pmap.c revision 1.251 1 /* $NetBSD: pmap.c,v 1.251 2013/02/01 15:02:31 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
69 *
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
93 */
94
95 /*
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
99 *
100 * This code is derived from software written for Brini by Mark Brinicombe
101 *
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
115 *
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
125 *
126 * RiscBSD kernel project
127 *
128 * pmap.c
129 *
130 * Machine dependent vm stuff
131 *
132 * Created : 20/09/94
133 */
134
135 /*
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
138 */
139
140 /*
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil (at) causality.com>.
143 */
144
145 /*
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
149 *
150 * There are still a few things outstanding at this time:
151 *
152 * - There are some unresolved issues for MP systems:
153 *
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
157 *
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
164 *
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
172 *
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
175 *
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
180 */
181
182 /*
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
185 */
186
187 /* Include header files */
188
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
194
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/pool.h>
201 #include <sys/kmem.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
205
206 #include <uvm/uvm.h>
207
208 #include <sys/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/cpuconf.h>
213 #include <arm/arm32/katelib.h>
214
215 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.251 2013/02/01 15:02:31 matt Exp $");
216
217 #ifdef PMAP_DEBUG
218
219 /* XXX need to get rid of all refs to this */
220 int pmap_debug_level = 0;
221
222 /*
223 * for switching to potentially finer grained debugging
224 */
225 #define PDB_FOLLOW 0x0001
226 #define PDB_INIT 0x0002
227 #define PDB_ENTER 0x0004
228 #define PDB_REMOVE 0x0008
229 #define PDB_CREATE 0x0010
230 #define PDB_PTPAGE 0x0020
231 #define PDB_GROWKERN 0x0040
232 #define PDB_BITS 0x0080
233 #define PDB_COLLECT 0x0100
234 #define PDB_PROTECT 0x0200
235 #define PDB_MAP_L1 0x0400
236 #define PDB_BOOTSTRAP 0x1000
237 #define PDB_PARANOIA 0x2000
238 #define PDB_WIRING 0x4000
239 #define PDB_PVDUMP 0x8000
240 #define PDB_VAC 0x10000
241 #define PDB_KENTER 0x20000
242 #define PDB_KREMOVE 0x40000
243 #define PDB_EXEC 0x80000
244
245 int debugmap = 1;
246 int pmapdebug = 0;
247 #define NPDEBUG(_lev_,_stat_) \
248 if (pmapdebug & (_lev_)) \
249 ((_stat_))
250
251 #else /* PMAP_DEBUG */
252 #define NPDEBUG(_lev_,_stat_) /* Nothing */
253 #endif /* PMAP_DEBUG */
254
255 /*
256 * pmap_kernel() points here
257 */
258 static struct pmap kernel_pmap_store;
259 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
260 #ifdef PMAP_NEED_ALLOC_POOLPAGE
261 int arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
262 #endif
263
264 /*
265 * Which pmap is currently 'live' in the cache
266 *
267 * XXXSCW: Fix for SMP ...
268 */
269 static pmap_t pmap_recent_user;
270
271 /*
272 * Pointer to last active lwp, or NULL if it exited.
273 */
274 struct lwp *pmap_previous_active_lwp;
275
276 /*
277 * Pool and cache that pmap structures are allocated from.
278 * We use a cache to avoid clearing the pm_l2[] array (1KB)
279 * in pmap_create().
280 */
281 static struct pool_cache pmap_cache;
282 static LIST_HEAD(, pmap) pmap_pmaps;
283
284 /*
285 * Pool of PV structures
286 */
287 static struct pool pmap_pv_pool;
288 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
289 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
290 static struct pool_allocator pmap_bootstrap_pv_allocator = {
291 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
292 };
293
294 /*
295 * Pool and cache of l2_dtable structures.
296 * We use a cache to avoid clearing the structures when they're
297 * allocated. (196 bytes)
298 */
299 static struct pool_cache pmap_l2dtable_cache;
300 static vaddr_t pmap_kernel_l2dtable_kva;
301
302 /*
303 * Pool and cache of L2 page descriptors.
304 * We use a cache to avoid clearing the descriptor table
305 * when they're allocated. (1KB)
306 */
307 static struct pool_cache pmap_l2ptp_cache;
308 static vaddr_t pmap_kernel_l2ptp_kva;
309 static paddr_t pmap_kernel_l2ptp_phys;
310
311 #ifdef PMAPCOUNTERS
312 #define PMAP_EVCNT_INITIALIZER(name) \
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
314
315 #ifdef PMAP_CACHE_VIPT
316 static struct evcnt pmap_ev_vac_clean_one =
317 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
318 static struct evcnt pmap_ev_vac_flush_one =
319 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
320 static struct evcnt pmap_ev_vac_flush_lots =
321 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
322 static struct evcnt pmap_ev_vac_flush_lots2 =
323 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
324 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
325 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
326 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
327 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
328
329 static struct evcnt pmap_ev_vac_color_new =
330 PMAP_EVCNT_INITIALIZER("new page color");
331 static struct evcnt pmap_ev_vac_color_reuse =
332 PMAP_EVCNT_INITIALIZER("ok first page color");
333 static struct evcnt pmap_ev_vac_color_ok =
334 PMAP_EVCNT_INITIALIZER("ok page color");
335 static struct evcnt pmap_ev_vac_color_blind =
336 PMAP_EVCNT_INITIALIZER("blind page color");
337 static struct evcnt pmap_ev_vac_color_change =
338 PMAP_EVCNT_INITIALIZER("change page color");
339 static struct evcnt pmap_ev_vac_color_erase =
340 PMAP_EVCNT_INITIALIZER("erase page color");
341 static struct evcnt pmap_ev_vac_color_none =
342 PMAP_EVCNT_INITIALIZER("no page color");
343 static struct evcnt pmap_ev_vac_color_restore =
344 PMAP_EVCNT_INITIALIZER("restore page color");
345
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
350 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
351 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
352 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
353 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
354 #endif
355
356 static struct evcnt pmap_ev_mappings =
357 PMAP_EVCNT_INITIALIZER("pages mapped");
358 static struct evcnt pmap_ev_unmappings =
359 PMAP_EVCNT_INITIALIZER("pages unmapped");
360 static struct evcnt pmap_ev_remappings =
361 PMAP_EVCNT_INITIALIZER("pages remapped");
362
363 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
364 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
365 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
366
367 static struct evcnt pmap_ev_kernel_mappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
369 static struct evcnt pmap_ev_kernel_unmappings =
370 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
371 static struct evcnt pmap_ev_kernel_remappings =
372 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
373
374 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
375 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
376 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
377
378 static struct evcnt pmap_ev_kenter_mappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
380 static struct evcnt pmap_ev_kenter_unmappings =
381 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
382 static struct evcnt pmap_ev_kenter_remappings =
383 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
384 static struct evcnt pmap_ev_pt_mappings =
385 PMAP_EVCNT_INITIALIZER("page table pages mapped");
386
387 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
388 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
389 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
390 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
391
392 #ifdef PMAP_CACHE_VIPT
393 static struct evcnt pmap_ev_exec_mappings =
394 PMAP_EVCNT_INITIALIZER("exec pages mapped");
395 static struct evcnt pmap_ev_exec_cached =
396 PMAP_EVCNT_INITIALIZER("exec pages cached");
397
398 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
399 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
400
401 static struct evcnt pmap_ev_exec_synced =
402 PMAP_EVCNT_INITIALIZER("exec pages synced");
403 static struct evcnt pmap_ev_exec_synced_map =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
405 static struct evcnt pmap_ev_exec_synced_unmap =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
407 static struct evcnt pmap_ev_exec_synced_remap =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
409 static struct evcnt pmap_ev_exec_synced_clearbit =
410 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
411 static struct evcnt pmap_ev_exec_synced_kremove =
412 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
413
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
416 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
417 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
418 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
419 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
420
421 static struct evcnt pmap_ev_exec_discarded_unmap =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
423 static struct evcnt pmap_ev_exec_discarded_zero =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
425 static struct evcnt pmap_ev_exec_discarded_copy =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
427 static struct evcnt pmap_ev_exec_discarded_page_protect =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
429 static struct evcnt pmap_ev_exec_discarded_clearbit =
430 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
431 static struct evcnt pmap_ev_exec_discarded_kremove =
432 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
433
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
436 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
437 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
438 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
439 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
440 #endif /* PMAP_CACHE_VIPT */
441
442 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
443 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
444 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
445
446 EVCNT_ATTACH_STATIC(pmap_ev_updates);
447 EVCNT_ATTACH_STATIC(pmap_ev_collects);
448 EVCNT_ATTACH_STATIC(pmap_ev_activations);
449
450 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
451 #else
452 #define PMAPCOUNT(x) ((void)0)
453 #endif
454
455 /*
456 * pmap copy/zero page, and mem(5) hook point
457 */
458 static pt_entry_t *csrc_pte, *cdst_pte;
459 static vaddr_t csrcp, cdstp;
460 vaddr_t memhook; /* used by mem.c */
461 kmutex_t memlock; /* used by mem.c */
462 void *zeropage; /* used by mem.c */
463 extern void *msgbufaddr;
464 int pmap_kmpages;
465 /*
466 * Flag to indicate if pmap_init() has done its thing
467 */
468 bool pmap_initialized;
469
470 /*
471 * Misc. locking data structures
472 */
473
474 #define pmap_acquire_pmap_lock(pm) \
475 do { \
476 if ((pm) != pmap_kernel()) \
477 mutex_enter((pm)->pm_lock); \
478 } while (/*CONSTCOND*/0)
479
480 #define pmap_release_pmap_lock(pm) \
481 do { \
482 if ((pm) != pmap_kernel()) \
483 mutex_exit((pm)->pm_lock); \
484 } while (/*CONSTCOND*/0)
485
486
487 /*
488 * Metadata for L1 translation tables.
489 */
490 struct l1_ttable {
491 /* Entry on the L1 Table list */
492 SLIST_ENTRY(l1_ttable) l1_link;
493
494 /* Entry on the L1 Least Recently Used list */
495 TAILQ_ENTRY(l1_ttable) l1_lru;
496
497 /* Track how many domains are allocated from this L1 */
498 volatile u_int l1_domain_use_count;
499
500 /*
501 * A free-list of domain numbers for this L1.
502 * We avoid using ffs() and a bitmap to track domains since ffs()
503 * is slow on ARM.
504 */
505 uint8_t l1_domain_first;
506 uint8_t l1_domain_free[PMAP_DOMAINS];
507
508 /* Physical address of this L1 page table */
509 paddr_t l1_physaddr;
510
511 /* KVA of this L1 page table */
512 pd_entry_t *l1_kva;
513 };
514
515 /*
516 * Convert a virtual address into its L1 table index. That is, the
517 * index used to locate the L2 descriptor table pointer in an L1 table.
518 * This is basically used to index l1->l1_kva[].
519 *
520 * Each L2 descriptor table represents 1MB of VA space.
521 */
522 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
523
524 /*
525 * L1 Page Tables are tracked using a Least Recently Used list.
526 * - New L1s are allocated from the HEAD.
527 * - Freed L1s are added to the TAIl.
528 * - Recently accessed L1s (where an 'access' is some change to one of
529 * the userland pmaps which owns this L1) are moved to the TAIL.
530 */
531 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
532 static kmutex_t l1_lru_lock __cacheline_aligned;
533
534 /*
535 * A list of all L1 tables
536 */
537 static SLIST_HEAD(, l1_ttable) l1_list;
538
539 /*
540 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
541 *
542 * This is normally 16MB worth L2 page descriptors for any given pmap.
543 * Reference counts are maintained for L2 descriptors so they can be
544 * freed when empty.
545 */
546 struct l2_dtable {
547 /* The number of L2 page descriptors allocated to this l2_dtable */
548 u_int l2_occupancy;
549
550 /* List of L2 page descriptors */
551 struct l2_bucket {
552 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
553 paddr_t l2b_phys; /* Physical address of same */
554 u_short l2b_l1idx; /* This L2 table's L1 index */
555 u_short l2b_occupancy; /* How many active descriptors */
556 } l2_bucket[L2_BUCKET_SIZE];
557 };
558
559 /*
560 * Given an L1 table index, calculate the corresponding l2_dtable index
561 * and bucket index within the l2_dtable.
562 */
563 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
564 (L2_SIZE - 1))
565 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
566
567 /*
568 * Given a virtual address, this macro returns the
569 * virtual address required to drop into the next L2 bucket.
570 */
571 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
572
573 /*
574 * L2 allocation.
575 */
576 #define pmap_alloc_l2_dtable() \
577 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
578 #define pmap_free_l2_dtable(l2) \
579 pool_cache_put(&pmap_l2dtable_cache, (l2))
580 #define pmap_alloc_l2_ptp(pap) \
581 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
582 PR_NOWAIT, (pap)))
583
584 /*
585 * We try to map the page tables write-through, if possible. However, not
586 * all CPUs have a write-through cache mode, so on those we have to sync
587 * the cache when we frob page tables.
588 *
589 * We try to evaluate this at compile time, if possible. However, it's
590 * not always possible to do that, hence this run-time var.
591 */
592 int pmap_needs_pte_sync;
593
594 /*
595 * Real definition of pv_entry.
596 */
597 struct pv_entry {
598 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
599 pmap_t pv_pmap; /* pmap where mapping lies */
600 vaddr_t pv_va; /* virtual address for mapping */
601 u_int pv_flags; /* flags */
602 };
603
604 /*
605 * Macro to determine if a mapping might be resident in the
606 * instruction cache and/or TLB
607 */
608 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
609 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
610
611 /*
612 * Macro to determine if a mapping might be resident in the
613 * data cache and/or TLB
614 */
615 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
616
617 /*
618 * Local prototypes
619 */
620 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
621 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
622 pt_entry_t **);
623 static bool pmap_is_current(pmap_t);
624 static bool pmap_is_cached(pmap_t);
625 static void pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
626 pmap_t, vaddr_t, u_int);
627 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
628 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
629 static u_int pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
630 u_int, u_int);
631
632 static void pmap_pinit(pmap_t);
633 static int pmap_pmap_ctor(void *, void *, int);
634
635 static void pmap_alloc_l1(pmap_t);
636 static void pmap_free_l1(pmap_t);
637 static void pmap_use_l1(pmap_t);
638
639 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
640 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
641 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
642 static int pmap_l2ptp_ctor(void *, void *, int);
643 static int pmap_l2dtable_ctor(void *, void *, int);
644
645 static void pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
646 #ifdef PMAP_CACHE_VIVT
647 static void pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
648 static void pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
649 #endif
650
651 static void pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
652 #ifdef PMAP_CACHE_VIVT
653 static int pmap_clean_page(struct pv_entry *, bool);
654 #endif
655 #ifdef PMAP_CACHE_VIPT
656 static void pmap_syncicache_page(struct vm_page_md *, paddr_t);
657 enum pmap_flush_op {
658 PMAP_FLUSH_PRIMARY,
659 PMAP_FLUSH_SECONDARY,
660 PMAP_CLEAN_PRIMARY
661 };
662 static void pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
663 #endif
664 static void pmap_page_remove(struct vm_page_md *, paddr_t);
665
666 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
667 static vaddr_t kernel_pt_lookup(paddr_t);
668
669
670 /*
671 * Misc variables
672 */
673 vaddr_t virtual_avail;
674 vaddr_t virtual_end;
675 vaddr_t pmap_curmaxkvaddr;
676
677 paddr_t avail_start;
678 paddr_t avail_end;
679
680 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
681 pv_addr_t kernelpages;
682 pv_addr_t kernel_l1pt;
683 pv_addr_t systempage;
684
685 /* Function to set the debug level of the pmap code */
686
687 #ifdef PMAP_DEBUG
688 void
689 pmap_debug(int level)
690 {
691 pmap_debug_level = level;
692 printf("pmap_debug: level=%d\n", pmap_debug_level);
693 }
694 #endif /* PMAP_DEBUG */
695
696 #ifdef PMAP_CACHE_VIPT
697 #define PMAP_VALIDATE_MD_PAGE(md) \
698 KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
699 "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
700 (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
701 #endif /* PMAP_CACHE_VIPT */
702 /*
703 * A bunch of routines to conditionally flush the caches/TLB depending
704 * on whether the specified pmap actually needs to be flushed at any
705 * given time.
706 */
707 static inline void
708 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
709 {
710
711 if (pm->pm_cstate.cs_tlb_id)
712 cpu_tlb_flushID_SE(va);
713 }
714
715 static inline void
716 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
717 {
718
719 if (pm->pm_cstate.cs_tlb_d)
720 cpu_tlb_flushD_SE(va);
721 }
722
723 static inline void
724 pmap_tlb_flushID(pmap_t pm)
725 {
726
727 if (pm->pm_cstate.cs_tlb_id) {
728 cpu_tlb_flushID();
729 pm->pm_cstate.cs_tlb = 0;
730 }
731 }
732
733 static inline void
734 pmap_tlb_flushD(pmap_t pm)
735 {
736
737 if (pm->pm_cstate.cs_tlb_d) {
738 cpu_tlb_flushD();
739 pm->pm_cstate.cs_tlb_d = 0;
740 }
741 }
742
743 #ifdef PMAP_CACHE_VIVT
744 static inline void
745 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
746 {
747 if (pm->pm_cstate.cs_cache_id) {
748 cpu_idcache_wbinv_range(va, len);
749 }
750 }
751
752 static inline void
753 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
754 bool do_inv, bool rd_only)
755 {
756
757 if (pm->pm_cstate.cs_cache_d) {
758 if (do_inv) {
759 if (rd_only)
760 cpu_dcache_inv_range(va, len);
761 else
762 cpu_dcache_wbinv_range(va, len);
763 } else
764 if (!rd_only)
765 cpu_dcache_wb_range(va, len);
766 }
767 }
768
769 static inline void
770 pmap_idcache_wbinv_all(pmap_t pm)
771 {
772 if (pm->pm_cstate.cs_cache_id) {
773 cpu_idcache_wbinv_all();
774 pm->pm_cstate.cs_cache = 0;
775 }
776 }
777
778 static inline void
779 pmap_dcache_wbinv_all(pmap_t pm)
780 {
781 if (pm->pm_cstate.cs_cache_d) {
782 cpu_dcache_wbinv_all();
783 pm->pm_cstate.cs_cache_d = 0;
784 }
785 }
786 #endif /* PMAP_CACHE_VIVT */
787
788 static inline bool
789 pmap_is_current(pmap_t pm)
790 {
791
792 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
793 return true;
794
795 return false;
796 }
797
798 static inline bool
799 pmap_is_cached(pmap_t pm)
800 {
801
802 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
803 pmap_recent_user == pm)
804 return (true);
805
806 return false;
807 }
808
809 /*
810 * PTE_SYNC_CURRENT:
811 *
812 * Make sure the pte is written out to RAM.
813 * We need to do this for one of two cases:
814 * - We're dealing with the kernel pmap
815 * - There is no pmap active in the cache/tlb.
816 * - The specified pmap is 'active' in the cache/tlb.
817 */
818 #ifdef PMAP_INCLUDE_PTE_SYNC
819 #define PTE_SYNC_CURRENT(pm, ptep) \
820 do { \
821 if (PMAP_NEEDS_PTE_SYNC && \
822 pmap_is_cached(pm)) \
823 PTE_SYNC(ptep); \
824 } while (/*CONSTCOND*/0)
825 #else
826 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
827 #endif
828
829 /*
830 * main pv_entry manipulation functions:
831 * pmap_enter_pv: enter a mapping onto a vm_page list
832 * pmap_remove_pv: remove a mapping from a vm_page list
833 *
834 * NOTE: pmap_enter_pv expects to lock the pvh itself
835 * pmap_remove_pv expects the caller to lock the pvh before calling
836 */
837
838 /*
839 * pmap_enter_pv: enter a mapping onto a vm_page lst
840 *
841 * => caller should hold the proper lock on pmap_main_lock
842 * => caller should have pmap locked
843 * => we will gain the lock on the vm_page and allocate the new pv_entry
844 * => caller should adjust ptp's wire_count before calling
845 * => caller should not adjust pmap's wire_count
846 */
847 static void
848 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
849 vaddr_t va, u_int flags)
850 {
851 struct pv_entry **pvp;
852
853 NPDEBUG(PDB_PVDUMP,
854 printf("pmap_enter_pv: pm %p, md %p, flags 0x%x\n", pm, md, flags));
855
856 pv->pv_pmap = pm;
857 pv->pv_va = va;
858 pv->pv_flags = flags;
859
860 pvp = &SLIST_FIRST(&md->pvh_list);
861 #ifdef PMAP_CACHE_VIPT
862 /*
863 * Insert unmanaged entries, writeable first, at the head of
864 * the pv list.
865 */
866 if (__predict_true((flags & PVF_KENTRY) == 0)) {
867 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
868 pvp = &SLIST_NEXT(*pvp, pv_link);
869 } else if ((flags & PVF_WRITE) == 0) {
870 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
871 pvp = &SLIST_NEXT(*pvp, pv_link);
872 }
873 #endif
874 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
875 *pvp = pv; /* ... locked list */
876 md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
877 #ifdef PMAP_CACHE_VIPT
878 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
879 md->pvh_attrs |= PVF_KMOD;
880 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
881 md->pvh_attrs |= PVF_DIRTY;
882 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
883 #endif
884 if (pm == pmap_kernel()) {
885 PMAPCOUNT(kernel_mappings);
886 if (flags & PVF_WRITE)
887 md->krw_mappings++;
888 else
889 md->kro_mappings++;
890 } else {
891 if (flags & PVF_WRITE)
892 md->urw_mappings++;
893 else
894 md->uro_mappings++;
895 }
896
897 #ifdef PMAP_CACHE_VIPT
898 /*
899 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
900 * do it here as well to keep the mappings & KVF_WRITE consistent.
901 */
902 if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
903 md->pvh_attrs |= PVF_WRITE;
904 }
905 /*
906 * If this is an exec mapping and its the first exec mapping
907 * for this page, make sure to sync the I-cache.
908 */
909 if (PV_IS_EXEC_P(flags)) {
910 if (!PV_IS_EXEC_P(md->pvh_attrs)) {
911 pmap_syncicache_page(md, pa);
912 PMAPCOUNT(exec_synced_map);
913 }
914 PMAPCOUNT(exec_mappings);
915 }
916 #endif
917
918 PMAPCOUNT(mappings);
919
920 if (pv->pv_flags & PVF_WIRED)
921 ++pm->pm_stats.wired_count;
922 }
923
924 /*
925 *
926 * pmap_find_pv: Find a pv entry
927 *
928 * => caller should hold lock on vm_page
929 */
930 static inline struct pv_entry *
931 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
932 {
933 struct pv_entry *pv;
934
935 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
936 if (pm == pv->pv_pmap && va == pv->pv_va)
937 break;
938 }
939
940 return (pv);
941 }
942
943 /*
944 * pmap_remove_pv: try to remove a mapping from a pv_list
945 *
946 * => caller should hold proper lock on pmap_main_lock
947 * => pmap should be locked
948 * => caller should hold lock on vm_page [so that attrs can be adjusted]
949 * => caller should adjust ptp's wire_count and free PTP if needed
950 * => caller should NOT adjust pmap's wire_count
951 * => we return the removed pv
952 */
953 static struct pv_entry *
954 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
955 {
956 struct pv_entry *pv, **prevptr;
957
958 NPDEBUG(PDB_PVDUMP,
959 printf("pmap_remove_pv: pm %p, md %p, va 0x%08lx\n", pm, md, va));
960
961 prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
962 pv = *prevptr;
963
964 while (pv) {
965 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
966 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, md "
967 "%p, flags 0x%x\n", pm, md, pv->pv_flags));
968 if (pv->pv_flags & PVF_WIRED) {
969 --pm->pm_stats.wired_count;
970 }
971 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
972 if (pm == pmap_kernel()) {
973 PMAPCOUNT(kernel_unmappings);
974 if (pv->pv_flags & PVF_WRITE)
975 md->krw_mappings--;
976 else
977 md->kro_mappings--;
978 } else {
979 if (pv->pv_flags & PVF_WRITE)
980 md->urw_mappings--;
981 else
982 md->uro_mappings--;
983 }
984
985 PMAPCOUNT(unmappings);
986 #ifdef PMAP_CACHE_VIPT
987 if (!(pv->pv_flags & PVF_WRITE))
988 break;
989 /*
990 * If this page has had an exec mapping, then if
991 * this was the last mapping, discard the contents,
992 * otherwise sync the i-cache for this page.
993 */
994 if (PV_IS_EXEC_P(md->pvh_attrs)) {
995 if (SLIST_EMPTY(&md->pvh_list)) {
996 md->pvh_attrs &= ~PVF_EXEC;
997 PMAPCOUNT(exec_discarded_unmap);
998 } else {
999 pmap_syncicache_page(md, pa);
1000 PMAPCOUNT(exec_synced_unmap);
1001 }
1002 }
1003 #endif /* PMAP_CACHE_VIPT */
1004 break;
1005 }
1006 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1007 pv = *prevptr; /* advance */
1008 }
1009
1010 #ifdef PMAP_CACHE_VIPT
1011 /*
1012 * If we no longer have a WRITEABLE KENTRY at the head of list,
1013 * clear the KMOD attribute from the page.
1014 */
1015 if (SLIST_FIRST(&md->pvh_list) == NULL
1016 || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1017 md->pvh_attrs &= ~PVF_KMOD;
1018
1019 /*
1020 * If this was a writeable page and there are no more writeable
1021 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1022 * the contents to memory.
1023 */
1024 if (arm_cache_prefer_mask != 0) {
1025 if (md->krw_mappings + md->urw_mappings == 0)
1026 md->pvh_attrs &= ~PVF_WRITE;
1027 PMAP_VALIDATE_MD_PAGE(md);
1028 }
1029 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1030 #endif /* PMAP_CACHE_VIPT */
1031
1032 return(pv); /* return removed pv */
1033 }
1034
1035 /*
1036 *
1037 * pmap_modify_pv: Update pv flags
1038 *
1039 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1040 * => caller should NOT adjust pmap's wire_count
1041 * => caller must call pmap_vac_me_harder() if writable status of a page
1042 * may have changed.
1043 * => we return the old flags
1044 *
1045 * Modify a physical-virtual mapping in the pv table
1046 */
1047 static u_int
1048 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
1049 u_int clr_mask, u_int set_mask)
1050 {
1051 struct pv_entry *npv;
1052 u_int flags, oflags;
1053
1054 KASSERT((clr_mask & PVF_KENTRY) == 0);
1055 KASSERT((set_mask & PVF_KENTRY) == 0);
1056
1057 if ((npv = pmap_find_pv(md, pm, va)) == NULL)
1058 return (0);
1059
1060 NPDEBUG(PDB_PVDUMP,
1061 printf("pmap_modify_pv: pm %p, md %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, md, clr_mask, set_mask, npv->pv_flags));
1062
1063 /*
1064 * There is at least one VA mapping this page.
1065 */
1066
1067 if (clr_mask & (PVF_REF | PVF_MOD)) {
1068 md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1069 #ifdef PMAP_CACHE_VIPT
1070 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1071 md->pvh_attrs |= PVF_DIRTY;
1072 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1073 #endif
1074 }
1075
1076 oflags = npv->pv_flags;
1077 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1078
1079 if ((flags ^ oflags) & PVF_WIRED) {
1080 if (flags & PVF_WIRED)
1081 ++pm->pm_stats.wired_count;
1082 else
1083 --pm->pm_stats.wired_count;
1084 }
1085
1086 if ((flags ^ oflags) & PVF_WRITE) {
1087 if (pm == pmap_kernel()) {
1088 if (flags & PVF_WRITE) {
1089 md->krw_mappings++;
1090 md->kro_mappings--;
1091 } else {
1092 md->kro_mappings++;
1093 md->krw_mappings--;
1094 }
1095 } else {
1096 if (flags & PVF_WRITE) {
1097 md->urw_mappings++;
1098 md->uro_mappings--;
1099 } else {
1100 md->uro_mappings++;
1101 md->urw_mappings--;
1102 }
1103 }
1104 }
1105 #ifdef PMAP_CACHE_VIPT
1106 if (arm_cache_prefer_mask != 0) {
1107 if (md->urw_mappings + md->krw_mappings == 0) {
1108 md->pvh_attrs &= ~PVF_WRITE;
1109 } else {
1110 md->pvh_attrs |= PVF_WRITE;
1111 }
1112 }
1113 /*
1114 * We have two cases here: the first is from enter_pv (new exec
1115 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1116 * Since in latter, pmap_enter_pv won't do anything, we just have
1117 * to do what pmap_remove_pv would do.
1118 */
1119 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
1120 || (PV_IS_EXEC_P(md->pvh_attrs)
1121 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1122 pmap_syncicache_page(md, pa);
1123 PMAPCOUNT(exec_synced_remap);
1124 }
1125 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1126 #endif
1127
1128 PMAPCOUNT(remappings);
1129
1130 return (oflags);
1131 }
1132
1133 /*
1134 * Allocate an L1 translation table for the specified pmap.
1135 * This is called at pmap creation time.
1136 */
1137 static void
1138 pmap_alloc_l1(pmap_t pm)
1139 {
1140 struct l1_ttable *l1;
1141 uint8_t domain;
1142
1143 /*
1144 * Remove the L1 at the head of the LRU list
1145 */
1146 mutex_spin_enter(&l1_lru_lock);
1147 l1 = TAILQ_FIRST(&l1_lru_list);
1148 KDASSERT(l1 != NULL);
1149 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1150
1151 /*
1152 * Pick the first available domain number, and update
1153 * the link to the next number.
1154 */
1155 domain = l1->l1_domain_first;
1156 l1->l1_domain_first = l1->l1_domain_free[domain];
1157
1158 /*
1159 * If there are still free domain numbers in this L1,
1160 * put it back on the TAIL of the LRU list.
1161 */
1162 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1163 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1164
1165 mutex_spin_exit(&l1_lru_lock);
1166
1167 /*
1168 * Fix up the relevant bits in the pmap structure
1169 */
1170 pm->pm_l1 = l1;
1171 pm->pm_domain = domain + 1;
1172 }
1173
1174 /*
1175 * Free an L1 translation table.
1176 * This is called at pmap destruction time.
1177 */
1178 static void
1179 pmap_free_l1(pmap_t pm)
1180 {
1181 struct l1_ttable *l1 = pm->pm_l1;
1182
1183 mutex_spin_enter(&l1_lru_lock);
1184
1185 /*
1186 * If this L1 is currently on the LRU list, remove it.
1187 */
1188 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1189 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1190
1191 /*
1192 * Free up the domain number which was allocated to the pmap
1193 */
1194 l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
1195 l1->l1_domain_first = pm->pm_domain - 1;
1196 l1->l1_domain_use_count--;
1197
1198 /*
1199 * The L1 now must have at least 1 free domain, so add
1200 * it back to the LRU list. If the use count is zero,
1201 * put it at the head of the list, otherwise it goes
1202 * to the tail.
1203 */
1204 if (l1->l1_domain_use_count == 0)
1205 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1206 else
1207 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1208
1209 mutex_spin_exit(&l1_lru_lock);
1210 }
1211
1212 static inline void
1213 pmap_use_l1(pmap_t pm)
1214 {
1215 struct l1_ttable *l1;
1216
1217 /*
1218 * Do nothing if we're in interrupt context.
1219 * Access to an L1 by the kernel pmap must not affect
1220 * the LRU list.
1221 */
1222 if (cpu_intr_p() || pm == pmap_kernel())
1223 return;
1224
1225 l1 = pm->pm_l1;
1226
1227 /*
1228 * If the L1 is not currently on the LRU list, just return
1229 */
1230 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1231 return;
1232
1233 mutex_spin_enter(&l1_lru_lock);
1234
1235 /*
1236 * Check the use count again, now that we've acquired the lock
1237 */
1238 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1239 mutex_spin_exit(&l1_lru_lock);
1240 return;
1241 }
1242
1243 /*
1244 * Move the L1 to the back of the LRU list
1245 */
1246 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1247 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1248
1249 mutex_spin_exit(&l1_lru_lock);
1250 }
1251
1252 /*
1253 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1254 *
1255 * Free an L2 descriptor table.
1256 */
1257 static inline void
1258 #ifndef PMAP_INCLUDE_PTE_SYNC
1259 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1260 #else
1261 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1262 #endif
1263 {
1264 #ifdef PMAP_INCLUDE_PTE_SYNC
1265 #ifdef PMAP_CACHE_VIVT
1266 /*
1267 * Note: With a write-back cache, we may need to sync this
1268 * L2 table before re-using it.
1269 * This is because it may have belonged to a non-current
1270 * pmap, in which case the cache syncs would have been
1271 * skipped for the pages that were being unmapped. If the
1272 * L2 table were then to be immediately re-allocated to
1273 * the *current* pmap, it may well contain stale mappings
1274 * which have not yet been cleared by a cache write-back
1275 * and so would still be visible to the mmu.
1276 */
1277 if (need_sync)
1278 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1279 #endif /* PMAP_CACHE_VIVT */
1280 #endif /* PMAP_INCLUDE_PTE_SYNC */
1281 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1282 }
1283
1284 /*
1285 * Returns a pointer to the L2 bucket associated with the specified pmap
1286 * and VA, or NULL if no L2 bucket exists for the address.
1287 */
1288 static inline struct l2_bucket *
1289 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1290 {
1291 struct l2_dtable *l2;
1292 struct l2_bucket *l2b;
1293 u_short l1idx;
1294
1295 l1idx = L1_IDX(va);
1296
1297 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1298 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1299 return (NULL);
1300
1301 return (l2b);
1302 }
1303
1304 /*
1305 * Returns a pointer to the L2 bucket associated with the specified pmap
1306 * and VA.
1307 *
1308 * If no L2 bucket exists, perform the necessary allocations to put an L2
1309 * bucket/page table in place.
1310 *
1311 * Note that if a new L2 bucket/page was allocated, the caller *must*
1312 * increment the bucket occupancy counter appropriately *before*
1313 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1314 * the bucket/page in the meantime.
1315 */
1316 static struct l2_bucket *
1317 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1318 {
1319 struct l2_dtable *l2;
1320 struct l2_bucket *l2b;
1321 u_short l1idx;
1322
1323 l1idx = L1_IDX(va);
1324
1325 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1326 /*
1327 * No mapping at this address, as there is
1328 * no entry in the L1 table.
1329 * Need to allocate a new l2_dtable.
1330 */
1331 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1332 return (NULL);
1333
1334 /*
1335 * Link it into the parent pmap
1336 */
1337 pm->pm_l2[L2_IDX(l1idx)] = l2;
1338 }
1339
1340 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1341
1342 /*
1343 * Fetch pointer to the L2 page table associated with the address.
1344 */
1345 if (l2b->l2b_kva == NULL) {
1346 pt_entry_t *ptep;
1347
1348 /*
1349 * No L2 page table has been allocated. Chances are, this
1350 * is because we just allocated the l2_dtable, above.
1351 */
1352 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1353 /*
1354 * Oops, no more L2 page tables available at this
1355 * time. We may need to deallocate the l2_dtable
1356 * if we allocated a new one above.
1357 */
1358 if (l2->l2_occupancy == 0) {
1359 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1360 pmap_free_l2_dtable(l2);
1361 }
1362 return (NULL);
1363 }
1364
1365 l2->l2_occupancy++;
1366 l2b->l2b_kva = ptep;
1367 l2b->l2b_l1idx = l1idx;
1368 }
1369
1370 return (l2b);
1371 }
1372
1373 /*
1374 * One or more mappings in the specified L2 descriptor table have just been
1375 * invalidated.
1376 *
1377 * Garbage collect the metadata and descriptor table itself if necessary.
1378 *
1379 * The pmap lock must be acquired when this is called (not necessary
1380 * for the kernel pmap).
1381 */
1382 static void
1383 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1384 {
1385 struct l2_dtable *l2;
1386 pd_entry_t *pl1pd, l1pd;
1387 pt_entry_t *ptep;
1388 u_short l1idx;
1389
1390 KDASSERT(count <= l2b->l2b_occupancy);
1391
1392 /*
1393 * Update the bucket's reference count according to how many
1394 * PTEs the caller has just invalidated.
1395 */
1396 l2b->l2b_occupancy -= count;
1397
1398 /*
1399 * Note:
1400 *
1401 * Level 2 page tables allocated to the kernel pmap are never freed
1402 * as that would require checking all Level 1 page tables and
1403 * removing any references to the Level 2 page table. See also the
1404 * comment elsewhere about never freeing bootstrap L2 descriptors.
1405 *
1406 * We make do with just invalidating the mapping in the L2 table.
1407 *
1408 * This isn't really a big deal in practice and, in fact, leads
1409 * to a performance win over time as we don't need to continually
1410 * alloc/free.
1411 */
1412 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1413 return;
1414
1415 /*
1416 * There are no more valid mappings in this level 2 page table.
1417 * Go ahead and NULL-out the pointer in the bucket, then
1418 * free the page table.
1419 */
1420 l1idx = l2b->l2b_l1idx;
1421 ptep = l2b->l2b_kva;
1422 l2b->l2b_kva = NULL;
1423
1424 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1425
1426 /*
1427 * If the L1 slot matches the pmap's domain
1428 * number, then invalidate it.
1429 */
1430 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1431 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1432 *pl1pd = 0;
1433 PTE_SYNC(pl1pd);
1434 }
1435
1436 /*
1437 * Release the L2 descriptor table back to the pool cache.
1438 */
1439 #ifndef PMAP_INCLUDE_PTE_SYNC
1440 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1441 #else
1442 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1443 #endif
1444
1445 /*
1446 * Update the reference count in the associated l2_dtable
1447 */
1448 l2 = pm->pm_l2[L2_IDX(l1idx)];
1449 if (--l2->l2_occupancy > 0)
1450 return;
1451
1452 /*
1453 * There are no more valid mappings in any of the Level 1
1454 * slots managed by this l2_dtable. Go ahead and NULL-out
1455 * the pointer in the parent pmap and free the l2_dtable.
1456 */
1457 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1458 pmap_free_l2_dtable(l2);
1459 }
1460
1461 /*
1462 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1463 * structures.
1464 */
1465 static int
1466 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1467 {
1468 #ifndef PMAP_INCLUDE_PTE_SYNC
1469 struct l2_bucket *l2b;
1470 pt_entry_t *ptep, pte;
1471 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1472
1473 /*
1474 * The mappings for these page tables were initially made using
1475 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1476 * mode will not be right for page table mappings. To avoid
1477 * polluting the pmap_kenter_pa() code with a special case for
1478 * page tables, we simply fix up the cache-mode here if it's not
1479 * correct.
1480 */
1481 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1482 KDASSERT(l2b != NULL);
1483 ptep = &l2b->l2b_kva[l2pte_index(va)];
1484 pte = *ptep;
1485
1486 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1487 /*
1488 * Page tables must have the cache-mode set to Write-Thru.
1489 */
1490 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1491 PTE_SYNC(ptep);
1492 cpu_tlb_flushD_SE(va);
1493 cpu_cpwait();
1494 }
1495 #endif
1496
1497 memset(v, 0, L2_TABLE_SIZE_REAL);
1498 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1499 return (0);
1500 }
1501
1502 static int
1503 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1504 {
1505
1506 memset(v, 0, sizeof(struct l2_dtable));
1507 return (0);
1508 }
1509
1510 static int
1511 pmap_pmap_ctor(void *arg, void *v, int flags)
1512 {
1513
1514 memset(v, 0, sizeof(struct pmap));
1515 return (0);
1516 }
1517
1518 static void
1519 pmap_pinit(pmap_t pm)
1520 {
1521 struct l2_bucket *l2b;
1522
1523 if (vector_page < KERNEL_BASE) {
1524 /*
1525 * Map the vector page.
1526 */
1527 pmap_enter(pm, vector_page, systempage.pv_pa,
1528 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1529 pmap_update(pm);
1530
1531 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1532 l2b = pmap_get_l2_bucket(pm, vector_page);
1533 KDASSERT(l2b != NULL);
1534 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1535 L1_C_DOM(pm->pm_domain);
1536 } else
1537 pm->pm_pl1vec = NULL;
1538 }
1539
1540 #ifdef PMAP_CACHE_VIVT
1541 /*
1542 * Since we have a virtually indexed cache, we may need to inhibit caching if
1543 * there is more than one mapping and at least one of them is writable.
1544 * Since we purge the cache on every context switch, we only need to check for
1545 * other mappings within the same pmap, or kernel_pmap.
1546 * This function is also called when a page is unmapped, to possibly reenable
1547 * caching on any remaining mappings.
1548 *
1549 * The code implements the following logic, where:
1550 *
1551 * KW = # of kernel read/write pages
1552 * KR = # of kernel read only pages
1553 * UW = # of user read/write pages
1554 * UR = # of user read only pages
1555 *
1556 * KC = kernel mapping is cacheable
1557 * UC = user mapping is cacheable
1558 *
1559 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1560 * +---------------------------------------------
1561 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1562 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1563 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1564 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1565 */
1566
1567 static const int pmap_vac_flags[4][4] = {
1568 {-1, 0, 0, PVF_KNC},
1569 {0, 0, PVF_NC, PVF_NC},
1570 {0, PVF_NC, PVF_NC, PVF_NC},
1571 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1572 };
1573
1574 static inline int
1575 pmap_get_vac_flags(const struct vm_page_md *md)
1576 {
1577 int kidx, uidx;
1578
1579 kidx = 0;
1580 if (md->kro_mappings || md->krw_mappings > 1)
1581 kidx |= 1;
1582 if (md->krw_mappings)
1583 kidx |= 2;
1584
1585 uidx = 0;
1586 if (md->uro_mappings || md->urw_mappings > 1)
1587 uidx |= 1;
1588 if (md->urw_mappings)
1589 uidx |= 2;
1590
1591 return (pmap_vac_flags[uidx][kidx]);
1592 }
1593
1594 static inline void
1595 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1596 {
1597 int nattr;
1598
1599 nattr = pmap_get_vac_flags(md);
1600
1601 if (nattr < 0) {
1602 md->pvh_attrs &= ~PVF_NC;
1603 return;
1604 }
1605
1606 if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
1607 return;
1608
1609 if (pm == pmap_kernel())
1610 pmap_vac_me_kpmap(md, pa, pm, va);
1611 else
1612 pmap_vac_me_user(md, pa, pm, va);
1613
1614 md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
1615 }
1616
1617 static void
1618 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1619 {
1620 u_int u_cacheable, u_entries;
1621 struct pv_entry *pv;
1622 pmap_t last_pmap = pm;
1623
1624 /*
1625 * Pass one, see if there are both kernel and user pmaps for
1626 * this page. Calculate whether there are user-writable or
1627 * kernel-writable pages.
1628 */
1629 u_cacheable = 0;
1630 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1631 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1632 u_cacheable++;
1633 }
1634
1635 u_entries = md->urw_mappings + md->uro_mappings;
1636
1637 /*
1638 * We know we have just been updating a kernel entry, so if
1639 * all user pages are already cacheable, then there is nothing
1640 * further to do.
1641 */
1642 if (md->k_mappings == 0 && u_cacheable == u_entries)
1643 return;
1644
1645 if (u_entries) {
1646 /*
1647 * Scan over the list again, for each entry, if it
1648 * might not be set correctly, call pmap_vac_me_user
1649 * to recalculate the settings.
1650 */
1651 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1652 /*
1653 * We know kernel mappings will get set
1654 * correctly in other calls. We also know
1655 * that if the pmap is the same as last_pmap
1656 * then we've just handled this entry.
1657 */
1658 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1659 continue;
1660
1661 /*
1662 * If there are kernel entries and this page
1663 * is writable but non-cacheable, then we can
1664 * skip this entry also.
1665 */
1666 if (md->k_mappings &&
1667 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1668 (PVF_NC | PVF_WRITE))
1669 continue;
1670
1671 /*
1672 * Similarly if there are no kernel-writable
1673 * entries and the page is already
1674 * read-only/cacheable.
1675 */
1676 if (md->krw_mappings == 0 &&
1677 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1678 continue;
1679
1680 /*
1681 * For some of the remaining cases, we know
1682 * that we must recalculate, but for others we
1683 * can't tell if they are correct or not, so
1684 * we recalculate anyway.
1685 */
1686 pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
1687 }
1688
1689 if (md->k_mappings == 0)
1690 return;
1691 }
1692
1693 pmap_vac_me_user(md, pa, pm, va);
1694 }
1695
1696 static void
1697 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1698 {
1699 pmap_t kpmap = pmap_kernel();
1700 struct pv_entry *pv, *npv = NULL;
1701 struct l2_bucket *l2b;
1702 pt_entry_t *ptep, pte;
1703 u_int entries = 0;
1704 u_int writable = 0;
1705 u_int cacheable_entries = 0;
1706 u_int kern_cacheable = 0;
1707 u_int other_writable = 0;
1708
1709 /*
1710 * Count mappings and writable mappings in this pmap.
1711 * Include kernel mappings as part of our own.
1712 * Keep a pointer to the first one.
1713 */
1714 npv = NULL;
1715 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
1716 /* Count mappings in the same pmap */
1717 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1718 if (entries++ == 0)
1719 npv = pv;
1720
1721 /* Cacheable mappings */
1722 if ((pv->pv_flags & PVF_NC) == 0) {
1723 cacheable_entries++;
1724 if (kpmap == pv->pv_pmap)
1725 kern_cacheable++;
1726 }
1727
1728 /* Writable mappings */
1729 if (pv->pv_flags & PVF_WRITE)
1730 ++writable;
1731 } else
1732 if (pv->pv_flags & PVF_WRITE)
1733 other_writable = 1;
1734 }
1735
1736 /*
1737 * Enable or disable caching as necessary.
1738 * Note: the first entry might be part of the kernel pmap,
1739 * so we can't assume this is indicative of the state of the
1740 * other (maybe non-kpmap) entries.
1741 */
1742 if ((entries > 1 && writable) ||
1743 (entries > 0 && pm == kpmap && other_writable)) {
1744 if (cacheable_entries == 0)
1745 return;
1746
1747 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1748 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1749 (pv->pv_flags & PVF_NC))
1750 continue;
1751
1752 pv->pv_flags |= PVF_NC;
1753
1754 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1755 KDASSERT(l2b != NULL);
1756 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1757 pte = *ptep & ~L2_S_CACHE_MASK;
1758
1759 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1760 l2pte_valid(pte)) {
1761 if (PV_BEEN_EXECD(pv->pv_flags)) {
1762 #ifdef PMAP_CACHE_VIVT
1763 pmap_idcache_wbinv_range(pv->pv_pmap,
1764 pv->pv_va, PAGE_SIZE);
1765 #endif
1766 pmap_tlb_flushID_SE(pv->pv_pmap,
1767 pv->pv_va);
1768 } else
1769 if (PV_BEEN_REFD(pv->pv_flags)) {
1770 #ifdef PMAP_CACHE_VIVT
1771 pmap_dcache_wb_range(pv->pv_pmap,
1772 pv->pv_va, PAGE_SIZE, true,
1773 (pv->pv_flags & PVF_WRITE) == 0);
1774 #endif
1775 pmap_tlb_flushD_SE(pv->pv_pmap,
1776 pv->pv_va);
1777 }
1778 }
1779
1780 *ptep = pte;
1781 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1782 }
1783 cpu_cpwait();
1784 } else
1785 if (entries > cacheable_entries) {
1786 /*
1787 * Turn cacheing back on for some pages. If it is a kernel
1788 * page, only do so if there are no other writable pages.
1789 */
1790 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1791 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1792 (kpmap != pv->pv_pmap || other_writable)))
1793 continue;
1794
1795 pv->pv_flags &= ~PVF_NC;
1796
1797 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1798 KDASSERT(l2b != NULL);
1799 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1800 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1801
1802 if (l2pte_valid(pte)) {
1803 if (PV_BEEN_EXECD(pv->pv_flags)) {
1804 pmap_tlb_flushID_SE(pv->pv_pmap,
1805 pv->pv_va);
1806 } else
1807 if (PV_BEEN_REFD(pv->pv_flags)) {
1808 pmap_tlb_flushD_SE(pv->pv_pmap,
1809 pv->pv_va);
1810 }
1811 }
1812
1813 *ptep = pte;
1814 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1815 }
1816 }
1817 }
1818 #endif
1819
1820 #ifdef PMAP_CACHE_VIPT
1821 static void
1822 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
1823 {
1824 struct pv_entry *pv;
1825 vaddr_t tst_mask;
1826 bool bad_alias;
1827 struct l2_bucket *l2b;
1828 pt_entry_t *ptep, pte, opte;
1829 const u_int
1830 rw_mappings = md->urw_mappings + md->krw_mappings,
1831 ro_mappings = md->uro_mappings + md->kro_mappings;
1832
1833 /* do we need to do anything? */
1834 if (arm_cache_prefer_mask == 0)
1835 return;
1836
1837 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: md=%p, pmap=%p va=%08lx\n",
1838 md, pm, va));
1839
1840 KASSERT(!va || pm);
1841 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1842
1843 /* Already a conflict? */
1844 if (__predict_false(md->pvh_attrs & PVF_NC)) {
1845 /* just an add, things are already non-cached */
1846 KASSERT(!(md->pvh_attrs & PVF_DIRTY));
1847 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1848 bad_alias = false;
1849 if (va) {
1850 PMAPCOUNT(vac_color_none);
1851 bad_alias = true;
1852 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1853 goto fixup;
1854 }
1855 pv = SLIST_FIRST(&md->pvh_list);
1856 /* the list can't be empty because it would be cachable */
1857 if (md->pvh_attrs & PVF_KMPAGE) {
1858 tst_mask = md->pvh_attrs;
1859 } else {
1860 KASSERT(pv);
1861 tst_mask = pv->pv_va;
1862 pv = SLIST_NEXT(pv, pv_link);
1863 }
1864 /*
1865 * Only check for a bad alias if we have writable mappings.
1866 */
1867 tst_mask &= arm_cache_prefer_mask;
1868 if (rw_mappings > 0) {
1869 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1870 /* if there's a bad alias, stop checking. */
1871 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1872 bad_alias = true;
1873 }
1874 md->pvh_attrs |= PVF_WRITE;
1875 if (!bad_alias)
1876 md->pvh_attrs |= PVF_DIRTY;
1877 } else {
1878 /*
1879 * We have only read-only mappings. Let's see if there
1880 * are multiple colors in use or if we mapped a KMPAGE.
1881 * If the latter, we have a bad alias. If the former,
1882 * we need to remember that.
1883 */
1884 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1885 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1886 if (md->pvh_attrs & PVF_KMPAGE)
1887 bad_alias = true;
1888 break;
1889 }
1890 }
1891 md->pvh_attrs &= ~PVF_WRITE;
1892 /*
1893 * No KMPAGE and we exited early, so we must have
1894 * multiple color mappings.
1895 */
1896 if (!bad_alias && pv != NULL)
1897 md->pvh_attrs |= PVF_MULTCLR;
1898 }
1899
1900 /* If no conflicting colors, set everything back to cached */
1901 if (!bad_alias) {
1902 #ifdef DEBUG
1903 if ((md->pvh_attrs & PVF_WRITE)
1904 || ro_mappings < 2) {
1905 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1906 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1907 }
1908 #endif
1909 md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1910 md->pvh_attrs |= tst_mask | PVF_COLORED;
1911 /*
1912 * Restore DIRTY bit if page is modified
1913 */
1914 if (md->pvh_attrs & PVF_DMOD)
1915 md->pvh_attrs |= PVF_DIRTY;
1916 PMAPCOUNT(vac_color_restore);
1917 } else {
1918 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
1919 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
1920 }
1921 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1922 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1923 } else if (!va) {
1924 KASSERT(pmap_is_page_colored_p(md));
1925 KASSERT(!(md->pvh_attrs & PVF_WRITE)
1926 || (md->pvh_attrs & PVF_DIRTY));
1927 if (rw_mappings == 0) {
1928 md->pvh_attrs &= ~PVF_WRITE;
1929 if (ro_mappings == 1
1930 && (md->pvh_attrs & PVF_MULTCLR)) {
1931 /*
1932 * If this is the last readonly mapping
1933 * but it doesn't match the current color
1934 * for the page, change the current color
1935 * to match this last readonly mapping.
1936 */
1937 pv = SLIST_FIRST(&md->pvh_list);
1938 tst_mask = (md->pvh_attrs ^ pv->pv_va)
1939 & arm_cache_prefer_mask;
1940 if (tst_mask) {
1941 md->pvh_attrs ^= tst_mask;
1942 PMAPCOUNT(vac_color_change);
1943 }
1944 }
1945 }
1946 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1947 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1948 return;
1949 } else if (!pmap_is_page_colored_p(md)) {
1950 /* not colored so we just use its color */
1951 KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1952 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
1953 PMAPCOUNT(vac_color_new);
1954 md->pvh_attrs &= PAGE_SIZE - 1;
1955 md->pvh_attrs |= PVF_COLORED
1956 | (va & arm_cache_prefer_mask)
1957 | (rw_mappings > 0 ? PVF_WRITE : 0);
1958 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
1959 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
1960 return;
1961 } else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1962 bad_alias = false;
1963 if (rw_mappings > 0) {
1964 /*
1965 * We now have writeable mappings and if we have
1966 * readonly mappings in more than once color, we have
1967 * an aliasing problem. Regardless mark the page as
1968 * writeable.
1969 */
1970 if (md->pvh_attrs & PVF_MULTCLR) {
1971 if (ro_mappings < 2) {
1972 /*
1973 * If we only have less than two
1974 * read-only mappings, just flush the
1975 * non-primary colors from the cache.
1976 */
1977 pmap_flush_page(md, pa,
1978 PMAP_FLUSH_SECONDARY);
1979 } else {
1980 bad_alias = true;
1981 }
1982 }
1983 md->pvh_attrs |= PVF_WRITE;
1984 }
1985 /* If no conflicting colors, set everything back to cached */
1986 if (!bad_alias) {
1987 #ifdef DEBUG
1988 if (rw_mappings > 0
1989 || (md->pvh_attrs & PMAP_KMPAGE)) {
1990 tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
1991 SLIST_FOREACH(pv, &md->pvh_list, pv_link)
1992 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1993 }
1994 #endif
1995 if (SLIST_EMPTY(&md->pvh_list))
1996 PMAPCOUNT(vac_color_reuse);
1997 else
1998 PMAPCOUNT(vac_color_ok);
1999
2000 /* matching color, just return */
2001 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2002 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2003 return;
2004 }
2005 KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
2006 KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
2007
2008 /* color conflict. evict from cache. */
2009
2010 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2011 md->pvh_attrs &= ~PVF_COLORED;
2012 md->pvh_attrs |= PVF_NC;
2013 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2014 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2015 PMAPCOUNT(vac_color_erase);
2016 } else if (rw_mappings == 0
2017 && (md->pvh_attrs & PVF_KMPAGE) == 0) {
2018 KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
2019
2020 /*
2021 * If the page has dirty cache lines, clean it.
2022 */
2023 if (md->pvh_attrs & PVF_DIRTY)
2024 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
2025
2026 /*
2027 * If this is the first remapping (we know that there are no
2028 * writeable mappings), then this is a simple color change.
2029 * Otherwise this is a seconary r/o mapping, which means
2030 * we don't have to do anything.
2031 */
2032 if (ro_mappings == 1) {
2033 KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2034 md->pvh_attrs &= PAGE_SIZE - 1;
2035 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2036 PMAPCOUNT(vac_color_change);
2037 } else {
2038 PMAPCOUNT(vac_color_blind);
2039 }
2040 md->pvh_attrs |= PVF_MULTCLR;
2041 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2042 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2043 return;
2044 } else {
2045 if (rw_mappings > 0)
2046 md->pvh_attrs |= PVF_WRITE;
2047
2048 /* color conflict. evict from cache. */
2049 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
2050
2051 /* the list can't be empty because this was a enter/modify */
2052 pv = SLIST_FIRST(&md->pvh_list);
2053 if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
2054 KASSERT(pv);
2055 /*
2056 * If there's only one mapped page, change color to the
2057 * page's new color and return. Restore the DIRTY bit
2058 * that was erased by pmap_flush_page.
2059 */
2060 if (SLIST_NEXT(pv, pv_link) == NULL) {
2061 md->pvh_attrs &= PAGE_SIZE - 1;
2062 md->pvh_attrs |= (va & arm_cache_prefer_mask);
2063 if (md->pvh_attrs & PVF_DMOD)
2064 md->pvh_attrs |= PVF_DIRTY;
2065 PMAPCOUNT(vac_color_change);
2066 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2067 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2068 KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
2069 return;
2070 }
2071 }
2072 bad_alias = true;
2073 md->pvh_attrs &= ~PVF_COLORED;
2074 md->pvh_attrs |= PVF_NC;
2075 PMAPCOUNT(vac_color_erase);
2076 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
2077 }
2078
2079 fixup:
2080 KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
2081
2082 /*
2083 * Turn cacheing on/off for all pages.
2084 */
2085 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2086 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2087 KDASSERT(l2b != NULL);
2088 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2089 opte = *ptep;
2090 pte = opte & ~L2_S_CACHE_MASK;
2091 if (bad_alias) {
2092 pv->pv_flags |= PVF_NC;
2093 } else {
2094 pv->pv_flags &= ~PVF_NC;
2095 pte |= pte_l2_s_cache_mode;
2096 }
2097
2098 if (opte == pte) /* only update is there's a change */
2099 continue;
2100
2101 if (l2pte_valid(pte)) {
2102 if (PV_BEEN_EXECD(pv->pv_flags)) {
2103 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2104 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2105 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2106 }
2107 }
2108
2109 *ptep = pte;
2110 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2111 }
2112 }
2113 #endif /* PMAP_CACHE_VIPT */
2114
2115
2116 /*
2117 * Modify pte bits for all ptes corresponding to the given physical address.
2118 * We use `maskbits' rather than `clearbits' because we're always passing
2119 * constants and the latter would require an extra inversion at run-time.
2120 */
2121 static void
2122 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
2123 {
2124 struct l2_bucket *l2b;
2125 struct pv_entry *pv;
2126 pt_entry_t *ptep, npte, opte;
2127 pmap_t pm;
2128 vaddr_t va;
2129 u_int oflags;
2130 #ifdef PMAP_CACHE_VIPT
2131 const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
2132 bool need_syncicache = false;
2133 bool did_syncicache = false;
2134 bool need_vac_me_harder = false;
2135 #endif
2136
2137 NPDEBUG(PDB_BITS,
2138 printf("pmap_clearbit: md %p mask 0x%x\n",
2139 md, maskbits));
2140
2141 #ifdef PMAP_CACHE_VIPT
2142 /*
2143 * If we might want to sync the I-cache and we've modified it,
2144 * then we know we definitely need to sync or discard it.
2145 */
2146 if (want_syncicache)
2147 need_syncicache = md->pvh_attrs & PVF_MOD;
2148 #endif
2149 /*
2150 * Clear saved attributes (modify, reference)
2151 */
2152 md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2153
2154 if (SLIST_EMPTY(&md->pvh_list)) {
2155 #ifdef PMAP_CACHE_VIPT
2156 if (need_syncicache) {
2157 /*
2158 * No one has it mapped, so just discard it. The next
2159 * exec remapping will cause it to be synced.
2160 */
2161 md->pvh_attrs &= ~PVF_EXEC;
2162 PMAPCOUNT(exec_discarded_clearbit);
2163 }
2164 #endif
2165 return;
2166 }
2167
2168 /*
2169 * Loop over all current mappings setting/clearing as appropos
2170 */
2171 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
2172 va = pv->pv_va;
2173 pm = pv->pv_pmap;
2174 oflags = pv->pv_flags;
2175 /*
2176 * Kernel entries are unmanaged and as such not to be changed.
2177 */
2178 if (oflags & PVF_KENTRY)
2179 continue;
2180 pv->pv_flags &= ~maskbits;
2181
2182 pmap_acquire_pmap_lock(pm);
2183
2184 l2b = pmap_get_l2_bucket(pm, va);
2185 KDASSERT(l2b != NULL);
2186
2187 ptep = &l2b->l2b_kva[l2pte_index(va)];
2188 npte = opte = *ptep;
2189
2190 NPDEBUG(PDB_BITS,
2191 printf(
2192 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2193 pv, pv->pv_pmap, pv->pv_va, oflags));
2194
2195 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2196 #ifdef PMAP_CACHE_VIVT
2197 if ((pv->pv_flags & PVF_NC)) {
2198 /*
2199 * Entry is not cacheable:
2200 *
2201 * Don't turn caching on again if this is a
2202 * modified emulation. This would be
2203 * inconsitent with the settings created by
2204 * pmap_vac_me_harder(). Otherwise, it's safe
2205 * to re-enable cacheing.
2206 *
2207 * There's no need to call pmap_vac_me_harder()
2208 * here: all pages are losing their write
2209 * permission.
2210 */
2211 if (maskbits & PVF_WRITE) {
2212 npte |= pte_l2_s_cache_mode;
2213 pv->pv_flags &= ~PVF_NC;
2214 }
2215 } else
2216 if (l2pte_writable_p(opte)) {
2217 /*
2218 * Entry is writable/cacheable: check if pmap
2219 * is current if it is flush it, otherwise it
2220 * won't be in the cache
2221 */
2222 if (PV_BEEN_EXECD(oflags))
2223 pmap_idcache_wbinv_range(pm, pv->pv_va,
2224 PAGE_SIZE);
2225 else
2226 if (PV_BEEN_REFD(oflags))
2227 pmap_dcache_wb_range(pm, pv->pv_va,
2228 PAGE_SIZE,
2229 (maskbits & PVF_REF) != 0, false);
2230 }
2231 #endif
2232
2233 /* make the pte read only */
2234 npte = l2pte_set_readonly(npte);
2235
2236 if (maskbits & oflags & PVF_WRITE) {
2237 /*
2238 * Keep alias accounting up to date
2239 */
2240 if (pv->pv_pmap == pmap_kernel()) {
2241 md->krw_mappings--;
2242 md->kro_mappings++;
2243 } else {
2244 md->urw_mappings--;
2245 md->uro_mappings++;
2246 }
2247 #ifdef PMAP_CACHE_VIPT
2248 if (arm_cache_prefer_mask != 0) {
2249 if (md->urw_mappings + md->krw_mappings == 0) {
2250 md->pvh_attrs &= ~PVF_WRITE;
2251 } else {
2252 PMAP_VALIDATE_MD_PAGE(md);
2253 }
2254 }
2255 if (want_syncicache)
2256 need_syncicache = true;
2257 need_vac_me_harder = true;
2258 #endif
2259 }
2260 }
2261
2262 if (maskbits & PVF_REF) {
2263 if ((pv->pv_flags & PVF_NC) == 0 &&
2264 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2265 l2pte_valid(npte)) {
2266 #ifdef PMAP_CACHE_VIVT
2267 /*
2268 * Check npte here; we may have already
2269 * done the wbinv above, and the validity
2270 * of the PTE is the same for opte and
2271 * npte.
2272 */
2273 /* XXXJRT need idcache_inv_range */
2274 if (PV_BEEN_EXECD(oflags))
2275 pmap_idcache_wbinv_range(pm,
2276 pv->pv_va, PAGE_SIZE);
2277 else
2278 if (PV_BEEN_REFD(oflags))
2279 pmap_dcache_wb_range(pm,
2280 pv->pv_va, PAGE_SIZE,
2281 true, true);
2282 #endif
2283 }
2284
2285 /*
2286 * Make the PTE invalid so that we will take a
2287 * page fault the next time the mapping is
2288 * referenced.
2289 */
2290 npte &= ~L2_TYPE_MASK;
2291 npte |= L2_TYPE_INV;
2292 }
2293
2294 if (npte != opte) {
2295 *ptep = npte;
2296 PTE_SYNC(ptep);
2297 /* Flush the TLB entry if a current pmap. */
2298 if (PV_BEEN_EXECD(oflags))
2299 pmap_tlb_flushID_SE(pm, pv->pv_va);
2300 else
2301 if (PV_BEEN_REFD(oflags))
2302 pmap_tlb_flushD_SE(pm, pv->pv_va);
2303 }
2304
2305 pmap_release_pmap_lock(pm);
2306
2307 NPDEBUG(PDB_BITS,
2308 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2309 pm, va, opte, npte));
2310 }
2311
2312 #ifdef PMAP_CACHE_VIPT
2313 /*
2314 * If we need to sync the I-cache and we haven't done it yet, do it.
2315 */
2316 if (need_syncicache && !did_syncicache) {
2317 pmap_syncicache_page(md, pa);
2318 PMAPCOUNT(exec_synced_clearbit);
2319 }
2320 /*
2321 * If we are changing this to read-only, we need to call vac_me_harder
2322 * so we can change all the read-only pages to cacheable. We pretend
2323 * this as a page deletion.
2324 */
2325 if (need_vac_me_harder) {
2326 if (md->pvh_attrs & PVF_NC)
2327 pmap_vac_me_harder(md, pa, NULL, 0);
2328 }
2329 #endif
2330 }
2331
2332 /*
2333 * pmap_clean_page()
2334 *
2335 * This is a local function used to work out the best strategy to clean
2336 * a single page referenced by its entry in the PV table. It's used by
2337 * pmap_copy_page, pmap_zero page and maybe some others later on.
2338 *
2339 * Its policy is effectively:
2340 * o If there are no mappings, we don't bother doing anything with the cache.
2341 * o If there is one mapping, we clean just that page.
2342 * o If there are multiple mappings, we clean the entire cache.
2343 *
2344 * So that some functions can be further optimised, it returns 0 if it didn't
2345 * clean the entire cache, or 1 if it did.
2346 *
2347 * XXX One bug in this routine is that if the pv_entry has a single page
2348 * mapped at 0x00000000 a whole cache clean will be performed rather than
2349 * just the 1 page. Since this should not occur in everyday use and if it does
2350 * it will just result in not the most efficient clean for the page.
2351 */
2352 #ifdef PMAP_CACHE_VIVT
2353 static int
2354 pmap_clean_page(struct pv_entry *pv, bool is_src)
2355 {
2356 pmap_t pm_to_clean = NULL;
2357 struct pv_entry *npv;
2358 u_int cache_needs_cleaning = 0;
2359 u_int flags = 0;
2360 vaddr_t page_to_clean = 0;
2361
2362 if (pv == NULL) {
2363 /* nothing mapped in so nothing to flush */
2364 return (0);
2365 }
2366
2367 /*
2368 * Since we flush the cache each time we change to a different
2369 * user vmspace, we only need to flush the page if it is in the
2370 * current pmap.
2371 */
2372
2373 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2374 if (pmap_is_current(npv->pv_pmap)) {
2375 flags |= npv->pv_flags;
2376 /*
2377 * The page is mapped non-cacheable in
2378 * this map. No need to flush the cache.
2379 */
2380 if (npv->pv_flags & PVF_NC) {
2381 #ifdef DIAGNOSTIC
2382 if (cache_needs_cleaning)
2383 panic("pmap_clean_page: "
2384 "cache inconsistency");
2385 #endif
2386 break;
2387 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2388 continue;
2389 if (cache_needs_cleaning) {
2390 page_to_clean = 0;
2391 break;
2392 } else {
2393 page_to_clean = npv->pv_va;
2394 pm_to_clean = npv->pv_pmap;
2395 }
2396 cache_needs_cleaning = 1;
2397 }
2398 }
2399
2400 if (page_to_clean) {
2401 if (PV_BEEN_EXECD(flags))
2402 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2403 PAGE_SIZE);
2404 else
2405 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2406 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2407 } else if (cache_needs_cleaning) {
2408 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2409
2410 if (PV_BEEN_EXECD(flags))
2411 pmap_idcache_wbinv_all(pm);
2412 else
2413 pmap_dcache_wbinv_all(pm);
2414 return (1);
2415 }
2416 return (0);
2417 }
2418 #endif
2419
2420 #ifdef PMAP_CACHE_VIPT
2421 /*
2422 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2423 * right cache alias to make sure we flush the right stuff.
2424 */
2425 void
2426 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
2427 {
2428 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2429 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2430
2431 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: md=%p (attrs=%#x)\n",
2432 md, md->pvh_attrs));
2433 /*
2434 * No need to clean the page if it's non-cached.
2435 */
2436 if (md->pvh_attrs & PVF_NC)
2437 return;
2438 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
2439
2440 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2441 /*
2442 * Set up a PTE with the right coloring to flush existing cache lines.
2443 */
2444 *ptep = L2_S_PROTO |
2445 pa
2446 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2447 | pte_l2_s_cache_mode;
2448 PTE_SYNC(ptep);
2449
2450 /*
2451 * Flush it.
2452 */
2453 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2454 /*
2455 * Unmap the page.
2456 */
2457 *ptep = 0;
2458 PTE_SYNC(ptep);
2459 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2460
2461 md->pvh_attrs |= PVF_EXEC;
2462 PMAPCOUNT(exec_synced);
2463 }
2464
2465 void
2466 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
2467 {
2468 vsize_t va_offset, end_va;
2469 void (*cf)(vaddr_t, vsize_t);
2470
2471 if (arm_cache_prefer_mask == 0)
2472 return;
2473
2474 switch (flush) {
2475 case PMAP_FLUSH_PRIMARY:
2476 if (md->pvh_attrs & PVF_MULTCLR) {
2477 va_offset = 0;
2478 end_va = arm_cache_prefer_mask;
2479 md->pvh_attrs &= ~PVF_MULTCLR;
2480 PMAPCOUNT(vac_flush_lots);
2481 } else {
2482 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2483 end_va = va_offset;
2484 PMAPCOUNT(vac_flush_one);
2485 }
2486 /*
2487 * Mark that the page is no longer dirty.
2488 */
2489 md->pvh_attrs &= ~PVF_DIRTY;
2490 cf = cpufuncs.cf_idcache_wbinv_range;
2491 break;
2492 case PMAP_FLUSH_SECONDARY:
2493 va_offset = 0;
2494 end_va = arm_cache_prefer_mask;
2495 cf = cpufuncs.cf_idcache_wbinv_range;
2496 md->pvh_attrs &= ~PVF_MULTCLR;
2497 PMAPCOUNT(vac_flush_lots);
2498 break;
2499 case PMAP_CLEAN_PRIMARY:
2500 va_offset = md->pvh_attrs & arm_cache_prefer_mask;
2501 end_va = va_offset;
2502 cf = cpufuncs.cf_dcache_wb_range;
2503 /*
2504 * Mark that the page is no longer dirty.
2505 */
2506 if ((md->pvh_attrs & PVF_DMOD) == 0)
2507 md->pvh_attrs &= ~PVF_DIRTY;
2508 PMAPCOUNT(vac_clean_one);
2509 break;
2510 default:
2511 return;
2512 }
2513
2514 KASSERT(!(md->pvh_attrs & PVF_NC));
2515
2516 NPDEBUG(PDB_VAC, printf("pmap_flush_page: md=%p (attrs=%#x)\n",
2517 md, md->pvh_attrs));
2518
2519 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2520 const size_t pte_offset = va_offset >> PGSHIFT;
2521 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2522 const pt_entry_t oldpte = *ptep;
2523
2524 if (flush == PMAP_FLUSH_SECONDARY
2525 && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
2526 continue;
2527
2528 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2529 /*
2530 * Set up a PTE with the right coloring to flush
2531 * existing cache entries.
2532 */
2533 *ptep = L2_S_PROTO
2534 | pa
2535 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2536 | pte_l2_s_cache_mode;
2537 PTE_SYNC(ptep);
2538
2539 /*
2540 * Flush it.
2541 */
2542 (*cf)(cdstp + va_offset, PAGE_SIZE);
2543
2544 /*
2545 * Restore the page table entry since we might have interrupted
2546 * pmap_zero_page or pmap_copy_page which was already using
2547 * this pte.
2548 */
2549 *ptep = oldpte;
2550 PTE_SYNC(ptep);
2551 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2552 }
2553 }
2554 #endif /* PMAP_CACHE_VIPT */
2555
2556 /*
2557 * Routine: pmap_page_remove
2558 * Function:
2559 * Removes this physical page from
2560 * all physical maps in which it resides.
2561 * Reflects back modify bits to the pager.
2562 */
2563 static void
2564 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
2565 {
2566 struct l2_bucket *l2b;
2567 struct pv_entry *pv, *npv, **pvp;
2568 pmap_t pm;
2569 pt_entry_t *ptep;
2570 bool flush;
2571 u_int flags;
2572
2573 NPDEBUG(PDB_FOLLOW,
2574 printf("pmap_page_remove: md %p (0x%08lx)\n", md,
2575 pa));
2576
2577 pv = SLIST_FIRST(&md->pvh_list);
2578 if (pv == NULL) {
2579 #ifdef PMAP_CACHE_VIPT
2580 /*
2581 * We *know* the page contents are about to be replaced.
2582 * Discard the exec contents
2583 */
2584 if (PV_IS_EXEC_P(md->pvh_attrs))
2585 PMAPCOUNT(exec_discarded_page_protect);
2586 md->pvh_attrs &= ~PVF_EXEC;
2587 PMAP_VALIDATE_MD_PAGE(md);
2588 #endif
2589 return;
2590 }
2591 #ifdef PMAP_CACHE_VIPT
2592 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
2593 #endif
2594
2595 /*
2596 * Clear alias counts
2597 */
2598 #ifdef PMAP_CACHE_VIVT
2599 md->k_mappings = 0;
2600 #endif
2601 md->urw_mappings = md->uro_mappings = 0;
2602
2603 flush = false;
2604 flags = 0;
2605
2606 #ifdef PMAP_CACHE_VIVT
2607 pmap_clean_page(pv, false);
2608 #endif
2609
2610 pvp = &SLIST_FIRST(&md->pvh_list);
2611 while (pv) {
2612 pm = pv->pv_pmap;
2613 npv = SLIST_NEXT(pv, pv_link);
2614 if (flush == false && pmap_is_current(pm))
2615 flush = true;
2616
2617 if (pm == pmap_kernel()) {
2618 #ifdef PMAP_CACHE_VIPT
2619 /*
2620 * If this was unmanaged mapping, it must be preserved.
2621 * Move it back on the list and advance the end-of-list
2622 * pointer.
2623 */
2624 if (pv->pv_flags & PVF_KENTRY) {
2625 *pvp = pv;
2626 pvp = &SLIST_NEXT(pv, pv_link);
2627 pv = npv;
2628 continue;
2629 }
2630 if (pv->pv_flags & PVF_WRITE)
2631 md->krw_mappings--;
2632 else
2633 md->kro_mappings--;
2634 #endif
2635 PMAPCOUNT(kernel_unmappings);
2636 }
2637 PMAPCOUNT(unmappings);
2638
2639 pmap_acquire_pmap_lock(pm);
2640
2641 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2642 KDASSERT(l2b != NULL);
2643
2644 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2645
2646 /*
2647 * Update statistics
2648 */
2649 --pm->pm_stats.resident_count;
2650
2651 /* Wired bit */
2652 if (pv->pv_flags & PVF_WIRED)
2653 --pm->pm_stats.wired_count;
2654
2655 flags |= pv->pv_flags;
2656
2657 /*
2658 * Invalidate the PTEs.
2659 */
2660 *ptep = 0;
2661 PTE_SYNC_CURRENT(pm, ptep);
2662 pmap_free_l2_bucket(pm, l2b, 1);
2663
2664 pool_put(&pmap_pv_pool, pv);
2665 pv = npv;
2666 /*
2667 * if we reach the end of the list and there are still
2668 * mappings, they might be able to be cached now.
2669 */
2670 if (pv == NULL) {
2671 *pvp = NULL;
2672 if (!SLIST_EMPTY(&md->pvh_list))
2673 pmap_vac_me_harder(md, pa, pm, 0);
2674 }
2675 pmap_release_pmap_lock(pm);
2676 }
2677 #ifdef PMAP_CACHE_VIPT
2678 /*
2679 * Its EXEC cache is now gone.
2680 */
2681 if (PV_IS_EXEC_P(md->pvh_attrs))
2682 PMAPCOUNT(exec_discarded_page_protect);
2683 md->pvh_attrs &= ~PVF_EXEC;
2684 KASSERT(md->urw_mappings == 0);
2685 KASSERT(md->uro_mappings == 0);
2686 if (arm_cache_prefer_mask != 0) {
2687 if (md->krw_mappings == 0)
2688 md->pvh_attrs &= ~PVF_WRITE;
2689 PMAP_VALIDATE_MD_PAGE(md);
2690 }
2691 #endif
2692
2693 if (flush) {
2694 /*
2695 * Note: We can't use pmap_tlb_flush{I,D}() here since that
2696 * would need a subsequent call to pmap_update() to ensure
2697 * curpm->pm_cstate.cs_all is reset. Our callers are not
2698 * required to do that (see pmap(9)), so we can't modify
2699 * the current pmap's state.
2700 */
2701 if (PV_BEEN_EXECD(flags))
2702 cpu_tlb_flushID();
2703 else
2704 cpu_tlb_flushD();
2705 }
2706 cpu_cpwait();
2707 }
2708
2709 /*
2710 * pmap_t pmap_create(void)
2711 *
2712 * Create a new pmap structure from scratch.
2713 */
2714 pmap_t
2715 pmap_create(void)
2716 {
2717 pmap_t pm;
2718
2719 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2720
2721 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
2722 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
2723 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
2724
2725 pm->pm_stats.wired_count = 0;
2726 pm->pm_stats.resident_count = 1;
2727 pm->pm_cstate.cs_all = 0;
2728 pmap_alloc_l1(pm);
2729
2730 /*
2731 * Note: The pool cache ensures that the pm_l2[] array is already
2732 * initialised to zero.
2733 */
2734
2735 pmap_pinit(pm);
2736
2737 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2738
2739 return (pm);
2740 }
2741
2742 u_int
2743 arm32_mmap_flags(paddr_t pa)
2744 {
2745 /*
2746 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
2747 * and we're using the upper bits in page numbers to pass flags around
2748 * so we might as well use the same bits
2749 */
2750 return (u_int)pa & PMAP_MD_MASK;
2751 }
2752 /*
2753 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2754 * u_int flags)
2755 *
2756 * Insert the given physical page (p) at
2757 * the specified virtual address (v) in the
2758 * target physical map with the protection requested.
2759 *
2760 * NB: This is the only routine which MAY NOT lazy-evaluate
2761 * or lose information. That is, this routine must actually
2762 * insert this page into the given map NOW.
2763 */
2764 int
2765 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2766 {
2767 struct l2_bucket *l2b;
2768 struct vm_page *pg, *opg;
2769 struct pv_entry *pv;
2770 pt_entry_t *ptep, npte, opte;
2771 u_int nflags;
2772 u_int oflags;
2773
2774 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2775
2776 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2777 KDASSERT(((va | pa) & PGOFSET) == 0);
2778
2779 /*
2780 * Get a pointer to the page. Later on in this function, we
2781 * test for a managed page by checking pg != NULL.
2782 */
2783 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2784
2785 nflags = 0;
2786 if (prot & VM_PROT_WRITE)
2787 nflags |= PVF_WRITE;
2788 if (prot & VM_PROT_EXECUTE)
2789 nflags |= PVF_EXEC;
2790 if (flags & PMAP_WIRED)
2791 nflags |= PVF_WIRED;
2792
2793 pmap_acquire_pmap_lock(pm);
2794
2795 /*
2796 * Fetch the L2 bucket which maps this page, allocating one if
2797 * necessary for user pmaps.
2798 */
2799 if (pm == pmap_kernel())
2800 l2b = pmap_get_l2_bucket(pm, va);
2801 else
2802 l2b = pmap_alloc_l2_bucket(pm, va);
2803 if (l2b == NULL) {
2804 if (flags & PMAP_CANFAIL) {
2805 pmap_release_pmap_lock(pm);
2806 return (ENOMEM);
2807 }
2808 panic("pmap_enter: failed to allocate L2 bucket");
2809 }
2810 ptep = &l2b->l2b_kva[l2pte_index(va)];
2811 opte = *ptep;
2812 npte = pa;
2813 oflags = 0;
2814
2815 if (opte) {
2816 /*
2817 * There is already a mapping at this address.
2818 * If the physical address is different, lookup the
2819 * vm_page.
2820 */
2821 if (l2pte_pa(opte) != pa)
2822 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2823 else
2824 opg = pg;
2825 } else
2826 opg = NULL;
2827
2828 if (pg) {
2829 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
2830
2831 /*
2832 * This is to be a managed mapping.
2833 */
2834 if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
2835 /*
2836 * - The access type indicates that we don't need
2837 * to do referenced emulation.
2838 * OR
2839 * - The physical page has already been referenced
2840 * so no need to re-do referenced emulation here.
2841 */
2842 npte |= l2pte_set_readonly(L2_S_PROTO);
2843
2844 nflags |= PVF_REF;
2845
2846 if ((prot & VM_PROT_WRITE) != 0 &&
2847 ((flags & VM_PROT_WRITE) != 0 ||
2848 (md->pvh_attrs & PVF_MOD) != 0)) {
2849 /*
2850 * This is a writable mapping, and the
2851 * page's mod state indicates it has
2852 * already been modified. Make it
2853 * writable from the outset.
2854 */
2855 npte = l2pte_set_writable(npte);
2856 nflags |= PVF_MOD;
2857 }
2858 } else {
2859 /*
2860 * Need to do page referenced emulation.
2861 */
2862 npte |= L2_TYPE_INV;
2863 }
2864
2865 npte |= pte_l2_s_cache_mode;
2866
2867 if (pg == opg) {
2868 /*
2869 * We're changing the attrs of an existing mapping.
2870 */
2871 #ifdef MULTIPROCESSOR
2872 KASSERT(uvm_page_locked_p(pg));
2873 #endif
2874 oflags = pmap_modify_pv(md, pa, pm, va,
2875 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2876 PVF_MOD | PVF_REF, nflags);
2877
2878 #ifdef PMAP_CACHE_VIVT
2879 /*
2880 * We may need to flush the cache if we're
2881 * doing rw-ro...
2882 */
2883 if (pm->pm_cstate.cs_cache_d &&
2884 (oflags & PVF_NC) == 0 &&
2885 l2pte_writable_p(opte) &&
2886 (prot & VM_PROT_WRITE) == 0)
2887 cpu_dcache_wb_range(va, PAGE_SIZE);
2888 #endif
2889 } else {
2890 /*
2891 * New mapping, or changing the backing page
2892 * of an existing mapping.
2893 */
2894 if (opg) {
2895 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2896 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2897
2898 /*
2899 * Replacing an existing mapping with a new one.
2900 * It is part of our managed memory so we
2901 * must remove it from the PV list
2902 */
2903 #ifdef MULTIPROCESSOR
2904 KASSERT(uvm_page_locked_p(opg));
2905 #endif
2906 pv = pmap_remove_pv(omd, opa, pm, va);
2907 pmap_vac_me_harder(omd, opa, pm, 0);
2908 oflags = pv->pv_flags;
2909
2910 #ifdef PMAP_CACHE_VIVT
2911 /*
2912 * If the old mapping was valid (ref/mod
2913 * emulation creates 'invalid' mappings
2914 * initially) then make sure to frob
2915 * the cache.
2916 */
2917 if ((oflags & PVF_NC) == 0 &&
2918 l2pte_valid(opte)) {
2919 if (PV_BEEN_EXECD(oflags)) {
2920 pmap_idcache_wbinv_range(pm, va,
2921 PAGE_SIZE);
2922 } else
2923 if (PV_BEEN_REFD(oflags)) {
2924 pmap_dcache_wb_range(pm, va,
2925 PAGE_SIZE, true,
2926 (oflags & PVF_WRITE) == 0);
2927 }
2928 }
2929 #endif
2930 } else
2931 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2932 if ((flags & PMAP_CANFAIL) == 0)
2933 panic("pmap_enter: no pv entries");
2934
2935 if (pm != pmap_kernel())
2936 pmap_free_l2_bucket(pm, l2b, 0);
2937 pmap_release_pmap_lock(pm);
2938 NPDEBUG(PDB_ENTER,
2939 printf("pmap_enter: ENOMEM\n"));
2940 return (ENOMEM);
2941 }
2942
2943 #ifdef MULTIPROCESSOR
2944 KASSERT(uvm_page_locked_p(pg));
2945 #endif
2946 pmap_enter_pv(md, pa, pv, pm, va, nflags);
2947 }
2948 } else {
2949 /*
2950 * We're mapping an unmanaged page.
2951 * These are always readable, and possibly writable, from
2952 * the get go as we don't need to track ref/mod status.
2953 */
2954 npte |= l2pte_set_readonly(L2_S_PROTO);
2955 if (prot & VM_PROT_WRITE)
2956 npte = l2pte_set_writable(npte);
2957
2958 /*
2959 * Make sure the vector table is mapped cacheable
2960 */
2961 if ((pm != pmap_kernel() && va == vector_page) ||
2962 (flags & ARM32_MMAP_CACHEABLE)) {
2963 npte |= pte_l2_s_cache_mode;
2964 } else if (flags & ARM32_MMAP_WRITECOMBINE) {
2965 npte |= pte_l2_s_wc_mode;
2966 }
2967 if (opg) {
2968 /*
2969 * Looks like there's an existing 'managed' mapping
2970 * at this address.
2971 */
2972 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
2973 paddr_t opa = VM_PAGE_TO_PHYS(opg);
2974
2975 #ifdef MULTIPROCESSOR
2976 KASSERT(uvm_page_locked_p(opg));
2977 #endif
2978 pv = pmap_remove_pv(omd, opa, pm, va);
2979 pmap_vac_me_harder(omd, opa, pm, 0);
2980 oflags = pv->pv_flags;
2981
2982 #ifdef PMAP_CACHE_VIVT
2983 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2984 if (PV_BEEN_EXECD(oflags))
2985 pmap_idcache_wbinv_range(pm, va,
2986 PAGE_SIZE);
2987 else
2988 if (PV_BEEN_REFD(oflags))
2989 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2990 true, (oflags & PVF_WRITE) == 0);
2991 }
2992 #endif
2993 pool_put(&pmap_pv_pool, pv);
2994 }
2995 }
2996
2997 /*
2998 * Make sure userland mappings get the right permissions
2999 */
3000 if (pm != pmap_kernel() && va != vector_page)
3001 npte |= L2_S_PROT_U;
3002
3003 /*
3004 * Keep the stats up to date
3005 */
3006 if (opte == 0) {
3007 l2b->l2b_occupancy++;
3008 pm->pm_stats.resident_count++;
3009 }
3010
3011 NPDEBUG(PDB_ENTER,
3012 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
3013
3014 /*
3015 * If this is just a wiring change, the two PTEs will be
3016 * identical, so there's no need to update the page table.
3017 */
3018 if (npte != opte) {
3019 bool is_cached = pmap_is_cached(pm);
3020
3021 *ptep = npte;
3022 PTE_SYNC(ptep);
3023 if (is_cached) {
3024 /*
3025 * We only need to frob the cache/tlb if this pmap
3026 * is current
3027 */
3028 if (va != vector_page && l2pte_valid(npte)) {
3029 /*
3030 * This mapping is likely to be accessed as
3031 * soon as we return to userland. Fix up the
3032 * L1 entry to avoid taking another
3033 * page/domain fault.
3034 */
3035 pd_entry_t *pl1pd, l1pd;
3036
3037 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3038 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3039 L1_C_PROTO;
3040 if (*pl1pd != l1pd) {
3041 *pl1pd = l1pd;
3042 PTE_SYNC(pl1pd);
3043 }
3044 }
3045 }
3046
3047 if (PV_BEEN_EXECD(oflags))
3048 pmap_tlb_flushID_SE(pm, va);
3049 else
3050 if (PV_BEEN_REFD(oflags))
3051 pmap_tlb_flushD_SE(pm, va);
3052
3053 NPDEBUG(PDB_ENTER,
3054 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3055 is_cached, pm->pm_cstate.cs_all));
3056
3057 if (pg != NULL) {
3058 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3059
3060 #ifdef MULTIPROCESSOR
3061 KASSERT(uvm_page_locked_p(pg));
3062 #endif
3063 pmap_vac_me_harder(md, pa, pm, va);
3064 }
3065 }
3066 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3067 if (pg) {
3068 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3069
3070 #ifdef MULTIPROCESSOR
3071 KASSERT(uvm_page_locked_p(pg));
3072 #endif
3073 KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3074 PMAP_VALIDATE_MD_PAGE(md);
3075 }
3076 #endif
3077
3078 pmap_release_pmap_lock(pm);
3079
3080 return (0);
3081 }
3082
3083 /*
3084 * pmap_remove()
3085 *
3086 * pmap_remove is responsible for nuking a number of mappings for a range
3087 * of virtual address space in the current pmap. To do this efficiently
3088 * is interesting, because in a number of cases a wide virtual address
3089 * range may be supplied that contains few actual mappings. So, the
3090 * optimisations are:
3091 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3092 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3093 * maybe do just a partial cache clean. This path of execution is
3094 * complicated by the fact that the cache must be flushed _before_
3095 * the PTE is nuked, being a VAC :-)
3096 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3097 * all invalidations until pmap_update(), since pmap_remove_all() has
3098 * already flushed the cache.
3099 * 4. Maybe later fast-case a single page, but I don't think this is
3100 * going to make _that_ much difference overall.
3101 */
3102
3103 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3104
3105 void
3106 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3107 {
3108 struct l2_bucket *l2b;
3109 vaddr_t next_bucket;
3110 pt_entry_t *ptep;
3111 u_int cleanlist_idx, total, cnt;
3112 struct {
3113 vaddr_t va;
3114 pt_entry_t *ptep;
3115 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3116 u_int mappings, is_exec, is_refd;
3117
3118 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3119 "eva=%08lx\n", pm, sva, eva));
3120
3121 /*
3122 * we lock in the pmap => pv_head direction
3123 */
3124 pmap_acquire_pmap_lock(pm);
3125
3126 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3127 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3128 if (pm->pm_cstate.cs_tlb == 0)
3129 pm->pm_remove_all = true;
3130 } else
3131 cleanlist_idx = 0;
3132
3133 total = 0;
3134
3135 while (sva < eva) {
3136 /*
3137 * Do one L2 bucket's worth at a time.
3138 */
3139 next_bucket = L2_NEXT_BUCKET(sva);
3140 if (next_bucket > eva)
3141 next_bucket = eva;
3142
3143 l2b = pmap_get_l2_bucket(pm, sva);
3144 if (l2b == NULL) {
3145 sva = next_bucket;
3146 continue;
3147 }
3148
3149 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3150
3151 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3152 struct vm_page *pg;
3153 pt_entry_t pte;
3154 paddr_t pa;
3155
3156 pte = *ptep;
3157
3158 if (pte == 0) {
3159 /* Nothing here, move along */
3160 continue;
3161 }
3162
3163 pa = l2pte_pa(pte);
3164 is_exec = 0;
3165 is_refd = 1;
3166
3167 /*
3168 * Update flags. In a number of circumstances,
3169 * we could cluster a lot of these and do a
3170 * number of sequential pages in one go.
3171 */
3172 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3173 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3174 struct pv_entry *pv;
3175
3176 #ifdef MULTIPROCESSOR
3177 KASSERT(uvm_page_locked_p(pg));
3178 #endif
3179 pv = pmap_remove_pv(md, pa, pm, sva);
3180 pmap_vac_me_harder(md, pa, pm, 0);
3181 if (pv != NULL) {
3182 if (pm->pm_remove_all == false) {
3183 is_exec =
3184 PV_BEEN_EXECD(pv->pv_flags);
3185 is_refd =
3186 PV_BEEN_REFD(pv->pv_flags);
3187 }
3188 pool_put(&pmap_pv_pool, pv);
3189 }
3190 }
3191 mappings++;
3192
3193 if (!l2pte_valid(pte)) {
3194 /*
3195 * Ref/Mod emulation is still active for this
3196 * mapping, therefore it is has not yet been
3197 * accessed. No need to frob the cache/tlb.
3198 */
3199 *ptep = 0;
3200 PTE_SYNC_CURRENT(pm, ptep);
3201 continue;
3202 }
3203
3204 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3205 /* Add to the clean list. */
3206 cleanlist[cleanlist_idx].ptep = ptep;
3207 cleanlist[cleanlist_idx].va =
3208 sva | (is_exec & 1);
3209 cleanlist_idx++;
3210 } else
3211 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3212 /* Nuke everything if needed. */
3213 #ifdef PMAP_CACHE_VIVT
3214 pmap_idcache_wbinv_all(pm);
3215 #endif
3216 pmap_tlb_flushID(pm);
3217
3218 /*
3219 * Roll back the previous PTE list,
3220 * and zero out the current PTE.
3221 */
3222 for (cnt = 0;
3223 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3224 *cleanlist[cnt].ptep = 0;
3225 PTE_SYNC(cleanlist[cnt].ptep);
3226 }
3227 *ptep = 0;
3228 PTE_SYNC(ptep);
3229 cleanlist_idx++;
3230 pm->pm_remove_all = true;
3231 } else {
3232 *ptep = 0;
3233 PTE_SYNC(ptep);
3234 if (pm->pm_remove_all == false) {
3235 if (is_exec)
3236 pmap_tlb_flushID_SE(pm, sva);
3237 else
3238 if (is_refd)
3239 pmap_tlb_flushD_SE(pm, sva);
3240 }
3241 }
3242 }
3243
3244 /*
3245 * Deal with any left overs
3246 */
3247 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3248 total += cleanlist_idx;
3249 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3250 if (pm->pm_cstate.cs_all != 0) {
3251 vaddr_t clva = cleanlist[cnt].va & ~1;
3252 if (cleanlist[cnt].va & 1) {
3253 #ifdef PMAP_CACHE_VIVT
3254 pmap_idcache_wbinv_range(pm,
3255 clva, PAGE_SIZE);
3256 #endif
3257 pmap_tlb_flushID_SE(pm, clva);
3258 } else {
3259 #ifdef PMAP_CACHE_VIVT
3260 pmap_dcache_wb_range(pm,
3261 clva, PAGE_SIZE, true,
3262 false);
3263 #endif
3264 pmap_tlb_flushD_SE(pm, clva);
3265 }
3266 }
3267 *cleanlist[cnt].ptep = 0;
3268 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3269 }
3270
3271 /*
3272 * If it looks like we're removing a whole bunch
3273 * of mappings, it's faster to just write-back
3274 * the whole cache now and defer TLB flushes until
3275 * pmap_update() is called.
3276 */
3277 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3278 cleanlist_idx = 0;
3279 else {
3280 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3281 #ifdef PMAP_CACHE_VIVT
3282 pmap_idcache_wbinv_all(pm);
3283 #endif
3284 pm->pm_remove_all = true;
3285 }
3286 }
3287
3288 pmap_free_l2_bucket(pm, l2b, mappings);
3289 pm->pm_stats.resident_count -= mappings;
3290 }
3291
3292 pmap_release_pmap_lock(pm);
3293 }
3294
3295 #ifdef PMAP_CACHE_VIPT
3296 static struct pv_entry *
3297 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3298 {
3299 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3300 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3301 struct pv_entry *pv;
3302
3303 KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
3304 KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
3305
3306 pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
3307 KASSERT(pv);
3308 KASSERT(pv->pv_flags & PVF_KENTRY);
3309
3310 /*
3311 * If we are removing a writeable mapping to a cached exec page,
3312 * if it's the last mapping then clear it execness other sync
3313 * the page to the icache.
3314 */
3315 if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3316 && (pv->pv_flags & PVF_WRITE) != 0) {
3317 if (SLIST_EMPTY(&md->pvh_list)) {
3318 md->pvh_attrs &= ~PVF_EXEC;
3319 PMAPCOUNT(exec_discarded_kremove);
3320 } else {
3321 pmap_syncicache_page(md, pa);
3322 PMAPCOUNT(exec_synced_kremove);
3323 }
3324 }
3325 pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
3326
3327 return pv;
3328 }
3329 #endif /* PMAP_CACHE_VIPT */
3330
3331 /*
3332 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3333 *
3334 * We assume there is already sufficient KVM space available
3335 * to do this, as we can't allocate L2 descriptor tables/metadata
3336 * from here.
3337 */
3338 void
3339 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3340 {
3341 struct l2_bucket *l2b;
3342 pt_entry_t *ptep, opte;
3343 #ifdef PMAP_CACHE_VIVT
3344 struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3345 #endif
3346 #ifdef PMAP_CACHE_VIPT
3347 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3348 struct vm_page *opg;
3349 struct pv_entry *pv = NULL;
3350 #endif
3351 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3352
3353 NPDEBUG(PDB_KENTER,
3354 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3355 va, pa, prot));
3356
3357 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3358 KDASSERT(l2b != NULL);
3359
3360 ptep = &l2b->l2b_kva[l2pte_index(va)];
3361 opte = *ptep;
3362
3363 if (opte == 0) {
3364 PMAPCOUNT(kenter_mappings);
3365 l2b->l2b_occupancy++;
3366 } else {
3367 PMAPCOUNT(kenter_remappings);
3368 #ifdef PMAP_CACHE_VIPT
3369 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3370 #ifdef DIAGNOSTIC
3371 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3372 #endif
3373 if (opg) {
3374 KASSERT(opg != pg);
3375 KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
3376 KASSERT((flags & PMAP_KMPAGE) == 0);
3377 pv = pmap_kremove_pg(opg, va);
3378 }
3379 #endif
3380 if (l2pte_valid(opte)) {
3381 #ifdef PMAP_CACHE_VIVT
3382 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3383 #endif
3384 cpu_tlb_flushD_SE(va);
3385 cpu_cpwait();
3386 }
3387 }
3388
3389 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot)
3390 | ((flags & PMAP_NOCACHE) ? 0 : pte_l2_s_cache_mode);
3391 PTE_SYNC(ptep);
3392
3393 if (pg) {
3394 #ifdef MULTIPROCESSOR
3395 KASSERT(uvm_page_locked_p(pg));
3396 #endif
3397 if (flags & PMAP_KMPAGE) {
3398 KASSERT(md->urw_mappings == 0);
3399 KASSERT(md->uro_mappings == 0);
3400 KASSERT(md->krw_mappings == 0);
3401 KASSERT(md->kro_mappings == 0);
3402 #ifdef PMAP_CACHE_VIPT
3403 KASSERT(pv == NULL);
3404 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3405 KASSERT((md->pvh_attrs & PVF_NC) == 0);
3406 /* if there is a color conflict, evict from cache. */
3407 if (pmap_is_page_colored_p(md)
3408 && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
3409 PMAPCOUNT(vac_color_change);
3410 pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
3411 } else if (md->pvh_attrs & PVF_MULTCLR) {
3412 /*
3413 * If this page has multiple colors, expunge
3414 * them.
3415 */
3416 PMAPCOUNT(vac_flush_lots2);
3417 pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
3418 }
3419 md->pvh_attrs &= PAGE_SIZE - 1;
3420 md->pvh_attrs |= PVF_KMPAGE
3421 | PVF_COLORED | PVF_DIRTY
3422 | (va & arm_cache_prefer_mask);
3423 #endif
3424 #ifdef PMAP_CACHE_VIVT
3425 md->pvh_attrs |= PVF_KMPAGE;
3426 #endif
3427 pmap_kmpages++;
3428 #ifdef PMAP_CACHE_VIPT
3429 } else {
3430 if (pv == NULL) {
3431 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3432 KASSERT(pv != NULL);
3433 }
3434 pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
3435 PVF_WIRED | PVF_KENTRY
3436 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3437 if ((prot & VM_PROT_WRITE)
3438 && !(md->pvh_attrs & PVF_NC))
3439 md->pvh_attrs |= PVF_DIRTY;
3440 KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
3441 pmap_vac_me_harder(md, pa, pmap_kernel(), va);
3442 #endif
3443 }
3444 #ifdef PMAP_CACHE_VIPT
3445 } else {
3446 if (pv != NULL)
3447 pool_put(&pmap_pv_pool, pv);
3448 #endif
3449 }
3450 }
3451
3452 void
3453 pmap_kremove(vaddr_t va, vsize_t len)
3454 {
3455 struct l2_bucket *l2b;
3456 pt_entry_t *ptep, *sptep, opte;
3457 vaddr_t next_bucket, eva;
3458 u_int mappings;
3459 struct vm_page *opg;
3460
3461 PMAPCOUNT(kenter_unmappings);
3462
3463 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3464 va, len));
3465
3466 eva = va + len;
3467
3468 while (va < eva) {
3469 next_bucket = L2_NEXT_BUCKET(va);
3470 if (next_bucket > eva)
3471 next_bucket = eva;
3472
3473 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3474 KDASSERT(l2b != NULL);
3475
3476 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3477 mappings = 0;
3478
3479 while (va < next_bucket) {
3480 opte = *ptep;
3481 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3482 if (opg) {
3483 struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
3484
3485 if (omd->pvh_attrs & PVF_KMPAGE) {
3486 KASSERT(omd->urw_mappings == 0);
3487 KASSERT(omd->uro_mappings == 0);
3488 KASSERT(omd->krw_mappings == 0);
3489 KASSERT(omd->kro_mappings == 0);
3490 omd->pvh_attrs &= ~PVF_KMPAGE;
3491 #ifdef PMAP_CACHE_VIPT
3492 if (arm_cache_prefer_mask != 0) {
3493 omd->pvh_attrs &= ~PVF_WRITE;
3494 }
3495 #endif
3496 pmap_kmpages--;
3497 #ifdef PMAP_CACHE_VIPT
3498 } else {
3499 pool_put(&pmap_pv_pool,
3500 pmap_kremove_pg(opg, va));
3501 #endif
3502 }
3503 }
3504 if (l2pte_valid(opte)) {
3505 #ifdef PMAP_CACHE_VIVT
3506 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3507 #endif
3508 cpu_tlb_flushD_SE(va);
3509 }
3510 if (opte) {
3511 *ptep = 0;
3512 mappings++;
3513 }
3514 va += PAGE_SIZE;
3515 ptep++;
3516 }
3517 KDASSERT(mappings <= l2b->l2b_occupancy);
3518 l2b->l2b_occupancy -= mappings;
3519 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3520 }
3521 cpu_cpwait();
3522 }
3523
3524 bool
3525 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3526 {
3527 struct l2_dtable *l2;
3528 pd_entry_t *pl1pd, l1pd;
3529 pt_entry_t *ptep, pte;
3530 paddr_t pa;
3531 u_int l1idx;
3532
3533 pmap_acquire_pmap_lock(pm);
3534
3535 l1idx = L1_IDX(va);
3536 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3537 l1pd = *pl1pd;
3538
3539 if (l1pte_section_p(l1pd)) {
3540 /*
3541 * These should only happen for pmap_kernel()
3542 */
3543 KDASSERT(pm == pmap_kernel());
3544 pmap_release_pmap_lock(pm);
3545 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
3546 if (l1pte_supersection_p(l1pd)) {
3547 pa = (l1pd & L1_SS_FRAME) | (va & L1_SS_OFFSET);
3548 } else
3549 #endif
3550 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3551 } else {
3552 /*
3553 * Note that we can't rely on the validity of the L1
3554 * descriptor as an indication that a mapping exists.
3555 * We have to look it up in the L2 dtable.
3556 */
3557 l2 = pm->pm_l2[L2_IDX(l1idx)];
3558
3559 if (l2 == NULL ||
3560 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3561 pmap_release_pmap_lock(pm);
3562 return false;
3563 }
3564
3565 ptep = &ptep[l2pte_index(va)];
3566 pte = *ptep;
3567 pmap_release_pmap_lock(pm);
3568
3569 if (pte == 0)
3570 return false;
3571
3572 switch (pte & L2_TYPE_MASK) {
3573 case L2_TYPE_L:
3574 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3575 break;
3576
3577 default:
3578 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3579 break;
3580 }
3581 }
3582
3583 if (pap != NULL)
3584 *pap = pa;
3585
3586 return true;
3587 }
3588
3589 void
3590 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3591 {
3592 struct l2_bucket *l2b;
3593 pt_entry_t *ptep, pte;
3594 vaddr_t next_bucket;
3595 u_int flags;
3596 u_int clr_mask;
3597 int flush;
3598
3599 NPDEBUG(PDB_PROTECT,
3600 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3601 pm, sva, eva, prot));
3602
3603 if ((prot & VM_PROT_READ) == 0) {
3604 pmap_remove(pm, sva, eva);
3605 return;
3606 }
3607
3608 if (prot & VM_PROT_WRITE) {
3609 /*
3610 * If this is a read->write transition, just ignore it and let
3611 * uvm_fault() take care of it later.
3612 */
3613 return;
3614 }
3615
3616 pmap_acquire_pmap_lock(pm);
3617
3618 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3619 flags = 0;
3620 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3621
3622 while (sva < eva) {
3623 next_bucket = L2_NEXT_BUCKET(sva);
3624 if (next_bucket > eva)
3625 next_bucket = eva;
3626
3627 l2b = pmap_get_l2_bucket(pm, sva);
3628 if (l2b == NULL) {
3629 sva = next_bucket;
3630 continue;
3631 }
3632
3633 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3634
3635 while (sva < next_bucket) {
3636 pte = *ptep;
3637 if (l2pte_valid(pte) != 0 && l2pte_writable_p(pte)) {
3638 struct vm_page *pg;
3639 u_int f;
3640
3641 #ifdef PMAP_CACHE_VIVT
3642 /*
3643 * OK, at this point, we know we're doing
3644 * write-protect operation. If the pmap is
3645 * active, write-back the page.
3646 */
3647 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3648 false, false);
3649 #endif
3650
3651 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3652 pte = l2pte_set_readonly(pte);
3653 *ptep = pte;
3654 PTE_SYNC(ptep);
3655
3656 if (pg != NULL) {
3657 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3658 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3659
3660 #ifdef MULTIPROCESSOR
3661 KASSERT(uvm_page_locked_p(pg));
3662 #endif
3663 f = pmap_modify_pv(md, pa, pm, sva,
3664 clr_mask, 0);
3665 pmap_vac_me_harder(md, pa, pm, sva);
3666 } else {
3667 f = PVF_REF | PVF_EXEC;
3668 }
3669
3670 if (flush >= 0) {
3671 flush++;
3672 flags |= f;
3673 } else
3674 if (PV_BEEN_EXECD(f))
3675 pmap_tlb_flushID_SE(pm, sva);
3676 else
3677 if (PV_BEEN_REFD(f))
3678 pmap_tlb_flushD_SE(pm, sva);
3679 }
3680
3681 sva += PAGE_SIZE;
3682 ptep++;
3683 }
3684 }
3685
3686 pmap_release_pmap_lock(pm);
3687
3688 if (flush) {
3689 if (PV_BEEN_EXECD(flags))
3690 pmap_tlb_flushID(pm);
3691 else
3692 if (PV_BEEN_REFD(flags))
3693 pmap_tlb_flushD(pm);
3694 }
3695 }
3696
3697 void
3698 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3699 {
3700 struct l2_bucket *l2b;
3701 pt_entry_t *ptep;
3702 vaddr_t next_bucket;
3703 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3704
3705 NPDEBUG(PDB_EXEC,
3706 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3707 pm, sva, eva));
3708
3709 pmap_acquire_pmap_lock(pm);
3710
3711 while (sva < eva) {
3712 next_bucket = L2_NEXT_BUCKET(sva);
3713 if (next_bucket > eva)
3714 next_bucket = eva;
3715
3716 l2b = pmap_get_l2_bucket(pm, sva);
3717 if (l2b == NULL) {
3718 sva = next_bucket;
3719 continue;
3720 }
3721
3722 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3723 sva < next_bucket;
3724 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3725 if (l2pte_valid(*ptep)) {
3726 cpu_icache_sync_range(sva,
3727 min(page_size, eva - sva));
3728 }
3729 }
3730 }
3731
3732 pmap_release_pmap_lock(pm);
3733 }
3734
3735 void
3736 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3737 {
3738 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3739 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3740
3741 NPDEBUG(PDB_PROTECT,
3742 printf("pmap_page_protect: md %p (0x%08lx), prot 0x%x\n",
3743 md, pa, prot));
3744
3745 #ifdef MULTIPROCESSOR
3746 KASSERT(uvm_page_locked_p(pg));
3747 #endif
3748
3749 switch(prot) {
3750 case VM_PROT_READ|VM_PROT_WRITE:
3751 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3752 pmap_clearbit(md, pa, PVF_EXEC);
3753 break;
3754 #endif
3755 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3756 break;
3757
3758 case VM_PROT_READ:
3759 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3760 pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
3761 break;
3762 #endif
3763 case VM_PROT_READ|VM_PROT_EXECUTE:
3764 pmap_clearbit(md, pa, PVF_WRITE);
3765 break;
3766
3767 default:
3768 pmap_page_remove(md, pa);
3769 break;
3770 }
3771 }
3772
3773 /*
3774 * pmap_clear_modify:
3775 *
3776 * Clear the "modified" attribute for a page.
3777 */
3778 bool
3779 pmap_clear_modify(struct vm_page *pg)
3780 {
3781 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3782 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3783 bool rv;
3784
3785 #ifdef MULTIPROCESSOR
3786 KASSERT(uvm_page_locked_p(pg));
3787 #endif
3788
3789 if (md->pvh_attrs & PVF_MOD) {
3790 rv = true;
3791 #ifdef PMAP_CACHE_VIPT
3792 /*
3793 * If we are going to clear the modified bit and there are
3794 * no other modified bits set, flush the page to memory and
3795 * mark it clean.
3796 */
3797 if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3798 pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
3799 #endif
3800 pmap_clearbit(md, pa, PVF_MOD);
3801 } else
3802 rv = false;
3803
3804 return (rv);
3805 }
3806
3807 /*
3808 * pmap_clear_reference:
3809 *
3810 * Clear the "referenced" attribute for a page.
3811 */
3812 bool
3813 pmap_clear_reference(struct vm_page *pg)
3814 {
3815 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3816 paddr_t pa = VM_PAGE_TO_PHYS(pg);
3817 bool rv;
3818
3819 #ifdef MULTIPROCESSOR
3820 KASSERT(uvm_page_locked_p(pg));
3821 #endif
3822
3823 if (md->pvh_attrs & PVF_REF) {
3824 rv = true;
3825 pmap_clearbit(md, pa, PVF_REF);
3826 } else
3827 rv = false;
3828
3829 return (rv);
3830 }
3831
3832 /*
3833 * pmap_is_modified:
3834 *
3835 * Test if a page has the "modified" attribute.
3836 */
3837 /* See <arm/arm32/pmap.h> */
3838
3839 /*
3840 * pmap_is_referenced:
3841 *
3842 * Test if a page has the "referenced" attribute.
3843 */
3844 /* See <arm/arm32/pmap.h> */
3845
3846 int
3847 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3848 {
3849 struct l2_dtable *l2;
3850 struct l2_bucket *l2b;
3851 pd_entry_t *pl1pd, l1pd;
3852 pt_entry_t *ptep, pte;
3853 paddr_t pa;
3854 u_int l1idx;
3855 int rv = 0;
3856
3857 pmap_acquire_pmap_lock(pm);
3858
3859 l1idx = L1_IDX(va);
3860
3861 /*
3862 * If there is no l2_dtable for this address, then the process
3863 * has no business accessing it.
3864 *
3865 * Note: This will catch userland processes trying to access
3866 * kernel addresses.
3867 */
3868 l2 = pm->pm_l2[L2_IDX(l1idx)];
3869 if (l2 == NULL)
3870 goto out;
3871
3872 /*
3873 * Likewise if there is no L2 descriptor table
3874 */
3875 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3876 if (l2b->l2b_kva == NULL)
3877 goto out;
3878
3879 /*
3880 * Check the PTE itself.
3881 */
3882 ptep = &l2b->l2b_kva[l2pte_index(va)];
3883 pte = *ptep;
3884 if (pte == 0)
3885 goto out;
3886
3887 /*
3888 * Catch a userland access to the vector page mapped at 0x0
3889 */
3890 if (user && (pte & L2_S_PROT_U) == 0)
3891 goto out;
3892
3893 pa = l2pte_pa(pte);
3894
3895 if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(pte)) {
3896 /*
3897 * This looks like a good candidate for "page modified"
3898 * emulation...
3899 */
3900 struct pv_entry *pv;
3901 struct vm_page *pg;
3902
3903 /* Extract the physical address of the page */
3904 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3905 goto out;
3906
3907 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3908
3909 /* Get the current flags for this page. */
3910 #ifdef MULTIPROCESSOR
3911 KASSERT(uvm_page_locked_p(pg));
3912 #endif
3913
3914 pv = pmap_find_pv(md, pm, va);
3915 if (pv == NULL) {
3916 goto out;
3917 }
3918
3919 /*
3920 * Do the flags say this page is writable? If not then it
3921 * is a genuine write fault. If yes then the write fault is
3922 * our fault as we did not reflect the write access in the
3923 * PTE. Now we know a write has occurred we can correct this
3924 * and also set the modified bit
3925 */
3926 if ((pv->pv_flags & PVF_WRITE) == 0) {
3927 goto out;
3928 }
3929
3930 NPDEBUG(PDB_FOLLOW,
3931 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3932 pm, va, pa));
3933
3934 md->pvh_attrs |= PVF_REF | PVF_MOD;
3935 pv->pv_flags |= PVF_REF | PVF_MOD;
3936 #ifdef PMAP_CACHE_VIPT
3937 /*
3938 * If there are cacheable mappings for this page, mark it dirty.
3939 */
3940 if ((md->pvh_attrs & PVF_NC) == 0)
3941 md->pvh_attrs |= PVF_DIRTY;
3942 #endif
3943
3944 /*
3945 * Re-enable write permissions for the page. No need to call
3946 * pmap_vac_me_harder(), since this is just a
3947 * modified-emulation fault, and the PVF_WRITE bit isn't
3948 * changing. We've already set the cacheable bits based on
3949 * the assumption that we can write to this page.
3950 */
3951 *ptep = l2pte_set_writable((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3952 PTE_SYNC(ptep);
3953 rv = 1;
3954 } else
3955 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3956 /*
3957 * This looks like a good candidate for "page referenced"
3958 * emulation.
3959 */
3960 struct pv_entry *pv;
3961 struct vm_page *pg;
3962
3963 /* Extract the physical address of the page */
3964 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3965 goto out;
3966
3967 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
3968
3969 /* Get the current flags for this page. */
3970 #ifdef MULTIPROCESSOR
3971 KASSERT(uvm_page_locked_p(pg));
3972 #endif
3973
3974 pv = pmap_find_pv(md, pm, va);
3975 if (pv == NULL) {
3976 goto out;
3977 }
3978
3979 md->pvh_attrs |= PVF_REF;
3980 pv->pv_flags |= PVF_REF;
3981
3982 NPDEBUG(PDB_FOLLOW,
3983 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3984 pm, va, pa));
3985
3986 *ptep = l2pte_set_readonly((pte & ~L2_TYPE_MASK) | L2_S_PROTO);
3987 PTE_SYNC(ptep);
3988 rv = 1;
3989 }
3990
3991 /*
3992 * We know there is a valid mapping here, so simply
3993 * fix up the L1 if necessary.
3994 */
3995 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3996 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3997 if (*pl1pd != l1pd) {
3998 *pl1pd = l1pd;
3999 PTE_SYNC(pl1pd);
4000 rv = 1;
4001 }
4002
4003 #ifdef CPU_SA110
4004 /*
4005 * There are bugs in the rev K SA110. This is a check for one
4006 * of them.
4007 */
4008 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
4009 curcpu()->ci_arm_cpurev < 3) {
4010 /* Always current pmap */
4011 if (l2pte_valid(pte)) {
4012 extern int kernel_debug;
4013 if (kernel_debug & 1) {
4014 struct proc *p = curlwp->l_proc;
4015 printf("prefetch_abort: page is already "
4016 "mapped - pte=%p *pte=%08x\n", ptep, pte);
4017 printf("prefetch_abort: pc=%08lx proc=%p "
4018 "process=%s\n", va, p, p->p_comm);
4019 printf("prefetch_abort: far=%08x fs=%x\n",
4020 cpu_faultaddress(), cpu_faultstatus());
4021 }
4022 #ifdef DDB
4023 if (kernel_debug & 2)
4024 Debugger();
4025 #endif
4026 rv = 1;
4027 }
4028 }
4029 #endif /* CPU_SA110 */
4030
4031 /*
4032 * If 'rv == 0' at this point, it generally indicates that there is a
4033 * stale TLB entry for the faulting address. That might be due to a
4034 * wrong setting of pmap_needs_pte_sync. So set it and retry.
4035 */
4036 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1
4037 && pmap_needs_pte_sync == 0) {
4038 pmap_needs_pte_sync = 1;
4039 PTE_SYNC(ptep);
4040 rv = 1;
4041 }
4042
4043 #ifdef DEBUG
4044 /*
4045 * If 'rv == 0' at this point, it generally indicates that there is a
4046 * stale TLB entry for the faulting address. This happens when two or
4047 * more processes are sharing an L1. Since we don't flush the TLB on
4048 * a context switch between such processes, we can take domain faults
4049 * for mappings which exist at the same VA in both processes. EVEN IF
4050 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
4051 * example.
4052 *
4053 * This is extremely likely to happen if pmap_enter() updated the L1
4054 * entry for a recently entered mapping. In this case, the TLB is
4055 * flushed for the new mapping, but there may still be TLB entries for
4056 * other mappings belonging to other processes in the 1MB range
4057 * covered by the L1 entry.
4058 *
4059 * Since 'rv == 0', we know that the L1 already contains the correct
4060 * value, so the fault must be due to a stale TLB entry.
4061 *
4062 * Since we always need to flush the TLB anyway in the case where we
4063 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4064 * stale TLB entries dynamically.
4065 *
4066 * However, the above condition can ONLY happen if the current L1 is
4067 * being shared. If it happens when the L1 is unshared, it indicates
4068 * that other parts of the pmap are not doing their job WRT managing
4069 * the TLB.
4070 */
4071 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4072 extern int last_fault_code;
4073 extern int kernel_debug;
4074 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4075 pm, va, ftype);
4076 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4077 l2, l2b, ptep, pl1pd);
4078 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4079 pte, l1pd, last_fault_code);
4080 #ifdef DDB
4081 if (kernel_debug & 2)
4082 Debugger();
4083 #endif
4084 }
4085 #endif
4086
4087 cpu_tlb_flushID_SE(va);
4088 cpu_cpwait();
4089
4090 rv = 1;
4091
4092 out:
4093 pmap_release_pmap_lock(pm);
4094
4095 return (rv);
4096 }
4097
4098 /*
4099 * Routine: pmap_procwr
4100 *
4101 * Function:
4102 * Synchronize caches corresponding to [addr, addr+len) in p.
4103 *
4104 */
4105 void
4106 pmap_procwr(struct proc *p, vaddr_t va, int len)
4107 {
4108 /* We only need to do anything if it is the current process. */
4109 if (p == curproc)
4110 cpu_icache_sync_range(va, len);
4111 }
4112
4113 /*
4114 * Routine: pmap_unwire
4115 * Function: Clear the wired attribute for a map/virtual-address pair.
4116 *
4117 * In/out conditions:
4118 * The mapping must already exist in the pmap.
4119 */
4120 void
4121 pmap_unwire(pmap_t pm, vaddr_t va)
4122 {
4123 struct l2_bucket *l2b;
4124 pt_entry_t *ptep, pte;
4125 struct vm_page *pg;
4126 paddr_t pa;
4127
4128 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4129
4130 pmap_acquire_pmap_lock(pm);
4131
4132 l2b = pmap_get_l2_bucket(pm, va);
4133 KDASSERT(l2b != NULL);
4134
4135 ptep = &l2b->l2b_kva[l2pte_index(va)];
4136 pte = *ptep;
4137
4138 /* Extract the physical address of the page */
4139 pa = l2pte_pa(pte);
4140
4141 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4142 /* Update the wired bit in the pv entry for this page. */
4143 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4144
4145 #ifdef MULTIPROCESSOR
4146 KASSERT(uvm_page_locked_p(pg));
4147 #endif
4148 (void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
4149 }
4150
4151 pmap_release_pmap_lock(pm);
4152 }
4153
4154 void
4155 pmap_activate(struct lwp *l)
4156 {
4157 extern int block_userspace_access;
4158 pmap_t opm, npm, rpm;
4159 uint32_t odacr, ndacr;
4160 int oldirqstate;
4161
4162 /*
4163 * If activating a non-current lwp or the current lwp is
4164 * already active, just return.
4165 */
4166 if (l != curlwp ||
4167 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4168 return;
4169
4170 npm = l->l_proc->p_vmspace->vm_map.pmap;
4171 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4172 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4173
4174 /*
4175 * If TTB and DACR are unchanged, short-circuit all the
4176 * TLB/cache management stuff.
4177 */
4178 if (pmap_previous_active_lwp != NULL) {
4179 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4180 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4181 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4182
4183 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4184 goto all_done;
4185 } else
4186 opm = NULL;
4187
4188 PMAPCOUNT(activations);
4189 block_userspace_access = 1;
4190
4191 /*
4192 * If switching to a user vmspace which is different to the
4193 * most recent one, and the most recent one is potentially
4194 * live in the cache, we must write-back and invalidate the
4195 * entire cache.
4196 */
4197 rpm = pmap_recent_user;
4198
4199 /*
4200 * XXXSCW: There's a corner case here which can leave turds in the cache as
4201 * reported in kern/41058. They're probably left over during tear-down and
4202 * switching away from an exiting process. Until the root cause is identified
4203 * and fixed, zap the cache when switching pmaps. This will result in a few
4204 * unnecessary cache flushes, but that's better than silently corrupting data.
4205 */
4206 #if 0
4207 if (npm != pmap_kernel() && rpm && npm != rpm &&
4208 rpm->pm_cstate.cs_cache) {
4209 rpm->pm_cstate.cs_cache = 0;
4210 #ifdef PMAP_CACHE_VIVT
4211 cpu_idcache_wbinv_all();
4212 #endif
4213 }
4214 #else
4215 if (rpm) {
4216 rpm->pm_cstate.cs_cache = 0;
4217 if (npm == pmap_kernel())
4218 pmap_recent_user = NULL;
4219 #ifdef PMAP_CACHE_VIVT
4220 cpu_idcache_wbinv_all();
4221 #endif
4222 }
4223 #endif
4224
4225 /* No interrupts while we frob the TTB/DACR */
4226 oldirqstate = disable_interrupts(IF32_bits);
4227
4228 /*
4229 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4230 * entry corresponding to 'vector_page' in the incoming L1 table
4231 * before switching to it otherwise subsequent interrupts/exceptions
4232 * (including domain faults!) will jump into hyperspace.
4233 */
4234 if (npm->pm_pl1vec != NULL) {
4235 cpu_tlb_flushID_SE((u_int)vector_page);
4236 cpu_cpwait();
4237 *npm->pm_pl1vec = npm->pm_l1vec;
4238 PTE_SYNC(npm->pm_pl1vec);
4239 }
4240
4241 cpu_domains(ndacr);
4242
4243 if (npm == pmap_kernel() || npm == rpm) {
4244 /*
4245 * Switching to a kernel thread, or back to the
4246 * same user vmspace as before... Simply update
4247 * the TTB (no TLB flush required)
4248 */
4249 cpu_setttb(npm->pm_l1->l1_physaddr, false);
4250 cpu_cpwait();
4251 } else {
4252 /*
4253 * Otherwise, update TTB and flush TLB
4254 */
4255 cpu_context_switch(npm->pm_l1->l1_physaddr);
4256 if (rpm != NULL)
4257 rpm->pm_cstate.cs_tlb = 0;
4258 }
4259
4260 restore_interrupts(oldirqstate);
4261
4262 block_userspace_access = 0;
4263
4264 all_done:
4265 /*
4266 * The new pmap is resident. Make sure it's marked
4267 * as resident in the cache/TLB.
4268 */
4269 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4270 if (npm != pmap_kernel())
4271 pmap_recent_user = npm;
4272
4273 /* The old pmap is not longer active */
4274 if (opm != NULL)
4275 opm->pm_activated = false;
4276
4277 /* But the new one is */
4278 npm->pm_activated = true;
4279 }
4280
4281 void
4282 pmap_deactivate(struct lwp *l)
4283 {
4284
4285 /*
4286 * If the process is exiting, make sure pmap_activate() does
4287 * a full MMU context-switch and cache flush, which we might
4288 * otherwise skip. See PR port-arm/38950.
4289 */
4290 if (l->l_proc->p_sflag & PS_WEXIT)
4291 pmap_previous_active_lwp = NULL;
4292
4293 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4294 }
4295
4296 void
4297 pmap_update(pmap_t pm)
4298 {
4299
4300 if (pm->pm_remove_all) {
4301 /*
4302 * Finish up the pmap_remove_all() optimisation by flushing
4303 * the TLB.
4304 */
4305 pmap_tlb_flushID(pm);
4306 pm->pm_remove_all = false;
4307 }
4308
4309 if (pmap_is_current(pm)) {
4310 /*
4311 * If we're dealing with a current userland pmap, move its L1
4312 * to the end of the LRU.
4313 */
4314 if (pm != pmap_kernel())
4315 pmap_use_l1(pm);
4316
4317 /*
4318 * We can assume we're done with frobbing the cache/tlb for
4319 * now. Make sure any future pmap ops don't skip cache/tlb
4320 * flushes.
4321 */
4322 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4323 }
4324
4325 PMAPCOUNT(updates);
4326
4327 /*
4328 * make sure TLB/cache operations have completed.
4329 */
4330 cpu_cpwait();
4331 }
4332
4333 void
4334 pmap_remove_all(pmap_t pm)
4335 {
4336
4337 /*
4338 * The vmspace described by this pmap is about to be torn down.
4339 * Until pmap_update() is called, UVM will only make calls
4340 * to pmap_remove(). We can make life much simpler by flushing
4341 * the cache now, and deferring TLB invalidation to pmap_update().
4342 */
4343 #ifdef PMAP_CACHE_VIVT
4344 pmap_idcache_wbinv_all(pm);
4345 #endif
4346 pm->pm_remove_all = true;
4347 }
4348
4349 /*
4350 * Retire the given physical map from service.
4351 * Should only be called if the map contains no valid mappings.
4352 */
4353 void
4354 pmap_destroy(pmap_t pm)
4355 {
4356 u_int count;
4357
4358 if (pm == NULL)
4359 return;
4360
4361 if (pm->pm_remove_all) {
4362 pmap_tlb_flushID(pm);
4363 pm->pm_remove_all = false;
4364 }
4365
4366 /*
4367 * Drop reference count
4368 */
4369 mutex_enter(pm->pm_lock);
4370 count = --pm->pm_obj.uo_refs;
4371 mutex_exit(pm->pm_lock);
4372 if (count > 0) {
4373 if (pmap_is_current(pm)) {
4374 if (pm != pmap_kernel())
4375 pmap_use_l1(pm);
4376 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4377 }
4378 return;
4379 }
4380
4381 /*
4382 * reference count is zero, free pmap resources and then free pmap.
4383 */
4384
4385 if (vector_page < KERNEL_BASE) {
4386 KDASSERT(!pmap_is_current(pm));
4387
4388 /* Remove the vector page mapping */
4389 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4390 pmap_update(pm);
4391 }
4392
4393 LIST_REMOVE(pm, pm_list);
4394
4395 pmap_free_l1(pm);
4396
4397 if (pmap_recent_user == pm)
4398 pmap_recent_user = NULL;
4399
4400 uvm_obj_destroy(&pm->pm_obj, false);
4401 mutex_destroy(&pm->pm_obj_lock);
4402 pool_cache_put(&pmap_cache, pm);
4403 }
4404
4405
4406 /*
4407 * void pmap_reference(pmap_t pm)
4408 *
4409 * Add a reference to the specified pmap.
4410 */
4411 void
4412 pmap_reference(pmap_t pm)
4413 {
4414
4415 if (pm == NULL)
4416 return;
4417
4418 pmap_use_l1(pm);
4419
4420 mutex_enter(pm->pm_lock);
4421 pm->pm_obj.uo_refs++;
4422 mutex_exit(pm->pm_lock);
4423 }
4424
4425 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
4426
4427 static struct evcnt pmap_prefer_nochange_ev =
4428 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4429 static struct evcnt pmap_prefer_change_ev =
4430 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4431
4432 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4433 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4434
4435 void
4436 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4437 {
4438 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4439 vaddr_t va = *vap;
4440 vaddr_t diff = (hint - va) & mask;
4441 if (diff == 0) {
4442 pmap_prefer_nochange_ev.ev_count++;
4443 } else {
4444 pmap_prefer_change_ev.ev_count++;
4445 if (__predict_false(td))
4446 va -= mask + 1;
4447 *vap = va + diff;
4448 }
4449 }
4450 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
4451
4452 /*
4453 * pmap_zero_page()
4454 *
4455 * Zero a given physical page by mapping it at a page hook point.
4456 * In doing the zero page op, the page we zero is mapped cachable, as with
4457 * StrongARM accesses to non-cached pages are non-burst making writing
4458 * _any_ bulk data very slow.
4459 */
4460 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4461 void
4462 pmap_zero_page_generic(paddr_t phys)
4463 {
4464 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4465 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4466 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4467 #endif
4468 #if defined(PMAP_CACHE_VIPT)
4469 /* Choose the last page color it had, if any */
4470 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4471 #else
4472 const vsize_t va_offset = 0;
4473 #endif
4474 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4475 /*
4476 * Is this page mapped at its natural color?
4477 * If we have all of memory mapped, then just convert PA to VA.
4478 */
4479 const bool okcolor = va_offset == (phys & arm_cache_prefer_mask);
4480 const vaddr_t vdstp = KERNEL_BASE + (phys - physical_start);
4481 #else
4482 const bool okcolor = false;
4483 const vaddr_t vdstp = cdstp + va_offset;
4484 #endif
4485 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4486
4487
4488 #ifdef DEBUG
4489 if (!SLIST_EMPTY(&md->pvh_list))
4490 panic("pmap_zero_page: page has mappings");
4491 #endif
4492
4493 KDASSERT((phys & PGOFSET) == 0);
4494
4495 if (!okcolor) {
4496 /*
4497 * Hook in the page, zero it, and purge the cache for that
4498 * zeroed page. Invalidate the TLB as needed.
4499 */
4500 *ptep = L2_S_PROTO | phys |
4501 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4502 PTE_SYNC(ptep);
4503 cpu_tlb_flushD_SE(cdstp + va_offset);
4504 cpu_cpwait();
4505 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4506 /*
4507 * If we are direct-mapped and our color isn't ok, then before
4508 * we bzero the page invalidate its contents from the cache and
4509 * reset the color to its natural color.
4510 */
4511 cpu_dcache_inv_range(cdstp + va_offset, PAGE_SIZE);
4512 md->pvh_attrs &= ~arm_cache_prefer_mask;
4513 md->pvh_attrs |= (phys & arm_cache_prefer_mask);
4514 #endif
4515 }
4516 bzero_page(vdstp);
4517 if (!okcolor) {
4518 /*
4519 * Unmap the page.
4520 */
4521 *ptep = 0;
4522 PTE_SYNC(ptep);
4523 cpu_tlb_flushD_SE(cdstp + va_offset);
4524 #ifdef PMAP_CACHE_VIVT
4525 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4526 #endif
4527 }
4528 #ifdef PMAP_CACHE_VIPT
4529 /*
4530 * This page is now cache resident so it now has a page color.
4531 * Any contents have been obliterated so clear the EXEC flag.
4532 */
4533 if (!pmap_is_page_colored_p(md)) {
4534 PMAPCOUNT(vac_color_new);
4535 md->pvh_attrs |= PVF_COLORED;
4536 }
4537 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4538 md->pvh_attrs &= ~PVF_EXEC;
4539 PMAPCOUNT(exec_discarded_zero);
4540 }
4541 md->pvh_attrs |= PVF_DIRTY;
4542 #endif
4543 }
4544 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4545
4546 #if ARM_MMU_XSCALE == 1
4547 void
4548 pmap_zero_page_xscale(paddr_t phys)
4549 {
4550 #ifdef DEBUG
4551 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4552 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4553
4554 if (!SLIST_EMPTY(&md->pvh_list))
4555 panic("pmap_zero_page: page has mappings");
4556 #endif
4557
4558 KDASSERT((phys & PGOFSET) == 0);
4559
4560 /*
4561 * Hook in the page, zero it, and purge the cache for that
4562 * zeroed page. Invalidate the TLB as needed.
4563 */
4564 *cdst_pte = L2_S_PROTO | phys |
4565 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4566 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4567 PTE_SYNC(cdst_pte);
4568 cpu_tlb_flushD_SE(cdstp);
4569 cpu_cpwait();
4570 bzero_page(cdstp);
4571 xscale_cache_clean_minidata();
4572 }
4573 #endif /* ARM_MMU_XSCALE == 1 */
4574
4575 /* pmap_pageidlezero()
4576 *
4577 * The same as above, except that we assume that the page is not
4578 * mapped. This means we never have to flush the cache first. Called
4579 * from the idle loop.
4580 */
4581 bool
4582 pmap_pageidlezero(paddr_t phys)
4583 {
4584 unsigned int i;
4585 int *ptr;
4586 bool rv = true;
4587 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4588 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4589 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4590 #endif
4591 #ifdef PMAP_CACHE_VIPT
4592 /* Choose the last page color it had, if any */
4593 const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
4594 #else
4595 const vsize_t va_offset = 0;
4596 #endif
4597 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4598
4599
4600 #ifdef DEBUG
4601 if (!SLIST_EMPTY(&md->pvh_list))
4602 panic("pmap_pageidlezero: page has mappings");
4603 #endif
4604
4605 KDASSERT((phys & PGOFSET) == 0);
4606
4607 /*
4608 * Hook in the page, zero it, and purge the cache for that
4609 * zeroed page. Invalidate the TLB as needed.
4610 */
4611 *ptep = L2_S_PROTO | phys |
4612 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4613 PTE_SYNC(ptep);
4614 cpu_tlb_flushD_SE(cdstp + va_offset);
4615 cpu_cpwait();
4616
4617 for (i = 0, ptr = (int *)(cdstp + va_offset);
4618 i < (PAGE_SIZE / sizeof(int)); i++) {
4619 if (sched_curcpu_runnable_p() != 0) {
4620 /*
4621 * A process has become ready. Abort now,
4622 * so we don't keep it waiting while we
4623 * do slow memory access to finish this
4624 * page.
4625 */
4626 rv = false;
4627 break;
4628 }
4629 *ptr++ = 0;
4630 }
4631
4632 #ifdef PMAP_CACHE_VIVT
4633 if (rv)
4634 /*
4635 * if we aborted we'll rezero this page again later so don't
4636 * purge it unless we finished it
4637 */
4638 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4639 #elif defined(PMAP_CACHE_VIPT)
4640 /*
4641 * This page is now cache resident so it now has a page color.
4642 * Any contents have been obliterated so clear the EXEC flag.
4643 */
4644 if (!pmap_is_page_colored_p(md)) {
4645 PMAPCOUNT(vac_color_new);
4646 md->pvh_attrs |= PVF_COLORED;
4647 }
4648 if (PV_IS_EXEC_P(md->pvh_attrs)) {
4649 md->pvh_attrs &= ~PVF_EXEC;
4650 PMAPCOUNT(exec_discarded_zero);
4651 }
4652 #endif
4653 /*
4654 * Unmap the page.
4655 */
4656 *ptep = 0;
4657 PTE_SYNC(ptep);
4658 cpu_tlb_flushD_SE(cdstp + va_offset);
4659
4660 return (rv);
4661 }
4662
4663 /*
4664 * pmap_copy_page()
4665 *
4666 * Copy one physical page into another, by mapping the pages into
4667 * hook points. The same comment regarding cachability as in
4668 * pmap_zero_page also applies here.
4669 */
4670 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
4671 void
4672 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4673 {
4674 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4675 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4676 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4677 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4678 struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
4679 #endif
4680 #ifdef PMAP_CACHE_VIPT
4681 const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
4682 const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
4683 #else
4684 const vsize_t src_va_offset = 0;
4685 const vsize_t dst_va_offset = 0;
4686 #endif
4687 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
4688 /*
4689 * Is this page mapped at its natural color?
4690 * If we have all of memory mapped, then just convert PA to VA.
4691 */
4692 const bool src_okcolor = src_va_offset == (src & arm_cache_prefer_mask);
4693 const bool dst_okcolor = dst_va_offset == (dst & arm_cache_prefer_mask);
4694 const vaddr_t vsrcp = src_okcolor
4695 ? KERNEL_BASE + (src - physical_start)
4696 : csrcp + src_va_offset;
4697 const vaddr_t vdstp = KERNEL_BASE + (dst - physical_start);
4698 #else
4699 const bool src_okcolor = false;
4700 const bool dst_okcolor = false;
4701 const vaddr_t vsrcp = csrcp + src_va_offset;
4702 const vaddr_t vdstp = cdstp + dst_va_offset;
4703 #endif
4704 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4705 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4706
4707 #ifdef DEBUG
4708 if (!SLIST_EMPTY(&dst_md->pvh_list))
4709 panic("pmap_copy_page: dst page has mappings");
4710 #endif
4711
4712 #ifdef PMAP_CACHE_VIPT
4713 KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
4714 #endif
4715 KDASSERT((src & PGOFSET) == 0);
4716 KDASSERT((dst & PGOFSET) == 0);
4717
4718 /*
4719 * Clean the source page. Hold the source page's lock for
4720 * the duration of the copy so that no other mappings can
4721 * be created while we have a potentially aliased mapping.
4722 */
4723 #ifdef MULTIPROCESSOR
4724 KASSERT(uvm_page_locked_p(src_pg));
4725 #endif
4726 #ifdef PMAP_CACHE_VIVT
4727 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4728 #endif
4729
4730 /*
4731 * Map the pages into the page hook points, copy them, and purge
4732 * the cache for the appropriate page. Invalidate the TLB
4733 * as required.
4734 */
4735 if (!src_okcolor) {
4736 *src_ptep = L2_S_PROTO
4737 | src
4738 #ifdef PMAP_CACHE_VIPT
4739 | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4740 #endif
4741 #ifdef PMAP_CACHE_VIVT
4742 | pte_l2_s_cache_mode
4743 #endif
4744 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4745 PTE_SYNC(src_ptep);
4746 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4747 cpu_cpwait();
4748 }
4749 if (!dst_okcolor) {
4750 *dst_ptep = L2_S_PROTO | dst |
4751 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4752 PTE_SYNC(dst_ptep);
4753 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4754 cpu_cpwait();
4755 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
4756 /*
4757 * If we are direct-mapped and our color isn't ok, then before
4758 * we bcopy to the new page invalidate its contents from the
4759 * cache and reset its color to its natural color.
4760 */
4761 cpu_dcache_inv_range(cdstp + dst_va_offset, PAGE_SIZE);
4762 dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
4763 dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
4764 #endif
4765 }
4766 bcopy_page(vsrcp, vdstp);
4767 #ifdef PMAP_CACHE_VIVT
4768 cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
4769 cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
4770 #endif
4771 /*
4772 * Unmap the pages.
4773 */
4774 if (!src_okcolor) {
4775 *src_ptep = 0;
4776 PTE_SYNC(src_ptep);
4777 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4778 cpu_cpwait();
4779 }
4780 if (!dst_okcolor) {
4781 *dst_ptep = 0;
4782 PTE_SYNC(dst_ptep);
4783 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4784 cpu_cpwait();
4785 }
4786 #ifdef PMAP_CACHE_VIPT
4787 /*
4788 * Now that the destination page is in the cache, mark it as colored.
4789 * If this was an exec page, discard it.
4790 */
4791 if (!pmap_is_page_colored_p(dst_md)) {
4792 PMAPCOUNT(vac_color_new);
4793 dst_md->pvh_attrs |= PVF_COLORED;
4794 }
4795 if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
4796 dst_md->pvh_attrs &= ~PVF_EXEC;
4797 PMAPCOUNT(exec_discarded_copy);
4798 }
4799 dst_md->pvh_attrs |= PVF_DIRTY;
4800 #endif
4801 }
4802 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4803
4804 #if ARM_MMU_XSCALE == 1
4805 void
4806 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4807 {
4808 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4809 struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
4810 #ifdef DEBUG
4811 struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
4812
4813 if (!SLIST_EMPTY(&dst_md->pvh_list))
4814 panic("pmap_copy_page: dst page has mappings");
4815 #endif
4816
4817 KDASSERT((src & PGOFSET) == 0);
4818 KDASSERT((dst & PGOFSET) == 0);
4819
4820 /*
4821 * Clean the source page. Hold the source page's lock for
4822 * the duration of the copy so that no other mappings can
4823 * be created while we have a potentially aliased mapping.
4824 */
4825 #ifdef MULTIPROCESSOR
4826 KASSERT(uvm_page_locked_p(src_pg));
4827 #endif
4828 #ifdef PMAP_CACHE_VIVT
4829 (void) pmap_clean_page(SLIST_FIRST(&src_md->pvh_list), true);
4830 #endif
4831
4832 /*
4833 * Map the pages into the page hook points, copy them, and purge
4834 * the cache for the appropriate page. Invalidate the TLB
4835 * as required.
4836 */
4837 *csrc_pte = L2_S_PROTO | src |
4838 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4839 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4840 PTE_SYNC(csrc_pte);
4841 *cdst_pte = L2_S_PROTO | dst |
4842 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4843 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4844 PTE_SYNC(cdst_pte);
4845 cpu_tlb_flushD_SE(csrcp);
4846 cpu_tlb_flushD_SE(cdstp);
4847 cpu_cpwait();
4848 bcopy_page(csrcp, cdstp);
4849 xscale_cache_clean_minidata();
4850 }
4851 #endif /* ARM_MMU_XSCALE == 1 */
4852
4853 /*
4854 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4855 *
4856 * Return the start and end addresses of the kernel's virtual space.
4857 * These values are setup in pmap_bootstrap and are updated as pages
4858 * are allocated.
4859 */
4860 void
4861 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4862 {
4863 *start = virtual_avail;
4864 *end = virtual_end;
4865 }
4866
4867 /*
4868 * Helper function for pmap_grow_l2_bucket()
4869 */
4870 static inline int
4871 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4872 {
4873 struct l2_bucket *l2b;
4874 pt_entry_t *ptep;
4875 paddr_t pa;
4876
4877 if (uvm.page_init_done == false) {
4878 #ifdef PMAP_STEAL_MEMORY
4879 pv_addr_t pv;
4880 pmap_boot_pagealloc(PAGE_SIZE,
4881 #ifdef PMAP_CACHE_VIPT
4882 arm_cache_prefer_mask,
4883 va & arm_cache_prefer_mask,
4884 #else
4885 0, 0,
4886 #endif
4887 &pv);
4888 pa = pv.pv_pa;
4889 #else
4890 if (uvm_page_physget(&pa) == false)
4891 return (1);
4892 #endif /* PMAP_STEAL_MEMORY */
4893 } else {
4894 struct vm_page *pg;
4895 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4896 if (pg == NULL)
4897 return (1);
4898 pa = VM_PAGE_TO_PHYS(pg);
4899 #ifdef PMAP_CACHE_VIPT
4900 #ifdef DIAGNOSTIC
4901 struct vm_page_md *md = VM_PAGE_TO_MD(pg);
4902 #endif
4903 /*
4904 * This new page must not have any mappings. Enter it via
4905 * pmap_kenter_pa and let that routine do the hard work.
4906 */
4907 KASSERT(SLIST_EMPTY(&md->pvh_list));
4908 pmap_kenter_pa(va, pa,
4909 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
4910 #endif
4911 }
4912
4913 if (pap)
4914 *pap = pa;
4915
4916 PMAPCOUNT(pt_mappings);
4917 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4918 KDASSERT(l2b != NULL);
4919
4920 ptep = &l2b->l2b_kva[l2pte_index(va)];
4921 *ptep = L2_S_PROTO | pa | cache_mode |
4922 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4923 PTE_SYNC(ptep);
4924 memset((void *)va, 0, PAGE_SIZE);
4925 return (0);
4926 }
4927
4928 /*
4929 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4930 * used by pmap_growkernel().
4931 */
4932 static inline struct l2_bucket *
4933 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4934 {
4935 struct l2_dtable *l2;
4936 struct l2_bucket *l2b;
4937 u_short l1idx;
4938 vaddr_t nva;
4939
4940 l1idx = L1_IDX(va);
4941
4942 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4943 /*
4944 * No mapping at this address, as there is
4945 * no entry in the L1 table.
4946 * Need to allocate a new l2_dtable.
4947 */
4948 nva = pmap_kernel_l2dtable_kva;
4949 if ((nva & PGOFSET) == 0) {
4950 /*
4951 * Need to allocate a backing page
4952 */
4953 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4954 return (NULL);
4955 }
4956
4957 l2 = (struct l2_dtable *)nva;
4958 nva += sizeof(struct l2_dtable);
4959
4960 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4961 /*
4962 * The new l2_dtable straddles a page boundary.
4963 * Map in another page to cover it.
4964 */
4965 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4966 return (NULL);
4967 }
4968
4969 pmap_kernel_l2dtable_kva = nva;
4970
4971 /*
4972 * Link it into the parent pmap
4973 */
4974 pm->pm_l2[L2_IDX(l1idx)] = l2;
4975 }
4976
4977 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4978
4979 /*
4980 * Fetch pointer to the L2 page table associated with the address.
4981 */
4982 if (l2b->l2b_kva == NULL) {
4983 pt_entry_t *ptep;
4984
4985 /*
4986 * No L2 page table has been allocated. Chances are, this
4987 * is because we just allocated the l2_dtable, above.
4988 */
4989 nva = pmap_kernel_l2ptp_kva;
4990 ptep = (pt_entry_t *)nva;
4991 if ((nva & PGOFSET) == 0) {
4992 /*
4993 * Need to allocate a backing page
4994 */
4995 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4996 &pmap_kernel_l2ptp_phys))
4997 return (NULL);
4998 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4999 }
5000
5001 l2->l2_occupancy++;
5002 l2b->l2b_kva = ptep;
5003 l2b->l2b_l1idx = l1idx;
5004 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
5005
5006 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
5007 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
5008 }
5009
5010 return (l2b);
5011 }
5012
5013 vaddr_t
5014 pmap_growkernel(vaddr_t maxkvaddr)
5015 {
5016 pmap_t kpm = pmap_kernel();
5017 struct l1_ttable *l1;
5018 struct l2_bucket *l2b;
5019 pd_entry_t *pl1pd;
5020 int s;
5021
5022 if (maxkvaddr <= pmap_curmaxkvaddr)
5023 goto out; /* we are OK */
5024
5025 NPDEBUG(PDB_GROWKERN,
5026 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
5027 pmap_curmaxkvaddr, maxkvaddr));
5028
5029 KDASSERT(maxkvaddr <= virtual_end);
5030
5031 /*
5032 * whoops! we need to add kernel PTPs
5033 */
5034
5035 s = splhigh(); /* to be safe */
5036 mutex_enter(kpm->pm_lock);
5037
5038 /* Map 1MB at a time */
5039 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
5040
5041 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
5042 KDASSERT(l2b != NULL);
5043
5044 /* Distribute new L1 entry to all other L1s */
5045 SLIST_FOREACH(l1, &l1_list, l1_link) {
5046 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
5047 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
5048 L1_C_PROTO;
5049 PTE_SYNC(pl1pd);
5050 }
5051 }
5052
5053 /*
5054 * flush out the cache, expensive but growkernel will happen so
5055 * rarely
5056 */
5057 cpu_dcache_wbinv_all();
5058 cpu_tlb_flushD();
5059 cpu_cpwait();
5060
5061 mutex_exit(kpm->pm_lock);
5062 splx(s);
5063
5064 out:
5065 return (pmap_curmaxkvaddr);
5066 }
5067
5068 /************************ Utility routines ****************************/
5069
5070 /*
5071 * vector_page_setprot:
5072 *
5073 * Manipulate the protection of the vector page.
5074 */
5075 void
5076 vector_page_setprot(int prot)
5077 {
5078 struct l2_bucket *l2b;
5079 pt_entry_t *ptep;
5080
5081 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
5082 KDASSERT(l2b != NULL);
5083
5084 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
5085
5086 *ptep = (*ptep & ~L2_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
5087 PTE_SYNC(ptep);
5088 cpu_tlb_flushD_SE(vector_page);
5089 cpu_cpwait();
5090 }
5091
5092 /*
5093 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
5094 * Returns true if the mapping exists, else false.
5095 *
5096 * NOTE: This function is only used by a couple of arm-specific modules.
5097 * It is not safe to take any pmap locks here, since we could be right
5098 * in the middle of debugging the pmap anyway...
5099 *
5100 * It is possible for this routine to return false even though a valid
5101 * mapping does exist. This is because we don't lock, so the metadata
5102 * state may be inconsistent.
5103 *
5104 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
5105 * a "section" mapping.
5106 */
5107 bool
5108 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
5109 {
5110 struct l2_dtable *l2;
5111 pd_entry_t *pl1pd, l1pd;
5112 pt_entry_t *ptep;
5113 u_short l1idx;
5114
5115 if (pm->pm_l1 == NULL)
5116 return false;
5117
5118 l1idx = L1_IDX(va);
5119 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
5120 l1pd = *pl1pd;
5121
5122 if (l1pte_section_p(l1pd)) {
5123 *ptp = NULL;
5124 return true;
5125 }
5126
5127 if (pm->pm_l2 == NULL)
5128 return false;
5129
5130 l2 = pm->pm_l2[L2_IDX(l1idx)];
5131
5132 if (l2 == NULL ||
5133 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
5134 return false;
5135 }
5136
5137 *ptp = &ptep[l2pte_index(va)];
5138 return true;
5139 }
5140
5141 bool
5142 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5143 {
5144 u_short l1idx;
5145
5146 if (pm->pm_l1 == NULL)
5147 return false;
5148
5149 l1idx = L1_IDX(va);
5150 *pdp = &pm->pm_l1->l1_kva[l1idx];
5151
5152 return true;
5153 }
5154
5155 /************************ Bootstrapping routines ****************************/
5156
5157 static void
5158 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5159 {
5160 int i;
5161
5162 l1->l1_kva = l1pt;
5163 l1->l1_domain_use_count = 0;
5164 l1->l1_domain_first = 0;
5165
5166 for (i = 0; i < PMAP_DOMAINS; i++)
5167 l1->l1_domain_free[i] = i + 1;
5168
5169 /*
5170 * Copy the kernel's L1 entries to each new L1.
5171 */
5172 if (pmap_initialized)
5173 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5174
5175 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5176 &l1->l1_physaddr) == false)
5177 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5178
5179 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5180 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5181 }
5182
5183 /*
5184 * pmap_bootstrap() is called from the board-specific initarm() routine
5185 * once the kernel L1/L2 descriptors tables have been set up.
5186 *
5187 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5188 * spread over a number of disparate files/functions.
5189 *
5190 * We are passed the following parameters
5191 * - kernel_l1pt
5192 * This is a pointer to the base of the kernel's L1 translation table.
5193 * - vstart
5194 * 1MB-aligned start of managed kernel virtual memory.
5195 * - vend
5196 * 1MB-aligned end of managed kernel virtual memory.
5197 *
5198 * We use the first parameter to build the metadata (struct l1_ttable and
5199 * struct l2_dtable) necessary to track kernel mappings.
5200 */
5201 #define PMAP_STATIC_L2_SIZE 16
5202 void
5203 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5204 {
5205 static struct l1_ttable static_l1;
5206 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5207 struct l1_ttable *l1 = &static_l1;
5208 struct l2_dtable *l2;
5209 struct l2_bucket *l2b;
5210 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5211 pmap_t pm = pmap_kernel();
5212 pd_entry_t pde;
5213 pt_entry_t *ptep;
5214 paddr_t pa;
5215 vaddr_t va;
5216 vsize_t size;
5217 int nptes, l1idx, l2idx, l2next = 0;
5218
5219 /*
5220 * Initialise the kernel pmap object
5221 */
5222 pm->pm_l1 = l1;
5223 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5224 pm->pm_activated = true;
5225 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5226
5227 mutex_init(&pm->pm_obj_lock, MUTEX_DEFAULT, IPL_NONE);
5228 uvm_obj_init(&pm->pm_obj, NULL, false, 1);
5229 uvm_obj_setlock(&pm->pm_obj, &pm->pm_obj_lock);
5230
5231 /*
5232 * Scan the L1 translation table created by initarm() and create
5233 * the required metadata for all valid mappings found in it.
5234 */
5235 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5236 pde = l1pt[l1idx];
5237
5238 /*
5239 * We're only interested in Coarse mappings.
5240 * pmap_extract() can deal with section mappings without
5241 * recourse to checking L2 metadata.
5242 */
5243 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5244 continue;
5245
5246 /*
5247 * Lookup the KVA of this L2 descriptor table
5248 */
5249 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5250 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5251 if (ptep == NULL) {
5252 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5253 (u_int)l1idx << L1_S_SHIFT, pa);
5254 }
5255
5256 /*
5257 * Fetch the associated L2 metadata structure.
5258 * Allocate a new one if necessary.
5259 */
5260 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5261 if (l2next == PMAP_STATIC_L2_SIZE)
5262 panic("pmap_bootstrap: out of static L2s");
5263 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5264 }
5265
5266 /*
5267 * One more L1 slot tracked...
5268 */
5269 l2->l2_occupancy++;
5270
5271 /*
5272 * Fill in the details of the L2 descriptor in the
5273 * appropriate bucket.
5274 */
5275 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5276 l2b->l2b_kva = ptep;
5277 l2b->l2b_phys = pa;
5278 l2b->l2b_l1idx = l1idx;
5279
5280 /*
5281 * Establish an initial occupancy count for this descriptor
5282 */
5283 for (l2idx = 0;
5284 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5285 l2idx++) {
5286 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5287 l2b->l2b_occupancy++;
5288 }
5289 }
5290
5291 /*
5292 * Make sure the descriptor itself has the correct cache mode.
5293 * If not, fix it, but whine about the problem. Port-meisters
5294 * should consider this a clue to fix up their initarm()
5295 * function. :)
5296 */
5297 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5298 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5299 "L2 pte @ %p\n", ptep);
5300 }
5301 }
5302
5303 /*
5304 * Ensure the primary (kernel) L1 has the correct cache mode for
5305 * a page table. Bitch if it is not correctly set.
5306 */
5307 for (va = (vaddr_t)l1pt;
5308 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5309 if (pmap_set_pt_cache_mode(l1pt, va))
5310 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5311 "primary L1 @ 0x%lx\n", va);
5312 }
5313
5314 cpu_dcache_wbinv_all();
5315 cpu_tlb_flushID();
5316 cpu_cpwait();
5317
5318 /*
5319 * now we allocate the "special" VAs which are used for tmp mappings
5320 * by the pmap (and other modules). we allocate the VAs by advancing
5321 * virtual_avail (note that there are no pages mapped at these VAs).
5322 *
5323 * Managed KVM space start from wherever initarm() tells us.
5324 */
5325 virtual_avail = vstart;
5326 virtual_end = vend;
5327
5328 #ifdef PMAP_CACHE_VIPT
5329 /*
5330 * If we have a VIPT cache, we need one page/pte per possible alias
5331 * page so we won't violate cache aliasing rules.
5332 */
5333 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5334 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5335 #else
5336 nptes = 1;
5337 #endif
5338 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5339 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5340 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5341 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5342 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5343 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5344 (void *)&msgbufaddr, NULL);
5345
5346 /*
5347 * Allocate a range of kernel virtual address space to be used
5348 * for L2 descriptor tables and metadata allocation in
5349 * pmap_growkernel().
5350 */
5351 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5352 pmap_alloc_specials(&virtual_avail,
5353 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5354 &pmap_kernel_l2ptp_kva, NULL);
5355
5356 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5357 pmap_alloc_specials(&virtual_avail,
5358 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5359 &pmap_kernel_l2dtable_kva, NULL);
5360
5361 /*
5362 * init the static-global locks and global pmap list.
5363 */
5364 mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
5365
5366 /*
5367 * We can now initialise the first L1's metadata.
5368 */
5369 SLIST_INIT(&l1_list);
5370 TAILQ_INIT(&l1_lru_list);
5371 pmap_init_l1(l1, l1pt);
5372
5373 /* Set up vector page L1 details, if necessary */
5374 if (vector_page < KERNEL_BASE) {
5375 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5376 l2b = pmap_get_l2_bucket(pm, vector_page);
5377 KDASSERT(l2b != NULL);
5378 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5379 L1_C_DOM(pm->pm_domain);
5380 } else
5381 pm->pm_pl1vec = NULL;
5382
5383 /*
5384 * Initialize the pmap cache
5385 */
5386 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5387 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5388 LIST_INIT(&pmap_pmaps);
5389 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5390
5391 /*
5392 * Initialize the pv pool.
5393 */
5394 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5395 &pmap_bootstrap_pv_allocator, IPL_NONE);
5396
5397 /*
5398 * Initialize the L2 dtable pool and cache.
5399 */
5400 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5401 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5402
5403 /*
5404 * Initialise the L2 descriptor table pool and cache
5405 */
5406 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5407 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5408 pmap_l2ptp_ctor, NULL, NULL);
5409
5410 cpu_dcache_wbinv_all();
5411 }
5412
5413 static int
5414 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5415 {
5416 pd_entry_t *pdep, pde;
5417 pt_entry_t *ptep, pte;
5418 vaddr_t pa;
5419 int rv = 0;
5420
5421 /*
5422 * Make sure the descriptor itself has the correct cache mode
5423 */
5424 pdep = &kl1[L1_IDX(va)];
5425 pde = *pdep;
5426
5427 if (l1pte_section_p(pde)) {
5428 __CTASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
5429 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5430 *pdep = (pde & ~L1_S_CACHE_MASK) |
5431 pte_l1_s_cache_mode_pt;
5432 PTE_SYNC(pdep);
5433 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5434 rv = 1;
5435 }
5436 } else {
5437 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5438 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5439 if (ptep == NULL)
5440 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5441
5442 ptep = &ptep[l2pte_index(va)];
5443 pte = *ptep;
5444 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5445 *ptep = (pte & ~L2_S_CACHE_MASK) |
5446 pte_l2_s_cache_mode_pt;
5447 PTE_SYNC(ptep);
5448 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5449 rv = 1;
5450 }
5451 }
5452
5453 return (rv);
5454 }
5455
5456 static void
5457 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5458 {
5459 vaddr_t va = *availp;
5460 struct l2_bucket *l2b;
5461
5462 if (ptep) {
5463 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5464 if (l2b == NULL)
5465 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5466
5467 if (ptep)
5468 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5469 }
5470
5471 *vap = va;
5472 *availp = va + (PAGE_SIZE * pages);
5473 }
5474
5475 void
5476 pmap_init(void)
5477 {
5478
5479 /*
5480 * Set the available memory vars - These do not map to real memory
5481 * addresses and cannot as the physical memory is fragmented.
5482 * They are used by ps for %mem calculations.
5483 * One could argue whether this should be the entire memory or just
5484 * the memory that is useable in a user process.
5485 */
5486 avail_start = ptoa(VM_PHYSMEM_PTR(0)->start);
5487 avail_end = ptoa(VM_PHYSMEM_PTR(vm_nphysseg - 1)->end);
5488
5489 /*
5490 * Now we need to free enough pv_entry structures to allow us to get
5491 * the kmem_map/kmem_object allocated and inited (done after this
5492 * function is finished). to do this we allocate one bootstrap page out
5493 * of kernel_map and use it to provide an initial pool of pv_entry
5494 * structures. we never free this page.
5495 */
5496 pool_setlowat(&pmap_pv_pool,
5497 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5498
5499 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5500 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5501 UVM_KMF_WIRED|UVM_KMF_ZERO);
5502
5503 pmap_initialized = true;
5504 }
5505
5506 static vaddr_t last_bootstrap_page = 0;
5507 static void *free_bootstrap_pages = NULL;
5508
5509 static void *
5510 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5511 {
5512 extern void *pool_page_alloc(struct pool *, int);
5513 vaddr_t new_page;
5514 void *rv;
5515
5516 if (pmap_initialized)
5517 return (pool_page_alloc(pp, flags));
5518
5519 if (free_bootstrap_pages) {
5520 rv = free_bootstrap_pages;
5521 free_bootstrap_pages = *((void **)rv);
5522 return (rv);
5523 }
5524
5525 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5526 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5527
5528 KASSERT(new_page > last_bootstrap_page);
5529 last_bootstrap_page = new_page;
5530 return ((void *)new_page);
5531 }
5532
5533 static void
5534 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5535 {
5536 extern void pool_page_free(struct pool *, void *);
5537
5538 if ((vaddr_t)v <= last_bootstrap_page) {
5539 *((void **)v) = free_bootstrap_pages;
5540 free_bootstrap_pages = v;
5541 return;
5542 }
5543
5544 if (pmap_initialized) {
5545 pool_page_free(pp, v);
5546 return;
5547 }
5548 }
5549
5550 /*
5551 * pmap_postinit()
5552 *
5553 * This routine is called after the vm and kmem subsystems have been
5554 * initialised. This allows the pmap code to perform any initialisation
5555 * that can only be done one the memory allocation is in place.
5556 */
5557 void
5558 pmap_postinit(void)
5559 {
5560 extern paddr_t physical_start, physical_end;
5561 struct l2_bucket *l2b;
5562 struct l1_ttable *l1;
5563 struct pglist plist;
5564 struct vm_page *m;
5565 pd_entry_t *pl1pt;
5566 pt_entry_t *ptep, pte;
5567 vaddr_t va, eva;
5568 u_int loop, needed;
5569 int error;
5570
5571 pool_cache_setlowat(&pmap_l2ptp_cache,
5572 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5573 pool_cache_setlowat(&pmap_l2dtable_cache,
5574 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5575
5576 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5577 needed -= 1;
5578
5579 l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
5580
5581 for (loop = 0; loop < needed; loop++, l1++) {
5582 /* Allocate a L1 page table */
5583 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5584 if (va == 0)
5585 panic("Cannot allocate L1 KVM");
5586
5587 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5588 physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
5589 if (error)
5590 panic("Cannot allocate L1 physical pages");
5591
5592 m = TAILQ_FIRST(&plist);
5593 eva = va + L1_TABLE_SIZE;
5594 pl1pt = (pd_entry_t *)va;
5595
5596 while (m && va < eva) {
5597 paddr_t pa = VM_PAGE_TO_PHYS(m);
5598
5599 pmap_kenter_pa(va, pa,
5600 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
5601
5602 /*
5603 * Make sure the L1 descriptor table is mapped
5604 * with the cache-mode set to write-through.
5605 */
5606 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5607 KDASSERT(l2b != NULL);
5608 ptep = &l2b->l2b_kva[l2pte_index(va)];
5609 pte = *ptep;
5610 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5611 *ptep = pte;
5612 PTE_SYNC(ptep);
5613 cpu_tlb_flushD_SE(va);
5614
5615 va += PAGE_SIZE;
5616 m = TAILQ_NEXT(m, pageq.queue);
5617 }
5618
5619 #ifdef DIAGNOSTIC
5620 if (m)
5621 panic("pmap_alloc_l1pt: pglist not empty");
5622 #endif /* DIAGNOSTIC */
5623
5624 pmap_init_l1(l1, pl1pt);
5625 }
5626
5627 #ifdef DEBUG
5628 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5629 needed);
5630 #endif
5631 }
5632
5633 /*
5634 * Note that the following routines are used by board-specific initialisation
5635 * code to configure the initial kernel page tables.
5636 *
5637 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5638 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5639 * behaviour of the old pmap, and provides an easy migration path for
5640 * initial bring-up of the new pmap on existing ports. Fortunately,
5641 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5642 * will be deprecated.
5643 *
5644 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5645 * tables.
5646 */
5647
5648 /*
5649 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5650 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5651 * find them as necessary.
5652 *
5653 * Note that the data on this list MUST remain valid after initarm() returns,
5654 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5655 */
5656 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5657
5658 static vaddr_t
5659 kernel_pt_lookup(paddr_t pa)
5660 {
5661 pv_addr_t *pv;
5662
5663 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5664 #ifndef ARM32_NEW_VM_LAYOUT
5665 if (pv->pv_pa == (pa & ~PGOFSET))
5666 return (pv->pv_va | (pa & PGOFSET));
5667 #else
5668 if (pv->pv_pa == pa)
5669 return (pv->pv_va);
5670 #endif
5671 }
5672 return (0);
5673 }
5674
5675 /*
5676 * pmap_map_section:
5677 *
5678 * Create a single section mapping.
5679 */
5680 void
5681 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5682 {
5683 pd_entry_t *pde = (pd_entry_t *) l1pt;
5684 pd_entry_t fl;
5685
5686 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5687
5688 switch (cache) {
5689 case PTE_NOCACHE:
5690 default:
5691 fl = 0;
5692 break;
5693
5694 case PTE_CACHE:
5695 fl = pte_l1_s_cache_mode;
5696 break;
5697
5698 case PTE_PAGETABLE:
5699 fl = pte_l1_s_cache_mode_pt;
5700 break;
5701 }
5702
5703 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5704 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5705 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5706 }
5707
5708 /*
5709 * pmap_map_entry:
5710 *
5711 * Create a single page mapping.
5712 */
5713 void
5714 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5715 {
5716 pd_entry_t *pde = (pd_entry_t *) l1pt;
5717 pt_entry_t fl;
5718 pt_entry_t *pte;
5719
5720 KASSERT(((va | pa) & PGOFSET) == 0);
5721
5722 switch (cache) {
5723 case PTE_NOCACHE:
5724 default:
5725 fl = 0;
5726 break;
5727
5728 case PTE_CACHE:
5729 fl = pte_l2_s_cache_mode;
5730 break;
5731
5732 case PTE_PAGETABLE:
5733 fl = pte_l2_s_cache_mode_pt;
5734 break;
5735 }
5736
5737 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5738 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5739
5740 #ifndef ARM32_NEW_VM_LAYOUT
5741 pte = (pt_entry_t *)
5742 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5743 #else
5744 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5745 #endif
5746 if (pte == NULL)
5747 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5748
5749 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5750 #ifndef ARM32_NEW_VM_LAYOUT
5751 pte += (va >> PGSHIFT) & 0x3ff;
5752 #else
5753 pte += l2pte_index(va);
5754 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5755 #endif
5756 *pte = fl;
5757 PTE_SYNC(pte);
5758 }
5759
5760 /*
5761 * pmap_link_l2pt:
5762 *
5763 * Link the L2 page table specified by "l2pv" into the L1
5764 * page table at the slot for "va".
5765 */
5766 void
5767 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5768 {
5769 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5770 u_int slot = va >> L1_S_SHIFT;
5771
5772 #ifndef ARM32_NEW_VM_LAYOUT
5773 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5774 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5775 #endif
5776
5777 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5778
5779 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5780 #ifdef ARM32_NEW_VM_LAYOUT
5781 PTE_SYNC(&pde[slot]);
5782 #else
5783 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5784 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5785 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5786 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5787 #endif
5788
5789 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5790 }
5791
5792 /*
5793 * pmap_map_chunk:
5794 *
5795 * Map a chunk of memory using the most efficient mappings
5796 * possible (section, large page, small page) into the
5797 * provided L1 and L2 tables at the specified virtual address.
5798 */
5799 vsize_t
5800 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5801 int prot, int cache)
5802 {
5803 pd_entry_t *pdep = (pd_entry_t *) l1pt;
5804 pt_entry_t *pte, f1, f2s, f2l;
5805 vsize_t resid;
5806 int i;
5807
5808 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5809
5810 if (l1pt == 0)
5811 panic("pmap_map_chunk: no L1 table provided");
5812
5813 #ifdef VERBOSE_INIT_ARM
5814 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5815 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5816 #endif
5817
5818 switch (cache) {
5819 case PTE_NOCACHE:
5820 default:
5821 f1 = 0;
5822 f2l = 0;
5823 f2s = 0;
5824 break;
5825
5826 case PTE_CACHE:
5827 f1 = pte_l1_s_cache_mode;
5828 f2l = pte_l2_l_cache_mode;
5829 f2s = pte_l2_s_cache_mode;
5830 break;
5831
5832 case PTE_PAGETABLE:
5833 f1 = pte_l1_s_cache_mode_pt;
5834 f2l = pte_l2_l_cache_mode_pt;
5835 f2s = pte_l2_s_cache_mode_pt;
5836 break;
5837 }
5838
5839 size = resid;
5840
5841 while (resid > 0) {
5842 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
5843 /* See if we can use a supersection mapping. */
5844 if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
5845 /* Supersection are always domain 0 */
5846 pd_entry_t pde = L1_SS_PROTO | pa |
5847 L1_S_PROT(PTE_KERNEL, prot) | f1;
5848 #ifdef VERBOSE_INIT_ARM
5849 printf("sS");
5850 #endif
5851 for (size_t s = va >> L1_S_SHIFT,
5852 e = s + L1_SS_SIZE / L1_S_SIZE;
5853 s < e;
5854 s++) {
5855 pdep[s] = pde;
5856 PTE_SYNC(&pdep[s]);
5857 }
5858 va += L1_SS_SIZE;
5859 pa += L1_SS_SIZE;
5860 resid -= L1_SS_SIZE;
5861 continue;
5862 }
5863 #endif
5864 /* See if we can use a section mapping. */
5865 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5866 #ifdef VERBOSE_INIT_ARM
5867 printf("S");
5868 #endif
5869 pdep[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5870 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5871 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5872 PTE_SYNC(&pdep[va >> L1_S_SHIFT]);
5873 va += L1_S_SIZE;
5874 pa += L1_S_SIZE;
5875 resid -= L1_S_SIZE;
5876 continue;
5877 }
5878
5879 /*
5880 * Ok, we're going to use an L2 table. Make sure
5881 * one is actually in the corresponding L1 slot
5882 * for the current VA.
5883 */
5884 if ((pdep[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5885 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5886
5887 #ifndef ARM32_NEW_VM_LAYOUT
5888 pte = (pt_entry_t *)
5889 kernel_pt_lookup(pdep[va >> L1_S_SHIFT] & L2_S_FRAME);
5890 #else
5891 pte = (pt_entry_t *) kernel_pt_lookup(
5892 pdep[L1_IDX(va)] & L1_C_ADDR_MASK);
5893 #endif
5894 if (pte == NULL)
5895 panic("pmap_map_chunk: can't find L2 table for VA"
5896 "0x%08lx", va);
5897
5898 /* See if we can use a L2 large page mapping. */
5899 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5900 #ifdef VERBOSE_INIT_ARM
5901 printf("L");
5902 #endif
5903 for (i = 0; i < 16; i++) {
5904 #ifndef ARM32_NEW_VM_LAYOUT
5905 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5906 L2_L_PROTO | pa |
5907 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5908 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5909 #else
5910 pte[l2pte_index(va) + i] =
5911 L2_L_PROTO | pa |
5912 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5913 PTE_SYNC(&pte[l2pte_index(va) + i]);
5914 #endif
5915 }
5916 va += L2_L_SIZE;
5917 pa += L2_L_SIZE;
5918 resid -= L2_L_SIZE;
5919 continue;
5920 }
5921
5922 /* Use a small page mapping. */
5923 #ifdef VERBOSE_INIT_ARM
5924 printf("P");
5925 #endif
5926 #ifndef ARM32_NEW_VM_LAYOUT
5927 pte[(va >> PGSHIFT) & 0x3ff] =
5928 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5929 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5930 #else
5931 pte[l2pte_index(va)] =
5932 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5933 PTE_SYNC(&pte[l2pte_index(va)]);
5934 #endif
5935 va += PAGE_SIZE;
5936 pa += PAGE_SIZE;
5937 resid -= PAGE_SIZE;
5938 }
5939 #ifdef VERBOSE_INIT_ARM
5940 printf("\n");
5941 #endif
5942 return (size);
5943 }
5944
5945 /********************** Static device map routines ***************************/
5946
5947 static const struct pmap_devmap *pmap_devmap_table;
5948
5949 /*
5950 * Register the devmap table. This is provided in case early console
5951 * initialization needs to register mappings created by bootstrap code
5952 * before pmap_devmap_bootstrap() is called.
5953 */
5954 void
5955 pmap_devmap_register(const struct pmap_devmap *table)
5956 {
5957
5958 pmap_devmap_table = table;
5959 }
5960
5961 /*
5962 * Map all of the static regions in the devmap table, and remember
5963 * the devmap table so other parts of the kernel can look up entries
5964 * later.
5965 */
5966 void
5967 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5968 {
5969 int i;
5970
5971 pmap_devmap_table = table;
5972
5973 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5974 #ifdef VERBOSE_INIT_ARM
5975 printf("devmap: %08lx -> %08lx @ %08lx\n",
5976 pmap_devmap_table[i].pd_pa,
5977 pmap_devmap_table[i].pd_pa +
5978 pmap_devmap_table[i].pd_size - 1,
5979 pmap_devmap_table[i].pd_va);
5980 #endif
5981 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5982 pmap_devmap_table[i].pd_pa,
5983 pmap_devmap_table[i].pd_size,
5984 pmap_devmap_table[i].pd_prot,
5985 pmap_devmap_table[i].pd_cache);
5986 }
5987 }
5988
5989 const struct pmap_devmap *
5990 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5991 {
5992 uint64_t endpa;
5993 int i;
5994
5995 if (pmap_devmap_table == NULL)
5996 return (NULL);
5997
5998 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5999
6000 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6001 if (pa >= pmap_devmap_table[i].pd_pa &&
6002 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
6003 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
6004 return (&pmap_devmap_table[i]);
6005 }
6006
6007 return (NULL);
6008 }
6009
6010 const struct pmap_devmap *
6011 pmap_devmap_find_va(vaddr_t va, vsize_t size)
6012 {
6013 int i;
6014
6015 if (pmap_devmap_table == NULL)
6016 return (NULL);
6017
6018 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
6019 if (va >= pmap_devmap_table[i].pd_va &&
6020 va + size - 1 <= pmap_devmap_table[i].pd_va +
6021 pmap_devmap_table[i].pd_size - 1)
6022 return (&pmap_devmap_table[i]);
6023 }
6024
6025 return (NULL);
6026 }
6027
6028 /********************** PTE initialization routines **************************/
6029
6030 /*
6031 * These routines are called when the CPU type is identified to set up
6032 * the PTE prototypes, cache modes, etc.
6033 *
6034 * The variables are always here, just in case modules need to reference
6035 * them (though, they shouldn't).
6036 */
6037
6038 pt_entry_t pte_l1_s_cache_mode;
6039 pt_entry_t pte_l1_s_wc_mode;
6040 pt_entry_t pte_l1_s_cache_mode_pt;
6041 pt_entry_t pte_l1_s_cache_mask;
6042
6043 pt_entry_t pte_l2_l_cache_mode;
6044 pt_entry_t pte_l2_l_wc_mode;
6045 pt_entry_t pte_l2_l_cache_mode_pt;
6046 pt_entry_t pte_l2_l_cache_mask;
6047
6048 pt_entry_t pte_l2_s_cache_mode;
6049 pt_entry_t pte_l2_s_wc_mode;
6050 pt_entry_t pte_l2_s_cache_mode_pt;
6051 pt_entry_t pte_l2_s_cache_mask;
6052
6053 pt_entry_t pte_l1_s_prot_u;
6054 pt_entry_t pte_l1_s_prot_w;
6055 pt_entry_t pte_l1_s_prot_ro;
6056 pt_entry_t pte_l1_s_prot_mask;
6057
6058 pt_entry_t pte_l2_s_prot_u;
6059 pt_entry_t pte_l2_s_prot_w;
6060 pt_entry_t pte_l2_s_prot_ro;
6061 pt_entry_t pte_l2_s_prot_mask;
6062
6063 pt_entry_t pte_l2_l_prot_u;
6064 pt_entry_t pte_l2_l_prot_w;
6065 pt_entry_t pte_l2_l_prot_ro;
6066 pt_entry_t pte_l2_l_prot_mask;
6067
6068 pt_entry_t pte_l1_ss_proto;
6069 pt_entry_t pte_l1_s_proto;
6070 pt_entry_t pte_l1_c_proto;
6071 pt_entry_t pte_l2_s_proto;
6072
6073 void (*pmap_copy_page_func)(paddr_t, paddr_t);
6074 void (*pmap_zero_page_func)(paddr_t);
6075
6076 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
6077 void
6078 pmap_pte_init_generic(void)
6079 {
6080
6081 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6082 pte_l1_s_wc_mode = L1_S_B;
6083 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
6084
6085 pte_l2_l_cache_mode = L2_B|L2_C;
6086 pte_l2_l_wc_mode = L2_B;
6087 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
6088
6089 pte_l2_s_cache_mode = L2_B|L2_C;
6090 pte_l2_s_wc_mode = L2_B;
6091 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
6092
6093 /*
6094 * If we have a write-through cache, set B and C. If
6095 * we have a write-back cache, then we assume setting
6096 * only C will make those pages write-through (except for those
6097 * Cortex CPUs which can read the L1 caches).
6098 */
6099 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
6100 #if ARM_MMU_V7 > 0
6101 || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
6102 #endif
6103 #if ARM_MMU_V6 > 0
6104 || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
6105 #endif
6106 || false) {
6107 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6108 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6109 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6110 } else {
6111 pte_l1_s_cache_mode_pt = L1_S_C; /* write through */
6112 pte_l2_l_cache_mode_pt = L2_C; /* write through */
6113 pte_l2_s_cache_mode_pt = L2_C; /* write through */
6114 }
6115
6116 pte_l1_s_prot_u = L1_S_PROT_U_generic;
6117 pte_l1_s_prot_w = L1_S_PROT_W_generic;
6118 pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
6119 pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
6120
6121 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6122 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6123 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6124 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6125
6126 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6127 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6128 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6129 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6130
6131 pte_l1_ss_proto = L1_SS_PROTO_generic;
6132 pte_l1_s_proto = L1_S_PROTO_generic;
6133 pte_l1_c_proto = L1_C_PROTO_generic;
6134 pte_l2_s_proto = L2_S_PROTO_generic;
6135
6136 pmap_copy_page_func = pmap_copy_page_generic;
6137 pmap_zero_page_func = pmap_zero_page_generic;
6138 }
6139
6140 #if defined(CPU_ARM8)
6141 void
6142 pmap_pte_init_arm8(void)
6143 {
6144
6145 /*
6146 * ARM8 is compatible with generic, but we need to use
6147 * the page tables uncached.
6148 */
6149 pmap_pte_init_generic();
6150
6151 pte_l1_s_cache_mode_pt = 0;
6152 pte_l2_l_cache_mode_pt = 0;
6153 pte_l2_s_cache_mode_pt = 0;
6154 }
6155 #endif /* CPU_ARM8 */
6156
6157 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
6158 void
6159 pmap_pte_init_arm9(void)
6160 {
6161
6162 /*
6163 * ARM9 is compatible with generic, but we want to use
6164 * write-through caching for now.
6165 */
6166 pmap_pte_init_generic();
6167
6168 pte_l1_s_cache_mode = L1_S_C;
6169 pte_l2_l_cache_mode = L2_C;
6170 pte_l2_s_cache_mode = L2_C;
6171
6172 pte_l1_s_wc_mode = L1_S_B;
6173 pte_l2_l_wc_mode = L2_B;
6174 pte_l2_s_wc_mode = L2_B;
6175
6176 pte_l1_s_cache_mode_pt = L1_S_C;
6177 pte_l2_l_cache_mode_pt = L2_C;
6178 pte_l2_s_cache_mode_pt = L2_C;
6179 }
6180 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
6181 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
6182
6183 #if defined(CPU_ARM10)
6184 void
6185 pmap_pte_init_arm10(void)
6186 {
6187
6188 /*
6189 * ARM10 is compatible with generic, but we want to use
6190 * write-through caching for now.
6191 */
6192 pmap_pte_init_generic();
6193
6194 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
6195 pte_l2_l_cache_mode = L2_B | L2_C;
6196 pte_l2_s_cache_mode = L2_B | L2_C;
6197
6198 pte_l1_s_cache_mode = L1_S_B;
6199 pte_l2_l_cache_mode = L2_B;
6200 pte_l2_s_cache_mode = L2_B;
6201
6202 pte_l1_s_cache_mode_pt = L1_S_C;
6203 pte_l2_l_cache_mode_pt = L2_C;
6204 pte_l2_s_cache_mode_pt = L2_C;
6205
6206 }
6207 #endif /* CPU_ARM10 */
6208
6209 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6210 void
6211 pmap_pte_init_arm11(void)
6212 {
6213
6214 /*
6215 * ARM11 is compatible with generic, but we want to use
6216 * write-through caching for now.
6217 */
6218 pmap_pte_init_generic();
6219
6220 pte_l1_s_cache_mode = L1_S_C;
6221 pte_l2_l_cache_mode = L2_C;
6222 pte_l2_s_cache_mode = L2_C;
6223
6224 pte_l1_s_wc_mode = L1_S_B;
6225 pte_l2_l_wc_mode = L2_B;
6226 pte_l2_s_wc_mode = L2_B;
6227
6228 pte_l1_s_cache_mode_pt = L1_S_C;
6229 pte_l2_l_cache_mode_pt = L2_C;
6230 pte_l2_s_cache_mode_pt = L2_C;
6231 }
6232 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6233
6234 #if ARM_MMU_SA1 == 1
6235 void
6236 pmap_pte_init_sa1(void)
6237 {
6238
6239 /*
6240 * The StrongARM SA-1 cache does not have a write-through
6241 * mode. So, do the generic initialization, then reset
6242 * the page table cache mode to B=1,C=1, and note that
6243 * the PTEs need to be sync'd.
6244 */
6245 pmap_pte_init_generic();
6246
6247 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6248 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6249 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6250
6251 pmap_needs_pte_sync = 1;
6252 }
6253 #endif /* ARM_MMU_SA1 == 1*/
6254
6255 #if ARM_MMU_XSCALE == 1
6256 #if (ARM_NMMUS > 1)
6257 static u_int xscale_use_minidata;
6258 #endif
6259
6260 void
6261 pmap_pte_init_xscale(void)
6262 {
6263 uint32_t auxctl;
6264 int write_through = 0;
6265
6266 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6267 pte_l1_s_wc_mode = L1_S_B;
6268 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6269
6270 pte_l2_l_cache_mode = L2_B|L2_C;
6271 pte_l2_l_wc_mode = L2_B;
6272 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6273
6274 pte_l2_s_cache_mode = L2_B|L2_C;
6275 pte_l2_s_wc_mode = L2_B;
6276 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6277
6278 pte_l1_s_cache_mode_pt = L1_S_C;
6279 pte_l2_l_cache_mode_pt = L2_C;
6280 pte_l2_s_cache_mode_pt = L2_C;
6281
6282 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6283 /*
6284 * The XScale core has an enhanced mode where writes that
6285 * miss the cache cause a cache line to be allocated. This
6286 * is significantly faster than the traditional, write-through
6287 * behavior of this case.
6288 */
6289 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6290 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6291 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6292 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6293
6294 #ifdef XSCALE_CACHE_WRITE_THROUGH
6295 /*
6296 * Some versions of the XScale core have various bugs in
6297 * their cache units, the work-around for which is to run
6298 * the cache in write-through mode. Unfortunately, this
6299 * has a major (negative) impact on performance. So, we
6300 * go ahead and run fast-and-loose, in the hopes that we
6301 * don't line up the planets in a way that will trip the
6302 * bugs.
6303 *
6304 * However, we give you the option to be slow-but-correct.
6305 */
6306 write_through = 1;
6307 #elif defined(XSCALE_CACHE_WRITE_BACK)
6308 /* force write back cache mode */
6309 write_through = 0;
6310 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6311 /*
6312 * Intel PXA2[15]0 processors are known to have a bug in
6313 * write-back cache on revision 4 and earlier (stepping
6314 * A[01] and B[012]). Fixed for C0 and later.
6315 */
6316 {
6317 uint32_t id, type;
6318
6319 id = cpufunc_id();
6320 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6321
6322 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6323 if ((id & CPU_ID_REVISION_MASK) < 5) {
6324 /* write through for stepping A0-1 and B0-2 */
6325 write_through = 1;
6326 }
6327 }
6328 }
6329 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6330
6331 if (write_through) {
6332 pte_l1_s_cache_mode = L1_S_C;
6333 pte_l2_l_cache_mode = L2_C;
6334 pte_l2_s_cache_mode = L2_C;
6335 }
6336
6337 #if (ARM_NMMUS > 1)
6338 xscale_use_minidata = 1;
6339 #endif
6340
6341 pte_l1_s_prot_u = L1_S_PROT_U_xscale;
6342 pte_l1_s_prot_w = L1_S_PROT_W_xscale;
6343 pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
6344 pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
6345
6346 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6347 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6348 pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
6349 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6350
6351 pte_l2_l_prot_u = L2_L_PROT_U_xscale;
6352 pte_l2_l_prot_w = L2_L_PROT_W_xscale;
6353 pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
6354 pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
6355
6356 pte_l1_ss_proto = L1_SS_PROTO_xscale;
6357 pte_l1_s_proto = L1_S_PROTO_xscale;
6358 pte_l1_c_proto = L1_C_PROTO_xscale;
6359 pte_l2_s_proto = L2_S_PROTO_xscale;
6360
6361 pmap_copy_page_func = pmap_copy_page_xscale;
6362 pmap_zero_page_func = pmap_zero_page_xscale;
6363
6364 /*
6365 * Disable ECC protection of page table access, for now.
6366 */
6367 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6368 auxctl &= ~XSCALE_AUXCTL_P;
6369 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6370 }
6371
6372 /*
6373 * xscale_setup_minidata:
6374 *
6375 * Set up the mini-data cache clean area. We require the
6376 * caller to allocate the right amount of physically and
6377 * virtually contiguous space.
6378 */
6379 void
6380 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6381 {
6382 extern vaddr_t xscale_minidata_clean_addr;
6383 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6384 pd_entry_t *pde = (pd_entry_t *) l1pt;
6385 pt_entry_t *pte;
6386 vsize_t size;
6387 uint32_t auxctl;
6388
6389 xscale_minidata_clean_addr = va;
6390
6391 /* Round it to page size. */
6392 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6393
6394 for (; size != 0;
6395 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6396 #ifndef ARM32_NEW_VM_LAYOUT
6397 pte = (pt_entry_t *)
6398 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6399 #else
6400 pte = (pt_entry_t *) kernel_pt_lookup(
6401 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6402 #endif
6403 if (pte == NULL)
6404 panic("xscale_setup_minidata: can't find L2 table for "
6405 "VA 0x%08lx", va);
6406 #ifndef ARM32_NEW_VM_LAYOUT
6407 pte[(va >> PGSHIFT) & 0x3ff] =
6408 #else
6409 pte[l2pte_index(va)] =
6410 #endif
6411 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6412 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6413 }
6414
6415 /*
6416 * Configure the mini-data cache for write-back with
6417 * read/write-allocate.
6418 *
6419 * NOTE: In order to reconfigure the mini-data cache, we must
6420 * make sure it contains no valid data! In order to do that,
6421 * we must issue a global data cache invalidate command!
6422 *
6423 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6424 * THIS IS VERY IMPORTANT!
6425 */
6426
6427 /* Invalidate data and mini-data. */
6428 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6429 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6430 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6431 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6432 }
6433
6434 /*
6435 * Change the PTEs for the specified kernel mappings such that they
6436 * will use the mini data cache instead of the main data cache.
6437 */
6438 void
6439 pmap_uarea(vaddr_t va)
6440 {
6441 struct l2_bucket *l2b;
6442 pt_entry_t *ptep, *sptep, pte;
6443 vaddr_t next_bucket, eva;
6444
6445 #if (ARM_NMMUS > 1)
6446 if (xscale_use_minidata == 0)
6447 return;
6448 #endif
6449
6450 eva = va + USPACE;
6451
6452 while (va < eva) {
6453 next_bucket = L2_NEXT_BUCKET(va);
6454 if (next_bucket > eva)
6455 next_bucket = eva;
6456
6457 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6458 KDASSERT(l2b != NULL);
6459
6460 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6461
6462 while (va < next_bucket) {
6463 pte = *ptep;
6464 if (!l2pte_minidata(pte)) {
6465 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6466 cpu_tlb_flushD_SE(va);
6467 *ptep = pte & ~L2_B;
6468 }
6469 ptep++;
6470 va += PAGE_SIZE;
6471 }
6472 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6473 }
6474 cpu_cpwait();
6475 }
6476 #endif /* ARM_MMU_XSCALE == 1 */
6477
6478
6479 #if defined(CPU_ARM11MPCORE)
6480
6481 void
6482 pmap_pte_init_arm11mpcore(void)
6483 {
6484
6485 /* cache mode is controlled by 5 bits (B, C, TEX) */
6486 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
6487 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
6488 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6489 /* use extended small page (without APn, with TEX) */
6490 pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
6491 #else
6492 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
6493 #endif
6494
6495 /* write-back, write-allocate */
6496 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6497 pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
6498 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6499 pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6500 #else
6501 /* no TEX. read-allocate */
6502 pte_l2_s_cache_mode = L2_C | L2_B;
6503 #endif
6504 /*
6505 * write-back, write-allocate for page tables.
6506 */
6507 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
6508 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
6509 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6510 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
6511 #else
6512 pte_l2_s_cache_mode_pt = L2_C | L2_B;
6513 #endif
6514
6515 pte_l1_s_prot_u = L1_S_PROT_U_armv6;
6516 pte_l1_s_prot_w = L1_S_PROT_W_armv6;
6517 pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
6518 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
6519
6520 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
6521 pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
6522 pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
6523 pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
6524 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
6525
6526 #else
6527 /* with AP[0..3] */
6528 pte_l2_s_prot_u = L2_S_PROT_U_generic;
6529 pte_l2_s_prot_w = L2_S_PROT_W_generic;
6530 pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
6531 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
6532 #endif
6533
6534 #ifdef ARM11MPCORE_COMPAT_MMU
6535 /* with AP[0..3] */
6536 pte_l2_l_prot_u = L2_L_PROT_U_generic;
6537 pte_l2_l_prot_w = L2_L_PROT_W_generic;
6538 pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
6539 pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
6540
6541 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6542 pte_l1_s_proto = L1_S_PROTO_armv6;
6543 pte_l1_c_proto = L1_C_PROTO_armv6;
6544 pte_l2_s_proto = L2_S_PROTO_armv6c;
6545 #else
6546 pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
6547 pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
6548 pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
6549 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
6550
6551 pte_l1_ss_proto = L1_SS_PROTO_armv6;
6552 pte_l1_s_proto = L1_S_PROTO_armv6;
6553 pte_l1_c_proto = L1_C_PROTO_armv6;
6554 pte_l2_s_proto = L2_S_PROTO_armv6n;
6555 #endif
6556
6557 pmap_copy_page_func = pmap_copy_page_generic;
6558 pmap_zero_page_func = pmap_zero_page_generic;
6559 pmap_needs_pte_sync = 1;
6560 }
6561 #endif /* CPU_ARM11MPCORE */
6562
6563
6564 #if ARM_MMU_V7 == 1
6565 void
6566 pmap_pte_init_armv7(void)
6567 {
6568 /*
6569 * The ARMv7-A MMU is mostly compatible with generic. If the
6570 * AP field is zero, that now means "no access" rather than
6571 * read-only. The prototypes are a little different because of
6572 * the XN bit.
6573 */
6574 pmap_pte_init_generic();
6575
6576 pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
6577 pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
6578 pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
6579
6580 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) {
6581 /*
6582 * write-back, no write-allocate, shareable for normal pages.
6583 */
6584 pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_S;
6585 pte_l2_l_cache_mode = L2_C | L2_B | L2_XS_S;
6586 pte_l2_s_cache_mode = L2_C | L2_B | L2_XS_S;
6587
6588 /*
6589 * write-back, no write-allocate, shareable for page tables.
6590 */
6591 pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_S;
6592 pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6593 pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_XS_S;
6594 }
6595
6596 pte_l1_s_prot_u = L1_S_PROT_U_armv7;
6597 pte_l1_s_prot_w = L1_S_PROT_W_armv7;
6598 pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
6599 pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
6600
6601 pte_l2_s_prot_u = L2_S_PROT_U_armv7;
6602 pte_l2_s_prot_w = L2_S_PROT_W_armv7;
6603 pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
6604 pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
6605
6606 pte_l2_l_prot_u = L2_L_PROT_U_armv7;
6607 pte_l2_l_prot_w = L2_L_PROT_W_armv7;
6608 pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
6609 pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
6610
6611 pte_l1_ss_proto = L1_SS_PROTO_armv7;
6612 pte_l1_s_proto = L1_S_PROTO_armv7;
6613 pte_l1_c_proto = L1_C_PROTO_armv7;
6614 pte_l2_s_proto = L2_S_PROTO_armv7;
6615
6616 pmap_needs_pte_sync = 1;
6617 }
6618 #endif /* ARM_MMU_V7 */
6619
6620 /*
6621 * return the PA of the current L1 table, for use when handling a crash dump
6622 */
6623 uint32_t pmap_kernel_L1_addr(void)
6624 {
6625 return pmap_kernel()->pm_l1->l1_physaddr;
6626 }
6627
6628 #if defined(DDB)
6629 /*
6630 * A couple of ddb-callable functions for dumping pmaps
6631 */
6632 void pmap_dump_all(void);
6633 void pmap_dump(pmap_t);
6634
6635 void
6636 pmap_dump_all(void)
6637 {
6638 pmap_t pm;
6639
6640 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6641 if (pm == pmap_kernel())
6642 continue;
6643 pmap_dump(pm);
6644 printf("\n");
6645 }
6646 }
6647
6648 static pt_entry_t ncptes[64];
6649 static void pmap_dump_ncpg(pmap_t);
6650
6651 void
6652 pmap_dump(pmap_t pm)
6653 {
6654 struct l2_dtable *l2;
6655 struct l2_bucket *l2b;
6656 pt_entry_t *ptep, pte;
6657 vaddr_t l2_va, l2b_va, va;
6658 int i, j, k, occ, rows = 0;
6659
6660 if (pm == pmap_kernel())
6661 printf("pmap_kernel (%p): ", pm);
6662 else
6663 printf("user pmap (%p): ", pm);
6664
6665 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6666
6667 l2_va = 0;
6668 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6669 l2 = pm->pm_l2[i];
6670
6671 if (l2 == NULL || l2->l2_occupancy == 0)
6672 continue;
6673
6674 l2b_va = l2_va;
6675 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6676 l2b = &l2->l2_bucket[j];
6677
6678 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6679 continue;
6680
6681 ptep = l2b->l2b_kva;
6682
6683 for (k = 0; k < 256 && ptep[k] == 0; k++)
6684 ;
6685
6686 k &= ~63;
6687 occ = l2b->l2b_occupancy;
6688 va = l2b_va + (k * 4096);
6689 for (; k < 256; k++, va += 0x1000) {
6690 char ch = ' ';
6691 if ((k % 64) == 0) {
6692 if ((rows % 8) == 0) {
6693 printf(
6694 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6695 }
6696 printf("%08lx: ", va);
6697 }
6698
6699 ncptes[k & 63] = 0;
6700 pte = ptep[k];
6701 if (pte == 0) {
6702 ch = '.';
6703 } else {
6704 occ--;
6705 switch (pte & 0x0c) {
6706 case 0x00:
6707 ch = 'D'; /* No cache No buff */
6708 break;
6709 case 0x04:
6710 ch = 'B'; /* No cache buff */
6711 break;
6712 case 0x08:
6713 if (pte & 0x40)
6714 ch = 'm';
6715 else
6716 ch = 'C'; /* Cache No buff */
6717 break;
6718 case 0x0c:
6719 ch = 'F'; /* Cache Buff */
6720 break;
6721 }
6722
6723 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6724 ch += 0x20;
6725
6726 if ((pte & 0xc) == 0)
6727 ncptes[k & 63] = pte;
6728 }
6729
6730 if ((k % 64) == 63) {
6731 rows++;
6732 printf("%c\n", ch);
6733 pmap_dump_ncpg(pm);
6734 if (occ == 0)
6735 break;
6736 } else
6737 printf("%c", ch);
6738 }
6739 }
6740 }
6741 }
6742
6743 static void
6744 pmap_dump_ncpg(pmap_t pm)
6745 {
6746 struct vm_page *pg;
6747 struct vm_page_md *md;
6748 struct pv_entry *pv;
6749 int i;
6750
6751 for (i = 0; i < 63; i++) {
6752 if (ncptes[i] == 0)
6753 continue;
6754
6755 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6756 if (pg == NULL)
6757 continue;
6758 md = VM_PAGE_TO_MD(pg);
6759
6760 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6761 VM_PAGE_TO_PHYS(pg),
6762 md->krw_mappings, md->kro_mappings,
6763 md->urw_mappings, md->uro_mappings);
6764
6765 SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
6766 printf(" %c va 0x%08lx, flags 0x%x\n",
6767 (pm == pv->pv_pmap) ? '*' : ' ',
6768 pv->pv_va, pv->pv_flags);
6769 }
6770 }
6771 }
6772 #endif
6773
6774 #ifdef PMAP_STEAL_MEMORY
6775 void
6776 pmap_boot_pageadd(pv_addr_t *newpv)
6777 {
6778 pv_addr_t *pv, *npv;
6779
6780 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6781 if (newpv->pv_pa < pv->pv_va) {
6782 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6783 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6784 newpv->pv_size += pv->pv_size;
6785 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6786 }
6787 pv = NULL;
6788 } else {
6789 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6790 pv = npv) {
6791 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6792 KASSERT(pv->pv_pa < newpv->pv_pa);
6793 if (newpv->pv_pa > npv->pv_pa)
6794 continue;
6795 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6796 pv->pv_size += newpv->pv_size;
6797 return;
6798 }
6799 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6800 break;
6801 newpv->pv_size += npv->pv_size;
6802 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6803 SLIST_REMOVE_AFTER(newpv, pv_list);
6804 return;
6805 }
6806 }
6807 }
6808
6809 if (pv) {
6810 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6811 } else {
6812 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6813 }
6814 }
6815
6816 void
6817 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6818 pv_addr_t *rpv)
6819 {
6820 pv_addr_t *pv, **pvp;
6821 struct vm_physseg *ps;
6822 size_t i;
6823
6824 KASSERT(amount & PGOFSET);
6825 KASSERT((mask & PGOFSET) == 0);
6826 KASSERT((match & PGOFSET) == 0);
6827 KASSERT(amount != 0);
6828
6829 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6830 (pv = *pvp) != NULL;
6831 pvp = &SLIST_NEXT(pv, pv_list)) {
6832 pv_addr_t *newpv;
6833 psize_t off;
6834 /*
6835 * If this entry is too small to satify the request...
6836 */
6837 KASSERT(pv->pv_size > 0);
6838 if (pv->pv_size < amount)
6839 continue;
6840
6841 for (off = 0; off <= mask; off += PAGE_SIZE) {
6842 if (((pv->pv_pa + off) & mask) == match
6843 && off + amount <= pv->pv_size)
6844 break;
6845 }
6846 if (off > mask)
6847 continue;
6848
6849 rpv->pv_va = pv->pv_va + off;
6850 rpv->pv_pa = pv->pv_pa + off;
6851 rpv->pv_size = amount;
6852 pv->pv_size -= amount;
6853 if (pv->pv_size == 0) {
6854 KASSERT(off == 0);
6855 KASSERT((vaddr_t) pv == rpv->pv_va);
6856 *pvp = SLIST_NEXT(pv, pv_list);
6857 } else if (off == 0) {
6858 KASSERT((vaddr_t) pv == rpv->pv_va);
6859 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6860 *newpv = *pv;
6861 newpv->pv_pa += amount;
6862 newpv->pv_va += amount;
6863 *pvp = newpv;
6864 } else if (off < pv->pv_size) {
6865 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6866 *newpv = *pv;
6867 newpv->pv_size -= off;
6868 newpv->pv_pa += off + amount;
6869 newpv->pv_va += off + amount;
6870
6871 SLIST_NEXT(pv, pv_list) = newpv;
6872 pv->pv_size = off;
6873 } else {
6874 KASSERT((vaddr_t) pv != rpv->pv_va);
6875 }
6876 memset((void *)rpv->pv_va, 0, amount);
6877 return;
6878 }
6879
6880 if (vm_nphysseg == 0)
6881 panic("pmap_boot_pagealloc: couldn't allocate memory");
6882
6883 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6884 (pv = *pvp) != NULL;
6885 pvp = &SLIST_NEXT(pv, pv_list)) {
6886 if (SLIST_NEXT(pv, pv_list) == NULL)
6887 break;
6888 }
6889 KASSERT(mask == 0);
6890 for (i = 0; i < vm_nphysseg; i++) {
6891 ps = VM_PHYSMEM_PTR(i);
6892 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6893 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6894 rpv->pv_va = pv->pv_va;
6895 rpv->pv_pa = pv->pv_pa;
6896 rpv->pv_size = amount;
6897 *pvp = NULL;
6898 pmap_map_chunk(kernel_l1pt.pv_va,
6899 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6900 ptoa(ps->avail_start),
6901 amount - pv->pv_size,
6902 VM_PROT_READ|VM_PROT_WRITE,
6903 PTE_CACHE);
6904 ps->avail_start += atop(amount - pv->pv_size);
6905 /*
6906 * If we consumed the entire physseg, remove it.
6907 */
6908 if (ps->avail_start == ps->avail_end) {
6909 for (--vm_nphysseg; i < vm_nphysseg; i++)
6910 VM_PHYSMEM_PTR_SWAP(i, i + 1);
6911 }
6912 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6913 return;
6914 }
6915 }
6916
6917 panic("pmap_boot_pagealloc: couldn't allocate memory");
6918 }
6919
6920 vaddr_t
6921 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6922 {
6923 pv_addr_t pv;
6924
6925 pmap_boot_pagealloc(size, 0, 0, &pv);
6926
6927 return pv.pv_va;
6928 }
6929 #endif /* PMAP_STEAL_MEMORY */
6930
6931 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6932 {
6933 sysctl_createv(clog, 0, NULL, NULL,
6934 CTLFLAG_PERMANENT,
6935 CTLTYPE_NODE, "machdep", NULL,
6936 NULL, 0, NULL, 0,
6937 CTL_MACHDEP, CTL_EOL);
6938
6939 sysctl_createv(clog, 0, NULL, NULL,
6940 CTLFLAG_PERMANENT,
6941 CTLTYPE_INT, "kmpages",
6942 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6943 NULL, 0, &pmap_kmpages, 0,
6944 CTL_MACHDEP, CTL_CREATE, CTL_EOL);
6945 }
6946
6947 #ifdef PMAP_NEED_ALLOC_POOLPAGE
6948 struct vm_page *
6949 arm_pmap_alloc_poolpage(int flags)
6950 {
6951 /*
6952 * On some systems, only some pages may be "coherent" for dma and we
6953 * want to prefer those for pool pages (think mbufs) but fallback to
6954 * any page if none is available.
6955 */
6956 if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
6957 return uvm_pagealloc_strat(NULL, 0, NULL, flags,
6958 UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
6959 }
6960
6961 return uvm_pagealloc(NULL, 0, NULL, flags);
6962 }
6963 #endif
6964