pmap.c revision 1.25 1 /* $NetBSD: pmap.c,v 1.25 2001/10/18 16:32:40 rearnsha Exp $ */
2
3 /*
4 * Copyright (c) 2001 Richard Earnshaw
5 * Copyright (c) 2001 Christopher Gilbert
6 * All rights reserved.
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the company nor the name of the author may be used to
14 * endorse or promote products derived from this software without specific
15 * prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*-
31 * Copyright (c) 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1994-1998 Mark Brinicombe.
68 * Copyright (c) 1994 Brini.
69 * All rights reserved.
70 *
71 * This code is derived from software written for Brini by Mark Brinicombe
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by Mark Brinicombe.
84 * 4. The name of the author may not be used to endorse or promote products
85 * derived from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
88 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
89 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
90 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
91 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
92 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
93 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
94 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
95 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
96 *
97 * RiscBSD kernel project
98 *
99 * pmap.c
100 *
101 * Machine dependant vm stuff
102 *
103 * Created : 20/09/94
104 */
105
106 /*
107 * Performance improvements, UVM changes, overhauls and part-rewrites
108 * were contributed by Neil A. Carson <neil (at) causality.com>.
109 */
110
111 /*
112 * The dram block info is currently referenced from the bootconfig.
113 * This should be placed in a separate structure.
114 */
115
116 /*
117 * Special compilation symbols
118 * PMAP_DEBUG - Build in pmap_debug_level code
119 */
120
121 /* Include header files */
122
123 #include "opt_pmap_debug.h"
124 #include "opt_ddb.h"
125
126 #include <sys/types.h>
127 #include <sys/param.h>
128 #include <sys/kernel.h>
129 #include <sys/systm.h>
130 #include <sys/proc.h>
131 #include <sys/malloc.h>
132 #include <sys/user.h>
133 #include <sys/pool.h>
134 #include <sys/cdefs.h>
135
136 #include <uvm/uvm.h>
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/pmap.h>
141 #include <machine/pcb.h>
142 #include <machine/param.h>
143 #include <machine/katelib.h>
144
145 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.25 2001/10/18 16:32:40 rearnsha Exp $");
146 #ifdef PMAP_DEBUG
147 #define PDEBUG(_lev_,_stat_) \
148 if (pmap_debug_level >= (_lev_)) \
149 ((_stat_))
150 int pmap_debug_level = -2;
151
152 /*
153 * for switching to potentially finer grained debugging
154 */
155 #define PDB_FOLLOW 0x0001
156 #define PDB_INIT 0x0002
157 #define PDB_ENTER 0x0004
158 #define PDB_REMOVE 0x0008
159 #define PDB_CREATE 0x0010
160 #define PDB_PTPAGE 0x0020
161 #define PDB_ASN 0x0040
162 #define PDB_BITS 0x0080
163 #define PDB_COLLECT 0x0100
164 #define PDB_PROTECT 0x0200
165 #define PDB_BOOTSTRAP 0x1000
166 #define PDB_PARANOIA 0x2000
167 #define PDB_WIRING 0x4000
168 #define PDB_PVDUMP 0x8000
169
170 int debugmap = 0;
171 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
172 #define NPDEBUG(_lev_,_stat_) \
173 if (pmapdebug & (_lev_)) \
174 ((_stat_))
175
176 #else /* PMAP_DEBUG */
177 #define PDEBUG(_lev_,_stat_) /* Nothing */
178 #define PDEBUG(_lev_,_stat_) /* Nothing */
179 #endif /* PMAP_DEBUG */
180
181 struct pmap kernel_pmap_store;
182
183 /*
184 * pool that pmap structures are allocated from
185 */
186
187 struct pool pmap_pmap_pool;
188
189 pagehook_t page_hook0;
190 pagehook_t page_hook1;
191 char *memhook;
192 pt_entry_t msgbufpte;
193 extern caddr_t msgbufaddr;
194
195 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
196 /*
197 * locking data structures
198 */
199
200 static struct lock pmap_main_lock;
201 static struct simplelock pvalloc_lock;
202 #ifdef LOCKDEBUG
203 #define PMAP_MAP_TO_HEAD_LOCK() \
204 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
205 #define PMAP_MAP_TO_HEAD_UNLOCK() \
206 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
207
208 #define PMAP_HEAD_TO_MAP_LOCK() \
209 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
210 #define PMAP_HEAD_TO_MAP_UNLOCK() \
211 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
212 #else
213 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
214 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
215 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
216 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
217 #endif /* LOCKDEBUG */
218
219 /*
220 * pv_page management structures: locked by pvalloc_lock
221 */
222
223 TAILQ_HEAD(pv_pagelist, pv_page);
224 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
225 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
226 static int pv_nfpvents; /* # of free pv entries */
227 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
228 static vaddr_t pv_cachedva; /* cached VA for later use */
229
230 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
231 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
232 /* high water mark */
233
234 /*
235 * local prototypes
236 */
237
238 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
239 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
240 #define ALLOCPV_NEED 0 /* need PV now */
241 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
242 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
243 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
244 static void pmap_enter_pv __P((struct pv_head *,
245 struct pv_entry *, struct pmap *,
246 vaddr_t, struct vm_page *, int));
247 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
248 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
249 static void pmap_free_pv_doit __P((struct pv_entry *));
250 static void pmap_free_pvpage __P((void));
251 static boolean_t pmap_is_curpmap __P((struct pmap *));
252 static struct pv_entry *pmap_remove_pv __P((struct pv_head *, struct pmap *,
253 vaddr_t));
254 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
255 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
256
257 vsize_t npages;
258
259 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
260 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
261 __inline static void pmap_clearbit __P((paddr_t, unsigned int));
262 __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
263
264 extern paddr_t physical_start;
265 extern paddr_t physical_freestart;
266 extern paddr_t physical_end;
267 extern paddr_t physical_freeend;
268 extern unsigned int free_pages;
269 extern int max_processes;
270
271 vaddr_t virtual_start;
272 vaddr_t virtual_end;
273
274 vaddr_t avail_start;
275 vaddr_t avail_end;
276
277 extern pv_addr_t systempage;
278
279 #define ALLOC_PAGE_HOOK(x, s) \
280 x.va = virtual_start; \
281 x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
282 virtual_start += s;
283
284 /* Variables used by the L1 page table queue code */
285 SIMPLEQ_HEAD(l1pt_queue, l1pt);
286 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
287 int l1pt_static_queue_count; /* items in the static l1 queue */
288 int l1pt_static_create_count; /* static l1 items created */
289 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
290 int l1pt_queue_count; /* items in the l1 queue */
291 int l1pt_create_count; /* stat - L1's create count */
292 int l1pt_reuse_count; /* stat - L1's reused count */
293
294 /* Local function prototypes (not used outside this file) */
295 pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
296 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
297 paddr_t pa, unsigned int flags));
298 void pmap_copy_on_write __P((paddr_t pa));
299 void pmap_pinit __P((struct pmap *));
300 void pmap_freepagedir __P((struct pmap *));
301
302 /* Other function prototypes */
303 extern void bzero_page __P((vaddr_t));
304 extern void bcopy_page __P((vaddr_t, vaddr_t));
305
306 struct l1pt *pmap_alloc_l1pt __P((void));
307 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
308 vaddr_t l2pa, boolean_t));
309
310 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
311 static void pmap_unmap_ptes __P((struct pmap *));
312
313 __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
314 pt_entry_t *, boolean_t));
315 static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
316 pt_entry_t *, boolean_t));
317 static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
318 pt_entry_t *, boolean_t));
319
320 /*
321 * real definition of pv_entry.
322 */
323
324 struct pv_entry {
325 struct pv_entry *pv_next; /* next pv_entry */
326 struct pmap *pv_pmap; /* pmap where mapping lies */
327 vaddr_t pv_va; /* virtual address for mapping */
328 int pv_flags; /* flags */
329 struct vm_page *pv_ptp; /* vm_page for the ptp */
330 };
331
332 /*
333 * pv_entrys are dynamically allocated in chunks from a single page.
334 * we keep track of how many pv_entrys are in use for each page and
335 * we can free pv_entry pages if needed. there is one lock for the
336 * entire allocation system.
337 */
338
339 struct pv_page_info {
340 TAILQ_ENTRY(pv_page) pvpi_list;
341 struct pv_entry *pvpi_pvfree;
342 int pvpi_nfree;
343 };
344
345 /*
346 * number of pv_entry's in a pv_page
347 * (note: won't work on systems where NPBG isn't a constant)
348 */
349
350 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
351 sizeof(struct pv_entry))
352
353 /*
354 * a pv_page: where pv_entrys are allocated from
355 */
356
357 struct pv_page {
358 struct pv_page_info pvinfo;
359 struct pv_entry pvents[PVE_PER_PVPAGE];
360 };
361
362 #ifdef MYCROFT_HACK
363 int mycroft_hack = 0;
364 #endif
365
366 /* Function to set the debug level of the pmap code */
367
368 #ifdef PMAP_DEBUG
369 void
370 pmap_debug(level)
371 int level;
372 {
373 pmap_debug_level = level;
374 printf("pmap_debug: level=%d\n", pmap_debug_level);
375 }
376 #endif /* PMAP_DEBUG */
377
378 __inline static boolean_t
379 pmap_is_curpmap(struct pmap *pmap)
380 {
381 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
382 || (pmap == pmap_kernel()))
383 return (TRUE);
384 return (FALSE);
385 }
386 #include "isadma.h"
387
388 #if NISADMA > 0
389 /*
390 * Used to protect memory for ISA DMA bounce buffers. If, when loading
391 * pages into the system, memory intersects with any of these ranges,
392 * the intersecting memory will be loaded into a lower-priority free list.
393 */
394 bus_dma_segment_t *pmap_isa_dma_ranges;
395 int pmap_isa_dma_nranges;
396
397 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
398 paddr_t *, psize_t *));
399
400 /*
401 * Check if a memory range intersects with an ISA DMA range, and
402 * return the page-rounded intersection if it does. The intersection
403 * will be placed on a lower-priority free list.
404 */
405 boolean_t
406 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
407 paddr_t pa;
408 psize_t size;
409 paddr_t *pap;
410 psize_t *sizep;
411 {
412 bus_dma_segment_t *ds;
413 int i;
414
415 if (pmap_isa_dma_ranges == NULL)
416 return (FALSE);
417
418 for (i = 0, ds = pmap_isa_dma_ranges;
419 i < pmap_isa_dma_nranges; i++, ds++) {
420 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
421 /*
422 * Beginning of region intersects with this range.
423 */
424 *pap = trunc_page(pa);
425 *sizep = round_page(min(pa + size,
426 ds->ds_addr + ds->ds_len) - pa);
427 return (TRUE);
428 }
429 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
430 /*
431 * End of region intersects with this range.
432 */
433 *pap = trunc_page(ds->ds_addr);
434 *sizep = round_page(min((pa + size) - ds->ds_addr,
435 ds->ds_len));
436 return (TRUE);
437 }
438 }
439
440 /*
441 * No intersection found.
442 */
443 return (FALSE);
444 }
445 #endif /* NISADMA > 0 */
446
447 /*
448 * p v _ e n t r y f u n c t i o n s
449 */
450
451 /*
452 * pv_entry allocation functions:
453 * the main pv_entry allocation functions are:
454 * pmap_alloc_pv: allocate a pv_entry structure
455 * pmap_free_pv: free one pv_entry
456 * pmap_free_pvs: free a list of pv_entrys
457 *
458 * the rest are helper functions
459 */
460
461 /*
462 * pmap_alloc_pv: inline function to allocate a pv_entry structure
463 * => we lock pvalloc_lock
464 * => if we fail, we call out to pmap_alloc_pvpage
465 * => 3 modes:
466 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
467 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
468 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
469 * one now
470 *
471 * "try" is for optional functions like pmap_copy().
472 */
473
474 __inline static struct pv_entry *
475 pmap_alloc_pv(pmap, mode)
476 struct pmap *pmap;
477 int mode;
478 {
479 struct pv_page *pvpage;
480 struct pv_entry *pv;
481
482 simple_lock(&pvalloc_lock);
483
484 if (pv_freepages.tqh_first != NULL) {
485 pvpage = pv_freepages.tqh_first;
486 pvpage->pvinfo.pvpi_nfree--;
487 if (pvpage->pvinfo.pvpi_nfree == 0) {
488 /* nothing left in this one? */
489 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
490 }
491 pv = pvpage->pvinfo.pvpi_pvfree;
492 #ifdef DIAGNOSTIC
493 if (pv == NULL)
494 panic("pmap_alloc_pv: pvpi_nfree off");
495 #endif
496 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
497 pv_nfpvents--; /* took one from pool */
498 } else {
499 pv = NULL; /* need more of them */
500 }
501
502 /*
503 * if below low water mark or we didn't get a pv_entry we try and
504 * create more pv_entrys ...
505 */
506
507 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
508 if (pv == NULL)
509 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
510 mode : ALLOCPV_NEED);
511 else
512 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
513 }
514
515 simple_unlock(&pvalloc_lock);
516 return(pv);
517 }
518
519 /*
520 * pmap_alloc_pvpage: maybe allocate a new pvpage
521 *
522 * if need_entry is false: try and allocate a new pv_page
523 * if need_entry is true: try and allocate a new pv_page and return a
524 * new pv_entry from it. if we are unable to allocate a pv_page
525 * we make a last ditch effort to steal a pv_page from some other
526 * mapping. if that fails, we panic...
527 *
528 * => we assume that the caller holds pvalloc_lock
529 */
530
531 static struct pv_entry *
532 pmap_alloc_pvpage(pmap, mode)
533 struct pmap *pmap;
534 int mode;
535 {
536 struct vm_page *pg;
537 struct pv_page *pvpage;
538 struct pv_entry *pv;
539 int s;
540
541 /*
542 * if we need_entry and we've got unused pv_pages, allocate from there
543 */
544
545 if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
546
547 /* move it to pv_freepages list */
548 pvpage = pv_unusedpgs.tqh_first;
549 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
550 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
551
552 /* allocate a pv_entry */
553 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
554 pv = pvpage->pvinfo.pvpi_pvfree;
555 #ifdef DIAGNOSTIC
556 if (pv == NULL)
557 panic("pmap_alloc_pvpage: pvpi_nfree off");
558 #endif
559 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
560
561 pv_nfpvents--; /* took one from pool */
562 return(pv);
563 }
564
565 /*
566 * see if we've got a cached unmapped VA that we can map a page in.
567 * if not, try to allocate one.
568 */
569
570
571 if (pv_cachedva == 0) {
572 s = splvm();
573 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
574 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
575 splx(s);
576 if (pv_cachedva == 0) {
577 return (NULL);
578 }
579 }
580
581 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
582 UVM_PGA_USERESERVE);
583 if (pg)
584 pg->flags &= ~PG_BUSY; /* never busy */
585
586 if (pg == NULL)
587 return (NULL);
588
589 /*
590 * add a mapping for our new pv_page and free its entrys (save one!)
591 *
592 * NOTE: If we are allocating a PV page for the kernel pmap, the
593 * pmap is already locked! (...but entering the mapping is safe...)
594 */
595
596 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
597 pmap_update(pmap_kernel());
598 pvpage = (struct pv_page *) pv_cachedva;
599 pv_cachedva = 0;
600 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
601 }
602
603 /*
604 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
605 *
606 * => caller must hold pvalloc_lock
607 * => if need_entry is true, we allocate and return one pv_entry
608 */
609
610 static struct pv_entry *
611 pmap_add_pvpage(pvp, need_entry)
612 struct pv_page *pvp;
613 boolean_t need_entry;
614 {
615 int tofree, lcv;
616
617 /* do we need to return one? */
618 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
619
620 pvp->pvinfo.pvpi_pvfree = NULL;
621 pvp->pvinfo.pvpi_nfree = tofree;
622 for (lcv = 0 ; lcv < tofree ; lcv++) {
623 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
624 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
625 }
626 if (need_entry)
627 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
628 else
629 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
630 pv_nfpvents += tofree;
631 return((need_entry) ? &pvp->pvents[lcv] : NULL);
632 }
633
634 /*
635 * pmap_free_pv_doit: actually free a pv_entry
636 *
637 * => do not call this directly! instead use either
638 * 1. pmap_free_pv ==> free a single pv_entry
639 * 2. pmap_free_pvs => free a list of pv_entrys
640 * => we must be holding pvalloc_lock
641 */
642
643 __inline static void
644 pmap_free_pv_doit(pv)
645 struct pv_entry *pv;
646 {
647 struct pv_page *pvp;
648
649 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
650 pv_nfpvents++;
651 pvp->pvinfo.pvpi_nfree++;
652
653 /* nfree == 1 => fully allocated page just became partly allocated */
654 if (pvp->pvinfo.pvpi_nfree == 1) {
655 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
656 }
657
658 /* free it */
659 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
660 pvp->pvinfo.pvpi_pvfree = pv;
661
662 /*
663 * are all pv_page's pv_entry's free? move it to unused queue.
664 */
665
666 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
667 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
668 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
669 }
670 }
671
672 /*
673 * pmap_free_pv: free a single pv_entry
674 *
675 * => we gain the pvalloc_lock
676 */
677
678 __inline static void
679 pmap_free_pv(pmap, pv)
680 struct pmap *pmap;
681 struct pv_entry *pv;
682 {
683 simple_lock(&pvalloc_lock);
684 pmap_free_pv_doit(pv);
685
686 /*
687 * Can't free the PV page if the PV entries were associated with
688 * the kernel pmap; the pmap is already locked.
689 */
690 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
691 pmap != pmap_kernel())
692 pmap_free_pvpage();
693
694 simple_unlock(&pvalloc_lock);
695 }
696
697 /*
698 * pmap_free_pvs: free a list of pv_entrys
699 *
700 * => we gain the pvalloc_lock
701 */
702
703 __inline static void
704 pmap_free_pvs(pmap, pvs)
705 struct pmap *pmap;
706 struct pv_entry *pvs;
707 {
708 struct pv_entry *nextpv;
709
710 simple_lock(&pvalloc_lock);
711
712 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
713 nextpv = pvs->pv_next;
714 pmap_free_pv_doit(pvs);
715 }
716
717 /*
718 * Can't free the PV page if the PV entries were associated with
719 * the kernel pmap; the pmap is already locked.
720 */
721 if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
722 pmap != pmap_kernel())
723 pmap_free_pvpage();
724
725 simple_unlock(&pvalloc_lock);
726 }
727
728
729 /*
730 * pmap_free_pvpage: try and free an unused pv_page structure
731 *
732 * => assume caller is holding the pvalloc_lock and that
733 * there is a page on the pv_unusedpgs list
734 * => if we can't get a lock on the kmem_map we try again later
735 * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
736 * that if we can lock the kmem_map then we are not already
737 * holding kmem_object's lock.
738 */
739
740 static void
741 pmap_free_pvpage()
742 {
743 int s;
744 struct vm_map *map;
745 struct vm_map_entry *dead_entries;
746 struct pv_page *pvp;
747
748 s = splvm(); /* protect kmem_map */
749
750 pvp = pv_unusedpgs.tqh_first;
751
752 /*
753 * note: watch out for pv_initpage which is allocated out of
754 * kernel_map rather than kmem_map.
755 */
756 if (pvp == pv_initpage)
757 map = kernel_map;
758 else
759 map = kmem_map;
760
761 if (vm_map_lock_try(map)) {
762
763 /* remove pvp from pv_unusedpgs */
764 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
765
766 /* unmap the page */
767 dead_entries = NULL;
768 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
769 &dead_entries);
770 vm_map_unlock(map);
771
772 if (dead_entries != NULL)
773 uvm_unmap_detach(dead_entries, 0);
774
775 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
776 }
777
778 if (pvp == pv_initpage)
779 /* no more initpage, we've freed it */
780 pv_initpage = NULL;
781
782 splx(s);
783 }
784
785 /*
786 * main pv_entry manipulation functions:
787 * pmap_enter_pv: enter a mapping onto a pv_head list
788 * pmap_remove_pv: remove a mappiing from a pv_head list
789 *
790 * NOTE: pmap_enter_pv expects to lock the pvh itself
791 * pmap_remove_pv expects te caller to lock the pvh before calling
792 */
793
794 /*
795 * pmap_enter_pv: enter a mapping onto a pv_head lst
796 *
797 * => caller should hold the proper lock on pmap_main_lock
798 * => caller should have pmap locked
799 * => we will gain the lock on the pv_head and allocate the new pv_entry
800 * => caller should adjust ptp's wire_count before calling
801 * => caller should not adjust pmap's wire_count
802 */
803
804 __inline static void
805 pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
806 struct pv_head *pvh;
807 struct pv_entry *pve; /* preallocated pve for us to use */
808 struct pmap *pmap;
809 vaddr_t va;
810 struct vm_page *ptp; /* PTP in pmap that maps this VA */
811 int flags;
812 {
813 pve->pv_pmap = pmap;
814 pve->pv_va = va;
815 pve->pv_ptp = ptp; /* NULL for kernel pmap */
816 pve->pv_flags = flags;
817 simple_lock(&pvh->pvh_lock); /* lock pv_head */
818 pve->pv_next = pvh->pvh_list; /* add to ... */
819 pvh->pvh_list = pve; /* ... locked list */
820 simple_unlock(&pvh->pvh_lock); /* unlock, done! */
821 if (pve->pv_flags & PT_W)
822 ++pmap->pm_stats.wired_count;
823 }
824
825 /*
826 * pmap_remove_pv: try to remove a mapping from a pv_list
827 *
828 * => caller should hold proper lock on pmap_main_lock
829 * => pmap should be locked
830 * => caller should hold lock on pv_head [so that attrs can be adjusted]
831 * => caller should adjust ptp's wire_count and free PTP if needed
832 * => caller should NOT adjust pmap's wire_count
833 * => we return the removed pve
834 */
835
836 __inline static struct pv_entry *
837 pmap_remove_pv(pvh, pmap, va)
838 struct pv_head *pvh;
839 struct pmap *pmap;
840 vaddr_t va;
841 {
842 struct pv_entry *pve, **prevptr;
843
844 prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
845 pve = *prevptr;
846 while (pve) {
847 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
848 *prevptr = pve->pv_next; /* remove it! */
849 if (pve->pv_flags & PT_W)
850 --pmap->pm_stats.wired_count;
851 break;
852 }
853 prevptr = &pve->pv_next; /* previous pointer */
854 pve = pve->pv_next; /* advance */
855 }
856 return(pve); /* return removed pve */
857 }
858
859 /*
860 *
861 * pmap_modify_pv: Update pv flags
862 *
863 * => caller should hold lock on pv_head [so that attrs can be adjusted]
864 * => caller should NOT adjust pmap's wire_count
865 * => we return the old flags
866 *
867 * Modify a physical-virtual mapping in the pv table
868 */
869
870 /*__inline */ u_int
871 pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
872 struct pmap *pmap;
873 vaddr_t va;
874 struct pv_head *pvh;
875 u_int bic_mask;
876 u_int eor_mask;
877 {
878 struct pv_entry *npv;
879 u_int flags, oflags;
880
881 /*
882 * There is at least one VA mapping this page.
883 */
884
885 for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
886 if (pmap == npv->pv_pmap && va == npv->pv_va) {
887 oflags = npv->pv_flags;
888 npv->pv_flags = flags =
889 ((oflags & ~bic_mask) ^ eor_mask);
890 if ((flags ^ oflags) & PT_W) {
891 if (flags & PT_W)
892 ++pmap->pm_stats.wired_count;
893 else
894 --pmap->pm_stats.wired_count;
895 }
896 return (oflags);
897 }
898 }
899 return (0);
900 }
901
902 /*
903 * Map the specified level 2 pagetable into the level 1 page table for
904 * the given pmap to cover a chunk of virtual address space starting from the
905 * address specified.
906 */
907 static /*__inline*/ void
908 pmap_map_in_l1(pmap, va, l2pa, selfref)
909 struct pmap *pmap;
910 vaddr_t va, l2pa;
911 boolean_t selfref;
912 {
913 vaddr_t ptva;
914
915 /* Calculate the index into the L1 page table. */
916 ptva = (va >> PDSHIFT) & ~3;
917
918 PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
919 pmap->pm_pdir, L1_PTE(l2pa), ptva));
920
921 /* Map page table into the L1. */
922 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
923 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
924 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
925 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
926
927 PDEBUG(0, printf("pt self reference %lx in %lx\n",
928 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
929
930 /* Map the page table into the page table area. */
931 if (selfref) {
932 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
933 L2_PTE_NC_NB(l2pa, AP_KRW);
934 }
935 /* XXX should be a purge */
936 /* cpu_tlb_flushD();*/
937 }
938
939 #if 0
940 static /*__inline*/ void
941 pmap_unmap_in_l1(pmap, va)
942 struct pmap *pmap;
943 vaddr_t va;
944 {
945 vaddr_t ptva;
946
947 /* Calculate the index into the L1 page table. */
948 ptva = (va >> PDSHIFT) & ~3;
949
950 /* Unmap page table from the L1. */
951 pmap->pm_pdir[ptva + 0] = 0;
952 pmap->pm_pdir[ptva + 1] = 0;
953 pmap->pm_pdir[ptva + 2] = 0;
954 pmap->pm_pdir[ptva + 3] = 0;
955
956 /* Unmap the page table from the page table area. */
957 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
958
959 /* XXX should be a purge */
960 /* cpu_tlb_flushD();*/
961 }
962 #endif
963
964 /*
965 * Used to map a range of physical addresses into kernel
966 * virtual address space.
967 *
968 * For now, VM is already on, we only need to map the
969 * specified memory.
970 */
971 vaddr_t
972 pmap_map(va, spa, epa, prot)
973 vaddr_t va, spa, epa;
974 int prot;
975 {
976 while (spa < epa) {
977 pmap_kenter_pa(va, spa, prot);
978 va += NBPG;
979 spa += NBPG;
980 }
981 pmap_update(pmap_kernel());
982 return(va);
983 }
984
985
986 /*
987 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
988 *
989 * bootstrap the pmap system. This is called from initarm and allows
990 * the pmap system to initailise any structures it requires.
991 *
992 * Currently this sets up the kernel_pmap that is statically allocated
993 * and also allocated virtual addresses for certain page hooks.
994 * Currently the only one page hook is allocated that is used
995 * to zero physical pages of memory.
996 * It also initialises the start and end address of the kernel data space.
997 */
998 extern paddr_t physical_freestart;
999 extern paddr_t physical_freeend;
1000
1001 char *boot_head;
1002
1003 void
1004 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1005 pd_entry_t *kernel_l1pt;
1006 pv_addr_t kernel_ptpt;
1007 {
1008 int loop;
1009 paddr_t start, end;
1010 #if NISADMA > 0
1011 paddr_t istart;
1012 psize_t isize;
1013 #endif
1014
1015 pmap_kernel()->pm_pdir = kernel_l1pt;
1016 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1017 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1018 simple_lock_init(&pmap_kernel()->pm_lock);
1019 pmap_kernel()->pm_obj.pgops = NULL;
1020 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1021 pmap_kernel()->pm_obj.uo_npages = 0;
1022 pmap_kernel()->pm_obj.uo_refs = 1;
1023
1024 /*
1025 * Initialize PAGE_SIZE-dependent variables.
1026 */
1027 uvm_setpagesize();
1028
1029 npages = 0;
1030 loop = 0;
1031 while (loop < bootconfig.dramblocks) {
1032 start = (paddr_t)bootconfig.dram[loop].address;
1033 end = start + (bootconfig.dram[loop].pages * NBPG);
1034 if (start < physical_freestart)
1035 start = physical_freestart;
1036 if (end > physical_freeend)
1037 end = physical_freeend;
1038 #if 0
1039 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1040 #endif
1041 #if NISADMA > 0
1042 if (pmap_isa_dma_range_intersect(start, end - start,
1043 &istart, &isize)) {
1044 /*
1045 * Place the pages that intersect with the
1046 * ISA DMA range onto the ISA DMA free list.
1047 */
1048 #if 0
1049 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1050 istart + isize - 1);
1051 #endif
1052 uvm_page_physload(atop(istart),
1053 atop(istart + isize), atop(istart),
1054 atop(istart + isize), VM_FREELIST_ISADMA);
1055 npages += atop(istart + isize) - atop(istart);
1056
1057 /*
1058 * Load the pieces that come before
1059 * the intersection into the default
1060 * free list.
1061 */
1062 if (start < istart) {
1063 #if 0
1064 printf(" BEFORE 0x%lx -> 0x%lx\n",
1065 start, istart - 1);
1066 #endif
1067 uvm_page_physload(atop(start),
1068 atop(istart), atop(start),
1069 atop(istart), VM_FREELIST_DEFAULT);
1070 npages += atop(istart) - atop(start);
1071 }
1072
1073 /*
1074 * Load the pieces that come after
1075 * the intersection into the default
1076 * free list.
1077 */
1078 if ((istart + isize) < end) {
1079 #if 0
1080 printf(" AFTER 0x%lx -> 0x%lx\n",
1081 (istart + isize), end - 1);
1082 #endif
1083 uvm_page_physload(atop(istart + isize),
1084 atop(end), atop(istart + isize),
1085 atop(end), VM_FREELIST_DEFAULT);
1086 npages += atop(end) - atop(istart + isize);
1087 }
1088 } else {
1089 uvm_page_physload(atop(start), atop(end),
1090 atop(start), atop(end), VM_FREELIST_DEFAULT);
1091 npages += atop(end) - atop(start);
1092 }
1093 #else /* NISADMA > 0 */
1094 uvm_page_physload(atop(start), atop(end),
1095 atop(start), atop(end), VM_FREELIST_DEFAULT);
1096 npages += atop(end) - atop(start);
1097 #endif /* NISADMA > 0 */
1098 ++loop;
1099 }
1100
1101 #ifdef MYCROFT_HACK
1102 printf("npages = %ld\n", npages);
1103 #endif
1104
1105 virtual_start = KERNEL_VM_BASE;
1106 virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
1107
1108 ALLOC_PAGE_HOOK(page_hook0, NBPG);
1109 ALLOC_PAGE_HOOK(page_hook1, NBPG);
1110
1111 /*
1112 * The mem special device needs a virtual hook but we don't
1113 * need a pte
1114 */
1115 memhook = (char *)virtual_start;
1116 virtual_start += NBPG;
1117
1118 msgbufaddr = (caddr_t)virtual_start;
1119 msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
1120 virtual_start += round_page(MSGBUFSIZE);
1121
1122 /*
1123 * init the static-global locks and global lists.
1124 */
1125 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1126 simple_lock_init(&pvalloc_lock);
1127 TAILQ_INIT(&pv_freepages);
1128 TAILQ_INIT(&pv_unusedpgs);
1129
1130 /*
1131 * compute the number of pages we have and then allocate RAM
1132 * for each pages' pv_head and saved attributes.
1133 */
1134 {
1135 int npages, lcv;
1136 vsize_t s;
1137
1138 npages = 0;
1139 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
1140 npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
1141 s = (vsize_t) (sizeof(struct pv_head) * npages +
1142 sizeof(char) * npages);
1143 s = round_page(s); /* round up */
1144 boot_head = (char *)uvm_pageboot_alloc(s);
1145 bzero((char *)boot_head, s);
1146 if (boot_head == 0)
1147 panic("pmap_init: unable to allocate pv_heads");
1148 }
1149
1150 /*
1151 * initialize the pmap pool.
1152 */
1153
1154 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1155 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1156
1157 cpu_cache_cleanD();
1158 }
1159
1160 /*
1161 * void pmap_init(void)
1162 *
1163 * Initialize the pmap module.
1164 * Called by vm_init() in vm/vm_init.c in order to initialise
1165 * any structures that the pmap system needs to map virtual memory.
1166 */
1167
1168 extern int physmem;
1169
1170 void
1171 pmap_init()
1172 {
1173 int lcv, i;
1174
1175 #ifdef MYCROFT_HACK
1176 printf("physmem = %d\n", physmem);
1177 #endif
1178
1179 /*
1180 * Set the available memory vars - These do not map to real memory
1181 * addresses and cannot as the physical memory is fragmented.
1182 * They are used by ps for %mem calculations.
1183 * One could argue whether this should be the entire memory or just
1184 * the memory that is useable in a user process.
1185 */
1186 avail_start = 0;
1187 avail_end = physmem * NBPG;
1188
1189 /* allocate pv_head stuff first */
1190 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1191 vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
1192 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
1193 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1194 for (i = 0;
1195 i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
1196 simple_lock_init(
1197 &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
1198 }
1199 }
1200
1201 /* now allocate attrs */
1202 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1203 vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
1204 boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
1205 (vm_physmem[lcv].end - vm_physmem[lcv].start));
1206 }
1207
1208 /*
1209 * now we need to free enough pv_entry structures to allow us to get
1210 * the kmem_map/kmem_object allocated and inited (done after this
1211 * function is finished). to do this we allocate one bootstrap page out
1212 * of kernel_map and use it to provide an initial pool of pv_entry
1213 * structures. we never free this page.
1214 */
1215
1216 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1217 if (pv_initpage == NULL)
1218 panic("pmap_init: pv_initpage");
1219 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1220 pv_nfpvents = 0;
1221 (void) pmap_add_pvpage(pv_initpage, FALSE);
1222
1223 #ifdef MYCROFT_HACK
1224 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1225 printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
1226 lcv,
1227 vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
1228 vm_physmem[lcv].start, vm_physmem[lcv].end);
1229 }
1230 #endif
1231 pmap_initialized = TRUE;
1232
1233 /* Initialise our L1 page table queues and counters */
1234 SIMPLEQ_INIT(&l1pt_static_queue);
1235 l1pt_static_queue_count = 0;
1236 l1pt_static_create_count = 0;
1237 SIMPLEQ_INIT(&l1pt_queue);
1238 l1pt_queue_count = 0;
1239 l1pt_create_count = 0;
1240 l1pt_reuse_count = 0;
1241 }
1242
1243 /*
1244 * pmap_postinit()
1245 *
1246 * This routine is called after the vm and kmem subsystems have been
1247 * initialised. This allows the pmap code to perform any initialisation
1248 * that can only be done one the memory allocation is in place.
1249 */
1250
1251 void
1252 pmap_postinit()
1253 {
1254 int loop;
1255 struct l1pt *pt;
1256
1257 #ifdef PMAP_STATIC_L1S
1258 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1259 #else /* PMAP_STATIC_L1S */
1260 for (loop = 0; loop < max_processes; ++loop) {
1261 #endif /* PMAP_STATIC_L1S */
1262 /* Allocate a L1 page table */
1263 pt = pmap_alloc_l1pt();
1264 if (!pt)
1265 panic("Cannot allocate static L1 page tables\n");
1266
1267 /* Clean it */
1268 bzero((void *)pt->pt_va, PD_SIZE);
1269 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1270 /* Add the page table to the queue */
1271 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1272 ++l1pt_static_queue_count;
1273 ++l1pt_static_create_count;
1274 }
1275 }
1276
1277
1278 /*
1279 * Create and return a physical map.
1280 *
1281 * If the size specified for the map is zero, the map is an actual physical
1282 * map, and may be referenced by the hardware.
1283 *
1284 * If the size specified is non-zero, the map will be used in software only,
1285 * and is bounded by that size.
1286 */
1287
1288 pmap_t
1289 pmap_create()
1290 {
1291 struct pmap *pmap;
1292
1293 /*
1294 * Fetch pmap entry from the pool
1295 */
1296
1297 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1298 /* XXX is this really needed! */
1299 memset(pmap, 0, sizeof(*pmap));
1300
1301 simple_lock_init(&pmap->pm_obj.vmobjlock);
1302 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1303 TAILQ_INIT(&pmap->pm_obj.memq);
1304 pmap->pm_obj.uo_npages = 0;
1305 pmap->pm_obj.uo_refs = 1;
1306 pmap->pm_stats.wired_count = 0;
1307 pmap->pm_stats.resident_count = 1;
1308
1309 /* Now init the machine part of the pmap */
1310 pmap_pinit(pmap);
1311 return(pmap);
1312 }
1313
1314 /*
1315 * pmap_alloc_l1pt()
1316 *
1317 * This routine allocates physical and virtual memory for a L1 page table
1318 * and wires it.
1319 * A l1pt structure is returned to describe the allocated page table.
1320 *
1321 * This routine is allowed to fail if the required memory cannot be allocated.
1322 * In this case NULL is returned.
1323 */
1324
1325 struct l1pt *
1326 pmap_alloc_l1pt(void)
1327 {
1328 paddr_t pa;
1329 vaddr_t va;
1330 struct l1pt *pt;
1331 int error;
1332 struct vm_page *m;
1333 pt_entry_t *ptes;
1334
1335 /* Allocate virtual address space for the L1 page table */
1336 va = uvm_km_valloc(kernel_map, PD_SIZE);
1337 if (va == 0) {
1338 #ifdef DIAGNOSTIC
1339 printf("pmap: Cannot allocate pageable memory for L1\n");
1340 #endif /* DIAGNOSTIC */
1341 return(NULL);
1342 }
1343
1344 /* Allocate memory for the l1pt structure */
1345 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1346
1347 /*
1348 * Allocate pages from the VM system.
1349 */
1350 TAILQ_INIT(&pt->pt_plist);
1351 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1352 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1353 if (error) {
1354 #ifdef DIAGNOSTIC
1355 printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
1356 error);
1357 #endif /* DIAGNOSTIC */
1358 /* Release the resources we already have claimed */
1359 free(pt, M_VMPMAP);
1360 uvm_km_free(kernel_map, va, PD_SIZE);
1361 return(NULL);
1362 }
1363
1364 /* Map our physical pages into our virtual space */
1365 pt->pt_va = va;
1366 m = pt->pt_plist.tqh_first;
1367 ptes = pmap_map_ptes(pmap_kernel());
1368 while (m && va < (pt->pt_va + PD_SIZE)) {
1369 pa = VM_PAGE_TO_PHYS(m);
1370
1371 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1372
1373 /* Revoke cacheability and bufferability */
1374 /* XXX should be done better than this */
1375 ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1376
1377 va += NBPG;
1378 m = m->pageq.tqe_next;
1379 }
1380 pmap_unmap_ptes(pmap_kernel());
1381 pmap_update(pmap_kernel());
1382
1383 #ifdef DIAGNOSTIC
1384 if (m)
1385 panic("pmap_alloc_l1pt: pglist not empty\n");
1386 #endif /* DIAGNOSTIC */
1387
1388 pt->pt_flags = 0;
1389 return(pt);
1390 }
1391
1392 /*
1393 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1394 */
1395 void
1396 pmap_free_l1pt(pt)
1397 struct l1pt *pt;
1398 {
1399 /* Separate the physical memory for the virtual space */
1400 pmap_kremove(pt->pt_va, PD_SIZE);
1401 pmap_update(pmap_kernel());
1402
1403 /* Return the physical memory */
1404 uvm_pglistfree(&pt->pt_plist);
1405
1406 /* Free the virtual space */
1407 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1408
1409 /* Free the l1pt structure */
1410 free(pt, M_VMPMAP);
1411 }
1412
1413 /*
1414 * Allocate a page directory.
1415 * This routine will either allocate a new page directory from the pool
1416 * of L1 page tables currently held by the kernel or it will allocate
1417 * a new one via pmap_alloc_l1pt().
1418 * It will then initialise the l1 page table for use.
1419 */
1420 int
1421 pmap_allocpagedir(pmap)
1422 struct pmap *pmap;
1423 {
1424 paddr_t pa;
1425 struct l1pt *pt;
1426 pt_entry_t *pte;
1427
1428 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1429
1430 /* Do we have any spare L1's lying around ? */
1431 if (l1pt_static_queue_count) {
1432 --l1pt_static_queue_count;
1433 pt = l1pt_static_queue.sqh_first;
1434 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1435 } else if (l1pt_queue_count) {
1436 --l1pt_queue_count;
1437 pt = l1pt_queue.sqh_first;
1438 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1439 ++l1pt_reuse_count;
1440 } else {
1441 pt = pmap_alloc_l1pt();
1442 if (!pt)
1443 return(ENOMEM);
1444 ++l1pt_create_count;
1445 }
1446
1447 /* Store the pointer to the l1 descriptor in the pmap. */
1448 pmap->pm_l1pt = pt;
1449
1450 /* Get the physical address of the start of the l1 */
1451 pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1452
1453 /* Store the virtual address of the l1 in the pmap. */
1454 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1455
1456 /* Clean the L1 if it is dirty */
1457 if (!(pt->pt_flags & PTFLAG_CLEAN))
1458 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1459
1460 /* Do we already have the kernel mappings ? */
1461 if (!(pt->pt_flags & PTFLAG_KPT)) {
1462 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1463
1464 bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1465 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1466 KERNEL_PD_SIZE);
1467 pt->pt_flags |= PTFLAG_KPT;
1468 }
1469
1470 /* Allocate a page table to map all the page tables for this pmap */
1471
1472 #ifdef DIAGNOSTIC
1473 if (pmap->pm_vptpt) {
1474 /* XXX What if we have one already ? */
1475 panic("pmap_allocpagedir: have pt already\n");
1476 }
1477 #endif /* DIAGNOSTIC */
1478 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1479 if (pmap->pm_vptpt == 0) {
1480 pmap_freepagedir(pmap);
1481 return(ENOMEM);
1482 }
1483
1484 (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1485 pmap->pm_pptpt &= PG_FRAME;
1486 /* Revoke cacheability and bufferability */
1487 /* XXX should be done better than this */
1488 pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1489 *pte = *pte & ~(PT_C | PT_B);
1490
1491 /* Wire in this page table */
1492 pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
1493
1494 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1495
1496 /*
1497 * Map the kernel page tables for 0xf0000000 +
1498 * into the page table used to map the
1499 * pmap's page tables
1500 */
1501 bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1502 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1503 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1504 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1505 (KERNEL_PD_SIZE >> 2));
1506
1507 return(0);
1508 }
1509
1510
1511 /*
1512 * Initialize a preallocated and zeroed pmap structure,
1513 * such as one in a vmspace structure.
1514 */
1515
1516 void
1517 pmap_pinit(pmap)
1518 struct pmap *pmap;
1519 {
1520 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1521
1522 /* Keep looping until we succeed in allocating a page directory */
1523 while (pmap_allocpagedir(pmap) != 0) {
1524 /*
1525 * Ok we failed to allocate a suitable block of memory for an
1526 * L1 page table. This means that either:
1527 * 1. 16KB of virtual address space could not be allocated
1528 * 2. 16KB of physically contiguous memory on a 16KB boundary
1529 * could not be allocated.
1530 *
1531 * Since we cannot fail we will sleep for a while and try
1532 * again.
1533 */
1534 (void) ltsleep(&lbolt, PVM, "l1ptwait", hz >> 3, NULL);
1535 }
1536
1537 /* Map zero page for the pmap. This will also map the L2 for it */
1538 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1539 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1540 pmap_update(pmap);
1541 }
1542
1543
1544 void
1545 pmap_freepagedir(pmap)
1546 struct pmap *pmap;
1547 {
1548 /* Free the memory used for the page table mapping */
1549 if (pmap->pm_vptpt != 0)
1550 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1551
1552 /* junk the L1 page table */
1553 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1554 /* Add the page table to the queue */
1555 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1556 ++l1pt_static_queue_count;
1557 } else if (l1pt_queue_count < 8) {
1558 /* Add the page table to the queue */
1559 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1560 ++l1pt_queue_count;
1561 } else
1562 pmap_free_l1pt(pmap->pm_l1pt);
1563 }
1564
1565
1566 /*
1567 * Retire the given physical map from service.
1568 * Should only be called if the map contains no valid mappings.
1569 */
1570
1571 void
1572 pmap_destroy(pmap)
1573 struct pmap *pmap;
1574 {
1575 struct vm_page *page;
1576 int count;
1577
1578 if (pmap == NULL)
1579 return;
1580
1581 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1582
1583 /*
1584 * Drop reference count
1585 */
1586 simple_lock(&pmap->pm_obj.vmobjlock);
1587 count = --pmap->pm_obj.uo_refs;
1588 simple_unlock(&pmap->pm_obj.vmobjlock);
1589 if (count > 0) {
1590 return;
1591 }
1592
1593 /*
1594 * reference count is zero, free pmap resources and then free pmap.
1595 */
1596
1597 /* Remove the zero page mapping */
1598 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1599 pmap_update(pmap);
1600
1601 /*
1602 * Free any page tables still mapped
1603 * This is only temporay until pmap_enter can count the number
1604 * of mappings made in a page table. Then pmap_remove() can
1605 * reduce the count and free the pagetable when the count
1606 * reaches zero. Note that entries in this list should match the
1607 * contents of the ptpt, however this is faster than walking a 1024
1608 * entries looking for pt's
1609 * taken from i386 pmap.c
1610 */
1611 while (pmap->pm_obj.memq.tqh_first != NULL) {
1612 page = pmap->pm_obj.memq.tqh_first;
1613 #ifdef DIAGNOSTIC
1614 if (page->flags & PG_BUSY)
1615 panic("pmap_release: busy page table page");
1616 #endif
1617 /* pmap_page_protect? currently no need for it. */
1618
1619 page->wire_count = 0;
1620 uvm_pagefree(page);
1621 }
1622
1623 /* Free the page dir */
1624 pmap_freepagedir(pmap);
1625
1626 /* return the pmap to the pool */
1627 pool_put(&pmap_pmap_pool, pmap);
1628 }
1629
1630
1631 /*
1632 * void pmap_reference(struct pmap *pmap)
1633 *
1634 * Add a reference to the specified pmap.
1635 */
1636
1637 void
1638 pmap_reference(pmap)
1639 struct pmap *pmap;
1640 {
1641 if (pmap == NULL)
1642 return;
1643
1644 simple_lock(&pmap->pm_lock);
1645 pmap->pm_obj.uo_refs++;
1646 simple_unlock(&pmap->pm_lock);
1647 }
1648
1649 /*
1650 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1651 *
1652 * Return the start and end addresses of the kernel's virtual space.
1653 * These values are setup in pmap_bootstrap and are updated as pages
1654 * are allocated.
1655 */
1656
1657 void
1658 pmap_virtual_space(start, end)
1659 vaddr_t *start;
1660 vaddr_t *end;
1661 {
1662 *start = virtual_start;
1663 *end = virtual_end;
1664 }
1665
1666
1667 /*
1668 * Activate the address space for the specified process. If the process
1669 * is the current process, load the new MMU context.
1670 */
1671 void
1672 pmap_activate(p)
1673 struct proc *p;
1674 {
1675 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1676 struct pcb *pcb = &p->p_addr->u_pcb;
1677
1678 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1679 (paddr_t *)&pcb->pcb_pagedir);
1680
1681 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1682 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1683
1684 if (p == curproc) {
1685 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1686 setttb((u_int)pcb->pcb_pagedir);
1687 }
1688 #if 0
1689 pmap->pm_pdchanged = FALSE;
1690 #endif
1691 }
1692
1693
1694 /*
1695 * Deactivate the address space of the specified process.
1696 */
1697 void
1698 pmap_deactivate(p)
1699 struct proc *p;
1700 {
1701 }
1702
1703
1704 /*
1705 * pmap_clean_page()
1706 *
1707 * This is a local function used to work out the best strategy to clean
1708 * a single page referenced by its entry in the PV table. It's used by
1709 * pmap_copy_page, pmap_zero page and maybe some others later on.
1710 *
1711 * Its policy is effectively:
1712 * o If there are no mappings, we don't bother doing anything with the cache.
1713 * o If there is one mapping, we clean just that page.
1714 * o If there are multiple mappings, we clean the entire cache.
1715 *
1716 * So that some functions can be further optimised, it returns 0 if it didn't
1717 * clean the entire cache, or 1 if it did.
1718 *
1719 * XXX One bug in this routine is that if the pv_entry has a single page
1720 * mapped at 0x00000000 a whole cache clean will be performed rather than
1721 * just the 1 page. Since this should not occur in everyday use and if it does
1722 * it will just result in not the most efficient clean for the page.
1723 */
1724 static int
1725 pmap_clean_page(pv, is_src)
1726 struct pv_entry *pv;
1727 boolean_t is_src;
1728 {
1729 struct pmap *pmap;
1730 struct pv_entry *npv;
1731 int cache_needs_cleaning = 0;
1732 vaddr_t page_to_clean = 0;
1733
1734 if (pv == NULL)
1735 /* nothing mapped in so nothing to flush */
1736 return (0);
1737
1738 /* Since we flush the cache each time we change curproc, we
1739 * only need to flush the page if it is in the current pmap.
1740 */
1741 if (curproc)
1742 pmap = curproc->p_vmspace->vm_map.pmap;
1743 else
1744 pmap = pmap_kernel();
1745
1746 for (npv = pv; npv; npv = npv->pv_next) {
1747 if (npv->pv_pmap == pmap) {
1748 /* The page is mapped non-cacheable in
1749 * this map. No need to flush the cache.
1750 */
1751 if (npv->pv_flags & PT_NC) {
1752 #ifdef DIAGNOSTIC
1753 if (cache_needs_cleaning)
1754 panic("pmap_clean_page: "
1755 "cache inconsistency");
1756 #endif
1757 break;
1758 }
1759 #if 0
1760 /* This doesn't work, because pmap_protect
1761 doesn't flush changes on pages that it
1762 has write-protected. */
1763
1764 /* If the page is not writable and this
1765 is the source, then there is no need
1766 to flush it from the cache. */
1767 else if (is_src && ! (npv->pv_flags & PT_Wr))
1768 continue;
1769 #endif
1770 if (cache_needs_cleaning){
1771 page_to_clean = 0;
1772 break;
1773 }
1774 else
1775 page_to_clean = npv->pv_va;
1776 cache_needs_cleaning = 1;
1777 }
1778 }
1779
1780 if (page_to_clean)
1781 cpu_cache_purgeID_rng(page_to_clean, NBPG);
1782 else if (cache_needs_cleaning) {
1783 cpu_cache_purgeID();
1784 return (1);
1785 }
1786 return (0);
1787 }
1788
1789 /*
1790 * pmap_find_pv()
1791 *
1792 * This is a local function that finds a PV head for a given physical page.
1793 * This is a common op, and this function removes loads of ifdefs in the code.
1794 */
1795 static __inline struct pv_head *
1796 pmap_find_pvh(phys)
1797 paddr_t phys;
1798 {
1799 int bank, off;
1800 struct pv_head *pvh;
1801
1802 if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1803 panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1804 pvh = &vm_physmem[bank].pmseg.pvhead[off];
1805 return (pvh);
1806 }
1807
1808 /*
1809 * pmap_zero_page()
1810 *
1811 * Zero a given physical page by mapping it at a page hook point.
1812 * In doing the zero page op, the page we zero is mapped cachable, as with
1813 * StrongARM accesses to non-cached pages are non-burst making writing
1814 * _any_ bulk data very slow.
1815 */
1816 void
1817 pmap_zero_page(phys)
1818 paddr_t phys;
1819 {
1820 struct pv_head *pvh;
1821
1822 /* Get an entry for this page, and clean it it. */
1823 pvh = pmap_find_pvh(phys);
1824 simple_lock(&pvh->pvh_lock);
1825 pmap_clean_page(pvh->pvh_list, FALSE);
1826 simple_unlock(&pvh->pvh_lock);
1827
1828 /*
1829 * Hook in the page, zero it, and purge the cache for that
1830 * zeroed page. Invalidate the TLB as needed.
1831 */
1832 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1833 cpu_tlb_flushD_SE(page_hook0.va);
1834 bzero_page(page_hook0.va);
1835 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1836 }
1837
1838 /* pmap_pageidlezero()
1839 *
1840 * The same as above, except that we assume that the page is not
1841 * mapped. This means we never have to flush the cache first. Called
1842 * from the idle loop.
1843 */
1844 boolean_t
1845 pmap_pageidlezero(phys)
1846 paddr_t phys;
1847 {
1848 int i, *ptr;
1849 boolean_t rv = TRUE;
1850
1851 #ifdef DIAGNOSTIC
1852 struct pv_head *pvh;
1853
1854 pvh = pmap_find_pvh(phys);
1855 if (pvh->pvh_list != NULL)
1856 panic("pmap_pageidlezero: zeroing mapped page\n");
1857 #endif
1858
1859 /*
1860 * Hook in the page, zero it, and purge the cache for that
1861 * zeroed page. Invalidate the TLB as needed.
1862 */
1863 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1864 cpu_tlb_flushD_SE(page_hook0.va);
1865
1866 for (i = 0, ptr = (int *)page_hook0.va;
1867 i < (NBPG / sizeof(int)); i++) {
1868 if (sched_whichqs != 0) {
1869 /*
1870 * A process has become ready. Abort now,
1871 * so we don't keep it waiting while we
1872 * do slow memory access to finish this
1873 * page.
1874 */
1875 rv = FALSE;
1876 break;
1877 }
1878 *ptr++ = 0;
1879 }
1880
1881 if (rv)
1882 /*
1883 * if we aborted we'll rezero this page again later so don't
1884 * purge it unless we finished it
1885 */
1886 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1887 return (rv);
1888 }
1889
1890 /*
1891 * pmap_copy_page()
1892 *
1893 * Copy one physical page into another, by mapping the pages into
1894 * hook points. The same comment regarding cachability as in
1895 * pmap_zero_page also applies here.
1896 */
1897 void
1898 pmap_copy_page(src, dest)
1899 paddr_t src;
1900 paddr_t dest;
1901 {
1902 struct pv_head *src_pvh, *dest_pvh;
1903 boolean_t cleanedcache;
1904
1905 /* Get PV entries for the pages, and clean them if needed. */
1906 src_pvh = pmap_find_pvh(src);
1907
1908 simple_lock(&src_pvh->pvh_lock);
1909 cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
1910 simple_unlock(&src_pvh->pvh_lock);
1911
1912 if (cleanedcache == 0) {
1913 dest_pvh = pmap_find_pvh(dest);
1914 simple_lock(&dest_pvh->pvh_lock);
1915 pmap_clean_page(dest_pvh->pvh_list, FALSE);
1916 simple_unlock(&dest_pvh->pvh_lock);
1917 }
1918 /*
1919 * Map the pages into the page hook points, copy them, and purge
1920 * the cache for the appropriate page. Invalidate the TLB
1921 * as required.
1922 */
1923 *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1924 *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1925 cpu_tlb_flushD_SE(page_hook0.va);
1926 cpu_tlb_flushD_SE(page_hook1.va);
1927 bcopy_page(page_hook0.va, page_hook1.va);
1928 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1929 cpu_cache_purgeD_rng(page_hook1.va, NBPG);
1930 }
1931
1932 /*
1933 * int pmap_next_phys_page(paddr_t *addr)
1934 *
1935 * Allocate another physical page returning true or false depending
1936 * on whether a page could be allocated.
1937 */
1938
1939 paddr_t
1940 pmap_next_phys_page(addr)
1941 paddr_t addr;
1942
1943 {
1944 int loop;
1945
1946 if (addr < bootconfig.dram[0].address)
1947 return(bootconfig.dram[0].address);
1948
1949 loop = 0;
1950
1951 while (bootconfig.dram[loop].address != 0
1952 && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
1953 ++loop;
1954
1955 if (bootconfig.dram[loop].address == 0)
1956 return(0);
1957
1958 addr += NBPG;
1959
1960 if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
1961 if (bootconfig.dram[loop + 1].address == 0)
1962 return(0);
1963 addr = bootconfig.dram[loop + 1].address;
1964 }
1965
1966 return(addr);
1967 }
1968
1969 #if 0
1970 void
1971 pmap_pte_addref(pmap, va)
1972 struct pmap *pmap;
1973 vaddr_t va;
1974 {
1975 pd_entry_t *pde;
1976 paddr_t pa;
1977 struct vm_page *m;
1978
1979 if (pmap == pmap_kernel())
1980 return;
1981
1982 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1983 pa = pmap_pte_pa(pde);
1984 m = PHYS_TO_VM_PAGE(pa);
1985 ++m->wire_count;
1986 #ifdef MYCROFT_HACK
1987 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1988 pmap, va, pde, pa, m, m->wire_count);
1989 #endif
1990 }
1991
1992 void
1993 pmap_pte_delref(pmap, va)
1994 struct pmap *pmap;
1995 vaddr_t va;
1996 {
1997 pd_entry_t *pde;
1998 paddr_t pa;
1999 struct vm_page *m;
2000
2001 if (pmap == pmap_kernel())
2002 return;
2003
2004 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2005 pa = pmap_pte_pa(pde);
2006 m = PHYS_TO_VM_PAGE(pa);
2007 --m->wire_count;
2008 #ifdef MYCROFT_HACK
2009 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2010 pmap, va, pde, pa, m, m->wire_count);
2011 #endif
2012 if (m->wire_count == 0) {
2013 #ifdef MYCROFT_HACK
2014 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2015 pmap, va, pde, pa, m);
2016 #endif
2017 pmap_unmap_in_l1(pmap, va);
2018 uvm_pagefree(m);
2019 --pmap->pm_stats.resident_count;
2020 }
2021 }
2022 #else
2023 #define pmap_pte_addref(pmap, va)
2024 #define pmap_pte_delref(pmap, va)
2025 #endif
2026
2027 /*
2028 * Since we have a virtually indexed cache, we may need to inhibit caching if
2029 * there is more than one mapping and at least one of them is writable.
2030 * Since we purge the cache on every context switch, we only need to check for
2031 * other mappings within the same pmap, or kernel_pmap.
2032 * This function is also called when a page is unmapped, to possibly reenable
2033 * caching on any remaining mappings.
2034 *
2035 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2036 */
2037 __inline static void
2038 pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2039 boolean_t clear_cache)
2040 {
2041 if (pmap == pmap_kernel())
2042 pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
2043 else
2044 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2045 }
2046
2047 static void
2048 pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2049 boolean_t clear_cache)
2050 {
2051 int user_entries = 0;
2052 int user_writable = 0;
2053 int user_cacheable = 0;
2054 int kernel_entries = 0;
2055 int kernel_writable = 0;
2056 int kernel_cacheable = 0;
2057 struct pv_entry *pv;
2058 struct pmap *last_pmap = pmap;
2059
2060 #ifdef DIAGNOSTIC
2061 if (pmap != pmap_kernel())
2062 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2063 #endif
2064
2065 /*
2066 * Pass one, see if there are both kernel and user pmaps for
2067 * this page. Calculate whether there are user-writable or
2068 * kernel-writable pages.
2069 */
2070 for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
2071 if (pv->pv_pmap != pmap) {
2072 user_entries++;
2073 if (pv->pv_flags & PT_Wr)
2074 user_writable++;
2075 if ((pv->pv_flags & PT_NC) == 0)
2076 user_cacheable++;
2077 } else {
2078 kernel_entries++;
2079 if (pv->pv_flags & PT_Wr)
2080 kernel_writable++;
2081 if ((pv->pv_flags & PT_NC) == 0)
2082 kernel_cacheable++;
2083 }
2084 }
2085
2086 /*
2087 * We know we have just been updating a kernel entry, so if
2088 * all user pages are already cacheable, then there is nothing
2089 * further to do.
2090 */
2091 if (kernel_entries == 0 &&
2092 user_cacheable == user_entries)
2093 return;
2094
2095 if (user_entries) {
2096 /*
2097 * Scan over the list again, for each entry, if it
2098 * might not be set correctly, call pmap_vac_me_user
2099 * to recalculate the settings.
2100 */
2101 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
2102 /*
2103 * We know kernel mappings will get set
2104 * correctly in other calls. We also know
2105 * that if the pmap is the same as last_pmap
2106 * then we've just handled this entry.
2107 */
2108 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2109 continue;
2110 /*
2111 * If there are kernel entries and this page
2112 * is writable but non-cacheable, then we can
2113 * skip this entry also.
2114 */
2115 if (kernel_entries > 0 &&
2116 (pv->pv_flags & (PT_NC | PT_Wr)) ==
2117 (PT_NC | PT_Wr))
2118 continue;
2119 /*
2120 * Similarly if there are no kernel-writable
2121 * entries and the page is already
2122 * read-only/cacheable.
2123 */
2124 if (kernel_writable == 0 &&
2125 (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2126 continue;
2127 /*
2128 * For some of the remaining cases, we know
2129 * that we must recalculate, but for others we
2130 * can't tell if they are correct or not, so
2131 * we recalculate anyway.
2132 */
2133 pmap_unmap_ptes(last_pmap);
2134 last_pmap = pv->pv_pmap;
2135 ptes = pmap_map_ptes(last_pmap);
2136 pmap_vac_me_user(last_pmap, pvh, ptes,
2137 pmap_is_curpmap(last_pmap));
2138 }
2139 /* Restore the pte mapping that was passed to us. */
2140 if (last_pmap != pmap) {
2141 pmap_unmap_ptes(last_pmap);
2142 ptes = pmap_map_ptes(pmap);
2143 }
2144 if (kernel_entries == 0)
2145 return;
2146 }
2147
2148 pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2149 return;
2150 }
2151
2152 static void
2153 pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2154 boolean_t clear_cache)
2155 {
2156 struct pmap *kpmap = pmap_kernel();
2157 struct pv_entry *pv, *npv;
2158 int entries = 0;
2159 int writable = 0;
2160 int cacheable_entries = 0;
2161 int kern_cacheable = 0;
2162 int other_writable = 0;
2163
2164 pv = pvh->pvh_list;
2165 KASSERT(ptes != NULL);
2166
2167 /*
2168 * Count mappings and writable mappings in this pmap.
2169 * Include kernel mappings as part of our own.
2170 * Keep a pointer to the first one.
2171 */
2172 for (npv = pv; npv; npv = npv->pv_next) {
2173 /* Count mappings in the same pmap */
2174 if (pmap == npv->pv_pmap ||
2175 kpmap == npv->pv_pmap) {
2176 if (entries++ == 0)
2177 pv = npv;
2178 /* Cacheable mappings */
2179 if ((npv->pv_flags & PT_NC) == 0) {
2180 cacheable_entries++;
2181 if (kpmap == npv->pv_pmap)
2182 kern_cacheable++;
2183 }
2184 /* Writable mappings */
2185 if (npv->pv_flags & PT_Wr)
2186 ++writable;
2187 } else if (npv->pv_flags & PT_Wr)
2188 other_writable = 1;
2189 }
2190
2191 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2192 "writable %d cacheable %d %s\n", pmap, entries, writable,
2193 cacheable_entries, clear_cache ? "clean" : "no clean"));
2194
2195 /*
2196 * Enable or disable caching as necessary.
2197 * Note: the first entry might be part of the kernel pmap,
2198 * so we can't assume this is indicative of the state of the
2199 * other (maybe non-kpmap) entries.
2200 */
2201 if ((entries > 1 && writable) ||
2202 (entries > 0 && pmap == kpmap && other_writable)) {
2203 if (cacheable_entries == 0)
2204 return;
2205 for (npv = pv; npv; npv = npv->pv_next) {
2206 if ((pmap == npv->pv_pmap
2207 || kpmap == npv->pv_pmap) &&
2208 (npv->pv_flags & PT_NC) == 0) {
2209 ptes[arm_byte_to_page(npv->pv_va)] &=
2210 ~(PT_C | PT_B);
2211 npv->pv_flags |= PT_NC;
2212 /*
2213 * If this page needs flushing from the
2214 * cache, and we aren't going to do it
2215 * below, do it now.
2216 */
2217 if ((cacheable_entries < 4 &&
2218 (clear_cache || npv->pv_pmap == kpmap)) ||
2219 (npv->pv_pmap == kpmap &&
2220 !clear_cache && kern_cacheable < 4)) {
2221 cpu_cache_purgeID_rng(npv->pv_va,
2222 NBPG);
2223 cpu_tlb_flushID_SE(npv->pv_va);
2224 }
2225 }
2226 }
2227 if ((clear_cache && cacheable_entries >= 4) ||
2228 kern_cacheable >= 4) {
2229 cpu_cache_purgeID();
2230 cpu_tlb_flushID();
2231 }
2232 } else if (entries > 0) {
2233 /*
2234 * Turn cacheing back on for some pages. If it is a kernel
2235 * page, only do so if there are no other writable pages.
2236 */
2237 for (npv = pv; npv; npv = npv->pv_next) {
2238 if ((pmap == npv->pv_pmap ||
2239 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2240 (npv->pv_flags & PT_NC)) {
2241 ptes[arm_byte_to_page(npv->pv_va)] |=
2242 (PT_C | PT_B);
2243 npv->pv_flags &= ~PT_NC;
2244 }
2245 }
2246 }
2247 }
2248
2249 /*
2250 * pmap_remove()
2251 *
2252 * pmap_remove is responsible for nuking a number of mappings for a range
2253 * of virtual address space in the current pmap. To do this efficiently
2254 * is interesting, because in a number of cases a wide virtual address
2255 * range may be supplied that contains few actual mappings. So, the
2256 * optimisations are:
2257 * 1. Try and skip over hunks of address space for which an L1 entry
2258 * does not exist.
2259 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2260 * maybe do just a partial cache clean. This path of execution is
2261 * complicated by the fact that the cache must be flushed _before_
2262 * the PTE is nuked, being a VAC :-)
2263 * 3. Maybe later fast-case a single page, but I don't think this is
2264 * going to make _that_ much difference overall.
2265 */
2266
2267 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2268
2269 void
2270 pmap_remove(pmap, sva, eva)
2271 struct pmap *pmap;
2272 vaddr_t sva;
2273 vaddr_t eva;
2274 {
2275 int cleanlist_idx = 0;
2276 struct pagelist {
2277 vaddr_t va;
2278 pt_entry_t *pte;
2279 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2280 pt_entry_t *pte = 0, *ptes;
2281 paddr_t pa;
2282 int pmap_active;
2283 struct pv_head *pvh;
2284
2285 /* Exit quick if there is no pmap */
2286 if (!pmap)
2287 return;
2288
2289 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2290
2291 sva &= PG_FRAME;
2292 eva &= PG_FRAME;
2293
2294 /*
2295 * we lock in the pmap => pv_head direction
2296 */
2297 PMAP_MAP_TO_HEAD_LOCK();
2298
2299 ptes = pmap_map_ptes(pmap);
2300 /* Get a page table pointer */
2301 while (sva < eva) {
2302 if (pmap_pde_v(pmap_pde(pmap, sva)))
2303 break;
2304 sva = (sva & PD_MASK) + NBPD;
2305 }
2306
2307 pte = &ptes[arm_byte_to_page(sva)];
2308 /* Note if the pmap is active thus require cache and tlb cleans */
2309 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2310 || (pmap == pmap_kernel()))
2311 pmap_active = 1;
2312 else
2313 pmap_active = 0;
2314
2315 /* Now loop along */
2316 while (sva < eva) {
2317 /* Check if we can move to the next PDE (l1 chunk) */
2318 if (!(sva & PT_MASK))
2319 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
2320 sva += NBPD;
2321 pte += arm_byte_to_page(NBPD);
2322 continue;
2323 }
2324
2325 /* We've found a valid PTE, so this page of PTEs has to go. */
2326 if (pmap_pte_v(pte)) {
2327 int bank, off;
2328
2329 /* Update statistics */
2330 --pmap->pm_stats.resident_count;
2331
2332 /*
2333 * Add this page to our cache remove list, if we can.
2334 * If, however the cache remove list is totally full,
2335 * then do a complete cache invalidation taking note
2336 * to backtrack the PTE table beforehand, and ignore
2337 * the lists in future because there's no longer any
2338 * point in bothering with them (we've paid the
2339 * penalty, so will carry on unhindered). Otherwise,
2340 * when we fall out, we just clean the list.
2341 */
2342 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2343 pa = pmap_pte_pa(pte);
2344
2345 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2346 /* Add to the clean list. */
2347 cleanlist[cleanlist_idx].pte = pte;
2348 cleanlist[cleanlist_idx].va = sva;
2349 cleanlist_idx++;
2350 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2351 int cnt;
2352
2353 /* Nuke everything if needed. */
2354 if (pmap_active) {
2355 cpu_cache_purgeID();
2356 cpu_tlb_flushID();
2357 }
2358
2359 /*
2360 * Roll back the previous PTE list,
2361 * and zero out the current PTE.
2362 */
2363 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2364 *cleanlist[cnt].pte = 0;
2365 pmap_pte_delref(pmap, cleanlist[cnt].va);
2366 }
2367 *pte = 0;
2368 pmap_pte_delref(pmap, sva);
2369 cleanlist_idx++;
2370 } else {
2371 /*
2372 * We've already nuked the cache and
2373 * TLB, so just carry on regardless,
2374 * and we won't need to do it again
2375 */
2376 *pte = 0;
2377 pmap_pte_delref(pmap, sva);
2378 }
2379
2380 /*
2381 * Update flags. In a number of circumstances,
2382 * we could cluster a lot of these and do a
2383 * number of sequential pages in one go.
2384 */
2385 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2386 struct pv_entry *pve;
2387 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2388 simple_lock(&pvh->pvh_lock);
2389 pve = pmap_remove_pv(pvh, pmap, sva);
2390 pmap_free_pv(pmap, pve);
2391 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2392 simple_unlock(&pvh->pvh_lock);
2393 }
2394 }
2395 sva += NBPG;
2396 pte++;
2397 }
2398
2399 pmap_unmap_ptes(pmap);
2400 /*
2401 * Now, if we've fallen through down to here, chances are that there
2402 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2403 */
2404 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2405 u_int cnt;
2406
2407 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2408 if (pmap_active) {
2409 cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
2410 *cleanlist[cnt].pte = 0;
2411 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2412 } else
2413 *cleanlist[cnt].pte = 0;
2414 pmap_pte_delref(pmap, cleanlist[cnt].va);
2415 }
2416 }
2417 PMAP_MAP_TO_HEAD_UNLOCK();
2418 }
2419
2420 /*
2421 * Routine: pmap_remove_all
2422 * Function:
2423 * Removes this physical page from
2424 * all physical maps in which it resides.
2425 * Reflects back modify bits to the pager.
2426 */
2427
2428 void
2429 pmap_remove_all(pa)
2430 paddr_t pa;
2431 {
2432 struct pv_entry *pv, *npv;
2433 struct pv_head *pvh;
2434 struct pmap *pmap;
2435 pt_entry_t *pte, *ptes;
2436
2437 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
2438
2439 /* set pv_head => pmap locking */
2440 PMAP_HEAD_TO_MAP_LOCK();
2441
2442 pvh = pmap_find_pvh(pa);
2443 simple_lock(&pvh->pvh_lock);
2444
2445 pv = pvh->pvh_list;
2446 if (pv == NULL)
2447 {
2448 PDEBUG(0, printf("free page\n"));
2449 simple_unlock(&pvh->pvh_lock);
2450 PMAP_HEAD_TO_MAP_UNLOCK();
2451 return;
2452 }
2453 pmap_clean_page(pv, FALSE);
2454
2455 while (pv) {
2456 pmap = pv->pv_pmap;
2457 ptes = pmap_map_ptes(pmap);
2458 pte = &ptes[arm_byte_to_page(pv->pv_va)];
2459
2460 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2461 pv->pv_va, pv->pv_flags));
2462 #ifdef DEBUG
2463 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
2464 || pmap_pte_pa(pte) != pa)
2465 panic("pmap_remove_all: bad mapping");
2466 #endif /* DEBUG */
2467
2468 /*
2469 * Update statistics
2470 */
2471 --pmap->pm_stats.resident_count;
2472
2473 /* Wired bit */
2474 if (pv->pv_flags & PT_W)
2475 --pmap->pm_stats.wired_count;
2476
2477 /*
2478 * Invalidate the PTEs.
2479 * XXX: should cluster them up and invalidate as many
2480 * as possible at once.
2481 */
2482
2483 #ifdef needednotdone
2484 reduce wiring count on page table pages as references drop
2485 #endif
2486
2487 *pte = 0;
2488 pmap_pte_delref(pmap, pv->pv_va);
2489
2490 npv = pv->pv_next;
2491 pmap_free_pv(pmap, pv);
2492 pv = npv;
2493 pmap_unmap_ptes(pmap);
2494 }
2495 pvh->pvh_list = NULL;
2496 simple_unlock(&pvh->pvh_lock);
2497 PMAP_HEAD_TO_MAP_UNLOCK();
2498
2499 PDEBUG(0, printf("done\n"));
2500 cpu_tlb_flushID();
2501 }
2502
2503
2504 /*
2505 * Set the physical protection on the specified range of this map as requested.
2506 */
2507
2508 void
2509 pmap_protect(pmap, sva, eva, prot)
2510 struct pmap *pmap;
2511 vaddr_t sva;
2512 vaddr_t eva;
2513 vm_prot_t prot;
2514 {
2515 pt_entry_t *pte = NULL, *ptes;
2516 int armprot;
2517 int flush = 0;
2518 paddr_t pa;
2519 int bank, off;
2520 struct pv_head *pvh;
2521
2522 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2523 pmap, sva, eva, prot));
2524
2525 if (~prot & VM_PROT_READ) {
2526 /* Just remove the mappings. */
2527 pmap_remove(pmap, sva, eva);
2528 return;
2529 }
2530 if (prot & VM_PROT_WRITE) {
2531 /*
2532 * If this is a read->write transition, just ignore it and let
2533 * uvm_fault() take care of it later.
2534 */
2535 return;
2536 }
2537
2538 sva &= PG_FRAME;
2539 eva &= PG_FRAME;
2540
2541 /* Need to lock map->head */
2542 PMAP_MAP_TO_HEAD_LOCK();
2543
2544 ptes = pmap_map_ptes(pmap);
2545 /*
2546 * We need to acquire a pointer to a page table page before entering
2547 * the following loop.
2548 */
2549 while (sva < eva) {
2550 if (pmap_pde_v(pmap_pde(pmap, sva)))
2551 break;
2552 sva = (sva & PD_MASK) + NBPD;
2553 }
2554
2555 pte = &ptes[arm_byte_to_page(sva)];
2556
2557 while (sva < eva) {
2558 /* only check once in a while */
2559 if ((sva & PT_MASK) == 0) {
2560 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
2561 /* We can race ahead here, to the next pde. */
2562 sva += NBPD;
2563 pte += arm_byte_to_page(NBPD);
2564 continue;
2565 }
2566 }
2567
2568 if (!pmap_pte_v(pte))
2569 goto next;
2570
2571 flush = 1;
2572
2573 armprot = 0;
2574 if (sva < VM_MAXUSER_ADDRESS)
2575 armprot |= PT_AP(AP_U);
2576 else if (sva < VM_MAX_ADDRESS)
2577 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2578 *pte = (*pte & 0xfffff00f) | armprot;
2579
2580 pa = pmap_pte_pa(pte);
2581
2582 /* Get the physical page index */
2583
2584 /* Clear write flag */
2585 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2586 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2587 simple_lock(&pvh->pvh_lock);
2588 (void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
2589 pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2590 simple_unlock(&pvh->pvh_lock);
2591 }
2592
2593 next:
2594 sva += NBPG;
2595 pte++;
2596 }
2597 pmap_unmap_ptes(pmap);
2598 PMAP_MAP_TO_HEAD_UNLOCK();
2599 if (flush)
2600 cpu_tlb_flushID();
2601 }
2602
2603 /*
2604 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2605 * int flags)
2606 *
2607 * Insert the given physical page (p) at
2608 * the specified virtual address (v) in the
2609 * target physical map with the protection requested.
2610 *
2611 * If specified, the page will be wired down, meaning
2612 * that the related pte can not be reclaimed.
2613 *
2614 * NB: This is the only routine which MAY NOT lazy-evaluate
2615 * or lose information. That is, this routine must actually
2616 * insert this page into the given map NOW.
2617 */
2618
2619 int
2620 pmap_enter(pmap, va, pa, prot, flags)
2621 struct pmap *pmap;
2622 vaddr_t va;
2623 paddr_t pa;
2624 vm_prot_t prot;
2625 int flags;
2626 {
2627 pt_entry_t *pte, *ptes;
2628 u_int npte;
2629 int bank, off;
2630 paddr_t opa;
2631 int nflags;
2632 boolean_t wired = (flags & PMAP_WIRED) != 0;
2633 struct pv_entry *pve;
2634 struct pv_head *pvh;
2635 int error;
2636
2637 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2638 va, pa, pmap, prot, wired));
2639
2640 #ifdef DIAGNOSTIC
2641 /* Valid address ? */
2642 if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2643 panic("pmap_enter: too big");
2644 if (pmap != pmap_kernel() && va != 0) {
2645 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2646 panic("pmap_enter: kernel page in user map");
2647 } else {
2648 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2649 panic("pmap_enter: user page in kernel map");
2650 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2651 panic("pmap_enter: entering PT page");
2652 }
2653 #endif
2654 /* get lock */
2655 PMAP_MAP_TO_HEAD_LOCK();
2656 /*
2657 * Get a pointer to the pte for this virtual address. If the
2658 * pte pointer is NULL then we are missing the L2 page table
2659 * so we need to create one.
2660 */
2661 /* XXX horrible hack to get us working with lockdebug */
2662 simple_lock(&pmap->pm_obj.vmobjlock);
2663 pte = pmap_pte(pmap, va);
2664 if (!pte) {
2665 struct vm_page *ptp;
2666
2667 /* if failure is allowed then don't try too hard */
2668 ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
2669 if (ptp == NULL) {
2670 if (flags & PMAP_CANFAIL) {
2671 error = ENOMEM;
2672 goto out;
2673 }
2674 panic("pmap_enter: get ptp failed");
2675 }
2676
2677 pte = pmap_pte(pmap, va);
2678 #ifdef DIAGNOSTIC
2679 if (!pte)
2680 panic("pmap_enter: no pte");
2681 #endif
2682 }
2683
2684 nflags = 0;
2685 if (prot & VM_PROT_WRITE)
2686 nflags |= PT_Wr;
2687 if (wired)
2688 nflags |= PT_W;
2689
2690 /* More debugging info */
2691 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2692 *pte));
2693
2694 /* Is the pte valid ? If so then this page is already mapped */
2695 if (pmap_pte_v(pte)) {
2696 /* Get the physical address of the current page mapped */
2697 opa = pmap_pte_pa(pte);
2698
2699 #ifdef MYCROFT_HACK
2700 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2701 #endif
2702
2703 /* Are we mapping the same page ? */
2704 if (opa == pa) {
2705 /* All we must be doing is changing the protection */
2706 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2707 va, pa));
2708
2709 /* Has the wiring changed ? */
2710 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2711 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2712 simple_lock(&pvh->pvh_lock);
2713 (void) pmap_modify_pv(pmap, va, pvh,
2714 PT_Wr | PT_W, nflags);
2715 simple_unlock(&pvh->pvh_lock);
2716 } else {
2717 pvh = NULL;
2718 }
2719 } else {
2720 /* We are replacing the page with a new one. */
2721 cpu_cache_purgeID_rng(va, NBPG);
2722
2723 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2724 va, pa, opa));
2725
2726 /*
2727 * If it is part of our managed memory then we
2728 * must remove it from the PV list
2729 */
2730 if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2731 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2732 simple_lock(&pvh->pvh_lock);
2733 pve = pmap_remove_pv(pvh, pmap, va);
2734 simple_unlock(&pvh->pvh_lock);
2735 } else {
2736 pve = NULL;
2737 }
2738
2739 goto enter;
2740 }
2741 } else {
2742 opa = 0;
2743 pve = NULL;
2744 pmap_pte_addref(pmap, va);
2745
2746 /* pte is not valid so we must be hooking in a new page */
2747 ++pmap->pm_stats.resident_count;
2748
2749 enter:
2750 /*
2751 * Enter on the PV list if part of our managed memory
2752 */
2753 bank = vm_physseg_find(atop(pa), &off);
2754
2755 if (pmap_initialized && (bank != -1)) {
2756 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2757 if (pve == NULL) {
2758 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2759 if (pve == NULL) {
2760 if (flags & PMAP_CANFAIL) {
2761 error = ENOMEM;
2762 goto out;
2763 }
2764 panic("pmap_enter: no pv entries available");
2765 }
2766 }
2767 /* enter_pv locks pvh when adding */
2768 pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
2769 } else {
2770 pvh = NULL;
2771 if (pve != NULL)
2772 pmap_free_pv(pmap, pve);
2773 }
2774 }
2775
2776 #ifdef MYCROFT_HACK
2777 if (mycroft_hack)
2778 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2779 #endif
2780
2781 /* Construct the pte, giving the correct access. */
2782 npte = (pa & PG_FRAME);
2783
2784 /* VA 0 is magic. */
2785 if (pmap != pmap_kernel() && va != 0)
2786 npte |= PT_AP(AP_U);
2787
2788 if (pmap_initialized && bank != -1) {
2789 #ifdef DIAGNOSTIC
2790 if ((flags & VM_PROT_ALL) & ~prot)
2791 panic("pmap_enter: access_type exceeds prot");
2792 #endif
2793 npte |= PT_C | PT_B;
2794 if (flags & VM_PROT_WRITE) {
2795 npte |= L2_SPAGE | PT_AP(AP_W);
2796 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2797 } else if (flags & VM_PROT_ALL) {
2798 npte |= L2_SPAGE;
2799 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2800 } else
2801 npte |= L2_INVAL;
2802 } else {
2803 if (prot & VM_PROT_WRITE)
2804 npte |= L2_SPAGE | PT_AP(AP_W);
2805 else if (prot & VM_PROT_ALL)
2806 npte |= L2_SPAGE;
2807 else
2808 npte |= L2_INVAL;
2809 }
2810
2811 #ifdef MYCROFT_HACK
2812 if (mycroft_hack)
2813 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2814 #endif
2815
2816 *pte = npte;
2817
2818 if (pmap_initialized && bank != -1)
2819 {
2820 boolean_t pmap_active = FALSE;
2821 /* XXX this will change once the whole of pmap_enter uses
2822 * map_ptes
2823 */
2824 ptes = pmap_map_ptes(pmap);
2825 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2826 || (pmap == pmap_kernel()))
2827 pmap_active = TRUE;
2828 simple_lock(&pvh->pvh_lock);
2829 pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
2830 simple_unlock(&pvh->pvh_lock);
2831 pmap_unmap_ptes(pmap);
2832 }
2833
2834 /* Better flush the TLB ... */
2835 cpu_tlb_flushID_SE(va);
2836 error = 0;
2837 out:
2838 simple_unlock(&pmap->pm_obj.vmobjlock);
2839 PMAP_MAP_TO_HEAD_UNLOCK();
2840 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2841
2842 return error;
2843 }
2844
2845 void
2846 pmap_kenter_pa(va, pa, prot)
2847 vaddr_t va;
2848 paddr_t pa;
2849 vm_prot_t prot;
2850 {
2851 struct pmap *pmap = pmap_kernel();
2852 pt_entry_t *pte;
2853 struct vm_page *pg;
2854
2855 if (!pmap_pde_v(pmap_pde(pmap, va))) {
2856
2857 /*
2858 * For the kernel pmaps it would be better to ensure
2859 * that they are always present, and to grow the
2860 * kernel as required.
2861 */
2862
2863 /* must lock the pmap */
2864 simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
2865 /* Allocate a page table */
2866 pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
2867 UVM_PGA_USERESERVE | UVM_PGA_ZERO);
2868 if (pg == NULL) {
2869 panic("pmap_kenter_pa: no free pages");
2870 }
2871 pg->flags &= ~PG_BUSY; /* never busy */
2872
2873 /* Wire this page table into the L1. */
2874 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
2875 simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
2876 }
2877 pte = vtopte(va);
2878 KASSERT(!pmap_pte_v(pte));
2879 *pte = L2_PTE(pa, AP_KRW);
2880 }
2881
2882 void
2883 pmap_kremove(va, len)
2884 vaddr_t va;
2885 vsize_t len;
2886 {
2887 pt_entry_t *pte;
2888
2889 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2890
2891 /*
2892 * We assume that we will only be called with small
2893 * regions of memory.
2894 */
2895
2896 KASSERT(pmap_pde_v(pmap_pde(pmap_kernel(), va)));
2897 pte = vtopte(va);
2898 cpu_cache_purgeID_rng(va, PAGE_SIZE);
2899 *pte = 0;
2900 cpu_tlb_flushID_SE(va);
2901 }
2902 }
2903
2904 /*
2905 * pmap_page_protect:
2906 *
2907 * Lower the permission for all mappings to a given page.
2908 */
2909
2910 void
2911 pmap_page_protect(pg, prot)
2912 struct vm_page *pg;
2913 vm_prot_t prot;
2914 {
2915 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2916
2917 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2918
2919 switch(prot) {
2920 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2921 case VM_PROT_READ|VM_PROT_WRITE:
2922 return;
2923
2924 case VM_PROT_READ:
2925 case VM_PROT_READ|VM_PROT_EXECUTE:
2926 pmap_copy_on_write(pa);
2927 break;
2928
2929 default:
2930 pmap_remove_all(pa);
2931 break;
2932 }
2933 }
2934
2935
2936 /*
2937 * Routine: pmap_unwire
2938 * Function: Clear the wired attribute for a map/virtual-address
2939 * pair.
2940 * In/out conditions:
2941 * The mapping must already exist in the pmap.
2942 */
2943
2944 void
2945 pmap_unwire(pmap, va)
2946 struct pmap *pmap;
2947 vaddr_t va;
2948 {
2949 pt_entry_t *pte;
2950 paddr_t pa;
2951 int bank, off;
2952 struct pv_head *pvh;
2953
2954 /*
2955 * Make sure pmap is valid. -dct
2956 */
2957 if (pmap == NULL)
2958 return;
2959
2960 /* Get the pte */
2961 pte = pmap_pte(pmap, va);
2962 if (!pte)
2963 return;
2964
2965 /* Extract the physical address of the page */
2966 pa = pmap_pte_pa(pte);
2967
2968 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2969 return;
2970 pvh = &vm_physmem[bank].pmseg.pvhead[off];
2971 simple_lock(&pvh->pvh_lock);
2972 /* Update the wired bit in the pv entry for this page. */
2973 (void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
2974 simple_unlock(&pvh->pvh_lock);
2975 }
2976
2977 /*
2978 * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
2979 *
2980 * Return the pointer to a page table entry corresponding to the supplied
2981 * virtual address.
2982 *
2983 * The page directory is first checked to make sure that a page table
2984 * for the address in question exists and if it does a pointer to the
2985 * entry is returned.
2986 *
2987 * The way this works is that that the kernel page tables are mapped
2988 * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
2989 * This allows page tables to be located quickly.
2990 */
2991 pt_entry_t *
2992 pmap_pte(pmap, va)
2993 struct pmap *pmap;
2994 vaddr_t va;
2995 {
2996 pt_entry_t *ptp;
2997 pt_entry_t *result;
2998
2999 /* The pmap must be valid */
3000 if (!pmap)
3001 return(NULL);
3002
3003 /* Return the address of the pte */
3004 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
3005 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
3006
3007 /* Do we have a valid pde ? If not we don't have a page table */
3008 if (!pmap_pde_v(pmap_pde(pmap, va))) {
3009 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
3010 pmap_pde(pmap, va)));
3011 return(NULL);
3012 }
3013
3014 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
3015 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3016 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3017 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
3018
3019 /*
3020 * If the pmap is the kernel pmap or the pmap is the active one
3021 * then we can just return a pointer to entry relative to
3022 * PROCESS_PAGE_TBLS_BASE.
3023 * Otherwise we need to map the page tables to an alternative
3024 * address and reference them there.
3025 */
3026 if (pmap == pmap_kernel() || pmap->pm_pptpt
3027 == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3028 + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
3029 ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3030 ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3031 } else {
3032 struct proc *p = curproc;
3033
3034 /* If we don't have a valid curproc use proc0 */
3035 /* Perhaps we should just use kernel_pmap instead */
3036 if (p == NULL)
3037 p = &proc0;
3038 #ifdef DIAGNOSTIC
3039 /*
3040 * The pmap should always be valid for the process so
3041 * panic if it is not.
3042 */
3043 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
3044 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
3045 va, p, p->p_vmspace);
3046 console_debugger();
3047 }
3048 /*
3049 * The pmap for the current process should be mapped. If it
3050 * is not then we have a problem.
3051 */
3052 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
3053 (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3054 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3055 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3056 printf("pmap pagetable = P%08lx current = P%08x ",
3057 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3058 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3059 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
3060 PG_FRAME));
3061 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
3062 panic("pmap_pte: current and pmap mismatch\n");
3063 }
3064 #endif
3065
3066 ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3067 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3068 pmap->pm_pptpt, FALSE);
3069 cpu_tlb_flushD();
3070 }
3071 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
3072 ((va >> (PGSHIFT-2)) & ~3)));
3073 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
3074 return(result);
3075 }
3076
3077 /*
3078 * Routine: pmap_extract
3079 * Function:
3080 * Extract the physical page address associated
3081 * with the given map/virtual_address pair.
3082 */
3083 boolean_t
3084 pmap_extract(pmap, va, pap)
3085 struct pmap *pmap;
3086 vaddr_t va;
3087 paddr_t *pap;
3088 {
3089 pt_entry_t *pte, *ptes;
3090 paddr_t pa;
3091
3092 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
3093
3094 /*
3095 * Get the pte for this virtual address.
3096 */
3097 ptes = pmap_map_ptes(pmap);
3098 pte = &ptes[arm_byte_to_page(va)];
3099
3100 /*
3101 * If there is no pte then there is no page table etc.
3102 * Is the pte valid ? If not then no paged is actually mapped here
3103 */
3104 if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
3105 pmap_unmap_ptes(pmap);
3106 return (FALSE);
3107 }
3108
3109 /* Return the physical address depending on the PTE type */
3110 /* XXX What about L1 section mappings ? */
3111 if ((*(pte) & L2_MASK) == L2_LPAGE) {
3112 /* Extract the physical address from the pte */
3113 pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
3114
3115 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
3116 (pa | (va & (L2_LPAGE_SIZE - 1)))));
3117
3118 if (pap != NULL)
3119 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
3120 } else {
3121 /* Extract the physical address from the pte */
3122 pa = pmap_pte_pa(pte);
3123
3124 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
3125 (pa | (va & ~PG_FRAME))));
3126
3127 if (pap != NULL)
3128 *pap = pa | (va & ~PG_FRAME);
3129 }
3130 pmap_unmap_ptes(pmap);
3131 return (TRUE);
3132 }
3133
3134
3135 /*
3136 * Copy the range specified by src_addr/len from the source map to the
3137 * range dst_addr/len in the destination map.
3138 *
3139 * This routine is only advisory and need not do anything.
3140 */
3141
3142 void
3143 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
3144 struct pmap *dst_pmap;
3145 struct pmap *src_pmap;
3146 vaddr_t dst_addr;
3147 vsize_t len;
3148 vaddr_t src_addr;
3149 {
3150 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
3151 dst_pmap, src_pmap, dst_addr, len, src_addr));
3152 }
3153
3154 #if defined(PMAP_DEBUG)
3155 void
3156 pmap_dump_pvlist(phys, m)
3157 vaddr_t phys;
3158 char *m;
3159 {
3160 struct pv_head *pvh;
3161 struct pv_entry *pv;
3162 int bank, off;
3163
3164 if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
3165 printf("INVALID PA\n");
3166 return;
3167 }
3168 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3169 simple_lock(&pvh->pvh_lock);
3170 printf("%s %08lx:", m, phys);
3171 if (pvh->pvh_list == NULL) {
3172 printf(" no mappings\n");
3173 return;
3174 }
3175
3176 for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
3177 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3178 pv->pv_va, pv->pv_flags);
3179
3180 printf("\n");
3181 simple_unlock(&pvh->pvh_lock);
3182 }
3183
3184 #endif /* PMAP_DEBUG */
3185
3186 __inline static boolean_t
3187 pmap_testbit(pa, setbits)
3188 paddr_t pa;
3189 unsigned int setbits;
3190 {
3191 int bank, off;
3192
3193 PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
3194
3195 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3196 return(FALSE);
3197
3198 /*
3199 * Check saved info only
3200 */
3201 if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
3202 PDEBUG(0, printf("pmap_attributes = %02x\n",
3203 vm_physmem[bank].pmseg.attrs[off]));
3204 return(TRUE);
3205 }
3206
3207 return(FALSE);
3208 }
3209
3210 static pt_entry_t *
3211 pmap_map_ptes(struct pmap *pmap)
3212 {
3213 struct proc *p;
3214
3215 /* the kernel's pmap is always accessible */
3216 if (pmap == pmap_kernel()) {
3217 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
3218 }
3219
3220 if (pmap_is_curpmap(pmap)) {
3221 simple_lock(&pmap->pm_obj.vmobjlock);
3222 return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3223 }
3224
3225 p = curproc;
3226
3227 if (p == NULL)
3228 p = &proc0;
3229
3230 /* need to lock both curpmap and pmap: use ordered locking */
3231 if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3232 simple_lock(&pmap->pm_obj.vmobjlock);
3233 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3234 } else {
3235 simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3236 simple_lock(&pmap->pm_obj.vmobjlock);
3237 }
3238
3239 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3240 pmap->pm_pptpt, FALSE);
3241 cpu_tlb_flushD();
3242 return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3243 }
3244
3245 /*
3246 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3247 */
3248
3249 static void
3250 pmap_unmap_ptes(pmap)
3251 struct pmap *pmap;
3252 {
3253 if (pmap == pmap_kernel()) {
3254 return;
3255 }
3256 if (pmap_is_curpmap(pmap)) {
3257 simple_unlock(&pmap->pm_obj.vmobjlock);
3258 } else {
3259 simple_unlock(&pmap->pm_obj.vmobjlock);
3260 simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3261 }
3262 }
3263
3264 /*
3265 * Modify pte bits for all ptes corresponding to the given physical address.
3266 * We use `maskbits' rather than `clearbits' because we're always passing
3267 * constants and the latter would require an extra inversion at run-time.
3268 */
3269
3270 static void
3271 pmap_clearbit(pa, maskbits)
3272 paddr_t pa;
3273 unsigned int maskbits;
3274 {
3275 struct pv_entry *pv;
3276 struct pv_head *pvh;
3277 pt_entry_t *pte;
3278 vaddr_t va;
3279 int bank, off, tlbentry;
3280
3281 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3282 pa, maskbits));
3283
3284 tlbentry = 0;
3285
3286 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3287 return;
3288 PMAP_HEAD_TO_MAP_LOCK();
3289 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3290 simple_lock(&pvh->pvh_lock);
3291
3292 /*
3293 * Clear saved attributes (modify, reference)
3294 */
3295 vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
3296
3297 if (pvh->pvh_list == NULL) {
3298 simple_unlock(&pvh->pvh_lock);
3299 PMAP_HEAD_TO_MAP_UNLOCK();
3300 return;
3301 }
3302
3303 /*
3304 * Loop over all current mappings setting/clearing as appropos
3305 */
3306 for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
3307 va = pv->pv_va;
3308 pv->pv_flags &= ~maskbits;
3309 pte = pmap_pte(pv->pv_pmap, va);
3310 KASSERT(pte != NULL);
3311 if (maskbits & (PT_Wr|PT_M))
3312 {
3313 if ((pv->pv_flags & PT_NC))
3314 {
3315 /*
3316 * entry is not cacheable, so reenable the cache,
3317 * nothing to flush
3318 */
3319 *pte |= (PT_C | PT_B);
3320 pv->pv_flags &= ~PT_NC;
3321 } else {
3322 /*
3323 * entry is cacheable check if pmap is current if it
3324 * is flush it, otherwise it won't be in the cache
3325 */
3326 if (pmap_is_curpmap(pv->pv_pmap))
3327 {
3328 /* entry is in current pmap purge it */
3329 cpu_cache_purgeID_rng(pv->pv_va, NBPG);
3330 }
3331 }
3332
3333 /* make the pte read only */
3334 *pte &= ~PT_AP(AP_W);
3335
3336 if (pmap_is_curpmap(pv->pv_pmap))
3337 /*
3338 * if we had cacheable pte's we'd clean the pte out to
3339 * memory here
3340 */
3341 /*
3342 * flush tlb entry as it's in the current pmap
3343 */
3344 cpu_tlb_flushID_SE(pv->pv_va);
3345
3346 }
3347 if (maskbits & PT_H)
3348 *pte = (*pte & ~L2_MASK) | L2_INVAL;
3349 }
3350 simple_unlock(&pvh->pvh_lock);
3351 PMAP_HEAD_TO_MAP_UNLOCK();
3352 }
3353
3354
3355 boolean_t
3356 pmap_clear_modify(pg)
3357 struct vm_page *pg;
3358 {
3359 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3360 boolean_t rv;
3361
3362 PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
3363 rv = pmap_testbit(pa, PT_M);
3364 pmap_clearbit(pa, PT_M);
3365 return rv;
3366 }
3367
3368
3369 boolean_t
3370 pmap_clear_reference(pg)
3371 struct vm_page *pg;
3372 {
3373 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3374 boolean_t rv;
3375
3376 PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
3377 rv = pmap_testbit(pa, PT_H);
3378 pmap_clearbit(pa, PT_H);
3379 return rv;
3380 }
3381
3382
3383 void
3384 pmap_copy_on_write(pa)
3385 paddr_t pa;
3386 {
3387 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
3388 pmap_clearbit(pa, PT_Wr);
3389 }
3390
3391
3392 boolean_t
3393 pmap_is_modified(pg)
3394 struct vm_page *pg;
3395 {
3396 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3397 boolean_t result;
3398
3399 result = pmap_testbit(pa, PT_M);
3400 PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
3401 return (result);
3402 }
3403
3404
3405 boolean_t
3406 pmap_is_referenced(pg)
3407 struct vm_page *pg;
3408 {
3409 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3410 boolean_t result;
3411
3412 result = pmap_testbit(pa, PT_H);
3413 PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
3414 return (result);
3415 }
3416
3417
3418 int
3419 pmap_modified_emulation(pmap, va)
3420 struct pmap *pmap;
3421 vaddr_t va;
3422 {
3423 pt_entry_t *pte;
3424 paddr_t pa;
3425 int bank, off;
3426 struct pv_head *pvh;
3427 u_int flags;
3428
3429 PDEBUG(2, printf("pmap_modified_emulation\n"));
3430
3431 /* Get the pte */
3432 pte = pmap_pte(pmap, va);
3433 if (!pte) {
3434 PDEBUG(2, printf("no pte\n"));
3435 return(0);
3436 }
3437
3438 PDEBUG(1, printf("*pte=%08x\n", *pte));
3439
3440 /* Check for a zero pte */
3441 if (*pte == 0)
3442 return(0);
3443
3444 /* This can happen if user code tries to access kernel memory. */
3445 if ((*pte & PT_AP(AP_W)) != 0)
3446 return (0);
3447
3448 /* Extract the physical address of the page */
3449 pa = pmap_pte_pa(pte);
3450 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3451 return(0);
3452
3453 PMAP_HEAD_TO_MAP_LOCK();
3454 /* Get the current flags for this page. */
3455 pvh = &vm_physmem[bank].pmseg.pvhead[off];
3456 /* XXX: needed if we hold head->map lock? */
3457 simple_lock(&pvh->pvh_lock);
3458
3459 flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
3460 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3461
3462 /*
3463 * Do the flags say this page is writable ? If not then it is a
3464 * genuine write fault. If yes then the write fault is our fault
3465 * as we did not reflect the write access in the PTE. Now we know
3466 * a write has occurred we can correct this and also set the
3467 * modified bit
3468 */
3469 if (~flags & PT_Wr) {
3470 simple_unlock(&pvh->pvh_lock);
3471 PMAP_HEAD_TO_MAP_UNLOCK();
3472 return(0);
3473 }
3474
3475 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
3476 va, pte, *pte));
3477 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
3478 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3479 PDEBUG(0, printf("->(%08x)\n", *pte));
3480
3481 simple_unlock(&pvh->pvh_lock);
3482 PMAP_HEAD_TO_MAP_UNLOCK();
3483 /* Return, indicating the problem has been dealt with */
3484 cpu_tlb_flushID_SE(va);
3485 return(1);
3486 }
3487
3488
3489 int
3490 pmap_handled_emulation(pmap, va)
3491 struct pmap *pmap;
3492 vaddr_t va;
3493 {
3494 pt_entry_t *pte;
3495 paddr_t pa;
3496 int bank, off;
3497
3498 PDEBUG(2, printf("pmap_handled_emulation\n"));
3499
3500 /* Get the pte */
3501 pte = pmap_pte(pmap, va);
3502 if (!pte) {
3503 PDEBUG(2, printf("no pte\n"));
3504 return(0);
3505 }
3506
3507 PDEBUG(1, printf("*pte=%08x\n", *pte));
3508
3509 /* Check for a zero pte */
3510 if (*pte == 0)
3511 return(0);
3512
3513 /* This can happen if user code tries to access kernel memory. */
3514 if ((*pte & L2_MASK) != L2_INVAL)
3515 return (0);
3516
3517 /* Extract the physical address of the page */
3518 pa = pmap_pte_pa(pte);
3519 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3520 return(0);
3521
3522 /*
3523 * Ok we just enable the pte and mark the attibs as handled
3524 */
3525 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
3526 va, pte, *pte));
3527 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
3528 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
3529 PDEBUG(0, printf("->(%08x)\n", *pte));
3530
3531 /* Return, indicating the problem has been dealt with */
3532 cpu_tlb_flushID_SE(va);
3533 return(1);
3534 }
3535
3536
3537
3538
3539 /*
3540 * pmap_collect: free resources held by a pmap
3541 *
3542 * => optional function.
3543 * => called when a process is swapped out to free memory.
3544 */
3545
3546 void
3547 pmap_collect(pmap)
3548 struct pmap *pmap;
3549 {
3550 }
3551
3552 /*
3553 * Routine: pmap_procwr
3554 *
3555 * Function:
3556 * Synchronize caches corresponding to [addr, addr+len) in p.
3557 *
3558 */
3559 void
3560 pmap_procwr(p, va, len)
3561 struct proc *p;
3562 vaddr_t va;
3563 int len;
3564 {
3565 /* We only need to do anything if it is the current process. */
3566 if (p == curproc)
3567 cpu_cache_syncI_rng(va, len);
3568 }
3569 /*
3570 * PTP functions
3571 */
3572
3573 /*
3574 * pmap_steal_ptp: Steal a PTP from somewhere else.
3575 *
3576 * This is just a placeholder, for now we never steal.
3577 */
3578
3579 static struct vm_page *
3580 pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
3581 {
3582 return (NULL);
3583 }
3584
3585 /*
3586 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3587 *
3588 * => pmap should NOT be pmap_kernel()
3589 * => pmap should be locked
3590 */
3591
3592 static struct vm_page *
3593 pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3594 {
3595 struct vm_page *ptp;
3596
3597 if (pmap_pde_v(pmap_pde(pmap, va))) {
3598
3599 /* valid... check hint (saves us a PA->PG lookup) */
3600 #if 0
3601 if (pmap->pm_ptphint &&
3602 ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3603 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3604 return (pmap->pm_ptphint);
3605 #endif
3606 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3607 #ifdef DIAGNOSTIC
3608 if (ptp == NULL)
3609 panic("pmap_get_ptp: unmanaged user PTP");
3610 #endif
3611 // pmap->pm_ptphint = ptp;
3612 return(ptp);
3613 }
3614
3615 /* allocate a new PTP (updates ptphint) */
3616 return(pmap_alloc_ptp(pmap, va, just_try));
3617 }
3618
3619 /*
3620 * pmap_alloc_ptp: allocate a PTP for a PMAP
3621 *
3622 * => pmap should already be locked by caller
3623 * => we use the ptp's wire_count to count the number of active mappings
3624 * in the PTP (we start it at one to prevent any chance this PTP
3625 * will ever leak onto the active/inactive queues)
3626 */
3627
3628 /*__inline */ static struct vm_page *
3629 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3630 {
3631 struct vm_page *ptp;
3632
3633 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3634 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3635 if (ptp == NULL) {
3636 if (just_try)
3637 return (NULL);
3638
3639 ptp = pmap_steal_ptp(pmap, va);
3640
3641 if (ptp == NULL)
3642 return (NULL);
3643 /* Stole a page, zero it. */
3644 pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
3645 }
3646
3647 /* got one! */
3648 ptp->flags &= ~PG_BUSY; /* never busy */
3649 ptp->wire_count = 1; /* no mappings yet */
3650 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3651 pmap->pm_stats.resident_count++; /* count PTP as resident */
3652 // pmap->pm_ptphint = ptp;
3653 return (ptp);
3654 }
3655
3656 /* End of pmap.c */
3657