590  * not always possible to do that, hence this run-time var.
    591  */
    592 int	pmap_needs_pte_sync;
    593 
    594 /*
    595  * Real definition of pv_entry.
    596  */
    597 struct pv_entry {
    598 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    599 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    600 	vaddr_t		pv_va;          /* virtual address for mapping */
    601 	u_int		pv_flags;       /* flags */
    602 };
    603 
    604 /*
    605  * Macro to determine if a mapping might be resident in the
    606  * instruction cache and/or TLB
    607  */
    608 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    609 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    610 
    611 /*
    612  * Macro to determine if a mapping might be resident in the
    613  * data cache and/or TLB
    614  */
    615 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    616 
    617 /*
    618  * Local prototypes
    619  */
    620 static int		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
    621 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    622 			    pt_entry_t **);
    623 static bool		pmap_is_current(pmap_t);
    624 static bool		pmap_is_cached(pmap_t);
    625 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    626 			    pmap_t, vaddr_t, u_int);
    627 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    628 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    629 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    630 			    u_int, u_int);
    631 
    632 static void		pmap_pinit(pmap_t);
    633 static int		pmap_pmap_ctor(void *, void *, int);
    634 
    635 static void		pmap_alloc_l1(pmap_t);
    636 static void		pmap_free_l1(pmap_t);
    637 static void		pmap_use_l1(pmap_t);
    638 
    639 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    640 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    641 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    642 static int		pmap_l2ptp_ctor(void *, void *, int);
    643 static int		pmap_l2dtable_ctor(void *, void *, int);
    644 
    645 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    646 #ifdef PMAP_CACHE_VIVT
    647 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    648 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    649 #endif
    650 
    651 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    652 #ifdef PMAP_CACHE_VIVT
    653 static int		pmap_clean_page(struct pv_entry *, bool);
    654 #endif
    655 #ifdef PMAP_CACHE_VIPT
    656 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    657 enum pmap_flush_op {
    658 	PMAP_FLUSH_PRIMARY,
    659 	PMAP_FLUSH_SECONDARY,
    660 	PMAP_CLEAN_PRIMARY
    661 };
    662 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    663 #endif
    664 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    665 
    666 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    667 static vaddr_t		kernel_pt_lookup(paddr_t);
    668 
    669 
    670 /*
    671  * Misc variables
    672  */
    673 vaddr_t virtual_avail;
    674 vaddr_t virtual_end;
    675 vaddr_t pmap_curmaxkvaddr;
    676 
    677 paddr_t avail_start;
    678 paddr_t avail_end;
    679 
    680 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    681 pv_addr_t kernelpages;
    682 pv_addr_t kernel_l1pt;
    683 pv_addr_t systempage;
    684 
    685 /* Function to set the debug level of the pmap code */
    686 
    687 #ifdef PMAP_DEBUG
    688 void
    689 pmap_debug(int level)
    690 {
    691 	pmap_debug_level = level;
    692 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    693 }
    694 #endif	/* PMAP_DEBUG */
    695 
    696 /*
    697  * A bunch of routines to conditionally flush the caches/TLB depending
    698  * on whether the specified pmap actually needs to be flushed at any
    699  * given time.
    700  */
    701 static inline void
    702 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
    703 {
    704 
    705 	if (pm->pm_cstate.cs_tlb_id)
    706 		cpu_tlb_flushID_SE(va);
    707 }
    708 
    709 static inline void
    710 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
    711 {
    712 
    713 	if (pm->pm_cstate.cs_tlb_d)
    714 		cpu_tlb_flushD_SE(va);
    715 }
    716 
    717 static inline void
    718 pmap_tlb_flushID(pmap_t pm)
    719 {
    720 
    721 	if (pm->pm_cstate.cs_tlb_id) {
    722 		cpu_tlb_flushID();
    723 		pm->pm_cstate.cs_tlb = 0;
    724 	}
    725 }
    726 
    727 static inline void
    728 pmap_tlb_flushD(pmap_t pm)
    729 {
    730 
    731 	if (pm->pm_cstate.cs_tlb_d) {
    732 		cpu_tlb_flushD();
    733 		pm->pm_cstate.cs_tlb_d = 0;
    734 	}
    735 }
    736 
    737 #ifdef PMAP_CACHE_VIVT
    738 static inline void
    739 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
    740 {
    741 	if (pm->pm_cstate.cs_cache_id) {
    742 		cpu_idcache_wbinv_range(va, len);
    743 	}
    744 }
    745 
    746 static inline void
    747 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
    748     bool do_inv, bool rd_only)
    749 {
    750 
    751 	if (pm->pm_cstate.cs_cache_d) {
    752 		if (do_inv) {
    753 			if (rd_only)
    754 				cpu_dcache_inv_range(va, len);
    755 			else
    756 				cpu_dcache_wbinv_range(va, len);
    757 		} else
    758 		if (!rd_only)
    759 			cpu_dcache_wb_range(va, len);
    760 	}
    761 }
    762 
    763 static inline void
    764 pmap_idcache_wbinv_all(pmap_t pm)
    765 {
    766 	if (pm->pm_cstate.cs_cache_id) {
    767 		cpu_idcache_wbinv_all();
    768 		pm->pm_cstate.cs_cache = 0;
    769 	}
    770 }
    771 
    772 static inline void
    773 pmap_dcache_wbinv_all(pmap_t pm)
    774 {
    775 	if (pm->pm_cstate.cs_cache_d) {
    776 		cpu_dcache_wbinv_all();
    777 		pm->pm_cstate.cs_cache_d = 0;
    778 	}
    779 }
    780 #endif /* PMAP_CACHE_VIVT */
    781 
    782 static inline bool
    783 pmap_is_current(pmap_t pm)
    784 {
    785 
    786 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    787 		return true;
    788 
    789 	return false;
    790 }
    791 
    792 static inline bool
    793 pmap_is_cached(pmap_t pm)
    794 {
    795 
    796 	if (pm == pmap_kernel() || pmap_recent_user == NULL ||
    797 	    pmap_recent_user == pm)
    798 		return (true);
    799 
    800 	return false;
    801 }
    802 
    803 /*
    804  * PTE_SYNC_CURRENT:
    805  *
    806  *     Make sure the pte is written out to RAM.
    807  *     We need to do this for one of two cases:
    808  *       - We're dealing with the kernel pmap
    809  *       - There is no pmap active in the cache/tlb.
    810  *       - The specified pmap is 'active' in the cache/tlb.
    811  */
    812 #ifdef PMAP_INCLUDE_PTE_SYNC
    813 #define	PTE_SYNC_CURRENT(pm, ptep)	\
    814 do {					\
    815 	if (PMAP_NEEDS_PTE_SYNC && 	\
    816 	    pmap_is_cached(pm))		\
    817 		PTE_SYNC(ptep);		\
    818 } while (/*CONSTCOND*/0)
    819 #else
    820 #define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
    821 #endif
    822 
    823 /*
    824  * main pv_entry manipulation functions:
    825  *   pmap_enter_pv: enter a mapping onto a vm_page list
    826  *   pmap_remove_pv: remove a mappiing from a vm_page list
    827  *
    828  * NOTE: pmap_enter_pv expects to lock the pvh itself
    829  *       pmap_remove_pv expects te caller to lock the pvh before calling
    830  */
    831 
    832 /*
    833  * pmap_enter_pv: enter a mapping onto a vm_page lst
    834  *
    835  * => caller should hold the proper lock on pmap_main_lock
    836  * => caller should have pmap locked
    837  * => we will gain the lock on the vm_page and allocate the new pv_entry
    838  * => caller should adjust ptp's wire_count before calling
    839  * => caller should not adjust pmap's wire_count
    840  */
    841 static void
    842 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    843     vaddr_t va, u_int flags)
    844 {
    845 	struct pv_entry **pvp;
    846 
    847 	NPDEBUG(PDB_PVDUMP,
    848 	    printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
    849 
    850 	pv->pv_pmap = pm;
    851 	pv->pv_va = va;
    852 	pv->pv_flags = flags;
    853 
    854 	pvp = &SLIST_FIRST(&md->pvh_list);
    855 #ifdef PMAP_CACHE_VIPT
    856 	/*
    857 	 * Insert unmanaged entries, writeable first, at the head of
    858 	 * the pv list.
    859 	 */
    860 	if (__predict_true((flags & PVF_KENTRY) == 0)) {
    861 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
    862 			pvp = &SLIST_NEXT(*pvp, pv_link);
    863 	} else if ((flags & PVF_WRITE) == 0) {
    864 		while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
    865 			pvp = &SLIST_NEXT(*pvp, pv_link);
    866 	}
    867 #endif
    868 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
    869 	*pvp = pv;				/* ... locked list */
    870 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
    871 #ifdef PMAP_CACHE_VIPT
    872 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
    873 		md->pvh_attrs |= PVF_KMOD;
    874 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
    875 		md->pvh_attrs |= PVF_DIRTY;
    876 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
    877 #endif
    878 	if (pm == pmap_kernel()) {
    879 		PMAPCOUNT(kernel_mappings);
    880 		if (flags & PVF_WRITE)
    881 			md->krw_mappings++;
    882 		else
    883 			md->kro_mappings++;
    884 	} else {
    885 		if (flags & PVF_WRITE)
    886 			md->urw_mappings++;
    887 		else
    888 			md->uro_mappings++;
    889 	}
    890 
    891 #ifdef PMAP_CACHE_VIPT
    892 	/*
    893 	 * If this is an exec mapping and its the first exec mapping
    894 	 * for this page, make sure to sync the I-cache.
    895 	 */
    896 	if (PV_IS_EXEC_P(flags)) {
    897 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
    898 			pmap_syncicache_page(md, pa);
    899 			PMAPCOUNT(exec_synced_map);
    900 		}
    901 		PMAPCOUNT(exec_mappings);
    902 	}
    903 #endif
    904 
    905 	PMAPCOUNT(mappings);
    906 
    907 	if (pv->pv_flags & PVF_WIRED)
    908 		++pm->pm_stats.wired_count;
    909 }
    910 
    911 /*
    912  *
    913  * pmap_find_pv: Find a pv entry
    914  *
    915  * => caller should hold lock on vm_page
    916  */
    917 static inline struct pv_entry *
    918 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
    919 {
    920 	struct pv_entry *pv;
    921 
    922 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
    923 		if (pm == pv->pv_pmap && va == pv->pv_va)
    924 			break;
    925 	}
    926 
    927 	return (pv);
    928 }
    929 
    930 /*
    931  * pmap_remove_pv: try to remove a mapping from a pv_list
    932  *
    933  * => caller should hold proper lock on pmap_main_lock
    934  * => pmap should be locked
    935  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    936  * => caller should adjust ptp's wire_count and free PTP if needed
    937  * => caller should NOT adjust pmap's wire_count
    938  * => we return the removed pv
    939  */
    940 static struct pv_entry *
    941 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
    942 {
    943 	struct pv_entry *pv, **prevptr;
    944 
    945 	NPDEBUG(PDB_PVDUMP,
    946 	    printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
    947 
    948 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
    949 	pv = *prevptr;
    950 
    951 	while (pv) {
    952 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
    953 			NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
    954 			    "%p, flags 0x%x\n", pm, md, pv->pv_flags));
    955 			if (pv->pv_flags & PVF_WIRED) {
    956 				--pm->pm_stats.wired_count;
    957 			}
    958 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
    959 			if (pm == pmap_kernel()) {
    960 				PMAPCOUNT(kernel_unmappings);
    961 				if (pv->pv_flags & PVF_WRITE)
    962 					md->krw_mappings--;
    963 				else
    964 					md->kro_mappings--;
    965 			} else {
    966 				if (pv->pv_flags & PVF_WRITE)
    967 					md->urw_mappings--;
    968 				else
    969 					md->uro_mappings--;
    970 			}
    971 
    972 			PMAPCOUNT(unmappings);
    973 #ifdef PMAP_CACHE_VIPT
    974 			if (!(pv->pv_flags & PVF_WRITE))
    975 				break;
    976 			/*
    977 			 * If this page has had an exec mapping, then if
    978 			 * this was the last mapping, discard the contents,
    979 			 * otherwise sync the i-cache for this page.
    980 			 */
    981 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
    982 				if (SLIST_EMPTY(&md->pvh_list)) {
    983 					md->pvh_attrs &= ~PVF_EXEC;
    984 					PMAPCOUNT(exec_discarded_unmap);
    985 				} else {
    986 					pmap_syncicache_page(md, pa);
    987 					PMAPCOUNT(exec_synced_unmap);
    988 				}
    989 			}
    990 #endif /* PMAP_CACHE_VIPT */
    991 			break;
    992 		}
    993 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
    994 		pv = *prevptr;				/* advance */
    995 	}
    996 
    997 #ifdef PMAP_CACHE_VIPT
    998 	/*
    999 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1000 	 * clear the KMOD attribute from the page.
   1001 	 */
   1002 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1003 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1004 		md->pvh_attrs &= ~PVF_KMOD;
   1005 
   1006 	/*
   1007 	 * If this was a writeable page and there are no more writeable
   1008 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1009 	 * the contents to memory.
   1010 	 */
   1011 	if (md->krw_mappings + md->urw_mappings == 0)
   1012 		md->pvh_attrs &= ~PVF_WRITE;
   1013 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1014 #endif /* PMAP_CACHE_VIPT */
   1015 
   1016 	return(pv);				/* return removed pv */
   1017 }
   1018 
   1019 /*
   1020  *
   1021  * pmap_modify_pv: Update pv flags
   1022  *
   1023  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1024  * => caller should NOT adjust pmap's wire_count
   1025  * => caller must call pmap_vac_me_harder() if writable status of a page
   1026  *    may have changed.
   1027  * => we return the old flags
   1028  *
   1029  * Modify a physical-virtual mapping in the pv table
   1030  */
   1031 static u_int
   1032 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1033     u_int clr_mask, u_int set_mask)
   1034 {
   1035 	struct pv_entry *npv;
   1036 	u_int flags, oflags;
   1037 
   1038 	KASSERT((clr_mask & PVF_KENTRY) == 0);
   1039 	KASSERT((set_mask & PVF_KENTRY) == 0);
   1040 
   1041 	if ((npv = pmap_find_pv(md, pm, va)) == NULL)
   1042 		return (0);
   1043 
   1044 	NPDEBUG(PDB_PVDUMP,
   1045 	    printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
   1046 
   1047 	/*
   1048 	 * There is at least one VA mapping this page.
   1049 	 */
   1050 
   1051 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1052 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1053 #ifdef PMAP_CACHE_VIPT
   1054 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1055 			md->pvh_attrs |= PVF_DIRTY;
   1056 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1057 #endif
   1058 	}
   1059 
   1060 	oflags = npv->pv_flags;
   1061 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1062 
   1063 	if ((flags ^ oflags) & PVF_WIRED) {
   1064 		if (flags & PVF_WIRED)
   1065 			++pm->pm_stats.wired_count;
   1066 		else
   1067 			--pm->pm_stats.wired_count;
   1068 	}
   1069 
   1070 	if ((flags ^ oflags) & PVF_WRITE) {
   1071 		if (pm == pmap_kernel()) {
   1072 			if (flags & PVF_WRITE) {
   1073 				md->krw_mappings++;
   1074 				md->kro_mappings--;
   1075 			} else {
   1076 				md->kro_mappings++;
   1077 				md->krw_mappings--;
   1078 			}
   1079 		} else {
   1080 			if (flags & PVF_WRITE) {
   1081 				md->urw_mappings++;
   1082 				md->uro_mappings--;
   1083 			} else {
   1084 				md->uro_mappings++;
   1085 				md->urw_mappings--;
   1086 			}
   1087 		}
   1088 	}
   1089 #ifdef PMAP_CACHE_VIPT
   1090 	if (md->urw_mappings + md->krw_mappings == 0)
   1091 		md->pvh_attrs &= ~PVF_WRITE;
   1092 	/*
   1093 	 * We have two cases here: the first is from enter_pv (new exec
   1094 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1095 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1096 	 * to do what pmap_remove_pv would do.
   1097 	 */
   1098 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1099 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1100 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1101 		pmap_syncicache_page(md, pa);
   1102 		PMAPCOUNT(exec_synced_remap);
   1103 	}
   1104 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1105 #endif
   1106 
   1107 	PMAPCOUNT(remappings);
   1108 
   1109 	return (oflags);
   1110 }
   1111 
   1112 /*
   1113  * Allocate an L1 translation table for the specified pmap.
   1114  * This is called at pmap creation time.
   1115  */
   1116 static void
   1117 pmap_alloc_l1(pmap_t pm)
   1118 {
   1119 	struct l1_ttable *l1;
   1120 	uint8_t domain;
   1121 
   1122 	/*
   1123 	 * Remove the L1 at the head of the LRU list
   1124 	 */
   1125 	mutex_spin_enter(&l1_lru_lock);
   1126 	l1 = TAILQ_FIRST(&l1_lru_list);
   1127 	KDASSERT(l1 != NULL);
   1128 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1129 
   1130 	/*
   1131 	 * Pick the first available domain number, and update
   1132 	 * the link to the next number.
   1133 	 */
   1134 	domain = l1->l1_domain_first;
   1135 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1136 
   1137 	/*
   1138 	 * If there are still free domain numbers in this L1,
   1139 	 * put it back on the TAIL of the LRU list.
   1140 	 */
   1141 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1142 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1143 
   1144 	mutex_spin_exit(&l1_lru_lock);
   1145 
   1146 	/*
   1147 	 * Fix up the relevant bits in the pmap structure
   1148 	 */
   1149 	pm->pm_l1 = l1;
   1150 	pm->pm_domain = domain + 1;
   1151 }
   1152 
   1153 /*
   1154  * Free an L1 translation table.
   1155  * This is called at pmap destruction time.
   1156  */
   1157 static void
   1158 pmap_free_l1(pmap_t pm)
   1159 {
   1160 	struct l1_ttable *l1 = pm->pm_l1;
   1161 
   1162 	mutex_spin_enter(&l1_lru_lock);
   1163 
   1164 	/*
   1165 	 * If this L1 is currently on the LRU list, remove it.
   1166 	 */
   1167 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1168 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1169 
   1170 	/*
   1171 	 * Free up the domain number which was allocated to the pmap
   1172 	 */
   1173 	l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
   1174 	l1->l1_domain_first = pm->pm_domain - 1;
   1175 	l1->l1_domain_use_count--;
   1176 
   1177 	/*
   1178 	 * The L1 now must have at least 1 free domain, so add
   1179 	 * it back to the LRU list. If the use count is zero,
   1180 	 * put it at the head of the list, otherwise it goes
   1181 	 * to the tail.
   1182 	 */
   1183 	if (l1->l1_domain_use_count == 0)
   1184 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1185 	else
   1186 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1187 
   1188 	mutex_spin_exit(&l1_lru_lock);
   1189 }
   1190 
   1191 static inline void
   1192 pmap_use_l1(pmap_t pm)
   1193 {
   1194 	struct l1_ttable *l1;
   1195 
   1196 	/*
   1197 	 * Do nothing if we're in interrupt context.
   1198 	 * Access to an L1 by the kernel pmap must not affect
   1199 	 * the LRU list.
   1200 	 */
   1201 	if (cpu_intr_p() || pm == pmap_kernel())
   1202 		return;
   1203 
   1204 	l1 = pm->pm_l1;
   1205 
   1206 	/*
   1207 	 * If the L1 is not currently on the LRU list, just return
   1208 	 */
   1209 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1210 		return;
   1211 
   1212 	mutex_spin_enter(&l1_lru_lock);
   1213 
   1214 	/*
   1215 	 * Check the use count again, now that we've acquired the lock
   1216 	 */
   1217 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1218 		mutex_spin_exit(&l1_lru_lock);
   1219 		return;
   1220 	}
   1221 
   1222 	/*
   1223 	 * Move the L1 to the back of the LRU list
   1224 	 */
   1225 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1226 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1227 
   1228 	mutex_spin_exit(&l1_lru_lock);
   1229 }
   1230 
   1231 /*
   1232  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1233  *
   1234  * Free an L2 descriptor table.
   1235  */
   1236 static inline void
   1237 #ifndef PMAP_INCLUDE_PTE_SYNC
   1238 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1239 #else
   1240 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1241 #endif
   1242 {
   1243 #ifdef PMAP_INCLUDE_PTE_SYNC
   1244 #ifdef PMAP_CACHE_VIVT
   1245 	/*
   1246 	 * Note: With a write-back cache, we may need to sync this
   1247 	 * L2 table before re-using it.
   1248 	 * This is because it may have belonged to a non-current
   1249 	 * pmap, in which case the cache syncs would have been
   1250 	 * skipped for the pages that were being unmapped. If the
   1251 	 * L2 table were then to be immediately re-allocated to
   1252 	 * the *current* pmap, it may well contain stale mappings
   1253 	 * which have not yet been cleared by a cache write-back
   1254 	 * and so would still be visible to the mmu.
   1255 	 */
   1256 	if (need_sync)
   1257 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1258 #endif /* PMAP_CACHE_VIVT */
   1259 #endif /* PMAP_INCLUDE_PTE_SYNC */
   1260 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1261 }
   1262 
   1263 /*
   1264  * Returns a pointer to the L2 bucket associated with the specified pmap
   1265  * and VA, or NULL if no L2 bucket exists for the address.
   1266  */
   1267 static inline struct l2_bucket *
   1268 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1269 {
   1270 	struct l2_dtable *l2;
   1271 	struct l2_bucket *l2b;
   1272 	u_short l1idx;
   1273 
   1274 	l1idx = L1_IDX(va);
   1275 
   1276 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
   1277 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
   1278 		return (NULL);
   1279 
   1280 	return (l2b);
   1281 }
   1282 
   1283 /*
   1284  * Returns a pointer to the L2 bucket associated with the specified pmap
   1285  * and VA.
   1286  *
   1287  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1288  * bucket/page table in place.
   1289  *
   1290  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1291  * increment the bucket occupancy counter appropriately *before*
   1292  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1293  * the bucket/page in the meantime.
   1294  */
   1295 static struct l2_bucket *
   1296 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1297 {
   1298 	struct l2_dtable *l2;
   1299 	struct l2_bucket *l2b;
   1300 	u_short l1idx;
   1301 
   1302 	l1idx = L1_IDX(va);
   1303 
   1304 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   1305 		/*
   1306 		 * No mapping at this address, as there is
   1307 		 * no entry in the L1 table.
   1308 		 * Need to allocate a new l2_dtable.
   1309 		 */
   1310 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1311 			return (NULL);
   1312 
   1313 		/*
   1314 		 * Link it into the parent pmap
   1315 		 */
   1316 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   1317 	}
   1318 
   1319 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   1320 
   1321 	/*
   1322 	 * Fetch pointer to the L2 page table associated with the address.
   1323 	 */
   1324 	if (l2b->l2b_kva == NULL) {
   1325 		pt_entry_t *ptep;
   1326 
   1327 		/*
   1328 		 * No L2 page table has been allocated. Chances are, this
   1329 		 * is because we just allocated the l2_dtable, above.
   1330 		 */
   1331 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
   1332 			/*
   1333 			 * Oops, no more L2 page tables available at this
   1334 			 * time. We may need to deallocate the l2_dtable
   1335 			 * if we allocated a new one above.
   1336 			 */
   1337 			if (l2->l2_occupancy == 0) {
   1338 				pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1339 				pmap_free_l2_dtable(l2);
   1340 			}
   1341 			return (NULL);
   1342 		}
   1343 
   1344 		l2->l2_occupancy++;
   1345 		l2b->l2b_kva = ptep;
   1346 		l2b->l2b_l1idx = l1idx;
   1347 	}
   1348 
   1349 	return (l2b);
   1350 }
   1351 
   1352 /*
   1353  * One or more mappings in the specified L2 descriptor table have just been
   1354  * invalidated.
   1355  *
   1356  * Garbage collect the metadata and descriptor table itself if necessary.
   1357  *
   1358  * The pmap lock must be acquired when this is called (not necessary
   1359  * for the kernel pmap).
   1360  */
   1361 static void
   1362 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1363 {
   1364 	struct l2_dtable *l2;
   1365 	pd_entry_t *pl1pd, l1pd;
   1366 	pt_entry_t *ptep;
   1367 	u_short l1idx;
   1368 
   1369 	KDASSERT(count <= l2b->l2b_occupancy);
   1370 
   1371 	/*
   1372 	 * Update the bucket's reference count according to how many
   1373 	 * PTEs the caller has just invalidated.
   1374 	 */
   1375 	l2b->l2b_occupancy -= count;
   1376 
   1377 	/*
   1378 	 * Note:
   1379 	 *
   1380 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1381 	 * as that would require checking all Level 1 page tables and
   1382 	 * removing any references to the Level 2 page table. See also the
   1383 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1384 	 *
   1385 	 * We make do with just invalidating the mapping in the L2 table.
   1386 	 *
   1387 	 * This isn't really a big deal in practice and, in fact, leads
   1388 	 * to a performance win over time as we don't need to continually
   1389 	 * alloc/free.
   1390 	 */
   1391 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1392 		return;
   1393 
   1394 	/*
   1395 	 * There are no more valid mappings in this level 2 page table.
   1396 	 * Go ahead and NULL-out the pointer in the bucket, then
   1397 	 * free the page table.
   1398 	 */
   1399 	l1idx = l2b->l2b_l1idx;
   1400 	ptep = l2b->l2b_kva;
   1401 	l2b->l2b_kva = NULL;
   1402 
   1403 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   1404 
   1405 	/*
   1406 	 * If the L1 slot matches the pmap's domain
   1407 	 * number, then invalidate it.
   1408 	 */
   1409 	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
   1410 	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
   1411 		*pl1pd = 0;
   1412 		PTE_SYNC(pl1pd);
   1413 	}
   1414 
   1415 	/*
   1416 	 * Release the L2 descriptor table back to the pool cache.
   1417 	 */
   1418 #ifndef PMAP_INCLUDE_PTE_SYNC
   1419 	pmap_free_l2_ptp(ptep, l2b->l2b_phys);
   1420 #else
   1421 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
   1422 #endif
   1423 
   1424 	/*
   1425 	 * Update the reference count in the associated l2_dtable
   1426 	 */
   1427 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   1428 	if (--l2->l2_occupancy > 0)
   1429 		return;
   1430 
   1431 	/*
   1432 	 * There are no more valid mappings in any of the Level 1
   1433 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1434 	 * the pointer in the parent pmap and free the l2_dtable.
   1435 	 */
   1436 	pm->pm_l2[L2_IDX(l1idx)] = NULL;
   1437 	pmap_free_l2_dtable(l2);
   1438 }
   1439 
   1440 /*
   1441  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1442  * structures.
   1443  */
   1444 static int
   1445 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1446 {
   1447 #ifndef PMAP_INCLUDE_PTE_SYNC
   1448 	struct l2_bucket *l2b;
   1449 	pt_entry_t *ptep, pte;
   1450 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1451 
   1452 	/*
   1453 	 * The mappings for these page tables were initially made using
   1454 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1455 	 * mode will not be right for page table mappings. To avoid
   1456 	 * polluting the pmap_kenter_pa() code with a special case for
   1457 	 * page tables, we simply fix up the cache-mode here if it's not
   1458 	 * correct.
   1459 	 */
   1460 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   1461 	KDASSERT(l2b != NULL);
   1462 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   1463 	pte = *ptep;
   1464 
   1465 	if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1466 		/*
   1467 		 * Page tables must have the cache-mode set to Write-Thru.
   1468 		 */
   1469 		*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   1470 		PTE_SYNC(ptep);
   1471 		cpu_tlb_flushD_SE(va);
   1472 		cpu_cpwait();
   1473 	}
   1474 #endif
   1475 
   1476 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1477 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1478 	return (0);
   1479 }
   1480 
   1481 static int
   1482 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1483 {
   1484 
   1485 	memset(v, 0, sizeof(struct l2_dtable));
   1486 	return (0);
   1487 }
   1488 
   1489 static int
   1490 pmap_pmap_ctor(void *arg, void *v, int flags)
   1491 {
   1492 
   1493 	memset(v, 0, sizeof(struct pmap));
   1494 	return (0);
   1495 }
   1496 
   1497 static void
   1498 pmap_pinit(pmap_t pm)
   1499 {
   1500 	struct l2_bucket *l2b;
   1501 
   1502 	if (vector_page < KERNEL_BASE) {
   1503 		/*
   1504 		 * Map the vector page.
   1505 		 */
   1506 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1507 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1508 		pmap_update(pm);
   1509 
   1510 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   1511 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1512 		KDASSERT(l2b != NULL);
   1513 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   1514 		    L1_C_DOM(pm->pm_domain);
   1515 	} else
   1516 		pm->pm_pl1vec = NULL;
   1517 }
   1518 
   1519 #ifdef PMAP_CACHE_VIVT
   1520 /*
   1521  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1522  * there is more than one mapping and at least one of them is writable.
   1523  * Since we purge the cache on every context switch, we only need to check for
   1524  * other mappings within the same pmap, or kernel_pmap.
   1525  * This function is also called when a page is unmapped, to possibly reenable
   1526  * caching on any remaining mappings.
   1527  *
   1528  * The code implements the following logic, where:
   1529  *
   1530  * KW = # of kernel read/write pages
   1531  * KR = # of kernel read only pages
   1532  * UW = # of user read/write pages
   1533  * UR = # of user read only pages
   1534  *
   1535  * KC = kernel mapping is cacheable
   1536  * UC = user mapping is cacheable
   1537  *
   1538  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1539  *             +---------------------------------------------
   1540  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1541  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1542  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1543  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1544  */
   1545 
   1546 static const int pmap_vac_flags[4][4] = {
   1547 	{-1,		0,		0,		PVF_KNC},
   1548 	{0,		0,		PVF_NC,		PVF_NC},
   1549 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1550 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1551 };
   1552 
   1553 static inline int
   1554 pmap_get_vac_flags(const struct vm_page_md *md)
   1555 {
   1556 	int kidx, uidx;
   1557 
   1558 	kidx = 0;
   1559 	if (md->kro_mappings || md->krw_mappings > 1)
   1560 		kidx |= 1;
   1561 	if (md->krw_mappings)
   1562 		kidx |= 2;
   1563 
   1564 	uidx = 0;
   1565 	if (md->uro_mappings || md->urw_mappings > 1)
   1566 		uidx |= 1;
   1567 	if (md->urw_mappings)
   1568 		uidx |= 2;
   1569 
   1570 	return (pmap_vac_flags[uidx][kidx]);
   1571 }
   1572 
   1573 static inline void
   1574 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1575 {
   1576 	int nattr;
   1577 
   1578 	nattr = pmap_get_vac_flags(md);
   1579 
   1580 	if (nattr < 0) {
   1581 		md->pvh_attrs &= ~PVF_NC;
   1582 		return;
   1583 	}
   1584 
   1585 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1586 		return;
   1587 
   1588 	if (pm == pmap_kernel())
   1589 		pmap_vac_me_kpmap(md, pa, pm, va);
   1590 	else
   1591 		pmap_vac_me_user(md, pa, pm, va);
   1592 
   1593 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1594 }
   1595 
   1596 static void
   1597 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1598 {
   1599 	u_int u_cacheable, u_entries;
   1600 	struct pv_entry *pv;
   1601 	pmap_t last_pmap = pm;
   1602 
   1603 	/*
   1604 	 * Pass one, see if there are both kernel and user pmaps for
   1605 	 * this page.  Calculate whether there are user-writable or
   1606 	 * kernel-writable pages.
   1607 	 */
   1608 	u_cacheable = 0;
   1609 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1610 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1611 			u_cacheable++;
   1612 	}
   1613 
   1614 	u_entries = md->urw_mappings + md->uro_mappings;
   1615 
   1616 	/*
   1617 	 * We know we have just been updating a kernel entry, so if
   1618 	 * all user pages are already cacheable, then there is nothing
   1619 	 * further to do.
   1620 	 */
   1621 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1622 		return;
   1623 
   1624 	if (u_entries) {
   1625 		/*
   1626 		 * Scan over the list again, for each entry, if it
   1627 		 * might not be set correctly, call pmap_vac_me_user
   1628 		 * to recalculate the settings.
   1629 		 */
   1630 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1631 			/*
   1632 			 * We know kernel mappings will get set
   1633 			 * correctly in other calls.  We also know
   1634 			 * that if the pmap is the same as last_pmap
   1635 			 * then we've just handled this entry.
   1636 			 */
   1637 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1638 				continue;
   1639 
   1640 			/*
   1641 			 * If there are kernel entries and this page
   1642 			 * is writable but non-cacheable, then we can
   1643 			 * skip this entry also.
   1644 			 */
   1645 			if (md->k_mappings &&
   1646 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1647 			    (PVF_NC | PVF_WRITE))
   1648 				continue;
   1649 
   1650 			/*
   1651 			 * Similarly if there are no kernel-writable
   1652 			 * entries and the page is already
   1653 			 * read-only/cacheable.
   1654 			 */
   1655 			if (md->krw_mappings == 0 &&
   1656 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1657 				continue;
   1658 
   1659 			/*
   1660 			 * For some of the remaining cases, we know
   1661 			 * that we must recalculate, but for others we
   1662 			 * can't tell if they are correct or not, so
   1663 			 * we recalculate anyway.
   1664 			 */
   1665 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1666 		}
   1667 
   1668 		if (md->k_mappings == 0)
   1669 			return;
   1670 	}
   1671 
   1672 	pmap_vac_me_user(md, pa, pm, va);
   1673 }
   1674 
   1675 static void
   1676 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1677 {
   1678 	pmap_t kpmap = pmap_kernel();
   1679 	struct pv_entry *pv, *npv = NULL;
   1680 	struct l2_bucket *l2b;
   1681 	pt_entry_t *ptep, pte;
   1682 	u_int entries = 0;
   1683 	u_int writable = 0;
   1684 	u_int cacheable_entries = 0;
   1685 	u_int kern_cacheable = 0;
   1686 	u_int other_writable = 0;
   1687 
   1688 	/*
   1689 	 * Count mappings and writable mappings in this pmap.
   1690 	 * Include kernel mappings as part of our own.
   1691 	 * Keep a pointer to the first one.
   1692 	 */
   1693 	npv = NULL;
   1694 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1695 		/* Count mappings in the same pmap */
   1696 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1697 			if (entries++ == 0)
   1698 				npv = pv;
   1699 
   1700 			/* Cacheable mappings */
   1701 			if ((pv->pv_flags & PVF_NC) == 0) {
   1702 				cacheable_entries++;
   1703 				if (kpmap == pv->pv_pmap)
   1704 					kern_cacheable++;
   1705 			}
   1706 
   1707 			/* Writable mappings */
   1708 			if (pv->pv_flags & PVF_WRITE)
   1709 				++writable;
   1710 		} else
   1711 		if (pv->pv_flags & PVF_WRITE)
   1712 			other_writable = 1;
   1713 	}
   1714 
   1715 	/*
   1716 	 * Enable or disable caching as necessary.
   1717 	 * Note: the first entry might be part of the kernel pmap,
   1718 	 * so we can't assume this is indicative of the state of the
   1719 	 * other (maybe non-kpmap) entries.
   1720 	 */
   1721 	if ((entries > 1 && writable) ||
   1722 	    (entries > 0 && pm == kpmap && other_writable)) {
   1723 		if (cacheable_entries == 0)
   1724 			return;
   1725 
   1726 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1727 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1728 			    (pv->pv_flags & PVF_NC))
   1729 				continue;
   1730 
   1731 			pv->pv_flags |= PVF_NC;
   1732 
   1733 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1734 			KDASSERT(l2b != NULL);
   1735 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1736 			pte = *ptep & ~L2_S_CACHE_MASK;
   1737 
   1738 			if ((va != pv->pv_va || pm != pv->pv_pmap) &&
   1739 			    l2pte_valid(pte)) {
   1740 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1741 #ifdef PMAP_CACHE_VIVT
   1742 					pmap_idcache_wbinv_range(pv->pv_pmap,
   1743 					    pv->pv_va, PAGE_SIZE);
   1744 #endif
   1745 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1746 					    pv->pv_va);
   1747 				} else
   1748 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1749 #ifdef PMAP_CACHE_VIVT
   1750 					pmap_dcache_wb_range(pv->pv_pmap,
   1751 					    pv->pv_va, PAGE_SIZE, true,
   1752 					    (pv->pv_flags & PVF_WRITE) == 0);
   1753 #endif
   1754 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1755 					    pv->pv_va);
   1756 				}
   1757 			}
   1758 
   1759 			*ptep = pte;
   1760 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1761 		}
   1762 		cpu_cpwait();
   1763 	} else
   1764 	if (entries > cacheable_entries) {
   1765 		/*
   1766 		 * Turn cacheing back on for some pages.  If it is a kernel
   1767 		 * page, only do so if there are no other writable pages.
   1768 		 */
   1769 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1770 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   1771 			    (kpmap != pv->pv_pmap || other_writable)))
   1772 				continue;
   1773 
   1774 			pv->pv_flags &= ~PVF_NC;
   1775 
   1776 			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1777 			KDASSERT(l2b != NULL);
   1778 			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1779 			pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
   1780 
   1781 			if (l2pte_valid(pte)) {
   1782 				if (PV_BEEN_EXECD(pv->pv_flags)) {
   1783 					pmap_tlb_flushID_SE(pv->pv_pmap,
   1784 					    pv->pv_va);
   1785 				} else
   1786 				if (PV_BEEN_REFD(pv->pv_flags)) {
   1787 					pmap_tlb_flushD_SE(pv->pv_pmap,
   1788 					    pv->pv_va);
   1789 				}
   1790 			}
   1791 
   1792 			*ptep = pte;
   1793 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1794 		}
   1795 	}
   1796 }
   1797 #endif
   1798 
   1799 #ifdef PMAP_CACHE_VIPT
   1800 static void
   1801 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1802 {
   1803 	struct pv_entry *pv;
   1804 	vaddr_t tst_mask;
   1805 	bool bad_alias;
   1806 	struct l2_bucket *l2b;
   1807 	pt_entry_t *ptep, pte, opte;
   1808 	const u_int
   1809 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   1810 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   1811 
   1812 	/* do we need to do anything? */
   1813 	if (arm_cache_prefer_mask == 0)
   1814 		return;
   1815 
   1816 	NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
   1817 	    md, pm, va));
   1818 
   1819 	KASSERT(!va || pm);
   1820 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1821 
   1822 	/* Already a conflict? */
   1823 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   1824 		/* just an add, things are already non-cached */
   1825 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   1826 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1827 		bad_alias = false;
   1828 		if (va) {
   1829 			PMAPCOUNT(vac_color_none);
   1830 			bad_alias = true;
   1831 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1832 			goto fixup;
   1833 		}
   1834 		pv = SLIST_FIRST(&md->pvh_list);
   1835 		/* the list can't be empty because it would be cachable */
   1836 		if (md->pvh_attrs & PVF_KMPAGE) {
   1837 			tst_mask = md->pvh_attrs;
   1838 		} else {
   1839 			KASSERT(pv);
   1840 			tst_mask = pv->pv_va;
   1841 			pv = SLIST_NEXT(pv, pv_link);
   1842 		}
   1843 		/*
   1844 		 * Only check for a bad alias if we have writable mappings.
   1845 		 */
   1846 		tst_mask &= arm_cache_prefer_mask;
   1847 		if (rw_mappings > 0 && arm_cache_prefer_mask) {
   1848 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   1849 				/* if there's a bad alias, stop checking. */
   1850 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   1851 					bad_alias = true;
   1852 			}
   1853 			md->pvh_attrs |= PVF_WRITE;
   1854 			if (!bad_alias)
   1855 				md->pvh_attrs |= PVF_DIRTY;
   1856 		} else {
   1857 			/*
   1858 			 * We have only read-only mappings.  Let's see if there
   1859 			 * are multiple colors in use or if we mapped a KMPAGE.
   1860 			 * If the latter, we have a bad alias.  If the former,
   1861 			 * we need to remember that.
   1862 			 */
   1863 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1864 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   1865 					if (md->pvh_attrs & PVF_KMPAGE)
   1866 						bad_alias = true;
   1867 					break;
   1868 				}
   1869 			}
   1870 			md->pvh_attrs &= ~PVF_WRITE;
   1871 			/*
   1872 			 * No KMPAGE and we exited early, so we must have
   1873 			 * multiple color mappings.
   1874 			 */
   1875 			if (!bad_alias && pv != NULL)
   1876 				md->pvh_attrs |= PVF_MULTCLR;
   1877 		}
   1878 
   1879 		/* If no conflicting colors, set everything back to cached */
   1880 		if (!bad_alias) {
   1881 #ifdef DEBUG
   1882 			if ((md->pvh_attrs & PVF_WRITE)
   1883 			    || ro_mappings < 2) {
   1884 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1885 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1886 			}
   1887 #endif
   1888 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   1889 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   1890 			/*
   1891 			 * Restore DIRTY bit if page is modified
   1892 			 */
   1893 			if (md->pvh_attrs & PVF_DMOD)
   1894 				md->pvh_attrs |= PVF_DIRTY;
   1895 			PMAPCOUNT(vac_color_restore);
   1896 		} else {
   1897 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1898 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1899 		}
   1900 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1901 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1902 	} else if (!va) {
   1903 		KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   1904 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   1905 		    || (md->pvh_attrs & PVF_DIRTY));
   1906 		if (rw_mappings == 0) {
   1907 			md->pvh_attrs &= ~PVF_WRITE;
   1908 			if (ro_mappings == 1
   1909 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   1910 				/*
   1911 				 * If this is the last readonly mapping
   1912 				 * but it doesn't match the current color
   1913 				 * for the page, change the current color
   1914 				 * to match this last readonly mapping.
   1915 				 */
   1916 				pv = SLIST_FIRST(&md->pvh_list);
   1917 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   1918 				    & arm_cache_prefer_mask;
   1919 				if (tst_mask) {
   1920 					md->pvh_attrs ^= tst_mask;
   1921 					PMAPCOUNT(vac_color_change);
   1922 				}
   1923 			}
   1924 		}
   1925 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1926 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1927 		return;
   1928 	} else if (!pmap_is_page_colored_p(md)) {
   1929 		/* not colored so we just use its color */
   1930 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   1931 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1932 		PMAPCOUNT(vac_color_new);
   1933 		md->pvh_attrs &= PAGE_SIZE - 1;
   1934 		md->pvh_attrs |= PVF_COLORED
   1935 		    | (va & arm_cache_prefer_mask)
   1936 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   1937 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1938 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1939 		return;
   1940 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   1941 		bad_alias = false;
   1942 		if (rw_mappings > 0) {
   1943 			/*
   1944 			 * We now have writeable mappings and if we have
   1945 			 * readonly mappings in more than once color, we have
   1946 			 * an aliasing problem.  Regardless mark the page as
   1947 			 * writeable.
   1948 			 */
   1949 			if (md->pvh_attrs & PVF_MULTCLR) {
   1950 				if (ro_mappings < 2) {
   1951 					/*
   1952 					 * If we only have less than two
   1953 					 * read-only mappings, just flush the
   1954 					 * non-primary colors from the cache.
   1955 					 */
   1956 					pmap_flush_page(md, pa,
   1957 					    PMAP_FLUSH_SECONDARY);
   1958 				} else {
   1959 					bad_alias = true;
   1960 				}
   1961 			}
   1962 			md->pvh_attrs |= PVF_WRITE;
   1963 		}
   1964 		/* If no conflicting colors, set everything back to cached */
   1965 		if (!bad_alias) {
   1966 #ifdef DEBUG
   1967 			if (rw_mappings > 0
   1968 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   1969 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   1970 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   1971 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   1972 			}
   1973 #endif
   1974 			if (SLIST_EMPTY(&md->pvh_list))
   1975 				PMAPCOUNT(vac_color_reuse);
   1976 			else
   1977 				PMAPCOUNT(vac_color_ok);
   1978 
   1979 			/* matching color, just return */
   1980 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1981 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   1982 			return;
   1983 		}
   1984 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   1985 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   1986 
   1987 		/* color conflict.  evict from cache. */
   1988 
   1989 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   1990 		md->pvh_attrs &= ~PVF_COLORED;
   1991 		md->pvh_attrs |= PVF_NC;
   1992 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1993 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   1994 		PMAPCOUNT(vac_color_erase);
   1995 	} else if (rw_mappings == 0
   1996 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   1997 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   1998 
   1999 		/*
   2000 		 * If the page has dirty cache lines, clean it.
   2001 		 */
   2002 		if (md->pvh_attrs & PVF_DIRTY)
   2003 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2004 
   2005 		/*
   2006 		 * If this is the first remapping (we know that there are no
   2007 		 * writeable mappings), then this is a simple color change.
   2008 		 * Otherwise this is a seconary r/o mapping, which means
   2009 		 * we don't have to do anything.
   2010 		 */
   2011 		if (ro_mappings == 1) {
   2012 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2013 			md->pvh_attrs &= PAGE_SIZE - 1;
   2014 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2015 			PMAPCOUNT(vac_color_change);
   2016 		} else {
   2017 			PMAPCOUNT(vac_color_blind);
   2018 		}
   2019 		md->pvh_attrs |= PVF_MULTCLR;
   2020 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2021 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2022 		return;
   2023 	} else {
   2024 		if (rw_mappings > 0)
   2025 			md->pvh_attrs |= PVF_WRITE;
   2026 
   2027 		/* color conflict.  evict from cache. */
   2028 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2029 
   2030 		/* the list can't be empty because this was a enter/modify */
   2031 		pv = SLIST_FIRST(&md->pvh_list);
   2032 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2033 			KASSERT(pv);
   2034 			/*
   2035 			 * If there's only one mapped page, change color to the
   2036 			 * page's new color and return.  Restore the DIRTY bit
   2037 			 * that was erased by pmap_flush_page.
   2038 			 */
   2039 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2040 				md->pvh_attrs &= PAGE_SIZE - 1;
   2041 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2042 				if (md->pvh_attrs & PVF_DMOD)
   2043 					md->pvh_attrs |= PVF_DIRTY;
   2044 				PMAPCOUNT(vac_color_change);
   2045 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2046 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2047 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2048 				return;
   2049 			}
   2050 		}
   2051 		bad_alias = true;
   2052 		md->pvh_attrs &= ~PVF_COLORED;
   2053 		md->pvh_attrs |= PVF_NC;
   2054 		PMAPCOUNT(vac_color_erase);
   2055 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2056 	}
   2057 
   2058   fixup:
   2059 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2060 
   2061 	/*
   2062 	 * Turn cacheing on/off for all pages.
   2063 	 */
   2064 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2065 		l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2066 		KDASSERT(l2b != NULL);
   2067 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2068 		opte = *ptep;
   2069 		pte = opte & ~L2_S_CACHE_MASK;
   2070 		if (bad_alias) {
   2071 			pv->pv_flags |= PVF_NC;
   2072 		} else {
   2073 			pv->pv_flags &= ~PVF_NC;
   2074 			pte |= pte_l2_s_cache_mode;
   2075 		}
   2076 
   2077 		if (opte == pte)	/* only update is there's a change */
   2078 			continue;
   2079 
   2080 		if (l2pte_valid(pte)) {
   2081 			if (PV_BEEN_EXECD(pv->pv_flags)) {
   2082 				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
   2083 			} else if (PV_BEEN_REFD(pv->pv_flags)) {
   2084 				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
   2085 			}
   2086 		}
   2087 
   2088 		*ptep = pte;
   2089 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2090 	}
   2091 }
   2092 #endif	/* PMAP_CACHE_VIPT */
   2093 
   2094 
   2095 /*
   2096  * Modify pte bits for all ptes corresponding to the given physical address.
   2097  * We use `maskbits' rather than `clearbits' because we're always passing
   2098  * constants and the latter would require an extra inversion at run-time.
   2099  */
   2100 static void
   2101 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2102 {
   2103 	struct l2_bucket *l2b;
   2104 	struct pv_entry *pv;
   2105 	pt_entry_t *ptep, npte, opte;
   2106 	pmap_t pm;
   2107 	vaddr_t va;
   2108 	u_int oflags;
   2109 #ifdef PMAP_CACHE_VIPT
   2110 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2111 	bool need_syncicache = false;
   2112 	bool did_syncicache = false;
   2113 	bool need_vac_me_harder = false;
   2114 #endif
   2115 
   2116 	NPDEBUG(PDB_BITS,
   2117 	    printf("pmap_clearbit: md %p mask 0x%x\n",
   2118 	    md, maskbits));
   2119 
   2120 #ifdef PMAP_CACHE_VIPT
   2121 	/*
   2122 	 * If we might want to sync the I-cache and we've modified it,
   2123 	 * then we know we definitely need to sync or discard it.
   2124 	 */
   2125 	if (want_syncicache)
   2126 		need_syncicache = md->pvh_attrs & PVF_MOD;
   2127 #endif
   2128 	/*
   2129 	 * Clear saved attributes (modify, reference)
   2130 	 */
   2131 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2132 
   2133 	if (SLIST_EMPTY(&md->pvh_list)) {
   2134 #ifdef PMAP_CACHE_VIPT
   2135 		if (need_syncicache) {
   2136 			/*
   2137 			 * No one has it mapped, so just discard it.  The next
   2138 			 * exec remapping will cause it to be synced.
   2139 			 */
   2140 			md->pvh_attrs &= ~PVF_EXEC;
   2141 			PMAPCOUNT(exec_discarded_clearbit);
   2142 		}
   2143 #endif
   2144 		return;
   2145 	}
   2146 
   2147 	/*
   2148 	 * Loop over all current mappings setting/clearing as appropos
   2149 	 */
   2150 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2151 		va = pv->pv_va;
   2152 		pm = pv->pv_pmap;
   2153 		oflags = pv->pv_flags;
   2154 		/*
   2155 		 * Kernel entries are unmanaged and as such not to be changed.
   2156 		 */
   2157 		if (oflags & PVF_KENTRY)
   2158 			continue;
   2159 		pv->pv_flags &= ~maskbits;
   2160 
   2161 		pmap_acquire_pmap_lock(pm);
   2162 
   2163 		l2b = pmap_get_l2_bucket(pm, va);
   2164 		KDASSERT(l2b != NULL);
   2165 
   2166 		ptep = &l2b->l2b_kva[l2pte_index(va)];
   2167 		npte = opte = *ptep;
   2168 
   2169 		NPDEBUG(PDB_BITS,
   2170 		    printf(
   2171 		    "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
   2172 		    pv, pv->pv_pmap, pv->pv_va, oflags));
   2173 
   2174 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2175 #ifdef PMAP_CACHE_VIVT
   2176 			if ((pv->pv_flags & PVF_NC)) {
   2177 				/*
   2178 				 * Entry is not cacheable:
   2179 				 *
   2180 				 * Don't turn caching on again if this is a
   2181 				 * modified emulation. This would be
   2182 				 * inconsitent with the settings created by
   2183 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2184 				 * to re-enable cacheing.
   2185 				 *
   2186 				 * There's no need to call pmap_vac_me_harder()
   2187 				 * here: all pages are losing their write
   2188 				 * permission.
   2189 				 */
   2190 				if (maskbits & PVF_WRITE) {
   2191 					npte |= pte_l2_s_cache_mode;
   2192 					pv->pv_flags &= ~PVF_NC;
   2193 				}
   2194 			} else
   2195 			if (l2pte_writable_p(opte)) {
   2196 				/*
   2197 				 * Entry is writable/cacheable: check if pmap
   2198 				 * is current if it is flush it, otherwise it
   2199 				 * won't be in the cache
   2200 				 */
   2201 				if (PV_BEEN_EXECD(oflags))
   2202 					pmap_idcache_wbinv_range(pm, pv->pv_va,
   2203 					    PAGE_SIZE);
   2204 				else
   2205 				if (PV_BEEN_REFD(oflags))
   2206 					pmap_dcache_wb_range(pm, pv->pv_va,
   2207 					    PAGE_SIZE,
   2208 					    (maskbits & PVF_REF) != 0, false);
   2209 			}
   2210 #endif
   2211 
   2212 			/* make the pte read only */
   2213 			npte = l2pte_set_readonly(npte);
   2214 
   2215 			if (maskbits & oflags & PVF_WRITE) {
   2216 				/*
   2217 				 * Keep alias accounting up to date
   2218 				 */
   2219 				if (pv->pv_pmap == pmap_kernel()) {
   2220 					md->krw_mappings--;
   2221 					md->kro_mappings++;
   2222 				} else {
   2223 					md->urw_mappings--;
   2224 					md->uro_mappings++;
   2225 				}
   2226 #ifdef PMAP_CACHE_VIPT
   2227 				if (md->urw_mappings + md->krw_mappings == 0)
   2228 					md->pvh_attrs &= ~PVF_WRITE;
   2229 				if (want_syncicache)
   2230 					need_syncicache = true;
   2231 				need_vac_me_harder = true;
   2232 #endif
   2233 			}
   2234 		}
   2235 
   2236 		if (maskbits & PVF_REF) {
   2237 			if ((pv->pv_flags & PVF_NC) == 0 &&
   2238 			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
   2239 			    l2pte_valid(npte)) {
   2240 #ifdef PMAP_CACHE_VIVT
   2241 				/*
   2242 				 * Check npte here; we may have already
   2243 				 * done the wbinv above, and the validity
   2244 				 * of the PTE is the same for opte and
   2245 				 * npte.
   2246 				 */
   2247 				/* XXXJRT need idcache_inv_range */
   2248 				if (PV_BEEN_EXECD(oflags))
   2249 					pmap_idcache_wbinv_range(pm,
   2250 					    pv->pv_va, PAGE_SIZE);
   2251 				else
   2252 				if (PV_BEEN_REFD(oflags))
   2253 					pmap_dcache_wb_range(pm,
   2254 					    pv->pv_va, PAGE_SIZE,
   2255 					    true, true);
   2256 #endif
   2257 			}
   2258 
   2259 			/*
   2260 			 * Make the PTE invalid so that we will take a
   2261 			 * page fault the next time the mapping is
   2262 			 * referenced.
   2263 			 */
   2264 			npte &= ~L2_TYPE_MASK;
   2265 			npte |= L2_TYPE_INV;
   2266 		}
   2267 
   2268 		if (npte != opte) {
   2269 			*ptep = npte;
   2270 			PTE_SYNC(ptep);
   2271 			/* Flush the TLB entry if a current pmap. */
   2272 			if (PV_BEEN_EXECD(oflags))
   2273 				pmap_tlb_flushID_SE(pm, pv->pv_va);
   2274 			else
   2275 			if (PV_BEEN_REFD(oflags))
   2276 				pmap_tlb_flushD_SE(pm, pv->pv_va);
   2277 		}
   2278 
   2279 		pmap_release_pmap_lock(pm);
   2280 
   2281 		NPDEBUG(PDB_BITS,
   2282 		    printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
   2283 		    pm, va, opte, npte));
   2284 	}
   2285 
   2286 #ifdef PMAP_CACHE_VIPT
   2287 	/*
   2288 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2289 	 */
   2290 	if (need_syncicache && !did_syncicache) {
   2291 		pmap_syncicache_page(md, pa);
   2292 		PMAPCOUNT(exec_synced_clearbit);
   2293 	}
   2294 	/*
   2295 	 * If we are changing this to read-only, we need to call vac_me_harder
   2296 	 * so we can change all the read-only pages to cacheable.  We pretend
   2297 	 * this as a page deletion.
   2298 	 */
   2299 	if (need_vac_me_harder) {
   2300 		if (md->pvh_attrs & PVF_NC)
   2301 			pmap_vac_me_harder(md, pa, NULL, 0);
   2302 	}
   2303 #endif
   2304 }
   2305 
   2306 /*
   2307  * pmap_clean_page()
   2308  *
   2309  * This is a local function used to work out the best strategy to clean
   2310  * a single page referenced by its entry in the PV table. It's used by
   2311  * pmap_copy_page, pmap_zero page and maybe some others later on.
   2312  *
   2313  * Its policy is effectively:
   2314  *  o If there are no mappings, we don't bother doing anything with the cache.
   2315  *  o If there is one mapping, we clean just that page.
   2316  *  o If there are multiple mappings, we clean the entire cache.
   2317  *
   2318  * So that some functions can be further optimised, it returns 0 if it didn't
   2319  * clean the entire cache, or 1 if it did.
   2320  *
   2321  * XXX One bug in this routine is that if the pv_entry has a single page
   2322  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2323  * just the 1 page. Since this should not occur in everyday use and if it does
   2324  * it will just result in not the most efficient clean for the page.
   2325  */
   2326 #ifdef PMAP_CACHE_VIVT
   2327 static int
   2328 pmap_clean_page(struct pv_entry *pv, bool is_src)
   2329 {
   2330 	pmap_t pm_to_clean = NULL;
   2331 	struct pv_entry *npv;
   2332 	u_int cache_needs_cleaning = 0;
   2333 	u_int flags = 0;
   2334 	vaddr_t page_to_clean = 0;
   2335 
   2336 	if (pv == NULL) {
   2337 		/* nothing mapped in so nothing to flush */
   2338 		return (0);
   2339 	}
   2340 
   2341 	/*
   2342 	 * Since we flush the cache each time we change to a different
   2343 	 * user vmspace, we only need to flush the page if it is in the
   2344 	 * current pmap.
   2345 	 */
   2346 
   2347 	for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
   2348 		if (pmap_is_current(npv->pv_pmap)) {
   2349 			flags |= npv->pv_flags;
   2350 			/*
   2351 			 * The page is mapped non-cacheable in
   2352 			 * this map.  No need to flush the cache.
   2353 			 */
   2354 			if (npv->pv_flags & PVF_NC) {
   2355 #ifdef DIAGNOSTIC
   2356 				if (cache_needs_cleaning)
   2357 					panic("pmap_clean_page: "
   2358 					    "cache inconsistency");
   2359 #endif
   2360 				break;
   2361 			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   2362 				continue;
   2363 			if (cache_needs_cleaning) {
   2364 				page_to_clean = 0;
   2365 				break;
   2366 			} else {
   2367 				page_to_clean = npv->pv_va;
   2368 				pm_to_clean = npv->pv_pmap;
   2369 			}
   2370 			cache_needs_cleaning = 1;
   2371 		}
   2372 	}
   2373 
   2374 	if (page_to_clean) {
   2375 		if (PV_BEEN_EXECD(flags))
   2376 			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
   2377 			    PAGE_SIZE);
   2378 		else
   2379 			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
   2380 			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
   2381 	} else if (cache_needs_cleaning) {
   2382 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2383 
   2384 		if (PV_BEEN_EXECD(flags))
   2385 			pmap_idcache_wbinv_all(pm);
   2386 		else
   2387 			pmap_dcache_wbinv_all(pm);
   2388 		return (1);
   2389 	}
   2390 	return (0);
   2391 }
   2392 #endif
   2393 
   2394 #ifdef PMAP_CACHE_VIPT
   2395 /*
   2396  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2397  * right cache alias to make sure we flush the right stuff.
   2398  */
   2399 void
   2400 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2401 {
   2402 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2403 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   2404 
   2405 	NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
   2406 	    md, md->pvh_attrs));
   2407 	/*
   2408 	 * No need to clean the page if it's non-cached.
   2409 	 */
   2410 	if (md->pvh_attrs & PVF_NC)
   2411 		return;
   2412 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2413 
   2414 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2415 	/*
   2416 	 * Set up a PTE with the right coloring to flush existing cache lines.
   2417 	 */
   2418 	*ptep = L2_S_PROTO |
   2419 	    pa
   2420 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2421 	    | pte_l2_s_cache_mode;
   2422 	PTE_SYNC(ptep);
   2423 
   2424 	/*
   2425 	 * Flush it.
   2426 	 */
   2427 	cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
   2428 	/*
   2429 	 * Unmap the page.
   2430 	 */
   2431 	*ptep = 0;
   2432 	PTE_SYNC(ptep);
   2433 	pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2434 
   2435 	md->pvh_attrs |= PVF_EXEC;
   2436 	PMAPCOUNT(exec_synced);
   2437 }
   2438 
   2439 void
   2440 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2441 {
   2442 	vsize_t va_offset, end_va;
   2443 	void (*cf)(vaddr_t, vsize_t);
   2444 
   2445 	if (arm_cache_prefer_mask == 0)
   2446 		return;
   2447 
   2448 	switch (flush) {
   2449 	case PMAP_FLUSH_PRIMARY:
   2450 		if (md->pvh_attrs & PVF_MULTCLR) {
   2451 			va_offset = 0;
   2452 			end_va = arm_cache_prefer_mask;
   2453 			md->pvh_attrs &= ~PVF_MULTCLR;
   2454 			PMAPCOUNT(vac_flush_lots);
   2455 		} else {
   2456 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2457 			end_va = va_offset;
   2458 			PMAPCOUNT(vac_flush_one);
   2459 		}
   2460 		/*
   2461 		 * Mark that the page is no longer dirty.
   2462 		 */
   2463 		md->pvh_attrs &= ~PVF_DIRTY;
   2464 		cf = cpufuncs.cf_idcache_wbinv_range;
   2465 		break;
   2466 	case PMAP_FLUSH_SECONDARY:
   2467 		va_offset = 0;
   2468 		end_va = arm_cache_prefer_mask;
   2469 		cf = cpufuncs.cf_idcache_wbinv_range;
   2470 		md->pvh_attrs &= ~PVF_MULTCLR;
   2471 		PMAPCOUNT(vac_flush_lots);
   2472 		break;
   2473 	case PMAP_CLEAN_PRIMARY:
   2474 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2475 		end_va = va_offset;
   2476 		cf = cpufuncs.cf_dcache_wb_range;
   2477 		/*
   2478 		 * Mark that the page is no longer dirty.
   2479 		 */
   2480 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2481 			md->pvh_attrs &= ~PVF_DIRTY;
   2482 		PMAPCOUNT(vac_clean_one);
   2483 		break;
   2484 	default:
   2485 		return;
   2486 	}
   2487 
   2488 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2489 
   2490 	NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
   2491 	    md, md->pvh_attrs));
   2492 
   2493 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2494 		const size_t pte_offset = va_offset >> PGSHIFT;
   2495 		pt_entry_t * const ptep = &cdst_pte[pte_offset];
   2496 		const pt_entry_t oldpte = *ptep;
   2497 
   2498 		if (flush == PMAP_FLUSH_SECONDARY
   2499 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2500 			continue;
   2501 
   2502 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2503 		/*
   2504 		 * Set up a PTE with the right coloring to flush
   2505 		 * existing cache entries.
   2506 		 */
   2507 		*ptep = L2_S_PROTO
   2508 		    | pa
   2509 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2510 		    | pte_l2_s_cache_mode;
   2511 		PTE_SYNC(ptep);
   2512 
   2513 		/*
   2514 		 * Flush it.
   2515 		 */
   2516 		(*cf)(cdstp + va_offset, PAGE_SIZE);
   2517 
   2518 		/*
   2519 		 * Restore the page table entry since we might have interrupted
   2520 		 * pmap_zero_page or pmap_copy_page which was already using
   2521 		 * this pte.
   2522 		 */
   2523 		*ptep = oldpte;
   2524 		PTE_SYNC(ptep);
   2525 		pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
   2526 	}
   2527 }
   2528 #endif /* PMAP_CACHE_VIPT */
   2529 
   2530 /*
   2531  * Routine:	pmap_page_remove
   2532  * Function:
   2533  *		Removes this physical page from
   2534  *		all physical maps in which it resides.
   2535  *		Reflects back modify bits to the pager.
   2536  */
   2537 static void
   2538 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2539 {
   2540 	struct l2_bucket *l2b;
   2541 	struct pv_entry *pv, *npv, **pvp;
   2542 	pmap_t pm;
   2543 	pt_entry_t *ptep;
   2544 	bool flush;
   2545 	u_int flags;
   2546 
   2547 	NPDEBUG(PDB_FOLLOW,
   2548 	    printf("pmap_page_remove: md %p (0x%08lx)\n", md,
   2549 	    pa));
   2550 
   2551 	pv = SLIST_FIRST(&md->pvh_list);
   2552 	if (pv == NULL) {
   2553 #ifdef PMAP_CACHE_VIPT
   2554 		/*
   2555 		 * We *know* the page contents are about to be replaced.
   2556 		 * Discard the exec contents
   2557 		 */
   2558 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2559 			PMAPCOUNT(exec_discarded_page_protect);
   2560 		md->pvh_attrs &= ~PVF_EXEC;
   2561 		KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2562 #endif
   2563 		return;
   2564 	}
   2565 #ifdef PMAP_CACHE_VIPT
   2566 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2567 #endif
   2568 
   2569 	/*
   2570 	 * Clear alias counts
   2571 	 */
   2572 #ifdef PMAP_CACHE_VIVT
   2573 	md->k_mappings = 0;
   2574 #endif
   2575 	md->urw_mappings = md->uro_mappings = 0;
   2576 
   2577 	flush = false;
   2578 	flags = 0;
   2579 
   2580 #ifdef PMAP_CACHE_VIVT
   2581 	pmap_clean_page(pv, false);
   2582 #endif
   2583 
   2584 	pvp = &SLIST_FIRST(&md->pvh_list);
   2585 	while (pv) {
   2586 		pm = pv->pv_pmap;
   2587 		npv = SLIST_NEXT(pv, pv_link);
   2588 		if (flush == false && pmap_is_current(pm))
   2589 			flush = true;
   2590 
   2591 		if (pm == pmap_kernel()) {
   2592 #ifdef PMAP_CACHE_VIPT
   2593 			/*
   2594 			 * If this was unmanaged mapping, it must be preserved.
   2595 			 * Move it back on the list and advance the end-of-list
   2596 			 * pointer.
   2597 			 */
   2598 			if (pv->pv_flags & PVF_KENTRY) {
   2599 				*pvp = pv;
   2600 				pvp = &SLIST_NEXT(pv, pv_link);
   2601 				pv = npv;
   2602 				continue;
   2603 			}
   2604 			if (pv->pv_flags & PVF_WRITE)
   2605 				md->krw_mappings--;
   2606 			else
   2607 				md->kro_mappings--;
   2608 #endif
   2609 			PMAPCOUNT(kernel_unmappings);
   2610 		}
   2611 		PMAPCOUNT(unmappings);
   2612 
   2613 		pmap_acquire_pmap_lock(pm);
   2614 
   2615 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2616 		KDASSERT(l2b != NULL);
   2617 
   2618 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2619 
   2620 		/*
   2621 		 * Update statistics
   2622 		 */
   2623 		--pm->pm_stats.resident_count;
   2624 
   2625 		/* Wired bit */
   2626 		if (pv->pv_flags & PVF_WIRED)
   2627 			--pm->pm_stats.wired_count;
   2628 
   2629 		flags |= pv->pv_flags;
   2630 
   2631 		/*
   2632 		 * Invalidate the PTEs.
   2633 		 */
   2634 		*ptep = 0;
   2635 		PTE_SYNC_CURRENT(pm, ptep);
   2636 		pmap_free_l2_bucket(pm, l2b, 1);
   2637 
   2638 		pool_put(&pmap_pv_pool, pv);
   2639 		pv = npv;
   2640 		/*
   2641 		 * if we reach the end of the list and there are still
   2642 		 * mappings, they might be able to be cached now.
   2643 		 */
   2644 		if (pv == NULL) {
   2645 			*pvp = NULL;
   2646 			if (!SLIST_EMPTY(&md->pvh_list))
   2647 				pmap_vac_me_harder(md, pa, pm, 0);
   2648 		}
   2649 		pmap_release_pmap_lock(pm);
   2650 	}
   2651 #ifdef PMAP_CACHE_VIPT
   2652 	/*
   2653 	 * Its EXEC cache is now gone.
   2654 	 */
   2655 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2656 		PMAPCOUNT(exec_discarded_page_protect);
   2657 	md->pvh_attrs &= ~PVF_EXEC;
   2658 	KASSERT(md->urw_mappings == 0);
   2659 	KASSERT(md->uro_mappings == 0);
   2660 	if (md->krw_mappings == 0)
   2661 		md->pvh_attrs &= ~PVF_WRITE;
   2662 	KASSERT((md->urw_mappings + md->krw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2663 #endif
   2664 
   2665 	if (flush) {
   2666 		/*
   2667 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   2668 		 * would need a subsequent call to pmap_update() to ensure
   2669 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   2670 		 * required to do that (see pmap(9)), so we can't modify
   2671 		 * the current pmap's state.
   2672 		 */
   2673 		if (PV_BEEN_EXECD(flags))
   2674 			cpu_tlb_flushID();
   2675 		else
   2676 			cpu_tlb_flushD();
   2677 	}
   2678 	cpu_cpwait();
   2679 }
   2680 
   2681 /*
   2682  * pmap_t pmap_create(void)
   2683  *
   2684  *      Create a new pmap structure from scratch.
   2685  */
   2686 pmap_t
   2687 pmap_create(void)
   2688 {
   2689 	pmap_t pm;
   2690 
   2691 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   2692 
   2693 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   2694 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   2695 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   2696 
   2697 	pm->pm_stats.wired_count = 0;
   2698 	pm->pm_stats.resident_count = 1;
   2699 	pm->pm_cstate.cs_all = 0;
   2700 	pmap_alloc_l1(pm);
   2701 
   2702 	/*
   2703 	 * Note: The pool cache ensures that the pm_l2[] array is already
   2704 	 * initialised to zero.
   2705 	 */
   2706 
   2707 	pmap_pinit(pm);
   2708 
   2709 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   2710 
   2711 	return (pm);
   2712 }
   2713 
   2714 u_int
   2715 arm32_mmap_flags(paddr_t pa)
   2716 {
   2717 	/*
   2718 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   2719 	 * and we're using the upper bits in page numbers to pass flags around
   2720 	 * so we might as well use the same bits
   2721 	 */
   2722 	return (u_int)pa & PMAP_MD_MASK;
   2723 }
   2724 /*
   2725  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2726  *      u_int flags)
   2727  *
   2728  *      Insert the given physical page (p) at
   2729  *      the specified virtual address (v) in the
   2730  *      target physical map with the protection requested.
   2731  *
   2732  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2733  *      or lose information.  That is, this routine must actually
   2734  *      insert this page into the given map NOW.
   2735  */
   2736 int
   2737 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2738 {
   2739 	struct l2_bucket *l2b;
   2740 	struct vm_page *pg, *opg;
   2741 	struct pv_entry *pv;
   2742 	pt_entry_t *ptep, npte, opte;
   2743 	u_int nflags;
   2744 	u_int oflags;
   2745 
   2746 	NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
   2747 
   2748 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   2749 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2750 
   2751 	/*
   2752 	 * Get a pointer to the page.  Later on in this function, we
   2753 	 * test for a managed page by checking pg != NULL.
   2754 	 */
   2755 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2756 
   2757 	nflags = 0;
   2758 	if (prot & VM_PROT_WRITE)
   2759 		nflags |= PVF_WRITE;
   2760 	if (prot & VM_PROT_EXECUTE)
   2761 		nflags |= PVF_EXEC;
   2762 	if (flags & PMAP_WIRED)
   2763 		nflags |= PVF_WIRED;
   2764 
   2765 	pmap_acquire_pmap_lock(pm);
   2766 
   2767 	/*
   2768 	 * Fetch the L2 bucket which maps this page, allocating one if
   2769 	 * necessary for user pmaps.
   2770 	 */
   2771 	if (pm == pmap_kernel())
   2772 		l2b = pmap_get_l2_bucket(pm, va);
   2773 	else
   2774 		l2b = pmap_alloc_l2_bucket(pm, va);
   2775 	if (l2b == NULL) {
   2776 		if (flags & PMAP_CANFAIL) {
   2777 			pmap_release_pmap_lock(pm);
   2778 			return (ENOMEM);
   2779 		}
   2780 		panic("pmap_enter: failed to allocate L2 bucket");
   2781 	}
   2782 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   2783 	opte = *ptep;
   2784 	npte = pa;
   2785 	oflags = 0;
   2786 
   2787 	if (opte) {
   2788 		/*
   2789 		 * There is already a mapping at this address.
   2790 		 * If the physical address is different, lookup the
   2791 		 * vm_page.
   2792 		 */
   2793 		if (l2pte_pa(opte) != pa)
   2794 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   2795 		else
   2796 			opg = pg;
   2797 	} else
   2798 		opg = NULL;
   2799 
   2800 	if (pg) {
   2801 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   2802 
   2803 		/*
   2804 		 * This is to be a managed mapping.
   2805 		 */
   2806 		if ((flags & VM_PROT_ALL) ||
   2807 		    (md->pvh_attrs & PVF_REF)) {
   2808 			/*
   2809 			 * - The access type indicates that we don't need
   2810 			 *   to do referenced emulation.
   2811 			 * OR
   2812 			 * - The physical page has already been referenced
   2813 			 *   so no need to re-do referenced emulation here.
   2814 			 */
   2815 			npte |= l2pte_set_readonly(L2_S_PROTO);
   2816 
   2817 			nflags |= PVF_REF;
   2818 
   2819 			if ((prot & VM_PROT_WRITE) != 0 &&
   2820 			    ((flags & VM_PROT_WRITE) != 0 ||
   2821 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   2822 				/*
   2823 				 * This is a writable mapping, and the
   2824 				 * page's mod state indicates it has
   2825 				 * already been modified. Make it
   2826 				 * writable from the outset.
   2827 				 */
   2828 				npte = l2pte_set_writable(npte);
   2829 				nflags |= PVF_MOD;
   2830 			}
   2831 		} else {
   2832 			/*
   2833 			 * Need to do page referenced emulation.
   2834 			 */
   2835 			npte |= L2_TYPE_INV;
   2836 		}
   2837 
   2838 		npte |= pte_l2_s_cache_mode;
   2839 
   2840 		if (pg == opg) {
   2841 			/*
   2842 			 * We're changing the attrs of an existing mapping.
   2843 			 */
   2844 #ifdef MULTIPROCESSOR
   2845 			KASSERT(uvm_page_locked_p(pg));
   2846 #endif
   2847 			oflags = pmap_modify_pv(md, pa, pm, va,
   2848 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   2849 			    PVF_MOD | PVF_REF, nflags);
   2850 
   2851 #ifdef PMAP_CACHE_VIVT
   2852 			/*
   2853 			 * We may need to flush the cache if we're
   2854 			 * doing rw-ro...
   2855 			 */
   2856 			if (pm->pm_cstate.cs_cache_d &&
   2857 			    (oflags & PVF_NC) == 0 &&
   2858 			    l2pte_writable_p(opte) &&
   2859 			    (prot & VM_PROT_WRITE) == 0)
   2860 				cpu_dcache_wb_range(va, PAGE_SIZE);
   2861 #endif
   2862 		} else {
   2863 			/*
   2864 			 * New mapping, or changing the backing page
   2865 			 * of an existing mapping.
   2866 			 */
   2867 			if (opg) {
   2868 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2869 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2870 
   2871 				/*
   2872 				 * Replacing an existing mapping with a new one.
   2873 				 * It is part of our managed memory so we
   2874 				 * must remove it from the PV list
   2875 				 */
   2876 #ifdef MULTIPROCESSOR
   2877 				KASSERT(uvm_page_locked_p(opg));
   2878 #endif
   2879 				pv = pmap_remove_pv(omd, opa, pm, va);
   2880 				pmap_vac_me_harder(omd, opa, pm, 0);
   2881 				oflags = pv->pv_flags;
   2882 
   2883 #ifdef PMAP_CACHE_VIVT
   2884 				/*
   2885 				 * If the old mapping was valid (ref/mod
   2886 				 * emulation creates 'invalid' mappings
   2887 				 * initially) then make sure to frob
   2888 				 * the cache.
   2889 				 */
   2890 				if ((oflags & PVF_NC) == 0 &&
   2891 				    l2pte_valid(opte)) {
   2892 					if (PV_BEEN_EXECD(oflags)) {
   2893 						pmap_idcache_wbinv_range(pm, va,
   2894 						    PAGE_SIZE);
   2895 					} else
   2896 					if (PV_BEEN_REFD(oflags)) {
   2897 						pmap_dcache_wb_range(pm, va,
   2898 						    PAGE_SIZE, true,
   2899 						    (oflags & PVF_WRITE) == 0);
   2900 					}
   2901 				}
   2902 #endif
   2903 			} else
   2904 			if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
   2905 				if ((flags & PMAP_CANFAIL) == 0)
   2906 					panic("pmap_enter: no pv entries");
   2907 
   2908 				if (pm != pmap_kernel())
   2909 					pmap_free_l2_bucket(pm, l2b, 0);
   2910 				pmap_release_pmap_lock(pm);
   2911 				NPDEBUG(PDB_ENTER,
   2912 				    printf("pmap_enter: ENOMEM\n"));
   2913 				return (ENOMEM);
   2914 			}
   2915 
   2916 #ifdef MULTIPROCESSOR
   2917 			KASSERT(uvm_page_locked_p(pg));
   2918 #endif
   2919 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   2920 		}
   2921 	} else {
   2922 		/*
   2923 		 * We're mapping an unmanaged page.
   2924 		 * These are always readable, and possibly writable, from
   2925 		 * the get go as we don't need to track ref/mod status.
   2926 		 */
   2927 		npte |= l2pte_set_readonly(L2_S_PROTO);
   2928 		if (prot & VM_PROT_WRITE)
   2929 			npte = l2pte_set_writable(npte);
   2930 
   2931 		/*
   2932 		 * Make sure the vector table is mapped cacheable
   2933 		 */
   2934 		if ((pm != pmap_kernel() && va == vector_page) ||
   2935 		    (flags & ARM32_MMAP_CACHEABLE)) {
   2936 			npte |= pte_l2_s_cache_mode;
   2937 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   2938 			npte |= pte_l2_s_wc_mode;
   2939 		}
   2940 		if (opg) {
   2941 			/*
   2942 			 * Looks like there's an existing 'managed' mapping
   2943 			 * at this address.
   2944 			 */
   2945 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   2946 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   2947 
   2948 #ifdef MULTIPROCESSOR
   2949 			KASSERT(uvm_page_locked_p(opg));
   2950 #endif
   2951 			pv = pmap_remove_pv(omd, opa, pm, va);
   2952 			pmap_vac_me_harder(omd, opa, pm, 0);
   2953 			oflags = pv->pv_flags;
   2954 
   2955 #ifdef PMAP_CACHE_VIVT
   2956 			if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
   2957 				if (PV_BEEN_EXECD(oflags))
   2958 					pmap_idcache_wbinv_range(pm, va,
   2959 					    PAGE_SIZE);
   2960 				else
   2961 				if (PV_BEEN_REFD(oflags))
   2962 					pmap_dcache_wb_range(pm, va, PAGE_SIZE,
   2963 					    true, (oflags & PVF_WRITE) == 0);
   2964 			}
   2965 #endif
   2966 			pool_put(&pmap_pv_pool, pv);
   2967 		}
   2968 	}
   2969 
   2970 	/*
   2971 	 * Make sure userland mappings get the right permissions
   2972 	 */
   2973 	if (pm != pmap_kernel() && va != vector_page)
   2974 		npte |= L2_S_PROT_U;
   2975 
   2976 	/*
   2977 	 * Keep the stats up to date
   2978 	 */
   2979 	if (opte == 0) {
   2980 		l2b->l2b_occupancy++;
   2981 		pm->pm_stats.resident_count++;
   2982 	}
   2983 
   2984 	NPDEBUG(PDB_ENTER,
   2985 	    printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
   2986 
   2987 	/*
   2988 	 * If this is just a wiring change, the two PTEs will be
   2989 	 * identical, so there's no need to update the page table.
   2990 	 */
   2991 	if (npte != opte) {
   2992 		bool is_cached = pmap_is_cached(pm);
   2993 
   2994 		*ptep = npte;
   2995 		PTE_SYNC(ptep);
   2996 		if (is_cached) {
   2997 			/*
   2998 			 * We only need to frob the cache/tlb if this pmap
   2999 			 * is current
   3000 			 */
   3001 			if (va != vector_page && l2pte_valid(npte)) {
   3002 				/*
   3003 				 * This mapping is likely to be accessed as
   3004 				 * soon as we return to userland. Fix up the
   3005 				 * L1 entry to avoid taking another
   3006 				 * page/domain fault.
   3007 				 */
   3008 				pd_entry_t *pl1pd, l1pd;
   3009 
   3010 				pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
   3011 				l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
   3012 				    L1_C_PROTO;
   3013 				if (*pl1pd != l1pd) {
   3014 					*pl1pd = l1pd;
   3015 					PTE_SYNC(pl1pd);
   3016 				}
   3017 			}
   3018 		}
   3019 
   3020 		if (PV_BEEN_EXECD(oflags))
   3021 			pmap_tlb_flushID_SE(pm, va);
   3022 		else
   3023 		if (PV_BEEN_REFD(oflags))
   3024 			pmap_tlb_flushD_SE(pm, va);
   3025 
   3026 		NPDEBUG(PDB_ENTER,
   3027 		    printf("pmap_enter: is_cached %d cs 0x%08x\n",
   3028 		    is_cached, pm->pm_cstate.cs_all));
   3029 
   3030 		if (pg != NULL) {
   3031 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3032 
   3033 #ifdef MULTIPROCESSOR
   3034 			KASSERT(uvm_page_locked_p(pg));
   3035 #endif
   3036 			pmap_vac_me_harder(md, pa, pm, va);
   3037 		}
   3038 	}
   3039 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3040 	if (pg) {
   3041 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3042 
   3043 #ifdef MULTIPROCESSOR
   3044 		KASSERT(uvm_page_locked_p(pg));
   3045 #endif
   3046 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3047 		KASSERTMSG(arm_cache_prefer_mask == 0 || ((md->pvh_attrs & PVF_WRITE) == 0) == (md->urw_mappings + md->krw_mappings == 0),
   3048 		    "pg %p: attrs=%#x urw=%u krw=%u", pg,
   3049 		    md->pvh_attrs, md->urw_mappings, md->krw_mappings);
   3050 	}
   3051 #endif
   3052 
   3053 	pmap_release_pmap_lock(pm);
   3054 
   3055 	return (0);
   3056 }
   3057 
   3058 /*
   3059  * pmap_remove()
   3060  *
   3061  * pmap_remove is responsible for nuking a number of mappings for a range
   3062  * of virtual address space in the current pmap. To do this efficiently
   3063  * is interesting, because in a number of cases a wide virtual address
   3064  * range may be supplied that contains few actual mappings. So, the
   3065  * optimisations are:
   3066  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3067  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3068  *     maybe do just a partial cache clean. This path of execution is
   3069  *     complicated by the fact that the cache must be flushed _before_
   3070  *     the PTE is nuked, being a VAC :-)
   3071  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3072  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3073  *     already flushed the cache.
   3074  *  4. Maybe later fast-case a single page, but I don't think this is
   3075  *     going to make _that_ much difference overall.
   3076  */
   3077 
   3078 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3079 
   3080 void
   3081 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3082 {
   3083 	struct l2_bucket *l2b;
   3084 	vaddr_t next_bucket;
   3085 	pt_entry_t *ptep;
   3086 	u_int cleanlist_idx, total, cnt;
   3087 	struct {
   3088 		vaddr_t va;
   3089 		pt_entry_t *ptep;
   3090 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3091 	u_int mappings, is_exec, is_refd;
   3092 
   3093 	NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
   3094 	    "eva=%08lx\n", pm, sva, eva));
   3095 
   3096 	/*
   3097 	 * we lock in the pmap => pv_head direction
   3098 	 */
   3099 	pmap_acquire_pmap_lock(pm);
   3100 
   3101 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3102 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3103 		if (pm->pm_cstate.cs_tlb == 0)
   3104 			pm->pm_remove_all = true;
   3105 	} else
   3106 		cleanlist_idx = 0;
   3107 
   3108 	total = 0;
   3109 
   3110 	while (sva < eva) {
   3111 		/*
   3112 		 * Do one L2 bucket's worth at a time.
   3113 		 */
   3114 		next_bucket = L2_NEXT_BUCKET(sva);
   3115 		if (next_bucket > eva)
   3116 			next_bucket = eva;
   3117 
   3118 		l2b = pmap_get_l2_bucket(pm, sva);
   3119 		if (l2b == NULL) {
   3120 			sva = next_bucket;
   3121 			continue;
   3122 		}
   3123 
   3124 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3125 
   3126 		for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
   3127 			struct vm_page *pg;
   3128 			pt_entry_t pte;
   3129 			paddr_t pa;
   3130 
   3131 			pte = *ptep;
   3132 
   3133 			if (pte == 0) {
   3134 				/* Nothing here, move along */
   3135 				continue;
   3136 			}
   3137 
   3138 			pa = l2pte_pa(pte);
   3139 			is_exec = 0;
   3140 			is_refd = 1;
   3141 
   3142 			/*
   3143 			 * Update flags. In a number of circumstances,
   3144 			 * we could cluster a lot of these and do a
   3145 			 * number of sequential pages in one go.
   3146 			 */
   3147 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   3148 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3149 				struct pv_entry *pv;
   3150 
   3151 #ifdef MULTIPROCESSOR
   3152 				KASSERT(uvm_page_locked_p(pg));
   3153 #endif
   3154 				pv = pmap_remove_pv(md, pa, pm, sva);
   3155 				pmap_vac_me_harder(md, pa, pm, 0);
   3156 				if (pv != NULL) {
   3157 					if (pm->pm_remove_all == false) {
   3158 						is_exec =
   3159 						   PV_BEEN_EXECD(pv->pv_flags);
   3160 						is_refd =
   3161 						   PV_BEEN_REFD(pv->pv_flags);
   3162 					}
   3163 					pool_put(&pmap_pv_pool, pv);
   3164 				}
   3165 			}
   3166 			mappings++;
   3167 
   3168 			if (!l2pte_valid(pte)) {
   3169 				/*
   3170 				 * Ref/Mod emulation is still active for this
   3171 				 * mapping, therefore it is has not yet been
   3172 				 * accessed. No need to frob the cache/tlb.
   3173 				 */
   3174 				*ptep = 0;
   3175 				PTE_SYNC_CURRENT(pm, ptep);
   3176 				continue;
   3177 			}
   3178 
   3179 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3180 				/* Add to the clean list. */
   3181 				cleanlist[cleanlist_idx].ptep = ptep;
   3182 				cleanlist[cleanlist_idx].va =
   3183 				    sva | (is_exec & 1);
   3184 				cleanlist_idx++;
   3185 			} else
   3186 			if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3187 				/* Nuke everything if needed. */
   3188 #ifdef PMAP_CACHE_VIVT
   3189 				pmap_idcache_wbinv_all(pm);
   3190 #endif
   3191 				pmap_tlb_flushID(pm);
   3192 
   3193 				/*
   3194 				 * Roll back the previous PTE list,
   3195 				 * and zero out the current PTE.
   3196 				 */
   3197 				for (cnt = 0;
   3198 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3199 					*cleanlist[cnt].ptep = 0;
   3200 					PTE_SYNC(cleanlist[cnt].ptep);
   3201 				}
   3202 				*ptep = 0;
   3203 				PTE_SYNC(ptep);
   3204 				cleanlist_idx++;
   3205 				pm->pm_remove_all = true;
   3206 			} else {
   3207 				*ptep = 0;
   3208 				PTE_SYNC(ptep);
   3209 				if (pm->pm_remove_all == false) {
   3210 					if (is_exec)
   3211 						pmap_tlb_flushID_SE(pm, sva);
   3212 					else
   3213 					if (is_refd)
   3214 						pmap_tlb_flushD_SE(pm, sva);
   3215 				}
   3216 			}
   3217 		}
   3218 
   3219 		/*
   3220 		 * Deal with any left overs
   3221 		 */
   3222 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3223 			total += cleanlist_idx;
   3224 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3225 				if (pm->pm_cstate.cs_all != 0) {
   3226 					vaddr_t clva = cleanlist[cnt].va & ~1;
   3227 					if (cleanlist[cnt].va & 1) {
   3228 #ifdef PMAP_CACHE_VIVT
   3229 						pmap_idcache_wbinv_range(pm,
   3230 						    clva, PAGE_SIZE);
   3231 #endif
   3232 						pmap_tlb_flushID_SE(pm, clva);
   3233 					} else {
   3234 #ifdef PMAP_CACHE_VIVT
   3235 						pmap_dcache_wb_range(pm,
   3236 						    clva, PAGE_SIZE, true,
   3237 						    false);
   3238 #endif
   3239 						pmap_tlb_flushD_SE(pm, clva);
   3240 					}
   3241 				}
   3242 				*cleanlist[cnt].ptep = 0;
   3243 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3244 			}
   3245 
   3246 			/*
   3247 			 * If it looks like we're removing a whole bunch
   3248 			 * of mappings, it's faster to just write-back
   3249 			 * the whole cache now and defer TLB flushes until
   3250 			 * pmap_update() is called.
   3251 			 */
   3252 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3253 				cleanlist_idx = 0;
   3254 			else {
   3255 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3256 #ifdef PMAP_CACHE_VIVT
   3257 				pmap_idcache_wbinv_all(pm);
   3258 #endif
   3259 				pm->pm_remove_all = true;
   3260 			}
   3261 		}
   3262 
   3263 		pmap_free_l2_bucket(pm, l2b, mappings);
   3264 		pm->pm_stats.resident_count -= mappings;
   3265 	}
   3266 
   3267 	pmap_release_pmap_lock(pm);
   3268 }
   3269 
   3270 #ifdef PMAP_CACHE_VIPT
   3271 static struct pv_entry *
   3272 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3273 {
   3274 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3275 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3276 	struct pv_entry *pv;
   3277 
   3278 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3279 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3280 
   3281 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3282 	KASSERT(pv);
   3283 	KASSERT(pv->pv_flags & PVF_KENTRY);
   3284 
   3285 	/*
   3286 	 * If we are removing a writeable mapping to a cached exec page,
   3287 	 * if it's the last mapping then clear it execness other sync
   3288 	 * the page to the icache.
   3289 	 */
   3290 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3291 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3292 		if (SLIST_EMPTY(&md->pvh_list)) {
   3293 			md->pvh_attrs &= ~PVF_EXEC;
   3294 			PMAPCOUNT(exec_discarded_kremove);
   3295 		} else {
   3296 			pmap_syncicache_page(md, pa);
   3297 			PMAPCOUNT(exec_synced_kremove);
   3298 		}
   3299 	}
   3300 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3301 
   3302 	return pv;
   3303 }
   3304 #endif /* PMAP_CACHE_VIPT */
   3305 
   3306 /*
   3307  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3308  *
   3309  * We assume there is already sufficient KVM space available
   3310  * to do this, as we can't allocate L2 descriptor tables/metadata
   3311  * from here.
   3312  */
   3313 void
   3314 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3315 {
   3316 	struct l2_bucket *l2b;
   3317 	pt_entry_t *ptep, opte;
   3318 #ifdef PMAP_CACHE_VIVT
   3319 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3320 #endif
   3321 #ifdef PMAP_CACHE_VIPT
   3322 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3323 	struct vm_page *opg;
   3324 	struct pv_entry *pv = NULL;
   3325 #endif
   3326 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3327 
   3328 	NPDEBUG(PDB_KENTER,
   3329 	    printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
   3330 	    va, pa, prot));
   3331 
   3332 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3333 	KDASSERT(l2b != NULL);
   3334 
   3335 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3336 	opte = *ptep;
   3337 
   3338 	if (opte == 0) {
   3339 		PMAPCOUNT(kenter_mappings);
   3340 		l2b->l2b_occupancy++;
   3341 	} else {
   3342 		PMAPCOUNT(kenter_remappings);
   3343 #ifdef PMAP_CACHE_VIPT
   3344 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3345 #ifdef DIAGNOSTIC
   3346 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3347 #endif
   3348 		if (opg) {
   3349 			KASSERT(opg != pg);
   3350 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3351 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3352 			pv = pmap_kremove_pg(opg, va);
   3353 		}
   3354 #endif
   3355 		if (l2pte_valid(opte)) {
   3356 #ifdef PMAP_CACHE_VIVT
   3357 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3358 #endif
   3359 			cpu_tlb_flushD_SE(va);
   3360 			cpu_cpwait();
   3361 		}
   3362 	}
   3363 
   3364 	*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
   3365 	    | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
   3366 	PTE_SYNC(ptep);
   3367 
   3368 	if (pg) {
   3369 #ifdef MULTIPROCESSOR
   3370 		KASSERT(uvm_page_locked_p(pg));
   3371 #endif
   3372 		if (flags & PMAP_KMPAGE) {
   3373 			KASSERT(md->urw_mappings == 0);
   3374 			KASSERT(md->uro_mappings == 0);
   3375 			KASSERT(md->krw_mappings == 0);
   3376 			KASSERT(md->kro_mappings == 0);
   3377 #ifdef PMAP_CACHE_VIPT
   3378 			KASSERT(pv == NULL);
   3379 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3380 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3381 			/* if there is a color conflict, evict from cache. */
   3382 			if (pmap_is_page_colored_p(md)
   3383 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3384 				PMAPCOUNT(vac_color_change);
   3385 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3386 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3387 				/*
   3388 				 * If this page has multiple colors, expunge
   3389 				 * them.
   3390 				 */
   3391 				PMAPCOUNT(vac_flush_lots2);
   3392 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3393 			}
   3394 			md->pvh_attrs &= PAGE_SIZE - 1;
   3395 			md->pvh_attrs |= PVF_KMPAGE
   3396 			    | PVF_COLORED | PVF_DIRTY
   3397 			    | (va & arm_cache_prefer_mask);
   3398 #endif
   3399 #ifdef PMAP_CACHE_VIVT
   3400 			md->pvh_attrs |= PVF_KMPAGE;
   3401 #endif
   3402 			pmap_kmpages++;
   3403 #ifdef PMAP_CACHE_VIPT
   3404 		} else {
   3405 			if (pv == NULL) {
   3406 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3407 				KASSERT(pv != NULL);
   3408 			}
   3409 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3410 			    PVF_WIRED | PVF_KENTRY
   3411 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3412 			if ((prot & VM_PROT_WRITE)
   3413 			    && !(md->pvh_attrs & PVF_NC))
   3414 				md->pvh_attrs |= PVF_DIRTY;
   3415 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3416 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3417 #endif
   3418 		}
   3419 #ifdef PMAP_CACHE_VIPT
   3420 	} else {
   3421 		if (pv != NULL)
   3422 			pool_put(&pmap_pv_pool, pv);
   3423 #endif
   3424 	}
   3425 }
   3426 
   3427 void
   3428 pmap_kremove(vaddr_t va, vsize_t len)
   3429 {
   3430 	struct l2_bucket *l2b;
   3431 	pt_entry_t *ptep, *sptep, opte;
   3432 	vaddr_t next_bucket, eva;
   3433 	u_int mappings;
   3434 	struct vm_page *opg;
   3435 
   3436 	PMAPCOUNT(kenter_unmappings);
   3437 
   3438 	NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
   3439 	    va, len));
   3440 
   3441 	eva = va + len;
   3442 
   3443 	while (va < eva) {
   3444 		next_bucket = L2_NEXT_BUCKET(va);
   3445 		if (next_bucket > eva)
   3446 			next_bucket = eva;
   3447 
   3448 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   3449 		KDASSERT(l2b != NULL);
   3450 
   3451 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   3452 		mappings = 0;
   3453 
   3454 		while (va < next_bucket) {
   3455 			opte = *ptep;
   3456 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3457 			if (opg) {
   3458 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3459 
   3460 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3461 					KASSERT(omd->urw_mappings == 0);
   3462 					KASSERT(omd->uro_mappings == 0);
   3463 					KASSERT(omd->krw_mappings == 0);
   3464 					KASSERT(omd->kro_mappings == 0);
   3465 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3466 #ifdef PMAP_CACHE_VIPT
   3467 					omd->pvh_attrs &= ~PVF_WRITE;
   3468 #endif
   3469 					pmap_kmpages--;
   3470 #ifdef PMAP_CACHE_VIPT
   3471 				} else {
   3472 					pool_put(&pmap_pv_pool,
   3473 					    pmap_kremove_pg(opg, va));
   3474 #endif
   3475 				}
   3476 			}
   3477 			if (l2pte_valid(opte)) {
   3478 #ifdef PMAP_CACHE_VIVT
   3479 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3480 #endif
   3481 				cpu_tlb_flushD_SE(va);
   3482 			}
   3483 			if (opte) {
   3484 				*ptep = 0;
   3485 				mappings++;
   3486 			}
   3487 			va += PAGE_SIZE;
   3488 			ptep++;
   3489 		}
   3490 		KDASSERT(mappings <= l2b->l2b_occupancy);
   3491 		l2b->l2b_occupancy -= mappings;
   3492 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3493 	}
   3494 	cpu_cpwait();
   3495 }
   3496 
   3497 bool
   3498 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3499 {
   3500 	struct l2_dtable *l2;
   3501 	pd_entry_t *pl1pd, l1pd;
   3502 	pt_entry_t *ptep, pte;
   3503 	paddr_t pa;
   3504 	u_int l1idx;
   3505 
   3506 	pmap_acquire_pmap_lock(pm);
   3507 
   3508 	l1idx = L1_IDX(va);
   3509 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3510 	l1pd = *pl1pd;
   3511 
   3512 	if (l1pte_section_p(l1pd)) {
   3513 		/*
   3514 		 * These should only happen for pmap_kernel()
   3515 		 */
   3516 		KDASSERT(pm == pmap_kernel());
   3517 		pmap_release_pmap_lock(pm);
   3518 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   3519 		if (l1pte_supersection_p(l1pd)) {
   3520 			pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   3521 		} else
   3522 #endif
   3523 			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
   3524 	} else {
   3525 		/*
   3526 		 * Note that we can't rely on the validity of the L1
   3527 		 * descriptor as an indication that a mapping exists.
   3528 		 * We have to look it up in the L2 dtable.
   3529 		 */
   3530 		l2 = pm->pm_l2[L2_IDX(l1idx)];
   3531 
   3532 		if (l2 == NULL ||
   3533 		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   3534 			pmap_release_pmap_lock(pm);
   3535 			return false;
   3536 		}
   3537 
   3538 		ptep = &ptep[l2pte_index(va)];
   3539 		pte = *ptep;
   3540 		pmap_release_pmap_lock(pm);
   3541 
   3542 		if (pte == 0)
   3543 			return false;
   3544 
   3545 		switch (pte & L2_TYPE_MASK) {
   3546 		case L2_TYPE_L:
   3547 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3548 			break;
   3549 
   3550 		default:
   3551 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3552 			break;
   3553 		}
   3554 	}
   3555 
   3556 	if (pap != NULL)
   3557 		*pap = pa;
   3558 
   3559 	return true;
   3560 }
   3561 
   3562 void
   3563 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   3564 {
   3565 	struct l2_bucket *l2b;
   3566 	pt_entry_t *ptep, pte;
   3567 	vaddr_t next_bucket;
   3568 	u_int flags;
   3569 	u_int clr_mask;
   3570 	int flush;
   3571 
   3572 	NPDEBUG(PDB_PROTECT,
   3573 	    printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
   3574 	    pm, sva, eva, prot));
   3575 
   3576 	if ((prot & VM_PROT_READ) == 0) {
   3577 		pmap_remove(pm, sva, eva);
   3578 		return;
   3579 	}
   3580 
   3581 	if (prot & VM_PROT_WRITE) {
   3582 		/*
   3583 		 * If this is a read->write transition, just ignore it and let
   3584 		 * uvm_fault() take care of it later.
   3585 		 */
   3586 		return;
   3587 	}
   3588 
   3589 	pmap_acquire_pmap_lock(pm);
   3590 
   3591 	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
   3592 	flags = 0;
   3593 	clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   3594 
   3595 	while (sva < eva) {
   3596 		next_bucket = L2_NEXT_BUCKET(sva);
   3597 		if (next_bucket > eva)
   3598 			next_bucket = eva;
   3599 
   3600 		l2b = pmap_get_l2_bucket(pm, sva);
   3601 		if (l2b == NULL) {
   3602 			sva = next_bucket;
   3603 			continue;
   3604 		}
   3605 
   3606 		ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3607 
   3608 		while (sva < next_bucket) {
   3609 			pte = *ptep;
   3610 			if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
   3611 				struct vm_page *pg;
   3612 				u_int f;
   3613 
   3614 #ifdef PMAP_CACHE_VIVT
   3615 				/*
   3616 				 * OK, at this point, we know we're doing
   3617 				 * write-protect operation.  If the pmap is
   3618 				 * active, write-back the page.
   3619 				 */
   3620 				pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
   3621 				    false, false);
   3622 #endif
   3623 
   3624 				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
   3625 				pte = l2pte_set_readonly(pte);
   3626 				*ptep = pte;
   3627 				PTE_SYNC(ptep);
   3628 
   3629 				if (pg != NULL) {
   3630 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3631 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3632 
   3633 #ifdef MULTIPROCESSOR
   3634 					KASSERT(uvm_page_locked_p(pg));
   3635 #endif
   3636 					f = pmap_modify_pv(md, pa, pm, sva,
   3637 					    clr_mask, 0);
   3638 					pmap_vac_me_harder(md, pa, pm, sva);
   3639 				} else {
   3640 					f = PVF_REF | PVF_EXEC;
   3641 				}
   3642 
   3643 				if (flush >= 0) {
   3644 					flush++;
   3645 					flags |= f;
   3646 				} else
   3647 				if (PV_BEEN_EXECD(f))
   3648 					pmap_tlb_flushID_SE(pm, sva);
   3649 				else
   3650 				if (PV_BEEN_REFD(f))
   3651 					pmap_tlb_flushD_SE(pm, sva);
   3652 			}
   3653 
   3654 			sva += PAGE_SIZE;
   3655 			ptep++;
   3656 		}
   3657 	}
   3658 
   3659 	pmap_release_pmap_lock(pm);
   3660 
   3661 	if (flush) {
   3662 		if (PV_BEEN_EXECD(flags))
   3663 			pmap_tlb_flushID(pm);
   3664 		else
   3665 		if (PV_BEEN_REFD(flags))
   3666 			pmap_tlb_flushD(pm);
   3667 	}
   3668 }
   3669 
   3670 void
   3671 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3672 {
   3673 	struct l2_bucket *l2b;
   3674 	pt_entry_t *ptep;
   3675 	vaddr_t next_bucket;
   3676 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   3677 
   3678 	NPDEBUG(PDB_EXEC,
   3679 	    printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
   3680 	    pm, sva, eva));
   3681 
   3682 	pmap_acquire_pmap_lock(pm);
   3683 
   3684 	while (sva < eva) {
   3685 		next_bucket = L2_NEXT_BUCKET(sva);
   3686 		if (next_bucket > eva)
   3687 			next_bucket = eva;
   3688 
   3689 		l2b = pmap_get_l2_bucket(pm, sva);
   3690 		if (l2b == NULL) {
   3691 			sva = next_bucket;
   3692 			continue;
   3693 		}
   3694 
   3695 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3696 		     sva < next_bucket;
   3697 		     sva += page_size, ptep++, page_size = PAGE_SIZE) {
   3698 			if (l2pte_valid(*ptep)) {
   3699 				cpu_icache_sync_range(sva,
   3700 				    min(page_size, eva - sva));
   3701 			}
   3702 		}
   3703 	}
   3704 
   3705 	pmap_release_pmap_lock(pm);
   3706 }
   3707 
   3708 void
   3709 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   3710 {
   3711 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3712 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3713 
   3714 	NPDEBUG(PDB_PROTECT,
   3715 	    printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
   3716 	    md, pa, prot));
   3717 
   3718 #ifdef MULTIPROCESSOR
   3719 	KASSERT(uvm_page_locked_p(pg));
   3720 #endif
   3721 
   3722 	switch(prot) {
   3723 	case VM_PROT_READ|VM_PROT_WRITE:
   3724 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3725 		pmap_clearbit(md, pa, PVF_EXEC);
   3726 		break;
   3727 #endif
   3728 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   3729 		break;
   3730 
   3731 	case VM_PROT_READ:
   3732 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
   3733 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   3734 		break;
   3735 #endif
   3736 	case VM_PROT_READ|VM_PROT_EXECUTE:
   3737 		pmap_clearbit(md, pa, PVF_WRITE);
   3738 		break;
   3739 
   3740 	default:
   3741 		pmap_page_remove(md, pa);
   3742 		break;
   3743 	}
   3744 }
   3745 
   3746 /*
   3747  * pmap_clear_modify:
   3748  *
   3749  *	Clear the "modified" attribute for a page.
   3750  */
   3751 bool
   3752 pmap_clear_modify(struct vm_page *pg)
   3753 {
   3754 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3755 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3756 	bool rv;
   3757 
   3758 #ifdef MULTIPROCESSOR
   3759 	KASSERT(uvm_page_locked_p(pg));
   3760 #endif
   3761 
   3762 	if (md->pvh_attrs & PVF_MOD) {
   3763 		rv = true;
   3764 #ifdef PMAP_CACHE_VIPT
   3765 		/*
   3766 		 * If we are going to clear the modified bit and there are
   3767 		 * no other modified bits set, flush the page to memory and
   3768 		 * mark it clean.
   3769 		 */
   3770 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   3771 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   3772 #endif
   3773 		pmap_clearbit(md, pa, PVF_MOD);
   3774 	} else
   3775 		rv = false;
   3776 
   3777 	return (rv);
   3778 }
   3779 
   3780 /*
   3781  * pmap_clear_reference:
   3782  *
   3783  *	Clear the "referenced" attribute for a page.
   3784  */
   3785 bool
   3786 pmap_clear_reference(struct vm_page *pg)
   3787 {
   3788 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3789 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3790 	bool rv;
   3791 
   3792 #ifdef MULTIPROCESSOR
   3793 	KASSERT(uvm_page_locked_p(pg));
   3794 #endif
   3795 
   3796 	if (md->pvh_attrs & PVF_REF) {
   3797 		rv = true;
   3798 		pmap_clearbit(md, pa, PVF_REF);
   3799 	} else
   3800 		rv = false;
   3801 
   3802 	return (rv);
   3803 }
   3804 
   3805 /*
   3806  * pmap_is_modified:
   3807  *
   3808  *	Test if a page has the "modified" attribute.
   3809  */
   3810 /* See <arm/arm32/pmap.h> */
   3811 
   3812 /*
   3813  * pmap_is_referenced:
   3814  *
   3815  *	Test if a page has the "referenced" attribute.
   3816  */
   3817 /* See <arm/arm32/pmap.h> */
   3818 
   3819 int
   3820 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   3821 {
   3822 	struct l2_dtable *l2;
   3823 	struct l2_bucket *l2b;
   3824 	pd_entry_t *pl1pd, l1pd;
   3825 	pt_entry_t *ptep, pte;
   3826 	paddr_t pa;
   3827 	u_int l1idx;
   3828 	int rv = 0;
   3829 
   3830 	pmap_acquire_pmap_lock(pm);
   3831 
   3832 	l1idx = L1_IDX(va);
   3833 
   3834 	/*
   3835 	 * If there is no l2_dtable for this address, then the process
   3836 	 * has no business accessing it.
   3837 	 *
   3838 	 * Note: This will catch userland processes trying to access
   3839 	 * kernel addresses.
   3840 	 */
   3841 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   3842 	if (l2 == NULL)
   3843 		goto out;
   3844 
   3845 	/*
   3846 	 * Likewise if there is no L2 descriptor table
   3847 	 */
   3848 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   3849 	if (l2b->l2b_kva == NULL)
   3850 		goto out;
   3851 
   3852 	/*
   3853 	 * Check the PTE itself.
   3854 	 */
   3855 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   3856 	pte = *ptep;
   3857 	if (pte == 0)
   3858 		goto out;
   3859 
   3860 	/*
   3861 	 * Catch a userland access to the vector page mapped at 0x0
   3862 	 */
   3863 	if (user && (pte & L2_S_PROT_U) == 0)
   3864 		goto out;
   3865 
   3866 	pa = l2pte_pa(pte);
   3867 
   3868 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
   3869 		/*
   3870 		 * This looks like a good candidate for "page modified"
   3871 		 * emulation...
   3872 		 */
   3873 		struct pv_entry *pv;
   3874 		struct vm_page *pg;
   3875 
   3876 		/* Extract the physical address of the page */
   3877 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3878 			goto out;
   3879 
   3880 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3881 
   3882 		/* Get the current flags for this page. */
   3883 #ifdef MULTIPROCESSOR
   3884 		KASSERT(uvm_page_locked_p(pg));
   3885 #endif
   3886 
   3887 		pv = pmap_find_pv(md, pm, va);
   3888 		if (pv == NULL) {
   3889 			goto out;
   3890 		}
   3891 
   3892 		/*
   3893 		 * Do the flags say this page is writable? If not then it
   3894 		 * is a genuine write fault. If yes then the write fault is
   3895 		 * our fault as we did not reflect the write access in the
   3896 		 * PTE. Now we know a write has occurred we can correct this
   3897 		 * and also set the modified bit
   3898 		 */
   3899 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   3900 			goto out;
   3901 		}
   3902 
   3903 		NPDEBUG(PDB_FOLLOW,
   3904 		    printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3905 		    pm, va, pa));
   3906 
   3907 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   3908 		pv->pv_flags |= PVF_REF | PVF_MOD;
   3909 #ifdef PMAP_CACHE_VIPT
   3910 		/*
   3911 		 * If there are cacheable mappings for this page, mark it dirty.
   3912 		 */
   3913 		if ((md->pvh_attrs & PVF_NC) == 0)
   3914 			md->pvh_attrs |= PVF_DIRTY;
   3915 #endif
   3916 
   3917 		/*
   3918 		 * Re-enable write permissions for the page.  No need to call
   3919 		 * pmap_vac_me_harder(), since this is just a
   3920 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   3921 		 * changing. We've already set the cacheable bits based on
   3922 		 * the assumption that we can write to this page.
   3923 		 */
   3924 		*ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3925 		PTE_SYNC(ptep);
   3926 		rv = 1;
   3927 	} else
   3928 	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
   3929 		/*
   3930 		 * This looks like a good candidate for "page referenced"
   3931 		 * emulation.
   3932 		 */
   3933 		struct pv_entry *pv;
   3934 		struct vm_page *pg;
   3935 
   3936 		/* Extract the physical address of the page */
   3937 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3938 			goto out;
   3939 
   3940 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3941 
   3942 		/* Get the current flags for this page. */
   3943 #ifdef MULTIPROCESSOR
   3944 		KASSERT(uvm_page_locked_p(pg));
   3945 #endif
   3946 
   3947 		pv = pmap_find_pv(md, pm, va);
   3948 		if (pv == NULL) {
   3949 			goto out;
   3950 		}
   3951 
   3952 		md->pvh_attrs |= PVF_REF;
   3953 		pv->pv_flags |= PVF_REF;
   3954 
   3955 		NPDEBUG(PDB_FOLLOW,
   3956 		    printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
   3957 		    pm, va, pa));
   3958 
   3959 		*ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
   3960 		PTE_SYNC(ptep);
   3961 		rv = 1;
   3962 	}
   3963 
   3964 	/*
   3965 	 * We know there is a valid mapping here, so simply
   3966 	 * fix up the L1 if necessary.
   3967 	 */
   3968 	pl1pd = &pm->pm_l1->l1_kva[l1idx];
   3969 	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
   3970 	if (*pl1pd != l1pd) {
   3971 		*pl1pd = l1pd;
   3972 		PTE_SYNC(pl1pd);
   3973 		rv = 1;
   3974 	}
   3975 
   3976 #ifdef CPU_SA110
   3977 	/*
   3978 	 * There are bugs in the rev K SA110.  This is a check for one
   3979 	 * of them.
   3980 	 */
   3981 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   3982 	    curcpu()->ci_arm_cpurev < 3) {
   3983 		/* Always current pmap */
   3984 		if (l2pte_valid(pte)) {
   3985 			extern int kernel_debug;
   3986 			if (kernel_debug & 1) {
   3987 				struct proc *p = curlwp->l_proc;
   3988 				printf("prefetch_abort: page is already "
   3989 				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
   3990 				printf("prefetch_abort: pc=%08lx proc=%p "
   3991 				    "process=%s\n", va, p, p->p_comm);
   3992 				printf("prefetch_abort: far=%08x fs=%x\n",
   3993 				    cpu_faultaddress(), cpu_faultstatus());
   3994 			}
   3995 #ifdef DDB
   3996 			if (kernel_debug & 2)
   3997 				Debugger();
   3998 #endif
   3999 			rv = 1;
   4000 		}
   4001 	}
   4002 #endif /* CPU_SA110 */
   4003 
   4004 	/*
   4005 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4006 	 * stale TLB entry for the faulting address.  That might be due to a
   4007 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4008 	 */
   4009 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
   4010 	    && pmap_needs_pte_sync == 0) {
   4011 		pmap_needs_pte_sync = 1;
   4012 		PTE_SYNC(ptep);
   4013 		rv = 1;
   4014 	}
   4015 
   4016 #ifdef DEBUG
   4017 	/*
   4018 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4019 	 * stale TLB entry for the faulting address. This happens when two or
   4020 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4021 	 * a context switch between such processes, we can take domain faults
   4022 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4023 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4024 	 * example.
   4025 	 *
   4026 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4027 	 * entry for a recently entered mapping. In this case, the TLB is
   4028 	 * flushed for the new mapping, but there may still be TLB entries for
   4029 	 * other mappings belonging to other processes in the 1MB range
   4030 	 * covered by the L1 entry.
   4031 	 *
   4032 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4033 	 * value, so the fault must be due to a stale TLB entry.
   4034 	 *
   4035 	 * Since we always need to flush the TLB anyway in the case where we
   4036 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4037 	 * stale TLB entries dynamically.
   4038 	 *
   4039 	 * However, the above condition can ONLY happen if the current L1 is
   4040 	 * being shared. If it happens when the L1 is unshared, it indicates
   4041 	 * that other parts of the pmap are not doing their job WRT managing
   4042 	 * the TLB.
   4043 	 */
   4044 	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
   4045 		extern int last_fault_code;
   4046 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4047 		    pm, va, ftype);
   4048 		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
   4049 		    l2, l2b, ptep, pl1pd);
   4050 		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
   4051 		    pte, l1pd, last_fault_code);
   4052 #ifdef DDB
   4053 		Debugger();
   4054 #endif
   4055 	}
   4056 #endif
   4057 
   4058 	cpu_tlb_flushID_SE(va);
   4059 	cpu_cpwait();
   4060 
   4061 	rv = 1;
   4062 
   4063 out:
   4064 	pmap_release_pmap_lock(pm);
   4065 
   4066 	return (rv);
   4067 }
   4068 
   4069 /*
   4070  * Routine:	pmap_procwr
   4071  *
   4072  * Function:
   4073  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4074  *
   4075  */
   4076 void
   4077 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4078 {
   4079 	/* We only need to do anything if it is the current process. */
   4080 	if (p == curproc)
   4081 		cpu_icache_sync_range(va, len);
   4082 }
   4083 
   4084 /*
   4085  * Routine:	pmap_unwire
   4086  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4087  *
   4088  * In/out conditions:
   4089  *		The mapping must already exist in the pmap.
   4090  */
   4091 void
   4092 pmap_unwire(pmap_t pm, vaddr_t va)
   4093 {
   4094 	struct l2_bucket *l2b;
   4095 	pt_entry_t *ptep, pte;
   4096 	struct vm_page *pg;
   4097 	paddr_t pa;
   4098 
   4099 	NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
   4100 
   4101 	pmap_acquire_pmap_lock(pm);
   4102 
   4103 	l2b = pmap_get_l2_bucket(pm, va);
   4104 	KDASSERT(l2b != NULL);
   4105 
   4106 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4107 	pte = *ptep;
   4108 
   4109 	/* Extract the physical address of the page */
   4110 	pa = l2pte_pa(pte);
   4111 
   4112 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4113 		/* Update the wired bit in the pv entry for this page. */
   4114 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4115 
   4116 #ifdef MULTIPROCESSOR
   4117 		KASSERT(uvm_page_locked_p(pg));
   4118 #endif
   4119 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4120 	}
   4121 
   4122 	pmap_release_pmap_lock(pm);
   4123 }
   4124 
   4125 void
   4126 pmap_activate(struct lwp *l)
   4127 {
   4128 	extern int block_userspace_access;
   4129 	pmap_t opm, npm, rpm;
   4130 	uint32_t odacr, ndacr;
   4131 	int oldirqstate;
   4132 
   4133 	/*
   4134 	 * If activating a non-current lwp or the current lwp is
   4135 	 * already active, just return.
   4136 	 */
   4137 	if (l != curlwp ||
   4138 	    l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
   4139 		return;
   4140 
   4141 	npm = l->l_proc->p_vmspace->vm_map.pmap;
   4142 	ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4143 	    (DOMAIN_CLIENT << (npm->pm_domain * 2));
   4144 
   4145 	/*
   4146 	 * If TTB and DACR are unchanged, short-circuit all the
   4147 	 * TLB/cache management stuff.
   4148 	 */
   4149 	if (pmap_previous_active_lwp != NULL) {
   4150 		opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
   4151 		odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
   4152 		    (DOMAIN_CLIENT << (opm->pm_domain * 2));
   4153 
   4154 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   4155 			goto all_done;
   4156 	} else
   4157 		opm = NULL;
   4158 
   4159 	PMAPCOUNT(activations);
   4160 	block_userspace_access = 1;
   4161 
   4162 	/*
   4163 	 * If switching to a user vmspace which is different to the
   4164 	 * most recent one, and the most recent one is potentially
   4165 	 * live in the cache, we must write-back and invalidate the
   4166 	 * entire cache.
   4167 	 */
   4168 	rpm = pmap_recent_user;
   4169 
   4170 /*
   4171  * XXXSCW: There's a corner case here which can leave turds in the cache as
   4172  * reported in kern/41058. They're probably left over during tear-down and
   4173  * switching away from an exiting process. Until the root cause is identified
   4174  * and fixed, zap the cache when switching pmaps. This will result in a few
   4175  * unnecessary cache flushes, but that's better than silently corrupting data.
   4176  */
   4177 #if 0
   4178 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   4179 	    rpm->pm_cstate.cs_cache) {
   4180 		rpm->pm_cstate.cs_cache = 0;
   4181 #ifdef PMAP_CACHE_VIVT
   4182 		cpu_idcache_wbinv_all();
   4183 #endif
   4184 	}
   4185 #else
   4186 	if (rpm) {
   4187 		rpm->pm_cstate.cs_cache = 0;
   4188 		if (npm == pmap_kernel())
   4189 			pmap_recent_user = NULL;
   4190 #ifdef PMAP_CACHE_VIVT
   4191 		cpu_idcache_wbinv_all();
   4192 #endif
   4193 	}
   4194 #endif
   4195 
   4196 	/* No interrupts while we frob the TTB/DACR */
   4197 	oldirqstate = disable_interrupts(IF32_bits);
   4198 
   4199 	/*
   4200 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   4201 	 * entry corresponding to 'vector_page' in the incoming L1 table
   4202 	 * before switching to it otherwise subsequent interrupts/exceptions
   4203 	 * (including domain faults!) will jump into hyperspace.
   4204 	 */
   4205 	if (npm->pm_pl1vec != NULL) {
   4206 		cpu_tlb_flushID_SE((u_int)vector_page);
   4207 		cpu_cpwait();
   4208 		*npm->pm_pl1vec = npm->pm_l1vec;
   4209 		PTE_SYNC(npm->pm_pl1vec);
   4210 	}
   4211 
   4212 	cpu_domains(ndacr);
   4213 
   4214 	if (npm == pmap_kernel() || npm == rpm) {
   4215 		/*
   4216 		 * Switching to a kernel thread, or back to the
   4217 		 * same user vmspace as before... Simply update
   4218 		 * the TTB (no TLB flush required)
   4219 		 */
   4220 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   4221 		cpu_cpwait();
   4222 	} else {
   4223 		/*
   4224 		 * Otherwise, update TTB and flush TLB
   4225 		 */
   4226 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   4227 		if (rpm != NULL)
   4228 			rpm->pm_cstate.cs_tlb = 0;
   4229 	}
   4230 
   4231 	restore_interrupts(oldirqstate);
   4232 
   4233 	block_userspace_access = 0;
   4234 
   4235  all_done:
   4236 	/*
   4237 	 * The new pmap is resident. Make sure it's marked
   4238 	 * as resident in the cache/TLB.
   4239 	 */
   4240 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4241 	if (npm != pmap_kernel())
   4242 		pmap_recent_user = npm;
   4243 
   4244 	/* The old pmap is not longer active */
   4245 	if (opm != NULL)
   4246 		opm->pm_activated = false;
   4247 
   4248 	/* But the new one is */
   4249 	npm->pm_activated = true;
   4250 }
   4251 
   4252 void
   4253 pmap_deactivate(struct lwp *l)
   4254 {
   4255 
   4256 	/*
   4257 	 * If the process is exiting, make sure pmap_activate() does
   4258 	 * a full MMU context-switch and cache flush, which we might
   4259 	 * otherwise skip. See PR port-arm/38950.
   4260 	 */
   4261 	if (l->l_proc->p_sflag & PS_WEXIT)
   4262 		pmap_previous_active_lwp = NULL;
   4263 
   4264 	l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
   4265 }
   4266 
   4267 void
   4268 pmap_update(pmap_t pm)
   4269 {
   4270 
   4271 	if (pm->pm_remove_all) {
   4272 		/*
   4273 		 * Finish up the pmap_remove_all() optimisation by flushing
   4274 		 * the TLB.
   4275 		 */
   4276 		pmap_tlb_flushID(pm);
   4277 		pm->pm_remove_all = false;
   4278 	}
   4279 
   4280 	if (pmap_is_current(pm)) {
   4281 		/*
   4282 		 * If we're dealing with a current userland pmap, move its L1
   4283 		 * to the end of the LRU.
   4284 		 */
   4285 		if (pm != pmap_kernel())
   4286 			pmap_use_l1(pm);
   4287 
   4288 		/*
   4289 		 * We can assume we're done with frobbing the cache/tlb for
   4290 		 * now. Make sure any future pmap ops don't skip cache/tlb
   4291 		 * flushes.
   4292 		 */
   4293 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4294 	}
   4295 
   4296 	PMAPCOUNT(updates);
   4297 
   4298 	/*
   4299 	 * make sure TLB/cache operations have completed.
   4300 	 */
   4301 	cpu_cpwait();
   4302 }
   4303 
   4304 void
   4305 pmap_remove_all(pmap_t pm)
   4306 {
   4307 
   4308 	/*
   4309 	 * The vmspace described by this pmap is about to be torn down.
   4310 	 * Until pmap_update() is called, UVM will only make calls
   4311 	 * to pmap_remove(). We can make life much simpler by flushing
   4312 	 * the cache now, and deferring TLB invalidation to pmap_update().
   4313 	 */
   4314 #ifdef PMAP_CACHE_VIVT
   4315 	pmap_idcache_wbinv_all(pm);
   4316 #endif
   4317 	pm->pm_remove_all = true;
   4318 }
   4319 
   4320 /*
   4321  * Retire the given physical map from service.
   4322  * Should only be called if the map contains no valid mappings.
   4323  */
   4324 void
   4325 pmap_destroy(pmap_t pm)
   4326 {
   4327 	u_int count;
   4328 
   4329 	if (pm == NULL)
   4330 		return;
   4331 
   4332 	if (pm->pm_remove_all) {
   4333 		pmap_tlb_flushID(pm);
   4334 		pm->pm_remove_all = false;
   4335 	}
   4336 
   4337 	/*
   4338 	 * Drop reference count
   4339 	 */
   4340 	mutex_enter(pm->pm_lock);
   4341 	count = --pm->pm_obj.uo_refs;
   4342 	mutex_exit(pm->pm_lock);
   4343 	if (count > 0) {
   4344 		if (pmap_is_current(pm)) {
   4345 			if (pm != pmap_kernel())
   4346 				pmap_use_l1(pm);
   4347 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   4348 		}
   4349 		return;
   4350 	}
   4351 
   4352 	/*
   4353 	 * reference count is zero, free pmap resources and then free pmap.
   4354 	 */
   4355 
   4356 	if (vector_page < KERNEL_BASE) {
   4357 		KDASSERT(!pmap_is_current(pm));
   4358 
   4359 		/* Remove the vector page mapping */
   4360 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   4361 		pmap_update(pm);
   4362 	}
   4363 
   4364 	LIST_REMOVE(pm, pm_list);
   4365 
   4366 	pmap_free_l1(pm);
   4367 
   4368 	if (pmap_recent_user == pm)
   4369 		pmap_recent_user = NULL;
   4370 
   4371 	uvm_obj_destroy(&pm->pm_obj, false);
   4372 	mutex_destroy(&pm->pm_obj_lock);
   4373 	pool_cache_put(&pmap_cache, pm);
   4374 }
   4375 
   4376 
   4377 /*
   4378  * void pmap_reference(pmap_t pm)
   4379  *
   4380  * Add a reference to the specified pmap.
   4381  */
   4382 void
   4383 pmap_reference(pmap_t pm)
   4384 {
   4385 
   4386 	if (pm == NULL)
   4387 		return;
   4388 
   4389 	pmap_use_l1(pm);
   4390 
   4391 	mutex_enter(pm->pm_lock);
   4392 	pm->pm_obj.uo_refs++;
   4393 	mutex_exit(pm->pm_lock);
   4394 }
   4395 
   4396 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   4397 
   4398 static struct evcnt pmap_prefer_nochange_ev =
   4399     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   4400 static struct evcnt pmap_prefer_change_ev =
   4401     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   4402 
   4403 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   4404 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   4405 
   4406 void
   4407 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   4408 {
   4409 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   4410 	vaddr_t va = *vap;
   4411 	vaddr_t diff = (hint - va) & mask;
   4412 	if (diff == 0) {
   4413 		pmap_prefer_nochange_ev.ev_count++;
   4414 	} else {
   4415 		pmap_prefer_change_ev.ev_count++;
   4416 		if (__predict_false(td))
   4417 			va -= mask + 1;
   4418 		*vap = va + diff;
   4419 	}
   4420 }
   4421 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   4422 
   4423 /*
   4424  * pmap_zero_page()
   4425  *
   4426  * Zero a given physical page by mapping it at a page hook point.
   4427  * In doing the zero page op, the page we zero is mapped cachable, as with
   4428  * StrongARM accesses to non-cached pages are non-burst making writing
   4429  * _any_ bulk data very slow.
   4430  */
   4431 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4432 void
   4433 pmap_zero_page_generic(paddr_t phys)
   4434 {
   4435 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4436 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4437 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4438 #endif
   4439 #if defined(PMAP_CACHE_VIPT)
   4440 	/* Choose the last page color it had, if any */
   4441 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4442 #else
   4443 	const vsize_t va_offset = 0;
   4444 #endif
   4445 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4446 	/*
   4447 	 * Is this page mapped at its natural color?
   4448 	 * If we have all of memory mapped, then just convert PA to VA.
   4449 	 */
   4450 	const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
   4451 	const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
   4452 #else
   4453 	const bool okcolor = false;
   4454 	const vaddr_t vdstp = cdstp + va_offset;
   4455 #endif
   4456 	pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
   4457 
   4458 
   4459 #ifdef DEBUG
   4460 	if (!SLIST_EMPTY(&md->pvh_list))
   4461 		panic("pmap_zero_page: page has mappings");
   4462 #endif
   4463 
   4464 	KDASSERT((phys & PGOFSET) == 0);
   4465 
   4466 	if (!okcolor) {
   4467 		/*
   4468 		 * Hook in the page, zero it, and purge the cache for that
   4469 		 * zeroed page. Invalidate the TLB as needed.
   4470 		 */
   4471 		*ptep = L2_S_PROTO | phys |
   4472 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4473 		PTE_SYNC(ptep);
   4474 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4475 		cpu_cpwait();
   4476 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4477 		/*
   4478 		 * If we are direct-mapped and our color isn't ok, then before
   4479 		 * we bzero the page invalidate its contents from the cache and
   4480 		 * reset the color to its natural color.
   4481 		 */
   4482 		cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
   4483 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   4484 		md->pvh_attrs |= (phys & arm_cache_prefer_mask);
   4485 #endif
   4486 	}
   4487 	bzero_page(vdstp);
   4488 	if (!okcolor) {
   4489 		/*
   4490 		 * Unmap the page.
   4491 		 */
   4492 		*ptep = 0;
   4493 		PTE_SYNC(ptep);
   4494 		cpu_tlb_flushD_SE(cdstp + va_offset);
   4495 #ifdef PMAP_CACHE_VIVT
   4496 		cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
   4497 #endif
   4498 	}
   4499 #ifdef PMAP_CACHE_VIPT
   4500 	/*
   4501 	 * This page is now cache resident so it now has a page color.
   4502 	 * Any contents have been obliterated so clear the EXEC flag.
   4503 	 */
   4504 	if (!pmap_is_page_colored_p(md)) {
   4505 		PMAPCOUNT(vac_color_new);
   4506 		md->pvh_attrs |= PVF_COLORED;
   4507 	}
   4508 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4509 		md->pvh_attrs &= ~PVF_EXEC;
   4510 		PMAPCOUNT(exec_discarded_zero);
   4511 	}
   4512 	md->pvh_attrs |= PVF_DIRTY;
   4513 #endif
   4514 }
   4515 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4516 
   4517 #if ARM_MMU_XSCALE == 1
   4518 void
   4519 pmap_zero_page_xscale(paddr_t phys)
   4520 {
   4521 #ifdef DEBUG
   4522 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   4523 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4524 
   4525 	if (!SLIST_EMPTY(&md->pvh_list))
   4526 		panic("pmap_zero_page: page has mappings");
   4527 #endif
   4528 
   4529 	KDASSERT((phys & PGOFSET) == 0);
   4530 
   4531 	/*
   4532 	 * Hook in the page, zero it, and purge the cache for that
   4533 	 * zeroed page. Invalidate the TLB as needed.
   4534 	 */
   4535 	*cdst_pte = L2_S_PROTO | phys |
   4536 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4537 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4538 	PTE_SYNC(cdst_pte);
   4539 	cpu_tlb_flushD_SE(cdstp);
   4540 	cpu_cpwait();
   4541 	bzero_page(cdstp);
   4542 	xscale_cache_clean_minidata();
   4543 }
   4544 #endif /* ARM_MMU_XSCALE == 1 */
   4545 
   4546 /* pmap_pageidlezero()
   4547  *
   4548  * The same as above, except that we assume that the page is not
   4549  * mapped.  This means we never have to flush the cache first.  Called
   4550  * from the idle loop.
   4551  */
   4552 bool
   4553 pmap_pageidlezero(paddr_t phys)
   4554 {
   4555 	unsigned int i;
   4556 	int *ptr;
   4557 	bool rv = true;
   4558 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4559 	struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
   4560 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4561 #endif
   4562 #ifdef PMAP_CACHE_VIPT
   4563 	/* Choose the last page color it had, if any */
   4564 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   4565 #else
   4566 	const vsize_t va_offset = 0;
   4567 #endif
   4568 	pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
   4569 
   4570 
   4571 #ifdef DEBUG
   4572 	if (!SLIST_EMPTY(&md->pvh_list))
   4573 		panic("pmap_pageidlezero: page has mappings");
   4574 #endif
   4575 
   4576 	KDASSERT((phys & PGOFSET) == 0);
   4577 
   4578 	/*
   4579 	 * Hook in the page, zero it, and purge the cache for that
   4580 	 * zeroed page. Invalidate the TLB as needed.
   4581 	 */
   4582 	*ptep = L2_S_PROTO | phys |
   4583 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4584 	PTE_SYNC(ptep);
   4585 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4586 	cpu_cpwait();
   4587 
   4588 	for (i = 0, ptr = (int *)(cdstp + va_offset);
   4589 			i < (PAGE_SIZE / sizeof(int)); i++) {
   4590 		if (sched_curcpu_runnable_p() != 0) {
   4591 			/*
   4592 			 * A process has become ready.  Abort now,
   4593 			 * so we don't keep it waiting while we
   4594 			 * do slow memory access to finish this
   4595 			 * page.
   4596 			 */
   4597 			rv = false;
   4598 			break;
   4599 		}
   4600 		*ptr++ = 0;
   4601 	}
   4602 
   4603 #ifdef PMAP_CACHE_VIVT
   4604 	if (rv)
   4605 		/*
   4606 		 * if we aborted we'll rezero this page again later so don't
   4607 		 * purge it unless we finished it
   4608 		 */
   4609 		cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
   4610 #elif defined(PMAP_CACHE_VIPT)
   4611 	/*
   4612 	 * This page is now cache resident so it now has a page color.
   4613 	 * Any contents have been obliterated so clear the EXEC flag.
   4614 	 */
   4615 	if (!pmap_is_page_colored_p(md)) {
   4616 		PMAPCOUNT(vac_color_new);
   4617 		md->pvh_attrs |= PVF_COLORED;
   4618 	}
   4619 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   4620 		md->pvh_attrs &= ~PVF_EXEC;
   4621 		PMAPCOUNT(exec_discarded_zero);
   4622 	}
   4623 #endif
   4624 	/*
   4625 	 * Unmap the page.
   4626 	 */
   4627 	*ptep = 0;
   4628 	PTE_SYNC(ptep);
   4629 	cpu_tlb_flushD_SE(cdstp + va_offset);
   4630 
   4631 	return (rv);
   4632 }
   4633 
   4634 /*
   4635  * pmap_copy_page()
   4636  *
   4637  * Copy one physical page into another, by mapping the pages into
   4638  * hook points. The same comment regarding cachability as in
   4639  * pmap_zero_page also applies here.
   4640  */
   4641 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   4642 void
   4643 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   4644 {
   4645 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   4646 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4647 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   4648 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   4649 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   4650 #endif
   4651 #ifdef PMAP_CACHE_VIPT
   4652 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   4653 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   4654 #else
   4655 	const vsize_t src_va_offset = 0;
   4656 	const vsize_t dst_va_offset = 0;
   4657 #endif
   4658 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   4659 	/*
   4660 	 * Is this page mapped at its natural color?
   4661 	 * If we have all of memory mapped, then just convert PA to VA.
   4662 	 */
   4663 	const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
   4664 	const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
   4665 	const vaddr_t vsrcp = src_okcolor
   4666 	    ? KERNEL_BASE + (src - physical_start)
   4667 	    : csrcp + src_va_offset;
   4668 	const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
   4669 #else
   4670 	const bool src_okcolor = false;
   4671 	const bool dst_okcolor = false;
   4672 	const vaddr_t vsrcp = csrcp + va_offset;
   4673 	const vaddr_t vdstp = cdstp + va_offset;
   4674 #endif
   4675 	pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
   4676 	pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
   4677 
   4678 #ifdef DEBUG
   4679 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4680 		panic("pmap_copy_page: dst page has mappings");
   4681 #endif
   4682 
   4683 #ifdef PMAP_CACHE_VIPT
   4684 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   4685 #endif
   4686 	KDASSERT((src & PGOFSET) == 0);
   4687 	KDASSERT((dst & PGOFSET) == 0);
   4688 
   4689 	/*
   4690 	 * Clean the source page.  Hold the source page's lock for
   4691 	 * the duration of the copy so that no other mappings can
   4692 	 * be created while we have a potentially aliased mapping.
   4693 	 */
   4694 #ifdef MULTIPROCESSOR
   4695 	KASSERT(uvm_page_locked_p(src_pg));
   4696 #endif
   4697 #ifdef PMAP_CACHE_VIVT
   4698 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4699 #endif
   4700 
   4701 	/*
   4702 	 * Map the pages into the page hook points, copy them, and purge
   4703 	 * the cache for the appropriate page. Invalidate the TLB
   4704 	 * as required.
   4705 	 */
   4706 	if (!src_okcolor) {
   4707 		*src_ptep = L2_S_PROTO
   4708 		    | src
   4709 #ifdef PMAP_CACHE_VIPT
   4710 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   4711 #endif
   4712 #ifdef PMAP_CACHE_VIVT
   4713 		    | pte_l2_s_cache_mode
   4714 #endif
   4715 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   4716 		PTE_SYNC(src_ptep);
   4717 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4718 		cpu_cpwait();
   4719 	}
   4720 	if (!dst_okcolor) {
   4721 		*dst_ptep = L2_S_PROTO | dst |
   4722 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   4723 		PTE_SYNC(dst_ptep);
   4724 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4725 		cpu_cpwait();
   4726 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   4727 		/*
   4728 		 * If we are direct-mapped and our color isn't ok, then before
   4729 		 * we bcopy to the new page invalidate its contents from the
   4730 		 * cache and reset its color to its natural color.
   4731 		 */
   4732 		cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
   4733 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   4734 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   4735 #endif
   4736 	}
   4737 	bcopy_page(vsrcp, vdstp);
   4738 #ifdef PMAP_CACHE_VIVT
   4739 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   4740 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   4741 #endif
   4742 	/*
   4743 	 * Unmap the pages.
   4744 	 */
   4745 	if (!src_okcolor) {
   4746 		*src_ptep = 0;
   4747 		PTE_SYNC(src_ptep);
   4748 		cpu_tlb_flushD_SE(csrcp + src_va_offset);
   4749 		cpu_cpwait();
   4750 	}
   4751 	if (!dst_okcolor) {
   4752 		*dst_ptep = 0;
   4753 		PTE_SYNC(dst_ptep);
   4754 		cpu_tlb_flushD_SE(cdstp + dst_va_offset);
   4755 		cpu_cpwait();
   4756 	}
   4757 #ifdef PMAP_CACHE_VIPT
   4758 	/*
   4759 	 * Now that the destination page is in the cache, mark it as colored.
   4760 	 * If this was an exec page, discard it.
   4761 	 */
   4762 	if (!pmap_is_page_colored_p(dst_md)) {
   4763 		PMAPCOUNT(vac_color_new);
   4764 		dst_md->pvh_attrs |= PVF_COLORED;
   4765 	}
   4766 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   4767 		dst_md->pvh_attrs &= ~PVF_EXEC;
   4768 		PMAPCOUNT(exec_discarded_copy);
   4769 	}
   4770 	dst_md->pvh_attrs |= PVF_DIRTY;
   4771 #endif
   4772 }
   4773 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   4774 
   4775 #if ARM_MMU_XSCALE == 1
   4776 void
   4777 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   4778 {
   4779 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   4780 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   4781 #ifdef DEBUG
   4782 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   4783 
   4784 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   4785 		panic("pmap_copy_page: dst page has mappings");
   4786 #endif
   4787 
   4788 	KDASSERT((src & PGOFSET) == 0);
   4789 	KDASSERT((dst & PGOFSET) == 0);
   4790 
   4791 	/*
   4792 	 * Clean the source page.  Hold the source page's lock for
   4793 	 * the duration of the copy so that no other mappings can
   4794 	 * be created while we have a potentially aliased mapping.
   4795 	 */
   4796 #ifdef MULTIPROCESSOR
   4797 	KASSERT(uvm_page_locked_p(src_pg));
   4798 #endif
   4799 #ifdef PMAP_CACHE_VIVT
   4800 	(void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
   4801 #endif
   4802 
   4803 	/*
   4804 	 * Map the pages into the page hook points, copy them, and purge
   4805 	 * the cache for the appropriate page. Invalidate the TLB
   4806 	 * as required.
   4807 	 */
   4808 	*csrc_pte = L2_S_PROTO | src |
   4809 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4810 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4811 	PTE_SYNC(csrc_pte);
   4812 	*cdst_pte = L2_S_PROTO | dst |
   4813 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   4814 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   4815 	PTE_SYNC(cdst_pte);
   4816 	cpu_tlb_flushD_SE(csrcp);
   4817 	cpu_tlb_flushD_SE(cdstp);
   4818 	cpu_cpwait();
   4819 	bcopy_page(csrcp, cdstp);
   4820 	xscale_cache_clean_minidata();
   4821 }
   4822 #endif /* ARM_MMU_XSCALE == 1 */
   4823 
   4824 /*
   4825  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4826  *
   4827  * Return the start and end addresses of the kernel's virtual space.
   4828  * These values are setup in pmap_bootstrap and are updated as pages
   4829  * are allocated.
   4830  */
   4831 void
   4832 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   4833 {
   4834 	*start = virtual_avail;
   4835 	*end = virtual_end;
   4836 }
   4837 
   4838 /*
   4839  * Helper function for pmap_grow_l2_bucket()
   4840  */
   4841 static inline int
   4842 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
   4843 {
   4844 	struct l2_bucket *l2b;
   4845 	pt_entry_t *ptep;
   4846 	paddr_t pa;
   4847 
   4848 	if (uvm.page_init_done == false) {
   4849 #ifdef PMAP_STEAL_MEMORY
   4850 		pv_addr_t pv;
   4851 		pmap_boot_pagealloc(PAGE_SIZE,
   4852 #ifdef PMAP_CACHE_VIPT
   4853 		    arm_cache_prefer_mask,
   4854 		    va & arm_cache_prefer_mask,
   4855 #else
   4856 		    0, 0,
   4857 #endif
   4858 		    &pv);
   4859 		pa = pv.pv_pa;
   4860 #else
   4861 		if (uvm_page_physget(&pa) == false)
   4862 			return (1);
   4863 #endif	/* PMAP_STEAL_MEMORY */
   4864 	} else {
   4865 		struct vm_page *pg;
   4866 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   4867 		if (pg == NULL)
   4868 			return (1);
   4869 		pa = VM_PAGE_TO_PHYS(pg);
   4870 #ifdef PMAP_CACHE_VIPT
   4871 #ifdef DIAGNOSTIC
   4872 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4873 #endif
   4874 		/*
   4875 		 * This new page must not have any mappings.  Enter it via
   4876 		 * pmap_kenter_pa and let that routine do the hard work.
   4877 		 */
   4878 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   4879 		pmap_kenter_pa(va, pa,
   4880 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   4881 #endif
   4882 	}
   4883 
   4884 	if (pap)
   4885 		*pap = pa;
   4886 
   4887 	PMAPCOUNT(pt_mappings);
   4888 	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   4889 	KDASSERT(l2b != NULL);
   4890 
   4891 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4892 	*ptep = L2_S_PROTO | pa | cache_mode |
   4893 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
   4894 	PTE_SYNC(ptep);
   4895 	memset((void *)va, 0, PAGE_SIZE);
   4896 	return (0);
   4897 }
   4898 
   4899 /*
   4900  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   4901  * used by pmap_growkernel().
   4902  */
   4903 static inline struct l2_bucket *
   4904 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   4905 {
   4906 	struct l2_dtable *l2;
   4907 	struct l2_bucket *l2b;
   4908 	u_short l1idx;
   4909 	vaddr_t nva;
   4910 
   4911 	l1idx = L1_IDX(va);
   4912 
   4913 	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   4914 		/*
   4915 		 * No mapping at this address, as there is
   4916 		 * no entry in the L1 table.
   4917 		 * Need to allocate a new l2_dtable.
   4918 		 */
   4919 		nva = pmap_kernel_l2dtable_kva;
   4920 		if ((nva & PGOFSET) == 0) {
   4921 			/*
   4922 			 * Need to allocate a backing page
   4923 			 */
   4924 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4925 				return (NULL);
   4926 		}
   4927 
   4928 		l2 = (struct l2_dtable *)nva;
   4929 		nva += sizeof(struct l2_dtable);
   4930 
   4931 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   4932 			/*
   4933 			 * The new l2_dtable straddles a page boundary.
   4934 			 * Map in another page to cover it.
   4935 			 */
   4936 			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
   4937 				return (NULL);
   4938 		}
   4939 
   4940 		pmap_kernel_l2dtable_kva = nva;
   4941 
   4942 		/*
   4943 		 * Link it into the parent pmap
   4944 		 */
   4945 		pm->pm_l2[L2_IDX(l1idx)] = l2;
   4946 	}
   4947 
   4948 	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   4949 
   4950 	/*
   4951 	 * Fetch pointer to the L2 page table associated with the address.
   4952 	 */
   4953 	if (l2b->l2b_kva == NULL) {
   4954 		pt_entry_t *ptep;
   4955 
   4956 		/*
   4957 		 * No L2 page table has been allocated. Chances are, this
   4958 		 * is because we just allocated the l2_dtable, above.
   4959 		 */
   4960 		nva = pmap_kernel_l2ptp_kva;
   4961 		ptep = (pt_entry_t *)nva;
   4962 		if ((nva & PGOFSET) == 0) {
   4963 			/*
   4964 			 * Need to allocate a backing page
   4965 			 */
   4966 			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
   4967 			    &pmap_kernel_l2ptp_phys))
   4968 				return (NULL);
   4969 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   4970 		}
   4971 
   4972 		l2->l2_occupancy++;
   4973 		l2b->l2b_kva = ptep;
   4974 		l2b->l2b_l1idx = l1idx;
   4975 		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
   4976 
   4977 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   4978 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   4979 	}
   4980 
   4981 	return (l2b);
   4982 }
   4983 
   4984 vaddr_t
   4985 pmap_growkernel(vaddr_t maxkvaddr)
   4986 {
   4987 	pmap_t kpm = pmap_kernel();
   4988 	struct l1_ttable *l1;
   4989 	struct l2_bucket *l2b;
   4990 	pd_entry_t *pl1pd;
   4991 	int s;
   4992 
   4993 	if (maxkvaddr <= pmap_curmaxkvaddr)
   4994 		goto out;		/* we are OK */
   4995 
   4996 	NPDEBUG(PDB_GROWKERN,
   4997 	    printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
   4998 	    pmap_curmaxkvaddr, maxkvaddr));
   4999 
   5000 	KDASSERT(maxkvaddr <= virtual_end);
   5001 
   5002 	/*
   5003 	 * whoops!   we need to add kernel PTPs
   5004 	 */
   5005 
   5006 	s = splhigh();	/* to be safe */
   5007 	mutex_enter(kpm->pm_lock);
   5008 
   5009 	/* Map 1MB at a time */
   5010 	for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
   5011 
   5012 		l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   5013 		KDASSERT(l2b != NULL);
   5014 
   5015 		/* Distribute new L1 entry to all other L1s */
   5016 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   5017 			pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
   5018 			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
   5019 			    L1_C_PROTO;
   5020 			PTE_SYNC(pl1pd);
   5021 		}
   5022 	}
   5023 
   5024 	/*
   5025 	 * flush out the cache, expensive but growkernel will happen so
   5026 	 * rarely
   5027 	 */
   5028 	cpu_dcache_wbinv_all();
   5029 	cpu_tlb_flushD();
   5030 	cpu_cpwait();
   5031 
   5032 	mutex_exit(kpm->pm_lock);
   5033 	splx(s);
   5034 
   5035 out:
   5036 	return (pmap_curmaxkvaddr);
   5037 }
   5038 
   5039 /************************ Utility routines ****************************/
   5040 
   5041 /*
   5042  * vector_page_setprot:
   5043  *
   5044  *	Manipulate the protection of the vector page.
   5045  */
   5046 void
   5047 vector_page_setprot(int prot)
   5048 {
   5049 	struct l2_bucket *l2b;
   5050 	pt_entry_t *ptep;
   5051 
   5052 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   5053 	KDASSERT(l2b != NULL);
   5054 
   5055 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   5056 
   5057 	*ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   5058 	PTE_SYNC(ptep);
   5059 	cpu_tlb_flushD_SE(vector_page);
   5060 	cpu_cpwait();
   5061 }
   5062 
   5063 /*
   5064  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   5065  * Returns true if the mapping exists, else false.
   5066  *
   5067  * NOTE: This function is only used by a couple of arm-specific modules.
   5068  * It is not safe to take any pmap locks here, since we could be right
   5069  * in the middle of debugging the pmap anyway...
   5070  *
   5071  * It is possible for this routine to return false even though a valid
   5072  * mapping does exist. This is because we don't lock, so the metadata
   5073  * state may be inconsistent.
   5074  *
   5075  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   5076  * a "section" mapping.
   5077  */
   5078 bool
   5079 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   5080 {
   5081 	struct l2_dtable *l2;
   5082 	pd_entry_t *pl1pd, l1pd;
   5083 	pt_entry_t *ptep;
   5084 	u_short l1idx;
   5085 
   5086 	if (pm->pm_l1 == NULL)
   5087 		return false;
   5088 
   5089 	l1idx = L1_IDX(va);
   5090 	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
   5091 	l1pd = *pl1pd;
   5092 
   5093 	if (l1pte_section_p(l1pd)) {
   5094 		*ptp = NULL;
   5095 		return true;
   5096 	}
   5097 
   5098 	if (pm->pm_l2 == NULL)
   5099 		return false;
   5100 
   5101 	l2 = pm->pm_l2[L2_IDX(l1idx)];
   5102 
   5103 	if (l2 == NULL ||
   5104 	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
   5105 		return false;
   5106 	}
   5107 
   5108 	*ptp = &ptep[l2pte_index(va)];
   5109 	return true;
   5110 }
   5111 
   5112 bool
   5113 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   5114 {
   5115 	u_short l1idx;
   5116 
   5117 	if (pm->pm_l1 == NULL)
   5118 		return false;
   5119 
   5120 	l1idx = L1_IDX(va);
   5121 	*pdp = &pm->pm_l1->l1_kva[l1idx];
   5122 
   5123 	return true;
   5124 }
   5125 
   5126 /************************ Bootstrapping routines ****************************/
   5127 
   5128 static void
   5129 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   5130 {
   5131 	int i;
   5132 
   5133 	l1->l1_kva = l1pt;
   5134 	l1->l1_domain_use_count = 0;
   5135 	l1->l1_domain_first = 0;
   5136 
   5137 	for (i = 0; i < PMAP_DOMAINS; i++)
   5138 		l1->l1_domain_free[i] = i + 1;
   5139 
   5140 	/*
   5141 	 * Copy the kernel's L1 entries to each new L1.
   5142 	 */
   5143 	if (pmap_initialized)
   5144 		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
   5145 
   5146 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   5147 	    &l1->l1_physaddr) == false)
   5148 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   5149 
   5150 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   5151 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   5152 }
   5153 
   5154 /*
   5155  * pmap_bootstrap() is called from the board-specific initarm() routine
   5156  * once the kernel L1/L2 descriptors tables have been set up.
   5157  *
   5158  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   5159  * spread over a number of disparate files/functions.
   5160  *
   5161  * We are passed the following parameters
   5162  *  - kernel_l1pt
   5163  *    This is a pointer to the base of the kernel's L1 translation table.
   5164  *  - vstart
   5165  *    1MB-aligned start of managed kernel virtual memory.
   5166  *  - vend
   5167  *    1MB-aligned end of managed kernel virtual memory.
   5168  *
   5169  * We use the first parameter to build the metadata (struct l1_ttable and
   5170  * struct l2_dtable) necessary to track kernel mappings.
   5171  */
   5172 #define	PMAP_STATIC_L2_SIZE 16
   5173 void
   5174 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   5175 {
   5176 	static struct l1_ttable static_l1;
   5177 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   5178 	struct l1_ttable *l1 = &static_l1;
   5179 	struct l2_dtable *l2;
   5180 	struct l2_bucket *l2b;
   5181 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   5182 	pmap_t pm = pmap_kernel();
   5183 	pd_entry_t pde;
   5184 	pt_entry_t *ptep;
   5185 	paddr_t pa;
   5186 	vaddr_t va;
   5187 	vsize_t size;
   5188 	int nptes, l1idx, l2idx, l2next = 0;
   5189 
   5190 	/*
   5191 	 * Initialise the kernel pmap object
   5192 	 */
   5193 	pm->pm_l1 = l1;
   5194 	pm->pm_domain = PMAP_DOMAIN_KERNEL;
   5195 	pm->pm_activated = true;
   5196 	pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5197 
   5198 	mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
   5199 	uvm_obj_init(&pm->pm_obj, NULL, false, 1);
   5200 	uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
   5201 
   5202 	/*
   5203 	 * Scan the L1 translation table created by initarm() and create
   5204 	 * the required metadata for all valid mappings found in it.
   5205 	 */
   5206 	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
   5207 		pde = l1pt[l1idx];
   5208 
   5209 		/*
   5210 		 * We're only interested in Coarse mappings.
   5211 		 * pmap_extract() can deal with section mappings without
   5212 		 * recourse to checking L2 metadata.
   5213 		 */
   5214 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   5215 			continue;
   5216 
   5217 		/*
   5218 		 * Lookup the KVA of this L2 descriptor table
   5219 		 */
   5220 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5221 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5222 		if (ptep == NULL) {
   5223 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   5224 			    (u_int)l1idx << L1_S_SHIFT, pa);
   5225 		}
   5226 
   5227 		/*
   5228 		 * Fetch the associated L2 metadata structure.
   5229 		 * Allocate a new one if necessary.
   5230 		 */
   5231 		if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
   5232 			if (l2next == PMAP_STATIC_L2_SIZE)
   5233 				panic("pmap_bootstrap: out of static L2s");
   5234 			pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
   5235 		}
   5236 
   5237 		/*
   5238 		 * One more L1 slot tracked...
   5239 		 */
   5240 		l2->l2_occupancy++;
   5241 
   5242 		/*
   5243 		 * Fill in the details of the L2 descriptor in the
   5244 		 * appropriate bucket.
   5245 		 */
   5246 		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
   5247 		l2b->l2b_kva = ptep;
   5248 		l2b->l2b_phys = pa;
   5249 		l2b->l2b_l1idx = l1idx;
   5250 
   5251 		/*
   5252 		 * Establish an initial occupancy count for this descriptor
   5253 		 */
   5254 		for (l2idx = 0;
   5255 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   5256 		    l2idx++) {
   5257 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   5258 				l2b->l2b_occupancy++;
   5259 			}
   5260 		}
   5261 
   5262 		/*
   5263 		 * Make sure the descriptor itself has the correct cache mode.
   5264 		 * If not, fix it, but whine about the problem. Port-meisters
   5265 		 * should consider this a clue to fix up their initarm()
   5266 		 * function. :)
   5267 		 */
   5268 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
   5269 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5270 			    "L2 pte @ %p\n", ptep);
   5271 		}
   5272 	}
   5273 
   5274 	/*
   5275 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   5276 	 * a page table. Bitch if it is not correctly set.
   5277 	 */
   5278 	for (va = (vaddr_t)l1pt;
   5279 	    va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
   5280 		if (pmap_set_pt_cache_mode(l1pt, va))
   5281 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   5282 			    "primary L1 @ 0x%lx\n", va);
   5283 	}
   5284 
   5285 	cpu_dcache_wbinv_all();
   5286 	cpu_tlb_flushID();
   5287 	cpu_cpwait();
   5288 
   5289 	/*
   5290 	 * now we allocate the "special" VAs which are used for tmp mappings
   5291 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   5292 	 * virtual_avail (note that there are no pages mapped at these VAs).
   5293 	 *
   5294 	 * Managed KVM space start from wherever initarm() tells us.
   5295 	 */
   5296 	virtual_avail = vstart;
   5297 	virtual_end = vend;
   5298 
   5299 #ifdef PMAP_CACHE_VIPT
   5300 	/*
   5301 	 * If we have a VIPT cache, we need one page/pte per possible alias
   5302 	 * page so we won't violate cache aliasing rules.
   5303 	 */
   5304 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   5305 	nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
   5306 #else
   5307 	nptes = 1;
   5308 #endif
   5309 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   5310 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
   5311 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   5312 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
   5313 	pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
   5314 	pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
   5315 	    (void *)&msgbufaddr, NULL);
   5316 
   5317 	/*
   5318 	 * Allocate a range of kernel virtual address space to be used
   5319 	 * for L2 descriptor tables and metadata allocation in
   5320 	 * pmap_growkernel().
   5321 	 */
   5322 	size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
   5323 	pmap_alloc_specials(&virtual_avail,
   5324 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   5325 	    &pmap_kernel_l2ptp_kva, NULL);
   5326 
   5327 	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
   5328 	pmap_alloc_specials(&virtual_avail,
   5329 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   5330 	    &pmap_kernel_l2dtable_kva, NULL);
   5331 
   5332 	/*
   5333 	 * init the static-global locks and global pmap list.
   5334 	 */
   5335 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   5336 
   5337 	/*
   5338 	 * We can now initialise the first L1's metadata.
   5339 	 */
   5340 	SLIST_INIT(&l1_list);
   5341 	TAILQ_INIT(&l1_lru_list);
   5342 	pmap_init_l1(l1, l1pt);
   5343 
   5344 	/* Set up vector page L1 details, if necessary */
   5345 	if (vector_page < KERNEL_BASE) {
   5346 		pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
   5347 		l2b = pmap_get_l2_bucket(pm, vector_page);
   5348 		KDASSERT(l2b != NULL);
   5349 		pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
   5350 		    L1_C_DOM(pm->pm_domain);
   5351 	} else
   5352 		pm->pm_pl1vec = NULL;
   5353 
   5354 	/*
   5355 	 * Initialize the pmap cache
   5356 	 */
   5357 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   5358 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   5359 	LIST_INIT(&pmap_pmaps);
   5360 	LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
   5361 
   5362 	/*
   5363 	 * Initialize the pv pool.
   5364 	 */
   5365 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   5366 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   5367 
   5368 	/*
   5369 	 * Initialize the L2 dtable pool and cache.
   5370 	 */
   5371 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   5372 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   5373 
   5374 	/*
   5375 	 * Initialise the L2 descriptor table pool and cache
   5376 	 */
   5377 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
   5378 	    L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
   5379 	    pmap_l2ptp_ctor, NULL, NULL);
   5380 
   5381 	cpu_dcache_wbinv_all();
   5382 }
   5383 
   5384 static int
   5385 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
   5386 {
   5387 	pd_entry_t *pdep, pde;
   5388 	pt_entry_t *ptep, pte;
   5389 	vaddr_t pa;
   5390 	int rv = 0;
   5391 
   5392 	/*
   5393 	 * Make sure the descriptor itself has the correct cache mode
   5394 	 */
   5395 	pdep = &kl1[L1_IDX(va)];
   5396 	pde = *pdep;
   5397 
   5398 	if (l1pte_section_p(pde)) {
   5399 		__CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   5400 		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   5401 			*pdep = (pde & ~L1_S_CACHE_MASK) |
   5402 			    pte_l1_s_cache_mode_pt;
   5403 			PTE_SYNC(pdep);
   5404 			cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
   5405 			rv = 1;
   5406 		}
   5407 	} else {
   5408 		pa = (paddr_t)(pde & L1_C_ADDR_MASK);
   5409 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   5410 		if (ptep == NULL)
   5411 			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
   5412 
   5413 		ptep = &ptep[l2pte_index(va)];
   5414 		pte = *ptep;
   5415 		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   5416 			*ptep = (pte & ~L2_S_CACHE_MASK) |
   5417 			    pte_l2_s_cache_mode_pt;
   5418 			PTE_SYNC(ptep);
   5419 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   5420 			rv = 1;
   5421 		}
   5422 	}
   5423 
   5424 	return (rv);
   5425 }
   5426 
   5427 static void
   5428 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   5429 {
   5430 	vaddr_t va = *availp;
   5431 	struct l2_bucket *l2b;
   5432 
   5433 	if (ptep) {
   5434 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5435 		if (l2b == NULL)
   5436 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   5437 
   5438 		if (ptep)
   5439 			*ptep = &l2b->l2b_kva[l2pte_index(va)];
   5440 	}
   5441 
   5442 	*vap = va;
   5443 	*availp = va + (PAGE_SIZE * pages);
   5444 }
   5445 
   5446 void
   5447 pmap_init(void)
   5448 {
   5449 
   5450 	/*
   5451 	 * Set the available memory vars - These do not map to real memory
   5452 	 * addresses and cannot as the physical memory is fragmented.
   5453 	 * They are used by ps for %mem calculations.
   5454 	 * One could argue whether this should be the entire memory or just
   5455 	 * the memory that is useable in a user process.
   5456 	 */
   5457 	avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
   5458 	avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
   5459 
   5460 	/*
   5461 	 * Now we need to free enough pv_entry structures to allow us to get
   5462 	 * the kmem_map/kmem_object allocated and inited (done after this
   5463 	 * function is finished).  to do this we allocate one bootstrap page out
   5464 	 * of kernel_map and use it to provide an initial pool of pv_entry
   5465 	 * structures.   we never free this page.
   5466 	 */
   5467 	pool_setlowat(&pmap_pv_pool,
   5468 	    (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   5469 
   5470 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   5471 	zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5472 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   5473 
   5474 	pmap_initialized = true;
   5475 }
   5476 
   5477 static vaddr_t last_bootstrap_page = 0;
   5478 static void *free_bootstrap_pages = NULL;
   5479 
   5480 static void *
   5481 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   5482 {
   5483 	extern void *pool_page_alloc(struct pool *, int);
   5484 	vaddr_t new_page;
   5485 	void *rv;
   5486 
   5487 	if (pmap_initialized)
   5488 		return (pool_page_alloc(pp, flags));
   5489 
   5490 	if (free_bootstrap_pages) {
   5491 		rv = free_bootstrap_pages;
   5492 		free_bootstrap_pages = *((void **)rv);
   5493 		return (rv);
   5494 	}
   5495 
   5496 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   5497 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   5498 
   5499 	KASSERT(new_page > last_bootstrap_page);
   5500 	last_bootstrap_page = new_page;
   5501 	return ((void *)new_page);
   5502 }
   5503 
   5504 static void
   5505 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   5506 {
   5507 	extern void pool_page_free(struct pool *, void *);
   5508 
   5509 	if ((vaddr_t)v <= last_bootstrap_page) {
   5510 		*((void **)v) = free_bootstrap_pages;
   5511 		free_bootstrap_pages = v;
   5512 		return;
   5513 	}
   5514 
   5515 	if (pmap_initialized) {
   5516 		pool_page_free(pp, v);
   5517 		return;
   5518 	}
   5519 }
   5520 
   5521 /*
   5522  * pmap_postinit()
   5523  *
   5524  * This routine is called after the vm and kmem subsystems have been
   5525  * initialised. This allows the pmap code to perform any initialisation
   5526  * that can only be done one the memory allocation is in place.
   5527  */
   5528 void
   5529 pmap_postinit(void)
   5530 {
   5531 	extern paddr_t physical_start, physical_end;
   5532 	struct l2_bucket *l2b;
   5533 	struct l1_ttable *l1;
   5534 	struct pglist plist;
   5535 	struct vm_page *m;
   5536 	pd_entry_t *pl1pt;
   5537 	pt_entry_t *ptep, pte;
   5538 	vaddr_t va, eva;
   5539 	u_int loop, needed;
   5540 	int error;
   5541 
   5542 	pool_cache_setlowat(&pmap_l2ptp_cache,
   5543 	    (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   5544 	pool_cache_setlowat(&pmap_l2dtable_cache,
   5545 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   5546 
   5547 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   5548 	needed -= 1;
   5549 
   5550 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   5551 
   5552 	for (loop = 0; loop < needed; loop++, l1++) {
   5553 		/* Allocate a L1 page table */
   5554 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   5555 		if (va == 0)
   5556 			panic("Cannot allocate L1 KVM");
   5557 
   5558 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   5559 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   5560 		if (error)
   5561 			panic("Cannot allocate L1 physical pages");
   5562 
   5563 		m = TAILQ_FIRST(&plist);
   5564 		eva = va + L1_TABLE_SIZE;
   5565 		pl1pt = (pd_entry_t *)va;
   5566 
   5567 		while (m && va < eva) {
   5568 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   5569 
   5570 			pmap_kenter_pa(va, pa,
   5571 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
   5572 
   5573 			/*
   5574 			 * Make sure the L1 descriptor table is mapped
   5575 			 * with the cache-mode set to write-through.
   5576 			 */
   5577 			l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   5578 			KDASSERT(l2b != NULL);
   5579 			ptep = &l2b->l2b_kva[l2pte_index(va)];
   5580 			pte = *ptep;
   5581 			pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
   5582 			*ptep = pte;
   5583 			PTE_SYNC(ptep);
   5584 			cpu_tlb_flushD_SE(va);
   5585 
   5586 			va += PAGE_SIZE;
   5587 			m = TAILQ_NEXT(m, pageq.queue);
   5588 		}
   5589 
   5590 #ifdef DIAGNOSTIC
   5591 		if (m)
   5592 			panic("pmap_alloc_l1pt: pglist not empty");
   5593 #endif	/* DIAGNOSTIC */
   5594 
   5595 		pmap_init_l1(l1, pl1pt);
   5596 	}
   5597 
   5598 #ifdef DEBUG
   5599 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   5600 	    needed);
   5601 #endif
   5602 }
   5603 
   5604 /*
   5605  * Note that the following routines are used by board-specific initialisation
   5606  * code to configure the initial kernel page tables.
   5607  *
   5608  * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
   5609  * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
   5610  * behaviour of the old pmap, and provides an easy migration path for
   5611  * initial bring-up of the new pmap on existing ports. Fortunately,
   5612  * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
   5613  * will be deprecated.
   5614  *
   5615  * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
   5616  * tables.
   5617  */
   5618 
   5619 /*
   5620  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   5621  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   5622  * find them as necessary.
   5623  *
   5624  * Note that the data on this list MUST remain valid after initarm() returns,
   5625  * as pmap_bootstrap() uses it to contruct L2 table metadata.
   5626  */
   5627 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   5628 
   5629 static vaddr_t
   5630 kernel_pt_lookup(paddr_t pa)
   5631 {
   5632 	pv_addr_t *pv;
   5633 
   5634 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   5635 #ifndef ARM32_NEW_VM_LAYOUT
   5636 		if (pv->pv_pa == (pa & ~PGOFSET))
   5637 			return (pv->pv_va | (pa & PGOFSET));
   5638 #else
   5639 		if (pv->pv_pa == pa)
   5640 			return (pv->pv_va);
   5641 #endif
   5642 	}
   5643 	return (0);
   5644 }
   5645 
   5646 /*
   5647  * pmap_map_section:
   5648  *
   5649  *	Create a single section mapping.
   5650  */
   5651 void
   5652 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5653 {
   5654 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5655 	pd_entry_t fl;
   5656 
   5657 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   5658 
   5659 	switch (cache) {
   5660 	case PTE_NOCACHE:
   5661 	default:
   5662 		fl = 0;
   5663 		break;
   5664 
   5665 	case PTE_CACHE:
   5666 		fl = pte_l1_s_cache_mode;
   5667 		break;
   5668 
   5669 	case PTE_PAGETABLE:
   5670 		fl = pte_l1_s_cache_mode_pt;
   5671 		break;
   5672 	}
   5673 
   5674 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5675 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5676 	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
   5677 }
   5678 
   5679 /*
   5680  * pmap_map_entry:
   5681  *
   5682  *	Create a single page mapping.
   5683  */
   5684 void
   5685 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   5686 {
   5687 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   5688 	pt_entry_t fl;
   5689 	pt_entry_t *pte;
   5690 
   5691 	KASSERT(((va | pa) & PGOFSET) == 0);
   5692 
   5693 	switch (cache) {
   5694 	case PTE_NOCACHE:
   5695 	default:
   5696 		fl = 0;
   5697 		break;
   5698 
   5699 	case PTE_CACHE:
   5700 		fl = pte_l2_s_cache_mode;
   5701 		break;
   5702 
   5703 	case PTE_PAGETABLE:
   5704 		fl = pte_l2_s_cache_mode_pt;
   5705 		break;
   5706 	}
   5707 
   5708 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5709 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   5710 
   5711 #ifndef ARM32_NEW_VM_LAYOUT
   5712 	pte = (pt_entry_t *)
   5713 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   5714 #else
   5715 	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   5716 #endif
   5717 	if (pte == NULL)
   5718 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   5719 
   5720 	fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   5721 #ifndef ARM32_NEW_VM_LAYOUT
   5722 	pte += (va >> PGSHIFT) & 0x3ff;
   5723 #else
   5724 	pte += l2pte_index(va);
   5725 	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
   5726 #endif
   5727 	*pte = fl;
   5728 	PTE_SYNC(pte);
   5729 }
   5730 
   5731 /*
   5732  * pmap_link_l2pt:
   5733  *
   5734  *	Link the L2 page table specified by "l2pv" into the L1
   5735  *	page table at the slot for "va".
   5736  */
   5737 void
   5738 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   5739 {
   5740 	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
   5741 	u_int slot = va >> L1_S_SHIFT;
   5742 
   5743 #ifndef ARM32_NEW_VM_LAYOUT
   5744 	KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
   5745 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   5746 #endif
   5747 
   5748 	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
   5749 
   5750 	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
   5751 #ifdef ARM32_NEW_VM_LAYOUT
   5752 	PTE_SYNC(&pde[slot]);
   5753 #else
   5754 	pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
   5755 	pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
   5756 	pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
   5757 	PTE_SYNC_RANGE(&pde[slot + 0], 4);
   5758 #endif
   5759 
   5760 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   5761 }
   5762 
   5763 /*
   5764  * pmap_map_chunk:
   5765  *
   5766  *	Map a chunk of memory using the most efficient mappings
   5767  *	possible (section, large page, small page) into the
   5768  *	provided L1 and L2 tables at the specified virtual address.
   5769  */
   5770 vsize_t
   5771 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   5772     int prot, int cache)
   5773 {
   5774 	pd_entry_t *pdep = (pd_entry_t *) l1pt;
   5775 	pt_entry_t *pte, f1, f2s, f2l;
   5776 	vsize_t resid;
   5777 	int i;
   5778 
   5779 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   5780 
   5781 	if (l1pt == 0)
   5782 		panic("pmap_map_chunk: no L1 table provided");
   5783 
   5784 #ifdef VERBOSE_INIT_ARM
   5785 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   5786 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   5787 #endif
   5788 
   5789 	switch (cache) {
   5790 	case PTE_NOCACHE:
   5791 	default:
   5792 		f1 = 0;
   5793 		f2l = 0;
   5794 		f2s = 0;
   5795 		break;
   5796 
   5797 	case PTE_CACHE:
   5798 		f1 = pte_l1_s_cache_mode;
   5799 		f2l = pte_l2_l_cache_mode;
   5800 		f2s = pte_l2_s_cache_mode;
   5801 		break;
   5802 
   5803 	case PTE_PAGETABLE:
   5804 		f1 = pte_l1_s_cache_mode_pt;
   5805 		f2l = pte_l2_l_cache_mode_pt;
   5806 		f2s = pte_l2_s_cache_mode_pt;
   5807 		break;
   5808 	}
   5809 
   5810 	size = resid;
   5811 
   5812 	while (resid > 0) {
   5813 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5814 		/* See if we can use a supersection mapping. */
   5815 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   5816 			/* Supersection are always domain 0 */
   5817 			pd_entry_t pde = L1_SS_PROTO | pa |
   5818 			    L1_S_PROT(PTE_KERNEL, prot) | f1;
   5819 #ifdef VERBOSE_INIT_ARM
   5820 			printf("sS");
   5821 #endif
   5822 			for (size_t s = va >> L1_S_SHIFT,
   5823 			     e = s + L1_SS_SIZE / L1_S_SIZE;
   5824 			     s < e;
   5825 			     s++) {
   5826 				pdep[s] = pde;
   5827 				PTE_SYNC(&pdep[s]);
   5828 			}
   5829 			va += L1_SS_SIZE;
   5830 			pa += L1_SS_SIZE;
   5831 			resid -= L1_SS_SIZE;
   5832 			continue;
   5833 		}
   5834 #endif
   5835 		/* See if we can use a section mapping. */
   5836 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   5837 #ifdef VERBOSE_INIT_ARM
   5838 			printf("S");
   5839 #endif
   5840 			pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   5841 			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
   5842 			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
   5843 			PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
   5844 			va += L1_S_SIZE;
   5845 			pa += L1_S_SIZE;
   5846 			resid -= L1_S_SIZE;
   5847 			continue;
   5848 		}
   5849 
   5850 		/*
   5851 		 * Ok, we're going to use an L2 table.  Make sure
   5852 		 * one is actually in the corresponding L1 slot
   5853 		 * for the current VA.
   5854 		 */
   5855 		if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   5856 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   5857 
   5858 #ifndef ARM32_NEW_VM_LAYOUT
   5859 		pte = (pt_entry_t *)
   5860 		    kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
   5861 #else
   5862 		pte = (pt_entry_t *) kernel_pt_lookup(
   5863 		    pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
   5864 #endif
   5865 		if (pte == NULL)
   5866 			panic("pmap_map_chunk: can't find L2 table for VA"
   5867 			    "0x%08lx", va);
   5868 
   5869 		/* See if we can use a L2 large page mapping. */
   5870 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   5871 #ifdef VERBOSE_INIT_ARM
   5872 			printf("L");
   5873 #endif
   5874 			for (i = 0; i < 16; i++) {
   5875 #ifndef ARM32_NEW_VM_LAYOUT
   5876 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   5877 				    L2_L_PROTO | pa |
   5878 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5879 				PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
   5880 #else
   5881 				pte[l2pte_index(va) + i] =
   5882 				    L2_L_PROTO | pa |
   5883 				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
   5884 				PTE_SYNC(&pte[l2pte_index(va) + i]);
   5885 #endif
   5886 			}
   5887 			va += L2_L_SIZE;
   5888 			pa += L2_L_SIZE;
   5889 			resid -= L2_L_SIZE;
   5890 			continue;
   5891 		}
   5892 
   5893 		/* Use a small page mapping. */
   5894 #ifdef VERBOSE_INIT_ARM
   5895 		printf("P");
   5896 #endif
   5897 #ifndef ARM32_NEW_VM_LAYOUT
   5898 		pte[(va >> PGSHIFT) & 0x3ff] =
   5899 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5900 		PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
   5901 #else
   5902 		pte[l2pte_index(va)] =
   5903 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   5904 		PTE_SYNC(&pte[l2pte_index(va)]);
   5905 #endif
   5906 		va += PAGE_SIZE;
   5907 		pa += PAGE_SIZE;
   5908 		resid -= PAGE_SIZE;
   5909 	}
   5910 #ifdef VERBOSE_INIT_ARM
   5911 	printf("\n");
   5912 #endif
   5913 	return (size);
   5914 }
   5915 
   5916 /********************** Static device map routines ***************************/
   5917 
   5918 static const struct pmap_devmap *pmap_devmap_table;
   5919 
   5920 /*
   5921  * Register the devmap table.  This is provided in case early console
   5922  * initialization needs to register mappings created by bootstrap code
   5923  * before pmap_devmap_bootstrap() is called.
   5924  */
   5925 void
   5926 pmap_devmap_register(const struct pmap_devmap *table)
   5927 {
   5928 
   5929 	pmap_devmap_table = table;
   5930 }
   5931 
   5932 /*
   5933  * Map all of the static regions in the devmap table, and remember
   5934  * the devmap table so other parts of the kernel can look up entries
   5935  * later.
   5936  */
   5937 void
   5938 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
   5939 {
   5940 	int i;
   5941 
   5942 	pmap_devmap_table = table;
   5943 
   5944 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5945 #ifdef VERBOSE_INIT_ARM
   5946 		printf("devmap: %08lx -> %08lx @ %08lx\n",
   5947 		    pmap_devmap_table[i].pd_pa,
   5948 		    pmap_devmap_table[i].pd_pa +
   5949 			pmap_devmap_table[i].pd_size - 1,
   5950 		    pmap_devmap_table[i].pd_va);
   5951 #endif
   5952 		pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
   5953 		    pmap_devmap_table[i].pd_pa,
   5954 		    pmap_devmap_table[i].pd_size,
   5955 		    pmap_devmap_table[i].pd_prot,
   5956 		    pmap_devmap_table[i].pd_cache);
   5957 	}
   5958 }
   5959 
   5960 const struct pmap_devmap *
   5961 pmap_devmap_find_pa(paddr_t pa, psize_t size)
   5962 {
   5963 	uint64_t endpa;
   5964 	int i;
   5965 
   5966 	if (pmap_devmap_table == NULL)
   5967 		return (NULL);
   5968 
   5969 	endpa = (uint64_t)pa + (uint64_t)(size - 1);
   5970 
   5971 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5972 		if (pa >= pmap_devmap_table[i].pd_pa &&
   5973 		    endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
   5974 			     (uint64_t)(pmap_devmap_table[i].pd_size - 1))
   5975 			return (&pmap_devmap_table[i]);
   5976 	}
   5977 
   5978 	return (NULL);
   5979 }
   5980 
   5981 const struct pmap_devmap *
   5982 pmap_devmap_find_va(vaddr_t va, vsize_t size)
   5983 {
   5984 	int i;
   5985 
   5986 	if (pmap_devmap_table == NULL)
   5987 		return (NULL);
   5988 
   5989 	for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
   5990 		if (va >= pmap_devmap_table[i].pd_va &&
   5991 		    va + size - 1 <= pmap_devmap_table[i].pd_va +
   5992 				     pmap_devmap_table[i].pd_size - 1)
   5993 			return (&pmap_devmap_table[i]);
   5994 	}
   5995 
   5996 	return (NULL);
   5997 }
   5998 
   5999 /********************** PTE initialization routines **************************/
   6000 
   6001 /*
   6002  * These routines are called when the CPU type is identified to set up
   6003  * the PTE prototypes, cache modes, etc.
   6004  *
   6005  * The variables are always here, just in case modules need to reference
   6006  * them (though, they shouldn't).
   6007  */
   6008 
   6009 pt_entry_t	pte_l1_s_cache_mode;
   6010 pt_entry_t	pte_l1_s_wc_mode;
   6011 pt_entry_t	pte_l1_s_cache_mode_pt;
   6012 pt_entry_t	pte_l1_s_cache_mask;
   6013 
   6014 pt_entry_t	pte_l2_l_cache_mode;
   6015 pt_entry_t	pte_l2_l_wc_mode;
   6016 pt_entry_t	pte_l2_l_cache_mode_pt;
   6017 pt_entry_t	pte_l2_l_cache_mask;
   6018 
   6019 pt_entry_t	pte_l2_s_cache_mode;
   6020 pt_entry_t	pte_l2_s_wc_mode;
   6021 pt_entry_t	pte_l2_s_cache_mode_pt;
   6022 pt_entry_t	pte_l2_s_cache_mask;
   6023 
   6024 pt_entry_t	pte_l1_s_prot_u;
   6025 pt_entry_t	pte_l1_s_prot_w;
   6026 pt_entry_t	pte_l1_s_prot_ro;
   6027 pt_entry_t	pte_l1_s_prot_mask;
   6028 
   6029 pt_entry_t	pte_l2_s_prot_u;
   6030 pt_entry_t	pte_l2_s_prot_w;
   6031 pt_entry_t	pte_l2_s_prot_ro;
   6032 pt_entry_t	pte_l2_s_prot_mask;
   6033 
   6034 pt_entry_t	pte_l2_l_prot_u;
   6035 pt_entry_t	pte_l2_l_prot_w;
   6036 pt_entry_t	pte_l2_l_prot_ro;
   6037 pt_entry_t	pte_l2_l_prot_mask;
   6038 
   6039 pt_entry_t	pte_l1_ss_proto;
   6040 pt_entry_t	pte_l1_s_proto;
   6041 pt_entry_t	pte_l1_c_proto;
   6042 pt_entry_t	pte_l2_s_proto;
   6043 
   6044 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   6045 void		(*pmap_zero_page_func)(paddr_t);
   6046 
   6047 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   6048 void
   6049 pmap_pte_init_generic(void)
   6050 {
   6051 
   6052 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6053 	pte_l1_s_wc_mode = L1_S_B;
   6054 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   6055 
   6056 	pte_l2_l_cache_mode = L2_B|L2_C;
   6057 	pte_l2_l_wc_mode = L2_B;
   6058 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   6059 
   6060 	pte_l2_s_cache_mode = L2_B|L2_C;
   6061 	pte_l2_s_wc_mode = L2_B;
   6062 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   6063 
   6064 	/*
   6065 	 * If we have a write-through cache, set B and C.  If
   6066 	 * we have a write-back cache, then we assume setting
   6067 	 * only C will make those pages write-through (except for those
   6068 	 * Cortex CPUs which can read the L1 caches).
   6069 	 */
   6070 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   6071 #if ARM_MMU_V7 > 0
   6072 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   6073 #endif
   6074 #if ARM_MMU_V6 > 0
   6075 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   6076 #endif
   6077 	    || false) {
   6078 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6079 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6080 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6081 	} else {
   6082 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   6083 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   6084 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   6085 	}
   6086 
   6087 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   6088 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   6089 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   6090 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   6091 
   6092 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6093 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6094 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6095 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6096 
   6097 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6098 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6099 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6100 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6101 
   6102 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   6103 	pte_l1_s_proto = L1_S_PROTO_generic;
   6104 	pte_l1_c_proto = L1_C_PROTO_generic;
   6105 	pte_l2_s_proto = L2_S_PROTO_generic;
   6106 
   6107 	pmap_copy_page_func = pmap_copy_page_generic;
   6108 	pmap_zero_page_func = pmap_zero_page_generic;
   6109 }
   6110 
   6111 #if defined(CPU_ARM8)
   6112 void
   6113 pmap_pte_init_arm8(void)
   6114 {
   6115 
   6116 	/*
   6117 	 * ARM8 is compatible with generic, but we need to use
   6118 	 * the page tables uncached.
   6119 	 */
   6120 	pmap_pte_init_generic();
   6121 
   6122 	pte_l1_s_cache_mode_pt = 0;
   6123 	pte_l2_l_cache_mode_pt = 0;
   6124 	pte_l2_s_cache_mode_pt = 0;
   6125 }
   6126 #endif /* CPU_ARM8 */
   6127 
   6128 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   6129 void
   6130 pmap_pte_init_arm9(void)
   6131 {
   6132 
   6133 	/*
   6134 	 * ARM9 is compatible with generic, but we want to use
   6135 	 * write-through caching for now.
   6136 	 */
   6137 	pmap_pte_init_generic();
   6138 
   6139 	pte_l1_s_cache_mode = L1_S_C;
   6140 	pte_l2_l_cache_mode = L2_C;
   6141 	pte_l2_s_cache_mode = L2_C;
   6142 
   6143 	pte_l1_s_wc_mode = L1_S_B;
   6144 	pte_l2_l_wc_mode = L2_B;
   6145 	pte_l2_s_wc_mode = L2_B;
   6146 
   6147 	pte_l1_s_cache_mode_pt = L1_S_C;
   6148 	pte_l2_l_cache_mode_pt = L2_C;
   6149 	pte_l2_s_cache_mode_pt = L2_C;
   6150 }
   6151 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   6152 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   6153 
   6154 #if defined(CPU_ARM10)
   6155 void
   6156 pmap_pte_init_arm10(void)
   6157 {
   6158 
   6159 	/*
   6160 	 * ARM10 is compatible with generic, but we want to use
   6161 	 * write-through caching for now.
   6162 	 */
   6163 	pmap_pte_init_generic();
   6164 
   6165 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   6166 	pte_l2_l_cache_mode = L2_B | L2_C;
   6167 	pte_l2_s_cache_mode = L2_B | L2_C;
   6168 
   6169 	pte_l1_s_cache_mode = L1_S_B;
   6170 	pte_l2_l_cache_mode = L2_B;
   6171 	pte_l2_s_cache_mode = L2_B;
   6172 
   6173 	pte_l1_s_cache_mode_pt = L1_S_C;
   6174 	pte_l2_l_cache_mode_pt = L2_C;
   6175 	pte_l2_s_cache_mode_pt = L2_C;
   6176 
   6177 }
   6178 #endif /* CPU_ARM10 */
   6179 
   6180 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   6181 void
   6182 pmap_pte_init_arm11(void)
   6183 {
   6184 
   6185 	/*
   6186 	 * ARM11 is compatible with generic, but we want to use
   6187 	 * write-through caching for now.
   6188 	 */
   6189 	pmap_pte_init_generic();
   6190 
   6191 	pte_l1_s_cache_mode = L1_S_C;
   6192 	pte_l2_l_cache_mode = L2_C;
   6193 	pte_l2_s_cache_mode = L2_C;
   6194 
   6195 	pte_l1_s_wc_mode = L1_S_B;
   6196 	pte_l2_l_wc_mode = L2_B;
   6197 	pte_l2_s_wc_mode = L2_B;
   6198 
   6199 	pte_l1_s_cache_mode_pt = L1_S_C;
   6200 	pte_l2_l_cache_mode_pt = L2_C;
   6201 	pte_l2_s_cache_mode_pt = L2_C;
   6202 }
   6203 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   6204 
   6205 #if ARM_MMU_SA1 == 1
   6206 void
   6207 pmap_pte_init_sa1(void)
   6208 {
   6209 
   6210 	/*
   6211 	 * The StrongARM SA-1 cache does not have a write-through
   6212 	 * mode.  So, do the generic initialization, then reset
   6213 	 * the page table cache mode to B=1,C=1, and note that
   6214 	 * the PTEs need to be sync'd.
   6215 	 */
   6216 	pmap_pte_init_generic();
   6217 
   6218 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   6219 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   6220 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   6221 
   6222 	pmap_needs_pte_sync = 1;
   6223 }
   6224 #endif /* ARM_MMU_SA1 == 1*/
   6225 
   6226 #if ARM_MMU_XSCALE == 1
   6227 #if (ARM_NMMUS > 1)
   6228 static u_int xscale_use_minidata;
   6229 #endif
   6230 
   6231 void
   6232 pmap_pte_init_xscale(void)
   6233 {
   6234 	uint32_t auxctl;
   6235 	int write_through = 0;
   6236 
   6237 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   6238 	pte_l1_s_wc_mode = L1_S_B;
   6239 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   6240 
   6241 	pte_l2_l_cache_mode = L2_B|L2_C;
   6242 	pte_l2_l_wc_mode = L2_B;
   6243 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   6244 
   6245 	pte_l2_s_cache_mode = L2_B|L2_C;
   6246 	pte_l2_s_wc_mode = L2_B;
   6247 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   6248 
   6249 	pte_l1_s_cache_mode_pt = L1_S_C;
   6250 	pte_l2_l_cache_mode_pt = L2_C;
   6251 	pte_l2_s_cache_mode_pt = L2_C;
   6252 
   6253 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   6254 	/*
   6255 	 * The XScale core has an enhanced mode where writes that
   6256 	 * miss the cache cause a cache line to be allocated.  This
   6257 	 * is significantly faster than the traditional, write-through
   6258 	 * behavior of this case.
   6259 	 */
   6260 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   6261 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   6262 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   6263 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   6264 
   6265 #ifdef XSCALE_CACHE_WRITE_THROUGH
   6266 	/*
   6267 	 * Some versions of the XScale core have various bugs in
   6268 	 * their cache units, the work-around for which is to run
   6269 	 * the cache in write-through mode.  Unfortunately, this
   6270 	 * has a major (negative) impact on performance.  So, we
   6271 	 * go ahead and run fast-and-loose, in the hopes that we
   6272 	 * don't line up the planets in a way that will trip the
   6273 	 * bugs.
   6274 	 *
   6275 	 * However, we give you the option to be slow-but-correct.
   6276 	 */
   6277 	write_through = 1;
   6278 #elif defined(XSCALE_CACHE_WRITE_BACK)
   6279 	/* force write back cache mode */
   6280 	write_through = 0;
   6281 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   6282 	/*
   6283 	 * Intel PXA2[15]0 processors are known to have a bug in
   6284 	 * write-back cache on revision 4 and earlier (stepping
   6285 	 * A[01] and B[012]).  Fixed for C0 and later.
   6286 	 */
   6287 	{
   6288 		uint32_t id, type;
   6289 
   6290 		id = cpufunc_id();
   6291 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   6292 
   6293 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   6294 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   6295 				/* write through for stepping A0-1 and B0-2 */
   6296 				write_through = 1;
   6297 			}
   6298 		}
   6299 	}
   6300 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   6301 
   6302 	if (write_through) {
   6303 		pte_l1_s_cache_mode = L1_S_C;
   6304 		pte_l2_l_cache_mode = L2_C;
   6305 		pte_l2_s_cache_mode = L2_C;
   6306 	}
   6307 
   6308 #if (ARM_NMMUS > 1)
   6309 	xscale_use_minidata = 1;
   6310 #endif
   6311 
   6312 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   6313 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   6314 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   6315 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   6316 
   6317 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   6318 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   6319 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   6320 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   6321 
   6322 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   6323 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   6324 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   6325 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   6326 
   6327 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   6328 	pte_l1_s_proto = L1_S_PROTO_xscale;
   6329 	pte_l1_c_proto = L1_C_PROTO_xscale;
   6330 	pte_l2_s_proto = L2_S_PROTO_xscale;
   6331 
   6332 	pmap_copy_page_func = pmap_copy_page_xscale;
   6333 	pmap_zero_page_func = pmap_zero_page_xscale;
   6334 
   6335 	/*
   6336 	 * Disable ECC protection of page table access, for now.
   6337 	 */
   6338 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6339 	auxctl &= ~XSCALE_AUXCTL_P;
   6340 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6341 }
   6342 
   6343 /*
   6344  * xscale_setup_minidata:
   6345  *
   6346  *	Set up the mini-data cache clean area.  We require the
   6347  *	caller to allocate the right amount of physically and
   6348  *	virtually contiguous space.
   6349  */
   6350 void
   6351 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   6352 {
   6353 	extern vaddr_t xscale_minidata_clean_addr;
   6354 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   6355 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   6356 	pt_entry_t *pte;
   6357 	vsize_t size;
   6358 	uint32_t auxctl;
   6359 
   6360 	xscale_minidata_clean_addr = va;
   6361 
   6362 	/* Round it to page size. */
   6363 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   6364 
   6365 	for (; size != 0;
   6366 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   6367 #ifndef ARM32_NEW_VM_LAYOUT
   6368 		pte = (pt_entry_t *)
   6369 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   6370 #else
   6371 		pte = (pt_entry_t *) kernel_pt_lookup(
   6372 		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
   6373 #endif
   6374 		if (pte == NULL)
   6375 			panic("xscale_setup_minidata: can't find L2 table for "
   6376 			    "VA 0x%08lx", va);
   6377 #ifndef ARM32_NEW_VM_LAYOUT
   6378 		pte[(va >> PGSHIFT) & 0x3ff] =
   6379 #else
   6380 		pte[l2pte_index(va)] =
   6381 #endif
   6382 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   6383 		    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
   6384 	}
   6385 
   6386 	/*
   6387 	 * Configure the mini-data cache for write-back with
   6388 	 * read/write-allocate.
   6389 	 *
   6390 	 * NOTE: In order to reconfigure the mini-data cache, we must
   6391 	 * make sure it contains no valid data!  In order to do that,
   6392 	 * we must issue a global data cache invalidate command!
   6393 	 *
   6394 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   6395 	 * THIS IS VERY IMPORTANT!
   6396 	 */
   6397 
   6398 	/* Invalidate data and mini-data. */
   6399 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   6400 	__asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
   6401 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   6402 	__asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
   6403 }
   6404 
   6405 /*
   6406  * Change the PTEs for the specified kernel mappings such that they
   6407  * will use the mini data cache instead of the main data cache.
   6408  */
   6409 void
   6410 pmap_uarea(vaddr_t va)
   6411 {
   6412 	struct l2_bucket *l2b;
   6413 	pt_entry_t *ptep, *sptep, pte;
   6414 	vaddr_t next_bucket, eva;
   6415 
   6416 #if (ARM_NMMUS > 1)
   6417 	if (xscale_use_minidata == 0)
   6418 		return;
   6419 #endif
   6420 
   6421 	eva = va + USPACE;
   6422 
   6423 	while (va < eva) {
   6424 		next_bucket = L2_NEXT_BUCKET(va);
   6425 		if (next_bucket > eva)
   6426 			next_bucket = eva;
   6427 
   6428 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6429 		KDASSERT(l2b != NULL);
   6430 
   6431 		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
   6432 
   6433 		while (va < next_bucket) {
   6434 			pte = *ptep;
   6435 			if (!l2pte_minidata(pte)) {
   6436 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   6437 				cpu_tlb_flushD_SE(va);
   6438 				*ptep = pte & ~L2_B;
   6439 			}
   6440 			ptep++;
   6441 			va += PAGE_SIZE;
   6442 		}
   6443 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   6444 	}
   6445 	cpu_cpwait();
   6446 }
   6447 #endif /* ARM_MMU_XSCALE == 1 */
   6448 
   6449 
   6450 #if defined(CPU_ARM11MPCORE)
   6451 
   6452 void
   6453 pmap_pte_init_arm11mpcore(void)
   6454 {
   6455 
   6456 	/* cache mode is controlled by 5 bits (B, C, TEX) */
   6457 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   6458 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   6459 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6460 	/* use extended small page (without APn, with TEX) */
   6461 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   6462 #else
   6463 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   6464 #endif
   6465 
   6466 	/* write-back, write-allocate */
   6467 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6468 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6469 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6470 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6471 #else
   6472 	/* no TEX. read-allocate */
   6473 	pte_l2_s_cache_mode = L2_C | L2_B;
   6474 #endif
   6475 	/*
   6476 	 * write-back, write-allocate for page tables.
   6477 	 */
   6478 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   6479 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   6480 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6481 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   6482 #else
   6483 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   6484 #endif
   6485 
   6486 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   6487 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   6488 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   6489 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   6490 
   6491 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   6492 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   6493 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   6494 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   6495 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   6496 
   6497 #else
   6498 	/* with AP[0..3] */
   6499 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   6500 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   6501 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   6502 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   6503 #endif
   6504 
   6505 #ifdef	ARM11MPCORE_COMPAT_MMU
   6506 	/* with AP[0..3] */
   6507 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   6508 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   6509 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   6510 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   6511 
   6512 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6513 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6514 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6515 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   6516 #else
   6517 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   6518 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   6519 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   6520 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   6521 
   6522 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   6523 	pte_l1_s_proto = L1_S_PROTO_armv6;
   6524 	pte_l1_c_proto = L1_C_PROTO_armv6;
   6525 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   6526 #endif
   6527 
   6528 	pmap_copy_page_func = pmap_copy_page_generic;
   6529 	pmap_zero_page_func = pmap_zero_page_generic;
   6530 	pmap_needs_pte_sync = 1;
   6531 }
   6532 #endif	/* CPU_ARM11MPCORE */
   6533 
   6534 
   6535 #if ARM_MMU_V7 == 1
   6536 void
   6537 pmap_pte_init_armv7(void)
   6538 {
   6539 	/*
   6540 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   6541 	 * AP field is zero, that now means "no access" rather than
   6542 	 * read-only. The prototypes are a little different because of
   6543 	 * the XN bit.
   6544 	 */
   6545 	pmap_pte_init_generic();
   6546 
   6547 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   6548 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   6549 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   6550 
   6551 	if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
   6552 		/*
   6553 		 * write-back, no write-allocate, shareable for normal pages.
   6554 		 */
   6555 		pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
   6556 		pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
   6557 		pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
   6558 
   6559 		/*
   6560 		 * write-back, no write-allocate, shareable for page tables.
   6561 		 */
   6562 		pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
   6563 		pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6564 		pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
   6565 	}
   6566 
   6567 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   6568 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   6569 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   6570 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   6571 
   6572 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   6573 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   6574 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   6575 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   6576 
   6577 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   6578 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   6579 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   6580 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   6581 
   6582 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   6583 	pte_l1_s_proto = L1_S_PROTO_armv7;
   6584 	pte_l1_c_proto = L1_C_PROTO_armv7;
   6585 	pte_l2_s_proto = L2_S_PROTO_armv7;
   6586 
   6587 	pmap_needs_pte_sync = 1;
   6588 }
   6589 #endif /* ARM_MMU_V7 */
   6590 
   6591 /*
   6592  * return the PA of the current L1 table, for use when handling a crash dump
   6593  */
   6594 uint32_t pmap_kernel_L1_addr(void)
   6595 {
   6596 	return pmap_kernel()->pm_l1->l1_physaddr;
   6597 }
   6598 
   6599 #if defined(DDB)
   6600 /*
   6601  * A couple of ddb-callable functions for dumping pmaps
   6602  */
   6603 void pmap_dump_all(void);
   6604 void pmap_dump(pmap_t);
   6605 
   6606 void
   6607 pmap_dump_all(void)
   6608 {
   6609 	pmap_t pm;
   6610 
   6611 	LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
   6612 		if (pm == pmap_kernel())
   6613 			continue;
   6614 		pmap_dump(pm);
   6615 		printf("\n");
   6616 	}
   6617 }
   6618 
   6619 static pt_entry_t ncptes[64];
   6620 static void pmap_dump_ncpg(pmap_t);
   6621 
   6622 void
   6623 pmap_dump(pmap_t pm)
   6624 {
   6625 	struct l2_dtable *l2;
   6626 	struct l2_bucket *l2b;
   6627 	pt_entry_t *ptep, pte;
   6628 	vaddr_t l2_va, l2b_va, va;
   6629 	int i, j, k, occ, rows = 0;
   6630 
   6631 	if (pm == pmap_kernel())
   6632 		printf("pmap_kernel (%p): ", pm);
   6633 	else
   6634 		printf("user pmap (%p): ", pm);
   6635 
   6636 	printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
   6637 
   6638 	l2_va = 0;
   6639 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   6640 		l2 = pm->pm_l2[i];
   6641 
   6642 		if (l2 == NULL || l2->l2_occupancy == 0)
   6643 			continue;
   6644 
   6645 		l2b_va = l2_va;
   6646 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   6647 			l2b = &l2->l2_bucket[j];
   6648 
   6649 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   6650 				continue;
   6651 
   6652 			ptep = l2b->l2b_kva;
   6653 
   6654 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   6655 				;
   6656 
   6657 			k &= ~63;
   6658 			occ = l2b->l2b_occupancy;
   6659 			va = l2b_va + (k * 4096);
   6660 			for (; k < 256; k++, va += 0x1000) {
   6661 				char ch = ' ';
   6662 				if ((k % 64) == 0) {
   6663 					if ((rows % 8) == 0) {
   6664 						printf(
   6665 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   6666 					}
   6667 					printf("%08lx: ", va);
   6668 				}
   6669 
   6670 				ncptes[k & 63] = 0;
   6671 				pte = ptep[k];
   6672 				if (pte == 0) {
   6673 					ch = '.';
   6674 				} else {
   6675 					occ--;
   6676 					switch (pte & 0x0c) {
   6677 					case 0x00:
   6678 						ch = 'D'; /* No cache No buff */
   6679 						break;
   6680 					case 0x04:
   6681 						ch = 'B'; /* No cache buff */
   6682 						break;
   6683 					case 0x08:
   6684 						if (pte & 0x40)
   6685 							ch = 'm';
   6686 						else
   6687 						   ch = 'C'; /* Cache No buff */
   6688 						break;
   6689 					case 0x0c:
   6690 						ch = 'F'; /* Cache Buff */
   6691 						break;
   6692 					}
   6693 
   6694 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   6695 						ch += 0x20;
   6696 
   6697 					if ((pte & 0xc) == 0)
   6698 						ncptes[k & 63] = pte;
   6699 				}
   6700 
   6701 				if ((k % 64) == 63) {
   6702 					rows++;
   6703 					printf("%c\n", ch);
   6704 					pmap_dump_ncpg(pm);
   6705 					if (occ == 0)
   6706 						break;
   6707 				} else
   6708 					printf("%c", ch);
   6709 			}
   6710 		}
   6711 	}
   6712 }
   6713 
   6714 static void
   6715 pmap_dump_ncpg(pmap_t pm)
   6716 {
   6717 	struct vm_page *pg;
   6718 	struct vm_page_md *md;
   6719 	struct pv_entry *pv;
   6720 	int i;
   6721 
   6722 	for (i = 0; i < 63; i++) {
   6723 		if (ncptes[i] == 0)
   6724 			continue;
   6725 
   6726 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   6727 		if (pg == NULL)
   6728 			continue;
   6729 		md = VM_PAGE_TO_MD(pg);
   6730 
   6731 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   6732 		    VM_PAGE_TO_PHYS(pg),
   6733 		    md->krw_mappings, md->kro_mappings,
   6734 		    md->urw_mappings, md->uro_mappings);
   6735 
   6736 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   6737 			printf("   %c va 0x%08lx, flags 0x%x\n",
   6738 			    (pm == pv->pv_pmap) ? '*' : ' ',
   6739 			    pv->pv_va, pv->pv_flags);
   6740 		}
   6741 	}
   6742 }
   6743 #endif
   6744 
   6745 #ifdef PMAP_STEAL_MEMORY
   6746 void
   6747 pmap_boot_pageadd(pv_addr_t *newpv)
   6748 {
   6749 	pv_addr_t *pv, *npv;
   6750 
   6751 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   6752 		if (newpv->pv_pa < pv->pv_va) {
   6753 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   6754 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   6755 				newpv->pv_size += pv->pv_size;
   6756 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   6757 			}
   6758 			pv = NULL;
   6759 		} else {
   6760 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   6761 			     pv = npv) {
   6762 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   6763 				KASSERT(pv->pv_pa < newpv->pv_pa);
   6764 				if (newpv->pv_pa > npv->pv_pa)
   6765 					continue;
   6766 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   6767 					pv->pv_size += newpv->pv_size;
   6768 					return;
   6769 				}
   6770 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   6771 					break;
   6772 				newpv->pv_size += npv->pv_size;
   6773 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6774 				SLIST_REMOVE_AFTER(newpv, pv_list);
   6775 				return;
   6776 			}
   6777 		}
   6778 	}
   6779 
   6780 	if (pv) {
   6781 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   6782 	} else {
   6783 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   6784 	}
   6785 }
   6786 
   6787 void
   6788 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   6789 	pv_addr_t *rpv)
   6790 {
   6791 	pv_addr_t *pv, **pvp;
   6792 	struct vm_physseg *ps;
   6793 	size_t i;
   6794 
   6795 	KASSERT(amount & PGOFSET);
   6796 	KASSERT((mask & PGOFSET) == 0);
   6797 	KASSERT((match & PGOFSET) == 0);
   6798 	KASSERT(amount != 0);
   6799 
   6800 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6801 	     (pv = *pvp) != NULL;
   6802 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6803 		pv_addr_t *newpv;
   6804 		psize_t off;
   6805 		/*
   6806 		 * If this entry is too small to satify the request...
   6807 		 */
   6808 		KASSERT(pv->pv_size > 0);
   6809 		if (pv->pv_size < amount)
   6810 			continue;
   6811 
   6812 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   6813 			if (((pv->pv_pa + off) & mask) == match
   6814 			    && off + amount <= pv->pv_size)
   6815 				break;
   6816 		}
   6817 		if (off > mask)
   6818 			continue;
   6819 
   6820 		rpv->pv_va = pv->pv_va + off;
   6821 		rpv->pv_pa = pv->pv_pa + off;
   6822 		rpv->pv_size = amount;
   6823 		pv->pv_size -= amount;
   6824 		if (pv->pv_size == 0) {
   6825 			KASSERT(off == 0);
   6826 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6827 			*pvp = SLIST_NEXT(pv, pv_list);
   6828 		} else if (off == 0) {
   6829 			KASSERT((vaddr_t) pv == rpv->pv_va);
   6830 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6831 			*newpv = *pv;
   6832 			newpv->pv_pa += amount;
   6833 			newpv->pv_va += amount;
   6834 			*pvp = newpv;
   6835 		} else if (off < pv->pv_size) {
   6836 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   6837 			*newpv = *pv;
   6838 			newpv->pv_size -= off;
   6839 			newpv->pv_pa += off + amount;
   6840 			newpv->pv_va += off + amount;
   6841 
   6842 			SLIST_NEXT(pv, pv_list) = newpv;
   6843 			pv->pv_size = off;
   6844 		} else {
   6845 			KASSERT((vaddr_t) pv != rpv->pv_va);
   6846 		}
   6847 		memset((void *)rpv->pv_va, 0, amount);
   6848 		return;
   6849 	}
   6850 
   6851 	if (vm_nphysseg == 0)
   6852 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   6853 
   6854 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   6855 	     (pv = *pvp) != NULL;
   6856 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   6857 		if (SLIST_NEXT(pv, pv_list) == NULL)
   6858 			break;
   6859 	}
   6860 	KASSERT(mask == 0);
   6861 	for (i = 0; i < vm_nphysseg; i++) {
   6862 		ps = VM_PHYSMEM_PTR(i);
   6863 		if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
   6864 		    && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
   6865 			rpv->pv_va = pv->pv_va;
   6866 			rpv->pv_pa = pv->pv_pa;
   6867 			rpv->pv_size = amount;
   6868 			*pvp = NULL;
   6869 			pmap_map_chunk(kernel_l1pt.pv_va,
   6870 			     ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
   6871 			     ptoa(ps->avail_start),
   6872 			     amount - pv->pv_size,
   6873 			     VM_PROT_READ|VM_PROT_WRITE,
   6874 			     PTE_CACHE);
   6875 			ps->avail_start += atop(amount - pv->pv_size);
   6876 			/*
   6877 			 * If we consumed the entire physseg, remove it.
   6878 			 */
   6879 			if (ps->avail_start == ps->avail_end) {
   6880 				for (--vm_nphysseg; i < vm_nphysseg; i++)
   6881 					VM_PHYSMEM_PTR_SWAP(i, i + 1);
   6882 			}
   6883 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   6884 			return;
   6885 		}
   6886 	}
   6887 
   6888 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   6889 }
   6890 
   6891 vaddr_t
   6892 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   6893 {
   6894 	pv_addr_t pv;
   6895 
   6896 	pmap_boot_pagealloc(size, 0, 0, &pv);
   6897 
   6898 	return pv.pv_va;
   6899 }
   6900 #endif /* PMAP_STEAL_MEMORY */
   6901 
   6902 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   6903 {
   6904 	sysctl_createv(clog, 0, NULL, NULL,
   6905 			CTLFLAG_PERMANENT,
   6906 			CTLTYPE_NODE, "machdep", NULL,
   6907 			NULL, 0, NULL, 0,
   6908 			CTL_MACHDEP, CTL_EOL);
   6909 
   6910 	sysctl_createv(clog, 0, NULL, NULL,
   6911 			CTLFLAG_PERMANENT,
   6912 			CTLTYPE_INT, "kmpages",
   6913 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   6914 			NULL, 0, &pmap_kmpages, 0,
   6915 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   6916 }
   6917 
   6918 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   6919 struct vm_page *
   6920 arm_pmap_alloc_poolpage(int flags)
   6921 {
   6922 	/*
   6923 	 * On some systems, only some pages may be "coherent" for dma and we
   6924 	 * want to use those for pool pages (think mbufs).
   6925 	 */
   6926 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT)
   6927 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   6928 		    UVM_PGA_STRAT_ONLY, arm_poolpage_vmfreelist);
   6929 
   6930 	return uvm_pagealloc(NULL, 0, NULL, flags);
   6931 }
   6932 #endif
   6933